

1.										Table	of	Contents

1.Table	of	Contents

2.Welcome
Introduction
Acknowledgements
Purpose
Work
Disclaimer
Revisions
Source	Code
Location
Example	&	Exercise	Names
Example	–	‘gesture_app’
One	File

3.The	Big	Picture
Introduction
Terminology
Compiler
Native	and	Non-Native	Compilers
Cross-Platform	Mobile	Application	Development
Mobile	Applications
Before	Cross-Platform	Mobile	Application	Development
Early	Cross-Platform	Development	Tools
Development	Tools	That	Used	Native	Libraries
Development	Tools	That	Didn’t	Use	Native	Libraries
Modern	Cross-Platform	Development	Tools
React	Native
Google	Flutter
Conclusion

4.Introduction	to	Dart
Introduction
Platforms
1.	Within	a	Web	Browser

2.	As	Interpreted	Application
3.	As	Native	Application
Dart	SDK
1.Command-Line	Tools
2.Command-Line	Compilers
3.Libraries

5.Basic	Dart
Introduction
Example	Code
Entry	Point
Example	Code
Output
Introduction	to	Typing
1.Statically-typed	languages.
2.Dynamically-typed	languages.
Dart	Typing
Static	Types
Dynamic	Types	(aka	Untyped)
There	is	a	difference,	but	it	is	subtle.
This	code	wont	compile.	Dartpad	displays	the	following	error:
Type	Inference
Example	of	Inference	#1:
Output
Example	of	Inference	#2:
Output
Type	Matching
Example	Code
Output
Type	Information
Example	Code
Output
Strings
Interpolation
Raw	Strings
Runes
Object-Orientated	Language	Features
Modules
Private	Classes,	Variables	&	Methods

Constructors
Instance	Variables
Constructor	and	Method	Parameters
1.	Parameters	-	Positional	Required
2.	Parameters	-	Positional	Optional
3.	Parameters	-	Named
Interfaces
Other
Method	Cascades

6.More	Advanced	Dart
Introduction
Arrow	Functions	(Lambdas)
Operator	Overloading
Example
Warning	-	hashCode
Reflection
Mixins
Collections
Introduction
Lists
Maps
More-Specific	Collection	Classes
Assertions
Example	Code
Output
Assertions	&	Modes	(Flutter)
Further	Reading
Errors	&	Exceptions
Why	Have	Error	&	Exception	Handling?
Errors
Exceptions
Handling	Errors
Handling	Exceptions
Finally
Catch	Exception
Catch	Exception	and	Stack	Trace
Catch	Specific	Exceptions
Throw	Exception

Rethrow	Exception
Create	Custom	Exceptions
Console	Output
Example	Code
Output
Asynchronicity
Introduction
Future
Invoking	and	Handling	Asynchronous	Operations
Future	API
Async	&	Await	Keywords
Reactive	Programming
Nulls
?.
Example
Static	Analysis
Example	‘analysis_options.yaml’	File
Further	Reading

7.Introduction	to	Flutter
Introduction
What	is	Flutter?
High	Productivity
High	Quality
High	Performance
It	is	Free	and	Open.
Fuschsia
Flutter	Source	Code
Flutter	SDK
Dart	Platform
Flutter	Engine
Foundation	Library
Flutter	Release	Process
Flutter	Channels

8.Installing	Flutter	&	Editor
Introduction
Note:	Developing	on	a	PC	for	iOS
Introduction

It’s	Not	as	Bad	as	it	Seems
Install	Flutter
Introduction
Step	1:	Software	Pre-Requisites
Step	2:	Download	the	Flutter	SDK
Step	3:	Setup	Your	Path
Step	4:	Run	Flutter	Doctor
Flutter	Commands
Install	Editor
Editors	&	UI	Builders
Flutter	Doctor	Tells	You	to	Install	Android	Studio
Android	Studio
IntelliJ	(Android	Studio,	IntelliJ)
Visual	Studio	Code

9.Create	Default	Flutter	Project
Introduction
Default	Flutter	App
Create	Project
Android	Studio
Visual	Studio	Code
Command-Line
Project	Created
Project	Folders
Project	Files
Project	Application	Code	File
Note
Widgets	&	Composition
Introduction
Widgets	are	the	Building	Blocks	of	your	UI
Project	UI
UI	As	Code
Widget	Tree
Custom	Widgets
Flutter	Widgets
Project	Code
Entry	Point
MyApp	Widget
MyHomePage	Widget

10.Setup	Android	Emulator	&	Run	Project
Introduction
Emulators
Android	Emulator
Setting	Up	the	Android	Emulator
Options
Mix
Setup	Android	Emulator	in	Android	Studio
AVD	Manager
AVD	Manager	Dialog
Setup	Android	Emulator	in	Visual	Studio	Code
Before	You	Start
View	Flutter	Commands
Launch	Emulator
Create	New	Emulator
Setup	Android	Emulator	in	Command	Line
Introduction
Android	SDK	Path
To	Create	a	New	AVD	to	Test	On:
To	List	Your	Available	AVDs:
To	Launch	an	Available	AVD:
Run	Project
Android	Studio
Visual	Studio	Code
Command-Line

11.Setup	iOS	Emulator	&	Run	Project
Introduction
PCs
XCode
iOS	Emulator
Open	iOS	Simulator/Emulator
Open	from	Xcode
Opening	from	Command-Line
Run	Project
Android	Studio
Visual	Studio	Code
Command-Line

12.Setup	Device	&	Run	Project
Introduction
Android	Device
Introduction
iOS	Device
Check	Your	Hardware	First
Setup	Your	XCode	Project
Open	XCode	Project
Create	Signing	Team
Set	Bundle	Identifier
Connect	the	Device	to	The	Mac	&	Run
Further	Reading	/	Instructions

13.Hot	Restarting	&	Reloading
Introduction
Hot	Reloads
The	Official	Documentation	Says:
Two	Options
Hot	Restarting
Hot	Reloading
Android	Studio
Visual	Studio	Code
Command-Line

14.Dependencies	&	Packages
Introduction
Website
Core	Packages
Non-Core	Packages
Most	Useful	Non-Core	Packages
How	to	Use	an	External	Package
Declare	Dependency	in	Project
Import	Packages
Import	&	Use	Package	Code
Restart	Your	App
Package	Version	Numbers
Project	Files
.packages
pubspec.lock

How	to	Clean	&	Reimport	Your	Packages
How	to	Publish	Your	Own	Packages
Introduction
Setting	Up	a	Dart	Package
Adding	Documentation
Final	Review
Do	a	Publish	Dry-Run
Publish
Further	Reading

15.Introduction	to	Widgets
Introduction
What	Are	Widgets?
User	Interface:	Material	&	Cupertino
Material	Design,	According	to	Google
Most	Flutter	Widgets	Work	with	Material	Design
User	Interface:	Cupertino
Flutter	Includes	iOS-Styled	Widgets
Building	Widgets
Build	Method
Build	Context
Not	All	Widgets	Are	Equal
State
Mutable	State
Immutable	State
Flutter	Widgets	&	State
Stateful	Widgets
Stateless	Widgets
Event	Handling
Event	Handlers
Styling
Margins,	Borders	&	Padding
Further	Reading

16.Stateless	Widgets
Introduction
Not	All	Widgets	Need	to	be	Smart
Minimum	Code
Creation

Example
Rendering
The	‘Build’	Method
When	Does	The	‘Build’	Method	Execute?
Lifecycle
Exercise	–	‘first_stateless’
Step	1	–	Create	Default	Flutter	App
Step	2	–	Replace	Application	Code
Step	3	–	Open	Emulator	&	Run
Summary	So	Far
Step	4	–	Add	Some	Padding
Step	5	–	Add	Scrolling
Step	6	–	Add	Border
Step	7	–	Final	Touch
Example	–	‘stateless_widget_rebuild’
Optional
Purpose
Source	Code

17.Stateful	Widgets
Introduction
Some	Widgets	Need	to	be	Smart
Minimum	Code
Two	Classes
Class	#1	–	the	class	that	extends	StatefulWidget
Class	#2	–	the	class	that	extends	State
Creation
Rendering
The	‘Build’	Method
LifeCycle	Methods
Class	#1	–	the	class	that	extends	StatefulWidget
Class	#2	–	the	class	that	extends	State
More	Reading
Example	–	‘stateful_widget_flowers’
Optional
App	Purpose
App	Widgets
Start	App
Change	the	Flower

Add	Blur
Source	Code

18.Basic	Material	Widgets
Introduction
Text
Notes
Example	–	‘text’
Image
Introduction
Exercise	–	‘loading_image’
Icon
Introduction
Example	-	‘icon’
Further	Reading
Buttons
Introduction
Enabling
Example	–	‘buttons’

19.Multi-Child	Layout	Widgets
Introduction
Multi-Child	Layout	Widgets
Column
Spacing	Out	Children	Using	MainAxisAlignment
Expanding	Children	Using	Expanded	Widget
Row
Spacing	Out	Children	Using	MainAxisAlignment
Expanding	Children	Using	Expanded	Widget
Flex
Example	–	‘flex’
ListView	&	ListTiles
Example	-	‘horizontal_list’
ListTile
Stack
Example	–	‘stack_please_wait’

20.Single-Child	Layout	Widgets
Introduction

Most	Important	Single	Child	Layout	Widgets
Padding
Example	–	‘padding’
Container
Example	–	‘container’
Further	Reading
Card
Example	–	‘cards’
ConstrainedBox
Example	–	‘constrained_box’
Expanded
Example	–	‘expanded’
Flexible
Example	–	‘flexible’
Center
GestureDetector
Example	–	‘gesture_app’
Positioned
Example	–	‘positioned’
SafeArea
Example:	Non-Safe	Area
Example:	Safe	Area
Example:	Safe	Area	with	Minimum	Padding	Set
SingleChildScrollView
Constructor	Arguments	Include:
Exercise	–	‘single_child_scroll_view’

21.App	Scaffolding	Widgets
Introduction
MaterialApp
Navigator
Themes
Locales
Debugging	Constructor	Arguments
Scaffold
AppBar
Body
BottomNavigationBar
Drawer

BottomSheet
PersistentFooterButtons
Exercise	–	‘scaffold’
Step	1	–	Create	Default	Flutter	App
Step	2	–	Replace	Application	Code
Step	3	–	Open	Emulator	&	Run

22.Other	Widgets
Introduction
Dialog
AlertDialog
SimpleDialog
Custom	Dialog	Widget
Dismissible
Example	–	‘dismissible’
Source	Code
ExpansionPanelList	&	ExpansionPanel
ExpansionPanelList
ExpansionPanel
Example	–	‘expansion_panel’
GridView
Builder
GridTile
GridTileBar
Example	–	‘gridview_app’
Further	Reading
PopupMenuButton
Example	–	‘popup_menu_button’
Radio
SnackBar
Example	–	‘snack_bar’
Spacer
Flex	Property
Exercise	–	‘spacer’
Switch
TabBar,	Tabs	and	TabBarView	Widgets
TabBar	&	TabBarView	vs	iOS	Tabs
Instructions:
Exercise	–	‘tabs_simple’

Step	1	–	Create	Default	Flutter	App
Step	2	–	Replace	Application	Code
Step	3	–	Open	Emulator	&	Run
Step	4	–	Move	Tabs	to	Bottom
Step	5	–	Change	Tab	Styles	To	Look	More	Like	iOS
Table
Introduction
Column	Width	Specifiers

23.Builders
Introduction
What	is	a	Builder?
How	Do	You	Use	a	Builder?
Nested	Builders
Common	Builders
AnimatedBuilder
GridView	Builder
FutureBuilder
ListView	Builder:
OrientationBuilder
PageRoutebuilder
StreamBuilder
StreamBuilder
Example	–	‘nested_builders’
Source	Code

24.Routing	&	Navigation
Introduction
Navigator	Class
Stack	of	Routes
Invoking	Navigation	without	Named	Routes
Navigating	Forward
Navigating	Backwards
Data
Example	–	‘routes_simple’
Invoking	Navigation	with	Named	Routes	#1
Define	Routes
Navigating	Forward
See	the	problem	yet?

Example	–	‘routes_named’
Invoking	Navigation	with	Named	Routes	#2
Attach	Route	Handler	to	MaterialApp
Code	Route	Handler
Navigating	Forward
Example	–	‘routes_named_with_parms’
PageView
Introduction
Child	Widgets
Controller
Example	–	‘page_view_navigation’

25.Forms
Introduction
Form
Form	State
Form	Validation
Form	/	Field	Integration
Form	Fields
Checkbox
DropdownButton
Radio
TextFormField,	TextField
InputDecorator
Example	–	‘form_details’
Dependencies
Source	Code
Other	Information
Input	Decoration	Themes
Enabling	/	Disabling	Form	Buttons

26.HTTP,	APIs,	REST	&	JSON
Introduction
Asynchronous	Communication
HTTP
Introduction
Tools
Request
Response

Methods
URI
Status
Header
Body
APIs
REST
REST	APIs	should	be	stateless.
How	REST	Uses	URLs
How	REST	Uses	HTTP	Method
Accessing	Data	with	a	REST	API
Inserting	Data	with	a	REST	API
Updating	Data	with	a	REST	API
Deleting	Data	with	a	REST	API
JSON
JSON	For	Passing	an	Object	Containing	Data.
JSON	For	Passing	an	Array
JSON	For	Passing	an	Array	of	Objects

27.Flutter	with	HTTP,	APIs,	REST	&	JSON
Introduction
Flutter	&	JSON
Introduction
Serializing	&	Deserializing	JSON.
Generating	Code	for	Serializing	&	Deserializing
Manually	Writing	Code	for	Serialization	&	Deserialization
Flutter	&	HTTP
Flutter	HTTP	Package
Dummy	API
Error	Handling
Example	‘http_employees’
Source	Code
Other	Information
Alice
HAL	/	HATEOS

28.State
Introduction
State	&	Events

Storing	State
Kinds	of	State
How	to	Determine	Where	to	Store	State
Responding	to	Events
Introduction
Events	Invoke	Functions
Events	Can	Affect	State
State	&	Events	–	Problems
State	&	Events	–	Different	Approaches
Mixing	Approaches
How	I	Decide	Where	to	Put	State
State	&	Events	–	Commonly-Used	Approaches
Stateful	Widget	Approach
InheritedWidget	Approach
Scoped	Model	Approach
BLoC	w/Streams	Approach

29.State	&	Stateful	Widget	Approach
Introduction
Approach
Exercise	–	‘state_and_stateful_widget’
Introduction
Step	1	–	Create	Default	Flutter	App
Step	2	–	Replace	Application	Code
Step	3	–	Open	Emulator	&	Run
Summary
Step	4–	Add	Car	Selection
Further	Reading

30.State	&	InheritedWidget	Approach
Introduction
Approach
Exercise	–	‘state_and_inherited_widget_add’
Step	1	–	Create	Default	Flutter	App
Step	2	–	Replace	Application	Code
Step	3	–	Open	Emulator	&	Run
Summary
Exercise	–	‘state_and_inherited_widget’
Step	1	–	Create	Default	Flutter	App

Step	2	–	Replace	Application	Code
Step	3	–	Open	Emulator	&	Run
Summary
Conclusion
Further	Reading

31.State	&	ScopedModel	Approach
Introduction
Approach
Package
Package	Readme
Multiple	Models
Exercise	–	‘state_and_scoped_model’
Step	1	–	Create	Default	Flutter	App
Step	2	–	Replace	Application	Code
Step	3	–	Open	Emulator	&	Run
Summary
Conclusion

32.State	&	BLoCs	w/Streams	Approach
Introduction
BLoC	Pattern
Reactive	Programming
RxDart
StreamBuilder
Exercise	–	‘state_and_block_with_streams’
Step	1	–	Create	Default	Flutter	App
Step	2	–	Add	the	RxDart	Dependency
Step	3	–	Replace	Application	Code
Step	4	–	Open	Emulator	&	Run
Summary
Conclusion
Further	Reading

33.Local	Persistence
Introduction
Your	Options
SQLite	Database
Introduction

Step	1	–	Add	Dependencies	to	Project
Step	2	–	Define	the	Data	Model
Step	3	–	Open	the	Database
Retrieve	Rows	from	Database
Executing	SQL
Insert	into	Database
Update	Row	in	Database
Delete	Row	in	Database
Example	–	‘sqlite_vocabulary’
Further	Reading
Local	Files
Introduction
Platform
Path	Provider	Package
Application	Documents	Directory
Directories
Files
Directory	&	File	Methods
Reading	&	Writing	Data	to	a	File
Example	‘persistence_files’
Shared	Preferences
Introduction
Methods
Further	Reading
Example	‘persistence_shared_preferences’

34.Mixins
Introduction
Mixins
Mixins	&	Code	Generators
Example	–	‘mixins’
Source	Code

35.Animation
Introduction
Animations	&	State	Changes
Animations	Are	Used	to	Make	UI	Changes	Look	Better
Animations	Alter	the	Way	the	UI	Change	Occurs
Types	of	Animations

Implicit	Animations
Example	–	‘animated_container’
Example	–	‘animated_text’
Example	–	‘animated_list’
Explicit	Animations
Animation
AnimationController
TickerProvider
Ticker
Example	–	‘animated_progress_circle’
Curved	Animations
Tweens
Custom	Behavior
Transforms
Further	Reading

36.Debugging	&	Performance	Profiling
Introduction
Debugging
Performance	Profiling
Programmatical	Options
Add	Debugger	Statements
Add	Print	&	DebugPrint	Statements
Add	Assertions
Service	Extensions
Introduction
Performance	Overlay
Show	Paint	Baselines	(debugPaintSizeEnabled)
Show	Material	Grid
Turn	Service	Extensions	On/Off	from	Android	Studio
Turn	Service	Extensions	On/Off	from	Visual	Studio	Code
Turn	Service	Extensions	On/Off	from	Command	Line
Turn	Service	Extensions	On/Off	Programmatically
Dart	Observatory
Introduction
Part	of	the	Dart	SDK
Starting	the	Observatory
Timeline
Profile	Mode

Further	Reading
Android	Studio
Visual	Studio	Code
Command-Line
Further	Reading

37.Change	Detection,	Keys	&	Rendering
Introduction
Change	Detection
Widgets
Elements
Element	Trees
Widgets,	Elements,	Render	Objects
Change	Detection	&	Updates
Detecting	Structural	Changes
Matching	Elements	to	Widgets
If	there	is	a	Match
If	there	is	no	Match
Optimizations
Render	Tree
Render	Objects
Keys
Introduction
Elements	May	or	May	Not	Store	a	Reference	to	State
Elements	for	Stateless	Widgets	Have	No	Reference	to	any	State
Elements	for	Stateful	Widgets	Have	A	Reference	to	the	State
The	‘Losing	State’	Problem
Global	Keys
Further	Reading

38.Other	Performance	Considerations
Introduction
Http	Communication
Single	Threaded
Isolates
Use	Constants	When	Possible
Use	Finals	Whenever	Possible

39.Publishing	Your	App

Introduction
Code	Analysis
Platforms
Compilation
Platform	Class
Further	Reading
Example	–	Detecting	Platform	at	Runtime
Release	Mode
Further	Reading
Android	Studio
Visual	Studio	Code
Command-Line
Application	Icons
The	Article	I	Used	to	Create	Application	Icons
Notes	on	Article
Android	Deployment
Android-Specific	Files
Dependency	Management
Deployment	Units
Deploying	Your	Android	App	to	Google	Play
iOS	Deployment
iOS-Specific	Files
Dependency	Management
Deployment	Units
Deploying	Your	iOS	App	to	the	App	Store

40.Flutter	Resources
Introduction
Official	Resources
Other	Resources

2.										Welcome

Introduction
The	purpose	of	this	chapter	is	to	introduce	the	purpose	of	this	book

and	 acknowledge	 those	 people	 who	 have	 made	 this	 book	 possible.
This	 chapter	 also	 contains	 a	 disclaimer	 and	 revision	 history,	 along
with	information	on	how	to	get	to	the	source	code	for	the	examples.

Acknowledgements
First	and	foremost,	thanks	to	my	wife	Jill	and	her	patience.		I	hope

she	is	enjoying	herself	doing	her	favorite	things	like	Paddle	boarding,
Kayaking	 and	 being	 at	 one	with	 nature.	 I	 hope	 she	 never	 reads	 this
book	because	it	would	bore	her.

I	would	 also	 like	 to	 acknowledge	 the	 amazing	work	done	by	 the
Google	engineers.	When	I	 ran	 the	profiler	and	saw	just	how	fast	 the
UI	 was	 redrawing,	 I	 was	 blown-away.	 	 Google	 has	 some	 amazing
talent,	what	a	team	of	engineers.

Purpose
I	wrote	this	book	to	broaden	my	own	knowledge	of	this	technology

and	 I	 still	 have	 a	way	 to	 go.	However,	 I	 learnt	 a	 lot	 in	writing	 this
book	and	I	hope	it	helps	others.

Work
I	have	to	be	honest;	I	also	wrote	this	book	for	some	self-promotion.

After	this	book	is	published,	I	intend	to	continue	working	on	apps	for
my	wife’s	business	and	 find	some	part-time	Flutter	work.	 If	you	are
interested,	 shoot	 me	 an	 email	 at	 markclow@hotmail.com	 or
communicate	 with	 me	 via	 my	 LinkedIn	 page	 here:
https://www.linkedin.com/in/mark-clow-9a61362/.

mailto:markclow@hotmail.com
https://www.linkedin.com/in/mark-clow-9a61362/

Disclaimer
Let’s	 get	 this	 over	 with	 as	 quickly	 as	 possible.	 Some	 of	 this

information	 in	 this	book	may	be	 incorrect	 (I	am	a	human	being	 that
makes	mistakes)	and	that	this	publication	is	somewhat	opinionated.		I
am	trying	my	best	to	be	as	technically	accurate	as	possible,	but	I	am
still	 learning	 a	 lot	 and	 have	much	 to	 learn	 about	Flutter	 and	Dart.	 I
have	 opinions	 but	 please	 don’t	 take	 them	 too	 seriously.	 	 I	 do	 not
intend	to	harm	anything	or	anyone,	I	am	not	smart	enough	for	that.

Revisions
This	 book	 has	 taken	 a	 long	 time	 to	write	 and	 I	 will	 continue	 to

improve	it	whenever	I	have	time,	adding	more	content	when	possible.
So,	 if	 you	 get	 an	 earlier	 version	 of	 the	 book	 it	may	 be	 slightly	 less
complete	 than	 later	 on.	 If	 this	 is	 the	 case,	 email	 me	 a	 proof	 of
purchase	 at	 markclow@hotmail.com	 and	 I	 will	 send	 you	 a	 PDF
version,	which	will	be	watermarked	with	your	name	(sorry	but	it’s	to
prevent	 copying).	 I	welcome	 (constructive)	 criticism	 and	 input	 so	 if
you	have	any,	please	email	me	at	markclow@hotmail.com.
	

Date Description
3/31/2019 Initial	version.

4/7/2019

Added	chapter	name	to	footer.	Applied	corrections
from	printed	proof	notes	–	many!	Simplified	chapters
re	setup.	Added	Animations	Chapter.	Added
Dismissible	Widget.

4/25/2019 Adding	more	content	to	Stack.
4/29/2019 Fixes	for	missing	images	on	Kindle.
5/12/2019 Isolates.

5/15/2019 InputDecoration	–	added	info	on	customizing
errors.

5/20/2019 Channels.

mailto:markclow@hotmail.com

5/23/2019 ConstrainedBox.
6/15/2019 How	to	Clean	&	Reimport	Your	Packages
6/19/2019 Application	Icons.
6/20/2019 Publishing	Your	Android	App.
6/21/2019 Publishing	Your	iOS	App.
6/28/2019 Apple	Guidelines.
7/2/2019 Flutter	commands.
7/28/2019 Flutter	folders	and	files.		Event	handlers.

8/11/2019 Lambda	functions.	Native	compilation	on
platforms.	UI	as	code.	Named	parameters.

8/17/2019 State.
8/18/2019 Final	variables.	Borders,	padding	&	margin.

Source	Code

Location
This	 book	 has	 many	 examples	 &	 exercises.	 The	 source	 code	 is

available	here:
https://github.com/markclow/flutter_book_examples

Example	&	Exercise	Names
Each	example	or	 exercise	 should	have	a	name	 in	quotes	 (see	 the

example	 below	 in	 the	 box).	 The	 name	 in	 quotes	 is	 the	 directory	 in
which	the	source	code	is	located.

This	is	the	format:

Example	–	‘gesture_app’
The	source	code	for	this	example	is	located	in	‘gesture_app’.

One	File

https://github.com/markclow/flutter_book_examples

Another	 thing	 to	bear	 in	mind	 is	 that	 the	 exercises	have	 all	 been
written	to	use	a	single	file.	This	was	so	that	there	could	be	one	single
continuous	 listing	 in	 the	 book.	 In	 reality,	 you	would	 obviously	 split
your	project	up	into	many	smaller	files.

3.										The	Big	Picture

Introduction
The	 purpose	 of	 this	 chapter	 is	 to	 give	 the	 reader	 a	 quick

introduction	to	the	world	of	Mobile	Application	development,	and	to
introduce	him	or	her	the	problem	of	cross-platform	development,	and
how	it	was	approached	by	different	companies.

Before	we	go	into	this,	lets	introduce	some	of	the	terminology	first.

Terminology

Compiler
A	 computer	 program	 consists	 of	 a	 set	 of	 instructions	 for	 the

computer	 to	 perform	 a	 specific	 task.	 Most	 computer	 programs	 are
written	using	high-level	programming	languages.	Thus,	the	computer
does	not	understand	these	programs.	Therefore,	they	are	converted	to
machine	understandable,	machine	language.	A	compiler	is	a	software
that	 performs	 this	 conversion.	 It	 converts	 the	 source	 program	 into
machine	language.

Native	and	Non-Native	Compilers
A	native	compiler	converts	the	source	program	into	machine	code

for	 the	 platform	 on	 which	 it	 runs.	 The	 code	 will	 not	 require	 any
translation	to	be	interpreted	and	executed	by	the	CPU.

A	 non-native	 compiler	 converts	 the	 source	 program	 into	 a	 more
general	 format	where	 it	 can	be	 run	on	multiple	 platforms.	The	 code
will	require	translation	to	be	interpreted	and	executed	by	the	CPU.

Cross-Platform	 Mobile	 Application
Development

Mobile	Applications
A	mobile	 application	 (shortened	 to	 ‘mobile	 app’)	 is	 a	 computer

program	or	 software	application	designed	 to	 run	on	a	mobile	device
such	as	a	phone/tablet	or	watch.	Writing	mobile	apps	sounds	easy	but
is	complicated	by	the	number	of	platforms	that	are	available.	Your	app
could	 run	on	 an	 iPhone,	 it	 could	 run	on	 an	 iPad,	 it	 could	 run	on	 an
Android	Phone	etc.	Also	remember	that	these	platforms	could	change
quickly	as	new	devices	appear	on	the	market.

Before	 Cross-Platform	 Mobile	 Application
Development

In	the	past,	in	order	to	produce	performant	applications,	developers
had	 to	 write	 the	 application	 code	 specifically	 for	 each	 platform,
writing	what	is	called	native	apps.	There	would	often	be	one	codebase
(and	 developers)	 for	 iOS	 (iPhone)	 and	 another	 codebase	 (and
developers)	 for	Android.	 For	 native	 iOS,	Objective-C	 and	Swift	 are
the	 preferred	 programming	 languages.	 For	 native	Android,	 Java	 and
Kotlin	are	the	preferred	languages.
This	complicated	matters:

You	had	to	keep	two	sets	of	code	in	sync.
If	 you	change	 the	 iPhone	code,	you	 should	 change
the	Android	code	to	match.

You	had	to	have	developers	with	multiple	skillsets.
Expensive.

Sometimes	 the	 app	 for	 one	 platform	 would	 look	 very
different	from	the	other	platforms.

Early	Cross-Platform	Development	Tools
Anyway,	Silicon	Valley	soon	realized	what	a	problem	this	was	and

set	to	work	on	developing	tools	for	cross-platform	mobile	application
development.	 They	 quickly	 split	 into	 two	 groups	 of	 development

tools:		those	that	used	native	libraries	and	those	that	didn’t.

Development	 Tools	 That	 Used	 Native
Libraries

These	 tools	 created	 a	 ‘Unified’	 API	 on	 top	 of	 the	 native	 SDK
supplied	by	Apple	and	Google.	Many	of	these	development	tools,	for
example	Xamarin,	Appcelerator,	Nativescript	are	still	around.
Unified	API	Does	Not	Cover	100%
The	problem	with	 these	 types	of	 applications	 is	 that	 the	 ‘Unified

API’	 does	 not	 cover	 100%	 and	 leaves	 the	 developers	 with	 many
burdens,	 such	 as	 having	 to	 still	 write	 a	 large	 chunk	 of	 platform-
specific	code.
Use	Widget	SDKs
Also,	 these	 apps	 use	 the	Widgets	 from	 the	 SDKs.	Therefore,	 the

apps	 can	 look	 different	 because	 they	 use	 different	 Widgets	 from
different	 SDKs	 for	 different	 platforms.	 Here	 is	 an	 example	 of	 how
different	button	Widgets	are	used	for	different	platforms:

Development	 Tools	 That	 Didn’t	 Use	 Native
Libraries

These	tools	 took	a	different	approach.	Most	of	 these	attempted	to
bypass	the	SDK	approach	and	write	code	that	runs	on	the	platform’s
browser.	 This	 had	 the	 advantage	 of	 being	 able	 to	 use	 many	 of	 the
HTML5	 and	 JavaScript	 capabilities	 already	 built-in.	 The	 app	would
run	 in	 a	 ‘web	view’.	A	“webview”	 is	 a	browser	bundled	 inside	of	 a

mobile	 application	 producing	 what	 is	 called	 a	 hybrid	 app.	 Using	 a
webview	 allows	 mobile	 apps	 to	 be	 built	 using	 Web	 technologies
(HTML,	JavaScript,	CSS,	etc.)	but	still	package	it	as	a	native	app	and
put	it	in	the	app	store.

The	 problem	with	 these	 types	 of	 applications	 is	 speed.	 They	 are
not	running	natively	in	compiled	machine	code,	they	are	running	on	a
hidden	web	browser.

Many	 of	 these	 development	 tools,	 for	 example	 Cordova,
PhoneGap	are	still	around.

Modern	Cross-Platform	Development	Tools
More	 recently,	 two	 main	 rivals	 have	 emerged	 and	 look	 to	 be

leading	 the	 field	 of	mobile	 app	 development	 tools:	 Facebook	React
Native	and	Google	Flutter.

React	Native

React.JS	 is	 an	 excellent	 JavaScript	 framework	 that	 has	 been
popular	 for	 years	 and	 works	 with	 both	 mobile	 and	 non-mobile
websites	 equally	 well.	 Developers	 write	 user	 interfaces	 with
Component	objects,	like	lego	blocks.	These	Components	can	contain
code	 so	 that	 they	 can	 react	 to	 the	 user’s	 input	 and	 produce	 an
interactive	user	interface.	React	Native	is	like	React,	but	it	uses	native
components	instead	of	web	components	as	building	blocks.
How	Does	It	Work?
React	Native	runs	in	two	parts.

1.	 The	UI.
It	displays	the	ui	and	receives	user	input.

2.	 The	JavaScript	engine.

It	interprets	and	executes	the	JavaScript	application
code.

The	two	parts	communicate	with	a	bridge.
Conclusion
React	Native	is	an	excellent	framework.	It	has	the	great	advantage

of	 being	 the	 more	 established	 player	 because	 it	 has	 been	 out	 since
2015.	 There	 are	 also	 a	 lot	 of	 React	 developers	 out	 there	 who	 can
quickly	 cross-train	 to	 use	 React	 Native	 rather	 than	 React	 JS.	 React
Native	is	also	a	very	productive	tool	because	it	has	many	ready-to-use
components.

React	native	apps	are	not	completely	native	compiled.	A	lot	of	the
deployed	 code	 is	 native	 but	 your	 part	 of	 the	 app	 runs	 as	 embedded
JavaScript,	 communicating	 through	 a	 bridge	 with	 the	 native
components.	This	is	not	the	optimum	solution	for	performance.

Google	Flutter

Google	Flutter	has	only	been	available	since	2017	but	it	is	making
waves	because	it	 takes	a	different	approach	to	cross-platform	mobile
app	development.	Google	is	currently	working	on	the	successor	to	its
Android	 operating	 system	 called	 Fuchsia	 and	 it	 is	 writing	 it	 using
Flutter.	So,	Flutter	is	very	important	to	Google.

You	 write	 user	 interfaces	 using	 Google	 Flutter	 user	 interface
widgets,	not	the	native	iOS	or	Android	UI	widgets	shipped	with	their

retrospective	 SDKs.	 A	 Flutter	 app	 made	 using	 Flutter	Widgets	 will
look	exactly	the	same	on	iOS	as	it	does	on	Android	because	it	will	use
the	 same	Widgets	 from	 the	 same	 library.	 Flutter	 comes	 with	 many
widgets,	 including	 those	 that	 mimic	 Google’s	 Material	 look	 &	 feel
and	those	that	mimic	Apples	iOS	look	&	feel.

The	Flutter	Default	App	Running	on	 IPhone	on	Left,	Android	on
Right

Google	Flutter	uses	its	own	high-performance	rendering	engine	to
draw	these	widgets	and	they	have	been	designed	to	work	on	all	mobile
platforms.	Also,	these	widgets	are	extendable.

You	write	the	application	code	in	Google’s	Dart	language	and	it	is
compiled	 ahead-of-time	 into	 machine-code	 for	 native-like

performance,	 thus	 offering	 a	 performance	 advantage	 over	 React
Native.

There	 is	no	bridge	between	 the	user	 interface	and	 the	application
code.

The	only	downside	that	is	currently	obvious	is	that	developers	will
have	 to	 learn	 Dart,	 rather	 than	 reuse	 their	 existing	 JavaScript
expertise.

Conclusion
If	 you	 want	 to	 write	 cross-platform	 mobile	 web	 apps	 that	 are

performant	 then	Google	 Flutter	 appears	 to	 be	 the	 best	 choice	 at	 the
moment.	However,	things	move	quickly	and	that	may	not	be	for	long!

4.										Introduction	to	Dart

Introduction
The	 purpose	 of	 this	 chapter	 is	 to	 give	 the	 reader	 a	 quick

introduction	to	Dart	before	installing	it	and	starting	to	use	it.

Dart	 is	 a	 general-purpose	 programming	 language	 which	 was
created	by	Google	in	2011.	Like	Java	and	C#,	it	has	a	similar	syntax
to	‘C’.

Platforms
Unlike	 conventional	 languages,	 Dart	 has	 been	 optimized	 to	 be

deployed	to	run	on	a	variety	of	platforms:
	

1.	 Within	a	web	browser	as	JavaScript
2.	 As	an	interpreted	application
3.	 As	a	native	application

1.	Within	a	Web	Browser
Dart	 provides	 an	 SDK,	 which	 provides	 command-line	 tools	 to

transpile	Dart	source	code	into	JavaScript.	This	has	been	developed	so
efficiently	 that	 the	 resulting	 transpiled	 JavaScript	 is	 more	 efficient
than	its	hand-coded	equivalent!

You	 can	 try	 out	 Dart	 in	 your	 web	 browser	 by	 Navigating	 to
https://dartpad.dartlang.org/.	You	can	write	your	own	code	or	run	the

https://dartpad.dartlang.org/

sample	code.	See	the	‘Sunflower’	sample	below.

Just	 remember	 that	 not	 everything	will	 always	be	 the
same.

For	 example,	 you	 cannot	 read	 from	 stdin	 when	 running	 from	 a
browser.	I	tried	to	develop	a	Dart	program	on	dartpad.dartlang.org	that
would	accept	user	input	and	it	would	never	work.

2.	As	Interpreted	Application
The	Dart	SDK	includes	a	Virtual	Machine.	A	virtual	machine	is	a

sandbox	in	which	code	may	run	without	directly	communicating	with
the	underlying	operating	system.	This	enables	Dart	code	to	be	invoked
from	 the	 command-line,	 using	 the	 ‘dart’	 command-line	 tool	 in	 the
SDK.	This	code	is	compiled	on	demand	just-in-time	as	it	runs.

Using	 Dart	 in	 this	 way	 is	 a	 great	 way	 to	 write	 server-side
applications	and	it	performs	at	a	similar	level	to	Java	/	.Net.
Hot	Reloading	/	Hot	Replacing
If	the	developer	is	running	the	Dart	application	in	the	Dart	virtual

machine	 from	 the	 command-line	 (interpreted),	 the	 JIT	 compiler	 can
reload	the	code	when	the	underlying	source	code	changes,	often	while
preserving	the	application	state	(variables)	whenever	possible.	So,	the
developer	 can	write	 and	 run	 the	 code	 at	 almost	 the	 same	 time.	This
makes	application	development	very	fast	indeed.	Yet	at	the	end	of	the
development	 process,	 the	 code	 can	 be	 compiled	 using	 the	 ahead-of-
time	compiler	and	deployed	as	a	native	application.
Flutter	Development	(Debug	Mode)
When	you	are	developing	a	Flutter	Application,	most	of	 the	 time

you	run	it	in	Debug	Mode	and	the	code	is	JIT	compiled	&	interpreted.
This	mode	is	known	as	‘check’	or	‘slow’	mode.	Under	this	mode,	the
assertion	 functions,	 including	 all	 debugging	 information,	 service
extensions,	 and	 debugging	 aids	 such	 as	 “observatory,”	 are	 enabled.
This	mode	is	optimized	for	rapid	development	and	operation,	but	not
for	execution	speed,	package	size,	or	deployment.

Once	your	app	is	written	you	can	build	it	to	run	in	Release	Mode
as	a	native	application	and	it	will	perform	much	better.

3.	As	Native	Application
Dart	code	can	be	compiled	ahead-of-time	so	that	the	code	may	be

deployed	as	machine-code.
Flutter	 was	 mostly	 written	 using	 Dart	 and	 runs	 natively.	 This

makes	 Flutter	 fast,	 as	 well	 as	 customizable	 (as	 the	 Flutter	 widgets
were	written	in	Dart).

Dart	SDK
The	 Dart	 SDK	 is	 available	 to	 download	 here:

https://www.dartlang.org/tools/sdk
The	Dart	SDK	comprises	of	three	main	elements:

	

1.	 Command-line	tools.

https://www.dartlang.org/tools/sdk

2.	 Command-line	compilers.
3.	 Libraries.

1.		Command-Line	Tools
The	Dart	SDK	contains	the	following	command	line	tools:
Name Description

dart Enables	you	to	execute	a	.dart	file	within	the
Dart	Virtual	Machine.

dart2js Compiles	dart	source	code	to	JavaScript.

dartanalyser
Analyses	dart	source	code.	This	is	used	by	many

of	the	code	editors	to	provide	error	and	warning
highlighting.

dartdevc

Compiles	dart	source	code	to	JavaScript.
Similar	to	dart2js	except	that	it	supports

incremental	compilation,	which	lends	itself	to
developers.

dartdoc

Generates	Dart	documentation	from	source
code.	As	the	seminal	book	‘Domain-Driven
Design’	by	Eric	Evans	states:	‘the	code	is	the	model
and	the	model	is	the	code’.

dartfmt Formats	Dart	source	code.	This	is	used	by	many
of	the	code	editors	to	provide	Dart	formatting.

pub This	is	Google’s	Package	Manager.	This	is
important	and	we	will	cover	this	in	a	later	chapter.

2.		Command-Line	Compilers
Dartium,	WebDev	and	Build_Runner
You	can	run	Dart	in	a	browser	called	Dartium	without	compiling	it

to	 JavaScript.	 	 Dartium	 is	 basically	 Chrome	 with	 a	 Dart	 VM.
However,	the	mainstream	Dart	web	development	route	is	now	writing
the	code	with	Dart	but	compiling	and	running	as	JavaScript	using	the

dart2js	 and	 dartdevc	 JavaScript	 compilers	 in	 combination	 with	 the
webdev	and	build_runner	utilities.

More	Reading:	https://webdev.dartlang.org/tools/webdev.
Dart2js	and	DartDevC
These	two	JavaScript	compilers	have	different	use	cases.	Normally

these	are	used	with	 the	 tool	webddev	and	you	don’t	usually	have	 to
worry	about	which	compiler	you’re	using,	because	it	chooses	the	right
compiler	 for	 your	 use	 case.	 When	 you’re	 developing	 your	 app,
webdev	chooses	dartdevc,	which	supports	incremental	compilation	so
you	 can	quickly	 see	 the	 results	 of	 your	 edits.	When	you’re	building
your	 app	 for	 deployment,	 webdev	 chooses	 dart2js,	 which	 uses
techniques	such	as	tree	shaking	to	produce	optimized	code.

3.		Libraries
Name Description

dart:core
Built-in	types,	collections,	and	other	core

functionality.	This	library	is	automatically	imported
into	every	Dart	program.

dart:async
Support	for	asynchronous	programming,	with

classes	such	as	Future	and	Stream.
	

dart:math Mathematical	constants	and	functions,	plus	a
random	number	generator.

dart:convert
Encoders	and	decoders	for	converting	between

different	data	representations,	including	JSON	and
UTF-8.

https://webdev.dartlang.org/tools/webdev
https://webdev.dartlang.org/tools/dartdevc
https://webdev.dartlang.org/tools/dart2js

5.										Basic	Dart

Introduction
The	purpose	of	this	chapter	is	to	introduce	some	of	the	more	basic

Dart	concepts	and	syntaxes.

Example	Code
All	 the	 example	 code	 for	 this	 chapter	 should	 be	 executed	 on	 the

following	website:
dartpad.dartlang.org

Entry	Point
Dart	 is	 a	 bit	 like	 Java,	 every	 Dart	 app	 must	 start	 with	 a	 main

function.

Example	Code
void	main(){

print("App	started");
new	App();
print("App	finished");
}

class	App{
App(){
print("Constructing	a	class.");

}
}

Output
App	started
Constructing	a	class.
App	finished

https://dartpad.dartlang.org/

Introduction	to	Typing
Typically,	computer	languages	have	fallen	into	two	camps:

	

1.	 Statically-typed	languages.
2.	 Dynamically-typed	languages.

1.		Statically-typed	languages.
These	 languages	 have	 specific	 variable	 types	 and	 the	 developer

compiles	 the	 code	 using	 an	 ‘ahead-of-time’	 compiler.	 The	 compiler
type	checking	is	performed	before	the	code	is	run.	This	is	an	excellent
way	 to	 develop	 software	 as	 the	 compiler	 performs	 static-analysis	 of
the	code	as	part	of	the	compilation,	alerting	the	developer	when	issues
arise.	Software	 typically	 takes	 longer	 to	develop	 in	 this	method,	 but
the	 software	 developed	 in	 this	 manner	 typically	 works	 better	 in
complex	scenarios.

2.		Dynamically-typed	languages.
These	languages	don’t	have	specific	variable	types	and	no	ahead-

of-time	compilation	is	performed.	Dynamically-typed	languages	make
the	 development	 process	 very	 quick	 as	 the	 developer	 does	 not
typically	 need	 to	 recompile	 the	 code.	 	 However,	 code	 developed	 in
this	manner	tends	to	lend	itself	to	simpler	scenarios	as	it	can	be	more
error-prone.

Dart	Typing
Dart	 is	 different	 because	 Dart	 code	 can	 be	 run	 with	 both	 static

types	and	dynamic	type	variables.	The	type	system	in	Dart	1	had	some
issues	and	they	introduced	a	‘strong	mode’	for	stronger	type	checking.
This	 mode	 has	 become	 the	 typing	 system	 in	 Dart	 2.0	 and	 it	 offers
strong	 guarantees	 that	 an	 expression	 of	 one	 type	 cannot	 produce	 a
value	of	another	type.

Dart	performs	type	checking	at	two	different	times:

When	 the	 code	 is	 compiled	 (code	 is	 reloaded	 /	 or	 compiled
ahead-of-time).
When	the	code	is	run	(runtime).

Static	Types
These	are	the	most-commonly	used	and	built-in	Dart	types:

	
Type Description
int Integers	(no	decimals).
double Decimal	number	(double	precision).
bool Boolean	true	or	false.
String Immutable	string.
StringBuffer Mutable	string.
RegExp Regular	expressions.
List,	Map,	Set Dart	provides	Collection	classes.
DateTime A	point	in	time.
Duration A	span	of	time.
Uri Uniform	Resource	Identifier
Error Error	information

Dynamic	Types	(aka	Untyped)
You	can	define	untyped	variables	by	declaring	them	using	the	‘var’

or	‘dynamic’	keywords.

The	‘var’	keyword	declares	a	variable	without	specifying	its
type,	leaving	the	variable	as	a	dynamic.
The	 ‘dynamic’	 keyword	 declares	 a	 variable	 of	 the	 type
‘dynamic’	with	optional	typing.

There	is	a	difference,	but	it	is	subtle.
void	main()	{

print	(multiplyMethod1(2,4));
print	(multiplyMethod2(2,4));
}

dynamic	multiplyMethod1(int	a,	int	b){
return	a	*	b;
}

var	multiplyMethod2(int	a,	int	b){
return	a	*	b;
}

This	code	wont	compile.	Dartpad	displays	the
following	error:
Error	 compiling	 to	 JavaScript:	 main.dart:10:1:	 Error:	 The	 return	 type	 can't	 be
'var'.	var	multiplyMethod2(int	a,	int	b){	^^^	Error:	Compilation	failed.

This	is	because	methods	need	to	return	a	type	and	a	‘var’	does	not
specify	a	type.

Type	Inference
Often,	the	variable	types	are	‘inferred’	when	the	program	runs.	In

other	words,	when	the	program	runs,	the	runtime	figures	out	what	the
variable	 types	 are	 based	 on	 the	 values	 they	 are	 set	 to.	 This	 usually
works	well	–	see	(‘Example	of	Inference	#1’)	but	can	cause	problems
if	a	variable	type	is	inferred	at	one	point	in	the	code	then	another	type
is	inferred	later	on	–	see	‘Example	of	Inference	#2’	below.

Example	of	Inference	#1:
void	main()	{

dynamic	x	=	1;
if	(x	is	int){
print('integer');

}
}

Output
integer

Example	of	Inference	#2:
void	main()	{

dynamic	x	=	'test';
if	(x	is	String){
print('String');

}
x	+=	1;
}

Output
String	Uncaught	 exception:	TypeError:	 1:	 type	 'JSInt'	 is	 not	 a	 subtype	 of	 type
'String'

Type	Matching
Dart	allows	users	to	check	for	types	using	the	‘is’	keyword.

Example	Code
main(){

printType(23);
printType('mark');
}

printType(dynamic	d){
if	(d	is	int){
print	('Its	an	Integer');

}
if	(d	is	String){
print	('Its	a	String');

}
}

Output
Its	an	Integer
Its	a	String

Type	Information
Dart	 gives	 the	 developer	 a	 way	 to	 get	 information	 about	 an

Object’s	type	at	runtime.	You	can	use	Object’s	runtimeType	property,
which	returns	a	Type	object.

Example	Code
void	main()	{

var	v1	=	10;
print(v1.runtimeType);

var	v2	=	'hello';
print(v2.runtimeType);
}

Output
int
String

Strings

Interpolation
One	very	useful	feature	of	Dart	is	its	string	interpolation.	You	can

put	the	value	of	an	expression	inside	a	string	by	using	${expression}.
Example	Code

class	Person{
String	firstName;
String	lastName;
int	age;
Person(this.firstName,	this.lastName,	this.age);
}

main(){
Person	p	=	new	Person('mark','smith',	22);
print('The	 persons	 name	 is	 ${p.firstName}	 ${p.lastName}	 and	 he	 is

${p.age}');
}

Output
The	persons	name	is	mark	smith	and	he	is	22

Raw	Strings
In	 Dart,	 normally	 you	 can	 add	 escape	 characters	 to	 format	 your

string.	For	example:	 ‘\n’	means	‘new	line’.	However,	you	can	prefix
the	 string	 with	 an	 ‘r’	 to	 indicate	 to	 tell	 Dart	 to	 treat	 the	 string
differently,	to	ignore	escape	characters.
Example	Code	–	‘New	Lines’:

main(){
print('this\nstring\nhas\nescape\ncharacters');
print('');
print(r'this\nstring\nhas\nescape\ncharacters');
}

Output
this
string
has
escape
characters

this\nstring\nhas\nescape\ncharacters
Example	Code	–	‘Dollar	Sign’:

void	main()	{
double	price	=	100.75;
print('Price	is:	\$${price}');
}

Output
Price	is:	$100.75

Runes
Runes	are	also	special	characters	encoded	into	a	string.
Here	 is	 a	 link	 with	 a	 lot	 of	 the	 run	 codes:

https://www.compart.com/en/unicode/block/U+1F300
Example	Code

main()	{
var	clapping	=	'\u{1f44f}';
print(clapping);
}

Output
��

Object-Orientated	Language	Features

Modules
Unlike	 Java	 and	C#,	Dart	 allows	 you	 to	 declare	multiple	 objects

within	a	single	Dart	file.
This	has	made	our	example	code	a	single	cut-n-paste!

Private	Classes,	Variables	&	Methods
Unlike	Java,	Dart	doesn't	have	the	keywords	public,	protected,	and

private	 to	 specify	 the	 visibilities	 of	 fields	 or	 properties.	 If	 a	 class
name,	 instance	 variable	 or	 method	 starts	 with	 an	 underscore,	 it's
private	 and	 cannot	 be	 accessed	 outside	 the	 Dart	 file	 in	 which	 it	 is
declared.

You	should	replace:
class	ContactInfo	{

private	String	name;
private	String	phone;
}

with
class	ContactInfo	{

String	_name;

https://www.compart.com/en/unicode/block/U+1F300

String	_phone;
}

Constructors
Default	Constructor
If	 you	 do	 not	 specify	 a	 constructor,	 a	 default	 constructor	will	 be

created	for	you	without	arguments.	If	you	do	specify	a	constructor,	the
default	constructor	won’t	be	created	for	you.
Constructor	Syntax	Shortcut
If	you	want	to	set	the	value	of	an	instance	variable	in	a	constructor,

you	 can	 use	 the	 ‘this.[instance	 variable	 name]’	 to	 set	 it	 in	 the
constructor	signature.

Example	Code
class	Name{

String	firstName;
String	lastName;

Name(this.firstName,	this.lastName);
}

main(){
Name	name	=	new	Name('mark','smith');
print(name.firstName);
print(name.lastName);
}

Output
mark
smith

New	Keyword
Dart	 doesn’t	 need	 you	 to	 use	 the	 ‘new’	 keyword	when	 invoking

constructors.	However,	you	can	keep	it	if	you	want.
Example	Code

void	main()	{
Car	car	=	Car("BMW","M3");
print(car.getBadge());

Car	car2	=	new	Car("BMW","M3");
print(car2.getBadge());
}

class	Car{
String	_make;
String	_model;

Car(this._make,	this._model){}

String	getBadge(){
return	_make	+	"	-	"	+	_model;

}
}

Output
BMW	-	M3
BMW	-	M3

Named	Constructors
Dart	allows	named	constructors	and	I	have	found	them	very	useful

indeed	 if	 you	 want	 to	 instantiate	 the	 same	 class	 in	 different	 ways.
Named	 constructors	 (if	 named	 correctly)	 can	 also	 improve	 code
readability	&	intent.

Example
A	 good	 example	 of	 a	 Flutter	 class	 that	 uses	 multiple	 named

constructors	is	EdgeInsets:

EdgeInsets.fromLTRB
EdgeInsets.all
EdgeInsets.only
EdgeInsets.symmetric
EdgeInsets.fromWindowPadding

Example	Code
class	ProcessingResult{

bool	_error;
String	_errorMessage;

ProcessingResult.success(){
_error	=	false;
_errorMessage	=	'';

}

ProcessingResult.failure(this._errorMessage){	//shortcut
this._error	=	true;

}

String	toString(){
return	'Error:	'	+	_error.toString()	+	'	Message:	'	+	_errorMessage;

}
}

void	main()	{
print(ProcessingResult.success().toString());
print(ProcessingResult.failure('it	broke').toString());
}

Output
Error:	false	Message:
Error:	true	Message:	it	broke

Constructor	Parameters
Constructors	 can	 accept	 different	 kinds	 of	 parameters,	 similar	 to

methods.
Factory	Constructors
You	can	use	the	factory	keyword	when	implementing	a	constructor

that	 doesn’t	 always	 create	 a	 new	 instance	 of	 its	 class.	 The	 factory
keyword	allows	you	to	return	a	variable	at	the	end	of	the	constructor.
This	 is	 useful	 when	 you	 want	 the	 constructor	 to	 return	 an	 instance
from	a	variable	or	a	cache.

Example	Code
class	Printer{

static	final	Printer	_singleton	=	Printer._construct();

factory	Printer(){
return	_singleton;

}

Printer._construct(){
print('private	constructor');

}

printSomething(String	text){
print(text);

}

}

void	main()	{
Printer().printSomething("this");
Printer().printSomething("and");
Printer().printSomething("that");
}

Output
Note	how	the	constructor	was	only	invoked	once.

private	constructor
this
and
that

Instance	Variables
Unspecified	Visibility
You	don’t	have	to	specify	the	visibility	of	instance	variables	and	if

you	don’t	then	they	are	made	public.
class	Name	{

String	firstName;
String	lastName;
}

Default	Values
The	default	values	of	instance	variables	are	null.

Constructor	and	Method	Parameters
Flutter	 is	 very	 flexible	 in	 regard	 to	 constructor	 &	 method

parameters.	There	are	several	different	kinds:

	

1.	 Positional	Required
2.	 Positional	Optional
3.	 Named

1.	Parameters	-	Positional	Required
These	are	declared	first.
These	are	required.
Constructor	with	required	parameters:

class	Car{
String	_make;
String	_model;
Car(this._make,this._model){}
}

2.	Parameters	-	Positional	Optional
These	are	declared	second.
You	can	make	parameters	optional,	by	using	the	square	brackets.
If	an	optional	parameter	is	not	supplied,	it	has	a	null	value.
Example	Code

void	main()	{
Car	car1	=	Car("Nissan","350Z");
Car	car2	=	Car("Nissan");
}

class	Car{
String	_make;
String	_model;
Car(this._make,[this._model]){
print('${_make}	${_model}');

}
}

Output
Nissan	350Z

Nissan	null

3.	Parameters	-	Named
All	named	parameters	are	optional.
These	are	declared	last.
You	can	make	parameters	named,	by	using	the	curly	brackets.
If	a	named	parameter	is	not	supplied,	it	has	a	null	value.
Example	Code

void	main()	{
Car	car1	=	Car("Nissan",	model:"350Z",	color:	"yellow");
Car	car2	=	Car("Nissan",	color:"red");
Car	car3	=	Car("Nissan");
}

class	Car{
String	make;
String	model;
String	color;
Car(this.make,{this.model,this.color}){
print('${make}${getOptional(model)}${getOptional(color)}');

}

String	getOptional(String	str)	{
return	str	==	null	?	""	:	"	"	+	str;

}
}

Output
Nissan	350Z	yellow
Nissan	red
Nissan

Required	Decorator
You	 can	 add	 the	 ‘@required’	 decorator	 to	 named	 parameters	 to

make	them	required.
This	 is	 not	 a	 part	 of	 Dart,	 but	 it	 is	 part	 of	 Flutter.	 Therefore,	 it

won’t	work	with	Dartpad.

Example	Code
We	define	a	constructor	 for	SelectButton	 that	 requires	both	 ‘text’

and	‘onTap’	named	parameters.

SelectButton({@required	this.text,	@required	this.onTap});

If	you	declare	a	named	parameter	as	‘@required’	and	the	developer
writes	code	that	does	not	supply	that	parameter:

SelectButton(text:	"YES"),

then	the	following	compilation	error	occurs:

warning:	 The	 parameter	 'onTap'	 is	 required.	 (missing_required_param	 at
[yes_no]	lib/main.dart:58)

Interfaces
Dart	uses	implicit	interfaces.
Example	Code

abstract	class	IsSilly	{
void	makePeopleLaugh();
}

class	Clown	implements	IsSilly	{
void	makePeopleLaugh()	{
//	Here	is	where	the	magic	happens

}
}

class	Comedian	implements	IsSilly	{
void	makePeopleLaugh()	{
//	Here	is	where	the	magic	happens

}
}

Further	Reading
https://www.dartlang.org/guides/language/language-tour	-	implicit-

https://www.dartlang.org/guides/language/language-tour#implicit-interfaces

interfaces

Other

Method	Cascades
Method	cascades	can	help	with	the	brevity	of	your	code.
Example	Code

class	Logger	{
void	log(dynamic	v){
print(DateTime.now().toString()	+	'	'	+	v);

}
}
main(){

//	Without	method	cascades
new	Logger().log('program	started');
new	Logger().log('doing	something');
new	Logger().log('program	finished');

//	With	method	cascades
new	Logger()
..log('program	started')
..log('going	something')
..log('program	finished');
}

Output
2018-12-30	09:28:39.686	program	started
2018-12-30	09:28:39.686	doing	something
2018-12-30	09:28:39.686	program	finished
2018-12-30	09:28:39.686	program	started
2018-12-30	09:28:39.686	going	something
2018-12-30	09:28:39.686	program	finished

6.										More	Advanced	Dart

Introduction
The	 purpose	 of	 this	 chapter	 is	 to	 introduce	 some	 of	 the	 more

advanced	Dart	concepts	and	syntaxes.

Arrow	Functions	(Lambdas)
Dart	offers	arrow	functions,	which	enable	the	developer	to	shorten

single-line	functions	that	calculate	&	return	something.

You	can	use:
=>	xxx
instead	of:

{	return	xxx;	}

Arrow	functions	are	often	used	by	event	handlers	and	when	you	set
state	(more	on	that	later).
Example	Code

num	divideNonLambda(num	arg1,	num	arg2)	{
return	arg1	/	arg2;
}

num	divideLambda(num	arg1,	num	arg2)	=>	arg1	/	arg2;

void	main()	{
print('non-lambda	${divideNonLambda(6,	2)}');
print('non-lambda	${divideNonLambda(9,	2)}');
print('non-lambda	${divideNonLambda(9,	2.5)}');

print('lambda	${divideLambda(6,	2)}');
print('lambda	${divideLambda(9,	2)}');
print('lambda	${divideLambda(9,	2.5)}');
}

Output
non-lambda	3

non-lambda	4.5
non-lambda	3.6
lambda	3
lambda	4.5
lambda	3.6

Operator	Overloading
In	Dart,	you	compare	equality	using	the	‘==’	operator	rather	 than

an	‘equals’	method.	Sometimes	you	need	to	override	it	this	operator	in
your	 class	 to	 ensure	 that	 instances	 of	 the	 classes	 are	 compared
correctly.

Example
If	you	want	to	be	able	to	compare	two	Car	objects	for	equality	in

this	way:

car1	==	car2

and	your	equality	test	is:

‘car	make	and	model	should	match’

then	you	would	have	similar	code	to	that	below:

class	Car	{
String	_make;
String	_model;
String	_imageSrc;

Car(this._make,	this._model,	this._imageSrc);

operator	==(other)	=>
(other	 is	 Car)	 &&	 (_make	 ==	 other._make)	 &&	 (_model	 ==	 	 	 	

other._model);

int	 get	 hashCode	 =>	 _make.hashCode	 ^	 _model.hashCode	 ^
_imageSrc.hashCode;

}

Warning	-	hashCode
Note	 that	 when	 you	 override	 the	 ‘==’,	 you	 need	 to	 override	 the

‘hashCode’	method	as	well.	If	you	don’t	do	that	then	Flutter	will	give
you	a	warning.

You	 should	 override	 the	 two	 together	 because	 the	 collections
framework	 uses	 the	 ‘hashCode’	method	 to	 determine	 equality,	 array
indexes	etc.	 	 	You	don’t	want	equality	working	 in	one	place	and	not
the	other.

Reflection
Reflection	 allows	 the	 inspection	 of	 classes,	 interfaces,	 fields	 and

methods	 at	 runtime	 without	 knowing	 the	 names	 of	 the	 interfaces,
fields,	methods	at	compile	 time.	 It	enables	software	 to	 inspect	 itself.
For	example,	one	class	can	inspect	another	class	(or	itself)	to	see	what
methods	 it	 has	 available.	 It	 also	 allows	 instantiation	 of	 new	 objects
and	invocation	of	methods.

Dart	 has	 a	 library	 called	 ‘mirrors’	 that	 enables	 developers	 to	 use
reflection	in	Dart	code.

Mixins
A	Mixin	 is	a	class	 that	contains	methods	for	use	by	other	classes

without	it	having	to	be	the	parent	class	of	those	other	classes.
So,	 a	Mixin	 is	 a	 class	 you	 can	 use	 code	 from	without	 having	 to

inherit	from.
You	can	refer	to	the	Mixins	chapter.

Collections

Introduction
When	 developing,	 you	 often	 need	 to	 keep	 track	 of	 information

(objects)	 in	 memory.	 This	 enables	 you	 to	 search	 them,	 sort	 them,
insert	 them,	 manipulate	 them	 or	 delete	 them.	 That	 is	 what	 the
Collection	classes	are	for.	Collection	classes	are	used	all	the	time.

Dart	offers	support	 for	Collections	 in	both	 its	core	 library	and	 its
collection	 library.	 The	 most-commonly	 used	 Collection	 classes	 are
maintained	 in	 the	 core	 library	 and	 the	 more	 specific	 ones	 are
maintained	in	the	collection	library.

Lists
A	 List	 is	 an	 ordered	 Collection	 (sometimes	 called	 a	 sequence).

Lists	may	contain	duplicate	elements.

Unlike	other	 languages,	an	Array	and	a	List	have	been	combined
together	 and	 are	 the	 same	 thing.	 Note	 how	 the	 List	 in	 the	 example
below	is	declared	using	square	brackets,	which	are	normally	used	for
declaring	Arrays.
Example	Code
This	dart	code	creates	a	list	then	sorts	it:

class	Person{
String	_firstName;
String	_lastName;
String	_phone;

Person(this._firstName,	this._lastName,	this._phone);

toString(){
return	"${_firstName}	${_lastName}	${_phone}";

}
}

void	main()	{
List<Person>	list	=	[
Person("Mark",	"Clow",	"4043124462"),
Person("Brant",	"Sandermine",	"4243124462"),

Person("Phillip",	"Perry",	"4243124444")
];
print("Not	sorted:	${list}");

list.sort((a,	b)	=>	a._firstName.compareTo(b._firstName));
print("Sorted	by	first	name:	${list}");

list.sort((a,	b)	=>	a._lastName.compareTo(b._lastName));
print("Sorted	by	last	name:	${list}");	
}

Output
Not	 sorted:	 [Mark	Clow	4043124462,	Brant	Sandermine	4243124462,

Phillip	Perry	4243124444]
Sorted	 by	 first	 name:	 [Brant	 Sandermine	 4243124462,	 Mark	 Clow

4043124462,	Phillip	Perry	4243124444]
Sorted	 by	 last	 name:	 [Brant	 Sandermine	 4243124462,	 Mark	 Clow

4043124462,	Phillip	Perry	4243124444]
Flutter	Uses	Lists	Everywhere!
When	you	write	UI	code	in	Flutter,	you	will	end	up	using	Lists	all

the	time.
In	 the	 example	 code	 below,	 we	 use	 a	 list	 to	 specify	 the	 child

widgets	of	a	parent	widget.
Note	the	use	of	Generics	(‘<Widget>’)	to	specify	that	the	list	is	of

objects	of	the	datatype	‘Widget’.		Generics	are	optional.

children:	<Widget>[
new	Text(
'You	have	pushed	the	button	this	many	times:',

),
new	Text(
'$_counter',
style:	Theme.of(context).textTheme.display1,

),
],

Maps

An	object	that	maps	keys	to	values.	Both	keys	and	values	in	a	map
may	be	of	any	 type.	A	Map	is	a	dynamic	collection.	 In	other	words,
Maps	can	grow	and	shrink	at	runtime.
Example	Code

void	main()	{
Map<String,	String>	stateNamesByStateCode	=
{"AL":	"Alamaba",
"AK":	"Alaska",
"AR":	"Arkansas",
"AZ":	"Arizona"
};

stateNamesByStateCode["GA"]	=	"Georgia";

for	(String	key	in	stateNamesByStateCode.keys){
print(stateNamesByStateCode[key]);		
}

print("\nGet	just	one:	${stateNamesByStateCode["AK"]}");
}

Output
Alamaba
Alaska
Arkansas
Arizona
Georgia

Just	one:	Alaska

More-Specific	Collection	Classes
These	classes	are	contained	in	the	‘dart:collection’	library.
To	use	this	library	in	your	code:

import	'dart:collection';

Assertions
When	you	 are	 developing	 code,	 you	will	 frequently	 come	 across

bugs,	where	things	aren’t	going	as	expected.	For	example,	you	have	a
variable	with	a	value	that	you	never	expected.

This	is	where	assertions	come	in.	An	assertion	is	a	statement	that
something	 is	 expected	 to	be	always	 true	at	 that	point	 in	 the	code.	 If
not,	the	assertion	will	throw	an	exception.

This	is	a	form	of	Defensive	Programming.

Example	Code
void	main()	{

//	..	some	good	code	that	calculates	age
int	age1	=	50;
checkAge(age1);
//	..	some	good	code	that	calculates	age

//	..	some	bad	code	that	calculates	age	incorrectly
int	age2	=	150;
checkAge(age2);
//	..	some	bad	code	that	calculates	age	incorrectly
}

void	checkAge(int	age)	{
assert(age	<	112,	"bad	age	${age}");
}

Output
Uncaught	exception:
Assertion	failed:	"bad	age	150"

Assertions	&	Modes	(Flutter)
When	you	are	developing	your	Dart	code,	you	can	add	assertions

to	 check	 that	 it	 is	 working	 as	 expected.	 Later	 on	 (once	 the	 code	 is
mostly	 bug-free),	 you	 can	 run	 the	 same	 code	without	 the	 assertions
being	executed	(without	the	assertions	slowing	things	down).

You	 develop	 your	 Flutter	 code	 in	 Checked	 (or	 Debug)	 Mode,

which	 checks	 things	 like	 assertions.	 It	 also	 turns	 on	 the	 Dart
Observatory.	More	on	that	here:	Dart	Observatory.	Later	on,	you	can
deploy	the	compiled	code	that	runs	in	Release	mode,	speeding	things
up.

Further	Reading
https://github.com/flutter/flutter/wiki/Flutter's-modes

Errors	&	Exceptions

Why	Have	Error	&	Exception	Handling?
Most	 software	 systems	are	 complicated	and	written	by	a	 team	of

people.

Complexity	arises	from	multiple	sources:

The	business	domain.
The	act	of	writing	software.
From	 multiple	 people	 working	 together,	 each	 one	 having
different	viewpoints.
etc

The	 complexity	 can	 result	 in	 misunderstandings,	 errors	 &
exceptions.

This	 is	 not	 the	 end	 of	 the	 world	 if	 the	 code	 has	 good	 error
handling.
	

If	you	don't	handle	your	errors	&	exceptions,	your	 software
may	 act	 unpredictably,	 and	 users	 may	 suffer	 a	 catastrophic
error	 without	 knowing	 it	 or	 being	 able	 to	 detect	 when	 it
happened.
If	you	do	handle	your	errors	&	exceptions,	the	user	may	able

https://github.com/flutter/flutter/wiki/Flutter's-modes

to	continue	using	the	program	even	with	the	error	/	exception
and	 the	 developers	 can	 find	 the	 problems	 over	 time	 and
improve	the	software.

Good	 error	 &	 exception	 handling	 should	 not	 blind	 the	 end	 user
with	 technical	 jargon,	but	 it	 should	also	provide	enough	 information
for	the	developers	to	trace	down	the	problem.

Dart	can	throw	Errors	&	Exceptions	when	problems	occur	running
a	Dart	program.	When	an	Error	or	an	Exception	occurs,	normal	flow
of	the	program	is	disrupted,	and	the	program	terminates	abnormally.
	

Errors
Errors	 are	 serious	 issues	 that	 cannot	 be	 caught	 and	 ‘dealt	 with’.

Non-recoverable.
Examples

RangeError	–	programmatic	bug	where	user	is	attempting	to
use	an	invalid	index	to	retrieve	a	List	element.
OutOfMemoryError

Exceptions
Exceptions	 are	 less-serious	 issues	 that	 can	 be	 caught	 and	 ‘dealt

with’.		
Recoverable.

Examples

FormatException	–	could	not	parse	a	String.

Handling	Errors
Trying	 to	 handle	 non-recoverable	 errors	 is	 impossible.	 How	 can

you	catch	and	just	handle	an	out	of	memory	error?

The	best	thing	to	do	is	to	log	what	happened	and	where	so	that	the
developers	 can	 deal	 with	 them.	 The	 approach	 to	 this	 is	 to	 add	 a
handler	 to	 the	 top	 level	 of	 your	 application,	 for	 example	 Sentry	 or
Catcher.
Further	Reading
https://medium.com/flutter-community/handling-flutter-errors-

with-catcher-efce74397862

Handling	Exceptions
Try	 to	 handle	 these	 to	 prevent	 the	 application	 from	 terminating

abruptly.	If	you	want	your	code	to	handle	exceptions	then	you	need	to
place	it	in	a	‘try..catch..finally’	block.	The	finally	part	is	optional.

Finally
Dart	also	provides	a	finally	block	that	will	always	be	executed	no

matter	if	any	exception	is	thrown	or	not.
void	main()	{

try	{
//	do	something	here

}	catch	(e)	{
//	print	exception
print(e);

}	finally	{
//	always	executed
print('I	will	always	be	executed!');

}

https://medium.com/flutter-community/handling-flutter-errors-with-catcher-efce74397862

}

Catch	Exception
The	first	argument	to	the	catch	is	the	Exception.
Example	Code
This	code	catches	the	Exception	and	prints	it	out.

void	main()	{
print('start');
try	{
int.parse("mark");

}	catch	(ex)	{
print(ex);

}
print('finish');
}

Output
start
FormatException:	mark
finish

Catch	Exception	and	Stack	Trace
The	second	argument	to	the	catch	is	the	StackTrace.
Example	Code
This	code	catches	 the	Exception	and	StackTrace.	 It	prints	out	 the

StackTrace.
void	main()	{

print('start');
try	{
int.parse("mark");

}	catch	(ex,	stacktrace)	{
print(stacktrace);

}
print('finish');
}

Output

start
FormatException:	mark
FormatException:	mark
at	Object.wrapException	(<anonymous>:370:17)
at	Object.int_parse	(<anonymous>:1555:15)
at	main	(<anonymous>:1702:11)
at	dartMainRunner	(<anonymous>:9:5)
at	<anonymous>:2206:7
at	<anonymous>:2192:7
at	dartProgram	(<anonymous>:2203:5)
at	<anonymous>:2210:3
at	replaceJavaScript

(https://dartpad.dartlang.org/scripts/frame.html:39:17)
at	https://dartpad.dartlang.org/scripts/frame.html:69:7
finish

Catch	Specific	Exceptions
If	you	know	you	want	to	catch	a	specific	Exception	then	you	can

use	 an	 ‘on’	 instead	 of	 a	 ‘catch’.	 Consider	 leaving	 a	 ‘catch’	 at	 the
bottom	to	catch	other	Exceptions.

You	 can	 optionally	 add	 the	 ‘catch(e)’	 or	 catch(e,	 s)’	 after	 if	 you
want	the	Exception	and	StackTrace	data	as	arguments.
Example	Code

void	main()	{
print('start');
try	{
int.parse("mark");

}	on	FormatException{
print('invalid	string');

}	catch	(ex,stacktrace)	{
print(stacktrace);

}
print('finish');
}

Output
start

invalid	string
finish

Throw	Exception
To	 throw	 an	 Exception	 simply	 use	 the	 ‘throws’	 keyword	 and

instantiate	the	Exception.
Example	Code

throw	new	TooOldForServiceException	();

Rethrow	Exception
Once	 you	 have	 caught	 an	 Exception,	 you	 have	 the	 option	 of

rethrowing	 it	 so	 that	 it	 bubbles	 up	 to	 the	 next	 level.	 	 So,	 you	 could
catch	an	Exception,	log	it	then	rethrow	it	so	it	is	dealt	with	at	a	higher
level.
Example	Code

void	misbehave()	{
try	{
dynamic	foo	=	true;
print(foo++);	//	Runtime	error

}	catch	(e)	{
print('misbehave()	partially	handled	${e.runtimeType}.');
rethrow;	//	Allow	callers	to	see	the	exception.

}
}

void	main()	{
try	{
misbehave();

}	catch	(e)	{
print('main()	finished	handling	${e.runtimeType}.');

}
}

Output
misbehave()	partially	handled	JsNoSuchMethodError.
main()	finished	handling	JsNoSuchMethodError.

Create	Custom	Exceptions
It	is	very	simple	to	create	your	own	custom	Exception.
Simply	implement	the	Exception	interface.
Example	Code

class	TooOldForServiceException	implements	Exception	{
Cadet	_cadet;

TooOldForServiceException(this._cadet);

toString(){
return	"${_cadet.name}	is	too	old	to	be	in	military	service.";

}
}

class	Cadet	{
String	_name;
int	_age;

Cadet(this._name,	this._age);

get	age{
return	_age;

}

get	name{
return	_name;

}

}

void	main()	{
print('start');

List<Cadet>	cadetList	=	[
Cadet("Tom",	21),
Cadet("Dick",	37),
Cadet("Harry",	51),
Cadet("Mark",	52),

];

List<Cadet>	validCadetList	=	[];
for	(Cadet	cadet	in	cadetList){
try	{
validateCadet(cadet);
validCadetList.add(cadet);

}	on	TooOldForServiceException	catch(ex)	{
print(ex);

}	//	..	other	validation	exceptions	...		
}

print('finish:	 ${validCadetList.length}	 of	 ${cadetList.length}	 cadets	 are
valid.');

}

void	validateCadet(Cadet	cadet){
if	(cadet.age	>	50){
throw	new	TooOldForServiceException(cadet);

}
//	..	other	validations	...
}

Output
start
Harry	is	too	old	to	be	in	military	service.
Mark	is	too	old	to	be	in	military	service.
finish:	2	of	4	cadets	are	valid.

Console	Output
Dart	allows	you	to	print	to	the	console	using	the	‘print’	command.
Remember	the	following:

Printing	a	variable	attempts	to	call	its	‘toString()’	method	go
get	what	to	print.
You	 can	 use	 string	 interpolation	 and	 special	 characters	 to
format	the	output.

Example	Code
void	main()	{

int	oneVariable	=	12;
String	anotherVariable	=	'some	text';
print('noneVariable:	 ${oneVariable}	 \n\nanotherVariable:
\'${anotherVariable}\'');

}

Output
noneVariable:	12

anotherVariable:	'some	text'

Asynchronicity

Introduction
Asynchronicity	is	the	ability	to	do	multiple	things	at	the	same	time.
Example
When	a	modern	web	application	needs	to	get	data	from	a	server,	it

sends	out	a	 request	and	waits	 for	 the	 result	 to	come	back.	However,
the	application	should	still	be	able	to	do	things	in	the	meantime,	like
respond	to	user	input.
Doing	 Multiple	 Things	 at	 the	 Same	 Time	 Can	 Save

Time

Future
Normally	 an	 asynchronous	 operation	 results	 in	 something,	 you

have	a	method	with	asynchronous	code	that	returns	something	once	its
finished.

A	 Future	 starts	 off	 as	 uncompleted	 then	 later	 ends	 up	 being
completed	(or	completed	with	an	error).
Example
The	user	communicates	with	a	web	server	 to	get	 information	and

returns	 the	 information.	Dart	 uses	 the	 Future	 object	 to	 represent	 the
result	 of	 an	 asynchronous	 operation,	 starting	 off	 as	 incomplete	 then
later	on	completed	with	a	value.
Result	Type
Futures	 can	 complete	 with	 result	 objects.	 These	 objects	 are

generics,	i.e.	they	have	a	specified	type.
Example	1:	 if	you	are	asynchronously	getting	a	Customer	object,

you	would	use	a	Future<Customer>.
Example	 2:	 if	 your	 asynchronous	 operation	 is	 not	 returning	 any

object,	you	would	use	a	Future<void>.
Exceptions
Futures	 can	 fail	 to	 complete	 and	 can	 result	 in	 exceptions,	which

you	can	catch.

Invoking	 and	 Handling	 Asynchronous
Operations

Dart	 offers	 two	 ways	 of	 handling	 asynchronous	 code:	 using	 the
Future	API	and	using	Async-Await.	The	Future	API	is	the	older,	more
established	 way	 of	 doing	 things	 and	 the	 Async-Await	 is	 the	 more
convenient	modern	way.

Future	API
Before	async	and	await	were	added	in	Dart	1.9,	you	had	to	use	the

Future	API.	You	might	still	see	the	Future	API	used	in	older	code	and
in	code	that	needs	more	functionality	than	async-await	offers.

As	 an	 asynchronous	 operation	 can	 have	 two	 possible	 outcomes
(success	 and	 failure,	 otherwise	 knowns	 completion	 and	 error),	 the
Future	 API	 enables	 a	 developer	 to	 call	 asynchronous	 code	 with
callback	handlers,	one	for	success	and	one	for	failure	(optional).	The
success	 handler	 is	 the	 ‘then’	 and	 the	 failure	 handler	 is	 the
‘catchError’.
Exercise
This	 exercise	 shows	 how	we	 can	 asynchronously	 run	 some	 code

that	creates	a	string	of	numbers	using	the	Future	API	(callbacks).
Step	1
Open	your	browser	and	navigate	to	https://dartpad.dartlang.org/
Step	2
Paste	the	following	code	into	the	left-side.

import	'dart:async';

String	countUp(int	count){
print('start	count	up');
StringBuffer	sb	=	new	StringBuffer();
for	(int	i	=	0;	i	<	count;	i++)	{

https://dartpad.dartlang.org/

sb.write("	${i}");
}
print('finish	count	up');
return	sb.toString();
}

Future<String>	createFutureCounter(int	count)	{
return	new	Future(()	{	return	countUp(count);	});
}

void	main()	{
print('start	main');
Future<String>	future	=	createFutureCounter(100);
print('adding	Future	API	callbacks');
future.then((value)	=>	handleCompletion(value));
print('finish	main');
}

void	handleError(err){
print('Async	operation	errored:	${err}');
}

void	handleCompletion(value){
print('Async	operation	succeeded:	${value}');
}

Step	3
Hit	the	run	button	and	you	should	see	the	following	output:

start	main
adding	Future	API	callbacks
finish	main
start	count	up
finish	count	up
Async	operation	succeeded:		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
Step	4	–	Summary	So	Far

The	 ‘main’	 method	 is	 short-lived.	 It	 calls
‘createFutureCounter’,	is	returned	a	future,	adds	a	callback	to
the	 future	 and	 finishes.	 It	 finishes	 almost	 immediately,	 that
means	 that	 it	 was	 not	 blocked	 by	 invocation	 of	 heavy
synchronous	code.
The	‘createFutureCounter’	method	is	called	by	the	main	and
returns	 a	 new	 Future	 object	 containing	 a	 lambda	 which	 is
executed	asynchronously,	calling	the	‘countUp’	method.
The	‘countUp’	method	then	does	the	relatively	slow	work	of
counting	up	the	numbers.
Once	the	‘count	up’	completes	then	the	callback	(the	one	that
was	added	in	the	‘main’	method)	is	fired	and	we	see	‘Async
operation	succeded’.

Step	5	–	Add	Error	Handling
Replace	the	code	in	the	left	side	with	the	following:

import	'dart:async';

String	countUp(int	count){
print('start	count	up');
StringBuffer	sb	=	new	StringBuffer();
for	(int	i	=	0;	i	<	count;	i++)	{
if	(i	>	500){
throw	new	Exception("Over	500	not	allowed.");

}
sb.write("	${i}");

}
print('finish	count	up');
return	sb.toString();
}

Future<String>	createFutureCounter(int	count)	{
return	new	Future(()	{	return	countUp(count);	});
}

void	main()	{
print('start	main');

Future<String>	future	=	createFutureCounter(1000);
print('adding	Future	API	callbacks');
future.then((value)	=>	handleCompletion(value)).catchError((err)	=>

handleError(err));
print('finish	main');
}

void	handleCompletion(value){
print('Async	operation	succeeded:	${value}');
}

void	handleError(err){
print('Async	operation	errored:	${err}');
}

Step	6
Hit	the	run	button	and	you	should	see	the	following	output:

start	main
adding	Future	API	callbacks
finish	main
start	count	up
Async	operation	errored:	Exception:	Over	500	not	allowed.

Step	7	–	Final	Summary

The	 ‘main’	 method	 is	 short-lived.	 It	 calls
‘createFutureCounter’,	 is	 returned	 a	 future,	 adds	 two
callbacks	to	the	future	(one	for	completion,	one	for	error)	and
finishes.	 It	 finishes	 almost	 immediately,	 that	 means	 that	 it
was	not	blocked	by	invocation	of	heavy	synchronous	code.
As	before,	the	‘createFutureCounter’	method	is	called	by	the
main	 and	 returns	 a	 new	 Future	 object	 containing	 a	 lambda
which	 is	 executed	 asynchronously,	 calling	 the	 ‘countUp’
method.
The	‘countUp’	method	then	does	the	relatively	slow	work	of
counting	up	the	numbers	but	artificially	throws	an	Exception
once	it	gets	to	500.
The	 ‘count	 up’	 never	 completes	 but	 invokes	 the	 ‘error’

callback	 (the	 second	 one	 that	 was	 added	 in	 the	 ‘main’
method)	is	fired	and	we	see	‘Async	operation	errored’.

Async	&	Await	Keywords
Async
When	an	async	method	is	called,	a	Future	is	immediately	returned,

and	the	body	of	the	method	is	executed	later.	Later	on,	as	the	body	of
the	async	function	is	executed,	the	Future	returned	by	the	function	call
will	 be	 completed	 along	 with	 its	 result.	 At	 the	 end	 of	 the	 async
method,	the	value	(from	the	completed	Future)	can	be	returned.
Await
Await	expressions	are	used	in	async	methods.	They	enable	you	to

invoke	 asynchronous	 code	 (that	 returns	 a	 Future).	 Once	 the
asynchronous	 code	 is	 invoked,	 the	 currently	 running	 function	 is
suspended	 until	 the	 Future	 has	 completed	 or	 there	 is	 an	 Error	 or
Exception.
Exercise
This	 exercise	 shows	 how	we	 can	 asynchronously	 run	 some	 code

that	creates	a	string	of	numbers	using	the	Async	&	Await	keywords.
Step	1
Open	your	browser	and	navigate	to	https://dartpad.dartlang.org/
Step	2
Paste	the	following	code	into	the	left-side.

import	'dart:async';

String	countUp(int	count)	{
print('start	count	up');
StringBuffer	sb	=	new	StringBuffer();
for	(int	i	=	0;	i	<	count;	i++)	{
sb.write("	${i}");

}
print('finish	count	up');
return	sb.toString();
}

https://dartpad.dartlang.org/

Future<String>	createFutureCounter(int	count)	{
return	new	Future(()	{
return	countUp(count);

});
}

void	countUpAsynchronously(int	count)	async	{
print('Async	operation	start');
String	value	=	await	createFutureCounter(count);
print('Async	operation	succeeded:	${value}');
}

void	main()	{
print('start	main');
countUpAsynchronously(100);
print('finish	main');
}

Step	3
Hit	the	run	button	and	you	should	see	the	following	output:

start	main
Async	operation	start
finish	main
start	count	up
finish	count	up
Async	operation	succeeded:		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65
66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
Step	4	–	Summary	So	Far

The	 ‘main’	 method	 is	 short-lived.	 It	 calls
‘countUpAsynchronously’	and	exits.
The	 ‘countUpAsynchronously’	 method	 is	 an	 async	method.
That	means	a	Future	is	immediately	returned	and	the	body	of
the	 method	 is	 executed	 later.	 The	 body	 of	 the	 method	 is
executed	 after	 the	 main	 completes	 and	 it	 invokes	 the

‘createFutureCounter’	 and	 waits	 for	 it	 to	 finish.	 Once	 its
finished	it	prints	out	the	counts.
The	‘createFutureCounter’	method	is	called	by	the	main	and
returns	 a	 new	 Future	 object	 containing	 a	 lambda	 which	 is
executed	asynchronously,	calling	the	‘countUp’	method.

Step	5	–	Add	Error	Handling
Paste	the	following	code	into	the	left-side.

import	'dart:async';

String	countUp(int	count)	{
print('start	count	up');
StringBuffer	sb	=	new	StringBuffer();
for	(int	i	=	0;	i	<	count;	i++)	{
if	(i	>	500)	{
throw	new	Exception("Over	500	not	allowed.");

}
sb.write("	${i}");

}
print('finish	count	up');
return	sb.toString();
}

Future<String>	createFutureCounter(int	count)	{
return	new	Future(()	{
return	countUp(count);

});
}

void	countUpAsynchronously(int	count)	async	{
print('Async	operation	start');
String	value;
try	{
value	=	await	createFutureCounter(count);
print('Async	operation	succeeded:	${value}');

}	catch	(ex)	{
print('Async	operation	errored:	${ex}');

}

}

void	main()	{
print('start	main');
countUpAsynchronously(1000);
print('finish	main');
}

Step	6
Hit	the	run	button	and	you	should	see	the	following	output:

start	main
Async	operation	start
finish	main
start	count	up
Async	operation	errored:	Exception:	Over	500	not	allowed.

Step	7	–	Final	Summary

The	 ‘main’	 method	 is	 short-lived.	 It	 calls
‘countUpAsynchronously’	and	exits.
The	 ‘countUpAsynchronously’	 method	 is	 an	 async	method.
That	means	a	Future	is	immediately	returned	and	the	body	of
the	method	is	executed	later.	Later,	the	body	of	the	method	is
executed,	and	it	invokes	the	‘createFutureCounter’	method.
The	 ‘createFutureCounter’	 method	 returns	 a	 new	 Future
object	 containing	 a	 lambda	 which	 is	 executed
asynchronously,	calling	the	‘countUp’	method,	which	throws
the	 Exception.	 That	 exception	 is	 then	 caught	 by	 method
‘countUpAsynchronously’	and	the	exception	is	printed	out.

Reactive	Programming
Reactive	 programming	 is	 a	 declarative	 programming	 paradigm

concerned	with	data	streams	and	the	propagation	of	change.	With	this
paradigm,	it	is	possible	to	express	static	(e.g.,	arrays)	or	dynamic	(e.g.,
event	 emitters)	 data	 streams	 and	write	 simple	 code	 to	 process	 these
streams	as	required.

The	Dart	language	has	built-in	Stream	APIs	that	are	well	suited	for

reactive-like	programming.

Nulls
Dart	has	some	unexpected	ways	of	dealing	with	nulls:

?.
The	?.	operator	short-circuits	to	null	if	the	left-hand	side	is	null.
??=
The	??	operator	returns	the	left-hand	side	if	 it	 is	not	null,	and	the

right-hand	side	otherwise.

Example
Source	Code

class	Person{
String	_ssn;
String	_name;

Person(this._ssn,	this._name);

String	get	ssn	{
return	_ssn;

}

String	get	name	{
return	_name;

}

}

void	main()	{

Person	person1	=	null;
Person	person2	=	Person("223232323",	"Peter	Jones");

String	name	=	person1?.name;
print("Person	1	Name:	${name}");

Person	 person1IfPossibleOtherwisePerson2OtherwiseNull	 =	 (person1??
=person2);
name	=	person1IfPossibleOtherwisePerson2OtherwiseNull?.name;
print("A	Name	from	Person1	If	Possible,	Otherwise	Person2:	${name}");

}
Outputs

Person	1	Name:	null
A	Name	from	Person1	If	Possible,	Otherwise	Person2:	Peter	Jones

Static	Analysis
When	you	edit	your	Dart	 source	code	 in	your	project,	 the	Flutter

SDK	 displays	 an	 analysis	 of	 the	 code	 in	 real	 time.	 Android	 Studio
displays	this	static	analysis	in	the	‘Dart	Analysis’	tab	at	the	bottom.

You	 can	 modify	 the	 static	 analysis	 options	 by	 adding	 the	 file
‘analysis_options.yaml’	to	the	root	of	the	project.

Example	‘analysis_options.yaml’	File
include:	package:pedantic/analysis_options.yaml

linter:
rules:
-	camel_case_types

analyzer:
#			exclude:
#					-	path/to/excluded/files/**

Further	Reading
https://medium.com/dartlang/making-dart-a-better-language-for-

ui-f1ccaf9f546c

https://medium.com/dartlang/making-dart-a-better-language-for-ui-f1ccaf9f546c

7.										Introduction	to	Flutter

Introduction
The	 purpose	 of	 this	 chapter	 is	 to	 give	 the	 reader	 a	 quick

introduction	to	Flutter	before	installing	it	and	starting	to	use	it.	

What	is	Flutter?
Flutter	is	not	a	language	(like	JavaScript,	for	example).	Flutter	uses

Dart	for	its	language.

Flutter	 is	 Google’s	 mobile	 SDK	 /	 UI	 framework	 that	 enables
developers	to	build	native	apps	that	run	on	Android	and	iOS	devices.
Developers	 write	 code	 in	 a	 single	 codebase	 that	 works	 on	 both
platforms.

High	Productivity
Flutter	was	written	for	high	productivity,	to	get	apps	out	fast.

You	 can	 change	 your	 code	 and	 hot	 reload	 the	 changes,
without	any	kind	of	delay.
Flutter	includes	the	UI	Widgets	you	need.
Flutter	works	with	most	IDEs.

High	Quality
The	 included	 Flutter	 UI	 Widgets	 work	 seamlessly	 and

conventionally	 with	 the	 target	 platform.	 Scrolling,	 navigation,	 icons
and	fonts	match	the	target	system.

When	you	write	an	Android	app	with	 the	Flutter	Widgets	 it
looks	like	a	normal	Android	app.
When	you	write	an	iOS	app	with	the	Flutter	Widgets,	it	looks
like	a	normal	iOS	app.

High	Performance
The	code	you	write	in	Flutter	runs	natively	so	it	flies!

It	is	Free	and	Open.
Flutter	is	free	and	Open	Source.

Fuschsia
Fuschsia	 is	 Google’s	 next	 Operating	 System	 for	mobile	 devices.

All	of	the	apps	for	Fuschsia	are	being	developed	by	Google	in	Flutter.

Flutter	Source	Code
Google	 Flutter	 is	 open	 source	 and	 it	 comprises	 of	 several

repositories	hosted	on	GitHub	here:

https://github.com/flutter/flutter
	

Flutter
Main	repository.

Samples
Sample	code	repository.

Plugins
This	repository	contains	the	source	code	for	plugins
developed	by	the	core	Flutter	team	to	enable	access
to	platform-specific	APIs.	

Engine
The	Flutter	runtime,	written	in	C++.

Flutter	Intellij

https://github.com/flutter/flutter

The	Flutter	plugin	for	IntelliJ.
Flutter	Website

Flutter.io	code.

Flutter	SDK
The	 Flutter	 SDK	 contains	 all	 the	 elements	 you	 need	 to	 perform

Flutter	development:

Dart	Platform
We	covered	the	Dart	platform	in	the	previous	chapter.

Flutter	Engine
The	Flutter	Engine	is	the	runtime	for	on	which	Flutter	applications

run.	 It	 provides	 graphic	 rendering	 support,	 as	 well	 as	 providing	 an
interface	 (through	 the	 Flutter	 core	 libraries)	 to	 the	 Android	 or	 iOS
SDK	layer	below.

It	 was	 written	 in	 C++	 and	 is	 on	 github	 here:
https://github.com/flutter/engine

Foundation	Library
The	Foundation	library,	written	in	Dart,	provides	basic	classes	and

functions	which	are	used	to	construct	applications	using	Flutter,	such
as	APIs	to	communicate	with	the	engine.

It	 was	 written	 in	 Dart	 and	 is	 on	 github	 here:
https://github.com/flutter/flutter/tree/master/packages/flutter/lib/src/foundation

Flutter	Release	Process
When	 developing	 day-to-day	 with	 Flutter,	 Google’s	 engineers

work	in	the	‘dev’	branch.
Every	month,	the	‘dev’	branch	is	rolled	into	the	‘beta’	branch.

https://github.com/flutter/engine
https://github.com/flutter/flutter/tree/master/packages/flutter/lib/src/foundation

Every	quarter,	the	‘beta’	branch	is	rolled	into	the	‘stable’	branch.
https://github.com/flutter/flutter/wiki/Release-process

Flutter	Channels
When	 working	 with	 Flutter,	 you	 can	 decide	 on	 what	 version	 of

Flutter	 you	 wish	 to	 work	 on.	 Most	 people	 work	 on	 the	 ‘stable’
channel,	 which	 provides	 the	 developer	 with	 the	 ‘stable’	 version	 of
Flutter.	
Available	Channels
You	 can	 use	 the	 ‘flutter	 channel’	 command	 to	 work	 on	 a	 more

‘bleeding-edge’	 version	 of	 the	 framework,	 such	 as	 ‘dev’.	 	 The
following	channels	are	available:
	

master Bleeding-edge	build.
dev Latest	fully-tested	build.
beta Selected,	most	stable	dev	build	(of	the	month).
stable Selected,	most	stable	beta	build	(of	the	quarter).
View	Current	Channel

flutter	channel
Change	Channel
The	following	command	list	the	available	channels	and	highlights

the	current	channel.

$	flutter	channel

Flutter	channels:
*	stable

beta
dev
master	flutter	channel	dev

The	following	command	selects	a	channel.
flutter	channel	dev

https://github.com/flutter/flutter/wiki/Release-process

After	 selects	 another	 channel,	 you	 should	 use	 the	 following
command	to	update	the	Flutter	library:
flutter	upgrade
Further	Reading:
https://github.com/flutter/flutter/wiki/Flutter-build-release-

channels#how-to-change-channels

https://github.com/flutter/flutter/wiki/Flutter-build-release-channels#how-to-change-channels

8.										Installing	Flutter	&	Editor

Introduction
The	purpose	of	this	chapter	is	to	help	the	reader	install	Flutter	and

an	editor.

Note:	Developing	on	a	PC	for	iOS

Introduction
You	can	develop	Flutter	applications	on	a	PC,	and	you	will	have

no	problems	at	all	until	you	want	 to	run	your	code	on	an	Apple	iOS
device,	like	an	iPhone	or	an	iPad.		Apple	has	made	compiling	of	iOS
applications	exclusively	available	to	macOS	using	their	XCode	tool.	

It’s	Not	as	Bad	as	it	Seems
Flutter	really	works	well	from	a	cross-platform	point	of	view	and

you	can	do	90%	of	the	development	on	a	PC	even	if	you	are	planning
to	deploy	to	iOS.		You	really	can	develop	on	one	platform	then	run	it
on	another	and	trust	that	it	will	almost	completely	work	on	the	other.

When	 you	 get	 to	 testing	 and	 deployment	 you	 will	 have	 some
options:

Buy,	borrow	or	rent	a	Mac.
Install	a	Mac	virtual	machine	on	your	PC	using	software	like
VMWare	or	Virtual	Box.
Rent	a	Mac	on	the	cloud	for	$20	a	month	using	a	service	like
www.macincloud.com.

Install	Flutter

Introduction

I	 am	 not	 going	 to	 go	 into	 every	 detail	 about	 Flutter	 installation
because	there	are	plenty	of	better	sources	of	information	about	this:

Youtube	–	there	are	lots	of	videos	on	this.
Official	 Flutter	 website:	 https://flutter.io/docs/get-
started/install

It’s	not	a	terribly	difficult	process	but	I	am	going	to	cover	the	basic
process,	which	is	similar	on	all	of	the	environments.

Step	1:	Software	Pre-Requisites
Git
One	 thing	 I	 noticed	 from	 installing	 Flutter	 was	 that	 nobody

mentioned	that	Git	was	a	pre-requisite	for	installing	Flutter.	So,	ensure
you	have	git	installed	before	doing	anything	else.
Brew
If	you	are	planning	on	installing	Flutter	on	a	Mac,	it’s	a	good	idea

to	install	Brew	first	as	the	Flutter	Doctor	will	ask	you	to	use	brew	to
install	additional	software	when	required.
XCode	Command-Line	Tools
If	 you	 are	 planning	 on	 installing	 Flutter	 on	 a	 Mac,	 you	 are

definitely	going	to	need	these.

Step	2:	Download	the	Flutter	SDK
We	mentioned	the	Flutter	SDK	earlier,	how	it	has	all	the	tools	you

need	 to	 perform	 basic	 Flutter	 development.	 However,	 it	 also	 has	 a
very	useful	tool	called	Flutter	Doctor	that	is	used	to	setup	your	Flutter
Development	 environment.	 Download	 this	 SDK	 and	 copy	 it	 into	 a
folder.

Note	that	the	Flutter	SDK	also	contains	the	Dart	SDK.

Mac:	https://flutter.dev/docs/get-started/install/macos
PC:	https://flutter.dev/docs/get-started/install/windows

https://flutter.io/docs/get-started/install
https://flutter.dev/docs/get-started/install/macos
https://flutter.dev/docs/get-started/install/windows

Unix:	https://flutter.dev/docs/get-started/install/linux

Step	3:	Setup	Your	Path
The	Flutter	SDK	has	command-line	tools,	including	Flutter	Doctor

that	need	to	be	run	from	the	command-line.	These	command-line	tools
reside	in	the	‘bin’	folder	of	the	Flutter	SDK.	You	need	to	include	the
bin	folder	(within	the	flutter	SDK)	in	your	computers	path	so	that	you
can	run	the	command-line	tools	from	the	command-line.

Step	4:	Run	Flutter	Doctor
You	will	need	to	run	the	command	below:

flutter	doctor
This	 will	 checkout	 your	 environment	 and	 diagnose	 (like	 your

doctor)	 what	 is	 good	 and	 bad	 about	 your	 flutter	 development
environment.	 It	 will	 provide	 you	 with	 a	 summary,	 complete	 with
instructions	on	what	you	need	to	do.
	

https://flutter.dev/docs/get-started/install/linux

Here	are	my	notes	from	running	the	install	on	3	platforms:

Just	 follow	 the	 instructions.	 Some	 of	 them	 are	 very	 simple,
like	saying	‘yes’	to	licenses.	Some	are	more	involved.
You	 might	 get	 a	 message	 about	 installing	 the	 missing
Android	 SDK.	 This	 can	 be	 remedied	 by	 installing	 Android
Studio	then	running	it,	as	the	first	thing	it	will	do	is	setup	the
Android	SDK.

At	 this	 point	 I	 usually	 download	 Android	 Studio
because:

It	is	free.
It	sets	up	the	sdk	for	you.

It	is	great	for	setting	up	the	Emulators.
You	 can	 still	 use	 Visual	 Studio	 Code	 for
most	of	the	work	and	leave	Android	Studio
closed.

If	you	are	installing	Flutter	on	a	Mac	(or	Unix)	rather	than	on
a	 PC	 then	 there	 are	 many	 more	 dependencies	 (for	 iOS
compilation,	deployment	etc.)	and	it	can	take	much	longer.

Flutter	Commands
I	know	this	chapter	is	about	installing	Flutter.
However,	I	also	thought	that	we	should	introduce	the	Flutter	SDK

commands:
	

Command Description
flutter	--

help Lists	flutter	commands.

flutter
analyze Analyze	the	project's	Dart	code.

flutter
attach Attach	to	a	running	application.

flutter
bash-
completion

Output	command	line	shell	completion	setup
scripts.

flutter
build Flutter	build	commands.

flutter
channel List	or	switch	flutter	channels.

flutter
clean Delete	the	build/	and	.dart_tool/	directories.

flutter
config Configure	Flutter	settings.

flutter
create

Create	a	new	Flutter	project.

flutter
devices List	all	connected	devices.

flutter
doctor Show	information	about	the	installed	tooling.

flutter
drive Runs	Flutter	Driver	tests	for	the	current	project.

flutter
emulators List,	launch	and	create	emulators.

flutter
format Format	one	or	more	dart	files.

flutter
install Install	a	Flutter	app	on	an	attached	device.

flutter	logs Show	log	output	for	running	Flutter	apps.
flutter

make-host-
app-editable

Moves	host	apps	from	generated	directories	to
non-generated	directories	so	that	they	can	be	edited
by	developers.

flutter
precache

Populates	the	Flutter	tool's	cache	of	binary
artifacts.

flutter	pub Commands	for	managing	Flutter	packages.
flutter	run Run	your	Flutter	app	on	an	attached	device.
flutter

screenshot Take	a	screenshot	from	a	connected	device.

flutter	test Run	Flutter	unit	tests	for	the	current	project.
flutter

upgrade Upgrade	your	copy	of	Flutter.

flutter
version List	or	switch	flutter	versions.

Install	Editor
Once	you	are	done	with	the	Flutter	Doctor,	you	should	install	your

editor.

Editors	&	UI	Builders
None	of	the	Flutter	tools	currently	support	a	UI	builder,	where	you

can	 just	 drag	 and	 drop	 to	 build	 your	 UI.	 	 You	 have	 to	 code	 your
Flutter	UI’s	‘by	hand’,	which	is	not	difficult	anyway.		However,	these
editors	help	the	developers	in	many	ways,	offering	Code	Completion,
Error	Highlighting,	Linting	and	Debugging.

Flutter	 Doctor	 Tells	 You	 to	 Install	 Android
Studio

Flutter	Doctor	tells	you	to	install	Android	Studio.	This	is	what	the
official	Flutter	website	says:

Note:	 Flutter	 relies	 on	 a	 full	 installation	 of	 Android	 Studio	 to	 supply	 its
Android	platform	dependencies.		

So,	you	should	already	have	the	Android	Studio	editor	installed	by
the	time	you	have	got	past	the	flutter	doctor.

However,	this	does	not	stop	you	from	using	another	editor.

Android	Studio

Introduction
Android	 Studio	 is	 the	 official	 IDE	 for	 android	 application

development	as	it	provides	a	very	comprehensive,	well-supported	(by
Google)	solution:

•It	is	a	superb	editor.
•It	is	also	free	to	use.
•It	 also	 works	 (very	 well)	 for	 developing	 iOS	 applications	 in

Flutter.
•It	 was	 based	 on	 IntelliJ	 IDEA,	 so	 it	 works	 in	 a	 very	 similar

manner.

Thus,	 the	easiest	way	 to	get	going	with	an	editor	 is	 to	 install	 the
Flutter	plugins	into	Android	Studio.	Installing	the	Flutter	plugins	takes
all	of	five	minutes:
	

1.	 Start	Android	Studio.
2.	 Open	 plugin	 preferences	 (Preferences	 >	 Plugins	 on

macOS,	File	>	Settings	>	Plugins	on	Windows	&	Linux).
3.	 Select	 Browse	 repositories,	 select	 the	 Flutter	 plugin	 and

click	Install.
4.	 Click	Yes	when	prompted	to	install	the	Dart	plugin.
5.	 Click	Restart	when	prompted.

Flutter	Outline
One	 of	 the	 great	 things	 about	 the	 Android	 Studio	 is	 the	 Flutter

Outline.	When	you	are	editing	a	file,	it	shows	you	the	Widgets	defined
in	that	file,	their	variables,	their	code	and	their	structure.

It	 also	 lets	 you	 select	Widgets	 in	 your	 ‘build’	 methods	 and	 add
Centering,	Padding,	Rows,	Columns	etc.

	

IntelliJ	(Android	Studio,	IntelliJ)

If	you	are	already	using	Intellij	and	you	don’t	want	to	use	Android
Studio,	then	you	can	simply	add	the	Flutter	plugin	in	the	same	manner
as	it	is	installed	into	Android	Studio	(see	above):
	

Installing	the	plugin	takes	5	minutes.
You	can	use	the	free	IntelliJ	IDEA	Community	Edition	or	buy
a	License	to	use	the	‘full-fat’	version.	I	use	IntelliJ	IDEA	all
the	time	and	I	pay	$20	a	month,	well	worth	it	as	I	use	it	for
my	regular	job	every	day.

Further	 Reading:	 https://flutter.io/docs/get-started/editor?
tab=androidstudio

Visual	Studio	Code

Visual	Studio	code	 is	 a	great	 alternative	 to	using	Android	Studio
and	it	is	a	little	more	‘lightweight’	(runs	faster,	uses	less	memory):
	

It	is	a	superb	editor.
It	is	also	free	to	use.

Installing	the	Flutter	extension	takes	5	minutes.

I	had	never	used	Visual	Studio	code	with	Flutter	before	writing	this

https://flutter.io/docs/get-started/editor?tab=androidstudio

book.	I	had	used	Flutter	for	months	using	Android	Studio.	I	was	really
surprised	 and	 impressed	 how	well	 the	 Flutter	 Extension	works	with
Visual	 Studio	 Code.	 It	 is	 comprehensive,	 easy	 to	 use	 and	 fast.	 I
definitely	recommend	it	as	an	alternative	to	Android	Studio	Code.

Further	 Reading:	 https://flutter.io/docs/get-started/editor?
tab=vscode

https://flutter.io/docs/get-started/editor?tab=vscode

9.										Create	Default	Flutter	Project

Introduction
The	purpose	of	this	chapter	is	to	get	the	reader	generate	his	or	her

first	Flutter	project.
However,	this	chapter	does	not	include	running	it	yet!	☺

Default	Flutter	App
When	 you	 create	 a	 new	 Flutter	 project,	 it	 creates	 a	 default

‘counter’	app	that	displays	a	counter	in	the	middle	of	the	screen.	This
app	 is	 the	 same,	whether	 you	 generate	 it	 in	Android	 Studio,	 Visual
Studio	Code	or	the	Command-Line.	It	allows	the	user	to	click	on	a	‘+’
round	button	 on	 the	 bottom-right	 to	 increment	 the	 counter	 (this	 is	 a
floating	button).
	

Create	Project
You	 can	 create	 a	 new	 Flutter	 Project	 from	 your	 editor	 or	 the

command-line:

Android	Studio
Visual	Studio	Code
Command	Line

Android	Studio
1.	 Select	the	following	menu	option:	File	>	New	>	New	Flutter

Project.	This	will	open	a	wizard.

	

2.	 Select	‘Flutter	Application’	then	hit	next.

	

	

3.	 Enter	the	project	name	(whatever	you	want	to	call	it)	and	hit
next.

	

	

4.	 Enter	 the	 company	 domain	 (whatever	 you	 want)	 and	 hit
finish.

	

	

5.	 The	editor	will	take	a	couple	of	minutes	to	setup	the	files	in
the	project.

	

6.	 That’s	it!

Visual	Studio	Code
1.	 Ensure	 that	 you	 have	 installed	 the	 Flutter	 Extension	 into

Visual	Studio	Code	before	doing	this.

	

2.	 Open	 the	 command	 palette	 using	 the	 keyboard	 shortcut
Ctrl+Shift+P	 (Command+Shift+P	 on	 the	Mac)	 and	 you	will
see	 a	 list	 of	 the	 available	 commands.	 If	 you	 start	 to	 type
‘Flutter’	 in	 this	 box,	 then	 you	 will	 see	 a	 list	 of	 Flutter

commands:

	

	

3.	 Select	the	command	‘Flutter:	New	Project’.

	

4.	 Enter	the	name	of	the	new	project:

	

	

5.	 Select	a	folder	to	create	the	project	in.

	

	

7.	 The	editor	will	take	a	couple	of	minutes	to	setup	the	files	in
the	project.

	

8.	 That’s	it!

Command-Line
Ensure	 that	 you	 have	 installed	 the	Flutter	 SDK	and	 it	 is	 on
the	path	before	doing	this.
Enter	the	command:

flutter	create	<project	name>

The	command	will	take	a	couple	of	minutes	to	setup	the	files
in	the	project.
That’s	it!

Project	Created
Congratulations	-	you	have	created	your	first	Flutter	project!	Now

let’s	take	a	look	at	it.

Project	Folders
The	default	Flutter	project	is	organized	into	several	folders.

	
Name Description

[root]

Root	folder.
This	usually	contains	configuration	files.	The	most

important	of	these	configuration	files	is	the
‘pubspec.yaml’	file,	which	declares	the	project
dependencies	and	resources.	We	will	cover	this	file	in
detail	later.

As	the	name	suggests,	the	folder	contains	all	the
Android-related	files	and	code(s)	for	an	Android	project.

android

This	is	where	Android-specific	settings	and	code
resides.

When	building	for	Android,	Flutter	uses	Gradle	as
the	dependency	manager.

When	you	build	your	Flutter	project,	your	Flutter
code	is	generated	into	native	code	and	injected	into	this
folder.

You	very	rarely	change	things	in	this	folder.

build

This	folder	is	created	and	used	by	gradle	when	you
build	the	project.

Generated	and	managed	by	the	Flutter	SDK.
Don’t	change	things	in	this	folder.

ios

Similar	to	the	‘android’	folder,	this	folder	contains	the
iOS	related	files	and	code(s)	for	an	XCode	project.

This	is	where	iOS-specific	settings	and	generated
code	resides.

When	building	for	iOS,	Flutter	uses	Cocoapods	as
the	dependency	manager.

Like	the	‘android	folder’,	when	you	build	your
Flutter	project,	your	Flutter	code	is	generated	into	native
code	and	injected	into	this	folder.

You	very	rarely	change	things	in	this	folder.

lib

This	is	where	the	application	code	resides.
You	should	see	a	file	‘main.dart’,	the	entry	point	for

the	Flutter	application.	This	is	the	file	you	select	and
run.	

You	will	add	code,	files	and	subfolders	into	this
folder.

This	is	the	folder	in	which	you	will	work	90%	of	the
time.

test
This	is	where	the	unit	testing	code	resides.
You	may	add	more	files	and	subfolders	into	this

folder.

Project	Files
The	default	Flutter	project	contains	several	important	files.

	
Name Description

.metadata
Flutter	SDK	uses	this	file	to	save	project

info.
Don’t	change	this	file.

.packages
Generated	file	used	to	manage	packages.
See	Dependencies	and	Packages.
Don’t	change	this	file.

[project_name].iml
Flutter	SDK	uses	this	file	to	save

dependency	info	&	settings.
Don’t	change	this	file.

pubspec.lock

Generated	file	used	to	list	the	specific
versions	of	each	dependency	(immediate	and
transitive)	that	your	project	uses.

Don’t	change	this	file.

pubspec.yaml

Used	to	specify	your	projects
dependencies	–	what	3rd	party	packages	your
project	may	use.

You	can	also	specify	additional	project
resources	in	this	file:	fonts,	images	etc.

See	Dependencies	and	Packages.
You	will	be	able	to	change	this	file.

readme.md
Automatically	generated	readme	file.
You	can	add	additional	information	about

the	project	here.

Project	Application	Code	File
As	 mentioned	 earlier,	 when	 you	 create	 a	 new	 Flutter	 project,	 it

creates	a	default	‘counter’	app	that	displays	a	counter	in	the	middle	of
the	screen.

The	 code	 for	 this	 default	 application	 resides	 in	 a	 single	 file:
‘main.dart’	in	the	‘lib’	folder.

Note
Dart	lets	you	declare	multiple	objects	within	a	single	file!
This	‘main.dart’	acts	as	the	entry	point	of	the	application.

If	 you	 are	 using	 an	Editor,	 this	 is	 the	 file	 you	will
launch	to	run	your	app.

Widgets	&	Composition

Introduction
Now	we	are	looking	at	your	project,	we	need	to	introduce	some	of

the	Flutter	concepts,	like	Widgets	and	Composition.

Widgets	are	the	Building	Blocks	of	your	UI
Whenever	we	 build	 a	 user	 interface	 in	 Flutter,	 it	 is	 composed	 of

Widgets.	
Putting	your	widgets	together	is	called	Composition.

Think	of	a	user	 interface	as	a	 jigsaw.	The	 jigsaw	 is	composed	of
pieces	(Widgets):
	

Widget	Tree
Widgets	can	contain	other	widgets,	in	a	tree	structure,	a	hierarchy.

This	is	often	called	a	Widget	Tree.
	

Project	UI
First	of	all,	lets	explain	how	developers	compose	UIs	using	Flutter

and	explain	how	they	write	UIs	as	code.

UI	As	Code
Different	Development	Tools	Offer	Different	Ways	 to

Compose	A	UI

Angular	developers	compose	UIs	using	templates,	which	can
be	separate	files	or	within	the	same	file	as	the	source	code.
React	developers	compose	UIs	using	tags	in	the	source	code.

Flutter

Flutter	 developers	 compose	 UIs	 using	 code,	 not	 editors	 or
templates.	You	write	a	method	 that	 returns	a	Widget	object,
which	 consists	 of	 all	 of	 the	 required	 sub-Widgets,	 thus
composing	the	UI.
You	 (usually)	 use	 the	 same	 code	 for	 all	 platforms.	 Your
Android	and	iOS	apps	will	use	the	same	source	code.

Example:
The	Dart	code	below	is	used	 to	compose	a	Flutter	UI	 for	a	Yes	 /

No	Dialog:
	

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),

),
body:	Column(

mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
crossAxisAlignment:	CrossAxisAlignment.center,
children:	<Widget>[
Text("Do	you	want	to\nbuy	this	item?",

textAlign:	TextAlign.center,
style:	TextStyle(

color:	Colors.white,
fontSize:	40.0,
fontWeight:	FontWeight.w200)),

Row(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
Spacer(flex:	2),
SelectButton(text:	"YES",	onTap:	_yesOnTap),
Spacer(),
SelectButton(text:	"NO",	onTap:	_noOnTap),
Spacer(flex:	2),

],
)

]),
);

}

Widget	Tree
If	you	look	at	the	next	diagram,	the	project’s	Widget	tree	is	on	the

left	 and	 the	project’s	UI	 is	on	 the	 right.	 	Note	how	 the	Widget	Tree
and	UI	correspond	to	each	other.

	

Custom	Widgets
Although	the	default	application	contains	many	widgets,	only	two

custom	widgets	were	required	to	make	it	work:
MyApp
It	is	a	custom	widget	for	the	entire	application.
MyHomePage
It	 is	 a	custom	widget	 that	contains	 the	 layout	 for	 the	application,

plus	the	application	state	(the	counter).	It	covers	the	main	area	of	the

screen.
Example	Code
You	 will	 see	 this	 Widget	 used	 in	 most	 of	 the	 Examples.	 This

Widget	 is	 probably	 the	 best	 place	 to	 start	when	 examining	Example
Code

Flutter	Widgets
The	rest	of	the	widgets	were	used	from	the	Flutter	widget	library,

already	built	for	us.

Project	Code
Now	we	have	some	kind	of	idea	of	how	the	Widgets	compose	the

UI	in	this	app,	now	let’s	look	at	the	code.

Entry	Point
Every	Dart	app	must	start	with	a	main	function	as	a	starting	point.

In	 this	 case	 the	 main	 function	 creates	 an	 instance	 of	 the	 MyApp
object,	a	StatelessWidget.	The	method	‘runApp’	accepts	an	instance	of
a	widget	 (in	 this	case	an	 instance	of	MyApp)	and	uses	 it	as	 the	 root
Widget	 of	 the	 App,	 rendering	 it	 to	 fit	 the	 screen,	 taking	 up	 all	 the
available	space.
void	main()	=>	runApp(new	MyApp());

MyApp	Widget
The	MyApp	object	is	a	StatelessWidget.	It	sets	up	a	Material	App

that	 contains	 a	MyHomePage	 widget.	 The	MaterialApp	widget	 is	 a
built-in	Flutter	widget	that	serves	as	the	container	for	your	whole	app
and	its	Widgets.	It	provides	services	that	child	Widgets	may	use,	such
as	navigation,	sizing,	themes	etc.

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{

return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
//	This	is	the	theme	of	your	application.
//
//	Try	running	your	application	with	"flutter	run".	You'll	see	the
//	application	has	a	blue	toolbar.	Then,	without	quitting	the	app,	try
//	 changing	 the	 primarySwatch	 below	 to	 Colors.green	 and	 then

invoke
//	"hot	reload"	(press	"r"	in	the	console	where	you	ran	"flutter	run",
//	or	press	Run	>	Flutter	Hot	Reload	in	IntelliJ).	Notice	that	the
//	counter	didn't	reset	back	to	zero;	the	application	is	not	restarted.
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(title:	'Flutter	Demo	Home	Page'),

);
}
}

MyHomePage	Widget
This	 is	 a	 stateful	widget,	more	on	 these	 later.	 	This	widget	holds

the	count	as	State	(data)	and	it	sets	up	the	child	objects	in	the	UI:

The	 center	 widget,	 which	 contains	 a	 column	 object,	 which
contains	2	text	objects:

‘You	have	pushed	the	button	this	many	times:’
‘0’

The	floating	action	button	widget,	which	contains	a	‘+’	icon.
When	 the	user	clicks	on	 the	 floating	action	button,
this	 increments	 the	 instance	 variable	 ‘_counter’
inside	a	the	‘setState’	method.
Making	 a	 call	 to	 the	 ‘setState’	method	 tells	 Flutter
that	something	has	changed	and	the	UI	needs	to	be
rebuilt,	 so	 it	 invokes	 the	 ‘build’	 method	 in	 this
widget,	 which	 redraws	 itself	 with	 the	 new	 counter
value.

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

//	This	widget	is	the	home	page	of	your	application.	It	is	stateful,	meaning
//	that	it	has	a	State	object	(defined	below)	that	contains	fields	that	affect
//	how	it	looks.

//	This	class	is	the	configuration	for	the	state.	It	holds	the	values	(in	this
//	case	the	title)	provided	by	the	parent	(in	this	case	the	App	widget)	and
//	used	by	the	build	method	of	the	State.	Fields	in	a	Widget	subclass	are
//	always	marked	"final".

final	String	title;

@override
_MyHomePageState	createState()	=>	new	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
int	_counter	=	0;

void	_incrementCounter()	{
setState(()	{
//	This	call	to	setState	tells	the	Flutter	framework	that	something	has
//	 changed	 in	 this	 State,	 which	 causes	 it	 to	 rerun	 the	 build	 method

below
//	so	that	the	display	can	reflect	the	updated	values.	If	we	changed
//	_counter	without	calling	setState(),	then	the	build	method	would	not

be
//	called	again,	and	so	nothing	would	appear	to	happen.
_counter++;

});
}

@override
Widget	build(BuildContext	context)	{
//	This	method	is	rerun	every	time	setState	is	called,	for	instance	as	done
//	by	the	_incrementCounter	method	above.
//
//	 The	 Flutter	 framework	 has	 been	 optimized	 to	make	 rerunning	 build

methods
//	fast,	so	that	you	can	just	rebuild	anything	that	needs	updating	rather
//	than	having	to	individually	change	instances	of	widgets.
return	new	Scaffold(
appBar:	new	AppBar(
//	 Here	 we	 take	 the	 value	 from	 the	MyHomePage	 object	 that	 was

created	by
//	the	App.build	method,	and	use	it	to	set	our	appbar	title.
title:	new	Text(widget.title),

),
body:	new	Center(
//	Center	is	a	layout	widget.	It	takes	a	single	child	and	positions	it
//	in	the	middle	of	the	parent.
child:	new	Column(
//	Column	is	also	layout	widget.	It	takes	a	list	of	children	and
//	arranges	them	vertically.	By	default,	it	sizes	itself	to	fit	its
//	children	horizontally,	and	tries	to	be	as	tall	as	its	parent.
//
//	Invoke	"debug	paint"	(press	"p"	in	the	console	where	you	ran
//	"flutter	run",	or	select	"Toggle	Debug	Paint"	from	the	Flutter	tool
//	window	in	IntelliJ)	to	see	the	wireframe	for	each	widget.
//
//	Column	has	various	properties	to	control	how	it	sizes	itself	and
//	how	it	positions	its	children.	Here	we	use	mainAxisAlignment	to
//	center	the	children	vertically;	the	main	axis	here	is	the	vertical
//	axis	because	Columns	are	vertical	(the	cross	axis	would	be
//	horizontal).
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
new	Text(
'You	have	pushed	the	button	this	many	times:',

),
new	Text(
'$_counter',
style:	Theme.of(context).textTheme.display1,

),
],

),
),

floatingActionButton:	new	FloatingActionButton(
onPressed:	_incrementCounter,
tooltip:	'Increment',
child:	new	Icon(Icons.add),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build
methods.

);
}
}

10.	 Setup	 Android	 Emulator	 &	 Run
Project

Introduction
The	purpose	of	this	chapter	is	to	setup	an	Android	emulator,	open

it	 from	 your	 editor	 and	 run	 the	 project.	 Ensure	 that	 you	 have	 your
newly-created	project	open	in	your	editor	before	continuing.

Emulators
These	are	great	for	developers,	enabling	them	to	develop	their	code

to	 run	on	multiple	devices,	 see	how	they	 look	on	each	device.	Later
on,	you	can	use	the	real	hardware	for	final	pre-release	testing.

You	can	only	run	your	Flutter	code	on	emulators	in	Debug	Mode.
Release	Mode	is	not	supported.	This	is	not	a	big	problem	because	you
should	be	testing	release	code	on	the	real	hardware	anyway!

Android	Emulator
The	 Android	 Emulator	 simulates	 Android	 devices	 on	 your

computer	so	that	you	can	test	your	application	on	a	variety	of	devices
and	Android	API	levels	without	needing	to	have	each	physical	device.

The	 emulator	 provides	 almost	 all	 of	 the	 capabilities	 of	 a	 real
Android	 device	 and	 it	 comes	 with	 predefined	 configurations	 for
various	Android	phone,	tablet,	Wear	OS,	and	Android	TV	devices.	An
AVD	is	a	virtual	device	that	you	setup	to	run	in	the	Emulator.

Setting	Up	the	Android	Emulator

Options
There	are	multiple	ways	you	can	setup	the	Android	emulator:

	

Use	Android	Studio.
The	 AVD	 Manager	 in	 Android	 Studio	 gives	 you	 the	 most
control,	it	allows	you	to	setup	Android	Virtual	Devices	for	all
kinds	of	hardware	and	versions	of	Android.

	

Use	Visual	Studio	Code.
If	you	just	want	a	generic	emulator,	Visual	Studio	Code	lets
you	set	one	up	very	easily.

	

Use	Command	Line.
I	would	not	setup	the	emulators	from	the	command-line	as	it
is	far	more	difficult.

Mix
You	 can	mix-and-match.	You	 can	 setup	 your	 emulator	 using	 one

editor	but	edit	your	code	in	another.
Example
You	can	create	your	emulators	using	the	AVD	Manager	in	Android

Studio	 (or	 Visual	 Studio	 Code)	 then	 control	 them	 later	 from	 the
command	line.

Setup	Android	Emulator	in	Android	Studio

AVD	Manager
The	AVD	Manager	 in	Android	Studio	 is	a	dialog	you	can	 launch

from	Android	Studio	that	helps	you	create	and	manage	AVDs.

To	open	the	AVD	Manager,	do	one	of	the	following:

Select	Tools	>	AVD	Manager.

Click	AVD	Manager	AVD	Manager	icon	in	the	toolbar.

Using	the	toolbar	is	the	quickest	way	to	open	the	AVD	Manager:
	

AVD	Manager	Dialog

Main	Area
The	 main	 part	 of	 the	 dialog	 lists	 the	 available	 AVDs.	 Note	 that

each	AVD	has	a	play	button	and	a	pencil	button.
Play	Button
The	play	button	launches	the	AVD.
Pencil	Button
The	pencil	button	opens	a	list	of	commands	to	do	with	the	AVD	to

enable	the	user	to	perform	various	tasks:

Duplicate	AVD
Wipe	AVD	Data
Reboot	AVD
Show	On	Disk
View	Details
Delete

Stop	(If	Launched)

Bottom
The	 bottom	 part	 of	 the	 dialog	 has	 various	 buttons,	 the	 most

important	being	the	button	‘Create	Virtual	Device’,	which	allows	the
user	 to	 download	 the	 files	 for	 and	 setup	 an	AVD.	Downloading	 the
files	can	 take	a	while	but	 it	 is	much	easier	 than	using	 the	command
line!

Setup	Android	Emulator	in	Visual	Studio	Code

Before	You	Start
Ensure	 that	 you	 have	 installed	 the	 Flutter	 Extension	 into	 Code

before	doing	this.

View	Flutter	Commands
Open	 the	 command	 palette	 using	 the	 keyboard	 shortcut

Ctrl+Shift+P	(Command+Shift+P	on	the	Mac)	and	you	will	see	a	list
of	 the	available	commands.	 If	you	 start	 to	 type	 ‘Flutter’	 in	 this	box,
then	you	will	see	a	list	of	Flutter	commands:

	

Launch	Emulator
If	you	select	the	‘Flutter:	Launch	Emulator’	command,	you	will	list

the	installed	emulators	and	you	can	select	one	to	launch	it.

	

Create	New	Emulator
If	 you	 don’t	 have	 an	 emulator	 installed,	 select	 the	 ‘Create	New’

command	 and	 Visual	 Studio	 Code	 will	 create	 a	 generic	 emulator
called	‘flutter_emulator’,	which	you	can	then	launch.

Setup	Android	Emulator	in	Command	Line

Introduction
There	 is	 a	 lot	 of	 information	 here:

https://developer.android.com/studio/run/emulator-commandline

Android	SDK	Path
Remember	 that	 these	command-line	 tools	are	part	of	 the	Android

SDK	and	need	to	be	setup	on	your	path.	Your	path	should	include	the
following	Android	SDK	folders	for	these	commands	to	work:

/Android/sdk/tools
/Android/sdk/platform-tools

To	Create	a	New	AVD	to	Test	On:
android	create	avd	-n	<name>	-t	<targetID>	

<name>	is	the	name
<targetID>	is	the	required	API	level

To	List	Your	Available	AVDs:
When	you	 use	 this	 option,	 it	 displays	 a	 list	 of	AVD	names	 from

your	Android	home	directory.	Note	that	you	can	override	the	default

https://developer.android.com/studio/run/emulator-commandline

home	directory	by	setting	the	ANDROID_SDK_HOME	environment
variable:	the	root	of	the	user-specific	directory	where	all	configuration
and	AVD	content	is	stored.
emulator	-list-avds

To	Launch	an	Available	AVD:
Use	the	emulator	command	to	start	the	emulator,	as	an	alternative

to	running	your	project	or	starting	it	through	the	AVD	Manager.
emulator	-avd	<name>

Run	Project

Android	Studio
Note	that	on	the	main	toolbar	there	are	two	dropdowns	then	a	play

button.	The	first	dropdown	is	used	to	select	the	device/emulator	to	run
against.	The	second	dropdown	is	the	run	configuration.
Run	Configuration
The	run	configuration	is	used	to	provide	information	about	which

Dart	 class	 is	 used	 as	 the	 application	 starting	 point,	 as	 well	 as	 run
parameters,	 options.	 Clicking	 on	 the	 play	 button	 invokes	 the	 run
configuration	on	the	device/emulator.

	

Visual	Studio	Code
Steps

1.	 Go	back	to	the	editor	and	view	the	file	list	(explorer)	on	the
left.

	

2.	 Click	on	the	‘lib’	folder	to	open	it	up.

	

3.	 Right-mouse	click	on	‘main.dart’	and	you	should	see	a	popup
menu	containing	the	commands	to	run	or	debug.	Select	run	or
debug	to	install	and	run	the	app	on	the	emulator.	This	will	run
the	project	on	the	emulator.

	

Command-Line
Steps

1.	 Ensure	that	you	are	in	the	root	folder	of	the	project.

	

2.	 Enter	the	‘flutter	run’	command.

flutter	run

11.	Setup	iOS	Emulator	&	Run	Project

Introduction
The	 purpose	 of	 this	 chapter	 is	 to	 setup	 an	 iOS	 emulator,	 open	 it

from	 your	 editor	 and	 run	 the	 project.	 Ensure	 that	 you	 have	 your
newly-created	project	open	in	your	editor	before	continuing.

PCs
Obviously,	 this	 is	 not	 going	 to	work	 on	 a	 PC.	 So,	 get	 your	Mac

ready	(or	virtual	Mac	ready)!		You	can	use	the	iOS	emulator	for	most
of	 your	 development	 and	 then	 find	 a	 device	 to	 test	 on	when	 you’re
nearly	done.	

XCode
XCode	is	Apple’s	integrated	development	environment	(IDE)	that

you	use	to	build	apps	for	Apple	products	including	the	iPad,	iPhone,
Apple	Watch,	and	Mac.	XCode	provides	tools	to	manage	your	entire
development	 workflow—from	 creating	 your	 app,	 to	 testing,
optimizing,	and	submitting	it	to	the	App	Store.

You	don’t	 need	 to	 have	XCode	 running	 to	 use	 the	Emulator,	 but
you	can	launch	the	Emulator	from	XCode.

iOS	Emulator
XCode	ships	with	an	iOS	simulator/emulator.
In	addition	 to	 running	code,	 the	simulator	enables	you	 to	 test	 the

following	with	virtual	iOS	devices:
	

Device	rotation
Simulating	various	GPS	coordinates
Device	shake
Simulating	low	memory	scenarios

Open	iOS	Simulator/Emulator

Open	from	Xcode
Select	 the	 ‘Xcode’	 menu	 then	 ‘Open	 Developer	 Tool	 then

‘Simulator’:
	

Opening	from	Command-Line
Use	the	following	command	in	your	terminal.

open	-a	Simulator

Run	Project

Android	Studio
When	you	have	 the	Simulator(s)	open	 (running),	 the	 simulator(s)

become	available	on	the	main	toolbar	in	the	first	dropdown,	to	the	left
of	the	run	configuration	dropdown	&	run/debug	buttons:

If	 you	 have	 more	 than	 one	 simulator	 running,	 they	 will	 all	 be

displayed	in	the	dropdown	on	the	main	toolbar.

Visual	Studio	Code
When	 you	 have	 the	 Simulator(s)	 running,	 the	 currently-selected

simulator	is	displayed	on	the	toolbar	on	the	bottom	right.		The	current
simulator	 is	 the	 one	 that	 will	 be	 used	 when	 the	 user	 selects	 ‘Start
Debugging’	 or	 ‘Start	Without	Debugging’	 on	 the	 popup	menu	 for	 a
runnable	file.
	

If	 you	 have	multiple	 simulators	 running,	 you	 can	 select	 between
simulators	by	clicking	on	the	simulator	displayed	on	the	toolbar	on	the
bottom	right.		This	opens	a	menu	at	the	top	to	enable	the	user	to	select
in	between	them:

Command-Line
You	 start	 your	 iOS	 simulator(s)	 as	 required	 then	 you	 use	 the

‘flutter	 run’	 command	 to	 run	 your	 app	 with	 an	 open	 device	 or
emulator.
No	Simulators/Devices	Open?
If	you	 invoke	 ‘flutter	 run’	without	 any	devices	or	 emulators,	you

get	a	message	similar	to	that	below:
flutter	run
No	connected	devices.

Run	'flutter	emulators'	to	list	and	start	any	available	device	emulators.

If	you	expected	your	device	to	be	detected,	please	run	"flutter	doctor"	to
diagnose

potential	issues,	or	visit	https://flutter.io/setup/	for	troubleshooting	tips.
Multiple	Simulators/Devices	Open?
If	you	invoke	‘flutter	run’	with	multiple	devices	or	emulators	open,

you	get	a	message	similar	to	that	below:
flutter	run
More	 than	 one	 device	 connected;	 please	 specify	 a	 device	with	 the	 '-d

<deviceId>'	flag,	or	use	'-d	all'	to	act	on	all	devices.

iPhone	 6s	 •	 34B92793-1355-4E13-857B-D5E7A3FB4F4F	 •	 ios	 •	 iOS
12.1	(simulator)

iPhone	XR	•	D49E45DA-7D58-473A-B0FA-29E3C4E88455	•	ios	•	iOS
12.1	(simulator)

The	command	below	runs	the	app	on	the	iPhone	6s:
flutter	run	-d	34B92793-1355-4E13-857B-D5E7A3FB4F4F
One	Simulator/Device	Open?
Remember	that	if	you	only	have	one	device	or	emulator	open,	you

just	do	a	‘flutter	run’:
flutter	run

12.	Setup	Device	&	Run	Project

Introduction
The	purpose	of	this	chapter	is	to	setup	a	real	device,	connect	it	to

your	computer	and	run	the	project.	Ensure	that	you	have	your	newly-
created	project	open	in	your	editor	before	continuing.

Android	Device

Introduction
This	is	relatively	straightforward.	You	basically	do	the	following:

	

Use	the	device	settings	app	(on	your	device	i.e.	your	phone)
to	set	yourself	up	as	a	developer	and	enable	USB	debugging.

	

Setup	the	computer	to	detect	the	device.	This	involves	setting
up	ADB,	which	 is	 the	Android	Debug	Bridge.	This	 enables
an	 Android	 app	 to	 be	 debugged	 on	 an	 emulator	 or	 actual
Android	device.

	

Connect	the	device	to	the	computer.
Your	connected	device	should	become	visible	in	the
IDE	 in	 the	 same	way	 as	 it	 would	 for	 an	 emulator
(see	 ‘Open	 Android	 Emulator	 &	 Run	 Your	 First
App’).
Run	 the	 app	 in	 the	 same	way	as	you	would	 for	 an
emulator.

Further	Reading	/	Instructions

Full	instructions	here:
https://developer.android.com/studio/run/device

iOS	Device

Check	Your	Hardware	First
Computer.

As	per	 the	 iOS	emulator,	 this	 is	not	going	 to	work
on	 a	 PC.	 So,	 get	 your	 Mac	 computer	 ready	 (or
virtual	Mac	ready)!	

Device.
Your	 Flutter	 app	 won’t	 just	 work	 on	 any	 old	 iOS
device.	You	will	need	to	have	an	iOS	device	that	is
capable	of	running	iOS8	or	later.	Otherwise	you	will
get	an	error	like	this:

The	 iOS	deployment	 target	 is	 set	 to	5,	 but	 the	 range	of	 supported	deployment
target	versions	for	this	platform	is	8.0	to	12.1.	(in	target	'Runner')

Setup	Your	XCode	Project
Your	XCode	project	resides	within	the	‘ios’	folder	of	your	Flutter

project.
You	will	need	to	open	it	and	set	it	up:

	

Open	your	XCode	project.
Create	a	signing	team.
Setup	a	unique	bundle	identifier	for	the	project.

Open	XCode	Project
Android	Studio

https://developer.android.com/studio/run/device

Right-click	on	iOS	folder	in	project.
Select	‘Flutter’	in	popup	menu.
Select	‘Open	iOS	module	in	XCode’	in	popup	menu.

	

Visual	Studio	Code

Right-click	on	iOS	folder	in	project.
Select	‘Open	in	XCode’	in	popup	menu

	

Command-Line

Open	terminal	and	navigate	to	the	root	folder	of	your	project.
Enter	the	following	command.

open	ios/Runner.xcworkspace

This	command	should	open	the	XCode	project.

Create	Signing	Team
You	will	 need	 to	 login	 to	XCode	 using	 your	Apple	 ID	 and
setup	a	signing	team.
In	XCode,	navigate	 to	 the	Runner	 target	 settings	page,	 then
General	>	Signing	>	Team.
The	 signing	 workflow	 is	 detailed	 here:
https://help.apple.com/xcode/mac/current/	-	/dev60b6fbbc7

	

https://help.apple.com/xcode/mac/current/%20-%20/dev60b6fbbc7

Set	Bundle	Identifier
In	XCode,	navigate	 to	 the	Runner	 target	 settings	page,	 then
General	>	Identity	>	Bundle	Identifier.
The	Bundle	Identifier	needs	to	be	unique	for	your	project	and
is	quite	restrictive	in	terms	of	characters,	so	make	sure	all	of
the	characters	are	only	alphanumeric	(A-Z,a-z,0-9),	hypen	(-
),	or	period	(.).

	

Connect	the	Device	to	The	Mac	&	Run
The	first	 time	you	connect,	you	will	need	 to	 trust	both	your
Mac	and	 the	Development	Certificate	on	 that	device.	Select
Trust	 in	 the	 dialog	 prompt	 (on	 the	 iOS	 device)	 when	 first

connecting	the	iOS	device	to	your	Mac.

Your	connected	device	 should	become	visible	 in	 the	 IDE	 in
the	same	way	as	it	would	for	an	emulator	(see	‘Run	Your	App
on	the	iOS	Simulator’).
If	you	see	the	‘Untrusted	Developer’	error	on	the	iOS	device,
then	go	to	Settings	and	search	for	Device	Management.	You
can	then	trust	the	developer	there.
Run	the	app	in	the	same	way	as	you	would	for	an	emulator.

Further	Reading	/	Instructions
Full	 instructions	 here:	 https://flutter.io/docs/get-

started/install/macos

https://flutter.io/docs/get-started/install/macos

13.	Hot	Restarting	&	Reloading

Introduction
This	 is	 a	 very	 short	 chapter,	 but	 it	 contains	 valuable	 information

that	you	will	use	all	the	time.	When	are	running	a	Flutter	app	and	you
make	code	changes,	you	can	 tell	your	editor	 to	 reload	 them.	That	 is
the	subject	of	this	chapter.

Hot	Reloads
In	fact,	one	of	the	great	things	about	Dart	is	its	ability	to	hot	reload

code.

The	Official	Documentation	Says:
Flutter’s	 hot	 reload	 feature	 helps	 you	 quickly	 and	 easily

experiment,	build	UIs,	add	features,	and	fix	bugs.	Hot	reload	works	by
injecting	 updated	 source	 code	 files	 into	 the	 running	 Dart	 Virtual
Machine	(VM).	After	 the	VM	updates	classes	with	 the	new	versions
of	 fields	and	functions,	 the	Flutter	 framework	automatically	 rebuilds
the	 widget	 tree,	 allowing	 you	 to	 quickly	 view	 the	 effects	 of	 your
changes.

Two	Options
After	you	have	made	your	code	changes,	you	have	two	options	in

regard	to	reloading:

Hot	restarting.
Hot	reloading.

Hot	Restarting
This	 loads	 your	 changed	 code	 into	 the	Dart	VM	 and	 restarts	 the

application.	This	is	the	safest	thing	to	do	and	doesn’t	take	long.

Hot	Reloading
If	you	want	to	load	your	changed	code	into	the	Dart	VM	but	you

don’t	want	 to	 restart	 the	 application	 or	 change	 its	 state,	 you	 can	 do
this.	 The	 result	 might	 be	 different	 behavior	 vs	 a	 hot	 restart.	 Just
remember	your	code	changes	may	not	work	with	the	existing	state.

Android	Studio
Both	hot	restart	and	hot	reload	are	available	in	the	run/debug	tool

windows.
	

Visual	Studio	Code
Both	 hot	 restart	 and	 hot	 reload	 are	 available	 in	 the	 Command

Palette.
	

Command-Line
If	you	are	using	‘flutter’	run	to	run	the	app	from	the	command	line,

you	can	use	the	key	‘R’	to	hot	restart	and	the	key	‘r’	to	hot	reload.

14.	Dependencies	&	Packages

Introduction
In	Dart,	you	don’t	have	to	develop	everything	from	scratch.	There

is	 a	 packaging	 system	 where	 developers	 can	 develop	 packages	 and
publish	them.	Other	people	can	then	use	these	packages.

The	purpose	of	this	chapter	is	to	outline	how	to	use	this	packaging
system.

Website
When	 someone	 writes	 a	 package	 and	 it	 is	 published	 to	 the

https://pub.dartlang.org/	site,	developers	can	declare	a	dependency	to
that	 project	 and	 pull	 it	 into	 their	 project	 as	 a	 dependency.	 Then	 the
user	can	add	imports	at	the	top	the	files	to	import	code	and	use	it.

Note	 that	 Dart	 and	 Flutter	 packages	 follow	 semantic	 versioning
rules.

Core	Packages
Flutter	 comes	 with	 many	 packages	 by	 default.	 These	 are	 called

Core	 Packages	 and	 you	 don’t	 need	 to	 declare	 any	 kind	 of	 external
dependency	to	use	them.

Non-Core	Packages
You	could	call	these	‘External	Packages’.	These	are	packages	that

are	not	setup	by	default.	You	need	to	declare	these	dependencies	and
pull	them	into	your	project	to	use	them.

Most	Useful	Non-Core	Packages
These	are	the	packages	that	I	have	used	the	most.	This	may	be	very

different	for	other	Flutter	developers.

https://pub.dartlang.org/

	
Name Description
http For	HTTP	communication.

rxdart Reactive	functional	programming
library.

datetime_picker_formfield Date	/	time	picker.

image_picker
Image	picker.	Very	useful	apps

where	you	take	pictures	or	upload
photos.

zoomable_image For	panning	and	zooming	images
by	touch

shared_preferences For	saving	local	settings	and	data
in	your	app.

cached_network_image

A	flutter	library	to	show	images
from	the	internet	and	keep	them	in
the	cache	directory.	This	helps	speed
things	up.	It	also	lets	you	display	an
image	placeholder	while	the	image
loads.

How	to	Use	an	External	Package

Declare	Dependency	in	Project
Open	 the	 pubspec.yaml	 file	 in	 the	 root	 of	 your	 project	 and
add	 a	 dependency.	 For	 example,	 the	 code	 below	 declares
dependencies	 to	 the	 flutter	 sdk,	 cupertino	 icons	 and
scoped_model.	 Note	 how	 some	 dependencies	 specify	 the
version,	some	don’t:

flutter:
sdk:	flutter

cupertino_icons:	^0.1.2
scoped_model:	^1.0.1

Import	Packages
Once	your	pubspec.yaml	file	is	setup,	you	need	to	install	the
packages	 by	 pulling	 them	 from	 https://pub.dartlang.org/	 .
Normally	your	editor	will	assist	you	with	this.

Android	Studio
Click	 ‘Packages	Get’	 in	 the	 action	 ribbon
at	the	top	of	pubspec.yaml

Visual	Studio	Code
Click	 ‘Get	Packages’	 located	 in	 right	 side
of	 the	 action	 ribbon	 at	 the	 top	 of
pubspec.yaml

Command-Line
Run	the	command	‘flutter	packages	get’.

Import	&	Use	Package	Code
You	 import	 the	 package	 code	 in	 the	 usual	 manner	 using	 the

‘import’	 statement	 at	 the	 top	 of	 your	 code.	 For	 example,	 the	 code
imports	the	flutter	material	package	and	the	scoped	model	package.

import	'package:flutter/material.dart';
import	'package:scoped_model/scoped_model.dart';

Restart	Your	App
You	will	probably	need	to	restart	your	app	if	it	is	running.
That’s	it!

Package	Version	Numbers
Some	dependencies	specify	the	version,	some	don’t.

Version	specifiers:

https://pub.dartlang.org/

‘any’	–	any	version
‘1.2.3’	–	only	version	1.2.3
‘>1.8.3’	–	any	version	higher	than	1.8.3
'>=1.8.3’	–	any	version	1.8.3	or	higher
‘<1.8.3’	–	any	version	lower	than	1.8.3
'<=1.8.3’	–	any	version	1.8.3	or	lower

Carat	syntax.
The	 ‘^’	 means	 -	 “the	 range	 of	 all	 versions
guaranteed	 to	 be	 backwards	 compatible	 with	 the
specified	version”.
‘^1.1.1’	is	equivalent	to	versions	'>=1.1.1	<2.0.0'
‘^0.1.2’	is	equivalent	to	versions	'>=0.1.2	<0.2.0'

Project	Files

.packages
This	 file	 gets	 generated	when	 you	 do	 a	 ‘packages	 get’.	 This	 file

contains	a	list	of	dependencies	used	by	your	application.

pubspec.lock
Also	known	as	‘package	lock	file’.
The	 first	 time	 you	 get	 a	 new	 dependency	 for	 your	 package,	 pub

downloads	 the	 latest	 version	 of	 it	 that’s	 compatible	with	 your	 other
dependencies.	It	then	locks	your	package	to	always	use	that	version	by
creating	a	lockfile.	This	is	a	file	named	pubspec.lock	that	pub	creates
and	stores	next	 to	your	pubspec.	It	 lists	 the	specific	versions	of	each
dependency	(immediate	and	transitive)	that	your	package	uses.

How	to	Clean	&	Reimport	Your	Packages
You	 may	 find	 the	 sequence	 of	 commands	 below	 useful	 if	 you

encounter	strange	dependency	issues	in	your	project:
flutter	clean

rm	-rf	pubspec.lock	.packages	.flutter-plugins
flutter	pub	pub	cache	repair
flutter	packages	get

How	to	Publish	Your	Own	Packages

Introduction
You	can	easily	write	your	own	packages	and	share	 them	with	 the

rest	of	the	world.
You	can	publish	to	kinds	of	packages:

	

Dart	Packages
These	are	packages	written	in	dart.
Some	of	 these	packages	are	designed	for	dart	only,
others	are	designed	for	flutter.
We	are	going	to	cover	these.

	

Plugin	Packages
These	 are	 packages	 written	 in	 dart	 that	 include
platform-specific	 code,	 for	 example	 Android-
specific	or	iOS-specific.
These	are	beyond	the	scope	of	the	book.

Setting	Up	a	Dart	Package
The	 Flutter	 SDK	 has	 a	 command	 line	 tool	 that	 enables	 you	 to

quickly	setup	a	dart	package:
flutter	create	--template=package	<name>

This	doesn’t	create	a	large	project,	in	fact	it	creates	a	project	with
two	files:
	

Folder Description

[root] Root	folder.
Contains	pubspec.yaml	file,	readme	file.

android

As	the	name	suggests,	the	folder	contains	all	the
Android-related	files	and	code(s)	for	the	package.

This	is	where	Android-specific	settings	and	code
resides.

When	building	for	Android,	Flutter	uses	Gradle	as
the	dependency	manager.

ios

Similar	to	the	‘android’	folder,	this	folder	contains	the
iOS	related	files	and	code(s)	for	the	package.

This	is	where	iOS-specific	settings	and	generated
code	resides.

When	building	for	iOS,	Flutter	uses	Cocoapods	as
the	dependency	manager.

lib

This	is	where	the	application	code	resides.
You	should	see	a	file	‘main.dart’,	the	entry	point	for

the	Flutter	application.	This	is	the	file	you	select	and
run.	

You	will	add	more	files	and	subfolders	into	this
folder.

test
This	is	where	the	unit	testing	code	resides.
You	may	add	more	files	and	subfolders	into	this

folder.

Now	you	need	 to	 implement	 the	code	 in	your	package,	 including
writing	unit	tests.

Once	you	have	completed	code	 implementation,	you	need	 to	add
documentation.

Adding	Documentation
Add	text	to	the	README.md	file.

This	is	the	first	place	developers	will	look.
Every	time	you	make	a	change	to	the	package,	add	text	to	the
CHANGELOG.md	file.
Use	 the	 dart	 documentation	 tool	 to	 generate	 api
documentation.

Change	directory	to	the	location	of	your	package:

cd	~/dev/mypackage

Add	 an	 environment	 variable	 to	 tell	 the	 Tell	 the
documentation	 tool	 where	 the	 Flutter	 SDK	 is	 (change	 to
reflect	where	you	placed	it):

Mac/Unix

export	FLUTTER_ROOT=~/dev/flutter

Windows

set	FLUTTER_ROOT=~/dev/flutter	(on	Windows)

Run	the	dartdoc	tool	(comes	as	part	of	the	Flutter	SDK):
Mac/Unix

$FLUTTER_ROOT/bin/cache/dart-sdk/bin/dartdoc

Windows

%FLUTTER_ROOT%\bin\cache\dart-sdk\bin\dartdoc

Final	Review
Review	the	publishing	specification	file	pubspec.yaml.
Review	the	documentation,	make	sure	it’s	all	ready.

Do	a	Publish	Dry-Run
This	is	good	preparation	for	the	real	thing.
Running	this	command	will	check	all	the	publishing	pre-requisites

without	actually	publishing.
flutter	packages	pub	publish	--dry-run

Publish
If	everything	went	well	in	the	publishing	dry-run	then	do	the	actual

publishing.
flutter	packages	pub	publish

Further	Reading
A	lot	of	this	information	for	this	chapter	came	from	here:
https://flutter.io/docs/development/packages-and-

plugins/developing-packages

https://flutter.io/docs/development/packages-and-plugins/developing-packages

15.	Introduction	to	Widgets

Introduction
The	purpose	of	this	chapter	is	to	cover	composition.

We	 mentioned	 composition	 earlier.	 It’s	 how	 you	 compose	 your
user	 interface	from	Widgets	and	each	one	is	used	to	render	a	part	of
the	 UI.	 	Widgets	 are	 built	 by	 composing	 other	Widgets,	 which	 are
themselves	 built	 out	 of	 progressively	 more	 basic	 Widgets.	 This	 is
known	as	aggressive	composability.

We	 also	 mentioned	 that	 your	 app	 ends	 up	 being	 a	 hierarchy	 of
Widgets,	a	Widget	Tree:

Some	widgets	are	parent	widgets.
For	example,	Widget	#2.

,	Some	widgets	are	child	widgets.
For	example,	Widget	#3	and	Widget	#4	are	children
of	Widget	#2.

	

What	Are	Widgets?
Widgets	 are	 really	 configuration	 objects	 rather	 than	 graphic

objects.
When	you	write	a	Widget,	it	is	not	just	directly	rendered	on	screen,

it’s	not	as	direct	as	that.
You	write	them	and	they	configure	 the	user	 interface	 then	Flutter

gets	them	rendered	on	screen.

User	Interface:	Material	&	Cupertino
Google	has	its	own	user	interface	design	language	called	Material,

which	is	used	in	all	Google	products.	If	you	look	at	a	program	running
on	an	Android	phone,	chances	are	that	the	UI	will	have	that	look	and
feel.

Material	Design,	According	to	Google
Material	Design	is	a	system	for	building	bold	and	beautiful	digital

products.	By	uniting	style,	branding,	 interaction,	and	motion	under	a
consistent	set	of	principles	and	components,	product	teams	can	realize
their	greatest	design	potential.

Most	 Flutter	 Widgets	 Work	 with	 Material
Design

As	Flutter	was	written	by	Google,	most	Flutter	widgets	support	the
Material	design	look	and	feel.	As	most	people	are	writing	Flutter	apps
that	 implement	 the	 Material	 design	 look	 and	 feel,	 we	 are	 going	 to
concentrate	on	the	Flutter	widgets	that	support	that	look	and	feel.

User	Interface:	Cupertino
Apple	(based	in	Cupertono)	is	the	other	big	player	in	mobile	apps

and	it	has	its	own	user	interface	design	language.	Apple	does	not	have
a	 name	 for	 its	 design	 language	 (yet).	 Apple	 though	 has	 something
called	“Human	Interface	Guidelines”.	These	guidelines	ensure	that	all
iOS	applications	adhere	to	Apple’s	design	principles.

Flutter	Includes	iOS-Styled	Widgets
Google	 has	 written	 many	 iOS-styled	 Widgets	 for	 Flutter

developers	so	that	they	can	emulate	native	iOS	apps.	I	have	not	used
these	 Widgets,	 so	 I	 am	 not	 going	 to	 spend	 any	 time	 on	 them.	
However,	it	is	good	to	know	that	they	exist	and	are	available.	Here	is
a	list:
	

CupertinoActionSheet
CupertinoActivityIndicator
CupertinoAlertDialog
CupertinoButton
CupertinoDatePicker
CupertinoDialog

CupertinoFullscreenDialogTransition
CupertinoPageScaffold
CupertinoPageTransition
CupertinoPicker
CupertinoPopupSurface
CupertinoSegmentedControl
CupertinoSlider
CupertinoSwitch
CupertinoNavigationBar
CupertinoTabBar
CupertinoTabScaffold
CupertinoTabView
CupertinoTextField
CupertinoTimerPicker

Building	Widgets
Flutter	does	 the	 job	of	rendering	the	widgets	on	the	screen	for	us

(more	 on	 change	 detection	 &	 rendering	 later),	 but	 it	 needs
configuration	information	for	the	widget:	what	color	is	it	going	to	be,
what	is	its	border,	does	it	contain	other	widgets....

Build	Method
When	 it	 needs	 to	 know	how	 to	 render	 a	widget,	 Flutter	 calls	 the

‘build’	method	 in	your	widget.	That	method	 returns	a	Widget	object
that	gives	Flutter	configuration	information	about	the	widget	(and	any
child	widgets	that	it	may	be	composed	of).

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',
home:	Center(child:Text('Hello	World'))

);
}
}

The	‘build’	method	takes	one	argument,	the	BuildContext	(more	on
that	 later)	 and	 returns	 a	Widget	 object.	 That	 returned	Widget	 object
contains	configuration	data	 that	 tells	Flutter	 that	 it	needs	 to	 render	a
Material	App	widget	with	a	title	and	some	centered	text.

Build	Context
Earlier	we	mentioned	that	a	widget	can	contain	other	widgets,	in	a

tree	structure,	a	hierarchy.	This	is	often	called	a	Widget	Tree.

The	 first	 argument	 to	 the	 build’	 method	 of	 your	 Widget	 is	 the
BuildContext.	 This	 gives	 your	 ‘build’	method	 information	 about	 the
location	of	your	Widget	in	the	Widget	Tree.

It	may	not	seem	useful	at	the	moment	but	will	come	in	very	handy
later	on!

Not	All	Widgets	Are	Equal
Ok,	we	know	that	a	Flutter	user	interface	is	composed	of	Widgets

and	that	each	widget	has	a	build	method	that	gives	Flutter	information
on	how	render	it.	That’s	true	for	all	widgets.

We	 also	 know	 that	 some	 Widgets	 can	 be	 composed	 of	 other
widgets,	for	example	a	Form	widget	being	composed	of	text	and	input
boxes.

However,	 in	addition	 to	 that,	some	widgets	are	simple	(stateless),
others	 are	more	 dynamic	 (stateful).	 These	 dynamic	 stateful	Widgets
can	react	to	things	happening,	like	data	(state)	changing.

State
Before	we	talk	about	state,	we	need	to	get	our	terminology	straight.

State	is	simply	information	about	something	held	in	memory.
	

In	 the	 context	 of	 an	 application,	 the	 state	 is	 the	 data
(information)	it	uses.
In	the	context	of	a	widget	(part	of	the	UI)	the	state	is	the	data
(information)	contained	in	the	widget’.

Mutable	State
Mutable	state	is	state	that	can	be	changed.

Immutable	State
Immutable	state	is	state	that	cannot	be	changed.

Flutter	Widgets	&	State
Flutter	 has	 two	 types	 of	 Widgets:	 StatelessWidgets	 and

StatefulWidgets.
Both	 types	 of	 Flutter	Widgets	 can	 store	 data	 that	 doesn’t	 change

(immutable	state).
Only	one	can	appear	to	be	able	to	store	data	that	changes	(mutable

state)

Stateful	Widgets
Their	UI	Can	Update	When	State	Changes
Stateful	 Widgets	 appear	 to	 be	 able	 to	 store	 data	 that	 changes

(mutable	state)	and	update	their	UI	when	that	data	changes.
For	example,	you	would	expect	a	stateful	text	input	widget	to	store

the	data	for	the	actual	text	displayed	therein	and	that	can	change.
They	Don’t	Actually	Store	the	State	Themselves
Internally	 Stateful	 Widgets	 are	 only	 associated	 with	 a	 separate

State	object,	which	stores	data	that	can	change	(mutable	state).	When
the	 State	 needs	 to	 change	 (the	 user	 did	 something	 and	 an	 event

occurred),	 the	code	 invokes	 the	 ‘setState’	method	 in	 the	State	object
and	the	Stateful	Widget	is	re-rendered	(the	‘build’	method	is	invoked
to	update	the	UI).

Stateless	Widgets
Stateless	Widgets	can	store	data	that	doesn’t	change.

They	 are	 typically	 used	 to	 do	 simple	 things	 like	 ‘display
customer	name’.
They	are	the	most-commonly	used	Widgets.
They	don’t	update	their	data.
They	don’t	update	 their	UI	when	data	changes	(their	 ‘build’
method	isn’t	invoked).
They	are	very	 lightweight	and	are	created	and	 thrown	away
very	often.

For	example,	 if	you	have	a	Customer	Name	Stateless	Widget	and
the	customer	name	changes	then	a	new	Widget	is	created	for	the	new
name,	it	replaces	the	old	one	and	the	old	one	is	thrown	away.

Event	Handling
Widgets	 have	 event	 handlers.	 These	 are	 essential	 so	 that	 the	 UI

reacts	to	the	actions	of	the	user.
	

Event	Handlers
For	 example,	 the	 IconButton	 below	 has	 an	 ‘onPressed’	 event

handler.

IconButton(
icon:	const	Icon(Icons.rotate_right),
tooltip:	'Brightness',
onPressed:	()	{
setState(()	{
ModelBinding.update(context,	 new

ThemeModel(!model.dark));
});

},
)

When	you	need	 to	 respond	 to	an	event,	you	write	a	 function	and
assign	it	to	the	event	handler:

onPressed:	()	{
setState(()	{
ModelBinding.update(context,	 new

ThemeModel(!model.dark));
});

}

Styling

Margins,	Borders	&	Padding
Most	Widgets	 enable	 you	 to	 specify	margins	 and	 padding.	 Some

also	let	you	specify	the	border	(for	example	Container).	You	will	find
these	very	useful	when	you	want	to	get	your	UI	to	look	exactly	right.
	

The	padding	is	the	spacing	between	the	border	and	the	inside
of	the	Widget.
The	border	is	the	border	around	the	outside	of	the	Widget.
The	margin	 is	 the	 spacing	around	 the	outside	of	 the	Widget
and	other	Widgets.

	

Further	Reading
https://medium.com/fluttery/what-even-are-flutter-widgets-

ce537a048a7d
https://medium.com/flutter-io/why-flutter-doesnt-use-oem-

widgets-94746e812510

https://medium.com/fluttery/what-even-are-flutter-widgets-ce537a048a7d
https://medium.com/flutter-io/why-flutter-doesnt-use-oem-widgets-94746e812510

16.	Stateless	Widgets

Introduction
The	 purpose	 of	 this	 chapter	 is	 to	 introduce	 stateless	widgets	 and

how	they	can	be	used.

Not	All	Widgets	Need	to	be	Smart
If	 you	 look	 a	 user	 interface,	 it	 consists	 of	many	Widgets	 but	 not

many	of	them	have	to	be	smart	or	interact	with	the	user.

If	 you	 look	 at	 the	 default	 flutter	 application,	 there	 are	 several
widgets	 but	 only	 in	 fact	 one	Widget	 with	 any	 interactions	 with	 the
user	 –	 the	 ‘MyHomePage’	Widget	 that	 has	 a	 counter	 that	 counts	 up
when	the	user	clicks	on	the	floating	button.

So,	 the	 rest	 of	 the	 widgets	 are	 used	 to	 display	 something,	 not
interact	with	the	user.	That	is	what	stateless	widgets	are	for.

Minimum	Code
Here	is	the	minimum	code	you	need	for	a	Stateless	Widget:

class	EmptyWidget	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	<Insert	Some	Widgets	Here>;

}
}

Creation
Stateless	 widgets	 are	 created	 by	 a	 parent	 widget	 in	 its	 ‘build’

method.	 They	 are	 given	 the	 information	 they	 need	 to	 do	 their	 job
when	they	are	created.		

Stateless	 widgets	 receive	 arguments	 (information)	 from	 their

parent	widget	in	the	‘build’	method,	which	they	store	in	final	member
variables.

Example
CarWidget("Bmw",	"M3",

"https://media.ed.edmunds-
media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg"),

‘Bmw’
Stored	in	member	variable	‘make’.

‘M3’
Stored	in	member	variable	‘model’.

"https://media.ed.edmunds-
media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg’

Stored	in	member	variable	‘imageSrc’.

Rendering

The	‘Build’	Method
Stateless	Widgets	 generate	 their	UI	 in	 their	 ‘build’	method,
the	result	of	which	is	rendered	by	Flutter.
They	 can	 build	 their	 UI	 using	 values	 from	 their	 member
variables,	or	from	other	sources.
They	cannot	force	themselves	to	re-render.

Values	from	Member	Variables
When	 a	 Stateless	Widget	 is	 asked	 to	 build	 a	 UI,	 it	 can	 use	 the

values	 from	these	member	variables	 to	 render	 the	UI	 (probably	with
other	Stateless	Widget	children).	These	values	don’t	change,	they	are
set	in	the	constructor	and	that’s	it.

Example
The	code	below	builds	a	UI	to	display	textual	info	about	a	car	(its

make	&	model)	using	information	from	the	member	variables.
@override

Widget	build(BuildContext	context)	{
return	Center(

child:	Column(children:	<Widget>[
Text(make),
Text(model),
Image.network(imageSrc)

]));
}

Values	from	Other	Sources
When	a	Stateless	Widget	is	asked	to	build	a	UI,	 it	can	use	values

from	 other	 sources,	 for	 example	 InheritedWidgets	 (which	 can	 store
information).

Example
The	code	below	builds	a	UI	to	say	“Hi	There”,	using	information

from	another	source	(the	‘Theme’	inherited	widget)	to	determine	text
color.

@override
Widget	build(BuildContext	context)	{
return	Center(
child:	Column(children:	<Widget>[
Text("Hello",	style:	Theme.of(context).textTheme.display1),
Text("There",	style:	Theme.of(context).textTheme.display1)
]));
}

When	Does	The	‘Build’	Method	Execute?
The	first	time	the	widget	is	inserted	in	the	tree.
When	the	widget's	parent	changes.
When	the	values	in	another	source	change,	for	example	when
an	InheritedWidget	it	depends	on	changes.

Lifecycle
These	widgets	are	throw-away	widgets,	they	don’t	hang	around.
You	create	them	in	the	‘build’	method	of	another	widget,	and	they

are	re-created	every	time	that	‘build’	of	the	parent	widget	runs.	

Exercise	–	‘first_stateless’
We	start	off	by	creating	a	basic	app	with	Stateless	Widgets.
Later	on,	we	enhance	it	to	make	it	look	more	attractive.

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	the	project	open.

Step	2	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(title:	'Cars'),

);
}
}

class	MyHomePage	extends	StatelessWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(this.title),

),
body:	new	Column(children:	<Widget>[
CarWidget("Bmw",	"M3",

"https://media.ed.edmunds-
media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg"),

CarWidget("Nissan",	"GTR",
"https://media.ed.edmunds-media.com/nissan/gt-

r/2018/oem/2018_nissan_gt-r_coupe_nismo_fq_oem_1_150.jpg"),
CarWidget("Nissan",	"Sentra",

"https://media.ed.edmunds-
media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg"),

]));
}
}

class	CarWidget	extends	StatelessWidget	{
CarWidget(this.make,	this.model,	this.imageSrc)	:	super();

final	String	make;
final	String	model;
final	String	imageSrc;

@override
Widget	build(BuildContext	context)	{
return	Center(

child:	Column(children:	<Widget>[
Text(make),
Text(model),
Image.network(imageSrc)

]));
}

}

Step	3	–	Open	Emulator	&	Run
Follow	the	instructions	in	‘Open	Emulator	&	Run	Your	First	App’

to	run	the	app.
You	should	get	something	like	the	following:

	

Summary	So	Far
The	MyApp	&	Material	App	Widgets	are	unchanged.
The	MyHomePage	Widget	is	unchanged	except	for	the	build
method,	which	 now	 contains	 a	Column	Widget	 (see	 below)
containing	3	Car	Widgets.	Note	how	we	pass	the	information
to	each	Car	Widget	in	the	constructor.
We	have	a	new	StatelessWidget	called	CarWidget.	It	accepts
data	in	the	constructor.	In	the	build	method	it	returns	a	Center
Widget	 (see	 below)	 that	 contains	 a	 Column	 Widget	 (see
below)	that	contains	3	widgets:	a	Text	Widget	for	the	make,
another	for	the	model	and	an	Image	Widget	for	the	image.

Widgets	 used	 (more	 info	 about	 widgets	 in	 Chapter	 ‘Flutter
Widgets’).

Column	Widget
Layout	 Widget	 that	 displays	 its	 children
vertically.

Center	Widget
Layout	Widget	that	centers	its	child.

Text	Widget
Displays	text.

Image	Widget
Displays	an	image.

Step	4	–	Add	Some	Padding
Now	 let’s	 add	 some	 more	 vertical	 padding	 between	 each	 car	 to

spread	 them	 out	 a	 bit.	 This	 is	 achieved	 by	 wrapping	 the	 existing
Center	Widget	in	the	‘build’	method	in	the	CarWidget	with	a	Padding
Widget.	 Note	 how	 the	 Padding	 constructor	 requires	 a	 ‘padding’
argument	and	a	‘child’	argument.

Change	the	‘build’	method	in	the	CarWidget	to	the	following:

@override
Widget	build(BuildContext	context)	{

return	Padding(
padding:	EdgeInsets.all(20.0),
child:	Center(

child:	Column(children:	<Widget>[
Text(make),
Text(model),
Image.network(imageSrc)

])));
}

Now	the	cars	are	more	spaced	out.
	

Step	5	–	Add	Scrolling
Depending	on	how	your	emulator	is	setup,	you	may	see	Chevrons

at	the	bottom.	This	is	because	you	have	run	out	of	vertical	space.	
	

The	remedy	for	this	is	simple.	Edit	the	MyHomePage	Widget	and
change	 the	 Column	 (the	 one	 that	 contains	 the	 CarWidgets)	 to	 a
ListView.

@override
Widget	build(BuildContext	context)	{

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text(this.title),

),
body:	new	ListView(children:	<Widget>[

CarWidget(“Bmw”,	“M3",
“https://media.ed.edmunds-

media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg“),
CarWidget(“Nissan”,	“GTR”,

“https://media.ed.edmunds-media.com/nissan/gt-
r/2018/oem/2018_nissan_gt-r_coupe_nismo_fq_oem_1_150.jpg”),

CarWidget(“Nissan”,	“Sentra”,
“https://media.ed.edmunds-

media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg”),

]));
}

Step	6	–	Add	Border
Let’s	add	a	border	around	each	car.	This	is	achieved	by	wrapping

the	 existing	 Center	Widget	 in	 the	 ‘build’	 method	 in	 the	 CarWidget
with	a	Container	Widget	which	has	a	border	decoration	and	padding.

@override
Widget	build(BuildContext	context)	{

return	Padding(
padding:	EdgeInsets.all(20.0),
child:	Container(

										decoration:	BoxDecoration(border:	Border.all()),
										padding:	EdgeInsets.all(20.0),
										child:	Center(

child:	Column(children:	<Widget>[
Text(make),
Text(model),
Image.network(imageSrc)

]))));
}

Looks	much	nicer	now:
	

Step	7	–	Final	Touch
As	a	final	touch,	lets:

Combine	 the	 make	 and	 model	 together	 using	 string
interpolation.
Change	the	make	and	model	text	style	to	be	bigger.

Add	some	padding	between	text	and	image.

Wrap	image	with	padding	at	top.

@override
Widget	build(BuildContext	context)	{

return	Padding(
padding:	EdgeInsets.all(20.0),
child:	Container(

decoration:	BoxDecoration(border:	Border.all()),
padding:	EdgeInsets.all(20.0),
child:	Center(

child:	Column(children:	<Widget>[
Text(‘${make}	${model}’,	style:	TextStyle(fontSize:	24.0)),
Padding(

padding:	EdgeInsets.only(top:	20.0),
child:	Image.network(imageSrc))

]))));
}

	

Example	–	‘stateless_widget_rebuild’

Optional
You	don’t	have	to	look	at	this	example	code	at	this	point	as	it	can

get	complicated.	You	might	want	to	come	back	to	this	later	once	you
want	to	look	into	StatelessWidgets	in	more	detail.	So,	feel	free	to	skip
this	and	go	onto	the	next	chapter.

Purpose
I	wrote	this	example	to	validate	some	of	what	I	had	written	in	this

chapter	was	correct.		I	wanted	to	prove	that	a	Stateless	Widget	can	be
re-rendered	 (in	 the	 ‘build’	 method)	 when	 a	 parent	Widget	 changes,
without	 it	being	thrown	away	and	reconstructed.	 	This	 is	contrary	 to
some	 information	 I	 had	 read	 online	 that	 says	 that	 Stateless	Widgets
are	only	built	once.

In	this	example,	this	is	proven	by	the	‘MyApp’	Stateless	Widget.	I
added	console	logging	to	the	constructor	and	the	‘build’	method	to	see
when	it	is	constructed	and	re-rendered	(in	the	‘build’	method).

This	app	is	similar	to	the	default	Flutter	App	except	it	has	a	button
on	the	toolbar	(top	right)	to	change	the	theme’s	brightness.	When	you
hit	 the	 toolbar,	 it	 updates	 a	model	which	 is	 part	 of	 a	 parent	Widget
higher	 up	 in	 the	 Widget	 Tree.	 This	 doesn’t	 force	 the	 ‘MyApp’
Stateless	Widget	to	be	reconstructed	but	it	does	force	it	to	invoke	the
‘build’	method	to	rebuild	the	UI	darker	or	lighter,	as	you	can	see	from
the	Console	Output	below.

Console	Output
Startup

I/flutter	(5858):	MyApp	-	constructor
I/flutter	(5858):	MyApp	–	build

Hit	Button	on	Toolbar
I/flutter	(5858):	MyApp	-	build

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(ModelBinding<ThemeModel>(
initialModel:	ThemeModel(true),	child:	new	MyApp()));

class	ThemeModel	{
ThemeModel(this._dark);

bool	_dark	=	true;

bool	get	dark	=>	_dark;

@override
bool	operator	==(Object	other)	{
if	(identical(this,	other))	{
return	true;

}	else	if	(other.runtimeType	!=	runtimeType)	{
return	false;

}	else	{
final	ThemeModel	otherModel	=	other;
return	dark	==	otherModel.dark;

}
}

int	get	hashCode	=>	dark.hashCode;
}

class	_ModelBindingScope<T>	extends	InheritedWidget	{
const	 _ModelBindingScope({Key	 key,	 this.modelBindingState,	 Widget

child})
:	super(key:	key,	child:	child);

final	_ModelBindingState<T>	modelBindingState;

@override
bool	updateShouldNotify(_ModelBindingScope	oldWidget)	=>	true;
}

class	ModelBinding<T>	extends	StatefulWidget	{
ModelBinding({Key	key,	@required	this.initialModel,	this.child})

:	assert(initialModel	!=	null),
super(key:	key);

final	T	initialModel;
final	Widget	child;

_ModelBindingState<T>	createState()	=>	_ModelBindingState<T>();

static	Type	_typeOf<T>()	=>	T;

static	T	of<T>(BuildContext	context)	{
final	Type	scopeType	=	_typeOf<_ModelBindingScope<T>>();
final	_ModelBindingScope<T>	scope	=

context.inheritFromWidgetOfExactType(scopeType);
return	scope.modelBindingState.currentModel;

}

static	void	update<T>(BuildContext	context,	T	newModel)	{
final	Type	scopeType	=	_typeOf<_ModelBindingScope<T>>();
final	_ModelBindingScope<dynamic>	scope	=

context.inheritFromWidgetOfExactType(scopeType);
scope.modelBindingState.updateModel(newModel);

}
}

class	_ModelBindingState<T>	extends	State<ModelBinding<T>>	{
T	currentModel;

@override
void	initState()	{
super.initState();
currentModel	=	widget.initialModel;

}

void	updateModel(T	newModel)	{
if	(newModel	!=	currentModel)	{
setState(()	{
currentModel	=	newModel;

});
}

}

@override
Widget	build(BuildContext	context)	{
return	_ModelBindingScope<T>(
modelBindingState:	this,
child:	widget.child,

);
}
}

class	MyApp	extends	StatelessWidget	{
MyApp()	{
debugPrint('MyApp	-	constructor');

}

@override
Widget	build(BuildContext	context)	{
debugPrint('MyApp	-	build');
ThemeModel	model	=	ModelBinding.of(context);
return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(

primarySwatch:	Colors.blue,
brightness:	model.dark	?	Brightness.dark	:	Brightness.light),

home:	MyHomePage(title:	'Flutter	Demo	Home	Page'),
);

}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);
final	String	title;
@override
_MyHomePageState	createState()	=>	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
int	_counter	=	0;
void	_incrementCounter()	{
setState(()	{
_counter++;

});
}

@override
Widget	build(BuildContext	context)	{
ThemeModel	model	=	ModelBinding.of(context);
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),
actions:	<Widget>[
IconButton(
icon:	const	Icon(Icons.rotate_right),
tooltip:	'Brightness',

onPressed:	()	{
setState(()	{
ModelBinding.update(context,	 new

ThemeModel(!model.dark));
});

},
)

],
),
body:	Center(
child:	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
Text(
'You	have	pushed	the	button	this	many	times:',

),
Text(
'$_counter',
style:	Theme.of(context).textTheme.display1,

),
],

),
),
floatingActionButton:	FloatingActionButton(
onPressed:	_incrementCounter,
tooltip:	'Increment',
child:	Icon(Icons.add),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build
methods.

);
}
}

17.	Stateful	Widgets

Introduction
The	 purpose	 of	 this	 chapter	 is	 to	 introduce	 stateful	 widgets	 and

how	they	can	be	used.

Some	Widgets	Need	to	be	Smart
Stateful	widgets	are	useful	when	the	part	of	the	user	interface	you

are	 describing	 can	 change	 dynamically.	 User	 interfaces	 need	 to
respond	to	a	variety	of	things:
	

The	user	doing	something	in	the	user	interface.
Receiving	data	from	another	computer.
Time	passing.

This	is	what	Stateful	Widgets	are	for.	They	store	data	(state)	in	an
associated	 State	 class	 and	 they	 can	 respond	 when	 that	 data	 (state)
changes	as	the	result	of	the	user	doing	something.

Minimum	Code
Here	is	the	minimum	code	you	need	for	a	Stateful	Widget:

class	EmptyWidget	extends	StatefulWidget	{
EmptyWidget({Key	key})	:	super(key:	key);

@override
_EmptyWidgetState	createState()	=>	_EmptyWidgetState();
}

class	_EmptyWidgetState	extends	State<EmptyWidget>	{

@override
Widget	build(BuildContext	context)	{
return	<Insert	Some	Widgets	Here>;

}
}

Two	Classes
If	you	look	at	the	minimum	code	above	you	will	see	that	a	Stateful

Widget	is	composed	of	two	classes,	not	one.	You	have	one	class	that
extends	StatefulWidget,	another	that	extends	State.

Class	 #1	 –	 the	 class	 that	 extends
StatefulWidget

This	is	a	class	that	is	used	to	create	the	State	object,	class	#2
in	its	‘createState’	method.
An	 instance	 of	 this	 class	 is	 shorter-lived	 than	 that	 for	 the
State	object,	class	#2
The	data	in	this	class	cannot	change	(immutable).

It	 is	 final	 and	 passed	 in	 through	 the	 constructor,
same	as	for	a	StatelessWidget.
This	 class	 is	 thrown	 away	 and	 replaced	 when	 the
data	 needs	 to	 change,	 and	 a	 new	 Widget	 is
constructed.

Class	#2	–	the	class	that	extends	State

This	is	the	class	that	does	most	of	the	work.
It	holds	the	data	that	can	change	(mutable).
It	builds	the	UI	using	the	‘build’	method.
It	can	respond	to	events,	like	the	user	clicking	on	a
button.

An	 instance	 of	 this	 class	 is	 longer-lived	 than	 that	 for	 the
StatefulWidget,	class	#1.
The	data	in	this	class	can	change.

Change	 the	 data	 within	 a	 lambda	 within	 the
‘setState’	 method	 and	 this	 will	 ensure	 the	 UI	 is
rebuilt.
The	 StatefulWidget	 class	 #1	 can	 be	 thrown	 away
and	 replaced	 and	 this	 state	 is	 then	 attached	 to	 the
replacement.

Code	 in	 this	 class	 can	 refer	 to	 class	 #1	 using	 the	 ‘widget’
variable.
Sometimes	 this	 class	 uses	 an	underscore	 prefix	 in	 its	 name,
instance	variables	or	methods.

In	Dart	the	underscore	prefix	specifies	something	as
private	 and	 cannot	 be	 used	 outside	 the	 dart	 file	 in
which	it	is	declared.
This	 protects	 this	 class,	 its	 instance	 variable	 or
methods	 being	 used	 in	 another	 part	 of	 the	 project
(not	a	good	idea).

Creation
When	you	create	a	Stateful	Widget	the	following	happens.

	

1.	 The	 instance	 of	 class	 #1	 (the	 class	 that	 extends
StatefulWidget)	is	constructed.

2.	 The	lifecycle	method	‘createState’	of	class	#1	(the	class	that
extends	 StatefulWidget)	 is	 invoked	 by	 Flutter	 to	 create	 the
instance	of	class	#2	(the	class	that	extends	State).

3.	 The	 instance	 of	 class	 #2	 (the	 class	 that	 extends	 State)	 is
constructed.

4.	 The	method	‘build’	of	the	State	class	(created	in	3)	is	invoked
to	build	the	UI.

Rendering

The	‘Build’	Method
Stateful	Widgets	generate	their	UI	in	their	‘build’	method,

the	result	of	which	is	rendered	by	Flutter.
That	 ‘build’	 method	 resides	 in	 class	 #2,	 the	 class
that	extends	State.

They	 can	 build	 their	 UI	 using	 values	 from	 their	 member
variables,	other	sources.
They	can	force	themselves	to	re-render.
When	 the	Stateful	Widget	method	 ‘setState’	 is	 called	 in	 the

State	 class,	 this	 invokes	 regeneration	 of	 the	 UI	 because	 it
causes	Flutter	to	invoke	the	‘build’	method.

If	 you	 look	 at	 the	 default	 Flutter	 application,	 you
will	see	this	method	to	increment	the	counter.	Note
how	it	updates	the	instance	variable	‘_counter’	 in	a
lambda	 inside	 the	 ‘setState’	 method.	 This	 ensures
that	 the	 UI	 will	 be	 rebuilt	 with	 the	 new	 counter
value.

void	_incrementCounter()	{
setState(()	{

_counter++;
});
}

LifeCycle	Methods

Class	 #1	 –	 the	 class	 that	 extends
StatefulWidget
createState()
Flutter	calls	 this	method.	You	add	code	here	to	an	instance	of	the

State	class	(class	#2).

Class	#2	–	the	class	that	extends	State
build()
Flutter	 calls	 this	method	when	 the	Widget	 has	 to	 be	 re-rendered

(rebuilt).
initState()
Flutter	 calls	 this	 method	 when	 the	 widget	 is	 created,	 after	 the

constructor.	This	is	a	great	place	to	add	animation	code	to	setup	your
AnimationController.	See	the	Animation	chapter	for	more	info.

Example

@override
void	initState()	{

super.initState();
animation	=	new	AnimationController(
vsync:	this,
duration:	new	Duration(seconds:	3),

);
animation.addListener(()	{
this.setState(()	{});

});
}

didChangeDependencies	()
Flutter	 calls	 this	method	when	 Flutter	 detects	 that	 the	 data	 from

another	 source	has	changed,	possibly	affecting	 the	UI	and	causing	a
call	 to	 ‘build’.	 This	 could	 be	 caused	 by	 some	 data	 changing	 in	 an
InheritedWidget	 higher	 up	 in	 the	Widget	 tree.	 This	 not	 fired	 when
‘setState()’	is	fired	to	rebuild	the	UI.
didUpdateWidget()
Flutter	 calls	 this	 method	 when	 it	 has	 to	 throw	 away	 the

StatefulWidget	 (class	#1)	 and	 replace	 it	with	 another	StatefulWidget
(class	 #1)	 of	 the	 same	 type	 but	 with	 different	 data,	 which	 is	 then
associated	with	State	(class	#2).	Now	that	the	State	is	associated	with
a	different	StatefulWidget.
setState()
You	 call	 this	 method	 to	 set	 state	 in	 the	 Widget	 and	 ensure	 it

rebuilds	the	UI	using	the	‘build’	method.
deactivate()
Rarely	used.	Flutter	calls	this	method	when	State	is	removed	from

the	tree,	but	it	might	be	reinserted	before	the	current	frame	change	is
finished.	 This	 method	 exists	 basically	 because	 State	 objects	 can	 be
moved	from	one	point	in	a	tree	to	another.
dispose()
Flutter	calls	 this	method	when	 'dispose()'	 is	called	when	the	State

object	 is	 destroyed.	 This	 is	 a	 great	 place	 to	 add	 code	 to	 dispose	 of
instance	variables,	such	as	AnimationControllers:

@override
void	dispose()	{

animation.dispose();
super.dispose();
}

More	Reading
https://www.didierboelens.com/2018/06/widget---state---context---

inheritedwidget/

Example	–	‘stateful_widget_flowers’

Optional
You	don’t	have	to	look	at	this	example	code	at	this	point	as	it	can

get	complicated.	You	might	want	to	come	back	to	this	later	once	you
want	to	look	into	StatefulWidgets	in	more	detail.	So,	feel	free	to	skip
this	and	go	onto	the	next	chapter.

App	Purpose
This	app	allows	the	user	to	view	flowers	then	blur	them.
There	 is	a	button	on	 the	 top	right	which	switches	between	‘dark’

mode	and	‘bright’	mode.

https://www.didierboelens.com/2018/06/widget---state---context---inheritedwidget/

The	point	of	the	app	is	not	to	view	flowers	but	to	let	you:
	

See	the	logs	when	you	run	the	app,	so	that	you	can	figure	out
how	Stateful	Widgets	work	and	when	their	lifecycle	methods
are	fired.

	

Run	the	code	yourself,	put	breakpoints	in	and	figure	out	how
Stateful	Widgets	work	with	their	lifecycle	events.

App	Widgets
This	app	has	two	StatefulWidgets:

	

AppWidget

It	is	the	main	app	and	it	contains	the	FlowerWidget.
It	has	a	state	object	_AppWidgetState	that	stores	brightness.

	

FlowerWidget

It	displays	the	flower	in	a	frame	with	a	title	bar,	a	toolbar	and
an	action	button.

It	has	a	state	object	_FlowerWidgetState	that	stores	the	amount
of	blurring	of	the	flower.

Start	App
When	you	start	the	app,	you	will	see	the	following	logs:

I/flutter	(23225):	AppWidget	-	constructor	-	261774211
I/flutter	(23225):	AppWidget	-	createState	-	261774211
I/flutter	(23225):	_AppWidgetState	-	build	-	160341789
I/flutter	(23225):	FlowerWidget	-	constructor	-	1026133623
I/flutter	(23225):	FlowerWidget	-	createState	-	1026133623
I/flutter	(23225):	_FlowerWidgetState	-	constructor	-	514586671
I/flutter	(23225):	_FlowerWidgetState	-	initState	-	514586671
I/flutter	 (23225):	 _FlowerWidgetState	 -	 didChangeDependencies	 -

514586671
I/flutter	(23225):	_FlowerWidgetState	-	build	–	514586671

As	you	can	 see	 it	 creates	 each	Widget	 first	 then	creates	 the	 state
using	 the	 ‘createState’	 method.	 Note	 that	 ‘didChangeDependencies’
was	 invoked	 because	 the	 Theme	 state	 was	 set	 when	 the
_AppWidgetState	 was	 built	 for	 the	 first	 time.	 The	 Theme	 is	 an

InheritedWidget	and	used	by	 the	_FlowerWidgetState	when	 it	builds
the	UI.

Change	the	Flower
When	 you	 change	 the	 flower	 (on	 the	 toolbar),	 you	 will	 see	 the

following	UI	change	occur:
	

changes	to	->

with	the	following	logs:
I/flutter	(23700):	_AppWidgetState	-	build	-	543277124
I/flutter	(23700):	FlowerWidget	-	constructor	-	814857920
I/flutter	(23700):	_FlowerWidgetState	-	didUpdateWidget	-	57066142
I/flutter	(23700):	_FlowerWidgetState	-	build	-	57066142
I/flutter	 (23700):	 _FlowerWidgetState	 -	 didChangeDependencies	 -

57066142
I/flutter	(23700):	_FlowerWidgetState	-	build	-	57066142
I/flutter	 (23700):	 _FlowerWidgetState	 -	 didChangeDependencies	 -

57066142
I/flutter	(23700):	_FlowerWidgetState	-	build	–	57066142

Note	 that	 this	 changes	 the	 ‘bright’	 state	 of	 the	 AppWidget.	 This
causes	 the	 AppWidget	 UI	 to	 be	 rebuilt	 with	 a	 different	 theme
brightness	 and	 a	 different	 flower	 image.	 The	 ‘build’	 method	 in	 the

_AppWidgetState	 creates	 a	 new	 FlowerWidget,	 because	 its
constructor	 value	 ‘imageSrc’	 has	 changed.	 That	 results	 in	 Flutter
invoking	 the	 'didUpdateWidget’	 to	 indicate	 that	 the	 State	 is	 now
associated	 with	 a	 different	 StatefulWidget.	 Flutter	 also	 invokes
‘didChangeDependencies’	because	the	Flower	object	is	dependent	on
the	 Theme	 InheritedWidget	 and	 that	 was	 changed	 (the	 theme
brightness	was	changed).

Add	Blur
When	hit	the	floating	button	at	the	bottom,	you	will	see	the	flower

image	blur	and	you	will	see	the	following	log:
I/flutter	(23700):	_FlowerWidgetState	-	build	–	57066142

Note	 that	 Flutter	 invokes	 the	 ‘build’	 in	 the	 FlowerWidget	 State
object	 (see	 the	 code	 below)	 because	 the	 code	 calls	 the	 ‘setState’
method.	 No	 other	 lifecycle	 methods	 are	 invoked	 because	 that	 code
does	not	affect	another	other	widgets.

void	_blurMore()	{
setState(()	{
_blur	+=	5.0;

});
}

Source	Code
import	'dart:ui';

import	'package:flutter/foundation.dart';
import	'package:flutter/material.dart';

void	main()	=>	runApp(AppWidget());

class	AppWidget	extends	StatefulWidget	{
AppWidget()	{
debugPrint("AppWidget	-	constructor	-	"	+	hashCode.toString());

}

@override

_AppWidgetState	createState()	{
debugPrint("AppWidget	-	createState	-	"	+	hashCode.toString());
return	_AppWidgetState();

}
}

class	_AppWidgetState	extends	State<AppWidget>	{
bool	_bright	=	false;

_brightnessCallback()	{
setState(()	=>	_bright	=	!_bright);

}

@override
Widget	build(BuildContext	context)	{
debugPrint("_AppWidgetState	-	build	-	"	+	hashCode.toString());
return	MaterialApp(

title:	'Flutter	Demo',
theme:	ThemeData(

primarySwatch:	Colors.blue,
brightness:	_bright	?	Brightness.light	:	Brightness.dark),

home:	FlowerWidget(
imageSrc:	_bright

?	"https://www.viewbug.com/media/mediafiles/"	+
"2015/07/05/56234977_large1300.jpg"

:	"https://images.unsplash.com/"	+
"photo-1531603071569-0dd65ad72d53?ixlib=rb-

1.2.1&ixid="	+
"eyJhcHBfaWQiOjEyMDd9&w=1000&q=80",

brightnessCallback:	_brightnessCallback));
}
}

class	FlowerWidget	extends	StatefulWidget	{
final	String	imageSrc;
final	VoidCallback	brightnessCallback;

FlowerWidget({Key	key,	this.imageSrc,	this.brightnessCallback})
:	super(key:	key)	{

debugPrint("FlowerWidget	-	constructor	-	"	+	hashCode.toString());
}

@override
_FlowerWidgetState	createState()	{
debugPrint("FlowerWidget	-	createState	-	"	+	hashCode.toString());
return	_FlowerWidgetState();

}
}

class	_FlowerWidgetState	extends	State<FlowerWidget>	{
double	_blur	=	0;

_FlowerWidgetState()	{
debugPrint("_FlowerWidgetState	 -	 constructor	 -	 "	 +

hashCode.toString());
}

@override
initState()	{
debugPrint("_FlowerWidgetState	-	initState	-	"	+	hashCode.toString());

}

/**
*	 Fired	 when	 Flutter	 detects	 that	 the	 data	 from	 another	 source	 has

changed,
*	possibly	affecting	the	UI	and	causing	a	call	to	‘build’.
*	In	this	case	it	is	when	the	Theme	changes	(its	an	InheritedWidget).
*/
@override
void	didChangeDependencies()	{
debugPrint(

"_FlowerWidgetState	 -	 didChangeDependencies	 -	 "	 +
hashCode.toString());
}

@override
/**
*	Fired	when	the	widget	is	reconstructed	as	its	widget	data	has	changed,

*	In	this	case	it	is	when	a	new	FlowerWidget	is	created	with	a	different
*	imageSrc.
*/
void	didUpdateWidget(Widget	oldWidget)	{
debugPrint("_FlowerWidgetState	 -	 didUpdateWidget	 -	 "	 +

hashCode.toString());

//	The	flower	image	has	changed,	so	reset	the	blur.
_blur	=	0;

}

void	_blurMore()	{
setState(()	{
_blur	+=	5.0;

});
}

@override
Widget	build(BuildContext	context)	{
debugPrint("_FlowerWidgetState	-	build	-	"	+	hashCode.toString());
return	Scaffold(
appBar:	AppBar(title:	Text("Flower"),	actions:	[
new	IconButton(

icon:	new	Icon(Icons.refresh),
onPressed:	()	{
widget.brightnessCallback();

})
]),
body:	new	Container(
decoration:	new	BoxDecoration(

//	dependency	on	inherited	widget	-	start
color:	Theme.of(context).backgroundColor,
//	dependency	on	inherited	widget	-	end
image:	new	DecorationImage(

//	dependency	on	data	from	widget	-	start
image:	NetworkImage(widget.imageSrc),
//	dependency	on	data	from	widget	-	end
fit:	BoxFit.cover)),

child:	new	BackdropFilter(

//	dependency	on	state	data	-	start
filter:	new	ImageFilter.blur(sigmaX:	_blur,	sigmaY:	_blur),
//	dependency	on	state	data	-	end
child:	new	Container(
decoration:	 new	 BoxDecoration(color:

Colors.white.withOpacity(0.0)),
),

),
),
floatingActionButton:	FloatingActionButton(
onPressed:	_blurMore,
tooltip:	'Blur	More',
child:	Icon(Icons.add),

),
);

}
}

18.	Basic	Material	Widgets

Introduction
We	 are	 going	 to	 spend	 the	 next	 few	 chapters	 going	 over	 Flutter

widgets	and	examples	of	their	use.	Reading	the	example	source	code
may	be	difficult	at	 this	stage	because	we	have	not	covered	all	of	 the
techniques	 used	 in	 the	 examples,	 for	 example	 State	 Management.
However,	if	you	keep	going	it	will	all	make	sense	eventually.

The	 purpose	 of	 this	 chapter	 is	 to	 introduce	 some	 of	 the	 more
commonly	used	Flutter	Widgets	 along	with	 some	example	code	 that
uses	them.

Text
The	Text	widget	displays	a	string	of	text	with	single	style.	Multiple

line	texts	are	allowed.
To	style	the	entire	text	in	one	way,	specify	a	‘style’	property	in	the

constructor	of	the	Text	Widget.

Notes
To	 style	 sections	 of	 the	 text,	 use	 child	 TextSpans	 (see
example	below).

The	Text	widget	only	takes	up	as	much	space	as	it	needs.
If	 you	 add	 a	Text	widget,	 align	 it	 to	 centered	 then
view	it,	it	may	not	show	the	text	as	centered	because
the	 Text	 widget	 hasn’t	 taken	 up	 all	 the	 available
horizontal	space.

To	 fix	 this,	 wrap	 the	 text	 in	 a	 Container
Widget	 with	 the	 width	 set	 to
double.infinity.

Example	–	‘text’
Every	 time	 you	 hit	 the	 ‘+’	 a	 new	word	 comes	 out	 in	 a	 different

color.
	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Styled	Text	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(),

);
}
}

class	TextBlock	{
final	Color	_color;
final	String	_text;

TextBlock(this._color,	this._text);

String	get	text	=>	_text;

Color	get	color	=>	_color;
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key})	:	super(key:	key);

@override
_MyHomePageState	createState()	=>	new	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
int	_index	=	0;
final	List<TextBlock>	textBlocks	=	[
TextBlock(Colors.red,	'every'),
TextBlock(Colors.redAccent,	'	schoolboy'),
TextBlock(Colors.green,	'\nknows'),
TextBlock(Colors.greenAccent,	'	who'),
TextBlock(Colors.blue,	'\nimprisoned'),
TextBlock(Colors.blueAccent,	'\nMontezuma')

];

void	_incrementCounter()	{
setState(()	{
if	(_index	<	textBlocks.length)	{
_index++;

}
});

}

@override
Widget	build(BuildContext	context)	{
final	List<TextSpan>	textSpans	=	List<TextSpan>();

for	(var	i	=	0;	i	<	_index;	i++)	{
TextBlock	textBlock	=	textBlocks[i];
textSpans.add(TextSpan(

text:	textBlock.text,
style:	TextStyle(color:	textBlock.color,	fontSize:	32.0)));

}
return	new	Scaffold(
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[Text.rich(TextSpan(children:	textSpans))],

),
),
floatingActionButton:	new	FloatingActionButton(
onPressed:	_incrementCounter,
tooltip:	'Increment',
child:	new	Icon(Icons.note_add),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build
methods.

);
}
}

Image

Introduction
This	 is	 a	 widget	 used	 to	 show	 an	 image.	 When	 displaying	 an

image,	you	specify	the	image	source	in	the	constructor:

image	provider
asset
network
file
memory

The	downside	of	 the	Image	widget	 is	 the	lack	of	placeholder	(for

example	 ‘loading…’	 text).	 It	 shows	 nothing	 then	 shows	 the	 image.
This	doesn’t	really	cut	it,	so	you	need	to	use	the	FadeInImage	to	wrap
this	Widget.

The	 Flutter	 Image	 Widget	 has	 a	 fit	 property	 will	 enables
developers	 to	 determine	 how	 the	 image	 graphics	 are	 fitted	 into	 the
available	 area.	This	 fit	 property	 can	 really	 change	how	 the	 image	 is
presented!	 See	 the	 BoxFit	 class	 documentation	 here:
https://docs.flutter.io/flutter/painting/BoxFit-class.html

Exercise	–	‘loading_image’
Load	 a	 large	 into	 an	 app.	Display	 an	 image	 placeholder	while	 it

loads.
	

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.
Step	2	–	Get	Loading	Image

Download:	 https://digitalsynopsis.com/wp-

https://docs.flutter.io/flutter/painting/BoxFit-class.html
https://digitalsynopsis.com/wp-content/uploads/2016/06/loading-animations-preloader-gifs-ui-ux-effects-10.gif
https://digitalsynopsis.com/wp-content/uploads/2016/06/loading-animations-preloader-gifs-ui-ux-effects-10.gif

content/uploads/2016/06/loading-animations-preloader-gifs-
ui-ux-effects-10.gif
Create	new	folder	‘assets’	in	your	project.
Rename	image	file	to	‘loading.gif’.
Copy	image	file	into	‘assets’	folder	in	your	project.

Step	3	–	Include	the	Loading	Image	in	Your	Project	as
an	Asset

When	 you	 add	 a	 reference	 to	 an	 asset	 (an	 image	 or	 something
similar)	in	the	pubspec	file,	Flutter	ensures	that	it	is	bundled	into	the
app	 when	 it	 builds.	 So	 no	 round	 trip	 will	 be	 required	 to	 load	 the
image.
	

Edit	the	pubspec.yaml	file	and	change	the	lines	below	from:

#	To	add	assets	to	your	application,	add	an	assets	section,	like	this:
#	assets:
#		-	images/a_dot_burr.jpeg
#		-	images/a_dot_ham.jpeg

to:

assets:
-	assets/loading.gif

Step	4	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	LoadingImageApp());

class	LoadingImageApp	extends	StatelessWidget	{
	//	This	widget	is	the	root	of	your	application.
	@override
	Widget	build(BuildContext	context)	{

			return	new	MaterialApp(
					title:	'Image',
					theme:	new	ThemeData(
							primarySwatch:	Colors.blue,
),
					home:	new	HomeWidget(),
);
	}
}

class	HomeWidget	extends	StatelessWidget	{
		HomeWidget({Key	key})	:	super(key:	key);

@override
	Widget	build(BuildContext	context)	{
			return	new	Scaffold(
							appBar:	new	AppBar(
									title:	new	Text("Image"),
),
							body:	new	Center(
											child:	FadeInImage.assetNetwork(
									placeholder:	'assets/loading.gif',
									image:
													'http://archivision.com/educational/samples/files/1A2-F-P-I-2-C1_L.jpg',
)));
	}
}
Step	5	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
When	you	 run	 this	 example,	 you	 see	 a	 loading	 icon	 (which	very

quickly	goes	away)	then	a	computer.

Icon

Introduction

The	icon	widget	allows	you	to	quickly	build	icon	widgets	using	a
pre-built	 list	 of	material	 icons,	 available	 in	 the	 Icons	 class.	You	 can
specify	the	icon	size	and	color.

Example	-	‘icon’
This	app	simply	displays	3	icons	with	different	sizes	and	colors.

	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	IconApp());

class	IconApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
Row	row1	=	Row(

mainAxisAlignment:	 MainAxisAlignment.center,	 //	 center
horizontally

children:	<Widget>[
const	Icon(Icons.add),
const	Text("Default	size	24,	default	color	black")

]);
Row	row2	=

Row(mainAxisAlignment:	 MainAxisAlignment.center,	 //	 center
horizontally

children:	<Widget>[
const	Icon(Icons.add,	size:	48.0),
const	Text("Specified	ize	48,	default	color	black")

]);
Row	row3	=

Row(mainAxisAlignment:	 MainAxisAlignment.center,	 //	 center
horizontally

children:	<Widget>[
const	Icon(Icons.add,	size:	96.0,	color:	Colors.red),
const	Text("Specified	size	96,	specified	color	red")

]);
return	new	Scaffold(

appBar:	new	AppBar(title:	const	Text("Icons")),
body:	new	Column(

mainAxisAlignment:	 MainAxisAlignment.center,	 //	 center
vertically

children:	<Widget>[row1,	row2,	row3]));
}
}

Further	Reading
You	can	use	tools	available	on	the	internet	to	build	your	own	icon

library,	with	constants	available	(similar	to	the	Icons	constants).	Here
is	a	link	to	the	article:	https://steemit.com/utopian-io/@psyanite/how-

https://steemit.com/utopian-io/@psyanite/how-to-use-custom-icons-in-flutter

to-use-custom-icons-in-flutter

Buttons

Introduction
Flutter	offers	a	bunch	of	different	button	widgets:

FlatButton	-	material
Useful	 for	 buttons	 that	 don’t	 need	 a	 border,	 for
example	those	that	are	already	in	a	toolbar	or	menu
(something	that	provides	a	ui	context).
Flashes	background	when	clicked	on.

RaisedButton	-	Material
Useful	if	you	want	a	button	made	more	visible	in	a
‘sea	of	content’.
Flashes	shadow	when	clicked	on.

IconButton	-	material
Flashes	background	circle	when	clicked	on.

OutlineButton	-	material
A	 bordered	 button	 whose	 elevation	 increases	 and
whose	 background	 becomes	 opaque	 when	 the
button	is	pressed.
Flashes	background	and	border	when	clicked	on.

DropdownButton	-	material
Used	for	selecting	from	a	list	of	items
Shows	menu	when	clicked	on.
You	 can	 supply	 existing	 value	 as	 constructor
argument.

BackButton
An	IconButton	setup	for	use	as	a	back	button.
Flashes	background	circle	when	clicked	on.

CloseButton
An	 IconButton	 setup	 for	 use	 as	 a	 close	 button	 to

close	modals	(or	any	other	closeable	content).
Flashes	background	circle	when	clicked	on.

FloatingActionButton	-	material
A	button	that	hovers	in	a	layer	above	content.
Advisable	that	you	only	ever	use	one	at	a	time.
You	can	change	background	and	foreground	colors.
You	 can	 use	 the	 ‘extended’	 named	 constructor	 to
make	a	larger,	wider	Floating	Action	Button.

FloatingActionButton.extended(
onPressed:	()	{},
icon:	Icon(Icons.save),
label:	Text("Save"),
)

Flashes	when	clicked	on.

Enabling
You	 can	 enable	 or	 disable	 buttons	 using	 the	 ‘onPressed’

constructor	argument.
Setting	it	to	null	disables	the	button,	otherwise	it	is	enabled.
The	code	below	uses	a	ternary	operator	for	this.

OutlineButton(
onPressed:	_enabled	?	_onPressed	:	null,

child:	const	Text('Register'),
)

Example	–	‘buttons’
This	 app	displays	 different	 types	 of	 buttons	 so	 you	 can	 see	what

they	look	like.
	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	ButtonApp());

class	ButtonApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	const	HomeWidget(),

);
}

}

class	HomeWidget	extends	StatelessWidget	{
const	HomeWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
Row	flatButtonRow	=	Row(

mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
FlatButton(

onPressed:	()	=>	debugPrint('FlatButton	pressed'),
child:	Text('FlatButton')),

const	Text("FlatButton")
]);

Row	raisedButtonRow	=	Row(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
RaisedButton(

onPressed:	()	=>	debugPrint('RaisedButton	pressed'),
child:	Text('RaisedButton')),

const	Text("RaisedButton")
]);

Row	iconButtonRow	=	Row(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
IconButton(

icon:	Icon(Icons.add),
onPressed:	()	=>	debugPrint('IconButton	pressed')),

const	Text("IconButton")
]);

Row	outlineButtonRow	=	Row(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
OutlineButton(

onPressed:	()	=>	debugPrint('OutlineButton	pressed'),
child:	Text("OutlineButton")),

const	Text("OutlineButton")
]);

Row	dropdownButtonRow	=	Row(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
new	DropdownButton<String>(

items:	<String>['Mens',	'Womans'].map((String	value)	{
return	new	DropdownMenuItem<String>(
value:	value,
child:	Text(value),

);
}).toList(),
onChanged:	(value)	=>	debugPrint('Changed:	${value}')),

const	Text("DropdownButton")
]);

Row	backButtonRow	=	Row(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[BackButton(),	const	Text("BackButton")]);

Row	closeButtonRow	=	Row(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[CloseButton(),	const	Text("CloseButton")]);

return	new	Scaffold(
appBar:	new	AppBar(
title:	const	Text("Buttons"),

),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
flatButtonRow,
raisedButtonRow,
iconButtonRow,
outlineButtonRow,
dropdownButtonRow,
backButtonRow,
closeButtonRow,

],
),

),
floatingActionButton:	FloatingActionButton(

onPressed:	()	=>	debugPrint('FloatingActionButton	pressed'),
child:	const	Text("F.A.B")),

);
}
}

19.	Multi-Child	Layout	Widgets

Introduction
Layout	Widgets	 are	 non-visible	Widgets	 that	 are	 used	 that	 affect

the	positioning	and	presentation	of	multiple	child	widgets.

There	are	two	main	kinds	of	Layout	Widgets:	Single-Child	Layout
Widgets	and	Multi-Child	Layout	Widgets.

The	 purpose	 of	 this	 chapter	 is	 to	 cover	 Multi-Child	 Layout
Widgets.

Multi-Child	Layout	Widgets
Multi-Child	Layout	Widgets	and	 they	are	used	 to	determine	what

UI	elements	go	where	 -	where	 the	elements	of	 the	user	 interface	are
going	 to	 be	 presented.	 They	 are	 very	 important	 as	 you	 can	 break
almost	90%	of	the	layout	designs	into	Rows	and	Columns.

Obviously,	you	can	combine/nest	these	Widgets.	You	could	have	a
Row	that	contains	2	Columns	that	contains	3	Custom	Widgets.	Then
each	Custom	Widget	could	contain	a	Row	of	an	Icon	Widget,	a	Text
Widget	then	a	Button.

	

These	 layouts	 work	 really	 well	 when	 they	 are	 used	 to	 layout
components	 to	 which	 you	 already	 know	 the	 size,	 such	 as	 buttons,
textboxes	 etc.	 They	 also	 work	 when	 you	 have	 widgets	 that	 don’t
overflow	 the	 screen	 space	 available	 and	you	 expand	 them	 to	use	 all
the	 space	available	up.	When	you	need	 to	use	up	extra	 screen	space
you	can	use	the	MainAxisAlignment	property	to	space	child	Widgets
out	or	use	Expanded	Widgets	to	expand	those	child	Widgets.

These	 layouts	 don’t	 work	 well	 when	 they	 are	 used	 to	 layout
components	with	very	dynamic	sizing	requirements,	for	example	Text
widgets	that	are	generated	from	user	data,	with	some	wide	texts,	some
narrow	texts.	In	this	case,	you	are	probably	better	off	using	the	Table.
It	can	handle	the	text	overflows	without	any	additional	complications.

When	 using	 these	 Widgets,	 you	 may	 sometimes	 encounter	 the
times	when	the	child	Widgets	don’t	fit	in	the	screen	space.	This	often
results	in	visible	chevrons	(the	yellow	and	black	stripes)	such	as	you
see	below,	along	with	a	console	error:

	

Column
	

	

Enables	you	to	lay	out	Widgets	Vertically.
Use	the	MainAxisAlignment	to	specify	vertical	layout.
Use	the	CrossAxisAlignment	to	specify	horizontal	alignment.

Will	try	to	take	up	as	much	space	as	it	needs	for	children
but	no	more.

To	 use	 all	 available	 space,	 wrap	 in	 Expanded
widget.

Does	not	provide	scrolling.
If	 you	 run	 out	 of	 vertical	 space,	 you	 may	 get	 an
error.
If	 you	 need	 to	 include	 scrolling,	 use	 a	 ListView
instead.

Spacing	 Out	 Children	 Using
MainAxisAlignment

The	MainAxisAlignment	widget	allows	you	to	determine	how	the
Widgets	are	 laid	out	vertically.	Take	a	 look	at	 the	example	below	 to
see	how	this	affects	the	horizontal	layouts.
Example	–	‘column_spaced_evenly’

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	ColumnSpacedEvenly());

class	ColumnSpacedEvenly	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}

}

class	HomeWidget	extends	StatelessWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
RawMaterialButton	redButton	=	RawMaterialButton(
constraints:	 const	 BoxConstraints(minWidth:	 188.0,	 minHeight:

136.0),
onPressed:	()	{},
shape:	new	CircleBorder(),
elevation:	2.0,
fillColor:	Colors.red,
padding:	const	EdgeInsets.all(15.0),

);
RawMaterialButton	greenButton	=	new	RawMaterialButton(
constraints:	 const	 BoxConstraints(minWidth:	 188.0,	 minHeight:

136.0),
onPressed:	()	{},
shape:	new	CircleBorder(),
elevation:	2.0,
fillColor:	Colors.green,
padding:	const	EdgeInsets.all(15.0),

);
RawMaterialButton	blueButton	=	new	RawMaterialButton(
constraints:	 const	 BoxConstraints(minWidth:	 188.0,	 minHeight:

136.0),
onPressed:	()	{},
shape:	new	CircleBorder(),
elevation:	2.0,
fillColor:	Colors.blue,
padding:	const	EdgeInsets.all(15.0),

);
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Column"),

),
body:	new	Center(

child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[redButton,	greenButton,	blueButton],

),
));

}
}

Expanding	Children	Using	Expanded	Widget
If	 you	 use	 an	 Expanded	 Widget	 (Single-Child	 Layout	 Widget)

around	each	of	your	child	Widgets,	 this	allows	them	to	expand	to	fit
the	available	space.
Example	–	‘column_expanded’

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	ColumnSpacedEvenly());

class	ColumnSpacedEvenly	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(

title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatelessWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
RawMaterialButton	redButton	=	RawMaterialButton(

onPressed:	()	{},	elevation:	2.0,	fillColor:	Colors.red);
RawMaterialButton	greenButton	=	new	RawMaterialButton(
onPressed:	()	{},
elevation:	2.0,
fillColor:	Colors.green,

);
RawMaterialButton	blueButton	=	new	RawMaterialButton(
onPressed:	()	{},
elevation:	2.0,
fillColor:	Colors.blue,

);
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Column"),

),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.start,
children:	<Widget>[
Expanded(child:	redButton),
Expanded(child:	greenButton),
Expanded(child:	blueButton)

],
),

));
}
}

Row
	

	

Enables	you	to	lay	out	Widgets	Horizontally.
Use	the	MainAxisAlignment	to	specify	layout.

If	you	run	out	of	horizontal	space,	you	may	get	an	error	and
chevrons	may	appear.

Spacing	 Out	 Children	 Using
MainAxisAlignment

The	MainAxisAlignment	widget	allows	you	to	determine	how	the
Widgets	are	laid	out	horizontally.	Take	a	look	at	the	example	below	to
see	how	this	affects	the	horizontal	layouts.
Example	–	‘row_main_axis_alignment’

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	RowMainAxisAlignmentApp());

class	RowMainAxisAlignmentApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatelessWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(title:	new	Text("Rows")),
body:	new	Column(

mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
Row(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
const	Text("MainAxisAlignment"),
const	Text("is"),
const	Text("center")

],
),
Row(
mainAxisAlignment:	MainAxisAlignment.end,
children:	<Widget>[
const	Text("MainAxisAlignment"),
const	Text("is"),
const	Text("end")

],
),
Row(
mainAxisAlignment:	MainAxisAlignment.spaceAround,
children:	<Widget>[
const	Text("MainAxisAlignment"),
const	Text("is"),
const	Text("spaceAround")

],
),
Row(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
const	Text("MainAxisAlignment"),
const	Text("is"),
const	Text("spaceEvenly")

],
),
Row(
mainAxisAlignment:	MainAxisAlignment.spaceBetween,
children:	<Widget>[
const	Text("MainAxisAlignment"),
const	Text("is"),

const	Text("spaceBetween")
],

),
Row(
mainAxisAlignment:	MainAxisAlignment.start,
children:	<Widget>[
const	Text("MainAxisAlignment"),
const	Text("is"),
const	Text("start")

],
),

],
));

}
}

Expanding	Children	Using	Expanded	Widget
If	 you	 use	 an	 Expanded	 Widget	 (Single-Child	 Layout	 Widget)

around	some	of	your	child	Widgets,	that	allows	them	to	expand	to	fit
the	available	space.
Example	–	‘row_with_expanded’

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	RowWithExpandedApp());

class	RowWithExpandedApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatelessWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(title:	new	Text("Rows")),
body:	new	Column(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
const	Text("None	expanded:"),
Row(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
const	Text("aaaaaaaaaa"),
const	Text("bbbbbbbbbb"),
const	Text("cccccccccc")

],
),
const	Text("1st	child	expanded:"),
Row(
children:	<Widget>[
const	Expanded(child:	const	Text("aaaaaaaaaa")),
const	Text("bbbbbbbbbb"),

const	Text("cccccccccc")
],

),
const	Text("2nd	child	expanded:"),
Row(
children:	<Widget>[
const	Text("aaaaaaaaaa"),
const	Expanded(child:	const	Text("bbbbbbbbbb")),
const	Text("cccccccccc")

],
),
const	Text("3rd	child	expanded:"),
Row(
children:	<Widget>[
const	Text("aaaaaaaaaa"),
const	Text("bbbbbbbbbb"),
const	Expanded(child:	const	Text("cccccccccc"))

],
),

],
));

}
}

Flex
The	Flex	Widget	is	similar	to	Row	and	Column	widget,	except	that

it	can	act	as	both	when	you	specify	the	mainAxis.

Example	–	‘flex’
This	 app	 uses	 the	 Flex	 layout	 for	 the	 main	 content	 –	 three

rectangles.	 It	has	a	 toolbar	with	 two	buttons.	The	 first	button	allows
the	user	 to	 toggle	 the	Flex	axis	between	vertical	and	horizontal.	The
second	 button	 allows	 the	 user	 to	 change	 the	 value	 of	 the	main	 axis
alignment.

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(

title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'Flex'));

}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_MyHomePageState	createState()	=>	new	_MyHomePageState();

}

class	_MyHomePageState	extends	State<HomeWidget>	{
List<MainAxisAlignment>	_alignments	=	[
MainAxisAlignment.start,
MainAxisAlignment.end,
MainAxisAlignment.center,
MainAxisAlignment.spaceBetween,
MainAxisAlignment.spaceEvenly,
MainAxisAlignment.spaceAround

];
List<String>	_alignmentsText	=	[
"Start",
"End",
"Center",
"Soace	Between",
"Space	Evenly",
"Space	Around"

];

bool	_vertical	=	true;
int	_alignmentIndex	=	0;

RawMaterialButton	redButton	=	RawMaterialButton(
onPressed:	()	{},	elevation:	2.0,	fillColor:	Colors.red);

RawMaterialButton	greenButton	=	new	RawMaterialButton(
onPressed:	()	{},
elevation:	2.0,
fillColor:	Colors.green,

);
RawMaterialButton	blueButton	=	new	RawMaterialButton(
onPressed:	()	{},
elevation:	2.0,
fillColor:	Colors.blue,

);

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(widget.title),
actions:	<Widget>[
IconButton(
icon:	const	Icon(Icons.rotate_right),
tooltip:	'Direction',
onPressed:	()	{
setState(()	{
_vertical	=	!_vertical;

});
},

),
Padding(

padding:	EdgeInsets.only(top:	20.0),
child:	Text(_vertical	?	"Vertical"	:	"Horizontal")),

IconButton(
icon:	const	Icon(Icons.aspect_ratio),
tooltip:	'Main	axis',
onPressed:	()	{
setState(()	{
_alignmentIndex++;
if	(_alignmentIndex	>=	_alignments.length)	{
_alignmentIndex	=	0;

}
});

},
),
Padding(

padding:	EdgeInsets.only(top:	20.0),
child:	Text(_alignmentsText[_alignmentIndex])),

Padding(
padding:	EdgeInsets.all(10.0),

)
],

),
body:	new	Flex(
direction:	_vertical	?	Axis.vertical	:	Axis.horizontal,
mainAxisAlignment:	_alignments[_alignmentIndex],
children:	<Widget>[redButton,	greenButton,	blueButton],

));
}
}

ListView	&	ListTiles
The	ListView	Widget	is	similar	to	the	Flex	widget	in	that	it	can	act

as	 both	 a	 horizontal	 list	 and	 a	 vertical	 list.	 The	 difference	 is	 that	 it
provides	scrolling	out	of	the	box.

Example	-	‘horizontal_list’
This	 app	 displays	 a	 list	 of	 Widgets	 horizontally	 rather	 than

vertically.	You	can	scroll	by	swiping	to	the	left	or	to	the	right.
	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(HorizontalListApp());

class	HorizontalListApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
final	title	=	'Horizontal	List';

return	MaterialApp(
title:	title,
home:	Scaffold(
appBar:	AppBar(
title:	Text(title),

),
body:	Container(
margin:	EdgeInsets.symmetric(vertical:	20.0),
child:	ListView(
scrollDirection:	Axis.horizontal,
children:	<Widget>[
Container(
width:	160.0,
color:	Colors.red,

),
Container(
width:	160.0,
color:	Colors.blue,

),
Container(
width:	160.0,
color:	Colors.green,

),
Container(
width:	160.0,
color:	Colors.yellow,

),
Container(
width:	160.0,
color:	Colors.orange,

),
],

),
),

),
);

}
}

ListTile
A	list	tile	contains	one	to	three	lines	of	text	optionally	flanked	by

icons	or	other	widgets,	such	as	check	boxes.	So,	you	can	have	text	in
the	 middle	 and	 a	 widget	 on	 each	 side.	 Here	 is	 an	 example	 of	 a
ListTile:

	

Many	 people	 combine	 ListViews	 and	 ListTiles	 together	 because
ListTiles	are	great	for	building	great-looking	selection	lists.
Example	–	‘settings’

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	ListViewListTileApp());

class	ListViewListTileApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',

theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'ListView	&	ListTile'),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
int	_selectedIndex	=	0;
static	const	TEXT_STYLE_NORMAL	=	const	TextStyle(

color:	Colors.black,	fontSize:	18.0,	fontWeight:	FontWeight.normal);
static	const	TEXT_STYLE_SELECTED	=	const	TextStyle(

color:	Colors.black,	fontSize:	18.0,	fontWeight:	FontWeight.bold);
final	TextFormField	_fontSizeTextField	=	TextFormField(

decoration:	InputDecoration(
icon:	const	Icon(Icons.format_size),
hintText:	'Font	Size',
labelText:	'Enter	the	font	size'));

final	TextFormField	_historyTextFormField	=	TextFormField(
decoration:	InputDecoration(

icon:	const	Icon(Icons.history),
hintText:	'Days',
labelText:	'Enter	days'));

final	TextFormField	_languageTextFormField	=	TextFormField(
decoration:	InputDecoration(

icon:	const	Icon(Icons.language),
hintText:	'Language',
labelText:	'Enter	your	language'));

select(index)	{
setState(()	{
_selectedIndex	=	index;

});
}

@override
Widget	build(BuildContext	context)	{
final	ListTile	accessibilityListTile	=	ListTile(

leading:	Icon(Icons.accessibility),
title:	Text("Accessibility",

style:
_selectedIndex	 ==	 0	 ?	 TEXT_STYLE_SELECTED	 :

TEXT_STYLE_NORMAL),
subtitle:	const	Text("Accesibility	Settings"),
trailing:	Icon(Icons.settings),
onTap:	()	=>	select(0));

final	ListTile	historyListTile	=	ListTile(
leading:	Icon(Icons.history),
title:	Text("History",

style:
_selectedIndex	 ==	 1	 ?	 TEXT_STYLE_SELECTED	 :

TEXT_STYLE_NORMAL),
subtitle:	const	Text("History	Settings"),
trailing:	Icon(Icons.settings),
onTap:	()	=>	select(1));

final	ListTile	languageListTile	=	ListTile(
leading:	Icon(Icons.language),
title:	Text("Language",

style:
_selectedIndex	 ==	 2	 ?	 TEXT_STYLE_SELECTED	 :

TEXT_STYLE_NORMAL),
subtitle:	const	Text("Language	Settings"),
trailing:	Icon(Icons.settings),
onTap:	()	=>	select(2));

final	String	selectionTitle	=	(_selectedIndex	==	0

?	"Accessibility"
:	_selectedIndex	==	1	?	"History"	:	"Language")	+

"	Settings";

final	TextFormField	selectionTextFormField	=	_selectedIndex	==	0
?	_fontSizeTextField
:	 _selectedIndex	 ==	 1	 ?	 _historyTextFormField	 :

_languageTextFormField;

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text(widget.title),

),
body:	ListView(children:	<Widget>[
accessibilityListTile,
historyListTile,
languageListTile

]),
bottomSheet:	Container(

color:	Color(0xFFB3E5FC),
padding:	EdgeInsets.all(20.0),
child:	Container(

constraints:	BoxConstraints(maxHeight:	200.0),
child:	Column(children:	<Widget>[
Icon(Icons.settings),
Text(selectionTitle),
Expanded(child:	selectionTextFormField)

]))));
}
}

Stack
The	Stack	Layout	Widget	is	useful	for	overlaying	Widgets	on	top

of	each	other.	Each	child	of	a	Stack	Layout	Widget	is	either	positioned
or	 non-positioned.	 Positioned	 children	 are	 those	 wrapped	 in	 a
Positioned	widget	that	has	at	least	one	non-null	property.

The	stack	paints	 its	children	 in	order	with	 the	 first	child	being	at

the	 bottom.	 If	 you	 want	 to	 change	 the	 order	 in	 which	 the	 children
paint,	you	can	rebuild	the	stack	with	the	children	in	the	new	order.	In
this	case,	ensure	each	child	has	a	key	to	prevent	it	from	being	rebuilt
every-time.

You	 can	 use	 a	 stack	 to	 overlay	 layers	 on	 top	 of	 other	 layers	 to
create	effects.

You	could	have	an	 image	as	 a	 first	 child	 then	add	a	 second
child	 that	 is	 a	 transparent	 image	 (ie	 gif	 or	 png)	 with	 a
gradient	 from	 fully	 transparent	 to	 non-transparent.	 This
would	 have	 the	 effect	 of	 ‘fading	 out’	 the	 child	 below.
Something	like	this:

	

	

You	could	use	an	image	(or	anything	else)	as	a	first	child	then
add	a	second	child	that	is	a	transparent	image	(ie	gif	or	png)
to	 ‘round	 out’	 the	 corners,	 improving	 its	 appearance.
Something	like	this:

	

Example	–	‘stack_please_wait’
Many	 applications	 need	 to	 show	 a	 ‘please	 wait’	 indicator	 which

something	 is	 loading.	 For	 example,	 when	 the	 user	 logs	 in,	 the	 app
needs	 to	 contact	 the	 server	 and	 verify	 your	 information
asynchronously.	 This	 app	 enables	 the	 user	 to	 toggle	 a	 ‘please	wait’
indicator	on	or	off.
	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	StackPleaseWaitAppWidget());

class	StackPleaseWaitAppWidget	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'Card	Layout	Demo'),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);
final	String	title;
final	PleaseWaitWidget	_pleaseWaitWidget	=

PleaseWaitWidget(key:	ObjectKey("pleaseWaitWidget"));
final	AppWidget	_appWidget	=	AppWidget(key:

ObjectKey("appWidget"));

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
bool	_pleaseWait	=	false;

void	_togglePleaseWait()	{
setState(()	{
_pleaseWait	=	!_pleaseWait;

});
}

@override
Widget	build(BuildContext	context)	{
List<Widget>	childWidgets	=	_pleaseWait

?	[widget._pleaseWaitWidget,	widget._appWidget]
:	[widget._appWidget];

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text(widget.title),

),
body:	new	Center(

child:	Stack(key:	ObjectKey("stack"),	children:	childWidgets)),
floatingActionButton:	new	FloatingActionButton.extended(

onPressed:	_togglePleaseWait,
label:	Text('Please	Wait	On/Off'),
icon:	new	Icon(Icons.cached)));

}
}

class	PleaseWaitWidget	extends	StatelessWidget	{
PleaseWaitWidget({
Key	key,

})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
return	Container(

child:	Center(
child:	CircularProgressIndicator(strokeWidth:	8.0),

),
color:	Colors.grey.withOpacity(0.3));

}
}

class	AppWidget	extends	StatelessWidget	{
AppWidget({
Key	key,

})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
return	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
const	Text('Your',	style:	TextStyle(fontSize:	20.0)),
const	Text('App',	style:	TextStyle(fontSize:	20.0)),
const	Text('Goes',	style:	TextStyle(fontSize:	20.0)),
const	Text('Here',	style:	TextStyle(fontSize:	20.0))

],
),

);
}
}

20.	Single-Child	Layout	Widgets

Introduction
Earlier	 we	 mentioned	 that	 there	 are	 two	 main	 kinds	 of	 Layout

Widgets:	 Single-Child	 Layout	 Widgets	 and	 Multi-Child	 Layout
Widgets.	 We	 covered	 Multi-Child	 Layout	 Widgets	 in	 the	 previous
chapter.

Single-Child	Layout	Widgets	are	non-visible	Widgets	that	are	used
that	 affect	 the	 positioning	 and	 presentation	 of	 a	 single	 child	widget.
The	purpose	of	this	chapter	is	to	cover	these	widgets.

Most	Important	Single	Child	Layout	Widgets
The	Padding	Widget	is	probably	used	most	of	all	these	and	is
used	to	affect	the	padding	around	its	child	widget.
The	 Container	 Widget	 is	 a	 Single-Child	 Layout	 Widget	 in
that	it	lays	out	Child	Widgets.	However,	it	can	be	visible	and
you	can	style	it.

Padding
Used	 all	 the	 time	 to	 add	 padding	 around	 a	 child	Widget.	 It	 uses

EdgeInset	 objects	 to	 specify	 the	 padding	 metrics	 around	 the	 child
Widget.

Example	–	‘padding’
This	app	allows	 the	user	click	on	an	 icon	on	 the	right	side	of	 the

toolbar	to	cycle	through	the	border	insets.

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();

}

class	_HomeWidgetState	extends	State<HomeWidget>	{
static	const	double	TWENTY	=	20.0;
static	const	List<String>	_titles	=	[
"all	20.0",
"left	20.0",
"right	20.0",
"top	20.0",
"bottom	20.0",
"sym	horiz	20.0",
"sym	vert	20.0"

];
static	const	List<EdgeInsets>	_edgeInsets	=	[
const	EdgeInsets.all(TWENTY),
const	EdgeInsets.only(left:	TWENTY),
const	EdgeInsets.only(right:	TWENTY),
const	EdgeInsets.only(top:	TWENTY),
const	EdgeInsets.only(bottom:	TWENTY),
const	EdgeInsets.symmetric(horizontal:	TWENTY),
const	EdgeInsets.symmetric(vertical:	TWENTY)

];
int	_index	=	0;
final	Container	_childContainer	=	Container(color:	Colors.blue);

void	_next()	{
setState(()	{
_index++;
if	(_index	>=	_titles.length)	{
_index	=	0;

}
});

}

@override
Widget	build(BuildContext	context)	{
Padding	padding	=

Padding(padding:	_edgeInsets[_index],	child:	_childContainer);
return	Scaffold(

appBar:	AppBar(
title:	Text(_titles[_index]),
actions:	[
new	IconButton(

icon:	new	Icon(Icons.refresh),	onPressed:	()	=>	_next())
],

),
body:	Center(

child:	Container(
child:	padding,
decoration:	BoxDecoration(

border:	new	Border.all(color:	Colors.blueAccent)))));
}
}

Container
A	 convenience	 widget	 that	 combines	 common	 painting,

positioning,	 and	 sizing	 widgets.	 Often	 used	 to	 contain	 wrap
child	widgets	and	apply	styling.

Example	–	‘container’
This	example	app	shows	an	aircraft	 in	a	container	Widget	with	a

border	and	a	background.	The	user	can	hit	 the	button	on	 the	bottom
right	to	spin	the	aircraft.	Ignore	the	animation	code	for	the	moment.

	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	ContainerApp());

class	ContainerApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'Flutter	Demo	Home	Page'),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);
final	String	title;

@override

_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>
with	SingleTickerProviderStateMixin	{

Animation<double>	_animation;
AnimationController	_controller;

@override
void	initState()	{
super.initState();
_controller	=

AnimationController(duration:	 const	 Duration(seconds:	 2),	 vsync:
this);

_animation	=	Tween<double>(begin:	0.0,	end:	1.0).animate(_controller)
..addListener(()	{
setState(()	{});

});
}

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(widget.title),

),
body:	new	Center(

child:	new	Container(
child:	new	RotationTransition(

turns:	new	AlwaysStoppedAnimation(_animation.value),
child:	new	Icon(Icons.airplanemode_active,	size:	150.0)),

decoration:	BoxDecoration(
border:	Border.all(width:	2.0,	color:	Colors.black),
borderRadius:	BorderRadius.all(Radius.circular(8.0)),
color:	Colors.redAccent))),

floatingActionButton:	new	FloatingActionButton(
onPressed:	_spin,
tooltip:	'Increment',
child:	new	Icon(Icons.rotate_right)));

}

void	_spin()	{
_controller.forward(from:	0.0);

}
}

Further	Reading
https://medium.com/flutter-community/flutters-container-this-ain-

t-your-daddy-s-div-100817339610

Card
Material	UI	uses	cards.		They	are	used	contain	content	and	actions

about	a	single	subject.
According	to	the	Google	Documentation:

A	card	is	identifiable	as	a	single,	contained	unit.
A	 card	 can	 stand	 alone,	 without	 relying	 on	 surrounding
elements	for	context.
A	 card	 cannot	 merge	 with	 another	 card,	 or	 divide	 into
multiple	cards.

Example	–	‘cards’
This	app	displays	a	news	feed	using	Cards.
Note	 that	 this	 example	 uses	 a	 stream	 ‘map’	 function	 to	 convert

News	data	objects	into	Widgets.
	

https://medium.com/flutter-community/flutters-container-this-ain-t-your-daddy-s-div-100817339610

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	NewsfeedWidget(title:	'News	Feed'),

);
}
}

class	News	{
DateTime	_dt;
String	_title;
String	_text;

News(this._dt,	this._title,	this._text);
}

class	NewsCard	extends	StatelessWidget	{
News	_news;

NewsCard(this._news);

@override
Widget	build(BuildContext	context)	{
return	Padding(

padding:	EdgeInsets.only(bottom:	20.0),
child:	Card(

child:	Padding(
padding:	EdgeInsets.all(20.0),
child:	Column(
crossAxisAlignment:	CrossAxisAlignment.start,
children:	<Widget>[
Image.network("https://www.bbc.co"

".uk/news/special/2015/newsspec_10857/bbc_news_logo.png?
cb=1"),

Padding(
padding:	EdgeInsets.only(top:	20.0,	bottom:	10.0),
child:	Text(
"${_news._dt.month}//${_news._dt.day}/${_news._dt.year}",
style:	TextStyle(

fontSize:	10.0,	fontStyle:	FontStyle.italic),
)),

Padding(
padding:	EdgeInsets.only(bottom:	10.0),
child:	Text("${_news._title}",

style:	TextStyle(
fontSize:	20.0,	fontWeight:	FontWeight.bold))),

Text(
"${_news._text}",
maxLines:	2,
style:	TextStyle(fontSize:	14.0),
overflow:	TextOverflow.fade,

),

Row(children:	[
FlatButton(child:	Text("Share"),	onPressed:	()	=>	{}),
FlatButton(child:	 Text("Bookmark"),	 onPressed:	 ()	 =>

{}),
FlatButton(child:	Text("Link"),	onPressed:	()	=>	{})

])
],

))));
}
}

class	NewsfeedWidget	extends	StatelessWidget	{
NewsfeedWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;
List<News>	_newsList	=	[
News(

DateTime(2018,	12,	1),
"Mass	shooting	in	Atlanta",
"Lorem	 ipsum	 dolor	 sit	 amet,	 consectetur	 adipiscing	 elit.	 Proin	 sit

amet	"	+
"tortor	pretium,	interdum	magna	sed,	pulvinar	ligula."),

News(
DateTime(2019,	1,	12),
"Carnival	clown	found	drunk	in	Misisippi",
"Lorem	 ipsum	 dolor	 sit	 amet,	 consectetur	 adipiscing	 elit.	 Proin	 sit

amet	"	+
"tortor	pretium,	interdum	magna	sed,	pulvinar	ligula."),

News(
DateTime(2019,	2,	12),
"Walrus	found	in	family	pool	in	Florida",
"Lorem	 ipsum	 dolor	 sit	 amet,	 consectetur	 adipiscing	 elit.	 Proin	 sit

amet	"	+
"tortor	pretium,	interdum	magna	sed,	pulvinar	ligula."),

];

@override
Widget	build(BuildContext	context)	{
List<Widget>	 newsCards	 =	 _newsList.map((news)	 =>

NewsCard(news)).toList();
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("News	Feed"),

),
body:	 new	 ListView(padding:	 EdgeInsets.all(20.0),	 children:

newsCards));
}
}

ConstrainedBox
Very	useful,	you	will	use	this.
A	widget	that	constrains	the	size	of	its	child	widget.

Example	–	‘constrained_box’
Here	is	an	example	that	displays	a	list	of	(potentially	many)	child

widgets	into	a	fixed	area,	with	scrolling	if	necessary.	You	can	on	the
‘+’	 floating	button	 to	 add	more	 child	widgets.	Once	you	have	many
child	widgets	you	can	drag	the	list	up	or	down	to	scroll.

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	MyHomePage(title:	'Flutter	Demo	Home	Page'),

);
}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_MyHomePageState	createState()	=>	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
int	_counter	=	0;

void	_incrementCounter()	{
setState(()	{
_counter++;

});
}

@override
Widget	build(BuildContext	context)	{
List<Widget>	children	=	[];
for	(int	i	=	0;	i	<	_counter;	i++)	{
children.add(Container(child:	Text("Row	${i}")));

}
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),

),
body:	Center(

child:	ConstrainedBox(
constraints:	BoxConstraints(
maxHeight:	350,
minHeight:	300,
minWidth:	200,
maxWidth:	250,

),
child:	Container(

decoration:	BoxDecoration(border:	Border.all()),
padding:	EdgeInsets.all(5.0),
child:	ListView(children:	children)))),

floatingActionButton:	FloatingActionButton(
onPressed:	_incrementCounter,

tooltip:	'Increment',
child:	Icon(Icons.add),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build
methods.

);
}
}

Expanded
A	widget	that	expands	a	child	of	a	Row,	Column,	or	Flex.

Using	 an	Expanded	widget	makes	 a	 child	 of	 a	Row,	Column,	 or
Flex	 expand	 to	 fill	 the	 available	 space	 in	 the	 main	 axis	 (e.g.,
horizontally	 for	 a	 Row	 or	 vertically	 for	 a	 Column).	 If	 multiple
children	 are	 expanded,	 the	 available	 space	 is	 divided	 among	 them
according	to	the	flex	factor.

Example	–	‘expanded’
This	app	shows	how	 two	widgets	 in	a	column	behave	when	 they

are	contained	in	a	parent	Expanded	widget	(or	not).
	

If	 both	 widgets	 are	 expanded,	 both	 share	 the	 available
vertical	space	evenly.
If	 only	 one	 is	 expanded,	 the	 expanded	 one	 takes	 up	 all	 the
available	vertical	space.
If	 neither	 is	 expanded,	 the	 available	 vertical	 space	 goes
unfilled

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
bool	_topExpanded	=	false;
bool	_bottomExpanded	=	false;

toggleTop()	{
setState(()	=>	_topExpanded	=	!_topExpanded);

}

toggleBottom()	{
setState(()	=>	_bottomExpanded	=	!_bottomExpanded);

}

@override
Widget	build(BuildContext	context)	{
Container	topContainer	=	Container(
child:	new	Text(
'Top	Container',

),
decoration:	BoxDecoration(

border:	Border.all(color:	Colors.black,	width:	1.0),
color:	Colors.blue),

padding:	EdgeInsets.all(10.0),
);
Container	bottomContainer	=	Container(
child:	new	Text(
'Bottom	Container',

),
decoration:	BoxDecoration(

border:	Border.all(color:	Colors.black,	width:	1.0),
color:	Colors.yellow),

padding:	EdgeInsets.all(10.0),
);
Widget	topWidget	=

_topExpanded	?	Expanded(child:	topContainer)	:	topContainer;
Widget	bottomWidget	=

_bottomExpanded	 ?	 Expanded(child:	 bottomContainer)	 :
bottomContainer;

return	new	Scaffold(
appBar:	 new	 AppBar(title:	 new	 Text("Expanded"),	 actions:

<Widget>[
FlatButton.icon(

icon:	 Icon(_topExpanded	 ?	 Icons.expand_more	 :
Icons.expand_less),

label:	Text("Top"),
onPressed:	()	=>	toggleTop()),

FlatButton.icon(
icon:

Icon(_bottomExpanded	 ?	 Icons.expand_less	 :
Icons.expand_more),

label:	Text("Bottom"),
onPressed:	()	=>	toggleBottom())

]),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[topWidget,	bottomWidget],

),
));

}
}

Flexible
This	widget	 is	 similar	 to	 the	Expanded	widget	 in	 that	 it	 expands

the	 child	Widget,	 except	 that	 it	 is	 a	 little	more	 flexible	 in	 regard	 to
Constraints.

When	 child	 widgets	 have	 Constraints	 (for	 example	 minimum,
maximum	dimension)	then:

Expanded	 Widgets	 always	 respect	 those	 Constraints,	 never
overriding	them.
Flexible	Widgets	have	the	following	fit	options:

Fit	 ‘expanded’:	 expands	 to	 fit	 the	 available	 screen
space,	overriding	the	Constraints.
Fit	‘loose’	expands	to	fit	the	available	screen	space,

respecting	those	Constraints,	never	overriding	them.

Example	–	‘flexible’
This	app	shows	two	Widgets	that	have	a	min	size	of	100	x	100	and

a	max	size	of	200	x	200.	There	are	two	toolbar	buttons	to	control	the
use	of	the	available	space.

The	 top	 container	 is	 expanded	 /	 contracted	 by	 using	 a
Flexible	with	a	 fit	 that	 toggles	between	 loose	 (the	child	can
be	at	most	as	large	as	the	available	space	but	is	allowed	to	be
smaller).	and	tight	(expands	tightly	to	available	space).
The	bottom	container	is	expanded	/	contacted	by	using	/	not
using	an	Expanded	widget.

	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
@override

Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
bool	_topTightFit	=	false;
bool	_bottomExpanded	=	false;

toggleTop()	{
setState(()	=>	_topTightFit	=	!_topTightFit);

}

toggleBottom()	{
setState(()	=>	_bottomExpanded	=	!_bottomExpanded);

}

@override
Widget	build(BuildContext	context)	{
Container	topContainer	=	Container(
child:	new	Text(
'Top	Container',

),
constraints:	BoxConstraints(

minHeight:	100.0,	minWidth:	100.0,	maxHeight:	200.0,	maxWidth:
200.0),

decoration:	BoxDecoration(
border:	Border.all(color:	Colors.black,	width:	1.0),
color:	Colors.blue),

padding:	EdgeInsets.all(10.0),
);
Container	bottomContainer	=	Container(
child:	new	Text(
'Bottom	Container',

),
constraints:	BoxConstraints(

minHeight:	100.0,	minWidth:	100.0,	maxHeight:	200.0,	maxWidth:
200.0),

decoration:	BoxDecoration(
border:	Border.all(color:	Colors.black,	width:	1.0),
color:	Colors.yellow),

padding:	EdgeInsets.all(10.0),
);
Widget	topWidget	=	Flexible(

child:	topContainer,	fit:	_topTightFit	?	FlexFit.tight	:	FlexFit.loose);
Widget	bottomWidget	=

_bottomExpanded	 ?	 Expanded(child:	 bottomContainer)	 :
bottomContainer;

String	 toolbarTextTop	 =	 "Top	 ("	 +	 (_topTightFit	 ?	 "tight"	 :	 "loose")	 +
")";

String	toolbarTextBottom	=
"Bottom	("	+	(_bottomExpanded	?	"expanded"	 :	"not	expanded")	+

")";
return	new	Scaffold(

appBar:	 new	 AppBar(title:	 new	 Text("Expanded"),	 actions:
<Widget>[

FlatButton.icon(
icon:	Icon(_topTightFit

?	Icons.keyboard_arrow_up
:	Icons.keyboard_arrow_up),

label:	Text(toolbarTextTop),
onPressed:	()	=>	toggleTop()),

FlatButton.icon(
icon:	Icon(_bottomExpanded

?	Icons.keyboard_arrow_down

:	Icons.keyboard_arrow_down),
label:	Text(toolbarTextBottom),
onPressed:	()	=>	toggleBottom())

]),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[topWidget,	bottomWidget],

),
));

}
}

Center
This	widget	is	used	to	center	a	Widget	within	its	parent	Widget.

	

GestureDetector
A	widget	that	detects	gestures.
Often	used	to	add	event	listeners	(like	‘onTop’)	onto	Widgets	that

don’t	have	that	capability.

Example	–	‘gesture_app’
This	 app	 allows	 the	 user	 to	 try	 out	 gestures	 on	 a	 piece	 of	 text,

logging	the	recorded	gestures	in	a	scrollable	textbox	below.	The	user
can	click	on	the	‘Clear’	button	to	clear	the	textbox.

	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	GestureApp());

class	GestureApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'Gestures'),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
String	_log	=	'';

void	_clear()	{
setState(()	{
_log	=	'';

});
}

void	_logGesture(String	logText)	{
setState(()	{
_log	+=	"\n";
_log	+=	logText;

});
}

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(widget.title),

),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
GestureDetector(

child:	Text(
'Gesture	Me',

),
onTap:	()	=>	_logGesture('tap'),
onTapDown:	 (details)	 =>	 _logGesture('onTapDown:

${details}'),
onTapUp:	(details)	=>	_logGesture('onTapUp:	${details}'),
onTapCancel:	()	=>	_logGesture('onTapCancel'),

onDoubleTap:	()	=>	_logGesture('onDoubleTap'),
onLongPress:	()	=>	_logGesture('onLongPress'),
onVerticalDragDown:	(details)	=>

_logGesture('onVerticalDragDown:	${details}'),
onVerticalDragStart:	(details)	=>

_logGesture('onVerticalDragStart:	${details}'),
onVerticalDragUpdate:	(details)	=>

_logGesture('onVerticalDragUpdate'),
onVerticalDragEnd:	(details)	=>

_logGesture('onVerticalDragEnd:	${details}'),
onVerticalDragCancel:	()	=>

_logGesture('onVerticalDragCancel'),
onHorizontalDragDown:	(details)	=>

_logGesture('onHorizontalDragDown:	${details}'),
onHorizontalDragStart:	(details)	=>

_logGesture('onHorizontalDragStart:	${details}'),
onHorizontalDragUpdate:	(details)	=>

_logGesture('onHorizontalDragUpdate:	${details}'),
onHorizontalDragEnd:	(details)	=>

_logGesture('onHorizontalDragEnd:	${details}'),
onHorizontalDragCancel:	()	=>

_logGesture('onHorizontalDragCancel')),
Container(

child:	SingleChildScrollView(child:	Text('$_log')),
constraints:	BoxConstraints(maxHeight:	200.0),
decoration:	BoxDecoration(

border:	Border.all(
color:	Colors.grey,
width:	1.0,

)),
margin:	EdgeInsets.all(10.0),
padding:	EdgeInsets.all(10.0)),

RaisedButton(child:	Text('Clear'),	onPressed:	()	=>	_clear())
],

),
));

}
}

Positioned
Used	to	wrap	a	child	Widget	to	control	where	it	is	positioned	when

added	to	a	group	of	Widgets	stacked	using	the	Stack	layout	widget.

Example	–	‘positioned’
This	 app	 allows	 the	 user	 to	 add	 another	 square	 on	 top	 of	 the

existing	squares,	positioned	each	time	further	down	and	further	to	the
right.

	

Source	Code
import	'package:flutter/material.dart';
import	'dart:math';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(),

);
}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key})	:	super(key:	key);

@override
_MyHomePageState	createState()	=>	new	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
double	_top	=	0.0;
double	_left	=	0.0;
List<Widget>	widgetList	=	[];

final	_random	=	new	Random();

int	next(int	min,	int	max)	=>	min	+	_random.nextInt(max	-	min);

void	_addLayer()	{
setState(()	{
widgetList.add(Positioned(

left:	_left,
top:	_top,
child:	Container(

width:	100.0,
height:	100.0,
decoration:	BoxDecoration(
border:	Border.all(
color:	Colors.grey,
width:	2.0,

),
color:	Color.fromRGBO(

next(0,	255),	next(0,	255),	next(0,	255),	0.5),
))));

});

_top	+=	30;
_left	+=	30;

}

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Positioned"),

),
body:	new	Stack(children:	widgetList),
floatingActionButton:	new	FloatingActionButton(
onPressed:	_addLayer,
tooltip:	'Increment',
child:	new	Icon(Icons.add),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build
methods.

);
}
}

SafeArea
When	 you	 wrap	 a	 child	 Widget	 with	 a	 Safe	 Area,	 it	 adds	 any

necessary	padding	needed	to	keep	your	widget	from	being	blocked	by
the	 system	 status	 bar,	 notches,	 holes,	 rounded	 corners	 and	 other
"creative"	features	by	manufactures.

Example:	Non-Safe	Area

Example:	Safe	Area

Example:	 Safe	 Area	 with	Minimum	 Padding
Set

SingleChildScrollView
This	Widget	 is	 used	 to	 show	 a	 child	Widget	 even	 if	 there	 is	 not

enough	space	to	view	the	entirety	of	the	child	Widget.

Constructor	Arguments	Include:
Argument Description
child Child	Widget

scrollDirection Direction	of	scrolling.	Can	be	either
horizontal	or	vertical.	Cannot	be	both.

scrollPhysics How	the	scroll	view	continues	to	animate
after	the	user	stops	dragging	the	scroll	view.

Exercise	–	‘single_child_scroll_view’
This	app	that	displays	a	very	large	multicolored	globe	and	allows

the	user	to	scroll	over	it.

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.
Step	2	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	'dart:math';

import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',

theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(),

);
}
}

class	CirclePainter	extends	CustomPainter	{
final	_random	=	new	Random();
List<Color>	_colors	=	[];

CirclePainter()	{
for	(int	i	=	0;	i	<	100;	i++)	{
_colors.add(Colors.green

.withRed(next(0,	255))

.withGreen(next(0,	255))

.withBlue(next(0,	255)));
}

}

int	next(int	min,	int	max)	=>	min	+	_random.nextInt(max	-	min);

@override
void	paint(Canvas	canvas,	Size	size)	{
for	(int	i	=	0;	i	<	100;	i++)	{
var	radius	=	(i	*	10).toDouble();
canvas.drawCircle(

new	Offset(1000.0,	1000.0),
radius,
new	Paint()
..color	=	_colors[i]
..strokeCap	=	StrokeCap.round
..style	=	PaintingStyle.stroke
..strokeWidth	=	15.0);

}
}

@override

bool	shouldRepaint(CirclePainter	oldDelegate)	{
return	false;

}
}

class	MyHomePage	extends	StatelessWidget	{
CirclePainter	circlePainter	=	new	CirclePainter();
MyHomePage({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Scroll"),

),
body:	new	SingleChildScrollView(

scrollDirection:	Axis.vertical,
physics:	AlwaysScrollableScrollPhysics(),
child:	CustomPaint(
size:	Size(2000.0,	2000.0),
foregroundPainter:	circlePainter,

)));
}
}

Step	3	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
You	should	be	able	to	scroll	vertically	but	not	horizontally	over	the

globe.
Step	4	–	Change	the	‘ScrollDirection’
Change	 the	 ‘scrollDirection’	 constructor	 Argument	 of	 the

SingleChildScrollView	from	Axis.vertical	to	Axis.horizontal.
@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Scroll"),

),
body:	new	SingleChildScrollView(
scrollDirection:	Axis.horizontal,
physics:	AlwaysScrollableScrollPhysics(),
child:	CustomPaint(
size:	Size(2000.0,	2000.0),
foregroundPainter:	circlePainter,
)));

}
Step	5	–	Reload	the	Changes
You	should	be	able	to	scroll	horizontally	but	not	vertically	over	the

globe.
	

Step	 6	 –	 Edit	 the	 ‘build’	 Method	 and	 Change	 the
SingleChildScrollView	to	a	ListView

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Scroll"),

),
body:	new	Center(

child:	new	SingleChildScrollView(
child:	Column(

children:	childWidgetList,
))));

21.	App	Scaffolding	Widgets

Introduction
Flutter	 makes	 it	 easy	 to	 generate	 a	 default	 mobile	 app	 and	 you

quickly	 end	 up	with	 something	 sophisticated	with	Color	 themes,	 an
App	Bar,	a	Content	Area	with	a	Count	and	a	Floating	Button.

The	reason	you	get	something	sophisticated	so	quickly	is	 that	 the
Default	 App	 uses	 Flutter	 Widgets	 that	 were	 specially	 designed	 to
scaffold	an	app	as	quickly	as	possible.

The	purpose	of	this	chapter	is	to	cover	these	Widgets.
	

When	 your	 code	 entry	 point	 runs	 (i.e.	 the	main	method),	 it	 calls
runApp	 to	 initialize	 a	 given	 widget	 (an	 App	 Widget).	 The	 build
method	 of	 the	App	Widget	 is	 invoked	 and	 it	 returns	 a	MaterialApp
object,	 which	 gives	 Flutter	 the	 information	 it	 needs	 to	 generate	 the
widget	and	display	it	on	the	screen,	along	with	its	child	Widgets.

So,	 your	 App	 Widget	 returns	 a	 MaterialApp	 that	 you	 have

initialized	 with	 the	 title,	 theme	 and	 home	 properties	 initialized.	 It’s
called	a	Material	App	because	this	class	builds	the	foundations	for	an
app	that	uses	Google’s	Material	Design	UI.		

MaterialApp
Builds	the	foundations	for	a	cross-platform	app	that	uses	Google’s

Material	Design	UI.
It	 introduces	 built-in	 objects	 such	 as	 the	 Navigator,	 Themes	 and

Locales	to	help	you	develop	your	app.

Navigator
We	will	cover	the	Navigator	in	a	later	chapter.

Themes
When	 you	 build	 a	 Flutter	 app,	 you	 build	 a	 root	 Widget.	 That

Widget	 usually	 returns	 a	MaterialApp,	which	 builds	 the	 foundations
for	the	app.	One	of	the	constructor	arguments	for	MaterialApp	is	the
Theme	 object.	 This	 object	 specifies	 the	 colors	 to	 be	 used	 in	 the
application’s	 Widgets.	 As	 you	 can	 see	 below	 the	 user	 can	 pass	 in
Theme	 data	 into	 the	 MaterialApp	 constructor	 using	 a	 ThemeData
object.
Default	Flutter	App	Uses	Blue	Theme
class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(title:	'Flutter	Demo	Home	Page'),
debugShowMaterialGrid:	true,
debugShowCheckedModeBanner:	false,

showPerformanceOverlay:	true,
);

}
}

Example	of	Darkening	Theme

Source	Code
This	is	the	default	Flutter	app	with	just	a	change	to	the	accent	color

and	the	brightness.
class	MyApp	extends	StatelessWidget	{

//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(

accentColor:	Colors.redAccent,
brightness:	Brightness.dark),

home:	new	MyHomePage(title:	'Flutter	Demo	Home	Page'),
);

}
}

Locales

In	computing,	a	locale	is	a	set	of	parameters	that	defines	the	user's
language,	 region	 and	 any	 special	 variant	 preferences	 that	 the	 user
wants	to	see	in	their	user	interface.	Usually	a	locale	identifier	consists
of	 at	 least	 a	 language	 code	 and	 a	 country/region	 code.	 The
MaterialApp	Widget	defaults	the	apps	Locale	to	that	of	the	device	it	is
running	on.	However,	 there	are	 locale	constructor	arguments	 that	 let
you	override	the	default	Locale	behavior.

Debugging	Constructor	Arguments
In	addition,	the	MaterialApp	constructor	lets	you	specify	additional

arguments	 to	 enable	 you	 to	 turn	 on	 Service	Extensions,	 such	 as	 the
following:
	

debugShowMaterialGrid
showPerformanceOverlay
checkerboardRasterCacheImages
checkerboardOffscreenLayers
showSemanticsDebugger
debugShowCheckedModeBanner

We	 will	 cover	 these	 later	 on	 here:	 Debugging	 &	 Performance
Profiling

Scaffold
Provides	a	pre-determined,	standard	layout	structure	for	your	App.
This	Widget	serves	as	the	parent	Widget	of	the	rest	of	the	Widgets

in	this	chapter.
	

This	 will	 become	 more	 obvious	 when	 you	 look	 the	 Scaffold
Widget	exercise	in	this	chapter.

AppBar
App	bar	with	title,	icons	and	menu	functionality.	Used	to	display	a

title	plus	some	icons,	which	the	user	can	tap	on	to	initiate	actions.
You	 can	 add	 an	 AppBar	 to	 your	 app	 by	 specifying	 the‘appBar’

constructor	argument	when	creating	the	Scaffold.
	

Body
Here	is	where	you	add	the	widget	 that	 is	displayed	in	the	content

area	of	the	app.

BottomNavigationBar
Good	 place	 to	 put	 bottom	 navigation	 buttons.	 The	 bottom

navigation	 bar	 is	 rendered	 at	 the	 bottom,	 below	 the	 Body,
BottomSheet	 and	 PersistentFooterButtons	 Widgets.	 Uses
BottomNavigationBarItem	items	to	allow	the	user	to	tap	on	an	icon	to
navigate.

You	 can	 add	 an	BottomNavigationBar	 to	 your	 app	 by	 specifying
the	 ‘bottomNavigationBar’	 constructor	 argument	 when	 creating	 the
Scaffold.

Drawer
A	drawer	is	an	invisible	side	screen	which	generally	contain	menu

items	and	occupies	around	half	of	the	screen	when	displayed

You	can	add	a	Drawer	to	the	left	side	of	your	app	by	specifying	the
‘drawer’	constructor	argument	when	creating	the	Scaffold.	This	gives
you	the	Hamburger	menu	on	the	AppBar.	

You	can	add	a	Drawer	to	the	right	side	your	app	by	specifying	the
‘endDrawer’	 constructor	 argument	 when	 creating	 the	 Scaffold.	 This
does	not	show	a	Hamburger	menu	though.

BottomSheet
Used	 to	 show	 the	 user	 information	 or	 additional	 commands

without	 changing	 the	 context	 of	 what	 the	 user	 is	 viewing.	 Used	 to
display	content	at	the	bottom	of	the	screen	to	the	user.

Note	 that	 there	 are	 also	 ModalBottomSheets	 that	 can	 block	 the
user	interface	(stop	the	user	from	interacting	with	other	content	within
your	application)	until	the	user	makes	a	selection.

You	 can	 add	 a	 BottomSheet	 to	 your	 app	 by	 specifying	 the
‘bottomSheet’	constructor	argument	when	creating	the	Scaffold.

PersistentFooterButtons

Used	to	show	a	set	of	widgets	at	the	bottom	of	the	scaffold	above
the	BottomNavigationBar	but	below	 the	Body	and	 the	BottomSheet.
Usually	 FlatButton	 widgets.	 These	 widgets	 will	 be	 wrapped	 in	 a
ButtonBar.		These	buttons	are	persistently	visible,	even	if	the	body	of
the	scaffold	scrolls.

You	can	add	PersistentFooterButtons	to	your	app	by	specifying	the
‘persistentFooterButtons’	 constructor	 argument	 when	 creating	 the
Scaffold.

Exercise	–	‘scaffold’
This	 exercise	 attempts	 to	 use	 all	 of	 the	 functionality	 available	 in

the	Scaffold	Widget.
In	 doing	 so	 it	 uses	 all	 the	Widgets	 that	 were	 introduced	 in	 this

chapter.
	

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.

Step	2	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	‘package:flutter/material.dart’;

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{

return	new	MaterialApp(
title:	‘Flutter	Demo’,
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(),

);
}
}

class	MyHomePage	extends	StatelessWidget	{
MyHomePage({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{

return	new	Scaffold(
appBar:	new	AppBar(
backgroundColor:	Colors.amber,
title:	new	Text(“AppBar”),
actions:	<Widget>[
IconButton(

icon:	Icon(Icons.add),
onPressed:	()	{
print(“Add	IconButton	Pressed...“);

})
],

),

backgroundColor:	Colors.lightBlueAccent,
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
new	Text(
‘Body’,

)
],

),
),
bottomNavigationBar:	BottomNavigationBar(
type:	BottomNavigationBarType.fixed,
onTap:	 (index)	 =>	 debugPrint(“Bottom	 Navigation	 Bar	 onTap:

${index}“),
items:	[
BottomNavigationBarItem(
icon:	new	Icon(Icons.home),
title:	new	Text(‘Bottom	Nav	Bar	Item	1’),

),
BottomNavigationBarItem(
icon:	new	Icon(Icons.mail),
title:	new	Text(‘Bottom	Nav	Bar	Item	2’),

)
],

),
bottomSheet:	Container(

color:	Colors.amberAccent,
padding:	EdgeInsets.all(20.0),
child:	Row(children:	<Widget>[
IconButton(

icon:	Icon(Icons.update),
onPressed:	()	{
print(“Bottom	Sheet	Icon	Pressed”);

}),
Text(‘Bottom	Sheet	Text’)

])),
drawer:	Drawer(

child:	ListView(children:	<Widget>[

Row(children:	<Widget>[
IconButton(

icon:	Icon(Icons.add),
onPressed:	()	{
print(“Drawer	Item	1	Pressed”);

}),
Text(‘Drawer	Item	1’)

]),
Row(children:	<Widget>[
IconButton(

icon:	Icon(Icons.add),
onPressed:	()	{
print(“Drawer	Item	2	Pressed”);

}),
Text(‘Drawer	Item	2’)

])
])),

/*

For	swiping	in	from	right-side.

endDrawer:	Drawer(
child:	ListView(children:	<Widget>[

Row(children:	<Widget>[
IconButton(

icon:	Icon(Icons.add),
onPressed:	()	{
print(“Drawer	Item	1");

}),
Text(‘Drawer	Item	1	Pressed’)

]),
Row(children:	<Widget>[
IconButton(

icon:	Icon(Icons.add),
onPressed:	()	{
print(“Drawer	Item	2	Pressed”);

}),
Text(‘Drawer	Item	2’)

])
])),
*/
floatingActionButton:	new	FloatingActionButton(

onPressed:	()	{
print(“FloatingActionButton	Pressed”);

},
tooltip:	‘Increment’,
child:	new	Icon(Icons.add)),

persistentFooterButtons:	<Widget>[
IconButton(

icon:	Icon(Icons.update),
onPressed:	()	{
print(“Persistant	Footer	Icon	Pressed”);

}),
Text(‘Persistant	Footer	Text’)

]);
}
}

Step	3	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
You	should	get	something	like	the	following:

	

If	you	touch	the
hamburger	menu	on	the
top	left,	that	opens	up
the	drawer	shown	to	the
right.

22.	Other	Widgets

Introduction
The	 purpose	 of	 this	 chapter	 is	 to	 cover	 left-over	 commonly-used

Widgets	 that	 have	 not	 been	 covered	 yet.	 This	 does	 not	 include
Widgets	 that	 are	 used	on	Forms	 to	 enter	 information.	Those	will	 be
covered	in	this	chapter:	Forms.

Dialog
Dialogs	 are	 temporary	windows	 that	 appear	 as	 overlays	 over	 the

existing	application.	They	are	very	useful	to	display	something	to	the
user	or	get	user	input.	When	a	dialog	is	displayed,	the	rest	of	the	app
is	 unavailable.	 Flutter	 comes	 with	 two	 boilerplate	 dialog	 widgets:
Alert	 Dialog	 and	 SimpleDialog.	 However,	 you	 can	 build	 custom
dialogs	quite	easily.

AlertDialog
A	material	 design	 dialog	 used	 to	 display	 an	 alert	message	 to	 the

user,	with	buttons	underneath.

To	 show	 such	 a	 dialog	 in	 Flutter,	 you	 invoke	 the	 ‘showDialog’
method.	 	 This	 method	 then	 displays	 a	 dialog	 above	 the	 current
contents	 of	 the	 app.	This	method	 takes	 a	 builder,	which	 in	 this	 case
returns	 an	 instance	 of	 the	SimpleDialog.	This	method	 also	 returns	 a
[Future]	 that	 resolves	 to	 the	 value	 (if	 any)	 that	was	 selected	 on	 the
dialog.	 Remember	 that	 Futures	 are	 covered	 in	 the	 ‘More	Advanced
Dart’	Chapter.
AlertDialog	Constructor	Properties
All	 these	 properties	 are	 optional.	 However,	 if	 you	 don’t	 supply

anything	then	nothing	will	come	up!
	

Name Description

title Title.
content Message	or	content.
actions Buttons
Example	–	‘alert_dialog’
This	app	is	the	same	as	the	default	Flutter	app,	except	that	it	asks

you	to	confirm	when	you	hit	the	‘+’	floating	button.
	

Source	Code
import	'dart:async';

import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),

home:	new	HomeWidget(title:	'Flutter	Demo	Home	Page'),
);

}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
int	_counter	=	0;

Future<bool>	_showConfirmDialog()	async	{
return	await	showDialog<bool>(

context:	context,
builder:	(BuildContext	context)	{
return	AlertDialog(
title:	const	Text('Confirm'),
content:	const	Text('Are	you	sure	you	want	to	increment	the	'

'counter?'),
actions:	<Widget>[
FlatButton(
onPressed:	()	{
Navigator.pop(context,	true);

},
child:	const	Text('Yes'),

),
FlatButton(
onPressed:	()	{
Navigator.pop(context,	false);

},
child:	const	Text('No'),

)
],

);
});

}

void	_incrementCounter()	{
_showConfirmDialog().then((result)	{
if	(result	==	true)	{
setState(()	{
_counter++;

});
}

});
}

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text(widget.title),

),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
new	Text(
'You	have	pushed	the	button	this	many	times:',

),
new	Text(
'$_counter',
style:	Theme.of(context).textTheme.display1,

),
],

),
),
floatingActionButton:	new	FloatingActionButton(
onPressed:	_incrementCounter,
tooltip:	'Increment',
child:	new	Icon(Icons.add),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build

methods.
);

}
}

SimpleDialog
A	 simple	 material	 design	 dialog	 used	 to	 offer	 the	 user	 a	 choice

between	several	options.	A	simple	dialog	has	an	optional	 title	 that	 is
displayed	above	the	choices.

To	 show	 such	 a	 dialog	 in	 Flutter,	 you	 invoke	 the	 ‘showDialog’
method.	 	 This	 method	 then	 displays	 a	 dialog	 above	 the	 current
contents	 of	 the	 app.	This	method	 takes	 a	 builder,	which	 in	 this	 case
returns	 an	 instance	 of	 the	SimpleDialog.	This	method	 also	 returns	 a
[Future]	 that	 resolves	 to	 the	 value	 (if	 any)	 that	was	 selected	 on	 the
dialog.	 Remember	 that	 Futures	 are	 covered	 in	 the	 ‘More	Advanced
Dart’	Chapter.
SimpleDialog	Constructor	Properties
All	 these	 properties	 are	 optional.	 However,	 if	 you	 don’t	 supply

anything	then	nothing	will	come	up!
	

Name Description
title Title.
children List	of	Widgets,	typically	SimpleDialogOptions.
Example	–	‘simple_dialog’
This	app	shows	a	GridView	with	kitten	images.	It	allows	the	user

to	 select	 how	 the	 kitten	 images	 are	 fitted	 into	 their	 available	 screen
space.

Source	Code
import	'dart:async';

import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Simple	Dialog',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'Simple	Dialog'),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);
final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
BoxFit	_boxFit	=	BoxFit.cover;

void	_showBoxFitDialog()	async	{
BoxFit	boxFit	=	await	showDialog<BoxFit>(

context:	context,
builder:	(BuildContext	context)	{
return	SimpleDialog(
title:	const	Text('Select	Box	Fit'),
children:	<Widget>[
SimpleDialogOption(
onPressed:	()	{
Navigator.pop(context,	BoxFit.cover);

},
child:	const	Text('Cover'),

),
SimpleDialogOption(
onPressed:	()	{
Navigator.pop(context,	BoxFit.contain);

},
child:	const	Text('Contain'),

),
SimpleDialogOption(
onPressed:	()	{
Navigator.pop(context,	BoxFit.fill);

},
child:	const	Text('Fill'),

),
SimpleDialogOption(
onPressed:	()	{
Navigator.pop(context,	BoxFit.fitHeight);

},
child:	const	Text('Fit	Height'),

),
SimpleDialogOption(

onPressed:	()	{
Navigator.pop(context,	BoxFit.fitWidth);

},
child:	const	Text('Fit	Width'),

),
SimpleDialogOption(
onPressed:	()	{
Navigator.pop(context,	BoxFit.scaleDown);

},
child:	const	Text('Scale	Down'),

),
SimpleDialogOption(
onPressed:	()	{
Navigator.pop(context,	BoxFit.none);

},
child:	const	Text('None'),

),
],

);
});

if	(boxFit	!=	null)	{
//	not	cancelled
setState(()	{
_boxFit	=	boxFit;

});
}

}

@override
Widget	build(BuildContext	context)	{
List<Widget>	kittenTiles	=	[];
for	(int	i	=	200;	i	<	1000;	i	+=	100)	{
String	imageUrl	=	"http://placekitten.com/200/${i}";
kittenTiles.add(GridTile(child:	 Image.network(imageUrl,	 fit:

_boxFit)));
}
return	Scaffold(
appBar:	AppBar(
title:	Text("${widget.title}:	${_boxFit}"),

),
body:	OrientationBuilder(builder:	(context,	orientation)	{
return	GridView.count(

crossAxisCount:	(orientation	==	Orientation.portrait)	?	2	:	3,
childAspectRatio:	1.0,
mainAxisSpacing:	1.0,
crossAxisSpacing:	1.0,
children:	kittenTiles);

}),
floatingActionButton:	new	FloatingActionButton(
onPressed:	_showBoxFitDialog,
child:	new	Icon(Icons.select_all),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build
methods.

);
}
}

Custom	Dialog	Widget
You	 can	 build	 your	 own	 Widget	 and	 make	 it	 visible	 the

‘showDialog’	method.
Your	 custom	 dialog	 widget	 will	 be	 the	 child	 of	 the	 boilerplate

Dialog	Widget:

GridOptions	gridOptions	=	await	showDialog<GridOptions>(
context:	context,
builder:	(BuildContext	context)	{
return	Dialog(child:	CustomDialogWidget(this._gridOptions));

});
	

Remember	that	your	code	will	need	to	wait	for	the	dialog’s	Future
to	complete	in	order	to	get	data	back	from	it.	Your	code	in	the	custom
dialog	 Widget	 will	 call	 Navigator.pop(data)	 to	 pass	 this	 data	 back
once	the	it’s	closed.

One	 thing	 I	have	noticed	 from	doing	custom	dialogs	 in	Flutter	 is
that	 sometimes	TextFields	do	not	work	well	 in	 them.	You	 tap	 into	a

TextField	 and	 it	 flashes	 the	 keyboard	 then	 it	 disappears.	 If	 this
happens	then	the	fix	for	this	is	changing:

final	_formKey	=	GlobalKey<FormState>();
to
static	final	_formKey	=	GlobalKey<FormState>();

Example	–	‘custom_dialog_gridview_settings’
This	app	shows	the	grid	of	cats.	It	has	a	button	that	opens	a	dialog

of	the	grid	options	so	that	 the	user	can	change	the	appearance	of	the
grid.

Source	Code
import	'dart:async';

import	'package:flutter/material.dart';

void	main()	=>	runApp(new	GridViewApp());

class	GridOptions	{
int	_crossAxisCountPortrait;
int	_crossAxisCountLandscape;
double	_childAspectRatio;

double	_padding;
double	_spacing;

GridOptions(this._crossAxisCountPortrait,
this._crossAxisCountLandscape,

this._childAspectRatio,	this._padding,	this._spacing);

GridOptions.copyOf(GridOptions	gridOptions)	{
this._crossAxisCountPortrait	=	gridOptions._crossAxisCountPortrait;
this._crossAxisCountLandscape	 =

gridOptions._crossAxisCountLandscape;
this._childAspectRatio	=	gridOptions._childAspectRatio;
this._padding	=	gridOptions._padding;
this._spacing	=	gridOptions._spacing;

}

@override
String	toString()	{
return	 'GridOptions{_crossAxisCountPortrait:

$_crossAxisCountPortrait,	 _crossAxisCountLandscape:
$_crossAxisCountLandscape,	 _childAspectRatio:	 $_childAspectRatio,
_padding:	$_padding,	_spacing:	$_spacing}';
}
}

class	GridViewApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}
}

class	CustomDialogWidget	extends	StatefulWidget	{
GridOptions	_gridOptions;
CustomDialogWidget(this._gridOptions)	:	super();

@override
_CustomDialogWidgetState	createState()	=>

new
_CustomDialogWidgetState(GridOptions.copyOf(this._gridOptions));

}

class	_CustomDialogWidgetState	extends	State<CustomDialogWidget>
{
GridOptions	_gridOptions;

_CustomDialogWidgetState(this._gridOptions);

@override
Widget	build(BuildContext	context)	{
return	Container(

height:	400.0,
width:	250.0,
child:

Column(mainAxisAlignment:	 MainAxisAlignment.spaceAround,
children:	<

Widget>[
Text("Grid	Options",

style:	TextStyle(fontSize:	20.0,	fontWeight:	FontWeight.bold)),
Row(mainAxisAlignment:	 MainAxisAlignment.center,	 children:

<Widget>[
Spacer(),
Text("Cross	Axis	Count	Portrait"),
Spacer(),
new	DropdownButton<int>(
value:	_gridOptions._crossAxisCountPortrait,
items:	<int>[2,	3,	4,	5,	6].map((int	value)	{
return	new	DropdownMenuItem<int>(
value:	value,
child:	new	Text(value.toString()),

);

}).toList(),
onChanged:	(newValue)	{
setState(()	{
_gridOptions._crossAxisCountPortrait	=	newValue;

});
},

),
Spacer(),

]),
Row(mainAxisAlignment:	 MainAxisAlignment.center,	 children:

<Widget>[
Spacer(),
Text("Cross	Axis	Count	Landscape"),
Spacer(),
new	DropdownButton<int>(
value:	_gridOptions._crossAxisCountLandscape,
items:	<int>[2,	3,	4,	5,	6].map((int	value)	{
return	new	DropdownMenuItem<int>(
value:	value,
child:	new	Text(value.toString()),

);
}).toList(),
onChanged:	(newValue)	{
setState(()	{
_gridOptions._crossAxisCountLandscape	=	newValue;

});
},

),
Spacer(),

]),
Row(mainAxisAlignment:	 MainAxisAlignment.center,	 children:

<Widget>[
Spacer(),
Text("Aspect	Ratio"),
Spacer(),
new	DropdownButton<double>(
value:	_gridOptions._childAspectRatio,
items:	<double>[1.0,	1.5,	2.0,	2.5].map((double	value)	{
return	new	DropdownMenuItem<double>(

value:	value,
child:	new	Text(value.toString()),

);
}).toList(),
onChanged:	(newValue)	{
setState(()	{
_gridOptions._childAspectRatio	=	newValue;

});
},

),
Spacer(),

]),
Row(mainAxisAlignment:	 MainAxisAlignment.center,	 children:

<Widget>[
Spacer(),
Text("Padding"),
Spacer(),
new	DropdownButton<double>(
value:	_gridOptions._padding,
items:

<double>[1.0,	2.0,	4.0,	8.0,	16.0,	32.0].map((double	value)	{
return	new	DropdownMenuItem<double>(
value:	value,
child:	new	Text(value.toString()),

);
}).toList(),
onChanged:	(newValue)	{
setState(()	{
_gridOptions._padding	=	newValue;

});
},

),
Spacer(),

]),
Row(mainAxisAlignment:	 MainAxisAlignment.center,	 children:

<Widget>[
Spacer(),
Text("Spacing"),
Spacer(),

new	DropdownButton<double>(
value:	_gridOptions._spacing,
items:

<double>[1.0,	2.0,	4.0,	8.0,	16.0,	32.0].map((double	value)	{
return	new	DropdownMenuItem<double>(
value:	value,
child:	new	Text(value.toString()),

);
}).toList(),
onChanged:	(newValue)	{
setState(()	{
_gridOptions._spacing	=	newValue;

});
},

),
Spacer(),

]),
FlatButton(

child:	Text("Apply"),
onPressed:	()	=>	Navigator.pop(context,	_gridOptions))

]));
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
List<Widget>	_kittenTiles	=	[];
GridOptions	_gridOptions	=	GridOptions(2,	3,	1.0,	4.0,	4.0);

_HomeWidgetState()	:	super()	{
for	(int	i	=	200;	i	<	1000;	i	+=	100)	{
String	imageUrl	=	"http://placekitten.com/200/${i}";
_kittenTiles.add(GridTile(

header:	GridTileBar(
title:	Text("Cats",	style:	TextStyle(fontWeight:	FontWeight.bold)),
backgroundColor:	Color.fromRGBO(0,	0,	0,	0.5),

),
footer:	GridTileBar(

title:	Text("How	cute",
textAlign:	TextAlign.right,
style:	TextStyle(fontWeight:	FontWeight.bold))),

child:	Image.network(imageUrl,	fit:	BoxFit.cover)));
}

}

void	_showGridOptionsDialog()	async	{
GridOptions	gridOptions	=	await	showDialog<GridOptions>(

context:	context,
builder:	(BuildContext	context)	{
return	Dialog(child:	CustomDialogWidget(this._gridOptions));

});
if	(gridOptions	!=	null)	{
setState(()	{
_gridOptions	=	gridOptions;

});
}

}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text("GridView"),

),
body:	OrientationBuilder(builder:	(context,	orientation)	{
return	GridView.count(

crossAxisCount:	(orientation	==	Orientation.portrait)
?	_gridOptions._crossAxisCountPortrait
:	_gridOptions._crossAxisCountLandscape,

childAspectRatio:	_gridOptions._childAspectRatio,
padding:	EdgeInsets.all(_gridOptions._padding),
mainAxisSpacing:	_gridOptions._spacing,

crossAxisSpacing:	_gridOptions._spacing,
children:	_kittenTiles);

}),
bottomNavigationBar:	Container(

child:	 Text(_gridOptions.toString()),	 padding:
EdgeInsets.all(20.0)),

floatingActionButton:	new	FloatingActionButton(
onPressed:	_showGridOptionsDialog,
tooltip:	'Try	more	grid	options',
child:	new	Icon(Icons.refresh),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build
methods.

);
}
}

Dismissible
This	Widget	is	useful	if	you	want	to	be	able	to	swipe	left	on	lists	to

delete	items.	
You	can	also	specify	other	swiping	directions	in	the	constructor.

Example	–	‘dismissible’
This	app	shows	a	list	of	cats.	You	can	swipe	left	on	a	cat	to	delete

him/her.

Source	Code
import	'dart:math';

import	'package:flutter/material.dart';

void	main()	=>	runApp(MyApp());

class	Cat	{
String	imageSrc;
String	name;
int	age;
int	votes;

Cat(this.imageSrc,	this.name,	this.age,	this.votes);

operator	==(other)	=>	(other	is	Cat)	&&	(imageSrc	==	other.imageSrc);

int	get	hashCode	=>	imageSrc.hashCode;
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{

return	MaterialApp(
title:	'Cat	List',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	MyHomePage(title:	'The	Cat	List'),

);
}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_MyHomePageState	createState()	=>	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
final	GlobalKey<AnimatedListState>	_listKey	=	GlobalKey();
List<String>	CAT_NAMES	=	[
"Tom",
"Oliver",
"Ginger",
"Pontouf",
"Madison",
"Bubblita",
"Bubbles"

];

Random	_random	=	Random();
List<Cat>	_cats	=	[];

int	next(int	min,	int	max)	=>	min	+	_random.nextInt(max	-	min);

_MyHomePageState()	:	super()	{
for	(int	i	=	200;	i	<	250;	i	+=	10)	{
_cats.add(Cat("http://placekitten.com/200/${i}",

CAT_NAMES[next(0,	6)],

next(1,	32),	0));
}

}

_buildItem(Cat	cat,	{int	index	=	-1})	{
return	ListTile(

key:	Key("ListTile:${cat.hashCode.toString()}"),
leading:	CircleAvatar(

backgroundImage:	NetworkImage(cat.imageSrc),	radius:	32.0),
title:	Text(cat.name,	style:	TextStyle(fontSize:	25.0)),
subtitle:	Text("This	little	thug	is	${cat.age}	year(s)	old.",

style:	TextStyle(fontSize:	15.0)));
}

_onDismissed(int	index)	{
//	If	you	do	the	code	below
//	setState(()	{
//			_cats.remove(index);
//	});
//	then	you	get	the	following	error:
//	 This	 MyHomePage	 widget	 cannot	 be	 marked	 as	 needing	 to	 build

because	the	framework	is	already	in	the
//	process	of	building	widgets.	A	widget	can	be	marked	as	needing	to	be

built	during	the	build	phase
//	 only	 if	 one	 of	 its	 ancestors	 is	 currently	 building.	 This	 exception	 is

allowed	because	the	framework
//	builds	parent	widgets	before	children,	which	means	a	dirty	descendant

will	always	be	built.
//	Otherwise,	the	framework	might	not	visit	this	widget	during	this	build

phase.
//
//	This	works:
_cats.remove(index);

}

Future<bool>	_confirmDismiss(DismissDirection	direction)	async{
return	await	showDialog<bool>(

context:	context,

builder:	(BuildContext	context)	{
return	AlertDialog(
title:	const	Text('Confirm'),
content:	Text('Are	you	sure	you	want	to	delete	this	cat?\n\nHe	is

cute	you	know...'),
actions:	<Widget>[
FlatButton(
onPressed:	()	{
Navigator.pop(context,	true);

},
child:	const	Text('Yes'),

),
FlatButton(
onPressed:	()	{
Navigator.pop(context,	false);

},
child:	const	Text('No'),

)
],

);
});

}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(

appBar:	AppBar(
title:	Text(widget.title),

),
body:	ListView.builder(

itemCount:	_cats	!=	null	?	_cats.length	:	0,
itemBuilder:	(context,	index)	{
Cat	cat	=	_cats[index];
return	Dismissible(

confirmDismiss:	_confirmDismiss,
direction:	DismissDirection.endToStart,
onDismissed:	_onDismissed(index),
key:	ValueKey(cat.hashCode.toString()),
child:	ListTile(

leading:	CircleAvatar(
backgroundImage:	NetworkImage(cat.imageSrc),
radius:	32.0),

title:	Text('${cat.name}'),
subtitle:	Text('Age:	${cat.age}')));

}));
}
}

ExpansionPanelList	&	ExpansionPanel
These	two	widgets	are	designed	to	work	together	 to	present	a	 list

of	 expandable	 panels	 to	 the	 user.	 They	 help	 you	 build	 a	 UI	 with
expanding	lists	but	they	don’t	hold	the	state	for	you.

You	 have	 to	manage	 the	 state	 of	what	was	 expanded	 /	 collapsed
and	rebuild	the	ExpansionPanelList	&	ExpansionPanels	everytime	the
state	changes.	This	 sounds	 slow	but	 it’s	not!	Check	out	 the	example
below	to	see	an	example	of	this.

ExpansionPanelList
This	does	the	following:

Lays	out	the	child	ExpansionPanels.
Provides	 expansionCallback	 constructor	 argument	 to	 which
you	 can	 add	 provide	 to	 respond	 to	 the	 user	 attempting	 to
expand	 /	 collapse	 panels,	 managing	 the	 state	 and	 forcing	 a
repaint	once	a	panel	is	expanded	or	collapsed.
Animations.

ExpansionPanel
This	does	the	following:

Display	the	header	with	an	arrow	next	to	it.
Displays	the	body	if	the	‘isExpanded’	constructor	argument	is

set	to	true.
When	the	user	clicks	on	header	arrow	to	expand	or	collapse,
this	fires	the	expansionCallback	in	the	ExpansionPanelList.

Example	–	‘expansion_panel’
This	 app	 shows	 Frequently	Asked	Questions	with	 arrows.	When

the	user	taps	the	arrow	on	a	question,	the	panel	is	expanded	to	show
the	answer.

	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	ExpansionPanelData	{
String	_title;
String	_body;
bool	_expanded;

ExpansionPanelData(this._title,	this._body,	this._expanded);

String	get	title	=>	_title;

@override
String	toString()	{
return	 'ExpansionPanelData{_title:	 $_title,	 _body:	 $_body,	 _expanded:

$_expanded}';
}

String	get	body	=>	_body;

bool	get	expanded	=>	_expanded;

set	expanded(bool	value)	{
_expanded	=	value;

}
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(

title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.green,

),
home:	new	HomeWidget(),
showPerformanceOverlay:	true);

}
}

class	HomeWidget	extends	StatefulWidget	{
@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState([

ExpansionPanelData(
"Can	I	backup	my	data?",
"dsfuysdiu	fudsy	fiusdyf	"
"usdyf	iudsyf	udsyfiuysd	ufyuisdyfi	sduiyfiusdyf	dsyui	u",
false),

ExpansionPanelData(
"How	can	I	increase	my	space?",

"sydufy	"
"dsuiyfuidysu	fusyufsdyuif	ysudiy	fuydsufy	suyf	udsy	fu",
false),

ExpansionPanelData(
"How	do	I	cancel?",
"ddsufysd	yfds	fsduyf	sdyf	"
"sudyuy	fsudyf	sydyf	dsy	fdsuyf	udsufy	udsyfdsfyuysdf	uyud",
false),

ExpansionPanelData(
"How	do	I	change	language?",
"udsuf	sdifuu	fdsuif	"
"uf	 dsufdisu	 fius	 wewqw	 qeqweqwyiquuiqweqwewqe	 weewe

wewe",
false),

ExpansionPanelData(
"How	do	I	search?",
"ooioio	ioi	oio	i	odsfudsifsdf"
"	dfdsfdsui	idufu	dsiuf	isduf	iduf	idsu	fisduf	iusidf	",
false),

ExpansionPanelData(
"How	do	I	view	on	other	devices?",
"idusdf	isu	"
"idsu	idsu	fisduf	usyfuedy	ewuyduyed	uyeu	dyeudy	uweyu",
false),

ExpansionPanelData(
"How	do	I	view	my	history",
"iirewy	syfudy	fu	"
"yfsduyfds	yfdsuyf	udsfydsufy	sduyf	dsuyf	udsyf	udsyuee",
false),

ExpansionPanelData(
"Is	my	subscription	cost	going	to	go	up?",
"wieureiy	dys	udsyyf	"
"dsufy	dusyfudsy	fuysdu	udsyuyfudsyfuewyrwreooioou		uiy",
false),

]);
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
//	Track	expansion	panels,	including	expanded	true/false;

List<ExpansionPanelData>	_expansionPanelData;

_HomeWidgetState(this._expansionPanelData);

_onExpansion(int	panelIndex,	bool	isExpanded)	{
//	Toggle	the	expanded	state.	Using	setState	will	force	'build'	to	fire.
setState(()	{
_expansionPanelData[panelIndex].expanded	=

!(_expansionPanelData[panelIndex].expanded);
});

}

@override
Widget	build(BuildContext	context)	{
//	Build	the	expansion	panels	from	scratch	every	time	the	ui	builds.
//	This	is	not	as	expensive	as	it	sounds.
List<ExpansionPanel>	expansionPanels	=	[];
for	(int	i	=	0,	ii	=	_expansionPanelData.length;	i	<	ii;	i++)	{
var	expansionPanelData	=	_expansionPanelData[i];
expansionPanels.add(ExpansionPanel(

headerBuilder:	(BuildContext	context,	bool	isExpanded)	{
return	Padding(

padding:	EdgeInsets.all(20.0),
child:	Text(expansionPanelData.title,

style:	TextStyle(
fontSize:	20.0,	fontWeight:	FontWeight.bold)));

},
body:	Padding(

padding:	EdgeInsets.all(20.0),
child:	Text(expansionPanelData.body,

style:
TextStyle(fontSize:	16.0,	fontStyle:	FontStyle.italic))),

isExpanded:	expansionPanelData.expanded));
}
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("FAQs"),

),
body:	SingleChildScrollView(

child:	Container(
margin:	const	EdgeInsets.all(24.0),
child:	new	ExpansionPanelList(

children:	expansionPanels,	expansionCallback:	_onExpansion),
)));

}
}

GridView
Grids	are	very	commonly-used	on	devices	 to	present	many	 items

of	 information	 in	 a	 small	 screen	 area	 in	 a	 clear	 manner.	 Typically,
your	 launch	 (or	 home)	 screen	 will	 be	 presented	 using	 a	 grid,	 see
below.

Notice	how	each	Grid	item	is	of	a	uniform	size	(unlike	a	staggered
grid,	see	below).

Grids	 are	often	 fluid	–	users	 can	view	a	 certain	number	of	 items
per	grid	row	in	portrait	mode	and	a	different	number	of	items	per	grid
row	in	landscape	mode.

The	Flutter	GridView	Widget	enables	developers	 to	quickly	build
grids.	The	GridView	Widget	is	very	flexible	and	here	are	some	of	the

more	 popular	 options	 that	 are	 available	 as	 properties	 in	 the
constructor:
	

crossAxisCount	–	number	of	items	per	grid	row
childAspectRatio	 –	 sets	 the	 aspect	 ratio	 of	 each	 item	 in	 the
grid
padding	–	padding	around	the	grid
mainAxisSpacing	 –	 spacing	 between	 items	 in	 the	 grid	 on
main	axix
crossAxisSpacing	 –	 spacing	 between	 items	 in	 the	 grid	 on
cross	axis
children	–	array	of	child	widgets	to	be	displayed	as	items

Builder
The	 GridView	 has	 a	 builder	 to	 improve	 the	 performance	 of	 the

Grid	 when	 you	 have	 to	 display	many	 items.	 This	 is	 covered	 in	 the
Builder	chapter.

GridTile
You	 don’t	 have	 to	 use	 GridTiles	 with	 GridViews	 but	 they	 are

useful	 because	 they	 can	 display	 headers	 and	 footers	 (using
GridTileBars)	 for	 each	 item.	 Really	 useful	 when	 you	 want	 to	 add
some	text,	description	or	price	to	each	item.

GridTileBar
Used	to	show	headers	or	footers	on	grid	tiles.		

Example	–	‘gridview_app’
This	is	an	app	that	shows	kittens	on	a	grid.	It	has	a	refresh	button

that	enables	you	to	cycle	through	some	example	grid	options	and	see
how	 they	 affect	 the	 appearance	 of	 the	 grid.	 Also	 note	 that	 the	 grid
always	 works	 responsively,	 changing	 the	 number	 of	 items	 per	 grid

row	 when	 the	 device	 changes	 from	 portrait	 to	 landscape	 and	 visa-
versa.	This	app	also	uses	GridTile	and	Grid	TileBar	widgets.

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	GridViewApp());

class	GridOptions	{
int	_crossAxisCountPortrait;
int	_crossAxisCountLandscape;
double	_childAspectRatio;
double	_padding;
double	_spacing;

GridOptions(this._crossAxisCountPortrait,
this._crossAxisCountLandscape,

this._childAspectRatio,	this._padding,	this._spacing);

@override
String	toString()	{
return	 'GridOptions{_crossAxisCountPortrait:

$_crossAxisCountPortrait,	 _crossAxisCountLandscape:
$_crossAxisCountLandscape,	 _childAspectRatio:	 $_childAspectRatio,

_padding:	$_padding,	_spacing:	$_spacing}';
}
}

class	GridViewApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'Flutter	Demo	Home	Page'),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
List<Widget>	_kittenTiles	=	[];
int	_gridOptionsIndex	=	0;
List<GridOptions>	_gridOptions	=	[
GridOptions(2,	3,	1.0,	10.0,	10.0),
GridOptions(3,	4,	1.0,	10.0,	10.0),
GridOptions(4,	5,	1.0,	10.0,	10.0),
GridOptions(2,	3,	1.0,	10.0,	10.0),
GridOptions(2,	3,	1.5,	10.0,	10.0),
GridOptions(2,	3,	2.0,	10.0,	10.0),
GridOptions(2,	3,	1.0,	10.0,	10.0),
GridOptions(2,	3,	1.5,	20.0,	10.0),

GridOptions(2,	3,	2.0,	30.0,	10.0),
GridOptions(2,	3,	1.0,	10.0,	10.0),
GridOptions(2,	3,	1.5,	10.0,	20.0),
GridOptions(2,	3,	2.0,	10.0,	30.0),

];

_HomeWidgetState()	:	super()	{
for	(int	i	=	200;	i	<	1000;	i	+=	100)	{
String	imageUrl	=	"http://placekitten.com/200/${i}";
_kittenTiles.add(GridTile(

header:	GridTileBar(
title:	Text("Cats",	style:	TextStyle(fontWeight:	FontWeight.bold)),
backgroundColor:	Color.fromRGBO(0,	0,	0,	0.5),

),
footer:	GridTileBar(

title:	Text("How	cute",
textAlign:	TextAlign.right,
style:	TextStyle(fontWeight:	FontWeight.bold))),

child:	Image.network(imageUrl,	fit:	BoxFit.cover)));
}

}

void	_tryMoreGridOptions()	{
setState(()	{
_gridOptionsIndex++;
if	(_gridOptionsIndex	>=	(_gridOptions.length	-	1))	{
_gridOptionsIndex	=	0;

}
});

}

@override
Widget	build(BuildContext	context)	{
GridOptions	options	=	_gridOptions[_gridOptionsIndex];
return	Scaffold(
appBar:	AppBar(
title:	Text("GridView"),

),
body:	OrientationBuilder(builder:	(context,	orientation)	{

return	GridView.count(
crossAxisCount:	(orientation	==	Orientation.portrait)

?	options._crossAxisCountPortrait
:	options._crossAxisCountLandscape,

childAspectRatio:	options._childAspectRatio,
padding:	EdgeInsets.all(options._padding),
mainAxisSpacing:	options._spacing,
crossAxisSpacing:	options._spacing,
children:	_kittenTiles);

}),
bottomNavigationBar:	Container(

child:	Text(options.toString()),	padding:	EdgeInsets.all(20.0)),
floatingActionButton:	new	FloatingActionButton(
onPressed:	_tryMoreGridOptions,
tooltip:	'Try	more	grid	options',
child:	new	Icon(Icons.refresh),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build
methods.

);
}
}

Further	Reading
This	is	an	excellent	article	about	writing	staggered	gridviews.
These	are	excellent	at	displaying	items	of	different	sizes.

https://medium.com/@lets4r/flutorial-create-a-staggered-
gridview-9c881a9b0b98

PopupMenuButton
Displays	 a	 menu	 when	 pressed	 and	 calls	 ‘onSelected’	 when	 the

menu	is	dismissed	because	an	item	was	selected.	The	value	passed	to
‘onSelected’	is	the	value	of	the	selected	menu	item.

Example	–	‘popup_menu_button’

https://medium.com/@lets4r/flutorial-create-a-staggered-gridview-9c881a9b0b98

This	app	is	similar	to	the	default	Flutter	app	except	that	it	enables
the	user	to	increment	the	counter	using	the	menu.	The	menu	also	has
an	exit	option	to	close	the	app.

	

Source	Code
import	'package:flutter/material.dart';
import	'package:flutter/services.dart';

void	main()	=>	runApp(new	MyApp());

enum	PopupMenuAction	{	add1,	add10,	add100,	exit	}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'Flutter	Demo	Home	Page'),

);

}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);
final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
int	_counter	=	0;

void	_increment(int	by)	{
setState(()	{
_counter	+=	by;

});
}

void	_onPopupMenuSelected(PopupMenuAction	item)	{
if	(PopupMenuAction.exit	==	item)	{
SystemChannels.platform.invokeMethod('SystemNavigator.pop');

}	else	{
_increment(PopupMenuAction.add1	==	item

?	1
:	PopupMenuAction.add10	==	item	?	10	:	100);

}
}

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(widget.title),
actions:	<Widget>[
PopupMenuButton<PopupMenuAction>(
onSelected:	_onPopupMenuSelected,
itemBuilder:	(BuildContext	context)	=>

<PopupMenuEntry<PopupMenuAction>>[
const	PopupMenuItem<PopupMenuAction>(
value:	PopupMenuAction.add1,
child:	Text('+1'),

),
const	PopupMenuItem<PopupMenuAction>(
value:	PopupMenuAction.add10,
child:	Text('+10'),

),
const	PopupMenuItem<PopupMenuAction>(
value:	PopupMenuAction.add100,
child:	Text('+100'),

),
const	PopupMenuDivider(),
const	PopupMenuItem<PopupMenuAction>(
value:	PopupMenuAction.exit,
child:	Text('Exit'),

),
],

)
],

),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
new	Text(
'You	have	pushed	the	button	this	many	times:',

),
new	Text(
'$_counter',
style:	Theme.of(context).textTheme.display1,

),
],

),
));

}
}

Radio
This	 is	a	material	design	button	that	allows	the	user	 to	select	one

item	from	a	group	of	items.
We	will	cover	this	in	detail	in	the	Forms	chapter.

SnackBar
Very	useful	for	showing	quick	messages	to	the	user,	things	like:

Customer	deleted.
Error	messages.

Snackbars	 close	 themselves,	 so	 they	don’t	 leave	 any	unnecessary
clutter	in	the	UI.

Example	–	‘snack_bar’
This	app	has	a	button	to	simulate	an	error	being	displayed	with	a

Snack	Bar.

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomePageWidget(),

);
}
}

class	HomePageWidget	extends	StatelessWidget	{
HomePageWidget({Key	key})	:	super(key:	key);
final	 GlobalKey<ScaffoldState>	 _scaffoldKey	 =

GlobalKey<ScaffoldState>();

_showSnackBar()	{
_scaffoldKey.currentState.showSnackBar(SnackBar(
content:	Text('An	unexpected	error	occurred:	Error!'),

));
}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(

key:	_scaffoldKey,
appBar:	new	AppBar(
title:	new	Text("Snackbar"),

),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
new	Text(
'Content	goes	here.',

),
],

),
),
floatingActionButton:	new	FloatingActionButton.extended(

icon:	Icon(Icons.explicit),
label:	Text("Throw	Error"),
onPressed:	()	=>	_showSnackBar(),
tooltip:	'Throw	Error'));

}
}

Spacer
Spacers	can	be	used	to	tune	the	spacing	between	widgets	in	a	Flex

container,	 like	 Row	 or	 Column.	 Spacers	 can	 be	 used	 vertically	 or
horizontally.

Spacers	sometimes	behavior	differently	from	expected	as	they	are
not	of	a	 fixed	width.	They	attempt	 to	use	up	all	 the	available	 space,
using	the	flex	property	in	a	similar	manner	to	other	Widgets.

Flex	Property
The	 ‘flex’	 property	 (and	 constructor	 argument)	 lets	 you	 specify

their	 relative	 size.	 Example:	 a	 Spacer(flex:5)	 will	 be	 5	 times	 wider
than	a	Spacer(flex:1).

Exercise	–	‘spacer’
We	create	a	basic	app	with	the	toolbar	icons	spaced	out	using	the

Spacer	Widget.

You	can	specify	the	‘title’	as	a	toolbar	property.	However,	if
you	specify	the	‘actions’	property	in	the	toolbar	then	the	title
passed	 in	 by	 the	 ‘title’	 property	 becomes	 invisible.	 So,	 we
add	the	title	text	to	the	list	of	widgets	in	‘actions’	property.
We	 use	 several	 Spacers	 in	 the	 list	 of	 widgets	 in	 ‘actions’

property.	Note	 that	 all	 the	 spacers	 are	 the	 same	 size,	 except
the	one	after	 the	 title	 text,	which	has	a	flex	of	5.	This	value
tells	it	to	make	it	5	times	as	wide	as	the	others.

	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomePageWidget(),

);
}
}

class	HomePageWidget	extends	StatelessWidget	{
HomePageWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(actions:	<Widget>[
Spacer(),
Center(

child:	Text(
"Spacer",
style:	TextStyle(fontSize:	20.0),

)),
Spacer(flex:	5),
IconButton(icon:	Icon(Icons.settings_overscan),	onPressed:	()	=>

{}),
Spacer(),
IconButton(icon:	Icon(Icons.settings_overscan),	onPressed:	()	=>

{})
]),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
new	Text(
'Dummy',

)
],

),
));

}
}

Switch
This	is	a	material	design	widget	that	allows	the	user	to	select	a	yes

/	no.
We	will	cover	this	in	detail	in	the	Forms	chapter.

TabBar,	Tabs	and	TabBarView	Widgets
These	 Widgets	 are	 great	 for	 quickly	 building	 tabbed	 user-

interfaces.	Flutter	gives	all	the	Widgets	we	need	to	get	started	with	a
tabbed	interface	in	just	a	couple	of	minutes.

However,	 you	need	 to	bear	 in	mind	 that	 these	 tabs	will	 probably
not	match	you	are	expecting	to	see	on	iOS	devices,	as	these	Widgets
follow	the	Google	Material	design	language:

TabBar	&	TabBarView	vs	iOS	Tabs
TabBar	&

TabBarView iOS	Tabs

Selected	item	text
color None Blue

Selected	line
(indicator) Blue None

Padding More Less

Instructions:
1.	Add	a	TabController.	The	Controller	 serves	 to	 link	 the	TabBar

and	TabBarView	 together.	When	 creating	 a	TabBar,	 you	must	 either
provide	a	TabController	using	 the	"controller"	property,	or	you	must
ensure	 that	 there	 is	 a	DefaultTabController	 above	 the	TabBar	 in	 the
Widget	hierarchy.

2.	Add	a	TabBar	at	the	top	or	the	bottom	of	the	Widget.	This	is	the
Widget	 that	 displays	 its	 child	Widgets	 (Tabs)	 in	 a	 bar	 for	 selection
purposes.

3.	Add	a	TabBarView	to	the	main	area	of	the	Widget.

Exercise	–	‘tabs_simple’
Let’s	build	the	simplest	possible	app	with	a	simple	tabbed	interface

containing	3	cat	pictures.	Then	we	will	modify	the	tab	bar.
	

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.

Step	2	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(

primarySwatch:	Colors.blue,
),
home:	new	HomeWidget(),

);
}
}

class	Tab1	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return

Image.network("https://cdn2.thecatapi.com/images/MTY1NDA3OA.jpg");
}
}

class	Tab2	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	Image.network("https://cdn2.thecatapi.com/images/68j.jpg");

}
}

class	Tab3	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	Image.network("https://cdn2.thecatapi.com/images/ece.jpg");

}
}

class	HomeWidget	extends	StatelessWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
return	DefaultTabController(

length:	3,
child:	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Cat	Tabs"),

bottom:	TabBar(
tabs:	<Widget>[
Tab(text:	'Cat	#1',	icon:	Icon(Icons.keyboard_arrow_left)),
Tab(text:	'Cat	#2',	icon:	Icon(Icons.keyboard_arrow_up)),
Tab(text:	'Cat	#3',	icon:	Icon(Icons.keyboard_arrow_right))

],
),

),
body:	TabBarView(
children:	<Widget>[Tab1(),	Tab2(),	Tab3()],

)));
}
}

Step	3	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
Your	tabbed	interface	should	appear	at	the	top	and	look	like	this:

Step	4	–	Move	Tabs	to	Bottom
Now	let’s	amend	the	‘build’	code	to	show	the	tabs	at	the	bottom	to

make	it	look	a	bit	more	like	the	iOS	tabs.
Change	the	‘build’	method	to	the	following:
@override
Widget	build(BuildContext	context)	{
return	DefaultTabController(

length:	3,
child:	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Cat	Tabs"),

),
body:	TabBarView(
children:	<Widget>[Tab1(),	Tab2(),	Tab3()],

),
bottomNavigationBar:	Container(

child:	TabBar(labelColor:	Colors.black,	tabs:	<Widget>[
Tab(text:	'Cat	#1',	icon:	Icon(Icons.keyboard_arrow_left)),
Tab(text:	'Cat	#2',	icon:	Icon(Icons.keyboard_arrow_up)),
Tab(text:	'Cat	#3',	icon:	Icon(Icons.keyboard_arrow_right))

]))));
}

Hot-reload	your	app	and	your	tabbed	interface	should	appear	at	the
bottom	and	look	like	this:

	

Step	 5	 –	 Change	 Tab	 Styles	 To	 Look	 More
Like	iOS

Now	 let’s	amend	 the	 ‘build’	code	 to	make	 the	 tabs	at	 the	bottom
look	 even	 more	 similar	 to	 those	 on	 iOS	 tabs,	 without	 using	 the
Cupertino	Widgets.

Change	the	‘build’	method	to	the	following:
@override
Widget	build(BuildContext	context)	{
return	DefaultTabController(

length:	3,
child:	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Cat	Tabs"),

),
body:	TabBarView(
children:	<Widget>[Tab1(),	Tab2(),	Tab3()],

),

bottomNavigationBar:	Container(
child:	TabBar(

labelColor:	Colors.blue,
unselectedLabelColor:	Colors.grey,
labelStyle:	TextStyle(

color:	Colors.blue,	fontWeight:	FontWeight.w800),
indicatorColor:	Colors.white,
tabs:	<Widget>[

Tab(text:	'Cat	#1',	icon:	Icon(Icons.keyboard_arrow_left)),
Tab(text:	'Cat	#2',	icon:	Icon(Icons.keyboard_arrow_up)),
Tab(text:	'Cat	#3',	icon:	Icon(Icons.keyboard_arrow_right))

]))));
}

Hot-reload	 your	 app	 and	 your	 tabbed	 interface	 at	 the	 bottom
should	now	look	like	this:

	

Table

Introduction
The	 Table	Widget	works	well	 when	 you	 have	 dynamically-sized

components,	 generated	 from	 user	 data,	 some	 wide,	 some	 narrow.	 	
This	widget	gives	you	a	great	deal	of	control	over	column	widths	(see
below).

Column	Width	Specifiers
The	Table	Widget	has	a	‘columnWidths’	argument	available	in	the

constructor,	which	 you	 can	 populate	with	 a	map	 of	 column	 indexes
and	TableColumnWidth	objects.	Table	Column	Width	objects	can	be
any	of	the	following:	

FixedColumnWidth
FlexColumnWidth	 (attempts	 to	 take	 up	 a	 share	 of	 the	 spare
width)
FractionColumnWidth	(takes	a	fraction	of	the	width)
IntrinsicColumnWidth	 (sizes	 the	 column	 according	 to	 the
intrinsic	dimensions	of	all	the	cells	in	that	column).
MaxColumnWidth
MinColumnWidth

Example	–	‘table’
This	 example	 shows	 a	 table	 with	 differently	 sized	 columns,	 text

wrapping,	as	well	as	scrolling.
	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	TableApp());

class	TableApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatelessWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
const	TableRow	tableRow	=	TableRow(children:	[
const	Text("aaaaaaaaaaaaaaaaaaaaa",	overflow:	TextOverflow.fade),
const	Text("bbbbbbbbbbbbbbbbbbbbb",	overflow:

TextOverflow.fade),
const	Text("ccccccccccccccccccccc",	overflow:	TextOverflow.ellipsis)

]);
return	new	Scaffold(

appBar:	new	AppBar(title:	new	Text("Table")),
body:	new	Table(
children:	[
tableRow,
tableRow,
tableRow,
tableRow,
tableRow,
tableRow,
tableRow,
tableRow,
tableRow,

],
columnWidths:	const	<int,	TableColumnWidth>{

0:	FlexColumnWidth(0.1),
1:	FlexColumnWidth(0.3),
2:	FlexColumnWidth(0.6),

},
border:	TableBorder.all(),

)	//	end	table,
);

}
}

23.	Builders

Introduction
The	purpose	of	 this	chapter	 is	 to	 learn	how	to	use	Flutter	builder

classes.

If	you	go	to	the	official	Flutter	documentation	for	the	builder	class
you	see	it	has	the	following	description:

“A	platonic	widget	that	calls	a	closure	to	obtain	its	child	widget.”

What	does	that	mean?	☺

What	is	a	Builder?
The	 term	 closure	 is	 just	 another	 name	 for	 a	 lambda	 function,	 an

anonymous	method.
So,	 builder	 is	 really	 a	 lambda	 that	 acts	 similarly	 to	 the	Widget’s

build	method:

You	pass	it	a	BuildContext	and	any	other	variables	you	need
to.
It	returns	a	Widget.

How	Do	You	Use	a	Builder?
Instead	of	passing	a	Widget	back	from	your	build	method,	instead

you	 pass	 back	 an	 anonymous	 builder	 function	 that	 takes	 whatever
parameters	are	 required	 (including	 the	BuildContext)	and	spits	out	a
Widget.

Nested	Builders
You	can	nest	builders	inside	builders	and	this	(although	sometimes

complicated)	 works	 very	 well.	 There	 is	 an	 example	 in	 this	 Chapter
called	‘Multiple	Builders’,	which	uses	nested	builders.

Common	Builders

AnimatedBuilder
We	will	cover	this	builder	in	the	Animations	chapter.

GridView	Builder
Similar	 to	 the	ListView	builder.	Quite	often	you	will	end	up	with

large	dynamic	data	grids	and	you	need	to	display	them	onscreen	using
a	Grid,	even	though	the	user	may	not	scroll	all	the	way	to	the	bottom.

If	you	simply	add	a	Widget	for	each	item	in	the	grid,	you	end	up
with	 a	 huge	 amount	 of	 child	Widgets,	most	 of	which	will	 never	 be
seen.	This	is	not	efficient.

This	 is	 where	 the	 GridView	 builder	 comes	 in.	 When	 the	 user
scrolls	 down	 through	 the	 grid,	 the	 GridView	 builder	 is	 invoked	 to
create	 the	 child	 widgets	 when	 they	 are	 needed,	 not	 ahead	 of	 time.
Much	more	efficient.

You	write	a	GridView	builder	and	specify	it	to	the	GridView	in	the
‘itemBuilder’	argument	in	the	constructor.	In	the	builder	method,	you
accept	BuildContext	and	index	arguments	and	you	spit	out	a	Widget.
This	is	perfect	if	your	data	is	held	in	array	–	all	you	do	is	get	the	data
for	that	item	from	the	array	using	that	index.

There	 is	an	example	 in	 this	Chapter	called	‘Multiple	Builders’.	 It
uses	the	GridView	builder,	amongst	other	builders!

FutureBuilder
FutureBuilder	is	a	widget	that	returns	another	widget	based	on	the

Future’s	 execution	 result.	 It	 serves	 as	 a	 bridge	 between	 Futures	 and
the	Widget’s	UI.
Example	–	‘future_builder_app’

This	app	uses	a	FutureBuilder	to	calculates	a	bunch	of	timestamps
using	a	Future	computation	and	display	 it.	The	screen	 is	blank	 for	a
few	seconds	then	it	displays	a	list	of	times.	It’s	not	terribly	pretty!

		

Source	Code:
import	'dart:async';

import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Future	Builder	App',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(),

);

}
}

class	HomeWidget	extends	StatefulWidget	{
String	computeListOfTimestamps(int	count)	{
StringBuffer	sb	=	new	StringBuffer();
for	(int	i	=	0;	i	<	count;	i++)	{
sb.writeln("${i	+	1}	:	${DateTime.now()}");

}
return	sb.toString();

}

Future<String>	createFutureCalculation(int	count)	{
return	new	Future(()	{
return	computeListOfTimestamps(count);

});
}

HomeWidget({Key	key})	:	super(key:	key);

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
bool	_showCalculation	=	false;

void	_onInvokeFuturePressed()	{
setState(()	{
_showCalculation	=	!_showCalculation;

});
}

@override
Widget	build(BuildContext	context)	{
Widget	child	=	_showCalculation

?	FutureBuilder(
future:	widget.createFutureCalculation(10000),
builder:	(BuildContext	context,	AsyncSnapshot	snapshot)	{
return	Expanded(

child:	SingleChildScrollView(
child:	Text(

'${snapshot.data	==	null	?	""	:	snapshot.data}',
style:	TextStyle(fontSize:	20.0))));

})
:	Text('hit	the	button	to	show	calculation');

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Future"),

),
body:	new	Center(

child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[child])),

floatingActionButton:	new	FloatingActionButton(
onPressed:	_onInvokeFuturePressed,
tooltip:	'Invoke	Future',
child:	new	Icon(Icons.refresh),

),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build
methods.

);
}
}

ListView	Builder:
Similar	to	the	GridView	builder.	Quite	often	you	will	end	up	with

large	 dynamic	 lists	 of	 data	 and	 you	 need	 to	 display	 them	 onscreen
using	a	ListView,	even	though	the	user	may	not	scroll	through	the	list.

If	you	simply	add	a	Widget	 for	each	 item	 in	 the	 list,	you	end	up
with	 a	 huge	 amount	 of	 child	Widgets,	most	 of	which	will	 never	 be
seen.	This	is	not	efficient.

This	is	where	the	ListView	builder	comes	in.	When	the	user	scrolls
through	 the	 list,	 the	 ListView	 builder	 is	 invoked	 to	 create	 the	 child
widgets	 when	 they	 are	 needed,	 not	 ahead	 of	 time.	 Much	 more
efficient.

You	write	a	ListView	builder	and	specify	it	to	the	ListView	in	the
‘itemBuilder’	argument	in	the	constructor.	In	the	builder	method,	you
accept	BuildContext	and	index	arguments	and	you	spit	out	a	Widget.
This	is	perfect	if	your	data	is	held	in	array	–	all	you	do	is	get	the	data
for	that	item	from	the	array	using	that	index.
Example	–	‘listview_builder’
This	app	shoes	a	list	of	NASA	offices	in	the	US.	The	app	sorts	the

list	 of	 NASA	 offices	 by	 name	 in	 the	 constructor	 and	 prints	 to	 the
console	 everytime	 the	 ListView	 builder	 is	 invoked,	 so	 you	 can	 see
how	 the	 child	 widgets	 are	 built	 ‘on	 demand’.	 It	 also	 displays	 each
Nasa	Office	in	a	ListTile.

	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',

theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomeWidget(),

);
}
}

class	MyHomeWidget	extends	StatelessWidget	{
List<dynamic>	_nasaOffices	=	[
{
"Name":	"Mach	6,	High	Reynolds	Number	Facility",
"Address":	"1864	4th	St",
"City":	"Wright-Patterson	AFB",
"State":	"OH",
"ZIP":	"45433-7541",
"Country":	"US"

},

...	edited	for	bevity	…

{
"Name":	 "N206A	 -	 12	 FOOT	 PRESSURE	 WIND	 TUNNEL

AUXILIARIES	(PAPAC)",
"Address":	"Code	RC",
"City":	"Moffett	Field",
"State":	"CA",
"ZIP":	"94035",
"Country":	"US"

}
];

MyHomeWidget({Key	key})	:	super(key:	key)	{
_nasaOffices.sort((a,	b)	=>	a['Name'].compareTo(b['Name']));

}

@override
Widget	build(BuildContext	context)	{
ListView	builder	=	ListView.builder(

itemCount:	_nasaOffices.length,
itemBuilder:	(context,	index)	{
print('invoking	itemBuilder	for	row	${index}');
var	nasaOffice	=	_nasaOffices[index];
return	ListTile(

title:	Text('${nasaOffice['Name']}'),
subtitle:	Text('${nasaOffice['Address']},	${nasaOffice['City']},'

'${nasaOffice['State']},	${nasaOffice['ZIP']},'
'${nasaOffice['Country']}'),

trailing:	Icon(Icons.arrow_right));
});

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Nasa	Offices"),

),
body:	new	Center(child:	builder));

}
}

OrientationBuilder
Sometime	 the	 user	will	 rotate	 their	 screen	 from	 portrait	mode	 to

landscape	mode	and	visa-versa.		You	may	wish	to	change	the	layout	to
take	 advantage	 of	 the	 extra	 space.	 For	 example,	 you	 may	 want	 to
show	 a	 grid	 with	 2	 items	 across	 in	 portrait,	 3	 items	 across	 in
landscape.

This	is	where	the	OrientationBuilder	comes	in.	Wrap	your	builder
code	in	an	OrientationBuilder	and	it	can	react	to	orientation	changes.

There	 is	an	example	 in	 this	Chapter	called	‘Multiple	Builders’.	 It
uses	the	OrientationBuilder,	amongst	other	builders!

PageRoutebuilder
We	will	cover	this	builder	in	the	Routing	&	Navigation	chapter.

StreamBuilder

StreamBuilder
StreamBuilders	 listen	 for	 changes	 in	 streams	 and	 build	 Widgets

when	the	stream	data	changes.	Thus,	your	Widgets	can	update	when
the	state	changes	and	the	state	change	is	pushed	to	a	stream.

Some	 of	 the	 state	 management	 patterns	 (such	 as	 the	 BLoC,
covered	 later	on	 in	 its	own	chapter)	use	 this	builder	 to	update	 the	ui
when	a	stream	value	changes.

There	 is	an	example	 in	 this	Chapter	called	‘Multiple	Builders’.	 It
uses	the	StreamBuilder,	amongst	other	builders!

Example	–	‘nested_builders’
This	app	shows	some	colored	squares:	3	across	in	portrait,	4	across

in	 landscape.	 	 It	 also	 allows	 you	 to	 hit	 the	 ‘+’	 button	 to	 add	 more
squares.	To	 do	 this,	 the	 app	 stores	 its	 state	 (the	 squares)	 in	 a	BLoC
(don’t	 worry	 about	 this	 too	 much,	 we	 will	 cover	 this	 in	 another
chapter)	 and	uses	 the	 following	builders	 in	 the	HomeWidget,	 nested
within	each	other:
	

StreamBuilder	–	update	ui	when	state	changes
OrientationBuilder	 –	 update	 ui	 when	 orientation
changes

GridView	Builder	–	builds	ui	for	grid.

Source	Code
import	'dart:async';
import	'dart:math';

import	'package:flutter/material.dart';
import	'package:rxdart/rxdart.dart';

class	Square	{
String	_text;
Color	_color;

Square(this._text,	this._color);

operator	==(other)	=>
(other	 is	 Square)	 &&	 (_text	 ==	 other._text)	 &&	 (_color	 ==

other._color);

int	get	hashCode	=>	_text.hashCode	^	_color.hashCode;
Color	get	color	=>	_color;
String	get	text	=>	_text;
}

class	Bloc	{

//	BLoC	stands	for	Business	Logic	Component.
final	_random	=	new	Random();
List<Square>	_squareList	=	[];

Bloc()	{
_addActionStreamController.stream.listen(_handleAdd);

}

int	next(int	min,	int	max)	=>	min	+	_random.nextInt(max	-	min);

List<Square>	initSquareList()	{
_squareList	=	[new	Square("Square	1",	Colors.red)];
return	_squareList;

}

void	dispose()	{
_addActionStreamController.close();

}

Square	createSquare()	{
String	nextSquareNumberAsString	=	(_squareList.length	+	1).toString();
return	Square("Square	"	+	nextSquareNumberAsString.toString(),

Color.fromRGBO(next(0,	255),	next(0,	255),	next(0,	255),	0.5));
}

void	_handleAdd(void	v)	{
_squareList.add(createSquare());
_squareListSubject.add(_squareList);

}

//	Streams	for	State	Updates
Stream<List<Square>>	 get	 squareListStream	 =>

_squareListSubject.stream;
final	_squareListSubject	=	BehaviorSubject<List<Square>>();

//	Sinks	for	Actions
Sink	get	addAction	=>	_addActionStreamController.sink;
final	_addActionStreamController	=	StreamController();
}

class	BlocProvider	extends	InheritedWidget	{
final	Bloc	bloc;

BlocProvider({
Key	key,
@required	this.bloc,
Widget	child,

})	:	super(key:	key,	child:	child);

@override
bool	updateShouldNotify(InheritedWidget	oldWidget)	=>	true;

static	Bloc	of(BuildContext	context)	=>
(context.inheritFromWidgetOfExactType(BlocProvider)	 as

BlocProvider).bloc;
}

void	main()	=>	runApp(new	NestedBuildersAppWidget());

class	NestedBuildersAppWidget	extends	StatelessWidget	{
final	Bloc	_bloc	=	new	Bloc();

@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Nested	Builders',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	BlocProvider(
bloc:	_bloc,
child:	new	HomeWidget(title:	'Nested	Builders'),

),
);

}
}

class	HomeWidget	extends	StatelessWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
Widget	build(BuildContext	context)	{
final	bloc	=	BlocProvider.of(context);
return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text(title),
actions:	<Widget>[],

),
body:	StreamBuilder<List<Square>>(

stream:	bloc.squareListStream,
initialData:	bloc.initSquareList(),
builder:	(context,	snapshot)	{
List<Square>	squares	=	snapshot.data;
return	OrientationBuilder(builder:	(context,	orientation)	{
return	GridView.builder(

itemCount:	squares.length,
gridDelegate:	 new

SliverGridDelegateWithFixedCrossAxisCount(
crossAxisCount:

(orientation	==	Orientation.portrait)	?	3	:	4),
itemBuilder:	(BuildContext	context,	int	index)	{
return	new	GridTile(

child:	Container(
color:	squares[index].color,
child:	Padding(

padding:	EdgeInsets.all(20.0),
child:	Text(squares[index]._text,

style:	TextStyle(
fontSize:	20.0,
fontWeight:	FontWeight.bold),

textAlign:	TextAlign.center))));
});

});
}),

floatingActionButton:	new	FloatingActionButton(
onPressed:	()	=>	bloc.addAction.add(null),
tooltip:	'Add',

child:	new	Icon(Icons.add),
),	 //	 This	 trailing	 comma	 makes	 auto-formatting	 nicer	 for	 build

methods.
);

}
}

24.	Routing	&	Navigation

Introduction
Navigation	is	a	key	part	of	any	mobile	app	as	users	will	constantly

be	navigating	between	different	screens,	for	example,	from	a	customer
list	to	a	customer	detail	screen.

The	purpose	 of	 this	 chapter	 is	 to	 learn	 how	 to	write	Flutter	 apps
that	include	navigation.

Navigator	Class
Flutter	provides	a	Navigator	class	to	help	us	perform	navigation	in

our	app.
We	 can	 provide	 Navigation	 between	 Widgets	 with	 or	 without

named	routes.

Stack	of	Routes
When	 you	 start	 using	 the	 Navigator	 class,	 you	 realize	 that	 it

manages	a	stack	of	Routes,	a	history	of	visited	screens/pages.	When
you	navigate	back,	you	pop	a	Route	off	the	stack.
Navigating	Forward
When	you	navigate	forward	(for	example	to	a	new	part	of	the	app),

you	push	a	Route	to	the	stack.

Results	In:

Navigating	Back:

Results	In:

Invoking	Navigation	without	Named	Routes
This	 is	 simple	 and	 is	 a	 great	 option,	 especially	 for	 smaller	 apps

without	 too	 many	 Widgets.	 However,	 this	 can	 result	 in	 code
duplication	 if	we	use	 this	method	 to	navigate	 to	 the	same	Widget	 in
more	than	one	place.

Navigating	Forward
Note	how	we	navigate	forward	in	the	example:

Navigator.push(
context,
MaterialPageRoute(builder:	(context)	=>	CustomerWidget(customer)),

);

We	create	a	new	MaterialPageRoute	object	with	a	builder	that	will
create	the	new	target	Widget	to	navigate	to.		

This	is	another	way	to	do	the	same	thing	with	a	PageRouteBuilder
instead	creating	a	MaterialPageRoute:

PageRouteBuilder	pageRouteBuilder	=	PageRouteBuilder(pageBuilder:
(BuildContext	context,	Animation	animation,

Animation	secondaryAnimation)	{
return	CustomerWidget(customer);
});
Navigator.push(

context,
pageRouteBuilder,
);

Animation
When	 navigating,	 MaterialPageRoutes	 automatically	 perform

animations	 for	 us.	 Different	 animations	 that	 follow	 the	 design
language	 of	 the	 target	 platform.	 PageRouteBuilder	 gives	 us	 more
control	over	the	animations.
Dialog
Note	 that	 the	 MaterialPageRoute	 also	 has	 a	 ‘fullScreenDialog’

constructor	argument.	This	makes	the	new	target	Widget	appear	as	a
dialog	rather	than	another	Widget.	As	such	it	displays	a	‘Close’	button
instead	of	a	back	arrow	button.

Navigating	Backwards
Note	how	we	don’t	need	to	do	anything	for	the	back	arrow	button

to	appear	on	 the	 toolbar.	Very	nice!	That	back	button	 simply	does	a
Navigator.pop	 to	 navigate	 the	 user	 backwards	 to	 the	 previous
navigation.

Data
Passing	Data	to	Target	Navigation

We	 pass	 the	 Customer	 and	 Order	 data	 between	 widgets	 using
constructors	 that	 accept	 the	 Customer	 or	 Order	 data.	We	 then	 push
that	object	to	the	Navigator	stack	to	navigate	forward.
Returning	Data	from	Target	Navigation
You	 can	Navigate	 to	 a	Widget	 and	 have	 that	Widget	 return	 data

back	to	where	it	was	opened.	We	are	not	doing	this	in	the	Example	but
it’s	good	to	know	you	can	do	this.	Take	a	look	at	some	of	the	Dialog
examples.

If	you	remember	how	Dialogs	worked,	they	would	close	by	calling
Navigator.pop	with	a	data	argument	(data	to	be	returned).	The	‘push’
method	 of	 the	 Navigator	 returns	 a	 Future,	 so	 you	 can	 wait	 for	 the
future	to	complete	to	get	the	data	returned	from	the	target	Navigation
once	the	user	has	navigated	back.

Example	–	‘routes_simple’
This	 example	 app	 allows	 you	 to	 navigate	 from	 Customers	 to

Customer	Info	including	Orders	to	Order	Info.

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	Order	{
DateTime	_dt;
String	_description;
double	_total;

Order(this._dt,	this._description,	this._total);

double	get	total	=>	_total;
String	get	description	=>	_description;
DateTime	get	dt	=>	_dt;
}

class	Customer	{
String	_name;
String	_location;
List<Order>	_orders;

Customer(this._name,	this._location,	this._orders);

List<Order>	get	orders	=>	_orders;
String	get	location	=>	_location;
String	get	name	=>	_name;
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomePageWidget(),

);
}
}

class	HomePageWidget	extends	StatelessWidget	{
List<Customer>	_customerList	=	[
Customer("Bike	Corp",	"Atlanta",	[
Order(DateTime(2018,	11,	17),	"Bicycle	parts",	197.02),
Order(DateTime(2018,	12,	1),	"Bicycle	parts",	107.45),

]),
Customer("Trust	Corp",	"Atlanta",	[
Order(DateTime(2017,	1,	3),	"Shredder	parts",	97.02),
Order(DateTime(2018,	3,	13),	"Shredder	blade",	7.45),
Order(DateTime(2018,	5,	2),	"Shredder	blade",	7.45),

]),
Customer("Jilly	Boutique",	"Birmingham",	[
Order(DateTime(2018,	1,	3),	"Display	unit",	97.01),
Order(DateTime(2018,	3,	3),	"Desk	unit",	12.25),
Order(DateTime(2018,	3,	21),	"Clothes	rack",	97.15),

]),
];

HomePageWidget({Key	key})	:	super(key:	key);

void	navigateToCustomer(BuildContext	context,	Customer	customer)	{
Navigator.push(
context,
MaterialPageRoute(builder:	(context)	=>	CustomerWidget(customer)),

);
}

ListTile	 createCustomerWidget(BuildContext	 context,	 Customer
customer)	{

return	new	ListTile(
title:	Text(customer.name),
subtitle:	Text(customer.location),
trailing:	Icon(Icons.arrow_right),
onTap:	()	=>	navigateToCustomer(context,	customer));

}

@override
Widget	build(BuildContext	context)	{
List<Widget>	customerList	=	List.from(_customerList

.map((Customer	 customer)	 =>	 createCustomerWidget(context,
customer)));

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Customers"),

),
body:	new	Center(
child:	new	ListView(
children:	customerList,

),
));

}
}

class	CustomerWidget	extends	StatelessWidget	{
Customer	_customer;

CustomerWidget(this._customer);

void	 navigateToOrder(BuildContext	 context,	 Customer	 customer,	 Order
order)	{

Navigator.push(
context,
MaterialPageRoute(builder:	 (context)	 =>	 OrderWidget(customer,

order)),
);

}

ListTile	createOrderListWidget(
BuildContext	context,	Customer	customer,	Order	order)	{

return	new	ListTile(
title:	Text(order.description),
subtitle:	Text("${order.dt.month}/${order.dt.day}/${order.dt.year}:	"

"\$${order.total}"),
trailing:	Icon(Icons.arrow_right),
onTap:	()	=>	navigateToOrder(context,	customer,	order));

}

@override

Widget	build(BuildContext	context)	{
List<Widget>	widgetList	=	List.from(_customer.orders.map(

(Order	 order)	 =>	 createOrderListWidget(context,	 _customer,
order)));

widgetList.insert(
0,
Container(

child:	Column(
children:	<Widget>[
Text(
_customer.name,
style:	 TextStyle(fontSize:	 30.0,	 fontWeight:

FontWeight.bold),
),
Text(
_customer.location,
style:	 TextStyle(fontSize:	 24.0,	 fontWeight:

FontWeight.bold),
),
Text(
"${_customer.orders.length}	Orders",
style:	 TextStyle(fontSize:	 20.0,	 fontWeight:

FontWeight.bold),
)

],
),
padding:	EdgeInsets.all(20.0)));

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Customer	Info"),

),
body:	new	Center(
child:	new	ListView(
children:	widgetList,

),
));

}
}

class	OrderWidget	extends	StatelessWidget	{
Customer	_customer;
Order	_order;

OrderWidget(this._customer,	this._order);

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Order	Info"),

),
body:	new	Padding(
padding:	EdgeInsets.all(20.0),
child:	new	ListView(
children:	<Widget>[
Text(_customer.name,

style:	TextStyle(
fontSize:	30.0,
fontWeight:	FontWeight.bold,

),
textAlign:	TextAlign.center),

Text(_customer.location,
style:	 TextStyle(fontSize:	 24.0,	 fontWeight:

FontWeight.bold),
textAlign:	TextAlign.center),

Text(""),
Text(_order.description,

style:	 TextStyle(fontSize:	 18.0,	 fontWeight:
FontWeight.bold),

textAlign:	TextAlign.center),
Text(

"${_order.dt.month}/${_order.dt.day}/${_order.dt.year}:	"
"\$${_order.total}",
style:	 TextStyle(fontSize:	 18.0,	 fontWeight:

FontWeight.bold),
textAlign:	TextAlign.center)

],
),

));
}
}

Invoking	Navigation	with	Named	Routes	#1
Named	 routes	 enable	 us	 to	 use	 routes	 that	 are	 defined	 just	 once,

avoiding	code	duplication.	These	are	very	easy	to	use!

Define	Routes
We	define	the	routes	when	we	build	the	MaterialApp	at	the	top	of

the	Widget	tree:
class	MyApp	extends	StatelessWidget	{

//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
…	[other	constructor	arguments]	…
routes:	<String,	WidgetBuilder>{

'/customer':	(context)	=>	CustomerWidget(),
'/order':	(context)	=>	OrderWidget(),

},
);

}
}

Navigating	Forward
Note	how	we	navigate	forward	using	a	name	that	matches	a	route

defined	in	the	MaterialApp:
Navigator.pushNamed(context,	"/order");

See	the	problem	yet?
The	 problem	 is	 that	 this	 approach	 is	 great	 for	 simple	Navigation

without	 passing	 parameters.	 It	 doesn’t	 work	 really	 work	 when	 you
have	 parameters.	 Use	 this	 approach	 only	 when	 you	 have	 simple
Widget	navigation.

Example	–	‘routes_named’
This	app	 looks	and	feels	 the	same	as	 the	previous	example	but	 it

does	not	pass	around	parameters.	It	just	shows	dummy	data.
Source	Code

import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	Order	{
DateTime	_dt;
String	_description;
double	_total;

Order(this._dt,	this._description,	this._total);

double	get	total	=>	_total;

String	get	description	=>	_description;

DateTime	get	dt	=>	_dt;
}

class	Customer	{
String	_name;
String	_location;
List<Order>	_orders;

Customer(this._name,	this._location,	this._orders);

List<Order>	get	orders	=>	_orders;

String	get	location	=>	_location;

String	get	name	=>	_name;
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override

Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomePageWidget(),
routes:	<String,	WidgetBuilder>{
'/customer':	 (context)	 =>	 CustomerWidget(),	 //	 only	 simple	 routes

work
'/order':	(context)	=>	OrderWidget(),	//	only	simple	routes	work

},
);

}
}

class	HomePageWidget	extends	StatelessWidget	{
List<Customer>	_customerList	=	[
Customer("Bike	Corp",	"Atlanta",	[]),
Customer("Trust	Corp",	"Atlanta",	[]),
Customer("Jilly	Boutique",	"Birmingham",	[]),

];

HomePageWidget({Key	key})	:	super(key:	key);

void	navigateToCustomer(BuildContext	context,	Customer	customer)	{
Navigator.pushNamed(context,	"/customer");	//	only	simple	routes	work

}

ListTile	 createCustomerWidget(BuildContext	 context,	 Customer
customer)	{

return	new	ListTile(
title:	Text(customer.name),
subtitle:	Text(customer.location),
trailing:	Icon(Icons.arrow_right),
onTap:	()	=>	navigateToCustomer(context,	customer));

}

@override

Widget	build(BuildContext	context)	{
List<Widget>	customerList	=	List.from(_customerList

.map((Customer	 customer)	 =>	 createCustomerWidget(context,
customer)));

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Customers"),

),
body:	new	Center(
child:	new	ListView(
children:	customerList,

),
));

}
}

class	CustomerWidget	extends	StatelessWidget	{
List<Order>	_orderList	=	[
Order(DateTime(2018,	11,	17),	"Bicycle	parts",	197.00),
Order(DateTime(2018,	12,	1),	"Bicycle	parts",	107.45),

];

CustomerWidget({Key	key})	:	super(key:	key);

void	navigateToOrder(BuildContext	context,	Order	order)	{
Navigator.pushNamed(context,	"/order");	//	only	simple	routes	work

}

ListTile	createOrderWidget(BuildContext	context,	Order	order)	{
return	new	ListTile(

title:	Text(order.description),
subtitle:	Text("${order.dt.month}/${order.dt.day}/${order.dt.year}:	"

"\$${order.total}"),
trailing:	Icon(Icons.arrow_right),
onTap:	()	=>	navigateToOrder(context,	order));

}

@override
Widget	build(BuildContext	context)	{

List<Widget>	widgetList	=	List.from(
_orderList.map((Order	 order)	 =>	 createOrderWidget(context,

order)));
widgetList.insert(

0,
Container(

child:	Column(
children:	<Widget>[
Text(
"BikeCorp",
style:	 TextStyle(fontSize:	 30.0,	 fontWeight:

FontWeight.bold),
),
Text(
"Atlanta",
style:	 TextStyle(fontSize:	 24.0,	 fontWeight:

FontWeight.bold),
),
Text(
"2	Orders",
style:	 TextStyle(fontSize:	 20.0,	 fontWeight:

FontWeight.bold),
)

],
),
padding:	EdgeInsets.all(20.0)));

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Customers"),

),
body:	new	Center(
child:	new	ListView(
children:	widgetList,

),
));

}
}

class	OrderWidget	extends	StatelessWidget	{

OrderWidget();

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Order	Info"),

),
body:	new	Padding(
padding:	EdgeInsets.all(20.0),
child:	new	ListView(
children:	<Widget>[
Text("BikeCorp",

style:	TextStyle(
fontSize:	30.0,
fontWeight:	FontWeight.bold,

),
textAlign:	TextAlign.center),

Text("Atlanta",
style:	 TextStyle(fontSize:	 24.0,	 fontWeight:

FontWeight.bold),
textAlign:	TextAlign.center),

Text(""),
Text("Bicycle	Parts",

style:	 TextStyle(fontSize:	 18.0,	 fontWeight:
FontWeight.bold),

textAlign:	TextAlign.center),
Text("12/1/2019	\$123.23",

style:	 TextStyle(fontSize:	 18.0,	 fontWeight:
FontWeight.bold),

textAlign:	TextAlign.center)
],

),
));

}
}

Invoking	Navigation	with	Named	Routes	#2

The	 approach	 #1	 doesn’t	 work	 really	 work	 when	 you	 have
parameters	and	you	need	to	pass	data	to	a	route	though	parameters.

Here	is	another	way	of	routing	with	named	routes,	only	this	time	it
works	with	parameters.

Attach	Route	Handler	to	MaterialApp
This	time	we	don’t	define	routes	in	the	Material	App.
Instead	we	pass	in	a	route	handler	to	the	MaterialApp	at	the	top	of

the	Widget	tree	(in	this	case	‘handleRoute’):
class	MyApp	extends	StatelessWidget	{

//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
…	[other	constructor	arguments]	…
onGenerateRoute:	handleRoute,
);

}
}

Code	Route	Handler
We	write	a	route	handler	that	interprets	the	route	info	(parsing	out

the	parameters)	and	returns	a	MaterialPageRoute	containing	a	builder
to	create	 the	correct	Widget.	This	will	work	 to	generate	 the	Widgets
for	all	the	routing.
Example
In	 the	 example	 below	 we	 convert	 the	 route	 info	 into	 a

MaterialPageRoute	for	a	Customer	Widget	or	an	Order	Widget.	Both
receive	the	id	as	the	constructor	argument.

Route<dynamic>	handleRoute(RouteSettings	routeSettings)	{
//	One	route	handler	to	handle	them	all.
List<String>	nameParm	=	routeSettings.name.split(":");
assert(nameParm.length	==	2);
String	name	=	nameParm[0];

assert(name	!=	null);
int	id	=	int.tryParse(nameParm[1]);
assert(id	!=	null);
Widget	childWidget;
if	(name	==	"/customer/")	{
childWidget	=	CustomerWidget(id);

}	else	{
childWidget	=	OrderWidget(id);

}
return	MaterialPageRoute(

builder:	(context)	=>	DataContainerWidget(child:	childWidget));
}

Navigating	Forward
Now	we	have	a	 route	handler	 that	 can	 interpret	 routes	with	data,

we	can	route	by	name	and	id.
void	navigateToCustomer(BuildContext	context,	Customer	customer)	{
Navigator.pushNamed(context,	'/customer/:${customer.id}');

}

Example	–	‘routes_named_with_parms’
This	app	looks	and	feels	the	same	as	the	previous	example	but	this

time	it	passes	the	customer	and	order	identifiers	to	the	Customer	and
Order	Widgets.

I	added	a	DataContainerWidget	to	store	Customer	and	Order	state
data	 in	 one	 place	 (more	 on	 InheritedWidgets	 later	 in	 their	 own
chapter)	and	enable	them	to	be	queried	by	the	identifier.

Each	 widget	 is	 constructed	 (passing	 in	 the	 Customer	 or	 Order
identifier)	then	calls	code	in	the	DataContainerWidget	to	get	the	data
to	display	in	the	UI.
Source	Code

import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	Order	{
int	_id;
DateTime	_dt;
String	_description;
double	_total;

Order(this._id,	this._dt,	this._description,	this._total);
Order.empty()	:	this(0,	DateTime.now(),	"",	0.0);

int	get	id	=>	_id;
double	get	total	=>	_total;
String	get	description	=>	_description;
DateTime	get	dt	=>	_dt;
}

class	Customer	{
int	_id;
String	_name;
String	_location;
List<Order>	_orders;

Customer(this._id,	this._name,	this._location,	this._orders);
Customer.empty()	:	this(0,	"",	"",	[]);

int	get	id	=>	_id;
List<Order>	get	orders	=>	_orders;
String	get	location	=>	_location;
String	get	name	=>	_name;
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(

title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),

home:	new	DataContainerWidget(child:	HomeWidget()),
onGenerateRoute:	handleRoute);

}

Route<dynamic>	handleRoute(RouteSettings	routeSettings)	{
//	One	route	handler	to	handle	them	all.
List<String>	nameParm	=	routeSettings.name.split(":");
assert(nameParm.length	==	2);
String	name	=	nameParm[0];
assert(name	!=	null);
int	id	=	int.tryParse(nameParm[1]);
assert(id	!=	null);
Widget	childWidget;
if	(name	==	"/customer/")	{
childWidget	=	CustomerWidget(id);

}	else	{
childWidget	=	OrderWidget(id);

}
return	MaterialPageRoute(

builder:	(context)	=>	DataContainerWidget(child:	childWidget));
}
}

class	DataContainerWidget	extends	InheritedWidget	{
DataContainerWidget({
Key	key,
@required	Widget	child,

})		:	assert(child	!=	null),
super(key:	key,	child:	child);

List<Customer>	_customerList	=	[
Customer(1,	"Bike	Corp",	"Atlanta",	[
Order(11,	DateTime(2018,	11,	17),	"Bicycle	parts",	197.02),
Order(12,	DateTime(2018,	12,	1),	"Bicycle	parts",	107.45),

]),
Customer(2,	"Trust	Corp",	"Atlanta",	[
Order(13,	DateTime(2017,	1,	3),	"Shredder	parts",	97.02),
Order(14,	DateTime(2018,	3,	13),	"Shredder	blade",	7.45),
Order(15,	DateTime(2018,	5,	2),	"Shredder	blade",	7.45),

]),
Customer(3,	"Jilly	Boutique",	"Birmingham",	[
Order(16,	DateTime(2018,	1,	3),	"Display	unit",	97.01),
Order(17,	DateTime(2018,	3,	3),	"Desk	unit",	12.25),
Order(18,	DateTime(2018,	3,	21),	"Clothes	rack",	97.15),

]),
];

List<Customer>	get	customerList	=>	_customerList;

Customer	getCustomer(int	id)	{
return	_customerList.firstWhere((customer)	=>	customer.id	==	id,

orElse:	()	=>	Customer.empty());
}

Customer	getCustomerForOrderId(int	id)	{
return	customerList.firstWhere(

(customer)	=>	customerHasOrderId(customer,	id),
orElse:	()	=>	Customer.empty());

}

Order	getOrder(int	id)	{
Customer	customerThatOwnsOrder	=	getCustomerForOrderId(id);
return	customerThatOwnsOrder.orders

.firstWhere((order)	=>	order.id	==	id,	orElse:	()	=>	Order.empty());
}

bool	customerHasOrderId(Customer	customer,	int	id)	{
Order	order	=	customer.orders

.firstWhere((order)	=>	order.id	==	id,	orElse:	()	=>	Order.empty());
return	order.id	!=	0;

}

static	DataContainerWidget	of(BuildContext	context)	{
return	context.inheritFromWidgetOfExactType(DataContainerWidget)

as	DataContainerWidget;
}

@override
bool	updateShouldNotify(covariant	InheritedWidget	oldWidget)	{

return	false;
}
}

class	HomeWidget	extends	StatelessWidget	{
HomeWidget({Key	key})	:	super(key:	key);

void	navigateToCustomer(BuildContext	context,	Customer	customer)	{
Navigator.pushNamed(context,	'/customer/:${customer.id}');

}

ListTile	createCustomerWidget(BuildContext	context,	Customer
customer)	{

return	new	ListTile(
title:	Text(customer.name),
subtitle:	Text(customer.location),
trailing:	Icon(Icons.arrow_right),
onTap:	()	=>	navigateToCustomer(context,	customer));

}

@override
Widget	build(BuildContext	context)	{
DataContainerWidget	data	=	DataContainerWidget.of(context);
List<Widget>	customerList	=	List.from(data.customerList

.map((Customer	customer)	=>	createCustomerWidget(context,
customer)));

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Customers"),

),
body:	new	Center(
child:	new	ListView(
children:	customerList,

),
));

}
}

class	CustomerWidget	extends	StatelessWidget	{

int	_id;

CustomerWidget(this._id);

void	navigateToOrder(BuildContext	context,	Order	order)	{
Navigator.pushNamed(context,	'/order/:${order.id}');

}

ListTile	createOrderListWidget(BuildContext	context,	Order	order)	{
return	new	ListTile(

title:	Text(order.description),
subtitle:	Text("${order.dt.month}/${order.dt.day}/${order.dt.year}:	"

"\$${order.total}"),
trailing:	Icon(Icons.arrow_right),
onTap:	()	=>	navigateToOrder(context,	order));

}

@override
Widget	build(BuildContext	context)	{
DataContainerWidget	data	=	DataContainerWidget.of(context);
Customer	customer	=	data.getCustomer(_id);
List<Widget>	orderListWidgets	=	List.from(customer.orders

.map((Order	order)	=>	createOrderListWidget(context,	order)));
orderListWidgets.insert(

0,
Container(

child:	Column(
children:	<Widget>[
Text(
customer.name,
style:	TextStyle(fontSize:	30.0,	fontWeight:

FontWeight.bold),
),
Text(
customer.location,
style:	TextStyle(fontSize:	24.0,	fontWeight:

FontWeight.bold),
),
Text(

"${customer.orders.length}	Orders",
style:	TextStyle(fontSize:	20.0,	fontWeight:

FontWeight.bold),
)

],
),
padding:	EdgeInsets.all(20.0)));

return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text("Customer	Info"),

),
body:	new	Center(
child:	new	ListView(
children:	orderListWidgets,

),
));

}
}

class	OrderWidget	extends	StatelessWidget	{
int	_id;

OrderWidget(this._id);

@override
Widget	build(BuildContext	context)	{
DataContainerWidget	data	=

context.inheritFromWidgetOfExactType(DataContainerWidget);
Customer	customer	=	data.getCustomerForOrderId(_id);
Order	order	=	data.getOrder(_id);
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Order	Info"),

),
body:	new	Padding(
padding:	EdgeInsets.all(20.0),
child:	new	ListView(
children:	<Widget>[
Text(customer.name,

style:	TextStyle(
fontSize:	30.0,
fontWeight:	FontWeight.bold,

),
textAlign:	TextAlign.center),

Text(customer.location,
style:	TextStyle(fontSize:	24.0,	fontWeight:

FontWeight.bold),
textAlign:	TextAlign.center),

Text(""),
Text(order.description,

style:	TextStyle(fontSize:	18.0,	fontWeight:
FontWeight.bold),

textAlign:	TextAlign.center),
Text(

"${order.dt.month}/${order.dt.day}/${order.dt.year}
\$${order.total}",

style:	TextStyle(fontSize:	18.0,	fontWeight:
FontWeight.bold),

textAlign:	TextAlign.center)
],

),
));

}
}

PageView

Introduction
You	 can	 navigate	with	PageViews	 as	well.	 PageViews	 are	 useful

for	when	you	have	a	 list	of	Widgets	 that	each	 take	up	all	 the	screen
space	 and	 you	 want	 to	 swipe	 through	 them,	 either	 horizontally	 or
vertically.	The	 ‘scrollDirection’	 constructor	 argument	 enables	 you	 to
set	the	scrolling	/	swiping	axis	to	be	horizontal	or	vertical.

Child	Widgets

PageViews	can	work	with	a	list	of	child	Widgets	or	you	can	them
with	 a	 builder	 that	 creates	 child	Widgets	when	 they	 are	 required.	 If
you	 want	 to	 use	 a	 builder	 then	 use	 the	 ‘PageView.builder’	 named
constructor.	 That	 is	 probably	much	 better	 if	 you	 planning	 on	 giving
the	user	many	pages	 to	 swipe	 through.	This	Widget	 uses	 the	 ‘Page’
terminology	to	refer	to	a	child	Widget	that	takes	up	all	of	the	available
screen	space.

Controller
PageViews	also	work	with	a	controller,	which	you	can	specify	as

an	argument	in	the	PageView	contructor.	You	can	use	the	controller	to
move	between	the	childWidgets.	To	move	between	childWidgets	with
animation,	 use	 ‘animateToPage’.	 To	 jump	 to	 a	 page	 without
animation,	 use	 ‘jumpToPage’.	 You	 can	 also	 go	 to	 the	 previous	 and
next	pages.

Example	–	‘page_view_navigation’
This	 app	 is	 similar	 to	 the	 previous	 apps	 in	 this	 chapter.	 On	 the

home	page,	you	see	a	list	of	customers.	You	can	tap	on	a	customer	to
move	 to	 that	 Customer’s	 page,	 or	 you	 can	 swipe	 through	 the
Customers.	There	is	a	Home	button	on	the	toolbar	to	take	you	back	to
the	home	page.

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	Order	{
DateTime	_dt;
String	_description;
double	_total;

Order(this._dt,	this._description,	this._total);

double	get	total	=>	_total;
String	get	description	=>	_description;
DateTime	get	dt	=>	_dt;
}

class	Customer	{
String	_name;
String	_location;
List<Order>	_orders;

Customer(this._name,	this._location,	this._orders);

List<Order>	get	orders	=>	_orders;

String	get	location	=>	_location;
String	get	name	=>	_name;
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'PageView	Navigation',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(),

);
}
}

class	MyHomePage	extends	StatelessWidget	{
final	PageController	_pageController	=	PageController(initialPage:	0);
final	Duration	_duration	=	Duration(seconds:	1);
final	Curve	_curve	=	Curves.ease;

final	List<Customer>	_customerList	=	[
Customer("Bike	Corp",	"Atlanta",	[
Order(DateTime(2018,	11,	17),	"Bicycle	parts",	197.02),
Order(DateTime(2018,	12,	1),	"Bicycle	parts",	107.45),

]),
Customer("Trust	Corp",	"Atlanta",	[
Order(DateTime(2017,	1,	3),	"Shredder	parts",	97.02),
Order(DateTime(2018,	3,	13),	"Shredder	blade",	7.45),
Order(DateTime(2018,	5,	2),	"Shredder	blade",	7.45),

]),
Customer("Jilly	Boutique",	"Birmingham",	[
Order(DateTime(2018,	1,	3),	"Display	unit",	97.01),
Order(DateTime(2018,	3,	3),	"Desk	unit",	12.25),
Order(DateTime(2018,	3,	21),	"Clothes	rack",	97.15),

]),
];

MyHomePage({Key	key})	:	super(key:	key);

Widget	pageViewItemBuilder(BuildContext	context,	int	index)	{
if	(index	==	0)	{
return	createHomePage(context);

}	else	{
return	createDetailPage(context,	index);

}
}

Widget	createHomePage(BuildContext	context)	{
List<Widget>	widgetList	=	[];
widgetList.add(Padding(

padding:	EdgeInsets.all(20.0),
child:	Text(
"Customer	List",
style:	TextStyle(fontSize:	30.0,	fontWeight:	FontWeight.bold),
textAlign:	TextAlign.center,

)));
for	(int	i	=	0,	ii	=	_customerList.length;	i	<	ii;	i++)	{
Customer	customer	=	_customerList[i];
widgetList.add(createHomePageListItem(context,	customer,	i));

}
return	ListView(children:	widgetList);

}

ListTile	createHomePageListItem(
BuildContext	context,	Customer	customer,	int	index)	{

return	new	ListTile(
title:	Text(customer.name),
subtitle:	Text(customer.location),
trailing:	Icon(Icons.arrow_right),
onTap:	()	=>	_pageController.animateToPage(index	+	1,

duration:	_duration,	curve:	_curve));
}

Widget	createDetailPage(BuildContext	context,	int	index)	{
Customer	customer	=	_customerList[index	-	1];
List<Widget>	widgetList	=	List.from(customer.orders

.map((Order	order)	=>	createOrderListWidget(context,	customer,
order)));

widgetList.insert(
0,
Container(

child:	Column(
children:	<Widget>[
Text(
customer.name,
style:	TextStyle(fontSize:	30.0,	fontWeight:

FontWeight.bold),
),
Text(
customer.location,
style:	TextStyle(fontSize:	24.0,	fontWeight:

FontWeight.bold),
),
Text(
"${customer.orders.length}	Orders",
style:	TextStyle(fontSize:	20.0,	fontWeight:

FontWeight.bold),
),
Padding(padding:	EdgeInsets.all(20.0)),

],
),
padding:	EdgeInsets.all(20.0)));

return	ListView(children:	widgetList);
}

ListTile	createOrderListWidget(
BuildContext	context,	Customer	customer,	Order	order)	{

return	new	ListTile(
title:	Text(order.description),
subtitle:	Text("${order.dt.month}/${order.dt.day}/${order.dt.year}:	"

"\$${order.total}"));
}

@override
Widget	build(BuildContext	context)	{

return	new	Scaffold(
appBar:	new	AppBar(title:	new	Text("PageView	Navigation"),

actions:	[
IconButton(

icon:	Icon(Icons.home),
onPressed:	()	=>	_pageController.animateToPage(0,

duration:	_duration,	curve:	_curve))
]),
body:	new	Center(

child:	new	PageView.builder(
controller:	_pageController,
itemBuilder:	pageViewItemBuilder,
itemCount:	_customerList.length	+	1)),

);
}
}

25.	Forms

Introduction
We	 need	 to	 give	 the	 users	 the	 ability	 to	 enter	 information	 into

forms,	 fields,	validate	 it	and	show	validation	messages	 to	 the	user	 if
necessary.

The	 purpose	 of	 this	 chapter	 is	 to	 learn	 how	 get	 Flutter	 apps
working	with	fields,	forms	and	validations.

Flutter	 provides	 objects	 to	 help	 you	with	 the	 process	 of	 building
forms,	 validation	 and	 input	 fields.	 It	 provides	 a	 Form	 object,	 Form
Field	objects	(indirectly)	and	all	the	input	types	below:
	

Checkbox
DropdownButton
Radio
Switch
TextFormField	/	TextField

Form
This	 is	 a	 Widget	 that	 is	 designed	 to	 wrap	 form	 Widgets	 and

provides	control	over	validation.

The	Form	object	gives	you	the	following	constructor	arguments:

‘autovalidate’	to	enable	or	disable	automatic	validation.
‘onChanged’	 callback	 fired	 when	 one	 of	 the	 fields	 are
changed.

The	Form	object	gives	you	the	following	methods:

‘reset’	to	reset	fields.

‘save’	to	save	fields.
‘validate’	 to	 validate,	 returning	 a	 true	 if	 the	 form	 fields	 are
valid,	false	if	one	or	more	are	invalid.

Form	State
The	Form	object	stores	input	state	data	from	child	TextFormFields

but	not	other	field	types	like	Checkboxes,	DropdownButtons,	Radios,
Switches.

So,	if	you	want	your	form	to	work	with	those	other	types	of	fields,
you	need	to	store	the	state	of	those	items.	If	you	take	a	look	a	look	at
the	 example	 you	will	 see	 that	 these	 fields	 are	 stored	 as	 state	 in	 the
Stateful	Widget.

Form	Validation
As	 mentioned	 earlier,	 the	 Form	 class	 has	 a	 ‘autovalidate’

constructor	argument.

If	 this	 argument	 is	 set	 to	 true,	 the	 framework	 invokes
validation	as	data	is	input.
If	this	argument	is	set	to	false,	the	framework	will	not	invoke
validation	until	the	‘validate’	method	is	invoked.

Form	/	Field	Integration
The	FormField	 is	a	Widget	used	as	a	base	class	by	field	Widgets

(such	 as	 TextFormField)	 to	 integrate	 the	 field	with	 the	 parent	 Form
Widget	and	provide	services	such	as	validation.

Form	Fields

Checkbox

This	Widget	that	allows	the	user	to	select	a	yes	/	no.

It	does	not	store	state	for	you,	you	have	to	manage	it	yourself.
Use	the	following	constructor	arguments	for	state	management.

	
Description

value Sets	the	value	represented	by	the	radio.	Provide
this	from	state.

onChanged Method	fired	when	the	checkbox	is	selected	or
deselected.	Add	method	to	set	state	here.

DropdownButton

This	 is	 a	material	 design	 button	 that	 allows	 the	 user	 to	 select	 an
item	from	a	list	of	items	that	implemented	as	a	popup	menu.

It	does	not	store	state	for	you,	you	have	to	manage	it	yourself.
Use	the	following	constructor	arguments	for	state	management.

	

Description
items Sets	the	items	in	the	list.

value Sets	the	currently	selected	item.	Provide	this	from
state.

onChanged Method	fired	when	an	item	is	selected	or
deselected.	Add	method	to	set	state	here.

Radio

This	Widget	 does	 not	 store	 state	 for	 you,	 you	 have	 to	manage	 it
yourself.

Use	the	following	constructor	arguments	for	state	management.
	

Description
value Sets	the	value	represented	by	the	radio.

groupValue Sets	the	radio	button’s	value.	Provide	this	from
state.

onChanged Method	fired	when	the	radio	button	is	selected.
Add	method	to	set	state	here.

TextFormField,	TextField

A	TextField	is	a	widget	for	a	basic	text	field.
A	TextFormField	is	a	TextField	with	form	integration.
Keyboard	Types
The	 TextFormField	 object	 has	 a	 constructor	 argument

‘keyboardType’.	 This	 lets	 you	 change	 the	 keyboard	 type	 to	 suit	 the
field:
	

Description
TextInputType.text Default	keyboard.

TextInputType.multiline Default	keyboard	optimized	for
multiline	entry.

TextInputType.number Numeric	keyboard.
TextInputType.phone Phone	keyboard.

	

InputFormatters
The	 TextFormField	 object	 has	 a	 constructor	 argument

‘inputFormatters’.	 This	 lets	 you	 change	 the	 behavior	 of	 the	 field	 –
what	characters	this	input	field	will	accept.
	

Description

LengthLimitingTextInputFormatter
Limits	the

length	of	input
fields.

Takes	in

WhitelistingTextInputFormatter.digitsOnly digits	[0–9]
only.

BlacklistingTextInputFormatter.singleLineFormatter
Forces

input	to	be	a
single	line.

WhitelistingTextInputFormatter

For
whitelisting
input	(regular
expression).

BlacklistingTextInputFormatter

For
blacklisting
input	(regular
expression)

TextEditingController
A	 TextEditingController	 is	 a	 class	 that	 listens	 to	 its	 assigned

TextField,	and	updates	its	own	internal	state	every	time	the	text	in	the
TextField	 changes.	 Listeners	 can	 then	 read	 the	 text	 and	 selection
properties	 to	 learn	what	 the	user	has	 typed	or	how	 the	 selection	has
been	updated.

If	 you	 look	 at	 the	 example	 code	 you	 will	 see	 a
TextEditingController	 for	 each	 TextFormField.	 These
TextEditingControllers	 are	 used	 to	 get	 and	 set	 the	 values	 for	 these
fields.
Validator
The	TextFormField	object	has	a	constructor	argument	 ‘validator’.

This	lets	you	add	a	validation	method	to	the	field.		If	there	is	an	error
with	the	information	the	user	has	provided,	the	validator	method	must
return	a	String	containing	an	error	message.	If	there	are	no	errors,	the
method	should	not	return	anything.

Example
TextFormField(

//	The	validator	receives	the	text	the	user	has	typed	in

validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	some	text';

}
},
);

Focus
TextFormFields	 also	 have	 a	 constructor	 argument	 that	 called

‘autofocus’	that	sets	up	the	text	field	to	automatically	be	the	first	one
with	the	focus.	The	other	fields	 like	Checkboxes,	DropdownButtons,
Radios	don’t	have	this.

InputDecorator
Input	 Decorators	 are	 widgets	 are	 used	 to	 decorate	 our	 fields,	 to

give	them	things	like:

Icon
Hint
Label

Changing	Error	Formatting
Input	Decorators	default	 to	showing	errors	 in	 red.	 	However	 they

have	many	constructor	 arguments	 that	 enable	you	 to	 customize	how
your	errors	look.

Constants	File
const	INPUT_DECORATION_ERROR_STYLE	=	const	TextStyle(

color:	[whatever],
fontFamily:	[whatever],
fontSize:	[whatever],
fontWeight:	[whatever]
);

const	 INPUT_DECORATION_ERROR_BORDER	 =	 const
UnderlineInputBorder(

borderSide:	BorderSide(color:	[whatever])

);

const	INPUT_DECORATION_FOCUSED_ERROR_BORDER	=	const
UnderlineInputBorder(

borderSide:	BorderSide(width:	[whatever],	color:	[whatever])
);

Widget	Class
InputDecoration(hintText:	hint,	labelText:	label,

errorStyle:	INPUT_DECORATION_ERROR_STYLE,
errorBorder:	INPUT_DECORATION_ERROR_BORDER,
focusedErrorBorder:

INPUT_DECORATION_FOCUSED_ERROR_BORDER);

Example	–	‘form_details’
This	example	attempts	 to	use	all	 the	 input	 field	 types:	 text,	 radio

buttons,	checkboxes,	selection	lists	and	dates.

	
	

Dependencies
Add	the	following	dependencies	to	your	‘pubspec.yaml’	file.	After

that	you	will	need	to	do	a	‘flutter	packages	get’	on	the	command	line
in	the	root	of	your	project	to	download	the	dependencies.

dependencies:
flutter:
sdk:	flutter

#	The	following	adds	the	Cupertino	Icons	font	to	your	application.
#	Use	with	the	CupertinoIcons	class	for	iOS	style	icons.
cupertino_icons:	^0.1.2
datetime_picker_formfield:	^0.1.3

Source	Code
import	'package:flutter/material.dart';
import	'package:flutter/services.dart';
import

'package:datetime_picker_formfield/datetime_picker_formfield.dart';
import	'package:intl/intl.dart';

void	main()	=>	runApp(new	MyApp());

class	PersonInfo	{
String	_fname	=	"";
String	_lname	=	"";
String	_sex	=	"m";
String	_addr1	=	"";
String	_addr2	=	"";
String	_city	=	"";
String	_state	=	"";
String	_zip	=	"";
bool	_fiveYears	=	false;
DateTime	_dob;

PersonInfo(this._fname,	this._lname,	this._sex,	this._addr1,	this._addr2,
this._city,	this._state,	this._zip,	this._fiveYears,	this._dob);

PersonInfo.empty();

String	get	fname	=>	_fname;
String	get	lname	=>	_lname;
String	get	sex	=>	_sex;
String	get	addr1	=>	_addr1;
String	get	addr2	=>	_addr2;
String	get	city	=>	_city;
String	get	state	=>	_state;
String	get	zip	=>	_zip;
bool	get	fiveYears	=>	_fiveYears;
DateTime	get	dob	=>	_dob;

@override
String	toString()	{
return	'PersonInfo{_fname:	$_fname,	_lname:	$_lname,	_sex:	$_sex,

_addr1:	$_addr1,	_addr2:	$_addr2,	_city:	$_city,	_state:	$_state,	_zip:
$_zip,	_fiveYears:	$_fiveYears,	_dob:	$_dob}';
}
}

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{

return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomePage(),

);
}
}

class	HomePage	extends	StatefulWidget	{
PersonInfo	_address	=	PersonInfo.empty();

HomePage({Key	key})	:	super(key:	key);

@override
_HomePageState	createState()	=>	new	_HomePageState(_address);
}

class	_HomePageState	extends	State<HomePage>	{
PersonInfo	_address;

_HomePageState(this._address);

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Please	enter	your	Details"),

),
body:	new	Center(

child:	new	ListView(children:	[
Padding(

padding:	EdgeInsets.all(20.0),
child:	AddressWidget(address:	_address,	onSaved:	_onSaved))

])));
}

_onSaved(PersonInfo	address)	{
showDialog<bool>(

context:	context,
builder:	(BuildContext	context)	{
return	AlertDialog(
title:	const	Text('Address'),
content:	Text(address.toString()),
actions:	<Widget>[
FlatButton(
onPressed:	()	{
Navigator.pop(context,	true);

},
child:	const	Text('Close'),

)
],

);
});

}
}

class	AddressWidget	extends	StatefulWidget	{
PersonInfo	_address;
ValueChanged<PersonInfo>	_onSaved;

AddressWidget(
{Key	key,
@required	PersonInfo	address,
@required	ValueChanged<PersonInfo>	onSaved})
:	super(key:	key)	{

this._address	=	address;
this._onSaved	=	onSaved;

}

@override
_AddressWidgetState	createState()	=>	new

_AddressWidgetState(_address);
}

class	_AddressWidgetState	extends	State<AddressWidget>	{
static	const	STATE_DROPDOWN_MENU_ITEMS	=	[
DropdownMenuItem(value:	"AL",	child:	const	Text("Alabama")),

DropdownMenuItem(value:	"AK",	child:	const	Text("Alaska")),
DropdownMenuItem(value:	"AZ",	child:	const	Text("Arizona")),
DropdownMenuItem(value:	"AR",	child:	const	Text("Arkansas")),
DropdownMenuItem(value:	"CA",	child:	const	Text("California")),
DropdownMenuItem(value:	"CO",	child:	const	Text("Colorado")),
DropdownMenuItem(value:	"CT",	child:	const	Text("Connecticut")),
DropdownMenuItem(value:	"DE",	child:	const	Text("Delaware")),
DropdownMenuItem(value:	"DC",	child:	const	Text("District	Of

Columbia")),
DropdownMenuItem(value:	"FL",	child:	const	Text("Florida")),
DropdownMenuItem(value:	"GA",	child:	const	Text("Georgia")),
DropdownMenuItem(value:	"HI",	child:	const	Text("Hawaii")),
DropdownMenuItem(value:	"ID",	child:	const	Text("Idaho")),
DropdownMenuItem(value:	"IL",	child:	const	Text("Illinois")),
DropdownMenuItem(value:	"IN",	child:	const	Text("Indiana")),
DropdownMenuItem(value:	"IA",	child:	const	Text("Iowa")),
DropdownMenuItem(value:	"KS",	child:	const	Text("Kansas")),
DropdownMenuItem(value:	"KY",	child:	const	Text("Kentucky")),
DropdownMenuItem(value:	"LA",	child:	const	Text("Louisiana")),
DropdownMenuItem(value:	"ME",	child:	const	Text("Maine")),
DropdownMenuItem(value:	"MD",	child:	const	Text("Maryland")),
DropdownMenuItem(value:	"MA",	child:	const	Text("Massachusetts")),
DropdownMenuItem(value:	"MI",	child:	const	Text("Michigan")),
DropdownMenuItem(value:	"MN",	child:	const	Text("Minnesota")),
DropdownMenuItem(value:	"MS",	child:	const	Text("Mississippi")),
DropdownMenuItem(value:	"MO",	child:	const	Text("Missouri")),
DropdownMenuItem(value:	"MT",	child:	const	Text("Montana")),
DropdownMenuItem(value:	"NE",	child:	const	Text("Nebraska")),
DropdownMenuItem(value:	"NV",	child:	const	Text("Nevada")),
DropdownMenuItem(value:	"NH",	child:	const	Text("New

Hampshire")),
DropdownMenuItem(value:	"NJ",	child:	const	Text("New	Jersey")),
DropdownMenuItem(value:	"NM",	child:	const	Text("New	Mexico")),
DropdownMenuItem(value:	"NY",	child:	const	Text("New	York")),
DropdownMenuItem(value:	"NC",	child:	const	Text("North	Carolina")),
DropdownMenuItem(value:	"ND",	child:	const	Text("North	Dakota")),
DropdownMenuItem(value:	"OH",	child:	const	Text("Ohio")),
DropdownMenuItem(value:	"OK",	child:	const	Text("Oklahoma")),
DropdownMenuItem(value:	"OR",	child:	const	Text("Oregon")),

DropdownMenuItem(value:	"PA",	child:	const	Text("Pennsylvania")),
DropdownMenuItem(value:	"RI",	child:	const	Text("Rhode	Island")),
DropdownMenuItem(value:	"SC",	child:	const	Text("South	Carolina")),
DropdownMenuItem(value:	"SD",	child:	const	Text("South	Dakota")),
DropdownMenuItem(value:	"TN",	child:	const	Text("Tennessee")),
DropdownMenuItem(value:	"TX",	child:	const	Text("Texas")),
DropdownMenuItem(value:	"UT",	child:	const	Text("Utah")),
DropdownMenuItem(value:	"VT",	child:	const	Text("Vermont")),
DropdownMenuItem(value:	"VA",	child:	const	Text("Virginia")),
DropdownMenuItem(value:	"WA",	child:	const	Text("Washington")),
DropdownMenuItem(value:	"WV",	child:	const	Text("West	Virginia")),
DropdownMenuItem(value:	"WI",	child:	const	Text("Wisconsin")),
DropdownMenuItem(value:	"WY",	child:	const	Text("Wyoming"))

];

final	_formKey	=	GlobalKey<FormState>();
String	_state	=	STATE_DROPDOWN_MENU_ITEMS[0].value;
TextEditingController	_fnameTextController;
TextEditingController	_lnameTextController;
String	_sex	=	"m";
TextEditingController	_addr1TextController;
TextEditingController	_addr2TextController;
TextEditingController	_cityTextController;
TextEditingController	_zipTextController;
bool	_fiveYears	=	false;
DateFormat	_dateFormat	=	DateFormat("MMM	d	yyyy");
TextEditingController	_dobTextController;

_AddressWidgetState(final	PersonInfo	address)	{
_fnameTextController	=	TextEditingController(text:	address.fname);
_lnameTextController	=	TextEditingController(text:	address.lname);
_sex	=	address.sex;
_addr1TextController	=	TextEditingController(text:	address.addr1);
_addr2TextController	=	TextEditingController(text:	address.addr2);
_cityTextController	=	TextEditingController(text:	address.city);
_zipTextController	=	TextEditingController(text:	address.state);
_fiveYears	=	address.fiveYears;
_dobTextController	=	TextEditingController(

text:	address.dob	!=	null	?	_dateFormat.format(address.dob)	:	"");

}

@override
Widget	build(BuildContext	context)	{
List<Widget>	formWidgetList	=	new	List();
formWidgetList.add(createFNameWidget());
formWidgetList.add(createLNameWidget());
formWidgetList.add(createSexWidget());
formWidgetList.add(createAddr1Widget());
formWidgetList.add(createAddr2Widget());
formWidgetList.add(createCityWidget());
formWidgetList.add(createStateWidget());
formWidgetList.add(createZipWidget());
formWidgetList.add(createFiveYearsWidget());
formWidgetList.add(createDobWidget());
formWidgetList.add(RaisedButton(
onPressed:	()	{
if	(_formKey.currentState.validate())	{
PersonInfo	address	=	createDataObjectFromFormData();
widget._onSaved(address);

}
},
child:	new	Text('Save'),

));

return	Form(key:	_formKey,	child:	Column(children:	formWidgetList));
}

TextFormField	createFNameWidget()	{
return	new	TextFormField(

validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	your	first	name.';

}
},
decoration:	InputDecoration(

icon:	const	Icon(Icons.person),
hintText:	'First	name',
labelText:	'Enter	your	first	name'),

onSaved:	(String	value)	{},
controller:	_fnameTextController,
autofocus:	true);

}

TextFormField	createLNameWidget()	{
return	new	TextFormField(

validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	your	last	name.';

}
},
decoration:	InputDecoration(

icon:	const	Icon(Icons.person),
hintText:	'Last	name',
labelText:	'Enter	your	last	name'),

onSaved:	(String	value)	{},
controller:	_lnameTextController);

}

void	_handleSexRadioChanged(String	value)	{
setState(()	{
_sex	=	value;

});
}

InputDecorator	createSexWidget()	{
List<Widget>	radioWidgets	=	[
Text("Male"),
Radio(

value:	"m",
groupValue:	_sex,
onChanged:	(s)	=>	_handleSexRadioChanged(s)),

Text("Female"),
Radio(

value:	"f",
groupValue:	_sex,
onChanged:	(s)	=>	_handleSexRadioChanged(s)),

];

return	InputDecorator(
decoration:	const	InputDecoration(
icon:	const	Icon(Icons.person),
hintText:	'Been	at	address	5	years?',
labelText:	'5	years?',

),
child:	new	DropdownButtonHideUnderline(

child:	Row(children:	radioWidgets)));
}

TextFormField	createAddr1Widget()	{
return	new	TextFormField(

validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	first	line	of	your	address.';

}
},
decoration:	InputDecoration(

icon:	const	Icon(Icons.location_city),
hintText:	'Address	1',
labelText:	'Enter	the	first	line	of	address'),

onSaved:	(String	value)	{},
controller:	_addr1TextController);

}

TextFormField	createAddr2Widget()	{
return	new	TextFormField(

decoration:	InputDecoration(
icon:	const	Icon(Icons.location_city),
hintText:	'Address	2',
labelText:	'Enter	the	second	line	of	address'),

onSaved:	(String	value)	{},
controller:	_addr2TextController);

}

TextFormField	createCityWidget()	{
return	new	TextFormField(

validator:	(value)	{
if	(value.isEmpty)	{

return	'Please	enter	your	city.';
}

},
decoration:	InputDecoration(

icon:	const	Icon(Icons.location_city),
hintText:	'City',
labelText:	'Enter	the	city	name'),

onSaved:	(String	value)	{},
controller:	_cityTextController);

}

InputDecorator	createStateWidget()	{
DropdownButton<String>	stateDropdownButton	=

DropdownButton<String>(
items:	STATE_DROPDOWN_MENU_ITEMS,
value:	_state,
isDense:	true,
onChanged:	(String	value)	{
setState(()	{
this._state	=	value;

});
});

return	InputDecorator(
decoration:	const	InputDecoration(
icon:	const	Icon(Icons.location_city),
hintText:	'Select	the	State',
labelText:	'Select	the	State',

),
child:	new	DropdownButtonHideUnderline(child:

stateDropdownButton));
}

TextFormField	createZipWidget()	{
return	new	TextFormField(

validator:	(value)	{
if	((value.isEmpty)	||	(value.length	<	5))	{
return	'Please	enter	your	5	digit	zip.';

}
},

maxLength:	5,
maxLengthEnforced:	true,
keyboardType:	TextInputType.phone,
inputFormatters:	[WhitelistingTextInputFormatter.digitsOnly],
decoration:	InputDecoration(

icon:	const	Icon(Icons.location_city),
hintText:	'Zip',
labelText:	'Enter	your	zip'),

onSaved:	(String	value)	{},
controller:	_zipTextController);

}

InputDecorator	createFiveYearsWidget()	{
Checkbox	fiveYearsCheckbox	=	Checkbox(

value:	this._fiveYears,
onChanged:	(value)	{
setState(()	{
this._fiveYears	=	value;

});
});

return	InputDecorator(
decoration:	const	InputDecoration(
icon:	const	Icon(Icons.calendar_today),
hintText:	'Been	at	address	5	years?',
labelText:	'5	years?',

),
child:	new	DropdownButtonHideUnderline(

child:	Row(children:	[
fiveYearsCheckbox,
Text("Been	at	address	5	years?")

])));
}

DateTimePickerFormField	createDobWidget()	{
return	new	DateTimePickerFormField(

validator:	(value)	{
if	((value	==	null))	{
return	'Please	enter	your	date	of	birth.';

}

},
dateOnly:	true,
format:	_dateFormat,
decoration:	InputDecoration(

icon:	const	Icon(Icons.date_range),
hintText:	'Date',
labelText:	'Select	the	Date'),

controller:	_dobTextController);
}

PersonInfo	createDataObjectFromFormData()	{
return	new	PersonInfo(

_fnameTextController.text,
_lnameTextController.text,
_sex,
_addr1TextController.text,
_addr2TextController.text,
_cityTextController.text,
_state,
_zipTextController.text,
_fiveYears,
_dateFormat.parse(_dobTextController.text));

}
}

Other	Information

Input	Decoration	Themes
If	you	don’t	 like	the	way	the	forms	look	or	if	you	feel	 they	don’t

highlight	 the	 field	 states	 well	 enough,	 you	 can	 change	 them	 in	 the
theme.
Example	-	‘input_decoration_themes’
This	 app	 shows	 how	 your	 theme	 can	 change	 the	 appearance	 of

input	fields.

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,
inputDecorationTheme:	InputDecorationTheme(
border:	const	OutlineInputBorder(
borderSide:	BorderSide(color:	Colors.blueGrey),

),
enabledBorder:	OutlineInputBorder(
borderSide:	BorderSide(color:	Colors.green),

),
focusedBorder:	const	OutlineInputBorder(
borderSide:	BorderSide(color:	Colors.deepPurple),

),
labelStyle:	const	TextStyle(

color:	Colors.blueGrey,
),

),
),
home:	new	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatelessWidget	{
final	_formKey	=	GlobalKey<FormState>();
List<TextEditingController>	_textEditingControllers	=	[];
List<Widget>	_widgets	=	[];

HomeWidget({Key	key})	:	super(key:	key)	{
List<String>	fieldNames	=	[
"First	Name",
"Last	Name",
"Address	1",
"Address	2",
"City",
"State",
"Zip"

];
for	(int	i	=	0,	ii	=	fieldNames.length;	i	<	ii;	i++)	{
String	fieldName	=	fieldNames[i];
TextEditingController	textEditingController	=

new	TextEditingController(text:	"");
_textEditingControllers.add(textEditingController);
_widgets.add(Padding(
child:	_createTextFormField(fieldName,	i	>	1,

textEditingController),
padding:	EdgeInsets.all(10.0),

));
}
_widgets.add(RaisedButton(
onPressed:	()	{
_formKey.currentState.validate();

},

child:	new	Text('Save'),
));

}

TextFormField	_createTextFormField(
String	fieldName,	bool	enabled,	TextEditingController	controller)	{

return	new	TextFormField(
enabled:	enabled,
validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	${fieldName}.';

}
},
decoration:	InputDecoration(

icon:	const	Icon(Icons.person),
hintText:	fieldName,
labelText:	'Enter	${fieldName}'),

controller:	controller);
}

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Input	Decoration	Themes"),

),
body:	Padding(

padding:	EdgeInsets.all(20.0),
child:	Form(

key:	_formKey,
child:	ListView(
children:	_widgets,

))));
}
}

Enabling	/	Disabling	Form	Buttons
When	dealing	with	forms,	remember	that	you	can	enable	or	disable

buttons	using	the	‘onPressed’	constructor	argument:

If	this	argument	is	non-null,	then	the	button	is	enabled.
If	this	argument	is	null	then	the	button	is	disabked.

Example	–	‘button_enablement’
This	app	only	enables	the	register	button	when	the	user	checks	the

checkbox	to	agree	to	the	agreement.

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'Button	Enablement'),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
bool	_checked	=	false;

void	_onCheck(val)	{
setState(()	{
_checked	=	val;

});
}

void	_onSubmit()	{
debugPrint("_onSubmit");

}

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(widget.title),

),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
new	Text('Please	check	below	to	agree	to	the	terms.',

style:	const	TextStyle(fontStyle:	FontStyle.italic)),
Row(mainAxisAlignment:	MainAxisAlignment.center,	children:

[

Checkbox(value:	_checked,	onChanged:	(val)	=>
_onCheck(val)),

Text("I	agree")
]),
OutlineButton(
onPressed:	_checked	?	()	=>	_onSubmit()	:	null,
child:	const	Text('Register'),

)
],

),
));

}
}

	

26.	HTTP,	APIs,	REST	&	JSON

Introduction
Most	Flutter	projects	involve	HTTP	communication	between	your

app	and	some	API	on	some	server.	Most	of	the	time	these	server	APIs
are	 built	 to	 the	 REST	 design	 guidelines	 and	 the	 data	 will	 be
transferred	in	the	JSON	format.

The	purpose	of	 this	 chapter	 is	 to	 learn	about	HTTP,	APIs,	REST
and	JSON	before	we	hit	the	keyboard.

Asynchronous	Communication
When	your	app	communicates	 to	and	from	a	remote	server	using

HTTP,	it	is	doing	so	asynchronously.	The	app	does	not	suddenly	stop
completely	after	it	sends	a	request	to	the	server.	As	mentioned	in	the
chapter	 ‘More	 Advanced	 Dart’,	 the	 Dart	 language	 fully	 supports
asynchronous	 programming,	 including	 Futures.	 The	 Flutter	 HTTP
package	(which	we	will	cover	soon)	uses	Futures	to	enable	developers
to	 communicate	 through	 HTTP	 asynchronously.	 	 Every	 time	 we
communicate	with	the	server	using	HTTP	we	don’t	stop	doing	things
in	the	app	but	we	process	the	success	or	error	response	when	it	comes
back	to	us.

HTTP

Introduction
The	 Hypertext	 Transfer	 Protocol	 (HTTP)	 is	 designed	 to	 enable

communications	 between	 clients	 and	 servers.	 HTTP	 works	 as	 a
request-response	protocol	between	a	client	and	server.

A	protocol	describes	how	machines	communicate	with	each	other
using	messages.		A	protocol	defines	the	format	of	these	messages.

Tools
Introduction
One	 you	 are	 adept	 with	 Flutter	 you	 will	 end	 up	 spending

considerable	time	writing	code	that	communicates	with	servers	using
the	HTTP.	You	may	want	 to	 investigate	 these	 tools	 in	advance,	 they
will	make	your	life	easier.
Web	Browser
You	obviously	 already	 have	 one	 of	 these.	 If	 you	want	 to	 see	 the

HTTP	protocol	at	work,	open	your	browser,	go	to	a	website	then	use
the	 hamburger	 menu	 to	 access	 the	 developer	 tools.	 Select	 the
‘network’	 option	 to	 see	 the	 network	 traffic	 inspector.	 In	 the	 image
below	you	can	see	the	network	traffic	inspector	on	the	right	side,	with
one	request	selected	and	viewed	in	more	detail.
	

Postman
This	 tool	will	 let	 you	 test	HTTP	 requests	 to	 a	 server	 before	 you

code	them	in	Flutter.	You	can	view	the	raw	data	and	see	what’s	going
on.

Https://www.getpostman.com/
JSON	Formatter
JSON	is	the	data	format	you	will	be	working	with.	You	may	also

https://www.getpostman.com/

want	 to	 find	a	good	online	JSON	formatter	 to	make	 the	JSON	more
readable.

Https://jsonformatter.curiousconcept.com/

Request
This	is	what	your	app	will	send	to	the	server.

Response
This	is	what	your	app	will	receive	back	from	the	server.

	

Methods
HTTP	 methods	 have	 been	 around	 for	 a	 long	 time.	 	 The	 most-

commonly-used	HTTP	methods	 are	 POST,	GET,	 PUT,	 PATCH,	 and
DELETE.	GET	 is	 used	most	 of	 all	 because	 you	 tend	 to	 access	 data
more	often	than	you	change	it.

GET	request	‘method’.	The	‘method’	describes	what	the	app	wants
the	server	to	do,	what	is	the	intent	of	the	request.		The	most	commonly

https://jsonformatter.curiousconcept.com/

used	methods	are	‘get’	and	‘post’.		The	‘get’	method	is	used	to	request
data	 from	 the	 server.	 The	 ‘post’	method	 is	 used	 to	 send	 data	 to	 the
server,	to	save	it	or	update	it.	The	‘put’	method	is	used	to	update	data
on	the	server.	The	‘delete’	method	is	used	to	delete	data	on	the	server.

URI
This	is	the	address	of	where	the	request	is	going	to.	A	specific	path

on	a	specific	server.
Example:
https://www.cnn.com/2019/03/16/politics/beto-orourke-

campaigning-while-driving/index.html
Query	Parameters
HTTP	 allows	 you	 to	 pass	 information	 to	 the	 server	 in	 the	 URL

using	query	parameters.
Example:
http://localhost:4200/sockjs-node/info?t=1498649243238
Matrix	Parameters
HTTP	 allows	 you	 to	 pass	 information	 to	 the	 server	 in	 the	 URL

using	matrix	parameters.	For	Example:
http://localhost:4200/sockjs-node/info;t=1498649243238

Matrix	parameters	are	 similar	 to	query	 strings	but	use	a	different
pattern.	They	also	act	differently	because	(not	having	a	‘?’)	 they	can
be	cached.
Path	Parameters
HTTP	 allows	 you	 to	 pass	 information	 to	 the	 server	 in	 the	 URL

using	path	parameters.	For	Example:
http://localhost:4200/api/badges/9243238
URI	Encoding
Some	characters	cannot	be	part	of	a	URL	(for	example	spaces)	and

some	 other	 characters	 have	 a	 special	 meaning	 in	 a	 URL.	 To	 get
around	 this,	 the	 URL	 syntax	 allows	 for	 encoding	 on	 parameters	 to

https://www.cnn.com/2019/03/16/politics/beto-orourke-campaigning-while-driving/index.html
http://localhost:4200/sockjs-node/info?t=1498649243238
http://localhost:4200/sockjs-node/info;t=1498649243238
http://localhost:4200/api/badges/9243238

ensure	a	valid	URL.

Example:
The	 ‘space’	character	between	 ‘Atlantic’	and	 ‘City’	 is	 encoded	 to

‘%20’.
https://trailapi-trailapi.p.mashape.com/?

q[city_cont]=Atlantic%20City

Status
This	 is	 part	 of	 the	 response.	 It	 indicates	whether	 the	 request	was

successfully	processed	or	not.	Here	are	some	of	the	HTTP	status	code
values:
	

Code Name Description
1xx Informational
2xx Success

200 Ok
3xx Redirect

301 Moved
permanently

302 Moved
temporarily

4xx Request	error

400 Bad	request The	request	could	not	be
understood	by	the	server.

403 Forbidden User	not	authorized	to	perform
the	requested	operation.

404 Not	found The	requested	resource	could
not	be	found	at	the	given	URI.

405
Method	not

allowed
The	request	method	is	not

https://trailapi-trailapi.p.mashape.com/?q%5bcity_cont%5d=Atlantic%20City

allowed	on	the	specified	resource.

5xx Server	error

500
Internal

server	error
	

The	server	encountered	an
unexpected	condition,	preventing
it	to	fulfill	the	request.

503 Service
unavailable

The	server	is	temporarily
unavailable,	usually	due	to
overloading	or	maintenance.

Header
HTTP	 headers	 allow	 the	 client	 and	 the	 server	 to	 pass	 additional

information	 with	 the	 request	 or	 the	 response.	 A	 request	 header
consists	 of	 key	 value	 pairs	 -	 a	 case-insensitive	 key	 followed	 by	 a
colon	':',	then	by	its	value	(without	line	breaks).
	

Body
Introduction
The	HTTP	body	allows	the	client	and	the	server	to	pass	additional

information	with	the	request	or	the	response	after	the	header.
Request
In	 the	 Request,	 HTTP	 bodies	 are	 not	 always	 required	 because	 a

body	of	information	is	not	always	needed.	GET	and	DELETE	HTTP
requests	 usually	 don’t	 need	 a	 body.	 POST,	 PUT	 and	 PATCH	HTTP
requests	do	-	this	is	where	the	information	to	be	created	or	modified	is
sent.
	

Response

The	body	is	used	to	return	information	in	the	Response	and	it	can
get	very	large,	with	a	considerable	amount	of	data.

Example:
In	this	chapter’s	example	HTTP	code,	we	receive	a	response	with	a

body	containing	the	data	for	over	1000	employees.

APIs
When	someone	makes	their	API	available	to	the	world,	they	write

the	 code	 for	 the	 api	 and	 they	 publish	 it	 to	 their	 HTTP	web	 server.	
APIs	are	also	known	as	web	services.

Most	APIs	use	the	REST	architectural	style,	which	is	a	pattern	of
how	 you	 will	 communicate	 with	 the	 server	 over	 HTTP.	 APIs	 that
conform	 to	 the	 REST	 architectural	 style	 mostly	 work	 in	 the	 same
manner,	with	similar	web	addresses	(URIs)	and	HTTP	methods.

These	similarities	really	help	when	going	from	one	API	to	another.

REST
REST	 stands	 for	Representational	 State	 Transfer.	 REST	 gives	 us

high	 level	 design	 guidelines	 and	 leave	 you	 to	 think	 of	 your	 own
implementation.

REST	APIs	should	be	stateless.
In	the	past,	web	applications	used	to	store	session	data	for	the	user.

For	example,	the	user	would	login	and	this	would	start	a	session	and
information	 could	 be	 kept	 in	 this	 session	 until	 the	 user	 logged	 out.
	 This	 session	 data	 could	 include	 who	 the	 user	 is,	 what	 access	 they
have	and	any	other	required	information.

Now,	 with	 more	 modern	 APIs	 and	 REST,	 access	 to	 servers	 is
controlled	through	tokens	or	api	keys.	Also,	every	API	call	is	stateless

-	 every	 single	 request	 from	 the	 client	 to	 server	 is	 self-contained	and
contains	all	of	the	data	to	identify	who	made	the	request	and	all	of	the
request	data	itself	to	perform	the	operation.	Such	a	request	cannot	take
advantage	of	any	pre-existing	session	data	on	the	server.
Determining	the	User	-	Who	Made	the	Request	to	the

API?
Tokens
In	most	apps	with	a	 login,	when	a	user	 login	occurs,	he	or	she	 is

returned	 a	 temporary	 token	 for	 access.	 This	 token	 is	 encrypted	 and
contains	information	about	the	user	and	the	token	itself	(such	as	when
it	expires).	This	token	can	be	refreshed	every	predetermined	period	of
time	(for	example	every	15	minutes).		Whenever	an	API	call	is	made
from	some	device	 to	 the	server,	 the	 token	must	be	 included	 in	every
single	outgoing	request	header	to	the	server.	If	the	token	is	not	present
or	 invalid	 (they	 can	 expire)	 then	 the	 server	 returns	 an	 error	 code
(usually	a	401	or	403	HTTP	code).	If	the	token	is	good	then	the	server
knows	that	a	valid	logged-in	user	is	using	the	app,	the	server	has	info
about	the	user	from	the	token	and	the	API	can	perform	its	operation.

API	Keys
If	the	user	doesn’t	really	need	to	login	every	time	the	app	is	used,

an	API	key	enables	a	registered	user	(for	example	a	CAT	API	user)	to
be	 identified	 in	 the	 HTTP	 header	 as	 a	 valid	 user	 on	 every	 single
outgoing	request	to	the	server.	Like	a	token,	this	is	validated	and	the
server	returns	an	error	code	if	there	is	a	problem	with	it.

No	User	Identification
Sometimes	 people	 publish	 APIs	 which	 don’t	 need	 information

about	 the	user.	For	 example,	 in	 this	 chapter	we	are	going	 to	use	 the
dummy	rest	api	here:	http://dummy.restapiexample.com/

How	REST	Uses	URLs
In	 REST,	 the	 URL	 is	 used	 to	 determine	 what	 resource	 you	 are

doing	it	to.	For	example:	employees,	orders	etc.

http://dummy.restapiexample.com/

Base	URL
The	base	URL	is	the	first	part	of	the	API,	without	the	REST	part.

The	REST	part	comes	after	the	base	URL.		The	base	URL	is	usually
the	following:

The	domain.	E.g.	www.example.com.
Optionally	 a	 suffix	 ‘api’	 to	 indicate	 that	 the	path	 is	 for	API
use	only.
Optionally	 a	 suffix	 for	 the	 name	 of	 the	 app	 the	 API	 was
written	for.
Optionally	it	also	has	the	API	version.
For	 example,	 for	 the	 dummy	 REST	 API	 it	 is
http://dummy.restapiexample.com/api/v1

URL	&	Paths
The	URL	of	 the	REST	API	can	be	composed	of	several	parts,	of

paths.	Think	of	it	the	URL	as	a	path	to	the	resource	(the	data).

Example:
http://www.example.com/customers/33245/orders/8769/lineitems/1

Should	be	thought	as:
Go	to	customer	33245.
Then	go	to	order	8769	for	that	customer.
Then	‘go	to	line	item	1’	for	that	order.

How	REST	Uses	HTTP	Method
In	REST,	the	HTTP	method	is	used	to	describe	what	you	are	doing.

Getting	data,	posting	new	data	(creating	it),	putting	data	(updating	it),
deleting	it.

Accessing	Data	with	a	REST	API
URI

Identifies	what	data	you	are	accessing.

http://www.example.com
http://dummy.restapiexample.com/api/v1

A	list	of	items.
This	 would	 be	 [base	 url]	 +	 the	 resource
name.	 For	 example:
http://www.example.com/products.	 This
would	usually	return	multiple	projects.
The	 list	 of	 items	 could	 belong	 to	 another
entity.	Examples:

http://www.example.com/customers/33245/orders
would	return	the	list	of	orders	for
customer	33245.
http://www.example.com/customers/33245/orders/123/lineItems
would	 return	 the	 line	 items	 for
order	123	for	customer	33245.

A	searched	list	of	items.
The	 URL	 would	 be	 similar	 to	 the	 list	 of
items	above,	plus	 some	additional	 info	on
the	end	to	specify	the	search.

Additional	info.
You	 could	 add	 query	 strings	 or
matrix	 /	 path	 parameters	 to	 the
end	 of	 the	 url.	 For	 example:
http://www.example.com/products?
name=mark	.	This	is	the	preferred
way	 to	 do	 this	 but	 REST	 URLs
are	often	open	to	interpretation.
You	 could	 add	 ‘/search’	 then	 the
search	 criteria	 to	 the	 end	 of	 the
URL	 (or	 something	 similar).	 For
example:
http://www.example.com/products/search/name/mark
would	 search	 for	products	by	 the
name	mark.

A	single	item.

http://www.example.com/products
http://www.example.com/customers/33245/orders
http://www.example.com/customers/33245/orders/123/lineItems
http://www.example.com/products?name=mark
http://www.example.com/products/search/name/mark

The	 URL	 would	 be	 similar	 to	 the	 list	 of
items	 plus	 a	 slash	 then	 an	 identifier	 to
identify	 the	 item.	 For	 example:
http://www.example.com/products/66432
would	return	product	66432.
The	 single	 item	 could	 belong	 to	 another
entity.	 For	 example:
http://www.example.com/customers/33245/orders/8769
would	return	a	single	item,	order	8769	for
customer	33245.

HTTP	Method
You	should	use	an	HTTP	‘get’	method	to	access	data
through	a	REST	API.

HTTP	Body
Not	used.

Inserting	Data	with	a	REST	API
URI

Identifies	what	type	of	data	you	are	inserting.
This	 would	 be	 the	 same	 as	 the	URL	 to	 the	 list	 of
items.	Examples:

http://www.example.com/products
http://www.example.com/customers/33245/orders
or	 http://www.example.com/orders
(implementation	is	open	to	interpretation).

HTTP	Method
You	should	use	an	HTTP	‘put’	method	to	insert	(or
create)	data	through	a	REST	Api.

HTTP	Body
You	normally	put	the	data	required	for	the	insert	in
the	request	body.

http://www.example.com/products/66432
http://www.example.com/customers/33245/orders/8769
http://www.example.com/products
http://www.example.com/customers/33245/orders
http://www.example.com/orders

Updating	Data	with	a	REST	API
URI

Identifies	what	data	you	are	updating.
This	 would	 be	 the	 same	 as	 the	 URL	 for

accessing	a	single	item.	Examples:
http://www.example.com/products/66432
http://www.example.com/customers/33245/orders/8769

HTTP	Method
You	 use	 an	 HTTP	 ‘put’	 method	 to	 update	 data
through	a	REST	Api.

HTTP	Body
You	normally	put	the	data	required	for	the	update	in
the	request	body.

Deleting	Data	with	a	REST	API
URI

Identifies	what	data	you	are	deleting.
This	 would	 be	 the	 same	 as	 the	 URL	 for

accessing	a	single	item.	Examples:
http://www.example.com/products/66432
http://www.example.com/customers/33245/orders/8769

HTTP	Method
You	should	use	an	HTTP	 ‘delete’	method	 to	delete
data	through	a	REST	Api.

HTTP	Body
Not	used.

JSON
JSON	 stands	 for	 JavaScript	 Object	 Notation.	 It	 is	 a	 data	 format

used	 to	 pass	 data	 between	 the	 client	 and	 the	 server	 (in	 both

http://www.example.com/products/66432
http://www.example.com/customers/33245/orders/8769
http://www.example.com/products/66432
http://www.example.com/customers/33245/orders/8769

directions).	It	is	the	same	data	format	used	by	the	JavaScript	language.
It	uses	a	comma	to	separate	items	and	a	colon	to	separate	the	name	of
a	 property	with	 the	 data	 for	 that	 property.	 It	 uses	 different	 types	 of
brackets	to	denote	objects	and	arrays.

JSON	For	Passing	an	Object	Containing	Data.
The	‘{‘	and	‘}’	brackets	are	used	to	denote	the	start	and	end	of	an

object.
{	"name":"John",	"age":31,	"city":"New	York"	}

JSON	For	Passing	an	Array
The	‘[‘	and	‘]’	brackets	are	used	to	denote	the	start	and	end	of	an

array.
["Ford",	"BMW",	"Fiat"]

JSON	For	Passing	an	Array	of	Objects
The	brackets	are	combined	to	create	a	cars	object,	which	has	two

properties	‘Nissan’	and	‘Ford’.	Each	property	has	an	array	of	models.
{
"cars":	{

"Nissan":	[
{"model":"Sentra",	"doors":4},
{"model":"Maxima",	"doors":4}

],
"Ford":	[

{"model":"Taurus",	"doors":4},
{"model":"Escort",	"doors":4}

]
}
}

27.	 Flutter	 with	 HTTP,	 APIs,	 REST	 &
JSON

Introduction
In	 the	 previous	 chapter	 we	 learnt	 about	 HTTP,	APIs,	 REST	 and

JSON.

The	 purpose	 of	 this	 chapter	 is	 to	 write	 Flutter	 code	 that
communicates	with	APIs	over	HTTP	using	REST	with	 JSON	as	 the
data	format.

Flutter	&	JSON

Introduction
So,	we	know	 that	we	 communicate	with	 servers	using	 the	HTTP

protocol,	using	JSON	as	the	data	format.		
	

Request
When	the	app	makes	an	outgoing	request	to	an	API	on	a	server,	it

often	needs	 to	convert	Flutter	data	 (for	example	data	 in	a	 form)	 into
JSON.	 This	 conversion	 from	 Flutter	 data	 into	 JSON	 data	 is	 called
serializing.

Response
When	 the	 server	 responds	 back,	 the	 app	 needs	 to	 convert	 JSON

data	into	Flutter	data.	This	conversion	from	JSON	data	back	to	Flutter
data	is	called	deserializing.

Serializing	&	Deserializing	JSON.
So,	 we	 know	 we	 have	 to	 convert	 data	 between	 the	 JSON	 and

Flutter.		

By	JSON	we	mean	a	string	of	JSON.
By	Flutter	we	mean	‘data	in	a	Dart	class	in	our	Flutter	app’.

Two	Ways	of	Serializing	&	Deserializing	JSON
These	are	the	two	main	ways	of	serializing	&	deserializing	JSON

in	a	Flutter	App:
	

1.	 Generating	code	for	Serializing	&	Deserializing
Pluses.

You	don’t	have	to	write	the	code.
Its	 generated	 code,	 it	 doesn’t	 make
mistakes.

Minuses.
It’s	not	super-simple	to	setup,	you	need	to
know	how	it	works.
It	doesn’t	work	with	complicated	cases	 as
well	as	coding	them.

2.	 Manually	writing	code	for	Serializing	&	Deserializing
Pluses.

You	have	to	write	the	code.
You	 can	 code	 the	 more	 complex
Serialization	&	Deserialization	scenarios.

Minuses.

There	will	be	bugs.
It’s	not	 super-simple	 to	 code,	you	need	 to
know	how	it	works.

Remember	that	You	Can	Combine	the	Two!
You	can	follow	the	80	-	20	rule.
Do	 80%	 the	 simple	 easiest	 way,	 generating	 the	 code	 for	 the

serialization	&	deserialization	of	simple	objects.
When	 you	 get	 to	 the	more	 difficult	 20%	you	 can	 handcraft	 your

own	code	to	serialize	and	deserialize	more	complex	objects.

The	code	examples	follow	this	rule.	We	do	the	easy	stuff	using	the
code	 generator	 (simple	 serialization	&	 deserialization)	 and	 the	 hard
stuff	 (recursive	 serialization	 &	 deserialization)	 in	 the	 handwritten
code.

Generating	 Code	 for	 Serializing	 &
Deserializing
Introduction
This	approach	uses	two	packages:

The	 ‘json_serializable’	 package	 to	 generate	 the	 serialization
&	deserialization	code	for	us.
The	 ‘build_runner’	 package	 to	 work	 with	 the
‘json_serializable’	package	generate	the	code	files.

Step	1	–	Add	Dependencies	to	Projects
Modify	the	project	dependency	file	‘pubspec.yaml’	to	include	two

additional	 developer	 dependencies	 -	 build_runner	 and
json_serializable:

dev_dependencies:
flutter_test:

sdk:	flutter

build_runner:
json_serializable:	^0.5.0

Then	you	need	to	command	Flutter	to	go	get	the	dependencies:
flutter	packages	get
Step	 2	 –	 Amend	 the	 classes	 to	 be	 Serialized	 &

Deserialized
Annotate	the	classes	to	be	serialized	&	deserialized	to	include	the

import	and	annotations.		In	the	example,	this	class	is	contained	in	the
‘main.dart’	file.

Import	the	annotation.
Add	 a	 @JsonSerializable()	 annotation	 just	 before	 the	 class
declaration.
Add	field	annotations	just	before	the	field	declarations.		

These	aren’t	necessary	if	the	JSON	field	name	stays
the	same	as	the	Dart	field	name.
The	@JsonKey	annotation	declares	the	JSON	name
for	 the	 field	 if	you	want	 it	 to	be	different	 from	 the
field	name.

import	'package:json_annotation/json_annotation.dart';
…

@JsonSerializable()
class	Person	{

final	String	name;
@JsonKey(name:	"addr1")
final	String	addressLine1;
@JsonKey(name:	"city")
final	String	addressCity;
@JsonKey(name:	"state")
final	String	addressState;

Person(this.name,	this.addressLine1,	this.addressCity,	this.addressState);

@override
String	toString()	{
return	'Person{name:	$name,	addressLine1:	$addressLine1,	addressCity:

$addressCity,	addressState:	$addressState}';
}
}

Step	3	 –	Generate	 the	Serialization	&	Deserialization
Code	‘.g.dart’	Files

Run	the	following	command	line	in	the	project	root:
flutter	packages	pub	run	build_runner	build

This	should	generate	a	‘.g.dart’	file	in	the	project	for	each	file	that
you	modified	 in	Step	2.	Note	 that	 these	 files	 contain	 ‘Mixins’,	Dart
classes	 that	 contain	 code	 that	 can	 be	 incorporated	 into	 other	 classes
without	 the	 use	 of	 inheritance.	 Please	 take	 a	 look	 at	 the	 Mixins
chapter.

In	 the	 example,	 this	 generates	 a	 file	 ‘main.g.dart’	 to	 match	 the
‘main.dart’	file:

Step	 4	 –	 Amend	 the	 classes	 to	 be	 Serialized	 &
Deserialized

Now	we	need	to	go	back	to	the	classes	that	we	modified	in	step	2
and	we	need	to	modify	them	to	utilize	the	generated	code.	We	do	this
by	 first	using	a	 ‘part’	annotation	 to	 import	 the	generated	code.	Then
we	use	a	mixin	to	combine	the	existing	class	and	the	generated	class
together.

We	insert	a	‘part’	annotation	for	each	file	generated	in	Step	3.
The	 ‘part’	 annotation	 is	 used	 to	 inject	 content	 from	 another
file.	In	the	example	file	‘main.dart’,	we	use	this	annotation	to
inject	the	content	from	the	‘main.g.dart’	file.

part	'main.g.dart';

We	modify	 the	class	declarations	 to	 extend	 the	Object	 class
with	 the	Mixin	 (the	 abstract	 class)	 from	 the	 generated	 code
(you	may	need	 to	 look	 in	 the	 ‘.g.dart’	 files	 to	get	 the	mixin
names).	 In	 the	 example,	we	 change	 the	 class	 declaration	 to
the	following	(changes	in	bold):

class	Person	extends	Object	with	_$PersonSerializerMixin	{
Done
That’s	it,	you	should	be	done.
Make	sure	that	you	re-run	the	following	command	in	your	project

root	everytime	you	change	something:
flutter	packages	pub	run	build_runner	build
Example	–	‘serialize_with_generated_code’
This	 app	 creates	 a	 Person	 object	 for	 a	 person	 and	 displays	 a

‘toString()’	of	 the	object	below	in	black.	It	also	serializes	 that	object
and	displays	the	JSON	in	underneath	in	red.	There	is	a	‘Copy’	button
to	copy	the	JSON	to	the	clipboard	so	you	can	paste	 it	 into	an	online
JSON	formatter.

	

Remember	 that	 this	 should	 won’t	 work	 recursively,	 unlike	 the
example	with	the	manually-written	code.
Source	Code

import	'dart:convert';

import	'package:flutter/material.dart';
import	'package:flutter/services.dart';
import	'package:json_annotation/json_annotation.dart';

part	'main.g.dart';

void	main()	=>	runApp(MyApp());

@JsonSerializable()
class	Person	extends	Object	with	_$PersonSerializerMixin	{

final	String	name;
@JsonKey(name:	"addr1")
final	String	addressLine1;
@JsonKey(name:	"city")
final	String	addressCity;
@JsonKey(name:	"state")
final	String	addressState;

const	Person(
this.name,	this.addressLine1,	this.addressCity,	this.addressState);

@override
String	toString()	{
return	'Person{name:	$name,	addressLine1:	$addressLine1,	addressCity:

$addressCity,	addressState:	$addressState}';
}
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',

theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatelessWidget	{
static	const	Person	_person	=

Person("John	Brown",	"9621	Roberts	Avenue",	"Birmingham",	"AL");

@override
Widget	build(BuildContext	context)	{
return	Scaffold(

appBar:	AppBar(
title:	Text("Serialization"),

),
body:	Center(
child:	Padding(
child:	ListView(
children:	<Widget>[
Padding(

child:	Text("Grandfather:\n${_person}"),
padding:	EdgeInsets.only(top:	0.0)),

Padding(
child:	Text("Json	Encoded:\n${json.encode(_person)}",

style:	TextStyle(color:	Colors.red)),
padding:	EdgeInsets.only(top:	10.0)),

FlatButton(
child:	Text("Copy"),
onPressed:	(()	{
Clipboard.setData(

ClipboardData(text:	"${json.encode(_person)}"));
})),

],
),
padding:	EdgeInsets.all(10.0),

),

));
}
}

Example	–	‘deserialize_with_generated_code’
This	app	lets	you	enter	the	JSON	for	a	person	then	hit	the	floating

button	to	deserialize	it.

If	successful,	a	 ‘toString()’	of	 the	Person	object	 is	displayed
underneath	(in	black).
If	 an	 error	 occurs	 (maybe	 you	 input	 bad	 JSON?),	 it	 is
displayed	underneath	(in	red).

Remember	 that	 this	 should	 won’t	 work	 recursively,	 unlike	 the
example	with	the	manually-written	code.
Source	Code

import	'package:flutter/material.dart';
import	'dart:convert';
import	'package:json_annotation/json_annotation.dart';

part	'main.g.dart';

void	main()	=>	runApp(MyApp());

@JsonSerializable()
class	Person	extends	Object	with	_$PersonSerializerMixin	{

final	String	name;
@JsonKey(name:	"addr1")
final	String	addressLine1;
@JsonKey(name:	"city")
final	String	addressCity;
@JsonKey(name:	"state")
final	String	addressState;

Person(this.name,	this.addressLine1,	this.addressCity,	this.addressState);

@override
String	toString()	{
return	'Person{name:	$name,	addressLine1:	$addressLine1,	addressCity:

$addressCity,	addressState:	$addressState}';
}
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
_HomeWidgetState	createState()	=>	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
final	_jsonTextController	=	TextEditingController();
Person	_person;
String	_error;

_HomeWidgetState()	{
final	String	person	=

"{\"name\":\"Tracy	Brown\",	\"addr1\":\"9625	Roberts	Avenue\","	+
"\"city\":\"Birmingham\",	\"state\":\"AL\"}";

_jsonTextController.text	=	person;
}

TextFormField	_createJsonTextFormField()	{
return	new	TextFormField(

validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	json.';

}
},
decoration:	InputDecoration(

border:	OutlineInputBorder(),
hintText:	'Json',
labelText:	'Enter	the	json	for	a	person.'),

controller:	_jsonTextController,
autofocus:	true,
maxLines:	8,
keyboardType:	TextInputType.multiline);

}

_convertJsonToPerson()	{
_error	=	null;
_person	=	null;
setState(()	{
try	{
final	String	jsonText	=	_jsonTextController.text;
debugPrint("JSON	TEXT:	${jsonText}");
var	decoded	=	json.decode(jsonText);	//	text	to	map
debugPrint("DECODED:		type:	${decoded.runtimeType}	value:

${decoded}");
_person	=	_$PersonFromJson(decoded);	//	map	to	object
debugPrint("PERSON	OBJECT:	type:	${_person.runtimeType}

value:	"
"${_person}");

}	catch	(e)	{
debugPrint("ERROR:	${e}");
_error	=	e.toString();

}
});

}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text("Deserialization"),

),
body:	Center(
child:	Padding(
child:	ListView(
children:	<Widget>[
_createJsonTextFormField(),
Padding(

padding:	EdgeInsets.only(top:	10.0),
child:	Text(

_error	==	null	?	''	:	'An	error	occurred:\n\n${_error}',
style:	TextStyle(color:	Colors.red))),

Padding(
padding:	EdgeInsets.only(top:	10.0),
child:	Text(_person	==	null

?	'Person	is	null'
:	'Converted	to	Person	object:\n\n${_person}'))

],
),
padding:	EdgeInsets.all(10.0),

),
),
floatingActionButton:	FloatingActionButton(

onPressed:	_convertJsonToPerson,
tooltip:	'Increment',
child:	Icon(Icons.refresh),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}
}

Manually	 Writing	 Code	 for	 Serialization	 &
Deserialization
Introduction
This	 approach	 uses	 the	 ‘json’	 class	 in	 the	 core	 ‘dart.convert’

package	to	convert	between	maps	and	JSON	strings.
When	serializing	an	Object,	we	write	code	 to	convert	 the	data	 in

our	 class	 into	 a	map	 so	 that	 the	 ‘json’	 class	 can	 then	 convert	 it	 to	 a
JSON	string.	

When	deserializing	an	JSON	string,	we	write	code	 to	convert	 the
map	into	the	data	in	our	class.
Step	 1	 -	 Write	 Data	 Class	 Including	 ‘toJson’	 &

‘fromJson’	Methods

First	 of	 all,	 you	 need	 to	 write	 a	 Dart	 data	 class	 that	 will
contain	the	data	to	be	serialized	and	will	contain	the	data	after
it	has	been	deserialized.		

If	serializing:
Write	a	‘toJson’	method	that	returns	a	map	from	the
data	in	that	class	(see	‘Person’	class	for	example).

If	deserializing:
Write	 a	 ‘fromJson’	 factory	 method	 that	 creates	 an
instance	 of	 the	 data	 class	 from	 a	 single	 map
argument.

class	Person	{
final	String	name;
final	String	addressLine1;
final	String	addressCity;
final	String	addressState;
final	List<Person>	children;

const	Person(this.name,	this.addressLine1,	this.addressCity,
this.addressState,	this.children);

Map<String,	dynamic>	toJson()	{
var	map	=	{
'name':	name,
'addr':	addressLine1,
'city':	addressCity,
'state':	addressState,
'children':	children

};
return	map;

}

factory	Person.fromJson(Map<String,	dynamic>	json)	{
if	(json	==	null)	{
throw	FormatException("Null	JSON.");

}

//	Recursion.	Convert	children	into	list	of	Person	objects.
List<dynamic>	decodedChildren	=	json['children'];
List<Person>	children	=	[];
decodedChildren.forEach((decodedChild)	{
children.add(Person.fromJson(decodedChild));

});

return	Person(
json['name'],	json['addr1'],	json['city'],	json['state'],	children);

}

}
Step	 2	 -	 Add	 Code	 to	 Invoke	 Serialization	 /

Deserialization	of	the	Data	Class

If	serializing:
Invoke	 ‘json.encode’	 in	 the	 ‘json’	 class	 in	 the

core	‘dart.convert’	package.
The	 ‘json’	 class	 invokes	 the	 ‘toJson’
method	in	your	data	class	to	create	a	map.
The	‘json’	class	then	converts	the	map	to	a
JSON	string.

If	deserializing:
Invoke	 ‘json.decode’	 in	 the	 ‘json’	 class	 in	 the

core	‘dart.convert’	package	to	return	a	map.
The	 ‘json’	 class	 will	 convert	 the	 JSON
string	into	a	map.

Invoke	 the	 factory	 ‘.fromJson’	 method	 in	 the	 data
class	to	convert	the	map	into	an	instance	of	the	data
class.

Examples	 –	 ‘serialize_manually’	 &
‘deserialize_manually’

Both	 the	 examples	 below	 demonstrate	 something	more	 complex:
recursive	manual	serialization	/	deserialization.	I	tried	to	do	this	with
the	generated	code	but	could	not	get	it	to	work.

We	 demonstrate	 serializing	 &	 deserializing	 a	 Person	 object
recursively.	These	Person	objects	can	have	children,	which	in	turn	can
have	 children	 etc.	 	 In	 this	 example,	 we	 can	 have	 children	 and
grandchildren.

	

Example	–	‘serialize_manually’
This	app	creates	Person	objects	for	all	the	people	in	the	family	and

displays	a	‘toString()’	of	each	one	(in	black).	It	also	deserializes	each
one,	 displaying	 the	 JSON	 in	 underneath	 (in	 red).	 There	 is	 a	 ‘Copy’
button	to	copy	the	JSON	to	the	clipboard	so	you	can	paste	it	 into	an
online	JSON	formatter.

	

Source	Code
import	'dart:convert';

import	'package:flutter/material.dart';
import	'package:flutter/services.dart';

void	main()	=>	runApp(MyApp());

class	Person	{
final	String	name;
final	String	addressLine1;
final	String	addressCity;
final	String	addressState;
final	List<Person>	children;

const	Person(this.name,	this.addressLine1,	this.addressCity,
this.addressState,	this.children);

//	You	write	this	serialization	code.
Map<String,	dynamic>	toJson()	{
var	map	=	{
'name':	name,
'addr':	addressLine1,
'city':	addressCity,
'state':	addressState,
'children':	children

};
return	map;

}
//	You	write	this	serialization	code.

@override
String	toString()	{
return	'Person{name:	$name,	addressLine1:	$addressLine1,	addressCity:

$addressCity,	addressState:	$addressState,	children:	$children}';
}
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{

return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatelessWidget	{
static	const	Person	_grandchild	=

Person("Tracy	Brown",	"9625	Roberts	Avenue",	"Birmingham",	"AL",
[]);
static	const	Person	_adultFather	=	const	Person(

"John	Brown",	"9625	Roberts	Avenue",	"Birmingham",	"AL",
[_grandchild]);
static	const	Person	_adultNoChildren	=

const	Person("Jill	Jones",	"100	East	Road",	"Ocala",	"FL",	[]);
static	const	Person	_grandfather	=	Person("John	Brown",	"9621	Roberts

Avenue",
"Birmingham",	"AL",	[_adultFather,	_adultNoChildren]);

@override
Widget	build(BuildContext	context)	{
return	Scaffold(

appBar:	AppBar(
title:	Text("Recursive	Serialization"),

),
body:	Center(
child:	Padding(
child:	ListView(
children:	<Widget>[
Padding(

child:	Text("Grandfather:\n${_grandfather}"),
padding:	EdgeInsets.only(top:	0.0)),

Padding(
child:	Text("Json

Encoded:\n${json.encode(_grandfather)}",

style:	TextStyle(color:	Colors.red)),
padding:	EdgeInsets.only(top:	10.0)),

FlatButton(
child:	Text("Copy"),
onPressed:	(()	{
Clipboard.setData(

ClipboardData(text:
"${json.encode(_grandfather)}"));

})),
Padding(

child:	Text("Adult	Father:\n${_adultFather}"),
padding:	EdgeInsets.only(top:	30.0)),

Padding(
child:	Text("Json

Encoded:\n${json.encode(_adultFather)}",
style:	TextStyle(color:	Colors.red)),

padding:	EdgeInsets.only(top:	10.0)),
FlatButton(

child:	Text("Copy"),
onPressed:	(()	{
Clipboard.setData(

ClipboardData(text:
"${json.encode(_adultFather)}"));

})),
Padding(

child:	Text("Adult	No	Children:\n${_adultNoChildren}"),
padding:	EdgeInsets.only(top:	30.0)),

Padding(
child:	Text(

"Json	Encoded:\n${json.encode(_adultNoChildren)}",
style:	TextStyle(color:	Colors.red)),

padding:	EdgeInsets.only(top:	10.0)),
FlatButton(

child:	Text("Copy"),
onPressed:	(()	{
Clipboard.setData(ClipboardData(

text:	"${json.encode(_adultNoChildren)}"));
})),

Padding(

child:	Text("Grandchild:\n${_grandchild}"),
padding:	EdgeInsets.only(top:	30.0)),

Padding(
child:	Text("Json

Encoded:\n${json.encode(_grandchild)}",
style:	TextStyle(color:	Colors.red)),

padding:	EdgeInsets.only(top:	10.0)),
FlatButton(

child:	Text("Copy"),
onPressed:	(()	{
Clipboard.setData(

ClipboardData(text:	"${json.encode(_grandchild)}"));
})),

],
),
padding:	EdgeInsets.all(10.0),

),
));

}
}

Example	–	‘deserialize_manually’
This	app	lets	you	enter	the	JSON	for	a	person	then	hit	the	floating

button	to	deserialize	it.

If	successful,	a	 ‘toString()’	of	 the	Person	object	 is	displayed
underneath	(in	black).
If	 an	 error	 occurs	 (maybe	 you	 input	 bad	 JSON?),	 it	 is
displayed	underneath	(in	red).

Remember	 that	 this	 should	 work	 recursively	 -	 the	 Person	 JSON
can	 have	 children,	 which	 will	 create	 a	 Person	 object	 with	 children
(and	 so	 on).	 This	 app	 defaults	 your	 initial	 JSON	 input	 to	 the
grandparent	John	Brown	so	that	you	can	see	this	recursion	working.

This	 app	 also	 writes	 to	 the	 console	 so	 you	 can	 follow	 whats
happening.

Source	Code
import	'package:flutter/material.dart';
import	'dart:convert';

void	main()	=>	runApp(MyApp());

class	Person	{
final	String	name;
final	String	addressLine1;
final	String	addressCity;
final	String	addressState;
final	List<Person>	children;

const	Person(this.name,	this.addressLine1,	this.addressCity,
this.addressState,	this.children);

//	You	write	this	deserialization	code.
factory	Person.fromJson(Map<String,	dynamic>	json)	{
if	(json	==	null)	{
throw	FormatException("Null	JSON.");

}

//	Recursion.	Convert	children	into	list	of	Person	objects.
List<dynamic>	decodedChildren	=	json['children'];
List<Person>	children	=	[];

decodedChildren.forEach((decodedChild)	{
children.add(Person.fromJson(decodedChild));

});

return	Person(
json['name'],	json['addr1'],	json['city'],	json['state'],	children);

}
//	You	write	this	deserialization	code.

@override
String	toString()	{
return	'Person{name:	$name,	addressLine1:	$addressLine1,	addressCity:

$addressCity,	addressState:	$addressState,	children:	$children}';
}
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
_HomeWidgetState	createState()	=>	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
final	_jsonTextController	=	TextEditingController();

Person	_person;
String	_error;

_HomeWidgetState()	{
final	String	grandchild	=

"{\"name\":\"Tracy	Brown\",	\"addr1\":\"9625	Roberts	Avenue\","	+
"\"city\":\"Birmingham\",	\"state\":\"AL\",	\"children\":["	+
"]}";

final	String	adultFather	=
"{\"name\":\"John	Brown\",	\"addr1\":\"9625	Roberts	Avenue\","	+

"\"city\":\"Birmingham\",	\"state\":\"AL\",	\"children\":["	+
grandchild	+
"]}";

final	String	adultNoChildren	=
"{\"name\":\"Jill	Jones\",	\"addr1\":\"100	East	Road\","	+

"\"city\":\"Ocala\",	\"state\":\"FL\",	\"children\":["	+
"]}";

final	String	grandfather	=
"{\"name\":\"John	Brown\",	\"addr1\":\"9621	Roberts	Avenue\","	+

"\"city\":\"Birmingham\",	\"state\":\"AL\",	\"children\":["	+
adultFather	+
","	+
adultNoChildren	+
"]}";

_jsonTextController.text	=	grandfather;
}

TextFormField	_createJsonTextFormField()	{
return	new	TextFormField(

validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	json.';

}
},
decoration:	InputDecoration(

border:	OutlineInputBorder(),
hintText:	'Json',
labelText:	'Enter	the	json	for	a	person.'),

controller:	_jsonTextController,
autofocus:	true,
maxLines:	8,
keyboardType:	TextInputType.multiline);

}

_convertJsonToPerson()	{
_error	=	null;
_person	=	null;
setState(()	{
try	{
final	String	jsonText	=	_jsonTextController.text;
debugPrint("JSON	TEXT:	${jsonText}");
var	decoded	=	json.decode(jsonText);	//	text	to	map
debugPrint("DECODED:		type:	${decoded.runtimeType}	value:

${decoded}");
_person	=	Person.fromJson(decoded);	//	map	to	object
debugPrint("PERSON	OBJECT:	type:	${_person.runtimeType}

value:	"
"${_person}");

}	catch	(e)	{
debugPrint("ERROR:	${e}");
_error	=	e.toString();

}
});

}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text("Recursive	Deserialization"),

),
body:	Center(
child:	Padding(
child:	ListView(
children:	<Widget>[
_createJsonTextFormField(),
Padding(

padding:	EdgeInsets.only(top:	10.0),
child:	Text(

_error	==	null	?	''	:	'An	error	occurred:\n\n${_error}',
style:	TextStyle(color:	Colors.red))),

Padding(
padding:	EdgeInsets.only(top:	10.0),
child:	Text(_person	==	null

?	'Person	is	null'
:	'Converted	to	Person	object:\n\n${_person}'))

],
),
padding:	EdgeInsets.all(10.0),

),
),
floatingActionButton:	FloatingActionButton(
onPressed:	_convertJsonToPerson,
tooltip:	'Increment',
child:	Icon(Icons.refresh),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}
}

Flutter	&	HTTP
Introduction
Now	we	know	how	to	convert	the	data	from	Flutter	to	JSON	and

back	 again,	we	need	 to	write	 code	 that	 communicates	with	APIs	 on
servers,	using	the	HTTP	protocol.

Flutter	HTTP	Package
To	do	this	we	will	use	the	Flutter	HTTP	Package.	It	 is	not	a	core

package	so	we	will	have	to	add	a	dependency	for	it.
Dependency
To	use	 it,	 you	have	 to	 add	 the	dependency	 to	your	project	 in	 the

‘pubspec.yaml’	file:
dependencies:

HTTP:	^0.12.0+1
Remember	to	do	a	‘flutter	packages	get’	afterwards.

More	info	here:	https://pub.dartlang.org/packages/http

Dummy	API
We	are	going	to	use	someone’s	API	for	these	exercises	and	for	the

example	code.
In	 this	 case	 we	 are	 going	 to	 use	 the	 dummy	 rest	 api	 here:

http://dummy.restapiexample.com/,	 because	 it	 covers	 all	 of	 the
following:	 get	 data,	 add	 data,	 update	 data	 and	 delete	 data.	 It	 also
doesn’t	require	a	key	or	registration.
Exercise	-	Get	Data	Using	Postman
In	 this	 exercise,	 we	 will	 use	 the	 API	 to	 get	 information	 about

employees.

Open	Postman
Copy	 and	 paste
'http://dummy.restapiexample.com/api/v1/employees’	into	the
Request	URL	at	top.
Hit	the	‘Send’	button.
Data	should	show	up	at	the	bottom.

	

HTTPs://pub.dartlang.org/packages/http
http://dummy.restapiexample.com/

Exercise	–	Format	Data

Click	on	the	data	near	the	bottom,	then	select	all	and	copy.
Go	 to	 https://jsonformatter.curiousconcept.com/	 in	 your
browser.

Paste	the	data	into	the	box	‘JSON	Data/URL’	(see	below).

	

	

Hit	the	‘Process’	button.	You	should	be	taken	to	a	formatted
view	of	the	data	(see	below).

https://jsonformatter.curiousconcept.com/

	

Error	Handling
As	 mentioned	 in	 the	 chapter	 before,	 the	 Flutter	 HTTP	 package

enables	 us	 to	 communicate	 with	 APIs	 asynchronously	 using	 HTTP
and	this	makes	error	handling	a	little	more	complex:
	

You	need	to	add	an	error	handler	in	case	an	error	occurs	when
you	first	make	the	request.
You	need	to	add	an	error	handler	incase	the	future	terminates
with	an	error.
You	need	 to	check	 the	HTTP	code	of	 the	 response	 from	the
server	 incase	 anything	was	 incorrect	 or	went	wrong	on	 that
end.

Please	refer	to	the	error	handling	in	the	example	code	below.

Example	‘http_employees’
In	preparing	this	example,	I	had	to	find	an	API	that	was	public	to

work	with	that	would	work	with	all	of	the	HTTP	verbs,	so	you	could
see	getting	data,	adding	data,	updating	data	and	deleting	data.	I	ended
up	 using	 http://dummy.restapiexample.com/	 .	 It	 is	 a	 REST	 Api	 that

http://dummy.restapiexample.com/

enables	people	to	maintain	a	list	of	employees.	Like	many	such	Apis,
does	 not	 exactly	 subscribe	 to	 the	 REST	 pattern	 prescribed	 in	 this
chapter.	Some	of	 the	url	patterns	have	been	interpreted	differently	 to
how	 I	 expected	 them	 to.	However,	 it	 is	 good	 to	 use	 for	 an	 example
and	I	am	grateful	to	them	for	putting	it	out	there.

This	example	app	connects	to	dummy	Api	and	enables	you	to	add
employees,	update	employees	and	delete	them.	It	starts	with	a	list	of
employees	 and	 you	 can	 tap	 on	 one	 to	 view	 and	make	 changes.	You
can	also	delete	employees	but	 tapping	 longer	on	an	employee	 in	 the
list	of	employees.

This	 example	 app	 should	 also	 demonstrate	 how	 you	 may
sometimes	 encounter	 errors	 when	 communicating	 with	 Apis.	 For
example,	 the	 dummy	 Api	 doesn’t	 allow	 the	 same	 employee	 name
twice.	 If	 you	 enter	 the	 same	 employee	 name	 twice	 and	 attempt	 to
save,	then	the	dummy	Api	will	return	an	error	and	this	is	displayed	to
the	user.	This	could	be	handled	more	gracefully	but	at	least	it	catches
it	and	shows	some	information	at	the	bottom.

This	 example	 app	 may	 be	 useful	 because	 it	 combines	 multiple
Flutter	topics	together:

Communicating	with	a	REST	Api	on	an	HTTP	server.
Forms	and	validation.
Modal	dialogs.
State	 management	 using	 inherited	 widget	 and	 stateful
widgets.
Error	handling.

Source	Code
Dependencies
Add	the	following	dependencies	into	the	‘pubspec.yaml’	file.	After

that	you	will	need	to	do	a	‘flutter	packages	get’	on	the	command	line
in	the	root	of	your	project	to	download	the	dependencies.

dependencies:
flutter:
sdk:	flutter

rxdart:	0.18.1
HTTP:	^0.11.0
cupertino_icons:	^0.1.2

Source	Code
import	'dart:async';
import	'dart:convert';

import	'package:flutter/material.dart';
import	'package:flutter/services.dart';
import	'package:HTTP/HTTP.dart'	as	HTTP;
import	'package:HTTP/HTTP.dart';

void	main()	=>	runApp(new	MyApp());

class	Employee	{
String	id;
String	employeeName;
String	employeeSalary;
String	employeeAge;
String	profileImage;

Employee(this.id,	this.employeeName,	this.employeeSalary,
this.employeeAge,

this.profileImage);

Employee.empty()	{
id	=	"";
employeeName	=	"";
employeeSalary	=	"";
employeeAge	=	"";
profileImage	=	"";

}

factory	Employee.fromJson(Map<String,	dynamic>	json)	{
if	(json	==	null)	{
throw	FormatException("Null	JSON.");

}
return	Employee(json['id'],	json['employee_name'],

json['employee_salary'],
json['employee_age'],	json['profile_image']);

}

Map<String,	dynamic>	toJson()	{
var	map	=	{
'name':	employeeName,
'salary':	employeeSalary,
'age':	employeeAge

};
if	(id.isNotEmpty)	{
map['id']	=	id;

}
if	(profileImage.isNotEmpty)	{
map['profileImage']	=	profileImage;

}
return	map;

}

get	hasEmptyId	{
return	id.isEmpty;

}
}

class	PleaseWaitWidget	extends	StatelessWidget	{
PleaseWaitWidget({
Key	key,

})	:	super(key:	key);

//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	Container(

child:	Center(
child:	CircularProgressIndicator(),

),
color:	Colors.white.withOpacity(0.8));

}
}

class	ApiWidget	extends	InheritedWidget	{
static	final	String	_BASE_URL	=

"http://dummy.restapiexample.com/api/v1";

static	const	_TIMEOUT	=	Duration(seconds:	10);

ApiWidget({
Key	key,
@required	Widget	child,

})		:	assert(child	!=	null),
super(key:	key,	child:	child);

static	ApiWidget	of(BuildContext	context)	{
return	context.inheritFromWidgetOfExactType(ApiWidget)	as

ApiWidget;
}

@override
bool	updateShouldNotify(covariant	InheritedWidget	oldWidget)	{
return	false;

}

Future<List<Employee>>	loadAndParseEmployees()	async	{
var	url	=	'${_BASE_URL}/employees';
final	response	=	await	HTTP.get(url).timeout(_TIMEOUT);
if	(response.statusCode	==	200)	{
final	parsed	=	json.decode(response.body).cast<Map<String,

dynamic>>();
var	list	=

parsed.map<Employee>((json)	=>
Employee.fromJson(json)).toList();

return	list;
}	else	{
badStatusCode(response);

}
}

Future<Employee>	loadEmployee(String	id)	async	{
var	url	=	'${_BASE_URL}/employee/${id}';
final	response	=	await	HTTP.get(url).timeout(_TIMEOUT);
if	(response.statusCode	==	200)	{
final	parsed	=	json.decode(response.body);
return	Employee.fromJson(parsed);

}	else	{
badStatusCode(response);

}
}

Future<dynamic>	saveEmployee(Employee	employee)	async	{
bool	isUpdate	=	employee.id.isNotEmpty;
final	uri	=	_BASE_URL	+	(isUpdate	?	'/update/${employee.id}'	:

'/create');
//	profile	image	does	not	seem	to	update
final	response	=	isUpdate

?	await	HTTP.put(uri,	body:
json.encode(employee)).timeout(_TIMEOUT)

:	await	HTTP.post(uri,	body:
json.encode(employee)).timeout(_TIMEOUT);

if	(response.statusCode	==	200)	{
return	json.decode(response.body);

}	else	{
//	If	that	response	was	not	OK,	throw	an	error.
badStatusCode(response);

}
}

Future<dynamic>	deleteEmployee(String	id)	async	{
final	uri	=	'${_BASE_URL}/delete/${id}';
final	response	=	await	HTTP.delete(uri).timeout(_TIMEOUT);
if	(response.statusCode	==	200)	{
return	json.decode(response.body);

}	else	{
//	If	that	response	was	not	OK,	throw	an	error.
badStatusCode(response);

}
}

badStatusCode(Response	response)	{
debugPrint("Bad	status	code	${response.statusCode}	returned	from

server.");
debugPrint("Response	body	${response.body}	returned	from	server.");
throw	Exception(

'Bad	status	code	${response.statusCode}	returned	from	server.');
}
}

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	ApiWidget(

child:	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	EmployeeListWidget()));

}
}

class	EmployeeListWidget	extends	StatefulWidget	{
@override
_EmployeeListWidgetState	createState()	=>	new

_EmployeeListWidgetState();
}

class	_EmployeeListWidgetState	extends	State<EmployeeListWidget>
{
final	GlobalKey<ScaffoldState>	_scaffoldKey	=

GlobalKey<ScaffoldState>();
final	PleaseWaitWidget	_pleaseWaitWidget	=

PleaseWaitWidget(key:	ObjectKey("pleaseWaitWidget"));

bool	_refresh	=	true;
List<Employee>	_employees;
bool	_pleaseWait	=	false;

_showSnackBar(String	content,	{bool	error	=	false})	{
_scaffoldKey.currentState.showSnackBar(SnackBar(
content:

Text('${error	?	"An	unexpected	error	occurred:	"	:	""}${content}'),
));

}

_showPleaseWait(bool	b)	{
setState(()	{
_pleaseWait	=	b;

});
}

_navigateToEmployee(BuildContext	context,	String	employeeId)	{
Navigator.push(
context,
MaterialPageRoute(builder:	(context)	=>

EmployeeDetailWidget(employeeId)),
).then((result)	{
if	((result	!=	null)	&&	(result	is	bool)	&&	(result	==	true))	{
_showSnackBar('Employee	saved.');
_refreshEmployees();

}
});

}

_deleteEmployee(BuildContext	context,	Employee	employee)	async	{
_showDeleteConfirmDialog(employee).then((result)	{
if	((result	!=	null)	&&	(result	is	bool)	&&	(result	==	true))	{
_showPleaseWait(true);
try	{
ApiWidget.of(context).deleteEmployee(employee.id).then((employee)

{
_showPleaseWait(false);
_showSnackBar('Employee	deleted.');
_refreshEmployees();

}).catchError((error)	{
_showPleaseWait(false);
_showSnackBar(error.toString(),	error:	true);

});
}	catch	(e)	{
_showPleaseWait(false);
_showSnackBar(e.toString(),	error:	true);

}

}
});

}

Future<bool>	_showDeleteConfirmDialog(Employee	employee)	async	{
return	await	showDialog<bool>(

context:	context,
builder:	(BuildContext	context)	{
return	AlertDialog(
title:	const	Text('Delete	Employee'),
content:	Text(

'Are	you	sure	you	want	to	delete
${employee.employeeName}?'),

actions:	<Widget>[
FlatButton(
onPressed:	()	{
Navigator.pop(context,	true);

},
child:	const	Text('Yes'),

),
FlatButton(
onPressed:	()	{
Navigator.pop(context,	false);

},
child:	const	Text('No'),

)
],

);
});

}

_refreshEmployees()	{
setState(()	{
_refresh	=	true;

});
}

_loadEmployees(BuildContext	context)	{
_showPleaseWait(true);

try	{
ApiWidget.of(context).loadAndParseEmployees().then((employees)	{
//	Sort	first.
employees.sort((a,	b)	=>	a.employeeName

.toLowerCase()

.compareTo(b.employeeName.toLowerCase()));
setState(()	{
_employees	=	employees;

});
_showPleaseWait(false);

}).catchError((error)	{
_showPleaseWait(false);
_showSnackBar(error.toString(),	error:	true);

});
}	catch	(e)	{
_showPleaseWait(false);
_showSnackBar(e.toString(),	error:	true);

}
}

@override
Widget	build(BuildContext	context)	{
if	(_refresh)	{
_refresh	=	false;
_loadEmployees(context);

}

ListView	builder	=	ListView.builder(
itemCount:	_employees	!=	null	?	_employees.length	:	0,
itemBuilder:	(context,	index)	{
Employee	employee	=	_employees[index];
return	ListTile(

title:	Text('${employee.employeeName}'),
subtitle:	Text('Age:	${employee.employeeAge}'),
trailing:	Icon(Icons.arrow_right),
onTap:	()	=>	_navigateToEmployee(context,	employee.id),
onLongPress:	()	=>	_deleteEmployee(context,	employee));

});

Widget	bodyWidget	=	_pleaseWait
?	Stack(key:	ObjectKey("stack"),	children:	[_pleaseWaitWidget,

builder])
:	Stack(key:	ObjectKey("stack"),	children:	[builder]);

return	new	Scaffold(
key:	_scaffoldKey,
appBar:	new	AppBar(
title:	new	Text("Employees"),
actions:	<Widget>[
IconButton(

icon:	Icon(Icons.add),
tooltip:	'Add',
onPressed:	()	{
_navigateToEmployee(context,	null);

}),
IconButton(

icon:	Icon(Icons.refresh),
tooltip:	'Refresh',
onPressed:	()	{
_refreshEmployees();

})
],

),
body:	new	Center(
child:	bodyWidget,

));
}
}

class	EmployeeDetailWidget	extends	StatefulWidget	{
String	_employeeId;

EmployeeDetailWidget(this._employeeId);

@override
_EmployeeDetailState	createState()	=>

_EmployeeDetailState(this._employeeId);
}

class	_EmployeeDetailState	extends	State<EmployeeDetailWidget>	{
final	GlobalKey<ScaffoldState>	_scaffoldKey	=

GlobalKey<ScaffoldState>();
final	_formKey	=	GlobalKey<FormState>();
final	PleaseWaitWidget	_pleaseWaitWidget	=

PleaseWaitWidget(key:	ObjectKey("pleaseWaitWidget"));

String	_employeeId;
bool	_loaded	=	false;
bool	_pleaseWait	=	false;
Employee	_employee;
TextEditingController	_nameTextController	=	TextEditingController();
TextEditingController	_salaryTextController	=	TextEditingController();
TextEditingController	_ageTextController	=	TextEditingController();
TextEditingController	 _profileImageTextController	 =

TextEditingController();

_EmployeeDetailState(this._employeeId);

_showSnackBar(String	content,	{bool	error	=	false})	{
_scaffoldKey.currentState.showSnackBar(SnackBar(
content:

Text('${error	?	"An	unexpected	error	occurred:	"	:	""}${content}'),
));

}

_showPleaseWait(bool	b)	{
setState(()	{
_pleaseWait	=	b;

});
}

TextFormField	_createNameWidget()	{
return	new	TextFormField(
validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	name.';

}
},

decoration:	InputDecoration(
icon:	const	Icon(Icons.person),
hintText:	'Name',
labelText:	'Enter	the	name'),

onSaved:	(String	value)	{
this._employee.employeeName	=	value;

},
controller:	_nameTextController,
autofocus:	true,

);
}

TextFormField	_createSalaryWidget()	{
return	new	TextFormField(
validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	salary.';

}
int	salary	=	int.parse(value);
if	(salary	==	null)	{
return	'Please	enter	the	salary	as	a	number.';

}
if	((salary	<	10000)	||	(salary	>	500000))	{
return	'Please	enter	an	age	between	10000	and	50000.';

}
},
maxLength:	6,
maxLengthEnforced:	true,
keyboardType:	TextInputType.phone,
inputFormatters:	[WhitelistingTextInputFormatter.digitsOnly],
decoration:	InputDecoration(

icon:	const	Icon(Icons.person),
hintText:	'Salary',
labelText:	'Enter	the	salary'),

onSaved:	(String	value)	{
this._employee.employeeSalary	=	value;

},
controller:	_salaryTextController,

);

}

TextFormField	_createAgeWidget()	{
return	new	TextFormField(
validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	age.';

}
int	age	=	int.parse(value);
if	(age	==	null)	{
return	'Please	enter	the	age	as	a	number.';

}
if	((age	<	1)	||	(age	>	114))	{
return	'Please	enter	an	age	between	1	and	114.';

}
},
maxLength:	3,
maxLengthEnforced:	true,
keyboardType:	TextInputType.phone,
inputFormatters:	[WhitelistingTextInputFormatter.digitsOnly],
decoration:	InputDecoration(

icon:	const	Icon(Icons.person),
hintText:	'Age',
labelText:	'Enter	the	age'),

onSaved:	(String	value)	{
this._employee.employeeAge	=	value;

},
controller:	_ageTextController,

);
}

TextFormField	_createProfileImageWidget()	{
return	new	TextFormField(
decoration:	InputDecoration(

icon:	const	Icon(Icons.person),
hintText:	'Profile	image',
labelText:	'Enter	the	profile	image'),

onSaved:	(String	value)	{
this._employee.profileImage	=	value;

},
controller:	_profileImageTextController,

);
}

_loadEmployee(BuildContext	context)	{
_showPleaseWait(true);
try	{
ApiWidget.of(context).loadEmployee(_employeeId).then((employee)

{
setState(()	{
_employee	=	employee;
_nameTextController.text	=	employee.employeeName;
_salaryTextController.text	=	employee.employeeSalary;
_ageTextController.text	=	employee.employeeAge;
_profileImageTextController.text	=	employee.profileImage;

});
_showPleaseWait(false);

}).catchError((error)	{
_showPleaseWait(false);
_showSnackBar(error.toString(),	error:	true);

});
}	catch	(e)	{
_showPleaseWait(false);
_showSnackBar(e.toString(),	error:	true);

}
}

_saveEmployee(BuildContext	context)	{
_showPleaseWait(true);
try	{
ApiWidget.of(context).saveEmployee(_employee).then((employee)	{
_showPleaseWait(false);
Navigator.pop(context,	true);

}).catchError((error)	{
_showPleaseWait(false);
_showSnackBar(error.toString(),	error:	true);

});
}	catch	(e)	{

_showPleaseWait(false);
_showSnackBar(e.toString(),	error:	true);

}
}

@override
Widget	build(BuildContext	context)	{
if	(!_loaded)	{
_loaded	=	true;
if	(_employeeId	==	null)	{
_employee	=	Employee.empty();

}	else	{
_loadEmployee(context);

}
}

List<Widget>	formWidgetList	=	[
_createNameWidget(),
_createSalaryWidget(),
_createAgeWidget(),
_createProfileImageWidget(),
RaisedButton(
onPressed:	()	{
if	(_formKey.currentState.validate())	{
_formKey.currentState.save();
_saveEmployee(context);

}
},
child:	new	Text('Save'),

)
];
Form	form	=	Form(key:	_formKey,	child:	ListView(children:

formWidgetList));

Widget	bodyWidget	=	_pleaseWait
?	Stack(key:	ObjectKey("stack"),	children:	[_pleaseWaitWidget,

form])
:	Stack(key:	ObjectKey("stack"),	children:	[form]);

return	new	Scaffold(
key:	_scaffoldKey,
appBar:	new	AppBar(
title:	new	Row(children:	[
Text("Back"),
Spacer(),
Text(_employeeId	==	null	?	"Create	Employee"	:	"Edit

Employee")
]),

),
body:	new	Padding(padding:	EdgeInsets.all(20.0),	child:

bodyWidget));
}
}

Other	Information

Alice
One	of	the	useful	things	about	doing	web	development	is	that	your

web	browser	has	a	‘developer	tools’	console	that	lets	you	inspect	the
HTTP	traffic.	Unfortunately,	your	app	does	not	have	this	built	in.

Alice	 is	a	package	 that	can	use	 to	 inspect	 the	HTTP	traffic	going
between	your	app	and	HTTP	servers.	It	has	turned	out	to	be	both	easy
to	use	and	useful	to	me.
Further	Reading
Https://medium.com/flutter-community/inspecting-HTTP-

requests-in-flutter-9deeddfe8d1

HAL	/	HATEOS
To	talk	to	the	server,	apps	need	to	know	the	URLs	that	the	server

resources	 are	 available	 on.	 Most	 of	 the	 time	 this	 information	 is
hardcoded,	which	is	not	ideal.

It	 is	 much	 better	 if	 the	 server	 tells	 incudes	 information	 about

https://medium.com/flutter-community/inspecting-http-requests-in-flutter-9deeddfe8d1

available	 resources	 (and	 their	URLs)	when	 it	 returns	 information	 in
the	 response	 back	 to	 the	 app.	 There	 are	 various	 standards	 as	 to	 the
format	 of	 sending	 this	 information	 back	 to	 the	 client,	 including
HATEOS	&	HAL.

For	 example,	 if	 you	 have	 an	 app	 which	 sends	 a	 request	 to	 the
server	 to	 retrieve	 a	 list	 of	 customers,	 the	 information	 could	 should
include	 the	 URLs	 for	 the	 API	 calls	 to	 access	 the	 data	 for	 each
customer.	This	avoids	hardcoding	the	customer	AJAX	request	URL.
Further	Reading
Https://martinfowler.com/articles/richardsonMaturityModel.html
Https://en.wikipedia.org/wiki/HATEOAS

28.	State

Introduction
So	now	we	know	the	basics	about	Widgets,	composition	and	how

we	can	get	data	from	servers,	we	need	to	start	writing	interactive	apps.
However,	to	write	interactive	apps	you	first	need	to	consider	state	and
events.

The	purpose	of	this	chapter	is	to	introduce	state	and	events.

State	&	Events
State	is	the	data	in	the	app,	often	displayed	in	the	UI.
Events	are	what	may	happen	in	the	app.
You	want	Events	to	affect	State,	that’s	an	Interactive	User	Interface

is	all	about.

Storing	State
Say	we	have	an	application	structured	like	this:

The	user	logs	into	the	app	using	their	username	and	password
in	a	Login	Widget,	which	talks	to	a	server.	
The	 server	 gets	 the	 username	 and	 password	 info	 from	 the
Login	Widget	and	returns	info	about	the	user.
The	 user	 enters	 data	 in	 a	 Data	 Entry	 Widget.	 This	 widget
needs	info	about	the	user,	i.e.	what	kinds	of	data	entry	can	be
performed	by	the	user.
The	user	views	reports	in	a	Report	Widget.	This	widget	needs
info	 about	 the	 user,	 i.e.	 what	 reports	 can	 be	 viewed	 by	 the
user.

Note	 the	 locations	 of	 the	 state	 in	 the	 diagram	 below	 (white	 text
with	grey	background).

Kinds	of	State
In	this	example,	there	are	2	kinds	of	state.

	

Local	State	–	this	is	state	info	which	is	just	needed	in	one
place.

For	 example,	 the	 username	 and	 password	 are
needed	in	the	Login	Widget	but	in	no	other	widgets.

	

Global	 State	 –	 this	 is	 state	 info	 which	 is	 needed	 almost
everywhere.

For	 example,	 the	 user	 info	 is	 needed	 in	 multiple
widgets,	 to	know	what	kinds	of	data	entry	 the	user
can	do	and/or	what	reports	he	or	she	can	view.

How	to	Determine	Where	to	Store	State
These	points	are	just	a	guideline:

	

1.	 Remember	the	golden	rule	-	keep	things	simple.

	

2.	 Don’t	 store	 state	 unnecessarily.	 Store	 what	 you	 absolutely

need	to	store	as	state	and	no	more.

	

3.	 Don’t	 repeat	state.	Don’t	store	 the	same	item	multiple	 times
in	state.

See	that	the	user	info	state	is	stored	up	in	the	App	Stateful	Widget,
above	the	Data	Entry	and	Report	Widgets?	It	was	moved	up	a	level	in
the	object	hierarchy	so	that	it’s	not	repeated.	The	child	widgets	can	get
that	state	info	from	their	parent	widget.
	

4.	 Place	the	state	as	close	to	where	it	is	needed.

See	 that	 the	username	and	password	state	are	stored	 in	 the	Login
Stateful	Widget.	That	is	because	user	username	and	password	state	is
local	as	its	not	needed	anywhere	else.

Responding	to	Events

Introduction
A	modern	user	interface	reacts	to	Events:

User	clicking	on	buttons.
Data	coming	in	from	a	server.
Time	passing.
Etc

Events	Invoke	Functions
When	you	add	your	code	to	handle	events,	you	typically	assign	a

function	 to	 the	 event	 handler.	 The	 function	 that	 has	 code	 to	 do
something,	usually	affect	State.

You	can	assign	regular	functions	to	events	or	you	can	assign	arrow

functions	instead.

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),

),
body:	Column(

children:	<Widget>[
Text("Do	you	want	to\nbuy	this	item?"),
Row(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
Spacer(flex:	2),
SelectButton(text:	"YES",	onTap:	_yesOnTap),	/*	regular

function	*/
Spacer(),
SelectButton(text:	"NO",	onTap:	()	=>	print('no')	/*	arrow

function	*/),
Spacer(flex:	2),

],
)

]),
);

}

void	_yesOnTap()	{
print('yes');

}

Events	Can	Affect	State
When	Events	occur,	they	invoke	code	that	tends	to	affect	State	at	a

similar	or	higher	level	up	in	the	Object	hierarchy.	
For	Example:
Say	we	have	an	application	structured	like	this:

The	app	displays	a	list	of	customers.
Each	customer	in	the	list	has	a	delete	button.
The	 user	 clicks	 on	 the	 delete	 button	 and	 the	 customer
disappears.

If	you	have	a	list	of	customers	in	a	home	page	and	you	delete	the
customer,	 then	the	Event	may	be	triggered	from	a	button	in	a	 lower-
level	 widget	 but	 affect	 the	 customer	 list	 state,	 which	 is	 held	 in	 a
higher-level	home	page	widget.

	

State	&	Events	–	Problems
So,	after	reading	about	State	and	Events,	we	realize	we	have	 two

problems:
	

We	need	 to	store	State	 in	higher-level	objects	 in	 the	Widget
tree	but	we	need	 to	pass	 that	 state	data	down	 to	 lower-level
objects	so	 it	can	be	rendered	(i.e.	so	 its	data	can	be	put	 into
Widgets).

Example.
Store	 Customer	 List	 state	 in	 higher-level
Customer	List	Widget.

Pass	 Customer	 information	 down	 from
Customer	 List	 Widget	 to	 Customer
Widgets.

	

We	need	 to	 process	Events	 and	 change	 state	 in	 higher-level
objects	 when	 events	 occur	 in	 lower-level	 objects	 in	 the
Widget	tree.

Example.
Have	 Delete	 button	 events	 flow	 up	 from
Delete	Button	Widgets	up	to	Customer	List
Widget,	 affecting	 state	 in	 Customer	 List
Widget.

State	&	Events	–	Different	Approaches
There	 have	 been	 several	 different	 approaches	 to	 the	 problems

above	and	we	are	 about	 to	 cover	 them	 in	more	detail.	Bear	 in	mind
these	 approaches	 are	 evolving	 and	 that	 there	 will	 probably	 be	 new
ones	by	the	time	this	book	is	released.

Mixing	Approaches
It’s	all	about	finding	out	what	approach	you	understand	and	like,	or

rolling	 your	 own.	 Remember	 you	 can	 mix	 these	 approaches.	 You
could	have	an	app	 that	uses	multiple	InheritedWidgets,	uses	Streams
and	StreamBuilders	but	also	uses	Stateful	Widgets.

How	I	Decide	Where	to	Put	State
When	I	write	apps,	I	usually	do	the	following:

	

I	 put	 the	 global	 state	 (or	 other	 state	 shared	 by	 multiple
Widgets)	in	one	or	more	BLoC’s.

I	 use	 Streams	 &	 StreamBuilders	 to	 update	 the	 UI

when	state	changes.

	

I	put	local	state	in	StatefulWidgets.
Stateful	 Widgets	 were	 designed	 for	 storing	 local
state.

State	&	Events	–	Commonly-Used	Approaches

Stateful	Widget	Approach
Store	state	 in	Stateful	Widgets	at	a	high-enough	 level	 in	 the
Widget	tree	to	ensure	that	the	data	is	not	repeated.
Pass	state	from	parent	Widgets	to	child	Widgets	through	the
constructor.
Pass	event	handler	method	 (that	modifies	 state)	 from	parent
Widget	 methods	 to	 child	 Widgets	 through	 the	 constructor.	
Child	 Widgets	 can	 then	 invoke	 method	 to	 change	 state	 in
Parent	Widget.

Example:
To	see	an	example	of	this,	see	State	&	Stateful	Widget	Approach
Pros/Cons

It	works	well	for	smaller	apps.
It	doesn’t	work	well	for	bigger	apps.

It	can	get	messy,	especially	if	you	need	to	pass	state
/	 event	 handlers	 though	 multiple	 levels	 of	 the
Widget	tree.

InheritedWidget	Approach
This	 approach	 removes	 most	 of	 the	 requirements	 to	 use

Stateful	Widgets,	 enabling	 the	user	 to	use	Stateless	Widgets
instead	in	many	cases.
You	create	a	‘state	holder’	class	 that	acts	as	a	Widget	 in	 the
Widget	hierarchy.	This	class	extends	InheritedWidget,	stores
the	state	data	and	has	a	single	child	widget.
All	 the	 Widgets	 below	 this	 class	 can	 then	 be	 Stateless
Widgets	 and	 they	 can	 use	 the	 BuildContext	 to	 access	 this
InheritedWidget	and	its	state	data.

Example
To	see	an	example	of	this,	see	State	&	InheritedWidget	Approach
Pros/Cons

It	works	well	for	smaller	apps.
It	doesn’t	work	well	for	bigger	apps

Scoped	Model	Approach
This	 approach	 removes	 most	 of	 the	 requirements	 to	 use
Stateful	Widgets,	 enabling	 the	user	 to	use	Stateless	Widgets
instead	in	many	cases.
Use	a	3rd	party	package	called	ScopedModel	to	store	a	state
model	 in	 your	 Widget	 Tree.	 You	 can	 write	 code	 in	 your
‘build’	method	 of	 your	widget	 and	 there	 use	 the	Context	 to
get	a	reference	to	this	Scoped	Model	so	that	you	can	read	and
write	its	state.
This	works	well	for	simple	apps	but	is	not	structured	enough
for	larger	apps.

Example
To	see	an	example	of	this,	see	State	&	ScopedModel	Approach
Pros/Cons

It	works	well	for	smaller	apps.

BLoC	w/Streams	Approach
BLoC	stands	for	‘Business	Logic	Components’.
It’s	a	pattern	for	state	management	recommended	by	Google
developers.
It	 about	 storing	 the	 app	 State	 in	 a	 central	 place	 (a	 business
logic	object	stored	in	a	Stateful	Widget)	and	it	communicates
with	 the	 rest	 of	 the	 app’s	 (mostly)	 Stateless	Widgets	 using
streams.

Example
To	see	an	example	of	this,	see	Chapter	State	&	BLoCs	w/Streams

Approach
Pros/Cons

It	is	overkill	for	smaller	apps.

29.	State	&	Stateful	Widget	Approach

Introduction
This	is	the	most	obvious	approach	and	uses	Flutter	Widgets	in	the

most	obvious	manner	possible.

The	 purpose	 of	 this	 chapter	 is	 to	 learn	 this	 approach	 and	 its
shortcomings.

Approach
Store	state	 in	Stateful	Widgets	at	a	high-enough	 level	 in	 the
Widget	tree	to	ensure	that	the	data	is	not	repeated.
Pass	state	from	parent	Widgets	to	child	Widgets	through	the
constructor.
Pass	event	handler	method	 (that	modifies	 state)	 from	parent
Widget	 methods	 to	 child	 Widgets	 through	 the	 constructor.	
Child	 Widgets	 can	 then	 invoke	 method	 to	 change	 state	 in
Parent	Widget.

Exercise	–	‘state_and_stateful_widget’

Introduction
We	 start	 off	 by	 creating	 a	 create	 basic	 app	 with	 Stateful	 and

Stateless	Widgets.
Later	on,	we	add	some	state	&	event	handling	so	that	the	user	can

select	a	car	and	see	it	highlighted.

The	car	 selection	comes	 from	a	 tap	event	 in	 the	 lower-level
CarWidget.
It	 changes	 the	 selected	 car	 state	 in	 the	 higher-level
MyHomePageWidget.

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.

Step	2	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	‘package:flutter/material.dart’;

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{

return	new	MaterialApp(
title:	‘Flutter	Demo’,
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(),

);
}
}

class	Car	{
String	_make;
String	_model;
String	_imageSrc;

Car(this._make,	this._model,	this._imageSrc);

operator	==(other)	=>
(other	 is	 Car)	 &&	 (_make	 ==	 other._make)	 &&	 (_model	 ==

other._model);

int	 get	 hashCode	 =>	 _make.hashCode	 ^	 _model.hashCode	 ^
_imageSrc.hashCode;

}

class	MyHomePage	extends	StatefulWidget	{
@override
_HomePageState	createState()	=>	_HomePageState(“Cars”);
}

class	_HomePageState	extends	State<MyHomePage>	{
String	_title;
List<Car>	_cars;

_HomePageState(this._title)	{
_cars	=	[
Car(
“Bmw”,
“M3”,
“Https://media.ed.edmunds-

media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg
Https://media.ed.edmunds-

media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg
“,
),
Car(
“Nissan”,
“GTR”,
“Https://media.ed.edmunds-media.com/nissan/gt-

r/2018/oem/2018_nissan_gt-r_coupe_nismo_fq_oem_1_150.jpg
Https://media.ed.edmunds-media.com/nissan/gt-

r/2018/oem/2018_nissan_gt-r_coupe_nismo_fq_oem_1_150.jpg
”,
),
Car(
“Nissan”,
“Sentra”,
“Https://media.ed.edmunds-

media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg

Https://media.ed.edmunds-
media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-

turbo_fq_oem_4_150.jpg
”,
)

];
}

@override
Widget	build(BuildContext	context)	{

List<CarWidget>	carWidgets	=	_cars.map((Car	car)	{
return	CarWidget(car);

}).toList();
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(_title),

),
body:	new	ListView(children:	carWidgets));

}
}

class	CarWidget	extends	StatelessWidget	{
CarWidget(this._car)	:	super();

final	Car	_car;

@override
Widget	build(BuildContext	context)	{

return	Padding(
padding:	EdgeInsets.all(20.0),
child:	Container(

decoration:	BoxDecoration(border:	Border.all()),
padding:	EdgeInsets.all(20.0),
child:	Center(

child:	Column(children:	<Widget>[
Text(‘${_car._make}	${_car._model}’,

style:	TextStyle(fontSize:	24.0)),
Padding(

padding:	EdgeInsets.only(top:	20.0),
child:	Image.network(_car._imageSrc))

]))));

}
}

Step	3	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
You	 should	 get	 something	 like	 the	 following	 as	 it	 is	 somewhat

similar	to	the	previous	example:
	

Summary
The	MyApp	&	Material	App	Widgets	are	unchanged.

We	declare	a	new	class	called	Car.
This	will	store	information	about	each	car:	its	make,
model	and	image.
Note	 that	 the	 ‘==’	 operator	 is	 overloaded	 so	 it
considers	 two	 Cars	 equal	 if	 they	 have	 the	 same
make	and	model.

The	 MyHomePage	 Stateless	 Widget	 has	 become	 two

different	widgets	instead:
MyHomePage	StatefulWidget
MyHomePageState	State	Object

This	holds	the	App	Bar	title	and	the	list	of
Car	 objects.	 These	 are	 initiated	 in	 the
constructor.
The	 State	 object	 contains	 the	 ‘build’
method	that	converts	the	list	of	Car	objects
into	a	list	of	CarWidgets.	Then	it	returns	a
Scaffold	 containing	 the	 AppBar	 and	 a
ListView	containing	the	list	of	CarWidgets.

CarWidget
This	 displays	 a	 car’s	 make,	 model	 and
image.
Notice	 that	 it	now	accepts	a	Car	object	 in
the	constructor.	This	gives	it	all	the	info	to
display	a	car’s	make,	model	and	image.

Step	4–	Add	Car	Selection
This	is	going	to	be	achieved	by	holding	state	in	the	MyHomePage

state	object.	
This	state	is	going	to	be	set	by	a	method.	This	method	is	going	to

be	passed	to	each	Car	Widget	so	it	can	be	invoked	by	the	Car	Widget
when	the	user	taps	on	it.
Modify	MyHomePageState

We	add	variable	‘_selectedCar’	to	store	which	car	is	selected.
We	add	a	method	‘_selectionHandler’	to	handle	car	selection.

This	provides	an	inline	JavaScript	function	that	sets
the	variables	‘_title’	and	‘_selectedCar’.
This	inline	JavaScript	function	is	passed	to	setState.
Using	 ‘setState’	 tells	 Flutter	 that	 the	 state	 of	 this
object	has	changed	and	that	this	Widget	will	need	to

be	re-rendered.
We	change	the	code	that	constructs	the	CarWidgets	to	include
2	additional	constructor	arguments:

A	boolean	indicating	if	the	car	is	the	selected	car.
The	 selection	 handler	 method	 that	 handles	 the	 car
selection	in	this	class.

class	MyHomePageState	extends	State<MyHomePage>	{
String	_title;
List<Car>	_cars;

Car	_selectedCar;

MyHomePageState(this._title)	{
_cars	=	[
Car(
“Bmw”,
“M3",
“Https://media.ed.edmunds-

media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg“,
),
Car(
“Nissan”,
“GTR”,
“Https://media.ed.edmunds-media.com/nissan/gt-

r/2018/oem/2018_nissan_gt-r_coupe_nismo_fq_oem_1_150.jpg”,
),
Car(
“Nissan”,
“Sentra”,
“Https://media.ed.edmunds-

media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg”,

)
];
}

void	_selectionHandler(Car	selectedCar)	{
		setState(()	{

				_title	=	‘Selected	${selectedCar._make}	${selectedCar._model}’;
				_selectedCar	=	selectedCar;
		});
}

@override
Widget	build(BuildContext	context)	{

List<CarWidget>	carWidgets	=	_cars.map((Car	car)	{
return	CarWidget(car,	car	==	_selectedCar,	_selectionHandler);

}).toList();
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(_title),

),
body:	new	ListView(children:	carWidgets));

}
}

Modify	CarWidget

We	add	 instance	variable	 ‘_isSelected’	 to	 store	 if	 this	 car	 is
selected	or	not.
We	add	 instance	variable	 ‘_parentSelectionHandler’	 to	 store
the	 selection	 handler	 method	 from	 the	 parent
MyHomePageState	class.
We	modify	the	constructor	to	accept	&	set	these	two	instance
variables.
We	 add	 a	 new	 method	 ‘_handleTap’	 to	 handle	 the	 ‘onTap’
event	 from	 the	 GestureDetector.	 This	 method	 invokes	 the
‘_parentSelectionHandler’	 from	 the	 parent
MyHomePageState	class.
We	modify	the	‘build’	method.

We	wrap	the	Container	with	a	GestureDetector.	This
is	so	we	can	listen	for	the	‘onTap’	event.
We	 modify	 the	 ‘BoxDecoration’	 to	 set	 the
background	 color	 according	 to	 if	 the	 instance
variable	‘isSelected’	is	set	to	true	or	false.	If	true	the

background	color	is	set	to	blue,	otherwise	white.

class	CarWidget	extends	StatelessWidget	{
CarWidget(this._car,	this._isSelected,	this._parentSelectionHandler)
:	super();

final	Car	_car;
final	bool	_isSelected;

final	ValueChanged<Car>	_parentSelectionHandler;

void	_handleTap()	{
		_parentSelectionHandler(_car);
}

@override
Widget	build(BuildContext	context)	{

return	Padding(
padding:	EdgeInsets.all(20.0),
child:	GestureDetector(

										onTap:	_handleTap,
child:	Container(

decoration:	BoxDecoration(
color:	_isSelected	?	Colors.blue	:	Colors.white,
border:	Border.all()),

padding:	EdgeInsets.all(20.0),
child:	Center(

child:	Column(children:	<Widget>[
Text(‘${_car._make}	${_car._model}’,

style:	TextStyle(fontSize:	24.0)),
Padding(

padding:	EdgeInsets.only(top:	20.0),
child:	Image.network(_car._imageSrc))

])))));
}
}

Further	Reading
Adding	 Interactivity	 to	 Your	 Flutter	 App:
Https://flutter.io/docs/development/ui/interactive

	

Pete	Hunt	at	Facebook	wrote	a	superb	article	here.

The	article	may	be	about	React	but	many	of	the	same	rules	apply.
Https://facebook.github.io/react/docs/thinking-in-react.html.

https://flutter.io/docs/development/ui/interactive
https://facebook.github.io/react/docs/thinking-in-react.html.

30.	State	&	InheritedWidget	Approach

Introduction
This	is	a	way	to	access	State	that	is	stored	in	a	higher-level	Widget

(called	 an	 InheritedWidget)	 from	 a	 lower-level	Widget.	 Think	 of	 it
like	 this:	 “Reach	 Up	 the	 Tree	 and	 Get	 Data”.	 Flutter	 uses
InheritedWidgets	itself.	The	Theme	Widget	is	in	an	InheritedWidget.

The	purpose	of	 this	chapter	 is	 to	 learn	what	 InheritedWidgets	are
and	how	to	use	them.

Approach
This	 approach	 removes	 many	 of	 the	 requirements	 to	 use
Stateful	 Widgets,	 often	 enabling	 the	 user	 to	 use	 Stateless
Widgets	instead.
You	create	a	‘state	holder’	class	 that	acts	as	a	Widget	 in	 the
Widget	hierarchy.	This	class	extends	InheritedWidget,	stores
the	state	data	and	has	a	single	child	widget.
All	 the	 Widgets	 below	 this	 class	 can	 then	 be	 Stateless
Widgets	 and	 they	 can	 use	 the	 BuildContext	 to	 access	 this
InheritedWidget	and	its	state	data.
To	 see	 an	 example	 of	 this,	 see	 Chapter	 ‘State	 &
InheritedWidget	Approach’.

Exercise	–	‘state_and_inherited_widget_add’
In	 this	 exercise,	 I	 put	 the	 state	 for	 the	 car	 list	 into

CarsInheritedWidget	 and	 I	 access	 it	 in	 CarWidget.	 I	 add	 a	 toolbar
button	to	add	another	car	to	the	list.

Please	 read	 the	 summary	 before	 starting	 this	 exercise.	 This
exercise	shows	how	using	a	state	and	an	inherited	Widget	won’t	work
as	expected.

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.

Step	2	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	‘package:collection/collection.dart’;
import	‘package:flutter/material.dart’;

void	main()	=>	runApp(new	MyApp());

class	Car	{
String	_make;
String	_model;
String	_imageSrc;

Car(this._make,	this._model,	this._imageSrc);

operator	==(other)	=>
(other	is	Car)	&&	(_make	==	other._make)	&&	(_model	==

other._model);

int	get	hashCode	=>	_make.hashCode	^	_model.hashCode	^
_imageSrc.hashCode;

}

class	CarsInheritedWidget	extends	InheritedWidget	{
List<Car>	_cars	=	[

Car(
“Bmw”,
“M3",
“Https://media.ed.edmunds-

media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg
Https://media.ed.edmunds-

media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg
“,

),
Car(
“Nissan”,
“GTR”,
“Https://media.ed.edmunds-media.com/nissan/gt-

r/2018/oem/2018_nissan_gt-r_coupe_nismo_fq_oem_1_150.jpg
Https://media.ed.edmunds-media.com/nissan/gt-

r/2018/oem/2018_nissan_gt-r_coupe_nismo_fq_oem_1_150.jpg
”,

),
Car(
“Nissan”,
“Sentra”,
“Https://media.ed.edmunds-

media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg

Https://media.ed.edmunds-
media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg

”,
)
];

CarsInheritedWidget(child)	:	super(child:	child);

List<Car>	get	cars	{
return	_cars;
}

void	addNissanSentra()	{
_cars.add(Car(
“Nissan”,
“Sentra”,
“Https://media.ed.edmunds-

media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg

Https://media.ed.edmunds-
media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg

”,
));
}

@override
bool	updateShouldNotify(CarsInheritedWidget	old)	=>	true;

static	CarsInheritedWidget	of(BuildContext	context)	{
return	(context.inheritFromWidgetOfExactType(CarsInheritedWidget));
}
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{

return	new	MaterialApp(
title:	‘Flutter	Demo’,
theme:	new	ThemeData(
//	This	is	the	theme	of	your	application.
//
//	Try	running	your	application	with	“flutter	run”.	You’ll	see	the
//	application	has	a	blue	toolbar.	Then,	without	quitting	the	app,	try
//	changing	the	primarySwatch	below	to	Colors.green	and	then	invoke
//	“hot	reload”	(press	“r”	in	the	console	where	you	ran	“flutter	run”,
//	or	press	Run	>	Flutter	Hot	Reload	in	IntelliJ).	Notice	that	the
//	counter	didn’t	reset	back	to	zero;	the	application	is	not	restarted.
primarySwatch:	Colors.blue,

),
home:	CarsInheritedWidget(MyHomePage(title:	‘Flutter	Demo	Home

Page’)),
);
}
}

class	MyHomePage	extends	StatelessWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
Widget	build(BuildContext	context)	{

List<CarWidget>	carWidgets	=
CarsInheritedWidget.of(context).cars.map((Car	car)	{

return	CarWidget(car);
}).toList();
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(“Cars”),
actions:	<Widget>[
IconButton(

icon:	Icon(Icons.add),
onPressed:	()	{
CarsInheritedWidget.of(context).addNissanSentra();

})
],

),
body:	new	ListView(children:	carWidgets));

}
}

class	CarWidget	extends	StatelessWidget	{
CarWidget(this._car)	:	super();

final	Car	_car;

@override
Widget	build(BuildContext	context)	{

return	Padding(
padding:	EdgeInsets.all(20.0),
child:	Container(

decoration:	BoxDecoration(border:	Border.all()),
padding:	EdgeInsets.all(20.0),
child:	Center(

child:	Column(children:	<Widget>[
Text(‘${_car._make}	${_car._model}’,

style:	TextStyle(fontSize:	24.0)),
Padding(

padding:	EdgeInsets.only(top:	20.0),

child:	Image.network(_car._imageSrc))
]))));

}
}

Step	3	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
You	 should	 get	 something	 like	 the	 following	 as	 it	 is	 somewhat

similar	to	the	previous	example:
	

However,	 note	 that	 the	 Add	 button	 on	 the	 toolbar	 does	 not
work!!!!!

Summary
We	 created	 a	 class	 CarsInheritedWidget	 that	 inherits	 from

Inherited	 Object	 and	 we	 added	 into	 the	Widget	 Tree,	 wrapping	 the
HomePage	Widget.

It	seems	we	can	access	the	state	in	that	Widget,	the	list	of	Cars.

However,	when	we	add	a	car	it	doesn’t	show	up.
	

After	 reading	some	articles,	 it	became	obvious	 that	 to	mutate	 the
State	 of	 an	 InheritedWidget	 and	 have	 the	 UI	 re-render	 the	 state
changes,	 you	 need	 to	 wrap	 the	 InheritedWidget	 in	 a
StatefulWidget.

This	example	is	based	on	the	article	below:
Https://medium.com/flutter-io/managing-flutter-application-state-

https://medium.com/flutter-io/managing-flutter-application-state-with-inheritedwidgets-1140452befe1

with-inheritedwidgets-1140452befe1

Exercise	–	‘state_and_inherited_widget’
In	 this	exercise,	we	get	 the	State	mutation	 to	work	on-screen	and

explain	the	changes.

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.

Step	2	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	'package:collection/collection.dart';

import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	Car	{
final	String	_make;
final	String	_model;
final	String	_imageSrc;

const	Car(this._make,	this._model,	this._imageSrc);

operator	==(other)	=>
(other	is	Car)	&&	(_make	==	other._make)	&&	(_model	==

other._model);

int	get	hashCode	=>	_make.hashCode	^	_model.hashCode	^
_imageSrc.hashCode;

}

class	CarModel	{
const	CarModel(this.carList);

final	List<Car>	carList;

@override
bool	operator	==(Object	other)	{
if	(identical(this,	other))	{
return	true;

}	else	if	(other.runtimeType	!=	runtimeType)	{
return	false;

}	else	{
final	CarModel	otherModel	=	other;
return	IterableEquality().equals(otherModel.carList,	carList);

}
}

int	get	hashCode	=>	carList.hashCode;
}

class	_ModelBindingScope<T>	extends	InheritedWidget	{
const	_ModelBindingScope({Key	key,	this.modelBindingState,	Widget

child})
:	super(key:	key,	child:	child);

final	_ModelBindingState<T>	modelBindingState;

@override
bool	updateShouldNotify(_ModelBindingScope	oldWidget)	=>	true;
}

class	ModelBinding<T>	extends	StatefulWidget	{
ModelBinding({Key	key,	@required	this.initialModel,	this.child})

:	assert(initialModel	!=	null),
super(key:	key);

final	T	initialModel;
final	Widget	child;

_ModelBindingState<T>	createState()	=>	_ModelBindingState<T>();

static	Type	_typeOf<T>()	=>	T;

static	T	of<T>(BuildContext	context)	{
final	Type	scopeType	=	_typeOf<_ModelBindingScope<T>>();

final	_ModelBindingScope<T>	scope	=
context.inheritFromWidgetOfExactType(scopeType);

return	scope.modelBindingState.currentModel;
}

static	void	update<T>(BuildContext	context,	T	newModel)	{
final	Type	scopeType	=	_typeOf<_ModelBindingScope<T>>();
final	_ModelBindingScope<dynamic>	scope	=

context.inheritFromWidgetOfExactType(scopeType);
scope.modelBindingState.updateModel(newModel);

}
}

class	_ModelBindingState<T>	extends	State<ModelBinding<T>>	{
T	currentModel;

@override
void	initState()	{
super.initState();
currentModel	=	widget.initialModel;

}

void	updateModel(T	newModel)	{
if	(newModel	!=	currentModel)	{
setState(()	{
currentModel	=	newModel;

});
}

}

@override
Widget	build(BuildContext	context)	{
return	_ModelBindingScope<T>(
modelBindingState:	this,
child:	widget.child,

);
}
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	ModelBinding<CarModel>(

initialModel:	const	CarModel(const	[
Car(
"Bmw",
"M3",
"Https://media.ed.edmunds-

media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg",
),
Car(
"Nissan",
"GTR",
"Https://media.ed.edmunds-media.com/nissan/gt-

r/2018/oem/2018_nissan_gt-r_coupe_nismo_fq_oem_1_150.jpg",
),
Car(
"Nissan",
"Sentra",
"Https://media.ed.edmunds-

media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg",

)
]),
child:	new	MyHomePage(title:	'Flutter	Demo	Home	Page')),

);
}
}

class	MyHomePage	extends	StatelessWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
Widget	build(BuildContext	context)	{
CarModel	model	=	ModelBinding.of(context);
List<CarWidget>	carWidgets	=	model.carList.map((Car	car)	{
return	CarWidget(car);

}).toList();
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Cars"),
actions:	<Widget>[
IconButton(

icon:	Icon(Icons.add),
onPressed:	()	{
List<Car>	carList	=	List.from(model.carList);
carList.add(Car(
"Nissan",
"Sentra",
"Https://media.ed.edmunds-

media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-
turbo_fq_oem_4_150.jpg",

));
ModelBinding.update(context,	new	CarModel(carList));

})
],

),
body:	new	ListView(children:	carWidgets));

}
}

class	CarWidget	extends	StatelessWidget	{
CarWidget(this._car)	:	super();

final	Car	_car;

@override
Widget	build(BuildContext	context)	{
return	Padding(

padding:	EdgeInsets.all(20.0),
child:	Container(

decoration:	BoxDecoration(border:	Border.all()),
padding:	EdgeInsets.all(20.0),
child:	Center(

child:	Column(children:	<Widget>[
Text('${_car._make}	${_car._model}',

style:	TextStyle(fontSize:	24.0)),
Padding(

padding:	EdgeInsets.only(top:	20.0),
child:	Image.network(_car._imageSrc))

]))));
}
}

Step	3	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
This	 works	 much	 better;	 the	 user	 interface	 responds	 to	 the	 ‘+’

button	and	adds	another	car	to	the	list.
	

Summary
In	 this	 example,	 we	 to	 wrap	 the	 InheritedWidget	 in	 a

StatefulWidget	to	enable	it	to	re-render	part	of	the	Widget	Tree.
	

	

ModelBinding.
The	 ModelBinding	 class	 is	 a	 Stateful	 Widget.
Remember,	 to	 mutate	 the	 State	 of	 an
InheritedWidget	and	have	the	UI	re-render	the	state
changes,	you	need	to	wrap	the	InheritedWidget	in	a
StatefulWidget.	 	 This	 is	 what	 the	 ModelBinding
class	 does.	 The	 ‘update’	method	 is	 used	 to	 update
the	state	(the	CarModel)	in	this	Stateful	Widget.

	

_ModelBindingState.
This	 is	 the	 State	 for	 the	 ModelBinding	 Stateful
Widget.	 It	 contains	 the	 CarModel.	 The
‘updateModel’	method	is	used	to	replace	the	model
(the	CarModel)	in	this	class	with	a	new	one,	calling
‘setState’	 to	 force	 the	 UI	 to	 re-render	 the	 state
changes.

	

_ModelBindingScope.
This	 is	 an	 InheritedWidget,	 used	 to	 locate	 items	 in
the	 Widget	 Tree.	 Used	 by	 lower-level	 Widgets	 to
locate	and	access	the	_ModelBindingState,	which	is
the	 State	 Object	 for	 the	 ModelBinding
StatefulWidget.

	

CarModel
This	represents	the	state	for	the	app.
Currently	it	holds	the	list	of	Car	objects.
The	 data	 in	 this	 class	 is	 immutable,	 it	 cannot	 be
changed.
To	 change	 the	 state	 in	 the	 app	 (the	 Car	 list),	 the
‘update’	method	in	the	ModelBinding	class	must	be
invoked,	passing	in	a	new	CarModel.

Conclusion
At	first,	I	thought	that	the	InheritedWidget	would	make	life	easy.	I

thought	 that	you	could	“Reach	Up	the	Tree	and	Get	Data”:	get	data,
update	it	and	the	UI	would	re-render	itself.	It	doesn’t.

You	 can	 use	 InheritedWidget	 in	 a	 simple	 manner	 to	 hold	 non-
mutating	state	data	and	access	it	from	lower-level	widgets.

However,	 if	 you	want	 to	 hold	mutating	 state	 data,	 update	 it	 and
have	 the	 UI	 re-render	 itself,	 you	 have	 to	 wrap	 the	 InheritedWidget
within	a	StatefulWidget	and	force	the	StatefulWidget	to	re-render	the
State	Tree	by	calling	the	‘setState’	method.	A	lot	more	complicated.

Further	Reading
I	highly	recommend	the	following	articles:
https://www.didierboelens.com/2018/06/widget---state---context---

inheritedwidget/
https://stackoverflow.com/questions/49491860/flutter-how-to-

correctly-use-an-inherited-widget
https://medium.com/flutter-io/managing-flutter-application-state-

with-inheritedwidgets-1140452befe1

31.		State	&	ScopedModel	Approach

Introduction
I	don’t	think	that	the	InheritedWidget	approach	turned	out	to	be	a

good	 solution	 for	 our	 state	 issues.	Once	 you	 added	 state	 /	mutation
and	 re-rendering	 of	 new	 state	 into	 account,	 it	 turned	 out	 a	 lot	more
complicated	than	expected.

The	purpose	of	 this	chapter	 is	 to	 take	a	 look	at	 the	ScopedModel
approach.

Approach
This	 approach	 removes	most	 of	 the	 requirements	 to	 use	 Stateful

Widgets,	 enabling	 the	user	 to	use	Stateless	Widgets	 instead	 in	many
cases.

https://www.didierboelens.com/2018/06/widget---state---context---inheritedwidget/
https://stackoverflow.com/questions/49491860/flutter-how-to-correctly-use-an-inherited-widget
https://medium.com/flutter-io/managing-flutter-application-state-with-inheritedwidgets-1140452befe1

ScopedModel	 has	 been	 mentioned	 in	 many	 articles	 as	 an
alternative	 to	 just	 using	 InheritedWidget.	At	 first	 sight,	 it	 looks	 like
the	 ScopedModel	 package	 is	 basically	 InheritedWidget,	 only	 made
easier	to	use.

Package
ScopedModel	 is	 a	 Dart	 package	 and	 it	 is	 available	 here:

https://pub.dartlang.org/packages/scoped_model

As	it	is	a	package	you	will	have	to	install	it:
https://pub.dartlang.org/packages/scoped_model	-	-installing-tab-

Package	Readme
The	package	README.md	file	includes	the	following	text:
A	set	of	utilities	that	allow	you	to	easily	pass	a	data	Model	from	a

parent	Widget	down	to	its	descendants.	In	addition,	it	also	rebuilds	all
of	 the	 children	 that	 use	 the	model	when	 the	model	 is	 updated.	This
library	was	originally	extracted	from	the	Fuchsia	codebase.

This	package	provides	three	main	classes:

1.	 Model
You	 will	 extend	 this	 class	 to	 create	 your	 own
Models,	such	as	SearchModel	or	UserModel.
You	can	listen	to	Models	for	changes!

2.	 ScopedModel	Widget.
If	you	need	to	pass	a	Model	deep	down	your	Widget
hierarchy,	 you	 can	 wrap	 your	 Model	 in	 a
ScopedModel	Widget.
This	will	make	the	Model	available	to	all	descendant
Widgets.

3.	 ScopedModelDescendant	Widget.
Use	 this	 Widget	 to	 find	 the	 appropriate
ScopedModel	in	the	Widget	tree.

https://pub.dartlang.org/packages/scoped_model
https://pub.dartlang.org/packages/scoped_model%20-%20-installing-tab-

It	 will	 automatically	 rebuild	 whenever	 the	 Model
notifies	that	change	has	taken	place.

Multiple	Models
At	 first	 glance,	 it	 looks	 as	 if	 this	 package	 allows	 the	 user	 to	 use

multiple	State	Models.	This	certainly	makes	 it	 a	better	candidate	 for
working	 with	 larger	 applications.	 You	 could	 have	 User	 data	 in	 one
model,	Transaction	data	in	another	etc.

Exercise	–	‘state_and_scoped_model’
The	code	below	is	not	perfect	by	any	means	(you	can	add	the	same

car	twice	and	when	you	tap	on	it,	it	selects	both)	but	it	demonstrates
how	 to	get	 an	app	up	and	working	with	ScopedModel	and	how	you
can	maintain	separate	states	in	separate	models.

In	 this	 exercise,	 I	 use	 the	 ScopedModel	 to	 handle	 two	 separate
state	models:

1.	 a	list	of	cars	(to	which	we	can	add	cars)
2.	 the	currently	selected	car	(which	you	can	change	by	tapping

on	a	car).

There	 is	 more	 code	 for	 you	 to	 copy	 and	 paste	 in	 this	 example.
However,	this	app	does	more	than	some	of	the	previous	examples:	it
allows	you	to	add	cars	and	allows	you	to	select	cars.

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.

Step	2	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:

import	'package:flutter/material.dart';
import	'package:scoped_model/scoped_model.dart';

void	main()	=>	runApp(new	CarAppWidget());

class	Car	{
String	_make;
String	_model;
String	_imageSrc;

Car(this._make,	this._model,	this._imageSrc);

operator	==(other)	=>
(other	is	Car)	&&	(_make	==	other._make)	&&	(_model	==

other._model);

int	get	hashCode	=>	_make.hashCode	^	_model.hashCode	^
_imageSrc.hashCode;

}

class	CarListModel	extends	Model	{
List<Car>	_carList	=	[
Car(
"Bmw",
"M3",
"Https://media.ed.edmunds-

media.com/bmw/m3/2018/oem/2018_bmw_m3_sedan_base_fq_oem_4_150.jpg",
),
Car(
"Nissan",
"GTR",
"Https://media.ed.edmunds-media.com/nissan/gt-

r/2018/oem/2018_nissan_gt-r_coupe_nismo_fq_oem_1_150.jpg",
),
Car(
"Nissan",
"Sentra",
"Https://media.ed.edmunds-

media.com/nissan/sentra/2017/oem/2017_nissan_sentra_sedan_sr-

turbo_fq_oem_4_150.jpg",
)

];

List<Car>	get	carList	=>	_carList;

void	add(String	make,	String	model,	String	imageSrc)	{
_carList.add(Car(make,	model,	imageSrc));
notifyListeners();

}
}

class	CarSelectionModel	extends	Model	{
Car	_selectedCar;

Car	get	selectedCar	=>	_selectedCar;

void	set	selectedCar(Car	selectedCar)	{
_selectedCar	=	selectedCar;
notifyListeners();

}

bool	isSelected(Car	car)	{
if	(_selectedCar	==	null)	{
return	false;

}	else	{
return	car	==	_selectedCar;

}
}
}

class	CarAppWidget	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(

title:	'Car	App',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	ScopedModel<CarListModel>(

model:	CarListModel(),
child:	ScopedModel<CarSelectionModel>(

model:	CarSelectionModel(),
child:	CarAppLayoutWidget(title:	'Cars'))));

}
}

class	CarAppLayoutWidget	extends	StatelessWidget	{
CarAppLayoutWidget({Key	key,	this.title})	:	super(key:	key);
final	String	title;

_addCar(BuildContext	context)	{
ScopedModel.of<CarListModel>(context,	rebuildOnChange:	true).add(

"Subaru",
"WRX",
"Https://media.ed.edmunds-media"
".com/subaru/wrx/2018/oem/2018_subaru_wrx_sedan_sti-

limited_s_oem_1_150"
".jpg");

}

String	_calculateSelectedCarName(BuildContext	context)	{
Car	selectedCar	=

ScopedModel.of<CarSelectionModel>(context,	rebuildOnChange:
true)

.selectedCar;

if	(selectedCar	==	null)	{
return	"No	car	selected.";

}	else	{
return	"Selected:	${selectedCar._make}	${selectedCar._model}";

}
}

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text(title),

),
body:	Center(child:	CarListWidget()),
persistentFooterButtons:	<Widget>[
Text(_calculateSelectedCarName(context)),
IconButton(

icon:	Icon(Icons.add),
onPressed:	()	{
_addCar(context);

}),
]);

}
}

class	CarListWidget	extends	StatelessWidget	{
@override

Widget	build(BuildContext	context)	{
final	carList	=

ScopedModel.of<CarListModel>(context,	rebuildOnChange:
true).carList;

List<CarWidget>	carWidgets	=	carList.map((Car	car)	{
return	CarWidget(car);

}).toList();
return	new	ListView(children:	carWidgets);

}
}

class	CarWidget	extends	StatelessWidget	{
CarWidget(this._car)	:	super();

final	Car	_car;

_buildCarWidget(context,	child,	CarSelectionModel	selectionModel)	{
return	GestureDetector(

onTap:	()	=>	selectionModel.selectedCar	=	_car,
child:	Padding(

padding:	EdgeInsets.all(20.0),
child:	Container(

decoration:	BoxDecoration(
border:	Border.all(),

color:	selectionModel.isSelected(_car)
?	Colors.blue
:	Colors.white),

padding:	EdgeInsets.all(20.0),
child:	Center(

child:	Column(children:	<Widget>[
Text('${_car._make}	${_car._model}',

style:	TextStyle(fontSize:	24.0)),
Padding(

padding:	EdgeInsets.only(top:	20.0),
child:	Image.network(_car._imageSrc))

])))));
}

@override
Widget	build(BuildContext	context)	{
return	ScopedModelDescendant<CarSelectionModel>(

builder:	(context,	child,	selectionModel)	=>
_buildCarWidget(context,	child,	selectionModel));

}
}

Step	3	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
If	you	tap	on	the	‘+’	button	at	the	bottom	it	adds	another	car.
If	you	tap	on	a	car	it	selects	the	car	(adding	a	blue	background)	and

sets	the	text	of	the	selected	car	at	the	bottom.
	

Summary

	

CarListModel	holds	state	for	car	list.
Note	that	the	‘add’	method	add	a	car	and	that	it	calls
‘notifyListeners’	 to	 ensure	 the	 children	 in	 the
Widget	Tree	are	updated.

CarSelectionModel	holds	state	for	selected	car.
Note	that	the	‘set’	method	for	the	‘selectedCar’	calls
‘notifyListeners’	 to	 ensure	 the	 children	 in	 the
Widget	Tree	are	updated.

CarListWidget	is	used	to	render	car	list.	It	gets	its	state	from

the	CarListModel.
CarWidget	 uses	 a	 ScopedModelDescendant	 from	 this
package	 to	use	 a	builder	 to	build	 the	 car	widget.	 It	 gets	 the
data	 for	 the	 car	 from	 the	 constructor.	 The
ScopedModelDescendant	 enables	 the	 builder	 to	 get	 the
selection	state	from	the	CarSelectionModel.
CarAppLayoutWidget	lays	out	the	Widgets	in	a	Scaffold.

PersistentFooterButtons	 is	used	 to	show	Text	and	a
Button	at	the	bottom,	even	if	the	user	scrolls.

The	 Text	 for	 the	 selected	 car	 name	 is
calculated	 by	 calling	 ‘ScopedModel.of’	 to
get	to	the	CarSelectionModel	and	calling	a
method	there	to	get	the	text.
The	 ‘+’	 Button	 calls	 ‘ScopedModel.of’	 to
get	to	the	CarListModel	and	calls	a	method
there	to	add	a	car	to	the	list	of	cars.

Conclusion
I	was	 impressed	by	 this	package;	how	simple	 it	was	 to	get	going

and	how	well	it	worked	with	multiple	models.	I	really	think	this	is	the
way	to	go	for	small	/	medium	sized	projects.	It	was	easy	to	get	to	the
models	 using	 builders	 or	 using	 the	 ‘ScopedModel.of’	 method.	 Nice
and	flexible.

32.	State	&	BLoCs	w/Streams	Approach

Introduction
BLoC	stands	for	‘Business	Logic	Components’.
It’s	 a	 pattern	 for	 state	 management	 recommended	 by	 Google

developers.

The	 purpose	 of	 this	 chapter	 is	 to	 learn	 this	 pattern	 for	 state
management.

BLoC	Pattern
This	pattern	is	about	storing	the	app	main	state	in	a	central	place	(a

business	 logic	 object	 stored	 in	 a	 Stateful	 Widget)	 and	 having	 it
communicate	 with	 the	 rest	 of	 the	 app’s	Widgets	 using	 streams	 and
RxDart.

Note	 that	 this	 pattern	 uses	 InheritedWidget	 to	 store	 the	Business
Logic	Component	within	a	widget	in	the	hierarchy.

Reactive	Programming
Reactive	Programming	is	an	asynchronous	programming	paradigm

concerned	with	data	 streams	and	 the	propagation	of	 change.	 It	 is	 all
about	 asynchronously	 emitting	 data	 to	 these	 streams	 or	 listening	 to
those	streams	and	doing	something	with	the	data	(perform	operations
on	 it).	 To	 oversimplify	 things,	 Observable	 objects	 write	 to	 these
streams	 and	 Subscribers	 listen	 to	 these	 streams.	 Operators	 do
something	with	 the	 stream	 data,	 like	 create	 it,	 transform	 it,	 filter	 it,
combine	it	etc.	It	sounds	complicated	but	it	can	make	your	code	much
simpler	when	you	get	the	hang	of	it.

One	 great	 thing	 about	 streams	 is	 that	 you	 can	 use	 them	 to
commutate	 between	 software	 components.	 For	 example,	 rather	 than
have	 ‘Component	 1’	 directly	 call	 a	method	 in	 ‘Component	 2’	when

something	 happens,	 you	 could	 have	 Component	 2	 subscribe	 to	 an
event	 stream	 in	 Component	 1.	 When	 something	 happens	 in
Component	1,	it	posts	to	the	event	stream	and	Component	2	is	notified
and	does	something.

RxDart
The	BLoC	pattern	uses	the	RxDart	package.
RxDart	 is	 a	 reactive	 functional	 programming	 library	 for	 Google

Dart,	 based	 on	 ReactiveX.	 Google	 Dart	 comes	 with	 a	 very	 decent
Streams	 API	 out-of-the-box;	 rather	 than	 attempting	 to	 provide	 an
alternative	 to	 this	 API,	 RxDart	 adds	 functionality	 on	 top	 of	 it.	 So
basically,	RxDart	enhances	the	Dart	support	for	Streams!

StreamBuilder
This	approach	uses	the	StreamBuilder	class	to	build	stateless	child

Widgets.	 StreamBuilder	 is	 a	Widget	 that	 builds	 itself	 based	 on	 the
latest	update	from	a	Stream.

StreamBuilders	 listen	 for	 changes	 in	 streams	 and	 build	 Widgets
when	the	stream	data	changes.	Thus,	your	Widgets	can	update	when
the	state	changes	and	the	state	change	is	pushed	to	a	stream.

Exercise	–	‘state_and_block_with_streams’
In	this	exercise,	we	use	a	BLoC	with	states	and	streams	to	enable

the	user	to	re-order	a	list	of	customers.

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.

Step	2	–	Add	the	RxDart	Dependency
Add	the	following	dependencies	to	your	‘pubspec.yaml’	file.	After

that	you	will	need	to	do	a	‘flutter	packages	get’	on	the	command	line

in	the	root	of	your	project	to	download	the	dependencies.
dependencies:

flutter:
sdk:	flutter

#	The	following	adds	the	Cupertino	Icons	font	to	your	application.
#	Use	with	the	CupertinoIcons	class	for	iOS	style	icons.
cupertino_icons:	^0.1.2
rxdart:	0.18.1

dev_dependencies:
flutter_test:
sdk:	flutter

Step	3	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	'dart:async';

import	'package:flutter/material.dart';
import	'package:rxdart/rxdart.dart';

class	Customer	{
		String	_firstName;
		String	_lastName;
		bool	_upButton;
		bool	_downButton;

Customer(this._firstName,	this._lastName)	{
			_upButton	=	false;
			_downButton	=	false;
	}

String	get	name	=>	_firstName	+	"	"	+	_lastName;

bool	get	upButton	=>	_upButton;

set	upButton(bool	value)	{
			_upButton	=	value;

	}

bool	get	downButton	=>	_downButton;

set	downButton(bool	value)	{
			_downButton	=	value;
	}

operator	==(other)	=>
					(other	is	Customer)	&&
					(_firstName	==	other._firstName)	&&
					(_lastName	==	other._lastName);

int	get	hashCode	=>	_firstName.hashCode	^	_lastName.hashCode;
}

class	Bloc	{
		//	BLoC	stands	for	Business	Logic	Component.
		List<Customer>	_customerList	=	[];

Bloc()	{
			_upActionStreamController.stream.listen(_handleUp);
			_downActionStreamController.stream.listen(_handleDown);
	}

List<Customer>	initCustomerList()	{
			_customerList	=	[
					new	Customer("Fred",	"Smith"),
					new	Customer("Brian",	"Johnson"),
					new	Customer("James",	"McGirt"),
					new	Customer("John",	"Brown")
];
			updateUpDownButtons();
			return	_customerList;
	}

void	dispose()	{
			_upActionStreamController.close();
			_downActionStreamController.close();
	}

void	_handleUp(Customer	customer)	{
			swap(customer,	true);
			updateUpDownButtons();

_customerListSubject.add(_customerList);
			_messageSubject.add(customer.name	+	"	moved	up");
	}

void	_handleDown(Customer	customer)	{
			swap(customer,	false);
			updateUpDownButtons();

_customerListSubject.add(_customerList);
			_messageSubject.add(customer.name	+	"	moved	down");
	}

void	swap(Customer	customer,	bool	up)	{
			int	idx	=	_customerList.indexOf(customer);
			_customerList.remove(customer);
			_customerList.insert(up	?	idx	-	1	:	idx	+	1,	customer);
	}

void	updateUpDownButtons()	{
			//TODO	We	dont	really	need	to	update	them	all,	but	this	is	just	an	example.
			for	(int	idx	=	0,	lastIdx	=	_customerList.length	-	1;
							idx	<=	lastIdx;
							idx++)	{
					Customer	customer	=	_customerList[idx];
					customer.upButton	=	(idx	>	0);
					customer.downButton	=	(idx	<	lastIdx);
			}
	}

//	Streams	for	State	Updates
		Stream<List<Customer>>	get	customerListStream	=>
_customerListSubject.stream;
		final	_customerListSubject	=	BehaviorSubject<List<Customer>>();

Stream<String>	get	messageStream	=>	_messageSubject.stream;
		final	_messageSubject	=	BehaviorSubject<String>();

//	Sinks	for	Actions
		Sink<Customer>	get	upAction	=>	_upActionStreamController.sink;
		final	_upActionStreamController	=	StreamController<Customer>();

Sink<Customer>	get	downAction	=>	_downActionStreamController.sink;
		final	_downActionStreamController	=	StreamController<Customer>();
}

class	BlocProvider	extends	InheritedWidget	{
		final	Bloc	bloc;

BlocProvider({
			Key	key,
			@required	this.bloc,
			Widget	child,
	})	:	super(key:	key,	child:	child);

@override
		bool	updateShouldNotify(InheritedWidget	oldWidget)	=>	true;

static	Bloc	of(BuildContext	context)	=>
					(context.inheritFromWidgetOfExactType(BlocProvider)	as
BlocProvider).bloc;
}

class	CustomerWidget	extends	StatelessWidget	{
		final	Customer	_customer;

CustomerWidget(this._customer);

@override
	Widget	build(BuildContext	context)	{
			final	bloc	=	BlocProvider.of(context);
			Text	text	=	Text(_customer.name,
							style:	const	TextStyle(fontSize:	15.0,	fontWeight:	FontWeight.bold));
			IconButton	upButton	=	IconButton(
							icon:	new	Icon(Icons.arrow_drop_up,	color:	Colors.blue),
							onPressed:	()	{
									bloc.upAction.add(_customer);
							});

			IconButton	downButton	=	IconButton(
							icon:	new	Icon(Icons.arrow_drop_down,	color:	Colors.blue),
							onPressed:	()	{
									bloc.downAction.add(_customer);
							});
			List<Widget>	children	=	[];
			children.add(Expanded(
							child:	Padding(padding:	EdgeInsets.only(left:	20.0),	child:	text)));
			if	(_customer.upButton)	{
					children.add(upButton);
			}
			if	(_customer.downButton)	{
					children.add(downButton);
			}
			return	Padding(
							padding:	EdgeInsets.all(6.0),
							child:	ClipRRect(
											borderRadius:	BorderRadius.circular(8.0),
											child:	Container(
															decoration:	BoxDecoration(color:	Colors.cyan[100]),
															child:	Row(
																			children:	children,
																			mainAxisAlignment:	MainAxisAlignment.start))));
	}
}

void	main()	=>	runApp(new	CustomerAppWidget());

class	CustomerAppWidget	extends	StatelessWidget	{
		//	This	widget	is	the	root	of	your	application.
		final	Bloc	_bloc	=	new	Bloc();

@override
	Widget	build(BuildContext	context)	{
			return	new	MaterialApp(
					title:	'Flutter	Demo',
					theme:	new	ThemeData(
							primarySwatch:	Colors.blue,
),

					home:	BlocProvider(
							bloc:	_bloc,
							child:	new	CustomerListWidget(
									title:	'Flutter	'
													'Demo	Home	Page',
									messageStream:	_bloc.messageStream,
),
),
);
	}
}

class	CustomerListWidget	extends	StatelessWidget	{
	CustomerListWidget({Key	key,	this.title,	Stream<String>	this.messageStream})
					:	super(key:	key)	{
			this.messageStream.listen((message)	{
					_scaffoldKey.currentState.showSnackBar(SnackBar(
							content:	Text(message),
							duration:	Duration(seconds:	1),
));
			});
	}

final	GlobalKey<ScaffoldState>	_scaffoldKey	=	GlobalKey<ScaffoldState>();
		final	String	title;
		final	Stream<String>	messageStream;

@override
	Widget	build(BuildContext	context)	{
			final	bloc	=	BlocProvider.of(context);
			return	new	Scaffold(
							key:	_scaffoldKey,
							appBar:	new	AppBar(
									title:	new	Text(title),
),
							body:	StreamBuilder<List<Customer>>(
											stream:	bloc.customerListStream,
											initialData:	bloc.initCustomerList(),
											builder:	(context,	snapshot)	{

													List<Widget>	customerWidgets	=
																	snapshot.data.map((Customer	customer)	{
															return	CustomerWidget(customer);
													}).toList();
													return	ListView(
																	padding:	const	EdgeInsets.all(10.0),
																	children:	customerWidgets);
											}));
	}
}

Step	4	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
You	can	move	the	customers	up	and	down	using	the	arrow	icons.
Note	that	the	user	is	also	presented	with	a	message	at	the	bottom.

	

Summary

	

CustomerAppWidget
Stateless	Widget
Root	of	your	application.

BlocProvider
InheritedWidget
Wraps	CustomerListWidget
Contains	instance	of	Bloc	object.

Has	 ‘of’	 method	 to	 return	 instance	 of

‘Bloc’	to	Widgets	at	lower	levels	of	Widget
tree.

Bloc
Plain	Dart	class.
Business	Logic	Component.
Contains	state	(list	of	customer	objects).
Contains	2	behavior	subjects	with	streams.

Subject	 are	 something	 that	 can	 be
observed.	 A	 BehaviorSubject	 is	 a	 subject
that	always	provides	the	last	emitted	value
from	the	stream,	even	if	the	subscription	is
added	after	that	value	was	omitted.
Streams	may	be	used	to	get	an	observable
for	a	subject.
BehaviorSubjects	and	Streams	are	used	 to
provide	observable	state	 to	Widgets	 in	 the
tree	below.

Contains	2	stream	controllers	with	sinks.
StreamControllers	 give	 you	 streams	 and	 a
way	 to	 add	 events	 to	 the	 stream	 at	 any
point,	and	from	anywhere.
Sinks	are	generic	destinations	for	data	that
can	have	values	written	to.
StreamControllers	and	Sinks	are	used	here
to	 listen	 for	 incoming	data	 from	a	Widget
event	 (customer	 clicks	 on	 up	 or	 down
button).

CustomerListWidget
Stateless	Widget.
Contains	list	of	customer	widgets.
Has	‘message	stream’	argument	in	constructor.

This	 is	 to	 listen	 to	 message	 stream	 in
BLoC,	 displaying	 a	 message	 to	 the	 user

every	time	the	stream	changes.
Has	 child	StreamBuilder	which	 listens	 to	 customer
list	 stream	 in	 BLoC,	 returning	 a	 ListView	 of
CustomerWidget	 objects	 every	 time	 the	 stream
changes.

CustomerWidget
Stateless	 Widget	 that	 draws	 a	 Customer	 with	 the
name	and	up	/	down	buttons.

Conclusion
This	 is	 a	 pattern	 rather	 than	 a	 package	 -	 you	 will	 have	 to

implement	the	code	yourself.
This	looks	straightforward.

You	could	use	multiple	BLoCs	 in	a	single	app	 to	simplify	a
larger	 app.	 For	 example,	 you	 could	 have	 a	CustomerBLoC,
an	OrderBLoC	etc.,	just	an	InheritedWidget	for	each	BLoC.
You	 use	 a	 InheritedWidget	 to	 get	 access	 to	 the	 BLoC	 (or
BLoCs)	from	anywhere	in	the	Widget	tree.

You	put	the	dynamic	UI	inside	StreamBuilders,	which	listen
to	streams	in	the	BLoC.
Your	event	handling	will	write	values	to	the	Sinks	to	update
the	state.

I	have	used	this	pattern	before	and	I	think	it	works	well.	The	only
downside	 I	 see	 is	 you’re	 your	 build	 methods	 have	 to	 use
StreamBuilders	when	 rendering	dynamic	data	and	 this	can	make	 the
code	slightly	more	complex.

Further	Reading
https://www.didierboelens.com/2018/12/reactive-programming---

streams---bloc---practical-use-cases/

https://www.didierboelens.com/2018/12/reactive-programming---streams---bloc---practical-use-cases/

https://medium.com/flutter-community/reactive-programming-
streams-bloc-6f0d2bd2d248

https://medium.com/flutter-community/reactive-programming-streams-bloc-6f0d2bd2d248

33.	Local	Persistence

Introduction
In	computer	science,	persistence	refers	to	the	characteristic	of	state

that	outlives	the	process	that	created	it.	This	is	achieved	in	practice	by
storing	the	state	as	data	in	computer	data	storage.

So,	 it	 means	 the	 storage	 of	 data	 for	 later	 use,	 even	 after	 the
program	that	created	it	has	been	closed.

In	the	context	of	this	book,	there	are	two	main	types	of	persistence:

Remote	Persistence.
This	would	 be	 achieved	 by	 communicating	with	 a
remote	 computer	 using	 a	 protocol	 like	 Http.	 We
have	already	covered	Http	in	another	chapter.

Local	Persistence
Persisting	data	to	the	device	running	the	Flutter	app.

The	purpose	of	this	chapter	is	to	cover	Local	Persistence.

Your	Options
In	regard	to	local	persistence,	you	have	the	following	options:

Using	a	sql	database
This	 is	 (obviously)	 the	 most	 powerful	 option,
especially	for	querying	data.
We	will	cover	the	SQLite	database	in	this	chapter.	It
is	 recommended	 for	 Flutter	 as	 it	 is	 an	 easy-to-use
package	for	Flutter	and	it	works	on	both	Android	&
iOS.

Using	local	files.
Not	good	for	querying	data.
Good	for	complicated	objects	and	large	amounts	of
data.

You	have	to	write	the	code	that	reads	the	data	from
the	files,	as	well	as	 the	code	 that	writes	 the	data	 to
the	files.
You	have	full	control	over	the	file	format.
Easy	to	copy	this	data	to	another	device	as	a	file.

Using	shared	preferences.
This	is	using	the	shared_preferences	package.
This	is	great	for	simple	data,	it’s	very	easy	to	use.
Probably	 not	 the	 best	 way	 to	 store	 complicated
objects	or	large	amounts	of	data.

SQLite	Database
This	 Flutter	 package	 is	 available	 here:

https://pub.dartlang.org/packages/sqflite

Introduction
This	 database	 runs	 amazingly	 fast.	 Note	 that	 there	 is	 no	 ‘please

wait’	 code	 in	 the	 example.	 It	 was	 just	 not	 required	 as	 all	 of	 the
database	operations	were	instantaneous.

It	was	also	simple	to	setup	and	get	working.
It	also	had	versioning	built-in	out	of	the	box.	You	could	write	code

to	 the	 database	 object	 to	 handle	 initial	 database	 creation,	 when	 the
database	version	changed	etc.

It	 had	 the	 ability	 to	 use	 ‘data	 objects’	 (in	 the	 example	 this	 is	 a
Word	object).

It	had	transaction	handling.

Step	1	–	Add	Dependencies	to	Project
Add	the	following	dependencies	to	your	‘pubspec.yaml’	file.	After

that	you	will	need	to	do	a	‘flutter	packages	get’	on	the	command	line
in	the	root	of	your	project	to	download	the	dependencies.

The	sqflite	package	provides	classes	and	functions	that	allow

https://pub.dartlang.org/packages/sqflite

you	to	interact	with	a	SQLite	database.
The	 path	 package	 provides	 functions	 that	 allow	 you	 to
correctly	define	the	location	to	store	the	database	on	disk.

dependencies:
flutter:
sdk:	flutter

sqflite:
path:

Step	2	–	Define	the	Data	Model
At	 this	 point	 you	 should	 create	 the	 Dart	 classes	 that	 represent

entities	in	your	database.	In	my	example,	I	create	a	‘Word’	class.	Note
how	I	implemented	the	‘equals’	and	‘hashcode’	so	that	the	Word	could
be	compared	with	other	Words	using	an	‘==’.

class	Word	{
final	int	_id;
final	String	_english;
final	String	_spanish;

Word(this._id,	this._english,	this._spanish);

Map<String,	dynamic>	toMap()	{
return	{'id':	_id,	'english':	_english,	'spanish':	_spanish};

}

String	get	spanish	=>	_spanish;

String	get	english	=>	_english;

int	get	id	=>	_id;

operator	==(other)	=>
(other	!=	null)	&&	(other	is	Word)	&&	(_id	==	other._id);

int	get	hashCode	=>	_id.hashCode;
}

Step	3	–	Open	the	Database
You	 should	 open	 the	 database	 when	 the	 app	 runs.	 It	 is	 two-step

procedure	and	each	step	is	asynchronous:

Load	database	path.
Open	database.

Load	Database	Path
Future<bool>	loadDatabasesPath()	async	{
_databasesPath	=	await	getDatabasesPath();
return	true;

}
Open	Database
Note	how	the	‘openAndInitDatabase’	method	in	the	example	code

both	 initializes	 (only	 once)	 and	 returns	 the	 database.	 The	 database
initialization	is	performed	when	it	is	fired	by	‘onCreate’.

Future<bool>	openAndInitDatabase()	async	{
_database	=	await	openDatabase(
join(_databasesPath,	'vocabulary.db'),
onCreate:	(db,	version)	{
debugPrint("creating	database...");
db.execute("CREATE	TABLE	word(id	INTEGER	PRIMARY	KEY,

english	TEXT,	"
"spanish	TEXT,	correct	INTEGER,	incorrect	INTEGER)");

db.execute("INSERT	INTO	word(english,	spanish)	"
"VALUES	('uncle',	'tio')");

db.execute("INSERT	INTO	word(english,	spanish)	"
"VALUES	('reader',	'lector')");

db.execute("INSERT	INTO	word(english,	spanish)	"
"VALUES	('to	keep	vigil	over',	'velar')");

db.execute("INSERT	INTO	word(english,	spanish)	"
"VALUES	('to	remove',	'quitar')");

db.execute("INSERT	INTO	word(english,	spanish)	"
"VALUES	('to	continue',	'reanudar')");

db.execute("INSERT	INTO	word(english,	spanish)	"
"VALUES	('until',	'hasta')");

debugPrint("done");
},
version:	1,

);
return	true;

}

Retrieve	Rows	from	Database
You	use	the	‘query’	method	to	retrieve	data	from	the	database.

final	 List<Map<String,	 dynamic>>	 words	 =	 await
_database.query('word');

final	List<Word>	list	=	List.generate(words.length,	(i)	{
return	Word(words[i]['id'],	words[i]['english'],	words[i]['spanish']);
});

Executing	SQL
The	database	object	provides	a	‘execute’	method	in	case	you	need

to	execute	an	SQL	commands.
db.execute("INSERT	INTO	word(english,	spanish)	"

"VALUES	('uncle',	'tio')");

Insert	into	Database
The	database	object	provides	an	‘insert’	method	in	case	you	need

to	insert	rows	into	the	database.	Make	sure	that	the	primary	key	field
is	null	if	you	want	the	SQLite	to	insert	a	new	id	for	you.

Future<int>	addWord(Word	word)	async	{
return	await	_database.insert(
'word',
word.toMap(),
conflictAlgorithm:	ConflictAlgorithm.replace,

);
}

Update	Row	in	Database
The	database	object	provides	an	‘update’	method	in	case	you	need

to	insert	rows	into	the	database.
Future<void>	updateDog(Dog	dog)	async	{

//	Get	a	reference	to	the	database
final	db	=	await	database;

//	Update	the	given	Dog
await	db.update(
'dogs',
dog.toMap(),
//	Ensure	we	only	update	the	Dog	with	a	matching	id
where:	"id	=	?",
//	Pass	the	Dog's	id	through	as	a	whereArg	to	prevent	SQL	injection
whereArgs:	[dog.id],

);
}

Delete	Row	in	Database
The	database	object	provides	an	‘delete’	method	in	case	you	need

to	delete	rows	into	the	database.
Future<void>	deleteWord(Word	word)	async	{
return	await	_database.delete(
'word',
where:	"id	=	?",
whereArgs:	[word.id],

);
}

Example	–	‘sqlite_vocabulary’
This	 app	 was	 written	 to	 help	 either	 an	 English-speaking	 person

learn	 Spanish	 or	 a	 Spanish-speaking	 person	 learn	 English.	 The	 UI
could	definitely	be	 improved	but	 really	 the	purpose	of	 this	app	 is	 to
show	how	Flutter	can	work	with	a	database.

It	has	three	buttons	at	the	top:

Change	mode	from	English	->	Spanish	to	Spanish	->	English

(and	back	again).
Add	a	new	word.
Delete	the	current	word.

It	has	two	floating	buttons	at	the	bottom:

The	button	 in	 the	middle	 reveals	 the	 answer	 for	 the	 current
word.	 For	 example,	 if	 you	 are	 asked	 ‘Word	 in	 English	 is
reader.	 What	 is	 the	 word	 in	 Spanish?’	 then	 it	 will	 reveal
‘lector’.
The	button	on	the	right	moves	onto	the	next	word,	randomly
chosen.

Dependencies
Add	the	following	dependencies	to	your	‘pubspec.yaml’	file.	After

that	you	will	need	to	do	a	‘flutter	packages	get’	on	the	command	line
in	the	root	of	your	project	to	download	the	dependencies.

dependencies:
flutter:
sdk:	flutter

#	The	following	adds	the	Cupertino	Icons	font	to	your	application.

#	Use	with	the	CupertinoIcons	class	for	iOS	style	icons.
cupertino_icons:	^0.1.2

sqflite:
path:

Source	Code
All	of	the	words	are	stored	in	the	database	and	all	of	the	database

code	is	contained	in	the	‘DbWidget’	inherited	widget,	at	the	top	of	the
Widget	tree	so	it	can	be	accessed	from	any	other	Widget.

import	'dart:async';
import	'dart:math';

import	'package:flutter/material.dart';
import	'package:path/path.dart';
import	'package:sqflite/sqflite.dart';

void	main()	{
runApp(MyApp());
}

enum	Language	{	english,	spanish	}

class	Word	{
final	int	_id;
final	String	_english;
final	String	_spanish;

Word(this._id,	this._english,	this._spanish);

Map<String,	dynamic>	toMap()	{
return	{'id':	_id,	'english':	_english,	'spanish':	_spanish};

}

String	get	spanish	=>	_spanish;

String	get	english	=>	_english;

int	get	id	=>	_id;

operator	==(other)	=>
(other	!=	null)	&&	(other	is	Word)	&&	(_id	==	other._id);

int	get	hashCode	=>	_id.hashCode;
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	DbWidget(

child:	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	HomeWidget()));

}
}

class	DbWidget	extends	InheritedWidget	{
final	_random	=	new	Random();
Database	_database;
String	_databasesPath;

DbWidget({Key	key,	@required	Widget	child})
:	assert(child	!=	null),
super(key:	key,	child:	child);

Future<bool>	loadDatabasesPath()	async	{
_databasesPath	=	await	getDatabasesPath();
return	true;

}

Future<bool>	openAndInitDatabase()	async	{
_database	=	await	openDatabase(
join(_databasesPath,	'vocabulary.db'),
onCreate:	(db,	version)	{
debugPrint("creating	database...");

db.execute("CREATE	TABLE	word(id	INTEGER	PRIMARY	KEY,
english	TEXT,	"

"spanish	TEXT,	correct	INTEGER,	incorrect	INTEGER)");
db.execute("INSERT	INTO	word(english,	spanish)	"

"VALUES	('uncle',	'tio')");
db.execute("INSERT	INTO	word(english,	spanish)	"

"VALUES	('reader',	'lector')");
db.execute("INSERT	INTO	word(english,	spanish)	"

"VALUES	('to	keep	vigil	over',	'velar')");
db.execute("INSERT	INTO	word(english,	spanish)	"

"VALUES	('to	remove',	'quitar')");
db.execute("INSERT	INTO	word(english,	spanish)	"

"VALUES	('to	continue',	'reanudar')");
db.execute("INSERT	INTO	word(english,	spanish)	"

"VALUES	('until',	'hasta')");
debugPrint("done");

},
version:	1,

);
return	true;

}

Future<Word>	loadNextWord(Word	priorWord)	async	{
final	List<Map<String,	dynamic>>	words	=	await

_database.query('word');
final	List<Word>	list	=	List.generate(words.length,	(i)	{
return	Word(words[i]['id'],	words[i]['english'],	words[i]['spanish']);

});

Word	nextWord	=	null;
do	{
int	nextWordIndex	=	_nextRandom(0,	list.length);
nextWord	=	list[nextWordIndex];

}	while	(nextWord	==	priorWord);
return	nextWord;

}

Future<int>	addWord(Word	word)	async	{
return	await	_database.insert(

'word',
word.toMap(),
conflictAlgorithm:	ConflictAlgorithm.replace,

);
}

Future<void>	deleteWord(Word	word)	async	{
return	await	_database.delete(
'word',
where:	"id	=	?",
whereArgs:	[word.id],

);
}

static	DbWidget	of(BuildContext	context)	{
return	context.inheritFromWidgetOfExactType(DbWidget)	as

DbWidget;
}

@override
bool	updateShouldNotify(covariant	InheritedWidget	oldWidget)	{
return	false;

}

int	_nextRandom(int	min,	int	max)	=>	min	+	_random.nextInt(max	-
min);

}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override
_HomeWidgetState	createState()	=>	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
final	GlobalKey<ScaffoldState>	_scaffoldKey	=

GlobalKey<ScaffoldState>();

bool	_loadedDatabasePath	=	false;

bool	_openedDatabase	=	false;
Language	_language	=	Language.spanish;
Word	_priorWord;
Word	_word;

_showSnackBar(String	content,	{bool	error	=	false})	{
_scaffoldKey.currentState.showSnackBar(SnackBar(
content:

Text('${error	?	"An	unexpected	error	occurred:	"	:	""}${content}'),
));

}

_loadDatabasesPath(BuildContext	context)	{
try	{
DbWidget.of(context).loadDatabasesPath().then((b)	{
setState(()	{
_loadedDatabasePath	=	true;

});
}).catchError((error)	{
_showSnackBar(error.toString(),	error:	true);

});
}	catch	(e)	{
_showSnackBar(e.toString(),	error:	true);

}
}

_openAndInitDatabase(BuildContext	context)	{
try	{
DbWidget.of(context).openAndInitDatabase().then((b)	{
setState(()	{
_openedDatabase	=	true;

});
}).catchError((error)	{
_showSnackBar(error.toString(),	error:	true);

});
}	catch	(e)	{
_showSnackBar(e.toString(),	error:	true);

}
}

_loadWord(BuildContext	context)	{
try	{
DbWidget.of(context).loadNextWord(_priorWord).then((word)	{
setState(()	{
_word	=	word;

});
}).catchError((error)	{
_showSnackBar(error.toString(),	error:	true);

});
}	catch	(e)	{
_showSnackBar(e.toString(),	error:	true);

}
}

@override
Widget	build(BuildContext	context)	{
if	(!_loadedDatabasePath)	{
_loadDatabasesPath(context);

}	else	if	(!_openedDatabase)	{
_openAndInitDatabase(context);

}	else	if	(_word	==	null)	{
_loadWord(context);

}

WordWidget	englishWordWidget	=
WordWidget(Language.english,	_language,	_word);

WordWidget	spanishWordWidget	=
WordWidget(Language.spanish,	_language,	_word);

Column	wordWidgets	=	_language	==	Language.spanish
?	Column(children:	[englishWordWidget,	spanishWordWidget])
:	Column(children:	[spanishWordWidget,	englishWordWidget]);

AppBar	appBar	=	AppBar(title:	Text("Vocabulary"),	actions:	<Widget>[
IconButton(icon:	Icon(Icons.shuffle),	onPressed:	()	=>

_switchLanguage()),
IconButton(icon:	Icon(Icons.add),	onPressed:	()	=>

_addWord(context)),
IconButton(

icon:	Icon(Icons.remove),	onPressed:	()	=>	_deleteWord(context))
]);

return	Scaffold(
key:	_scaffoldKey,
appBar:	appBar,
body:	wordWidgets,
floatingActionButton:	FloatingActionButton(

child:	Icon(Icons.refresh),	onPressed:	()	=>	_loadNextWord()));
}

_loadNextWord()	{
setState(()	{
_priorWord	=	_word;
_word	=	null;

});
}

_switchLanguage()	{
Language	newLanguage	=

_language	==	Language.spanish	?	Language.english	:
Language.spanish;

setState(()	=>	_language	=	newLanguage);
}

_addWord(BuildContext	context)	async	{
Word	word	=	await	showDialog<Word>(

context:	context,
builder:	(BuildContext	context)	{
return	Dialog(child:	AddDialogWidget());

});
if	(word	!=	null)	{
try	{
DbWidget.of(context).addWord(word).then((_)	{
_loadNextWord();
_showSnackBar("Added	word.");

}).catchError((e)	=>	_showSnackBar(e.toString(),	error:	true));
}	catch	(e)	{
_showSnackBar(e.toString(),	error:	true);

}
}

}

_deleteWord(BuildContext	context)	{
_showConfirmDialog(context,	_word).then((result)	{
if	(result	==	true)	{
try	{
DbWidget.of(context).deleteWord(_word).then((_)	{
_loadNextWord();
_showSnackBar("Deleted	word.");

}).catchError((e)	=>	_showSnackBar(e.toString(),	error:	true));
}	catch	(e)	{
_showSnackBar(e.toString(),	error:	true);

}
}

});
}
}

class	WordWidget	extends	StatefulWidget	{
WordWidget(this._widgetLanguage,	this._language,	this._word)	{}

final	Language	_widgetLanguage;
final	Language	_language;
final	Word	_word;

@override
_WordWidgetState	createState()	=>	_WordWidgetState();
}

class	_WordWidgetState	extends	State<WordWidget>	{
bool	_revealed	=	false;

_WordWidgetState()	{}

@override
void	didUpdateWidget(Widget	oldWidget)	{
_revealed	=	false;

}

@override
Widget	build(BuildContext	context)	{
bool	isReveal	=	widget._widgetLanguage	==	widget._language;

List<Widget>	widgets	=	[];

String	titleText	=	isReveal
?	"What's	the	word	in

${getLanguageName(widget._widgetLanguage)}?"
:	"Word	in	${getLanguageName(widget._widgetLanguage)}	is:";

widgets.add(Padding(
padding:	EdgeInsets.only(bottom:	20.0),
child:	Text(titleText,

style:	const	TextStyle(fontSize:	30.0,	fontWeight:
FontWeight.bold),

textAlign:	TextAlign.center)));

if	((isReveal)	&&	(!_revealed))	{
widgets.add(FloatingActionButton(

child:	Icon(Icons.remove_red_eye),
onPressed:	()	=>	{setState(()	=>	_revealed	=	true)}));

}	else	{
String	word	=	widget._word	==	null

?	""
:	widget._widgetLanguage	==	Language.english

?	widget._word._english
:	widget._word._spanish;

widgets.add(Text(
word,
style:	const	TextStyle(

fontSize:	30.0,
fontWeight:	FontWeight.bold,
fontStyle:	FontStyle.italic),

textAlign:	TextAlign.center,
));

}

return	Expanded(

child:	Container(
child:	Column(

mainAxisAlignment:	MainAxisAlignment.center,
crossAxisAlignment:	CrossAxisAlignment.stretch,
children:	widgets),

decoration:	BoxDecoration(
image:	DecorationImage(
colorFilter:	new	ColorFilter.mode(

Colors.white.withOpacity(0.3),	BlendMode.dstATop),
image:	NetworkImage(widget._widgetLanguage	==

Language.english
?	"https://upload.wikimedia.org/wikipedia/en/thumb/a/ae/"	+

"Flag_of_the_United_Kingdom.svg/"	+
"510px-Flag_of_the_United_Kingdom.svg.png"

:	"https://upload.wikimedia.org/wikipedia/en/thumb/9/9a/"	+
"Flag_of_Spain.svg/400px-Flag_of_Spain.svg.png"),

fit:	BoxFit.cover,
),

),
padding:	EdgeInsets.all(10.0),

));
}

String	getLanguageName(Language	language)	{
return	widget._widgetLanguage	==	Language.spanish	?	"Spanish"	:

"English";
}
}

class	AddDialogWidget	extends	StatelessWidget	{
static	final	_formKey	=	GlobalKey<FormState>();
static	final	TextEditingController	_englishTextController	=

new	TextEditingController();
static	final	TextEditingController	_spanishTextController	=

new	TextEditingController();

AddDialogWidget()	:	super();

@override

Widget	build(BuildContext	context)	{
return	Container(

height:	260.0,
width:	250.0,
child:	Padding(

padding:	EdgeInsets.all(10.0),
child:	Form(

key:	_formKey,
child:	Column(

mainAxisAlignment:	MainAxisAlignment.spaceAround,
children:	[
Text("Add	Word",

style:	TextStyle(
fontSize:	20.0,	fontWeight:	FontWeight.bold)),

TextFormField(
validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	word	in	English.';

}
},
decoration:	InputDecoration(

icon:	const	Icon(Icons.location_city),
hintText:	'English',
labelText:	'Enter	the	word	in	English'),

onSaved:	(String	value)	{},
controller:	_englishTextController),

TextFormField(
validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	word	in	Spanish.';

}
},
decoration:	InputDecoration(

icon:	const	Icon(Icons.location_city),
hintText:	'Spanish',
labelText:	'Enter	the	word	in	Spanish'),

onSaved:	(String	value)	{},
controller:	_spanishTextController),

FlatButton(

child:	Text("Add"),
onPressed:	()	{
if	(_formKey.currentState.validate())	{
_formKey.currentState.save();
Navigator.pop(

context,
Word(null,	_englishTextController.text,

_spanishTextController.text));
_englishTextController.text	=	"";
_spanishTextController.text	=	"";

}
})

]))));
}
}

Future<bool>	_showConfirmDialog(BuildContext	context,	Word	word)
async	{
return	await	showDialog<bool>(

context:	context,
builder:	(BuildContext	context)	{
return	AlertDialog(
title:	const	Text('Confirm'),
content:	Text(

'Are	you	sure	you	want	to	delete	the	word	"${word.english}?'),
actions:	<Widget>[
FlatButton(
onPressed:	()	{
Navigator.pop(context,	true);

},
child:	const	Text('Yes'),

),
FlatButton(
onPressed:	()	{
Navigator.pop(context,	false);

},
child:	const	Text('No'),

)
],

);
});

}

Further	Reading
https://medium.com/flutter-community/using-sqlite-in-flutter-

187c1a82e8b
https://flutter.dev/docs/cookbook/persistence/sqlite
https://proandroiddev.com/flutter-bookshelf-app-part-3-managing-

data-the-right-way-30569abf9487

Local	Files

Introduction
If	you	don’t	need	to	query	but	you	need	to	store	possibly	complex

objects	and	lots	of	data	with	full-control	then	this	is	probably	the	best
way	to	do	it.

Flutter	provides	a	core	package	‘dart.io’	to	help	you	with	input	and
output	 at	 the	 device	 level.	 Remember	 that	 this	may	 be	 different	 for
different	 devices	 (platforms).	 For	 example,	 some	 of	 the	 file	 details
may	be	different	 for	an	Android	 than	 iOS.	That	 is	why	 the	Platform
class	is	covered	below.

The	 Flutter	 ‘dart.io’	 core	 package	 includes	 Directory	 and	 File
objects	for	 the	purpose	of	working	with	Directories	and	Files.	These
objects	are	excellent	because	 they	can	work	both	synchronously	and
asynchronously,	allowing	you	to	maintain	a	responsive	app	even	when
dealing	with	large	amounts	of	data.

However,	 this	package	does	not	 tell	you	how	 to	 store	 the	data	 in
the	files,	what	file	format	to	use	and	how	to	serialize	and	deserialize
objects	into	files.	That	is	both	good	and	bad	but	it	requires	some	work
on	your	part.

https://medium.com/flutter-community/using-sqlite-in-flutter-187c1a82e8b
https://flutter.dev/docs/cookbook/persistence/sqlite
https://proandroiddev.com/flutter-bookshelf-app-part-3-managing-data-the-right-way-30569abf9487

Platform
When	 you	 are	 coding	with	 local	 files	 and	 directories,	 sometimes

you	need	information	about	the	device	platform:

Number	of	processors.
Path	separator.
Operating	System.
Operating	System	version.
Local	hostname.
Version.

The	Platform	class	exists	to	provide	this	information	to	you.
Path	Separator
Very	 useful	 when	 you	 want	 to	 separate	 elements	 from	 the	 path,

such	as	the	directory	and	the	filename.

In	 the	 example	 below,	 I	 create	 a	 ‘Directory’	 object	 and	 use	 it	 to
query	local	files	in	the	‘Application	Documents’	directory.	When	I	do
this,	 I	get	 a	 list	of	 files	and	each	 file	has	a	path,	which	 includes	 the
filename	at	 the	end.	I	parse	out	 the	filename	by	finding	the	 last	path
file	 separator	 (using	 Platform.pathSeparator)	 and	 calculating	 the
filename	as	the	rest	of	the	path	from	there	onward.

Directory(_path).listSync().forEach((FileSystemEntity	fse)	{
String	path	=	fse.path;
if	(path.endsWith(".themeColor"))	{
int	startIndex	=	path.lastIndexOf(Platform.pathSeparator)	+	1;
int	endIndex	=	path.lastIndexOf(".themeColor");
filenameList.add(path.substring(startIndex,	endIndex));

}
});

Path	Provider	Package
This	 is	 a	 package	 that	 (obviously)	 provides	 information	 about

commonly	used	locations	on	the	filesystem:
Directory	tempDir	=	await	getTemporaryDirectory();
Directory	appDocDir	=	await	getApplicationDocumentsDirectory();

It	 supports	 iOS	 and	 Android.	 More	 information	 here:
https://pub.dartlang.org/packages/path_provider

We	 use	 it	 in	 the	 example	 below,	 as	 it	 involves	 files	 in	 the
Application	Documents	directory.

Application	Documents	Directory
This	is	a	directory	that	your	app	has	access	to,	as	a	place	to	store

local	 files.	 Remember	 that	 you	 can	 create	 subdirectories	within	 this
directory	as	well	as	files.	If	you	look	at	the	constructor	for	the	BLoC
in	the	example	code	below,	you	will	see	that	you	get	its	value	using	an
asynchronous	method	call	 to	 ‘getApplicationDocumentsDirectory’	 in
the	path	provider	package	(see	above).

ThemeBLOC({Key	key,	@required	Widget	child})
:	assert(child	!=	null),
super(key:	key,	child:	child)	{

getApplicationDocumentsDirectory()
.then((directory)	=>	_path	=	directory.path);

Directories
In	order	to	work	with	Directories,	the	core	Flutter	package	‘dart.io’

provides	 a	 Directory	 object.	 You	 can	 create	 Directory	 objects	 from
paths	 or	 uris.	 It	 provides	methods	 for	 getting	 information	 about	 the
directory,	 as	well	 as	methods	 for	modifying	 it.	 It	 also	has	properties
for	providing	more	information.

Files
In	 order	 to	 work	 with	 Files,	 the	 core	 Flutter	 package	 ‘dart.io’

provides	a	File	object.	You	can	create	File	objects	from	paths	or	uris.	
It	provides	methods	for	getting	information	about	 the	file,	as	well	as
methods	 for	opening	 it,	 reading	 from	it,	writing	 to	 it	and	setting	 file

https://pub.dartlang.org/packages/path_provider

information	 (such	 as	when	 it	was	 last	 accessed	or	modified).	 It	 also
has	properties	for	providing	more	information.

Note	that	you	can	open	files	in	the	following	modes:
	

Mode Description
READ Mode	for	opening	a	file	only	for	reading.

WRITE Mode	for	opening	a	file	for	reading	and
writing.

APPEND Mode	for	opening	a	file	for	reading	and
writing	to	the	end	of	it.

WRITE	ONLY Mode	for	opening	a	file	for	writing	only.
WRITE	ONLY

APPEND
Mode	for	opening	a	file	for	writing	only	to

the	end	of	it.

Directory	&	File	Methods
Note	that	the	Directory	and	File	objects	provide	both	synchronous

and	 asynchronous	 methods.	 Obviously,	 you	 should	 consider
asynchronous	methods	 if	 you	 think	 these	 methods	 could	 take	 some
time	to	complete.

Reading	&	Writing	Data	to	a	File
You	need	to	decide	the	file	format	before	you	write	code	to	read	&

write	the	data	in	the	file.
You	can	choose	a	text	format	or	a	binary	file	format.
Text	&	Binary	Files
A	 text	 file	 stores	 data	 in	 the	 form	 of	 alphabets,	 digits	 and	 other

special	 symbols	 by	 storing	 their	 ASCII	 values	 and	 are	 in	 a	 human
readable	format.

A	binary	file	contains	a	sequence	or	a	collection	of	bytes	which	are
not	in	a	human	readable	format.

A	 small	 error	 in	 a	 textual	 file	 can	 be	 recognized	 and	 eliminated

when	seen.	Whereas,	a	small	error	in	a	binary	file	corrupts	the	file	and
is	not	easy	to	detect.
Text	/	JSON	Format
When	I	wrote	this	example,	I	had	just	covered	the	working	on	the

Flutter	 JSON	 example	 here:	 Serializing	 &	 Deserializing	 JSON.	 So
JSON	was	fresh	in	my	mind	and	I	chose	that	format,	working	with	the
Flutter	‘convert’	package	methods	‘jsonEncode’	and	‘jsonDecode’.

Within	 the	 JSON	 encoding,	 the	 example	 uses	 two	 methods	 to
serialize/deserialize	the	color:	‘colorToJson’	and	‘jsonToColor’.

‘colorToJson’	works	 by	matching	 the	 color	 from	 the	 list	 of
colors	using	the	color	value,	then	returning	the	text.
‘jsonToColor’	works	 by	matching	 the	 color	 from	 the	 list	 of
colors	using	the	text	value,	then	returning	the	color.

Write	Data	to	a	File
Note	that	there	are	different	ways	to	write	data	to	a	file:

Write	as	bytes.
Write	as	string.

Note	 that	 you	 can	 perform	 this	 operation	 synchronously	 or
asynchronously.

Code	from	the	example	below:
saveAs(String	filename)	{
String	json	=	jsonEncode(_colorOptions.toJson());
File("${_path}/${filename}.themeColor").writeAsString(json);

}
Read	Data	from	a	File
Note	that	there	are	different	ways	to	read	a	file:

Read	as	bytes.
Read	as	lines.

Read	as	strings.

Note	 that	 you	 can	 perform	 this	 operation	 synchronously	 or
asynchronously.

Code	from	the	example	below:
File("${fse.path}").readAsString().then((str)	{

ColorOptions	 newColorOptions	 =
ColorOptions.fromJson(jsonDecode(str));

this.colorOptions	=	newColorOptions;
});

Example	‘persistence_files’
This	 app	 shows	 the	 grid	 of	 cat	 pictures	 but	 it	 also	 has	 toolbar

options	 to	configure	 the	colors,	open	a	color	 theme	and	save	a	color
theme.	It	stores	the	color	themes	as	local	files	(with	the	file	extension
‘.themeColor’).

This	 example	 uses	 the	 BLoC	 pattern	 for	 the	 theme	 color	 state:
State	&	BLoCs	w/Streams	Approach	.

This	example	also	has	some	useful	keyboard	code	that	only	allows
the	user	to	enter	names	with	letters	a-z.
Dependencies
Add	the	following	dependencies	to	your	‘pubspec.yaml’	file.	After

that	you	will	need	to	do	a	‘flutter	packages	get’	on	the	command	line
in	the	root	of	your	project	to	download	the	dependencies.

dependencies:
flutter:
sdk:	flutter

rxdart:	0.18.1
#	The	following	adds	the	Cupertino	Icons	font	to	your	application.
#	Use	with	the	CupertinoIcons	class	for	iOS	style	icons.
cupertino_icons:	^0.1.2
path_provider:	^0.5.0+1
dev_dependencies:

flutter_test:
sdk:	flutter

Source	Code:

import	'dart:convert';
import	'dart:io';

import	'package:flutter/material.dart';
import	'package:flutter/services.dart';
import	'package:path_provider/path_provider.dart';
import	'package:rxdart/rxdart.dart';

void	main()	=>	runApp(ThemeBLOC(child:	new	GridViewApp()));

//TODO	Fix	horrible	color	choices.	:)
const	COLOR_COFFEE	=	Color.fromARGB(0xFF,	112,	80,	80);
const	COLOR_DARK_BROWN	=	Color.fromARGB(0xFF,	59,	20,

18);
const	COLOR_GREY	=	Color.fromARGB(0xFF,	68,	68,	68);
const	COLOR_LIGHT_BLUE	=	Color.fromARGB(0xFF,	122,	207,

221);
const	COLOR_MAROON	=	Color.fromARGB(0xFF,	86,	18,	16);
const	COLOR_NAVY_BLUE	=	Color.fromARGB(0xFF,	15,	32,	67);
const	COLOR_ORANGE	=	Color.fromARGB(0xFF,	240,	146,	34);
const	COLOR_SAND	=	Color.fromARGB(0xFF,	213,	184,	88);
const	COLOR_YELLOW	=	Color.fromARGB(0xFF,	246,	236,	32);

const	COLOR_DROPDOWN_MENU_ITEMS	=	[
DropdownMenuItem(value:	COLOR_COFFEE,	child:	const

Text("Coffee")),
DropdownMenuItem(value:	COLOR_DARK_BROWN,	child:	const

Text("Dark	Brown")),
DropdownMenuItem(value:	COLOR_GREY,	child:	const	Text("Grey")),
DropdownMenuItem(value:	COLOR_LIGHT_BLUE,	child:	const

Text("Light	Blue")),
DropdownMenuItem(value:	COLOR_MAROON,	child:	const

Text("Maroon")),
DropdownMenuItem(value:	COLOR_NAVY_BLUE,	child:	const

Text("Navy	Blue")),
DropdownMenuItem(value:	COLOR_ORANGE,	child:	const

Text("Orange")),
DropdownMenuItem(value:	COLOR_SAND,	child:	const	Text("Sand")),
DropdownMenuItem(value:	COLOR_YELLOW,	child:	const

Text("Yellow")),
];

class	ColorOptions	{
Color	primaryColor;
Color	scaffoldBackgroundColor;
Color	accentColor;

ColorOptions(
{@required	this.primaryColor,
@required	this.scaffoldBackgroundColor,
@required	this.accentColor});

ColorOptions.copyOf(ColorOptions	other)	{
this.primaryColor	=	other.primaryColor;
this.scaffoldBackgroundColor	=	other.scaffoldBackgroundColor;
this.accentColor	=	other.accentColor;

}

Map<String,	dynamic>	toJson()	{
Map<String,	dynamic>	map	=	{
'primaryColor':	'${colorToJson(primaryColor)}',
'scaffoldBackgroundColor':

'${colorToJson(scaffoldBackgroundColor)}',
'accentColor':	'${colorToJson(accentColor)}'

};
return	map;

}

ColorOptions.fromJson(Map<String,	dynamic>	json)
:	primaryColor	=	jsonToColor(json['primaryColor']),
scaffoldBackgroundColor	=

jsonToColor(json['scaffoldBackgroundColor']),
accentColor	=	jsonToColor(json['accentColor']);

static	String	colorToJson(Color	color)	{
DropdownMenuItem	menuItemForColor	=

COLOR_DROPDOWN_MENU_ITEMS.firstWhere((item)	=>
item.value	==	color);

return	(menuItemForColor.child	as	Text).data;
}

static	Color	jsonToColor(String	json)	{
DropdownMenuItem	menuItemForColor	=

COLOR_DROPDOWN_MENU_ITEMS
.firstWhere((item)	=>	(item.child	as	Text).data	==	json);

return	menuItemForColor.value;
}
}

class	GridOptions	{
int	crossAxisCountPortrait;
int	crossAxisCountLandscape;
double	childAspectRatio;
double	padding;
double	spacing;

GridOptions(
{@required	this.crossAxisCountPortrait,
@required	this.crossAxisCountLandscape,
@required	this.childAspectRatio,
@required	this.padding,
@required	this.spacing});

@override
String	toString()	{
return	'GridOptions{_crossAxisCountPortrait:	$crossAxisCountPortrait,

_crossAxisCountLandscape:	$crossAxisCountLandscape,
_childAspectRatio:	$childAspectRatio,	_padding:	$padding,	_spacing:
$spacing}';
}
}

class	ThemeBLOC	extends	InheritedWidget	{
String	_path;

ThemeBLOC({Key	key,	@required	Widget	child})
:	assert(child	!=	null),

super(key:	key,	child:	child)	{
getApplicationDocumentsDirectory()

.then((directory)	=>	_path	=	directory.path);
}

ColorOptions	_colorOptions	=	ColorOptions(
primaryColor:	COLOR_NAVY_BLUE,
scaffoldBackgroundColor:	COLOR_LIGHT_BLUE,
accentColor:	COLOR_SAND);

static	ThemeBLOC	of(BuildContext	context)	{
return	context.inheritFromWidgetOfExactType(ThemeBLOC)	as

ThemeBLOC;
}

ThemeData	get	startingThemeData	{
return	createThemeDataFromColorOptions();

}

ThemeData	createThemeDataFromColorOptions()	{
return	ThemeData(

primaryColor:	_colorOptions.primaryColor,
scaffoldBackgroundColor:	_colorOptions.scaffoldBackgroundColor,
accentColor:	_colorOptions.accentColor);

}

@override
bool	updateShouldNotify(covariant	InheritedWidget	oldWidget)	{
//	We	are	going	to	use	a	stream	for	updating	widget	tree	(see

StreamBuilder).
return	false;

}

//	Used	to	update	widget	tree	(see	StreamBuilder).
Stream<ThemeData>	get	themeStream	=>	_themeSubject.stream;
final	_themeSubject	=	BehaviorSubject<ThemeData>();

ColorOptions	get	colorOptions	=>	_colorOptions;

set	colorOptions(ColorOptions	value)	{

_colorOptions	=	value;
_themeSubject.add(createThemeDataFromColorOptions());	//	update

widget	tree
}

List<String>	get	filenames	{
List<String>	filenameList	=	[];
Directory(_path).listSync().forEach((FileSystemEntity	fse)	{
String	path	=	fse.path;
if	(path.endsWith(".themeColor"))	{
int	startIndex	=	path.lastIndexOf(Platform.pathSeparator)	+	1;
int	endIndex	=	path.lastIndexOf(".themeColor");
filenameList.add(path.substring(startIndex,	endIndex));

}
});
return	filenameList;

}

open(String	filename)	{
FileSystemEntity	fse	=

Directory(_path).listSync().firstWhere((FileSystemEntity	fse)	{
String	path	=	fse.path;
if	(path.endsWith(".themeColor"))	{
int	startIndex	=	path.lastIndexOf(Platform.pathSeparator)	+	1;
if	(startIndex	!=	-1)	{
int	endIndex	=	path.lastIndexOf(".themeColor");
if	(endIndex	!=	-1)	{
var	pathFilename	=	path.substring(startIndex,	endIndex);
if	(pathFilename	==	filename)	{
return	true;

}
}

}
}
return	false;

});
if	(fse	!=	null)	{
File("${fse.path}").readAsString().then((str)	{
ColorOptions	newColorOptions	=

ColorOptions.fromJson(jsonDecode(str));
this.colorOptions	=	newColorOptions;

});
}

}

saveAs(String	filename)	{
String	json	=	jsonEncode(_colorOptions.toJson());
File("${_path}/${filename}.themeColor").writeAsString(json);

}
}

class	GridViewApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
ThemeBLOC	bloc	=	ThemeBLOC.of(context);
return	StreamBuilder<ThemeData>(

//	listens	to	stream	in	ThemeBLOC	to	know	when	to	update
stream:	bloc._themeSubject,
initialData:	bloc.startingThemeData,
builder:	(context,	snapshot)	{
ThemeData	themeData	=	snapshot.data;
return	MaterialApp(
title:	'Flutter	Demo',
theme:	themeData,
home:	HomeWidget(title:	'Flutter	Demo	Home	Page'),

);
});

}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();

}

class	_HomeWidgetState	extends	State<HomeWidget>	{
List<Widget>	_kittenTiles	=	[];
int	_gridOptionsIndex	=	0;
List<GridOptions>	_gridOptions	=	[
GridOptions(

crossAxisCountPortrait:	2,
crossAxisCountLandscape:	3,
childAspectRatio:	1.0,
padding:	10.0,
spacing:	10.0),

GridOptions(
crossAxisCountPortrait:	3,
crossAxisCountLandscape:	4,
childAspectRatio:	1.5,
padding:	10.0,
spacing:	10.0),

GridOptions(
crossAxisCountPortrait:	2,
crossAxisCountLandscape:	3,
childAspectRatio:	2.0,
padding:	10.0,
spacing:	30.0),

];

_HomeWidgetState()	:	super()	{
for	(int	i	=	200;	i	<	1000;	i	+=	100)	{
String	imageUrl	=	"http://placekitten.com/200/${i}";
_kittenTiles.add(GridTile(

header:	GridTileBar(
title:

Text("Cats",	style:	TextStyle(fontWeight:
FontWeight.bold))),

footer:	GridTileBar(
title:	Text("How	cute",

textAlign:	TextAlign.right,
style:	TextStyle(fontWeight:	FontWeight.bold))),

child:	Image.network(imageUrl,	fit:	BoxFit.cover)));

}
}

void	_tryMoreGridOptions()	{
setState(()	{
_gridOptionsIndex++;
if	(_gridOptionsIndex	>=	(_gridOptions.length	-	1))	{
_gridOptionsIndex	=	0;

}
});

}

@override
Widget	build(BuildContext	context)	{
GridOptions	options	=	_gridOptions[_gridOptionsIndex];
return	Scaffold(
appBar:	AppBar(title:	Text("GridView"),	actions:	[
IconButton(

icon:	Icon(Icons.settings),
tooltip:	'Color	Options',
onPressed:	()	=>	_showColorOptionsDialog()),

IconButton(
icon:	Icon(Icons.folder_open),
tooltip:	'Open',
onPressed:	()	{
List<String>	names	=	ThemeBLOC.of(context).filenames;
_showOpenDialog(context,	names);

}),
IconButton(

icon:	Icon(Icons.save),
tooltip:	'Save',
onPressed:	()	=>	_showSaveAsDialog(context))

]),
body:	OrientationBuilder(builder:	(context,	orientation)	{
return	GridView.count(

crossAxisCount:	(orientation	==	Orientation.portrait)
?	options.crossAxisCountPortrait
:	options.crossAxisCountLandscape,

childAspectRatio:	options.childAspectRatio,

padding:	EdgeInsets.all(options.padding),
mainAxisSpacing:	options.spacing,
crossAxisSpacing:	options.spacing,
children:	_kittenTiles);

}),
bottomNavigationBar:	Container(

child:	Text(options.toString()),	padding:	EdgeInsets.all(20.0)),
floatingActionButton:	new	FloatingActionButton(
onPressed:	_tryMoreGridOptions,
tooltip:	'Try	more	grid	options',
child:	new	Icon(Icons.refresh),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}

void	_showColorOptionsDialog()	async	{
ColorOptions	colorOptions	=	await	showDialog<ColorOptions>(

context:	context,
builder:	(BuildContext	context)	{
return	Dialog(

child:
ColorDialogWidget(ThemeBLOC.of(context).colorOptions));

});
if	(colorOptions	!=	null)	{
ThemeBLOC.of(context).colorOptions	=	colorOptions;

}
}

void	_showOpenDialog(BuildContext	context,	List<String>	names)	async
{

List<SimpleDialogOption>	children	=	names.map((s)	{
return	SimpleDialogOption(
onPressed:	()	{
Navigator.pop(context,	s);

},
child:	Text(s),

);
}).toList(growable:	false);

String	name	=	await	showDialog<String>(
context:	context,
builder:	(BuildContext	context)	{
return	SimpleDialog(title:	const	Text('Open'),	children:	children);

});

if	(name	!=	null)	{
setState(()	{
ThemeBLOC.of(context).open(name);

});
}

}

void	_showSaveAsDialog(BuildContext	context)	async	{
String	name	=	await	showDialog<String>(

context:	context,
builder:	(BuildContext	context)	{
return	Dialog(child:	SaveAsDialogWidget());

});
if	(name	!=	null)	{
ThemeBLOC.of(context).saveAs(name);

}
}
}

class	ColorDialogWidget	extends	StatefulWidget	{
ColorOptions	_colorOptions;

ColorDialogWidget(this._colorOptions)	:	super();

@override
_CustomDialogWidgetState	createState()	=>

new
_CustomDialogWidgetState(ColorOptions.copyOf(this._colorOptions));

}

class	_CustomDialogWidgetState	extends	State<ColorDialogWidget>	{
ColorOptions	_colorOptions;

_CustomDialogWidgetState(this._colorOptions);

@override
Widget	build(BuildContext	context)	{
return	Container(

height:	400.0,
width:	250.0,
child:

Column(mainAxisAlignment:	MainAxisAlignment.spaceAround,
children:	<

Widget>[
Text("Colors",

style:	TextStyle(fontSize:	20.0,	fontWeight:	FontWeight.bold)),
Row(mainAxisAlignment:	MainAxisAlignment.center,	children:

<Widget>[
Spacer(),
Text("Primary	Color"),
Spacer(),
new	DropdownButton<Color>(
value:	_colorOptions.primaryColor,
items:	COLOR_DROPDOWN_MENU_ITEMS,
onChanged:	(newValue)	{
setState(()	{
_colorOptions.primaryColor	=	newValue;

});
},

),
Spacer(),

]),
Row(mainAxisAlignment:	MainAxisAlignment.center,	children:

<Widget>[
Spacer(),
Text("Background	Color"),
Spacer(),
new	DropdownButton<Color>(
value:	_colorOptions.scaffoldBackgroundColor,
items:	COLOR_DROPDOWN_MENU_ITEMS,
onChanged:	(newValue)	{
setState(()	{
_colorOptions.scaffoldBackgroundColor	=	newValue;

});

},
),
Spacer(),

]),
Row(mainAxisAlignment:	MainAxisAlignment.center,	children:

<Widget>[
Spacer(),
Text("Accent	Color"),
Spacer(),
new	DropdownButton<Color>(
value:	_colorOptions.accentColor,
items:	COLOR_DROPDOWN_MENU_ITEMS,
onChanged:	(newValue)	{
setState(()	{
_colorOptions.accentColor	=	newValue;

});
},

),
Spacer(),

]),
FlatButton(

child:	Text("Apply"),
onPressed:	()	=>	Navigator.pop(context,	_colorOptions))

]));
}
}

class	SaveAsDialogWidget	extends	StatelessWidget	{
static	final	_formKey	=	GlobalKey<FormState>();
static	final	TextEditingController	_nameTextController	=

new	TextEditingController();

SaveAsDialogWidget()	:	super();

@override
Widget	build(BuildContext	context)	{
return	Container(

height:	260.0,
width:	250.0,

child:	Padding(
padding:	EdgeInsets.all(10.0),
child:	Form(

key:	_formKey,
child:	Column(

mainAxisAlignment:	MainAxisAlignment.spaceAround,
children:	[
Text("Save	As",

style:	TextStyle(
fontSize:	20.0,	fontWeight:	FontWeight.bold)),

TextFormField(
autofocus:	true,
validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	name.';

}
},
decoration:	InputDecoration(

icon:	const	Icon(Icons.location_city),
hintText:	'Save	As',
labelText:	'Enter	the	name'),

keyboardType:	TextInputType.text,
inputFormatters:	[
WhitelistingTextInputFormatter	(RegExp(r'[a-z]'))

],
onSaved:	(String	value)	{},
controller:	_nameTextController),

FlatButton(
child:	Text("Save"),
onPressed:	()	{
if	(_formKey.currentState.validate())	{
_formKey.currentState.save();
Navigator.pop(context,	_nameTextController.text);
_nameTextController.text	=	"";

}
})

]))));
}
}

Shared	Preferences

Introduction
The	 ‘shared_preferences’	 package	 is	 very	 useful	 for	 providing	 a

local	persistent	store	for	simple	preference	data.	This	data	is	lost	if	the
user	uninstalls	the	app	or	clears	the	app	data.

Each	preference	item	requires	its	own	String	key	to	identify	it.	In
my	code	example,	I	use	the	String	key	‘themeList’	to	store	the	semi-
colon	delimited	list	of	themes	and	I	use	a	the	theme	name	as	the	key
for	each	theme	stored	as	a	preference.

More	 info	 here:
https://pub.dartlang.org/packages/shared_preferences

Methods
Getting	a	List	of	All	Preferences
This	gets	a	set	 (similar	 to	a	 list	without	duplicates)	containing	all

the	keys	to	local	shared	preferences.
Set<String>	getKeys()
Getting	a	Preference
The	 method	 you	 use	 depends	 on	 the	 type	 of	 data	 stored	 in	 the

preference.
	

Method Description
dynamic	get(String

key)
Returns	a	preference	for	a	key,	could

be	any	of	the	types	below.
bool	getBool(String

key)
Returns	a	boolean	preference	for	a

key.

int	getInt(String	key) Returns	an	integer	preference	for	a
key.

https://pub.dartlang.org/packages/shared_preferences

double
getDouble(String	key)

Returns	a	double	preference	for	a	key.

String
getString(String	key) Returns	a	string	preference	for	a	key.

List<String>
getStringList(String	key)

Returns	a	string	list	preference	for	a
key.

Setting	a	Preference
The	method	you	use	depends	on	the	type	of	data	you	want	stored

in	the	preference.
	

Method Description
Future<bool>	setBool(String

key)
Sets	a	boolean	preference	for

a	key.
Future<bool>	setInt(String

key)
Sets	an	integer	preference

for	a	key.
Future<bool>

setDouble(String	key)
Sets	a	double	preference	for

a	key.
Future<bool>	setString(String

key)
Sets	a	string	preference	for	a

key.
Future<bool>

getStringList(String	key)
Sets	a	string	list	preference

for	a	key.
Removing	a	Preference
There	is	only	one	method	call	for	all	types.
Method Description
Future<bool>

remove(String	key)
Removes	an	entry	from	persistent

storage,	whatever	the	type.

Further	Reading
https://medium.com/flutter-community/shared-preferences-how-to-

save-flutter-application-settings-and-user-preferences-for-later-

https://medium.com/flutter-community/shared-preferences-how-to-save-flutter-application-settings-and-user-preferences-for-later-554d08671ae9

554d08671ae9

Example	‘persistence_shared_preferences’
This	app	shows	 the	grid	of	cat	pictures	as	before	and	 it	works	 in

the	 same	 way.	 However,	 this	 time	 it	 uses	 the	 ‘shared_preferences’
package	rather	than	local	files.
Dependencies
Add	the	following	dependencies	to	your	‘pubspec.yaml’	file.	After

that	you	will	need	to	do	a	‘flutter	packages	get’	on	the	command	line
in	the	root	of	your	project	to	download	the	dependencies.

dependencies:
flutter:
sdk:	flutter

rxdart:	0.18.1
#	The	following	adds	the	Cupertino	Icons	font	to	your	application.
#	Use	with	the	CupertinoIcons	class	for	iOS	style	icons.
cupertino_icons:	^0.1.2
shared_preferences:	^0.5.1+2

Source	Code:
Most	of	the	code	is	the	same	as	the	previous	example	but	there	are

several	differences	in	the	ThemeBLOC	class:

The	 ThemeBLOC	 	 loads	 the	 SharedPreferences	 object
asynchrously	in	the	constructor.
The	 preference	 ‘themeList’	 is	 used	 to	 store	 the	 list	 of
available	themes	in	a	single	string,	delimited	by	semi-colons.

Example	of	this	format:	‘themeOne;themeTwo’.		
In	 retrospect,	 it	 would	 have	 been	 better	 to	 use	 the
methods	 ‘getStringList’	 and	 ‘setStringList’	 rather
than	‘getString’	and	‘setString’,	instead	of	storing	a
list	 in	a	single	string.	 It	would	have	made	the	code
less	complex.

Then	each	theme	is	stored	as	its	own	preference	in	the	same
Text	/	JSON	format	as	in	the	previous	example.

import	'dart:convert';
import	'dart:io';

import	'package:flutter/material.dart';
import	'package:flutter/services.dart';
import	'package:rxdart/rxdart.dart';
import	'package:shared_preferences/shared_preferences.dart';

void	main()	=>	runApp(ThemeBLOC(child:	new	GridViewApp()));

//TODO	Fix	horrible	color	choices.	:)
const	COLOR_COFFEE	=	Color.fromARGB(0xFF,	112,	80,	80);
const	COLOR_DARK_BROWN	=	Color.fromARGB(0xFF,	59,	20,

18);
const	COLOR_GREY	=	Color.fromARGB(0xFF,	68,	68,	68);
const	COLOR_LIGHT_BLUE	=	Color.fromARGB(0xFF,	122,	207,

221);
const	COLOR_MAROON	=	Color.fromARGB(0xFF,	86,	18,	16);
const	COLOR_NAVY_BLUE	=	Color.fromARGB(0xFF,	15,	32,	67);
const	COLOR_ORANGE	=	Color.fromARGB(0xFF,	240,	146,	34);
const	COLOR_SAND	=	Color.fromARGB(0xFF,	213,	184,	88);
const	COLOR_YELLOW	=	Color.fromARGB(0xFF,	246,	236,	32);

const	COLOR_DROPDOWN_MENU_ITEMS	=	[
DropdownMenuItem(value:	COLOR_COFFEE,	child:	const

Text("Coffee")),
DropdownMenuItem(value:	COLOR_DARK_BROWN,	child:	const

Text("Dark	Brown")),
DropdownMenuItem(value:	COLOR_GREY,	child:	const	Text("Grey")),
DropdownMenuItem(value:	COLOR_LIGHT_BLUE,	child:	const

Text("Light	Blue")),
DropdownMenuItem(value:	COLOR_MAROON,	child:	const

Text("Maroon")),
DropdownMenuItem(value:	COLOR_NAVY_BLUE,	child:	const

Text("Navy	Blue")),
DropdownMenuItem(value:	COLOR_ORANGE,	child:	const

Text("Orange")),
DropdownMenuItem(value:	COLOR_SAND,	child:	const	Text("Sand")),
DropdownMenuItem(value:	COLOR_YELLOW,	child:	const

Text("Yellow")),
];

class	ColorOptions	{
Color	primaryColor;
Color	scaffoldBackgroundColor;
Color	accentColor;

ColorOptions(
{@required	this.primaryColor,
@required	this.scaffoldBackgroundColor,
@required	this.accentColor});

ColorOptions.copyOf(ColorOptions	other)	{
this.primaryColor	=	other.primaryColor;
this.scaffoldBackgroundColor	=	other.scaffoldBackgroundColor;
this.accentColor	=	other.accentColor;

}

Map<String,	dynamic>	toJson()	{
Map<String,	dynamic>	map	=	{
'primaryColor':	'${colorToJson(primaryColor)}',
'scaffoldBackgroundColor':

'${colorToJson(scaffoldBackgroundColor)}',
'accentColor':	'${colorToJson(accentColor)}'

};
return	map;

}

ColorOptions.fromJson(Map<String,	dynamic>	json)
:	primaryColor	=	jsonToColor(json['primaryColor']),
scaffoldBackgroundColor	=

jsonToColor(json['scaffoldBackgroundColor']),
accentColor	=	jsonToColor(json['accentColor']);

static	String	colorToJson(Color	color)	{
DropdownMenuItem	menuItemForColor	=

COLOR_DROPDOWN_MENU_ITEMS.firstWhere((item)	=>
item.value	==	color);

return	(menuItemForColor.child	as	Text).data;
}

static	Color	jsonToColor(String	json)	{
DropdownMenuItem	menuItemForColor	=

COLOR_DROPDOWN_MENU_ITEMS
.firstWhere((item)	=>	(item.child	as	Text).data	==	json);

return	menuItemForColor.value;
}
}

class	GridOptions	{
int	crossAxisCountPortrait;
int	crossAxisCountLandscape;
double	childAspectRatio;
double	padding;
double	spacing;

GridOptions(
{@required	this.crossAxisCountPortrait,
@required	this.crossAxisCountLandscape,
@required	this.childAspectRatio,
@required	this.padding,
@required	this.spacing});

@override
String	toString()	{
return	 'GridOptions{_crossAxisCountPortrait:	 $crossAxisCountPortrait,

_crossAxisCountLandscape:	 $crossAxisCountLandscape,
_childAspectRatio:	 $childAspectRatio,	 _padding:	 $padding,	 _spacing:
$spacing}';
}
}

class	ThemeBLOC	extends	InheritedWidget	{
SharedPreferences	_prefs;

ThemeBLOC({Key	key,	@required	Widget	child})
:	assert(child	!=	null),

super(key:	key,	child:	child)	{
SharedPreferences.getInstance().then((prefs)	=>	_prefs	=	prefs);

}

ColorOptions	_colorOptions	=	ColorOptions(
primaryColor:	COLOR_NAVY_BLUE,
scaffoldBackgroundColor:	COLOR_LIGHT_BLUE,
accentColor:	COLOR_SAND);

static	ThemeBLOC	of(BuildContext	context)	{
return	 context.inheritFromWidgetOfExactType(ThemeBLOC)	 as

ThemeBLOC;
}

ThemeData	get	startingThemeData	{
return	createThemeDataFromColorOptions();

}

ThemeData	createThemeDataFromColorOptions()	{
return	ThemeData(

primaryColor:	_colorOptions.primaryColor,
scaffoldBackgroundColor:	_colorOptions.scaffoldBackgroundColor,
accentColor:	_colorOptions.accentColor);

}

@override
bool	updateShouldNotify(covariant	InheritedWidget	oldWidget)	{
//	We	are	going	to	use	a	stream	for	updating	widget	tree	(see

StreamBuilder).
return	false;

}

//	Used	to	update	widget	tree	(see	StreamBuilder).
Stream<ThemeData>	get	themeStream	=>	_themeSubject.stream;
final	_themeSubject	=	BehaviorSubject<ThemeData>();

ColorOptions	get	colorOptions	=>	_colorOptions;

set	colorOptions(ColorOptions	value)	{
_colorOptions	=	value;

_themeSubject.add(createThemeDataFromColorOptions());	//	update
widget	tree
}

List<String>	get	themes	{
//	Return	list	of	themes.
String	themes	=	_prefs.getString("themeList");
return	themes	==	null	?	[]	:	themes.split(";");

}

open(String	theme)	{
//	Open	theme	preference.
String	themeAsJson	=	_prefs.getString(theme);
ColorOptions	newColorOptions	=

ColorOptions.fromJson(jsonDecode(themeAsJson));
this.colorOptions	=	newColorOptions;

}

saveAs(String	theme)	{
//	Create	new	theme	preference.
String	themeAsJson	=	jsonEncode(_colorOptions.toJson());
_prefs.setString(theme,	themeAsJson);

//	Add	new	theme	preference	to	list	of	themes.
String	themeList	=	_prefs.getString('themeList');
if	((themeList	==	null)	||	(themeList.isEmpty))	{
_prefs.setString("themeList",	theme);

}	else	if	(themeList.indexOf(theme)	==	-1)	{
_prefs.setString("themeList",	themeList	+	";"	+	theme);

}
}
}

class	GridViewApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
ThemeBLOC	bloc	=	ThemeBLOC.of(context);
return	StreamBuilder<ThemeData>(

//	listens	to	stream	in	ThemeBLOC	to	know	when	to	update
stream:	bloc._themeSubject,
initialData:	bloc.startingThemeData,
builder:	(context,	snapshot)	{
ThemeData	themeData	=	snapshot.data;
return	MaterialApp(
title:	'Flutter	Demo',
theme:	themeData,
home:	HomeWidget(title:	'Flutter	Demo	Home	Page'),

);
});

}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
List<Widget>	_kittenTiles	=	[];
int	_gridOptionsIndex	=	0;
List<GridOptions>	_gridOptions	=	[
GridOptions(

crossAxisCountPortrait:	2,
crossAxisCountLandscape:	3,
childAspectRatio:	1.0,
padding:	10.0,
spacing:	10.0),

GridOptions(
crossAxisCountPortrait:	3,
crossAxisCountLandscape:	4,
childAspectRatio:	1.5,
padding:	10.0,
spacing:	10.0),

GridOptions(
crossAxisCountPortrait:	2,
crossAxisCountLandscape:	3,
childAspectRatio:	2.0,
padding:	10.0,
spacing:	30.0),

];

_HomeWidgetState()	:	super()	{
for	(int	i	=	200;	i	<	1000;	i	+=	100)	{
String	imageUrl	=	"http://placekitten.com/200/${i}";
_kittenTiles.add(GridTile(

header:	GridTileBar(
title:

Text("Cats",	style:	TextStyle(fontWeight:
FontWeight.bold))),

footer:	GridTileBar(
title:	Text("How	cute",

textAlign:	TextAlign.right,
style:	TextStyle(fontWeight:	FontWeight.bold))),

child:	Image.network(imageUrl,	fit:	BoxFit.cover)));
}

}

void	_tryMoreGridOptions()	{
setState(()	{
_gridOptionsIndex++;
if	(_gridOptionsIndex	>=	(_gridOptions.length	-	1))	{
_gridOptionsIndex	=	0;

}
});

}

@override
Widget	build(BuildContext	context)	{
GridOptions	options	=	_gridOptions[_gridOptionsIndex];
return	Scaffold(
appBar:	AppBar(title:	Text("GridView"),	actions:	[
IconButton(

icon:	Icon(Icons.settings),
tooltip:	'Color	Options',
onPressed:	()	=>	_showColorOptionsDialog()),

IconButton(
icon:	Icon(Icons.folder_open),
tooltip:	'Open',
onPressed:	()	{
List<String>	names	=	ThemeBLOC.of(context).themes;
_showOpenDialog(context,	names);

}),
IconButton(

icon:	Icon(Icons.save),
tooltip:	'Save',
onPressed:	()	=>	_showSaveAsDialog(context))

]),
body:	OrientationBuilder(builder:	(context,	orientation)	{
return	GridView.count(

crossAxisCount:	(orientation	==	Orientation.portrait)
?	options.crossAxisCountPortrait
:	options.crossAxisCountLandscape,

childAspectRatio:	options.childAspectRatio,
padding:	EdgeInsets.all(options.padding),
mainAxisSpacing:	options.spacing,
crossAxisSpacing:	options.spacing,
children:	_kittenTiles);

}),
bottomNavigationBar:	Container(

child:	Text(options.toString()),	padding:	EdgeInsets.all(20.0)),
floatingActionButton:	new	FloatingActionButton(
onPressed:	_tryMoreGridOptions,
tooltip:	'Try	more	grid	options',
child:	new	Icon(Icons.refresh),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}

void	_showColorOptionsDialog()	async	{
ColorOptions	colorOptions	=	await	showDialog<ColorOptions>(

context:	context,
builder:	(BuildContext	context)	{
return	Dialog(

child:
ColorDialogWidget(ThemeBLOC.of(context).colorOptions));

});
if	(colorOptions	!=	null)	{
ThemeBLOC.of(context).colorOptions	=	colorOptions;

}
}

void	_showOpenDialog(BuildContext	context,	List<String>	names)	async
{

List<SimpleDialogOption>	children	=	names.map((s)	{
return	SimpleDialogOption(
onPressed:	()	{
Navigator.pop(context,	s);

},
child:	Text(s),

);
}).toList(growable:	false);

String	name	=	await	showDialog<String>(
context:	context,
builder:	(BuildContext	context)	{
return	SimpleDialog(title:	const	Text('Open'),	children:	children);

});

if	(name	!=	null)	{
setState(()	{
ThemeBLOC.of(context).open(name);

});
}

}

void	_showSaveAsDialog(BuildContext	context)	async	{
String	name	=	await	showDialog<String>(

context:	context,
builder:	(BuildContext	context)	{

return	Dialog(child:	SaveAsDialogWidget());
});

if	(name	!=	null)	{
ThemeBLOC.of(context).saveAs(name);

}
}
}

class	ColorDialogWidget	extends	StatefulWidget	{
ColorOptions	_colorOptions;

ColorDialogWidget(this._colorOptions)	:	super();

@override
_CustomDialogWidgetState	createState()	=>

new
_CustomDialogWidgetState(ColorOptions.copyOf(this._colorOptions));

}

class	_CustomDialogWidgetState	extends	State<ColorDialogWidget>	{
ColorOptions	_colorOptions;

_CustomDialogWidgetState(this._colorOptions);

@override
Widget	build(BuildContext	context)	{
return	Container(

height:	400.0,
width:	250.0,
child:

Column(mainAxisAlignment:	MainAxisAlignment.spaceAround,
children:	<

Widget>[
Text("Colors",

style:	TextStyle(fontSize:	20.0,	fontWeight:	FontWeight.bold)),
Row(mainAxisAlignment:	MainAxisAlignment.center,	children:

<Widget>[
Spacer(),
Text("Primary	Color"),

Spacer(),
new	DropdownButton<Color>(
value:	_colorOptions.primaryColor,
items:	COLOR_DROPDOWN_MENU_ITEMS,
onChanged:	(newValue)	{
setState(()	{
_colorOptions.primaryColor	=	newValue;

});
},

),
Spacer(),

]),
Row(mainAxisAlignment:	MainAxisAlignment.center,	children:

<Widget>[
Spacer(),
Text("Background	Color"),
Spacer(),
new	DropdownButton<Color>(
value:	_colorOptions.scaffoldBackgroundColor,
items:	COLOR_DROPDOWN_MENU_ITEMS,
onChanged:	(newValue)	{
setState(()	{
_colorOptions.scaffoldBackgroundColor	=	newValue;

});
},

),
Spacer(),

]),
Row(mainAxisAlignment:	MainAxisAlignment.center,	children:

<Widget>[
Spacer(),
Text("Accent	Color"),
Spacer(),
new	DropdownButton<Color>(
value:	_colorOptions.accentColor,
items:	COLOR_DROPDOWN_MENU_ITEMS,
onChanged:	(newValue)	{
setState(()	{
_colorOptions.accentColor	=	newValue;

});
},

),
Spacer(),

]),
FlatButton(

child:	Text("Apply"),
onPressed:	()	=>	Navigator.pop(context,	_colorOptions))

]));
}
}

class	SaveAsDialogWidget	extends	StatelessWidget	{
static	final	_formKey	=	GlobalKey<FormState>();
static	final	TextEditingController	_nameTextController	=

new	TextEditingController();

SaveAsDialogWidget()	:	super();

@override
Widget	build(BuildContext	context)	{
return	Container(

height:	260.0,
width:	250.0,
child:	Padding(

padding:	EdgeInsets.all(10.0),
child:	Form(

key:	_formKey,
child:	Column(

mainAxisAlignment:	MainAxisAlignment.spaceAround,
children:	[
Text("Save	As",

style:	TextStyle(
fontSize:	20.0,	fontWeight:	FontWeight.bold)),

TextFormField(
autofocus:	true,
validator:	(value)	{
if	(value.isEmpty)	{
return	'Please	enter	the	name.';

}
if	(value	==	"themeList")	{
return	'You	cannot	use	this	name.';

}
},
decoration:	InputDecoration(

icon:	const	Icon(Icons.location_city),
hintText:	'Save	As',
labelText:	'Enter	the	name'),

keyboardType:	TextInputType.text,
inputFormatters:	[
WhitelistingTextInputFormatter(RegExp(r'[a-z]'))

],
onSaved:	(String	value)	{},
controller:	_nameTextController),

FlatButton(
child:	Text("Save"),
onPressed:	()	{
if	(_formKey.currentState.validate())	{
_formKey.currentState.save();
Navigator.pop(context,	_nameTextController.text);
_nameTextController.text	=	"";

}
})

]))));
}
}

34.	Mixins

Introduction
As	 mentioned	 at	 the	 start	 of	 this	 book,	 a	 Mixin	 is	 a	 class	 that

contains	methods	for	use	by	other	classes	without	it	having	to	be	the
parent	class	of	those	other	classes.

So,	 a	Mixin	 is	 a	 class	 you	 can	 use	 code	 from	without	 having	 to
inherit	from.

It	enables	developers	to	piecemeal	classes	together	without	having
to	get	involved	with	inheritance,	abstract	classes	etc.

Mixins
Mixins	 are	 often	used	with	Explicit	 animation	 code,	where	 some

animation	 has	 been	 coded	 into	 a	StatefulWidget.	 See	 the	Animation
chapter	for	more	information.

Mixins	&	Code	Generators
Mixins	are	often	used	to	merge	generated	code	into	your	code.	The

generator	 creates	 abstract	 classes	 containing	 code.	 Your	 code	 then
uses	the	‘with’	+	the	abstract	class	name	to	include	that	code	in	your
class	as	a	mixin.
Example
If	 you	 use	 the	 ‘json_serializable’	 package	 and	 you	 invoke	 the

build_runner	to	build	the	serialization	/	deserialization	code,	some	of
that	generated	code	resides	in	an	abstract	class.	Later	on,	you	combine
that	code	into	your	classes	using	a	mixin.

See	 Generating	 Code	 for	 Serializing	 &	 Deserializing	 for	 more
information.

	

Example	–	‘mixins’
This	 app	 draws	 circles	 and	 squares	 using	 a	 CircleWidget	 and	 a

SquareWidget.	 They	 have	 corresponding	 CirclePainter	 and
SquarePainter	classes	that	paint	onto	the	canvas	with	random	colors.

The	CirclePainter	 and	 SquarePainter	 use	 the	Colorizer	 class	 as	 a
mixin	to	provide	random	colors.

Source	Code
import	'dart:math';

import	'package:flutter/material.dart';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.

@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	CircleWidget(),
routes:	<String,	WidgetBuilder>{
'/circle':	(context)	=>	CircleWidget(),
'/square':	(context)	=>	SquareWidget(),

},
);

}
}

class	Colorizer	{
final	_random	=	new	Random();
int	next(int	min,	int	max)	=>	min	+	_random.nextInt(max	-	min);

List<Color>	_colors	=	[];
_initColors()	{
for	(int	i	=	0;	i	<	100;	i++)	{
_colors.add(Colors.green

.withRed(next(0,	255))

.withGreen(next(0,	255))

.withBlue(next(0,	255)));
}

}
}

class	CirclePainter	extends	CustomPainter	with	Colorizer	{
CirclePainter()	{
_initColors();

}

@override
void	paint(Canvas	canvas,	Size	size)	{
for	(int	i	=	0;	i	<	100;	i++)	{

var	radius	=	(i	*	10).toDouble();
canvas.drawCircle(

new	Offset(1000.0,	1000.0),
radius,
new	Paint()
..color	=	_colors[i]
..strokeCap	=	StrokeCap.round
..style	=	PaintingStyle.stroke
..strokeWidth	=	15.0);

}
}

@override
bool	shouldRepaint(CirclePainter	oldDelegate)	{
return	false;

}
}

class	SquarePainter	extends	CustomPainter	with	Colorizer	{
SquarePainter()	{
_initColors();

}

@override
void	paint(Canvas	canvas,	Size	size)	{
for	(int	i	=	0;	i	<	100;	i++)	{
var	inset	=	(i	*	10).toDouble();
canvas.drawRect(

new	Rect.fromLTRB(inset,	inset,	2000.0	-	inset,	2000.0	-	inset),
new	Paint()
..color	=	_colors[i]
..strokeCap	=	StrokeCap.round
..style	=	PaintingStyle.stroke
..strokeWidth	=	15.0);

}
}

@override
bool	shouldRepaint(CirclePainter	oldDelegate)	{

return	false;
}
}

class	CircleWidget	extends	StatelessWidget	{
CirclePainter	_painter	=	new	CirclePainter();
CircleWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(title:	new	Text("Circle"),	actions:	[
IconButton(

icon:	Icon(Icons.crop_square),
onPressed:	()	=>	Navigator.pushNamed(context,	"/square"))

]),
body:	new	SingleChildScrollView(

scrollDirection:	Axis.horizontal,
physics:	AlwaysScrollableScrollPhysics(),
child:	CustomPaint(
size:	Size(2000.0,	2000.0),
foregroundPainter:	_painter,

)));
}
}

class	SquareWidget	extends	StatelessWidget	{
SquarePainter	_painter	=	new	SquarePainter();
SquareWidget({Key	key})	:	super(key:	key);

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(
title:	new	Text("Square"),

),
body:	new	SingleChildScrollView(

scrollDirection:	Axis.horizontal,
physics:	AlwaysScrollableScrollPhysics(),

child:	CustomPaint(
size:	Size(2000.0,	2000.0),
foregroundPainter:	_painter,

)));
}
}

35.	Animation

Introduction
Making	 a	 really	 polished	 app	 takes	 more	 time	 and	 effort	 as	 the

developer	 has	 to	 put	 more	 effort	 into	 creating	 an	 improved	 user
experience,	 adding	 animations	 and	 effects.	 	 However,	 this	 time	 and
effort	 is	 worth	 it	 as	 these	 are	 the	 things	 that	 give	 an	 app	 a	 ‘high
quality’	feel.

This	chapter	is	about	learning	how	to	add	these	animations	to	your
app	as	easily	as	possible.

Animations	&	State	Changes

Animations	 Are	 Used	 to	 Make	 UI	 Changes
Look	Better

Flutter	 animations	 exist	 to	 make	 UI	 changes	 (caused	 by	 state
changes	in	StatefulWidgets)	look	better.

It	follows	that	Animations	and	StatefulWidgets	go	hand-in-hand.
Examples

We	change	the	state	 in	our	StatefulWidget	 to	show	a	Dialog
box.
We	change	state	to	select	a	box	when	the	user	taps	on	it.
We	change	state	to	delete	an	item	in	a	list.

Animations	 Alter	 the	 Way	 the	 UI	 Change
Occurs

The	same	UI	changes	still	occur	but	the	animations	apply	affects	to
make	the	UI	change	more	pleasing	to	the	user.

Many	of	 these	animation	affects	occur	by	 transitioning	state	 (that
drives	the	UI)	in	a	more	progressive	manner.
Examples

We	change	the	state	 in	our	StatefulWidget	 to	show	a	Dialog
box.

The	animation	could	slowly	change	the	visibility	of
the	Dialog	box	to	fade	it	in.
Instead	 of	 visibility	 change	 straight	 from	0	 to	 1,	 it
could	 be	 transitioned	 with	 10	 intermediate	 values
from	0	to	1	over	a	second	e.g.	0.1,	0.2,	0.3,	0.4	etc.

We	change	state	to	select	a	box	when	the	user	taps	on	it.
The	animation	could	 fade	 in	a	border	color	change
on	the	selected	box.
Instead	 of	 white	 to	 red,	 it	 the	 border	 color	 could
change	 from	 white	 to	 red	 slowly	 over	 a	 second,
transitioning	 through	 5	 intermediate	 colors	 in	 a
second	or	two.

	

We	change	state	to	delete	an	item	in	a	list.
The	animation	could	move	 the	deleted	 item	off	 the
screen	so	it	‘slides	away’.
The	animation	could	change	the	‘left’	position	of	the
item	so	 it	 transitions	 from	its	current	 ‘left’	position
until	it	is	off-screen,	taking	a	second	to	do	so.

Types	of	Animations
There	are	two	types	of	animations	available	to	you	in	Flutter:

1.	 Implicit.	These	are	already	done	for	you	by	Flutter	Widgets.
2.	 Explicit.	You	have	to	code	these	(not	too	difficult).

Implicit	Animations
These	 are	 animations	 in	 which	 you	 change	 the	 state	 of	 certain

Widgets	and	they	handle	the	animations	for	you.	They	are	very	easy	to
use	but	you	don’t	have	as	much	control.	Very	convenient.

There	are	many	Widgets	 that	 are	 setup	 to	provide	animations	 for
you	when	 their	 property	values	 change.	These	Widgets	 are	 typically
prefixed	with	the	word	‘Animated’:
	

AnimatedContainer
AnimatedList
AnimatedTextStyle

Example	–	‘animated_container’

This	app	 toggles	between	modes,	with	 the	 top	and	bottom	panels
resizing	and	changing	color	in	an	animated	manner.
Source	Code

import	'package:flutter/material.dart';

void	main()	=>	runApp(MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	MyHomePage(title:	'Flutter	Demo	Home	Page'),

);
}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);
final	String	title;

@override
_MyHomePageState	createState()	=>	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
bool	b	=	false;

void	_changeMode()	{
setState(()	{
b	=	!b;

});
}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),

),

body:	Center(
child:	Column(
mainAxisAlignment:	MainAxisAlignment.center,
crossAxisAlignment:	CrossAxisAlignment.stretch,
children:	<Widget>[
AnimatedContainer(

color:	b	?	Colors.tealAccent	:	Colors.blueAccent,
height:	b	?	400.0	:	200.0,
duration:	Duration(seconds:	1),
child:	Center(

child:	Text('Top',
style:	TextStyle(

fontSize:	30.0,	fontWeight:	FontWeight.w200),
textAlign:	TextAlign.center))),

AnimatedContainer(
color:	b	?	Colors.redAccent	:	Colors.orangeAccent,
height:	b	?	200.0	:	400.0,
duration:	Duration(seconds:	1),
child:	Center(

child:	Text('Bottom',
style:	TextStyle(

fontSize:	30.0,	fontWeight:	FontWeight.w200),
textAlign:	TextAlign.center))),

],
),

),
floatingActionButton:	FloatingActionButton(
onPressed:	_changeMode,
tooltip:	'Increment',
child:	Icon(Icons.add),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}
}

Example	–	‘animated_text’

	

This	app	is	similar	 to	 the	default	Flutter	application	except	 that	 it
shows	 much	 bigger	 text.	 That	 text	 is	 displayed	 in	 blue	 on	 even
numbers,	 green	 on	 odd	 numbers.	 There	 is	 a	 one	 second	 animation
between	the	text	colors.

It’s	 not	 really	 much	 of	 an	 animation	 but	 it	 is	 ‘achieved’	 by
wrapping	 the	Text	Widgets	with	 a	 parent	AnimatedDefaultTextStyle
and	setting	the	duration	and	style	properties	of	that	Widget.	The	value
of	 the	 style	 property	 changes	 if	 the	 counter	 is	 odd	 or	 even.	 The
AnimatedDefaultTextStyle	 simply	 takes	 care	 of	 the	 animation	when
the	text	style	changes.
Source	Code

import	'package:flutter/material.dart';

void	main()	=>	runApp(MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(

title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	MyHomePage(title:	'Flutter	Demo	Home	Page'),

);
}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_MyHomePageState	createState()	=>	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
TextStyle	textStyle1	=	const	TextStyle(color:	Colors.blue,	fontSize:	40.0,

fontWeight:	FontWeight.w200);
TextStyle	textStyle2	=	const	TextStyle(color:	Colors.green,	fontSize:	40.0,

fontWeight:	FontWeight.w600);
int	_counter	=	0;

void	_incrementCounter()	{
setState(()	{
_counter++;

});
}

@override
Widget	build(BuildContext	context)	{
TextStyle	textStyle	=	_counter	%	2	==	0	?	textStyle1	:	textStyle2;
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),

),
body:	Center(

child:	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
AnimatedDefaultTextStyle(

child:	Text('You	have	pushed',	textAlign:	TextAlign.center,),
duration:	Duration(seconds:	1),style:	textStyle),

AnimatedDefaultTextStyle(
child:	Text('the	button	this',	textAlign:	TextAlign.center,),
duration:	Duration(seconds:	1),style:	textStyle),

AnimatedDefaultTextStyle(
child:	Text('many	times:',	textAlign:	TextAlign.center,),
duration:	Duration(seconds:	1),style:	textStyle),

AnimatedDefaultTextStyle(
child:	Text('$_counter',	textAlign:	TextAlign.center),
duration:	Duration(seconds:	1),	style:	textStyle),

],
),

),
floatingActionButton:	FloatingActionButton(
onPressed:	_incrementCounter,
tooltip:	'Increment',
child:	Icon(Icons.add),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}
}

Example	–	‘animated_list’
This	app	shows	a	list	of	cats.	The	user	can	hit	the	floating	button	to

add	another	cat	or	press	down	on	a	cat	for	a	few	seconds	to	delete	one.
This	list	is	animated,	and	the	cats	fade	in	and	fade	out.

Source	Code
import	'dart:math';

import	'package:flutter/material.dart';

void	main()	=>	runApp(MyApp());

class	Cat	{
String	imageSrc;
String	name;
int	age;
int	votes;

Cat(this.imageSrc,	this.name,	this.age,	this.votes);

operator	==(other)	=>	(other	is	Cat)	&&	(imageSrc	==	other.imageSrc);

int	get	hashCode	=>	imageSrc.hashCode;
}

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(

title:	'Cat	List',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	MyHomePage(title:	'The	Cat	List'),

);
}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_MyHomePageState	createState()	=>	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
final	GlobalKey<AnimatedListState>	_listKey	=	GlobalKey();
List<String>	CAT_NAMES	=	[
"Tom",
"Oliver",
"Ginger",
"Pontouf",
"Madison",
"Bubblita",
"Bubbles"

];

Random	_random	=	Random();
List<Cat>	_cats	=	[];

int	next(int	min,	int	max)	=>	min	+	_random.nextInt(max	-	min);

_MyHomePageState()	:	super()	{
for	(int	i	=	200;	i	<	250;	i	+=	10)	{
_cats.add(Cat("http://placekitten.com/200/${i}",

CAT_NAMES[next(0,	6)],
next(1,	32),	0));

}
}

_buildItem(Cat	cat,	{int	index	=	-1})	{
return	ListTile(
key:	Key("ListTile:${cat.hashCode.toString()}"),
leading:	CircleAvatar(

backgroundImage:	NetworkImage(cat.imageSrc),	radius:	32.0),
title:	Text(cat.name,	style:	TextStyle(fontSize:	25.0)),
subtitle:	Text("This	little	thug	is	${cat.age}	year(s)	old.",

style:	TextStyle(fontSize:	15.0)),
onLongPress:	index	!=	null	?	()	=>	_remove(index)	:	null

);
}

_add()	{
setState(()	{
_cats.add(Cat("http://placekitten.com/200/${next(200,	300)}",

CAT_NAMES[next(0,	6)],	next(1,	32),	0));
_listKey.currentState

.insertItem(_cats.length	-	1,	duration:	Duration(seconds:	2));
;

});
}

_remove(int	index)	{
setState(()	{
Cat	cat	=	_cats[index];
_cats.remove(cat);
_listKey.currentState.removeItem(
index,

(BuildContext	context,	Animation<double>	animation)	{
return	FadeTransition(
opacity:
CurvedAnimation(parent:	animation,	curve:	Interval(0.5,	1.0)),
child:	SizeTransition(
sizeFactor:
CurvedAnimation(parent:	animation,	curve:	Interval(0.0,	1.0)),
axisAlignment:	0.0,

child:	_buildItem(cat),
),

);
},
duration:	Duration(milliseconds:	600),

);
});

}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),

),
body:	AnimatedList(
key:	_listKey,
initialItemCount:	_cats.length,
itemBuilder:

(BuildContext	context,	int	index,	Animation<double>	animation)
{

return	FadeTransition(
opacity:	animation,
child:	_buildItem(_cats[index],	index:	index),	//Change

);
},

),
floatingActionButton:	FloatingActionButton(
onPressed:	_add,
tooltip:	'Increment',
child:	Icon(Icons.add),

),
);

}
}

Explicit	Animations
These	are	animations	that	you	code	with	Animation	objects.	They

are	more	difficult	to	use	but	aren’t	really	that	difficult	to	master.	They
also	give	you	a	lot	of	control.

Animation
The	Animation	object	holds	the	current	state	of	the	animation	and

nothing	 else.	 It	 is	 purely	 about	 the	 state,	 not	 what	 appears	 on	 the
screen.
State:

Status
Current	status	of	animation

dismissed
forward
reverse
completed

Value
Whatever	 value	 we	 want	 to	 control	 with	 the
animation.
This	 is	 a	 generic	 so	 can	 be	 of	 whatever	 type	 you
want.

Listeners
You	can	add	the	following	listeners	to	this	class:

	

addListener	/	removeListener
This	listener	is	called	every	time	the	value	changes.

addStatusListener	/	removeStatusListener
This	 listener	 is	 called	 every	 time	 the	 status	 of	 the
animation	changes.
This	is	useful	if	you	want	to	repeat	the	validation.

Example.
You	 could	 add	 code	 here	 to

reverse	 the	 animation	 once	 it
completes:

animation.addStatusListener((AnimationStatus	status){
switch(status){
///
///	At	the	beginning,	play	forward
///
case	AnimationStatus.dismissed:
_controller.forward();
break;

///
///	At	the	end,	play	in	reverse
///
case	AnimationStatus.completed:
_controller.reverse();
break;

}
});

AnimationController
The	AnimationController	extends	the	Animation	class.

It	generates	a	 linear	 series	of	values	 (used	 to	animate	 something)
from	the	lower	bound	to	the	higher	bound	in	in	the	specified	duration
of	time,	calling	a	ticker	callback.

It	generates	a	new	value	whenever	the	device	is	ready	to	display	a
new	frame	(so	this	happens	about	60	values	per	second).

The	AnimationController	 should	 be	 constructed	 in	 the	 ‘initState’
method	 of	 the	 State	 class	 of	 your	 StatefulWidget.	 It	 should	 also	 be
destroyed	 in	 the	 ‘dispose’	 method	 of	 the	 State	 class	 of	 your
StatefulWidget.
Constructor	Arguments

These	 are	 the	most	 commonly-used	 constructor	 arguments	 in	 the
AnimationController.
	

Argument Description

duration
The	duration	of	the	Animation.	Optional.
However,	you	need	to	set	the	duration	before	the

animation	is	invoked.

vsync The	ticker	provider.	Required.
Usually	set	to	‘this’.

lowerBound Value	to	start	with	in	Animation.	Optional.
Defaults	to	0.

upperBound Value	to	end	with	in	Animation.	Optional.
Defaults	to	1.

TickerProvider
When	 you	 create	 the	 AnimationController,	 you	 specify	 a

TickerProvider.	This	class	provides	Ticker	objects,	but	it	also	enables
or	disables	these	tickers	(and	thus	animation	controllers)	in	the	Widget
subtree,	 based	 on	 whether	 the	 Widget	 subtree	 is	 visible	 or	 not	 (ie
enabled).	 This	 is	 important	 because	Tickers	 can	 use	 a	 lot	 of	 system
resources.

Luckily,	when	you	create	a	class	that	is	a	TickerProvider	you	don’t
have	to	write	any	of	this	logic.	All	you	do	is	create	a	Stateful	Widget
that	has	your	animation	code	(more	on	that	in	a	minute),	that	uses	one
of	the	two	mixins	available:
	

1.	 SingleTickerProviderStateMixin
Suitable	 for	 when	 you	 use	 only	 one
AnimationController.

	

2.	 TickerProviderStateMixin
Suitable	 for	 when	 you	 use	 more	 than	 one
AnimationController.

Ticker
A	ticker	is	a	class	that	calls	its	callback	once	per	animation	frame.

	
When	created,	a	ticker	is	initially	disabled.	Call	start	to	enable	the

ticker.
A	Ticker	can	be	silenced	by	setting	muted	to	true.	While	silenced,

time	 still	 elapses,	 and	 start	 and	 stop	 can	 still	 be	 called,	 but	 no
callbacks	are	called.

Example	–	‘animated_progress_circle’
When	the	user	clicks	on	the	floating	refresh	button	at	the	bottom,

this	app	shows	an	animated	progress	circle.

It	 uses	 an	 AnimationController	 in	 the	 _HomeWidgetState	 object
that	has	a	value	change	of	0	to	1	over	a	duration	of	10	seconds.	It	has
a	 listener	 that	 calls	 a	 ‘setState’	 to	 ensure	 that	 the	 HomeWidget	 is
rebuilt	everytime	 the	value	 in	 the	AnimationController	changes.	The
HomeWidget	 ‘build’	 code	 draws	 a	 progress	 circle	 using	 a
CustomPaint	object,	passing	in	the	percentage.

Source	Code
import	'dart:math';

import	'package:flutter/material.dart';

void	main()	=>	runApp(MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	HomeWidget(),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key})	:	super(key:	key);

@override

_HomeWidgetState	createState()	=>	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>
with	SingleTickerProviderStateMixin	{

AnimationController	_controller;

void	_performAnimation()	{
setState(()	{
if	(_controller.status	!=	AnimationStatus.forward)	{
_controller.forward(from:	0.0);

}
});

}

@override
void	initState()	{
_controller	=	AnimationController(

duration:	const	Duration(seconds:	10),
vsync:	this)

..addListener(()	{
setState(()	{
//	Force	build.

});
});

}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text("_controller:	${_controller.value}"),

),
body:	Container(child:

Padding(
padding:	const	EdgeInsets.all(20.0),
child:	CustomPaint(

foregroundPainter:	new	ProgressCirclePainter(
lineColor:	Colors.amber,

completeColor:	Colors.blueAccent,
completePercent:	_controller.value	*	100,
width:	18.0)),

),
constraints:	BoxConstraints.expand(),
margin:	const	EdgeInsets.all(8.0),

),
floatingActionButton:	FloatingActionButton(
onPressed:	_performAnimation,
child:	Icon(Icons.refresh),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}
}

class	ProgressCirclePainter	extends	CustomPainter	{
Color	lineColor;
Color	completeColor;
double	completePercent;
double	width;

ProgressCirclePainter(
{this.lineColor,	this.completeColor,	this.completePercent,

this.width});

@override
void	paint(Canvas	canvas,	Size	size)	{
Paint	line	=	new	Paint()
..color	=	lineColor
..strokeCap	=	StrokeCap.round
..style	=	PaintingStyle.stroke
..strokeWidth	=	width;

Paint	complete	=	new	Paint()
..color	=	completeColor
..strokeCap	=	StrokeCap.round
..style	=	PaintingStyle.stroke
..strokeWidth	=	width;

Offset	center	=	new	Offset(size.width	/	2,	size.height	/	2);

double	radius	=	min(size.width	/	2,	size.height	/	2);
canvas.drawCircle(center,	radius,	line);
double	arcAngle	=	2	*	pi	*	(completePercent	/	100);
canvas.drawArc(new	Rect.fromCircle(center:	center,	radius:	radius),	-pi	/

2,
arcAngle,	false,	complete);

}

@override
bool	shouldRepaint(CustomPainter	oldDelegate)	{
return	true;

}
}

Curved	Animations
This	 example	 above	 performed	 a	 linear,	 smooth	 animation.	 The

yellow	progress	moved	smoothly	around	the	circle.		However,	that	is
not	the	only	option.

You	can	use	a	CurvedAnimation	to	make	the	animation	transition
differently,	 applying	 a	 curve	 to	 the	 animation	 to	 modify	 it.	 You
construct	it	using	the	existing	AnimationController	as	its	parent,	along
with	 the	 curve.	 The	 curve	 determines	 the	 transition.	 In	 the	 exercise
below	we	use	a	‘bounceInOut’	curve	to	make	the	progress	bar	bounce
from	one	side	to	the	other.
Exercise
Step	1	–	Open	the	Example	‘animated_progress_circle’.
Open	the	Example	‘animated_progress_circle’.
Step	2	–	Add	an	Instance	Variable	for	the	Curved	Animation.
See	the	code	in	bold	below.

class	_HomeWidgetState	extends	State<HomeWidget>
with	SingleTickerProviderStateMixin	{

AnimationController	_controller;
CurvedAnimation	_curvedAnimation;

Step	3	–	Set	the	Instance	Variable	for	the	Curved	Animation.

See	the	code	in	bold	below.
@override
void	initState()	{
_controller	=

AnimationController(duration:	const	Duration(seconds:	10),	vsync:
this)

..addListener(()	{
setState(()	{
//	Force	build.

});
});

_curvedAnimation	=
CurvedAnimation(parent:	_controller,	curve:

Curves.bounceInOut);
}

Step	4	–	Change	the	Build	Method	to	Use	 the	Curved	Animation
Value.

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text("_controller:	${_controller.value}"),

),
body:	Container(
child:	Padding(
padding:	const	EdgeInsets.all(20.0),
child:	CustomPaint(

foregroundPainter:	new	ProgressCirclePainter(
lineColor:	Colors.amber,
completeColor:	Colors.blueAccent,
completePercent:	_curvedAnimation.value	*	100,
width:	18.0)),

),
constraints:	BoxConstraints.expand(),
margin:	const	EdgeInsets.all(8.0),

),
floatingActionButton:	FloatingActionButton(
onPressed:	_performAnimation,

child:	Icon(Icons.refresh),
),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build

methods.
);

}

Tweens
Introduction
Like	Controllers,	Tweens	generate	a	linear	series	of	values	(used	to

animate	something)	from	the	lower	bound	to	a	higher	bound.

You	 can	 attach	 one	 or	 more	 Tweens	 to	 a	 parent	 Animation
Controller	 so	 that	 multiple	 tweens	 can	 generate	 values	 at	 the	 same
time,	controlled	by	 the	same	animation.	Refer	 to	 the	example	below
for	this.

Tweens	 can	 generate	 values	 of	 different	 types.	 For	 example,
Colors.	A	ColorTween	can	 linearly	move	 from	one	color	 to	 another.
Refer	to	the	example	below	for	this.
Types	of	Tweens:

AlignmentGeometryTween
AlignmentTween
BorderRadiusTween
BorderTween
BoxConstraintsTween
ColorTween
ConstantTween
DecorationTween
EdgeInsetsGeometryTween
EdgeInsetsTween
FractionalOffsetTween
IntTween
MaterialPointArcTween

Matrix4Tween
RectTween
RelativeRectTween
ReverseTween
ShapeBorderTween
SizeTween
StepTween
TextStyleTween
ThemeDataTween

Example	‘yes_no’
This	app	enables	 the	user	 to	 select	between	a	yes	and	no.	 It	uses

Tweens	to	perform	animation	for	the	circle	background	color	and	the
text	foreground	color.
	

Source	Code
import	'package:flutter/material.dart';

void	main()	=>	runApp(MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.

@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(

primarySwatch:	Colors.blue,
scaffoldBackgroundColor:	Colors.teal),

home:	MyHomePage(title:	'Flutter	Demo	Home	Page'),
);
}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_MyHomePageState	createState()	=>	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{

_yesOnTap()	{
print('yes');
}

_noOnTap()	{
print('no');
}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),

),
body:	Column(

mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
crossAxisAlignment:	CrossAxisAlignment.center,

children:	<Widget>[
Text("Do	you	want	to\nbuy	this	item?",

textAlign:	TextAlign.center,
style:	TextStyle(

color:	Colors.white,
fontSize:	40.0,
fontWeight:	FontWeight.w200)),

Row(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
Spacer(flex:	2),
SelectButton(text:	"YES",	onTap:	_yesOnTap),
Spacer(),
SelectButton(text:	"NO",	onTap:	_noOnTap),
Spacer(flex:	2),

],
)
]),

);
}
}

class	SelectButton	extends	StatefulWidget	{
final	String	text;
final	VoidCallback	onTap;

SelectButton({@required	this.text,	@required	this.onTap});

@override
_SelectButtonState	createState()	=>	_SelectButtonState();
}

class	_SelectButtonState	extends	State<SelectButton>
with	SingleTickerProviderStateMixin	{
AnimationController	_controller;
Animation<Color>	_circleTween;
Animation<Color>	_textTween;

@override

void	initState()	{
//	Create	animation	controller.
_controller	=

AnimationController(duration:	const	Duration(seconds:	1),	vsync:	this)
..addListener(()	{
setState(()	{
//	Force	build.

});
})
..addStatusListener((AnimationStatus	status)	{
if	(status	==	AnimationStatus.completed)	{
waitThenReset();

}
});

//	Create	tweens.
_circleTween	=	new	ColorTween(
begin:	Colors.teal,
end:	Colors.white,

).animate(_controller);

_textTween	=	new	ColorTween(
begin:	Colors.white,
end:	Colors.teal,

).animate(_controller);
}

Future	waitThenReset()	async	{
await	new	Future.delayed(new	Duration(milliseconds:	1000),	()	{
_controller.reverse(from:	0.9);
widget.onTap();

});
}

_onTap()	{
_controller.forward(from:	0.0);
}

@override

Widget	build(BuildContext	context)	{
double	leftPos	=	widget.text.length	==	3	?	22.0	:	27.0;
return	GestureDetector(
onTap:	_onTap,
child:	Material(

type:	MaterialType.transparency,
child:	Ink(
decoration:	BoxDecoration(
border:	Border.all(color:	Colors.white,	width:	1),
color:	_circleTween.value,
shape:	BoxShape.circle,

),
width:	100.0,
height:	100.0,
child:	Padding(

padding:	EdgeInsets.only(left:	leftPos,	top:	32.0),
child:	Text(widget.text,

style:	TextStyle(
color:	_textTween.value,
fontSize:	28.0,
fontWeight:

_controller.status	==	AnimationStatus.completed
?	FontWeight.w500
:	FontWeight.w200))))),

);
}
}

Custom	Behavior
You	 can	 add	 a	 status	 listener	 to	 the	 AnimationController	 to

implement	custom	behavior.
Back	&	Forth
In	 the	 code	 below,	 we	 apply	 the	 following	 logic	 to	 make	 the

animation	go	back	and	forth	endlessly:

When	the	animation	completes,	you	can	make	it	reverse.
When	it	finishes,	you	can	make	it	go	forward	again.

_controller	=
AnimationController(duration:	const	Duration(seconds:	2),	vsync:

this)
..addListener(()	{
setState(()	{
//	Force	build.

});
})
..addStatusListener((AnimationStatus	status)	{
if	(status	==	AnimationStatus.dismissed)	{
_controller.forward();

}	else	if	(status	==	AnimationStatus.completed)	{
_controller.reverse();

}
});

Doing	Something	Once	the	Animation	Completes
You	 can	 also	 add	 code	 to	 the	 status	 listeners	 of

AnimationControllers	 to	 do	 something	 once	 an	 animation	 has
completed.

Example	of	Use

The	user	buys	something	on	the	shopping	cart.
You	perform	a	‘thank	you’	animation.
You	navigate	away	after	the	animation	completes.

Example
If	you	look	at	the	Tween	example	it	waits	a	second,	then	resets	the

button.
See	the	code	in	bold	below.

_controller	=
AnimationController(duration:	const	Duration(seconds:	1),

vsync:	this)
..addListener(()	{
setState(()	{
//	Force	build.

});
})

..addStatusListener((AnimationStatus	status)	{
if	(status	==	AnimationStatus.completed)	{
waitThenReset();

}
});

Transforms
You	can	use	a	Transform	Widget	with	an	AnimationController	 to

apply	transformations	to	child	Widgets:

Rotate
Scale
Move
Skew

Example	‘transform_rotate’
This	app	shows	the	planet	earth	rotating.

	

Source	Code
import	'dart:math'	as	math;
import	'package:flutter/material.dart';

void	main()	=>	runApp(MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Earth',
theme:	ThemeData(

primarySwatch:	Colors.blue,	scaffoldBackgroundColor:
Colors.white),

home:	MyHomePage(title:	'Earth'),
);

}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_MyHomePageState	createState()	=>	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>

with	SingleTickerProviderStateMixin	{
AnimationController	_controller;

@override
void	initState()	{
//	Create	animation	controller.
_controller	=

AnimationController(duration:	const	Duration(seconds:	10),	vsync:
this)

..addListener(()	{
setState(()	{
//	Force	build.

});
})
..addStatusListener((AnimationStatus	status)	{
if	(status	==	AnimationStatus.dismissed)	{
_controller.forward();

}	else	if	(status	==	AnimationStatus.completed)	{
_controller.reverse();

}
});

//	Start	animation	automatically.
_controller.forward(from:	0.0);

}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),

),
body:	Center(

child:	Transform.scale(
scale:	1.6,
child:	Transform.rotate(

angle:	math.pi	*	_controller.value,	//	rotate	animation
child:	Image.network(

"https://ak7.picdn.net/shutterstock/videos/3010597/thumb/1.jpg")))),

);
}
}

Further	Reading
https://www.youtube.com/watch?v=dNSteCm-cEY
https://flutter.dev/docs/development/ui/animations/tutorial
https://www.didierboelens.com/2018/06/animations-in-flutter---

easy-guide---tutorial/
https://medium.com/flutter-community/a-deep-dive-into-

transform-widgets-in-flutter-4dc32cd575a9
https://iirokrankka.com/2018/03/14/orchestrating-multiple-

animations-into-visual-enter-animation/

https://www.youtube.com/watch?v=dNSteCm-cEY
https://flutter.dev/docs/development/ui/animations/tutorial
https://www.didierboelens.com/2018/06/animations-in-flutter---easy-guide---tutorial/
https://medium.com/flutter-community/a-deep-dive-into-transform-widgets-in-flutter-4dc32cd575a9
https://iirokrankka.com/2018/03/14/orchestrating-multiple-animations-into-visual-enter-animation/

36.	Debugging	&	Performance	Profiling
“Suddenly,	the	world	I	had	scrutinised	for	so	long	was	all

around	me,	as	if	I	had	leaned	forward	and	climbed	into	the
television	like	Alice	through	the	looking-glass.	I	had	no	idea

just	how	deep	the	rabbit	hole	would	go.”
Simon	Pegg

Introduction
This	purpose	of	this	chapter	is	to	help	you	debug,	diagnose	issues

with	and	profile	your	Flutter	 app.	Flutter	gives	us	amazing	 tools	 for
this	purpose,	which	can	provide	you	with	any	information	you	should
require.	 In	 fact,	 almost	 too	 much	 information!	 This	 is	 a	 very	 deep
subject	and	the	most	this	chapter	can	do	is	‘dip	your	toe	in	the	water’.	
Flutter	Debugging	&	Profiling	is	quite	a	rabbit-hole!

Debugging
You	should	be	running	Flutter	in	checked	mode.

Performance	Profiling
When	you	are	profiling,	you	should	ensure	the	following:

	

You	are	connected	to	a	real	device.
An	emulator	can	 ‘emulate’	 the	 real	 thing	but	under
the	covers	it’s	not	the	same	thing.

	

You	are	running	Flutter	in	profile	mode.
This	mode	was	written	especially	for	this	task,	with
enough	 performance	 to	 simulate	 release	 mode	 but
enough	information	to	help	you	profile	the	app.

Programmatical	Options
When	you	write	code,	it	has	a	purpose	–	to	perform	a	certain	task.
However,	 you	 can	 augment	 that	 code	 with	 additional	 code	 that

helps	you	diagnose	issues	and	performance	profile	your	Flutter	app:
	

Debugger	Statements.
When	 you	 are	 debugging	 and	 attempting	 to
reproduce	a	condition,	you	can	add	temporary	code
to	detect	that	condition	and	launch	the	debugger.

	

Print	to	the	Console.
You	 can	 output	 to	 the	 console	 to	 provide	 runtime
information	 about	 what	 is	 happening	 in	 the
program,	what	are	variable	values	set	to.
You	 can	 add	 output	 the	 time	 taken	 to	 perform
certain	 tasks,	 so	 that	 you	 can	 change	 your	 code	 to
improve	that	time.

	

Assertions.
You	can	add	assertions	to	enable	programs	to	detect
their	own	defects.

Add	Debugger	Statements
With	 this	 statement,	Flutter	 enables	 the	developer	 to	 invoke	your

IDE’s	 debugger	 from	 your	 code.	 This	 is	 similar	 to	 the	 ‘JavaScript’
debugger	statement.	This	statement	has	an	optional	 ‘when’	argument
which	you	can	specify	to	only	break	when	a	certain	condition	is	true.

Remember	to	import	‘dart:developer’	at	the	top!
Exercise	–	‘debugging’

This	exercise	 involves	 the	default	Flutter	app	modified	 to	do	 into
debug	mode	when	the	counter	reaches	5.

Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.
Step	2	–	Replace	Application	Code
Replace	 contents	 of	 file	 ‘main.dart’	 in	 folder	 ‘lib’	 with	 the

following:
import	'package:flutter/material.dart';
import	'dart:developer';

void	main()	=>	runApp(new	MyApp());

class	MyApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Flutter	Demo',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	MyHomePage(title:	'Flutter	Demo	Home	Page'),

);
}
}

class	MyHomePage	extends	StatefulWidget	{
MyHomePage({Key	key,	this.title})	:	super(key:	key);
final	String	title;

@override
_MyHomePageState	createState()	=>	new	_MyHomePageState();
}

class	_MyHomePageState	extends	State<MyHomePage>	{
int	_counter	=	0;

void	_incrementCounter()	{
debugger(when:	_counter	>	5);
setState(()	{
_counter++;

});
}

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(
appBar:	new	AppBar(
title:	new	Text(widget.title),

),
body:	new	Center(
child:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
new	Text(
'You	have	pushed	the	button	this	many	times:',

),
new	Text(
'$_counter',
style:	Theme.of(context).textTheme.display1,

),
],

),
),
floatingActionButton:	new	FloatingActionButton(
onPressed:	_incrementCounter,
tooltip:	'Increment',
child:	new	Icon(Icons.add),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}
}

Step	3	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
Run	 the	 app	 in	 debug	mode	 and	 hit	 the	 ‘+’	 floating	 button	 until

your	 IDE	 goes	 into	 debug	 mode	 and	 highlights	 the	 line	 containing
‘debugger’.

Add	Print	&	DebugPrint	Statements
Both	of	these	print	to	the	system	console.
The	print	statement	comes	from	Dart,	it	is	a	part	of	dart.core.

According	 to	 the	 official	 documentation:	 “If	 you
output	 too	much	 at	 once,	 then	Android	 sometimes
discards	some	log	lines”.

The	debugPrint	statement	comes	from	Flutter,	it	is	part	of	the
Flutter	foundation	library.

The	 Flutter	 Foundation	 library	 contains	 the	 core
Flutter	 framework	 primitives,	 which	 are	 used	 by
other	parts	of	the	Flutter	framework.
According	 to	 the	 official	 documentation,	 this	 does
not	discard	log	lines.

Interpolation
Both	enable	string	interpolation,	for	example:
Example:

int	a	=	123;
String	b	=	"abc";
print('a:${a},	b:${b}');

Outputs:
I/flutter	(4397):	a:123,	b:abc
Outputting	Object	Values
When	outputting	objects,	these	statements	will	attempt	to	perform

a	‘toString’	on	the	object.
Example:

void	main()	{
Employee	employee	=	new	Employee("Mark",	"Smith",	"925	Langford

Avenue",
"Appt	2",	"Atlanta",	"GA",	"303250",	"232-323-1232");

print('employee:${employee}');
runApp(MyApp());
}

class	Employee	{
String	firstName;
String	lastName;
String	addr1;
String	addr2;
String	city;
String	state;
String	zip;
String	ssn;

Employee(this.firstName,	this.lastName,	this.addr1,	this.addr2,	this.city,
this.state,	this.zip,	this.ssn);

@override
String	toString()	{
return	'Employee{firstName:	$firstName,	lastName:	$lastName,	addr1:

$addr1,	addr2:	$addr2,	city:	$city,	state:	$state,	zip:	$zip,	ssn:	$ssn}';
}
}

Outputs:
I/flutter	(4397):	employee:Employee{firstName:	Mark,	lastName:	Smith,	addr1:
925	Langford	Avenue,	addr2:	Appt	2,	city:	Atlanta,	state:	GA,	zip:	303250,	ssn:
232-323-1232}

Add	Assertions
As	mentioned	above,	you	can	add	assertions	to	your	own	code	to

defensively	 check	 for	 unexpected	 conditions	 or	 values,	 just	 in	 case
they	occur.	 	There	 is	more	on	 the	subject	of	defensive	programming
here:	http://wiki.c2.com/?DefensiveProgramming	.

You	can	develop	your	Flutter	code	in	Checked	(or	Debug)	Mode,
which	 checks	 things	 these	 assertions.	 Later	 on,	 you	 can	 deploy	 the

http://wiki.c2.com/?DefensiveProgramming

compiled	code	 that	 runs	 in	Release	mode,	skipping	 them	as	 they	are
no	longer	necessary.
Exercise
Step	1	–	Create	Default	Flutter	App
Follow	the	instructions	in	Generate	Your	First	App
Leave	project	open.
Step	2	–	Amend	Method
Replace	 the	 existing	 method	 ‘_incrementCounter’	 in

‘_MyHomePageState’	with	the	following:
void	_incrementCounter()	{
setState(()	{
_counter++;
assert(_counter	<	5);

});
}

Step	3	–	Open	Emulator	&	Run
Follow	 the	 instructions	 in	 Open	 Android	 Emulator	 &	 Run	 Your

First	App
The	app	should	run	as	normal.
Step	4	–	Cause	Assertion	to	Occur
Click	on	the	floating	‘+’	button	5	times	until	the	assertion	occurs.
You	should	see	the	following	exception	in	the	console,	as	you	can

see	the	assertion	caused	an	exception:
I/flutter	(4397):	══╡	EXCEPTION	CAUGHT	BY	GESTURE

╞═══
I/flutter	(4397):	The	following	assertion	was	thrown	while	handling	a

gesture:
I/flutter	(4397):	'package:flutter_app2/main.dart':	Failed	assertion:	line

36	pos	14:	'_counter	<	5':	is	not	true.
I/flutter	(4397):
I/flutter	(4397):	Either	the	assertion	indicates	an	error	in	the	framework

itself,	or	we	should	provide	substantially
I/flutter	(4397):	more	information	in	this	error	message	to	help	you

determine	and	fix	the	underlying	cause.
I/flutter	(4397):	In	either	case,	please	report	this	assertion	by	filing	a

bug	on	GitHub:
I/flutter	(4397):			https://github.com/flutter/flutter/issues/new?

template=BUG.md
I/flutter	(4397):
I/flutter	(4397):	When	the	exception	was	thrown,	this	was	the	stack:
I/flutter	(4397):	#2						_MyHomePageState._incrementCounter.

<anonymous	closure>	(package:flutter_app2/main.dart:36:14)
I/flutter	(4397):	#3						State.setState

(package:flutter/src/widgets/framework.dart:1122:30)
I/flutter	(4397):	#4						_MyHomePageState._incrementCounter

(package:flutter_app2/main.dart:34:5)
I/flutter	(4397):	#5						_InkResponseState._handleTap

(package:flutter/src/material/ink_well.dart:513:14)
I/flutter	(4397):	#6						_InkResponseState.build.<anonymous	closure>

(package:flutter/src/material/ink_well.dart:568:30)
I/flutter	(4397):	#7						GestureRecognizer.invokeCallback

(package:flutter/src/gestures/recognizer.dart:120:24)
I/flutter	(4397):	#8						TapGestureRecognizer._checkUp

(package:flutter/src/gestures/tap.dart:242:9)
I/flutter	(4397):	#9						TapGestureRecognizer.acceptGesture

(package:flutter/src/gestures/tap.dart:204:7)
I/flutter	(4397):	#10					GestureArenaManager.sweep

(package:flutter/src/gestures/arena.dart:156:27)
I/flutter	(4397):	#11				

_WidgetsFlutterBinding&BindingBase&GestureBinding.handleEvent
(package:flutter/src/gestures/binding.dart:218:20)

I/flutter	(4397):	#12				
_WidgetsFlutterBinding&BindingBase&GestureBinding.dispatchEvent
(package:flutter/src/gestures/binding.dart:192:22)

I/flutter	(4397):	#13				
_WidgetsFlutterBinding&BindingBase&GestureBinding._handlePointerEvent
(package:flutter/src/gestures/binding.dart:149:7)

I/flutter	(4397):	#14				
_WidgetsFlutterBinding&BindingBase&GestureBinding._flushPointerEventQueue
(package:flutter/src/gestures/binding.dart:101:7)

I/flutter	(4397):	#15				
_WidgetsFlutterBinding&BindingBase&GestureBinding._handlePointerDataPacket
(package:flutter/src/gestures/binding.dart:85:7)

I/flutter	(4397):	#19					_invoke1	(dart:ui/hooks.dart:223:10)

I/flutter	(4397):	#20					_dispatchPointerDataPacket
(dart:ui/hooks.dart:144:5)

I/flutter	(4397):	(elided	5	frames	from	class	_AssertionError	and
package	dart:async)

I/flutter	(4397):
I/flutter	(4397):	Handler:	onTap
I/flutter	(4397):	Recognizer:
I/flutter	(4397):			TapGestureRecognizer#9510a(debugOwner:

GestureDetector,	state:	ready,	won	arena,	finalPosition:
I/flutter	(4397):			Offset(366.4,	647.5),	sent	tap	down)
I/flutter	(4397):

══
I/flutter	(4397):	Another	exception	was	thrown:

'package:flutter_app2/main.dart':	Failed	assertion:	line	36	pos	14:	'_counter
<	5':	is	not	true.

Step	5	–	Optional	–	Run	App	in	Release	Mode
Connect	 your	 device	 and	 add	 the	 –release	 argument	 to	 your	 run

configuration	in	your	editor.	Or	run	the	following	in	your	project	root
(I	had	to	specify	the	device):

flutter	run	--profile
More	than	one	device	connected;	please	specify	a	device	with	the	'-d

<deviceId>'	flag,	or	use	'-d	all'	to	act	on	all	devices.

SM	G960U1																	•	59334a534c573398	•	android-arm64	•	Android
9	(API	28)

Android	SDK	built	for	x86	•	emulator-5554				•	android-x86			•	Android
9	(API	28)	(emulator)

marcuss-mbp:flutter_app2	marcusclow$	flutter	run	--profile	-d
59334a534c573398

The	 app	 should	 now	 come	 up	 on	 your	 phone.	 However,	 the
assertion	should	no	longer	affect	the	app,	you	should	be	able	to	hit	the
‘+’	button	as	many	times	as	you	want	to,	without	an	exception.

Service	Extensions

Introduction
Flutter	has	service	extensions	that	you	can	turn	on	and	off	either	as

the	 app	 is	 running,	 or	 programatically.	 Service	 extensions	 unwrap
special	Flutter	functionality	to	help	you	debug	&	diagnose	issues	with
your	app.

We	are	not	going	to	cover	all	of	them	but	let’s	cover	some	of	the
more	important	ones.

Performance	Overlay
Flutter	apps	should	run	at	60	frames	per	second,	with	a	smoothly-

rendered	 user	 interface.	 Each	 Flutter	 UI	 frame	 is	 processed	 by	 two
threads	–	first	by	the	UI	thread,	then	by	the	GPU	thread.	Each	of	these
threads	has	a	bar	chart	 in	 the	Performance	Overlay.	The	GPU	thread
frame	 performance	 is	 the	 first	 bar	 chart,	 the	 UI	 thread	 frame
performance	is	the	second	bar	chart.

The	purpose	of	 the	Performance	Overlay	 is	 to	be	 able	 to	use	 the
app	while	 at	 the	 same	 time	viewing	 the	 frame	performance	 in	 these
bar-charts.	 This	 enables	 the	 user	 to	 see	 where	 performance	 issues
occur,	as	they	will	appear	as	tall	bars	in	the	charts.

Note	that	the	Performance	Overlay	displays	Max	Frame	Time	and
Average	Frame	Time.
	

GPU	Thread
GPU	stands	for	‘Graphics	Processing	Unit’.
Flutter	 comes	with	 its	 own	 rendering	 engine,	which	 runs	 on	 this

thread.	 It	 executes	 Flutter	 graphics	 code,	 working	 with	 a	 rendering
engine	underneath,	be	it	hardware	or	software.
UI	Thread
The	UI	thread	executes	Dart	UI	code.
Frames
Each	 frame	 has	 to	 run	 through	 both	 the	UI	 thread	 and	 the	GPU

thread.
To	achieve	60	frames	per	second,	each	frame	should	take	no	longer

than	8	milliseconds	to	prepare.
Flutter	 achieves	 this	 amazing	 feat	 by	 using	 extremely	 efficient

change	detection	 (see	next	chapter)	and	by	using	parallelism,	 the	UI
thread	preparing	one	frame	while	the	GPU	thread	prepares	the	other.
Janky	Frames
In	 the	 Flutter	 documentation,	 it	 states	 that	 any	 frame	 that	 takes

longer	than	that	extremely	short	period	is	called	a	‘Janky’	frame.
Graphs
The	Performance	Overlay	 shows	you	 two	bar	graphs	overlaid	on

top	of	the	app.

The	GPU	thread	is	shown	at	the	top.
The	UI	thread	is	shown	at	the	bottom.

X	Axis
That	shows	the	last	300	frames	in	a	rotating	buffer.	The	last	thread

is	shown	in	green	or	red.
Y	Axis
Each	graph	shows	the	performance	of	each	frame	on	the	‘y’	axis.	A

tall	‘y’	axis	bar	means	a	slow	frame.
Detecting	Janky	Threads
Start	your	your	app	in	profile	mode	with	the	Performance	Overlay

turned	 on	 and	 try	 out	 your	 code.	 Watch	 these	 graphs	 for	 Janky
Threads	with	really	high	bars	and	try	to	figure	out	the	offending	code
by	reproducing	the	problem.

Further	Reading
https://flutter.dev/docs/testing/debugging#performanceoverlay

Show	 Paint	 Baselines
(debugPaintSizeEnabled)

This	 shows	you	 the	 paint	 size	 of	 each	widget,	 adding	borders	 so
you	can	see	where	 they	begin	and	end.	Useful	when	you	are	writing
the	UI.
	

https://flutter.dev/docs/testing/debugging#performanceoverlay

Show	Material	Grid
This	shows	you	a	grid	so	you	can	ensure	that	your	UI	elements	line

up	as	expected.	Useful	when	you	are	writing	the	UI.
	

Turn	Service	Extensions	On/Off	from	Android
Studio

Open	Flutter	Inspector.
Hit	the	white	cog	to	view	options.
Select	mode	option.

	

Turn	 Service	 Extensions	 On/Off	 from	 Visual
Studio	Code

Open	Command	Palette.
Type	 Flutter	 to	 view	 list	 of	 available	 Flutter-related
commands.
Select	command	for	desired	mode	from	the	list.

	

Turn	 Service	 Extensions	 On/Off	 from
Command	Line

Run	 the	 Flutter	 app	 from	 the	 command	 line	 in	 the	 usual	manner
with	the	Flutter	‘run’	command.	When	you	run	the	Flutter	app	in	this
mode,	 there	 are	 various	 hotkeys	 available,	 including	 one	 for	 service
extensions:
	

p	–	turns	on	Show	Paint	Baselines

flutter	run

Turn	 Service	 Extensions	 On/Off
Programmatically

There	are	 two	ways	 that	you	can	 turn	 these	extensions	from	your
code.
Modify	the	Entry	Point	‘main’	to	Turn	on	Extensions
You	can	add	code	 to	 the	entry	point	of	your	app	 to	 turn	on	some

extensions.
More	 info	 here:	 https://flutter.dev/docs/testing/ui-performance	 -

debug-flags
Example

import	'package:flutter/material.dart';
import	'package:flutter/rendering.dart';

void	main()	{
debugPaintSizeEnabled	=	true;
runApp(MyApp());
}

This	 turns	on	a	mode	 to	 show	you	 the	paint	 size	of	your	widget,
adding	 a	 border	 around	 them	 so	 you	 can	 see	where	 they	 begin	 and
end.
Change	MaterialApp	Constructor	Arguments
You	may	remember	that	this	object	builds	the	foundation	for	your

app.	 However,	 it	 also	 allows	 you	 to	 turn	 on	 some	 extensions	 using
constructor	arguments.

https://flutter.dev/docs/testing/ui-performance#debug-flags

	

debugShowMaterialGrid
Defaults	to	false	if	not	specified.
Shows	a	UI	grid	to	help	you	line	Widgets	up.

showPerformanceOverlay
Defaults	to	false	if	not	specified.
Shows	a	performance	graph	on	top	of	the	app.

checkerboardRasterCacheImages
Defaults	to	false	if	not	specified.
Optional	rendering	performance	optimization.

checkerboardOffscreenLayers
Defaults	to	false	if	not	specified.
Useful	for	debugging	rendering	performance.

showSemanticsDebugger
Defaults	to	false	if	not	specified.
Turns	 on	 an	 overlay	 that	 shows	 the	 accessibility
information	reported	by	the	framework.

debugShowCheckedModeBanner
Defaults	to	true	if	not	specified.
Hides	or	shows	the	debug	triangle	in	the	corner	that
indicates	 that	 the	 app	 is	 running	 in	 slow	 (checked)
mode.

Dart	Observatory

Introduction
The	official	Dart	document	states:

Observatory	 allows	 you	 to	 peek	 inside	 a	 running	 Dart	 virtual
machine	(VM)	on	demand	and	provides	 live,	 immediate	reporting	of
data.	You	can	use	it	to	browse	most	aspects	of	an	application.	Some	of
Observatory’s	features	allow	you	to:

	

Determine	where	an	app	is	spending	its	time.
Examine	allocated	memory.
See	which	lines	of	code	have	executed.
Debug	memory	leaks.
Debug	memory	fragmentation.

Part	of	the	Dart	SDK
You	get	Observatory,	for	free,	when	you	download	the	Dart	SDK.

Starting	the	Observatory
Android	Studio

Open	Flutter	Inspector.
Click	on	Stopwatch.

	

Visual	Studio	Code

Open	Command	Palette.
Type	Flutter	to	view	Flutter	commands.
Select	‘Open	Observatory	Timeline’.

	

Command	Line
When	you	run	Flutter	using	the	command	line	below:

flutter	run
it	displays	the	following:

Using	hardware	rendering	with	device	Android	SDK	built	for	x86.	If
you	get	graphics	artifacts,	consider	enabling	software	rendering	with	"--
enable-software-rendering".			Launching	lib/main.dart	on	Android	SDK
built	for	x86	in	debug	mode...																																																																										
																										Initializing	gradle...																																														1.5s										
																																																																																							Resolving
dependencies...																																											2.5s																																														
																																																			Running	Gradle	task	'assembleDebug'...						
																																																																																																																									
			Running	Gradle	task	'assembleDebug'...	Done																									2.2s												
																																																																																					Built
build/app/outputs/apk/debug/app-debug.apk.																																																		
															

I/OpenGLRenderer(9459):	Davey!	duration=3464ms;	Flags=1,
IntendedVsync=12988638795805,	Vsync=12991838795677,
OldestInputEvent=9223372036854775807,	NewestInputEvent=0,
HandleInputStart=12991850107554,	AnimationStart=12991850220554,
PerformTraversalsStart=12991850649554,	DrawStart=12991999356554,
SyncQueued=12992001846554,	SyncStart=12992012298554,
IssueDrawCommandsStart=12992012538554,
SwapBuffers=12992066585554,	FrameCompleted=12992113932554,
DequeueBufferDuration=17154000,	QueueBufferDuration=3342000,

D/								(9459):	HostConnection::get()	New	Host	Connection
established	0xe8d9db00,	tid	9481				3,018ms	(!)																																												
																																																																																																																									
																																																																	��		To	hot	reload	changes	while
running,	press	"r".	To	hot	restart	(and	rebuild	state),	press	"R".																

An	Observatory	debugger	and	profiler	on	Android	SDK	built	for	x86	is
available	at:	http://127.0.0.1:60013/

For	a	more	detailed	help	message,	press	"h".	To	detach,	press	"d";	to
quit,	press	"q".
Notice	how	it	says:
An	Observatory	debugger	and	profiler	on	Android	SDK	built	for	x86	is

available	at:	http://127.0.0.1:60013/
If	we	go	to	this	website	http://127.0.0.1:60013	then	we	see:

	

This	website	gives	you	so	much	information	about	your	Flutter
app.

Further	information:	https://dart-lang.github.io/observatory/

Timeline
The	Flutter	VM	 records	 Flutter	 events	 and	 the	 timeline	 can	 read

these	events	and	present	them	against	a	horizontal	timeline,	allowing
you	to	drill	in	and	view	the	data	in	more	and	more	detail.	There	is	so
much	 information	 to	 wade	 through	 that	 learning	 how	 to	 use	 the
timeline	is	a	skill	in	itself.

Further	information:https://medium.com/flutter-io/profiling-flutter-
applications-using-the-timeline-a1a434964af3

Profile	Mode

http://127.0.0.1:60013
https://dart-lang.github.io/observatory/
https://medium.com/flutter-io/profiling-flutter-applications-using-the-timeline-a1a434964af3

Note	that	this	mode	does	not	work	on	your	emulator.	To	run	in	this
mode,	you	are	going	to	have	to	connect	a	device.
	

Some	 debugging	 ability	 is	 maintained—enough	 to	 profile
your	app’s	performance.
Tracing	is	enabled,	and	Dart	Observatory	can	connect	to	the
process.
Assertions	are	disabled.
Some	 service	 extensions	 are	 left	 enabled,	 such	 as	 the
performance	 overlay	 (which	 is	 useful	 when	 profiling	 the
app).

Further	Reading
https://dartcode.org/docs/running-flutter-apps-in-profile-or-release-

modes/

Android	Studio
Select	 ‘Edit	 Run/Debug	 Configurations’	 on	 toolbar,	 next	 to
the	play	button.
Add	 the	 ‘—profile’	argument	 to	 the	additional	arguments	 in
the	run	configuration:

	

Visual	Studio	Code
Select	Menu	‘Debug’
Select	Menu	Option	‘Open	Configurations’.

https://dartcode.org/docs/running-flutter-apps-in-profile-or-release-modes/

This	will	open	the	‘launch.json’	file	for	you	to	modify	as	per
below:

	

Command-Line
Run	the	following	command:

flutter	run	--profile

Further	Reading
https://flutter.dev/docs/testing/debugging

https://flutter.dev/docs/testing/debugging

37.	 Change	 Detection,	 Keys	 &
Rendering

Introduction
As	 we	 start	 to	 delve	 deeper	 into	 Flutter,	 we	 need	 to	 start

introducing	the	subject	of	change	detection	-	how	Flutter	gets	the	UI
rebuilt	when	something	changes.	Efficient	change	detection	is	the	key
to	Flutter	achieving	a	60	frames	per	second	refresh	rate.

The	 purpose	 of	 this	 chapter	 is	 to	 introduce	 how	Flutter	 performs
change	detection,	how	it	uses	keys	and	how	it	renders	the	UI.

Remember	 that	 most	 of	 this	 chapter	 is	 an	 over-simplification	 of
what	 is	 really	 going	 on.	 It	 is	my	 interpretation	 based	 on	 the	 limited
information	 available	 at	 the	 time	 of	 writing	 the	 book.	 Most	 of	 the
information	 used	 for	 this	 chapter	 was	 taken	 from	 the	 Google
Developers	channel	on	YouTube,	so	I	am	pretty	sure	it	is	correct.

Change	Detection
Change	 detection	 is	 when	 Flutter	 figures	 out	 what	 needs	 to	 be

redrawn	 in	 the	 UI,	 redrawing	 as	 little	 as	 possible	 to	 keep	 it	 fast.
Optimizing	 Change	 Detection,	 giving	 Flutter	 the	 information	 that	 it
needs	to	redraw	(quickly	calculating	the	minimal	redraw)	is	the	trick
to	Flutter	performance.

Widgets
So,	 at	 this	 point	we	 know	 that	we	 compose	 the	UI	 out	 of	many

Widget	 objects,	 which	 build	 a	 tree	 of	 Widgets	 that	 represents	 the
desired	state	of	the	UI.

Elements

Unknown	 to	 you,	 the	 Widgets	 you	 create	 in	 your	 Widget
‘build’	 methods	 each	 have	 a	 corresponding	 Element	 object
built	by	the	Flutter	framework	to	track	where	the	Widget	is	in
the	structure	of	the	UI.
Elements	 are	 expensive	 to	 create	 and	 if	 it’s	 possible,	 they
should	be	reused.	
Elements	store	as	little	information	as	possible:

A	reference	to	the	Widget	they	were	created	from.
A	 reference	 to	 the	 Render	 object	 that	 renders	 the
representation	of	the	Widget/Element.
A	 reference	 to	 the	 State	 attached	 to	 that	 element
(Stateful	Widgets).
The	type	of	Widget	they	represent.
The	children	they	will	have.
A	key	to	the	Widget	(for	StatefulWidgets).

The	 first	 time	 when	 a	 widget	 is	 created,	 it	 is	 inflated	 to
an	 Element	 and	 then	 the	 Element	 gets	 inserted	 it	 into	 the
Element	Tree.

Element	Trees
The	 Element	 Tree	 stores	 information	 about	 the	 structure	 of
the	Widgets	to	be	rendered.
It	is	built	from	the	Widget	Tree.
The	Rendering	Tree	is	rendered	from	the	Element	Tree.

	

Widgets,	Elements,	Render	Objects
In	the	trees,	Widgets	correspond	to	Elements,	which	correspond	to

Render	Objects.
The	 diagram	 below	 was	 taken	 from	 a	 screenshot	 from	 a	 video

created	by	Ian	Hickson,	one	of	the	founders	of	Flutter.	It	represents	a
Rectangle	Widget	which	has	a	child	Circle	Widget.

The	Widgets	are	on	the	left,	the	Elements	in	the	middle,	the	Render
Objects	on	the	right.

	

Change	Detection	&	Updates
When	 performing	 change	 detection,	 Flutter	 walks	 the	 Element

Tree	and	compares	it	to	the	Widget	tree,	matching	the	two	to	see	what
changed	structurally.

Detecting	Structural	Changes
Flutter	matches	 each	Element	 to	 its	 corresponding	Widget	 in	 the

same	position	in	the	tree.
Examples:

If	 there	 is	 a	 Widget	 in	 the	 Widget	 Tree	 but	 there	 isn’t	 a
matching	 one	 in	 the	 same	position	 in	 the	Element	Tree,	we
know	 it	 is	 either	 new,	 or	 a	 Widget	 moved	 there	 from
somewhere	else.
If	 there	 is	 a	 Widget	 in	 the	 Element	 Tree	 but	 there	 isn’t	 a
matching	 one	 in	 the	 same	 position	 in	 the	Widget	 Tree,	 we
know	it	is	either	removed	or	moved	somewhere	else.

	

Matching	Elements	to	Widgets
The	Flutter	framework	attempts	to	match	each	Element	to	its
corresponding	Widget	in	the	same	position	in	the	tree	using	a
Key	(if	there	is	one).
If	 there	 is	no	Key	 to	match	 the	 two	 then	 it	uses	 the	Widget
Type	 (along	 with	 position)	 to	 match.	 This	 can	 cause	 some
issues,	which	we	will	cover	later	in	the	Key	section.
It	 doesn’t	 use	 the	 Widget	 reference	 because	 Widgets	 are
immutable	 (even	 Stateful	 Widgets	 have	 separate	 State
objects)	so	the	Widget	may	be	replaced	with	another	if	one	of
its	properties	changes.

If	there	is	a	Match
If	 the	 Element	 and	 Widget	 match,	 then	 the	 Element	 &
Rendering	 Object	 are	 updated	 with	 any	 changes	 to	 the
Widget,	 including	 a	 reference	 to	 the	 new	 Widget	 if	 it
changed.
Example:

If	 there	 is	 a	 Text	 Widget	 used	 in	 the	 building	 a

parent	Widget	 and	 that	 text	 changes,	 resulting	 in	 a
different	 Text	 Widget,	 then	 the	 Widget	 is	 still
matched	and	the	changes	to	the	text	are	copied	over
to	the	Rendering	object.

If	there	is	no	Match
If	 there	 is	 an	 Element	 at	 that	 position	 in	 the	 tree	 (but	 no
Widget)	 then	 the	 Element	 &	 the	 Render	 Object	 are
deactivated	&	removed.
If	 there	 is	 a	 Widget	 at	 that	 position	 in	 the	 tree	 (but	 no
Element	&	Render	Object),	 then	a	new	Element	and	Render
Object	are	added	to	match	the	Widget.
Example.

Taken	 from	 the	 Mohogany	 Staircase	 video.	 If	 the
Widget	 Tree	 was	 a	 Rectangle	 and	 it	 had	 a	 Circle
Widget	 child	 that	 is	 now	 replaced	 by	 a	 Triangle
Widget	child,	then	the	following	occurs:

The	child	Widget	no	longer	matches	by
Type	(Triangle	!=	Circle).

The	Element	that	corresponded	to
the	Circle	is	now	deactivated	and
removed	from	the	Element	Tree.
The	 Rendering	 Object	 that
corresponded	to	the	Circle	is	now
deactivated	and	removed	from	the
Render	Tree.
A	 new	 Child	 Element	 is	 created
and	attached	to	the	Element	Tree.
A	 new	 Rendering	 Object	 is
created	 and	 attached	 to	 the
Render	Tree.

Optimizations
As	mentioned	earlier,	the	logic	above	is	oversimplified	and	ignores

many	 Optimizations.	 For	 example,	 when	 Elements,	 Widgets	 and
RenderObjects	 are	 ‘deactivated’	 or	 ‘removed’,	 they	 are	 not	 always
thrown	away	immediately.	For	example,	if	a	Widget	is	moved	then	its
Element	may	be	thrown	into	an	‘Element	pool’	(or	similar)	so	that	it
may	 be	 picked	 up	 later	 if	 the	 corresponding	 Widget	 is	 found	 in
another	part	of	the	Widget	tree.

Render	Tree

Render	Objects
These	are	complex	objects	are	used	in	the	rendering	later.
They	carry	more	 information	 than	 the	Element	objects,	 including

detailed	information	required	to	render	 the	object	onscreen:	position,
scaling	etc.

They	are	mutable	–	i.e.	 their	data	can	change	without	 them	being
destroyed	and	recreated.

Keys

Introduction
You	 don’t	 need	 to	 use	 Keys	 often,	 but	 you	 need	 to	 know	 about

them	 incase	 strange	 things	 start	 to	 happen.	 It’s	 to	 do	 with	 Change
Detection	and	Elements!
Example:
A	 commonly	 seen	 example	 of	 this	 is	 when	 you	 have	 a	 list	 of

Widgets	of	the	same	type	that	you	want	to	re-order	in	a	UI.	You	write
the	code	to	re-order	the	list,	but	nothing	happens!	You	will	see	this	in
an	example	soon.

Elements	May	or	May	Not	Store	a	Reference
to	State

We	mentioned	earlier	that	Elements	store	as	little	information	as	is
possible	to	do	their	job.

Elements	for	StatelessWidgets	do	not	hold	a	reference	to	the
State	Object,	because	there	is	no	State	Object	for	the	Stateless
Widget.
Elements	 for	 StatefulWidgets	 hold	 a	 reference	 to	 the	 State
Object	for	the	widget.

Elements	 for	 Stateless	 Widgets	 Have	 No
Reference	to	any	State

The	example	below	shows	the	trees	for	three	Stateless	Widgets.
	

Elements	 for	 Stateful	 Widgets	 Have	 A
Reference	to	the	State

The	example	below	shows	the	trees	for	two	Stateless	Widgets	and
one	Stateful	Widget	(the	Image	Widget	at	the	bottom).	Notice	how	the
Element	corresponding	to	the	Image	Widget	has	a	reference	to	a	State

Object.

The	‘Losing	State’	Problem
Stateful	 Widgets	 have	 more	 baggage	 in	 their	 Element,	 a	 State

Reference.	Sometimes	this	State	can	get	lost.
Sometimes	Stateful	Widgets	Lose	State	if	They	Don’t

Have	Keys
This	often	happens	when	you	have	a	list	of	children	(say	a	list	of

articles)	and	you	add	animations	to	items	in	the	list	and	the	animations
don’t	work	until	you	add	keys	to	the	items	in	the	list.	That	is	because
the	animations	use	State	and	the	State	gets	lost.
How	Does	State	Get	Lost?
When	 you	 add,	 remove	 or	 reorder	 Stateful	Widgets	 of	 the	 same

type	you	invoke	Change	Detection.	Remember	the	following:

To	perform	Change	Detection,	Flutter	matches	each	Element
to	its	corresponding	Widget	in	the	same	position	in	the	tree.		
In	 the	 absence	 of	 a	 Key	 Flutter	 uses	 the	 Widget	 Type	 to
match	 the	 two.	 This	 works	 well	 in	 most	 scenarios	 but	 not

when	you	have	>	1	children	of	the	same	Widget	Type.

Matching	the	Element	to	the	Widget	does	not	work	because	all	of
the	Widgets	 are	 of	 the	 same	 type.	 There	 is	 no	 way	 for	 the	 Change
Detection	to	differentiate	between	the	Widgets.	It	always	thinks	there
is	a	match.

So,	Flutter	thinks	that	there	was	no	structural	change.	The	Element
and	Widget	match	and	the	Element	reference	to	the	Widget	is	updated
but	 Flutter	 doesn’t	 think	 it	 has	 to	 update	 the	 State	 because	 nothing
changed.

So,	nothing	changes	in	the	UI.
Adding	a	Local	Key	Fixes	this	Issue
When	you	add	a	Local	Key	to	each	Widget	of	the	same	type,	that

fixes	 the	 issue.	That	 is	because	Flutter	can	match	the	Element	 to	 the
Widget	using	the	Key	rather	than	the	Widget	Type.		It	can	figure	out
something	 changed	 and	 update	 the	 Element	 and	 Rendering	 Objects
accordingly.
Local	Keys
When	using	 local	 keys,	 it	 uses	 them	when	 checking	 items	 in	 the

Element	Tree	at	the	same	level,	not	across	the	whole	Tree.
ValueKey
Local	 key.	Useful	when	 you	 can	 use	 a	 string	 as	 the	 key.	 This	 is

what	we	use	in	the	example	below.
ObjectKey
Local	key.	Useful	when	you	use	more	complex	objects	as	the	key.
UniqueKey
Local	key.	Generates	a	unique	key	for	a	widget.
Example	–	‘local_keys_cat_voting’
This	 is	 an	 app	 designed	 to	 show	 how	 adding	 Keys	 fixes	 the

Element	matching	issue.

It	lets	you	vote	for	the	cutest	cat.	Click	on	a	cat	to	vote	on	one.	If
you	 click	 on	 the	 floating	 button	 at	 the	 bottom,	 it	 should	 shuffle	 the
Cats,	preserving	the	vote	counts.

No	Key
If	 you	 leave	 the	 CatTile	 constructor	 like	 this	 then	 the	 shuffle

doesn’t	work:
CatTile(this._cat);
Add	Key	to	Constructor
If	 you	 change	 the	 CatTile	 constructor	 to	 set	 the	 Key	 then	 the

matching	issue	is	fixed	and	the	shuffle	works	fine.
CatTile(this._cat):	super(key:	ValueKey(_cat.imageSrc));
Source	Code

import	'dart:math';

import	'package:flutter/material.dart';

void	main()	{
runApp(new	GridViewApp());
}

class	Cat	{
String	imageSrc;
String	name;

int	age;
int	votes;

Cat(this.imageSrc,	this.name,	this.age,	this.votes);

operator	==(other)	=>	(other	is	Cat)	&&	(imageSrc	==	other.imageSrc);

int	get	hashCode	=>	imageSrc.hashCode;
}

class	GridViewApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
title:	'Cat	Voting',
theme:	new	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	HomeWidget(title:	'Cat	Voting	Home	Page'),

);
}
}

class	HomeWidget	extends	StatefulWidget	{
HomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_HomeWidgetState	createState()	=>	new	_HomeWidgetState();
}

class	_HomeWidgetState	extends	State<HomeWidget>	{
List<String>	CAT_NAMES	=	[
"Tom",
"Oliver",
"Ginger",
"Pontouf",
"Madison",

"Bubblita",
"Bubbles"

];
Random	_random	=	Random();
List<Cat>	_cats	=	[];
int	next(int	min,	int	max)	=>	min	+	_random.nextInt(max	-	min);

_HomeWidgetState()	:	super()	{
//	Generate	list	of	Cat	objects	once.
for	(int	i	=	200;	i	<	300;	i	+=	10)	{
_cats.add(Cat("http://placekitten.com/200/${i}",

CAT_NAMES[next(0,	6)],
next(1,	32),	0));

}
}

void	_shuffle()	{
//	Shuffle	the	list	of	Cat	objects.
setState(()	{
_cats.shuffle(_random);

});
}

@override
Widget	build(BuildContext	context)	{
return	Scaffold(
appBar:	AppBar(
title:	Text("GridView"),

),
body:	OrientationBuilder(builder:	(context,	orientation)	{
return	new	GridView.builder(

itemCount:	_cats.length,
gridDelegate:	SliverGridDelegateWithFixedCrossAxisCount(

crossAxisCount:	(orientation	==	Orientation.portrait)	?	2	:	3,
mainAxisSpacing:	10.0,
crossAxisSpacing:	10.0),

itemBuilder:	(BuildContext	context,	int	index)	{
return	CatTile(_cats[index]);

});

}),
floatingActionButton:	new	FloatingActionButton(
onPressed:	_shuffle,
tooltip:	'Try	more	grid	options',
child:	new	Icon(Icons.refresh),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}
}

class	CatTile	extends	StatefulWidget	{
Cat	_cat;
CatTile(this._cat);	//	Shuffle	doesnt	work.
//CatTile(this._cat):	super(key:	ValueKey(_cat.imageSrc));	//	Shuffle

works.

@override
_CatTileState	createState()	=>	new	_CatTileState(_cat);
}

class	_CatTileState	extends	State<CatTile>	{
Cat	_cat;

_CatTileState(this._cat);

@override
Widget	build(BuildContext	context)	{
return	GestureDetector(

child:	GridTile(
header:	GridTileBar(
title:	Text("${_cat.name}	${_cat.age}	years	old.",

style:	TextStyle(fontWeight:	FontWeight.bold)),
backgroundColor:	Color.fromRGBO(0,	0,	0,	0.5),

),
footer:	GridTileBar(

title:	Text(
_cat.votes	==	0	?	"No	votes"	:	"${_cat.votes}	votes.",
textAlign:	TextAlign.right,

style:	TextStyle(fontWeight:	FontWeight.bold))),
child:	Image.network(_cat.imageSrc,	fit:	BoxFit.cover)),

onTap:	()	=>	_vote());
}

_vote()	{
setState(()	=>	_cat.votes++);

}
}

Global	Keys
You	 can	 use	GlobalKeys	 to	 uniquely	 identify	Widgets	 across	 the

whole	Widget	Tree.
That	 means	 you	 can	 access	 Widgets	 and	 their	 State	 from

anywhere.
You	should	not	rely	on	GlobalKeys	too	much	as	it	is	better	to	use

something	like	InheritedWidget,	a	BLoC	or	some	other	mechanism	to
share	state	data.
Example	–	‘global_key_shared_widget’
Introduction
This	app	shows	how	you	can	use	a	global	key	 to	share	a	Widget

(including	 its	 state)	 from	multiple	parent	Widgets.	For	example,	you
open	 the	 app,	hit	 the	 ‘+’	button	 to	 increment	 the	Counter.	Then	you
click	on	the	toolbar	and	you	will	see	the	Counter	again	with	the	same
number.
	

Source	Code
import	‘package:flutter/material.dart’;
import	‘package:flutter/rendering.dart’;

void	main(){
runApp(MyApp());
}

class	MyApp	extends	StatefulWidget	{
MyApp();
@override
_MyAppState	createState()	=>	_MyAppState();
}

class	_MyAppState	extends	State<MyApp>	{
GlobalKey	_counterWidgetGlobalKey	=	GlobalKey();
bool	_widget1	=	true;

_selectPage()	{
setState(()	=>	_widget1	=	!_widget1);
}

//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{

return	MaterialApp(
title:	‘Flutter	Demo’,
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	_widget1

?	Widget1(_counterWidgetGlobalKey,	_selectPage)
:	Widget2(_counterWidgetGlobalKey,	_selectPage));

}
}

class	Widget1	extends	StatelessWidget	{
final	GlobalKey	_counterWidgetGlobalKey;
final	VoidCallback	_selectPageCallback;

Widget1(this._counterWidgetGlobalKey,	this._selectPageCallback);

@override
Widget	build(BuildContext	context)	{

return	Scaffold(
appBar:	AppBar(
title:	Text(“Widget	1”),
actions:	<Widget>[
IconButton(

icon:	new	Icon(Icons.refresh),
onPressed:	()	=>	_selectPageCallback())

],
),
body:	Column(

crossAxisAlignment:	CrossAxisAlignment.stretch,
children:	[
Text(“Widget	1",	textAlign:	TextAlign.center,	style:

Theme.of(context).textTheme.display2),
CounterWidget(_counterWidgetGlobalKey)

],
mainAxisAlignment:	MainAxisAlignment.spaceAround,

));
}
}

class	Widget2	extends	StatelessWidget	{
final	GlobalKey	_counterWidgetGlobalKey;
final	VoidCallback	_selectPageCallback;

Widget2(this._counterWidgetGlobalKey,	this._selectPageCallback);

@override
Widget	build(BuildContext	context)	{

return	Scaffold(
appBar:	AppBar(
actions:	[
new	IconButton(

icon:	new	Icon(Icons.refresh),
onPressed:	()	=>	_selectPageCallback())

],
title:	Text(“Widget	2”),

),
body:	Column(
crossAxisAlignment:	CrossAxisAlignment.stretch,
children:	[
Text(“Widget	2",	textAlign:	TextAlign.center,	style:

Theme.of(context).textTheme.display2),
CounterWidget(_counterWidgetGlobalKey)

],
mainAxisAlignment:	MainAxisAlignment.spaceAround,

),
);
}
}

class	CounterWidget	extends	StatefulWidget	{
CounterWidget(Key	key)	:	super(key:	key);
@override
_CounterWidgetState	createState()	=>	_CounterWidgetState();
}

class	_CounterWidgetState	extends	State<CounterWidget>	{
int	_counter	=	0;

void	_incrementCounter()	{
setState(()	{
_counter++;

});
}

@override
Widget	build(BuildContext	context)	{

return	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
Text(
‘CounterWidget’,
style:	Theme.of(context).textTheme.display2,

),
Text(‘You	have:‘,	style:	Theme.of(context).textTheme.display1),
Text(
‘$_counter’,
style:	Theme.of(context).textTheme.display1,

),
IconButton(

iconSize:	36.0,
icon:	new	Icon(Icons.add),	onPressed:	()	=>

_incrementCounter()),
]);

}
}

Example	–	‘global_key_shared_state’
Introduction
This	app	shows	how	you	can	use	a	global	key	to	get	Widget	state

out	of	another	Widget.	Widget1	is	the	green	one	at	the	top	and	it	has
state.	Widget2	is	the	blue	one	at	the	bottom.

Widget2	 has	 a	 button	 you	 can	 press	 that	 gets	 the	 state	 out	 of
Widget1.	Then	it	displays	that	state	at	the	bottom.
	

Source	Code
import	'package:flutter/material.dart';

void	main()	{
runApp(new	MyApp());
}

final	key	=	new	GlobalKey<_Widget1State>();

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	new	MaterialApp(
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	new	Scaffold(
body:	new	Column(
mainAxisAlignment:	MainAxisAlignment.spaceAround,
children:	<Widget>[
Container(
child:	Widget1(key:	key),
color:	Colors.greenAccent,

),

Container(
child:	Widget2(),
color:	Colors.blueAccent,

),
],

),
),

);
}
}

class	Widget1	extends	StatefulWidget	{
Widget1({Key	key})	:	super(key:	key);
State	createState()	=>	new	_Widget1State();
}

class	_Widget1State	extends	State<Widget1>	{
String	_state	=	"some	state";
String	get	state	=>	_state;

@override
Widget	build(BuildContext	context)	{
return	Padding(

padding:	EdgeInsets.all(20.0),
child:	Column(
children:	[
Text("Widget1",

textAlign:	TextAlign.center,
style:	Theme.of(context).textTheme.display1),

new	Text("State:	${_state}",
textAlign:	TextAlign.center,
style:	Theme.of(context).textTheme.display2)

],
crossAxisAlignment:	CrossAxisAlignment.stretch,

));
}
}

class	Widget2	extends	StatefulWidget	{

State	createState()	=>	new	Widget2State();
}

class	Widget2State	extends	State<Widget2>	{
String	_text	=	'';

@override
Widget	build(BuildContext	context)	{
return	Padding(

padding:	EdgeInsets.all(20.0),
child:	Column(
children:	[
Text("Widget2",

textAlign:	TextAlign.center,
style:	Theme.of(context).textTheme.display2),

Padding(
padding:	EdgeInsets.all(20.0),
child:	RaisedButton(
child:	new	Text("Get	state	from	Widget1"),
onPressed:	()	{
setState(()	{
_text	=	key.currentState.state;

});
},

)),
Text("State:	${_text}",

textAlign:	TextAlign.center,
style:	Theme.of(context).textTheme.display1),

],
crossAxisAlignment:	CrossAxisAlignment.stretch,

));
}
}

Further	Reading
https://www.youtube.com/watch?v=kn0EOS-ZiIc
https://coder-coacher.github.io/GoogleTechTalks/The-Mahogany-

Staircase-Flutters-Layered-Design-dkyY9WCGMi0.html

https://www.youtube.com/watch?v=kn0EOS-ZiIc
https://coder-coacher.github.io/GoogleTechTalks/The-Mahogany-Staircase-Flutters-Layered-Design-dkyY9WCGMi0.html

38.	Other	Performance	Considerations

Introduction
The	purpose	of	this	chapter	is	to	be	a	‘catch-all’	for	anything	else

you	should	consider	when	building	the	most	performant	app	possible.

Http	Communication
Before	 we	 get	 into	 more	 Flutter	 performance	 topics,	 we	 should

mention	 that	 most	 Flutter	 apps	 will	 be	 communicating	 with	 other
computers.	 Such	 communication	 over	 a	 network	 is	 typically	 much
slower	than	the	highly-efficient	Flutter	user	interface,	so	looking	how
your	app	communicates	with	other	computers	is	a	good	place	to	start
and	can	yield	significant	gains.

What	data	are	you	getting	from	the	server,	do	you	really	need
all	of	it?

Do	you	need	each	element	of	the	data?
Are	some	of	the	data	items	not	used?

Is	there	any	way	to	make	this	data	smaller?
Are	 you	 using	 a	 JSON	 format?	 If	 so,	 what	 about
making	 the	 JSON	 field	 names	 smaller	 to	 save	 on
data	size.

Further	 reading:
https://www.ribice.ba/reduce-json-size/

Do	 you	 really	 need	 to	 return	 full	 lists	 of	 data	 or	 can	 you
implement	paging	or	endless	scrolling?
Can	you	cache	some	of	the	data	and	only	reload	it	once	in	a
while?
Can	 you	make	 any	 requests	 to	 the	 server	 parallel	 and	 have
them	execute	asynchronously	at	the	same	time?

For	example,	when	you	open	a	list	Widget	and	you
need	to	load	the	values	of	multiple	dropdowns?

https://www.ribice.ba/reduce-json-size/

Single	Threaded
Dart	code	runs	in	a	single	“thread”	of	execution.
Code	 that	 blocks	 the	 thread	 of	 execution	 can	 make	 your
program	freeze.
Do	you	have	any	synchronous	code?
Can	you	replace	it	with	asynchronous	code	or	code	that	runs
in	another	thread?

Isolates
As	mentioned	above,	Dart	runs	in	a	single	thread	of	execution.
This	 sounds	 great	 until	 you	 have	 to	 do	 some	 heavy	 processing.

When	you	do	that	in	your	single	thread,	this	heavy	processing	blocks
the	 updates	 of	 your	 user	 interface	 and	 makes	 it	 unresponsive.	 It
doesn’t	update	because	the	single	thread	is	too	busy	working	hard	to
do	anything	else.

How	do	 you	 perform	heavy	 processing	 and	 keep	 the	UI	 updated
and	responsive	to	the	user?

Answer:	you	use	Isolates.

Isolates	are	Dart’s	version	of	a	thread.
Unlike	 Threads,	 isolates	 do	 not	 share	 memory	 with	 other
processes.
Unlike	 Threads,	 isolates	 communicate	 using	 messages	 and
ports.

When	you	need	 to	update	 the	UIi	 (for	example	 the
progress	 bar),	 you	 can	 pass	 a	 message	 from	 the
isolate	 to	 the	 main	 thread	 and	 it	 will	 update
immediately.

Example	Code	–	‘isolate_threading’
Introduction

I	 didn’t	 make	 this	 app	 pretty,	 but	 it	 does	 have	 the	 following
features:

It	uses	an	isolate	to	retrieve	the	weather	for	each	location.
A	progress	bar	 is	displayed	 to	 the	user	when	 the	weather	 is
loading.
This	progress	bar	is	updated	by	the	isolate	when	each	item	of
weather	data	is	loaded.
It	has	error	handling	incase	an	exception	occurs	in	the	isolate.

Classes

Source	Code
import	'dart:async';
import	'dart:convert';
import	'dart:isolate';

import	'package:flutter/material.dart';
import	'package:http/http.dart'	as	http;

typedef	OnProgressListener	=	void	Function(double	percentage);
typedef	OnLocationWeatherLoadedListener	=	void	Function(
LocationWeather	weatherResult);
typedef	OnErrorListener	=	void	Function(dynamic	error);

//	---
//	---
//	Remember	to	add	HTTP	dependency	to	pubspec.yaml
//	---
//	---
void	main()	=>	runApp(WeatherApp());

class	WeatherApp	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	WeatherHomeWidget(title:	'Weather'),

);
}
}

class	WeatherHomeWidget	extends	StatefulWidget	{
WeatherHomeWidget({Key	key,	this.title})	:	super(key:	key);

final	String	title;

@override
_WeatherHomeWidgetState	createState()	=>

_WeatherHomeWidgetState();
}

class	_WeatherHomeWidgetState	extends	State<WeatherHomeWidget>
{
LocationWeatherLoaderManager	_weatherLoaderManager;
String	_error	=	null;
double	_percentageComplete	=	null;
Map<String,	dynamic>	_locationWeatherMap	=	{
'atlanta':	null,
'new	york':	null,
'chicago':	null,
'los	angeles':	null,
'london':	null,
'tokyo':	null,
'sydney':	null

};

_WeatherHomeWidgetState()	{
_weatherLoaderManager	=	new	LocationWeatherLoaderManager(

onProgressListener:	handleProgress,
onLocationWeatherLoadedListener:	handleCompleted,
onErrorListener:	handleError);

}

//	Click	handler.
void	_loadWeather()	{
List<String>	weatherLocationList	=

List.from(_locationWeatherMap.keys);
_weatherLoaderManager.start(weatherLocationList);

}

//	Handles	progress	callbacks	from	weather	loader	manager.
void	handleProgress(double	percentage)	{
setState(()	{
_percentageComplete	=	percentage;

});
}

//	Handles	completion	from	weather	loader	manager.
void	handleCompleted(LocationWeather	locationWeather)	{
setState(()	{
_locationWeatherMap[locationWeather.location]	=

locationWeather.weather;
});

}

//	Handles	error	from	weather	loader	manager.
void	handleError(err)	{
setState(()	{
_error	=	('An	unexpected	error	occurred:	${err}.');
_percentageComplete	=	null;

});
}

@override
Widget	build(BuildContext	context)	{

Widget	mainContent;
//	Decide	on	what	content	to	show	to	the	user.
if	(_error	!=	null)	{
mainContent	=	WeatherErrorWidget(_error);

}	else	if	(_percentageComplete	==	null)	{
mainContent	=	WeatherNotLoadedWidget();

}	else	if	(_percentageComplete	<	1.0)	{
mainContent	=	WeatherLoadingWidget(_percentageComplete);

}	else	{
mainContent	=	WeatherLoadedWidget(_locationWeatherMap);

}
return	Scaffold(
appBar:	AppBar(
title:	Text(widget.title),

),
body:	mainContent,
floatingActionButton:	FloatingActionButton(
onPressed:	_loadWeather,
child:	Icon(Icons.refresh),

),	//	This	trailing	comma	makes	auto-formatting	nicer	for	build
methods.

);
}
}

class	WeatherErrorWidget	extends	StatelessWidget	{
String	_error;

WeatherErrorWidget(this._error);

@override
Widget	build(BuildContext	context)	{
return	Center(
child:	Text("An	unexpected	error	occurred:	${_error}",

style:	TextStyle(color:	Colors.red)),
);

}
}

class	WeatherNotLoadedWidget	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	Center(
child:	Text("Hit	refresh	to	load	the	weather"),

);
}
}

class	WeatherLoadedWidget	extends	StatelessWidget	{
//	This	widget	is	the	root	of	your	application.

Map<String,	dynamic>	_locationWeatherMap;

WeatherLoadedWidget(this._locationWeatherMap);

@override
Widget	build(BuildContext	context)	{
List<Widget>	tiles	=	[];
Iterator<String>	it	=	_locationWeatherMap.keys.iterator;
while	(it.moveNext())	{
String	location	=	it.current;
var	weather	=	_locationWeatherMap[location];
var	firstWeatherReport	=	weather['consolidated_weather'][0];
String	description	=	firstWeatherReport['weather_state_name'];
String	windDirection	=

firstWeatherReport['wind_direction_compass'];
double	minTemp	=	firstWeatherReport['min_temp'];
double	maxTemp	=	firstWeatherReport['max_temp'];
int	humidity	=	firstWeatherReport['humidity'];
tiles.add(GridTile(

child:	Column(children:	[
Spacer(),
Text(location.toUpperCase(),

style:	TextStyle(fontSize:	24.0,	fontWeight:	FontWeight.bold)),
Text(description,

style:	TextStyle(fontSize:	18.0,	fontWeight:	FontWeight.bold)),
Text(

"Wind	Direction:	${windDirection}\n"	+

"Temp:${minTemp.toStringAsFixed(2)}	-
${maxTemp.toStringAsFixed(2)}\n"	+

"Humidity:	${humidity}%",
textAlign:	TextAlign.center,
style:	TextStyle(fontSize:	14.0,	fontWeight:	FontWeight.bold)),

Spacer(),
])));

}
return	GridView.count(

crossAxisCount:	2,
padding:	EdgeInsets.all(5.0),
mainAxisSpacing:	5.0,
crossAxisSpacing:	5.0,
children:	tiles);

}
}

class	WeatherLoadingWidget	extends	StatelessWidget	{
double	_percentageComplete;

WeatherLoadingWidget(this._percentageComplete);

@override
Widget	build(BuildContext	context)	{
return	Center(

child:	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
Container(

constraints:	BoxConstraints.loose(Size(200,	50)),
child:	LinearProgressIndicator(

value:	_percentageComplete,
valueColor:	AlwaysStoppedAnimation<Color>

(Colors.green)))
],

));
}
}

//	Data	object	to	store	location	and	weather.
//	Used	to	pass	back	location	weather	after	it	has	been	retrieved.
class	LocationWeather	{

String	location;
dynamic	weather;

LocationWeather(this.location,	this.weather);
}

//	Isolate	used	to	load	all	weather	for	each	location.
//	Note	how	the	callbacks	are	passed	to	the	constructor	so	they
//	can	be	invoked	later.
class	LocationWeatherLoaderIsolate	{

LocationWeatherLoaderIsolate(
{@required	this.onProgressListener,
@required	this.onLocationWeatherLoadedListener,
@required	this.locationNames})
:	assert(onProgressListener	!=	null),
assert(onLocationWeatherLoadedListener	!=	null),
assert(locationNames	!=	null);

final	OnProgressListener	onProgressListener;
final	OnLocationWeatherLoadedListener

onLocationWeatherLoadedListener;
final	List<String>	locationNames;
int	_progress	=	0;
int	_progressCount	=	0;

void	run()	{
_progress	=	0;
_progressCount	=	locationNames.length	*	3;
for	(int	idx	=	0,	count	=	locationNames.length;	idx	<	count;	idx++)	{
loadLocationWeather(idx,	count,	locationNames[idx]);

}
}

//	Loads	the	weather	for	a	specified	location.
//
//	This	takes	two	http	calls:

//	1.	Location	lookup	to	get	location	identifier	for	location	name.
//	2.	Location	weather	to	get	weather	for	location	identifier.
//
Future<void>	loadLocationWeather(int	idx,	int	count,	String	location)

async	{
_sendProgress();
//	change	url	below	to	test	exception	handling
var	url	=

'https://www.metaweather.com/api/location/search/?
query=${location}';

final	locationLookupResponse	=
await	http.get(url).timeout(Duration(seconds:	10));

if	(locationLookupResponse.statusCode	==	200)	{
_sendProgress();
final	parsedLocationLookupResponse	=

json.decode(locationLookupResponse.body);
final	locationIdentifier	=

parsedLocationLookupResponse[0]['woeid'];	//TODO	Check	nulls.
//	change	url	below	to	test	exception	handling
var	url	=

'https://www.metaweather.com/api/location/${locationIdentifier}/';
final	locationWeatherResponse	=

await	http.get(url).timeout(Duration(seconds:	10));
_sendProgress();
if	(locationWeatherResponse.statusCode	==	200)	{
final	parsedLocationWeatherResponse	=

json.decode(locationWeatherResponse.body);
onLocationWeatherLoadedListener(

LocationWeather(location,	parsedLocationWeatherResponse));
}	else	{
throw	Exception('Location	weather	failed');

}
}	else	{
throw	Exception('Location	lookup	failed');

}
}

//	Invoke	progress	update	callback	to	move	progress	bar	to	the	right.
void	_sendProgress()	{

_progress++;
onProgressListener(_progress	/	_progressCount);

}
}

//	Data	used	to	spawn	isolate.
class	IsolateEntryPointArgument	{

IsolateEntryPointArgument(this.cityNames,	this.dataPort);

List<String>	cityNames;
SendPort	dataPort;
}

//
//	Intermediary	class	between	WeatherHomeWidget	&

LocationWeatherLoaderIsolate.
//
//	Receives	callbacks	in	constructor.
//	Fires	callbacks	as	required.
//	Call	'start'	method	to	get	the	ball	rolling.
//
class	LocationWeatherLoaderManager	{

LocationWeatherLoaderManager({
@required	this.onProgressListener,
@required	this.onLocationWeatherLoadedListener,
@required	this.onErrorListener,

})		:	assert(onProgressListener	!=	null),
assert(onLocationWeatherLoadedListener	!=	null),
_dataPort	=	ReceivePort(),
_errorPort	=	ReceivePort()	{

_dataPort.listen(_handleDataMessage);
_errorPort.listen(_handleError);

}

final	OnProgressListener	onProgressListener;
final	OnLocationWeatherLoadedListener

onLocationWeatherLoadedListener;
final	OnErrorListener	onErrorListener;
final	ReceivePort	_dataPort;	//	Port	of	data	communication	with	isolate.

final	ReceivePort	_errorPort;	//	Port	of	error	communication	with	isolate.

start(List<String>	cityNames)	{
final	IsolateEntryPointArgument	entryPointArgument	=

IsolateEntryPointArgument(cityNames,	_dataPort.sendPort);
Isolate.spawn<IsolateEntryPointArgument>(entryPoint,

entryPointArgument,
errorsAreFatal:	true,	onError:	_errorPort.sendPort)

.then<void>((Isolate	isolate)	{});
}

//	Entrypoint	in	isolate.
static	void	entryPoint(IsolateEntryPointArgument	message)	{
final	SendPort	dataPort	=	message.dataPort;
//	Construct	isolate	with	callbacks.
final	LocationWeatherLoaderIsolate	dataLoader	=

LocationWeatherLoaderIsolate(
onProgressListener:	(double	progress)	{
dataPort.send(progress);

},
onLocationWeatherLoadedListener:	(LocationWeather	weather)	{
dataPort.send(weather);

},
locationNames:	message.cityNames);

//	Run	isolate.
dataLoader.run();

}

//	Callback.	Handles	data	message	from	isolate.
void	_handleDataMessage(dynamic	message)	{
if	(message	is	double)	{
onProgressListener(message);

}	else	{
onLocationWeatherLoadedListener(message);

}
}

//	Callback.	Handles	error	message	from	isolate.
void	_handleError(dynamic	error)	{

onErrorListener(error);
}
}

Further	Reading:
https://www.didierboelens.com/2019/01/futures---isolates---event-

loop/

Use	Constants	When	Possible
Avoid	Rebuilding	Widgets
When	using	stateless	widgets,	avoid	possible	instantiation/rebuilds

by	 using	 the	 const	 keyword	 (for	 example	 the	 Texts	 in	 the	 example
below)

@override
Widget	build(BuildContext	context)	{
return	new	Scaffold(

appBar:	new	AppBar(title:	new	Text("Rows")),
body:	new	Column(
mainAxisAlignment:	MainAxisAlignment.center,
children:	<Widget>[
Row(
mainAxisAlignment:	MainAxisAlignment.spaceEvenly,
children:	<Widget>[
const	Text("the	quick	brown	wolf"),
const	Text("the	quick	brown	wolf"),
const	Text("the	quick	brown	wolf")

],
)

],
));

}
Using	Constants	Saves	Memory
For	any	given	const	value,	a	single	const	object	will	be	created	and

re-used	 no	 matter	 how	 many	 times	 the	 const	 expression(s)	 are
evaluated.

getConst()	=>	const	[1,	2];

https://www.didierboelens.com/2019/01/futures---isolates---event-loop/

main()	{
var	a	=	getConst();
var	b	=	getConst();
print(a	===	b);	//	true
}

Use	Finals	Whenever	Possible
For	example,	if	you	have	instance	variables	that	are	only	set	in	the

constructor,	mark	 them	as	 final.	 It	 helps	 performance	 but	 also	 helps
readability	 because	 you	 know	 the	 value	 of	 that	 instance	 variable	 is
immutable	and	won’t	change.

import	'package:flutter/material.dart';

void	main()	=>	runApp(MyApp());

class	MyApp	extends	StatelessWidget	{
@override
Widget	build(BuildContext	context)	{
return	MaterialApp(
title:	'Flutter	Demo',
theme:	ThemeData(
primarySwatch:	Colors.blue,

),
home:	Timestamp(timestamp:	new	DateTime.now()),

);
}
}

class	Timestamp	extends	StatelessWidget	{
Timestamp({Key	key,	this.timestamp})	:	super(key:	key);
final	DateTime	timestamp;
@override
Widget	build(BuildContext	context)	{
return	Text(timestamp.toString());

}
}

39.	Publishing	Your	App

Introduction
The	purpose	of	this	chapter	is	 to	a	‘catch-all’	for	anything	related

to	publishing	your	app.

Code	Analysis
Before	heading	down	the	road	to	deployment,	it’s	probably	best	for

you	to	run	the	flutter	analyzer	first	to	check	for	any	issues:
flutter	analyze

Platforms

Compilation
Your	Flutter	app	can	run	natively	on	multiple	platforms	as	the	Dart

compiler	 supports	 native	 compilation	 on	 all	 target	 platforms.	 Your
Flutter	project	(root	folder)	contains	a	project	for	each	target	platform
(android,	 ios	 folders	 etc).	 When	 you	 run	 the	 build	 for	 a	 target
platform,	the	Flutter	compiler	outputs	machine	code	into	the	folder	for
that	platform.
No	Transpilation
When	 you	 build	 your	 Flutter	 app	 to	 run	 on	 different	 platforms

there	is	no	transpilation	process.
The	Dart	code	does	not	need	to	be	converted	to	Java	on	Android	or

Swift	on	iOS	as	it	does	not	need	to	use	the	SDK	compilers.

Platform	Class
This	 is	 a	 class	 used	 to	 provide	 you	 with	 information	 about	 the

Platform	that	the	app	is	running	on:

Number	of	processors.
Path	separator.

Operating	System.
Operating	System	version.
Local	hostname.
Version.

When	 developing	 you	 need	 to	 ensure	 that	 you	 take	 the	 Platform
into	 consideration.	 For	 example,	 if	 you	 are	 developing	 an	App	with
files,	you	need	to	use	the	path	separator	from	the	Platform	class	rather
than	hardcoding	the	one	that	works	in	your	development	environment.

Further	Reading
https://api.flutter.dev/flutter/dart-io/Platform-class.html

Example	–	Detecting	Platform	at	Runtime
_openMap()	async	{
//	Android
var	url	=	'geo:52.32,4.917';
if	(Platform.isIOS)	{
//	iOS
url	=	'http://maps.apple.com/?ll=52.32,4.917';

}	else	if	(Platform.isWindows)	{
//	TODO	-	something	to	do?

}
if	(await	canLaunch(url))	{
await	launch(url);

}	else	{
throw	'Could	not	launch	$url';

}
}

Release	Mode
Note	that	this	mode	does	not	work	on	your	emulator.	To	run	in	this

mode,	you	are	going	to	have	to	connect	a	device.
	

https://api.flutter.dev/flutter/dart-io/Platform-class.html

Assertions	are	disabled.
Debugging	information	is	stripped	out.
Debugging	is	disabled.
Compilation	is	optimized	for	fast	startup,	fast	execution,	and
small	package	sizes.
Service	extensions	are	disabled.

Further	Reading
https://dartcode.org/docs/running-flutter-apps-in-profile-or-release-

modes/

Android	Studio
Select	 ‘Edit	 Run/Debug	 Configurations’	 on	 toolbar,	 next	 to
the	play	button.
Add	the	‘—release’	argument	 to	 the	additional	arguments	 in
the	run	configuration:

	

Visual	Studio	Code
Select	Menu	‘Debug’
Select	Menu	Option	‘Open	Configurations’.
This	will	open	the	‘launch.json’	file	for	you	to	modify	as	per
below:

https://dartcode.org/docs/running-flutter-apps-in-profile-or-release-modes/

Command-Line
Run	the	following	command:

flutter	run	--release

Application	Icons
Before	publishing	your	app,	you	need	to	build	it	some	Icons.
This	applies	to	both	Android	and	iOS	apps.

The	Article	I	Used	to	Create	Application	Icons
This	is	an	excellent	article	on	creating	application	icons:
https://medium.com/@psyanite/how-to-add-app-launcher-icons-in-

flutter-bd92b0e0873a
This	article	shows	how	you	can	setup	a	development	dependency

to	a	package	that	generates	the	required	images	for	your	project.

Notes	on	Article
These	notes	are	in	regard	to	the	article	in	the	previous	paragraph.

When	 you	 create	 the	Android	 icons,	Android	 uses	 a	 new	 format
where	you	create	a	 foreground	and	a	background	 image,	and	 it	does
the	rest.

To	get	 templates	for	 these	 images,	go	 to	https://adapticon.tooo.io/

https://medium.com/@psyanite/how-to-add-app-launcher-icons-in-flutter-bd92b0e0873a
https://adapticon.tooo.io/

and	click	on	the	icon	near	the	top.

This	will	present	you	with	the	dialog	with	two	urls.	Copy	these	urls
into	 new	 browser	 tabs	 and	 download	 the	 two	 images	 to	 use	 as
templates.
	

One	thing	to	remember	–	when	you	make	your	icons.
Otherwise	the	validator	will	fail	when	you	try	to	put	the	app	on	the

App	Store.

Android	Deployment

Android-Specific	Files
Android-specific	files	reside	in	the	‘Android’	folder.

Dependency	Management
When	building	for	Android,	Flutter	uses	Gradle	as	the	dependency

manager.
Gradle	Settings
There	 are	 two	Gradle	 property	 files	 in	 the	 ‘Android’	 folder.	One

for	 general	 Gradle	 settings	 under	 ‘Android’	 and	 another	 for	 App-
specific	Gradle	settings	under	‘Android/app’.

These	files	are	important	in	the	realm	of	deployment	and	should	be
the	first	place	you	should	 look	if	you	want	 to	change	something,	for
example	the	version	of	Android	you	are	deploying	to.

Deployment	Units
Devices
Your	Android	app	can	run	on	many	different	devices	with	different

architectures,	such	as	different	microprocessors.
AAB	Files	-	App	Bundles
‘.aab’	 files	 (Android	 Application	 Bundle)	 are	 Google’s	 newer

preferred	file	format	for	deploying	Android	apps.	You	upload	a	single
app	bundle	and	the	Google	Play	store	takes	care	of	creating	different
APKs	for	users	with	different	architectures.
APK	Files	–	Android	Packages
‘.apk’	 files	 (Android	Package	Kit)	 are	Google’s	 older	 file	 format

for	deploying	Android	apps.
You	can	use	.apk	files	to	install	an	Android	app	to	your	phone	or	a

emulator.
For	example,	you	can	open	your	Android	emulator	and	drag-and-

drop	a	.apk	file	onto	the	open	program	to	install	it.
You	 can	upload	APK	 files	 to	 the	Google	Play	 store.	 In	 fact,	 you

may	need	 to	upload	multiple	APKs	 for	 the	 same	app,	with	different
APKs	for	different	architectures.

Deploying	Your	Android	App	to	Google	Play
Article

I	 used	 this	 article	 as	my	guide	when	 I	 published	my	 first	 Flutter
Android	App:

https://flutter.dev/docs/deployment/android

Below	are	some	notes	from	my	experience.
Cost
Before	doing	anything,	you	need	to	pay	Google	$25	to	publish	to

the	Google	Play	store.
Flutter	Build	Apks
I	had	many	 issues	building	a	bundle,	 so	 I	 ended	up	building	 two

apks	for	two	different	architectures.
The	article	above	tells	the	user	to	build	different	apks	for	different

target	platforms	using	the	command	below.	However,	I	could	not	get
this	to	work	until	I	changed	the	Flutter	channel	to	‘master’.
flutter	build	apk	--split-per-abi
Google	Play	Link
https://play.google.com/apps/publish
Google	Play	-	Website	Format
Publishing	 an	 Android	 app	 on	 this	 website	 was	 mostly

straightforward,	 but	 I	 found	 the	 Google	 Play	 website	 format
confusing.

When	 you	 create	 a	 new	 application	 then	 it	 displays	 a	 list	 of
sections	on	the	left	side.	The	required	sections	have	a	grey	ball	next	to
them,	for	example	the	Store	Listing	below.
	

The	grey	ball	indicates	that	the	section	is	incomplete.
Once	a	section	is	completed	successfully,	the	grey	ball	turns	green.
You	 cannot	 publish	 your	 app	 until	 all	 the	 grey	 balls	 have	 turned

green.
Google	Play	-	Android	SDK	Version

https://flutter.dev/docs/deployment/android
https://play.google.com/apps/publish

Sometimes	 Google	 Play	 displays	 warnings	 about	 the	 target
Android	version.

This	 is	 cured	 by	 modifying	 the	 ‘targetSdkVersion’	 in	 the
‘build.gradle’	file	in	the	‘android/app’	folder:

defaultConfig	{
//	 TODO:	 Specify	 your	 own	 unique	 Application	 ID

(https://developer.android.com/studio/build/application-id.html).
applicationId	"jilli.jilliapp"
minSdkVersion	16
targetSdkVersion	29
versionCode	flutterVersionCode.toInteger()
versionName	flutterVersionName
testInstrumentationRunner

"android.support.test.runner.AndroidJUnitRunner"
Google	Play	–	Publishing
Sometimes	Google	 Play	 tells	 you	 your	 app	 is	 published	when	 in

fact	 it	 is	 not	 yet	 available	 in	 all	 searches	 yet.	 I	 have	 had	 it	 take	 a
couple	 of	 days	 before	 you	 can	 just	 search	 on	 the	 name	 of	 the	 app.
	 Remember	 the	 Google	 Play	 store	 allows	 you	 to	 search	 on	 the
applicationId	of	your	app	and	this	works	immediately	as	far	as	I	can.
tell.	To	find	this,	open	your	‘app/build.gradle’	file:

defaultConfig	{
	 	 	 //	 TODO:	 Specify	 your	 own	 unique	 Application	 ID
(https://developer.android.com/studio/build/application-id.html).
			applicationId	"com.calculator"
			minSdkVersion	16
			targetSdkVersion	29
			versionCode	flutterVersionCode.toInteger()
			versionName	flutterVersionName
			testInstrumentationRunner	"android.support.test.runner.AndroidJUnitRunner"
}

iOS	Deployment

iOS-Specific	Files
iOS-specific	files	reside	in	the	‘ios’	folder.
When	JIT	compiling	in	debug	mode:

Flutter	 compiles	 the	 project’s	 Dart	 code	 into	 the	 folder
‘App.framework’,	 in	 the	 snapshot_blob.bin	 file.	 This	 file
include	source	code	for	debugging.
Flutter	 compiles	 the	 Flutter	 Framework	 into	 the	 folder
‘Flutter.framework’.

When	AOT	compiling	in	release	mode:

Flutter	 compiles	 the	 project’s	 Dart	 code	 into	 the	 folder
‘App.framework’.
Flutter	 compiles	 the	 Flutter	 Framework	 into	 the	 folder
‘Flutter.framework’.

Dependency	Management
Flutter	uses	Cocoapods	as	the	dependency	manager.

Deployment	Units
Mac	IPA	Files
An	.ipa	(iOS	App	Store	Package)	file	is	an	iOS	application	archive

file	which	stores	an	iOS	app.

Deploying	Your	iOS	App	to	the	App	Store
Warning	–	Apple	Enforces	their	Guidelines!
In	my	 experience	 it	 is	 a	 lot	 harder	 to	 get	 an	App	 into	 the	Apple

App	Store	 than	 the	Google	Play	Store.	Apple	are	ensuring	 iOS	apps
follow	 their	 guidelines.	 Their	 guidelines	 may	 require	 you	 to
implement	(or	not	implement)	certain	behaviors.

So	 in	 other	 words	 don’t	 just	 expect	 your	 app	 to	 meet	 these

guidelines	without	reading	their	documentation!
Example	1
My	app	immediately	prompted	the	user	to	register.
Apple	wanted	me	to	make	registration	optional.

Guideline	5.1.1	-	Legal	-	Privacy	-	Data	Collection	and	Storage

We	noticed	 that	your	app	 requires	users	 to	 register	or	 log	 in	 to	access
features	that	are	not	account-based.

Next	Steps

To	 resolve	 this	 issue,	 please	 revise	 your	 app	 to	 let	 users	 freely	 access
your	app’s	non	account-based	features.

Apps	may	not	 require	 users	 to	 enter	 personal	 information	 to	 function,
except	 when	 directly	 relevant	 to	 the	 core	 functionality	 of	 the	 app	 or
required	by	law.

You	should	allow	users	 to	 freely	access	your	app’s	non	account-based
features.	 For	 example,	 an	 e-commerce	 app	 should	 let	 users	 browse	 store
offerings	and	other	features	 that	are	not	account-based	before	being	asked
to	 register,	 or	 a	 restaurant	 app	 should	 allow	 users	 to	 explore	 the	 menu
before	 placing	 an	 order.	 Registration	 must	 then	 only	 be	 required	 for
account-specific	 features,	 such	 as	 saving	 items	 for	 future	 reference	 or
placing	an	order.
Example	2
My	 app	 immediately	 prompted	 the	 user	 to	 input	 their	 phone

number.
Apple	wanted	me	to	make	that	optional.

Guideline	5.1.1	-	Legal	-	Privacy	-	Data	Collection	and	Storage

We	 noticed	 that	 your	 app	 requires	 users	 to	 register	 with	 personal
information	 that	 is	 not	 directly	 relevant	 to	 your	 app’s	 core	 functionality.
Specifically,	 the	 following	 fields	 are	 required	 but	 do	 not	 appear	 to	 be
directly	relevant	to	your	app’s	core	functionality:

-Phone	Number

Next	Steps

To	resolve	this	issue,	please	either	remove	all	required	fields	that	are	not
relevant	 to	 the	 app	 or	 make	 those	 fields	 optional.	 Information	 requested
during	registration	must	be	relevant	to	the	features	the	app	provides.
Article
I	 used	 this	 article	 as	my	guide	when	 I	 published	my	 first	 Flutter

iOS	App:
https://flutter.dev/docs/deployment/android

This	is	also	a	good	video:
https://www.youtube.com/watch?v=MxejThYFDdY
Developer	Account
Before	 doing	 anything,	 you	 need	 to	 pay	 Apple	 $99	 to	 setup	 an

Apple	Developer	account.
I	had	problems	signing	up,	it	wanted	me	to	pay	twice.
A	link	to	their	support	page:
https://developer.apple.com/contact/#!/topic/SC1101/subtopic/30001/solution/select
This	page	is	great	because	they	respond	within	a	minute.
ITunes	Connect
You	use	ITunes	Connect	to	setup	the	publishing	of	your	app	on	the

App	Store.
Here	is	where	you	setup	screenshots,	app	name,	description	etc.
Once	you	have	created	an	archive,	validated	it	and	distributed	it	to

the	App	Store,	you	come	back	here	and	 submit	 it	 to	Apple	 for	 their
approval,	which	usually	takes	1-2	days.
XCode
Most	of	the	work	is	done	here.
You	use	XCode	to	build	an	archive	the	.ipa	file	for	your	project.
The	archive	is	then	validated	and	then	distributed.
Use	Product	->	Archive	to	build,	validate	and	distribute	to	the	App

https://flutter.dev/docs/deployment/android
https://www.youtube.com/watch?v=MxejThYFDdY
https://developer.apple.com/contact/#!/topic/SC1101/subtopic/30001/solution/select

Store.

40.	Flutter	Resources

Introduction
I	could	not	have	done	even	10%	of	this	book	without	information

from	the	resources	below.	I	am	very	grateful	those	who	contributed	to
those	resources	listed	below.

Official	Resources
Google	Flutter	website.

https://flutter.io/
	

In	 case	 you	 want	 an	 offline	 copy,	 the	 source	 code	 is	 here:
https://github.com/flutter/website.	 You	 can	 clone	 the
repository	and	build/run	the	website	locally	quite	easily.	This
is	 great	 if	 you	 sometimes	 have	 to	work	without	 an	 internet
connection.

	

Some	 great	 flutter	 example	 code	 here:
https://flutter.dev/docs/cookbook

	

Google	 developers’	 channel	 on	 YouTube.
https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw

Other	Resources
Those	contributing	to	the	Flutter	Dev	group	on	Reddit:

https://www.reddit.com/r/FlutterDev/

https://flutter.io/
https://github.com/flutter/website
https://flutter.dev/docs/cookbook
https://www.youtube.com/channel/UC_x5XG1OV2P6uZZ5FSM9Ttw
https://www.reddit.com/r/FlutterDev/

	

Those	contributing	to	the	Flutter	Dev	group	on	Google:

https://groups.google.com/forum/	-	!forum/flutter-dev
	

Those	contributing	to	the	Medium	flutter	community:

https://medium.com/flutter-community
	

Tutorials	point:

https://www.tutorialspoint.com/dart_programming
	

Flutter	by	example:

https://flutterbyexample.com
	

Awesome	Flutter	talks:

https://github.com/Rahiche/awesome-flutter-talks
	

This	is	a	nice	article	where	a	developer	 lists	out	his	favorite
Flutter	resources:

https://medium.com/coding-with-flutter/my-favourite-list-of-
flutter-resources-523adc611cbe
	

https://groups.google.com/forum/%20-%20!forum/flutter-dev
https://medium.com/flutter-community
https://www.tutorialspoint.com/dart_programming
https://flutterbyexample.com/
https://github.com/Rahiche/awesome-flutter-talks
https://medium.com/coding-with-flutter/my-favourite-list-of-flutter-resources-523adc611cbe

	Table of Contents
	Welcome
	Introduction
	Acknowledgements
	Purpose
	Work
	Disclaimer
	Revisions
	Source Code
	Location
	Example & Exercise Names
	Example – ‘gesture_app’
	One File

	The Big Picture
	Introduction
	Terminology
	Compiler
	Native and Non-Native Compilers
	Cross-Platform Mobile Application Development
	Mobile Applications
	Before Cross-Platform Mobile Application Development
	Early Cross-Platform Development Tools
	Development Tools That Used Native Libraries
	Development Tools That Didn’t Use Native Libraries
	Modern Cross-Platform Development Tools
	React Native
	Google Flutter
	Conclusion

	Introduction to Dart
	Introduction
	Platforms
	Dart SDK
	Command-Line Tools
	Command-Line Compilers
	Libraries

	Basic Dart
	Introduction
	Example Code
	Entry Point
	Example Code
	Output
	Introduction to Typing
	Statically-typed languages.
	Dynamically-typed languages.
	Dart Typing
	Static Types
	Dynamic Types (aka Untyped)
	There is a difference, but it is subtle.
	This code wont compile. Dartpad displays the following error:
	Type Inference
	Example of Inference #1:
	Output
	Example of Inference #2:
	Output
	Type Matching
	Example Code
	Output
	Type Information
	Example Code
	Output
	Strings
	Interpolation
	Raw Strings
	Runes
	Object-Orientated Language Features
	Modules
	Private Classes, Variables & Methods
	Constructors
	Instance Variables
	Constructor and Method Parameters
	Interfaces
	Other
	Method Cascades

	More Advanced Dart
	Introduction
	Arrow Functions (Lambdas)
	Operator Overloading
	Example
	Warning - hashCode
	Reflection
	Mixins
	Collections
	Introduction
	Lists
	Maps
	More-Specific Collection Classes
	Assertions
	Example Code
	Output
	Assertions & Modes (Flutter)
	Further Reading
	Errors & Exceptions
	Why Have Error & Exception Handling?
	Errors
	Exceptions
	Handling Errors
	Handling Exceptions
	Finally
	Catch Exception
	Catch Exception and Stack Trace
	Catch Specific Exceptions
	Throw Exception
	Rethrow Exception
	Create Custom Exceptions
	Console Output
	Example Code
	Output
	Asynchronicity
	Introduction
	Future
	Invoking and Handling Asynchronous Operations
	Future API
	Async & Await Keywords
	Reactive Programming
	Nulls
	?.
	Example
	Static Analysis
	Example ‘analysis_options.yaml’ File
	Further Reading

	Introduction to Flutter
	Introduction
	What is Flutter?
	High Productivity
	High Quality
	High Performance
	It is Free and Open.
	Fuschsia
	Flutter Source Code
	Flutter SDK
	Dart Platform
	Flutter Engine
	Foundation Library
	Flutter Release Process
	Flutter Channels

	Installing Flutter & Editor
	Introduction
	Note: Developing on a PC for iOS
	Introduction
	It’s Not as Bad as it Seems
	Install Flutter
	Introduction
	Step 1: Software Pre-Requisites
	Step 2: Download the Flutter SDK
	Step 3: Setup Your Path
	Step 4: Run Flutter Doctor
	Flutter Commands
	Install Editor
	Editors & UI Builders
	Flutter Doctor Tells You to Install Android Studio
	Android Studio
	IntelliJ (Android Studio, IntelliJ)
	Visual Studio Code

	Create Default Flutter Project
	Introduction
	Default Flutter App
	Create Project
	Android Studio
	Visual Studio Code
	Command-Line
	Project Created
	Project Folders
	Project Files
	Project Application Code File
	Note
	Widgets & Composition
	Introduction
	Widgets are the Building Blocks of your UI
	Project UI
	UI As Code
	Widget Tree
	Custom Widgets
	Flutter Widgets
	Project Code
	Entry Point
	MyApp Widget
	MyHomePage Widget

	Setup Android Emulator & Run Project
	Introduction
	Emulators
	Android Emulator
	Setting Up the Android Emulator
	Options
	Mix
	Setup Android Emulator in Android Studio
	AVD Manager
	AVD Manager Dialog
	Setup Android Emulator in Visual Studio Code
	Before You Start
	View Flutter Commands
	Launch Emulator
	Create New Emulator
	Setup Android Emulator in Command Line
	Introduction
	Android SDK Path
	To Create a New AVD to Test On:
	To List Your Available AVDs:
	To Launch an Available AVD:
	Run Project
	Android Studio
	Visual Studio Code
	Command-Line

	Setup iOS Emulator & Run Project
	Introduction
	PCs
	XCode
	iOS Emulator
	Open iOS Simulator/Emulator
	Open from Xcode
	Opening from Command-Line
	Run Project
	Android Studio
	Visual Studio Code
	Command-Line

	Setup Device & Run Project
	Introduction
	Android Device
	Introduction
	iOS Device
	Check Your Hardware First
	Setup Your XCode Project
	Open XCode Project
	Create Signing Team
	Set Bundle Identifier
	Connect the Device to The Mac & Run
	Further Reading / Instructions

	Hot Restarting & Reloading
	Introduction
	Hot Reloads
	The Official Documentation Says:
	Two Options
	Hot Restarting
	Hot Reloading
	Android Studio
	Visual Studio Code
	Command-Line

	Dependencies & Packages
	Introduction
	Website
	Core Packages
	Non-Core Packages
	Most Useful Non-Core Packages
	How to Use an External Package
	Declare Dependency in Project
	Import Packages
	Import & Use Package Code
	Restart Your App
	Package Version Numbers
	Project Files
	.packages
	pubspec.lock
	How to Clean & Reimport Your Packages
	How to Publish Your Own Packages
	Introduction
	Setting Up a Dart Package
	Adding Documentation
	Final Review
	Do a Publish Dry-Run
	Publish
	Further Reading

	Introduction to Widgets
	Introduction
	What Are Widgets?
	User Interface: Material & Cupertino
	Material Design, According to Google
	Most Flutter Widgets Work with Material Design
	User Interface: Cupertino
	Flutter Includes iOS-Styled Widgets
	Building Widgets
	Build Method
	Build Context
	Not All Widgets Are Equal
	State
	Mutable State
	Immutable State
	Flutter Widgets & State
	Stateful Widgets
	Stateless Widgets
	Event Handling
	Event Handlers
	Styling
	Margins, Borders & Padding
	Further Reading

	Stateless Widgets
	Introduction
	Not All Widgets Need to be Smart
	Minimum Code
	Creation
	Example
	Rendering
	The ‘Build’ Method
	When Does The ‘Build’ Method Execute?
	Lifecycle
	Exercise – ‘first_stateless’
	Step 1 – Create Default Flutter App
	Step 2 – Replace Application Code
	Step 3 – Open Emulator & Run
	Summary So Far
	Step 4 – Add Some Padding
	Step 5 – Add Scrolling
	Step 6 – Add Border
	Step 7 – Final Touch
	Example – ‘stateless_widget_rebuild’
	Optional
	Purpose
	Source Code

	Stateful Widgets
	Introduction
	Some Widgets Need to be Smart
	Minimum Code
	Two Classes
	Class #1 – the class that extends StatefulWidget
	Class #2 – the class that extends State
	Creation
	Rendering
	The ‘Build’ Method
	LifeCycle Methods
	Class #1 – the class that extends StatefulWidget
	Class #2 – the class that extends State
	More Reading
	Example – ‘stateful_widget_flowers’
	Optional
	App Purpose
	App Widgets
	Start App
	Change the Flower
	Add Blur
	Source Code

	Basic Material Widgets
	Introduction
	Text
	Notes
	Example – ‘text’
	Image
	Introduction
	Exercise – ‘loading_image’
	Icon
	Introduction
	Example - ‘icon’
	Further Reading
	Buttons
	Introduction
	Enabling
	Example – ‘buttons’

	Multi-Child Layout Widgets
	Introduction
	Multi-Child Layout Widgets
	Column
	Spacing Out Children Using MainAxisAlignment
	Expanding Children Using Expanded Widget
	Row
	Spacing Out Children Using MainAxisAlignment
	Expanding Children Using Expanded Widget
	Flex
	Example – ‘flex’
	ListView & ListTiles
	Example - ‘horizontal_list’
	ListTile
	Stack
	Example – ‘stack_please_wait’

	Single-Child Layout Widgets
	Introduction
	Most Important Single Child Layout Widgets
	Padding
	Example – ‘padding’
	Container
	Example – ‘container’
	Further Reading
	Card
	Example – ‘cards’
	ConstrainedBox
	Example – ‘constrained_box’
	Expanded
	Example – ‘expanded’
	Flexible
	Example – ‘flexible’
	Center
	GestureDetector
	Example – ‘gesture_app’
	Positioned
	Example – ‘positioned’
	SafeArea
	Example: Non-Safe Area
	Example: Safe Area
	Example: Safe Area with Minimum Padding Set
	SingleChildScrollView
	Constructor Arguments Include:
	Exercise – ‘single_child_scroll_view’

	App Scaffolding Widgets
	Introduction
	MaterialApp
	Navigator
	Themes
	Locales
	Debugging Constructor Arguments
	Scaffold
	AppBar
	Body
	BottomNavigationBar
	Drawer
	BottomSheet
	PersistentFooterButtons
	Exercise – ‘scaffold’
	Step 1 – Create Default Flutter App
	Step 2 – Replace Application Code
	Step 3 – Open Emulator & Run

	Other Widgets
	Introduction
	Dialog
	AlertDialog
	SimpleDialog
	Custom Dialog Widget
	Dismissible
	Example – ‘dismissible’
	Source Code
	ExpansionPanelList & ExpansionPanel
	ExpansionPanelList
	ExpansionPanel
	Example – ‘expansion_panel’
	GridView
	Builder
	GridTile
	GridTileBar
	Example – ‘gridview_app’
	Further Reading
	PopupMenuButton
	Example – ‘popup_menu_button’
	Radio
	SnackBar
	Example – ‘snack_bar’
	Spacer
	Flex Property
	Exercise – ‘spacer’
	Switch
	TabBar, Tabs and TabBarView Widgets
	TabBar & TabBarView vs iOS Tabs
	Instructions:
	Exercise – ‘tabs_simple’
	Step 1 – Create Default Flutter App
	Step 2 – Replace Application Code
	Step 3 – Open Emulator & Run
	Step 4 – Move Tabs to Bottom
	Step 5 – Change Tab Styles To Look More Like iOS
	Table
	Introduction
	Column Width Specifiers

	Builders
	Introduction
	What is a Builder?
	How Do You Use a Builder?
	Nested Builders
	Common Builders
	AnimatedBuilder
	GridView Builder
	FutureBuilder
	ListView Builder:
	OrientationBuilder
	PageRoutebuilder
	StreamBuilder
	StreamBuilder
	Example – ‘nested_builders’
	Source Code

	Routing & Navigation
	Introduction
	Navigator Class
	Stack of Routes
	Invoking Navigation without Named Routes
	Navigating Forward
	Navigating Backwards
	Data
	Example – ‘routes_simple’
	Invoking Navigation with Named Routes #1
	Define Routes
	Navigating Forward
	See the problem yet?
	Example – ‘routes_named’
	Invoking Navigation with Named Routes #2
	Attach Route Handler to MaterialApp
	Code Route Handler
	Navigating Forward
	Example – ‘routes_named_with_parms’
	PageView
	Introduction
	Child Widgets
	Controller
	Example – ‘page_view_navigation’

	Forms
	Introduction
	Form
	Form State
	Form Validation
	Form / Field Integration
	Form Fields
	Checkbox
	DropdownButton
	Radio
	TextFormField, TextField
	InputDecorator
	Example – ‘form_details’
	Dependencies
	Source Code
	Other Information
	Input Decoration Themes
	Enabling / Disabling Form Buttons

	HTTP, APIs, REST & JSON
	Introduction
	Asynchronous Communication
	HTTP
	Introduction
	Tools
	Request
	Response
	Methods
	URI
	Status
	Header
	Body
	APIs
	REST
	REST APIs should be stateless.
	How REST Uses URLs
	How REST Uses HTTP Method
	Accessing Data with a REST API
	Inserting Data with a REST API
	Updating Data with a REST API
	Deleting Data with a REST API
	JSON
	JSON For Passing an Object Containing Data.
	JSON For Passing an Array
	JSON For Passing an Array of Objects

	Flutter with HTTP, APIs, REST & JSON
	Introduction
	Flutter & JSON
	Introduction
	Serializing & Deserializing JSON.
	Generating Code for Serializing & Deserializing
	Manually Writing Code for Serialization & Deserialization
	Flutter & HTTP
	Flutter HTTP Package
	Dummy API
	Error Handling
	Example ‘http_employees’
	Source Code
	Other Information
	Alice
	HAL / HATEOS

	State
	Introduction
	State & Events
	Storing State
	Kinds of State
	How to Determine Where to Store State
	Responding to Events
	Introduction
	Events Invoke Functions
	Events Can Affect State
	State & Events – Problems
	State & Events – Different Approaches
	Mixing Approaches
	How I Decide Where to Put State
	State & Events – Commonly-Used Approaches
	Stateful Widget Approach
	InheritedWidget Approach
	Scoped Model Approach
	BLoC w/Streams Approach

	State & Stateful Widget Approach
	Introduction
	Approach
	Exercise – ‘state_and_stateful_widget’
	Introduction
	Step 1 – Create Default Flutter App
	Step 2 – Replace Application Code
	Step 3 – Open Emulator & Run
	Summary
	Step 4– Add Car Selection
	Further Reading

	State & InheritedWidget Approach
	Introduction
	Approach
	Exercise – ‘state_and_inherited_widget_add’
	Step 1 – Create Default Flutter App
	Step 2 – Replace Application Code
	Step 3 – Open Emulator & Run
	Summary
	Exercise – ‘state_and_inherited_widget’
	Step 1 – Create Default Flutter App
	Step 2 – Replace Application Code
	Step 3 – Open Emulator & Run
	Summary
	Conclusion
	Further Reading
	Introduction
	Approach
	Package
	Package Readme
	Multiple Models
	Exercise – ‘state_and_scoped_model’
	Step 1 – Create Default Flutter App
	Step 2 – Replace Application Code
	Step 3 – Open Emulator & Run
	Summary
	Conclusion

	State & BLoCs w/Streams Approach
	Introduction
	BLoC Pattern
	Reactive Programming
	RxDart
	StreamBuilder
	Exercise – ‘state_and_block_with_streams’
	Step 1 – Create Default Flutter App
	Step 2 – Add the RxDart Dependency
	Step 3 – Replace Application Code
	Step 4 – Open Emulator & Run
	Summary
	Conclusion
	Further Reading

	Local Persistence
	Introduction
	Your Options
	SQLite Database
	Introduction
	Step 1 – Add Dependencies to Project
	Step 2 – Define the Data Model
	Step 3 – Open the Database
	Retrieve Rows from Database
	Executing SQL
	Insert into Database
	Update Row in Database
	Delete Row in Database
	Example – ‘sqlite_vocabulary’
	Further Reading
	Local Files
	Introduction
	Platform
	Path Provider Package
	Application Documents Directory
	Directories
	Files
	Directory & File Methods
	Reading & Writing Data to a File
	Example ‘persistence_files’
	Shared Preferences
	Introduction
	Methods
	Further Reading
	Example ‘persistence_shared_preferences’

	Mixins
	Introduction
	Mixins
	Mixins & Code Generators
	Example – ‘mixins’
	Source Code

	Animation
	Introduction
	Animations & State Changes
	Animations Are Used to Make UI Changes Look Better
	Animations Alter the Way the UI Change Occurs
	Types of Animations
	Implicit Animations
	Example – ‘animated_container’
	Example – ‘animated_text’
	Example – ‘animated_list’
	Explicit Animations
	Animation
	AnimationController
	TickerProvider
	Ticker
	Example – ‘animated_progress_circle’
	Curved Animations
	Tweens
	Custom Behavior
	Transforms
	Further Reading

	Debugging & Performance Profiling
	Introduction
	Debugging
	Performance Profiling
	Programmatical Options
	Add Debugger Statements
	Add Print & DebugPrint Statements
	Add Assertions
	Service Extensions
	Introduction
	Performance Overlay
	Show Paint Baselines (debugPaintSizeEnabled)
	Show Material Grid
	Turn Service Extensions On/Off from Android Studio
	Turn Service Extensions On/Off from Visual Studio Code
	Turn Service Extensions On/Off from Command Line
	Turn Service Extensions On/Off Programmatically
	Dart Observatory
	Introduction
	Part of the Dart SDK
	Starting the Observatory
	Timeline
	Profile Mode
	Further Reading
	Android Studio
	Visual Studio Code
	Command-Line
	Further Reading

	Change Detection, Keys & Rendering
	Introduction
	Change Detection
	Widgets
	Elements
	Element Trees
	Widgets, Elements, Render Objects
	Change Detection & Updates
	Detecting Structural Changes
	Matching Elements to Widgets
	If there is a Match
	If there is no Match
	Optimizations
	Render Tree
	Render Objects
	Keys
	Introduction
	Elements May or May Not Store a Reference to State
	Elements for Stateless Widgets Have No Reference to any State
	Elements for Stateful Widgets Have A Reference to the State
	The ‘Losing State’ Problem
	Global Keys
	Further Reading

	Other Performance Considerations
	Introduction
	Http Communication
	Single Threaded
	Isolates
	Use Constants When Possible
	Use Finals Whenever Possible

	Publishing Your App
	Introduction
	Code Analysis
	Platforms
	Compilation
	Platform Class
	Further Reading
	Example – Detecting Platform at Runtime
	Release Mode
	Further Reading
	Android Studio
	Visual Studio Code
	Command-Line
	Application Icons
	The Article I Used to Create Application Icons
	Notes on Article
	Android Deployment
	Android-Specific Files
	Dependency Management
	Deployment Units
	Deploying Your Android App to Google Play
	iOS Deployment
	iOS-Specific Files
	Dependency Management
	Deployment Units
	Deploying Your iOS App to the App Store

	Flutter Resources
	Introduction
	Official Resources
	Other Resources

