
Practical

Flutter
Improve your Mobile Development with
Google’s Latest Open-Source SDK
—
Frank Zammetti

Practical Flutter

Improve your Mobile Development
with Google’s Latest

Open-Source SDK

Frank Zammetti

Practical Flutter: Improve your Mobile Development with Google’s Latest

Open-Source SDK

ISBN-13 (pbk): 978-1-4842-4971-0 ISBN-13 (electronic): 978-1-4842-4972-7
https://doi.org/10.1007/978-1-4842-4972-7

Copyright © 2019 by Frank Zammetti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484249710. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Frank Zammetti

Pottstown, PA, USA

https://doi.org/10.1007/978-1-4842-4972-7

I’d like to dedicate this book to butterflies, which flutter in the wind.

No, wait, that’s too easy.

I’d like to dedicate this book to gamblers who, the British people might
say, make “a flutter on the horses.”

Yes, that’s actually a real usage of the word flutter,
but that too is too easy.

No, I’d like to dedicate this book to all the unknowns the
human race has yet to discover and, in some cases, create.

I am a pessimist by nature, but I fight that nature each and every
day because I also recognize that the universe is a wondrous place and,

despite what the evening news tells us, the human race is capable of
great beauty and wondrous creation.

And, with my stated goal of being immortal, because death
just isn’t me – it’s been done before, so I’m just gonna go ahead

and skip it – I look forward to seeing it all!

v

Table of Contents

About the Author ... xi

About the Technical Reviewer ... xiii

Acknowledgments ...xv

Introduction ...xvii

Chapter 1: Flutter: A Gentle Introduction .. 1

Meditations on the Abyss .. 1

What’s in a (Silly) Name? .. 3

Dart: Language of the Gods? ... 5

Widgets to the Left of Me, Widgets to the Right! ... 8

Brass Tacks: The Pros and Cons of Flutter .. 13

Ok, Enough Talk, Let’s Get Going with Flutter! .. 17

Flutter SDK .. 17

Android Studio ... 19

The (Slightly Less) Typical “Hello, World!” App .. 20

Hot Reload: You’ll Love It! .. 29

Basic Flutter Application Structure ... 31

A Few More “Under-the-Covers” Details ... 35

Summary... 36

Chapter 2: Hitting the Bullseye with Dart ... 37

The Things You Must Know ... 38

No Comment: All About Comments .. 39

Nothing Stays the Same: Variables .. 41

Everybody Has a Type: Data Types ... 44

vi

When a Single Value Just Won’t Do: Enumerations ... 50

What’s Your Type: The “as” and “is” Keywords.. 51

Going with the Flow: Flow Control (and Logic!) Constructs ... 51

The Big Nothing: void... 54

Smooth Operators.. 55

Classing the Joint Up: Object Orientation in Dart .. 58

Getting Funky with Functions .. 67

Tell Me Is It So: Assertions ... 71

Out of Time: Asynchrony .. 71

Ssshhh, Be Quiet: Libraries (and Visibility) .. 73

Let’s Be Exceptional: Exception Handling .. 74

I Have the Power: Generators .. 76

Metatude: Metadata .. 78

Speaking in General: Generics ... 79

Summary... 80

Chapter 3: Say Hello to My Little Friend: Flutter, Part I .. 83

A Buffet of Widgets ... 84

Layout .. 84

Navigation.. 97

Input .. 108

Dialogs, Popups, and Messages .. 124

Summary... 134

Chapter 4: Say Hello to My Little Friend: Flutter, Part II 135

Styling Widgets ... 135

Theme and ThemeData .. 136

Opacity .. 138

DecoratedBox .. 138

Transform .. 139

Animations and Transitions ... 140

AnimatedContainer .. 141

AnimatedCrossFade... 142

TABLE OF CONTENTS

vii

AnimatedDefaultTextStyle ... 144

A Few Others: AnimatedOpacity, AnimatedPositioned, PositionedTransition,

SlideTransition, AnimatedSize, ScaleTransition, SizeTransition, and RotationTransition 145

Drag and Drop ... 146

Data Views .. 147

Table .. 147

DataTable ... 150

GridView .. 153

ListView and ListTile .. 155

Miscellaneous ... 157

CircularProgressIndicator (CupertinoActivityIndicator) and LinearProgressIndicator 157

Icon .. 158

Image ... 161

Chip ... 162

FloatingActionButton ... 164

PopupMenuButton ... 166

Wither APIs? .. 167

Core Flutter Framework Libraries .. 168

Dart Libraries ... 171

Other (Support) Libraries ... 175

Summary... 177

Chapter 5: FlutterBook, Part I ... 179

What Are We Building? .. 179

Project Kickoff ... 182

Configuration and Plugins ... 182

UI Structure ... 184

App Code Structure ... 185

The Starting Line ... 186

Some Global Utilities ... 189

On State Management .. 192

Starting with an Easy One: Notes .. 197

TABLE OF CONTENTS

viii

The Starting Point: Notes.dart ... 197

The Model: NotesModel.dart .. 199

The Database Layer: NotesDBWorker.dart ... 200

The List Screen: NotesList.dart .. 206

The Entry Screen: NotesEntry.dart ... 212

Summary... 222

Chapter 6: FlutterBook, Part II .. 223

Get ‘Er Done: Tasks .. 223

TasksModel.dart .. 224

TasksDBWorker.dart .. 224

Tasks.dart .. 225

TasksList.dart .. 225

TasksEntry.dart .. 228

Make a Date: Appointments .. 230

AppointmentsModel.dart ... 230

AppointmentsDBWorker.dart ... 231

Appointments.dart ... 231

AppointementsList.dart ... 232

AppointmentsEntry.dart ... 240

Reaching Out: Contacts ... 243

ContactsModel.dart ... 243

ContactsDBWorker.dart.. 244

Contacts.dart ... 245

ContactsList.dart ... 245

ContactsEntry.dart ... 250

Summary... 257

Chapter 7: FlutterChat, Part I: The Server ... 259

Can We Build It? Yes, We Can! But, uh, What IS “It”?! ... 259

Node .. 260

Keeping the Lines of Communication Open: socket.io .. 265

TABLE OF CONTENTS

ix

FlutterChat Server Code .. 269

Two Bits of State and an Object Walk into a Bar… ... 270

The Big Hookup: Messages ... 272

Summary... 284

Chapter 8: FlutterChat, Part II: The Client ... 285

Model.dart ... 285

Connector.dart ... 288

Server-Bound Message Functions ... 292

Client-Bound Message Handlers ... 294

main.dart ... 297

LoginDialog.dart .. 301

Existing User Login .. 306

Home.dart ... 308

AppDrawer.dart ... 309

Lobby.dart ... 313

CreateRoom.dart ... 317

Building the Form .. 320

UserList.dart .. 323

Room.dart ... 325

The Room Functions Menu .. 327

The Main Screen Content .. 331

Inviting or Kicking a User... 335

Summary... 340

Chapter 9: FlutterHero: A Flutter Game .. 341

The Story So Far ... 341

The Basic Layout ... 343

Directory Structure and Component Source Files ... 344

Configuration: pubspec.yaml ... 346

The GameObject Class .. 348

Extending from GameObject: The Enemy Class .. 353

TABLE OF CONTENTS

x

Extending from GameObject: The Player Class ... 355

Where It All Starts: main.dart .. 359

The Main Game Loop and Core Game Logic ... 365

Kicking It Off .. 365

First Time Initialization .. 366

Resetting Game State .. 371

The Main Game Loop ... 373

Checking for Collisions .. 376

Randomly Positioning an Object .. 378

Transferring Energy ... 379

Taking Control: InputController.dart ... 382

Summary... 384

Index ... 387

TABLE OF CONTENTS

xi

About the Author

Frank Zammetti is a technical author of some renown – and by some I mean very

little. But hey, a guy’s gotta eat, right? Frank has been a programmer in one fashion or

another for nearly 40 years, about 25 of that professionally. These days, you’ll actually

find architect on his business card, but he’s still a code monkey at heart and twiddles

bits nearly every day. Frank is – and I believe I have the correct technical term here –

a nerd of the highest order: when not making inanimate computing objects do his

(likely evil) bidding, Frank can be found watching, reading, or writing sci-fi; building

rail guns, Tesla coils, or some other contraption that will probably zap him to death at

some point; quoting Babylon 5, Lord of the Rings, Chronicles of Riddick, or Real Genius

to people for no apparent reason (which, of course, they just love); or playing video

games to pretend he’s a hero (of the space or guitar variety most usually). Frank is

also a progressive rock musician (keyboard player) and an avid eater of pizza and all

things carbohydrates. He’s also got a wife, a dog, and some kids, just to round out the

awesomeness, and will always be the one that stands up and exclaims “And my axe!”

any time plans are being made (see, I told you, just quotes Lord of the Rings for no

apparent reason! – what a nerd!).

xiii

About the Technical Reviewer

Herman van Rosmalen works as a developer/software

architect for De Nederlandsche Bank N.V., the central

bank of the Netherlands. He has more than 30 years of

experience in developing software applications in a variety

of programming languages. Herman has been involved in

building mainframe, PC, client- server, web, and mobile

applications. For the past 4 years, Herman has mainly been

involved in developing applications in .NET C# and Angular

after working for 15 years with Java technology.

Herman lives in a small town, Pijnacker, in the

Netherlands with his wife Liesbeth and their children

Barbara, Leonie, and Ramon. Next to developing software,

in his spare time, he is also a soccer coach for girl soccer teams for almost 10 years now.

And of course he supports Feyenoord!

xv

Acknowledgments

If you’ve never done it, let me tell you a secret: when writing a book like this, the person

actually doing the writing is only a small part of getting the thing done and making it as

good as it can be. Sometimes, I think maybe even the smallest part!

Because of that, I want to acknowledge all the hard-working people who helped

complete this project and bring it to your hands (whether physical or digital) including

Nancy Chen, Louise Corrigan, James Markham, Herman van Rosmalen, Welmoed Spahr,

and Dhaneesh Kumar. And, if your name isn’t in this list and it should be, then I offer my

sincerest apologies – you were not left out intentionally, and you have my gratitude even

if you’re not on the page.

I’d also like to thank Lars Bak and Kasper Lund for creating Dart, the quite elegant

and not at all unpleasant to use programming language that underpins Flutter. Speaking

as someone who created his own language and toolchain for it many years ago, I very

much appreciate what you guys pulled off. Kudos!

And, writing a book on Flutter practically demands that I acknowledge the

entire Flutter development team. I’ve been doing mobile development in one form

or another for very nearly 20 years (take a look at etherient.com, specifically the

Products page, and more specifically Eliminator, which was a game I released in 2001

for Microsoft’s PocketPC platform – I believe that was my first mobile app, at least the

first of any note), and I’ve used more mobile toolkits, frameworks, and libraries than

I can count. Given all that experience, I can say with great confidence that Flutter,

even upon its initial release, was head and shoulders above them all. It really is pretty

amazing what you all have been able to accomplish in such a relatively short period

of time, and without your hard work I obviously wouldn’t have been writing this book!

I look forward to using Flutter more and more to the point, and I look forward to what

you folks are going to do with it!

xvii

Introduction

Creating mobile apps that look, feel, and function like native apps and are also cross-

platform is a tricky proposition, even after all these years of developers working to

achieve that goal. You can write native code for each platform and do your best to make

them as similar as possible, and that’s certainly a good way to get native performance

and capabilities into your app. But, effectively, that means writing your app multiple

times. Clients tend not to like having to pay for that sort of thing!

Instead, you can take the HTML route and have a single code base that works

everywhere. But then, you will often be left out in the cold in terms of native device

capabilities, not to mention performance frequently being subpar (there are some

options that minimize these concerns to be sure, but they’re still there no matter how

good those options do).

I’ve been doing this exact thing for two decades now (seriously!), so I’ve seen it all,

many times over. So, when I see a possible unicorn on the horizon, I’m skeptical for sure.

But, when you get closer and see that the unicorn is indeed real, well, it’s not really a

unicorn anymore, is it? It’s reality, and a wondrous reality at that.

And so, I present to you the unicorn that is the wondrous reality: Flutter!

Thanks to the talented engineers at Google, Flutter is a platform that provides a

means for you to write a single code base (more or less) that works on Android and

iOS equally well while delivering native performance and native capabilities. Built

with modern tools and development techniques, Flutter opens up the world of mobile

development to programmers that is, dare I say it, even fun to use!

In this book, you’ll learn Flutter by building two real apps, not just grossly simplified,

dumbed-down, and contrived examples (although there are a few of those early on,

as concepts are introduced). No, the apps we’ll build together will be practical apps

that you could use for real if you want, not just simple tech demos, and along the way

you’ll see many aspects that went into their development, including in some cases the

problems I faced in putting it together and the solutions I came up with. In doing so,

you’ll get solid, hands-on experience with using Flutter in a real-world way – a way that

will prepare you for building your own apps later.

xviii

You’ll also learn some things tangential to building the app including building a

server with Node.js and WebSockets. You can consider those nice little bonuses to the

real star of the show in Flutter.

On top of that, you’ll get a bonus third app that’s drastically different from the first

two: a game! Yes, we’ll build a game together using Flutter, if for no other reason than to

highlight some additional capabilities of Flutter that the first two apps won’t necessarily

touch on and will give you a chance to see Flutter from a different angle, expanding

your horizons for what’s possible. A game may not be quite as “practical” in a sense, but

games sure are fun to make, and a little fun never hurt anyone!

By the end, you’ll have a good handle on what Flutter offers, and you’ll be in an

excellent position to go off and create the Next Big Thing(tm) app with it.

If you were a computer enthusiast in the 1980s, then you’re probably familiar with

typing in 20 small-print magazine pages of machine code to play a game or run an app

for balancing your checkbook (yes, we really did that – and, entirely tangentially, there

were even radio stations that would broadcast the code, similar to how a modern takes

data and creates sounds from it to transmit over a phone line, which you could record

and then run through a program that would spit out the code for you!). You certainly

could do that with this book, type it all in by hand, but that would be a painful amount of

typing!

So, before you get started, I suggest you head over to the Apress web site, search for

this book, and grab the source code bundle from there. That should give you everything

you need to follow along without having to type your fingers raw!

That said, don’t forget that the best way to learn anything is by doing, so definitely

get in there and hack at the example code and apps and see what happens when you

make changes. As you finish reading the chapters associated with each app, maybe get

in there and try and add a feature or two (and, I’ll even make some suggestions along the

way for doing just that to give you some direction). I think before long you’ll realize that

because of the power Flutter provides, small changes can make significant differences in

what winds up on the screen.

So, get ready for what I hope you’ll find to be an enjoyable and informative ride

through the land of Flutter (and other stuff) that will be a rewarding experience!

I hope you enjoy this book and learn a great deal from it. That’s definitely my

intention! So, grab a snack, pull up a comfy chair, have your laptop at the ready, and get

on it. Adventure awaits! (And, yes, I realize full well how corny that sounds.)

INTRODUCTION

1
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7_1

CHAPTER 1

Flutter: A Gentle

Introduction

Welcome to the starting line!

If you ask ten different mobile developers how they develop their mobile apps for

Android and iOS devices, you’ll probably get ten different answers. But that may not be

the case for long thanks to a relative newcomer on the scene: Flutter.

In this chapter, we’ll look at mobile development and how Flutter fits into that

picture and, maybe in some ways, completely changes it. We’ll get up and running with

Flutter, get a basic understanding of what it’s all about, and generally set the stage for

building some real apps in the remainder of this book.

So, let’s jump right in and talk a bit about what mobile development, in general, is

all about.

 Meditations on the Abyss

Software development ain’t easy!

That really should be the sing-song of anyone who twiddles bits, me very much

included. I don’t want to bore you with my personal history, but the simple fact is that

I’ve been programming, in one form or another, since I was around 7 years old, which

means I’ve been doing this thing for nearly 40 years (about 25 of that professionally).

I’ve seen a lot and done a lot, and the one thing I’ve learned is what I said at the top:

software development ain’t easy. To be sure, some individual tasks and some discrete

projects can be easy, but overall, this is fundamentally a pretty tough thing we code

monkeys do!

And that’s before we even begin to talk about mobile development, which is

harder still!

2

I started mobile development roughly two decades ago, back in the days of

Microsoft’s Windows CE/PocketPC and Palm’s PalmPilot and it’s PalmOS (primarily –

there were some others around, but those were, more or less, the only real games in

town, so to speak). At that point, it wasn’t so bad because there was a limited set of

devices and capabilities you had to be concerned with, and there was no shortage

of options in terms of development tooling. To be sure, the tooling wasn’t nearly as

pleasant to use as what we have today, but there was basically just one way to develop

a PocketPC app, one way to develop a PalmOS app, not a whole bunch of choices in

how to go about it. That sounds like a bad thing, and indeed in some ways it is, but the

removal of choice also has the effect of removing developer confusion, which is one of

the biggest struggles we have in software engineering today.

Also, although it would be considered a definite negative today, there was no

notion of cross-platform development at that point Well, other than essentially

developing your app twice, which is precisely what we had to do if we wanted to run

on both platforms. But, given the differences between them, that wasn’t all that typical.

You were more likely back then to find an app that was exclusive to one platform or

another because the developer couldn’t be bothered, or wasn’t capable, of porting it

to other platforms (or it just wasn’t worth the time and effort, which may, in fact, have

been the most common reason).

Since then, the mobile space has undergone a lot of evolution, seen a lot of

change, expansion, and contraction. For a while, we had a lot of platforms to support:

Android, iOS, webOS, Tizen, Windows Mobile, and maybe a few others that even I

can’t remember. All that time, porting apps between platforms was still the norm

because there wasn’t a good cross-platform approach, at least none without significant

compromises. Yes, it got more comfortable over time because at least the native tooling

improved so even though you had to write the same app multiple times, each time was

a bit more pleasant than in the past. Apple released their iOS SDK in 2008, and Google

released their Android SDK a year later in 2009 and developing apps for both platforms

meant (and still means) using both SDKs, since iOS development is based on the

Objective-C language (or Swift more and more today), while Android development is

based primarily on the Java language.

Eventually, the number of platforms started to get widdled down as winners and

losers in the space were determined. Nowadays, it’s basically a two-horse race with

Android and iOS ruling the roost (there’s still others to consider, but they’re really

kind of niche at this point, and many developers, even most I’d say, tend to ignore

Chapter 1 Flutter: a Gentle IntroduCtIon

3

them unless they have particular goals that must include them). And with that, the

notion of true cross-platform development starts to become more attractive and

more viable.

The rise of the Internet provides one option because you can write an app using the

technologies that underpin the Internet and wind up with an app that looks and works

roughly the same on both platforms (and even others). But that comes with compromises

that, even though over time are being minimized, still do exist. Things like performance

and true native capabilities are still a bit difficult to do with web technologies.

Aside from web technologies though, in the last few years, we’ve seen the birth

of several cross-platform development techniques and tools that allow you to write

an app once and have it work roughly the same on all devices while still providing a

native- like experience. Popular options are Corona SDK (primarily for games, though

not exclusively), Xamarin, PhoneGap (which is really still just web technologies cleverly

wrapped up in a native WebView component), Titanium, and Sencha Touch (again,

based on web technologies, but with a nice layer of abstraction above it), just to name a

few. There’s no shortage of options nowadays, all with their pros and cons.

And into this arena steps a new competitor, anxious to slay all other options and

provide the One True Way™ to write cross-platform mobile app:

Flutter.

I know, it’s a somewhat silly name… but you know, for all the benefits it brings, I

think we can more than live with an arguably silly name!

 What’s in a (Silly) Name?

Flutter is the creation of Google – you know, the company that pretty much controls the

Internet, for better or worse (in the case of Flutter, I think for the better). Flutter began its

life under the name “Sky” in 2015 at the Dart developer summit (don’t forget that word,

Dart, because we’ll be coming back to that before long). At first, it ran only on Google’s

own Android operating system, but was before long ported to Apple’s iOS, which covers

the two leading mobile operating systems today.

Various preview versions of Flutter were released subsequent to its initial

announcement, culminating in the December 4th, 2018, release of Flutter 1.0, the first

“stable” release. That signaled that Flutter was ready for prime time and it was time for

developers to jump onboard – and jump onboard they have! The popularity of Flutter

could realistically be described as meteoric, and for some pretty good reasons.

Chapter 1 Flutter: a Gentle IntroduCtIon

4

One of which is this: the original stated goal of Flutter, or at least one of the main

ones, was being able to render app UIs at a consistent 120fps no matter what. Google

very much understands that a consistently smooth UI is one that users will be delighted

by and want to use, so it was at the forefront of their thinking with Flutter. This is a lofty

goal to be sure and few cross-platform mobile frameworks ever achieve it (even ones that

aren’t cross-platform often have a tough time of it).

One of the key decisions Google made when designing Flutter is something that

differentiates it from most other mobile development options, and that’s the fact that

Flutter renders its own UI components. Unlike most other frameworks, Flutter does

not use native platform components. In other words, when you tell Flutter to display a

button, for example, Flutter itself renders that button, it’s not just asking the underlying

OS to render the button, which is what most other frameworks do. This represents a

big difference between Flutter and nearly anything else out there and is primarily what

allows Flutter apps to be consistent across platforms. This also has the benefit that new

UI components, or widgets (remember that word too because like Dart it’s gonna come

back in a big way shortly) can be added to Flutter quickly and easily without worrying

about whether the underlying platform supports them.

This also allows Flutter to provide design-specific widgets. What this means is that

Flutter offers two sets of widgets: Material design widgets and Cupertino design widgets.

The former implement Google’s own Material design language, which is the default

design language for Android. The latter implements Apple’s iOS design language.

Under the covers, Flutter can be conceptualized as being comprised of four

main parts, beginning with the Dart platform. I’m going to skip this until the next

section because it’s big on its own to warrant a separate section, so let’s move on

to the second component, the main Flutter engine. This is a (mostly) C++-based

codebase, so performance is near-native levels at the core, and this codebase uses

the Skia graphics engine to do its rendering. Skia is a compact, open-source graphics

library, also written in C++, that has evolved to have excellent performance across all

supported platforms.

Flutter also provides, as its third major component, an interface over the native

SDKs of both platforms which is called the foundation library. This library has the goal

of obviating the differences between the APIs of the native platforms in favor of a Flutter-

supplied API that is consistent. In other words, you don’t need to worry about how to

launch the camera app on iOS vs. how you launch it on Android, you don’t need to think

about what API to use on one platform vs. another. You merely need to know the Flutter

API call to make to launch the camera app, and it’ll work on both platforms.

Chapter 1 Flutter: a Gentle IntroduCtIon

5

The final component is the widgets, but like Dart, they too deserve their own section,

so let’s come back to that in a bit.

That, in a tiny nutshell, is what Flutter is all about. To be clear, there’s not too much

of that information that you need to internalize to develop Flutter apps. However, I think

it’s always useful to know a little history and a bit of the internals of the tools we use.

Hopefully, you agree!

Now, let’s parse some of the words I threw out, plus a few more, and look at them in

detail, beginning with Dart.

 Dart: Language of the Gods?

When Google started working on Flutter, they had an early decision to make:

what programming language would it use? It could be a web-based language like

JavaScript, or perhaps the natural choice would have been Java given that Android

uses that. Or, since support for iOS was something that they of course desired, maybe

Objective-C or Swift would be a good choice (after all, Swift is ostensibly open-

source, so a good argument, I’d wager, was made by some on the Flutter team for it

early on). Maybe something like Golang or Ruby would be better. What about going

“old-school” with C/C++? Or take a cue from Microsoft and go with C# (since it too is

open-source)?

I’m sure there were a lot of choices available, but in the end, Google decided (for

reasons!) to go with a language that they themselves had created a few years earlier:

Dart.

The entire next chapter is devoted to Dart, so I’m going to refrain from going into too

many details here, but at the least, I think a quick sample is in order, so have a look at

this:

import "dart:math" as math;

class Point {

 final num x, y;

 Point(this.x, this.y);

 Point.origin() : x = 0, y = 0;

Chapter 1 Flutter: a Gentle IntroduCtIon

6

 num distanceTo(Point other) {

 var dx = x - other.x;

 var dy = y - other.y;

 return math.sqrt(dx * dx + dy * dy);

 }

 Point operator +(Point other) => Point(x + other.x, y + other.y);

}

void main() {

 var p1 = Point(10, 10);

 var p2 = Point.origin();

 var distance = p1.distanceTo(p2);

 print(distance);

}

It isn’t terribly important to understand every last thing you see here. Actually,

at this point, it’s not important for you to understand any of it! That said, if you have

experience with any Java or C-like language then I’m willing to bet you can actually

follow this without too much trouble, and that’s one of the big benefits of Dart: it’s

similar enough to what most modern developers know for them to be able to pick it up

pretty quickly and easily.

Note It’s interesting that we call then C-like languages, but C itself, along with

other C-like languages, are descendants of alGol, a much older language. It never

seems to get the historic respect it deserves though, so I threw this note in to try

and change that and get alGol some love!

Without getting into all the nitty-gritty details (that’s what the next chapter is

for), I think a little background on Dart is in order. As I mentioned, Google created

Dart back in 2011, and it was initially unveiled at the GOTO conference in Aarhus,

Denmark. The initial 1.0 release took place in November 2013, roughly two years

before Flutter was released. You have Lars Bak (also the developer of the V8

JavaScript engine underpinning chrome and Node.js) and Kasper Lund to thank for

Dart by the way!

Chapter 1 Flutter: a Gentle IntroduCtIon

7

Dart is a neat language that is rapidly gaining a lot of traction, thanks in no small

part to Flutter, though being a general-purpose language, it can and is used to build

all sorts of stuff, from web apps to server code to IoT (Internet of Things) apps, and

so on. At around the time I was writing this chapter, a survey about which languages

are most important to developers in 2019 (in terms of their own interest in it) came

out, published by JAXenter (see https://jaxenter.com/poll-results-dart-

word-2019-154779.html) with the pertinent result being that two languages stood out

by quite a bit from the rest: Dart and Python, with Dart winning out overall. It also says

that Dart experienced the most growth in 2018 and while Flutter is almost certainly the

single biggest driver, it’s probably not enough on its own to account for those results, so

it’s fair to say Dart is coming on strong from all corners!

So, yeah, Dart is getting a lot of attention for sure.

What’s Dart all about? Well, in a nutshell, there are a few key points about it, and the

preceding code sample demonstrates much of it:

• Dart is fully object-oriented.

• It’s a garbage-collected language, so no memory allocation/

deallocation worries.

• It has a C-based syntax style that is easy for most developers to

pick up (that said, it does have a few peculiarities that might

throw you at first, but it’s no worse than any other language with a

similar syntax).

• Supports common language features like interfaces, mixins, abstract

classes, reified generics, and static typing.

• A sound typing system (but with flexibility around typing at the

same type that makes it not a burden but a genuine help for

developers).

• Isolates for concurrency so that you can have independent workers

that do not share memory but instead use message passing for

communication, yielding good performance while reducing the risk

typically associated with other forms of concurrent programming

paradigms.

Chapter 1 Flutter: a Gentle IntroduCtIon

https://jaxenter.com/poll-results-dart-word-2019-154779.html
https://jaxenter.com/poll-results-dart-word-2019-154779.html

8

• Dart can use ahead-of-time compilation to native code in order

to reach the highest levels of performance this side of Assembly.

It compiles to ARM and x86 code, but it can also transpile to

JavaScript so your Dart code can run, after a fashion, on the web

even. Putting aside that transpilation (is that even a word?!), with

Flutter targetting a mobile platform, you’ll wind up with AOT-

compiled Dart code.

• Dart supports a rather large package repository that provides

additional functionality on top of the core language for virtually

anything most developers would need and makes it easy to bring

those packages to bear in your projects.

• Tooling support from a lot of popular developer tools including

Visual Studio Code and IntelliJ IDEA.

• Snapshots as a core part of the Dart VM, which are a method to

store and serialize objects and data at runtime (Dart programs can

be compiled to snapshots, which contain all the program code

and dependencies pre-parsed and ready to execute at startup, and

snapshots are also used heavily in the use of isolates).

Dart is now an ECMA standard under technical committee TC52, and you can

view the latest specification at www.dartlang.org/guides/language/spec (and, more

generally, www.dartlang.org is the home page of the Dart language).

As I said, the entire next chapter is devoted to getting you up to speed with Dart

enough to tackle the Flutter code to come, but for now, I think this should serve as a

decent enough introduction.

 Widgets to the Left of Me, Widgets to the Right!

Let’s get back to talking about the real star of the show here, Flutter, and the one concept

that, more than any other, really underpins what flutter is all about: widgets.

In Flutter, everything is a widget. When I say everything is a widget, I mean... well,

I mean that almost everything is a widget (it’s far harder to find something that isn’t a

widget in Flutter than to find all the things that are!).

Chapter 1 Flutter: a Gentle IntroduCtIon

http://www.dartlang.org/guides/language/spec
http://www.dartlang.org

9

And what's a widget, you ask? Well, they are chunks of your UI (though it’s true that

not all widgets manifest on the screen, though that’s rare). A widget is also, obviously, a

chunk of code, like so:

Text("Hello!")

. . .and this is also a widget. . .

RaisedButton(

 onPress : function() {

 // Do something.

 },

 child : Text("Click me!")

)

. . .this, too, is a widget. . .

ListView.builder(

 itemCount : cars.length,

 itemBuilder : (inContext, inNum) {

 return new CarDescriptionCard(card[inNum]);

 }

)

. . .and finally, this is also a widget:

Center(

 child : Container(

 child : Row(

 Text("Child 1"),

 Text("Child 2"),

 RaisedButton(

 onPress : function() {

 // Do something.

 },

 child : Text("Click me")

)

)

)

)

Chapter 1 Flutter: a Gentle IntroduCtIon

10

This last one is interesting because it’s actually a hierarchy of widgets: a Center

widget, with a Container widget underneath it, and that Container widget with a Row

widget underneath it, and two Text children under the Row plus a RaisedButton too.

It’s not important what those widgets are (though the names pretty much give them

away) but what is important is that the entire hierarchy of widgets you see there is itself

considered a widget in the realm of Flutter.

Yes, widgets are everywhere in Flutter! Widgets to the left of me, widgets to the right!

Flutter is basically the Oprah of UI frameworks: you get a widget! And you get a widget!

And YOU get a widget – you ALL get widgeeeeeeeets!

As I said at the start, virtually everything is a widget in Flutter. There are the obvious

things, the things that people think of when you say the word widget in the context of

a user interface: buttons, lists, images, text form fields, all that sort of stuff. Those are

widgets for sure. But, in Flutter, things that you don’t typically think of widgets are still

widgets, stuff like the padding around an image, the state of a text form field, the text

displayed on the screen, even the theme an app is using, all of those are widgets in

Flutter too.

Given that everything is a widget, a natural consequence is that in Flutter, your code,

to a substantial degree, turns out to be nothing but a giant hierarchy of widgets (and

this hierarchy has a particular name in Flutter: the “widget tree”). You see, most widgets

are containers, meaning they can have children. Some widgets can have but a single

child while others can have many. And then, those children can each have one or more

children, and so on and so on – its widgets all the way down!

All widgets are Dart classes, and widgets typically have only a single concrete

requirement: they must supply a build() method. This method must return… wait for

it… other widgets! There are a very few exceptions to this, some low-level widgets like the

Text widget, which returns a primitive type (a String in this case), but most return one

or more widgets. Aside from this requirement, at a code level, a widget is just a plain old

Dart class (which isn’t any different, minor syntax aside as the next chapter will show,

from a class you’ve seen in any other object-oriented language).

A Flutter widget extends one of a handful of standard classes, as is typical

in the object-oriented paradigm, classes which Flutter itself provides. The class

extended determines what kind of widget we’re dealing with a fundamental level.

There are two that you’ll use probably 99% of the time: StatelessWidget and

StatefulWidget.

Chapter 1 Flutter: a Gentle IntroduCtIon

11

A widget that extends StatelessWidget never changes and is called a stateless

widget because it has no state. Things like Icon widgets, which display small images, and

Text widgets, which of course display strings of text, are said to be stateless widgets. An

example of such a class might be this:

class MyTextWidget extends StatelessWidget {

 Widget build(inContext) {

 return new Text("Hello!");

 }

}

Yep, there’s not much to it!

By contrast, the StatefulWidget base class has the notion of state in it, that is, it

changes in some way when the user interacts with it. A CheckBox, a Slider, a TexField,

these are all well-known examples of stateful widgets (and when you see them written

with this sort of capitalization going forward it means that I’m referring to actual Flutter

widget class names, not generic fields like a text form field, by contrast). When you code

such a widget, you actually have to create two classes: the stateful widget class itself, and

a state class to go along with it. Here’s an example of a stateful widget and its associated

state class:

class LikesWidget extends StatefulWidget {

 @override

 LikesWidgetState createState() => LikesWidgetState();

}

class LikesWidgetState extends State<LikesWidget> {

 int likeCount = 0;

 void like() {

 setState(() {

 likeCount += 1;

 });

 }

Chapter 1 Flutter: a Gentle IntroduCtIon

12

 @override

 Widget build(BuildContext inContext) {

 return Row(

 children : [

 RaisedButton(

 onPressed : like,

 child : Text('$likeCount')

)

]

);

 }

}

As before, don’t get too hung up on the details of this because there’s no expectation

that you should understand this code yet as we’ll get into it all in later chapters,

beginning with the next chapter with which you’ll build up some Dart knowledge. But,

also as before, I’d bet you get the basic idea of what’s going on here anyway because it’s

fairly obvious I think. At least for the most part that is – how the widget code and its state

object interact and relate probably is a bit less than obvious, but not to worry, that won’t

be the case for long!

Going back to stateless widgets for a moment, it should be noted that the term

“stateless” is a little bit of a misnomer here because being Dart classes, which can have

properties and data encapsulated in them, stateless widgets do, in a sense, have state.

The core difference between a stateful and a stateless widget though is that a stateless

widget doesn’t automatically get re-rendered by the Flutter core framework when its

“state” changes, whereas a stateful widget does. When the state of a stateful widget

changes, regardless of what causes the change, certain lifecycle events fire. Those trigger

lifecycle event hook functions getting called, which results, ultimately, in Flutter re-

rendering the portion of the screen where the widget resides (assuming a change was

necessary – Flutter makes that determination for you because it knows what the state of

the widget was before as well as after the event).

Think of it this way: both types of widgets can in a sense have state, but only a

stateful widget has state that Flutter it aware of and even manages to some extent.

Therefore, only a stateful widget can be automatically re-rendered when appropriate,

all controlled by the Flutter framework itself, rather than you having to do anything

manually in your code.

Chapter 1 Flutter: a Gentle IntroduCtIon

13

You may be inclined to think that you always want to deal with stateful widgets since

it should mean less work on your part, but as you’ll see as we build the applications in

later chapters, that’s not always the case. As a result, you’ll use a stateless widget a lot of

the time even though it might seem counterintuitive to do so. But, that’s a discussion for

another day.

There are two main things you probably should have noticed at this point that are

important about all of this. First, Flutter UI’s are built by composing widgets. That results

in the widget tree that I mentioned earlier. While the code for the widgets themselves

is object-oriented, a compositional paradigm is how the UI is built. This is important

because most Flutter widgets are quite simple in and of themselves and it’s only through

composition that you can build up a robust UI with them. Some frameworks have what

you could rightly call “god components,” elements that are practically full applications all

by themselves. That’s very much not the case with Flutter, and even a relatively trivial UI

will likely combine several widgets in Flutter.

Second, Flutter UIs are built from code. I know that seems obvious, but think

about it for a second: there’s no separate markup language for a Flutter UI like there

is in web development. The benefit of this is there’s only a single language to learn, a

single paradigm to comprehend. It may not be apparent at first blush, but this is a big

advantage of Flutter over many competing options.

For now, this is just about all you need to know about widgets. We’ll get into more

detail starting in Chapter 3 as we survey the Flutter widget catalog, which is the list of

widgets that ship with Flutter, and of course as we look at using each of the widgets

from Chapter 4 on when we’re building the three applications with them. By the end,

you’ll have a good knowledge of the most common widgets you’ll use as you develop

with Flutter, as well as a few others, and good foundational knowledge about using and

building widgets generally.

 Brass Tacks: The Pros and Cons of Flutter

As with any framework, as good developers, we need to evaluate the benefits and pitfalls

of any option we might consider, and Flutter is no different. I for one think Flutter has

a lot going for it, but it’s not a panacea, and it’s not without its blemishes, and anyone

that says it’s perfect is a snake oil salesman (and that goes for anything, not just Flutter).

Flutter has its issues, and it won’t fit every single project, though I would humbly suggest

that there are few where it wouldn’t be an excellent choice, if not the best choice.

Chapter 1 Flutter: a Gentle IntroduCtIon

14

As such, let’s talk about the pros and cons of Flutter and, where it makes sense,

compare to some of the other options available:

• Pro: Hot reload – This is something I’ll come back to after we’ve

walked through getting set up for Flutter development and had a look

at a first sample app, but this is a big advantage for Flutter, as you’ll

see. React Native can have this capability as well if you use the third-

party Expo component, but what Flutter provides is arguably better

and, indeed in my experience, is much more consistent. Few other

frameworks have anything similar.

• Con: Mobile only – As of this writing, you can only use Flutter to

develop iOS and Android mobile apps. If you come to love Flutter,

you’ll be disappointed that you can’t use it for all your development

needs. However, note that I started by saying “as of this writing”?

That’s because there are initiatives to allow web development and

even native Windows, Mac, and Linux development to be done with

Flutter. Before long, this con may be a pro because all the computing

world may be built with Flutter (which, for some people, will be a

more significant con: Google having more control than they do now –

you’ll have to make that determination for yourself).

• Pro: Properly cross-platform – Your Flutter apps will, with minimal

effort, work correctly on iOS and Android (and, eventually, Android’s

successor Fuscia). Flutter, out of the box, supplies two sets of widgets,

one specific to iOS and one to Android, so not only will your apps

work the same, but they can also look appropriate for each platform

(although that’s entirely up to you, it’s not a requirement). Few other

frameworks can manage this with the ease Flutter does (you typically

must write a lot of branching code to make it happen, and while that’s

still true with Flutter, the degree to which it’s true tends to be a bit less).

• Con: Comingling of code – Some developers, especially those that

come from a web development background where separation of UI

from logic code is common (vis-a-vis, HTML/CSS defines the UI, JS,

and then whatever runs on the back end defines the logic), tend to

have a visceral reaction to seeing all of it more or less mixed together

in Flutter code. This isn’t specific to Flutter of course: React Native,

for example, suffers the same complaints sometimes.

Chapter 1 Flutter: a Gentle IntroduCtIon

15

• Pro: Dart – Dart is simple and powerful, object-oriented, and strongly

typed, allowing developers to be very productive very quickly and to

do so with safety. Once you get over the (not unusually large) initial

learning curve, most developers tend to like Dart as compared to

languages like JavaScript, Objective-C, or Java.

• Con: Google – I’m listing this as a con, but it’s very much a subjective

thing, and you definitely may or may not agree (to be honest, I argue

with myself about it all the time). Some people are uncomfortable

with the amount of control Google has over the Internet, even if

that control isn’t something they actively cultivate. When you’re the

dominant player, you tend to have the majority of control. However,

some people will look at the notion of using something created by

Google to build mobile apps and think that’s a bridge too far. Others,

of course, will look at it and say it’s great that such a big player is

backing this technology. So, this “con” is very much up for debate.

But it’s a debate you must answer for yourself.

• Pro: Widgets – A rich set of widgets come with Flutter, and it may,

in fact, be all you ever need to build any app. However, you can also

create your own (in point of fact, you’ll always create your own, but

to what level they go can vary) and you can even pull in many third-

party widgets to extend Flutter’s capabilities. Those widgets are

just as easy to use as any that ship with Flutter. Compared to React

Native, for example, which has a relatively sparse set of widgets

without adding third-party widgets, Flutter provides much more

power out of the box.

• Con: The widget tree – This can become a con because you wind up

sometimes with a very deeply nested hierarchy and, if for no other

reason, it can be challenging to look at the code and understand the

structure. We’ve kind of become used to this sort of thing over the

past two decades with the rise of the World Wide Web because HTML

itself is the same sort of thing. But, because virtually everything is a

widget in Flutter, the hierarchy can sometimes be deeper even than

HTML, and the code style of Dart sometimes makes looking at such a

thing tricky. There, of course, are techniques you can use to alleviate

Chapter 1 Flutter: a Gentle IntroduCtIon

16

this somewhat, and I’ll talk about those later as we look at real

application code in later chapters, but it’s still a con because you have

to be consciously aware of it and deal with it yourself. Neither Flutter

nor Dart will do you any favors in this regard.

• Pro: Tooling – As you’ll see in the next section, getting a basic

development environment setup for Flutter is easy. However, you

can move beyond that basic environment and use many of the same

tooling you’re used to doing other development with. This, again,

means low developer friction.

• Con: Reactive programming and state management – Flutter is

generally considered to be a reactive programming paradigm, which

means that you define your UI in Flutter in terms of the current

state of a given widget. The build() method that you saw earlier

takes as an argument the current state, and what it returns is a visual

representation of that widget incorporating that current state. When

the state changes, the widget “reacts” to the change by being re-

build via a call to build() again, passing it the new state. This all

happens as a function of Flutter and the event lifecycle it presents;

it’s not something you (usually) have to think much about aside from

supplying the build() method. Contrast this to frameworks where

you construct a widget, then call some series of mutator methods

on it to set it up in the proper state. This paradigm is compelling, in

Flutter and elsewhere, but it can be a con in Flutter too because it

sometimes makes doing trivial things more difficult than it arguably

should be (you’ll see some of this difficulty in later chapters, and

ways to deal with it). Related to this is the topic of state management,

which, at least at the time of this writing, is a deficiency in Flutter

in the sense that there is no canonical right and wrong way to do it.

There are numerous approaches, each with pluses and minuses,

and you’ll need to decide which fits your needs best (and yes, I’ll be

providing what I see as being a good approach). Google is working on

such a canonical approach right now, but it’s not ready yet, so until

it is, I’ll consider this lack of solid direction as something of a con

(though to some ways of thinking such flexibility can be regarded as a

pro, and I wouldn’t get into any barroom brawls over it either way!).

Chapter 1 Flutter: a Gentle IntroduCtIon

17

• Pro: Platform-specific widgets – Since Flutter UIs are constructed

in code, it becomes straightforward to have a single codebase that

supports both iOS and Android, even where there are differences

you need to account for. As an example, you can always interrogate

the Platform.isAndroid and Platform.isIOS values at runtime to

determine what your code is running on, and then branch based on

the value to construct a platform-specific widget. Maybe you want a

RaisedButton on Android but a plain Button on iOS. There’s no need

to create two different codebases; just a simple branch will do the

trick in many cases.

• Con: App size – Flutter apps tend to be a bit larger than their purely

native counterparts because they have to include the core Flutter

engine, the Flutter framework, support libraries, and other resources.

A dirt simple “Hello, world!” Flutter app can be upward of 7mb in

size. It’s a trade-off for sure, so if you have a use case where app size is

really a driving factor, then Flutter may not be your best choice.

Okay, I think by this point it’s safe to say you’ve got a basic Flutter vocabulary, so to

speak, built up, and you have an idea of what Flutter is all about. Let’s get do to work now

and get to some real code!

 Ok, Enough Talk, Let’s Get Going with Flutter!

Oops, before we can get to real code though, we probably should get Flutter installed, plus

whatever tooling we’re going to need, huh? As I’m sure you can imagine, it’s not especially

easy to build Flutter code into an executable app without that step being done first!

Fortunately, as I mentioned earlier, getting our development environment set up for

Flutter is pretty easy.

 Flutter SDK

The first step you absolutely must accomplish is downloading, installing, and

configuring the Flutter SDK. Everything hinges on this! The second step, which

technically is optional but which we’re going to consider required for the purposes of

this book, is downloading, installing and configuring Android Studio (and as part of this

will be setting up an Android SDK and emulator).

Chapter 1 Flutter: a Gentle IntroduCtIon

18

First, head over to https://flutter.io, which is your “one-stop shopping” location

for Flutter installation and documentation. There, hit the Get Started button at the top.

You’ll find yourself on the Install page where you can select which operating system

you’re using (Windows, MacOS, or Linux).

Note I’m not at all ashamed to admit that I am primarily a Windows user. It’s

what I know best and – gasp – even prefer! as such, this book will be somewhat

Windows-centric, and if you’re using another oS, you will, to some extent, be

on your own. With that said, I will be diligent about trying to point out any areas

where there are significant differences. there really shouldn’t be any, and what

you see here should, by and large, apply whether you’re using Windows or not.

how you install software is one area where there clearly are differences, but the

Flutter web site will alert you to the proper procedure if it’s something you need

assistance with.

Choose the appropriate link and the Flutter web site will provide you with

information about downloading and installing the SDK. It’s not unlike any other SDK

or software, so you will likely have little difficulty. One thing I’ll make note of however is

that part of the instructions indicates adding the SDK to your path. While this certainly

makes things a bit easier, that’s one step that you can skip if you prefer to. Just note that

if you do skip it, all commands will need to be executed from the SDK directory, or you’ll

need to specify the full path to the SDK if you aren’t in that directory. Once we get to the

Android Studio step though you’ll discover that adding the SDK to the path really doesn’t

matter, it’s only if you’re going to be executing SDK commands from the command line

rather than having Android Studio effectively do it for you, that it might matter.

And speaking of commands, one command that you will, in fact, execute from

the command line, and one you’ll do right after installing the SDK according to the

instructions on the Flutter web site, is flutter doctor. Most commands you’ll issue

to the SDK, if not all of them, begin with flutter, which is the actual executable you’re

executing, and doctor is one command you can issue to it. It’s also probably the most

important because it runs through a series of checks and configuration steps to get you

up and running.

At first, you’ll run it and see some failures, and this is to be expected at this point

because the next step takes care of that: installing Android Studio.

Chapter 1 Flutter: a Gentle IntroduCtIon

https://flutter.io

19

 Android Studio

Once again, the instructions on the Flutter site walk you through this, and it’s slightly

different for each OS, but once you get it installed, you’re going to fire it up and walk

through the Android Studio Setup Wizard. This will download Android SDKs and

emulator images and everything else required for it to work. You’ll also need to install

some plugins specifically for Dart and Flutter, and the documentation again details that.

Now, after that, if you continue following the instructions there, it will run you

through the process of hooking up your Android phone or tablet to your computer and

making sure flutter doctor can see it. This step, however, is one you can skip! Of

course, if you do have an Android device, then you’re entirely free to do so.

However, if you’re an iOS devotee, or if you’d prefer not to use a real device when

developing your Flutter code – I prefer not to have to plug my phone in all the time to

be honest – then my suggestion is to go into Android Studio, fire up the AVD (Android

Virtual Machine) manager, which you can find on the Configure menu on the startup

screen, and create yourself an Android virtual device. I suggest making a Pixel 2 virtual

device, using API level 28 (make sure you’ve installed that particular SDK, which you

can do in the SDK Manager, also found on the Configure menu) and give it a resolution

of 1080x1920 (420dpi) and target Android 9. Select one of the x86 (ABI x86_64)

images. Android virtual devices for a long time had a bad reputation when it comes

to performance, but this type of virtual device performs exceptionally well, achieving

nearly native performance in most cases. Although it won’t really matter, go ahead and

configure it for a 512Mb SD card. For the most part, the defaults should be what you

want, but the key ones are the API level and the CPU type.

When that’s done, you’ll be ready to go and will be able to run Flutter code on that

virtual device from Android Studio. Or, you can do this all from the command line using

the SDK, though I won’t be describing interacting with the SDK from the command line

beyond flutter doctor. We’ll be in Android Studio for the remainder of this book.

Note that if you rerun it, flutter doctor will still flag a problem, namely that it can’t find

an Android device, assuming the virtual device you created isn’t running. If it is, however,

flutter doctor should detect it, and you’ll get a clean bill of health. Finally, if the virtual

device is not running, and assuming you didn’t plug a real Android device into your computer,

then as long as that’s the only problem flutter doctor reports then you’re still good to go.

If you’re wondering about iOS at this point, don’t! Just because we’re using

Android Studio, that in no way, shape or form means that what you do in it can’t be

used on iOS. The only time it matters that our deploy target is iOS is if you want to test

Chapter 1 Flutter: a Gentle IntroduCtIon

20

on an actual iOS device, or build your application for distribution, at which point you’ll

need a Mac machine and Apple’s Xcode IDE installed. Distributing apps is not a topic

covered in this book though, whether for iOS or Android, so the emulator will suit our

needs just fine.

 The (Slightly Less) Typical “Hello, World!” App

If you continue with the instructions on the Flutter web site, it will, as a final step, have

you create a little Flutter app. While the documentation there is excellent, I’d suggest

skipping that step and instead let me walk you through it. I gotta sing for my supper here

after all, right?

The first step will, indeed, be to let Android Studio (in conjunction with the SDK)

build an app for us. The process is quite simple, and once we have that basic app up and

running in our virtual device, we’ll modify it a bit so we can see hot reload at work.

But, first things first, let’s create a project! When you first start Android Studio, you

should see a window like in Figure 1-1.

Figure 1-1. Kicking it off in Android Studio

Chapter 1 Flutter: a Gentle IntroduCtIon

21

See that Start a new Flutter Project line? That’s the one you want, so go ahead and

click it! You’ll be met with the new application wizard’s starting screen as you can see in

Figure 1-2.

Figure 1-2. Select the type of Flutter project you want to create

There are four types of Flutter projects you could create:

• Flutter Application (which is what we’ll use throughout this book)

• Flutter Plugin (a plugin allows you to expose native Android or iOS

functionality to your Dart-based Flutter applications)

• Flutter Package (this is only necessary if you want to distribute a

custom widget independent of an application)

Chapter 1 Flutter: a Gentle IntroduCtIon

22

• Flutter Module (which allows you to embed a Flutter app into a

native Android app)

Select Flutter Application and click Next and you’ll wind up with the window as

shown in Figure 1-3.

Here, you’ll enter some essential information about the application being created.

The defaults may be fine, or you can give the project whatever name you’d like, and the

same for the description. Also, update the Project location field as necessary (or just use

the default). Do you see that error on the bottom? If you don’t, that’s fine; it likely means

you already set up your path correctly. But, if you do see it, that’s because Android Studio

Figure 1-3. Entering some necessary information about our new app

Chapter 1 Flutter: a Gentle IntroduCtIon

23

doesn’t yet know where the Flutter SDK is, so you’ll need to tell it. Simply browse to the

SDK that you should already have installed by clicking the three-dot button next to the

field and make sure Android Studio is happy with it (read: the error goes away), and click

Next again to get to the screen from Figure 1-4.

This last screen requires a little more information, primarily the Company domain.

This doesn’t need to be a company of course, but the point is that it needs to be a value

in the typical “dot” form, which generally means an Internet domain. If you don’t have a

domain though, you can put any value you like there. Is your name Jim? You could enter

Jim! Well, you could enter Jim even if that’s not your name of course, though that would

be a little weird. The point being: enter a value that makes sense to you, whatever it is,

Figure 1-4. Final details about the project

Chapter 1 Flutter: a Gentle IntroduCtIon

24

and note that the Package name value updates accordingly, concatenating the Project

name you entered on the last screen with the Company domain value here. This Package

name value must be unique should you want to publish this app to an app store, though

for our early testing here it doesn’t make a difference.

Note You may also see a Sample application field, depending on the version

of android Studio and the Flutter plugin you have installed. It’s okay either way,

that’s for having the wizard generate some sample code for you if you wish, but

it’s not something we need for this book, so whether it’s there or not, it doesn’t

matter.

Finally, make your selection under the Platform channel language. By and large,

leaving the Kotlin one unchecked and the Swift one checked will likely be most typical.

This refers to the underlying platform-specific language used under the covers by Flutter,

and unless you’re going to interact with native code from your application, this shouldn’t

generally make too much of a difference for you. It certainly won’t make a difference for

the purposes of this book.

Once you’re happy, click the Finish button, and Android Studio will churn out a

simple Flutter app for you. It may take a few minutes, and you can watch the status bar

at the bottom to ensure all tasks have been completed. When it’s done, look near the top

of Android Studio, in the toolbar, and find the dropdown element that lists connected

devices, circled in Figure 1-5.

Figure 1-5. The virtual machine dropdown in Android Studio

Chapter 1 Flutter: a Gentle IntroduCtIon

25

You should see the emulator you created earlier listed. Select it, and if it’s not yet

running, it should start up before long. Once it does, click the green arrow next to the

dropdown that says main.dart next to it (that’s the entry point of the app), which is

the Run icon. Then, sit back for a bit while the app is built, deployed and started on the

emulator (depending on your machine, it could take up to a minute, so be patient – it’s

much faster after the initial build though). You should see something like Figure 1-6 in

the emulator.

It’s a simple app, but it shows a lot. Click the circle button at the bottom with the plus

sign (called a Floating Action Button, or FAB), and notice that the count goes up with

each click.

Figure 1-6. Fisher Price’s My First Flutter App!

Chapter 1 Flutter: a Gentle IntroduCtIon

26

The code produced, which should open automatically in Android Studio (but if it

doesn’t find main.dart under the lib directory, should be as followed (though note that

I’ve removed comments and reformatted some things too, hopefully, make it a little nicer

to look at on the page):

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 title: 'Flutter Demo',

 theme: ThemeData(

 primarySwatch: Colors.blue,

),

 home: MyHomePage(title: 'Flutter Demo Home Page'),

);

 }

}

class MyHomePage extends StatefulWidget {

 MyHomePage({Key key, this.title}) : super(key: key);

 final String title;

 @override

 _MyHomePageState createState() => _MyHomePageState();

}

class _MyHomePageState extends State<MyHomePage> {

 int _counter = 0;

 void _incrementCounter() {

Chapter 1 Flutter: a Gentle IntroduCtIon

27

 setState(() {

 _counter++;

 });

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text(widget.title),

),

 body: Center(

 child: Column(

 mainAxisAlignment: MainAxisAlignment.center,

 children: <Widget>[

 Text(

 'You have pushed the button this many times:',

),

 Text(

 '$_counter',

 style: Theme.of(context).textTheme.display1,

),

],

),

),

 floatingActionButton: FloatingActionButton(

 onPressed: _incrementCounter,

 tooltip: 'Increment',

 child: Icon(Icons.add),

),

);

 }

}

Chapter 1 Flutter: a Gentle IntroduCtIon

28

While not all that much code, there’s quite a bit going on. At this point though, you

don’t really have the vocabulary, so to speak, to be able to deep-dive into it because we

haven’t talked about Dart in detail yet. But, I don’t want to leave you with absolutely no

explanation at all, so there are a few key things that I’ll point out now.

First, note that every Flutter app’s main entry point is a main() method. That

method will be just a call to the runApp() method, provided by Flutter itself, and

passing it the top-level widget. There is always a single widget at the top of the

hierarchy that contains all the others, and here it’s an instance of the MyApp class. This

class happens to be a stateless widget, as previously discussed, so the only thing it

must provide is a build() method, and that’s what you see here. The widget returned

from it (because remember: build() always returns a single widget that may or may

not have children under it) is an instance of MaterialApp, which is a widget provided

by Flutter (included in the flutter/material package you see imported at the top).

We’ll talk about that widget in Chapter 3 when we look at Flutter widgets, but the

critical thing about it is that it provides the basic framework for a Material (i.e., Google

UI-style) app. You can see that the title is set (where title is one of the named

arguments to the MaterialApp’s constructor), which is what you use in the status bar

with when the app is run. You can also see that you can set a theme for a Flutter app

and provide details about that theme, such as the primary color the theme uses, blue

in this case.

This MaterialApp widget has a single child, which is an instance of the MyHomePage

class (not to steal the thunder of Chapter 2, but one slightly weird thing about Dart is that

when you instantiate a class, you do not need to write the new keyword, as you do in most

object-oriented languages, and that’s what’s happening here).

The MyHomePage class defines a stateful widget, so in this case, we need two classes,

the “core” class that extends from StatefulWidget and the state class associated

with it that extends State. It may seem a little weird at first, but it’s the state class, _

MyHomePageState, that effectively is the widget. You can tell that because it has a build()

method. Your first instinct would probably be to expect that in the MyHomePage class,

and then _MyHomePageState would contain just the data that represents the state of the

widget, but it’s actually the opposite.

Either way, the build() method of that widget again returns a single widget, this

time a Scaffold widget. Still, don’t get hung up on what his widget is because we’ll

get to them all in Chapter 3. But, a short and sweet description is that it provides the

fundamental visual layout for the app, including things like a status bar (an AppBar

Chapter 1 Flutter: a Gentle IntroduCtIon

29

widget in fact) where the title lives. The Scaffold also provides something to “hook”

the FAB to, so to speak, the FAB being an instance of the FloatingActionButton

widget, which is the value of the floatingActionButton argument to the Scaffold’s

constructor.

The other argument passed to the Scaffold’s constructor is body, which is how we

add other widgets as children of this one. Here, you can start to see the “everything is a

widget” mantra in action because we have a Center widget, which is a container widget

that – you guessed it – centers its one and only child. In this case, that child is a Column

widget, one of the many layout-related widgets Flutter provides, this one lays out its

children in a columnar arrangement. This Column has two children, both Text widgets,

one for the static “You have pushed the button this many times:” text, and the other to

display the number of times you’ve pushed the button.

All of this will become more clear as we delve into Dart and then Flutter itself over

the next two chapters. And, while I’ve left out a lot of details, I think this explanation

provides enough to have a decent idea of what’s going on in this code (and, plus, those

comments I removed are actually helpful and give you some more information, so do

read them after you’ve generated this app).

 Hot Reload: You’ll Love It!

Now, here’s where things get incredibly cool! Make sure you have the app running in the

emulator, and then head on over to Android Studio and find this line of code:

Text(

 'You have pushed the button this many times:',

),

Go ahead and edit that, maybe change “button” to “FAB,” and press Ctrl+S, or select

Save All on the File menu. Now, watch the emulator, and almost immediately you should

see your change reflected on the screen (it may take a few seconds, but it should be a

heck of a lot faster than the initial run).

Pretty sweet, no?

Hot reload works only in debug mode, which you can tell you are in thanks to

the debug banner in the upper right of the app. In this mode, your app is actually

running in a Dart Virtual Machine (VM) rather than having been compiled to native

Arm code, which is what happens when you build your app for real (so yes, your app

Chapter 1 Flutter: a Gentle IntroduCtIon

30

will be a hair slower in debug mode). Hot reload works by injecting your modified

source code files into the already running Dart VM that hosts your app. When that

happens, the VM updates the classes that changed by updating any altered fields or

methods. Then, the Flutter framework initiates a rebuild of the widget tree, and your

changes are reflected automatically. You don’t need to rebuild, or redeploy, or restart

anything; it all happens automatically as required to get your changes on the screen

as quickly as possible.

Every now and again, though pretty rare in my experience, you may find that a

change doesn’t hot reload as expected. If that happens, the first thing to try is to click

the Hot Reload icon on the toolbar, which looks like a lightning bolt, as shown in

Figure 1- 7 (you can also find a Hot reload option on the Run menu, with an associated

hotkey, Ctrl+/).

That should get you going. Also note that in the console pane, which should

automatically be at the bottom of the Android Studio window, you should see a message

something along the lines of:

Performing hot reload...

Reloaded 1 of 448 libraries in 2,777ms.

Also, a little tooltip should appear near the console while the reload is in progress.

Figure 1-7. The Hot reload icon in Android Studio

Chapter 1 Flutter: a Gentle IntroduCtIon

31

Now, an exciting thing about this mechanism, which you will have noticed if you

clicked the FAB a few times and then did the text change, is that the existing state of the

app is maintained. In other words, the count of the number of times you tapped the

button remains after the reload. This makes it very easy to modify your UI and have it still

show the current state so that you can essentially do easy A/B tests between two designs.

But what if you want the state not to be maintained? In that case, you’ll probably want to

do a Hot restart. You’ll find that option, which is something you have to trigger manually

(as opposed to Hot reload, which occurs automatically when you make a change to the

code and save it) by selecting the Hot restart option on the Run menu, or pressing the

associated hotkey (Ctrl+Shift+/).

Interestingly, there doesn’t appear to be a toolbar icon for Hot restart, but regardless,

this will restart your app, but without doing a new build, and clearing state.

You naturally can trigger a build any time you want (which really is the Run

command), but that will go through a compilation cycle, so it’s slower. Hot restart is

nearly as fast as Hot reload because it does a lot less work, but it gets you roughly the

same effect (minus any pending code changes of course – you need to initiate a build for

that, or let Hot reload do it, as by default is the case).

Hopefully, you’re seeing how nice Hot reload can be, how efficient you can be as a

developer with it doing its thing. I think you’re going to come to appreciate it as you go

further with Flutter!

 Basic Flutter Application Structure

One final topic to touch on in this introductory chapter is the overall structure of the

application that was generated for you. The primary directory structure is what you see

in Figure 1-8.

Chapter 1 Flutter: a Gentle IntroduCtIon

32

Figure 1-8. The basic Flutter directory structure

Chapter 1 Flutter: a Gentle IntroduCtIon

33

As you can see, there are five top-level directories. They are

• android – This contains Android-specific code and resources,

things like application icons, Java code, and Gradle configuration

and transient resources (Gradle being the build system Android

uses). In fact, this is effectively a complete Android project that you

could build using standard Android tools all by itself. For the most

part, you should only have to modify the icons (which are in the

android/app/src/main/res directories, where each subdirectory is a

different icon resolution) and, depending on what your app does, the

AndroidManifest.xml file in android/app/src/main, which is where

you can set Android-specific application properties.

• ios – Just like the android directory, this directory contains project

code specific to ios. The critical content here is the ios/Runner/

Assets.xcassets directory, which is where the iOS-specific icons for

your app are found, and the Info.plist file in ios/Runner, which

roughly serves the same purpose as the AndroidManifest.xml file for

Android apps.

• lib – Although it may seem odd at first, lib is where your application

code will live! You are relatively free to organize your code any way

you wish here, creating whatever directory structure suits you,

though you’ll need one file to serve as your entry point and most of

the time that’ll be the main.dart file that was generated for you.

• res – This directory contains some resources, things like strings for

internationalization of your app. For this book, we won’t be dealing

with any of this.

• test – Here you will find Dart files for executing tests against your

app. Flutter provides a Widget Tester utility that can make use of

these tests to confirm the functionality of your widgets. As with the

res directory, we won’t be dealing with this testing in this book given

that it’s an optional part of Flutter development and could warrant

a whole book on its own! Testing is essential generally of course, but

until you learn to write Flutter apps, you won’t have anything to test,

and this book focuses on the first part of that goal.

Chapter 1 Flutter: a Gentle IntroduCtIon

34

Although hidden by default in Android Studio, there is also an .idea directory,

which stores Android Studio configuration information and as such you can ignore it

(note that Android Studio is based on the IntelliJ IDEA IDE, hence the name). There is

also a hidden build directory that contains information used by Android Studio and the

Flutter SDK to build your app. You typically can ignore this as well.

Aside from the directories, you’ll also find some files in the root of the project. These

are generally the only files you need to worry about outside of the lib directory (and

others you see in the screenshot you don’t need to be aware of generally), and those are

• .gitignore – The file Git version control uses to know what files,

if any, to ignore from version control. Using Git is entirely optional

when writing Flutter apps, but this file gets generated either way.

Source control is a whole topic unto itself and one this book will not

cover, so you can ignore this file.

• .metadata – Data that Android Studio to track your project. You can

ignore this as you’ll never edit this yourself.

• .packages – Flutter comes with its own package manager to manage

dependencies within your project. This package manager is called

Pub, and this file is what it uses to track dependencies in your project.

You won’t interact with this file directly, or even Pub directly, so

this too can be ignored (it’s not unheard of to use Pub directly from

the command line, but from Android Studio it is, for the most part,

abstracted away from you, along with most of the Flutter SDK’s

command line interface).

• *.iml – This file should be named after your project and is Android

Studio’s project configuration file. You’ll never edit this directly, so

ignore it.

• pubspec.lock and pubspec.yaml – Have you ever worked with NPM?

Are you familiar with the package.json and the package-lock.json

files it uses? Well, these are the same things but for Pub! If you aren’t

familiar with NPM, pubspec.yaml is how you will describe your

project for Pub, including dependencies it has. The pubspec.lock file

is a file Pub uses internally. You’ll definitely edit pubspec.yaml, but

not pubspec.lock, and we’ll go over pubspec.yaml later on in detail.

Chapter 1 Flutter: a Gentle IntroduCtIon

35

• README.md – A readme file that you are free to use however you wish.

Typically, this Markdown file is what sites like GitHub use to show

information about your project when you browse to a repository

where this file is in the root.

By far, the most important file here is pubspec.yaml, and it’s one of the few you’ll

need to edit, so if you forget everything else here, just remember that! We’ll get to it later,

when we need to bring dependencies into our project, but for now, the generated file is

quite enough for our needs.

 A Few More “Under-the-Covers” Details

If you take a look at some of the files in the ios directory, you’ll notice the word “Runner”

in some. This is a hint at how Flutter apps work when building for release. As previously

noted, Hot reload works because in debug mode your code is run in a VM. When

assembled for release though, that’s no longer the case. Then, your code gets compiled

to native ARM code. It actually gets compiled into an ARM library, which explains why

your code is in a lib directory: it wasn’t a misnomer at all, was it?!

The Flutter engine’s code, along with your application code, is Ahead-Of-Time

(AOT) compiled with LLVM (Low-Level Virtual Machine, a compiler infrastructure,

written in C++, which is designed for compile-time, link-time, run-time, and "idle-time"

optimization of programs written in arbitrary programming languages) on iOS, and

with the Android Native Development Kit (NDK) into a native ARM library. That library

is included in what’s called a “runner,” which is just a native app that – wait for it – runs

your application. Think of it as a thin wrapper around your app that knows how to start

your app and provides some services to it. In some ways, the runner is still kind of a VM,

though a very, very thin one (almost like a Docker container, if you’re familiar with that).

Finally, the runner, along with the compiled library, is packaged into an .ipa for

iOS or an .apk file for Android, and you have a complete, release-ready package! When

the app is launched, the runner loads the Flutter library and your app code, and from

that point on, all rendering and input/output and event processing is delegated to the

compiled Flutter app.

Chapter 1 Flutter: a Gentle IntroduCtIon

36

Note this is very similar to how many, if not most, cross-platform mobile game

engines work. I previously wrote a book about Corona SdK, such a library that

I have a lot of affection for, and it works in a very similar manner, though there

the language in use is lua instead of dart (another one I’d bet the Flutter team

considered!). It’s just interesting to me that Google essentially took inspiration

from game engines to create Flutter because it just proves what I’ve always said:

if you want to be a better programmer, the one kind of project you should tackle to

hone your skills is writing games. the world got a whole app framework out of the

deal this time! and, if you haven’t looked ahead yet, the last two chapters of this

book are focused on building a game with Flutter, because I very much live that

“program games” advice!

 Summary

In this chapter, you started your Flutter journey! You learned about what Flutter is, what

it offers, and why you might want to use it (and even some reasons you might not want to

use it). You learned about critical concepts like Dart and widgets. You learned how to set

up your development environment to be able to work on Flutter code, and you created

your first very simple Flutter app and got it running in an emulator.

In the next chapter, you’ll learn more about Dart, getting a good foundation in it, so

that we can move on to building real apps with Flutter before long!

Chapter 1 Flutter: a Gentle IntroduCtIon

37
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7_2

CHAPTER 2

Hitting the Bullseye
with Dart
In the last chapter, you got a brief introduction to Dart, the language Google chose to

underpin Flutter. It was a cursory introduction, just giving you a high-level overview of

(some of) what Dart has to offer, but it was enough, along with some basic code samples,

to provide you with a general idea what Dart is all about.

As you can imagine, given that all Flutter apps are built with Dart, it’s something

you must have a decent grasp of, and that’s what this chapter is all about! As you read

through it, you’ll get to know Dart pretty well, at least well enough to get started with the

code in subsequent chapters (where the knowledge from this chapter will hopefully get

embedded in that brain of yours well and good). We’ll get a bit more in-depth, but as we

do, recall that introductory section from Chapter 1 because it, along with this chapter,

forms a complete picture of Dart.

To be clear, this will not be an exhaustive look at Dart. I may fill in some gaps in later

chapters as we explore application code, but some topics are either very rarely used or

very specialized, and I felt it wouldn’t hurt you in any way to skip them. Indeed, what’s

covered here is likely to be 95% of what you’ll ever need to know about Dart. Naturally,

the online Dart documentation that you can find at www.dartlang.org, which is Dart’s

home on the Web, has all those additional topics covered, plus in some cases expands on

what’s in this chapter, so if you really want to deep-dive into Dart, then stop over there

when you’re done with this chapter and have at it!

Now, let’s start the journey by talking about some real basics, some key concepts that

you must know in order to get far with Dart.

http://www.dartlang.org

38

 The Things You Must Know

As with any modern programming language, Dart has a lot to offer, but it’s built on a

few key concepts that underpin most of it. Some of these are things that Dart has in

common with other languages while some of them are things that make it stand out

from the pack a bit.

But even before we start talking concepts, wanna see something cool? Take a look at

Figure 2-1. This is what’s known as DartPad, and it’s a web app provided by the dartlang.

org web site, more specifically https://dartpad.dartlang.org.

This neat tool allows you to play with most of Dart’s capabilities in real-time without

having to install any tooling at all! It’s a great way to test concepts out quickly and easily.

Just enter some code on the left and click Run, and you’ll see the results on the right.

Quick, super-useful and straightforward!

Now, on with the learning!

Figure 2-1. FlutterPad, your experimental playground for Dart code on the Web!

Chapter 2 hitting the Bullseye with Dart

http://dartlang.org
http://dartlang.org
https://dartpad.dartlang.org

39

All languages have keywords, of course, tokens that you can’t use because they have

specific meaning in the language you’re using, and Dart is no exception. Let’s examine

those keywords now. I’ve tried to group them into related concepts that were applicable

to try and give you as much context as possible as we go through these. I’ve also tried to

order them in a reasonable way rather than just a purely alphabetical list so that you’ll

learn about many of the concepts you need to know to be an effective Dart developer in a

logical sequence as we go through them.

Note this book assumes you aren’t a complete beginner to programming

generally and specifically that you already have some experience with a C-like

language. that’s especially true in this section because many of these keywords

are no different than in any other language you’re familiar with. For those, i’ll offer

only very brief descriptions, and i’ll save the more in-depth explanations for those

keywords and concepts that are unique to Dart, or if not unique are a little out of

the ordinary at least.

 No Comment: All About Comments

I want to start with our discussion by talking about comments in Dart because I feel like

commenting, in general, is something that not enough developers do and do effectively.

Comments are a critical part of programming whether it’s something you enjoy doing or

not, and as such, Dart provides three forms of comments.

First, Dart supports single-line comments using the likely familiar // character

sequence. The compiler ignores anything following this on the line. As such, // can be

the first thing on the line, or you can drop such a comment on the end of a line:

// Define the user's age.

int age = 25; // The age is 25

Now, don’t get me wrong: I’m not suggesting this is an example of good or proper

commenting! Quite the opposite in fact! I’m just using it as an example to show this form

of a comment in Dart.

Chapter 2 hitting the Bullseye with Dart

40

The second form is multi-line comments, and again here, Dart is typical by using the

/* and */ marker sequences:

/*

 This function calculates account balance

 using the Miller-Hawthorne method

 of value calculation.

*/

Anything between those two sequences is ignored.

The final form of commenting provided by Dart are called documentation

comments. These comments are designed to produce useful verbiage when

documentation generation tooling is used on Dart code. These can be either single-line

or multi-line by using the /// or /** and */ sequences:

/// This is a documentation comment.

/**

 This, too,

 is a

 documentation comment.

*/

As with the other forms, anything on a line with /// (which, again, can be the start

of the line or post-fixed to the end of a line) is ignored. However, there is an exception:

anything enclosed in brackets in such a comment is taken to be a reference to a class,

method, field, top-level variable, function, or parameter, resolved to the lexical scope of

the documented program element. So, for example:

class Pet {

 num legs;

 /// Feeds your pet [Treats].

 feed(Treats treat) {

 // Feed the critter!

 }

}

Chapter 2 hitting the Bullseye with Dart

41

Here, when documentation is generated (which you can do with the Dart SDK’s

dartdoc tool) the [Treats] text will become a link to the API documentation for the

Treats class (assuming dartdoc can find Treats in the lexical scope of the Pet class).

Tip this is a bit of a tangent, but one i feel very strongly about and will use my

author soapbox to espouse a bit! please, comment your code and comment it well,

most especially if anyone but you is ever going to look at it (but trust me, even

if you expect it’ll only ever be you, a well-written comment on code you haven’t

looked at in years will be a real godsend). there is an eternal ongoing debate in

the programming world about commenting. some people are completely averse to

writing any sort of comments (this is the “self-documenting code” camp), others

just want people to write useful comments. i’m very much in the latter camp,

and i’m even a bit more extreme about it. to me, comments are just as important

as code, and i’ve come to that conclusion based on 25 years of professional

software development where maintaining other peoples’ code, or just my own

years later, is a huge challenge. yes, try to write “self-documenting” code for sure,

that’s completely great advice. But then, once you’ve done so, comment anyway!

Of course, don’t tell me that a++; increments a in a comment, because that’s

pointless. you have to write meaningful comments obviously. But, if you aren’t

putting as much attention into writing good comments as you are writing good

code then, in at least this author’s opinion, you just aren’t doing your job thoroughly

and correctly.

 Nothing Stays the Same: Variables

To begin with, everything is an object in Dart. Variables in Dart, as in virtually any

language, store a value or a reference to something. In some languages, there is a

difference between primitives like numbers and string and objects, which are instances

of classes. Not so in Dart! Everything here is an object, even simple numbers, functions,

and even null are all objects, which are always instances of classes, and all of which

extend from a common Object class.

Chapter 2 hitting the Bullseye with Dart

42

 Variable Declaration and Initialization

In Dart, you can declare a variable in two ways:

var x;

. . .or. . .

<some specific type> x;

In this case, note that x has a value of null, even if it’s of a numeric type. That’s

always the default value if you don’t define the variable which, as in virtually all

languages, you can combine with the declaration:

var x = "Mel Brooks";

String x = "Mel Brooks";

And there, you see something interesting: when you do var x, Dart will infer the

type from the value assigned. It knows that x is a reference to a String in that case. But

you can also declare the type explicitly, as in String x, either way works. There is a style

guideline that says you should declare local variables using var and others using a type

annotation (which is what the String in String x is considered), but that’s a matter of

preference ultimately.

Also, there is a third option:

dynamic x = "Mel Books";

Here, the dynamic type annotation tells Dart that what x references can change over

time. So, if later you do

x = 42;

. . .Dart won’t complain that x now points to a numeric value rather than a string.

There is, in fact, a fourth and final option for declaring a variable:

Object x = "Mel Brooks";

Since everything in Dart extends from the common Object class, this works too.

But, as mentioned in the bullet points that started this chapter off, there is an important

difference. If a variable is of type Object, and you try to call a method on the reference

that doesn’t exist, then you’ll get a compile-time error. With dynamic, that won’t be the

case, and you’ll only see the problem at runtime.

Chapter 2 hitting the Bullseye with Dart

43

 Constants and Final Values

Finally, related to all of this is the const and final keywords, both of which define a

variable as being a constant, a final immutable value:

const x = "Mel Books";

It works with type annotations too:

const String x = "Mel Brooks";

And you can use final instead if you prefer:

final x = "Mel Brooks";

But, it’s not just a preference. The difference is that const variables are constant

at compile-time, which means their value can’t depend on anything at runtime. So, if

you tried:

const x = DateTime.now();

. . .that won’t work. But, this will:

final x = DateTime.now();

Essentially, final means you can only set it once, but you can do so at runtime, while

const means you can only set it once, but its value must be knowable at compile-time.

One final point on const: you can apply it to values as well as variable. For example

(and don’t worry that we haven’t talked about what List is yet, we’ll get to that soon –

but I’m pretty sure you can figure it out anyway!):

 List lst = const [1, 2, 3];

 print(lst);

 lst = [4, 5, 6];

 print(lst);

 lst[0] = 999;

 print(lst);

That works as expected: the initial list of values (1, 2, 3) is printed, then a new list is

referenced and printed (4, 5, 6), and finally the first element is updated, and the list again

printed (999, 5, 6). However, what happens if you move the lst[0] = 999; line before

Chapter 2 hitting the Bullseye with Dart

44

the reassignment of lst on the third line? Well, now you’ll get an exception because

you’re trying to alter a list that was marked as const. This is something a bit atypical in

Dart (I’m sure some other language has his, but it’s not common certainly).

Note Variables and other identifiers can start with a letter or an underscore and

then be followed by any combination of letters and numbers (and, of course, as

many underscores as your heart desires!) any that start with underscore have

a special meaning: it is private to the library (or class) it’s in. Dart doesn’t have

visibility keywords like public and private as is found in other languages like Java,

but starting with an underscore does much the same thing as private does in Java

and other languages.

 Everybody Has a Type: Data Types

Dart is a strongly typed language, but curiously, you don’t need to annotate types.

They’re optional, and that’s because Dart performs type inference when annotations

aren’t present.

 String Values

Dart offers a String type, which is a sequence of UTF-16 code units. Strings can be

initialized using either single or double quotes. Strings can include expressions using

the ${expression} syntax. If the expression refers to an identifier, then you can drop the

curly braces. So:

 String s1 = "Rickety Rocket";

 String s2 = "${s1} blast off!";

 String s3 = '$s1 blast off!';

 print (s2);

 print (s3);

You can see double and single quotes here, and you can see both forms of

expressions (sometimes referred to as tokens).

Chapter 2 hitting the Bullseye with Dart

45

String concatenation can use the + operator, as you can in a lot of languages, or it can

use adjacent string literals, like this:

return "Skywalker," "Luke";

Those string literals can, of course, include expression tokens as well.

 Numeric Values

Your typical integer numeric values have a type of int. The range of values is –263 to 263–1

on the Dart VM (the range will take on the range of JavaScript numbers when Dart code

is compiled to JavaScript, something not discussed in this book, and it will never be

larger than 64 bits, depending on platform)

A double precision floating point number, as specified by the IEEE 754 standard, has

a type of double.

Both int and double are subclasses of num, so you can define a variable as num w =

5; or num x = 5.5; as well as int y = 5; or double z = 5.5; and Dart knows that x is a

double based on its value just like it knows z is because you specified it.

A numeric can be turned into a string using the toString() method of the int and

double classes:

 int i = 5;

 double d = 5.5;

 String si = i.toString();

 String sd = d.toString();

 print(i);

 print(d);

 print(si);

 print(sd);

And, a string can be turned into a number with the parse() method or the int and

double classes:

 String si = "5";

 String sd = "5.5";

 int i = int.parse(si);

 double d = double.parse(sd);

Chapter 2 hitting the Bullseye with Dart

46

 print(si);

 print(sd);

 print(i);

 print(d);

Note it’s a little weird to my eyes but notice that String is the only type

that starts with a capital letter. i’m not honestly sure why that is, but it’s worth

pointing out. well, it’s also kinda/sorta not entirely true: Map and List also start

with capitals, as you’ll see a few sections from now. still, i’m not sure those

should be put in the same category as String, given that String is, to mind

anyway, a more “intrinsic” data type, like int and double. But we can debate

that another time – just realize that some data types start with a capital letter

and some don’t!

 Boolean Value

Boolean values are of type bool, and only two objects have boolean values: the keywords

true and false (which are compile-time constants).

Note that Dart’s type safety means that you can’t write code like this:

if (some_non_boolean_variable)

Instead, you must write something like:

if (some_non_boolean_variable.someMethod())

In other words, the evaluation of a logic statement can’t be “truthy” like you can do

in some languages. In Dart, it must always evaluate to one of these bool values.

 Lists and Maps

The List class in Dart is akin to an array in most languages. An instance of one is a list of

values which are defined with syntax identical to JavaScript:

List lst = [1, 2, 3];

Chapter 2 hitting the Bullseye with Dart

47

Note generally, you would write list (and later, set and map) when referring to

an instance of the Map, set, or list classes, and you only capitalize them when

referring to the actual class.

You, of course, could also do either of these:

var lst1 = [1, 2, 3];

Object lst2 = [1, 2, 3];

A list uses a zero-based indexing scheme, so list.length-1 gives you the index of

the last element. You can access elements by index:

print (lst[1]);

A list, being an object, has several methods available on it. I’m not going to go over

all of them since this chapter isn’t trying to be a reference guide, and especially since

most of them can be found in virtually any other language that offers a list-like construct

and so you’re likely familiar with most of them already, but here’s a quick example of a

few of them:

List lst = [8, 3, 12];

lst.add(4);

lst.sort((a, b) => a.compareTo(b));

lst.removeLast();

print(lst.indexOf(4));

print(lst);

Dart also offers a Set class, which is similar to List, but it’s an unordered list, which

means you can’t retrieve elements by index, you have to use methods contains() and

containsAll() instead:

Set cookies = Set();

cookies.addAll(["oatmeal", "chocolate", "rainbow"]);

cookies.add("oatmeal"); // No harm, no foul

cookies.remove("chocolate");

print(cookies);

print(cookies.contains("oatmeal"));

print(cookies.containsAll(["chocolate", "rainbow"]));

Chapter 2 hitting the Bullseye with Dart

48

The call to contains() returns true, while the call to containsAll() returns false

since chocolate was remove()’d. Note that add()’ing a value that’s already in the set

does no harm.

Dart also has a Map class, sometimes called a dictionary or a hash, or an object literal

in JavaScript, an instance of which can be created a few ways:

var actors = {

 "Ryan Reynolds" : "Deadpool",

 "Hugh Jackman" : "Wolverine"

};

print(actors);

var actresses = Map();

actresses["scarlett johansson"] = "Black Widow";

actresses["Zoe Saldana"] = "Gamora";

print (actresses);

var movies = Map<String, int>();

movies["Iron Man"] = 3;

movies["Thor"] = 3;

print(movies);

print(actors["Ryan Reynolds"]);

print(actresses["Elizabeth Olsen"]);

movies.remove("Thor");

print(movies);

print(actors.keys);

print(actresses.values);

Map sequels = { };

print(sequels.isEmpty);

sequels["The Winter Soldier"] = 2;

sequels["Civil War"] = 3;

sequels.forEach((k, v) {

 print(k + " sequel #" + v.toString());

});

Chapter 2 hitting the Bullseye with Dart

49

The first actors map is created using braces and with data defined immediately

within it. The second actresses map uses the new keyword to create a new Map instance

explicitly. Elements are added to it using bracket notation where the value inside the

bracket is the key and the value after the equals is the value to map to that key. The third

version shows that you can also define types for the keys and values in a map. That way,

if you try to do:

Movies[3] = "Iron Man";

. . .you will get a compile error because 3 is an int, but the type of the key is defined

as String (and likewise, the value type is defined as int, but we’re trying to insert a

String).

After that, you can see a few critical methods being used. The remove() method

removes an element from a map. You can get a list of the keys and values by reading the

keys and values attributes (which really means calling a getter method, as you’ll see

later in the section on classes, even though there’s no parenthesis like normally after a

method call). The isEmpty() method tells you whether the map is empty or not (there’s

also an isNotEmpty() method if you prefer that). Although not shown, a map also

provides the contains() and containsAll() methods, just like a list does. Finally, the

forEach() method allows you to execute an arbitrary function for each element in the

map (the function you supply is passed the key and the value – and there’s more to come

on functions, so don’t worry about the details just yet).

As with lists, there are many more utility methods available on maps, too many to go

over here, but we’ll likely encounter others as we look at the code of the projects in later

chapter.

Finally, one last point related to data types is that there is also a special dynamic type

that, in effect, turns off Dart’s type system. Imagine if you write:

Object obj = some_object;

Dart knows that you can call some methods on obj like toString() and hashCode()

because they are defined by the Object class that all objects extend from. If you try to

call obj.fakeMethod(), then you’ll get a warning because Dart can see, at compile-time,

that fakeMethod() isn’t a method of the Object class, or (presumably) of the class that

some_object is an instance of. But if you write

dynamic obj = some_object;

Chapter 2 hitting the Bullseye with Dart

50

Now, if you write obj.fakeMethod(), you won’t get a warning at compile-time,

though you will now get an error at runtime. Think of dynamic as a way of telling Dart:

“hey, I’m the one in charge here, trust me, I know what I’m doing!”. The dynamic type

is typically used with things like return values from interop activities, so you may not

encounter it all that much, but it’s worth nothing, and it’s worth understanding that it’s

fundamentally different from declaring something of type Object.

 When a Single Value Just Won’t Do: Enumerations

Need to have an object that contains a fixed number of constant values? Don’t wanna

have a bunch of variable floating around and don’t need a full-blown class? Then an

enum (short for enumeration) is right for you! Look! Here comes one now!

enum SciFiShows { Babylon_5, Stargate_SG1, Star_Trek };

And, here’s some things you can do with one:

main() {

 assert(SciFiShows.Babylon_5.index == 0);

 assert(SciFiShows.Stargate_SG1.index == 1);

 assert(SciFiShows.Star_Trek.index == 2);

 print(SciFiShows.values);

 print(SciFiShows.Stargate_SG1.index);

 var show = SciFiShows.Babylon_5;

 switch (show) {

 case SciFiShows.Babylon_5: print("B5"); break;

 case SciFiShows.Stargate_SG1: print("SG1"); break;

 case SciFiShows.Star_Trek: print("ST"); break;

 }

}

Every value in the enum has an implicit index getter method, so you can always find

the index of a given value (and you’ll get a compile error if the value isn’t valid in the

enum. You can also get a list of all the values in the enum through the values property

(which too also has an implicit getter). Finally, enum’s are especially useful in switch

statements, and Dart will give you a compile error if you don’t have a case for all the

values in the enum.

Chapter 2 hitting the Bullseye with Dart

51

 What’s Your Type: The “as” and “is” Keywords

These two conceptually go together: the is keyword allows you to determine if a

reference is of a given type (if it implements a given interface essentially) and as allows

you to treat a given type reference as another, assuming it’s a superclass. For example:

if (shape is Circle) {

 print(circle.circumference);

}

This will only print() (which writes content to the console) the circumference if the

object reference by shape is of type Circle.

By contrast, you can use as like so:

(shape as Circle).circumference = 20;

That way, if shape is a Circle, it works as expected, and if shape can be cast to a

Circle, then I would work too (perhaps shape is of type Oval, which is a subclass of

Circle, for example).

Note, however, that in the example of is, nothing will happen if shape isn’t a Circle,

but in the as example, an exception will be thrown if shape can’t be cast to Circle.

 Going with the Flow: Flow Control (and Logic!) Constructs

Dart has several logic and flow control statements and constructs, most of which will be

familiar to someone with any programming experience at all.

 Looping

Looping in Dart takes on the familiar for, do, and while loop forms:

for (var i = 0; i < 10; i++) {

 print(i);

}

Chapter 2 hitting the Bullseye with Dart

52

There is also a for-in form, if the target class is iterable:

List starfleet = ["1701", "1234", "1017", "2610", "7410"];

main() {

 for (var shipNum in starfleet) {

 print("NCC-" + shipNum);

 }

}

A List is one such iterable class, so this works well. If you prefer a more functional

style, you can use the forEach form:

main() {

 starfleet.forEach((shipNum) => print("NCC-" + shipNum));

}

Note Don’t get hung up on these functions, especially if the syntax looks a little

foreign to you. we’ll get into functions in just a few sections, and it should all come

into focus quickly when we do.

The do and while loops offer the typical two forms, do-while and while-do:

while (!isDone()) {

 // Do something

}

do {

 showStatus();

} while (!processDone());

Note that as in most other languages, the continue keyword is also available in Dart

to skip to the next iteration of a loop construct. There is also a break keyword to exit from

a loop early (which does double duty in the switch construct too).

 Switch

Dart also offers a switch structure, and four keywords work together like in most

languages to construct switch statements:

Chapter 2 hitting the Bullseye with Dart

53

switch (someVariable) {

 case 1:

 // Do something

 break;

 case 2:

 // Do something else

 break;

 default:

 // It wasn't 1 or 2

 break;

}

The switch statement in Dart can deal with integer or string types, and the

compared objects must be of the same types (and no subclasses allowed here!), and the

classes must not override the == operator.

 If Statements

Finally, because they are essentially flow control elements, yes, your all-time favorite

logic statement is present in Dart, and it wouldn’t be much use without, would it? Note

that in Dart, condition expressions must always evaluate to a boolean value, nothing else

is allowed. And yes, you can write else if of course:

if (mercury == true || venus == true ||

 earth == true || mars == true

) {

 print ("It's an inner planet");

} else if (jupiter || saturn || uranus || neptune) {

 print ("It's an outer planet");

} else {

 print("Poor Pluto, you are NOT a planet");

}

Note that if mercury, venus, earth, and mars were bool types then if (mercury ||

venus || earth || mars) would also be valid here.

Chapter 2 hitting the Bullseye with Dart

54

 The Big Nothing: void

In most languages, if a function doesn’t return anything, you have to slap void in front of

it. In Dart, which supports the void keyword, you can do that, but you don’t have to.

In Dart though, void is a bit more. . . curious.

First, if a function doesn’t explicitly return anything, then you can omit a return type

entirely; you don’t even need to put void in front of it like most languages (although you

are free to do so if you prefer). In such cases, an implicit return null; is added to the

end of the function. This is the case for all the code samples thus far.

If you do put void in front of a function though, you will then get a compile-time

error if you try to return anything. That makes sense. But if you try and return null, that’s

okay, no error. You can also return a void function (a function that has void before it).

Here’s where it gets a little weird though:

void func() { }

class MyClass {

 void sayHi() {

 print("Hi");

 dynamic a = 1;

 return a;

 }

}

main() {

 MyClass mc = MyClass();

 var b = mc.sayHi();

 print(b);

}

Given that sayHi() is a void function, you’d expect that return a from it would

produce an error, right? Well, not so! It will compile. Well, it would compile, except for

the print(b); line. That will cause a compile-time error, and the reason is that Dart

won’t let you use anything returned from a void function (even though you can capture

it, since the var b = mc.sayHi(); line compiles and executes without issue – Dart is

kind of a tease that way!).

Chapter 2 hitting the Bullseye with Dart

55

So yeah, void is kind of a weird thing in Dart. My advice is to not use it unless you

specifically know that you need to.

But, void isn’t just for return types. You can also use void in generic type parameters,

where they are treated semantically like Object is:

main() {

 List<void> l = [1, 2, 3]; // Equivalent to List<Object> = [1, 2, 3];

 print(l);

}

Why you might do this is something I’ll touch upon on the section on asynchronous

code.

 Smooth Operators

Dart has a robust set of operators for you to work with, most of which are likely familiar

to you, as shown in Table 2-1.

Table 2-1. Dart operators

Operator Meaning

+ add

- subtract

-expr prefix unary minus (a.k.a. negation/reverse sign of expression)

* Multiply

/ Divide

~/ Divide, returning an integer result

% get the remainder of an integer division (modulo)

++var prefix increment, equivalent to var = var + 1 (expression value is var + 1)

var++ postfix increment, equivalent to var = var + 1 (expression value is var)

--var prefix decrement, equivalent to var = var – 1 (expression value is var – 1)

var-- postfix decrement, var = var – 1 (expression value is var)

(continued)

Chapter 2 hitting the Bullseye with Dart

56

A note on the == operator: This is a value check, not an object check. When you

need to test if two variables reference the exact same object, use the identical() global

function.

When using the == operator, as in if (a == b), true is returned if they are both

null, false if only one is. When this expression is executed, the ==() method of the first

operand (yes, == is indeed the name of a method!) is executed.

Table 2-1. (continued)

Operator Meaning

== equal

!= not equal

> greater than

< less than

>= greater than or equal to

<= less than or equal to

= assignment

& logical anD

| logical Or

^ logical XOr

~expr unary bitwise complement (0s become 1s; 1s become 0s)

<< shift left

>> shift right

a ? b : c ternary conditional expression

a ?? b Binary conditional expression: if a is not null, return a, otherwise return b

.. Cascade notation

() Function application

[] list access

. Member access

Chapter 2 hitting the Bullseye with Dart

57

So:

if (a == b)

. . .is equivalent to. . .

if (a.==(b))

A note on the = operator: There is also a ??= operator which does the assignment

only if the operand is null.

Another note on the = operator: There are a host of compound operators that

combine an assignment and an operation. These are

-= /= %= >>= ^= += *= ~/= <<= &= |=

A note on the . operator: There is also a conditional version written ?. that allows

you to access a member of something where that something could be null.

Take this code, for example:

var person = findPerson("Frank Zammetti");

If person could be null, then writing print(person?.age) will avoid a null pointer

error. The result, in this case, would be null printed, but no error, which is the key point.

A note on the .. operator: This allows you to take code like this:

var person = findPerson("Frank Zammetti");

obj.age = 46;

obj.gender = "male";

obj.save();

. . .and instead write it like this. . .

findPerson("Frank Zammetti")

 ..age = 46

 ..gender = "male"

 ..save();

Use whichever style is more pleasing to your eyes, Dart doesn’t care either way.

Classes can also define custom operators, but that statement doesn’t have much

value unless we first talk about what classes are all about, so let’s do that now, shall we?

Chapter 2 hitting the Bullseye with Dart

58

 Classing the Joint Up: Object Orientation in Dart

Dart is object-oriented, which means we’re dealing with classes and objects. Defining a

class is as simple as

class Hero { }

Yep, that’s it!

 Instance Variables

Now, classes frequently have instance variables (or members, or fields, or properties, all

are synonymous) like so:

class Hero {

 String firstName;

 String lastName;

}

Any instance variable that you don’t initialize with a value begins with a value of null.

Dart will automatically generate a getter (accessor) method for each variable, and it will

also generate a setter (mutator) for any non-final variables.

Instance variables can be marked as static as well, which means you can use them

without instantiating the class:

class MyClass {

 static String greeting = "Hi";

}

main() {

 print(MyClass.greeting);

}

That will print “Hi”, all without ever creating an instance of MyClass.

Chapter 2 hitting the Bullseye with Dart

59

 Methods

Classes can also have member functions, called methods:

class Hero {

 String firstName;

 String lastName;

 String sayName() {

 return "$lastName, $firstName";

 }

}

We’re going to look at functions in more detail in the next section, but I’m betting

you’re already familiar with them generally. If you aren’t, then this book probably isn’t

a good starting point for you since it assumes some level of modern programming

experience. Right now, understand that the return keywords returns a value from the

function (or method, when its part of a class) to the caller.

Now, we have a sayName() method that we could call like so:

main() {

 Hero h = new Hero ();

 h.firstName = "Luke";

 h.lastName = "Skywalker";

 print(h.sayName());

}

That also demonstrates that setter methods have indeed been created for us, which

is why h.firstName = "Luke"; works.

I skipped over something there: as in virtually all object-oriented languages, the new

keyword instantiates objects of a given type, as seen in the previous code. However, in

Dart, the new keyword is optional. So, in addition to the previous code, you can also write

var h = Hero();

To be honest, this was, to my brain, one of the weirdest things to get used to about

Dart! I’m not sure there’s any compelling reason to do one vs. the other, so pretty much

just write it the way makes the most sense to you!

Chapter 2 hitting the Bullseye with Dart

60

Methods can also be marked as static, just like instance variables can be:

class MyClass {

 static sayHi() {

 print("Hi");

 }

}

main() {

 MyClass.sayHi();

}

As with the static variable example, this again prints “Hi”, but this time as a result of

calling sayHi() without instantiating MyClass first.

 Constructors

Now, classes also frequently have constructors, that is, special function that execute

when an instance of them is created. Adding one is simple:

class Hero {

 String firstName;

 String lastName;

 Hero(String fn, String ln) {

 firstName = fn;

 lastName = ln;

 }

 String sayName() {

 return "$lastName, $firstName";

 }

}

The constructor always has the same name as the class and doesn’t have a return

type annotation. Now, our test code would look like this:

main() {

 Hero h = new Hero("Luke", "Skywalker");

 print(h.sayName());

}

Chapter 2 hitting the Bullseye with Dart

61

However, because a constructor that just sets instance variable values is such a

common pattern, Dart has a shortcut constructor form for this:

class Hero {

 String firstName;

 String lastName;

 Hero(this.firstName, this.lastName);

 String sayName() {

 return "$lastName, $firstName";

 }

}

 The “this” Reference

The this keyword references the current instance of the class a block of code is

executing within (which a construct or not). Typically, you should only use this when

there is a naming conflict. For example:

class Account {

 int balance;

 Account(int balance) {

 this.balance = balance;

 }

}

But, philosophical debates about whether you should ever “mask” variable names

like this aside (my own personal style says you never do that, I would name that

balance argument inBalance or something different than the class-level balance), this

allows you to disambiguate such a case and it’s necessary specifically in this shortcut

constructor form.

Note that if your class doesn’t define a constructor, as in the first three versions of

Hero mentioned earlier, Dart will generate a default no-argument constructor that just

invokes the no-argument constructor of the superclass (which here is Object implicitly).

Also, note that subclasses do not inherit constructors.

A constructor can also be marked with the factory keyword. This is used when

the constructor might not return an instance of its class. I know, that probably sounds

weird because it’s an unusual capability of most OOP languages, but it can happen if,

Chapter 2 hitting the Bullseye with Dart

62

for example, you want to return an existing instance of the class from a cache of already

constructed objects and not produce a new object, which is what happens by default.

A factory constructor might also return an instance of a subclass rather than the class

itself. A factory constructor otherwise works just like any other constructor, and you call

them the same too, with the only real difference being that they don’t have access to the

this reference.

 Subclassing

I mentioned subclasses here a moment ago, so how do we define those? Well, it’s easy:

 class Hero {

 String firstName;

 String lastName;

 Hero.build(this.firstName, this.lastName);

 String sayName() {

 return "$lastName, $firstName";

 }

}

class UltimateHero extends Hero {

 UltimateHero(fn, ln) : super.build(fn, ln);

 String sayName() {

 return "Jedi $lastName, $firstName";

 }

}

The extends keyword, followed by the name of the class we want to subclass, is all it

takes.

However, there’s a bit more going on here of interest. First is the notion of named

constructors. Gaze in awe at that Hero class. See that Hero.build() method? Well,

that’s a constructor too, but it’s what is termed a named constructor. The reason this is

necessary is because in the UltimateHero class, due to constructors not being inherited,

we need to supply one. But, given that it should do the same as what Hero.build() does,

there’s no point in repeating the code (the DRY – Don’t Repeat Yourself – principle). So,

how do you call the constructor in the parent class? That’s where the : super.build(fn,

ln); bit following the UltimateHero(fn, ln) constructor comes in. The super keyword

Chapter 2 hitting the Bullseye with Dart

63

allows you to call methods or access variables in the parent class. But, there’s no way

to call the constructor without it being named. In other words, super(fn, ln), which

would work in many other languages, doesn’t in Dart. But, what we can do is call a

named constructor without issue, so that’s exactly what we do here, using the syntax

from the colon on.

 Getters and Setters

Now that you’ve seen all of that, I want to go back to the notion of getters and setters. You

see, you can create your own, aside from the ones implicitly created, to in a sense create

new instance variables on-the-fly. For that, Dart offers the get and set keywords:

class Hero {

 String firstName;

 String lastName;

 String get fullName => "$lastName, $firstName";

 set fullName(n) => firstName = n;

 Hero(String fn, String ln) {

 firstName = fn;

 lastName = ln;

 }

 String sayName() {

 return "$lastName, $firstName";

 }

}

Here, we now have a fullName field. When we try to access it, we’ll get the same sort

of concatenation of lastName and firstName as sayName() provides, but when we try to

set it, we’ll be overwriting the firstName field. So, now we can test it:

main() {

 Hero h = new Hero("Luke", "Skywalker");

 print(h.sayName());

 print(h.fullName);

 h.fullName = "Anakin";

 print(h.fullName);

}

Chapter 2 hitting the Bullseye with Dart

64

The output here will be

Skywalker, Luke

Skywalker, Luke

Skywalker, Anakin

Hopefully you can see why!

 Interfaces

Dart doesn’t distinguish the notion of classes and interfaces like most other object-

oriented languages do. Instead, a Dart class also implicitly defines an interface.

Therefore, we could re-implement the UltimateHero class like so:

class UltimateHero implements Hero {

 @override

 String firstName;

 @override

 String lastName;

 UltimateHero(this.firstName, this.lastName);

 String sayName() {

 return "Jedi $lastName, $firstName";

 }

}

The @override here is a metadata annotation, but we’ll get to those later. For

now, just understand that it’s necessary to indicate to dart that we are overriding the

superclass’s getter and setter for the two marked fields and without them, we’ll get an

error. With that change, we also need to change the constructor because now we’re

not extending the class and so don’t have access to the Hero.build() constructor

(because constructors are never inherited and also implementing an interface

means we don’t have access to the behaviors of the class that provides the interface,

we’re just saying that our new class provides that same functionality as contractually

obligated by the interface), so it becomes a constructor that mimics what’s in Hero

instead. The only other change is swapping the implements keyword in for extends

since now we’re implementing the interface defined by the Hero class rather than

extending it.

Chapter 2 hitting the Bullseye with Dart

65

Tip why implements vs. extends you ask? it’s a question many ask in

the OOp world. some people feel that a compositional model, which is what

implements. . . err. . . implements. . . is cleaner. Others think that hierarchies of

classes is more proper classical OOp and so prefer extends. whatever your view,

understand one key point: they aren’t equivalent concepts, and in Dart, as in Java

and many other OOp languages, you can only extend a single class directly, but you

can implement as many interfaces as you wish. so, if your goal is to build a class

that provides an api that mimics multiple classes, then implements is what you

likely want. Otherwise, you may be on the extends road instead.

 Abstract Classes

Next, let’s quickly touch on abstract. This keyword marks an abstract class, like so:

abstract class MyAbstractClass {

 someMethod();

}

Here, MyAbstractClass can’t be instantiated and instead must be extended by

a concrete class that itself can be instantiated. Methods inside abstract classes can

provide an implementation, or they can be themselves be abstract, in which case, they

must always be implemented by a subclass. Here, someMethod() is considered abstract

(because it has no method body), but instead you could also do

abstract class MyAbstractClass {

 someMethod() {

 // Do something

 }

}

In that case, someMethod() has a default implementation and a subclass therefore

does not need to provide one if it doesn’t want to.

In addition to extending classes, implementing interfaces and abstract classes, Dart

also offers the notion of mixins, which is where the with keyword comes into play:

Chapter 2 hitting the Bullseye with Dart

66

class Person { }

mixin Avenger {

 bool wieldsMjolnir = false;

 bool hasArmor = false;

 bool canShrink = true;

 whichAvenger() {

 if (wieldsMjolnir) {

 print("I'm Thor");

 } else if (hasArmor) {

 print("I'm Iron Man");

 } else {

 print("I'm Ant Man");

 }

 }

}

class Superhero extends Person with Avenger { }

main() {

 Superhero s = new Superhero();

 s.whichAvenger();

}

Here, we’ve got two classes, Person and Superhero, and one mixin, Avenger (which

we know based on the mixin keyword that comes before its definition). Notice that

Person and Superhero are empty classes, which means that the call to whichAvenger()

must be coming from elsewhere, and it is: we’ve “mixed the Avenger mixin into the

Superhero class,” so to speak, by specifying with Avenger in the Superhero class

definition. Now, whatever is in the Avenger mixin will also be present in Superhero, and

our test code works as expected.

 Visibility

In Java and many other OOP languages, you typically need to specify what access code

has to class members using keywords like public, private, and protected. Dart is

different: everything is public unless it begins with an underscore, which marks it as

being private to its library, or class.

Chapter 2 hitting the Bullseye with Dart

67

 Operators

As Steve Jobs used to say: “One more thing!”

Of the various operators Dart provides, the following are special (the commas and

the period are not operators!): <, >, <=, >=, -, +, /, ~/, *, %, |, ^, &, <<, >>, [], []=, ~, ==.

How are they special? Well, they’re the only ones you can override in a class using the

operator keyword:

class MyNumber {

 num val;

 num operator + (num n) => val * n;

 MyNumber(v) { this.val = v; }

}

main() {

 MyNumber mn = MyNumber(5);

 print(mn + 2);

}

Here, the MyNumber class overrides the + operator. The current value of an instance

of this class will be multiplied by a value rather than be added together thanks to the

function supplied for the + operator in the override. So, when main() executes, rather

than printing 7 as you would normally expect from the + operator, it instead prints

10 since it multiplies the value of mn, 5, by the 2 after the overridden + operator in the

print() statement.

The only catch is that if you override the == operator, then you should also override

the class’s hashCode getter. Otherwise, equivalency can’t reliably be determined.

Whew, that was a lot! But it covers probably the majority of what you’ll need to know

about classes and objects in Dart.

 Getting Funky with Functions

In Dart, functions are first-class citizens and have their own type: Function. What that

means is that functions can be assigned to variables, can be passed as parameters, and

can also be stand-alone entities. There’s one key stand-alone function you’re already

aware of, and that’s main().

Chapter 2 hitting the Bullseye with Dart

68

Functions in Dart have some sweet syntactic sugar too (see what I did there?). They

can have named parameters, and they can also have optional parameters. You can have

optional parameters whether you use named parameters or purely positional (the typical

style of parameter list), but you can’t mix the two styles. You can also have default values

for parameters. Examine this code:

greet(String name) {

 print("Hello, $name");

}

class MyClass {

 greetAgain({ Function f, String n = "human" }) {

 f(n);

 }

}

main() {

 MyClass mc = new MyClass();

 greet("Frank");

 mc.greetAgain(f : greet, n : "Traci");

 mc.greetAgain(f : greet);

}

Here, you can see most of that at work. First, we have a stand-alone greet()

function. Then, we have a class with a greetAgain() method. This method accepts a

named parameter list, and look, one of those parameters is a Function! Also, see how the

n parameter has a default value of human defined? Cool, right? Then, inside the function,

we call the function referenced by f, passing it n. In other words, whatever function is

passed in as the value of the f parameter, because it’s annotated as a Function, we can

use that f reference to call it.

Now, in the main() function, we first just call greet(), passing it the name that

was passed into it, to have the computer say hello. Then, we call that greetAgain()

method of the MyClass instance mc, and this time, we’re passing named parameters,

and the value of the f parameter is a reference to the greet() function. I show this

twice so you can see how it works if you don’t pass a name, and it’ll just greet a

generic human.

Chapter 2 hitting the Bullseye with Dart

69

Note in many languages, the data you pass to functions are called arguments.

that’s the term i grew up with frankly, but the Dart language docs seem to prefer

parameters. truthfully, i may mix those terms sometimes, but they mean the same

in this context.

Unfortunately, DartPad does not, as of this writing, allow for importing libraries,

which we would need to use the @required annotation that ideally would be before

the n parameter in greetAgain(), but not the f parameter. So, because you may want

to plug this code in to DartPad and try it, I left that annotation out. Also note that when

using positional parameters, you don’t use @required, you instead wrap the optional

parameters in square brackets.

While most functions have a name, they don’t have to, they can also be anonymous.

As an example:

main() {

 var bands = ["Dream Theater", "Kamelot", "Periphery"];

 bands.forEach((band) {

 print("${bands.indexOf(band)}: $band");

 });

}

Here, there’s a function passed to the forEach() method of the List object bands,

but it has no name and as a result, it only exists for the lifetime of the execution of

forEach().

An important thing about functions is the scope they introduce. Dart is considered

a “lexically scoped” language, which means that the scope of a given thing, a variable

mostly, is determined by the structure of the code itself. If it’s enclosed in curly braces,

then it’s within that scope, and that scope extends downward, meaning that if you have

nested functions, for example (which is something else you can totally do in Dart!), then

the deeper in the nesting you go, those elements still have access to everything above. To

demonstrate this, check out this example:

bool topLevel = true;

main() {

Chapter 2 hitting the Bullseye with Dart

70

 var insideMain = true;

 myFunction() {

 var insideFunction = true;

 nestedFunction() {

 var insideNestedFunction = true;

 assert(topLevel);

 assert(insideMain);

 assert(insideFunction);

 assert(insideNestedFunction);

 }

 }

}

The nestedFunction() can use any variable all the way up to the top level.

Dart also supports the concept of closures with functions so that a function will

capture, or “close around,” its lexical scope, even if the function is used outside of its

original scope. In other words, if a function has access to a variable, then the function

will, in a sense, “remember” that variable even if the scope the variable is in is no longer

“alive”, so to speak, when the function executes.

By way of example:

remember(int inNumber) {

 return () => print(inNumber);

}

main() {

 var jenny = remember(8675309);

 jenny();

}

Here, the call to jenny() print 8675309, even though it wasn’t passed to it. This

happens because jenny() includes the lexical scope of remember(), and the execution

context at the time the reference is captured, which includes the value passed into

the call to remember() when getting the reference. It’s confusing if you’ve never

Chapter 2 hitting the Bullseye with Dart

71

encountered it before, I know, but the good news is that you probably won’t need

to use closures very much in Dart in my experience (as compared to, say JavaScript,

where it comes up all the time).

Dart also supports arrow, or lambda, notation for defining functions. So, these are

equivalent:

talk1() { print("abc"); }

talk2() => print("abc");

 Tell Me Is It So: Assertions

The assert keyword is like in most other languages and isn’t used in production builds.

It’s used to disrupt normal flow if a given boolean condition is false and throws an

AssertionException in that case. For example:

assert (firstName == null);

assert (age > 25);

Optionally, you can attach a message to the assert like so:

assert (firstName != null, "First name was null");

 Out of Time: Asynchrony

Asychronous (or just async) programming is big business these days! It’s everywhere,

in all languages, and Dart is no exception. In Dart, two classes are key to asynchrony,

Future and Stream, along with two keywords, async and await. Both classes are

objects that async functions return when a long-running operation begins, but before it

completes, allowing the program to await the result while continuing to do other things,

then continue where it left off when the result comes back.

To call a function that returns a Future, you use the await keyword:

await someLongRunningFunction();

That’s all you have to do! Your code will pause at this line until

someLongRunningFunction() completes. The program can still do other things rather

than being blocked by the long-running operation (for example, if an event handler

Chapter 2 hitting the Bullseye with Dart

72

for a button click fires, which would be blocked if someLongRunningFunction() was

synchronous). The async function itself must be marked with the async keyword in front

of its body definition and must return a Future:

Future someLongRunningFunction() async {

 // Do something that takes a long time

}

There’s one more key piece of information: the function that calls

someLongRunningFunction() must itself be marked as async:

MyFunction() async {

 await someLongRunningFunction();

}

You can await a function, whether the same or others, as many times as you wish in

a single async function and execution will pause on each.

Note there is also a Future api that allows you to do much the same thing but

without using async and await. i’m not covering this just because async/await is

generally considered by most to be a more elegant approach, and i certainly echo

that sentiment. Feel free to explore that api on your own though if you’re curious.

Streams are handled in much the same way, but to read data from the Stream you

must use an async for loop:

await for (varOrType identifier in expression) {

 // Executes each time the stream emits a value.

}

The difference between the two is simply that using a Future means that the return

from the long-running function won’t occur until that function completes, however long

it takes. With a Stream, the function can return data little by little over time, and your

code that is awaiting it will execute any time the Stream emits a value. You can break or

return from the loop to stop reading form the Stream, and the loop will end when the

async function closes the Stream. As before, an await for loop is only allowed inside of

an async function.

Chapter 2 hitting the Bullseye with Dart

73

 Ssshhh, Be Quiet: Libraries (and Visibility)

Libraries are used in Dart to make code modular and shareable. A library provides some

external API to other code that uses it. It also serves as a method of isolation in that any

identifier in a library that starts with an underscore character is visible only inside that

library. Interestingly, every single Dart app is automatically a library whether you do

anything special or not! Libraries can be packaged up and delivered to others using the

Dart SDK’s pub tool, which is the package and asset manager

Note i won’t be covering the creation of libraries here as it’s a bit more advanced

and not something we’ll need in this book. so, if you’re interested in distributing

your libraries, then you’ll need to consult the Dart documentation. note that the

Dart sDK comes as part of the Flutter sDK, so you have this already.

To use a library, the import keyword comes into play:

import "dart:html";

Some libraries are provided by your own code, and others are built into Dart, as is

this one. For those built-in libraries, the form of the URI, which is what the part of the

statement in quotes is, has a particular form: it begins with dart:, which is the scheme

identifier portion of the URI.

If the library that you’re importing comes from a package, which was touched on

briefly in Chapter 1 and which we’ll get into in more detail starting with the next chapter,

then instead of dart: you would use the package: scheme:

import "package:someLib.dart";

If the library is part of your code, or perhaps something you copied into your

codebase, then the URI is a relative file system path:

import "../libs/myLibrary.dart";

Sometimes, you may want to import two libraries, but they have conflicting

identifiers in them. For example, maybe lib1 has an Account class, and so does lib2, but

you need to import both. In that case, the as keyword comes into play:

import "libs/lib1.dart";

import "libs/lib2.dart" as lib2;

Chapter 2 hitting the Bullseye with Dart

74

Now, if you want to reference the Account class in lib1, you do

Account a = new Account();

But if you want the Account object from lib2, you would write

lib2.Account = new lib2.Account();

With the imports shown here, everything in the library would be imported. You don’t

have to do that though; you can import just parts of a library too:

import "package:lib1.dart" show Account;

import "package:lib2.dart" hide Account;

Here, only the Account class from lib1 would be imported, and everything except the

Account class from lib2 would be imported.

So far, all the imports shown would import the library immediately. But, you can also

defer that loading, which helps reduce your app’s initial startup time:

import "libs/lib1.dart" deferred as lib1;

Now, there’s a little more work to be done on your part! When you get to the point in

your code where you need that library, you must then load it:

await lib1.loadLibrary();

As you learned in the last section, that code must be in a function marked async.

Note that invoking loadLibrary() on a library multiple times is fine, no harm is

done. Also, until the library is loaded, the constants defined in the library, if any, aren’t

actually constants – they don’t exist until it’s loaded, so you can’t use them.

Deferred loading can also be handy if you want to do A/B testing with your app

because you can dynamically load one library vs. another to test the differences.

 Let’s Be Exceptional: Exception Handling

Exception handling in Dart is simple and looks a lot like Java or JavaScript, or

indeed most other languages that deals with exceptions. In contrast to many other

languages though, in Dart, you are not required to declare what exceptions a given

function must throw, nor must you catch any. In other words, all exceptions in Dart

are unchecked.

Chapter 2 hitting the Bullseye with Dart

75

To begin, you can throw an exception yourself:

throw FormatException("This value isn't in the right format");

Exceptions are objects, so you need to construct one to throw.

An interesting thing about Dart is that you don’t need to throw any specific object or

even an object of a particular subtype. You can throw anything as an exception:

throw "This value isn't in the right format";

That’s throwing a string as an exception, and that’s perfectly fine in Dart. However,

with that said, it’s generally considered bad form to throw anything that doesn’t extend

from the Error or Exception classes that Dart provides, so this “throw anything” is one

capability you might want just to forget exists in Dart!

On the flip side, to catch an exception, you write

try {

 somethingThatMightThrowAnException();

} on FormatException catch (fe) {

 print(fe);

} on Exception catch (e) {

 Print("Some other Exception: " + e);

} catch (u) {

 print("Unknown exception");

} finally {

 print("All done!");

}

A couple of things are noteworthy there. First, you wrap code that might throw an

exception (that you want to handle – remember, being unchecked exceptions, you never

need to handle any exceptions) in a try block. Then, you catch one or more exceptions

as you see fit. Here, the somethingThatMightThrowAnException() function can throw

a FormatException, and we want to handle that explicitly. Then, we’ll handle any other

object thrown that is a subclass of Exception and display its message. Finally, anything

else thrown will be handled as an unknown exception.

Next, notice the syntactic differences there: you can write on <exception_type>

catch, or you can just write catch(<object_identifier) where the object identifier is

the object that was thrown under whatever name you’d like in the catch block. You can

Chapter 2 hitting the Bullseye with Dart

76

also just write on if you wish. The difference is what you need to do: if you just want to

handle the exception but don’t care about the thrown object, you can just write on. If you

don’t care about the type but do want the thrown object, then just use catch. When you

care both about the type and also need the thrown object, use on <exception_type>

catch(<object_identifier).

You can also add a finally clause to a try...catch block. This code will execute

whether any sort of exception was thrown or not. This code will execute after any

matching catch clauses have finished their work.

Finally, you can define your own exception classes just by extending Exception or

Error. You then use them precisely as you do any Dart-provided exception.

 I Have the Power: Generators

Sometimes, you have some code that produces some values. Maybe that code relies on

some remote system that it needs to call. In that case, you may not want to block the

rest of your code from executing while those values are generated. You instead want to

generate that list in a “lazy” fashion. Alternatively, you may simply not want or be able

to produce the list of values all in one shot. In these situations, a generator is something

you’ll want to be familiar with

Dart has two types of generators: synchronous, which returns an Iterable object,

and asynchronous, which returns a Stream object. Let’s discuss the synchronous type

first by way of example:

Iterable<int> countTo(int max) sync* {

 int i = 0;

 while (i < max) yield i++;

}

main() {

 Iterable it = countTo(5);

 Iterator i = it.iterator;

 while (i.moveNext()) {

 print(i.current);

 }

}

Chapter 2 hitting the Bullseye with Dart

77

The first thing to note is the sync* marker before the body of the function. This clues

Dart into the fact that this is a generator function (and a generator is always a function

by the way). The second key point is the use of the yield keyword within the generator.

This effectively adds the value to the Iterable that is constructed behind the scenes and

returned from the function.

When called, countTo() immediately returns an iterable. Your code can then extract an

iterator from that to begin iterating the result list (even though it’s not populated yet). Where

it gets interesting is that countTo() won’t actually execute until the code calling it extracts

that iterator and then calls moveNext() on it. When that happens, countTo() will execute

until the point it hits the yield statement. The expression i++ is evaluated and is “yielded”

back to the caller via the “invisible” iterator. Then, countTo() suspends (since it hasn’t met

its condition for ending yet), and moveNext() returns true to its caller. Since the code using

countTo() is iterating the iterator, we can read the value just yielded via its current property.

Then, countTo() resumes execution the next time moveNext() is called. When the

loop ends, the method implicitly executes a return, which causes it to terminate. At that

point, moveNext() returns false to its caller, and the while loop ends.

The second type of generator can be demonstrated with this code:

Stream<int> countTo(int max) async* {

 int i = 0;

 while (i < max) yield i++;

}

main() async {

 Stream s = countTo(5);

 await for (int i in s) { print(i); }

}

The difference here are the use of Stream as a return type and the use of the async*

marker instead of *sync before the function body. Another difference is in how we use

the countTo() method. Since it’s an async method, we need the function it’s called

in also to be marked with async. Then, the await for is added. This is a form of for

loop that is stream-aware. In a sense, because the for loop is awaiting the countTo()

function to do its work, that function is effectively “pushing” the value to the for loop via

the returned Stream. In this example, it may not seem obvious why you would do this,

but imagine if instead of just incrementing i, countTo() instead was calling a remote

server to get the next value. Hopefully, then it becomes more obvious what the value of

generators is.

Chapter 2 hitting the Bullseye with Dart

78

 Metatude: Metadata

Dart also supports the notion of metadata embedded in your code. This is usually

called annotations in other languages, and it kinda/sorta is in Dart too (I say it that way

because the documentation calls this “metadata annotations,” which is a bit verbose, but

I suppose it’s more accurate).

Dart provides two annotations, one of which you saw earlier: @override. As

previously described, this is used to indicate that a class is intentionally overriding a

member of its superclass.

The other annotation Dart provides is @deprecated. No, the annotation isn’t

deprecated, what it marks is, silly! This marks something to indicate that you probably

shouldn’t be using it anymore and that it might be removed at some point. This is

especially common with a class method that will be removed in a future version of your

code, but you want to give people using it a bit of time to make the change.

You can also create your own annotations. An annotation is just a class, so this could

be an annotation:

class MyAnnotation {

 final String note;

 const MyAnnotation(this.note);

}

Here, the annotation can take an argument, so we can use it like so:

@MyAnnotation("This is my function")

Void myFunction() {

 // Do something

}

You can annotate the following language elements: library, class, typedef, type

parameter, constructor, factory, function, field, parameter, variable declaration, and

import and export directives. The metadata carried by annotations can be retrieved

at runtime using Dart’s reflection capabilities, but I leave discovering that as an

exercise for the reader if and when needed as its generally not needed by most people’s

application code.

Chapter 2 hitting the Bullseye with Dart

79

 Speaking in General: Generics

Generics are used to inform Dart about the type of something. For example, if you write

var ls = List<String>();

. . .then Dart knows that the list ls can only contain Strings. It will enforce that type

safety at compile-time.

But that almost seems like they should be called specifics, right? You’re telling Dart

specifically what type that List holds. Where the name generics comes into play is when

you write something like this:

abstract class Things<V> {

 T getByName(String name);

 void setByName(String name, V value);

}

Here, we’re telling Dart that the Things class can be used for any type, where V is

a stand-in for the type (by convention, generic types like this are a single letter, most

usually E, K, S, T, or V). Now, with this class serving as an interface, you can go off and

implement many different versions of it, all using a different type (maybe Person, Car,

Dog, and Planet, all of which could implement this same base interface).

Lists and Maps can be defined generically as shown earlier, and you can use the

literal form as well:

var brands = <String>["Ford", "Pepsi", "Disney"];

var movieStars = <String, String>{

 "Pitch Black : "Vin Diesel",

 "Captain American" : "Chris Evans",

 "Star Trek" : "William Shatner"

};

In Dart, generic types are reified, which means that their type is carried with them at

runtime, allowing you to test the type of a collection with the is keyword:

var veggies = List<String>();

veggies.addAll(["Peas", "Carrots", "Cauliflower"]);

print(veggies is List<String>);

Chapter 2 hitting the Bullseye with Dart

80

That will print true, as you’d expect, thanks to reification. While this seems kind of

obvious, it’s not the case in every language. Java, for example, uses erasure rather than

reification, which means that the type is removed at runtime. So, while you can test that

something is a List, you can’t test that it’s a List<String> in Java like you can in Dart.

Finally, methods can use generics as well as class definitions:

class C {

 E showFirst<E>(List<E> lst) {

 E item = lst[0];

 if (item is num) {

 print("It's a number");

 }

 print(item);

 return item;

 }

}

main() async {

 C c = new C();

 c.showFirst(<String>["Java", "Dart"]);

 c.showFirst(<num>[42, 66]);

}

As you can see, we can feed any type to the showFirst() method, and it can identify

the type using the is keyword and act accordingly. That’s one of the key benefits of

generics: you don’t need to write two different versions of showFirst(), one to handle

strings and one to handle numbers. Instead, a single method can do it just fine. This isn’t

necessarily the best example since just print()’ing item will work regardless of what it

is, but if you wanted to do more when it’s a number, then this would be ideal.

 Summary

In this chapter, you got a look at much of what Dart has to offer. You learned about the

basics like data types, operators, comments, logic, and flow control. You also learned

some, you might say, mid-level stuff, things like classes, generics, and libraries. Finally,

you got an introduction into some slightly more advanced topics such as asynchronous

Chapter 2 hitting the Bullseye with Dart

81

functions, generators, and metadata annotations. From all of this, you should now have

a solid foundation of Dart knowledge, plenty with which to start diving into some real

Flutter code anyway.

In the next chapter, we’ll do a high-level survey of Flutter, focusing primarily on

the widgets it offers. We’ll start putting some of that Dart knowledge to good use while

building directly on top of it a layer of Flutter knowledge so that by the time Chapter 4

rolls around, you’ll be well prepared to start building some real projects!

Chapter 2 hitting the Bullseye with Dart

83
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7_3

CHAPTER 3

Say Hello to My Little
Friend: Flutter, Part I
In the first chapter, you got a brief introduction to Flutter, and in the second, you got

some good exposure to Dart. Now, it’s time to look at Flutter in a bit more detail.

Given that Flutter is all about the widgets, here we’ll look at many of those widgets.

But, in direct contravention to what I just said, Flutter is not, in fact, all about the

widgets: there are also APIs, separate from widgets, so we’ll also look at some of the APIs

that Flutter has to offer our application code (though the APIs will come in Chapter 4,

which is effectively the second half of this chapter).

This chapter (along with the next), like the previous one, does not seek to be a

deep dive, nor does it attempt to be reference material. With well over 100 widgets

available out of the box, and each with numerous options, methods, and events, a

single chapter or two to cover them all in depth would take hundreds of pages and

would just replicate the documentation found on the flutter.io web site anyway. No,

what I’ll be doing is pulling out the widgets and APIs I believe most developer will use

regularly and discussing those in just enough detail to give you an idea what they’re

all about. I’ll also describe some that demonstrate some concept that you may need or

want to know even if it’s something I think you may not use all that regularly (and this

all applies to the APIs as well).

But, to be sure, there is more available than what you’ll find in this chapter and the

next, and there’s a good chance there will be more by the time this book hits shelves then

there even is when I was writing it (and some may be introduced as we build the three

apps to follow too). But, this chapter and the next will provide you an excellent survey of

what’s available and prepare you for the application code to come.

84

 A Buffet of Widgets

We’ll begin by looking at the widgets, and as I mentioned earlier, there are well over 100

at the time of this writing. I’ve attempted to organize them into logical groups to give you

some context around them.

Note Where possible, I’ve attempted to match up the Material design version

(Android style) of widgets with their (iOS style) version widgets. A few are unique

to one platform or another or have no direct match, but most do, so you’ll see that

here. I think that approach will help you conceptualize the cross-platform design

goals of both platforms well.

 Layout

The layout widgets help you organize your user interface and structure your application

in various ways. They, in a sense, allow you to build the skeleton of your app.

 MaterialApp, Scaffold, Center, Row, Column, Expanded, Align,
and Text

As a general statement, layout in Flutter mainly comes down to a grid structure,

which means rows and columns. As such, there is a Row widget and a Column widget.

Each can have one or more children, and those children will be laid out horizontally

(across the screen) in the case of the Row widget and vertically (down the screen) for

a Column widget.

Using them is very simple, as you can see in Listing 3-1.

Listing 3-1. The basics

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

85

 @override

 Widget build(BuildContext context) {

 return MaterialApp(title : "Flutter Playground",

 home : Scaffold(

 body : Center(

 child : Row(

 children : [

 Text("Child1"),

 Text("Child2"),

 Text("Child3")

]

)

)

)

);

 }

}

Figure 3-1 shows the result of running this code.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

86

A fair bit is going on here beyond the Row and Column widgets though, so let’s

break it down.

This is a complete Flutter app, so it begins with the usual import of the material.

dart library, which brings in the Material style widgets. Next, we have a main()

function that instantiates the MyApp class and passes the instance to the runApp()

function that Flutter provides. That gives Flutter the top-level widget it needs to start

running the app.

The MyApp class is a StatelessWidget, since for this we do not need any sort of state,

and the required build() method produces a single widget of type MaterialApp. This

widget implements quite a bit of “plumbing” for us, so it’s always a good idea to start

with it. You might choose to use the WidgetsApp widget instead, but that will require

Figure 3-1. The basics, in pictures!

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

87

you to implement a fair bit more code to define at a minimum the routes (read: screens)

of your application, so it’s generally not something you’ll want to do unless you have

specific goals that require it. Note that it doesn’t matter if you’re developing for iOS, you

can still use the MaterialApp widget as the top-level widget (and in fact, at this time,

there is no iOS-specific CupertinoApp widget or something like that, which you might

expect to find).

The title you see here is a property of this widget, and this one is a single-line

string of text that is used by the device to identify the app to the user), the MaterialApp

widget provides quite a few other properties. A few of interest include the color

property, which defines the primary color used for the application in the OS’s

interface, and theme, which takes as its value a ThemeData widget and which further

describes the colors used for the app.

The MaterialApp widget also requires a home property, and the value of it must be

a widget, and this is the top of the widget tree for the main screen of your app (or, at

least, the screen that the user starts at, main or not). Most commonly, you’ll specify a

scaffolding widget for this. There are a couple of scaffolding widgets, but they all serve

the same purpose: they implement the basic layout structure of a screen in your app.

Like MaterialApp, the basic Scaffold widget takes care of many common app UI

elements for you like the top-level navigation bar, drawers (those little elements that

slide out from the side of the screen to show options) and bottom sheets (like drawers,

but they slide up from the bottom). The other kinds of scaffolding widgets are the

CupertinoPageScaffold, which is specific to iOS and which provides basic iOS page

layout structure including a top navigation bar and content over a background, and

CupertinoTabScaffold, which is like CupertinoPageScaffold except that it includes a

tabbed navigation bar at the bottom.

Note to use the Cupertino widgets, you would need to add an import

"package:flutter/cupertino.dart"; to the app. then, if you wanted, you

could change Scaffold to CupertinoPageScaffold, which would then require

you to change home to child, since that’s what the CupertinoPageScaffold

widget requires. Also note that there is no limitation to using Cupertino widgets

on an iOS device, or vice versa. recall that Flutter renders the uI itself rather than

relying on the OS, and that allows you to easily run one type of uI on the “wrong”

platform, so to speak, if you wish!

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

88

The Scaffold widget provides a number of properties, including

floatingActionButton, which allows your app to support a Floating Action Button, or

FAB (which is a widget that will be covered later); drawer, which allows your app to have

a sliding drawer for hidden functionality; bottomNavigationBar, which allows your app

to have a navigation bar at the bottom; and backgroundColor, which enables you to

define the background color of the page.

Whichever scaffolding widget you use, it will require a child widget. With the

Scaffold widget, you specify that via the body property. Here, I want all my widgets

to be vertically centered, so the Center widget is used. This widget will center all its

children within itself, but the critical thing is that by default, a Center widget will be as

big as possible, meaning it will fill whatever space its parent widget allows. In this case,

the parent widget is the Scaffold, which automatically has available the full size of the

screen, so essentially the Center widget will fill the entire screen.

The child of the Center is a single Row widget, which means that the Row will be

centered within the Center and thus centered on the screen. The Row widget has a

property children, which allows us to specify an array of widgets that will be laid out

across the Row. Here, three children are defined: three Text widgets. A Text widget

displays a string of text in a single style. Some interesting properties that Text supports

are overflow, which tells Flutter what to do when the text overflows the bounds of its

container (specifying overflow : TextOverflow.ellipsis, for example, causes ... to be

appended to the end); textAlign, which lets you determine how text should be aligned

horizontally; and textScaleFactor, which tells Flutter the number of font pixels for each

logical pixel unit and thereby scale the text.

One thing to notice if you try this sample (you HAVE tried this sample, right?!) is that

all the Text widgets are scrunched up on the left. What if we want them horizontally

centered? In that case, we need to tell the Row to center them, and to do that, we add

mainAxisAlignment : MainAxisAlignment.center to the Row’s constructor call (it’s just

another property, just like children is).

Now, within the Row, its children must fit within the horizontal space it fills. It’s

actually considered an error to have children that need more space than the Row can

provide, and a Row will never scroll. But, what if in our example here we want the second

Text to fill any available space? Well, then we can do this:

Expanded(child : Text("Child2"))

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

89

The Expanded causes its child to fill all available space. Now, after the first and third

Text widgets are rendered (using the space they require, but no more, since we haven’t

attempted to specify a width for either), then whatever remains will be filled by that

second Text widget.

One other widget to mention here is the Align widget. Like the Center widget,

Align is generally used when you have only one child, and it serves a similar purpose

to Center but has more flexibility in that it’s not just for centering content. This widget

aligns its child within itself and can also optionally size itself based on the child’s size.

The key to using it is the alignment property. If you set that to Alignment.center, then

congratulations, you’ve just created a Center widget! The value of this property is an

Alignment class instance, but Alignment.center is a static instance which has x and y

values of 0 and 0. The x and y values are how you specify the alignment, with 0, 0 being

the center of the rectangular area that the Align widget takes up. If you have values of

−1 and −1, then that represents the top left of the rectangle, and 1, 1 is the bottom right

(starting to see how this works?)

Finally, we have the Column widget, and I’ve left it for last because virtually

everything discussed for the Row widget also applies to the Column widget. The obvious

difference is that its children are laid out going down the screen. Otherwise, you use it

the same, and most everything mentioned about Row applies to Column as well, just going

in a vertical direction. You can, of course, nest Row widgets within Column widgets, and

vice versa, allowing you to create arbitrarily complex grid structures, and really, that’s

what a great deal of Flutter UI development boils down to!

 Container, Padding, Transform

The Container widget is, along with Row and Column (and ignoring the application and

page-level widgets) probably one of the most-used widgets Flutter offers for laying

out your UI. It’s a bit of a jack-of-all-trades in that it combines what a number of other

widgets provide into one sleek package.

For example, what do you do if you want to put some padding around the

second Text widget in the previous example? Well, one easy answer is to wrap it in

a Padding widget:

Padding(padding : EdgeInsets.all(20.0), child : Text("Child2"))

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

90

That puts 20 pixels around the Text (above, below, left, and right, which is what

EdgeInsets.all(20.0) says). You can use only() instead of all() to specify the left,

top, right, and bottom values separately, or you can use symmetric() to specify a

vertical and horizontal value that will be applied to the top and bottom and/or left and

right equally.

What if you want to scale that Text to 200%? That’s where the Transform widget

comes into play:

Transform.scale(scale : 2, child : Text("Child2"))

The scale() static method returns a new Transform widget with a scale factor of 2,

which means twice as large as normal.

Now, what does any of this have to do with Container, you ask? Well, what it has to

do with it is that Container combines all this functionality, and more! For example, we

can mimic a Center widget by replacing it with this Container:

Container(alignment : Alignment.center, child...

And, we can scale the Text with it too:

Container(transform : Matrix4.identity()..scale(2.0), child :

Text("Child2"))

The syntax is a little more complex because now we have to use matrix math to scale

the child widget manually, something the Transform widget does for us automatically

(a good reason to use it!), and that’s largely true of any of the other widgets that

Container subsumes, but you can accomplish the same goals with Container as with

those other widgets, that’s the point.

Likewise, if you want to add padding:

Container(padding : EdgeInsets.all(20.0), child : Text("Child2"))

Flutter developers often use Container and little else, and that’s entirely viable.

However, I would suggest that if for no other reason than a somewhat cleaner API that

you should look to the purpose-built widgets first and use Container only as a fallback or

unless you have specific goals it meets best.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

91

 ConstrainedBox, FittedBox, RotatedBox, SizedBox

Flutter offers several “box” components that act a lot like Row and Column and

Container, but which provide various positioning, sizing, and other manipulations on

its single child.

The first is ConstrainedBox, which is used to impose additional restraints on its

child. For example, let’s say you want to make the second Text widget in the previous

example be forced to a minimum width, you can wrap it in a ConstrainedBox and define

that constraint on it:

ConstrainedBox(constraints : BoxConstraints(minWidth : 200.0), child :

Text("Child2"))

The BoxConstraints class offers some properties for defining a constraint,

with minWidth, minHeight, maxWidth, and maxHeight being probably the most

commonly used.

Next up is the FittedBox, which scales and positions its child within itself according

to a fit property. This can be useful because if you noticed when we did the scale

example before, sometimes the text wasn’t scaled and repositioned as we expect.

This widget can solve that problem for us, and it works great in conjunction with the

ConstrainedBox widget:

ConstrainedBox(constraints : BoxConstraints(minWidth: 200.0), child :

FittedBox(fit: BoxFit.fill, child : Text("Child2")))

This scales the Text widget, but in contrast to the previous scale example, this also

repositions the Text, so it remains centered, and it scales it up to be a minimum width

of 200 pixels in width, so it scales the height to maintain the aspect ratio automatically.

If you try this and compare it to the previous scale example you’ll see, I think, that the

scaling here is better and probably more like what you expect.

Similarly, the RotatedBox gives us a way to rotate its child that might be in a form

that is more rational to you:

RotatedBox(quarterTurns : 3, child : Text("Child2"))

The quarterTurns property is the number of clockwise quarter turns to rotate the

child by. So, if you need quarter turns, this widget is perfect, but if you need arbitrary

degrees then you’ll need to deal with Transform.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

92

Finally, the SizedBox widget forces its child to have a specific width and height:

SizedBox(width : 200, height : 400, child : Text("Child2"))

Here, if you try it, you’ll notice that the result is the Text widget seeming to “float” up

and left of its usual position. That’s because the Text itself is sized to 200 pixels by 400

pixels, but that doesn’t imply a scale of any sort. The actual text is by default left aligned

and top aligned inside the Text widget, so giving it this size results in this “floating” into

the upper-left corner of the Text, which takes up the 200x400 pixels specified. What this

widget does to its child will be dependent on what its child does in response to defining

its width and height (assuming the child supports those properties at all).

 Divider

The Divider widget is a straightforward one that displays a one device pixel thick

horizontal line, with a little bit of padding on either side. Simply add them between the

Text items in the previous example:

Text("Child1"),

Divider(),

Text("Child2"),

Divider(),

Text("Child3")

...and, well, you’ll see nothing! That’s because a Divider can only be horizontal, but

when the layout is in a Row, they won’t display. So, just change the Row to a Column, and

now you’ll see some beautiful lines between the Text widgets!

 Card

A Card widget is a Material design widget that is essentially just a box with rounded

corners and a slight drop shadow around content. Typically, it’s used to show some

related information in a logical grouping. Coding one is simple, as Listing 3-2 shows.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

93

Listing 3-2. The Divider in action

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(title : "Flutter Playground",

 home : Scaffold(

 body : Center(

 child : Card(

 child : Column(mainAxisSize: MainAxisSize.min,

 children : [

 Text("Child1"),

 Divider(),

 Text("Child2"),

 Divider(),

 Text("Child3")

]

)

)

)

)

);

 }

}

You can replace the return statement in the example we’ve been hacking at all along

to try it out, or just gaze longingly at Figure 3-2.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

94

The Card widget doesn’t have a ton of properties, but some of the most interesting

include color, which allows you to set the background color of the card; elevation,

which will enable you to set the size of the shadow; and shape, which allows you to alter

the rounded corners of the Card (to make them more or less rounded).

 Drawer

The Drawer widget is most usually given as the value to the drawer property of a

Scaffold widget, although it doesn’t have to be. This widget is a Material design panel

that slides in horizontally from the left to provide a way for the user to activate app

functionality or navigate through the app and which is hidden until called upon. Another

widget, AppBar, goes typically along with a Drawer because it automatically provides an

Figure 3-2. The Card widget

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

95

appropriate IconButton (a widget that is a button the user can click which shows just

an icon on it) to show and hide the Drawer (which can also be done via a swipe in or out

from the edge).

The coding for a Drawer is easy, if it’s within a Scaffold, as Listing 3-3 demonstrates.

Listing 3-3. The Drawer widget in “action”

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(title : "Flutter Playground",

 home : Scaffold(

 appBar : AppBar(

 title : Text("Flutter Playground!")

),

 drawer : Drawer(

 child : Column(

 children : [

 Text("Item 1"),

 Divider(),

 Text("Item 2"),

 Divider(),

 Text("Item 3")

]

)

),

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

96

 body : Center(

 child : Row(

 children : [

 Text("Child1"),

 Text("Child2"),

 Text("Child3")

]

)

)

)

);

 }

}

Here, you can see the AppBar as well as the Drawer. The actual contents of the Drawer

are entirely up to you, though a ListView (another widget we’ll look at later) is typical,

often with the first child being a DrawerHeader widget, which provides a common way

to display user account status information. But again, using those are optional, as you

can see in the sample code. Aside from the child widget, the Drawer widget also has an

elevation property, like the same-named property of the Card widget. Figure 3-3 shows

what this looks like both before the user clicks the “hamburger” icon to show the Drawer

and after when it’s showing.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

97

And, for the most part, that’s about all there is to the Drawer widget! It’s an essential

and common widget, but it’s also effortless to use thanks to Flutter!

Note the CupertinonavigationBar widget is the rough equivalent to the AppBar

widget, which is customarily used for Material (Android) apps.

 Navigation

Navigation widgets allow the user to move through your app in some fashion, or your

app to move them between different parts of the app automatically (different screens,

for example).

Figure 3-3. The Drawer widget, before and after expansion

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

98

First, let’s talk about the Navigator widget. Since in most cases you’ll start your app

with a WidgetsApp or a MaterialApp, you’ll automatically get a Navigator widget (you can

also create one explicitly, but that’s less typical). This widget manages a set of child widgets

as a stack. In other words, one such child is visible at a time, with the rest “beneath” it.

These children are the various screens of your apps, which are called routes in Flutter. The

Navigator provides methods such as push() and pop() to add and remove routes.

You’ve seen the use of MaterialApp a couple of times now, and you’ve seen the home

property of it used. Well, guess what? The value of that property is the first route in your

app! You were using a Navigator without even knowing it!

You can explicitly add routes to the Navigator with push() as mentioned. For

example:

Navigator.push(context, MaterialPageRoute<void>(

 builder : (BuildContext context) {

 return Scaffold(

 body : Center(child : Text("My new page"))

);

 }

));

You always add a MaterialPageRoute widget when calling push(), and this requires

the use of a builder function, a pattern you’ll see plenty in Flutter. This is needed

because when a route is navigated to, it will be built and re-built many times and that

will occur in different contexts depending on when it occurs. Therefore, hardcoding

the children would result, potentially, in your code executing in the wrong context. The

builder pattern avoids this problem.

When you push() a new route onto a Navigator stack, it becomes visible

immediately. To go back to the previous route, you pop() it off the stack, passing the

current build context:

Navigator.pop(context);

The first, “default” route is named / and subsequent routes can be added with a

name, which allows you to then navigate to them by name. To do so, you add a routes

property to the MaterialApp like so:

routes : <String, WidgetBuilder> {

 "/announcements" : (BuildContext bc) => Page(title : "P1"),

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

99

 "/birthdays" : (BuildContext bc) => Page(title : "P2"),

 "/data" : (BuildContext bc) => Page(title : "Pe"),

}

Now, you can navigate to a route by name:

Navigator.pushNamed(context, "/birthdays");

You can also nest Navigator widgets. In other words, one route in a Navigator can

itself have a Navigator. This allows the user to take “sub-journeys,” so to speak, through

your app.

 BottomNavigationBar

Sometimes, a Navigator isn’t the best choice for navigating between parts of your

app. One significant consideration with it is that there is no user-facing interface

to it, it’s entirely programmatic. Fortunately, Flutter offers a few visual navigation

widgets too, one of which is the BottomNavigationBar. This widget provides a bar

at the bottom of the screen with icons and/or text that the user can click to move

between parts of your app.

In fact, this widget doesn’t really do any navigation itself, making its name a bit of a

misnomer. The navigation part is up to your code, and really you don’t have to use it for

navigation even! However, it normally is used to navigate, after a fashion, here’s one way

to do so, Listing 3-4.

Listing 3-4. The BottomNavigationBar

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatefulWidget {

 MyApp({Key key}) : super(key : key);

 @override

 _MyApp createState() => _MyApp();

}

class _MyApp extends State {

 var _currentPage = 0;

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

100

 var _pages = [

 Text("Page 1 - Announcements"),

 Text("Page 2 - Birthdays"),

 Text("Page 3 - Data")

];

 @override

 Widget build(BuildContext context) {

 return MaterialApp(title : "Flutter Playground",

 home : Scaffold(

 body : Center(child : _pages.elementAt(_currentPage)),

 bottomNavigationBar : BottomNavigationBar(

 items : [

 BottomNavigationBarItem(

 icon : Icon(Icons.announcement),

 title : Text("Announcements")

),

 BottomNavigationBarItem(

 icon : Icon(Icons.cake),

 title : Text("Birthdays")

),

 BottomNavigationBarItem(

 icon : Icon(Icons.cloud),

 title : Text("Data")

),

],

 currentIndex : _currentPage,

 fixedColor : Colors.red,

 onTap : (int inIndex) {

 setState(() { _currentPage = inIndex; });

 }

)

)

);

 }

}

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

101

Figure 3-4 shows you what this code produces.

Here, we start by creating a stateful widget. This is necessary because the top-

level widget is built once unless it has state that changes, which is precisely what we

need to happen when the user clicks one of the items on the bar. Hence, we have to

make this a stateful widget to provide that state. You’ll recall the pattern of needing

to create two classes when dealing with state: a class extending from StatefulWidget

and one extending from State. Although it may seem weird (it does to me anyway!),

the class that actually is your widget is the one extending from State, not the one

extending from StatefulWidget. Whether you find this weird or not, the key is

Figure 3-4. The BottomNavigationBar widget

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

102

to recognize the pattern. For the most part, the StatefulWidget class is basically

boilerplate and will usually look about like what you see here, and the State class

looks more or less like the StatelessWidget-extending widget classes you’ve seen a

bunch of times now.

Getting into the actual State widget class, the state for this widget is the private

_currentPage variable. The value of this is fed to the elementAt() method of the

private _pages list. This determines what item from the list is the contents inside

the Center widget (which could be an entire widget tree rather than a single Text

widget). The bottomNavigationBar property of the Scaffold widget takes as its

value an instance of BottomNavigationBar, which has an items property. This

property is a list of BottomNavigationBarItem widgets. Each of those can have an

icon and a title as we seem fit. Flutter comes with a collection of icons thanks to

the Icons class, so we don’t even have to go digging around for graphics if we don’t

want to! And, when working in Android Studio, you’ll have code completion, so you

don’t even have to remember or even look up the icons when you need them! The

currentIndex property of the BottomNavigationBar tells us which of the items on

the bar is currently selected, and the fixedColor property determines what color to

make that selected item.

Now, when the user taps one of the items, by default nothing will happen. To fix that,

the onTap property is defined. This is a function that is passed the index of the tapped

item. So, now we know what item from _pages we should display, but how does the value

of _currentPage get updated? That’s where the call to the setState() method, supplied

by virtue of this class extending the State class, comes into play. All we need to do is call

this method and do the updates to the _currentPage variable in it. This triggers Flutter

to rebuild the widget. Since _currentPage is different now, a different element from

_pages will be displayed. The result for the user is that they appear to have navigated to a

new page.

 TabBar (CupertinoTabBar) and TabBarView (CupertinoTabView)

Another ubiquitous navigation element is the TabBar, and its iOS

equivalent CupertinoTabBar. Going along with these is the TabBarView and

CupertinoTabView widgets, respectively (note that I’ll be talking about TabBar

and TabBarView only from here on out, but it all applies to CupertinoTabBar and

CupertinoTabView as well).

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

103

A TabBarView is essentially a stack of screens (or views, if you will) where only one is

visible at a time, and the user can move between them. The way one becomes visible is by

user interaction with a TabBar. They can click the icon for one of the tabs or swipe between

them. There is usually some sort of animation between the views, a slide for example.

Let’s look at an example and then discuss it, that example being Listing 3-5, and

which you can see in Figure 3-5.

Listing 3-5. The TabBar widget

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home : DefaultTabController(

 length : 3,

 child : Scaffold(

 appBar : AppBar(title : Text("Flutter Playground"),

 bottom : TabBar(

 tabs : [

 Tab(icon : Icon(Icons.announcement)),

 Tab(icon : Icon(Icons.cake)),

 Tab(icon : Icon(Icons.cloud))

]

)

),

 body : TabBarView(

 children : [

 Center(child : Text("Announcements")),

 Center(child : Text("Birthdays")),

 Center(child : Text("Data"))

]

)

)

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

104

)

);

 }

}

Behind the scenes, a TabController widget will be responsible for keeping

track of what tab is current and the content of each. You can create one manually,

but that requires extra work on your part, so most of the time you’ll just use the

DefaultTabController widget as the value of the home property of a MaterialApp

widget, which takes care of all the details for you.

Figure 3-5. The TabBar widget

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

105

However, you do it, you have to tell the TabController how many tabs there are via

the length property. After that, you need to describe each tab for the TabController,

and that’s done by giving it an array of tabs where each item is a Tab widget. Here, we

just specify an icon for each.

Once the tabs themselves are defined, we then must tell the TabController what the

content for each tab is, and that’s done by providing a TabBarView widget as the value of

the body property. Each element in the children list can be as complex a widget tree as

you need. Here, it’s just some Center widgets with Text widgets in them.

With all of that done, the interaction of moving between the views is automatic from

our perspective, and the user can navigate between them freely.

 Stepper

The last navigation widget I want to discuss is the Stepper widget. This is used to walk

the user through a defined sequence of events. Conceptually, think about what happens

when you go to buy something on Amazon or another eCommerce retailer. First, you

must enter your shipping information, then click a button to continue. Then you enter

payment information and then click a button to continue. Finally, maybe you must

decide if you need gift wrapping and other services. You click a button one last time, and

your order is placed. That’s a sequence of three steps, and a Stepper provides that same

functionality in a Flutter app.

Look at this example code, Listing 3-6.

Listing 3-6. Stepping with the Stepper widget

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatefulWidget {

 MyApp({Key key}) : super(key : key);

 @override

 _MyApp createState() => _MyApp();

}

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

106

class _MyApp extends State {

 var _currentStep = 0;

 @override

 Widget build(BuildContext context) {

 return MaterialApp(title : "Flutter Playground",

 home : Scaffold(

 appBar : AppBar(title : Text("Flutter Playground")),

 body : Stepper(

 type : StepperType.vertical,

 currentStep : _currentStep,

 onStepContinue : _currentStep < 2 ?

 () => setState(() => _currentStep += 1) : null,

 onStepCancel : _currentStep > 0 ?

 () => setState(() => _currentStep -= 1) : null,

 steps : [

 Step(

 title : Text("Get Ready"), isActive : true,

 content : Text("Let's begin...")

),

 Step(

 title : Text("Get Set"), isActive : true,

 content : Text("Ok, just a little more...")

),

 Step(

 title : Text("Go!"), isActive : true,

 content : Text("And, we're done!")

)

]

)

)

);

 }

}

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

107

Figure 3-6 shows what this looks like on the big screen.

Most of it should look familiar by now, until we get to the Stepper widget as the

body of the Scaffold widget. You first need to tell it whether you want your steps to be

displayed vertically or horizontally via the type property. You also need to tell it what

step the user is currently on, and that’s done here by virtue of the _currentStep variable.

This is a stateful widget since the value of that variable is what determines what step is

displayed, which is what state is all about in Flutter.

Figure 3-6. Walking a mile in Stepper’s shoes (okay, that one was a stretch,
I admit!)

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

108

We also must provide some code to the Stepper for when the user clicks the

Continue and Cancel buttons, which will be presented by the Stepper. Here, the

value of _currentStep is incremented when Continue is clicked as long as we’re not

on the final step, and decremented when Cancel is clicked as long as we’re not on

the first step. This allows the user to go backward and forwards through the sequence

at will.

Next, we need to define the steps of the sequence; each one is a Step widget. This

widget takes some title text to display next to the circle for the step and an isActive

property that will grey the step out when set to false (note that it does not do anything

but alter the styling of the step’s circle – your code has to do something in order to skip it

or whatever is appropriate when inactive). After that, we define the content, which can

be as complex of a widget tree as you need.

Each Step can also have a subtitle if you wish, and each has a state property that

determines the styling of the component and whether the step is interactive. Again, your

code must provide the functionality to back this up though. Note too that the Stepper

widget provides an onStepTapped property that is a function you provide that is called

when the user taps one of the step circles. Obviously, you’ll generally provide code to

jump to the selected step directly.

 Input

Input widgets are used to obtain user input in some fashion (he said, obviously!). Flutter

comes with a range of such widgets, some perhaps a bit unexpected.

 Form

In Flutter, user input begins with a Form widget. Well, actually, that’s not true: the Form

widget is actually optional. But, since it does offer some utility and is therefore used

frequently around user input, let’s talk about it as if it was required!

Form is a container for form fields, and I mean that literally: there is a FormField

widget that wraps all input fields and which are then made children of the Form widget.

The reason you might choose to use a Form widget is that it provides you some common

functionality including saving the form data, resetting it and validating it. Without Form,

you would be left to implement any of that yourself that you need entirely, so why not

use the plumbing Form provides?

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

109

Let’s look at a Form example, a typical login form, which will also demonstrate some

other user input-related ideas. Listing 3-7 shows the Form, along with a bit more.

Listing 3-7. The Form widget, and its cohorts

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatefulWidget {

 MyApp({Key key}) : super(key : key);

 @override

 _MyApp createState() => _MyApp();

}

class LoginData {

 String username = "";

 String password = "";

}

class _MyApp extends State {

 LoginData _loginData = new LoginData();

 GlobalKey<FormState> _formKey = new GlobalKey<FormState>();

 @override

 Widget build(BuildContext inContext) {

 return MaterialApp(home : Scaffold(

 body : Container(

 padding : EdgeInsets.all(50.0),

 child : Form(

 key : this._formKey,

 child : Column(

 children : [

 TextFormField(

 keyboardType :

 TextInputType.emailAddress,

 validator : (String inValue) {

 if (inValue.length == 0) {

 return "Please enter username";

 }

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

110

 return null;

 },

 onSaved: (String inValue) {

 this._loginData.username = inValue;

 },

 decoration : InputDecoration(

 hintText : "none@none.com",

 labelText : "Username (eMail address)"

)

),

 TextFormField(

 obscureText : true,

 validator : (String inValue) {

 if (inValue.length < 10) {

 return "Password must be >=10 in length";

 }

 return null;

 },

 onSaved : (String inValue) {

 this._loginData.password = inValue;

 },

 decoration : InputDecoration(

 hintText : "Password",

 labelText : "Password"

)

),

 RaisedButton(

 child : Text("Log In!"),

 onPressed : () {

 if (_formKey.currentState.validate()) {

 _formKey.currentState.save();

 print("Username: ${_loginData.username}");

 print("Password: ${_loginData.password}");

 }

 }

)

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

111

]

)

)

)

));

 }

}

Peek at Figure 3-7 to see the result of executing this code. It shouldn’t be all that

surprising, but it’s good to see that the code does what your mind envisions it does.

Figure 3-7. The gatekeeper to your app, courtesy of the Form widget (and friends!)

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

112

After the usual import and main() function, we’re dealing with a StatefulWidget, so

we have the usual class definition for that. But, before we get to the State class that you

know goes along with it, we have one small class: LoginData. An instance of this class

will wind up storing the username and password entered by the user. This is a typical

pattern when dealing with Flutter forms and is nice because it consolidates all the input

in one object, making it easier to work with.

After that comes the _MyApp State class. This is like any other State class you’ve

seen before, but in this one, we have a few new things. First, we have that instance of

LoginData I mentioned. After that is an instance of the GlobalKey class. A GlobalKey is

a key that is unique across the entire app. This usually comes into play as the value of

the key property of a widget, which determines how a widget replaces another in the

widget tree. If the runtimeType and key properties of the two widgets are equal, then

the new widget replaces the old widget by updating the underlying element. Otherwise,

the old element is removed from the tree, the new widget is inflated into an element,

and the new element is inserted into the tree. Using a GlobalKey as the widget's key

(as opposed to a LocalKey, which is another type that only ensures uniqueness under

a given parent) allows the element to be moved around the widget tree without losing

state. When a new widget is found (meaning that its key and runtimeType don’t match a

previous widget in the same location in the tree) but there was a widget with that same

GlobalKey elsewhere in the tree in the previous frame, then that widget's element is

moved to the new location.

As an aside, the key property is extremely powerful because it gives us a way to

directly “reach out and touch” widgets, something you frankly should rarely do. But,

when you need to, this is one way how. For example, add a new variable to the _MyApp

class like so:

GlobalKey _btnKey = new GlobalKey();

Then, to the RaisedButton, add a key property referencing it:

key : _btnKey,

Finally, in the onPressed handler of the button, do this:

print(((

 _btnKey.currentWidget as RaisedButton).child as Text).data

);

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

113

The result will be that the label of the text will be written to the console. For that to

work, we have to cast _btnKey.currentWidget to RaisedButton using the as keyword

since the type of currentWidget is Widget, and the cast the child property of that to

Text, and then the data property is the text of the button. In this way, you can access any

property of any widget or execute methods directly on a widget, as long as it has a key

(whether a GlobalKey or a LocalKey). I said you really shouldn’t ever do this and that’s

because it’s in a sense anathema to the reactive nature of Flutter. Instead, it’s usually the

case that you’ll use state to drive these sorts of interactions. But, it’s a good trick to have

in your back pocket if it ever comes up, and if nothing else, it helps you understand some

of the internals of Flutter just a little bit.

After that comes the usual build() method. It starts like any other you’ve seen, but now

we have a Form widget in the tree. Usually, a widget that is the only child of another widget does

not need an explicit key, which is why up until this point I haven’t shown the key property, but

here the key property of the Form widget is a reference to _formKey as discussed earlier.

As you can see, the Form widget has a child property, so if we want to have multiple

fields in the form, which we do, then we’ll need some sort of container component, so I

went with Column here.

The children of the Column, three of them, are the username entry field, password

entry field, and the Log In button. The first two use TextFormField widgets. This is a

widget that effectively combines two others: FormField, which you’ll recall I previously

said must wrap all fields in a Form, and TextField, which is a widget for getting user

text input (there is a corresponding CupertinoTextField as well). The username is a

TextFormField; since the username is actually the user’s eMail address (a common

but not especially good security practice), we want the keyboard displayed to be more

oriented toward entering eMail addresses. The keyboardType property allows us to

do this. The TextInputType class has several constants for various keyboard types,

emailAddress being the one applicable here.

This widget also has a validator property, which defines a function that will

perform validation on the field when the Log In button is clicked. This function can do

anything you wish, but in the end, it must either return a string that is an error message

to display in red below the field or null if the value is valid.

Note that the data itself in the field is never saved anywhere; it only exists transiently

in the Form. That’s not of much use though, so to address that, we need to implement

a callback function for the onSaved property. This function will fire when the save()

method of the Form is called, which will happen later, as you’ll see (and, it’s not actually a

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

114

method on the Form itself, but that too you’ll see shortly). The onSaved handler function

just stores the inValue passed into the _loginData variable’s username field.

Although optional, the decoration property is an instance of InputDecoration and is

commonly used to declare some hintText (shown in the field when nothing has yet been

entered) and a label for the field via the labelText property, which gets shown above the field.

The password field is just like the username field except that, being a password,

what the user enters shouldn’t be shown on the screen, so the obscureText property is

set to true to accomplish that. Otherwise, we have another validator function doing

much the same as for password and an onSaved handler again to store the data, plus a

decoration instance of InputDecoration once more.

Finally, we come to the Log In button. In it, we do a couple of things. First, the

validate() method is called, which we can do through the _formKey variable. This

provides us a reference to the widget, and within that widget is the currentState

property that contains the values currently entered on the form. That’s the object the

validate() method is actually on, and since each field has a validator function attached,

validate() knows how to call each of them and either display the error fields or else

return true if the form is valid according to the validators on all its fields. In that case,

we call save() on the currentState, which results in all the onSaved handlers firing

and thus the form data is stored in _loginData. Finally, we print that information to the

console to ensure everything worked as expected.

 Checkbox

Yeah, you know what a Checkbox is! It’s a little box that you... wait for it... check!

Or uncheck... but it’s called a Checkbox, not an UnCheckbox, but I guess that’s a

philosophical discussion for another day. Either way, Flutter has them, and they’re a

piece of cake to use.

Note listing 3-8 demonstrates Checkbox, as well as Switch, Slider and radio,

and Figure 3-8 shows it. please refer to these in the coming sections.

Listing 3-8. Checkbox, along with Switch, Slider, and Radio

import "package:flutter/material.dart";

void main() => runApp(MyApp());

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

115

class MyApp extends StatefulWidget {

 MyApp({Key key}) : super(key : key);

 @override

 _MyApp createState() => _MyApp();

}

class _MyApp extends State {

 GlobalKey<FormState> _formKey = new GlobalKey<FormState>();

 var _checkboxValue = false;

 var _switchValue = false;

 var _sliderValue = .3;

 var _radioValue = 1;

 @override

 Widget build(BuildContext inContext) {

 return MaterialApp(home : Scaffold(

 body : Container(

 padding : EdgeInsets.all(50.0),

 child : Form(

 key : this._formKey,

 child : Column(

 children : [

 Checkbox(

 value : _checkboxValue,

 onChanged : (bool inValue) {

 setState(() { _checkboxValue = inValue; });

 }

),

 Switch(

 value : _switchValue,

 onChanged : (bool inValue) {

 setState(() { _switchValue = inValue; });

 }

),

 Slider(

 min : 0, max : 20,

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

116

 value : _sliderValue,

 onChanged : (inValue) {

 setState(() => _sliderValue = inValue);

 }

),

 Row(children : [

 Radio(value : 1, groupValue : _radioValue,

 onChanged : (int inValue) {

 setState(() { _radioValue = inValue; });

 }

),

 Text("Option 1")

]),

 Row(children : [

 Radio(value : 2, groupValue : _radioValue,

 onChanged : (int inValue) {

 setState(() { _radioValue = inValue; });

 }

),

 Text("Option 2")

]),

 Row(children : [

 Radio(value : 3, groupValue : _radioValue,

 onChanged : (int inValue) {

 setState(() { _radioValue = inValue; });

 }

),

 Text("Option 3")

])

]

)

)

)

));

 }

}

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

117

Yep, that’s it! As long as your StatefulWidget has a checkboxValue variable, then

you’re good to go. Alternatively, you can supply an onChanged callback handler function

to do something else when the Checkbox is checked or unchecked. Also, Checkbox

supports a tristate flag (true or false, false by default) that allows for three values:

checked, unchecked, and null. The latter will display as a dash in the Checkbox.

One thing to note is that the Checkbox widget does not intrinsically have a text label,

something that is common with such components. To achieve that, you’ll need to build

it yourself, usually by placing a Checkbox and a Text widget in a Row container (assuming

you want the label next to the Checkbox, otherwise use Column or some other layout

structure).

Figure 3-8. A gaggle of input widgets (Checkbox, Switch, Slider and Radio)

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

118

 Switch (CupertinoSwitch)

The Switch widget, and its iOS counterpart CupertinoSwitch, is in most regards just

like a Checkbox, but with a different visual presentation: they look like little switches you

might find on a tech device. In fact, if you go back to the Checkbox snippet and change

Checkbox to Switch and do nothing else, you’ll see that it works!

Note that if onChanged is null, then the Switch will be disabled and not respond to

user interaction. This is also true of the Checkbox widget.

 Slider (CupertinoSlider)

A Slider is a widget that is a line and a little handle, called a thumb, that the user frags

to select a value from a predefined range. There is an iOS version, CupertinoSlider, that

works the same. Either is used as shown below:

Slider(

 min : 0, max : 20,

 value : _sliderValue,

 onChanged : (inValue) {

 setState(() => _sliderValue = inValue);

 }

)

The important properties are min and max, which define the lower and upper

limits of the range of values the user can choose from, and value, which is its current

value. As a member of a StatefulWidget, the value of this should be a variable in

the State object. Finally, onChanged is required to set the value in State when the

thumb is moved.

There are also properties like activeColor and inactiveColor for adjusting the

color of the portion of the slider track that is active and inactive, respectively. You can

also determine the number of divisions within the range (when null, the default,

the Slider will automatically produce divisions that are a continuous and discrete set

of values within the min to max range). There are also event handler hooks for when

the user begins moving the thumb (onChangeStart) and when they lift their thumb

(onChangeEnd).

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

119

 Radio

It’s a little funny to think about, but I’m a bit older than I’d like to admit these days, old

enough that I remember those days of car radios that had a row of buttons, one per stored

radio station, and when you would press one, the others would pop back out, and the one

you pressed would now be the current station. I say it’s funny because I bet a lot of younger

people reading this have never seen such a thing, yet here we have a widget, called Radio

no less, that implements that metaphor, a metaphor many younger people don’t know!

But I digress, and hey, you kids get off my lawn!

The Radio widget is a lot like CheckBox or Switch except that unlike those, it never

exists on its own. A Radio widget always has one or more sister Radio widgets hanging

out around it, and they are mutually exclusive: selecting any one Radio causes the other

in its group to be de-selected. As such, code like the following is common:

Column(children : [

 Row(children : [

 Radio(value : 1, groupValue : _radioValue,

 onChanged : (int inValue) {

 setState(() { _radioValue = inValue; });

 }

),

 Text("Option 1")

]),

 Row(children : [

 Radio(value : 2, groupValue : _radioValue,

 onChanged : (int inValue) {

 setState(() { _radioValue = inValue; });

 }

),

 Text("Option 2")

]),

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

120

 Row(children : [

 Radio(value : 3, groupValue : _radioValue,

 onChanged : (int inValue) {

 setState(() { _radioValue = inValue; });

 }

),

 Text("Option 3")

])

])

Here, three Radio widgets are present, each with an associated Text to label it. Notice

how all of them have the same groupValue property value? That’s by design: by virtue of

them all having the same variable reference, they become part of the same group, which

conveys to them the mutual exclusivity I mentioned. Each has a discrete value though,

so when the first Radio is selected, its value is transferred to _radioValue by virtue of the

setState() call in its onChanged handler. The code using these Radio widgets can then

examine the value to determine which was selected.

 Date and Time Pickers (CupertinoDatePicker,
CupertinoTimerPicker)

Choosing a date or time in an app is a common activity, so naturally, Flutter provides

widgets for that. More precisely, it provides functions for you to call to show UI

components for this purpose, at least on Android. For that platform, we have the

showDatePicker() and showTimePicker() functions, as shown in Listing 3-9.

Listing 3-9. Picking a date and a time (but not a nose)

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(home : Scaffold(body : Home()));

 }

}

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

121

class Home extends StatelessWidget {

 Future<void> _selectDate(inContext) async {

 DateTime selectedDate = await showDatePicker(

 context : inContext,

 initialDate : DateTime.now(),

 firstDate : DateTime(2017),

 lastDate : DateTime(2021)

);

 print(selectedDate);

 }

 Future<void> _selectTime(inContext) async {

 TimeOfDay selectedTime = await showTimePicker(

 context : inContext,

 initialTime : TimeOfDay.now(),

);

 print(selectedTime);

 }

 @override

 Widget build(BuildContext inContext) {

 return Scaffold(

 body : Column(

 children : [

 Container(height : 50),

 RaisedButton(

 child : Text("Test DatePicker"),

 onPressed : () => _selectDate(inContext)

),

 RaisedButton(

 child : Text("Test TimePicker"),

 onPressed : () => _selectTime(inContext)

)

]

)

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

122

);

 }

}

Both of these functions are asynchronous, so we’ll need some async functions to

make use of them, namely, the _selectDate() and _selectTime() methods, which are

called from the two buttons in the main layout.

As you can see (in the code, as well as in Figure 3-9), they make use of the

showDatePicker() and showTimePicker(), respectively. The former requires the build

context, the initialDate that’s selected by default, and the firstDate and lastDate

Figure 3-9. Date picker and time picker

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

123

that the picker will allow to be chosen, here just specified as years. A DateTime object

is returned and is displayed. For showTimePicker(), only the build context and the

initialTime are necessary.

There is a CupertinoDatePicker and a CupertinoTimerPicker widgets for the iOS

side, and they are implemented as conventional widgets, so no functions to call for them.

Note that there are three other pickers available on Android: DayPicker for picking

from the days of a month, MonthPicker for choosing from the months of the year, and

YearPicker for selecting from a year of lists.

 Dismissible

The Dismissible widget is an element that the user can get rid of by flinging it in a given

direction. The widget has a direction property that specifies which direction it can be

dragged in. When the user drags it, the child of it slides out of view, and if the optional

resizeDirection property isn’t null, the Dismissible animates its height or width,

whichever is perpendicular to the dismiss direction, to zero.

Here’s an example:

Dismissible(

 key : GlobalKey(),

 onDismissed : (direction) { print("Goodbye!"); },

 child : Container(

 color : Colors.yellow, width : 100, height : 50,

 child : Text("Swipe me")

)

)

If you wish, you can implement a “leave-behind,” which is what happens if the

background property is specified. In that case, the widget it describes is stacked behind

the Dismissible’s child and is shown when the child is dragged away.

The onDismissed callback function will be called when the size has collapsed to zero

when resizeDuration is specified, or immediately after the slide animation if it’s not. A

key also must be defined for this to work; in this example, it’s not used though so I just

use a GlobalKey instance to fulfill that requirement.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

124

 Dialogs, Popups, and Messages

There are ways to interact with the user, to show them something, that is, in a sense

“out of band,” meaning content that isn’t directly part of the screen they are currently

looking at. Broadly, those are dialogs (typically, where we request some information),

popups (usually, where we show some information that needs more immediate

attention) and messages (typically, how we show quick, transient pieces of information

to the user).

 Tooltip

The Tooltip widget is handy for showing a description of some other widget when you

perform some appropriate action (most commonly long-pressing a button). To apply

one, you wrap the target widget in a Tooltip, like so:

Tooltip(

 message : "Tapping me will destroy the universe. Ouch!",

 child : RaisedButton(

 child : Text("Do Not Tap!"),

 onPressed : () { print("BOOM!"); }

)

)

In fact, some widgets have a tooltip property that automatically wraps the widget in

a Tooltip, but you can do so manually if not.

Usually, a Tooltip is displayed below the widget it wraps, but you can set its

preferBelow property to false to reverse that (and it will automatically do so if there

isn’t enough room to display it below). You can also adjust the verticalOffset property

to determine the distance between the Tooltip and its target widget.

 SimpleDialog (CupertinoDialog)

A SimpleDialog is a popup element that offers the user a choice between several

options. The SimpleDialog can optionally have some title text which is displayed above

the options. Most of the time, the choices are rendered using the SimpleDialogOption

widget. An instance of SimpleDialog is normally passed to the showDialog() function

for display, as you can see in Listing 3-10.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

125

Listing 3-10. A SimpleDialog

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(home : Scaffold(body : Home()));

 }

}

class Home extends StatelessWidget {

 @override

 Widget build(BuildContext inContext) {

 Future _showIt() async {

 switch (await showDialog(

 context : inContext,

 builder : (BuildContext inContext) {

 return SimpleDialog(

 title : Text("What's your favorite food?"),

 children : [

 SimpleDialogOption(

 onPressed : () {

 Navigator.pop(inContext, "brocolli");

 },

 child : Text("Brocolli")

),

 SimpleDialogOption(

 onPressed : () {

 Navigator.pop(inContext, "steak");

 },

 child : Text("Steak")

)

]

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

126

);

 }

)) {

 case "brocolli": print("Brocolli"); break;

 case "steak": print("Steak"); break;

 }

 }

 return Scaffold(

 body : Center(

 child : RaisedButton(

 child : Text("Show it"),

 onPressed : _showIt

)

)

);

 }

}

What this looks like in practice can be glimpsed in Figure 3-10.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

127

When the RaisedButton is tapped, it calls the _timeForADialog() function.

This function awaits the return value from showDialog() as the value of the switch

statement. When the user then clicks one of the options, first the dialog must be hidden,

which is what the Navigator.pop() call does. The dialog is on the top of the navigation

stack at that point, hence pop()’ing it off hides it. The second argument to pop() is the

value to return, which the two case statements then handle to print() the result to the

console.

There is a CupertinoDialog widget, and corresponding CupertinoDialogAction

widget, for providing the same sort of dialog on iOS, and you would use them the

same way.

Figure 3-10. It doesn’t get much simpler than SimpleDialog (it’s in the name
after all!)

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

128

Note the structure here is a little different than what you’ve seen before.

the reason is that if you try to call showDialog() from the RaisedButton’s

onPressed handler directly, which is what you’d likely think to do first, you’ll

find that you get an error talking about needing a MaterialLocalization.

the problem is that showDialog() must be called in a build context that has a

MaterialApp as an ancestor, which by default includes a MaterialLocalization

widget, which is involved with localizing apps. the build context inside the

RaisedButton’s onPressed handler though has no such ancestor (even if the

build() method returned MaterialApp as the top-level widget, that represents

a different build context than the build context passed into build() itself). So,

the solution is to create a top-level MaterialApp widget and then make the

home property point to another widget, a Scaffold in this case, which itself has

the Home widget as a child (the Scaffold is optional here, but it’s necessary for

some other examples that will build on this in this section). that way, the build

context for the top-level widget is the one that applies to the showDialog() call,

which does have MaterialApp as an ancestor, and thus the error is avoided.

Although I haven’t done it for most code samples, what you see here is a bit more

typical structure, but it hasn’t mattered until now, so I chose to keep the code more

straightforward to this point (and I’ll continue to do so except where it matters, as

it does here).

 AlertDialog (CupertinoAlertDialog)

The AlertDialog is much like the SimpleDialog except that it is meant for urgent

situations that require their immediate attention and typically don’t require more than a

binary choice of some sort (or no choice at all). Building on the SimpleDialog example

code, all we need to change is the _showIt() function:

_showIt() {

 return showDialog(

 context : inContext,

 barrierDismissible : false,

 builder : (BuildContext context) {

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

129

 return AlertDialog(

 title : Text("We come in peace..."),

 content : Center(child :

 Text("...shoot to kill shoot to kill shoot to kill")

),

 actions : [

 FlatButton(

 child : Text("Beam me up, Scotty!"),

 onPressed : () { Navigator.of(context).pop(); }

)

]

);

 }

);

}

As before, showDialog() is used, but this time the builder() function returns an

AlertDialog. The content property is how we tell AlertDialog what to display, and

then the actions property allows us to provide an array of elements for the user to click,

just one FlatButton in this case. Like with SimpleDialog, we need to pop() the dialog

off the navigator stack, and there’s nothing to return this time, so no second argument is

needed. The barrierDismissable property set to false ensures that the user must click

the FlatButton; the dialog cannot be dismissed by clicking elsewhere on the screen as

the SimpleDialog could be. This is appropriate for an informational popup meant to

alert the user to something important (Captain Kirk’s hypocrisy may or may not qualify

in this instance!)

Note that there is an iOS version of this dialog, aptly named CupertinoAlertDialog,

and you use it the same way.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

130

 SnackBar

A SnackBar is a lightweight message component that shows a transient message at the

bottom of the screen for some period of time, and optionally with a single action, the

user can tap, most usually to dismiss the SnackBar. Building on the same sample as for

the SimpleDialog and AlertDialog, we’ll change the _showIt() function as shown here:

_showIt() {

 Scaffold.of(inContext).showSnackBar(

 SnackBar(

 backgroundColor : Colors.red,

 duration : Duration(seconds : 5),

 content : Text("I like pie!"),

 action : SnackBarAction(

 label : "Chow down",

 onPressed: () {

 print("Gettin' fat!");

 }

)

)

);

}

Figure 3-11 shows you the result.

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

131

We have to use the Scaffold.of(inContext) call to get a reference to the Scaffold

that is the parent to the widget calling this function. That Scaffold has a showSnackBar()

method, which is what we call. We can optionally set the backgroundColor as well as the

duration, the latter needing an instance of the Duration class (which can accept values

in many forms such as hours, minutes, and seconds). The content is the text to show on

the SnackBar. The action property is optional but if present shows a clickable bit of text.

Usually, you would hide the SnackBar here when tapped, but nothing says you must, as

shown. If you don’t, then the SnackBar will automatically disappear after the specified

duration (or the default duration if not specified).

Figure 3-11. The SnackBar widget (on the bottom)

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

132

 BottomSheet (CupertinoActionSheet)

Bottom sheets, as provided by the BottomSheet widget (and its iOS counterpart

CupertinoActionSheet) are widgets displayed at the bottom of the screen to show

additional content to the user and/or ask them for a choice. It’s sort of a cross between

a SimpleDialog and a SnackBar in a sense. Let’s continue to hack the previous example

and again change the _showIt() function, the results of which appear in Figure 3-12.

_showIt() {

 showModalBottomSheet(context : inContext,

 builder : (BuildContext inContext) {

 return new Column(

 mainAxisSize : MainAxisSize.min,

 children : [

 Text("What's your favorite pet?"),

 FlatButton(child : Text("Dog"),

 onPressed : () { Navigator.of(inContext).pop(); },

),

 FlatButton(child : Text("Cat"),

 onPressed : () { Navigator.of(inContext).pop(); },

),

 FlatButton(child : Text("Ferret"),

 onPressed : () { Navigator.of(inContext).pop(); }

)

]

);

 }

);

}

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

133

There’s actually two variations of BottomSheet, one shown via a call to

showModalBottomSheet() and another shown by calling the showBottomSheet() of the

Scaffold that the widget showing the sheet descends from. The difference is that the

former prevents the user from interacting with other parts of the app until the sheet is

hidden (what is termed being “model”), while the other is called “persistent” because it

remains, unless and until dismissed, but doesn’t disallow interactions with other parts

of the app. In either case, the BottomSheet is constructed in the same fundamental way.

What content you show on it is up to you, as is whether it’s interactive or not. In this

example, I’ve got a Text heading with three FlatButton widgets below it. Tapping any of

them results in the BottomSheet being hidden via the Navigator.of(inContext).pop()

call you’ve seen a few times now.

Figure 3-12. A BottomSheet... not a top or side sheet, but a BottomSheet!

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

134

 Summary

Whew, that was a long chapter! I think this is an excellent place to take a little break.

In this chapter, you began to see the widgets that Flutter ships with, at a high level, but

there’s still plenty more to look at, including more widgets and then some APIs.

So, grab a snack, go for a stretch, maybe a bio break if you need to, and then meet me

right back here for Chapter 4!

ChApter 3 SAy hellO tO My lIttle FrIend: Flutter, pArt I

135
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7_4

CHAPTER 4

Say Hello to My Little
Friend: Flutter, Part II
In the last chapter, you began your exploration of the widgets Flutter ships with. Now,

in this chapter, we’ll play the back nine, to use some golf lingo (I’m not a golfer – I

consider golf a nice walk interrupted by a game – but it’s a good phrase none the

less) and continue looking at the widgets, followed by a brief dive into some APIs that

Flutter provides.

 Styling Widgets

Flutter has a rich system for styling widgets in various ways, and being widget-oriented

at its core, you do this, largely at least, through widgets that are specifically designed to

style other widgets. It’s like widget inception up in here!

Note that for the next four sections, Listing 4-1, while not printed here, is the full

working example and is included in the code bundle, and Figure 4-1 here is the result of

running it, so please refer to this screenshot as you read the next four sections to give it

all context.

136

 Theme and ThemeData

The Theme widget applies a theme to its child widgets. This includes colors and

typographic settings.

When we looked at the MaterialApp widget, you saw that it has a theme property

that can be used to declare the theme to apply for the entire application. Where the

Theme widget comes into play is typically when you want to override that application-

level theme for just some subset of widgets. Alternatively, you could just wrap the entire

application’s widget tree in a Theme widget and apply the theme that way, but that’s not

usually done in favor of the theme property of MaterialApp.

Figure 4-1. Demonstration of the following four sections (trust me, it’s better in
color!)

Chapter 4 Say hello to My little Friend: Flutter, part ii

137

There are two choices when dealing with the Theme widget: extending the parent

theme or building a new one. Extending the parent theme (which means whatever

theme is nearest when traversing up the widget tree) is good when you only want to

change a subset of elements. To do this is easy:

Theme(

 data : Theme.of(context).copyWith(accentColor : Colors.red),

 child : /* Your widget tree to be styled with this theme */

)

The Theme.of() method is basically how you say “hey, Flutter, what’s the nearest

theme to this widget?” Whatever parent widget has a theme is the theme it will find

(and remember: even if you don’t explicitly define a theme anywhere there’s a default

theme automatically that will be found). This method returns a ThemeData object,

which has a copyWith() method. This method returns a new ThemeData object but with

whatever properties you pass to it overriding what was in it before. Here, we’re making

the accentColor property of the new ThemeData use Colors.red, overriding whatever it

was before. Now, all widgets underneath this Theme widget will have a red accent color

regardless of what any other widgets in the app have.

To create a whole new Theme is arguably even easier:

Theme(

 data : ThemeData(accentColor : Colors.red),

 child : /* Your widget tree to be styled with this theme */

);

No need to get the parent ThemeData; you just create a new instance and define the

properties you want. There are many properties supported by ThemeData, far too many

to list here, so you’ll need to refer to the Flutter documentation to see which you want to

define.

Now, once you have the Theme widget defined, you still must make use of it in

individual widgets. But, with the Theme in place, it makes it easy:

Theme (

 data : ThemeData(accentColor : Colors.red),

 child : Container(

 color : Theme.of(context).accentColor,

 child : Text(

Chapter 4 Say hello to My little Friend: Flutter, part ii

138

 "Text with a background color,"

 style : Theme.of(context).textTheme.title,

)

)

)

Remember the key point: since the Container here is wrapped in a Theme,

Theme.of(context) will return that theme’s ThemeData; if the Container was not

wrapped in a Theme, then the application-level ThemeData for the Theme specified

in the theme property of the MaterialApp widget would be used; if no theme was

specified on the MaterialApp, then a default Theme and ThemeData would be built

under the covers and used by default.

 Opacity

The Opacity widget is a simple one: it makes its child transparent by a specified amount.

As a simple example, just replace the second Text in the example from earlier with this:

Opacity(opacity: .25, child : Text("Faded"))

When you rerun it, you’ll see that the text is now semi-transparent (or to state it

another way: 25% opaque). There’s not much more to it than this!

 DecoratedBox

The DecoratedBox widget is exactly what it says: a box, which is decorated! More

conceptually, it paints a decoration onto another box-like container widget that is

a child of the DecoratedBox. Going along with DecoratedBox, nearly always, is the

BoxDecoration widget, which defines the decoration you want.

Let’s look at an example:

DecoratedBox(

 decoration : BoxDecoration(

 gradient : LinearGradient(

 begin : Alignment.topCenter,

 end : Alignment.bottomCenter,

 colors : [Color(0xFF000000), Color(0xFFFF0000)],

Chapter 4 Say hello to My little Friend: Flutter, part ii

139

 tileMode : TileMode.repeated

)

),

 child : Container(width : 100, height : 100,

 child : Text("Hello",

 style : TextStyle(color : Colors.white)

)

)

)

Here, we wrap a DecoratedBox around a Container that is parent to a Text widget. On

its own, the DecoratedBox won’t display anything; that’s where its child comes in. We need

to give it a box to decorate, and that’s what the Container is for. The Text inside it is just an

added bonus to show that it’s the Container being decorated and not the Text itself.

Now, how it’s being decorated is where the decoration property comes into play,

and its value is an instance of BoxDecoration. The BoxDecoration widget provides a

way to decorate with colors, or with images (to have a background image applied to the

Container behind the Text, for example) or play with the borders (rounded corners,

for example) and apply shadows and gradients, the latter of which is shown here. The

LinearGradient is one of several gradient classes (in addition to RadialGradient

and SweepGradient) that take a position in the box to begin and end the gradient

(conveniently specified with the Alignment class constants) and the colors to use and

how to repeat the gradient if needed based on the size of the box.

DecoratedBox, combined with BoxDecoration, is a handy and flexible way to add

styling to any container element as your needs require.

 Transform

The Transform widget applies some sort of geometric transformation on its child

element. Virtually any kind of transformation can be coded with this. As an example:

Center(

 child : Container(

 color : Colors.yellow,

 child : Transform(

 alignment : Alignment.bottomLeft,

Chapter 4 Say hello to My little Friend: Flutter, part ii

140

 transform : Matrix4.skewY(0.4)..rotateZ(-3 / 12.0),

 child : Container(

 padding : const EdgeInsets.all(12.0),

 color : Colors.red,

 child : Text("Eat at Joe's!")

)

)

)

)

That rotates and skews a red box with a yellow background that has some text in it

while keeping the bottom left corner of the box pinned to its original location. It may

not be an especially useful example, but it begins to hint at the sort of power this widget

provides if you are familiar with matrix transformations.

In addition to this constructor, there is also Transform.rotate(), Transform.

scale(), and Transform.translate() which each returns a Transform widget

specifically configured for the three most common types of transformations,

namely, rotations, scaling, and translations. These are considerably easier to use

since they don’t require you to know matrix operations (they take a simple subset

of arguments that is less math-y, if you will), so if you need one of these common

transformation types, I highly recommend using them instead of the Transform()

constructor.

 Animations and Transitions

Animations in a user interface are big business these days! Users expect their apps

to move visually and to do so in a visually appealing way. Flutter provides some

animation widgets for just this purpose. Given that by their nature it wouldn’t make

much sense to show screenshots of any of this, I haven’t done so. But, I think this

would be an excellent opportunity for you to fire up Android Studio, create a basic

project, and then work on running this code. You’ll have to do some work to create

a basic app, but it should be an excellent exercise to test your understanding to this

point as well as showing you what this all does.

Chapter 4 Say hello to My little Friend: Flutter, part ii

141

 AnimatedContainer

For relatively simple animations, the AnimatedContainer widget is perfect. It gradually

changes its values over a defined period of time. It does this automatically – you just tell

it what the starting values are, then change to the new values and it will animate

(or tween) between them as required.

As a simple example:

class _MyApp extends State {

 var _color = Colors.yellow;

 var _height = 200.0;

 var _width = 200.0;

 @override

 Widget build(BuildContext context) {

 return MaterialApp(home : Scaffold(

 body : Center(child : Column(

 mainAxisAlignment : MainAxisAlignment.center,

 children : [

 AnimatedContainer(

 duration : Duration(seconds : 1),

 color : _color, width : _width, height : _height

),

 RaisedButton(

 child : Text("Animate!"),

 onPressed : () {

 _color = Colors.red;

 _height = 400.0;

 _width = 400.0;

 setState(() {});

 }

)

]

))

));

 }

}

Chapter 4 Say hello to My little Friend: Flutter, part ii

142

Here, we’ve got an AnimatedContainer with its duration property set to one

second so that’s how long the animation will take. We set the initial color, width,

and height properties to the values of the variables defined in the State. Then,

when the user clicks the RaisedButton, the values of all three variables are changed

and setState() is called, which triggers the rebuild, but now Flutter will do so over

one second of time, gradually making the AnimatedContainer bigger and gradually

changing it to red.

You’ll also find a DecoratedBoxTransition which can be used to animate the various

properties of a DecoratedBox, so it’s conceptually pretty similar to AnimatedContainer,

but for a specific target widget.

 AnimatedCrossFade

The AnimatedCrossFade widget is a widget specifically designed to cross-fade between

two elements. A cross-fade is when one element fades out while another fades in at the

same location. It’s simple to use:

class _MyApp extends State {

 var _showFirst = true;

 @override

 Widget build(BuildContext context) {

 return MaterialApp(home : Scaffold(

 body : Center(child : Column(

 mainAxisAlignment : MainAxisAlignment.center,

 children : [

 AnimatedCrossFade(

 duration : Duration(seconds : 2),

 firstChild : FlutterLogo(

 style : FlutterLogoStyle.horizontal,

 size : 100.0

),

 secondChild : FlutterLogo(

 style : FlutterLogoStyle.stacked,

 size : 100.0

),

Chapter 4 Say hello to My little Friend: Flutter, part ii

143

 crossFadeState : _showFirst ?

 CrossFadeState.showFirst :

 CrossFadeState.showSecond,

),

 RaisedButton(

 child : Text("Cross-Fade!"),

 onPressed : () {

 _showFirst = false;

 setState(() {});

 }

)

]

))

));

 }

}

First, this is the first time you’ve seen the FlutterLogo widget. As I’m sure you can

guess, this is one that displays the Flutter widget with various stylings. You don’t need to

add it as a resource or anything like that, it’s just there automatically for you to use.

Now, here, we embed two of them inside an AnimatedCrossFade widget by

setting the firstChild and secondChild properties to instances of FlutterLogo.

Like AnimatedContainer, this widget has a duration property too, which is set to two

seconds here.

The crossFadeState property is what matters most: it tells the widget which of the

two widgets to show. When set to the value of CrossFadeState.showFirst, it shows the

first. Otherwise, it shows the second when the value is CrossFadeState.showSecond.

This is based on the value of the boolean _showFirst variable, which starts out true, so

the first image appears but then gets set to false when the RaisedButton is clicked, and

voila, we have ourselves a cross-fade!

Note that there is also a FadeTransition that animates the opacity of an element.

You could build your own AnimatedCrossFade with two FadeTransition widgets

working simultaneously if you wanted (which, while I haven’t checked, I’d be willing to

bet is exactly how AnimatedCrossFade is implemented).

Chapter 4 Say hello to My little Friend: Flutter, part ii

144

 AnimatedDefaultTextStyle

For animating text, AnimatedDefaultTextStyle is a good choice. It works very similarly

to AnimatedContainer and AnimatedCrossFade:

class _MyApp extends State {

 var _color = Colors.red;

 var _fontSize = 20.0;

 @override

 Widget build(BuildContext context) {

 return MaterialApp(home : Scaffold(

 body : Center(child : Column(

 mainAxisAlignment : MainAxisAlignment.center,

 children : [

 AnimatedDefaultTextStyle(

 duration : const Duration(seconds : 1),

 style : TextStyle(

 color : _color, fontSize : _fontSize

),

 child : Text("I am some text")

),

 RaisedButton(

 child : Text("Enhance! Enhance! Enhance!"),

 onPressed : () {

 _color = Colors.blue;

 _fontSize = 40.0;

 setState(() {});

 }

)

]

))

));

 }

}

Chapter 4 Say hello to My little Friend: Flutter, part ii

145

Here, the Text that is the child of the AnimatedDefaultTextStyle is enlarged 100%

and its color changed over the course of one second. By this point I’m going to assume

that not much needs to be explained here given how similar these last three widgets

have been.

 A Few Others: AnimatedOpacity, AnimatedPositioned,
PositionedTransition, SlideTransition, AnimatedSize,
ScaleTransition, SizeTransition, and RotationTransition

I’m going to save some space here and just mention without showing examples that

in addition to the widgets you’ve seen in this section, there are a few others, as you

can see in the heading. These can be used just like the others to animate the opacity

of an element, or the position of an element, the size of an element, or the rotation of

an element.

Note that the AnimatedOpacity widget should be used sparingly because

opacity animation is a relatively expensive operation (this would apply to the

AnimatedCrossFade and FadeTransition widgets too).

Also note that the AnimatedPositioned widget only works if the child is an element

of a Stack, which is a widget we never discussed explicitly. In brief, it allows you to

display several children overlapped over one another (whether they are the same size

or not, meaning that if a larger element is beneath a smaller one then the larger element

can “peek out” from behind the smaller one on top, at least partially). You’ll definitely

be seeing the stack again in later chapters, but understand that it’s not the same as the

navigator stack that you saw earlier. They are two separate concepts. The Stack widget is

just a container for other elements that can be on top of each other.

An interesting note about the *Transition widgets is that they all support

physics, which allows you to have animations that aren’t purely linear. This is true to

varying degrees for the Animated* widgets, but the support for it in the *Transition

widgets tends to be a bit more robust, which means you can get more exciting

animations.

Chapter 4 Say hello to My little Friend: Flutter, part ii

146

 Drag and Drop

Although somewhat less common on mobile devices, the drag-and-drop interaction is

common on desktops, and either way, Flutter does support it. It does so via two main

widgets: Draggable and DragTarget. Using them is not too tough:

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(home : Scaffold(

 body : Center(child : Column(mainAxisAlignment :

 MainAxisAlignment.center,

 children : [

 DragTarget(

 builder : (BuildContext context,

 List<String> accepted,

 List<dynamic> rejected) {

 return new Container(width : 200, height : 200,

 color : Colors.lightBlue);

 },

 onAccept : (data) => print(data)

),

 Container(height : 50),

 Draggable(

 data : "I was dragged",

 child : Container(width : 100, height : 100,

 color : Colors.red),

 feedback : Container(width : 100, height : 100,

 color : Colors.yellow)

)

]

))

));

 }

}

Chapter 4 Say hello to My little Friend: Flutter, part ii

147

First, we have a DragTarget, which of course is where the thing being dragged can

be dropped. We need to specify the data type that this target will accept, and in this case,

it’s a plain old String. The builder() function returns a Container, but it can return

anything we want to make a drop target.

Next, a second Container is added to the Column layout, just to give us a little bit of

space between the DragTarget and the Draggable, which is next. The primary things

we need to supply here are the data property, which is any arbitrary data you want to

provide to the DragTarget, and then the feedback property, which is a widget that the

user will physically (err, virtually? Physically-virtually? What’s the right verb?!) drag.

You see, the way it works is that the original widget, which is specified via the child

attribute, never moves. Instead, when the user begins to move the child Container,

the widget determined by feedback is rendered and begins to be draggable. When it’s

dropped onto a DragTarget, the onAccept handler function on the DragTarget fires and

receives the data property value of the Draggable.

There are a host of other callbacks that can be triggered in various situations on both

widgets, but probably the most useful is the onDragComplete handler, which is a function

that fires when the Draggable is dropped on a DragTarget. This is usually the place

where you’d hide the original child widget or do whatever else makes sense.

Finally, there is a LongPressDraggable widget that can be used in place of

Draggable. The difference is that this one makes the child draggable from a long press

instead. It’s a minor interaction difference that merely depends on your use case.

 Data Views

It is a typical pattern in any app, mobile or otherwise, to show the user lists of data in

some form. Flutter provides a handful of widgets specifically for that purpose (though

you can always build your own if you want with various scrolling components, but that

will usually not be necessary given the widgets here).

 Table

The Table widget is perhaps the simplest of what I term “data views,” that is, widgets

used to display a collection of data. If you’re familiar with an HTML table, then you

already have a basic idea what the Table widget is all about: displaying elements in an

organization of rows and columns. Look at the sample code in Listing 4-2 and the result

in Figure 4-2.

Chapter 4 Say hello to My little Friend: Flutter, part ii

148

Listing 4-2. Setting the table with the Table widget

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 Widget build(BuildContext inContext) {

 return MaterialApp(home : Scaffold(

 body : Column(children : [

 Container(height : 100),

 Table(

 border : TableBorder(

 top : BorderSide(width : 2),

 bottom : BorderSide(width : 2),

 left : BorderSide(width : 2),

 right : BorderSide(width : 2)

),

 children : [

 TableRow(

 children : [

 Center(child : Padding(

 padding : EdgeInsets.all(10),

 child : Text("1"))

),

 Center(child : Padding(

 padding : EdgeInsets.all(10),

 child : Text("2"))

),

 Center(child : Padding(

 padding : EdgeInsets.all(10),

 child : Text("3"))

)

]

)

]

Chapter 4 Say hello to My little Friend: Flutter, part ii

149

)

])

));

 }

}

It’s straightforward, right? You can optionally define the border of the Table, but

by default, it will have none. Then, you just need to supply some rows via children,

which can be any widget or widget tree you like but it must at the top be an instance of

TableRow, and the children of each is a cell, or column, in the row. Every row in a Table

Figure 4-2. It’s not much to look at, but it’s just a basic Table example after all!

Chapter 4 Say hello to My little Friend: Flutter, part ii

150

must have the same number of children. You can manually set the widths of the columns

with the columnWidths property, and you can adjust the vertical alignment of content in

each cell with the defaultVerticalAlignment property.

 DataTable

Displaying data in a tabular form is very common in UIs, and so Flutter provides the

DataTable widget for this purpose, as shown in Listing 4-3.

Listing 4-3. The DataTable widget

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 Widget build(BuildContext inContext) {

 return MaterialApp(home : Scaffold(

 body : Column(children : [

 Container(height : 100),

 DataTable(sortColumnIndex : 1,

 columns : [

 DataColumn(label : Text("First Name")),

 DataColumn(label : Text("Last Name"))

],

 rows : [

 DataRow(cells : [

 DataCell(Text("Leia")),

 DataCell(Text("Organa"), showEditIcon : true)

]),

 DataRow(cells : [

 DataCell(Text("Luke")),

 DataCell(Text("Skywalker"))

]),

Chapter 4 Say hello to My little Friend: Flutter, part ii

151

 DataRow(cells : [

 DataCell(Text("Han")),

 DataCell(Text("Solo"))

])

]

)

])

));

 }

}

In simplest terms, a DataTable requires that you tell it what the columns in

the table are and then of course what the data rows to display are. Each column is

defined via a DataColumn instance while each row is defined with a DataRow instance

which contains a collection of cells whose members are DataCell instances.

Although not required, you can supply the sortColumnIndex property to indicate

which column the data is currently sorted by. Note that this is just a visual indicator

though – your code is responsible for physically sorting the data (you most of the

time won’t supply the data inline as in this example; you’ll instead have some

function that produces the list, and that’s the natural place to sort the data as well).

You can see most of this in Figure 4-3.

Chapter 4 Say hello to My little Friend: Flutter, part ii

152

A DataColumn can supply a tooltip property to show some descriptive text when the

column is long-pressed, and a DataCell can include a showEditIcon property that, when

true, shows a little pencil icon to indicate the cell can be edited. The actual editing must

be supplied by your code, however.

Note that a DataTable is a somewhat expensive widget computationally owing to

the layout process it must implement. Therefore, if you have a lot of data to display it is

recommended that you use the PaginatedeDataTable widget instead. It works much like

DataTable does, but it splits the data into pages that the user can move between. That

way, it only has to lay one page at a time, which is less expensive.

Figure 4-3. Are you team Star Wars or Star Trek? Oh yeah, and that’s a DataTable!

Chapter 4 Say hello to My little Friend: Flutter, part ii

153

 GridView

The GridView widget displays a two-dimensional grid of widgets. It can scroll in either

direction according to the scrollDirection property (defaulting to Axis.vertical)

and which provides several layouts, the most common being the one generated by the

GridView.count() constructor as Listing 4-4 shows.

Listing 4-4. A GridView full of fluttering Flutter logos (okay, they’re not

fluttering)

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext inContext) {

 return MaterialApp(home : Scaffold(

 body : GridView.count(

 padding : EdgeInsets.all(4.0),

 crossAxisCount : 4, childAspectRatio : 1.0,

 mainAxisSpacing : 4.0, crossAxisSpacing : 4.0,

 children: [

 GridTile(child : new FlutterLogo()),

 GridTile(child : new FlutterLogo()),

 GridTile(child : new FlutterLogo()),

 GridTile(child : new FlutterLogo()),

 GridTile(child : new FlutterLogo()),

 GridTile(child : new FlutterLogo()),

 GridTile(child : new FlutterLogo()),

 GridTile(child : new FlutterLogo()),

 GridTile(child : new FlutterLogo())

]

)

));

 }

}

Chapter 4 Say hello to My little Friend: Flutter, part ii

154

This produces a layout, shown in Figure 4-4, with a fixed number of elements (called

tiles) in the cross axis. Others include GridView.extent(), which produces a layout with

tiles that have a maximum cross-axis extent. You can also use the GridView.builder()

constructor if you have an “infinite” number of tiles to display.

Note that GridView is very much like ListView, which in a sense is a purely linear

GridView (we’ll be looking at ListView shortly).

Figure 4-4. It’s not much to look at, I admit, but it demonstrates GridView well
enough

Chapter 4 Say hello to My little Friend: Flutter, part ii

155

 ListView and ListTile

The ListView widget is probably the most important of the data view widgets. Certainly,

I would say it’s likely to be the one you’ll use most often when you have a scrolling list of

items to display. In its simplest form, coding it looks like Listing 4-5.

Listing 4-5. Coding a simple static ListView

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext inContext) {

 return MaterialApp(home : Scaffold(

 body : ListView(children : [

 ListTile(leading: Icon(Icons.gif), title: Text("1")),

 ListTile(leading: Icon(Icons.book), title: Text("2")),

 ListTile(leading: Icon(Icons.call), title: Text("3")),

 ListTile(leading: Icon(Icons.dns), title: Text("4")),

 ListTile(leading: Icon(Icons.cake), title: Text("5")),

 ListTile(leading: Icon(Icons.pets), title: Text("6")),

 ListTile(leading: Icon(Icons.poll), title: Text("7")),

 ListTile(leading: Icon(Icons.face), title: Text("8")),

 ListTile(leading: Icon(Icons.home), title: Text("9")),

 ListTile(leading: Icon(Icons.adb), title: Text("10")),

 ListTile(leading: Icon(Icons.dvr), title: Text("11")),

 ListTile(leading: Icon(Icons.hd), title: Text("12")),

 ListTile(leading: Icon(Icons.toc), title: Text("3")),

 ListTile(leading: Icon(Icons.tv), title: Text("14")),

 ListTile(leading: Icon(Icons.help), title: Text("15"))

])

));

 }

}

Chapter 4 Say hello to My little Friend: Flutter, part ii

156

The children of ListView can be anything you like, but frequently you will use

a ListTile widget (several of them, to be more precise). ListTile is a widget that

is a single fixed-height row that contains some text and a leading or trailing icon.

ListTile can show up to three lines of text, including a subtitle. In the example, the

leading property is used to show an Icon before the text, which you can see in Figure 4-5.

The ListView can scroll vertically or horizontally depending on the setting of its

scrollDirection property. You can even adjust the way the ListView handles scrolling

by adjusting the physics property, which is an instance of ScrollPhysics.

Figure 4-5. The ListView widget, in conjunction with ListTile

Chapter 4 Say hello to My little Friend: Flutter, part ii

157

ListView supplies a couple of different constructors, with the default one shown

in the example. There is also a ListView.builder() constructor that uses a builder

function to render the rows. ListView.separated() is also available, and this will

provide you a ListView with items separated by list separators you define. The

ListView.custom() constructor allows you more flexibility in setting the child model to

make the ListView look and work in pretty much any way you want.

There is also the PageView widget, which is a ListView that supports pagination. This

is a good choice if you have many items that you want to ensure are displayed with good

performance, but more importantly, that is logical to break into groupings in some way

where each grouping becomes a page.

 Miscellaneous

Some widgets defy categorization. Well, not for long, because now we have a

miscellaneous category just for them!

 CircularProgressIndicator (CupertinoActivityIndicator)
and LinearProgressIndicator

What do you show your users while some long-running activity is ongoing? Maybe it’s

a call to a remote server that is responding a bit slowly. There are many choices, but

CircularProgressIndicator is one of the best. It’s just an animated circle, but it gets the

job done and is very easy to use:

CircularProgressIndicator()

Yep, in simplest terms, that’s all it takes! Flutter handles everything else for

you. Now, there are of course some options that will be of interest to you. First,

strokeWidth allows you to determine how thick the circle is. The backgroundColor

property lets you set a different color behind the indicator. Finally, valueColor

allows you to define the color of the circle itself. Unfortunately, it’s not as simple

as setting a color from the Colors class. No, you have to provide an instance

of the Animation class or one of its descendants. Almost always, it will be the

AlwaysStoppedAnimation class, which has a constructor that accepts a color, so it

winds up not being that much more difficult.

Chapter 4 Say hello to My little Friend: Flutter, part ii

158

For iOS, there is a corresponding CupertinoActivityIndicator which looks and works

much the same. To use it, you’ll need to import package:flutter/cupertino.dart, which

is true of all the Cupertino widgets. Plus, it doesn’t have quite the same degree of flexibility: it

only has a radius property to define how big it is – no color options are present.

Finally, if you’re not into curves, there is a LinearProgressIndicator that shows

progress as a colored line:

LinearProgressIndicator(value : .25, backgroundColor : Colors.yellow)

Here, value is a number between zero and one that determines how much progress

has been made and hence how much of the bar is colored. The backgroundColor is the

color of the portion of the bar corresponding to remaining progress while the value of

valueColor (which like CircularProgressIndicator takes an instance of an Animation

as a value) is the portion that has completed. So, in the example, 75% of the bar would be

colored yellow while 25% of it would be colored whatever the default color of the theme

is since there is no valueColor specified.

 Icon

The Icon widget is just about as simple as a Flutter widget gets: it provides a means to

show a Material icon on the screen. To use it, all you do is this:

Icon(Icons.radio)

The Icons class contains a list of Material icons for your use, quite a lot of them in

fact. However, you can also add your own. As it happens, these are implemented via

fonts, and you can add custom fonts if you want other icons (the popular Font Awesome

icon collection, for example).

To do this requires us to jump into the pubspec.yaml file, which was briefly

mentioned in Chapter 1. In short, this file provides configuration information that Flutter

uses to build and run your app. It lists things like dependencies your project has, its

name, what version of Flutter it requires, and more. Depending on your needs, you may

never have to touch it after the new project wizard creates it. And, what it creates will

look something like this:

name: flutter_playground

description: flutter playground

version: 1.0.0+1

Chapter 4 Say hello to My little Friend: Flutter, part ii

159

environment:

 sdk: ">=2.0.0-dev.68.0 <3.0.0"

dependencies:

 flutter:

 sdk: flutter

 cupertino_icons: ^0.1.2

dev_dependencies:

 flutter_test:

 sdk: flutter

flutter:

 uses-material-design: true

This is the pubspec.yaml that was generated for the Flutter Playground app I

generated while writing this chapter (which is nothing but the basic Flutter Application

project). Note that I’ve removed the comments here, but there are quite a few that

explains what most of this is and even gives you hints about some of the other things you

can do, including adding new fonts for icons! It explains that you can add a True Type

Font (TTF) file to your project and then add a section under the flutter heading here to

reference it. For example, to add Font Awesome, you might do:

flutter:

 fonts:

 - family: FontAwesome

 fonts:

 - asset: fonts/font-awesome-400.ttf

Once you do that, you can create an instance of IconData that specifies the code

point, which is a reference number for the icon you want in the font you added (which

you can find on the Font Awesome web site fontawesome.com) and the font family it

belongs to, like so:

Icon(IconData(0xf556, fontFamily : "FontAwesome"))

Chapter 4 Say hello to My little Friend: Flutter, part ii

http://fontawesome.com

160

That’s not too tough. But, there’s an even easier way for at least some fonts, Font

Awesome, for example, which is perhaps the most popular font-based collections of

icons out there and so has a little better support in Flutter. Here, you can add a plugin

that will make things even easier. A plugin is something that extends Dart and/or Flutter.

Usually, it’s some Dart code that you can then import into your project as needed. To

use a plugin, you just need to add a single line to pubspec.yaml under the dependencies

heading:

dependencies:

 font_awesome_flutter: ^8.4.0

That specifies that we want version 8.4.0 of the font_awesome_flutter plugin

or higher, if a higher version is available (if you aren’t familiar with semantic

versioning, then a quick Google search will get you up to speed in no time – it’s

pretty simple, so if it’s new to you, don’t worry because it’s easy to pick up but is also

beyond the scope of this book). Information on this plugin can be found at https://

pub.dartlang.org/packages, and you can find many other useful plugins in this

repository, all which get added the same way. This won’t be the last plugin we see

used in this book.

You’ll then need to tell Android Studio to get dependencies, which it will

automatically show a prompt bar for above the editor when it recognizes that pubspec.

yaml has changed. Click Packages Get and the dependencies will be downloaded. This

includes the necessary TTF file and some extra code.

That extra code can now be used in your code once you add an import:

import "package:font_awesome_flutter/font_awesome_flutter.dart";

The benefit to doing this is that instead of having to deal with finding the code point,

you instead can now just write:

Icon(FontAwesomeIcons.angry)

It makes it just as easy as using the built-in Material icons, but now you have way

more icons to choose from thanks to Font Awesome and this plugin!

We’ll look at pubspec.yaml as necessary as we forge on, but this serves as a good

first introduction to it showing you some of the options it provides you and your Flutter

projects.

Chapter 4 Say hello to My little Friend: Flutter, part ii

https://pub.dartlang.org/packages
https://pub.dartlang.org/packages

161

 Image

Along the same lines as the Icon widget is the Image widget, which as I’m sure you

can guess is used to display an image of some sort. This widget offers several different

constructors, each for fetching an image from a different location. I’m only going to

talk about two of them though because they are the most common in my experience:

Image.asset() to load an image from the app itself and Image.network() to load it from

a network location.

First, Image.asset() allows us to load an image that is included in the app

bundle itself:

Image.asset("img/ron.jpg")

That seems easy, right? But, there’s one part missing: we must tell Flutter about our

image, which is called an asset. To do so, we have to dive back into pubspec.yaml and

add a new section under the flutter heading:

assets:

 - img/ron.jpg

Every asset you want to include must be declared in this section. Otherwise, the

Flutter SDK won’t know to include it. You could also do - img/ to include everything

under the img directory. But, note that only files directly under img/ would be included –

anything in subdirectories of img/ would not be (you would have to add an entry for each

subdirectory).

It’s a bit of a tangential point, but note that assets aren’t just about images – you

can include text assets as well, things like JSON files. You can load those using the

rootBundle object, which is available throughout your application’s code. For example,

to load a settings.json file:

String settings = await rootBundleloadString("textAssets/settings.json");

Also tangential but worth knowing: When a build is done, the Flutter SDK creates

a special archive that goes along with your app called the asset bundle. You can read

from this at runtime, as shown by the settings.json example (and, obviously, Image.

asset() is doing so under the covers).

Chapter 4 Say hello to My little Friend: Flutter, part ii

162

Note there is a fair bit more to asset bundling in Flutter than i’m covering

here, things like variant assets, resolution-aware image assets, and the

AssetBundle object that provides access to bundled resources (that’s the class

that rootBundle is an instance of, and it offers other facilities, as most classes

do). however, for our purposes in this book, we won’t need much more than what

you see here, so if you think you need those other capabilities, then you’ll have to

explore them on flutter.io.

Lastly, loading an image from the network is even easier since there aren’t even any

assets to declare:

Image.network("http://zammetti.com/booksarticles/img/darkness.png")

Yep, that’s it! Assuming the device has connectivity, the image will be loaded and

displayed just as if it were bundled with the application (albeit perhaps a little slower,

given intrinsic network latency).

 Chip

A Chip is small visual elements that are typically meant to display attributes of things, or

small text, or to represent entities like users or quick actions the user can take.

A typical usage is to show a small element representing the current user, perhaps

next to their name on a details page. A simple example might be what’s shown in

Listing 4-6 and shown in Figure 4-6.

Listing 4-6. A simple Chip

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext inContext) {

 return MaterialApp(home : Scaffold(

 body : Center(child :

Chapter 4 Say hello to My little Friend: Flutter, part ii

163

 Chip(

 avatar : CircleAvatar(

 backgroundImage : AssetImage("img/ron.jpg")

),

 backgroundColor : Colors.grey.shade300,

 label : Text("Frank Zammetti")

)

)

));

 }

}

Figure 4-6. A Chip off the old Flutter block

Chapter 4 Say hello to My little Friend: Flutter, part ii

164

The avatar property is optional and usually shows either an image or the initials

of the user. This property takes a value that is itself a Widget, so in theory, you could

put anything you want here. In this case, I’m using a CircleAvatar widget, which

is common for this use case. It can show images or text (typically a person’s initials

when the Chip represents a person) or can itself contain child widgets. In this case,

I’ve used the same image as for the previous Image example to show a little picture of

me. The backgroundColor property, of course, is the color of the chip, and the label

property is the text to display next to the avatar image (or alone, if no avatar property

is specified).

If you add an onDeleted property, then the Chip will include a delete button for

deleting the entity it represents. You’ll need to provide a function to implement the

delete though as this is purely a visual addition to the Chip.

 FloatingActionButton

The FloatingActionButton widget is one that is very common on Android devices,

somewhat less so on iOS devices. It’s a round button that floats above the main content

and provides the user quick access to some primary function. For example, it might be

the button that triggers the appointment add screen in a calendar app.

It’s rare that you’ll create a FloatingActionButton on its own, although you can. It’s

also unusual to have more than one on the screen at a time, but again, you technically

can. More times than not, you’ll specify it as the value of the floatingActionButton

property of the Scaffold widget, as you can see in Listing 4-7.

Listing 4-7. A basic FloatingActionButton as part of a Scaffold

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext inContext) {

 return MaterialApp(home : Scaffold(

 floatingActionButton : FloatingActionButton(

 backgroundColor : Colors.red,

 foregroundColor : Colors.yellow,

Chapter 4 Say hello to My little Friend: Flutter, part ii

165

 child : Icon(Icons.add),

 onPressed : () { print("Ouch! Stop it!"); }

),

 body : Center(child : Text("Click it!"))

));

 }

}

Usually, the child of the FloatingActionButton will be an Icon, as you can see in

Figure 4-7, though there’s nothing that says it must be.

Figure 4-7. A FloatingActionButton doing its, uh, floating thing

Chapter 4 Say hello to My little Friend: Flutter, part ii

166

The backgroundColor property makes the button itself whatever color you like,

and foregroundColor makes the icon or text on the button the specified color. The

onPressed property is optional and if not specified will make the button disabled and

unresponsive to touch. That isn’t usually much good though so you’ll need to define a

function to implement whatever the functionality for the button should be.

You can also adjust the shadow via the elevation property, and you can

even make the button square by setting the shape property to an instance of a

RoundedRectangleBorder widget, among other tweaks its properties allow for.

 PopupMenuButton

The PopupMenuButton widget implements the common “three-dot” menu paradigm to

display a popup menu providing options to a user. This widget can be placed anywhere

you deem appropriate and will show up as three vertical dots. The widget has an

onSelected property that is a callback function you provide which receives the value

associated with the selected option. You can then implement whatever functionality is

appropriate. Here’s an example, Listing 4-8.

Listing 4-8. A PopupMenuButton, and its menu

import "package:flutter/material.dart";

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext inContext) {

 return MaterialApp(home : Scaffold(

 body : Center(child :

 PopupMenuButton(

 onSelected : (String result) { print(result); },

 itemBuilder : (BuildContext context) =>

 <PopupMenuEntry<String>>[

 PopupMenuItem(

 value : "copy", child : Text("Copy")

),

Chapter 4 Say hello to My little Friend: Flutter, part ii

167

 PopupMenuItem(

 value : "cut", child : Text("Cut")

),

 PopupMenuItem(

 value : "paste", child : Text("Paste")

)

]

)

)

));

 }

}

I’m gonna go out on a limb here and say you probably know what this looks like

without seeing a screenshot! The PopupMenuButton widget uses the builder pattern

previously discussed to construct a list of PopupMenuItem widgets. These widgets can

have any child you deem appropriate, but most commonly it’s just a Text widget.

You associate a value with each item, and then your onSelected function is passed

that value and is responsible for what each does (here it’s just print()’d to the

console).

Some of the other properties supported included the ability to pre-select an item

with the initialValue property, the ability to react to the user canceling without

selecting an item by supplying a function to the onCanceled property, and adjusting

the shadow with the elevation property and play with the padding via the padding

property.

 Wither APIs?

In addition to the wide variety of widgets, Flutter also offers some APIs for your use,

packaged into libraries. They fall into three rough categories: core Flutter framework

libraries, Dart libraries, and other/support libraries. We’ll look at each group

here, although because of what’s covered, the latter two groups will wind up being

combined.

Chapter 4 Say hello to My little Friend: Flutter, part ii

168

Note that, as with the widgets, this is intended as a very brief, high-level look at what’s

available. There are more APIs than will be shown here, and for most of these, there won’t be

any sample code or in-depth details, just a basic “here’s something that might be of interest

to you,” and as before, I’ll try and point out the things that I believe will be of interest to most

developers. You definitely should though spend some time on flutter.io to see all that’s

available though, and you’ll need to reference that online documentation to get all the details

you need to put most of this to proper use, but after this section, you should have at least

some idea what’s available and what to look up, and that’s the goal here!

 Core Flutter Framework Libraries

The core Flutter framework libraries provide most of the basic functionality of Flutter.

Much of this is used internally by the widgets themselves, and so you may find that you

don’t have cause to use all that much of this directly. Indeed, some of it you will though

of course, so let’s have a look.

Note that you must import these to use them, and the import syntax to use is

package:flutter/<library-name>.dart.

 animation

The animation library provides a variety of functions for implementing various

animations in Flutter apps. Some of the interesting members of note include

• Animation – This class contains basic information about an

animation, things like whether it’s running and allowing you to hook

event listener functions to it.

• AnimationController – This class allows you to control an

animation, things like starting and stopping, resetting, and repeating

an animation.

• Curve – This class contains data defining an easing curve, which allows

you to have animations that aren’t strictly linear in appearance. There

are numerous subclasses of Curve including Cubic, ElasticInOutCurve,

Interval, and Sawtooth that define common easings.

• Tween – Like Curve, this class contains data defining a particular

type of tween operation, and like Curve, it has many subclasses for

common tweens such as ColorTween (tween between two colors),

Chapter 4 Say hello to My little Friend: Flutter, part ii

169

TextStyleTween (for animating between two text styles such as going

from regular text to bold text), and RectTween (interpolation between

two rectangles, perhaps to animate the size of a rectangle).

 foundation

This library contains foundational Flutter classes, functions, and more. All other layers of

Flutter will use this library. Some of its contents include

• Key – You’ve seen this class before in its GlobalKey and LocalKey

subclasses.

• kReleaseMode – A constant that if true if the application is compiled

in release mode.

• required – A constant that is used to mark a parameter in a method

or function as being required. Yes, you can use this on your own

classes!

• debugPrintStack – A function that dumps the current stack to the

console.

• debugWordWrap – A function to wrap a given string to a given length.

• TargetPlatform – An enum that provides values corresponding to

the various supported platforms (android, fuscia, and iOS at the time

of this writing).

 gestures

The gestures library contains code for recognizing different user gestures common on

touch-oriented devices, things like double-taps, swiping movements plus drag-and-drop

operations. Here you’ll find things like

• DoubleTapGestureRecognizer – A class that knows how to detect a

double-tap

• PanGestureRecognizer – A class that recognizes drag movements in

both horizontal and vertical directions

• ScaleGestureRecognizer – A class to recognize pinch gestures

typically used for zooming in and out

Chapter 4 Say hello to My little Friend: Flutter, part ii

170

 painting

The painting library includes a variety of classes that wrap the Flutter engine’s painting

API, which handles the basic and core painting operations that everything else depends

on, for performing more specialized painting tasks like painting scaled images, borders

around boxes, and interpolating between shadows. Some of the things you’ll find here,

many of which should look familiar to you already just from the sample code you’ve

looked a thus far, include

• Alignment – A class that defines a point inside a rectangle

• AssetImage – A class that fetches an image from an AssetBundle and

determines the appropriate image based on context

• Border – A class defining the border of a box

• Gradient – A class for showing a 2D color gradient

• TextDecoration – A class used to show a linear decoration (read: a

line) above or below some text

• debugDisableShadows – A property you can set to true to turn all

shadows into solid color blocks for troubleshooting purposes

• BorderStyle – An enum with values for defining the style of line to

draw as the border of a box (none, solid, or a List of values)

• TextAlign – An enum with values for defining how text will

horizontally align, whether center, end, justify, left, or start

 services

This library contains functionality for dealing with the underlying device platform in

relatively low-level ways. Some of what you’ll find here includes:

• AssetBundle – A class that consists of a collection of resources used

by the application (we talked about this briefly before). Things like

images and even data files can be asses in an AssetBundle.

• ByteData – A class that represents a fixed-length, random-access

sequence of bytes that also provides random and unaligned access to

the fixed-width integers and floating-point numbers represented by

those bytes.

Chapter 4 Say hello to My little Friend: Flutter, part ii

171

• Clipboard – A class that contains utility methods for working with the

system clipboard (getData() and setData() methods). This makes

use of the ClipboardData class to hold the data being put on or taken

from the Clipboard.

• HapticFeedback – A class that provides access to the device’s haptic

engine. Methods like heavyImpact() to produce a haptic collision

response corresponding to a heavy mass and mediumImpact() and

lightImpact() for medium and light masses respectively can be

found here.

• SystemSound – A class that provides a play() method that accepts

a SystemSoundType instance to let your app play one of the sounds

from the system’s library of short system sounds as specified by the

SystemSoundType.

• DeviceOrientation – An enum with values such as landscapeLeft

and portraitDown that can be used to determine and change device

orientation.

 widgets

There is also a widgets library, and if you guess that it contains all the Flutter widgets,

you would pretty much be right! Given that, there’s not much point going over it here

since you have seen most of its contents already and will continue to see its contents

thanks to writing Flutter code in later chapters. But, if you ever are wondering where the

widgets live, the answer is in this library, and you can naturally get to the documentation

of widgets through the documentation for this library (though since there’s separate

documentation for widgets explicitly, there’s not much point to going that route – but

you can).

 Dart Libraries

The Dart libraries are provided by Dart itself. To import these, you use the import form

dart:<library-name>.dart.

Chapter 4 Say hello to My little Friend: Flutter, part ii

172

 core

Technically, there is a library called core that contains built-in types, collections, and

other basic functionality every Dart program need (or, at least, has access to). As such,

and in contrast with all the other Dart libraries, you do not need to import this library

explicitly. It’s effectively done automatically for you by virtue of, you know, writing a Dart

program! As such, I’m going to skip going over anything here because much of it you’ve

either seen already or will see, so no point being redundant I figure.

 ui

Although these are Dart libraries, given that Google runs the show with both Flutter and

Dart, you will sometimes find some cross-pollinization, so to speak, and this library is

one such instance. This library contains built-in types and core primitives for Flutter

applications. However, given that what this library contains exposes the lower-level

services that Flutter frameworks use to bootstrap applications, things like classes for

driving the input, graphics, text, layout, and rendering subsystems of the framework, you

are unlikely to use too much here directly in your application code, and in places where

you do need to use it, I think it’s better to see it in a specific context. Therefore, I won’t go

into details of the contents of this library here.

 async

This library provides support for asynchronous programming. While there are several classes

and functions, I think it’s fair to say that the following two are the real stars of the show:

• Future – This is a class that represents a computation whose return

value might not be available yet. You’ll find that many methods

across Flutter and Dart return a Future. The Future has a then()

method, which is a function you provide that will execute when the

Future finally returns its value. You’ll be seeing plenty of this class in

the code to come.

• Stream – A class that provides asynchronous access to a stream of

data. The Stream class has a listen() method, which is a function you

provide that will execute every time more data is available in the Stream.

Seriously, I think it’s fair to say that if you know nothing else about this library, then

you will know almost all you’ll ever need, with few exceptions!

Chapter 4 Say hello to My little Friend: Flutter, part ii

173

 collection

The core library already contains some collections-related functionality, but the

collection library supplements that with things like

• DoubleLinkedQueue – A Queue class (which, hey, is another class in

this library!) based on a double-linked list implementation.

• HashSet – An unordered hash table-based Set implementation class.

• SplayTreeMap – A Map class that stores objects that can be ordered

relative to each other.

• UnmodifiableListView – A class with a name that’s a mouthful but

which provides a simple use: it’s a view of another List that can’t be

modified.

 convert

In this library, you’ll find utilities for encoding and decoding between different data

representations including the common JSON and UTF-8 formats. Some of the most

common things you’ll use here are

• JsonCodec – A class that encodes and decodes JSON string and

objects. The methods json.encode() and json.decode() are your

main entry points (note that json is an instance of JsonCodec that is

always automatically available to your code if you’ve imported this

library).

• Utf8Codec – A class which you’ll also find an automatic instance of

named uft8. It too has an encode() and decode() method that you

can use to convert between Unicode strings and their corresponding

byte values.

• AsciiCodec – A class which, through its automatic ascii instance,

lets you encode strings as ASCII bytes via its encode() method and

decode ASCII bytes to strings via decode().

• Base64Codec – A class used to encode and decode things in base64,

again with an encode() and decode() method and available via the

top-level base64 instance (are you starting to see a pattern?!).

Chapter 4 Say hello to My little Friend: Flutter, part ii

174

Note that in addition to the json and base64 instances, because JSON and base64

encoding/decoding is so common, you’ll also find top-level functions base64Encode(),

base64Decode(), jsonEncode() and jsonDecode().

 io

The io library provides various facilities for dealing with file, socket, network, and other

input/output functionality. Probably the most important components are

• File – A class representing a file on the file system. You can copy(),

create(), check the length() of, openRead(), openWrite(), and

rename() files, among many operations available on it.

• Directory – A class representing a directory on the file system. You

can create(), list() the subdirectories of, rename(), and delete()

directories, among many operations available on it.

• HttpClient – A class that can be used to fetch content from a remote

server via HTTP. Going along with this is the Cookie class for dealing

with HTTP cookies, HttpClientBasicCredentials for supporting

BASIC Auth, HttpHeaders for working with HTTP headers, and even

HttpServer if you need your app to act as an HTTP server!

• Socket – A class for performing low-level communications over a

TCP socket.

• exit() – A top-level function for exiting the Dart VM process with a

given error code. You probably don’t want to do this in a mobile app,

but if you’re writing a generic Dart program, then you might want to

know about this.

There is definitely more available in this library, a lot of other classes related to HTTP

communications specifically to name some, but I suspect this is the stuff you’ll use most.

 math

All programming languages have math functions (well, I’m sure you could find at least

one that doesn’t, but that’s just weird!), and Dart is no exception thanks to the math

library. Here you’ll discover mathematical constants and functions, including random

number generation. Some highlights for you:

Chapter 4 Say hello to My little Friend: Flutter, part ii

175

• Random – A class for generating random numbers, including

cryptographically secure random numbers via its secure() method.

• pi – The venerable constant you know and love and, uh, eat a lot of I

guess? I do!

• cos() – A function for getting the cosine of a value by converting

radians to a double first. Most of the other trigonometry functions

you know and love (or hate, depending on how your schooling went!)

are here too: acos(), asin(), atan(), sin(), and so on.

• max() – Returns the larger of two numbers.

• min() – Returns the smaller of two numbers.

• sqrt() – Returns the square root of a number.

 Other (Support) Libraries

Finally, we have just a couple of other/support libraries. There are, of course, more than

just two, but they get pretty special-purpose pretty fast, so I think just talking about these

few will mostly be sufficient.

 crypto

If cryptography if your game, then the crypto library is just the thing for you! Need to

hash a value? Well, here you go:

• MD5 – A class for generating MD5 hashes. You don’t even have to

instantiate one because this library gives you an md5 instance

automatically. At this point, you probably shouldn’t be using MD5

except for backward-compatibility though.

• Sha1 – Ah, a better class for hashing than MD5, complete with its own

sha1 instance.

• Sha256 – Oh, but Sha1 not good enough for ya? Okay, fine, you can

haz Sha256 instead! And yes, there’s a sha256 instance ready and

waiting for ya.

Chapter 4 Say hello to My little Friend: Flutter, part ii

176

 collection

Wait, we already saw a collection library, didn’t we?! Indeed, we did! But I guess Google

figured you didn’t get your fill of collections just yet, so there’s another one! In it, you’ll

find even more collections, like

• CanonocalizedMap – A map class whose keys are converted to

canonical values of a specified type. This can be useful for when you

want case-insensitive keys in your map and where null is not allowed.

• DelegatingSet – A set class that delegates all operations to a base set.

Handy for when you want to hide non-set methods of a Set object.

• UnionSet – A set class that provides a view of the union of a set of Set

instances (wow, set-Inception right there!).

• binarySearch() – A top-level function that finds a value in a List, if

any.

• compareNatural() – A top-level function to compare two strings

according to natural sort ordering.

• mergeMaps() – A top-level function that merges two Map instances

and returns a new Map.

• shuffle() – A top-level function that shuffles a List randomly.

 convert

And, just like collection, if you thought you had enough ways to convert from one thing

to another, Google disagrees apparently because there is yet another convert library! It

has some interesting bits at least:

• HexCodec – A class for all your byte arrays to and from hexadecimal

string conversion needs! This library gives you a hex instance to

use right off the bat, and it’s got the typical encode() and decode()

methods as you’ve I’m sure come to expect.

• PercentCodec – This is a bit of an oddly named class because what it

means by “percent” is “URL-encoded.” As with HexCodec, you’ll find a

percent instance all set for you.

Chapter 4 Say hello to My little Friend: Flutter, part ii

177

 Summary

In this chapter, along with the previous chapter, we took a plane ride at 30,000 feet and

looked at the beautiful Flutter landscape below! In the process, you got a good picture of

many of (most, even!) the widgets Flutter ships with. You also looked at some of the APIs

Flutter offers out of the box, all of which provide you the foundation you need, along

with the previous two chapters, to start building some Flutter apps!

And, in the next chapter, that’s precisely what we’re going to do! The first app to build

won’t be anything too technically challenging, but it will serve as an excellent first foray

into the world of Flutter coding.

Let’s get to hacking some code, shall we?

Chapter 4 Say hello to My little Friend: Flutter, part ii

179
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7_5

CHAPTER 5

FlutterBook, Part I

Okay my friend, now it’s time for some fun! We’ve slogged through the preliminaries,

you’ve got a good foundation of knowledge about Dart and Flutter, so now it’s time to put

it to good use and start building some real apps! Over the next five chapters, we’ll create

three apps together, beginning with FlutterBook.

In the process, you’ll get some real experience with Flutter, just the thing you need to

reach the next level of your Flutter journey.

So, without further ado, let’s get to it, beginning with talking about something that

seems like it might be kind of relevant in this endeavor: discussing what, exactly, it is that

we’re going to build!

 What Are We Building?

The term PIM was made popular back in the days of the original PalmPilot devices,

though it existed before then. PIM stands for “Personal Information Manager” (or

“Management,” depending on who you ask) and is basically a fancy way to say an

application (or device, in the case of the PalmPilot) that stores some basic information

that most busy, modern people need to know, and allows it to be consumed easily.

Before the electronics age, you might have a little notepad with tabs for various bits of

information, but it all amounts to about the same thing either way. What data constitutes

a PIM can vary, but for most people, there are four primary pieces of information:

appointments, contacts, notes, and tasks. There can be others, and there can even be

some overlap between those four, but those are generally considered to be the basics,

and they are precisely what FlutterBook will contain.

This application will present four “entities,” which is the term I’ll use to apply

generically to appointments, contacts, notes, and tasks. It will provide a way for the user

to enter items of each type, store them on the device, and present a way for them to be

viewed, edited, and deleted. As we build the app, we’ll do so in a roughly modular way

180

so that later, if you want, you can add other modules to deal with other types of data (hey

now, that sounds like a suggested exercise to me!). For example, maybe bookmarks are

something you’d like in your PIM too, or maybe recipes if you’re a chef. The point is,

you’ll be able to add them without much difficulty because we’ll design the code to be

reasonably modular and easy to extend.

But, it’s all well and good to talk about what it is, but seeing it is better, no? I think so,

and that’s why I’ve provided Figure 5-1 for you to look at.

As you can see, along the top are tabs that the user can click on to move between the

four entity types (ostensibly, they can swipe to perform this navigation too, but swipe is a

little problematic owing to the functionality provided on the screens, but we’ll talk about

that later).

Figure 5-1. FlutterBook, the Appointments and Contacts entity list screens

CHAPTER 5 FLUTTERBOOK, PART I

181

Each entity will have two screens to work with: a list screen and an entry screen.

Here, you can see the list screens, although for the appointments on the left the term

“list” is a bit of a misnomer because what you’ll actually see is a giant calendar that the

user can interact with (you can see it peeking out from behind the day details, which

appears by virtue of me having clicked the first date, so you can see the appointments for

that day). For contacts though, it really is a list.

For notes and tasks, there is a similar pattern at play, as Figure 5-2 show.

Figure 5-2. FlutterBook, the Notes and Tasks entity list screens

CHAPTER 5 FLUTTERBOOK, PART I

182

Each list screen is a little different in nature, owing to each entity type being a bit

different: appointments make sense to be in a calendar, while contacts should show

an avatar image, notes look (roughly) like sticky notes by using Cards, and the tasks list

allows the user to check off completed tasks. It all also provides for a good variety of

Flutter things to look at for your learning experience!

The entry screens we’ll get into as we look at each entity type, but this begins to give

you an idea of what this thing looks like.

Note Throughout this chapter, and in fact all the remaining chapters of this

book, the code has been condensed by removing comments and print()

statements and some spacing here and there, so what you’ll see in the download

bundle will look a little different. But, rest assured that the actual executable

code is identical.

 Project Kickoff

To begin building FlutterBook, I simply used the new project wizard provided by

Android Studio, and in fact, that’s how all the projects in this book began. It gives us the

skeleton of what we need and a fully working app, if not a particularly exciting one, right

out of the gate. From there, we begin to edit and add things as needed, starting with

configuring the project.

 Configuration and Plugins

The pubspec.yaml file, shown in Listing 5-1, has most of what we need automatically,

but because this project is going to require us to dip into Flutter plugins a little bit, we’ll

need to add a few, as you can see in the dependencies section:

Listing 5-1. The pubspec.yaml file

name: flutter_book

description: flutter_book

version: 1.0.0+1

CHAPTER 5 FLUTTERBOOK, PART I

183

environment:

 sdk: ">=2.1.0 <3.0.0"

dependencies:

 flutter:

 sdk: flutter

 scoped_model: 1.0.1

 sqflite: 1.1.2

 path_provider: 0.5.0+1

 flutter_slidable: 0.4.9

 intl: 0.15.7

 image_picker: 0.4.12+1

 flutter_calendar_carousel: 1.3.15+3

 cupertino_icons: ^0.1.2

dev_dependencies:

 flutter_test:

 sdk: flutter

flutter:

 uses-material-design: true

Caution Remember that YAML files are indentation-sensitive! For example, if

one of these dependencies isn’t properly indented (“properly” here being two

spaces from its parent), then you’ll run into problems. Note here that the child of

flutter is sdk, but scoped_model is a child of dependencies, not flutter,

therefore scoped_model should be two spaces to the right of dependencies,

not two spaces to the right of flutter lined up with sdk. It’s an easy mistake to

make (just ask my awesome technical reviewer!), especially if you’re new to YAML

structure.

CHAPTER 5 FLUTTERBOOK, PART I

184

There are quite a few plugins here, and you will, of course, learn a little about them

as they are encountered in the code, but just to give you a basic overview, they are

• scoped_model – This will provide us a very nice way to manage state

throughout the app.

• sqflite – Since data storage is a requirement of this app, we have

to choose how to do so, and I decided to go with the popular SQLite

database, which this plugin provides us access to (and no, the name

is not a typo!).

• path_provider – For the contacts, we’ll have to store the avatar

image, if any, for the contact, and SQLite turns out to not be the best

place to do that. Instead, we’ll use the file system. Each app gets its

own documents directory where we can store arbitrary files, and this

plugin helps us get to that.

• flutter_slidable – For contacts, notes, and tasks, the user can slide

them on the list screen to reveal a delete button. This is a widget that

gives us that capability.

• intl – We’ll need some date and time formatting functions from this

since some of our entities deal with dates and times.

• image_picker – This plugin provides the infrastructure the app will

need to let the user add avatar images for contacts from either their

gallery or by taking a picture with the camera of their device.

• flutter_calendar_carousel – This widget provides the calendar

and functionality for the appointments list screen.

Everything else in this file should look familiar to you by now and aside from the

dependencies listed here is what the new project wizard created for us.

 UI Structure

The basic structure of this app’s UI is shown in Figure 5-3.

CHAPTER 5 FLUTTERBOOK, PART I

185

While this doesn’t show every last detail, it gives you a high-level picture of things.

At the top, the main widget, is a MaterialApp, with a DefaultTabController under it

with a Scaffold right below it. Under that is a TabBar. Under the TabBar are four main

screens, one for each of the four entities. Each of those has two “sub-screens,” if you will:

the list and the entry screens, and these are children of an IndexedStack. This allows the

code to show either of the two screens just by changing the index of the stack. Under the

list screen for appointments is a BottomSheet that shows the details for a selected date,

and under the entry screen for contacts is a dialog shown for the user to select an image

source (camera or gallery).

The details of the list and entry screens for each type are, of course, more

complicated than this, but we’ll look at those later when the time is right. Before then

though, let’s talk about the basic structure of the app from a code standpoint.

 App Code Structure

As far as the directory structure of the app goes, it’s 100% standard, nothing new to see

here. All the code for the app lives in the lib directory like always, although this time,

given the number of files and the desire to make it at least somewhat modular, each

entity type gets its own directory. So, the lib/contacts directory contains the files

related to contacts, lib/notes the files related to notes, and so on.

MaterialApp + DefaultTabController + Scaffold

TabBar

Appointments

IndexedStack IndexedStack IndexedStack IndexedStack

List Entry List Entry List Entry List Entry

Contacts Notes Tasks

Date Details Image Source

Figure 5-3. The basic UI structure

CHAPTER 5 FLUTTERBOOK, PART I

186

In each of them, you’ll find the same basic set of files, and in all the following cases,

xxx is the entity name, so Appointments, Contacts, Notes, or Tasks:

• xxx.dart – These files are the main entry point to each of these screens.

• xxxList.dart – The list screen for the entity.

• xxxEntry – The entry screen for the entity.

• xxxModel.dart – These files contain a class to represent each entity

type, as well as a model object as required by scoped_model (we’ll get

into that later).

• xxxDBWorker.dart – These files contain the code that works with

SQLite. It provides an abstraction layer over the database so you

could change the data storage mechanism without changing the

application code, just these files would need to change.

 The Starting Line

Now it’s time to start looking at code! As per the usual, it all starts in the main.dart file in

the root of the project:

import "dart:io";

import "package:flutter/material.dart";

import "package:path_provider/path_provider.dart";

import "appointments/Appointments.dart";

import "contacts/Contacts.dart";

import "notes/Notes.dart";

import "tasks/Tasks.dart";

import "utils.dart" as utils;

void main() {

 startMeUp() async {

 Directory docsDir =

 await getApplicationDocumentsDirectory();

 utils.docsDir = docsDir;

 runApp(FlutterBook());

 }

CHAPTER 5 FLUTTERBOOK, PART I

187

 startMeUp();

}

Let’s stop here and discuss this preceding bit (I will typically break up these listing to

present them in more digestible chunks – especially for the longer ones, it’s an important

thing to help you understand what’s going on).

First, we have some imports. You already know that material.dart is the code of

Material Flutter classes. We need the io library and the path_provider plugin for getting

the application’s documents directory (we’ll come back to this shortly). The rest are

application code. The four screen files are imported, and then utils.dart is brought in.

We’ll be looking at that in the next section, but in short, it contains some functions and

variables that are global concerns throughout the code and so live in this file.

After that comes the usual main() function where execution begins. Here,

there’s a bit of trick in that we need to retrieve the app’s documents directory. The

getApplicationDocumentsDirectory() function is provided by the path_provider.

dart import for this purpose. It returns a Directory object, which is provided by

the Dart io library imported. In addition to this function, this plugin also supplies a

getExternalStorageDirectory(), which is only available on Android (and then only

some devices), so you should usually check the OS type before making this call. This

provides a path to top-level storage on an external storage device (SD card usually)

where the app can read and write data. Finally, there is a getTemporaryDirectory()

function. This returns path the temporary directory for the app (where you typically

write short-lived, transient data, in contrast to getApplicationDocumentsDirectory(),

which provides durable storage).

There’s a problem here though: we have to ensure that no other code executes until

this code completes because otherwise, we’ll throw exceptions due to the databases not

being available. As you’ll see later, each of the four databases, one for each entity, is a

separate SQLite file stored in the app’s documents directory, so if that code gets called

before docDir is determined, which it would be because the screens would load when

the main widget is created, we’d have issues. So, to accomplish that, I create a function

inside main() (yes, you can do that in Dart!) and ensure it’s an async function because

we’ll await the call to getApplicationDocumentsDirectory(). Once that returns the

Directory, that gets stored in utils.docsDir (so that we only have to get a reference to

this directory once) and then call the usual runApp(), passing it a new instance of the

FlutterBook class.

CHAPTER 5 FLUTTERBOOK, PART I

188

Note This isn’t necessarily the best way to do things because it means that the

UI won’t be built until getApplicationDocumentsDirectory() resolves.

That’s usually not a good thing to do in terms of user experience, but given that

this isn’t going to take too long, not even noticeable, I’d expect, this was the

easiest way to do things.

After that, the main widget is created, which is where that FlutterBook class comes

into play, as you can see here:

class FlutterBook extends StatelessWidget {

 Widget build(BuildContext inContext) {

 return MaterialApp(

 home : DefaultTabController(

 length : 4,

 child : Scaffold(

 appBar : AppBar(

 title : Text("FlutterBook"),

 bottom : TabBar(

 tabs : [

 Tab(icon : Icon(Icons.date_range),

 text : "Appointments"),

 Tab(icon : Icon(Icons.contacts),

 text : "Contacts"),

 Tab(icon : Icon(Icons.note),

 text : "Notes"),

 Tab(icon : Icon(Icons.assignment_turned_in),

 text : "Tasks")

]

)

),

CHAPTER 5 FLUTTERBOOK, PART I

189

 body : TabBarView(

 children : [

 Appointments(), Contacts(), Notes(), Tasks()

]

)

)

)

);

 }

}

First, we have that MaterialApp I mentioned earlier, with a DefaultTabController

as its home screen. DefaultTabController is a type of TabController, which is

responsible for coordinating tab selection in a TabBar, which you can see is the bottom

child of the AppBar under the Scaffold. The controller takes care of switching between

the children, which are defined by the tabs property of the TabBar. Each entry in tabs is

a Tab object, which can have an icon and/or a text label, and I opted to show both. With

this setup, you don’t have to do anything else to enable navigation; these widgets take

care of it for you.

Finally, the body of the Scaffold must be a TabBarView, so that it can be

appropriately displayed by the TabBar and managed properly by DefaultTabController.

The children of it are the four screens, one for each entity (and obviously those are

where most of the action is, and we’ll get to that action in short order, but we have some

other things to look at first, starting with utils.dart).

 Some Global Utilities

The utils.dart file contains those global utility-type bits I spoke of earlier, so let’s take a

look at it now:

import "dart:io";

import "package:flutter/material.dart";

import "package:path_provider/path_provider.dart";

CHAPTER 5 FLUTTERBOOK, PART I

190

import "package:intl/intl.dart";

import "BaseModel.dart";

Directory docsDir;

As you saw when we looked at main.dart, the docDir is the app’s documents

directory, which was captured in main() there.

The next thing we find in this file is the selectDate() function:

Future selectDate(

 BuildContext inContext, BaseModel inModel,

 String inDateString

) async {

 DateTime initialDate = DateTime.now();

 if (inDateString != null) {

 List dateParts = inDateString.split(",");

 initialDate = DateTime(

 int.parse(dateParts[0]),

 int.parse(dateParts[1]),

 int.parse(dateParts[2])

);

 }

 DateTime picked = await showDatePicker(

 context : inContext, initialDate : initialDate,

 firstDate : DateTime(1900), lastDate : DateTime(2100)

);

 if (picked != null) {

 inModel.setChosenDate(

 DateFormat.yMMMMd("en_US").format(picked.toLocal())

);

 return "${picked.year},${picked.month},${picked.day}";

 }

}

CHAPTER 5 FLUTTERBOOK, PART I

191

This function will be a little hard to explain fully at this point because it depends on a

few things you haven’t seen yet, but let’s go as far as we can, and you can come back to it

later where you have that other information.

Firstly, this is used to select a date on the appointments, contacts, and tasks entry

screens (the date of an appointment, the birthday of a contact or the due date of a task).

As such, it must be generic and work with all three entity types (and perhaps others

later). So, what gets passed to it is the BuildContext of the entry screen it’s called from,

along with something called a BaseModel and a date in string form. The BaseModel is that

thing we haven’t gotten to yet, so, for now, it’s enough to say that it’s ultimately where

the selected date will go and leave it at that. The date passed in, which is optional, will

be in the form yyyy,mm,dd if supplied, and this is a common form throughout the code.

The reason is that when storing a date to SQLite, there is no date data type available, so

saving it as a string makes sense. I chose this format because it makes it easy to construct

a DateTime object since its constructor takes precisely those pieces of information in

just that order, something you can see here. If a date is passed in, the split() function is

used to tokenize it, then the DateTime is constructed, passing each of the parsed tokens

to it, so the year, followed by the month, followed by the day, exactly as it appears in the

string form.

The initialDate is what day will be selected when the popup calendar is shown,

which is applicable when editing an entity only (when creating, there will be no

initialDate specified so that the calendar will select the current day).

Then, a call to showDatePicker() is called, something you saw in the previous

two chapters. This displays a popup calendar for the user, and it returns a DateTime

instance. Note that the range of selectable years is from 1900 to 2100. Logically, it

would make more sense to limit it based on entity type (vis a vis, there’s no point

creating an appointment for a date in the past), and that’s where firstDate and

lastDate comes into play. But, just to keep the volume of code down, I didn’t

implement this logic and instead picked a range that would, nominally at least, work

for all the entity types.

Once showDatePicker() comes back (it’s asynchronous after all, as we can tell by the

await in the call to it), we see if they picked something. The returned value will be null

if the user clicks Cancel. Otherwise, we’ll have a DateTime object for the selected date.

Now, as I alluded to earlier, we have to store that date in the BaseModel instance that was

passed in, so a call to the setChosenDate() function accomplishes that. The value passed

needs to be in a human-readable form, and what toString() of a DateTime object

CHAPTER 5 FLUTTERBOOK, PART I

192

provides by default arguably isn’t, so now we use some functionality from the intl.

dart file imported. Specifically, the DateFormat.yMMMMd.format() function provides a

string in the form “MONTH dd, yyyy” where MONTH is the full month name (January,

February, March, etc.) This plugin contains a wealth of date and time formatting code, as

well as other general internationalization and localization functionality. For more info,

see here: https://pub.dartlang.org/packages/intl (I’ll rarely describe these modules

in their entirety as there’s typically way too much to go into detail on, so we’ll discuss just

what’s needed by the code here – the path_provider was an exception because it doesn’t

offer all that much, even though what it offers is rather necessary!)

However, we’re not done yet! The code that called this function needs that date back,

so it is returned. The form it’s returned in is the same form that may have been passed in,

namely yyyy,mm,dd.

Like I said, this function will make a little more sense once you know about the

models and later when you see it used, which you, in fact, won’t until the next chapter, so

let’s not dwell on it and instead look at the models a bit, which gets into the topic of state

management.

 On State Management

The concept of state and state management – that is, where the data that your widgets

produce and consume and how your code interacts with it – is a topic that, surprisingly,

is mostly left to developers to figure out. Flutter, at least at the time of this writing,

doesn’t say anything definitive on the topic (rumor has it that is changing and before

long Flutter maybe have a canonically “correct” state management approach, but it was

not yet the case when this book went to print).

Oh, of course, you’ve got the notion of stateful widgets that was explored in

previous chapters (and which you’ll undoubtedly see again before this book is over).

That indeed is a form of state. But really, it’s only one kind of state: local state. In other

words, it’s state that is local to a given component. For that, stateful widgets tend to be

quite sufficient.

But there is another kind of state, a state which you might consider “global.” To put it

another way, its state that is needed outside the widget and, in many cases, beyond the

lifetime of a given widget. Maybe widgets that are children of another need its parents’

state. Or, maybe vice versa, the parent of a given widget (and maybe not the direct

parent) needs access to its child’s state. The former case isn’t too tough, but the latter can

CHAPTER 5 FLUTTERBOOK, PART I

https://pub.dartlang.org/packages/intl

193

be surprisingly frustrating in Flutter. Or, perhaps the widget that needs to see the state

of another isn’t even in the same widget tree (not directly anyway). These situations can

get tricky to deal with if all you have to work with are stateful widgets and the setState()

paradigm that provides.

As I said, Flutter doesn’t specify a definitive answer here. There are numerous state

management solutions available to you in a Flutter app beyond setState(), just to name

a few: BLoC, Redux, and scoped_model. There’s probably a dozen more out there at least,

all with pros and cons. So, which state management approach you use will be dependent

on many factors including, but not limited to, your goals for the project, the specific state

interactions you need and, at the end of the day, your simple personal preferences on

how you like to structure your code.

In this project, and in fact for the rest of this book, I’m going to focus on one

specific approach from that list: scoped_model. The reason for this decision comes

down to just my belief that scoped_model is perhaps the most straightforward option

available because that simplicity tends to make for simpler application code, and

I like that! Simple is solid, as the saying goes! Honestly, when looking at all the

options, scoped_model just makes the most sense to my brain, so that’s the one

I’m going with. You of course absolutely should explore the options and see what

suits your mental model. If it winds up being scoped_model, then great! If not, no

problem, we can still be friends, but at least after reading this book, you’ll have a

good understanding of at least this one option so as to be able to do a meaningful

comparison to the others.

So, what is scoped_model all about? Well, it’s just three simple classes that, when

used in conjunction with three simple steps on your part, provides a model – that is, a

store of data – for a widget tree.

The first class required that you create a model class, which will extend from the

scoped_model Model class, and here is where you will place your data-handling logic

and, naturally, your data variables. Note that you may not have any need for any real

logic, and that’s perfectly okay (though a little atypical). The whole purpose of putting

the code in this model class is ultimately so that you can call the notifyListeners()

method of the base Model class (which can only be called from a subclass of Model). This

is the secret sauce! Calling this method informs any widget that has been “hooked up”

to the model class that the model has changed and they should, if necessary, re-paint

themselves.

CHAPTER 5 FLUTTERBOOK, PART I

194

The second step is hooking scoped_model up to your widget tree. This part is super-

easy: just wrap a widget in the second class you must know about: ScopedModel. For

example, if your top-most widget is a Column, then you might do:

return ScopedModel<your-model-class-here>(

 child : Column(...)

)

Actually, you don’t have to wrap the top-most widget in the tree, though that is

most common because it means that any widget in the tree can have access to your

model. But, if only a subset of widgets needs access to the model, then you can instead

choose a widget that is a parent to those, even if not the top-most widget, and wrap

that in ScopedModel. In either case, you must tell ScopedModel the type via the generic

declaration <your-model-class-here> (that’s the class that extends from the scoped_

model base Model class).

Finally, for any widgets underneath the one wrapped in ScopedModel that

you want to access the model, wrap that widget in the third class to be aware of:

ScopedModelDescendent (and again specifying the type). As with ScopedModel, you

don’t need to wrap every single widget separately; just wrapping one will cover all its

children too. Any widgets wrapped with this class will rebuild when the model changes

(assuming Flutter’s diff algorithm determines it to be necessary of course). The syntax

for ScopedModelDescendent is a little different then ScopedModel though because the

builder pattern is required:

return ScopedModel<your-model-class-here>(

 child :

 ScopedModelDescendent<your-model-class-here>(

 builder : (BuildContext inContext, Widget inChild,

 <your-model-class-here> inModel) {

 return Column(...);

)

);

)

Now, within the Column, if you have a Text that you want to display the value from

the model with, you can do:

Text(inModel.myVariable)

CHAPTER 5 FLUTTERBOOK, PART I

195

And voila, you’ve got yourself a store of data that is the state of your app, ready

to be used and that will rebuild your UI when the data changes, all without using

stateful widgets (that’s right, you can do all of this with stateless widgets!) and in a

more global way.

The final piece of the puzzle is changing the state, and to understand, let’s look at

an actual model class, the BaseModel.dart file from FlutterBook. Before we start that

exploration though, let me say that each type of entity FlutterBook deals with has its

own model class. You don’t have to do it that way – you could have a single model class

that holds the data for all four entity types. But I feel that keeping them separate is more

logical. But, the fact is that they all have a few bits of commonality between them, so

rather than duplicate code, I instead created a BaseModel class, and this is what extends

from the scoped_model base Model class. Then, the model classes for the individual

entity types extends from this BaseModel class, which obviously means they extend from

the scoped_model Model class as well, just as we need in the end.

import "package:scoped_model/scoped_model.dart";

Obviously, scoped_model won’t be of much use to us unless we import it, so that’s

imported first. Then, the BaseModel class begins:

class BaseModel extends Model {

Ah, see, it really does extend from the Model class that scoped_model provides!

int stackIndex = 0;

List entityList = [];

var entityBeingEdited;

String chosenDate;

These are the four pieces of information that all (or at least most, in the case of

chosenDate, have in common). Remember earlier how I said that each of the four entity’s

screens is in actuality two screens, list, and entry, both children of an IndexedStack?

Well, which is showing depends on the setting of the stackIndex variable here. Also,

since all four entity types have some sort of list of entities, the enityList will contain

them. The entityBeingEdited will be a reference to the entity that the user selects when

they want to edit an existing entity. This is how the data for the entity is transferred

from the list screen to the entry screen. Finally, the chosenDate variable will store a date

chosen by the user when editing an entry. You’ll see why this is needed shortly, but for

now, let’s continue with this class.

CHAPTER 5 FLUTTERBOOK, PART I

196

void setChosenDate(String inDate) {

 chosenDate = inDate;

 notifyListeners();

}

When the user chooses a date, they’ll do so via a popup, but then the selected date

has to get back into the model. A call to this method will do that. As you can see, the

last thing it does is calls notifyListeners(). This is key because this is what updates

the screen to show the date that was selected. Without this, the data would be saved in

the model, but the user wouldn’t know it by looking at the screen because the widgets

wrapped by ScopedModel (and ScopedModelDescendent) wouldn’t have known to re-

paint themselves otherwise.

void loadData(String inEntityType, dynamic inDatabase) async {

 entityList = await inDatabase.getAll();

 notifyListeners();

}

The loadData() method will be called whenever an entity is added or removed from

entityList (code which you’ll see soon). This makes use of the xxxDBWorker class, the

one that knows how to talk to SQLite. Once again, we’ll be getting to this soon, but for

now, just note that the result of the call to the getAll() method replaces entityList,

and then notifyListeners() is again called so that the list of entities re-paints itself.

Seeing the pattern yet?

Finally, we have the setStackIndex() method:

void setStackIndex(int inStackIndex) {

 stackIndex = inStackIndex;

 notifyListeners();

}

This is the method that will be called whenever we want to navigate the user between

the list and entry screens for a given entity.

I realize that you don’t yet have the full context in which this code is used, but you

will before long! For now, the basic concepts of scoped_model are what’s important, and

hopefully, that’s starting to make some sense. It will, I expect, make complete sense once

we see the code for an entity, and that’s exactly what we’re looking at right now!

CHAPTER 5 FLUTTERBOOK, PART I

197

 Starting with an Easy One: Notes

Of the four entity types, I think the code for notes is probably the simplest, so that’s

probably a good place to start. We begin that exploration with the code that defines the

main, top-level screen, for this entity type.

 The Starting Point: Notes.dart

As you’ll recall each of the four entities has a master screen that is the main content of

its tab. The Notes.dart file contains the code for that screen, and it begins, as most Dart

source files do, with some imports:

import "package:flutter/material.dart";

import "package:scoped_model/scoped_model.dart";

import "NotesDBWorker.dart";

import "NotesList.dart";

import "NotesEntry.dart";

import "NotesModel.dart" show NotesModel, notesModel;

Aside from the usual suspects like material.dart, we have scoped_model.dart

coming in. As you’ll see the entire widget tree for this screen will have access to the

model for notes. We also need to bring in the NotesDBWorker.dart file so that we can

load the notes data, as you’ll see next. Then, we need the source files for the two sub-

screens: NotesList.dart and NotesEntry.dart. Finally, we need the model for notes in

NotesModel.dart. We’ll get to all of those in turn, but marching on with this source file

we have:

class Notes extends StatelessWidget {

Ah, it’s the beginning of a widget! Most importantly, note that it’s a stateless widget.

Remember: using scoped_model means you’re dealing with state, but that doesn’t imply

you have to have stateful widgets. Stateful widgets are effectively another approach to

state, an approach we’re not using in this app (in this source file or any other).

After that, we find a constructor:

Notes() {

 notesModel.loadData("notes", NotesDBWorker.db);

}

CHAPTER 5 FLUTTERBOOK, PART I

198

Recall that the BaseModel has a loadData() method and it was written generically so

it would work with any entity type. However, the only reason it can be written generically

like that is that the constructor here calls it and provides the entity-specification

information it needs, namely the entity type and a reference to the database for this

entity type (the database stuff is coming up!). The result of this call is that entityList

in the model will have a list of notes loaded into it from the SQLite database and so

when the list screen is built, they will be displayed. Technically, since this data load is

asynchronous, the list screen can and usually is built before the data is available, but due

to it being wrapped in scoped_model and loadData() calling notifyListeners() when

the data is loaded, the screen gets notified when the data is available and re-paints to

show the data, all of which happens quickly.

Widget build(BuildContext inContext) {

 return ScopedModel<NotesModel>(

 model : notesModel,

 child : ScopedModelDescendant<NotesModel>(

 builder : (BuildContext inContext, Widget inChild,

 NotesModel inModel

) {

 return IndexedStack(

 index : inModel.stackIndex,

 children : [NotesList(), NotesEntry()]

);

 }

)

);

}

Finally, the widget is returned from the build() method, which you of course

know must be present given that this entire source file is defining a widget. You can

see the ScopedModel at the top, with a ScopedModelDescendent underneath it, as

discussed earlier. An IndexedStack is used to contain the two screens, which are

defined in separate source files that we’ll look at soon. Notice that the index value of

the IndexedStack is a reference to the stackIndex field in the NotesModel instance.

CHAPTER 5 FLUTTERBOOK, PART I

199

That’s how we can display one screen vs. the other: set the value of stackIndex to 0,

and NotesList is shown; set it to 1 to display NotesEntry (assuming, of course, that

notifyListeners() is called after that change, which it is, as you saw in BaseModel).

 The Model: NotesModel.dart

The model class for this entity is found in NotesModel.dart. The model for this entity

type isn’t just the model class though; it’s also a class representing a note.

But, before any of that, we start with

import "../BaseModel.dart";

As you know, this class will extend BaseModel, which itself extends Model from

scoped_model, so it must be imported.

Next, we have a class definition:

class Note {

 int id;

 String title;

 String content;

 String color;

 String toString() {

 return "{ id=$id, title=$title, "

 "content=$content, color=$color }";

 }

}

Instances of this class represent notes. Each note has four pieces of information:

a unique id, a title, content (which is the note text itself), and a color for the

background of the Card on the list screen for a note, so each of those is represented

by a member variable here. While not required, I also added a toString() method,

which overrides the default implementation provided by the Object class, which is

the parent of all classes in Dart. That default implementation isn’t beneficial: it just

says what type the object it’s called on is. This version instead shows the details of

the note, which is very handy when debugging when you want to print() a note

object to the console.

CHAPTER 5 FLUTTERBOOK, PART I

200

Next up is the model class itself:

class NotesModel extends BaseModel {

 String color;

 void setColor(String inColor) {

 color = inColor;

 notifyListeners();

 }

}

Yep, that’s it! Most of what this class needs are provided by BaseModel, so it’s just

that color that is an issue. At the risk of jumping the gun a bit: this is needed because

when the user selects a color block on the entry screen, just changing the values in a

Note instance wouldn’t reflect in the model and the screen wouldn’t know to change. We

instead need a direct member of the model class for this to occur. Don’t worry; I don’t

expect that you’ll totally understand this part just yet! Once we get to the edit screen, it

should start to make sense quickly.

But, there’s one more line in this file, and it’s rather important:

NotesModel notesModel = NotesModel();

We have a class definition before this, but we don’t have an instance of NotesModel

yet. That’s what we get from this line. The file is only ever parsed once, no matter how

many times it’s imported, or where it’s imported, so this ensures we only ever have a

single instance of NotesModel, which it happens is exactly all we need!

 The Database Layer: NotesDBWorker.dart

The next file to look at is NotesDBWorker.dart, which contains all the code for working

with SQLite. First up are some imports:

import "package:path/path.dart";

import "package:sqflite/sqflite.dart";

import "../utils.dart" as utils;

import "NotesModel.dart";

CHAPTER 5 FLUTTERBOOK, PART I

201

There’s probably not too much surprising there. The path.dart module contains

functions for working with paths on a file system in an ostensibly cross-platform manner.

Things like getting the platform separator character, normalizing paths, getting file

extensions from a path, and so on. Most of the typical path operations you’d expect are

here, but we’ll just need one, which will turn up shortly.

Before that though, the NotesDBWorker class itself begins:

class NotesDBWorker {

 NotesDBWorker._();

 static final NotesDBWorker db = NotesDBWorker._();

The first step is ensuring there is only ever a single instance of this class, so we’re

going to implement a singleton pattern. That begins with creating a private constructor,

as seen on the first line. On the second line, the constructor is called, and the instance of

the class stored statically in db.

Next, we need to have an instance of the Database class, which is the key class when

dealing with SQLite via the sqflite plugin:

Database _db;

Future get database async {

 if (_db == null) {

 _db = await init();

 }

 return _db;

}

When the database getter is called, we see if there is already an instance in _db. If

so, it’s returned, but if not, then the init() method is called. Doing this ensures that

the single instance of NotesDBWorker only ever has one Database object in it, which is

exactly what we want to ensure no data integrity issues.

CHAPTER 5 FLUTTERBOOK, PART I

202

Now, speaking of that init() method:

Future<Database> init() async {

 String path = join(utils.docsDir.path, "notes.db");

 Database db = await openDatabase(

 path, version : 1, onOpen : (db) { },

 onCreate : (Database inDB, int inVersion) async {

 await inDB.execute(

 "CREATE TABLE IF NOT EXISTS notes ("

 "id INTEGER PRIMARY KEY,"

 "title TEXT,"

 "content TEXT,"

 "color TEXT"

 ")"

);

 }

);

 return db;

}

The key task here is to make sure the notes database exists in SQLite. The database

will be stored as a file in the app’s documents directory, so we need a path to that. Here,

the one function from the path module we need is used: the join() method, which

concatenates the documents directory path to the name of the file, notes.db (we’re free

to call it whatever we want, but I dare say that name is logical).

Once that’s done, we need to create a Database object from that path, which is

where the openDatabase() function comes in. We feed it the path, plus a version

(which allows you to do schema updates if need be) plus a callback function to call

when the database is opened (which here is empty since there’s nothing to do in this

situation). We also give it a function to call when the database is created, which is

where we create the table we need for notes, assuming it doesn’t already exist. The

execute() method of the created Database object is how we do that, and it simply

takes the SQL to execute. Once that’s done, the Database instance is returned, which

you’ll recall gets stored in _db in the database getter. After that, we’re ready to perform

database operations!

CHAPTER 5 FLUTTERBOOK, PART I

203

But, before we get to those operations, there are two helper functions we have to create.

The problem, so to speak, is that SQLite and sqflite don’t know anything about our Note

class, all they know are basic Dart maps. So, we need to provide some functions that can

convert from a map to a Note and vice-versa. They’re nothing fancy though, as you can see:

Note noteFromMap(Map inMap) {

 Note note = Note();

 note.id = inMap["id"];

 note.title = inMap["title"];

 note.content = inMap["content"];

 note.color = inMap["color"];

 return note;

}

Map<String, dynamic> noteToMap(Note inNote) {

 Map<String, dynamic> map = Map<String, dynamic>();

 map["id"] = inNote.id;

 map["title"] = inNote.title;

 map["content"] = inNote.content;

 map["color"] = inNote.color;

 return map;

}

Yep, quite simple, and I’d bet entirely apparent to you by now, so let’s get to more

exciting stuff: creating a note in the database!

Note This is also why, as much as I wanted to, I couldn’t have a single DBWorker

for all entities. Aside from the actual SQL statements being different, which I could

have dealt with by just using some switch statements, there doesn’t at present

appear to be something akin to Java’s reflection capabilities in Dart. From my

reading, that’s something that’s coming, but when I wrote this code, it wasn’t

possible, so without winding up with something very convoluted, there didn’t seem

to be a way to do this dynamically. I like Dart, but sometimes I miss the free-

wheeling, reckless abandon of JavaScript!

CHAPTER 5 FLUTTERBOOK, PART I

204

Future create(Note inNote) async {

 Database db = await database;

 var val = await db.rawQuery(

 "SELECT MAX(id) + 1 AS id FROM notes"

);

 int id = val.first["id"];

 if (id == null) { id = 1; }

 return await db.rawInsert(

 "INSERT INTO notes (id, title, content, color) "

 "VALUES (?, ?, ?, ?)",

 [id, inNote.title, inNote.content, inNote.color]

);

}

Creating a note is a three-step process. First, we need to get a reference to the

Database object, so we await that (remember: the getter function will be called to satisfy

this). Second, we need to come up with a unique ID for the note. To do this, we query

the existing notes and just increment whatever the highest ID we find is. If this is the first

note though, we’ll get null back, so we explicitly deal with that situation (in practice,

null for an ID actually does work, but it strikes me as bad form if nothing else, so this

check ensures we always have a valid numeric ID).

Once that’s done, the third step is to call the rawInsert() method of the Database

object referenced by db is called and a simple SQL query executed to insert the values,

which are naturally taken from the Note object passed in as inNote. As you can see, we

return the Future that rawInsert() returns, so the caller of create() can await this

result, but that’s the only information we need this method to return, so we’re done!

Note If you look up the API for the Database object, you’ll see that in addition to

the rawInsert() method, there is also an insert() method, and a similar split

for other operations. Why use one vs. the other? In truth, I have no good reason

to give you in this case! The insert() method is essentially an abstraction

that saves you from having to write SQL yourself, which you have to do for

rawInsert(). Personally, I’m comfortable with SQL and actually prefer writing it

CHAPTER 5 FLUTTERBOOK, PART I

205

myself most of the time, but if you prefer something a little higher level, then you

may prefer insert() to rawInsert() and, at least in this app, there’s not really

any good reason to prefer one vs. the other, and aside from avoiding writing SQL

I’m not sure there is in general either.

Next, we need the ability to get a specified note. In case it’s not obvious by now, we’re

just implementing CRUD operations, that is, Create, Read (or “get”), Update, and Delete.

Future<Note> get(int inID) async {

 Database db = await database;

 var rec = await db.query(

 "notes", where : "id = ?", whereArgs : [inID]

);

 return noteFromMap(rec.first);

}

The caller passes in the ID they want to retrieve, and the query() method of the

Database instance is called. This takes the name of the table to query, and a where clause

(there are multiple forms this method can take, this is just one) plus the values for that

where clause. Here, we just need to query the id field. The result of this call will be a

map, so we need that noteFromMap() function now to return a Note object.

Going along with this is the ability to retrieve all notes in one call, specifically to

populate the list screen, which the getAll() method does:

Future<List> getAll() async {

 Database db = await database;

 var recs = await db.query("notes");

 var list = recs.isNotEmpty ?

 recs.map((m) => noteFromMap(m)).toList() : [];

 return list;

}

CHAPTER 5 FLUTTERBOOK, PART I

206

Here, the query() method just needs the name of the table, and it will dutifully

retrieve all the records in it. If we got no records back then an empty list is returned, but

if we did get records then we map() the returned list and for each, call noteFromMap(),

and finally convert the resultant map to a list to return to the caller.

Updating a note is next:

Future update(Note inNote) async {

 Database db = await database;

 return await db.update("notes", noteToMap(inNote),

 where : "id = ?", whereArgs : [inNote.id]

);

}

Well, that’s not too tough, is it? The update() method takes the name of the table, the

map that contains the values to update (which we get by calling noteToMap() to convert

the inNote Note object to a map) and the where clause to identify the record by ID to be

updated. This method knows how to take the elements of the map and convert them to

column names – well, there’s no real conversion necessary as it assumes the columns are

named after the items in the map, but you knew what I mean!

The final method to look at is, of course, delete():

Future delete(int inID) async {

 Database db = await database;

 return await db.delete(

 "notes", where : "id = ?", whereArgs : [inID]

);

}

Yep, that’s all there is to it! By this point, I would bet (and hope!) that an explanation

isn’t necessary. So, let’s get to some screen code, starting with the list screen.

 The List Screen: NotesList.dart

The list screen for notes begins with a set of imports:

import "package:flutter/material.dart";

import "package:scoped_model/scoped_model.dart";

CHAPTER 5 FLUTTERBOOK, PART I

207

import "package:flutter_slidable/flutter_slidable.dart";

import "NotesDBWorker.dart";

import "NotesModel.dart" show Note, NotesModel, notesModel;

class NotesList extends StatelessWidget {

The only thing new here, or unexpected, is that flutter_slidable.dart import;

otherwise, we’ve got the usual suspects as far as imports go and a perfectly typical widget

class beginning. Let’s skip that one import for the moment until we encounter it and

instead start looking at the ubiquitous build() method:

Widget build(BuildContext inContext) {

 return ScopedModel<NotesModel>(

 model : notesModel,

 child : ScopedModelDescendant<NotesModel>(

 builder : (BuildContext inContext, Widget inChild,

 NotesModel inModel

) {

 return Scaffold(

As you’re now very familiar with, we have a ScopedModel that references the

notesModel instance. This has a ScopedModelDescendent as a child so that all the

children in this widget true can access the model. The builder() function is provided,

and we begin to build our widget, which starts with a Scaffold, as is most common for a

screen in a Flutter app.

floatingActionButton : FloatingActionButton(

 child : Icon(Icons.add, color : Colors.white),

 onPressed : () {

 notesModel.entityBeingEdited = Note();

 notesModel.setColor(null);

 notesModel.setStackIndex(1);

 }

)

CHAPTER 5 FLUTTERBOOK, PART I

208

This Scaffold has a floatingActionButton, which is how the user will add a new

note. This floats in the lower right, over the content of the screen. When tapped, the

onPressed function fires, and we kick off entry. To do this, we begin by creating a new

Note instance and storing it in the model as the entityBeingEdited. This is the object

that will ultimately be saved to the database, once all the data the user enters is put into

it (which you’ll see in the next section about the entry screen).

One of the things the user can do on the entry screen is select a color for the note.

Recall earlier when we talked about how the screen will re-paint itself when the model

changes. Well, that’s going to be necessary whenever the user selects a color. But, just

having the color stored in that new Note object won’t be enough since scoped_model

won’t see it change (because it’s not a top-level property of the model – scoped_model

can’t see down into the properties of objects), so as you saw earlier, the NoteModel

has a color property. Initially, we want there to be no color selected, hence the call

to setColor(), passing it null, which sets the color property of the model and calls

notifyListeners() so the screen updates (which doesn’t really matter just yet since the

entry screen isn’t shown at this point, but it’s still what happens).

Finally, we move the user to the entry screen by calling setStackIndex()

and passing it a value of one, because the entry screen is the second thing on the

IndexedStack (IndexedStack is zero-based obviously, and the list screen is at

index zero).

After that, the body of the Scaffold is defined, and this is where we start drawing the

list of notes:

body : ListView.builder(

 itemCount : notesModel.entityList.length,

 itemBuilder : (BuildContext inBuildContext, int inIndex) {

 Note note = notesModel.entityList[inIndex];

 Color color = Colors.white;

 switch (note.color) {

 case "red" : color = Colors.red; break;

 case "green" : color = Colors.green; break;

 case "blue" : color = Colors.blue; break;

 case "yellow" : color = Colors.yellow; ;

 case "grey" : color = Colors.grey; break;

 case "purple" : color = Colors.purple; break;

 }

CHAPTER 5 FLUTTERBOOK, PART I

209

We’re using a ListView widget here because we want a scrolling list of items. This

requires us to use the builder() constructor, which takes the number of items in the

list via itemCount, and that’s just the length of the entityList in the model, and then a

function to actually build the widget for each item in the list. For each, we get the Note

object from the list, and the first thing we need to do is deal with the color. By default,

we’ll assume no color has been specified, which means the note will be white. For all the

others, we set the correct color from the Colors collection (note that the value of these

constants are objects, not simple strings or numbers, which is why I didn’t store those

values directly, which necessitates this branching).

With the color figured out, the widget can be returned:

 return Container(

 padding : EdgeInsets.fromLTRB(20, 20, 20, 0),

 child : Slidable(

 delegate : SlidableDrawerDelegate(),

 actionExtentRatio : .25,

 secondaryActions : [

 IconSlideAction(

 caption : "Delete",

 color : Colors.red,

 icon : Icons.delete,

 onTap : () => _deleteNote(inContext, note)

)

]

It all starts with a Container, and we give it a little bit of padding around on the left,

top, and right. This keeps the notes away from the edges of the screen, which is just

aesthetically a little more pleasing, and ensures we have some space between notes.

Next, we come to that Slidable that we saw imported earlier. This widget is just a

type of container that introduces some slide functionality. In many mobile apps, when

there is a list of items, you can slide them left and/or right to reveal buttons for various

functions. That’s what this widget does for us. In simplest terms, you have to provide it

a delegate that controls how the slide is animated (which here is just an instance of the

SlidableDrawerDelegate(), also provided by this plugin). You also have to tell it how

far the item can be slid, and here .25 means 25% of the way across the screen. Then,

you have to specify the actions and/or secondaryActions properties. The actions

CHAPTER 5 FLUTTERBOOK, PART I

210

property specifies what functions will be exposed with then item is slid to the right

while secondaryActions are what functions will be exposed when the item is slid to

the left. Here, we only have a delete action to implement, and most typically you see

delete actions on the right (though there’s no rule that says it has to be that way), so

secondaryActions is all I used for sliding to the left.

Each of the objects in the secondaryActions list, of which you can have as many as

you want and that fit, are IconSlideAction objects, also supplied by this plugin. These

objects allow you to define what caption, icon, and color you want the actions to be, as

well as what to do onTap of the items. We’ll look at that _deleteNote() method soon, but

there’s still a bit more widget configuration to look at first:

child : Card(

 elevation : 8, color : color,

 child : ListTile(

 title : Text("${note.title}"),

 subtitle : Text("${note.content}"),

 onTap : () async {

 notesModel.entityBeingEdited =

 await NotesDBWorker.db.get(note.id);

 notesModel.setColor(notesModel.entityBeingEdited.color);

 notesModel.setStackIndex(1);

 }

)

)

Inside the Container and Slidable, each note is represented by a Card, which

you will recall provides a box with a drop shadow on it as per Google’s Material design

guidelines. These look a little bit like sticky notes to my eyes, so I felt this was a good

choice here. I bump up the elevation a little bit to give them more pronounced drop

shadows, and the color, of course, uses the color we determined earlier. Then, the child

of the card is just a ListTile. This widget gives us a common way to lay out content

with a title, which is the note title, and subtitle, which here I use to display the note’s

content. The note will expand vertically as much as necessary to show all the content.

The ListTile is a very common widget that is typically used as the child of a ListView,

but as you can see, it doesn’t have to be a direct child of one (it doesn’t even have to be

an indirect child of one technically). You’ll see more of this widget in the next chapter as

well and see some other capabilities it has.

CHAPTER 5 FLUTTERBOOK, PART I

211

Now, when a note is tapped, we want the user to be able to edit it. This looks almost

the same as creating a new note with one critical exception: the note is retrieved from

the database. This is actually unnecessary since we already effectively have it in the

entityList property in the model. However, for demonstration purposes, I thought it

was better to show it coming from the database (there’s also something to be said for

having the database be the Single Source Of Truth™ for the app, which wouldn’t be the

case if we took it from entityList).

Finally, we have that _deleteNote() method that we skipped earlier:

Future _deleteNote(BuildContext inContext, Note inNote) {

 return showDialog(

 context : inContext,

 barrierDismissible : false,

 builder : (BuildContext inAlertContext) {

 return AlertDialog(

 title : Text("Delete Note"),

 content : Text(

 "Are you sure you want to delete ${inNote.title}?"

),

 actions : [

 FlatButton(child : Text("Cancel"),

 onPressed: () {

 Navigator.of(inAlertContext).pop();

 }

),

 FlatButton(child : Text("Delete"),

 onPressed : () async {

 await NotesDBWorker.db.delete(inNote.id);

 Navigator.of(inAlertContext).pop();

 Scaffold.of(inContext).showSnackBar(

 SnackBar(

 backgroundColor : Colors.red,

 duration : Duration(seconds : 2),

 content : Text("Note deleted")

)

);

CHAPTER 5 FLUTTERBOOK, PART I

212

 notesModel.loadData("notes", NotesDBWorker.db);

 }

)

]

);

 }

);

}

As with most delete operations, confirming the user’s intent is a nice thing to do,

so we’ll launch a dialog to do that with showDialog(). In order to do that, we need

the BuildContext in effect where the dialog is shown from, which is passed in, along

with the Note instance so that we can use some of its data (the title) in the dialog.

Then, inside the builder() function that showDialog() requires, we construct an

AlertDialog, the content of which asks for confirmation and shows the note’s title.

Then, for the actions, we build two: a cancel FlatButton, which simply pop()’s

the dialog away, and the delete FlatButton. When the latter is tapped, we call the

delete() method of the NotesDBWorker (it’s db property technically, which actually

is the NotesDBWorker singleton instance), passing it the id of the note. Then, we

pop() the dialog away, and use the showSnackBar() method of the Scaffold to show

a message indicating the note was deleted. This will show for two seconds as per the

Duration. Finally, the loadData() method of notesModel needs to be called so that

the list will be refreshed. Recall that loadData() will re-load all the notes from the

database and then call notifyListeners(), which triggers re-painting of the screen.

This has to happen after removing a note; otherwise, it would be deleted from the

database but not reflect that on the screen.

 The Entry Screen: NotesEntry.dart

Now we come to the final part of the notes puzzle, the entry screen. It’s a simple screen,

as you can see in Figure 5-4.

CHAPTER 5 FLUTTERBOOK, PART I

213

The title (which I’ve entered here) and the content (which I haven’t entered) are

required (and you can see the error message for content where I’ve tried to save without

entering anything). The color boxes are optional, but here I’ve selected red (which you

can’t see on a black-and-white printed page, so just trust me, m’kay?!), indicated by it

being a bit bigger. There’s a Cancel and a Save button, the former returns the user to

the list screen, and the latter, of course, saves the new note (and, as I’m hoping you’ve

realized by now, triggers re-painting of the list screen to show the new note).

As always, imports kick things off:

import "package:flutter/material.dart";

import "package:scoped_model/scoped_model.dart";

Figure 5-4. The Notes edit screen

CHAPTER 5 FLUTTERBOOK, PART I

214

import "NotesDBWorker.dart";

import "NotesModel.dart" show NotesModel, notesModel;

class NotesEntry extends StatelessWidget {

Nothing new here as far as the imports go, and the widget class start is also what

you’ve seen before. Keep in mind that this is still a stateless widget, despite having to

deal with some state.

Now, we have two new things:

final TextEditingController _titleEditingController =

 TextEditingController();

final TextEditingController _contentEditingController =

 TextEditingController();

A TextFormField, which is what the title and content will be entered with, needs

to have a TextEditingController associated with it to deal with things like its default

value and the various events that can occur as the user is typing. But, we’re going to

need access to these from our code too, so we create two, and they will be hooked up

to the TextFormFields when we define them later but as properties of our class, are

available to our application code too (as opposed to defining them inline with the

TextFormFields, in which case we wouldn’t have any way to reference them, not without

hackery anyway!)

But first, since we have the notion of required fields to deal with, we’re going to have

a form (which isn’t required, since we could implement that logic ourselves, but as you

saw in the previous two chapters, a form makes things easier), and a form requires a key:

final GlobalKey<FormState> _formKey = GlobalKey<FormState>();

We don’t so much care what the key is, only that we have one, so a simple GlobalKey

is created.

Next, we have some work to do when the class is created, so we have a constructor:

NotesEntry() {

 _titleEditingController.addListener(() {

 notesModel.entityBeingEdited.title =

 _titleEditingController.text;

 });

CHAPTER 5 FLUTTERBOOK, PART I

215

 _contentEditingController.addListener(() {

 notesModel.entityBeingEdited.content =

 _contentEditingController.text;

 });

}

See! We really did need access to those two controllers! The trick here is that any time

the value of the TextFormField the controller is attached to changes, the corresponding

value in entityBeingEdited needs to be updated. Calling addListener() and giving it a

function to be called that does that accomplishes that goal. Without doing this, whatever

the user enters on the screen wouldn’t be reflected in the model, so we’d have nothing to

save later.

Now, the build() method rears its head once more:

Widget build(BuildContext inContext) {

 _titleEditingController.text =

 notesModel.entityBeingEdited.title;

 _contentEditingController.text =

 notesModel.entityBeingEdited.content;

Since this screen can effectively be used in two modes, adding and maintaining

a note, we’ll want to make sure the previous values for title and content are on the

screen when editing one. That’s what these statements do. When the screen is in add

mode, it will just be setting null values, since that’s the default for a String, which is

what the title and content properties of the Note class are. The TextFormField handles

that nicely and just makes them blank as we want; otherwise, whatever the current value

is when editing a Note will be shown.

Now we start to build up the top-level widget that build() returns:

return ScopedModel(

 model : notesModel,

 child : ScopedModelDescendant<NotesModel>(

 builder : (BuildContext inContext, Widget inChild,

 NotesModel inModel

) {

 return Scaffold(

CHAPTER 5 FLUTTERBOOK, PART I

216

So far, nothing new: it’s just like the start of the widget on the list screen. But after

that though, we have something new:

bottomNavigationBar : Padding(

 padding :

 EdgeInsets.symmetric(vertical : 0, horizontal : 10),

 child : Row(

 children : [

 FlatButton(

 child : Text("Cancel"),

 onPressed : () {

 FocusScope.of(inContext).requestFocus(FocusNode());

 inModel.setStackIndex(0);

 }

),

 Spacer(),

 FlatButton(

 child : Text("Save"),

 onPressed : () { _save(inContext, notesModel); }

)

]

)

)

The bottomNavigationBar of the Scaffold widget lets us put some static content

at the bottom, content that won’t scroll away even if what’s above it requires scrolling.

That’s perfect for buttons, which is exactly what we have here. The first one is Cancel,

which navigates the user back the list screen via a call to setStackIndex(). Just before

that though, we need to hide the soft keyboard if it’s open. Otherwise, it’ll still be there

obscuring the ListView on the notes list screen. The FocusScope class establishes a

scope in which widgets can receive focus. Flutter keeps track via a focus tree of which

widget is the user’s current focus. When you get the FocusScope of a given context

via the static of() method, you can then call the requestFocus() method to send

focus to a specific place, but passing a new FocusNode() instance effectively results in

focus not going anywhere, which causes the OS to collapse the keyboard and mission

accomplished!

CHAPTER 5 FLUTTERBOOK, PART I

217

The second button is Save, and that’s just a call to the _save() method, something

we’ll get to when we’re done looking at the widget code. Speaking of which:

body : Form(

 key : _formKey,

 child : ListView(

 children : [

 ListTile(

 leading : Icon(Icons.title),

 title : TextFormField(

 decoration : InputDecoration(hintText : "Title"),

 controller : _titleEditingController,

 validator : (String inValue) {

 if (inValue.length == 0) {

 return "Please enter a title";

 }

 return null;

 }

)

)

In the previous two chapters, you saw how you can optionally have a Form

widget so that you can have, among other things, validation events for your entry

fields. That’s precisely what we want here, and of course, that _formKey that was

created earlier is used here. The children are ListTile widgets, and here you can

see one of the other things that widget provides: leading. This can be some content

on the left side of the main content, and an Icon as shown here is typical. This

widget also supports a trailing property to do the same on the right side, but that’s

not needed here.

The title of the ListTile is the first TextFormField. It might seem weird that a

property named title isn’t just a text string, but that’s the beauty of everything being a

widget in Flutter: it doesn’t (usually) matter! You can put anything you want there, so long

as it’s a widget (whether it’ll look good or work as you expect is another matter of course,

but it will ostensibly work virtually all the time, that’s the point). This TextFormField

has a decoration whose value is an InputDecoration object that. This object has many

properties including labelText (text that describes the field), enabled (for visually

CHAPTER 5 FLUTTERBOOK, PART I

218

enabling or disabling the field), suffixIcon (an icon that that appears after the editable

part of the text field and after the suffix or suffixText, within the decoration’s container),

just to name a few. It also has a hintText property. Setting this as shown has the effect

of showing the word “Title” as slightly dimmed text whenever the field is empty of user

input. It serves the same function as a label in other words. As you can see, the controller

property references the TextEditingController created earlier for this field, and there

is a validator defined that checks to ensure something has been entered and which

returns an error string if not that will be displayed in red below the field once the form is

validated, which happens in that _save() method that we’ll get into soon.

Before that though, we have another TextFormField for the content:

ListTile(

 leading : Icon(Icons.content_paste),

 title : TextFormField(

 keyboardType : TextInputType.multiline,

 maxLines : 8,

 decoration : InputDecoration(hintText : "Content"),

 controller : _contentEditingController,

 validator : (String inValue) {

 if (inValue.length == 0) {

 return "Please enter content";

 }

 return null;

 }

)

)

It’s almost the same as that of the title field, save for one thing: the maxLines. This

determines how tall the field will be. Here, there will be enough space for eight lines of

text. If you know HTML, this in effect makes this TextFormField work like a <textarea>.

Now we come to the part responsible for those color blocks that the user can use to

select the note’s color:

ListTile(

 leading : Icon(Icons.color_lens),

 title : Row(

 children : [

CHAPTER 5 FLUTTERBOOK, PART I

219

We start with another ListTile, with a leading that shows a color palette icon

(Flutter calls it a color “lens,” but whatever, looks like a palette to me!). The title this

time is a Row so that all the blocks can be laid out next to each other.

Because of the repetitive nature of what follows, I’m going to show the code for just

one block. The other blocks are identical to this code, save for the color references of

course.

GestureDetector(

 child : Container(

 decoration : ShapeDecoration(

 shape : Border.all(width : 18, color : Colors.red) +

 Border.all(width : 6,

 color : notesModel.color == "red" ?

 Colors.red : Theme.of(inContext).canvasColor

)

)

),

 onTap : () {

 notesModel.entityBeingEdited.

 color = "red";

 notesModel.setColor("red");

 }

),

Spacer(),

...repeated for each color...

Each block beings with a GestureDetector, which is a widget that gives us an

element that responds to various touch events. We only care about tap events here

though, hence the onTap() function provided. That’s jumping ahead though! Inside the

GestureDetector is a Container, and this widget has a decoration that defines a box

with a Border around all sides. The box is given a border eighteen pixels wide, which

effectively results in a filled box since there is no content, so the borders in a sense

“collapse” into a solid box. Then, another Border is added to that, again using the all()

constructor, to put a six-pixel wide border around that box. If the color property in the

model has a value of red, then the border’s color is made red. Otherwise, it’s made the

same color as the background, which we can get by interrogating the Theme associated

CHAPTER 5 FLUTTERBOOK, PART I

220

with this BuildContext. The canvasColor is the background that everything is drawn on,

so that’s the element of Theme that we want. The idea here is that the box will be made

thicker by virtue of that outer border only when it’s selected.

When the block is tapped, then the color is set in entityBeingEdited, and also it’s

set as the color attribute of the model via the call to setColor(). That call also results

in notifyListeners() being called, which causes this screen to be re-painted, which

finally results in the border now being shown in the box’s color, and that’s how the box

appearing bigger effect is achieved.

The final bit of code to look at in this chapter is that _save() method that you saw

called earlier:

void _save(BuildContext inContext, NotesModel inModel) async {

 if (!_formKey.currentState.validate()) { return; }

 if (inModel.entityBeingEdited.id == null) {

 await NotesDBWorker.db.create(

 notesModel.entityBeingEdited

);

 } else {

 await NotesDBWorker.db.update(

 notesModel.entityBeingEdited

);

 }

 notesModel.loadData("notes", NotesDBWorker.db);

 inModel.setStackIndex(0);

 Scaffold.of(inContext).showSnackBar(

 SnackBar(

 backgroundColor : Colors.green,

 duration : Duration(seconds : 2),

 content : Text("Note saved")

)

);

}

CHAPTER 5 FLUTTERBOOK, PART I

221

This, obviously, is what persists the note to the database. First, the form is validated,

and if it’s not valid, then the event is terminated via the early return. If it’s valid, then

the first thing to determine is whether we’re creating a new note or updating one.

Since there’s no flag specifically for this purpose, we must interrogate the data to tell,

and that’s easy: a new note won’t yet have an id, but one being updated will. So, we

branch on inModel.entityBeingUpdated.id being null or not. If it is, then a call to

the create() method of the NotesDBWorker is the right thing to do. Otherwise, we’re

updating, so it’s the update() method that needs to be called. In either case, the

entityBeingEdited is what gets passed to it. As you saw earlier, that will be converted to

a map and saved to the database.

With the note saved, we just have some final tasks to accomplish to complete the

process. First, a call to loadData() needs to be made so that the list screen will be

updated to reflect the new note or the changes to an existing one. Then, we navigate

the user back to the entry screen with the call to setStackIndex(). Finally, we snow a

SnackBar message for two seconds to indicate that the note was saved.

And that, as they say, is a wrap on notes!

Caution Something that has burned me time and again when working with

Flutter that I want to bring to your attention is the persistence, or lack thereof,

of hot-reloaded changes. While hot reloading is undoubtedly a tremendous

productive gain, it can sometimes cause you problems if you don’t remember that

when you hot reload, the changes do not persist in your app. Meaning that if you

have your app running in the emulator, you make a change and hot-reload it, you

will see that change in the emulator as expected, but if you then close the app

and re-start it in the emulator, your change will not be there. The change will only

be present for that run of the app, or until you do a complete rebuild to effectively

re-deploy the app, including the change. There have been times I’ve forgotten this,

and I’m left banging my head against the desk because something that literally

was just working suddenly seems not to for no apparent reason. I urge you to

drill this fact into your head so you can avoid a trip to the doctor to address a

frustration- induced concussion, like I probably have had a few times because I

didn’t remember this!

CHAPTER 5 FLUTTERBOOK, PART I

222

 Summary

Hooray, we did it! We’ve got FlutterBook working, if not entirely completed yet! In

your first experience building a real Flutter app, you saw quite a lot including overall

application architecture, project configuration including adding plugins, navigating

between parts of the app, state management, data storage with SQLite, and a whole lot of

widgets! It’s not a complete app yet of course, but it’s an excellent start.

In the next chapter, we’ll complete FlutterBook by adding the code for the other

three entities: appointments, contacts, and tasks. In the end, you’ll have a complete,

usable app and a whole lot of excellent Flutter knowledge in your head!

CHAPTER 5 FLUTTERBOOK, PART I

223
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7_6

CHAPTER 6

FlutterBook, Part II

In the last chapter, we began looking at the code of FlutterBook, the notes entity

specifically. In this chapter, we’ll close it out by looking at the tasks, appointments,

and contacts.

That may seem like a lot of ground to cover, but here’s the secret of why it’s not: if

you compare the code for the four entities, you’ll see that they are probably 90% the

same. The same structure is at play for all of them: a main code file (like notes.dart)

and then a list screen and an entry screen, each in their own source files. The code

in each will mostly be the same (or extremely similar) to that of the notes entity. The

four list screens are all somewhat different though, so we’ll be looking at those in

some detail, but the entry screens are, for the most part, very similar, save for a few

bits and pieces.

So, what I’m going to do is only show you the areas where things diverge from the

code you saw in the last chapter. As such, we’ll be looking at pieces of source files for the

most part, not full source files. The bottom line is if I don’t discuss it here then you can

assume that it’s not really any different than the notes code from the previous chapter

(aside from small things like variable names and field names and such, the obvious

things that don’t have much impact to your learning).

 Get ‘Er Done: Tasks

The first entity we’ll look at in this chapter is tasks. Tasks are straightforward things: they

only require a line of text to describe them and optionally a due date. As you saw in the

screenshot from the previous chapter, the list view allows the user to check off the tasks

they have completed. As such, the code is quite simple, arguably even simpler than the

notes code.

224

 TasksModel.dart

First, as you know, each entity has its own model, and a class that represents an instance

of the entity. Tasks are no different: there is a Task class, and the only difference between

the Note class from the last chapter and Task are the fields in the class:

int id;

String description;

String dueDate;

String completed = "false";

As usual, an instance of this class will be stored in the database, and so we need a

unique id field. Beyond that, we have the description of the task, a dueDate (which will

be optional) and a completed flag to tell if the task is done or not. You may think that

completed should be a bool, and I would generally agree! But, since it’s getting stored in

a SQLite table, and SQLite doesn’t offer us a boolean type natively, it’ll have to be stored

as a string. While converting from and to string when necessary so we’re dealing with

a bool in the Dart code would be doable, I don’t see much point to it in this case, so a

string it is!

After that comes the model:

class TasksModel extends BaseModel { }

Wait, did I make a mistake pasting the code in this chapter? Nope! The TasksModel

really is empty! You see, there are no fields on the entry screen like there were with notes

(dealing with the selected color) that we need to track on the screen. Therefore there

doesn’t have to be anything in the model. Recall that BaseModel provides the common

code that all four of the models need to have, but tasks don’t need anything beyond that;

hence its just an empty object (empty aside from what BaseModel provides that is!).

 TasksDBWorker.dart

Like notes, the tasks entity needs to have its database worker, but there’s only one

substantive thing different from the notes worker (again, aside from basic things like

variable and method names and such), and that’s the SQL executed to create the table

for this entity:

CHAPTER 6 FLUTTERBOOK, PART II

225

CREATE TABLE IF NOT EXISTS tasks (

 id INTEGER PRIMARY KEY, description TEXT,

 dueDate TEXT, completed TEXT

)

Hopefully, that’s exactly what you expected!

 Tasks.dart

The starting point for the task entity’s screen is, like TasksDBWorker.dart, nearly

identical to Notes.dart that you saw in the last chapter, the same screen structure with

the IndexedStack and all that is present here, so let’s move on to some code that actually

has some differences to see, shall we?

 TasksList.dart

As mentioned earlier, each of the four list views is a bit different from one another,

though even there you’ll find that a large percentage of the code is identical. But, for

tasks, the primary difference is that tasks can be checked off when completed, so let’s

see the widget returned by the build() function here, which is again a ScopedModel

wrapping a Scaffold and with the following body:

body : ListView.builder(

 padding : EdgeInsets.fromLTRB(0, 10, 0, 0),

 itemCount : tasksModel.entityList.length,

 itemBuilder : (BuildContext inBuildContext, int inIndex) {

 Task task = tasksModel.entityList[inIndex];

 String sDueDate;

 if (task.dueDate != null) {

 List dateParts = task.dueDate.split(",");

 DateTime dueDate = DateTime(int.parse(dateParts[0]),

 int.parse(dateParts[1]), int.parse(dateParts[2]));

 sDueDate = DateFormat.yMMMMd(

 "en_US"

).format(dueDate.toLocal());

 }

CHAPTER 6 FLUTTERBOOK, PART II

226

The due date, if there is one, gets split() into three individual parts (remember

from the previous chapter that it’s stored as “year,month,day”) and those parts passed

to the DateTime constructor to get a DateTime object for the specified due date. Then,

we use one of the formatting functions that the DateFormat class offers. This class is

a utility class from the intl package that provides numerous functions for formatting

dates and times and dealing with other internationalization concerns. The intricacies

of working with these functions is a little beyond our scope here. But, the bottom line

is that calling the yMMMMD() function and then feeding the return value to the format()

function and passing it the result of a toLocal() call on the dueDate DateTime object

gives us back a nicely formatted version of the date suitable for display. And that’s the

whole point of this exercise!

Next, we can start building the UI which, like notes, uses a Slidable as the basis:

 return Slidable(delegate : SlidableDrawerDelegate(),

 actionExtentRatio : .25, child : ListTile(

 leading : Checkbox(

 value : task.completed == "true" ? true : false,

 onChanged : (inValue) async {

 task.completed = inValue.toString();

 await TasksDBWorker.db.update(task);

 tasksModel.loadData("tasks", TasksDBWorker.db);

 }

),

This time though, the leading is where we find the Checkbox the user can check

when the task is completed. The value is taken from the task reference, which as you

can see is the next task in the list of tasks. Since completed is a string and not a boolean,

it can’t be the value of the value property directly, so a simple ternary expression gets

the boolean that is needed. After that, we have to attach an onChanged event handler for

when the Checkbox is checked (or unchecked). The work here is easy: take the boolean

value passed into the onChanged function and set it as the value of task.completed by

calling toString() on it. Then, ask TasksDBWorker to update the task, and finally tell

the TasksModel to rebuild the list via a call to the loadData() method that you know is

supplied by BaseModel. That’s it, easy!

CHAPTER 6 FLUTTERBOOK, PART II

227

Continuing on, we have the rest of the configuration for the Slidable:

 title : Text(

 "${task.description}",

 style : task.completed == "true" ?

 TextStyle(color :

 Theme.of(inContext).disabledColor,

 decoration : TextDecoration.lineThrough

) :

 TextStyle(color :

 Theme.of(inContext).textTheme.title.color

)

),

 subtitle : task.dueDate == null ? null :

 Text(sDueDate,

 style : task.completed == "true" ?

 TextStyle(color :

 Theme.of(inContext).disabledColor,

 decoration : TextDecoration.lineThrough) :

 TextStyle(color :

 Theme.of(inContext).textTheme.title.color)

),

 onTap : () async {

 if (task.completed == "true") { return; }

 tasksModel.entityBeingEdited =

 await TasksDBWorker.db.get(task.id);

 if (tasksModel.entityBeingEdited.dueDate == null) {

 tasksModel.setChosenDate(null);

 } else {

 tasksModel.setChosenDate(sDueDate);

 }

 tasksModel.setStackIndex(1);

 }

),

CHAPTER 6 FLUTTERBOOK, PART II

228

 secondaryActions : [

 IconSlideAction(

 caption : "Delete",

 color : Colors.red,

 icon : Icons.delete,

 onTap : () => _deleteTask(inContext, task)

)

]

);

 }

)

That should all look pretty familiar to you given your exposure to the code for notes,

but one thing to understand is that we don’t allow the user to edit a task that is already

completed, hence the check of task.completed in the onTap() event handler.

As with notes, there is a deleteTask() method here too that you can see called via

the secondaryActions of the Slidable, but given that it’s the same as for notes, we can

skip looking at it and move on to the entry screen.

 TasksEntry.dart

The entry screen, which you can see in Figure 6-1, is very sparse, as previously stated,

just having two fields, only one of which (description) is required:

CHAPTER 6 FLUTTERBOOK, PART II

229

The only code we need to look at here is around the due date field:

ListTile(leading : Icon(Icons.today),

 title : Text("Due Date"), subtitle : Text(

 tasksModel.chosenDate == null ? "" : tasksModel.chosenDate

),

 trailing : IconButton(

 icon : Icon(Icons.edit), color : Colors.blue,

 onPressed : () async {

 String chosenDate = await utils.selectDate(

 inContext, tasksModel,

 tasksModel.entityBeingEdited.dueDate);

Figure 6-1. The entry screen for tasks

CHAPTER 6 FLUTTERBOOK, PART II

230

 if (chosenDate != null) {

 tasksModel.entityBeingEdited.dueDate = chosenDate;

 }

 }

)

)

Here, we finally see the usage of that utils.selectDate() function that we looked

at briefly in the last chapter. This function returns a string in the form “year,month,day”

after the user selects a date, which you know is the form it’s saved into the database. Of

course, if null is returned, then no date was selected, so we only set the dueDate field of

the task if null wasn’t returned.

And that’s it for tasks!

 Make a Date: Appointments

Next up is the appointments entity, and here we have a few new things to look at,

including a nice plugin for our main display on the list screen. But, before that, let’s take

a look at the model.

 AppointmentsModel.dart

As with the tasks entity and note entity, we have a class to describe an appointment, not

surprisingly named Appointment, and it has the following fields:

int id;

String title;

String description;

String apptDate;

String apptTime;

The id you know about and title and description are obvious. Like task, an

appointment has a date, called apptDate this time, but unlike tasks, appointments

also have a time, stored as apptTime. Both are strings again because that’s how they

ultimately get stored in the database, so naturally, we’re going to have some conversion

code somewhere, as you’ll see soon.

CHAPTER 6 FLUTTERBOOK, PART II

231

After the class definition comes the model, and there’s only a single method we need

to add to it, the one dealing with the time and being able to display it on the entry screen:

class AppointmentsModel extends BaseModel {

 String apptTime;

 void setApptTime(String inApptTime) {

 apptTime = inApptTime;

 notifyListeners();

 }

}

As with tasks (and contacts, as you’ll see later), the BaseModel chosenDate field

and setChosenDate() method will be used for the appointment’s date on the entry

screen (because that’s needed on multiple entry screens, putting it in BaseModel avoids

some duplicate code). Since only appointments have a time though, we only need the

apptTime and setApptTime() method in this model, but the code for the setApptTime()

method is just like that of setChosenDate(): store the passed in value in the model and

notify listeners, so the screen is rebuilt with the new value.

 AppointmentsDBWorker.dart

As with notes and tasks, appointments have a database worker, and it’s nearly identical

to those two except for the table definition, which is as follows:

CREATE TABLE IF NOT EXISTS appointments (

 id INTEGER PRIMARY KEY, title TEXT,

 description TEXT, apptDate TEXT, apptTime TEXT

)

There are no other surprises here; you’ve essentially seen this already by virtue of

seeing the database worker for notes, so let’s go forward.

 Appointments.dart

Again, like with tasks, the core screen definition for appointments is the same as that of

notes, so we can jump into the list screen straight away, which does have some new stuff

to see.

CHAPTER 6 FLUTTERBOOK, PART II

232

 AppointementsList.dart

First up, we have some new imports, among a batch of others you’ve seen before:

import

 "package:flutter_calendar_carousel/"

 "flutter_calendar_carousel.dart";

import "package:flutter_calendar_carousel/classes/event.dart";

import

 "package:flutter_calendar_carousel/classes/event_list.dart";

The Calendar Carousel is a plugin (see here: https://pub.dartlang.org/packages/

flutter_calendar_carousel) that provides to our app a calendar widget that can be

swiped horizontally to move between months. It has many other options available to

it such as showing indicators on dates that have events on them, a variety of display

modes, and tap handlers to perform actions when a date is tapped.

All of which sounds like precisely the kind of thing we need for displaying

appointments in something other than a simple list! Flutter doesn’t offer such a thing out

of the box, hence the need for a plugin, and Calendar Carousel fits the bill exactly.

So, let’s start building the list screen widget and see how it’s used:

class AppointmentsList extends StatelessWidget {

 Widget build(BuildContext inContext) {

 EventList<Event> _markedDateMap = EventList();

 for (

 int i = 0; i < appointmentsModel.entityList.length; i++

) {

 Appointment appointment =

 appointmentsModel.entityList[i];

 List dateParts = appointment.apptDate.split(",");

 DateTime apptDate = DateTime(

 int.parse(dateParts[0]), int.parse(dateParts[1]),

 int.parse(dateParts[2]));

CHAPTER 6 FLUTTERBOOK, PART II

https://pub.dartlang.org/packages/flutter_calendar_carousel
https://pub.dartlang.org/packages/flutter_calendar_carousel

233

 _markedDateMap.add(apptDate, Event(date : apptDate,

 icon : Container(decoration : BoxDecoration(

 color : Colors.blue))

));

 }

One of the things Calendar Carousel provides is a way to show some sort

of indicator on dates that have events associated with them. To do this, it has a

markedDatesMap property that accepts a value that is a map containing keys that are

DateTime objects and corresponding values that are Event objects (the latter being

a class it provides) that describe each event. When the calendar is rendered, it uses

this map to show the indicators. Here, we’re building up that map by iterating over

the appointmentsModel.entityList, which you know from your experience with

notes, since the logic is the same here, is an array of appointments retrieved from

the database. For each, we split the apptDate property and then feed that to the

DateTime constructor to get a DateTime instance for the appointment’s date. Then,

we construct an Event object and add it to the _markedDateMap map. The Event

object takes the date in of course, and it also takes an icon property. This can be any

widget you want, and it will wind up being the indicator shown on the date. Here, I

use a simple Container widget that has a BoxDecoration as a decoration. With no

further properties defined for the BoxDecoration or the Container, the result is that

the box uses the minimum space it can, the result being a square just a few pixels

wide and tall, as you can see in Figure 6-2.

CHAPTER 6 FLUTTERBOOK, PART II

234

The 8th and 13th have appointments, hence the dots. Notice on the 13th that if there

are multiple events, you’ll get multiple dots. Perfect!

Now, we can move on to the widget returned from this build() method:

return ScopedModel<AppointmentsModel>(

 model : appointmentsModel,

 child : ScopedModelDescendant<AppointmentsModel>(

 builder : (inContext, inChild, inModel) {

 return Scaffold(

 floatingActionButton : FloatingActionButton(

 child : Icon(Icons.add, color : Colors.white),

Figure 6-2. The appointments list screen with date indicators

CHAPTER 6 FLUTTERBOOK, PART II

235

 onPressed : () async {

 appointmentsModel.entityBeingEdited =

 Appointment();

 DateTime now = DateTime.now();

 appointmentsModel.entityBeingEdited.apptDate =

 "${now.year},${now.month},${now.day}";

 appointmentsModel.setChosenDate(

 DateFormat.yMMMMd("en_US").format(

 now.toLocal()));

 appointmentsModel.setApptTime(null);

 appointmentsModel.setStackIndex(1);

 }

),

It starts out the same as notes and tasks did, complete with a FAB for creating a new

appointment. At this point, that code should be quite familiar, so no need to go over in

detail again. Instead, let’s see what comes next:

body : Column(

 children : [

 Expanded(

 child : Container(

 margin : EdgeInsets.symmetric(horizontal : 10),

 child : CalendarCarousel<Event>(

 thisMonthDayBorderColor : Colors.grey,

 daysHaveCircularBorder : false,

 markedDatesMap : _markedDateMap,

 onDayPressed :

 (DateTime inDate, List<Event> inEvents) {

 _showAppointments(inDate, inContext);

 }

)

)

)

]

)

CHAPTER 6 FLUTTERBOOK, PART II

236

The goal here is to get the Calendar Carousel to expand to fill the screen. For that, an

Expanded widget makes sense since that’s expressly its purpose: it expands its child to fill

the available space inside a Row, Column, or Flex. The important point is that the parent

widget must have a flex capability, which limits it to those three shown. Which of those

is used here wouldn’t matter much given that this is the only widget on the screen (well,

in the body more precisely), so I just went with the tried and true Column. Rather than

put the CalendarCarousel widget directly as the child of the Expanded though, I put it

inside a Container so that I could set some margin around it. I just felt it looked better

not stretching all the way to the very edge of the screen, not to mention avoiding running

into the TabBar at the top or the FAB at the bottom.

The CalendarCarousel itself is simple to define in our case (though it provides

many configuration options, we only need a handful). I give each date a grey border,

as well as ensuring they are square by setting daysHaveCircularBorder to false.

Then, the markedDatesMap we talked about earlier is pointed to the _markedDateMap

that was populated before. Finally, an event handler is hooked up to handle taps on

the dates. When this occurs, I want to show the events for the selected date, if any, in a

BottomSheet, thanks to the _showAppointments() method:

void _showAppointments(

 DateTime inDate, BuildContext inContext) async {

 showModalBottomSheet(context : inContext,

 builder : (BuildContext inContext) {

 return ScopedModel<AppointmentsModel>(

 model : appointmentsModel,

 child : ScopedModelDescendant<AppointmentsModel>(

This method starts by accepting the DateTime that was tapped, and the

BuildContext associated with the widget that called it. Note that while the function

defined for onDayPressed accepts a list of events, for the display to show what I want,

I needed to get that data from the entityList in the model. That’s because the Event

objects passed in wouldn’t have all the data I needed, so that argument is simply ignored

here in favor of the code that follows. That’s why the widget returned by the builder

function of the showModalBottomSheet() call begins with a ScopedModel and references

our AppointmentsModel.

CHAPTER 6 FLUTTERBOOK, PART II

237

The builder function comes next:

builder : (BuildContext inContext, Widget inChild,

 AppointmentsModel inModel) {

 return Scaffold(

 body : Container(child : Padding(

 padding : EdgeInsets.all(10), child : GestureDetector(

So far, nothing you haven’t seen before, right? I again felt like some padding was in

order here, so a Container starts off the body so that I could apply it.

After that, since what is shown in the BottomSheet, which you can see in the

screenshot from the previous chapter, is a vertically scrolling list of appointments, a

Column layout makes sense here:

child : Column(

 children : [

 Text(DateFormat.yMMMMd("en_US").format(inDate.toLocal()),

 textAlign : TextAlign.center,

 style : TextStyle(color :

 Theme.of(inContext).accentColor, fontSize : 24)

),

 Divider(),

The first child is just a simple Text element, centered on the BottomSheet via the

textAlign property, and the value of which is the selected date, formatted nicely. Notice

here the way the color of the text is retrieved: the Theme.of() function is always available

and gets you a reference to the theme currently active for the app. Once you have that

reference, you can access its members, one of which is accentColor, which for the

default theme will be a nice shade of blue. The fontSize is also specified to make this

text stand out from the rest. I also added a Divider widget after that to separate the date

from the list of appointments.

After that comes another Expanded, so that the list of appointments will fill the

remaining space inside the Column layout. Each child is then built from the entityList,

which we must write some code to filter out any appointment not for the selected date:

Expanded(

 child : ListView.builder(

 itemCount : appointmentsModel.entityList.length,

CHAPTER 6 FLUTTERBOOK, PART II

238

 itemBuilder : (BuildContext inBuildContext, int inIndex) {

 Appointment appointment =

 appointmentsModel.entityList[inIndex];

 if (appointment.apptDate !=

 "${inDate.year},${inDate.month},${inDate.day}") {

 return Container(height : 0);

 }

 String apptTime = "";

 if (appointment.apptTime != null) {

 List timeParts = appointment.apptTime.split(",");

 TimeOfDay at = TimeOfDay(

 hour : int.parse(timeParts[0]),

 minute : int.parse(timeParts[1]));

 apptTime = " (${at.format(inContext)})";

 }

For any appointment that’s not for the selected date, we return a Container with a

zero height. This is necessary because returning null from the itemBuilder function

will result in an exception; Flutter expects something to be returned in all cases, so here

it’s something that won’t display anything, so only appointments for this date will be

visible in the end, just like we want.

The time of the appointment, if there is one, has to be split just like the date is,

because it’s stored as a string in “hh,mm” form in the database. Once that’s done, we

can pass those two pieces of information to the TimeOfDay constructor, which is just like

DateTime but, obviously, for times! The format() method of TimeOfDay gives us back a

nicely formatted time in the applicable local form.

Now, each appointment needs to be editable and deletable, and we’ve been doing

that with the Slidable widget so far with other entities, and it’s the same story here:

return Slidable(delegate : SlidableDrawerDelegate(),

 actionExtentRatio : .25, child : Container(

 margin : EdgeInsets.only(bottom : 8),

 color : Colors.grey.shade300,

 child : ListTile(

 title : Text("${appointment.title}$apptTime"),

 subtitle : appointment.description == null ?

 null : Text("${appointment.description}"),

CHAPTER 6 FLUTTERBOOK, PART II

239

 onTap : () async {

 _editAppointment(inContext, appointment);

 }

)

),

If the appointment has a description, then that’s shown as the subtitle text.

Otherwise, the value there is null, and nothing is displayed. The _editAppointment

method we’ll look at shortly, but before that, we’ll finish out the widget definition with

the secondaryActions property of the Slidable:

secondaryActions : [

 IconSlideAction(caption : "Delete", color : Colors.red,

 icon : Icons.delete,

 onTap : () =>

 _deleteAppointment(inBuildContext, appointment)

)

]

That’s no different than what you saw for notes and tasks already, and in fact, the

code of the _deleteAppointment() method is just like the delete method for those two

entities, so we’ll skip looking at it. However, we do still have that _editAppointment()

method to look at, and it is this code:

void _editAppointment(BuildContext inContext, Appointment

 inAppointment) async {

 appointmentsModel.entityBeingEdited =

 await AppointmentsDBWorker.db.get(inAppointment.id);

 if (appointmentsModel.entityBeingEdited.apptDate == null) {

 appointmentsModel.setChosenDate(null);

 } else {

 List dateParts =

 appointmentsModel.entityBeingEdited.apptDate.split(",");

 DateTime apptDate = DateTime(

 int.parse(dateParts[0]), int.parse(dateParts[1]),

 int.parse(dateParts[2]));

CHAPTER 6 FLUTTERBOOK, PART II

240

 appointmentsModel.setChosenDate(

 DateFormat.yMMMMd("en_US").format(apptDate.toLocal()));

 }

 if (appointmentsModel.entityBeingEdited.apptTime == null) {

 appointmentsModel.setApptTime(null);

 } else {

 List timeParts =

 appointmentsModel.entityBeingEdited.apptTime.split(",");

 TimeOfDay apptTime = TimeOfDay(

 hour : int.parse(timeParts[0]),

 minute : int.parse(timeParts[1]));

 appointmentsModel.setApptTime(apptTime.format(inContext));

 }

 appointmentsModel.setStackIndex(1);

 Navigator.pop(inContext);

}

It too is nearly identical to its notes and tasks edit method counterparts like the

delete code is, but here we must deal with the time. Since the date and time are optional

for appointments, we have to check if they are null or not and only process them if they

aren’t. If they aren’t, we have to parse out the date components and build a DateTime

to pass to setChosenDate() in the model, and similarly, we have to parse out the time

components to construct a TimeOfDay to pass to setApptTime().

 AppointmentsEntry.dart

The final piece of the appointment puzzle is, of course, the entry screen, which is shown

here in Figure 6-3.

CHAPTER 6 FLUTTERBOOK, PART II

241

It’s a simple enough screen, just a single required field in the title, a multi-line

description field, and two fields for selecting a date and time. Technically, Date is

required as well because an appointment without a date wouldn’t make much sense

(though time is not required because an appointment doesn’t necessarily have to have a

time associated with it logically). But, instead of dealing with validation, the date gets set

to the current date by default, and there’s no way to clear it. Therefore, an appointment

is automatically going to always have a date, and it’s up to the user to change it if the

current date isn’t appropriate.

As far as the code goes, there’s nothing new there except for the piece about getting

an appointment time, which is very similar to the date part, but let’s take a look at the

time code now anyway, beginning with the field definition:

Figure 6-3. The entry screen for appointments

CHAPTER 6 FLUTTERBOOK, PART II

242

 ListTile(leading : Icon(Icons.alarm),

 title : Text("Time"),

 subtitle : Text(appointmentsModel.apptTime == null ?

 "" : appointmentsModel.apptTime),

 trailing : IconButton(

 icon : Icon(Icons.edit), color : Colors.blue,

 onPressed : () => _selectTime(inContext)

)

)

]

)

)

That’s a perfectly ordinary field definition, just like the others you’ve seen so far, save

for the call to _selectTime in the onPressed handler, which is as follows:

Future _selectTime(BuildContext inContext) async {

 TimeOfDay initialTime = TimeOfDay.now();

 if (appointmentsModel.entityBeingEdited.apptTime != null) {

 List timeParts =

 appointmentsModel.entityBeingEdited.apptTime.split(",");

 initialTime = TimeOfDay(hour : int.parse(timeParts[0]),

 minute : int.parse(timeParts[1])

);

 }

 TimeOfDay picked = await showTimePicker(

 context : inContext, initialTime : initialTime);

 if (picked != null) {

 appointmentsModel.entityBeingEdited.apptTime =

 "${picked.hour},${picked.minute}";

 appointmentsModel.setApptTime(picked.format(inContext));

 }

}

CHAPTER 6 FLUTTERBOOK, PART II

243

Like I said, very similar to the code for getting a date that you saw earlier for tasks. If

the user is editing an existing appointment, then we have to set the initialTime of the

TimePicker that we’ll show via the call to showTimePicker(). Therefore, we have to parse

it out of the model, the entityBeingEdited specifically, since the list screen will have set

that before navigating to the entry screen. Then, once the user selects a time, or cancels

the TimePicker, the apptTime is updated in entityBeingEdited and then also in the

model via the call to setApptTime() so that it gets reflected on the screen (remember,

that method will call notifyListeners(), which will trigger Flutter updating the display

based on the new model value).

 Reaching Out: Contacts

The final entity to look at is contacts, and I left it for last because in some ways it’s

the most complex of the bunch, and for sure it offers you the opportunity to see some

new things.

 ContactsModel.dart

As with the other three entities, we’ll start with the model for it, including the Contact

class. And, like the other three entities, I’ll just show you the fields in the class since it is

otherwise the same as those others:

int id;

String name;

String phone;

String email;

String birthday;

A contact can, of course, have a great deal of information stored about it – if you open

your phone’s contact app right now, you’ll see a whole host of attributes you can set – but

I’ve chosen probably the key ones only, plus one more just for fun! The name, phone, and

email fields are obviously key to a contact in this day and age, and I added birthday just

to have another example of working with dates and the DatePicker.

CHAPTER 6 FLUTTERBOOK, PART II

244

Tip I recommend extending the three apps in this book as learning exercises. All

of them have things that can be done to make them better, by design for the most

part, and adding more fields for contacts would be one relatively easy thing you

could do to practice your skills.

As for the model, there’s only one thing we need to have in it:

class ContactsModel extends BaseModel {

 void triggerRebuild() {

 notifyListeners();

 }

}

The birthday will be covered by the chosenDate field (and its associated setter

method) from BaseModel, so this one triggerRebuild() method really is all that’s

specific to contacts. Since notifyListeners() must be called from within the model

class, that’s why we need this method, but in this case, that’s the only task it has to

accomplish. As you’ll see, this method will be used when editing a contact, and an avatar

image is selected so that the image gets displayed on the screen. Let’s not get ahead of

ourselves though; we’ll get to that soon.

 ContactsDBWorker.dart

The database worker code for contacts is once again identical to the three you’ve already

seen, save for the creation SQL as usually, so here is that:

CREATE TABLE IF NOT EXISTS contacts (

 id INTEGER PRIMARY KEY,

 name TEXT, email TEXT, phone TEXT, birthday TEXT

)

By now, that shouldn’t hold any surprises for you.

CHAPTER 6 FLUTTERBOOK, PART II

245

 Contacts.dart

Similarly, the base layout of the contacts screen has nothing new to offer compared to

the code for the other three entities, so let’s get to where there is some new stuff.

 ContactsList.dart

The list screen for contacts is just a simple ListView, much like you’ve seen in other

areas, but we have an avatar image to deal with, potentially, for each contact, and that

requires some new Flutter bits:

return ScopedModel<ContactsModel>(

 model : contactsModel,

 child : ScopedModelDescendant<ContactsModel>(

 builder : (BuildContext inContext, Widget inChild,

 ContactsModel inModel) {

 return Scaffold(

 floatingActionButton : FloatingActionButton(

 child : Icon(Icons.add, color : Colors.white),

 onPressed : () async {

 File avatarFile =

 File(join(utils.docsDir.path, "avatar"));

 if (avatarFile.existsSync()) {

 avatarFile.deleteSync();

 }

 contactsModel.entityBeingEdited = Contact();

 contactsModel.setChosenDate(null);

 contactsModel.setStackIndex(1);

 }

)

It all starts off ordinarily enough: the usual ScopedModel at the top, with the model

referencing contactsModel, and then a child that is a ScopedModelDescendant. The

builder function then is present, and it returns a Scaffold, which we need so we can

have a FAB for creating a new contact.

CHAPTER 6 FLUTTERBOOK, PART II

246

Now, the onPressed event handler of the FAB is where we start to see some new and

exciting stuff. What you’re going to see is that when a contact is created, you can add an

avatar image to it. The image will be stored in the app’s documents directory, not in the

database (that’s on purpose because it provides an opportunity for you to see some file

handling code). But, when editing a contact, whether new or existing, a temporary image

file can be present if the user had previously been editing a contact. So, to start when

creating a new contact, we have to make sure that the temporary file isn’t there. The

File class is a Dart class from the io package, and its constructor takes as an argument a

path to a file. You saw the utils.docsDir retrieved in the previous chapter, and its path

property is the path to the documents directory. So, passing that to the join() method,

which is a function provided by the path library that knows how to concatenate file

path parts to wind up with a proper platform-dependent path, along with the filename

avatar, gets us a reference to that file, if it exists, wrapped in a File instance. The File

class provides some methods, one of which is existsSync(). This returns true if the file

exists, false if not, and it does so synchronously, which we need here. Otherwise, we’d

have to await it (or otherwise wait for a Future to be resolved). There is also an exists()

version that is asynchronous. If it exists then the deleteSync() method is called to get

rid of it (and there is an asynchronous delete() method available as well). After that, a

new Contact is created, and the user is navigated to the entry screen as usual.

Next up we have the ListView that contains the contacts:

body : ListView.builder(

 itemCount : contactsModel.entityList.length,

 itemBuilder : (BuildContext inBuildContext, int inIndex) {

 Contact contact = contactsModel.entityList[inIndex];

 File avatarFile =

 File(join(utils.docsDir.path, contact.id.toString()));

 bool avatarFileExists = avatarFile.existsSync();

Each contact is pulled out of the model in turn, and a reference to its avatar file is

created, if it exists. The file uses the contact’s id as a filename, so it’s an easy link to the

contact. This time, the result of the call to existsSync() is stored in avatarFileExists,

for a reason you can see in the next chunk of code:

return Column(children : [

 Slidable(

 delegate : SlidableDrawerDelegate(),

CHAPTER 6 FLUTTERBOOK, PART II

247

 actionExtentRatio : .25, child : ListTile(

 leading : CircleAvatar(

 backgroundColor : Colors.indigoAccent,

 foregroundColor : Colors.white,

 backgroundImage : avatarFileExists ?

 FileImage(avatarFile) : null,

 child : avatarFileExists ? null :

 Text(contact.name.substring(0, 1).toUpperCase())

),

 title : Text("${contact.name}"),

 subtitle : contact.phone == null ?

 null : Text("${contact.phone}"),

Each child of the ListView is a Column layout and will have two items in it: a

Slidable that contains a contact itself and a Divider, hence the Column being necessary.

The Slidable is like all the others you’ve seen except for the leading. Here, it’s a

CircleAvatar, which is a widget that shows an image and condenses it down into a

circular shape. It’s typically used to display avatar images of people in a list, so it’s a

very fitting widget to use here. The only trick here is that the backgroundImage, which

is how the image is specified, must be either a valid FileImage reference or null. That’s

where that avatarFileExists flag comes in. When it’s true, the avatarFile, which

remember is a File instance, is wrapped in a FileImage widget, which is a widget to

display an image based on a reference to a file on the file system. When it’s false, then

backgroundImage will be null.

We also need that flag because when a contact has no avatar image, we want to

show the first letter of their name, which is a typical pattern in contact apps. So, the

child of the CircleAvatar will either be null when there is an image, or it will be a Text

widget when it doesn’t. In the latter case, the substring() method of the String class,

of which contact.name is, of course, an instance, is used to get that first letter, and the

toUpperCase() method is used to ensure its upper-case.

The rest of the configuration for the Slidable you already know, so let’s look at the

onTap handler for it, which is how we trigger editing of a contact:

 onTap : () async {

 File avatarFile =

 File(join(utils.docsDir.path, "avatar"));

CHAPTER 6 FLUTTERBOOK, PART II

248

 if (avatarFile.existsSync()) {avatarFile.deleteSync(); }

 contactsModel.entityBeingEdited =

 await ContactsDBWorker.db.get(contact.id);

 if (contactsModel.entityBeingEdited.birthday == null) {

 contactsModel.setChosenDate(null);

 } else {

 List dateParts =

 contactsModel.entityBeingEdited.birthday.split(",");

 DateTime birthday = DateTime(

 int.parse(dateParts[0]), int.parse(dateParts[1]),

 int.parse(dateParts[2]));

 contactsModel.setChosenDate(

 DateFormat.yMMMMd("en_US").format(birthday.toLocal())

);

 }

 contactsModel.setStackIndex(1);

 }

This handler too is not too different from the others you’ve seen, but here again, we

have to deal with the temporary avatar image that could be there, so that’s deleted if it

exists. The date has to be parsed apart too and set in the model for display on the edit

screen, and then the usual screen navigation is done via the call to setStackIndex().

Just to complete the Slidable and ListView configuration, here’s the

secondaryActions:

 secondaryActions : [

 IconSlideAction(caption : "Delete", color : Colors.red,

 icon : Icons.delete,

 onTap : () => _deleteContact(inContext, contact))

]

),

Divider()

You can also see the Divider there, and that completes the return in the

itemBuilder() function.

CHAPTER 6 FLUTTERBOOK, PART II

249

Now, let’s see about deleting a contact:

Future _deleteContact(BuildContext inContext,

 Contact inContact) async {

 return showDialog(context : inContext,

 barrierDismissible : false,

 builder : (BuildContext inAlertContext) {

 return AlertDialog(title : Text("Delete Contact"),

 content : Text(

 "Are you sure you want to delete ${inContact.name}?"

),

 actions : [

 FlatButton(child : Text("Cancel"),

 onPressed: () {

 Navigator.of(inAlertContext).pop();

 }

),

 FlatButton(child : Text("Delete"),

 onPressed : () async {

 File avatarFile = File(

 join(utils.docsDir.path, inContact.id.toString()));

 if (avatarFile.existsSync()) {

 avatarFile.deleteSync();

 }

 await ContactsDBWorker.db.delete(inContact.id);

 Navigator.of(inAlertContext).pop();

 Scaffold.of(inContext).showSnackBar(

 SnackBar(backgroundColor : Colors.red,

 duration : Duration(seconds : 2),

 content : Text("Contact deleted")));

 contactsModel.loadData("contacts", ContactsDBWorker.db);

 }

)

CHAPTER 6 FLUTTERBOOK, PART II

250

Most of this is what by now can rightly be called the typical code of an entity delete

function, but once more, we have the avatar files to deal with. Deleting a contact from

the database isn’t sufficient; we have to delete its avatar file too if it has one, so once

more we get a reference to it and, if it exists, call deleteSync() to get rid of it. After that,

it’s just the usual database deletion and showing a SnackBar code to confirm, and we’re

all done!

 ContactsEntry.dart

We have just one more piece of FlutterBook to look and, and it’s the contacts entry

screen, which you can glimpse in Figure 6-4.

Figure 6-4. The entry screen for contacts

CHAPTER 6 FLUTTERBOOK, PART II

251

It’s a simple enough screen: three TextFormField widgets, only one of which (name)

is required, and then a birthday field with a trigger icon to show a DatePicker. As such,

we’ll get through this pretty quick, but I want to show the code anyway because the stuff

about the avatar images is mixed in a few places, and that’s where this code substantively

diverges from the entry screen code for the other three entities a bit.

return ScopedModel(model : contactsModel,

 child : ScopedModelDescendant<ContactsModel>(

 builder : (BuildContext inContext, Widget inChild,

 ContactsModel inModel) {

 File avatarFile =

 File(join(utils.docsDir.path, "avatar"));

 if (avatarFile.existsSync() == false) {

 if (inModel.entityBeingEdited != null &&

 inModel.entityBeingEdited.id != null

) {

 avatarFile = File(join(utils.docsDir.path,

 inModel.entityBeingEdited.id.toString()

));

 }

 }

The first thing to deal with is the fact that this screen can be shown when creating a

new contact or when editing an existing one. In the create case, there will be no avatar

image, but when editing there might be: remember that build() will be called when the

model changes, which is precisely what will happen when the user selects an avatar. So,

being as we’re inside the build() method here, we have to see if there is a temporary

avatar image. If there isn’t one, then we check the entityBeingEdited. If it has an id,

which is only true when editing a contact, then we try to get a reference to its actual

avatar file (as opposed to the file literally named avatar, which is the temporary one).

We capture a reference to this for later. It will be needed when we start rendering fields,

but first, we have some other “preliminary” stuff to do:

return Scaffold(bottomNavigationBar : Padding(

 padding :

 EdgeInsets.symmetric(vertical : 0, horizontal : 10),

CHAPTER 6 FLUTTERBOOK, PART II

252

 child : Row(

 children : [

 FlatButton(child : Text("Cancel"),

 onPressed : () {

 File avatarFile =

 File(join(utils.docsDir.path, "avatar"));

 if (avatarFile.existsSync()) {

 avatarFile.deleteSync();

 }

 FocusScope.of(inContext).requestFocus(FocusNode());

 inModel.setStackIndex(0);

 }

),

 Spacer(),

 FlatButton(child : Text("Save"),

 onPressed : () { _save(inContext, inModel); })

]

)),

This is a typical entry form start, but in the Cancel button’s onPressed handler we

have some work to do around the possible temporary avatar file. Even though it’s deleted

before this screen is shown, it’s still better to delete it now, if it exists (if the user had

selected an avatar but then cancelled), so that’s exactly what we do. Once that’s done, the

soft keyboard is hidden as previously discussed, and the user navigated back to the list

screen. The Save button just calls _save() like always, and we’ll see that later.

Before that though, let’s start defining the actual form:

body : Form(key : _formKey, child : ListView(

 children : [

 ListTile(title : avatarFile.existsSync() ?

 Image.file(avatarFile) :

 Text("No avatar image for this contact"),

 trailing : IconButton(icon : Icon(Icons.edit),

 color : Colors.blue,

 onPressed : () => _selectAvatar(inContext)

)

)

CHAPTER 6 FLUTTERBOOK, PART II

253

Now, you can see where that avatarFile reference comes into play: the title of the

ListTile will be either an Image or it will be a Text widget saying that no avatar image

has been selected. When it’s an Image, the avatarFile is passed to the Image.file()

constructor and the avatar image is shown. Note that I did nothing fancy with scaling or

constraints here. It will simply display the image in whatever size it is (you may want to

change that as a suggested exercise – hint hint!). The trailing property of the ListTile

provides an IconButton for the user to click to select an avatar image, and the code for

this is something we’ll look at soon because it’s got some interesting new stuff to see!

First though, let’s continue defining the form:

ListTile(leading : Icon(Icons.person),

 title : TextFormField(

 decoration : InputDecoration(hintText : "Name"),

 controller : _nameEditingController,

 validator : (String inValue) {

 if (inValue.length == 0) {

 return "Please enter a name";

 }

 return null;

 }

)

),

ListTile(leading : Icon(Icons.phone),

 title : TextFormField(

 keyboardType : TextInputType.phone,

 decoration : InputDecoration(hintText : "Phone"),

 controller : _phoneEditingController)

),

ListTile(leading : Icon(Icons.email),

 title : TextFormField(

 keyboardType : TextInputType.emailAddress,

 decoration : InputDecoration(hintText : "Email"),

 controller : _emailEditingController)

),

CHAPTER 6 FLUTTERBOOK, PART II

254

ListTile(leading : Icon(Icons.today),

 title : Text("Birthday"),

 subtitle : Text(contactsModel.chosenDate == null ?

 "" : contactsModel.chosenDate),

 trailing : IconButton(icon : Icon(Icons.edit),

 color : Colors.blue,

 onPressed : () async {

 String chosenDate = await utils.selectDate(

 inContext, contactsModel,

 contactsModel.entityBeingEdited.birthday

);

 if (chosenDate != null) {

 contactsModel.entityBeingEdited.birthday = chosenDate;

 }

 }

)

)

That’s all stuff you’ve seen before, aside perhaps from the keyboardType property,

which allows us to specify a keyboard tailored to the type of data being input. As you can

see, there are several properties available on it like phone and emailAddress, and their

meanings I would think are self-explanatory!

Now, we come to the _selectAvatar() method that is called when the user clicks

that IconButton next to the avatar Image widget:

Future _selectAvatar(BuildContext inContext) {

return showDialog(context : inContext,

 builder : (BuildContext inDialogContext) {

 return AlertDialog(content : SingleChildScrollView(

 child : ListBody(children : [

 GestureDetector(child : Text("Take a picture"),

 onTap : () async {

 var cameraImage = await ImagePicker.pickImage(

 source : ImageSource.camera

);

CHAPTER 6 FLUTTERBOOK, PART II

255

 if (cameraImage != null) {

 cameraImage.copySync(

 join(utils.docsDir.path, "avatar")

);

 contactsModel.triggerRebuild();

 }

 Navigator.of(inDialogContext).pop();

 }

)

The job here is to show a dialog where the user selects the source of the

avatar image, which can either be from their gallery or the camera. So, we call

showDialog()and then return an AlertDialog from its builder function. Inside the

AlertDialog we start with a SingleChildScrollView, which is a widget that contains

a single widget that can be scrolled. Why use that here? Honestly, there’s no particular

reason other than to show you an alternate way to do things. In this case, scrolling

doesn’t come into play, but what if you had a few more sources of images you wanted

to provide? Rather than ensuring the dialog is big enough to fit them all, you can just

allow it to scroll like this.

Anyway, inside the SingleChildScrollView goes a ListBody, which is a widget

that arranges its children sequentially along a given axis and forces them to the

dimensions of the parent in the other axis. Finally, because we need items that can

be clicked, I decided to go with GestureDetector widgets here rather than buttons

or something else, though not for any special reason. By doing so, we have an onTap

event now that can be applied to this item, which is a Text widget that when clicked

will launch the camera. The ImagePicker class is provided by the image_picker

plugin which offers functions to access sources of images, the location you want to get

the image from being specified by the source property passed to the ImagePicker.

pickImage() function. Upon return from that call, if cameraImage isn’t null (it

would be null if no picture was taken), then we use the copySync() method, which

is available because a File instance is what gets returned to us, to copy it to avatar,

which you know now is our temporary avatar image file.

Then, we have to tell the model that it changed, even though in reality it hasn’t! We

have to do that because we need Flutter to call our build() method so that the image is

shown (remember that code from earlier?). So, the contactsModel.triggerRebuild()

CHAPTER 6 FLUTTERBOOK, PART II

256

method is called, which you’ll remember just calls notifyListeners(), and that

causes the image to be shown as a result of the screen being redrawn. Then, we just

pop() the dialog away by getting a reference to the BuildContext for the dialog, and

we’re good to go.

The other element in the dialog is for selecting an image from the gallery, and it’s the

same code, just with a different source specified in the call to pickImage():

GestureDetector(child : Text("Select From Gallery"),

 onTap : () async {

 var galleryImage = await ImagePicker.pickImage(

 source : ImageSource.gallery

);

 if (galleryImage != null) {

 galleryImage.copySync(

 join(utils.docsDir.path, "avatar")

);

 contactsModel.triggerRebuild();

 }

 Navigator.of(inDialogContext).pop();

 }

)

Finally, there is the _save() method, but just to wrap this up quickly, I’m just going

to show you the small handful of lines that are different from the other _save() methods

you’ve examined:

id = await ContactsDBWorker.db.create(

 contactsModel.entityBeingEdited

);

...some other code you’re already familiar with...

File avatarFile = File(join(utils.docsDir.path, "avatar"));

if (avatarFile.existsSync()) {

 avatarFile.renameSync(

 join(utils.docsDir.path, id.toString())

);

}

CHAPTER 6 FLUTTERBOOK, PART II

257

The only thing unique to contacts is, of course, the avatar image, and here we have

to account for that. If the temporary avatar file is present, then we use the renameSync()

function to give it a name matching the id of the contact. The id is captured from the

call to the create() method of ContactsDBWorker, which is the only database worker

class that does this, and is the ID that was assigned to the contact when it was stored to

the database. Of course, when updating an existing contact, we already know that id, so

we’re good to go in either case.

And with that, we’ve completed our tour of the first app, FlutterBook!

 Summary

In this chapter, we completed our look at the FlutterBook app. You saw how the

appointments, contacts, and tasks entities were coded, including things like getting

images from the gallery or camera and picking times and dates. With that, we have a

complete PIM application that you could use for real if you wanted to, in keeping with

the “practical” title of this book!

In the next chapter, we’ll start building the second of our three apps and, in the

process, you’ll see some new capabilities of Flutter and even get a taste of some server-

side programming and interfacing a Flutter app with it.

Sounds like good, educational fun, no? That’s my goal!

CHAPTER 6 FLUTTERBOOK, PART II

259
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7_7

CHAPTER 7

FlutterChat,

Part I: The Server

With the last two chapters, we build an app that is an island unto itself: all its data lives

on the device it’s runnig on. That’s fine for many kinds of apps, but for others, you’re

going to need a server to share some sort of data (or, just to make it available from

places other than the device the app is running on). That’s a big part of application

development these days in fact.

With this chapter and the next, we’ll build an app that bridges the divide into a larger

world and uses a server. While this book is obviously not about building servers, that’s

precisely what we’re going to do in this chapter for this project. So, you can consider this

a little bit of bonus knowledge being dropped on ‘ya!

First, we’ll talk about what the project we’re building is (it’d be weird not to start

there, wouldn’t it?!), and then we need to talk about two technologies that you probably

have heard of: Node and WebSockets. If you’re already familiar with these things, then

you can skip those two sections and jump right into the application building section,

but if not then read on to get a whirlwind introduction to these things – but first, let’s talk

about what we’re building!

 Can We Build It? Yes, We Can! But, uh,
What IS “It”?!

The app we’ll build will be christened FlutterChat, and just in case the name doesn’t give

it away, this will be a chat app! You’ll be able to communicate with other users in real

time with FlutterChat, in conjunction with the server.

260

The app will provide users the ability to create rooms where they can congregate and

talk to each other. There will be a lobby that lists all the rooms the server is aware of, and

we’ll also provide a way to list all the users the server is aware of.

Users will need to register with the server by providing a username and password,

and they will be able to rejoin the server at any time with those.

Also, we’ll provide the ability for users to specify that rooms are private. In those

cases, only users who are invited will be able to join the room, so of course, we’ll provide

a mechanism to invite users.

Finally, the user that creates a room will have a few select “administrative” privileges:

they’ll be the only one that can close the room and also will be able to kick unruly users

out of the room.

For this app, we’re going to use the built-in navigation features of Flutter, something

you didn’t see in FlutterBook (remember, that was using something of a custom

navigation mechanism). As far as the interface goes, we’ll use the Drawer widget to

control that navigation, giving the user the ability to jump between the lobby, whatever

room they’re currently in (if any), the user list, and also an About screen that we’ll create,

just for fun!

It’s not a very complicated app really, and if you’ve ever used any kind of chat app

that you’re already familiar with most of the core concepts. But, it’ll be an excellent

demonstration of some things you haven’t used in a real app yet and also will be a decent

little app that you could use for real if you want to.

Now, let’s talk about some server stuff before we get to Flutter code, beginning

with Node.

 Node

Ryan Dahl. That cat has some talent, I tell ya!

Ryan is the creator of a fantastic piece of software called Node (or Node.js, as it is

sometimes written). Ryan first presented at the European JSConf in 2009, and it was

quickly recognized as a potential game-changer, as evidenced by the standing ovation

his presentation received.

Node is a platform for running primarily (though not exclusively!) server-side

code that is high performance and capable of handling tons of request load with

ease. It is based on the most widely used language on the planet today: JavaScript. It’s

straightforward to get started with and understand, yet it puts tremendous power in the

Chapter 7 FlutterChat, part I: the Server

261

hands of developers, in large part thanks to its asynchronous and event-driven model of

programming. In Node, almost everything you do is non-blocking, meaning code won’t

hold up processing of other request threads. This, plus the fact that to execute code

Node uses Google’s popular and highly tuned V8 JavaScript engine, the same engine that

powers its Chrome browser, makes it very high performance and able to handle a large

request load.

It’s no wonder that so many significant players and sites have adopted Node to one

degree or another. Moreover, these aren’t minor outfits either. We’re talking about names

you doubtless know, including DuckDuckGo, eBay, LinkedIn, Microsoft, Walmart, and

Yahoo, to name just a few examples.

Node is a first-class runtime environment, meaning that you can do such things as

interacting with the local file system, access relational databases, call remote systems,

and much more. In the past, you’d have to use a “proper” runtime, such as Java or .Net to

do all this; JavaScript wasn’t a player in that space. With Node, this is no longer true. To

be clear, Node isn’t in and of itself a server, although it is most frequently used to create

servers. But as a generic JavaScript runtime, it’s the runtime that a great many non-server

tools run in as well, including many of the developer tools you’ve probably encountered

at some point, even if you didn’t realize Node was involved!

Getting, installing, and running Node are trivial exercises, regardless of your

operating system preference. There are no complicated installs with all sorts of

dependencies, nor is there a vast set of configuration files to mess with before you

can run a Node app. It’s a 5-minute exercise, depending on the speed of your

Internet connection and how fast you can type. There’s only one address to remember:

http://nodejs.org. That’s your one-stop shop for all things Node, beginning, right from

the front page, with downloading it, as you can see in Figure 7-1.

Chapter 7 FlutterChat, part I: the Server

http://nodejs.org

262

Usually, I would tell you to install the latest version available, but in this case, it might

be better to choose a long-term support (LTS) version, because they tend to be more

stable. However, it shouldn’t (he said, with fingers crossed) matter which you choose, for

the purposes of this book. For the record, however, I developed all the code using version

10.15.3, so if you encounter any problems, I would suggest choosing that version, which

you can get from the Other Downloads link and then the Previous Releases link (you’ll

be able to download any past version you like from there).

Figure 7-1. Node has a simple web site, but it gets the job done

Chapter 7 FlutterChat, part I: the Server

263

The download will install in whatever fashion is appropriate for your system, and

I leave this as an exercise for the reader. For example, on Windows, Node provides a

perfectly ordinary and straightforward installer that will walk you through the necessary

(and extremely simple) steps. On MacOS X, a typical install wizard will do the same.

Once the install completes, you will be ready to play with Node. The installer should

have added the Node directory to your path. So, as a first simple test, go to a command

prompt, type node, and press Enter. You should be greeted with a > prompt. Node is now

listening for your commands in interactive mode. To confirm, type the following:

console.log("test");

Press Enter, and you should be greeted with something like what you see in

Figure 7- 2 (platform differences excepted).

Figure 7-2. Say hello to my little friend, Node

Interacting with Node in CLI mode is fine but limited. What you really want to do is

execute a saved JavaScript file using Node. As it happens, that’s easy to do. Simply create

a text file named test.js (it could be anything), and type the code below into it (and, of

course, save it):

var a = 5;

var b = 3;

var c = a ∗ b;

console.log(a + " ∗ " + b + " = " + c);

To execute this file, assuming you are in the directory in which the file is located, you

simply have to type this: node test.js. Press Enter after that, and you should be greeted

with an execution, such as the one you see in Figure 7-3.

Chapter 7 FlutterChat, part I: the Server

264

Clearly, this little bit of code is unexceptional, but it does demonstrate that Node can

execute plain old JavaScript just fine. You can experiment a bit if you like, and you will

see that Node should run any basic JavaScript that you care to throw at it. This capability,

along with being a first-class runtime environment with access to many core operating

system facilities, allows complex tools to be created, of which React Native (more

precisely, its command-line tools) is one, as you’ll see next.

Please be aware that this section isn’t meant to be an exhaustive look at Node.

There’s so much more to Node than this, and if you’re new to it, I encourage you

to peruse the Node site. For the purposes of this book, however, this basic level of

understanding will suffice.

Note When I started writing this chapter, I considered other options for the server

component of this project. I thought about creating a reStful server using express

on top of Node, where express is a library you can add that makes building reStful

servers very simple. But, given the real-time requirements of a chat application,

that wouldn’t have worked. I then thought about using Firebase, which is Google’s

real-time database system. the thing is though, there are lots of tutorials online

about writing Flutter apps that hook up to Firebase, and there’s even one or two

that build a chat app with it. So, I decided to go a different route to, in a sense,

add some content that may have been lacking into the developer education world.

I think the approach outlined here also keeps things a bit simpler and certainly

more self-contained, but either way I just wanted to provide some rationale for the

choice here. hopefully, it’s a choice you agree with and like.

Figure 7-3. An elementary Node example

Chapter 7 FlutterChat, part I: the Server

265

 Keeping the Lines of Communication Open: socket.io

Now that you know something about Node, let’s talk about the next component we’re

going to need: WebSockets and socket.io. But first, a bit of history to set the stage!

Note as I discuss this, it will be somewhat web-centric, web development- centric.

But, rest assured, everything I’m talking about applies to mobile development

as well, whether Flutter-based or not, because it’s all an extension of the http

protocol, which applies to mobile development just as much as it does to web

development. and with all the discussion in this chapter, don’t worry if you don’t

know JavaScript – you won’t have any problem understanding the code because

I’ve written it very simply, and frankly it looks a bit like Dart anyway, a few syntactic

differences aside. You’re not going to be an expert JavaScript developer after this

of course, but you shouldn’t have any trouble following along even if you’ve never

seen JavaScript before.

The Web (and by extension mobile apps that use the Web to communicate with

other devices) was initially conceived as a place where it was the client’s responsibility to

request information from a server, but that eliminates a host of interesting possibilities,

or at least makes them more difficult and non-optimal.

For example, if you have a machine that provides stock prices to a client to display in

a dashboard, the client must continuously request updated prices from the server. This

is the typical polling approach. The downside, primarily, is that it requires constant new

requests from the client to server and also that the prices will only be as fresh as the polling

interval, which you typically don’t want to make too frequent, for fear of overloading the

server. The prices aren’t real-time, something that can be very bad if you’re an investor.

After some time, something called AJAX came along. AJAX stands for Asynchronous

JavaScript and XML. This is a technique that allows web pages to make requests to a

server but to do so without refreshing the entire page, which is how web sites initially

always worked. This was a game-changer! Now, the page could request data, those stock

prices, for example, and just update a small part of the page, not the entire thing. Trust

me, as someone who worked before and after that creation, it was huge!

Interestingly, the core concept behind AJAX means that it doesn’t matter whether

you use JavaScript or not, and it doesn’t matter if you use XML or not. It’s the

Asynchronous part of the acronym that matters most.

Chapter 7 FlutterChat, part I: the Server

266

With the advent of AJAX techniques, the next natural evolution was developers

starting to investigate ways to have bidirectional communication, in which the server

could push new stock prices out to the client without the client explicitly requesting

anything as well. Some neat tricks were developed for this, one such method being

long- polling. Sometimes called Comet, long-polling is a technique by which the client

opens a connection with a server, as usual. But now, the server holds the request open,

by never sending the HTTP response completion signal. Then, when the server has

something to transmit to the client, the connection is already established, so it can do so

immediately. This is referred to as a “hanging-GET” or “pending-POST,” depending on

the HTTP method used to create the connection.

This can be tricky to implement for many reasons, but probably the key one is

that the connection processing thread is held on the server. Given that it’s an HTTP

connection, the overhead is not at all inconsequential. Before long, your server can be

brought to its knees, without having all that many clients connected.

In more recent years, the WebSocket protocol was created to allow this sort of

persistent connection without all the problems of long-polling, or other approaches, and

this is precisely what we need for our chat app!

WebSocket is an Internet Engineering Task Force (IETF) standard that enables

bidirectional communication between a client and a server. It does this by a special

handshake when a regular HTTP connection is established. To do this, the client sends a

request that looks something like this:

GET ws://websocket.apress.com/ HTTP/1.1

Origin: http://apress.com

Connection: Upgrade

Host: websocket.apress.com

Upgrade: websocket

Notice that Upgrade header value? That’s the magic bit. When the server sees this,

and assuming it supports WebSocket, it will respond with a reply such as this:

HTTP/1.1 101 WebSocket

Date: Mon, 21 Dec 2017

Connection: Upgrade

Upgrade: WebSocket

Chapter 7 FlutterChat, part I: the Server

267

The server “agrees to the upgrade,” in WebSocket parlance. Once this handshake

completes, the HTTP request is torn down, but the underlying TCP/IP connection it rode

in on remains. That’s the persistent connection with which the client and server can

communicate in real time, without having to reestablish a connection every time.

WebSocket also comes with a JavaScript API that you can use to establish

connections, and both send and receive messages (and messages is what we call data

that is transmitted over a WebSocket connection, in either direction). That’s good for

the Node side of the equation, writing the FlutterChat server using WebSockets, but it

doesn’t do us any good on the Flutter side, which of course is Dart-based.

Fortunately, there exists a library that sits on top of Node and which also is available

as a Dart library for use in Flutter and that abstracts WebSockets a bit and gives us a nice,

simple API to use in both places. This library is called socket.io, and it’s what we’re going

to use for this project.

Simply stated, using socket.io, beyond the import of the library, requires little more than

a few function calls: one to connect two devices (frequently a client and a server, but there’s

nothing that says two devices that aren’t servers per se can’t talk to each other), one when the

code wants to send messages from one device to another (including sending a message to

all connected devices, as you’ll see later), and one to listen for messages from other devices.

Let’s say that a client app (which, for the sake of this discussion, is assumed to be a

JavaScript-based web app which is also using the socket.io library) stores its preferences

on a server. Then, if the user wants to clear those preferences, it might send (or emit, as

it’s termed in socket.io land) a clearPreferences message to the server, along with an

object that contains the ID of the user. To do this, it will need a socket.io server instance,

which we’ll assume has already been created and is referenced by the variable io. The

client will use the emit() method to send the message, like so:

io.emit("clearPreferences", { "userID" : "user123" });

For this to do anything, the server must be listening for this message. You have to

register a callback function with the socket.io instance for each message to listen for, and

that’s where the on() method comes into play:

io.on("clearPreferences", function(inData) {

 database.execute(

 `delete from user_preferences where userID=${inData.userID}`

);

});

Chapter 7 FlutterChat, part I: the Server

268

After that, any time the clearPreferences message is received, the callback function

is executed and, in this case, a database query is executed to delete the preferences for

the specified user (don’t get hung up on the database stuff, it’s not relevant for our needs

here, it’s simply an example).

Now, let’s say you’re migrating that web app to Flutter. On the Dart side, the concepts

are the same, but the syntax is slightly different. There, rather than emit() to send a

message, you use the aptly named sendMessage() method instead:

io.sendMessage("clearPreferences", { "userID" : "user123" });

As you can see, aside from the different method name, it looks identical. Similarly,

registering a callback for a message is almost the same, but with Dart, you use the

subscribe() method instead of on():

io.subscribe("preferencesCleared", () {

 // Do something... or not – your choice!

});

To be clear, you can subscribe for messages on both the client and server, because of

course, the server can emit messages to the client. I only mention this because we’re not

going to be writing a server in Dart and Flutter here, but the concept applies regardless

because the line between client and server when working with WebSockets and socket.io

is nebulous. There’s nothing that really makes one device a client and one a server other

than in a logical sense. That’s the power of this mechanism!

As you can see, whether with the JavaScript version or the Dart version, whether

the client-side or server-side of the equation, the socket.io API is incredibly simple yet

simultaneously extremely powerful. It also offers more advanced capabilities, such as

namespaces and rooms, which allow you to segregate messages into logical groupings,

to name a few. However, for what we’re doing in FlutterChat, this is about all you’ll need

to know. There’s only one small bit beyond this related to establishing the connection,

but that will be easier to explain within the context of FlutterChat’s server code, which is

what we’re going to look at right now!

Chapter 7 FlutterChat, part I: the Server

269

 FlutterChat Server Code

To begin the server code, we have to create a Node app. Doing so is very simple: create

an empty directory, and then execute the following in it:

npm init

“What the heck is NPM now?! You didn’t mention that before!” I hear you exclaiming.

Relax, it’s easy to explain!

NPM is the Node Package Manager, and it’s a tool that comes with Node that... wait

for it... manages packages! Packages are just extra libraries and modules that can be

added to a Node app, downloaded from a central repository that NPM knows about.

However, NPM does a few other things too, one of which is initializing a project.

The result of executing the preceding command will be an interactive process that asks

you some simple questions about your app, most of which frankly don’t matter for our

purposes here, so you could either accept the defaults or enter almost anything. The end

result is what matters, and that’s that will be a few files created in the directory, most

importantly the one named package.json. This file describes your app to NPM and,

ultimately, Node. It serves an analogous function to the pubspec.yaml file in a Flutter

app, allowing you to specify things like dependencies. And, as luck would have it, that’s

precisely the thing we need to do!

Here, we have a choice: we could edit the package.json file, looking for the

dependencies section, or add it if not present, and add the one dependency we need,

socket.io, like so:

"dependencies": {

 "socket.io": "2.2.0"

}

After that, we can execute another command:

npm install

Doing that will cause NPM to read the package.json file, see the dependencies that

are required, and install them for us from a central repository. Alternatively, we can skip

editing the file directly and instead just execute this command:

npm install socket.io –save

Chapter 7 FlutterChat, part I: the Server

270

This will cause NPM to download socket.io, “install” it into our project (which

means creating a node_modules directory and putting socket.io’s code there), and also

automatically add the dependency to package.json. Either approach results in the same

thing, but which way you prefer to do things is up to you. One difference to be aware of

though is that the second approach results in your project getting the latest version of

the requested module. This will usually be what you want, but if you need to specify a

version explicitly, then you’ll probably want to start with editing package.json (there are

ways to specify a version from the command line, but that’s a little more advanced).

Either way, once that’s done, we’re ready to start coding up the server.

Note If you’ve download the source code for this book, which you most

definitely should have done, you’ll need to go to a command prompt in the

flutter_chat_server directory and execute npm install before you can do

anything else. Once that’s done, you should be able to start the server by executing

npm start. Because of the main property in package.json, npm knows that

server.js is the main entry point to the app, and it will start Node, passing that

file as an argument to it. alternatively, you could do it manually by executing node

server.js. either way should get you to the same place, a running FlutterChat

server.

 Two Bits of State and an Object Walk into a Bar…

We’re going to keep the server code as simple as possible, and part of that means there

will be no persistence of any sort of data. Any data, or state, will only exist in memory

while the server is running. That of course means that if the server restarts, then

everything will be lost, but we can view that as a feature rather than a bug: it means the

server is arguably more secure (to be clear, this app is in no way, shape, or form FBI/CIA/

NSA-quality in terms of security – far from it).

With that said, we’ll start by creating a server.js file that will house all our server

code. In it, the first bit of code you find is this:

const users = { };

Chapter 7 FlutterChat, part I: the Server

271

That’s a map of users. This map will be keyed by username, and the value of each

object, which we’ll term a user descriptor object, will be in this form:

{ userName : "", password : "" }

Pretty simple, right?

After that, we have another map, this one for rooms:

const rooms = { };

The structure of the objects here, our room descriptor objects, are keyed by room

name and will be in this form:

{ roomName : "", description : "", maxPeople : 99,

 private : true|false, creator : "",

 users : [

 <username> : { userName : "" }, ...

]

}

Each room can have a description to tell users what the topic of conversation is,

and we’ll also be able to specify the maximum number of users allowed in a room when

the room is created via the maxPeople property. The private property tells us whether

the room is private (true) or not (false) of course, and creator is the name of the user

that created the room. The users map is keyed by username and is the collection of

users currently in the room.

Those two variables are all the state the server needs to keep.

After that, we have a single object to create, and that’s our socket.io object. It’s done

in a single line of code:

const io = require("socket.io")(

 require("http").createServer(

 function() {}

).listen(80)

);

I’ve formatted it here in a way that I hope is a bit clearer than the single, long line

you’ll find in the download bundle. The basic gist is that we create an HTTP server,

which is something Node is very good at, by importing the http module, one of the

Chapter 7 FlutterChat, part I: the Server

272

many that Node ships with, which gives us an object of course, as a require() call

does. Rather than keep the reference to the object, since I don’t need it after this,

I instead immediately call the createServer() method on it, passing it an empty

function. Typically, without socket.io in the mix, you would go on to implement code

in this function that would listen for requesting and respond to them – making web

servers in Node is a piece of cake like this! Here though, since socket.io will be taking

on that responsibility, an empty function is sufficient to fulfill the contract of the

createServer() call. The value returned by the createServer() call is then started up

by telling it to listen() for incoming requests on port 80, just like a good little HTTP

server usually does!

However, since we’re using socket.io for this project, we have one more step, which

is to take the return value from the listen() call, which is a fully active HTTP server at

that point, and pass it to the socket.io default constructor. This allows socket.io to take

control of the server and implement its deepest, darkest black magic on it to make it a

proper WebSocket server.

Of course, this server won’t respond to anything at this point because we haven’t told

it what to respond to and how, but that’s exactly what comes next!

 The Big Hookup: Messages

It all starts with telling the socket.io server how to respond to the connection message,

which is one of the few that socket.io itself defines:

io.on("connection", io => {

 console.log("\n\nConnection established with a client");

 // More stuff (coming soon to a chapter near you!)

});

Inside the function passed as the second argument to the io.on() call, we have a

console.log() call so that we’ll see a message in the console when a client connects.

Then, there’s... stuff... and that’s it!

The “stuff” I’m referring to here is what the remainder of this chapter deals with:

defining our app-specific messages and the code to execute in response to each. These

message handler functions must be hooked up inside the handler for the connection

message, so that’s exactly what that comment there represents.

So now, let’s see the first bit of that “stuff”: the validate message handler.

Chapter 7 FlutterChat, part I: the Server

273

 Getting Through the Front Door: Validating a User

For all of the message handlers discussed from here on out, I’ll show you a diagram that

details the data coming into the handler (inData), as well as the data going out of the

handler whether via callback or broadcast message (or both). A small handful of the

handlers have some variation in their output depending on what happens in them, and

that will be shown too as an alternate path. You should refer to these diagrams as you

look at the code to get a holistic view of the data flow in and out of them. To begin with,

Figure 7-4 shows such a diagram for the first handler we’re discussing.

The first thing that occurs when a user starts up the FlutterChat app on their

mobile device is they are prompted for a username and a password (if it’s their

first time – subsequent times will do this automatically for them). They enter their

credentials, and then the code emits a validate message. The server needs to respond

to this to determine if the user is valid or not, and the code for it is as follows:

io.on("validate", (inData, inCallback) => {

 const user = users[inData.userName];

 if (user) {

 if (user.password === inData.password) {

Figure 7-4. Messaging details for the validate message handler

Chapter 7 FlutterChat, part I: the Server

274

 inCallback({ status : "ok" });

 } else {

 inCallback({ status : "fail" });

 }

 } else {

 users[inData.userName] = inData;

 io.broadcast.emit("newUser", users);

 inCallback({ status : "created" });

 }

});

As with the connection message, we call io.on() to register a handler for this

message. In it, we first try to look up the user in our users collection. The data passed

into the handler comes in the inData variable, and for this message, we expect that the

client will have sent an object in the form { userName : "", password : "" }. If the

user is found, then we just need to confirm that the password matches.

If it does, the callback that was passed in via inCallback is called. It may strike

you as weird that the server can call a function that exists on the client, but that’s the

beauty of the abstraction that the socket.io client library gives us! Since this message is

specific to this user, there is nothing to emit. So, this callback approach is perfect. We

could instead have emitted a particular message that the client would respond to, which

would essentially mimic the callback mechanism but make it more of an asynchronous

operation. But, when you have a function like this that is really a more classic

request- response type of thing, the callback approach makes more sense.

If the password matches, we send back an object { status : "ok" }. Otherwise,

we send back { status : "fail" }. This “object with a status property” you’ll see

is common to all the message handlers here, though it’s entirely application-specific.

I could have just returned simple strings here instead, but I like the idea of all my calls

having the same basic sort of structure both on the input and output side, so I settled

on this paradigm (and, given that not all of the response are simple status messages,

consistently passing an object is, err, consistent!). But remember, socket.io doesn’t

care; you can send and receive anything you like (as long as it can be marshaled and

unmarshaled on both sides of the communication).

As you’ll see in the next chapter, these objects get marshaled into Dart maps, which

is precisely what we want and makes it easy to pass arbitrary data back and forth.

Chapter 7 FlutterChat, part I: the Server

275

Now, if the user isn’t found, that means this is a new user (or that the server has

restarted, or that the user cleared the data for the app on their device). In all cases,

we add the user to the users collection. Then, we do two things: make a call to

io.broadcast.emit(), and then call the callback. Calling the callback you already

understand, but what’s the deal with io.broadcast.emit()?

The deal here is we want to let all connected clients know that there is a new user

on the server. Remember that the app is going to have the ability to show a list of users

on the server. Broadcasting this message provides an updated list of users on the server

(as you can see, it’s the second argument to io.broadcast.emit(), after the message

to emit) which the app will then use to update the list on the screen, if it’s showing. As

you’ll see in the next chapter, this results in the ScopedModel being updated with the list

of users, so if the user list screen is showing it will automatically refresh, and if it’s not,

then no harm is done.

So yes, you absolutely can broadcast messages and call the callback from the same

handler (and you can emit as many messages as you need, not just one, and technically you

could call the callback multiple times, though I’m not sure why you’d ever want to do that).

That wasn’t so tough, was it? Nah, pretty easy! That’s a common theme in the

remaining message handlers, thanks to socket.io, and in fact, I would suggest that this

handler was probably the most complex of the bunch! Let’s look at the next one and see!

 Playing Carpenter: Creating a Room

The first function the server needs to support after validating users is the creation of

rooms, diagrammed in Figure 7-5.

Figure 7-5. Messaging details for the create message handler

Chapter 7 FlutterChat, part I: the Server

276

The code behind this is as follows:

io.on("create", (inData, inCallback) => {

 if (rooms[inData.roomName]) {

 inCallback({ status : "exists" });

 } else {

 inData.users = { };

 rooms[inData.roomName] = inData;

 io.broadcast.emit("created", rooms);

 inCallback({ status : "created", rooms : rooms });

 }

});

A quick check in the rooms collection tells us whether the room exists already or not,

and if so an object with status of exists is sent back so the app can notify the user of

this. Otherwise, an empty users collection is added to the incoming object, which is now

our room descriptor object, and then that object is attached to the rooms collection by

roomName.

Then, to alert all clients to the existence of this new room, the created message

is emitted. The complete list of rooms is sent to all clients (not the most efficient

mechanism, I admit, but it makes things simpler and, unless you’ve got an enormous

number of rooms, really isn’t that big a deal – again, I’m not claiming this is cloud-scale,

production-ready code that can be used to support thousands of users!).

Finally, the callback is called to tell the user creating the room that the job was done

and to provide that client the updated list of rooms. This is important because when

broadcasting a message, the broadcast will never be sent to the socket that triggered the

send. In other words, the client that sent the create message will not receive the created

message. Hence, using the callback mechanism is necessary here. By contrast, if you

had some background code running on the server that wasn’t triggered by a client

sending a message, then the broadcast would, in fact, go to all connected clients, as you

would expect.

Chapter 7 FlutterChat, part I: the Server

277

 Show Me the Mon...err, Rooms: Listing Rooms

Now that we have a way to create rooms, it would be nice to have a way to list them,

wouldn’t it? I think you’ll agree the answer is yes! For that, we’ll have a listRooms

message, and Figure 7-6 shows you that.

I hope you’re ready for some heavy typing because this code is a doozy. Are you

ready? Are you really prepared for how overwhelmingly voluminous it’s going to be?

Okay then, here it comes:

io.on("listRooms", (inData, inCallback) => {

 inCallback(rooms);

});

Yep, that’s it! All we have to do is return the rooms collection to the caller’s callback

function. This listRooms message is only needed in one case: when the user goes to the

lobby screen for the first time. Remember that the create message handler broadcasts

a complete list of rooms to all clients any time a room is created (and, as you’ll see later,

any time a room is closed). So, the clients will have an updated list of rooms any time

those things happen, but they won’t have it to begin with after a login. So, listRooms

is sent in that case, but as you’ll see in the next chapter, it’s actually sent any time the

user goes to the lobby. It’s a bit redundant to do that given what the create (and close)

message handlers do, but there’s no harm in it either, and it makes the code simpler.

But, regardless, this is all the handler for this message needs to do, that’s the bottom

line. Oh yeah, and one final note: inData isn’t needed here, but the handler function

will always be passed something in its place, whether you need it or not or whether it

is an empty object or even null or not, so we have to have it in the arguments’ list of the

anonymous function just to satisfy the API contract.

Figure 7-6. Messaging details for the listRooms message handler

Chapter 7 FlutterChat, part I: the Server

278

 Don’t Leave the People Out: Listing Users

Just like getting a list of rooms, we need to be able to get a list of users, and Figure 7-7

shows you what that’s all about, and hopefully, it looks pretty familiar to you.

The I/O model is the same as listing rooms, and so too is the code:

io.on("listUsers", (inData, inCallback) => {

 inCallback(users);

});

And, just like listing rooms, the clients will maintain a list of users on the server and

will be notified any time a new user registers (though for users there is no way to “exit”

the server, so no analogy to closing a room). But, they still need to get a list the first time,

or, as you’ll see, any time the user goes to the user list screen, just like going to the lobby

for rooms.

 A Knock at the Door: Joining a Room

Now that we can create and list rooms, the next step is being able to enter, or join, a

room, and that’s where the join message handler comes into play, with Figure 7-8 being

your visual guide to that.

Figure 7-7. Messaging details for the listUsers message handler

Chapter 7 FlutterChat, part I: the Server

279

This one requires a little bit of logic, but not much, as you can see:

io.on("join", (inData, inCallback) => {

 const room = rooms[inData.roomName];

 if (Object.keys(room.users).length >= rooms.maxPeople) {

 inCallback({ status : "full" });

 } else {

 room.users[inData.userName] = users[inData.userName];

 io.broadcast.emit("joined", room);

 inCallback({status : "joined", room : room });

 }

});

First, we get a reference to the room descriptor object based on the requested name.

Next, a check is done to see if the room is already full, and if so, an object with a status

of full is returned. In that case, the client will tell the user they can’t enter.

If the room isn’t full though, then the user descriptor object for the inData.userName

sent in is looked up in the users collection and is added to the users collection in the

room descriptor object. That way, the room knows what users are in it.

Finally, a joined message is broadcast to all clients and, as with creating a room, the

callback is called to provide the sender with the same information, which is the room

descriptor object. The client will then navigate the user to the room screen and populate

the list of users in the room, all of which you’ll see in the next chapter. For any clients not

in the room, this message will effectively be ignored since it isn’t relevant to them.

Figure 7-8. Messaging details for the join message handler

Chapter 7 FlutterChat, part I: the Server

280

 There’s No Need to Yell: Posting a Message to a Room

Being able to create, list, and join a room wouldn’t be much use if we couldn’t post

messages, so let’s take care of that next via the boringly named post message, as shown

in Figure 7-9.

The handler for this is, perhaps surprisingly, sparse:

io.on("post", (inData, inCallback) => {

 io.broadcast.emit("posted", inData);

 inCallback({ status : "ok" });

});

This is a simple task: there’s actually no persistence of messages involved, so all we

have to do is relay the message to all connected clients via a broadcast of the posted

message, along with the incoming data, which includes what room the message is for,

what user posted it, and obviously the message itself. As with join message, any clients

that aren’t in the room at the time will ignore this message because it’s irrelevant to

them. Finally, although it’s not technically necessary, the callback is called with a simple

status of ok, just to ensure consistency of all these handlers.

 Psst! Hey! You! Get in Here: Inviting a User to a Room

Once you’re in a room, you can invite other users to join you. For this, a client sends an

invite message, as Figure 7-10 details.

Figure 7-9. Messaging details for the post message handler

Chapter 7 FlutterChat, part I: the Server

281

The code behind this looks an awful lot like the handler for posting a message, as it

turns out:

io.on("invite", (inData, inCallback) => {

 io.broadcast.emit("invited", inData);

 inCallback({ status : "ok" });

});

Although this obviously is for a specific user, the server has no way to identify a

specific user’s socket. Therefore, the invited message is broadcast to all clients, and

only the one for the specified userName, which is included in inData (along with the

room they’re invited to and who invited them), will react. As with the post handler, the

callback is called regardless of it not really being needed, just for the sake of consistency.

 Okay, That’s It, I’ve Had Enough: Leaving a Room

A user can leave a room any time they wish – this isn’t a social prison after all!

Figure 7- 11 proves this is the case.

Figure 7-10. Messaging details for the invite message handler

Figure 7-11. Messaging details for the leave message handler

Chapter 7 FlutterChat, part I: the Server

282

The leave message is implemented like so:

io.on("leave", (inData, inCallback) => {

 const room = rooms[inData.roomName];

 delete room.users[inData.userName];

 io.broadcast.emit("left", room);

 inCallback({status : "ok" });

});

What it means for a user to leave a room is that they must be removed from the users

collection in the room descriptor object for the named room, so first we get a reference

to the room descriptor object, and then the user is deleted from the users collection

thanks to this object being keyed by userName. After that, the code just has to emit the

left message to give all clients an updated list of users in the room (really the entire

room descriptor object, of which the list of users is part), and then a call to the callback is

made so the client can complete its work of exiting the user from the room.

 You Ain’t Got to Go Home, but You Can’t Stay Here: Closing
a Room

Finally, we come to the first of the two creator functions that can only be used by the

person who created a room, which are also the final two messages we need to look at.

The first is for closing a room, with Figure 7-12 showing you the way.

Figure 7-12. Messaging details for the close message handler

Chapter 7 FlutterChat, part I: the Server

283

The code involved is short and sweet:

io.on("close", (inData, inCallback) => {

 delete rooms[inData.roomName];

 io.broadcast.emit("closed",

 { roomName : inData.roomName, rooms : rooms }

);

 inCallback(rooms);

});

Closing a room results in the close message being sent and takes little more than

deleting the room descriptor from the rooms collection and then broadcasting to clients

the closed message with an updated list of rooms and the name of the room that was

closed, plus calling the callback so that the caller has the same information. For the

initiating client, they already know what room is being closed, so there’s no need to send

them the name of the room. But, for those receiving the broadcast, they will look at the

roomName, and if it matches the name of the room they’re in, then they will be booted out

and told that the room was closed.

 Somebody’s Acting the Fool: Kicking a User Out of a Room

Finally, we have the kick message, which is sent by a room creator to forcibly remove a

user from that room, as shown in Figure 7-13.

Figure 7-13. Messaging details for the kick message handler

Chapter 7 FlutterChat, part I: the Server

284

There’s only slightly more work involved in this creator function, as you can see for

yourself:

io.on("kick", (inData, inCallback) => {

 const room = rooms[inData.roomName];

 const users = room.users;

 delete users[inData.userName];

 io.broadcast.emit("kicked", room);

 inCallback({ status : "ok" });

});

This requires getting the room descriptor object out of the rooms collection, then

the users collection within it, and then deleting the user from it. After that, a kicked

message is broadcast and sent to the updated room descriptor so that all users who are

in that room can update the list of users in the room. The callback is called even though

it’s not required.

And with that final message handler, we have ourselves a complete server that

implements all the functionality we need to make FlutterChat work!

 Summary

In this chapter, we built the server side of the FlutterChat equation. Here, you got a look

at Node and socket.io and saw the messages that needed to be implemented for the app

to work. With it, we have a server, ready to talk to clients.

In the next chapter, unsurprisingly, we’ll look at the client-side of things, the

Flutter- based app itself, and you’ll see how it connects to the server we just built to make

FlutterChat a complete and functioning app.

Chapter 7 FlutterChat, part I: the Server

285
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7_8

CHAPTER 8

FlutterChat,

Part II: The Client

In the previous chapter, we built the server side of FlutterChat, providing a

WebSocket/socket.io-based API for the client-side of the app to use.

Now, it’s time to build that client-side. Get ready, here comes FlutterChat: Flutter edition!

 Model.dart

Although it might seem odd, rather than starting in the usual main.dart file, we’re instead

going to start with the source file Model.dart, which contains the code for the single

scoped model that this app will use (so, as you saw with FlutterBook, scoped_model is a

dependency in pubspec.yaml here as well). This file contains the class FlutterChatModel

that extends from Model and includes the following properties:

• BuildContext rootBuildContext – The BuildContext of the root

widget of the app. You’ll see why this is needed shortly, but note that

while it’s not state per se, it is required in multiple places, so it makes

some sense to be here. But, since there’s never a case where we’d

need to set it and call notifyListeners(), there’s no explicit setter

for it; the default is sufficient.

• Directory docsDir – The app’s documents directory. See the

comment about rootBuildContext and why it’s in the model but

with no explicit setter because it applies to this property as well.

• String greeting = "" – The greeting text that will be shown on the

home screen (the first one the user sees, and where they wind up

after various operations within the app like leaving a room).

286

• String userName = "" – The username, obviously!

• static final String DEFAULT_ROOM_NAME = "Not currently in

a room" – The text that will be shown on the AppDrawer when the

user isn’t in a room.

• String currentRoomName = DEFAULT_ROOM_NAME – The name of the

room the user is currently in, otherwise the default string to indicate

they aren’t in a room at all.

• List currentRoomUserList = [] – The list of users in the room the

user is currently in.

• bool currentRoomEnabled = false – Whether the Current Room

item on the AppDrawer is enabled (would only be if the user is in a

room).

• List currentRoomMessages = [] – The list of messages in the room

the user is currently in since they entered.

• List roomList = [] – The current list of rooms on the server.

• List userList = [] – The current list of users on the server.

• bool creatorFunctionsEnabled = false – Whether the creator

functions (Close Room and Kick User) are enabled or not.

• Map roomInvites = {} – The list of invites this user has received.

Note For brevity, I’ve skipped printing all the imports in this and all source files

going forward. If there are any new and exciting imports, I’ll mention them, but

otherwise, you can assume they’re only modules you’re already familiar with.

This is a typical model class like you saw in FlutterBook, so there are a series or

property setters, like this one for greeting:

void setGreeting(final String inGreeting) {

 greeting = inGreeting;

 notifyListeners();

}

Chapter 8 FlutterChat, part II: the ClIent

287

At the end, notifyListeners() is called so that any code interested in this change

can react to it.

Just to save a little space, we’ll skip looking at setUserName(), setCurrentRoom(),

setCreatorFunctionsEnabled(), and setCurrentRoomEnabled() as they are the same

as setGreeting(), just referencing a different property obviously.

Instead, let’s jump to addMessage(), which is a bit different and is what will be called

when the server informs the client of a new message having been posted to a room:

void addMessage(final String inUserName,

 final String inMessage) {

 currentRoomMessages.add({ "userName" : inUserName,

 "message" : inMessage });

 notifyListeners();

}

Here, instead of a simple property set, we need to use the add() method of the

currentRoomMessages property since it’s a List.

In a similar way, the setRoomList() method works a little differently:

void setRoomList(final Map inRoomList) {

 List rooms = [];

 for (String roomName in inRoomList.keys) {

 Map room = inRoomList[roomName];

 rooms.add(room);

 }

 roomList = rooms;

 notifyListeners();

}

We again are updating a List, so we use the add() method again, but this time the

inRoomList the function is sent is a Map. So, we need to iterate the keys in that Map, and

then, for each, pull out the room descriptor and add it to the rooms List.

After that is a setUserList() method and a setCurrentRoomUserList() method,

and those are the same as setRoomList(), except for dealing with users instead of

rooms, of course, so we can skip those as well.

Chapter 8 FlutterChat, part II: the ClIent

288

Next up is the addRoomInvite() method:

void addRoomInvite(final String inRoomName) {

 roomInvites[inRoomName] = true;

}

An invite to a room results in a SnackBar being shown to the user for a few seconds.

After it goes away, we still need to know if the user can enter a given private room, so the

roomInvites collection is keyed by room name and where the value of each is a boolean.

If true, then we’ll know later that the user has an invite to the room and can enter. We’ll

also then need a way to remove an invite when a room is closed; otherwise, if someone

creates a room with the same name, then a user may incorrectly appear to have an invite

for the room, so we have the removeRoomInvite() method for that:

void removeRoomInvite(final String inRoomName) {

 roomInvites.remove(inRoomName);

}

When a user leaves a room, there will be some cleanup tasks as you’ll see later, and

one of those is clearing out the list of messages for the room, so we have the aptly named

clearCurrentRoomMessages() method for that:

void clearCurrentRoomMessages() {

 currentRoomMessages = [];

}

Finally, an instance of this model is created:

FlutterChatModel model = FlutterChatModel();

That’ll be the one and only instance of it used throughout the app, and with that, this

source file is complete, and we have a scoped model ready for use!

 Connector.dart

The next thing we’re going to look at is the Connector.dart file. The goal with this file

is to have a single module that communicates with the server and that the rest of the

app uses. This keeps us from having duplicate code all over the place and keeps us from

Chapter 8 FlutterChat, part II: the ClIent

289

having to import some modules in multiple places (e.g., socket.io). For this file, we need

two imports that are new to you:

import "package:flutter_socket_io/flutter_socket_io.dart";

import "package:flutter_socket_io/socket_io_manager.dart";

These are, obviously, the two imports needed to use socket.io. There are only two

classes we’re interested in: SocketIO from the flutter_socket_io.dart library and

SocketIOManager from the socket_io_manager.dart library. But I’m getting ahead of

myself a bit!

The actual code begins simply enough:

String serverURL = "http://192.168.9.42";

When you run the app, you’ll need to change this to the IP address where your server

is running. As a test of your abilities to this point, I offer you a suggestion: try to add a field

for IP address to the login dialog that we’ll be looking at the code for soon. That way, this

hardcoding of server address can become dynamic and the app more useful as a result.

After that, we find a single instance of the SocketIO class:

SocketIO _io;

Well, technically that’s a declaration of it, not an instance of it yet! That instance will

be constructed very soon though. But before we get to that, we have two utility functions

to talk about. Any time the server is called, the app will show a “please wait” mask over

the screen. This keeps the user from doing anything that might break things and lets

them know that communication is occurring. In many cases, the operation will be so fast

that the user will see at most a flash on the screen, but that’s fine. If an operation takes

longer though, then this mask is nice to see. We’re going to use a simple dialog for this, as

you can start to see:

void showPleaseWait() {

 showDialog(context : model.rootBuildContext,

 barrierDismissible : false,

 builder : (BuildContext inDialogContext) {

 return Dialog(

 child : Container(width : 150, height : 150,

Chapter 8 FlutterChat, part II: the ClIent

290

 alignment : AlignmentDirectional.center,

 decoration :

 BoxDecoration(color : Colors.blue[200])

The showDialog() function that you’ve seen before is called, and here we can see

where that rootBuildContext model property comes into play. The issue is that this

mask must mask the entire screen, the entire widget tree, not just some subset of it. So,

we’ll always want to set the context to that of the root widget. However, normally, that’s

not accessible from everywhere in the code. So, as you’ll see when we look at the

main.dart file next, we’ll capture a reference to that widget during startup and set it on

the model so it’s available here and anywhere else it might be needed.

Setting the barrierDismissable property to false is key because, otherwise, the

user would be able to dismiss our please wait dialog, which would defeat the purpose of

it. After that, we’re just building an ordinary dialog. The content of it boils down to some

text to tell them what’s going on and a spinning CircularProgressIndicator:

child : Column(

 crossAxisAlignment : CrossAxisAlignment.center,

 mainAxisAlignment : MainAxisAlignment.center,

 children : [

 Center(child : SizedBox(height : 50, width : 50,

 child : CircularProgressIndicator(

 value : null, strokeWidth : 10)

)),

 Container(margin : EdgeInsets.only(top : 20),

 child : Center(child :

 Text("Please wait, contacting server...",

 style : new TextStyle(color : Colors.white)

))

)

]

)

Placing the CircularProgressIndicator inside a SizedBox with a specific width

and height gives us some control over the size of the indicator. It may seem odd to set

the value property to null and never update it, but doing this causes the indicator to

show an animation for an “indeterminant” ongoing operation. In simpler terms: it shows

Chapter 8 FlutterChat, part II: the ClIent

291

a spinning animation! If you had a finite operation, then you could update this value

property little by little to give a real indication of the overall progress, but that’s not the

situation here. Note that I also set the strokeWidth to make the indicator fatter than

usual, which I just felt looked better.

We also need a way to hide this dialog once the server responds, so we have the

hidePleaseWait() function:

void hidePleaseWait() {

 Navigator.of(model.rootBuildContext).pop();

}

This is the usual way to hide a dialog, so nothing new, other than it must again make

use of the rootBuildContext to get a reference to the dialog as it was shown.

Next up is the connectToServer() function, which you’ll find is called from the login

dialog once the user enters their credentials:

void connectToServer(final BuildContext inMainBuildContext,

 final Function inCallback) {

 _io = SocketIOManager().createSocketIO(

 serverURL, "/", query : "",

 socketStatusCallback : (inData) {

 if (inData == "connect") {

 _io.subscribe("newUser", newUser);

 _io.subscribe("created", created);

 _io.subscribe("closed", closed);

 _io.subscribe("joined", joined);

 _io.subscribe("left", left);

 _io.subscribe("kicked", kicked);

 _io.subscribe("invited", invited);

 _io.subscribe("posted", posted);

 inCallback();

 }

 }

);

 _io.init();

 _io.connect();

 }

Chapter 8 FlutterChat, part II: the ClIent

292

Here is where that SocketIO object I mentioned earlier is created via the

SocketIOManager.createSocketIO() call and passing it the serverURL. This method

also takes a path and a query, neither of which are needed for this app, so default values

“/” and an empty string are passed for those (the first can be used if you set your server

up to listen at something like myserver.com/my/socket/io, and the query property can

be used to send arbitrary query parameters along with each request, perhaps for an

authentication mechanism on top of socket.io).

The socketStatusCallback property takes a function to call when the underlying

WebSocket’s status changes. Several statuses can come back, but only one is essential to us

here: the connect status. This indicates a WebSocket connection has been established with

the server. When that happens, only then can we define the handlers for various messages

that the server can emit to clients. These are termed “subscriptions” to those messages, so

the subscribe() method is called, passing it the message and the handler function for it.

Finally, the init() and connect() methods must be called to actually initiate

the connection with the server and, if all goes well, get the callback defined earlier to

execute. Once that’s done, our client is now able to emit a message to the server and

handle messages emitted by the server.

 Server-Bound Message Functions

First, we’ll look at functions that emit messages to the server, and the first such function,

called from the login dialog to validate what the user enters, is the validate() function:

void validate(final String inUserName, final String

 inPassword, final Function inCallback) {

 showPleaseWait();

 _io.sendMessage("validate",

 "{ \"userName\" : \"$inUserName\", "

 "\"password\" : \"$inPassword\" }",

 (inData) {

 Map<String, dynamic> response = jsonDecode(inData);

 hidePleaseWait();

 inCallback(response["status"]);

 }

);

 }

Chapter 8 FlutterChat, part II: the ClIent

http://myserver.com/my/socket/io

293

The function takes in the user’s name, their password, and a reference to

a function to call when the server responds. To start, the showPleaseWait() function

that we looked at earlier is called to mask the screen. Then, the sendMessage() method

on the _io object is called, sending the server the validate message and a string of

JSON that includes the user name and password. The callback function uses the

Flutter/Dart- provided jsonDecode() function to generate a Dart Map that contains the

data that was returned. Then, hidePleaseWait() is called to unmask the screen, and

then the callback is called, passing it the status property from the Map.

In some cases, the entire Map will be sent to the callback, as is the case for the next

function, listRooms():

void listRooms(final Function inCallback) {

 showPleaseWait();

 _io.sendMessage("listRooms", "{}", (inData) {

 Map<String, dynamic> response = jsonDecode(inData);

 hidePleaseWait();

 inCallback(response);

 });

}

These two functions, their basic structure, are replicated several times in other

functions. The basic idea of showing please wait, sending a message, then in the callback

decoding the response into a Map, hiding please wait, and sending the callback either

certain properties from the Map or the entire Map repeatedly appears in them. The only

difference is of course what message is sent, what arguments it takes, and what the server

sends back. As such, I’m going to just summarize those functions here:

• create() – Called to create a room from the lobby screen. This is

passed the name of the room, it’s descriptor, the max number of

people, whether it’s private or not, the name of the creating user

(the creator), and a callback (which is passed the status and rooms

properties from the response, the latter of which is a complete and

updated list of rooms on the server including the new one).

Chapter 8 FlutterChat, part II: the ClIent

294

• join() – Called when the user clicks on a room from the room list

on the lobby screen to join (or enter) it. This is passed the user’s

name, the room’s name, and the callback (which is passed the status

property from the response and the room descriptor).

• leave() – Called when the user leaves the room they’re currently in.

This is passed the user’s name, the room’s name, and the callback

(which is passed nothing).

• listUsers() – Called to get an updated list of users on the server

when the user selects the user list from the AppDrawer. This is passed

just the callback, which is passed the entire response: a map of users.

• invite() – Called when the user invites another user to the room.

This is passed the name of the user being invited, the name of the

room they’re being invited to, the name of the user inviting them, and

the callback (which is passed nothing).

• post() – Called to post a message to the current room. This is passed

the user’s name, the room’s name, the message being posted, and the

callback (which is passed the status property from the response).

• close() – Called by the creator to close a room. This is passed the

room’s name and the callback (which is passed nothing).

• kick() – Called by the creator to kick a user from a room. This is

passed the user’s name, the room’s name, and the callback (which is

passed nothing).

 Client-Bound Message Handlers

The next group of functions to look at deal with messages coming in from the server.

These function names mimic the name of the message emitted by the server, the first of

which is newUser():

void newUser(inData) {

 Map<String, dynamic> payload = jsonDecode(inData);

 model.setUserList(payload);

}

Chapter 8 FlutterChat, part II: the ClIent

295

This is called when a new user is created. The server sends a complete list of users,

and this function just sets that in the model.

The created() function, which handles the case where a new room is created, looks

the same as newUser() except that it calls model.setRoomList() instead, so let’s skip that

one and get to one that’s a bit different, closed():

void closed(inData) {

 Map<String, dynamic> payload = jsonDecode(inData);

 model.setRoomList(payload);

 if (payload["roomName"] == model.currentRoomName) {

 model.removeRoomInvite(payload["roomName"]);

 model.setCurrentRoomUserList({});

 model.setCurrentRoomName(

 FlutterChatModel.DEFAULT_ROOM_NAME);

 model.setCurrentRoomEnabled(false);

 model.setGreeting(

 "The room you were in was closed by its creator.");

 Navigator.of(model.rootBuildContext

).pushNamedAndRemoveUntil("/", ModalRoute.withName("/"));

 }

}

Here, we have a bit more work to do! First, the updated list of rooms is set in the

model. Next, if the room that was closed is the one the user is currently in, then we have

some cleanup to do. If there’s an invite for this room, it must be removed (to avoid this

user incorrectly having an invite for a room created with the same name later), and the

list of users for the current room is cleared. The default text for what room the user is

in is set, which will be reflected in the AppDrawer’s header (which you’ll see later when

we look at that code). The Current Room link on the AppDrawer is disabled, and the

greeting, which will show up on the home screen, reflects that the room was closed, so

the user knows what happened. Finally, we need to navigate to that home screen, and

that’s accomplished with the help of the pushNamedAndRemoveUntil() method of the

Navigator of the rootBuildContext. This ensures we’re navigating with the correct

Navigator (because you can nest Navigators, so there could be multiple). This function,

one of several that can be used for navigation, ensures that we always go all the way

back to the home screen and not just one screen. That way, our Navigator is always in a

known, consistent state after this move.

Chapter 8 FlutterChat, part II: the ClIent

296

When a user other than this user joins a room, the server emits a joined message, so

we have a corresponding joined() handler function:

void joined(inData) {

 Map<String, dynamic> payload = jsonDecode(inData);

 if (model.currentRoomName == payload["roomName"]) {

 model.setCurrentRoomUserList(payload["users"]);

 }

}

We only care about this message when the user is currently in this room, and if they

are, then the list of users sent by the server is set in the model. There is also a left()

message handler for when a user leaves a room, and that does the same thing essentially,

so we’ll skip it.

When the room creator kicks a user from the room, the kicked() message handler,

uh, kicks in! This function is basically the same as closed() because, from the user’s

perspective, the room in a sense did close – at least to them! The only difference is the text

shown on the home screen, which reflects that they were kicked. So, let’s save some time

and not look at that one. Instead, let’s see what happens when a user is invited to a room:

void invited(inData) async {

 Map<String, dynamic> payload = jsonDecode(inData);

 String roomName = payload["roomName"];

 String inviterName = payload["inviterName"];

 model.addRoomInvite(roomName);

 Scaffold.of(model.rootBuildContext).showSnackBar(

 SnackBar(backgroundColor : Colors.amber,

 duration : Duration(seconds : 60),

 content : Text("You've been invited to the room "

 "'$roomName' by user '$inviterName'.\n\n"

 "You can enter the room from the lobby."

),

 action : SnackBarAction(label : "Ok", onPressed: () {})

)

);

}

Chapter 8 FlutterChat, part II: the ClIent

297

Here, we must pull out some information from the response, namely, the name of

the room and the name of the user who invited them. Then, an invite is added for that

room so that when (if) they click that private room in the lobby, we’ll know to let them

in. Then, we must show them a SnackBar to let them know about the invite. We’ll leave

it up for a full minute, so they (hopefully) don’t miss it because otherwise there’s no

indication that they have an invite (hey, there’s another suggested exercise for you: add

some sort of indicator the room list in the lobby for that!). We’ll also give them an Ok

button to dismiss the SnackBar if they wish though, just to be thoughtful.

Finally, we come to the last message handler function, the one for handling

messages posted to a room:

void posted(inData) {

 Map<String, dynamic> payload = jsonDecode(inData);

 if (model.currentRoomName == payload["roomName"]) {

 model.addMessage(payload["userName"], payload["message"]);

 }

}

Once again, we have a message that will be emitted to all users, so we have to ignore

any message that isn’t for the room this user is currently in. If they are in the room

though, then a call to model.addMessage() adds the message to the list of messages

for the room and triggers a notification to listeners, which will, of course, result in the

message appearing on the screen for this user.

And with that, we now have a complete API for communication with the server

against which we can write our client application code. And, the first piece of that puzzle

is found in the usual spot: the main.dart file.

 main.dart

As with FlutterBook, there are a few tasks to accomplish in main() before building the UI,

and since these can take some time, we’ll do them first again:

void main() {

 startMeUp() async {

 Directory docsDir =

 await getApplicationDocumentsDirectory();

Chapter 8 FlutterChat, part II: the ClIent

298

 model.docsDir = docsDir;

 var credentialsFile =

 File(join(model.docsDir.path, "credentials"));

 var exists = await credentialsFile.exists();

 var credentials;

 if (exists) {

 credentials = await credentialsFile.readAsString();

 }

Once again, there’s a startMeUp() function that will be called at the very end of

main(), so we can do some async/await work within it. The first such task is getting

the app’s documents directory, as you saw in the previous project. That’s because we’re

going to have a file to store the user’s username and password – their credentials, in other

words. So, the next step is to try to read that file. If it exists, then we read it in as a string.

We’ll deal with that in a moment, but before we do, we’ll build the UI:

runApp(FlutterChat());

We’ll get to the FlutterChat class in a moment, but before that, we have to deal with

the credentials. The goal here is that if there is a credentials file, then we can immediately

validate the user with the server. If there’s not such a file, then we have to show them the

login dialog. So:

if (exists) {

 List credParts = credentials.split("============");

 LoginDialog().validateWithStoredCredentials(credParts[0],

 credParts[1]);

} else {

 await showDialog(context : model.rootBuildContext,

 barrierDismissible : false,

 builder : (BuildContext inDialogContext) {

 return LoginDialog();

 }

);

}

Chapter 8 FlutterChat, part II: the ClIent

299

The contents of the file are a simple string in the form xxx============yyy where

xxx is the username and yyy is the password. Why the unusual 12 equals as a delimiter,

you ask? Simple: the username and password are both constrained to ten characters, so

by having a delimiter two larger than that, it means that even if a user enters ten equal

signs for a username (which would be weird, but okay, to each their own!), then we’d still

be able to tokenize this string, which is where that split() method comes in. It produces

an array of string parts formed by breaking up the string on that 12-character equals

delimiter. Yes, I could have used a single character, comma perhaps, and just disallowed

commas in the username, but I wanted to give users full reign, even to enter something

kind of silly!

As you can see, if the credentials file doesn’t exist, then the login dialog is launched.

We’ll look at that in the next section, so for now, let’s keep going. As mentioned,

startMeUp() is called after this, and that’s where execution really ostensibly begins.

Note there is an edge case where if a user registers, but then the server restarts,

and if a different user registers with the original user’s userName, and then the

original user tries to validate again, it will fail because the password (presumably)

won’t match. In that case, the code in validateWithStoredCredentials()

will delete the credentials file and alert the user to this situation. upon app restart,

they’ll be prompted for new credentials.

Now, going back to that FlutterChat class:

class FlutterChat extends StatelessWidget {

 @override

 Widget build(final BuildContext context) {

 return MaterialApp(

 home : Scaffold(body : FlutterChatMain())

);

 }

}

Chapter 8 FlutterChat, part II: the ClIent

300

It begins with a pattern you should be quite familiar with by now: a MaterialApp

with a Scaffold nestled within it, sleeping comfortably in its… ah, wait, I forgot what

kind of book I was writing there for a minute! The body points to the FlutterChatMain

class, which is where our UI proper begins:

class FlutterChatMain extends StatelessWidget {

 @override

 Widget build(final BuildContext inContext) {

 model.rootBuildContext = inContext;

As you saw in the Model.dart file, the rootBuildContext is cached for use by other

code, and since that’s only introduced in the build() method, that’s the first thing done.

Next, the widget to return is built:

return ScopedModel<FlutterChatModel>(model : model,

 child : ScopedModelDescendant<FlutterChatModel>(

 builder : (BuildContext inContext, Widget inChild,

 FlutterChatModel inModel) {

 return MaterialApp(initialRoute : "/",

 routes : {

 "/Lobby" : (screenContext) => Lobby(),

 "/Room" : (screenContext) => Room(),

 "/UserList" : (screenContext) => UserList(),

 "/CreateRoom" : (screenContext) => CreateRoom()

 },

 home : Home()

Since we’re going to use Flutter’s built-in navigation capabilities in this app, rather

than the “build it ourselves” approach taken in FlutterBook, the first task is to define the

routes (read: screens) of the app. There’s four of them: /Lobby (room list), /Room (inside a

room), /UserList (the list of users on the server), and /CreateRoom (for creating a room

of course). These are called named routes because, well, they have names! Without these,

you can still navigate between screens, but then you have to push manually and pop

specific widgets off the navigator stack, which tends to result in a lot of duplicate code all

over the place. By using named routes, that code becomes much cleaner, as you saw in

the Connector.dart code and that you’ll see much more of as we progress.

Chapter 8 FlutterChat, part II: the ClIent

301

As you can probably guess, the route names can be as complex as you like and

can represent a hierarchy too. So, if you have page A, which has two “child” pages 1a

and 2a, then you might name them /pageA, /pageA/1a and /pageA/2a. Here, they’re

all effectively at the same logical level, so I kept it simple (you could argue that since

the room and create room screens launch from the lobby that they should be named /

Lobby/Room and /Lobby/CreateRoom, and that’s a fair argument to make – but either way

works, that’s kind of the main point here).

The initialRoute tells the Navigator what screen to show by default, and it

corresponds to what the home property points to. Note that it’s an error to have the

home property and then also to specify a route named “/” in the routes map. But, if you

drop the home property, then you can have “/” in the map, but then you’d need code to

navigate to whatever your initial screen is, so it’s usually easier to do it this way and let

Flutter and the Navigator do it for you.

 LoginDialog.dart

When there is no credentials file stored, the user is shown a login dialog, so they can

register with (or be validated by, however you want to term it) the server. This is a

standard-looking login dialog, as Figure 8-1 proves.

Chapter 8 FlutterChat, part II: the ClIent

302

Just enter a username and password and click the Log In button and that’s all there is

to it. The code behind this starts typically enough:

class LoginDialog extends StatelessWidget {

 static final GlobalKey<FormState> _loginFormKey =

 new GlobalKey<FormState>();

We’ll be dealing with a form, and there will be some validation involved, so we’ll

need a GlobalKey for it. Ultimately, we’ll be populating two variables:

String _userName;

String _password;

Figure 8-1. The login (validate) dialog

Chapter 8 FlutterChat, part II: the ClIent

303

After that comes the build() method:

Widget build(final BuildContext inContext) {

 return ScopedModel<FlutterChatModel>(model : model,

 child : ScopedModelDescendant<FlutterChatModel>(

 builder : (BuildContext inContext, Widget inChild,

 FlutterChatModel inModel) {

 return AlertDialog(content : Container(height : 220,

 child : Form(key : _loginFormKey,

 child : Column(children : [

 Text("Enter a username and password to "

 "register with the server",

 textAlign : TextAlign.center, fontSize : 18

 style : TextStyle(color :

 Theme.of(model.rootBuildContext).accentColor)

),

 SizedBox(height : 20)

As state is involved here, we wrap everything up in ScopedModel and under that a

ScopedModelDescendant, a structure you should be familiar with after having looked

at FlutterBook. The builder() function then builds the content, which begins with an

AlertDialog. The content of that dialog is a Form, referencing the _loginFormKey from

before, and then a Column layout begins the visual components, the first of which is

the text heading at the top, again taking its color from the currently active Theme of the

MaterialApp. Notice how that rootBuildContext is used here because that’s the context

that we want to take the Theme from. After that is a SizedBox, just to put some empty

space between the heading text and the form fields, which come next:

TextFormField(

 validator : (String inValue) {

 if (inValue.length == 0 ||

 inValue.length > 10) {

 return "Please enter a username no "

 "more than 10 characters long";

 }

 return null;

 },

Chapter 8 FlutterChat, part II: the ClIent

304

 onSaved : (String inValue) { _userName = inValue; },

 decoration : InputDecoration(

 hintText : "Username", labelText : "Username")

),

TextFormField(obscureText : true,

 validator : (String inValue) {

 if (inValue.length == 0) {

 return "Please enter a password";

 }

 return null;

 },

 onSaved : (String inValue) { _password = inValue; },

 decoration : InputDecoration(

 hintText : "Password", labelText : "Password")

)

There shouldn’t be any surprises here by this point. There’s a constraint on how

many characters can be entered for a username (important, given the tokenization

you saw in main.dart) and likewise a validation on password to ensure they entered

something (ditto username). Otherwise, they’re just boring ‘ole TextFormField widgets!

The Log In button is next, and it’s contained within the actions collection for the

dialog (not so much a “collection” given there’s only one, but I digress):

actions : [

 FlatButton(child : Text("Log In"),

 onPressed : () {

 if (_loginFormKey.currentState.validate()) {

 _loginFormKey.currentState.save();

 connector.connectToServer(() {

 connector.validate(_userName, _password,

 (inStatus) async {

 if (inStatus == "ok") {

 model.setUserName(_userName);

 Navigator.of(model.rootBuildContext).pop();

 model.setGreeting("Welcome back, $_userName!");

Chapter 8 FlutterChat, part II: the ClIent

305

When pressed, and assuming the form passes validation, then the current form state

is saved, triggering execution of the onSaved handlers on the fields, thus transferring

the values into those _userName and _password variables from earlier. Next, a call to

connector.connectToServer() is made. As you’ll recall, this sets up a connection with

the server and configures all the message handlers. This method is passed a callback to

be called once the connection is established. This callback function calls the connector.

validate() function, which passes the _userName and _password to the server for

validation. If the status comes back ok, then the user is already known to the server and

the password was correct, so we’re good to proceed, which means storing the username

in the model, pop()’ing the dialog away, and setting the greeting on the home screen

(which we’ll be looking at next). If the status is fail though, then a SnackBar is shown to

indicate the username is already taken, as you can see here:

} else if (inStatus == "fail") {

 Scaffold.of(model.rootBuildContext

).showSnackBar(SnackBar(backgroundColor : Colors.red,

 duration : Duration(seconds : 2),

 content : Text("Sorry, that username is already taken")

));

The other possible condition is that the username is new to the server, in which case

the created message comes back:

} else if (inStatus == "created") {

 var credentialsFile = File(join(

 model.docsDir.path, "credentials"));

 await credentialsFile.writeAsString(

 "$_userName============$_password");

 model.setUserName(_userName);

 Navigator.of(model.rootBuildContext).pop();

 model.setGreeting("Welcome to the server, $_userName!");

}

Here, we need to store the credentials in the credentials file, so we create a File

object instance, using the join() function to construct the path to the app’s documents

directory that was retrieved at startup of the app, and then await the writeAsString()

method to write out the value, which again is the username and password separated by

Chapter 8 FlutterChat, part II: the ClIent

306

that oddly long delimiter! After that, we do the same setup as was done in the ok case,

but with a slightly different greeting so it’s distinct from an existing user logging in.

 Existing User Login

Now, although this source file deals with the dialog for logging in, it also contains some

code that deals with the case where the app starts and finds an existing credentials

file. In that case, the server still has to be consulted, but there’s no UI to go through; it

happens automatically, which is where the validateWithStoredCredentials() function

comes into play:

void validateWithStoredCredentials(final String inUserName,

 final String inPassword) {

 connector.connectToServer(model.rootBuildContext, () {

 connector.validate(inUserName, inPassword, (inStatus) {

 if (inStatus == "ok" || inStatus == "created") {

 model.setUserName(inUserName);

 model.setGreeting("Welcome back, $inUserName!");

As before, connector.connectToServer() is first called, and then connector.

validate() is also called, passing it the username and password sent in, which will

have been read from the credentials file. In this case, the logic is a little simpler because,

from the perspective of the user, they are an existing user, but it’s possible that the server

was restarted, in which case, from the server’s perspective, this is a new user, as long as

the username isn’t now taken by someone else. But of course, the server is a machine,

so who cares about its feelings, right?! (unless we’re in an episode of Star Trek: The

Next Generation, where Data’s personhood is being debated… but that’s a much larger

conversation!) We do, however, care about the user’s feelings! So, whether we get back an

ok or a created message, we’ll show the message to indicate the user is a returning user,

to make them feel like the server didn’t forget them even though it kinda did!

Of course, there’s a situation where we can get back fail, and that’s if the username

was taken by another user, in which case the password almost certainly will be wrong,

as described in the logging in the case before. But, in this instance, we know the cause of

Chapter 8 FlutterChat, part II: the ClIent

307

the password being wrong: another user took this username after the restart and before

this user tried logging in. So, we can handle this a little more robustly:

} else if (inStatus == "fail") {

 showDialog(context : model.rootBuildContext,

 barrierDismissible : false,

 builder : (final BuildContext inDialogContext) =>

 AlertDialog(title : Text("Validation failed"),

 content : Text("It appears that the server has "

 "restarted and the username you last used "

 "was subsequently taken by someone else. "

 "\n\nPlease re-start FlutterChat and choose "

 "a different username."

)

Since this is basically a “game over” kind of scenario, we show an AlertDialog,

and ensure it can’t be dismissed in any way other than whatever actions we define,

so barrierDismissable is set to false to ensure clicking anywhere outside the dialog

doesn’t dismiss it, as it the default. The verbiage of the message explains the situation,

and then we provide a single Ok button to click in the actions:

actions : [

 FlatButton(child : Text("Ok"),

 onPressed : () {

 var credentialsFile = File(join(

 model.docsDir.path, "credentials"));

 credentialsFile.deleteSync();

 exit(0);

 })

]

Since we now know that this username can’t be used, we need to delete the

credentials file to avoid a loop at the next app startup. Finally, the exit() function is

called, which is a function Flutter provides to terminate the app (the value passed to it

doesn’t matter in this case, though it can be used to return a value to the OS if needed).

At the next app startup, the user will be prompted for a username and password, altering

the flow as we need in this situation.

Now let’s see where those greeting messages are used: the home screen.

Chapter 8 FlutterChat, part II: the ClIent

308

 Home.dart

The home screen, in the Home.dart file, is the first screen the user sees (and also what

they get returned to when various events including room closure and being kicked from

a room occur) and is a straightforward one, as you can see in Figure 8-2.

Figure 8-2. The home screen

Chapter 8 FlutterChat, part II: the ClIent

309

The code for it is similarly direct:

class Home extends StatelessWidget {

 Widget build(final BuildContext inContext) {

 return ScopedModel<FlutterChatModel>(model : model,

 child : ScopedModelDescendant<FlutterChatModel>(

 builder : (BuildContext inContext, Widget inChild,

 FlutterChatModel inModel) {

 return Scaffold(drawer : AppDrawer(),

 appBar : AppBar(title : Text("FlutterChat")),

 body : Center(child : Text(model.greeting))

);

 }

)

);

 }

}

Yep, that’s really it! It is, in the final analysis, just a Text widget inside a Center

widget. The Text widget will be updated from the model.greeting property to reflect

things to the user. It is otherwise unremarkable, so I’ll stop remarking on it now!

 AppDrawer.dart

The AppDrawer, housed in the AppDrawer.dart file, is how the user navigates around the

app and can be glimpsed in Figure 8-3.

Chapter 8 FlutterChat, part II: the ClIent

310

At the top, we have a header with a pretty background, above which is shown

the user’s name and what room they are currently in, if any. Here, you can see that

default room name that you saw in the Model.dart code. See, I told you then that you’d

eventually come to know why that value is what it is!

The AppDrawer class begins as most that you’ve seen do:

class AppDrawer extends StatelessWidget {

 Widget build(final BuildContext inContext) {

 return ScopedModel<FlutterChatModel>(model : model,

 child : ScopedModelDescendant<FlutterChatModel>(

 builder : (BuildContext inContext, Widget inChild,

 FlutterChatModel inModel) {

Figure 8-3. The app drawer

Chapter 8 FlutterChat, part II: the ClIent

311

 return Drawer(child : Column(children : [

 Container(decoration : BoxDecoration(image :

 DecorationImage(fit : BoxFit.cover,

 image : AssetImage("assets/drawback01.jpg")

))

It’s ultimately a Drawer widget that is being built, and inside of it is a Column layout.

The first item in that layout is a Container that is decorated with a DecorationImage.

As the name implies, this is a widget that decorates a box with an image. That image is

an AssetImage built from the drawback01.jpg file in the assets directory. Using the

BoxFit.cover value for the fit property tells the Flutter to size the image as small as

possible but still ensure that it covers the box, which is a good choice for a background

image like this.

After that comes the child of the Container, which is where the username and

current room are displayed:

child : Padding(

 padding : EdgeInsets.fromLTRB(0, 30, 0, 15),

 child : ListTile(

 title : Padding(padding : EdgeInsets.fromLTRB(0,0,0,20),

 child : Center(child : Text(model.userName,

 style : TextStyle(color : Colors.white, fontSize : 24)

))

),

 subtitle : Center(child : Text(model.currentRoomName,

 style : TextStyle(color : Colors.white, fontSize : 16)

))

First, a little padding is used to ensure nice spacing around these values. Then, a

ListTile is used because I want the username to be bigger and the current room to be

smaller, which logically makes them a title and subtitle, respectively. I also throw

some padding on the title so that I can control the spacing between these two and avoid

them bunching up too much. Of course, the color needs to be something other than the

default black; otherwise the text won’t show up well on the background, and I also adjust

the fontSize to get them looking just how I want. The text displayed comes from the

corresponding model fields so that they will get updated as appropriate automagically.

Chapter 8 FlutterChat, part II: the ClIent

312

After that begins the three items that the user can tap to navigate the app, the Lobby:

Padding(padding : EdgeInsets.fromLTRB(0, 20, 0, 0),

 child : ListTile(leading : Icon(Icons.list),

 title : Text("Lobby"),

 onTap: () {

 Navigator.of(inContext).pushNamedAndRemoveUntil(

 "/Lobby", ModalRoute.withName("/"));

 connector.listRooms((inRoomList) {

 model.setRoomList(inRoomList);

 });

 }

)

)

It is, again, a ListTile, with some padding thrown in, so I can space these items out

nicely. Each of these three items will get an icon in the leading that makes sense for its

functionality. When the onTap handler fires, a couple of tasks are necessary. First, we get

a reference to the Navigator for inContext and call the pushNamedAndRemoveUntil()

method, specifying the name of the route to navigate to. Then, a connector method is

called to retrieve an updated list of rooms. In theory, this isn’t necessary, since the server

will emit a message when a room is added or closed, and the list would be updated then,

but there’s no harm in doing it here, just to be sure we have an updated list. Finally, the

list of rooms is set on the model, and the lobby’s list of screens will reflect the new list.

Remember that the please wait mask will have been shown after the navigation, which is

why the navigation occurred first: I wanted the lobby to be visible while awaiting the list

of rooms since that’s more like how you’d would, as a user, expect such a thing to work.

The next two items, Current Room and User List, are identical to the code you just

looked at, save for one difference: there is no call needed to the server when navigating

to the current room, and no model data to set, so that item just does the navigation

and that’s it. Oh, and of course, the User List item calls connector.listUsers() and

model.setUserList() instead of the room methods, but I think you could have guessed

that! So, we’ll skip looking at the code for those here and instead get to the code for the

lobby screen.

Chapter 8 FlutterChat, part II: the ClIent

313

 Lobby.dart

The lobby screen, shown in Figure 8-4 and contained within the Lobby.dart file, is a

simple ListView that we’ve used a couple of times before, showing the rooms on the

server. It shows a lock icon to denote whether the room is private or not, and it shows the

room’s name and its description, if any.

Clicking one of them enters the room or else tells the user that the room is private

and they can’t enter (assuming they don’t have an invite). There is also a FAB for creating

a new room, which any user can do.

Figure 8-4. The lobby (room list) screen

Chapter 8 FlutterChat, part II: the ClIent

314

class Lobby extends StatelessWidget {

 Widget build(final BuildContext inContext) {

 return ScopedModel<FlutterChatModel>(model : model,

 child : ScopedModelDescendant<FlutterChatModel>(

 builder : (BuildContext inContext, Widget inChild,

 FlutterChatModel inModel) {

 return Scaffold(drawer : AppDrawer(),

 appBar : AppBar(title : Text("Lobby")),

 floatingActionButton : FloatingActionButton(

 child : Icon(Icons.add, color : Colors.white),

 onPressed : () {

 Navigator.pushNamed(inContext, "/CreateRoom");

 }

)

It begins with the usual pattern, with everything wrapped up in our scoped_model,

since without the data this whole thing won’t work! Where it starts to get interesting is in

the onPressed handler for the FAB. Here, we push a route, /CreateRoom, that will show

the user the screen for creating a room. That’s covered in the next section though, so

we’ll carry on:

body : model.roomList.length == 0 ?

 Center(child :

 Text("There are no rooms yet. Why not add one?")) :

 ListView.builder(itemCount : model.roomList.length,

 itemBuilder : (BuildContext inBuildContext, int inIndex) {

 Map room = model.roomList[inIndex];

 String roomName = room["roomName"];

 return Column(children : [

There’s a possibility that there are no rooms, so rather than just have a blank screen,

I decided to show a message right in the center of the screen. If there are rooms though,

that’s when we build the ListView. Each room descriptor is pulled out of the model.

roomList map, and then a Column layout is started. I do this because I want to show

the room in a ListTile and then also have a Divider after it, so I need a widget with a

children property.

Chapter 8 FlutterChat, part II: the ClIent

315

The ListTile for the room comes next:

ListTile(leading : room["private"] ?

 Image.asset("assets/private.png") :

 Image.asset("assets/public.png"),

 title : Text(roomName), subtitle : Text(room["description"])

First, the lock icon, which is in the leading of the tile. The private element in the

room map tells us whether the room is private or not, and it just so happens to be a

boolean, so a simple ternary conditional is used to insert the appropriate Image widget.

After that, the title and subtitle are shown, as per usual with a ListTile.

Each room can be tapped, so there is an onTap handler next:

onTap : () {

 if (room["private"] &&

 !model.roomInvites.containsKey(roomName) &&

 room["creator"] != model.userName) {

 Scaffold.of(

 inBuildContext).showSnackBar(SnackBar(

 backgroundColor : Colors.red,

 duration : Duration(seconds : 2),

 content : Text("Sorry, you can't "

 "enter a private room without an invite")

));

First, we see if the room is private. If it is, we check to see if the user has an invite.

Also, we check to see if this is the user that created the room. If the room is private and

the user doesn’t have an invite, and they aren’t the creator, then a SnackBar is shown

indicating they can’t enter the room without an invite.

Now, if it’s not private, or if they have an invite, or if they are the creator, then the

else branch is hit:

} else {

 connector.join(model.userName, roomName,

 (inStatus, inRoomDescriptor) {

 if (inStatus == "joined") {

 model.setCurrentRoomName(inRoomDescriptor["roomName"]);

 model.setCurrentRoomUserList(inRoomDescriptor["users"]);

Chapter 8 FlutterChat, part II: the ClIent

316

 model.setCurrentRoomEnabled(true);

 model.clearCurrentRoomMessages();

 if (inRoomDescriptor["creator"] == model.userName) {

 model.setCreatorFunctionsEnabled(true);

 } else {

 model.setCreatorFunctionsEnabled(false);

 }

 Navigator.pushNamed(inContext, "/Room");

Entering a room entails some setup work. First, the server is notified of the user

entering the room thanks to the connector.join() method emitting the join message.

If the response comes back joined, then the user is entering the room. In that case, the

current room name is recorded, along with the list of users in the room that the server

will have returned. The current room AppDrawer item has to be enabled as well, and we

have to make sure there’s no list of messages floating around in case this isn’t the first

time the user has been in this room (the room will appear devoid of messages any time

the user enters it whether the first time or not). If this user is the creator, then we enable

the creator functions as well. Finally, the /Room route is pushed to show the room screen,

which will be examined in the final section of this chapter.

One last case we must deal with is if the server responds indicating the room is full

because each room can be created with a maximum number of people allowed in it. So,

we find another logic branch:

} else if (inStatus == "full") {

 Scaffold.of(inBuildContext).showSnackBar(SnackBar(

 backgroundColor : Colors.red,

 duration : Duration(seconds : 2),

 content : Text("Sorry, that room is full")

));

}

As with not having an invite to a private room, a SnackBar is shown to let them know

the room is full. And with that, the lobby is complete! Now, let’s go back to what happens

if you tap that FAB button, which finds us in the CreateRoom.dart file.

Chapter 8 FlutterChat, part II: the ClIent

317

 CreateRoom.dart

Now it’s time to create some rooms! Ah, the power of a god, the power of creation,

encapsulated in a Flutter form! Figure 8-5 shows this magical entity.

It’s a simple enough screen, which makes sense given that creating a room isn’t

a complex thing. Just one piece of information is required, and that’s the name of the

room. A description is optional, and the maximum number of people in the room as a

default value, though it can be adjusted using a Slider. A room can also be made private

by actuating the Switch widget for that. Then, hit Save and you’ve got yourself a room!

Figure 8-5. The create room screen

Chapter 8 FlutterChat, part II: the ClIent

318

Since this time around we’ll be creating a stateful widget, we’ll have two classes,

the actual widget class and then it’s corresponding state object, so we begin with the

widget class:

class CreateRoom extends StatefulWidget {

 CreateRoom({Key key}) : super(key : key);

 @override

 _CreateRoom createState() => _CreateRoom();

}

That’s just boilerplate code, of course, nothing special there, nothing new. So, let’s

move on to the _CreateRoom object, which extends from State:

class _CreateRoom extends State {

 String _title;

 String _description;

 bool _private = false;

 double _maxPeople = 25;

 final GlobalKey<FormState> _formKey= GlobalKey<FormState>();

There are a few variables we’re going to need, one per field in the Form, and a

GlobalKey for the Form itself. Then, the build() method can begin:

Widget build(final BuildContext inContext) {

 return ScopedModel<FlutterChatModel>(model : model, child :

 ScopedModelDescendant<FlutterChatModel>(

 builder : (BuildContext inContext, Widget inChild,

 FlutterChatModel inModel) {

 return Scaffold(resizeToAvoidBottomPadding : false,

 appBar : AppBar(title : Text("Create Room")),

 drawer : AppDrawer(), bottomNavigationBar :

 Padding(padding : EdgeInsets.symmetric(

 vertical : 0, horizontal : 10

),

 child :

 SingleChildScrollView(child : Row(children : [

Chapter 8 FlutterChat, part II: the ClIent

319

As usual, when dealing with a model, we have a ScopedModel with a

ScopedModelDescendant under it, and then a builder() function to return the widget

that needs access to the model. As with the Home and Lobby screens, a Scaffold is

built, and this time we introduce the resizeToAvoidBottomPadding property and set

it to false. This property controls how floating widgets within the Scaffold resize

themselves when the on-screen keyboard is shown. Typically, you want this to be set

to true, the default, which normally allows the body and the widgets to avoid being

obscured by the keyboard. However, in some cases, you’ll find that this dynamic layout

causes widgets to vanish when the keyboard is shown, as was the case here. In that

situation, setting this property to false causes the keyboard to overlap the widgets,

which initially seems worse (or at least no better), but if they’re in a scrolling container,

as they will be here, then the user can scroll them into view, which is what they will

expect to be able to do. That aside, the appBar is set with the title of the screen and the

AppDrawer is brought in. Then, we have a bottomNavigationBar with some Padding

around it so that the buttons will be pushed in from the sides of the screen a few pixels

(just for appearances’ sake). Then, the buttons themselves are defined:

FlatButton(child : Text("Cancel"),

 onPressed : () {

 FocusScope.of(inContext).requestFocus(FocusNode());

 Navigator.of(inContext).pop();

 }

),

Spacer()

The Cancel button comes first, and all it must do when pressed is hide the keyboard

and then pop the screen away (remember, this is a route, meaning a separate screen, not

a dialog). Then comes a Spacer, which pushes the second button, the Save button, all the

way to the right. That second button looks like this:

FlatButton(child : Text("Save"),

 onPressed : () {

 if (!_formKey.currentState.validate()) { return; }

 _formKey.currentState.save();

 int maxPeople = _maxPeople.truncate();

 connector.create(_title, _description,

 maxPeople, _private,

Chapter 8 FlutterChat, part II: the ClIent

320

 model.userName, (inStatus, inRoomList) {

 if (inStatus == "created") {

 model.setRoomList(inRoomList);

 FocusScope.of(inContext).requestFocus(FocusNode());

 Navigator.of(inContext).pop();

 } else {

 Scaffold.of(inContext).showSnackBar(SnackBar(

 backgroundColor : Colors.red,

 duration : Duration(seconds : 2),

 content : Text("Sorry, that room already exists")

));

 }

 });

First, the Form is validated, and then its state saved, the typical first steps you’re

familiar with. After that, the value of _maxPeople needs to be truncated. That’s because

we want an integer value, but the Slider gives us a floating point. Once that’s done, we

can call the connector.create() method, which emits the create message to the server.

Two possible outcomes must be handled: either the room was created, or it wasn’t, and

the latter can only happen if the name is already in use. So, we branch on the inStatus

that is provided to the callback. If it’s created, then that means the server sent back an

updated list of rooms, so we set it in the model. Then, the keyboard is hidden, and the

screen is popped off the Navigator stack, which takes the user back to the Lobby screen.

However, if the room wasn’t created, then a SnackBar is shown to let the user know that

the name was already taken, giving them a chance to choose a new one.

 Building the Form

Now, we just have to build the form itself. It is, for the most part, the same kind of code

you’ve seen before with other forms.

body : Form(key : _formKey, child : ListView(

 children : [

 ListTile(leading : Icon(Icons.subject),

 title : TextFormField(decoration :

 InputDecoration(hintText : "Name"),

Chapter 8 FlutterChat, part II: the ClIent

321

 validator : (String inValue) {

 if (inValue.length == 0 || inValue.length > 14) {

 return "Please enter a name no more "

 "than 14 characters long";

 }

 return null;

 },

 onSaved : (String inValue) {

 setState(() { _title = inValue; });

 }

)

)

Each field in the form is contained within a ListTile, beginning with the Name field.

The validator ensures both that something is entered and that its length is 14 characters

or less (I chose that length so that it displays well in all cases without wrapping or being

cut off or anything else that a longer name could allow).

The Description field is similarly defined, though this time I didn’t put any

constraints on it, which means that wrapping is possible on the Lobby screen, but I felt

that was acceptable for a description where it wasn’t for the name.

ListTile(leading : Icon(Icons.description),

 title : TextFormField(decoration :

 InputDecoration(hintText : "Description"),

 onSaved : (String inValue) {

 setState(() { _description = inValue; });

 }

)

)

Then comes the Max People field, and this is where we run into something new: the

Slider widget:

ListTile(title : Row(children : [Text("Max\nPeople"),

 Slider(min : 0, max : 99, value : _maxPeople,

 onChanged : (double inValue) {

Chapter 8 FlutterChat, part II: the ClIent

322

 setState(() { _maxPeople = inValue; });

 }

)

]),

trailing : Text(_maxPeople.toStringAsFixed(0))

)

It’s a simple enough widget, just requiring a min and max value to define its

endpoints, and in this case the value property ties to a state property, _maxPeople.

There’s no validation for this field, but any time the value changes, we need to set it in

the widget’s state. Finally, one problem that arose is that as the user is sliding the Slider,

there is by default no way for them to know what the value currently is – it’s not displayed

anywhere, and there aren’t even tick marks or something on the Slider to help. To

alleviate this, I threw a Text widget in the trailing of the ListTile and took the value

of _maxPeople to display. Of course, Text requires, well, text, to display, but _maxPeople

is a number. Fortunately, a double in Dart has available several methods to convert it to a

string, one of which is toStringAsFixed() (there is also toStringAsExponential() and

toStringAsPrecision()). It does exactly what we need: convert the double to a string

while also allowing us to set the precision shown after the decimal point. Of course, here,

I want no numbers after the decimal point, which is exactly what passing zero to this

method does.

Only a single field remains, and that’s the one for making the room private:

ListTile(title : Row(children : [Text("Private"),

 Switch(value : _private,

 onChanged : (inValue) {

 setState(() { _private = inValue; });

 }

)

]))

For the first time, you see the Switch widget used. It seemed like a good choice here

since it’s a binary choice: the room is either public, or it’s private. A Checkbox would have

done the trick too, but since you haven’t seen Switch in action yet, I figured I’d show you

something new!

Chapter 8 FlutterChat, part II: the ClIent

323

 UserList.dart

The user list screen, as shown in Figure 8-6, is the next bit of code to look at and is

contained within the UserList.dart source file.

The screen itself is very simple: it’s just a GridView with an item for each user

registered with the server. Each user grid item is housed in Card widget and has a generic

icon, just for appearances’ sake (one could imagine letting users choose an avatar icon

like for the contacts in FlutterBook, but that’s not done – but hey, that sounds like one of

those suggested exercises I’m always on about, doesn’t it?!)

Figure 8-6. The user list screen

Chapter 8 FlutterChat, part II: the ClIent

324

The code begins thusly:

class UserList extends StatelessWidget {

 Widget build(final BuildContext inContext) {

 return ScopedModel<FlutterChatModel>(model : model,

 child : ScopedModelDescendant<FlutterChatModel>(

 builder : (BuildContext inContext, Widget inChild,

 FlutterChatModel inModel) {

 return Scaffold(drawer : AppDrawer(),

 appBar : AppBar(title : Text("User List")),

 body : GridView.builder(

 itemCount : model.userList.length,

 gridDelegate :

 SliverGridDelegateWithFixedCrossAxisCount(

 crossAxisCount : 3

)

It opens like almost every other class you’ve seen has. We need data from the

model obviously, so everything is housed in the usual ScopedModel/ScopedMod

elDescendant/builder() hierarchy. We’re building a screen, so the root widget

returned is a Scaffold, and the AppDrawer is referenced on it so that we don’t lose

that on this screen. Then, the body begins. As I said, it’s a GridView, so we use the

builder() constructor of that class and feed it the length of the model.userList

collection as the itemCount property value. Next, a gridDelegate is provided of type

SliverGridDelegateWithFixedCrossAxisCount (Flutter isn’t known for brevity of class

name!). Here, we specify that we want three items per row with the crossAxisCount

property.

Then, it’s time to build our items, which the itemBuilder function does:

itemBuilder : (BuildContext inContext, int inIndex) {

 Map user = model.userList[inIndex];

 return Padding(padding : EdgeInsets.fromLTRB(10,10,10,10),

 child : Card(child : Padding(padding :

 EdgeInsets.fromLTRB(10, 10, 10, 10),

 child : GridTile(

 child : Center(child : Padding(

 padding : EdgeInsets.fromLTRB(0, 0, 0, 20),

Chapter 8 FlutterChat, part II: the ClIent

325

 child : Image.asset("assets/user.png")

)),

 footer : Text(user["userName"],

 textAlign : TextAlign.center)

)

)

));

}

For each item, we get the user descriptor from the userList map in the model.

Then, a Card wrapped in a Padding with space defined all around it (so the items in the

GridView don’t bunch up unpleasantly) is built. The child of the Card is our friendly

neighborhood GridTile, the usual child of a GridView (it doesn’t have to be a direct

child though, as you can see). The child of that is an Image widget that displays the

user.png asset, wrapped in Padding to control the spacing around it (in this case, just to

put some space on the bottom of it to separate it from the user’s name) and that wrapped

in a Center to center it on the Card. Finally, the footer of the Card is where the user’s

name goes, with textAlign set to TextAlign.center to center it, like the image above it.

And that’s all there is to the user list! It’s easy when there are no actions the user can

take, but that’s very obviously not the case for the room screen, which is what’s up next

to review (and is the last bit of code for this app in fact).

 Room.dart

Finally, we now come to the code for the room screen, where most of the action takes

place, and the most substantial chunk of code we need to look at. This is also where

you’ll be introduced to several new Flutter concepts! First, though, take a peek at

Figure 8-7, so you know what it looks like.

Chapter 8 FlutterChat, part II: the ClIent

326

At the top, you see an ExpansionPanelList widget. This is a widget that provides for

having a list of child items which can be expanded and collapsed at the user’s behest.

In this case, we’ll use it to show a list of users in the room. It should be expandable and

collapsible because below that is the list of messages in the room, which of course is the

primary purpose of this screen. At the bottom is an area for the user to enter a message

and post it to the room, with an IconButton for doing this, which is a type of button that

is just an icon. In the upper right is a three-dot menu, or overflow menu as it’s sometimes

called, where you find some functions: leaving the room, inviting a user to the room,

kicking a user, and closing the room, the last two only being enabled if you’re the user

that created the room. The invite function will lead to a dialog to select a user from, but

we’ll get to all of that in just a bit.

Figure 8-7. The room screen

Chapter 8 FlutterChat, part II: the ClIent

327

Before that though, let’s see how it all begins (imports aside of course):

class Room extends StatefulWidget {

 Room({Key key}) : super(key : key);

 @override

 _Room createState() => _Room();

}

class _Room extends State {

 bool _expanded = false;

 String _postMessage;

 final ScrollController _controller = ScrollController();

 final TextEditingController _postEditingController =

 TextEditingController();

This is a stateful widget; we’re going to need some state local to this widget for

expanding and collapsing the ExpansionPanelList. Of course, I could have put this in

the scoped_model too. But, generally, for things that are truly local to a single widget,

it probably makes more sense to make it a stateful widget and have that scope in the

widget itself. But, as I’ve said before, Flutter is flexible, and there are no absolute rules

about things like this.

There’s a couple of class-level variables, namely, the one that determines whether

the user list is expanded (when _expanded is true) or collapsed (when it’s false).

We also have a variable, _postMessage, that will contain the message the user posts.

Also, we have a ScrollController referenced by the variable _controller. This is

an object you typically don’t need to deal with directly as most scrolling components

have one automatically. However, in this app, there’s a specific need for it that I’ll get

to a bit later when we look at the code behind the message list. After that, finally, is a

TextEditingController, which you know is used when dealing with TextField widgets,

which is exactly what’s used for the user to enter a message in.

 The Room Functions Menu

After that begins the build() method:

Widget build(final BuildContext inContext) {

 return ScopedModel<FlutterChatModel>(model : model,

 child : ScopedModelDescendant<FlutterChatModel>(

Chapter 8 FlutterChat, part II: the ClIent

328

 builder : (BuildContext inContext, Widget inChild,

 FlutterChatModel inModel) {

 return Scaffold(resizeToAvoidBottomPadding : false,

 appBar : AppBar(title : Text(model.currentRoomName),

 actions : [

 PopupMenuButton(

 onSelected : (inValue) {

 if (inValue == "invite") {

 _inviteOrKick(inContext, "invite");

Well, by this point, the beginning few lines of that should be almost boring to you,

given how much you’ve seen it! In fact, it’s all like that until you hit the PopupMenuButton

line, which is new. A PopupMenuButton is a widget that provides a menu that, well, pops

up, when you click the button (at least Google names their widgets descriptively!), as you

can see in Figure 8-8.

Chapter 8 FlutterChat, part II: the ClIent

329

Although we haven’t constructed the menu items yet – that code is coming soon –

we’ve already started in with the code that will execute when you select an item on the

menu, contained within the onSelected handler function. This function receives the

string value associated with a menu item that was tapped, so we start an if statement

to take the correct course of action. In the case of the invite string, we’re calling an

_inviteOrKick() method, and we’ll look at that later (that function handles both

inviting a user and kicking a user out of the room).

Figure 8-8. The room functions menu

Chapter 8 FlutterChat, part II: the ClIent

330

After that is a branch for the leave string:

} else if (inValue == "leave") {

 connector.leave(model.userName, model.currentRoomName, () {

 model.removeRoomInvite(model.currentRoomName);

 model.setCurrentRoomUserList({});

 model.setCurrentRoomName(

 FlutterChatModel.DEFAULT_ROOM_NAME

);

 model.setCurrentRoomEnabled(false);

 Navigator.of(inContext).pushNamedAndRemoveUntil("/",

 ModalRoute.withName("/")

);

 });

Leaving a room requires us to do some model cleanup tasks, beginning with

removing any invites for the room that might have been present. One could argue you

should still be able to enter a room you were invited to if you leave, which is reasonable,

but I guess I’m a little more “hey, you left, good riddance to you!” in my thinking. The

list of users in the room must be cleared as well and the default room name string set

again so that the AppDrawer again reflects the user not being in a room. Also related to

the AppDrawer, the Current Room item must be disabled, and finally we navigate the user

back to the home screen.

If the user is the creator of the room, then they can also close the room:

} else if (inValue == "close") {

 connector.close(model.currentRoomName, () {

 Navigator.of(inContext).pushNamedAndRemoveUntil("/",

 ModalRoute.withName("/")

);

 });

There’s no work to do here other than informing the server that the room is closed

and then navigating to the home screen.

Chapter 8 FlutterChat, part II: the ClIent

331

You can also give a user the boot:

} else if (inValue == "kick") {

 _inviteOrKick(inContext, "kick");

}

It’s the same as the invite code, and again, we’ll look at what’s behind that function in

a bit. Before that though, we gotta go back and actually construct the menu items with an

itemBuilder function:

itemBuilder : (BuildContext inPMBContext) {

 return <PopupMenuEntry<String>>[

 PopupMenuItem(value:"leave",child:Text("Leave Room")),

 PopupMenuItem(value:"invite",child:Text("Invite A User")),

 PopupMenuDivider(),

 PopupMenuItem(value : "close", child : Text("Close Room"),

 enabled : model.creatorFunctionsEnabled),

 PopupMenuItem(value : "kick", child : Text("Kick User"),

 enabled : model.creatorFunctionsEnabled)

];

}

We must return an array of PopupMenuEntry widgets, and each PopupMenuEntry in

that array has a value property (who’s values you should recognize!) and a child Text

widget for the actual text to be displayed. For the Close Room and Kick User options,

the enabled property references the creatorFunctionsEnabled model property (just

to show that you indeed can mix and match local state and global state, no problem) to

determine whether those items are enabled or not.

 The Main Screen Content

After the menu is built, we continue:

drawer : AppDrawer(),

body : Padding(padding : EdgeInsets.fromLTRB(6, 14, 6, 6),

 child : Column(

 children : [

 ExpansionPanelList(

Chapter 8 FlutterChat, part II: the ClIent

332

 expansionCallback : (inIndex, inExpanded) =>

 setState(() { _expanded = !_expanded; }),

 children : [

 ExpansionPanel(isExpanded : _expanded,

 headerBuilder : (BuildContext context,

 bool isExpanded) => Text(" Users In Room"),

 body :

 Padding(padding:EdgeInsets.fromLTRB(0,0,0,10),

 child : Builder(builder : (inBuilderContext) {

 List<Widget> userList = [];

 for (var user in model.currentRoomUserList) {

 userList.add(Text(user["userName"]));

 }

 return Column(children : userList);

 })

)

)

]

)

Ok, so, after the drawer, there’s some new stuff here. First, a Padding is at the top so

that I can control spacing around all the elements on the screen. I push everything

down 14 pixels to clear the shadow under the status bar, and a few pixels on the left,

right, and bottom, just because I think it looks better if things don’t run right up against

the screen edges.

After that comes a Column layout and its first child, the ExpansionPanelList where

our list of users is displayed. The first thing we need to do is hook up an event handler to

fire whenever the user expands or collapses the panel. Interestingly, by default, nothing

will happen if you don’t do this other than the little arrow on the right changing. Once

that’s done, it provides the flag we need in the first child of the ExpansionPanelList,

which is the ExpansionPanel that houses our user list. The flag becomes the value of the

isExpanded property, which is the isExpanded argument to the headerBuilder function.

This function is where we build the header of the ExpansionPanel. That’s just a simple

Text widget, but not the two spaces at the start. This is another way to do padding,

essentially. In this case, the Text by default will bump up right against the left edge of

the panel, but as you know by now, I tend to not like this! But rather than wrap is in a

Chapter 8 FlutterChat, part II: the ClIent

333

Padding, which certainly would have worked, I instead just add those two spaces, and

we’re good to go.

In addition to a header, an ExpansionPanel typically always has a body, and this

one is no different. For this, I use a Padding to ensure some space below the user list,

for similar reasons as in the header: without it, the last user in the list would be right up

against that bottom edge, which just doesn’t look right.

Now, the child of this Padding is something interesting. You’ve seen various builder

functions plenty before, but I never showed that you could, in nearly all cases, have a

generic Builder function any time you like. This is sometimes necessary because using

it creates a closure, so if you need access to some data that you otherwise wouldn’t

(without resorting to putting everything in some common state object of course). In

this case, there really wasn’t that need, but I thought this would be an excellent place

to demonstrate this anyway because obviously you can do it even if you don’t need a

closure. Again, Flutter gives you plenty of choices for how to solve problems.

Inside the Builder’s builder() function is a simple iteration over the list of users in

the room from state where each is a Text inside a Column, with the Column being what

ultimately gets returned and displayed.

Following that comes the message list – well, with one thing before it:

Container(height : 10),

Expanded(child : ListView.builder(controller : _controller,

 itemCount : model.currentRoomMessages.length,

 itemBuilder : (inContext, inIndex) {

 Map message = model.currentRoomMessages[inIndex];

 return ListTile(subtitle : Text(message["userName"]),

 title : Text(message["message"])

);

 }

))

The Container is yet another way to introduce padding into a layout. By defining it

with no content but a defined height, I’ve added some separation between the user list

and the message list without an explicit Padding widget. After that is a ListView for the

messages, which hopefully is something that makes sense to you, both conceptually and

in terms of the code, since you’ve seen ListView widgets a few times now. For each item

in the list, a ListTile is created with the title being the message text and the subtitle

being the name of the user that posted the message.

Chapter 8 FlutterChat, part II: the ClIent

334

After that is a Divider widget, and then the area for the user to post a message:

Divider(),

Row(children : [

 Flexible(

 child : TextField(controller : _postEditingController,

 onChanged : (String inText) =>

 setState(() { _postMessage = inText; }),

 decoration : new InputDecoration.collapsed(

 hintText : "Enter message"),

)),

 Container(margin : new EdgeInsets.fromLTRB(2, 0, 2, 0),

 child : IconButton(icon : Icon(Icons.send),

 color : Colors.blue,

 onPressed : () {

 connector.post(model.userName,

 model.currentRoomName, _postMessage, (inStatus) {

 if (inStatus == "ok") {

 model.addMessage(model.userName, _postMessage);

 _controller.jumpTo(

 _controller.position.maxScrollExtent);

 }

 });

 }

)

)

First things first: the entry area is a TextField and an IconButton right next to each

other, so a Row layout makes sense. But I want to avoid having to set explicit widths for

either since I don’t know the dimensions of the screen. As it happens, Flutter provides a

handy widget for such situations: Flexible. This allows you to control how components

inside a Flex, Row, or Column widget flex and fill the available space. Here, the goal is

simple: allow the TextField to fill as much space as is available once the IconButton

is factored in. So, I place the TextField inside the Flexible, and then the Flexible

inside the Row as the first child. The second child of the Row is a Container that contains

the IconButton. It’s an IconButton inside a Padding rather than just the IconButton by

Chapter 8 FlutterChat, part II: the ClIent

335

itself again for spacing purposes so that I can have a few pixels to the left and right of the

IconButton. Then, the IconButton is constructed. Flutter gives us a nice icon for sending

a message, which I think works well for this situation.

When the button is pressed, the connector.post() method is called, passing it the

user’s name, room name, and of course the message they entered. Assuming we get the

ok response back, then the message is added to the list of messages for the room, and

then, finally, that ScrollController I mentioned at the top is used. The goal here is

that since the message will appear at the bottom of the ListView, it may not be visible

if the number of messages overflows the screen (or if the user has scrolled back up to

read messages). So, with the _controller, we can use its jumpTo() method, passing it

_controller.position.maxScrollExtent, which is shorthand for “jump to the bottom

of the ListView,” which is how you typically expect a chat room to work.

 Inviting or Kicking a User

The final thing to look at is when the user wants to invite another user to the room or

kick a user out. When either of those menu items is tapped, a dialog like that shown in

Figure 8-9 appears, but of course, saying “kicked” instead of “invite” as appropriate.

Chapter 8 FlutterChat, part II: the ClIent

336

So, the code begins like so:

_inviteOrKick(final BuildContext inContext,

 final String inInviteOrKick) {

 connector.listUsers((inUserList) {

 model.setUserList(inUserList);

The first thing we want to do is get an updated list of users on the server. As in a few

other places, this should be superfluous, but better safe than sorry. Note that if we’re

kicking a user, this really is superfluous since the code already has the list of users in the

room, but at this point, the code hasn’t branched on the inInviteOrKick argument, so

Figure 8-9. The invite user dialog

Chapter 8 FlutterChat, part II: the ClIent

337

the server is consulted either way. It’s a bit of inefficiency, but assuming our server is

working well, it really shouldn’t matter much.

Once the response comes back, we can then show the dialog:

showDialog(context : inContext,

 builder : (BuildContext inDialogContext) {

 return ScopedModel<FlutterChatModel>(model : model,

 child : ScopedModelDescendant<FlutterChatModel>(

 builder : (BuildContext inContext, Widget inChild,

 FlutterChatModel inModel) {

 return AlertDialog(

 title : Text("Select user to $inInviteOrKick"

)

It all starts ordinarily enough, and in the AlertDialog constructor, you can see the

first time something is different based on what function we’re doing: the display of the

title text.

Next, we begin to construct the content of the dialog:

content : Container(width : double.maxFinite,

 height : double.maxFinite / 2,

 child : ListView.builder(

 itemCount : inInviteOrKick == "invite" ?

 model.userList.length : model.currentRoomUserList,

 itemBuilder:(BuildContext inBuildContext, int inIndex) {

 Map user;

 if (inInviteOrKick == "invite") {

 user = model.userList[inIndex];

 } else {

 user = model.currentRoomUserList[inIndex];

 }

 if (user["userName"] == model.userName)

 { return Container(); }

Here, I want the dialog to fill the screen mostly, so I use a little trick by setting the

width to the maxFinite constant of the double class and the height to half that value.

This effectively forces Flutter to size the window to a maximum size that it determines

will fill most of the screen.

Chapter 8 FlutterChat, part II: the ClIent

338

Next, a ListView is built, since, of course, this is a list of users. Which list we get the

data from, whether model.userList for an invite or model.currentRoomUserList for a

kick, is determined both to get its length into the itemCount property as well as where

we get the actual users from. When we hit the current user, it needs to be skipped, so an

empty Container is returned. Flutter will collapse this into nothing, but we can’t just

return null from the itemBuilder function lest we get an exception, hence this empty

Container.

If it’s not the current user though, a Container with actual content is returned:

return Container(decoration : BoxDecoration(

 borderRadius : BorderRadius.all(Radius.circular(15.0)),

 border : Border(

 bottom : BorderSide(), top : BorderSide(),

 left : BorderSide(), right : BorderSide()

)

First, I apply a BoxDecoration so that I can round the corners via the borderRadius

property. You can round any or all corners this way – it’s all of them here. Of course,

without a border, this winds up looking a little funky to my eyes, so I apply a Border via

the border property. The defaults work well enough for this, hence a simple BorderSide

instance for all sides (again, you can apply borders arbitrarily to any or all sides as you

see fit).

Now, I was feeling a bit psychedelic at this point, so I wanted some pretty colors!

Fortunately, the gradient property of the BoxDecoration class allows for this:

gradient : LinearGradient(

 begin : Alignment.topLeft, end : Alignment.bottomRight,

 stops : [.1, .2, .3, .4, .5, .6, .7, .8, .9],

 colors : [

 Color.fromRGBO(250, 250, 0, .75),

 Color.fromRGBO(250, 220, 0, .75),

 Color.fromRGBO(250, 190, 0, .75),

 Color.fromRGBO(250, 160, 0, .75),

 Color.fromRGBO(250, 130, 0, .75),

 Color.fromRGBO(250, 110, 0, .75),

 Color.fromRGBO(250, 80, 0, .75),

Chapter 8 FlutterChat, part II: the ClIent

339

 Color.fromRGBO(250, 50, 0, .75),

 Color.fromRGBO(250, 0, 0, .75)

]

)),

margin : EdgeInsets.only(top : 10.0),

child : ListTile(title : Text(user["userName"])

There are a handful of ∗Gradient classes, LinearGradient being one that produces

a gradient that goes straight up or down (RadialGradient and SweepGradient are the

others). For this, you need to tell it where to begin and where to end, and in this case,

I wanted it to start on the left and go to the right (technically it’s the top-left and

bottom- right, but it winds up being the same as left-to-right). You then need to define

the stops along the gradient, which means what fraction of the total gradient will be

each defined color. The values go from zero to one, and you can split them up however

you want. Here, I want each color to take up equal space, so the stops are each a tenth of

the way. The colors themselves are defined next. There are several ways you can define

colors with Flutter, and you’ve seen the use of the Colors collection before, but here I

wanted to be more explicit, so I use RGB values (red, green, blue). Technically, it’s RGBO,

where O is opacity, and in fact, the opacity is set to .75 for each, which makes them 75%

translucent. It just blends in a little bit with the background that way, which dulls the

colors a bit since the background color behind it is white. Finally, I apply some margin

to the top so that there’s space between the first user listed and the title text, and then, of

course, a ListTile is built for each user.

Finally, we need to implement what happens when a user is tapped:

onTap : () {

 if (inInviteOrKick == "invite") {

 connector.invite(user["userName"],

 model.currentRoomName, model.userName, () {

 Navigator.of(inContext).pop();

 });

 } else {

 connector.kick(user["userName"],model.currentRoomName,() {

 Navigator.of(inContext).pop();

 });

 }

}

Chapter 8 FlutterChat, part II: the ClIent

340

This is easy: if we’re inviting a user, then we call connector.invite() and pass it the

selected user’s name, the current room name, and the name of the user inviting the other

so that it can be displayed to the invited user. Or, if we’re kicking a user, then it’s a call to

connector.kick() instead, passing it the name of the userName of the selected user and

what room they’re being kicked from. And, in both cases, the dialog is dismissed.

 Summary

In this chapter, we wrapped up the FlutterChat app, building the Flutter-based

client- side of the app. In it, you saw some new things (or some not new things that we

haven’t used in a real app before) like stateful widgets, the PopupMenuButton widget,

the ExpansionPanel widget, real use of the GridView widget, the Slider and Switch

components, and of course socket.io and WebSocket communications. As a bonus, you

got to play around with Node a bit and write a server!

In the next chapter, we’ll start building the last of our three apps, and this one will

take you in a totally new direction and give you a somewhat different view of Flutter:

we’re building a game!

Chapter 8 FlutterChat, part II: the ClIent

341
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7_9

CHAPTER 9

FlutterHero: A Flutter Game

All work and no play makes Jack a dull boy (and a murderer at a snowy resort lodge, as

we learned in The Shining).

With luck, you’ll avoid that fate, but the point stands: if you don’t stop to smell the

roses every now and again, you tend not to have as good a life as you should. This is true

for mobile development and Flutter too! (You didn’t think I would be able to pull this

back to relevance, did you?)

Throughout this book, you’ve seen Flutter through the lens of writing actual useful

code and applications. But nothing says that’s all you can do with Flutter. No, you can do

something more frivolous, something more fun, something like, say, write a game!

Games are excellent projects for any developer to undertake because they touch

on so many different disciplines in programming, from graphics and sound to AI, data

structures, algorithmic efficiency, and so on. In my position as a lead architect, I’m

sometimes asked by developers how they can sharpen their skills. My answer is always

the same: write a game! I don’t believe any other project provides the diversity and level

of creativity that games do and, therefore, opportunity for learning.

Plus, by their very nature, games are fun to write!

In this chapter, you’ll use Flutter to write a game. The benefit in terms of this book is

that you’ll get to see a few new Flutter facilities and see others in ways you maybe haven’t

before. In the end, you’ll learn while, hopefully, having fun!

So, let’s kick things off by figuring out what kind of game to make and coming up with

what every great game needs: a story!

 The Story So Far

The inhabitants of Gorgona 6 are a cosmic contradiction: a technologically advanced

civilization that is simultaneously kinda backward intellectually! For example, they

visited their own moon before figuring out that they should put wheels on luggage and,

342

more importantly for the purposes here, they can build fast, sleek spaceships, but they

are wimpy ships that can’t survive much of anything! Just a bump into a space fish is

enough to do them in (and being a peaceful people, the Gorgonians never develop

weapons of any sort).

Yes, I said space fish! But I digress.

This situation is problematic for them because their star system has a vermin

problem: it’s lousy with spaceborne critters and dangers! They have the gargantuan

space fish of the third moon of Valtrax, the naturally occurring sentient machine beings

of protoplanet 10101110, space aliens (but who doesn’t have space aliens in their solar

system, amiright?), and your basic rogue asteroids tumbling about. These things gum

up the works of the shipping lanes and pleasure cruise trails (though how anyone can

derive pleasure from a cruise where your piece of garbage ship could be destroyed

at any moment by the slightest impact is yet another contradiction embodied by the

Gorgonians).

Fortunately, there is a solution to these problems: on the outskirts of the solar system

is a massive crystal of unknown origin that emits a special type of energy that kills the

space vermin, at least for a little while. The Gorgonians have figured out how to collect

this energy, little by little. So, they send out ships that are essentially space tankers (but

being Gorgonian ships, they at least look cool!) to collect the energy and return it to the

homeworld.

Your job, as one of the brave – some might say hero even – pilots of the “crystal tanker

fleet,” is to make your way through the space vermin to extract energy from the crystal

and then bring it home. When you collect enough energy, the vermin are destroyed, and

you’re a Gorgonian hero!

At least for a little while.

You get some points or something for doing this, of course – let’s call ‘em space

credits – with which you can maintain your hallucinogenic Gorgonian lizard-licking habit.

And that, friends, is how you conceive a simple game that you can code up with

Flutter. I mean, I’ll say up front that if you’re expecting Apex Legends, Halo, or Red

Dead Redemption levels of gameplay, then you’re going to be sorely disappointed. This

ain’t gonna be no AAA title, and it’s not a game you’ll want to be repeatedly playing

(probably – hey, you could wind up loving it I suppose!). But it’ll be a good learning

experience, which of course is the goal here.

Chapter 9 Flutterhero: a Flutter Game

343

So, with the story in place, let’s get to work because those vermin aren’t going

to destroy themselves (well, probably – they could be as stupid as the Gorgonians I

suppose).

 The Basic Layout

So, what does this game look like? Well, if you happened to have ever played an old 8-bit

game with, say, a frog that hops across lanes of traffic of various types to get to a goal

on the other side, well, this game may or may not be conceptually like that. To be more

precise, Figure 9-1 shows what it looks like.

Figure 9-1. Maybe I should have called it Space Frogger instead?

Chapter 9 Flutterhero: a Flutter Game

344

Your ship starts at the bottom of the screen, near the homeworld. You control the

ship by placing your finger anywhere on the screen, which becomes the “anchor” point,

or zero position, of a virtual joystick. Now, just move your finger in any of the eight

compass directions, and your ship moves in that direction. Your goal is to move through

the lanes of vermin (asteroids, aliens, sentient machines, and space fish, starting from

the bottom). When you reach the top, you touch the crystal, and the energy bar at the

top fills. Then, you return through the vermin, touch your homeworld, and the energy is

transferred, at which point all the vermin explode, you get some points, and the vermin

come back so you can do it all over again. Of course, you explode if you touch anything

but the crystal or your homeworld.

As I said, it’s not exactly a complex, top-tier game, but it is a game, and it is made

with Flutter, so, mission accomplished (unlike all those Gorgonian ship captains lost in

the line of duty – we, the Flutter coders of Earth, salute you!)

 Directory Structure and Component Source Files

Let’s begin by talking about the directory structure and, more importantly, some of

the files it contains. Figure 9-2 shows you the pertinent details. It’s an entirely standard

Flutter application structure as you’ve come to know and, I hope, love. In the assets

directory, you’ll find a bunch of images and some audio files. For the images, the names

should give away what they each are, but the numbers require some explanation.

Chapter 9 Flutterhero: a Flutter Game

345

Figure 9-2. The application’s directory layout and constituent source/asset files

Chapter 9 Flutterhero: a Flutter Game

346

As you’ll see soon, each of the images represents part of an object in the game which

will be used by a common class called, not surprisingly, GameObject. For example,

there is a player GameObject for the player’s ship that uses images player-0.png and

player-1.png, and a crystal GameObject for the crystal. This common class includes

logic for animating these objects. An animation in this context is just like the old trick

when you were a kid where you take a notebook; draw a series of “frames,” maybe a

stick figure doing jumping jacks; and then flip the pages to produce the animation.

Here, each frame of the animation is denoted by the number in the filename. So, for

the crystal, there are four frames of animation (four pages in your notebook, so to

speak): crystal-0.png, crystal-1.png, crystal-2.png, and crystal-3.png, and the

GameObject class knows how to “flip the pages,” if you will.

Note the planet isn’t animated. hence there’s only a single frame. But it gets

wrapped in a GameObject too. So, as you’ll see later, this requires the filename to

use the same numbering scheme, hence planet-0.png so that the Gameobject

class can still work with it.

The MP3 files are audio for various events, the names again hopefully being

self- explanatory, but if not, they will be clear when we see them used.

Beyond that, you’ve got a small handful of source files in lib aside from the required

main.dart file, and we’ll get to each of those in turn, though like the assets, the names

should give you a good clue what they are.

Before any of that though, let’s talk about the pubspec.yaml a bit.

 Configuration: pubspec.yaml

The pubspec.yaml file is probably like 99% the same as all the others you’ve seen, save

for one new element:

name: flutter_hero

description: FlutterHero

version: 1.0.0+1

environment:

 sdk: ">=2.1.0 <3.0.0"

Chapter 9 Flutterhero: a Flutter Game

347

dependencies:

 flutter:

 sdk: flutter

 cupertino_icons: ^0.1.2

 audioplayers: 0.11.0

dev_dependencies:

 flutter_test:

 sdk: flutter

flutter:

 uses-material-design: true

 assets:

 - assets/

This is a game, and most games have audio, so we should probably have some

audio too! At the time of this writing, Flutter, perhaps surprisingly, doesn’t have a good

API for audio, at least not in the way you need for a game in terms of just being able to

play arbitrary sound files included in the project any time you want (and sometimes

simultaneously). So, we’ll need a plugin for that. Fortunately, there are a few choices,

but perhaps the most popular is the audioplayers plugin (https://pub.dartlang.org/

packages/audioplayers). This is a fork of an earlier plugin named audioplayer (yes, the

new one just has an added s on the end!) that extends the functionality of the old one.

This plugin allows us to play audio files stored remotely on the Internet, locally from the

user’s device or, critically for us, as assets in our project. With this plugin, you can play

files, control their playback (pause, stop, seek to a specific location in the audio), loop

the audio if you like (good for background music), and listen for events during playback

so you could, for example, show a progress bar if you wanted to.

For FlutterHero, we won’t need most of that! We’ll just need to be able to play our

sounds when specific events occur. We’ll look at the API for this plugin when we hit the

first sound usage, but as you’ll see, it’s quite minimal.

Aside from that dependency, the assets directory is referenced in the catch-all

way you’ve seen previously, so all of our assets are available, image and audio alike. I

considered splitting them into assets/images and assets/audio, but that would require

a tad more work in terms of getting audioplayers to be able to find them, and given the

relatively small number of assets required, I decided to just dump them all in the single

assets directory.

Chapter 9 Flutterhero: a Flutter Game

https://pub.dartlang.org/packages/audioplayers
https://pub.dartlang.org/packages/audioplayers

348

 The GameObject Class

Now, we start to get to some code! Usually, I would begin with main.dart, but in this

case, I want to talk about that GameObject class I mentioned earlier first. Some of what

you’ll see here might not immediately be clear, but it will quickly become so when you

see this class and its subclasses used.

Speaking of subclasses, that’s right, GameObject is a parent class to two others,

as Figure 9-3 shows.

Figure 9-3. The hierarchy of classes: GameObject and its children

The basic idea here is simple Object-Oriented Programming: the GameObject class

has data and functionality common to all objects in the game (which we call game

object, as opposed to the GameObject class that is the code implementation of that

general concept), and then the subclasses extend that data and functionality as required.

So, for example, every game object (player, crystal, vermin, and planet) needs data like

• The width and height of the screen

• The base filename of their images (“planet-∗.png” or “crystal-∗.png,”

for example, where ∗ will be the frame numbers)

Chapter 9 Flutterhero: a Flutter Game

349

• The width and height of the object

• The x and y location of the object

• The total number of frames in the animation cycle; how many game

frames to skip between animation frame cycle changes (I know that’s a

little confusing, but don’t worry, it won’t be for long!); what the current

frame of the animation cycle is; a counter for determining when it’s time

to flip to the next animation frame; a function that will be called when the

animation cycle completes; and of course all the animation frame images

• Whether the object is visible or not

Also, every game object has some common functionality:

• A constructor for setting it up

• A method to animate it

• A method to draw it on the screen

But, the Enemy subclass, which will represent the fish, robots, aliens, and asteroids,

has some additional needs:

• How fast they move across the screen

• What direction they’re moving (left or right)

The Player class obviously represents the player’s ship, and it too has some specific

needs beyond those supplied by GameObject:

• How fast it moves

• Whether it’s moving left or right (horizontal movement) and/or up or

down (vertical movement)

• How much of the crystal’s energy is onboard

• How many degrees (in radians) it’s rotated (allows us to have a single

image that can be in any orientation depending on the direction

of travel) plus some data tables that save us from doing math

repeatedly, to boost performance a little (it’s always good to think

about performance in games!)

• A method to be used any time the ship’s orientation changes (based

on the direction of movement) so that it can be rotated appropriately

Chapter 9 Flutterhero: a Flutter Game

350

So, now that you have a high-level idea of what these classes are about, let’s get to the

actual code of GameObject:

class GameObject {

 double screenWidth = 0.0;

 double screenHeight = 0.0;

It starts off as an ordinary class, not extending from anything else, and we have

the first two data properties, namely, the width and height of the screen. As you’ll

see later, Flutter provides an API to get this information, and it is retrieved during

application startup and is handed to any instance of GameObject during instantiation.

This just avoids having to call a potentially expensive API over and over again, but this

information is needed by the game objects in various ways, so doing it in one place and

giving it to the instances works well.

String baseFilename = "";

The baseFilename is the portion of the filename of the images for this game object

that doesn’t change. Put more simply, it’s the name of the object, be it fish, player, planet,

or whatever else.

int width = 0;

int height = 0;

The width and height of the object are naturally needed too. I’m sure it would have

been possible to find a Flutter API to get this information from the loaded images, but it’s

just simpler to provide it in the code when it’s not something that’s going to change ever.

double x = 0.0;

double y = 0.0;

The horizontal (x) and vertical (y) location of the game object on the screen is clearly

something every game object will need, so that’s here too.

int numFrames = 0;

int frameSkip = 0;

int currentFrame = 0;

int frameCount = 0;

List frames = [];

Function animationCallback;

Chapter 9 Flutterhero: a Flutter Game

351

These six properties are all related to animation. The numFrames property is how

many total frames there are. The frameSkip property determines how many ticks of the

main game loop must elapse before the next animation frame is shown (we’ll talk about

the main game loop later, but as a brief preview, it’s something that will happen 60 times

a second, executing our game logic, including animating each game object, at the same

interval). The currentFrame property is simply which animation frame is currently

showing. The frameCount property gets incremented with every tick of the main game

loop, and when it hits the value of frameSkip, the value of currentFrame is incremented.

The frames property is a list of the Flutter image assets for the game object, one

per animation frame. Finally, the animationCallback property is an (optional) reference

to a function that will be called any time the animation cycle end. You’ll see why that’s

needed, along with all of these, very soon, but for now, let’s press on.

bool visible = true;

The vermin and player need to be hideable at certain times, and the visible

property determines when a game object is visible or not.

With the properties out of the way, we next come to the constructor:

GameObject(double inScreenWidth, double inScreenHeight,

 String inBaseFilename, int inWidth, int inHeight,

 int inNumFrames, int inFrameSkip,

 Function inAnimationCallback) {

 screenWidth = inScreenWidth;

 screenHeight = inScreenHeight;

 baseFilename = inBaseFilename;

 width = inWidth;

 height = inHeight;

 numFrames = inNumFrames;

 frameSkip = inFrameSkip;

 animationCallback = inAnimationCallback;

 for (int i = 0; i < inNumFrames; i++) {

 frames.add(Image.asset("assets/$baseFilename-$i.png"));

 }

}

Pretty straightforward, right? All the incoming arguments get stored in the

appropriate properties, and then we need to load the animation frames. Here, you can

Chapter 9 Flutterhero: a Flutter Game

352

see how each is an Image widget, loaded with its asset() constructor and using the

baseFilename to construct the filename for each frame to load. This again is primarily

done for performance: only loading the frames once is a good idea. Flutter may be smart

enough to cache them if we were to load the same image twice, but it’s much better not

to assume that and instead architect our app to ensure it – it also makes the animation

code easier to write in my opinion.

Speaking of animation code:

void animate() {

 frameCount = frameCount + 1;

 if (frameCount > frameSkip) {

 frameCount = 0;

 currentFrame = currentFrame + 1;

 if (currentFrame == numFrames) {

 currentFrame = 0;

 if (animationCallback != null) { animationCallback(); }

 }

 }

}

The logic is simple: every time this is called – which you’ll see later is once per main

game loop tick, which means 60 times a second – the frameCount is bumped up. When

that value reaches the frameSkip value, then we increment to the next frame. When we

reach the end of the frames, we reset it back to the first frame and, if one is supplied, call

the animationCallback.

In addition to animating, a GameObject needs to know how to draw itself. As

everything is a widget in Flutter, as you well know by now, the goal here is to get

the proper widget for inclusion in a widget tree returned by some build() method

somewhere (I’m being vague because we obviously haven’t gotten to that yet, but we

will!). The draw() method accomplishes this:

Widget draw() {

 return visible ?

 Positioned(left : x, top : y, child : frames[currentFrame])

 : Positioned(child : Container());

}

Chapter 9 Flutterhero: a Flutter Game

353

Not to jump the gun, but we’ll be using a Stack widget as the parent to all our

game objects. That’s because within a Stack, you can have Positioned widgets which

can be positioned absolutely inside the Stack. If the Stack covers the entire screen

then, effectively, we’ve got ourselves a canvas perfectly suitable for game development

because we can control the precise location of everything on the screen down to the

pixel level. That’s exactly what we’re going to do, so draw() needs to return a Positioned

widget that wraps the Image widget associated with the current animation frame of the

object. In addition, an object can be hidden. How you do this is something you may find

a little weird about Flutter. To hide a widget, regardless of what it is, you simply don’t

include it in the widget true! There’s no hidden:true or something like that on widgets as

seen in many other frameworks, no hide() method to call. However, as you’ll see later,

returning null from this method, as would probably be your first thought, wouldn’t work

because it would break the widget tree it’ll eventually be a part of. So instead, an empty

Container is returned when this game object isn’t visible. That accomplishes the goal,

even if in a somewhat weird way (I know it seemed a little weird to me at first at least!)

 Extending from GameObject: The Enemy Class

With the basic GameObject coded, we can now look at the two subclasses, beginning with

Enemy. The primary thing that makes an Enemy different from a plain GameObject is that

an Enemy can move.

class Enemy extends GameObject {

 int speed = 0;

 int moveDirection = 0;

The movement of an enemy is simple though: it just moves either left or right and

at a given speed (where speed here means how many pixels it moves per main game

loop tick). So, that’s what the speed and moveDirection properties denote. The value of

moveDirection will be 0 for left or 1 for right.

Then, we have a constructor:

Enemy(double inScreenWidth, double inScreenHeight,

 String inBaseFilename, int inWidth, int inHeight,

 int inNumFrames, int inFrameSkip, int inMoveDirection,

 int inSpeed) :

Chapter 9 Flutterhero: a Flutter Game

354

 super(inScreenWidth, inScreenHeight, inBaseFilename,

 inWidth, inHeight, inNumFrames, inFrameSkip, null) {

 speed = inSpeed;

 moveDirection = inMoveDirection;

}

Now, since this class extends GameObject, it means that it supports all the same

properties as GameObject, so those need to be set too. That’s where the super() call

comes into play. As you can see, the signature of the Enemy constructor includes

everything the GameObject constructor does plus the items specific to Enemy, so first the

super() call sets the properties common to GameObject, then the code inside the Enemy

constructor sets the additional properties specified to Enemy.

And with all that data set, we can implement the move() method:

void move() {

 if (moveDirection == 1) {

 x = x + speed;

 if (x > screenWidth + width) { x = -width.toDouble(); }

 } else {

 x = x - speed;

 if (x < -width) { x = screenWidth + width.toDouble(); }

 }

}

You can now see why the width and height of the screen are needed: that’s how we

know when a given enemy has moved off the screen when it’s moving in either direction.

Then, it helps us set its new location. So, to go through this conceptually: a given enemy

fish is moving right across the screen (the first if branch). When it’s beyond the right

edge of the screen (the second if branch), its x location is set to a negative value, which

puts it on the left of the screen. Then it continues moving as before and does this again.

For left movement (the else branch), the same is done, but in reverse. That’s all there is

to the enemy movements, very simple.

Chapter 9 Flutterhero: a Flutter Game

355

 Extending from GameObject: The Player Class

The other class that extends from GameObject is for the player:

class Player extends GameObject {

 int speed = 0;

 int moveHorizontal = 0;

 int moveVertical = 0;

Like the vermin, the player obviously can move, so we need to know how fast it can

move (speed) and in what direction it’s moving (moveHorizontal and moveVertical).

Unlike the enemy vermin, the player can move up, down, left, and right, plus the four

combinations of each. Hence, we need two variables to track which way it’s moving

instead of just one like for the enemies. But the player can also be not moving, So, each

of these has three possible values instead of only two for the enemies: 0 for either means

no movement in that direction while for moveHorizontal –1 means left and 1 means

right while for moveVertical –1 means up and 1 means down.

double energy = 0.0;

The player can also, at any moment in time, have some of the crystal’s energy

onboard. So, we need a variable to track that too.

Map anglesToRadiansConversionTable = {

 "angle45" : 0.7853981633974483,

 "angle90" : 1.5707963267948966,

 "angle135" : 2.3387411976724017,

 "angle180" : 3.141592653589793,

 "angle225" : 3.9269908169872414,

 "angle270" : 4.71238898038469,

 "angle315" : 5.497787143782138

};

double radians = 0.0;

One of the things that makes game development somewhat unique is that you are

almost always looking for little tricks to optimize things, to save some memory or cycles

here or there. In this case, there are two tricks to be played with the player’s ship. First,

the ship should always be pointed in the direction of movement (or remain in whatever

Chapter 9 Flutterhero: a Flutter Game

356

position it was going when it last stopped). So, that would mean that we need eight

different images: one each for when moving up, down, left, right, up/left, up/right,

down/left, and down/right. But, since the ship is animated, and assuming all use two

frames, that would mean we need 16 different images! That seems inefficient. So instead,

as you saw earlier when we looked at the assets, there’s only two, one for each frame. In

order to provide the eight different orientations, those two images will be rotated in real

time to the correct orientation. Flutter provides several means to rotate an image, but

we’ll get to how to actually rotate the image shortly. Before that, the second trick comes

in, and that’s to avoid some calculations. As you’ll see, to rotate the ship, we’ll need to tell

Flutter how much to rotate it, and that’s provided in radians. But, from our perspective,

we really want to rotate it some number of degrees. So, we could, of course, do a degrees-

to- radians calculation every time we need to rotate, but avoiding that calculation saves

us some cycles, so that’s what we’ll do! The simplest approach is to just precalculate the

radians for each angular degree measure we want to rotate by and store those values in

a map for easy lookup, and that’s precisely what the anglesToRadiansConversionTable

property is for. The actual number of radians rotated is something we’ll need to keep

track of too, and that’s where the radians property comes in. You’ll see both in use

very soon.

The constructor comes next:

Player(double inScreenWidth, double nScreenHeight,

 String inBaseFilename, int inWidth, int inHeight,

 int inNumFrames, int inFrameSkip, int inSpeed,

) : super(inScreenWidth, inScreenHeight, inBaseFilename,

 inWidth, inHeight, inNumFrames, inFrameSkip, null) {

 speed = inSpeed;

}

Since Player extends from GameObject, we need to call the GameObject constructor

first, and then set the speed, which is the only value specific to the Player that needs

to be set during construction. Note the null as the last argument to the GameObject

constructor – that’s the animation callback, which isn’t needed for the player, hence

passing null.

Chapter 9 Flutterhero: a Flutter Game

357

Now, GameObject provides a draw() method, but for the player, the act of drawing

itself is a little different, so we need to override that method:

@override

Widget draw() {

 return visible ?

 Positioned(left : x, top : y, child : Transform.rotate(

 angle : radians, child : frames[currentFrame]))

 : Positioned(child : Container());

}

The difference here, of course, is the rotation discussed earlier. For that, we wrap

the Image widget in a Transform widget, which is one Flutter provides to apply a

transformation to a child before it’s painted. While using Transform itself requires

you to provide a transformation matrix, which can be complicated and math-intense

depending on what you’re trying to achieve, this class helpfully provides a handful

of constructors for the most common transformations. These include Transform.

scale() for scaling the child, or making it bigger or smaller in other words; Transform.

translate() for translating the child, or shifting it in other words; and most importantly

for us now, Transform.rotate() to rotate the child around its axis. As you can see, this

constructor requires the angle of rotation in radians, so here you can see that radians

property being used. How that value gets set is done in the orientationChanged()

method, which you’ll learn later is called from the code that handles user input:

void orientationChanged() {

 radians = 0.0;

 if (moveHorizontal == 1 && moveVertical == -1) {

 radians = anglesToRadiansConversionTable["angle45"];

 } else if (moveHorizontal == 1 && moveVertical == 0) {

 radians = anglesToRadiansConversionTable["angle90"];

 } else if (moveHorizontal == 1 && moveVertical == 1) {

 radians = anglesToRadiansConversionTable["angle135"];

 } else if (moveHorizontal == 0 && moveVertical == 1) {

 radians = anglesToRadiansConversionTable["angle180"];

 } else if (moveHorizontal == -1 && moveVertical == 1) {

 radians = anglesToRadiansConversionTable["angle225"];

 } else if (moveHorizontal == -1 && moveVertical == 0) {

Chapter 9 Flutterhero: a Flutter Game

358

 radians = anglesToRadiansConversionTable["angle270"];

 } else if (moveHorizontal == -1 && moveVertical == -1) {

 radians = anglesToRadiansConversionTable["angle315"];

 }

}

A check is performed for each of the four cardinal directions, plus the four

combinations, to determine which way the player is moving. Once that’s determined, a

lookup into anglesToRadiansConversionTable is done and the resultant radians stored

in the radians property. It’s not fancy code, but it gets the job done nicely and, again, all

while avoiding a potentially costly mathematical operation here.

Tip It wouldn’t be all that costly in practice, but again, in games, it’s always

better to be thinking about optimizations as you code. this is true generally in

all kinds of programming, but more so in games where every cycle factors into

the main game loop, as we’ll discuss soon. of course, you have to avoid taking

this exercise too far and stretch into premature optimization territory, which is

something you should always try to avoid – but a precalculated lookup table like

this is quite common.

The final method is for moving the player:

void move() {

 if (x > 0 && moveHorizontal == -1) { x = x - speed; }

 if (x < (screenWidth - width) && moveHorizontal == 1) {

 x = x + speed;

 }

 if (y > 40 && moveVertical == -1) { y = y - speed; }

 if (y < (screenHeight - height - 10) && moveVertical == 1) {

 y = y + speed;

 }

}

This will be called once per main game loop tick. We do horizontal movement

direction, and then vertical movement, separately. Recall that there are eight possible

directions the player can be moving. The four cardinal directions are handled obviously,

Chapter 9 Flutterhero: a Flutter Game

359

but the other four that represents the combinations are also handled by virtue of

horizontal and vertical movement being handled separately. Since it’s possible for one

of the if statements dealing with x to fire while one of those dealing with y also fires, that

yields a combination of vertical and horizontal movement. Of course, we must ensure

that the player doesn’t go off the screen too, which is what the bounds checks in each of

the if statements do for us. These consider the side of the player as well as the space for

the score and energy bar as well.

 Where It All Starts: main.dart

As always, our app starts off in the main.dart source file:

import "package:flutter/material.dart";

import "package:flutter/services.dart";

import "InputController.dart" as InputController;

import "GameCore.dart";

void main() => runApp(FlutterHero());

class FlutterHero extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 SystemChrome.setEnabledSystemUIOverlays(

 [SystemUiOverlay.bottom]

);

 return MaterialApp(

 title : "FlutterHero", home : GameScreen()

);

 }

}

class GameScreen extends StatefulWidget {

 @override

 GameScreenState createState() => new GameScreenState();

}

Chapter 9 Flutterhero: a Flutter Game

360

The services.dart module is something new. This module provides us some

device service access for things like interacting with the clipboard, generating haptic

feedback (device shaking), playing system sounds, and selecting text, just to name a few.

Something else it lets us do is control the “chrome” that is visible around our app, that

is, the system status bar at the top and, on Android at least, the row of soft input buttons

at the bottom. If you jump down to the top-level FlutterHero class here, in its build()

method, you’ll see a call to SystemChrome.setEnabledSystemUIOverlays(). This is

provided by the services module, and this method allows us to pass it an array of chrome

identifiers to enable. Here, I specifically enable the SystemUiOverlay.bottom element,

which are the soft navigation buttons in Android. Since that’s all that’s in the array, the

status bar at the top will be hidden, providing our game a (nearly) full-screen experience.

Of course, before that, you’ll notice that we’re building a stateful widget in GameScreen,

which is the home screen defined in the MaterialApp of the FlutterHero class, a pattern

you’ve seen before, and the necessary main() method is defined above that.

As you should expect, given that GameScreen is a stateful widget, there will be an

associated State class, and there is: GameScreenState:

class GameScreenState extends State with

 TickerProviderStateMixin {

 @override

 Widget build(BuildContext inContext) {

 if (gameLoopController == null) {

 firstTimeInitialization(inContext, this);

 }

For this app, we’re not going to use scoped_model and instead just use the basic

state facilities that Flutter provides. But, in addition to the State stuff, this class has

something new: the TickerProviderStateMixin. We’ll get to what that’s all about in the

next section, but just as a preview I’ll tell you that it has to do with the main game loop

that will tick by 60 times a second throughout the lifetime of the game.

The build() method begins with a check of the gameLoopController, which you’re

going to see is part of the GameCore.dart file. Ignoring for the moment what that is, if it’s

null, then a call to firstTimeInitialization() is made, passing it the BuildContext

and also a reference to the GameScreenState class itself using this. That function too

will be examined in the next section, but I’m sure you can guess from the name that it

performs some tasks that happen the first time the build() method executes (remember

Chapter 9 Flutterhero: a Flutter Game

361

that build() will fire many times throughout this game). The issue here is that there are

some tasks that must be done to set up the game that can only occur when we have that

BuildContext. So, those tasks must be done in the build() method. But, they must only

happen once, hence why that check of gameLoopController is done.

But like I said, we’ll get to all of that in the next section!

Continuing in the build() method, we begin to build our widget tree:

List<Widget> stackChildren = [

 Positioned(left : 0, top : 0,

 child : Container(width : screenWidth,

 height : screenHeight,

 decoration : BoxDecoration(image : DecorationImage(

 image : AssetImage("assets/background.png"),

 fit : BoxFit.cover

))

)

),

Interestingly, in all previous build() methods you’ve seen, you almost immediately

have seen a return statement to return a widget, and all the child widgets were defined

“inline” with that widget. Here though, we’re constructing a list first. The situation here

is that there is some logic that has to occur while building the widget tree, some loops

and such, none of which could be done in a single monolithic inline widget tree like we

normally do. Because the widget we ultimately want to return is a Stack (well, a Stack

inside a GestureDetector inside a Scaffold, if you want to be pedantic) and because

a Stack takes a list as its children, we can do all of the logic and looping outside the

widget definition, build the list separately, and then just reference it in the final Stack

definition. That’s what’s happening here. The first element in the list is a Positioned

wrapping a Container that uses a BoxDecoration to show the background image. The

fit specified as BoxFit.cover ensures that the background fills the screen regardless

of its physical dimensions. The width and height of the Container are the values of the

screenWidth and screenHeight variables. As you’ll find out in the next section (or, well,

now I guess, as it happens!) those values are queried during first-time initialization and

retrieved from the operating system so that anywhere that information is needed, it will

be available without having to do that query many times.

Chapter 9 Flutterhero: a Flutter Game

362

Positioned(left : 4, top : 2,

 child : Text('Score: ${score.toString().padLeft(4, "0")}',

 style : TextStyle(color : Colors.white,

 fontSize : 18, fontWeight : FontWeight.w900)

)

),

After the background is another Positioned wrapping a Text this time. That’s our

score display. As you can see, this widget is placed at x/y location 4/2 as per the left and

top properties. That’s the whole point of using a Stack: we can absolutely position these

elements as we see fit. The Stack will by default fill its parent, which happens to be the

screen, so we have absolute positioning capability across the entire screen. Handy for a

game, don’t you think?!

After that comes another Positioned, this time with a LinearProgressIndicator

inside for the energy bar:

Positioned(left : 120, top : 2, width : screenWidth - 124, height : 22,

 child : LinearProgressIndicator(

 value : player.energy, backgroundColor : Colors.white,

 valueColor : AlwaysStoppedAnimation(Colors.red)

)

),

crystal.draw()

];

The valueColor property is important here because by default, a progress indicator

in Flutter, whether linear or circular, wants to animate. It will spin if it’s circular, or fill

up if it’s linear. But, that’s not what we want. We want a bar that fills up little by little

when the ship is in contact with the crystal and empties little by little when in contact

with the planet to indicate energy filling or draining to and from the ship, all under

the control of our code, not what Flutter wants to do with it (waah, this is my game,

do it my way, Flutter!). So, rather than specifying just a single color to indicate what

color to make the filled portion of the indicator, we instead use an instance of the

AlwaysStoppedAnimation widget. This is a special widget that the progress indicator

classes know how to deal with that provides an indicator that isn’t constantly animating,

precisely as we need! Of course, what color the filled portion should be is still important

information, so it’s passed to the AlwaysStoppedAnimation constructor. Note too that

Chapter 9 Flutterhero: a Flutter Game

363

the width of the Positioned that the LinearProgressIndicator is in is set dynamically

using the width of the screen minus the space the score takes up. This way, the energy

bar fills whatever space is left after the score.

The crystal is also added here, which is the last element in the list that’s added during

its declaration (inline, if you will).

After that, we have to add our enemy vermin:

for (int i = 0; i < 3; i++) {

 stackChildren.add(fish[i].draw());

 stackChildren.add(robots[i].draw());

 stackChildren.add(aliens[i].draw());

 stackChildren.add(asteroids[i].draw());

}

There’s three of each, so it’s a simple loop – but this loop is the primary reason we

needed to build this list in the first place! Trying to do it all inline would have meant

having to write out 12 enemy references here since we couldn’t use a loop construct.

Next, the planet and player are added:

stackChildren.add(planet.draw());

stackChildren.add(player.draw());

It’s important to realize that with a Stack, there is a z-axis at play. That means that

elements added later in the list will appear on top of those added before. So, we have to

ensure that, to the extent it matters in this game, we add things in the proper order. So,

the player must be added after the planet, for example, so that the ship isn’t occluded

by the planet when the player flies near it. The ship should remain visible, on top of the

planet. Hence it needs to be higher in the z-order and so has to be added after the planet.

Now, although they won’t be visible except at specific times, we need to add any

explosions needed to the list next:

for (int i = 0; i < explosions.length; i++) {

 stackChildren.add(explosions[i].draw());

}

Recall that if any given game object isn’t currently visible, its draw() method will

return an empty Container. Explosions are when that’s most obvious because while

most of the game objects are nearly always visible, explosions are obviously transient in

Chapter 9 Flutterhero: a Flutter Game

364

nature. So, this loop may be drawing a bunch of empty Container widgets most of the

time, but that’s fine, that’s just the way visibility is controlled in Flutter.

Finally, the widget to return is constructed:

return Scaffold(body : GestureDetector(

 onPanStart : InputController.onPanStart,

 onPanUpdate : InputController.onPanUpdate,

 onPanEnd : InputController.onPanEnd,

 child : Stack(children : stackChildren)

));

The body of the Scaffold returned isn’t the Stack directly, as you might have

anticipated. We’re going to need to work some method for the player to control his ship

in, and given that most modern mobile devices are touchscreen-oriented, it makes

sense that touch will be our control mechanism. So, we need a widget to recognize touch

events, and that’s exactly what the GestureDetector widget is for.

This widget recognizes all sorts of various gestures, taps and such, and one such

gesture is a pan. This is simply the user putting their finger down and then moving it

around. If you were developing a web site where users use a mouse most of the time,

then you would recognize events like mouseDown, mouseMove, and MouseUp. But, we don’t

have those here, even though conceptually those are what we need. But, three pan events

conceptually mimic those (taking the player’s finger to be basically what the mouse pointer

is): onPanStart for mouseDown, onPanUpdate for mouseMove, and onPanEnd for mouseUp.

The code that handles those events represents the functionality that the InputController

class encapsulates, but we’ll get to that later. Before that though, you can see that the Stack

is the child of the GestureDetector, which means that gestures anywhere on the screen

will be handled because recall that the Stack takes up the whole screen (it fills its parent

by default, as does its parent GestureDetector). Finally, as previously mentioned, the

children of the Stack references the list that was built up before here.

Remember that everything we just talked about is inside the build() method of the

top-level widget, and remember that we’re dealing with a stateful widget. That means

that any time state changes, build() will be called again and the screen re-rendered.

That’s the key to making this all work as a game. Next, we need to talk about that main

game loop I’ve mentioned several times, as well as the core logic that makes up the

game, all of which ties into this build() method because ultimately, all of this logic

mutates state and triggers this build() method being executed over and over again to

move all our game objects.

Chapter 9 Flutterhero: a Flutter Game

365

 The Main Game Loop and Core Game Logic

The core logic of the game is contained within the GameCore.dart file, and it begins, as

always, with import:

 Kicking It Off

import "dart:math";

import "package:flutter/material.dart";

import "package:audioplayers/audio_cache.dart";

import "InputController.dart" as InputController;

import "GameObject.dart";

import "Enemy.dart";

import "Player.dart";

The math package is necessary because we’re going to need to generate some

random numbers, and that functionality is included there. The audio_cache.dart

module is part of the audioplayers plugin and is the interface we’ll use to load and play

the sound assets, as you’ll see. The others are the various source files for FlutterHero as

needed.

Then, we have a whole bunch of variables:

• State state – This is a reference to the State class.

• Random random = new Random() – The Random class allows us to…

you guessed it… generate random numbers! I instantiate it once here

because while we’ll need it multiple times, there’s no sense having

more than one instance.

• int score = 0 – The current score of the game.

• double screenWidth – The width of the screen.

• double screenHeight – The height of the screen.

• AnimationController gameLoopController – We’ll talk about this in

a moment!

• Animation gameLoopAnimation – This goes along with

gameLoopController.

Chapter 9 Flutterhero: a Flutter Game

366

• GameObject crystal – The one and only crystal game object.

• List fish – A list of fish enemy vermin game objects.

• List robots – A list of robots enemy vermin game objects.

• List aliens – A list of aliens enemy vermin game objects.

• List asteroids – A list of asteroids enemy vermin game objects.

• Player player – The one and only player game object.

• GameObject planet – The one and only planet game object.

• List explosions = [] – A list of explosions (which are

GameObject) instances (this is empty when there are no explosions

currently on screen).

• AudioCache audioCache – A cache of audio assets that can be played

(more on this later).

With the variables out of the way, we can now get to the code that uses them.

 First Time Initialization

The first bit of code is the firstTimeInitialization() function that you saw called

from the build() method of the main widget, remember? It’s the call that was made if

and only if the gameLoopController variable was null. Well, here it is finally:

void firstTimeInitialization(BuildContext inContext,

 dynamic inState) {

 state = inState;

The code in this module will need some access to the GameScreenState object

since it contains the state for the main widget, so a reference to it is passed in and that

reference stored in the state variable.

Next, it’s time to deal with audio:

audioCache = new AudioCache();

audioCache.loadAll(["delivery.mp3", "explosion.mp3",

 "fill.mp3", "thrust.mp3"]);

Chapter 9 Flutterhero: a Flutter Game

367

The audioplayers plugin has a couple of different ways to deal with audio, one

of which is the AudioCache class. This is used to preload audio and play it efficiently,

something that’s important in a game. This is also, a little oddly in my mind, necessary

to be able to play sounds that are assets in our app. So, weird or not, we instantiate the

class and then call its loadAll() method, passing it a list of audio filenames to load, after

which we’re ready to play those sounds any time we want, as you’ll see later.

We then need to get the dimensions of the screen:

screenWidth = MediaQuery.of(inContext).size.width;

screenHeight = MediaQuery.of(inContext).size.height;

The MediaQuery class is provided by the material.dart library and which allows us

to retrieve information about a given piece of media, the screen for example. Calling its

of() method for the incoming BuildContext gets us a MediaQueryData object about the

given context, which we can then drill down into to get the screen width and height.

Next, it’s time to create some game object!

crystal = GameObject(screenWidth, screenHeight, "crystal",

 32, 30, 4, 6, null);

planet = GameObject(screenWidth, screenHeight, "planet",

 64, 64, 1, 0, null);

player = Player(screenWidth, screenHeight, "player",

 40, 34, 2, 6, 2);

fish = [

 Enemy(screenWidth,screenHeight, "fish", 48, 48, 2, 6, 1, 4),

 Enemy(screenWidth,screenHeight, "fish", 48, 48, 2, 6, 1, 4),

 Enemy(screenWidth,screenHeight, "fish", 48, 48, 2, 6, 1, 4)

];

The crystal and planet are plain old GameObject instances, while the player and the

enemy vermin are Player and Enemy instances correspondingly. The robots, aliens,

and asteroids are created the same way the fish are, so no point in showing those I

figured. Note that they had to be created here because we need the screenWidth and

screenHeight to have been queried already, hence why this couldn’t have been done as

part of the declaration of these variables, or even in a constructor, both of which would

seem like natural choices otherwise.

Chapter 9 Flutterhero: a Flutter Game

368

 Flutter Animation in Brief

Flutter provides rich animation support in various ways, but it ultimately comes down

to a few key classes, even if you don’t use them explicitly (in the case, for example, of

widgets that do their own animation – they’re using these classes under the hood). You

firstly need a Ticker object, then you need an Animation object, and finally, you need an

AnimationController object.

A Ticker object is one that sends a signal at a regular interval that is typically 60

times a second. Every time this object ticks, some callback functions are executed to

perform animation-related things.

The Animation object is concerned with generating a number on each tick. This

number is part of a sequence between two defined values over a defined period of time

and can be generated in a simple linear fashion or via complex curves.

The AnimationController is an object that controls an animation. It can start, stop,

and pause an animation. It can also reverse the animation (and remember here that

“animation” means nothing but the generation of the next value in the sequence – none

of this thus far has any knowledge of what’s on the screen).

An AnimationController gets bound to a Ticker, which most typically is bound to

a State object in your app. So, every time the Ticker ticks, the AnimationController is

sent a signal. It then sends a signal to the Animation object which then generates a new

value. Then, your code hooks into lifecycle events on the Animation and does whatever

is necessary to draw the animated elements on the screen. It’s ultimately your code (or

the code in a Flutter widget you’re using) that is responsible for actually putting object

on the screen and moving them (or otherwise altering them because remember that

animation is a generic concept here and doesn’t have to mean movement – we might be

animating the size of an object, for example).

So, imagine you have a Ticker ticking off 60 times a second. Also, imagine that an

Animation is spitting out a linear set of numbers between 0 and 500 under the control

of an AnimationController. Finally, imagine that you hook into the lifecycle of the

Animation so that every time a number is generated, you update the X location of one of

our enemies on the screen. This will, of course, trigger the build() method to fire again,

thus updating the screen. Suddenly, you’ve got a moving object on the screen. In other

words, you’ve got animation!

Chapter 9 Flutterhero: a Flutter Game

369

That’s the core concept, so now let’s look at the actual code that puts this theory into

practice:

gameLoopController = AnimationController(vsync : inState, duration :

Duration(milliseconds : 1000));

gameLoopAnimation = Tween(begin : 0, end : 17).animate(

 CurvedAnimation(parent : gameLoopController,

 curve : Curves.linear)

);

gameLoopAnimation.addStatusListener((inStatus) {

 if (inStatus == AnimationStatus.completed) {

 gameLoopController.reset();

 gameLoopController.forward();

 }

});

gameLoopAnimation.addListener(gameLoop);

First, an AnimationController is instantiated. The sync property associates a Ticker

with it, and in this case, it’s our GameScreenState object. If you look back on that code,

you’ll see that it extends that class with the TickerProviderStateMixin. That turns

it into a Ticker! We also tell the AnimationController how long we want the values

animated for, and it’s one second in this case (1,000 milliseconds).

Next, we have to create an Animation object and associate it with the

AnimationController. There are a few subclasses we could choose from, and here I’ve

used perhaps the simplest: Tween. This allows us to define a sequence from a begin to an

end value, which is 0 to 17 here.

Why those values? Well, the goal here is to create what’s called a main game loop.

That’s a fancy way of saying we want some function, our main game loop function, to

execute once per frame (drawing frame that is). But, how long does each execution take?

Well, what we do here is divide the total time by the number of ticks. That means 1,000

divided by 60. That comes out to 16.666667. Round that up to 17 and that’s the range. To

put this all succinctly: we want the main game loop function to execute once every 17

milliseconds, which means it will execute 60 times per second (roughly). That’s what this

Animation does: it spits out a number between 0 and 17 (linearly, because of the curve

property being set to Curves.linear, a standard curve Flutter provides) over the course

of 1 second, once every 17 milliseconds.

Chapter 9 Flutterhero: a Flutter Game

370

Now, with all that doing what we want, we have to hook into the lifecycle to do our

work. That comes in two places. First, you should recognize that after one second, that

animation would be complete. The sequence of values would be exhausted. Obviously,

we need it to happen again, and again, and again. So, we set a listener function any time

the status of the Animation changes. This function will be called in a couple of different

situations, when the animation starts and finishes being two of them. We only care about

when it finishes, so we look at the status passed in, and when it’s completed, then we call

the reset() and forward() methods on the AnimationController. This does exactly as

the name implies: resets all the values to their starting points and starts the Animation

sequence again in the forward direction (counting from 0 to 17 again over the course of

one second).

We then need to be informed every time a number is generated so that we can call

the main game loop function. The addListener() method on the Animation instance

does precisely that.

With the main game loop hooked up and ready to go, we just need to reset all game

state variables:

resetGame(true);

We’re going to look at this next, so let’s skip discussing it for now. After that is:

InputController.init(player);

The InputController object is responsible for handling user input, but that too is

something we’ll look at later, so for now, we’ll skip it too and find that there’s only one

more line after that in this function:

gameLoopController.forward();

That effectively starts the game loop, which means our game is now running.

Woo- hoo! Things are moving on the screen!

Chapter 9 Flutterhero: a Flutter Game

371

 Resetting Game State

When things start up, and after the player explodes or the energy is delivered to the

planet, the game needs to be reset. For that, we have the resetGame() function:

void resetGame(bool inResetEnemies) {

 player.energy = 0.0;

 player.x = (screenWidth / 2) - (player.width / 2);

 player.y = screenHeight - player.height - 24;

 player.moveHorizontal = 0;

 player.moveVertical = 0;

 player.orientationChanged();

First, we clear the energy from the ship and reposition the ship to the center of the

screen and a few pixels away from the bottom of the screen. Then, we have to make sure

the player isn’t currently moving, and also reset its orientation so that it’s facing up via

the call to orientationChanged().

crystal.y = 34.0;

randomlyPositionObject(crystal);

After the player, the crystal gets reset. Note that after the first call to this

function, there’s no point in setting the y property since it doesn’t change, but

there’s no harm either, so it’s done to avoid any logic. The x property is set by the

randomlyPositionObject() function, which we’ll look at later, but the name tells you

exactly what it does!

The planet is done next in basically the same way:

planet.y = screenHeight - planet.height - 10;

randomlyPositionObject(planet);

The y property needs to consider the height of the planet though so that it doesn’t

hang off the bottom of the screen (10 pixels is just an arbitrary value, but it’s one I chose

so that the starting position of the ship looks roughly centered on the vertical axis of the

planet).

Chapter 9 Flutterhero: a Flutter Game

372

Next comes the enemies (maybe):

if (inResetEnemies) {

 List xValsFish = [70.0, 192.0, 312.0];

 List xValsRobots = [64.0, 192.0, 320.0];

 List xValsAliens = [44.0, 192.0, 340.0];

 List xValsAsteroids = [24.0, 192.0, 360.0];

 for (int i = 0; i < 3; i++) {

 fish[i].x = xValsFish[i];

 robots[i].x = xValsRobots[i];

 aliens[i].x = xValsAliens[i];

 asteroids[i].x = xValsAsteroids[i];

 fish[i].y = 110.0;

 robots[i].y = fish[i].y + 120;

 aliens[i].y = robots[i].y + 130;

 asteroids[i].y = aliens[i].y + 140;

 fish[i].visible = true;

 robots[i].visible = true;

 aliens[i].visible = true;

 asteroids[i].visible = true;

 }

}

When resetGame() is initially called from firstTimeInitialization(), true is

passed to it. This causes the preceding block to execute. When the player explodes,

false is passed to skip this setup since there’s no point in resetting their positions (and

when the energy is delivered to the planet, true is again passed).

The reset logic here is simple: we have four lists, one for each type of enemy, that

contains the x location values for each enemy. Rather than calculate these dynamically,

I felt it was simpler to “magic number” them. Importantly, this made it easy to introduce

some variation without a lot of code: the spacing is mixed up a bit across the enemies

to avoid any repeating gaps that the player can too easily get through, improving the

challenge of the game. For the y location values, I build from the previous row of enemies

such that the rows get a little closer together as you get closer to the top. This again is

done to make it just a little harder the further up the screen you move. We also need to

ensure that all the enemies are visible at this point because after they all explode when

Chapter 9 Flutterhero: a Flutter Game

373

energy is delivered to the planet, they will be hidden as the explosions occur (you’ll see

this later), so they have to be shown again, so the game resets appropriately.

Only two small tasks remain:

explosions = [];

player.visible = true;

You’ll see how explosions are dealt with later, but at this point, it’s enough to know

that the list of them, if any, needs to be cleared, and there’s no easier way than setting

explosions to an empty list. Finally, the player is made visible again so that if they just

exploded, they’re back to life and ready to try again.

 The Main Game Loop

Now, finally, we come to the main game loop function, the function that is called 60

times a second, every 17 milliseconds, as a result of the animation setup code you

explored earlier:

void gameLoop() {

 crystal.animate();

The first thing done is to request the crystal to animate itself. As you know from

looking at the GameObject code, this just means cycling through the animation frames

which, for the crystal, just makes it cycle through some colors.

Next, we have to animate and move the vermin:

for (int i = 0; i < 3; i++) {

 fish[i].move();

 fish[i].animate();

 robots[i].move();

 robots[i].animate();

 aliens[i].move();

 aliens[i].animate();

 asteroids[i].move();

 asteroids[i].animate();

}

Chapter 9 Flutterhero: a Flutter Game

374

Each vermin, three of each type, get a chance to animate and then move. Keeping the

logic for these functions in the GameObject and Enemy classes should make sense to you

now: it keeps us from having to write a lot of ultimately repetitive code to do it all here.

Then, it’s time for the player to move and animate:

player.move();

player.animate();

Note that for the most part, the exact order of all these calls doesn’t really matter

much. If we called player.animate() before player.move() that would be fine, and if

we did the player before the vermin, it too wouldn’t make much of a difference.

Now, we get to some good old-fashioned demolitions:

for (int i = 0; i < explosions.length; i++) {

 explosions[i].animate();

}

There might be no explosions on the screen at this time, or there might be one

(if the player hit an enemy), or there may be twelve (if they just delivered the energy

to the planet and now all the vermin are exploding). So, it’s a simple loop where each

iteration gives any explosions in the explosions list a chance to animate.

So far, this has been very straightforward and just producing updates to the location

and appearance of our various game objects. But, that’s not all there is to it of course: we

also must have some logic to make this an actual game, and that comes next:

if (collision(crystal)) {

 transferEnergy(true);

} else if (collision(planet)) {

 transferEnergy(false);

} else {

 if (player.energy > 0 && player.energy < 1) {

 player.energy = 0;

 }

}

The first part of that logic is to see I the player is in contact (“collided with”) the

crystal or the planet. The collision() function implements that check, but we’ll look

at that next. For now, know that it simply returns true if the player and the game object

Chapter 9 Flutterhero: a Flutter Game

375

passed in have collided, false otherwise. If they are touching the crystal, then we need

to transfer energy to the ship (or to the planet from the ship in the case of the planet),

which there is a function for, not surprisingly called transferEnergy() (which we’ll look

at shortly). Passing true to it tells that the collision was with the crystal, while false

means the planet, as you can see in the else if branch.

The else branch covers a “cheat” condition: if the player has energy, but the ship

isn’t 100% full of it, then dump it all out. Without this, the player would be able to grab

just a tiny bit of energy, but then return it to the planet and be given full credit for the

delivery. That would be terrible for the economics of the Gorgonian solar system (and

sociologically would probably lead to wars between the ship captains, and since we’ve

already established their ships are weak that would probably be a short war – but I

digress), so we’ll just put a stop to it right here and now! Since this situation can only

arise if they are not in contact with either the crystal or planet, the else branch is the right

place for that logic.

Next, we need to check for collisions with the vermin:

for (int i = 0; i < 3; i++) {

 if (collision(fish[i]) || collision(robots[i]) ||

 collision(aliens[i]) || collision(asteroids[i])) {

 audioCache.play("explosion.mp3");

 player.visible = false;

 GameObject explosion = GameObject(screenWidth,

 screenHeight, "explosion", 50, 50, 5, 4,

 () { resetGame(false); }

);

 explosion.x = player.x;

 explosion.y = player.y;

 explosions.add(explosion);

 score = score - 50;

 if (score < 0) { score = 0; }

 }

}

Obviously, we need to check each enemy, hence the loop. To avoid nested loops,

I check one of each enemy with each iteration of the loop. If any collision occurs, then first

we play the explosion sound. The audioCache that we set up earlier provides a play()

Chapter 9 Flutterhero: a Flutter Game

376

method for this, and all you do is give it the name of the file to play (sans assets/ prefix,

it should be noted, since audioplayers assumes that’s where the files are by default).

Piece of cake! Next, the player needs to be hidden. That’s because an explosion is going

to be shown in its place, which is exactly what we do next: instantiate a GameObject

for the explosion. It gets positioned right where the player is (err, was!) and then that

GameObject gets added to the explosions list (which, you’ll recall from earlier in this

function, means it will be animated beginning with the next frame). The effect of all

of that is an exploding ship! A few points are deducted from the player’s score for the

mishap (which we must ensure doesn’t go negative) and we’re done.

Only one task remains, a single line of code, but it is absolutely critical:

state.setState(() {});

Without this, to put it succinctly: nothing happens! Without updating state, Flutter

doesn’t know anything has changed and so build() won’t fire again and the screen

won’t update. Kind of an important step, don’t you think?!

Next, let’s look at that collision() function and see what it’s all about.

 Checking for Collisions

Most video games require the ability to detect when two objects collide with each other.

Here, we need to know when the ship hits any of the vermin. There are several ways to

do this, each having their pluses and minuses. One simple approach is called bounding

boxes. This method simply checks the four bounds of the objects, and if the corner of

one object is within the bounds of the other, then a collision has occurred.

As illustrated in the example in Figure 9-4, each game object has a square/

rectangular area around it called its bounding box. This box defines the boundaries of

the area the object occupies. Note in the diagram how the upper-left corner of object

2’s bounding box is within the bounding box of object 1. This represents a collision. You

can detect a collision by running through a series of simple tests comparing the bounds

of each object. If any of the conditions are untrue, then a collision cannot possibly have

occurred. For instance, if the bottom of object 1 is above the top of object 2, then there’s

no way a collision could have happened. In fact, since you’re dealing with a square or

rectangular object, you have only four conditions to check, any one of which being false

precludes the possibility of a collision.

Chapter 9 Flutterhero: a Flutter Game

377

This algorithm does not yield perfect results though. For example, you will

sometimes see the ship “hitting” an object when it clearly did not really touch. Other

times, they may appear just barely to collide, but it won’t register as a collision. The

rotation of the ship also plays a role in this because this simple version of the algorithm

can’t handle the altered geometry of the ship from something that isn’t (roughly) square

and aligned perfectly vertically or horizontally. This could be fixed with a more complex

version of the algorithm, or with pixel-level detection, meaning checking each pixel

of one object against all the pixels in the other (or at least the pixels on their edges).

However, the bounding boxes approach shown here gives an approximation that yields

"good enough" results in many cases – the game isn’t unplayable even with this margin

of error – so all is right with the world.

With all that explained, let’s see that collision() function that was referenced in the

previous section:

bool collision(GameObject inObject) {

 if (!player.visible || !inObject.visible) { return false; }

 num left1 = player.x;

 num right1 = left1 + player.width;

 num top1 = player.y;

Figure 9-4. The basic idea behind bounding boxes

Chapter 9 Flutterhero: a Flutter Game

378

 num bottom1 = top1 + player.height;

 num left2 = inObject.x;

 num right2 = left2 + inObject.width;

 num top2 = inObject.y;

 num bottom2 = top2 + inObject.height;

 if (bottom1 < top2) { return false; }

 if (top1 > bottom2) { return false; }

 if (right1 < left2) { return false; }

 return left1 <= right2;

If the player isn’t visible, or if the object we’re checking for collision with isn’t visible,

then there’s no need to check for a collision because game objects are only ever not visible

when they’re exploding. After that, we calculate the values to be compared, which means

the coordinates of the top, bottom, left, and right bounds of the player and the target object.

Finally, it’s just the four simple checks described to tell you if a collision has occurred.

 Randomly Positioning an Object

After the player picks up all the energy from the crystal, or when they have transferred

all the energy back to the planet, or when the game resets, the crystal and planet get

randomly positioned via a call to randomlyPositionObject():

void randomlyPositionObject(GameObject inObject) {

 inObject.x = (random.nextInt(

 screenWidth.toInt() - inObject.width)).toDouble();

 if (collision(inObject)) {

 randomlyPositionObject(inObject);

 }

}

The Random object created during startup is used by calling its nextInt() method.

The value we want must be in the range zero to the width of the screen minus the width of

the object, so that it’s always on the screen and not hanging off the left or right edge. Only

the horizontal position of the object is random, so the resultant random value is set to its

x property. The other consideration is that the object can’t be in the same place as the

player. So, we call collision() to check for that condition and if a collision occurs then

randomlyPositionObject() is recursively called until a non-collision position is selected.

Chapter 9 Flutterhero: a Flutter Game

379

 Transferring Energy

When the ship “collides” with the crystal or planet, energy must be transferred to or from

the ship. The transferEnergy() function is called for that purpose:

void transferEnergy(bool inTouchingCrystal) {

 if (inTouchingCrystal && player.energy < 1) {

If the caller indicates that the crystal is being touched, then we have to ensure

that the ship isn’t already full. The values run from 0 to 1 because that’s what the

LinearProgressIndicator widget wants for its value range. However, I found that if a

check isn’t done to be sure the value never goes over one then the bar “bounces” at the

end a little bit, which looks bad.

When the first contact occurs, we need to play the appropriate sound:

 if (player.energy == 0) { audioCache.play("fill.mp3"); }

At the first touch, the energy would be zero, of course, that’s why this condition is

checked.

After that, it’s a simple matter of incrementing the energy and capping it at one:

 player.energy = player.energy + .01;

 if (player.energy >= 1) {

 player.energy = 1;

 randomlyPositionObject(crystal);

 }

Also, when the ship is full, the crystal gets randomly repositioned so that the ship is

no longer sucking energy (not that it would anyway with the conditions checked for here,

but this way it visually isn’t there to be siphoned from).

The else if branch comes next and that’s for contact with the planet:

 } else if (player.energy > 0) {

This only has an effect when the ship has energy onboard of course, so we check

for that.

Chapter 9 Flutterhero: a Flutter Game

380

Then, similar to the first contact with the crystal, we want to play a different sound

upon the first contact with the planet, so:

 if (player.energy >= 1) {

 audioCache.play("delivery.mp3");

 }

And, as with the crystal, the energy on the ship is adjusted:

 player.energy = player.energy - .01;

Of course, with the energy being adjusted and state being set, the bar will fill or unfill

as appropriate, just like we want.

Now, there’s some other logic we need to implement when depositing energy to the

planet, and that’s when all the energy is delivered:

 if (player.energy <= 0) {

 player.energy = 0;

 audioCache.play("explosion.mp3");

 score = score + 100;

 for (int i = 0; i < 3; i++) {

 Function callback;

 if (i == 0) {

 callback = () { resetGame(true); };

 }

 fish[i].visible = false;

 GameObject explosion = GameObject(screenWidth,

 screenHeight, "explosion", 50, 50, 5, 4, callback);

 explosion.x = fish[i].x;

 explosion.y = fish[i].y;

 explosions.add(explosion);

 robots[i].visible = false;

 }

 }

Here, we ensure that the energy is at zero, not below, and the explosion sound is

played, and the player’s score bumped up. That’s because it’s time to blow up the vermin!

The loop executes and for each vermin, it’s hidden, and an explosion shown in its place.

Note that the animation callback you saw earlier when looking at the GameObject class

Chapter 9 Flutterhero: a Flutter Game

381

now is used: the first (and only the first) vermin has this callback hooked up so that when

the animation cycles completes, we can reset the game, including resetting the position

of the enemies.

Note the code you see here for the fish is repeated for the robots, aliens, and

asteroids, so I saved a little space by not showing them here.

The result of all of this is shown in Figure 9-5: beautiful vermin carnage!

Figure 9-5. Boom! We all fall down!

Of course, they come right back, so it’s a short-lived victory for our hero ☹

Chapter 9 Flutterhero: a Flutter Game

382

 Taking Control: InputController.dart

The final bit of code we need to look at is the InputController class, the one you saw get

hooked up to the GestureDetector’s event properties earlier. It implements all the player

motion controls and begins thusly:

import "package:flutter/material.dart";

import "Player.dart";

double touchAnchorX;

double touchAnchorY;

int moveSensitivity = 20;

After what I would think are obvious imports, we have three variables. The way the

control scheme works is that the player places their finger any where on the screen and

that becomes the “anchor point.” Picture a video game joystick in your mind. The center

position represents this anchor point. Now, any time the player moves their finger, the

new position relative to that anchor point represents movement in that direction. If their

finger is, say, 20 pixels above the anchor point, then they want to move the ship up. If

they lift their finger and put it somewhere else, then we have a new anchor point. They

can, in a sense, create a “virtual joystick” anywhere on the screen that is convenient for

them. So, we need two variables to record the X and Y location of the anchor point. We

also need to know how many pixels away from the anchor point will register a move,

a “sensitivity” setting if you will, and after some experimenting, I landed on 20 being a

pretty good value: not too touchy but not too difficult to register a move either.

We also need a reference to the player, which should seem obvious:

Player player;

And, that reference it stored when the init() method here is called from the

firstTimeInitialization() method:

void init(Player inPlayer) { player = inPlayer; }

Now, you’ll recall from earlier that we need to handle three events from the

GestureDetector: onPanStart (when the player places their finger down), onPanUpdate

Chapter 9 Flutterhero: a Flutter Game

383

(when they drag their finger) and onPanEnd (when they lift their finger). First up is

onPanStart() for handling the onPanStart event:

void onPanStart(DragStartDetails inDetails) {

 touchAnchorX = inDetails.globalPosition.dx;

 touchAnchorY = inDetails.globalPosition.dy;

 player.moveHorizontal = 0;

 player.moveVertical = 0;

}

The task here is simple: record the new anchor point and ensure the player isn’t

moving. The object passed into this method is a DragStartDetails object that contains

a few pieces of information, most critically to us being globalPosition.dx and

globalPosition.dy for the horizontal (x) and vertical (y) position of the drag event.

Next is the onPanUpdate() function, which is where the majority of the work that this

class does is found:

void onPanUpdate(DragUpdateDetails inDetails) {

 if (inDetails.globalPosition.dx <

 touchAnchorX – moveSensitivity) {

 player.moveHorizontal = -1;

 player.orientationChanged();

 } else if (inDetails.globalPosition.dx >

 touchAnchorX + moveSensitivity) {

 player.moveHorizontal = 1;

 player.orientationChanged();

 } else {

 player.moveHorizontal = 0;

 player.orientationChanged();

 }

 if (inDetails.globalPosition.dy <

 touchAnchorY – moveSensitivity) {

 player.moveVertical = -1;

 player.orientationChanged();

 } else if (inDetails.globalPosition.dy >

 touchAnchorY + moveSensitivity) {

 player.moveVertical = 1;

Chapter 9 Flutterhero: a Flutter Game

384

 player.orientationChanged();

 } else {

 player.moveVertical = 0;

 player.orientationChanged();

 }

}

It may look like a lot of code, but it’s straightforward: if the horizontal location of the

drag update event, as indicated by the DragUpdateDetails object’s globalPosition.

dx property, is more than 20 pixels to the left of the anchor point, then the player’s

moveHorizontal value is -1, and the call to player.orientationChanged() results in the

proper rotation being applied. Similarly, if the event happened more than 20 pixels to

the right, then the player is moving right (moveHorizontal gets a value of one). If neither

of those conditions applies, then there is no horizontal movement (moveHorizontal

is set to zero). Then, the same logic is applied for the vertical position but using the

inDetails.globalPosition.dy property. The result is the movement control mechanics

described, the virtual joystick, so to speak.

Finally, we just have to handle the onPanEnd event in the onPanEnd() handler function:

void onPanEnd(dynamic inDetails) {

 player.moveHorizontal = 0;

 player.moveVertical = 0;

}

All we need to do here is stop any movement that may be occurring, and we have a

fully controllable player and a fully playable game thanks to Flutter!

 Summary

That’s it! You made it! Three complete Flutter apps, the final one a game! In this chapter,

you learned about some new things such as the Positioned widget, Random number

generation, handling pan input events, AnimationController, Tween and Animation for

performing – after a fashion – animation, and audio. You also, if it was something you

hadn’t seen before, learned a little bit about how to architect a game.

Chapter 9 Flutterhero: a Flutter Game

385

It is my sincerest hope that you’ve enjoyed Practical Flutter and that you’ve learned

a lot from it. The goal was never to make you an absolute expert in all things Flutter –

it’s way too big of a thing for a single book to pull that off! But, if I’ve done my job even

close to properly, then you now have a solid foundation on which to build your Flutter

knowledge, and with luck, I’ve provided you the necessary building blocks to start

creating your own Flutter apps.

So, get to it, start twiddling some bits, go forth and create greatness thanks to Flutter

and, in some small part I hope, this book!

Chapter 9 Flutterhero: a Flutter Game

387
© Frank Zammetti 2019
F. Zammetti, Practical Flutter, https://doi.org/10.1007/978-1-4842-4972-7

Index

A

addListener() method, 370

addRoomInvite() method, 288

AlertDialog widget, 128, 129

Align widgets, 89

AlwaysStoppedAnimation widget, 362

Android Studio, 19–20

hot reload icon, 30

.idea directory, 34

virtual machine dropdown, 24

AnimatedContainer widget, 141–142

AnimatedCrossFade widget, 142–143

Animation object, 368, 369

animationCallback property, 351

AnimationController, 368–370

Animations and transitions, 140

AnimatedContainer widget, 141, 142

AnimatedCrossFade widget, 142, 143

AnimatedDefaultTextStyle, 144, 145

AnimatedOpacity widget, 145

AnimatedPositioned widget, 145

Animated∗ widget, 145

Stack widget, 145

∗Transition widget, 145

APIs, 167, 168

Application

build() method, 28

Center widget, 29

Column widget, 29

FAB, 25

main() method, 28

MaterialApp widget, 28

MyApp class, 28

MyHomePage class, 28

runApp() method, 28

Scaffold, 29

structure, 31, 32

android directory, 33

.gitignore, 34

∗.iml, 34

ios directory, 33

lib directory, 33

.metadata, 34

.packages, 34

pubspec.lock and pubspec.yaml, 34

readme file, 35

res directory, 33

test directory, 33

Appointments entity, 230

Appointments.dart, 231

database worker, 231

list screen

build() method, 234, 235

Calendar Carousel, 232, 233, 236

with date indicators, 234

DateTime constructor, 233

decoration, 233

_deleteAppointment() method, 239

Divider widget, 237

_editAppointment method, 239

https://doi.org/10.1007/978-1-4842-4972-7

388

entry screen, 240, 241, 243

imports, 232

_showAppointments() method, 236

showModalBottomSheet()

function, 236

Slidable widget, 238

Theme.of() function, 237

TimeOfDay constructor, 238

model, 230, 231

as keyword, 51

Assertions, 71

Asychronous programming, 71, 72

Asynchronous JavaScript and XML

(AJAX), 265, 266

AudioCache class, 366, 367

audio_cache.dart module, 365

B

Boolean values, 46

BottomSheet widget, 132, 133

BoxConstraints class, 91

break keyword, 52

C

Calendar Carousel, 232, 233, 236

Center widget, 88, 89

Chip, 162–164

CircularProgressIndicator, 157, 158

clearCurrentRoomMessages() method, 288

Client-bound message handlers, 294–297

Client side app

Connector.dart file (see Connector.dart)

CreateRoom.dart

building form, 320–322

build() method, 318

connector.create(), 319, 320

entity, 317

UserList.dart, 323–325

widget class, 318

LoginDialog.dart file (see LoginDialog.

dart)

Model.dart file (see Model.dart)

Room.dart file (see Room.dart)

collection library, 173, 176

collision() function, 374, 377

Column widget, 84, 86

Comet technique, 266

Comments, 39

connector.create() method, 320

Connector.dart

CircularProgressIndicator, 290

Client-bound message

handlers, 294–297

connectToServer(), 291, 292

hidePleaseWait(), 291

Server-bound message

functions, 292–294

showDialog(), 290

socket.io, 289

connector.post() method, 335

connectToServer() function, 291

ConstrainedBox widget, 91

Constructs, 51

Contacts

Contacts.dart, 245

database worker, 244

entry screen, 250

avatarFile, 253

build() method, 251

GestureDetector widgets, 255

ImagePicker class, 255

keyboardType property, 254

onPressed handler, 252

Appointments entity (cont.)

INDEX

389

renameSync() function, 257

_save() methods, 256

TextFormField widgets, 251

list screen

CircleAvatar widget, 247

delete() method, 246

deleteSync() function, 250

itemBuilder() function, 248

join() method, 246

onPressed event handler, 246

onTap handler, 247, 248

path property, 246

ScopedModel, 245

substring() method, 247

model, 243, 244

Container widget, 89

contains() method, 47, 49

containsAll() method, 47, 49

convert library, 176

Corona SDK, 3

crypto library, 175

CupertinoApp widget, 87

CupertinoPageScaffold, 87

currentFrame property, 351

Custom operators, 57

D

Dart, 5, 15

benefits, 6

features, 7, 8

and Python, 7

snapshots, 8

specification, 8

Dart libraries, 171

async, 172

collection, 173

convert, 173

core, 172

io, 174

math functions, 174, 175

ui, 172

Dart, object-orientation

abstract class, 65, 66

constructors, 60

getters and setters, 63

instance variables, 58

interfaces, 64

methods, 59, 60

operators, 67

subclasses, 62

this keyword, 61

visibility, 66

Dart operators, 55–57

DartPad, 38, 69

Data types

Boolean values, 46

lists and maps, 46, 47, 49, 50

numeric values, 45

string values, 44

Data views

DataTable widget, 150–152

GridView widget, 153, 154

ListTile widget, 156

ListView widget, 155, 156

PageView widget, 157

Table widget, 147–149

DecoratedBox widget, 138, 139

Dictionary, 48

do and while loops, 52

Documentation comments, 40

Documented program

element, 40

Drag-and-drop interaction, 146, 147

INDEX

390

E

Enumerations, 50

Exception handling, 74–76

Expanded widgets, 89, 236

F

fakeMethod(), 49

firstTimeInitialization()

function, 360, 366, 372

FittedBox, 91

FloatingActionButton widget, 164

backgroundColor property, 166

onPressed property, 166

Scaffold widget, 164

shape property, 166

Floating Action Button

(FAB), 25, 235, 245, 314

Flow control (and logic!) constructs

if statements, 53

looping, 51, 52

switch statements, 52

Flutter

benefits

cross-platform, 14

Dart, 15

hot reload, 14

platform-specific widgets, 17

tooling, 16

widgets, 15

defining, 3

design APIs, 4

design widgets, 4

goal, 4

pitfalls

app size, 17

code comingling, 14

Google, 15

mobile, 14

reactive programming and state

management, 16

widget tree, 15

FlutterBook

app code structure, 185

appointments and contacts

entity list, 180

async function, 187

configuration and plugins (see Plugins

and configuration, FlutterBook)

DefaultTabController, 189

FlutterBook class, 188

getApplicationDocumentsDirectory()

function, 187

getTemporaryDirectory()

function, 187

main.dart file, 186

main() function, 187

notes and tasks entity list, 181

FlutterChat, 259

administrative privileges, 260

Drawer widget, 260

server code (see Server code)

users, 260

FlutterChat, Clientside app

main.dart

build() method, 300

login dialog, 298, 299

named routes, 300

startMeUp() function, 298

FlutterPad, 38

Flutter SDK, 17

commands, 18

flutter doctor, 18

forEach() method, 49, 69

INDEX

391

Form widget

and cohorts, 109–111

currentWidget, 113

decoration property, 114

GlobalKey class, 112

key property, 112

LoginData class, 112

_MyApp State class, 112

TextFormField, 113

validator property, 113

Foundation library, 4

frameCount property, 351, 352

frameSkip property, 351, 352

Functions

forEach() method, 69

greet() function, 68

main() function, 68

nestedFunction(), 70

parameters, 68

G

Game

animation frames, 346

assets directory, 344, 345, 347

GameObject class, 346

layout, 343, 344

main.dart file, 346

story, 341, 343

Game core logic

AnimationController, 369

Animation object, 368

collision, 376–378

curve property, 369

first time initialization, 366, 367

main game loop function (see Game

loop function)

randomlyPositionObject(), 378

reset game, 371–373

transfer energy

else if branch, 379

explosion, 380

GameObject class, 380

LinearProgressIndicator, 379

variables, 365, 366

Game loop function

animation, 373

AudioCache, 375

collision() function, 374

collisions, 375

else branch, 375

Enemy class, 374

explosions, 374, 376

GameObject class, 374

GameObject class

animation, 352

API, 350

baseFilename, 350

constructor, 351

Container, 353

draw() method, 352

Enemy class, 353, 354

function, 349

hierarchy, 348

InputController (see Inputcontroller

class)

main.dart (see main.dart source file)

Player class (see Player class)

properties, 351

subclasses, 348

Generators, 76, 77

Generics, 79, 80

GlobalKey, 112

greetAgain() method, 68

INDEX

392

H

Hash, 48

hashCode(), 49

hidePleaseWait() function, 291

Hot reload, 29

in Android Studio, 30

benefits, 31

working, 29

I, J, K

Icon widget, 158

Flutter Playground app, 159

font_awesome_flutter plugin, 160

Icons class, 158

If statements, 53

Image widget, 161–162

InputController class, 364, 370

DragStartDetails object, 383

DragUpdateDetails, 384

firstTimeInitialization() method, 382

GestureDetector’s event, 382

onPanEnd event, 384

onPanStart(), 383

onPanUpdate() function, 383

virtual joystick, 382

Input widgets

Checkbox, 114–117

date and time pickers, 120–123

dismissible, 123

Form widget (see Form widget)

Radio, 119, 120

Slider, 118

Switch, 118

Internet Engineering Task

Force (IETF), 266

isEmpty() method, 49

is keywords, 51

isNotEmpty() method, 49

L

Layout widgets

basics, 84, 86

Card, 92–94

Divider, 92

Drawer, 94, 96, 97

MyApp class, 86

Libraries, 73, 74

Libraries, Flutter framework

animation, 168

foundation, 169

gestures, 169

painting, 170

services, 170, 171

widgets, 171

LinearProgressIndicator, 158

loadAll() method, 367

LoginDialog.dart

AppDrawer, 309–312

build() method, 303

GlobalKey, 302

Home.dart file, 308, 309

Lobby.dart file, 313–316

user login, 306, 307

Looping, 51, 52

M

main.dart source file

build() method, 361, 364

explosions, 363

GameScreenState class, 360

GestureDetector widget, 364

LinearProgressIndicator, 362, 363

INDEX

393

mouse events, 364

Positioned wrapping, 361

services.dart module, 360

Stack, 361, 364

SystemUiOverlay.bottom element, 360

TickerProviderStateMixin, 360

Map class, 48

MaterialApp widget, 87, 185

material.dart library, 86

math package, 365

MediaQuery class, 367

Metadata, 78

Mobile development, 2

Internet, 3

platforms, 2

SDKs, 2

Model.dart

addMessage(), 287

addRoomInvite(), 288

clearCurrentRoomMessages(), 288

properties, 285, 286

removeRoomInvite(), 288

setRoomList(), 287

typical model class, 286

Multi-line comments, 40

N

Navigation widgets

BottomNavigationBar, 99–102

MaterialPageRoute, 98

pop() method, 98

push() method, 98

Stepper, 105–108

TabBar, 102–104

TabBarView, 102, 105

TabController, 104

nextInt() method, 378

Node, 260

defining, 260

elementary, 264

installing and running, 261, 263

interaction, 263

web site, 262

Node Package Manager (NPM), 269, 270

Notes, FlutterBook

database layer

execute() method, 202

init() method, 201

join() method, 202

Note class, 203

noteFromMap()

function, 205, 206

NotesDBWorker class, 201

path.dart module, 201

query() method, 205

rawInsert() method, 204

sqflite plugin, 201

update() method, 206

entry screen, 212, 213

build() method, 215

decoration, 219

FocusScope class, 216

GlobalKey, 214

_save() method, 220, 221

Scaffold widget, 216

SnackBar message, 221

TextFormFields, 214, 218

trailing property, 217

update() method, 221

list screen, 206

build() method, 207

_deleteNote() method, 211, 212

ListTile widget, 210

ListView widget, 209

Scaffold, 208

INDEX

394

secondaryActions list, 210

showSnackBar() method, 212

SlidableDrawerDelegate()

instance, 209

model class, 199, 200

Notes.dart file, 197, 198

Numeric values, 45

numFrames property, 351

O

Object-Oriented Programming, 348

obj.fakeMethod(), 49, 50

onSelected handler function, 329

Opacity widget, 138

P, Q

Padding widget, 89

PalmOS, 2

Personal Information

Manager (PIM), 179, 180

Player class

anglesToRadiansConversion

Table, 356, 358

constructor, 356

directions, 358

draw() method, 357

orientationChanged() method, 357

track energy, 355

tricks, 355

Plugins and configuration, FlutterBook

flutter_calendar_carousel widget, 184

flutter_slidable, 184

image_picker, 184

intl, 184

path_provider, 184

pubspec.yaml file, 182, 183

scoped_model, 184

sqflite, 184

PopupMenuButton widget, 166, 167

Positioned widget, 353

Projects

application, 21

details, 23

module, 22

package, 21

plugin, 21

pubspec.yaml, 346, 347

pushNamedAndRemoveUntil()

method, 312

R

randomlyPositionObject(), 371, 378

remove() method, 49

removeRoomInvite() method, 288

resetGame() function, 371, 372

RESTful servers, 264

Room.dart

AlertDialog constructor, 337

BoxDecoration class, 338

build() method, 327

connector.invite(), 340

connector.kick(), 339, 340

ExpansionPanelList

widget, 326, 327

invite user dialog, 336

itemBuilder function, 331

leave string, 330

main screen content, 331–335

onSelected handler function, 329

PopupMenuEntry widgets, 331

RotatedBox, 91

Row widget, 84

Notes, FlutterBook (cont.)

INDEX

395

S

sayName() method, 59

Scaffold widget, 87, 88, 102, 164, 216

scale() static method, 90

Server-bound message functions, 292–294

Server code, 269

createServer() method, 272

messages

closing room, 282, 283

connection, 272

inviting user to room, 280, 281

joining room, 278, 279

kicking user out of room, 283, 284

leaving room, 281, 282

listing rooms, 277

listing users, 278

posting, 280

rooms, creation, 275, 276

validating user, 273–275

NPM, 269

room descriptor objects, 271

socket.io, 272

user descriptor object, 271

Set class, 47

setRoomList() method, 287

setUserList() method, 287

showDatePicker() function, 120, 122, 191

showDialog() function, 124, 127, 212,

255, 290

showTimePicker() function, 120, 122, 243

SimpleDialog widget, 124–128

Single-line comments, 39

SizedBox, 92, 290

Skia, 4

SnackBar widget, 130, 131

someLongRunningFunction(), 72

Stack widget, 353

StatefulWidget class, 28, 102, 118

State management, 192

BaseModel class, 195

entity’s screens, 195

loadData() method, 196

notifyListeners() method, 193

scoped_model, 193

ScopedModelDescendent, 194

setStackIndex() method, 196

setState() paradigm, 193

stateful widgets, 192

String values, 44

Switch statements, 52

T

Tasks, 223

database worker, 224

entry screen, 228–230

list screen

build() function, 225

Checkbox, 226

DateTime constructor, 226

deleteTask() method, 228

loadData() method, 226

onTap() event handler, 228

Slidable, 226

model, 224

Tasks.dart, 225

Text widget, 88, 91

ThemeData widget, 87, 137

Ticker object, 368

Tokens, 39, 44

Tooltip widget, 124

toString(), 49

transferEnergy() function, 379

Transform widget, 90, 139, 140, 357

INDEX

396

U

UI structure, 185

UltimateHero class, 62

UserList.dart, 323–325

Utilities

BaseModel, 191

path_provider, 192

setChosenDate() function, 191

showDatePicker() function, 191

split() function, 191

utils.dart file, 189

V

valueColor property, 157, 362

Variables, 41

const and final keywords, 43

declaration and initialization, 42

visible property, 351

void keyword, 54, 55

W, X, Y, Z

WebSockets and socket.io, 265

AJAX, 265

clearPreferences

message, 267

Comet technique, 266

emit() method, 267

hanging-GET, 266

with JavaScript API, 267

on() method, 267

polling approach, 265

protocol, 266

subscribe() method, 268

upgrade, 266, 267

Widgets, 9, 15

build() method, 10

Flutter UIs, 13

hierarchy, 10

StatefulWidget, 11, 12

StatelessWidget, 11

user interface, 10

WidgetsApp widget, 86

Widgets, styling, 135

DecoratedBox, 138, 139

opacity, 138

Theme and

ThemeData, 136–138

transform, 139, 140

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Flutter: A Gentle Introduction
	Meditations on the Abyss
	What’s in a (Silly) Name?
	Dart: Language of the Gods?
	Widgets to the Left of Me, Widgets to the Right!
	Brass Tacks: The Pros and Cons of Flutter
	Ok, Enough Talk, Let’s Get Going with Flutter!
	Flutter SDK
	Android Studio

	The (Slightly Less) Typical “Hello, World!” App
	Hot Reload: You’ll Love It!
	Basic Flutter Application Structure
	A Few More “Under-the-Covers” Details
	Summary

	Chapter 2: Hitting the Bullseye with Dart
	The Things You Must Know
	No Comment: All About Comments
	Nothing Stays the Same: Variables
	Variable Declaration and Initialization
	Constants and Final Values

	Everybody Has a Type: Data Types
	String Values
	Numeric Values
	Boolean Value
	Lists and Maps

	When a Single Value Just Won’t Do: Enumerations
	What’s Your Type: The “as” and “is” Keywords
	Going with the Flow: Flow Control (and Logic!) Constructs
	Looping
	Switch
	If Statements

	The Big Nothing: void
	Smooth Operators
	Classing the Joint Up: Object Orientation in Dart
	Instance Variables
	Methods
	Constructors
	The “this” Reference
	Subclassing
	Getters and Setters
	Interfaces
	Abstract Classes
	Visibility
	Operators

	Getting Funky with Functions
	Tell Me Is It So: Assertions
	Out of Time: Asynchrony
	Ssshhh, Be Quiet: Libraries (and Visibility)
	Let’s Be Exceptional: Exception Handling
	I Have the Power: Generators
	Metatude: Metadata
	Speaking in General: Generics

	Summary

	Chapter 3: Say Hello to My Little Friend: Flutter, Part I
	A Buffet of Widgets
	Layout
	MaterialApp, Scaffold, Center, Row, Column, Expanded, Align, and Text
	Container, Padding, Transform
	ConstrainedBox, FittedBox, RotatedBox, SizedBox
	Divider
	Card
	Drawer

	Navigation
	BottomNavigationBar
	TabBar (CupertinoTabBar) and TabBarView (CupertinoTabView)
	Stepper

	Input
	Form
	Checkbox
	Switch (CupertinoSwitch)
	Slider (CupertinoSlider)
	Radio
	Date and Time Pickers (CupertinoDatePicker, CupertinoTimerPicker)
	Dismissible

	Dialogs, Popups, and Messages
	Tooltip
	SimpleDialog (CupertinoDialog)
	AlertDialog (CupertinoAlertDialog)
	SnackBar
	BottomSheet (CupertinoActionSheet)

	Summary

	Chapter 4: Say Hello to My Little Friend: Flutter, Part II
	Styling Widgets
	Theme and ThemeData
	Opacity
	DecoratedBox
	Transform

	Animations and Transitions
	AnimatedContainer
	AnimatedCrossFade
	AnimatedDefaultTextStyle
	A Few Others: AnimatedOpacity, AnimatedPositioned, PositionedTransition, SlideTransition, AnimatedSize, ScaleTransition, SizeTransition, and RotationTransition

	Drag and Drop
	Data Views
	Table
	DataTable
	GridView
	ListView and ListTile

	Miscellaneous
	CircularProgressIndicator (CupertinoActivityIndicator) and LinearProgressIndicator
	Icon
	Image
	Chip
	FloatingActionButton
	PopupMenuButton

	Wither APIs?
	Core Flutter Framework Libraries
	animation
	foundation
	gestures
	painting
	services
	widgets

	Dart Libraries
	core
	ui
	async
	collection
	convert
	io
	math

	Other (Support) Libraries
	crypto
	collection
	convert

	Summary

	Chapter 5: FlutterBook, Part I
	What Are We Building?
	Project Kickoff
	Configuration and Plugins
	UI Structure
	App Code Structure
	The Starting Line
	Some Global Utilities
	On State Management
	Starting with an Easy One: Notes
	The Starting Point: Notes.dart
	The Model: NotesModel.dart
	The Database Layer: NotesDBWorker.dart
	The List Screen: NotesList.dart
	The Entry Screen: NotesEntry.dart

	Summary

	Chapter 6: FlutterBook, Part II
	Get ‘Er Done: Tasks
	TasksModel.dart
	TasksDBWorker.dart
	Tasks.dart
	TasksList.dart
	TasksEntry.dart

	Make a Date: Appointments
	AppointmentsModel.dart
	AppointmentsDBWorker.dart
	Appointments.dart
	AppointementsList.dart
	AppointmentsEntry.dart

	Reaching Out: Contacts
	ContactsModel.dart
	ContactsDBWorker.dart
	Contacts.dart
	ContactsList.dart
	ContactsEntry.dart

	Summary

	Chapter 7: FlutterChat, Part I: The Server
	Can We Build It? Yes, We Can! But, uh, What IS “It”?!
	Node
	Keeping the Lines of Communication Open: socket.io
	FlutterChat Server Code
	Two Bits of State and an Object Walk into a Bar…
	The Big Hookup: Messages
	Getting Through the Front Door: Validating a User
	Playing Carpenter: Creating a Room
	Show Me the Mon...err, Rooms: Listing Rooms
	Don’t Leave the People Out: Listing Users
	A Knock at the Door: Joining a Room
	There’s No Need to Yell: Posting a Message to a Room
	Psst! Hey! You! Get in Here: Inviting a User to a Room
	Okay, That’s It, I’ve Had Enough: Leaving a Room
	You Ain’t Got to Go Home, but You Can’t Stay Here: Closing a Room
	Somebody’s Acting the Fool: Kicking a User Out of a Room

	Summary

	Chapter 8: FlutterChat, Part II: The Client
	Model.dart
	Connector.dart
	Server-Bound Message Functions
	Client-Bound Message Handlers

	main.dart
	LoginDialog.dart
	Existing User Login

	Home.dart
	AppDrawer.dart
	Lobby.dart
	CreateRoom.dart
	Building the Form

	UserList.dart
	Room.dart
	The Room Functions Menu
	The Main Screen Content
	Inviting or Kicking a User

	Summary

	Chapter 9: FlutterHero: A Flutter Game
	The Story So Far
	The Basic Layout
	Directory Structure and Component Source Files
	Configuration: pubspec.yaml
	The GameObject Class
	Extending from GameObject: The Enemy Class
	Extending from GameObject: The Player Class
	Where It All Starts: main.dart
	The Main Game Loop and Core Game Logic
	Kicking It Off
	First Time Initialization
	Flutter Animation in Brief

	Resetting Game State
	The Main Game Loop
	Checking for Collisions
	Randomly Positioning an Object
	Transferring Energy

	Taking Control: InputController.dart
	Summary

	Index

