
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.dummies.com/cheatsheet/androidapplicationdevelopment
http://Dummies.com
http://Dummies.com
http://Dummies.com
http://Dummies.com
http://www.it-ebooks.info/

Android™

Application Development
FOR

DUMmIES
‰

2ND EDITION

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

by Michael Burton and Donn Felker

Android™

Application Development
FOR

DUMmIES
‰

2ND EDITION

www.it-ebooks.info

http://www.it-ebooks.info/

AndroidTM Application Development For Dummies®, 2nd Edition
Published by
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Hoboken, New Jersey
Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.
Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!,
The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates
in the United States and other countries, and may not be used without written permission. Android is a
trademark of Google, Inc. All other trademarks are the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR
WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER,
READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED
OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.
For technical support, please visit www.wiley.com/techsupport.
Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in print-on-demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.
Library of Congress Control Number: 2012948923
ISBN: 978-1-118-38710-8 (pbk); ISBN 978-1-118-41745-4 (ebk); ISBN 978-1-118-42190-1 (ebk);
ISBN 978-1-118-43327-0 (ebk)
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com
http://www.it-ebooks.info/

About the Authors
Michael Burton is the Lead Android Engineer at Groupon. He wrote the
Groupon, Digg, TripIt, and OpenTable Android apps, among others. He’s
flown a project on the Space Shuttle. He’s spoken on Android application
development at conferences in London, Boston, Silicon Valley, Rio de
Janeiro, and elsewhere. He’s also the author of RoboGuice, the open-source
dependency injection framework used by Google, Facebook, and others.
Follow Michael on Twitter (@roboguice) or check out RoboGuice at http://
roboguice.org.

Donn Felker is a recognized leader in the development and consultation
of state-of-the-art, cutting-edge software in the mobile and web fields. He is
an independent consultant with over 10 years of professional experience in
various markets that include entertainment, health, retail, insurance, financial,
and real estate. He is a mobile junkie, serial entrepreneur, and creative
innovator in all things mobile and web. He is the founder of Agilevent, an
innovative creative development firm that has done work for small startups
as well as Fortune 500 companies. He is a Microsoft ASP Insider, an MCTS for
.NET Framework 2.0 and 3.5 Web Applications, and a certified ScrumMaster.
He’s a national speaker on topics that include Android, .NET, and software
architecture. He is the author of the TekPub.com Introduction to Android
video series. He is a writer, presenter, and consultant on various topics ranging
from architecture to development in general, agile practices, and patterns and
practices. Follow Donn on Twitter (@donnfelker) or read his blog at http://
blog.donnfelker.com.

www.it-ebooks.info

http://roboguice.org
http://roboguice.org
http://blog.donnfelker.com
http://blog.donnfelker.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dedication
To BugDroid.

Author’s Acknowledgments
Thanks to Donn Felker for writing the initial version of this book and tossing
the project my way. Here’s hoping we work on many successful projects in
the future!

A big thank you to the extended Android open source community, including
Carlos Sessa, Manfred Moser, Donn, and Jake Wharton among others, who
contributed their code, expertise, and reviews of this book.

Thank you to my great team at Groupon, Chris, Alex, Robyn, Eric, Aubrey,
and David, who have pushed me to understand the Android platform deeper
than I would have on my own.

And finally, thank you to my friends and family who have supported me
through the evenings I spent working on this project. The loaner puppy
and the per-chapter treats were all I needed to push through those long
weekends!

www.it-ebooks.info

http://www.it-ebooks.info/

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.
Some of the people who helped bring this book to market include the following:

Acquisitions and Editorial

Project Editor: Rebecca Senninger
Acquisitions Editor: Kyle Looper
Copy Editor: Rebecca Whitney
Technical Editor: Krista Dombroviak
Editorial Manager: Leah Michael
Editorial Assistant: Leslie Saxman
Sr. Editorial Assistant: Cherie Case
Cover Photo: © istockphoto.com/Palto
Cartoons: Rich Tennant (www.the5thwave.com)

Composition Services

Project Coordinator: Patrick Redmond
Layout and Graphics: Jennifer Creasey,

Corrie Niehaus
Proofreader: Lisa Young Stiers
Indexer: Sharon Stock

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Kathleen Nebenhaus, Vice President and Executive Publisher
Composition Services

Debbie Stailey, Director of Composition Services

www.it-ebooks.info

http://dummies.custhelp.com
http://www.the5thwave.com
http://www.it-ebooks.info/

Contents at a Glance
Introduction... 1

Part I: The Nuts and Bolts of Android............................. 7
Chapter 1: Developing Spectacular Android Applications.. 9
Chapter 2: Prepping Your Development Headquarters... 27

Part II: Building and Publishing
Your First Android Application..................................... 53
Chapter 3: Your First Android Project... 55
Chapter 4: Designing the User Interface.. 91
Chapter 5: Coding Your Application.. 115
Chapter 6: Understanding Android Resources... 153
Chapter 7: Turning Your Application into a Home Screen Widget.......................... 161
Chapter 8: Publishing Your App to the Google Play Store.. 183

Part III: Creating a Feature-Rich Application............. 203
Chapter 9: Designing the Task Reminder Application... 205
Chapter 10: Going a la Carte with Your Menu... 229
Chapter 11: Handling User Input... 237
Chapter 12: Getting Persistent with Data Storage.. 259
Chapter 13: Reminding the User with AlarmManager.. 287
Chapter 14: Updating the Android Status Bar... 301
Chapter 15: Working with Android’s Preferences Framework................................. 311

Part IV: Tablets.. 325
Chapter 16: Developing for Tablets.. 327
Chapter 17: Porting Your App to Android Tablets... 335
Chapter 18: Moving beyond Google... 349

Part V: The Part of Tens.. 359
Chapter 19: Ten Free Sample Applications and SDKs.. 361
Chapter 20: Ten Tools to Simplify Your Development Life....................................... 365

Index... 369

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Introduction.. 1

About This Book... 1
Conventions Used in This Book.. 2
Foolish Assumptions.. 2
How This Book Is Organized... 3

Part I: The Nuts and Bolts of Android.. 3
Part II: Building and Publishing Your First Android Application...... 3
Part III: Creating a Feature-Rich Application....................................... 4
Part IV: Tablets.. 4
Part V: The Part of Tens... 4

Icons Used in This Book.. 4
Where to Go from Here.. 5

Part I: The Nuts and Bolts of Android.............................. 7

Chapter 1: Developing Spectacular Android Applications 9
Why Develop for Android?.. 9

Market share.. 10
Time to market.. 10
Open platform... 10
Cross-compatibility.. 11
Mashup capability.. 11

Android Development Basics.. 12
Java: Your Android programming language...................................... 13
Activities.. 13
Intents.. 13
Cursorless controls.. 15
Views.. 15
Asynchronous calls.. 15
Background services.. 16

Honeycomb, Ice Cream Sandwich, and Jelly Bean Features..................... 17
Fragments.. 17
Loaders.. 18
Android support library... 18
Action bar.. 18
Holo.. 20
Widgets, notifications, performance.. 21

Hardware Tools.. 21
Touchscreen.. 22
GPS.. 23
Accelerometer... 23
SD card... 23

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application Development For Dummies, 2nd Edition xii
Software Tools.. 24

Internet... 24
Audio and video support... 24
Contacts... 25
Security.. 25
Google APIs.. 25

Chapter 2: Prepping Your Development Headquarters 27
Developing the Android Developer Inside You.. 27
Assembling Your Toolkit... 28

Linux 2.6 kernel... 28
Android framework.. 29
Application framework... 30
Open Handset Alliance libraries... 31
Java knowledge... 32

Tuning Up Your Hardware.. 33
Operating system.. 33
Computer hardware... 34

Installing and Configuring Your Support Tools.. 34
Getting the Java Development Kit.. 35
Acquiring the Android SDK... 36

Downloading the Android SDK.. 36
Following and setting your tools path... 38

Getting the Total Eclipse... 40
Installing Eclipse... 40
Configuring Eclipse... 43

Navigating the Android SDK.. 46
Targeting Android Platforms.. 47
Using SDK Tools for Everyday Development.. 48

Saying hello to the emulator... 48
Getting physical with a real Android device..................................... 49
Debugging your work... 51
Trying out the API and SDK samples.. 51
Giving the API demos a spin.. 51

Part II: Building and Publishing Your
First Android Application... 53

Chapter 3: Your First Android Project . 55
Starting a New Project in Eclipse.. 55
Deconstructing Your Project.. 60

Responding to error messages... 60
Understanding the Build Target and Min SDK Version settings..... 62

Setting Up an Emulator.. 63
Creating Launch Configurations... 66

www.it-ebooks.info

http://www.it-ebooks.info/

xiii Table of Contents

Running the Hello Android App.. 70
Running the app in the emulator.. 70
Checking deployment status... 76

Understanding Project Structure... 77
Navigating the app’s folders.. 77
Viewing the application’s manifest file.. 86
Viewing the project.properties file... 88

Closing Your Project.. 89

Chapter 4: Designing the User Interface . 91
Creating the Silent Mode Toggle Application... 92
Laying Out the Application... 93

Using the XML layout file... 94
Using the Android SDK layout tools... 96
Using the visual designer... 97

Developing the User Interface... 100
Viewing XML layout attributes.. 101
Working with views.. 101

Adding an Image to Your Application.. 102
Placing an image onscreen.. 102
Adding the image to the layout... 105

Creating a Launcher Icon for the Application... 107
Designing a custom launcher icon.. 108
Adding a custom launcher icon.. 109

Adding a Toggle Button View.. 109
Previewing the Application in the Visual Designer.................................. 111

Chapter 5: Coding Your Application . . 115
Understanding Activities... 115

Working with methods, stacks, and states...................................... 116
Tracking an activity’s life cycle... 117

Creating Your First Activity.. 120
Starting with onCreate... 120
Telling Android to display the user interface................................. 121
Handling user input.. 121
Writing your first event handler... 122

Working with the Android Framework Classes.. 125
Getting good service... 126
Toggling Silent mode with AudioManager....................................... 127

Installing Your Application.. 131
Running your app in an emulator... 131
Installing on a physical Android device... 133

Uh-Oh! (Responding to Errors)... 136
Using the Dalvik Debug Monitor Server... 136
Using the Eclipse debugger... 141

Thinking Beyond the Application Boundaries.. 149
Interacting with your application... 150
Testing whether your application works... 151

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application Development For Dummies, 2nd Edition xiv
Chapter 6: Understanding Android Resources 153

Understanding Resources... 153
Dimensions.. 154
Styles.. 155
Themes... 155
Values... 155
Menus... 156
Colors... 156

Working with Resources.. 156
Moving strings into resources.. 156
Wrestling the image beast... 158
Making your apps global with resources... 159

Chapter 7: Turning Your Application into a Home Screen Widget . . . 161
Working with App Widgets in Android.. 162

Working with remote views... 163
Using AppWidgetProviders... 164

Working with Pending Intents... 165
Understanding the Android intent system...................................... 165
Understanding intent data... 166
Evaluating intents... 168
Using pending intents... 168

Creating the Home Screen Widget.. 170
Implementing the AppWidgetProvider.. 170
Communicating with the app widget... 171
Building the app widget’s layout.. 173
Doing work inside an AppWidgetProvider...................................... 174
Working with the app widget’s metadata.. 178
Registering your new components with the manifest................... 180

Placing Your Widget on the Home Screen... 181

Chapter 8: Publishing Your App to the Google Play Store 183
Creating a Distributable File.. 184

Revisiting the manifest file.. 184
Choosing your tools... 185
Digitally signing your application... 185
Creating the APK file... 187

Creating a Google Play Developer Profile.. 190
Pricing Your Application... 193

Choosing the paid model... 194
Choosing the free model.. 194

Getting Screen Shots for Your Application... 195
Uploading Your Application to the Google Play Store............................. 196
Watching the Number of Installs Soar... 200

www.it-ebooks.info

http://www.it-ebooks.info/

xv Table of Contents

Part III: Creating a Feature-Rich Application.............. 203

Chapter 9: Designing the Task Reminder Application 205
Reviewing the Basic Requirements.. 205

Scheduling a reminder script (That’s alarming!)............................ 206
Storing data... 206
Distracting the user (nicely)... 206

Creating the Application’s Screens.. 207
Starting the new project.. 208
Creating the ReminderListActivity... 209
Creating the ReminderListFragment.. 210
Using an activity to create and edit reminders............................... 212
Adding a fragment to the activity... 215
Creating the adding/editing fragment layout.................................. 217

Completing Your List Fragment.. 220
Getting stubby with fake data... 221
Handling user click events... 223

Identifying Your Intent... 225
Starting new activities with intents.. 225
Creating a chooser.. 226

Chapter 10: Going a la Carte with Your Menu 229
Understanding Options and Context Menus... 230
Creating Your First Menu.. 231

Defining the XML file.. 231
Handling user actions... 233
Creating a reminder task... 233

Creating a Context Menu... 234
Creating the menu XML file... 234
Loading the menu... 235
Handling user selections.. 235

Chapter 11: Handling User Input . 237
Creating the User Input Interface... 237

Creating an EditText view.. 237
Displaying an onscreen keyboard.. 239

Getting Choosy with Dates and Times... 240
Creating picker buttons... 240
Creating the date picker.. 241
Creating the time picker.. 245

Creating an Alert Dialog Box... 250
Seeing why you should work with dialog boxes............................. 251
Choosing the appropriate dialog box for a task............................. 252
Creating your own alert dialog box.. 253

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application Development For Dummies, 2nd Edition xvi
Validating Input.. 255

Toasting the user.. 256
Using other validation techniques... 257

Chapter 12: Getting Persistent with Data Storage 259
Finding Places to Put Data... 259

Viewing your storage options... 260
Choosing a storage option... 261

Creating Your Application’s SQLite ContentProvider............................. 262
Understanding how the SQLite ContentProvider works............... 262
Creating a ContentProvider to hold the database code................ 262
Defining the key elements of a database... 263
Visualizing the SQL table... 264
Creating the database table... 265

Resolving ContentProvider URLs... 267
Creating and Editing Tasks with SQLite.. 270

Inserting a task entry.. 270
Loaders.. 280
Returning all the tasks with a cursor... 281
Understanding the SimpleCursorAdapter....................................... 285
Deleting a task... 285

Chapter 13: Reminding the User with AlarmManager 287
Seeing Why You Need AlarmManager... 287
Asking the User for Permission.. 288

Seeing how permissions affect the user experience...................... 288
Setting requested permissions in the AndroidManifest.xml file..... 289

Waking Up a Process with AlarmManager.. 290
Creating the ReminderManager class.. 291
Creating the OnAlarmReceiver class.. 292
Creating the WakeReminderIntentService class............................. 294
Creating the ReminderService class... 296

Rebooting Devices.. 297
Creating a boot receiver.. 297
Checking the boot receiver... 300

Chapter 14: Updating the Android Status Bar 301
Deconstructing the Status Bar.. 301
Using the Notification Manager.. 305

Creating a notification.. 305
Viewing the workflow... 308
Adding string resources... 308

Updating a Notification.. 309
Clearing a Notification... 309

www.it-ebooks.info

http://www.it-ebooks.info/

xvii Table of Contents

Chapter 15: Working with Android’s Preferences Framework 311
Understanding the Android Preferences Framework.............................. 312
Understanding the PreferenceActivity Class.. 313

Persisting preference values... 314
Laying out preferences.. 314

Creating Your Preferences Screen... 315
Building the preferences file... 316
Adding string resources... 317

Working with the PreferenceActivity Class... 318
Opening the PreferenceActivity class.. 320
Handling menu selections.. 320

Working with Preferences in Your Activities at Runtime........................ 321
Retrieving preference values... 321
Setting preference values.. 323

Part IV: Tablets... 325

Chapter 16: Developing for Tablets . 327
Considering the Difference Between Phones and Tablets...................... 327
Tweaking the Task Reminder App for Tablets... 328

Anticipating screen size with a flowing layout................................ 328
Adding more fragments... 330
Creating different layouts for different devices.............................. 331
Using the action bar... 332
Using the Support Library and ActionBarSherlock........................ 334

Chapter 17: Porting Your App to Android Tablets 335
Configuring a Tablet Emulator.. 335
Updating the AndroidManifest File.. 337
Programming Activities for Tablets... 337

Creating the ReminderListAndEditorActivity................................. 337
Choosing the right activity.. 338
Creating the activity layout... 340

Working with Fragments on Tablet Applications..................................... 341
Communicating between fragments... 342
Adding fragment transactions... 347

Chapter 18: Moving beyond Google . 349
Working Around Google Features.. 349
Setting Up Your Kindle Fire or Emulator... 350

Creating Kindle-like emulator.. 351
Configuring ADB (Mac).. 354
Configuring ADB (Windows).. 354

Publishing to Amazon Appstore for Android.. 355

www.it-ebooks.info

http://www.it-ebooks.info/

Android Application Development For Dummies, 2nd Edition xviii
Part V: The Part of Tens... 359

Chapter 19: Ten Free Sample Applications and SDKs 361
The Google I/O 2012 App... 361
LOLcat Builder.. 362
Amazed.. 362
API Demos... 362
HoneycombGallery... 363
K-9 Mail.. 363
Agit... 363
Facebook SDK for Android.. 363
Replica Island.. 364
Notepad Tutorial.. 364

Chapter 20: Ten Tools to Simplify Your Development Life 365
droid-fu and ignition... 365
RoboGuice... 365
Translator Toolkit.. 366
Draw 9-patch... 366
Hierarchy Viewer.. 366
UI/Application Exerciser Monkey... 367
zipalign... 367
layoutopt... 367
Git... 368
Paint.NET and GIMP... 368

Index.. 369

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

W
elcome to Android Application Development For Dummies!

When Android was acquired by Google in 2005 (yes, Android was a start-up
company at one point), a lot of people didn’t have much interest in it because
Google hadn’t yet entered the mobile space. Fast-forward to a few years later,
when Google announced its first Android phone: the G1. It was the start of
something huge.

The G1 was the first publicly released Android device. It didn’t match the
rich feature set of the iPhone at the time, but a lot of people believed in the
platform. As soon as Donut (Android 1.6) was released, it was evident that
Google was putting some effort into the product. Immediately after version
1.6 was released, talk of 2.0 was already on the horizon.

Today, we’re on version 4.1 of the Android platform, with no signs that things are
slowing down. Without doubt, this is an exciting time in Android development.

About This Book
Android Application Development For Dummies is a beginner’s guide to devel-
oping Android applications. You don’t need any Android application devel-
opment experience under your belt to get started. You can approach this
material as a blank slate because the Android platform accomplishes various
mechanisms by using different paradigms that most programmers aren’t
used to using — or developing with — on a day-to-day basis.

The Android platform is a device-independent platform, which means that you
can develop applications for various devices. These devices include, but aren’t
limited to phones, e-book readers, netbooks, televisions, and GPS devices.

Finding out how to develop for the Android platform opens a large variety
of development options for you. This book distills hundreds, if not thou-
sands, of pages of Android documentation, tips, tricks, and tutorials into a
short, digestible format that allows you to springboard into your future as an

www.it-ebooks.info

http://www.it-ebooks.info/

2 Android Application Development For Dummies, 2nd Edition

Android developer. This book isn’t a recipe book, but it gives you the basic
knowledge to assemble various pieces of the Android framework to create
interactive and compelling applications.

Conventions Used in This Book
Throughout the book, you use the Android framework classes, and you will
be creating Java classes and XML files.

Code examples in this book appear in a monospace font so that they stand
out from other text in the book. This means that the code you’ll see looks
like this:

public class MainActivity

Java is a high-level programming language that is case-sensitive, so be sure
to enter the text into the editor exactly as you see it in the book as it follows
standard Java conventions. Therefore, you can transition easily between
the book examples and the example code provided by the Android Software
Development Kit (SDK). All class names, for example, appear in PascalCase
format, and all class-scoped variables start with m.

All the URLs in the book appear in monospace font as well:

http://d.android.com

Foolish Assumptions
To begin programming with Android, you need a computer that runs one of
the following operating systems:

	 ✓	Windows XP (32 bit), Vista (32 or 64 bit), or Windows 7 or 8 (32 or 64 bit)

	 ✓	Mac OS X (Intel) 10.5.8 or later (x86 only)

	 ✓	Linux (i386)

www.it-ebooks.info

http://www.it-ebooks.info/

3 Introduction

You also need to download the Android SDK (which is free) and the Java
Development Kit (or JDK, which is also free), if you don’t already have them
on your computer. Chapter 2 outlines the entire installation process for all
the tools and frameworks.

Because Android applications are developed in the Java programming lan-
guage, you need to understand the Java language. Android also uses XML
quite heavily to define various resources inside the application, so you
should understand XML too. You don’t have to be an expert in these lan-
guages, however.

You don’t need a physical Android device, because all the applications you
build in this book work on an emulator.

How This Book Is Organized
Android Application Development For Dummies has five parts, described in
the following sections.

Part I: The Nuts and Bolts of Android
Part I introduces the tools and frameworks that you use to develop Android
applications. It also introduces the various SDK components and shows you
how they’re used in the Android ecosystem.

Part II: Building and Publishing
Your First Android Application
Part II introduces you to building your first Android application: the Silent
Mode Toggle application. After you build the initial application, you create an
app widget for the application that you can place on the Home screen of an
Android device. Then you publish your application to the Google Play Store.

www.it-ebooks.info

http://www.it-ebooks.info/

4 Android Application Development For Dummies, 2nd Edition

Part III: Creating a Feature-Rich
Application
Part III takes your development skills up a notch by walking you through the
construction of the Task Reminder application, which allows users to create
various tasks with reminders. You implement an SQLite content provider in
this multiscreen application. You also see how to use the Android status bar to
create notifications that can help increase the usability of your application.

Part IV: Tablets
Part IV takes the phone app you built in Part III and tweaks it to work on
an Android tablet. You also find out how to bring your applications to non-
Google Android devices such as the Amazon Kindle Fire.

Part V: The Part of Tens
Part V gives you a tour of sample applications that prove to be stellar launch-
ing pads for your Android apps, and useful Android libraries that can make
your Android development career a lot easier.

Icons Used in This Book
	 This icon indicates a useful pointer that you shouldn’t skip.

	 This icon represents a friendly reminder about a vital point you should keep
in mind while proceeding through a particular section of the chapter.

	 This icon signifies that the accompanying explanation may be informative but
isn’t essential to understanding Android application development. Feel free to
skip these snippets, if you like.

	 This icon alerts you to potential problems that you may encounter along the
way. Read and remember these tidbits to avoid possible trouble.

www.it-ebooks.info

http://www.it-ebooks.info/

5 Introduction

Where to Go from Here
It’s time to explore the Android platform! If you’re a bit nervous, let me
assure you that you don’t have to worry; you should be nervous only
because you’re excited.

This book includes some extras online:

	 ✓	Find the cheat sheet for this book at www.dummies.com/cheatsheet/
androidapplicationdevelopment.

	 ✓	Don’t want to type all the code in the book? You can download it from
the book’s website at www.dummies.com/go/androidappdevfd2e.

	 ✓	If there are ever updates to this book, you can find them at www.
dummies.com/go/androidappdevfdupdates2e.

www.it-ebooks.info

http://www.dummies.com/cheatsheet/androidapplicationdevelopment
http://www.dummies.com/cheatsheet/androidapplicationdevelopment
http://www.dummies.com/go/androidappdevfd2e
http://www.dummies.com/go/androidappdevfdupdates2e
http://www.dummies.com/go/androidappdevfdupdates2e
http://www.it-ebooks.info/

6 Android Application Development For Dummies, 2nd Edition

www.it-ebooks.info

http://www.it-ebooks.info/

Part I
The Nuts and Bolts

of Android

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

P
art I introduces you to the Android platform and
describes what makes a spectacular Android applica-

tion. You explore various parts of the Android software
development kit (SDK) and explain how you can use them
in your applications. You install the tools and frameworks
necessary to develop Android applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Developing Spectacular
Android Applications

In This Chapter
▶	Seeing reasons to develop Android apps
▶	Starting with the basics of Android development
▶	Working with the hardware
▶	Getting familiar with the software

G
oogle rocks! Google acquired the Android project in 2005 (see the
sidebar “The roots of Android,” later in this chapter) to ensure that a

mobile operating system (OS) can be created and maintained in an open plat-
form. Google continues to pump time and resources into the Android project,
which has already proved to be beneficial. Though devices have been avail-
able only since October 2008, as of today about a million Android devices are
activated daily. In only a few years, Android has already made a huge impact.

It has never been easier for Android developers to make money developing
apps. Android users trust Google. Because your app resides in the Google
Play Store — which Google controls — many Android users assume that your
application is trustworthy, too.

Why Develop for Android?
The real question is, “Why not develop for Android?” If you want your app to be
available to millions of users worldwide or you want to publish apps as soon as
you finish writing and testing them or you like developing on an open platform,
you have your answer. But in case you’re still undecided, continue reading.

www.it-ebooks.info

http://www.it-ebooks.info/

10 Part I: The Nuts and Bolts of Android

Market share
As a developer, you have an opportunity to develop apps for a fairly new —
and booming — market. Many analysts believe that the number of Android
devices in use is greater than the number of devices on all other mobile oper-
ating systems combined. The Google Play Store puts your app directly and
easily into a user’s hands (or, more accurately, device). Users don’t have to
search the Internet to find an app to install — they can simply go to the pre-
installed Google Play Store on their devices and have access to all your apps.
Because the Google Play Store comes preinstalled on most Android devices
(see Chapter 19 for some exceptions), users typically search the Google Play
Store for all their application needs. It isn’t unusual to see an app’s number of
downloads soar in only a few days.

Time to market
Because of all the application programming interfaces (APIs) packed into
Android, you can easily develop full-featured applications in a relatively short
time frame. After you register as a developer at the Google Play Store, simply
upload your apps and publish them. Unlike other mobile marketplaces, the
Google Play Store has no app approval process. All you have to do is write
apps and publish them.

	 Though anyone can publish any type of app (technically speaking), maintain
your good karma — and your compliance with the Google terms of service —
by producing family-friendly apps. Android has users from diverse areas of the
world and in all age categories.

Open platform
The Android operating system is an open platform: Any hardware manufac-
turer or provider can make or sell Android devices. As you can imagine, the
openness of Android has allowed it to gain market share quickly. Feel free to
dig into the Android source code — at http://source.android.com — to
see how certain tasks are handled, for example. By using open source code,
manufacturers can even create custom user interfaces (UIs) and add built-in
features to certain devices.

www.it-ebooks.info

http://source.android.com
http://www.it-ebooks.info/

11 Chapter 1: Developing Spectacular Android Applications

Cross-compatibility
Android is cross-compatible: It can run on devices of many different screen
sizes and resolutions, including phones and tablets. In addition, Android
comes supplied with tools to help you develop cross-compatible applica-
tions. Google allows apps to run only on Android-compatible devices, how-
ever. If your app requires a front-facing camera, for example, only phones
with front-facing cameras can “see” your app in the Google Play Store — an
arrangement known as feature detection. (For more information on publishing
your apps to the Google Play Store, see Chapter 8.)

Mashup capability
A mashup combines two or more services to create an application. You can
create a mashup by using the camera and the Android location services, for
example, to take a photo with the exact location displayed on the image. Or
you can use a map’s API with the Contacts list, for example, to show all con-
tacts on a map. You can easily make apps by combining services or libraries
in countless new and exciting ways. A few other types of mashups that can
help your brain juices start pumping out ideas

	 ✓	Geolocation and social networking: Suppose that you want to write an
app that tweets a user’s current location every ten minutes throughout
the day. Using the Android location services and a third-party Twitter
API (such as iTwitter), you can do it easily.

The roots of Android
Though most people aren’t aware of it, Google
didn’t start the Android project. The initial version
of the Android operating system was created by
Android, Inc., a small start-up company in Silicon
Valley that was purchased by Google in July 2005.
The founders (who worked for various Internet

technology companies, such as Danger,
Wildfire Communications, T-Mobile, and
WebTV) became part of the Google team that
helped create what is now the full-fledged
Android mobile operating system.

www.it-ebooks.info

http://www.it-ebooks.info/

12 Part I: The Nuts and Bolts of Android

	 ✓	Geolocation and gaming: Location-based gaming, which is increasingly
popular, is a helpful way to inject players into the thick of a game. A
game might run a background service to check a player’s current loca-
tion and compare it with other players’ locations in the same area. If a
second player is within a specified distance, the first one could be noti-
fied to challenge her to a battle. All this is possible because of GPS tech-
nology on a strong platform such as Android.

	 ✓	Contacts and Internet: With all the useful APIs at your disposal, you can
easily make full-featured apps by combining the functionality of two or
more APIs. You can combine the Internet and names from the Contacts
list to create a greeting-card app, for example. Or you may simply want
to add an easy way for users to contact you from an app or enable them
to send your app to their friends. (See “Google APIs,” later in this chap-
ter, for more information on the APIs.)

	 Developers can make Android do almost anything they want, so use your
best judgment when creating and publishing apps for mass consumption. Just
because you want live wallpaper to highlight your version of the hula in your
birthday suit doesn’t mean that anyone else wants to see it.

Android Development Basics
Thank goodness you don’t have to be a member of Mensa to develop Android
applications! Developing in Android is simple because its default language
is Java. Though writing Android applications is fairly easy, developing alone
can be a difficult task to conquer.

	 If you’ve never developed applications before, this book isn’t the best
place to start reading about app development. Pick up a copy of Beginning
Programming with Java For Dummies, by Barry Burd (John Wiley & Sons, Inc.)
to learn the ropes. After you have a basic understanding of Java under your
belt, you should be ready to tackle this book.

Although the Android operating system consists primarily of Java code, small
parts of the framework aren’t included. Android uses the XML language as
well as basic Apache Ant scripting for build processes. You need to cement
your basic understanding of XML before delving into this book.

	 If you need an introduction to XML, check out XML For Dummies, by Lucinda
Dykes and Ed Tittel (John Wiley & Sons, Inc.).

If you already know how to use Java and XML, congratulations — you’re
ahead of the curve.

www.it-ebooks.info

http://www.it-ebooks.info/

13 Chapter 1: Developing Spectacular Android Applications

Java: Your Android programming language
Android applications are written in Java — not the full-blown version of Java
that’s familiar to developers using Java Platform, Enterprise Edition (J2EE), but
a subset of the Java libraries that are specific to Android. This smaller subset
of Java excludes classes that aren’t suitable for mobile devices. If you have
experience in Java, you should feel right at home developing apps in Android.

Even with a Java reference book on hand, you can always search at www.
google.com to find information about topics you don’t understand. Because
Java isn’t a new language, you can find plenty of examples on the web that
demonstrate how to do virtually anything.

	 Not every class that’s available to Java programmers is available also on
Android. Verify that it’s available to you before you start trying to use it. If
it’s not, an alternative is probably bundled with Android that can work for
your needs.

Activities
An Android application can consist of only a single activity or several. An
activity serves as a container for both the user interface and the code that
runs it. You can think of activities as pages of your app — one page in your
app corresponds to one activity. Activities are discussed in more detail in
Chapters 3 and 5.

Intents
Intents make up the core message system that runs Android. An intent is com-
posed of two elements:

	 ✓	An action: The general action to be performed (such as view, edit, or
dial) when the intent is received

	 ✓	Data: The information that the action operates on, such as the name
of a contact

Intents are used to start activities and to communicate among various parts
of the Android operating system. An application can either broadcast an
intent or receive an intent.

www.it-ebooks.info

http://www.google.com
http://www.google.com
http://www.it-ebooks.info/

14 Part I: The Nuts and Bolts of Android

Sending messages with intents
When you broadcast an intent, you send a message telling Android to make
something happen. The intent can tell Android to start a new activity from
within your application or to start another application.

Registering intent receivers
Sending an intent doesn’t make something happen automatically. You have
to register an intent receiver that listens for the intent and then tells Android
what to do — whether the task is starting a new activity or another app. If
more than one receiver can accept a given intent, a chooser can be created
to allow the user to choose which app to use to complete the activity — such
as how the YouTube app allows the user to choose whether to watch videos
in the YouTube app or in a browser.

Various registered receivers, such as the Gmail and the Messaging apps,
handle image-sharing intents by default. When you find more than one pos-
sible intent receiver, a chooser opens with a list of options to choose from
and asks what to do: Use e-mail, messaging, or another application, as shown
in Figure 1-1.

	

Figure 1-1:
A chooser.

	

	 Follow best practice and create choosers for intents that don’t target other
activities within your application. If the Android system cannot find a match for
an intent that was sent, and if a chooser wasn’t created manually, the applica-
tion crashes after experiencing a run-time exception — an unhandled error in
the application. (Android expects developers to know what they’re doing.)

www.it-ebooks.info

http://www.it-ebooks.info/

15 Chapter 1: Developing Spectacular Android Applications

Cursorless controls
Unlike the PC, where you manipulate the mouse to move the cursor, an
Android device lets you use your fingers to do nearly anything you can do
with a mouse. Rather than right-click in Android, however, you long-press an
element until its context menu appears.

As a developer, you can create and manipulate context menus. You can allow
users to use two fingers on an Android device, rather than a single mouse
cursor, for example. Fingers come in all sizes, so design the user interface in
your apps accordingly. Buttons should be large enough (and have sufficient
spacing) so that even users with larger fingers can interact with your apps
easily, whether they’re using your app on a phone or tablet.

Views
A view, which is a basic element of the Android user interface, is a rectan-
gular area of the screen that’s responsible for drawing and event handling.
Views are a basic building block of Android user interfaces, much like
paragraph <p> or anchor <a> tags are building blocks of an HTML page.
Some common views you might use in an Android application might be a
TextView, ImageView, Layout, and Button, but there are dozens more
out there for you to explore.

Many more views are ready for you to use. For complete details about views,
check out the android.widget and android.view packages in the Android
documentation at http://developer.android.com/reference/
android/widget/package-summary.html.

Asynchronous calls
You use the AsyncTask class in Android to run multiple operations at the same
time without having to manage a separate thread yourself. The AsyncTask class
not only lets you start a new process without having to clean up after yourself
but also returns the result to the activity that started it — creating a clean pro-
gramming model for asynchronous processing. In general, we use loaders in this
book rather than AsyncTasks, but it’s useful to know about AsyncTasks for
those occasional cases where a loader won’t do what you want.

	 A thread is a process that runs separately from, but simultaneously with,
everything else that’s happening.

www.it-ebooks.info

http://developer.android.com/reference/android/widget/package-summary.html
http://developer.android.com/reference/android/widget/package-summary.html
http://www.it-ebooks.info/

16 Part I: The Nuts and Bolts of Android

You use asynchronous processing for tasks that might take more than a small
fraction of a second, such as network (Internet) communication; reading
from, or writing to, storage; or media processing. When users have to wait for
your task to complete, use an asynchronous call and an element in the user
interface to notify them that something is happening.

	 Failing to use an asynchronous programming model can cause users of your
application to believe that it’s buggy. Downloading the latest Twitter messages
via the Internet takes time, for example. If the network slows and you aren’t
using an asynchronous model, the application will lock up and the user will
likely assume that something is wrong because the application isn’t respond-
ing to her interaction. If the application fails to respond within a reasonable
length of time (defined by the Android operating system), the user sees the
Application Not Responding (ANR) dialog box, as shown in Figure 1-2. The user
can then choose whether to close the application or wait for it to recover.

	

Figure 1-2:
The ANR

dialog box.
	

	 To follow the best practice, run CPU-intensive or long-running code inside
another thread, as described in the Designing for Responsiveness page on
the Android developer site (http://developer.android.com/guide/
practices/design/responsiveness.html).

Background services
If you’re a Windows user, you may already know what a service is: an applica-
tion that runs in the background and doesn’t necessarily have a user interface.
A classic example is an antivirus application that usually runs in the back-
ground as a service. Even though you don’t see it, you know that it’s running.

Most music players that can be downloaded from the Google Play Store, for
example, run as background services. Users can then listen to music while
checking e-mail or performing other tasks that require the use of the screen.

www.it-ebooks.info

http://developer.android.com/guide/practices/design/responsiveness.html
http://developer.android.com/guide/practices/design/responsiveness.html
http://www.it-ebooks.info/

17 Chapter 1: Developing Spectacular Android Applications

Honeycomb, Ice Cream Sandwich,
and Jelly Bean Features

Android 3.0, nicknamed Honeycomb, introduced the world to the Android
tablet. Honeycomb and its subsequent 3.1 and 3.2 releases brought about a
number of changes to support this new device class. Android 4.0 Ice Cream
Sandwich and 4.1 Jelly Bean refined the ideas introduced in Honeycomb for
tablets and brought them to phones, allowing developers to use the same
code to support both phones and tablets in a single code base.

The following sections introduce you to some of the features in these three
versions (that will be covered throughout this book).

Fragments
Every “page” in an Android application is a separate activity. In older versions
of Android, you would place any element that you wanted to display onscreen
directly into the activity class. This arrangement worked well when viewed on
a phone’s small screen, on which you typically can’t see a lot of information at
once. You may be able to see a list of tasks, or a task that you’re editing, but
cramming both elements onto the screen at the same time is impossible.

On a tablet, however, you’re swimming in real estate. Not only does it make
sense to let users see a list of tasks and edit them on the same page, but it
also looks silly not to let them do so. The screen size on a table is simply too
big to fill with a single long list of items or lots of empty space.

Android doesn’t allow you to easily put two activities on the screen at the
same time. What to do? The answer is the fragment.

Using fragments, a single list fragment can occupy half the screen, and an
edit fragment can occupy the other half. You can find out how to use frag-
ments in your phone application in Chapter 9 and how to scale your app to
tablets in Chapter 17.

	 You can think of fragments as miniature activities: Because every fragment
has its own lifecycle, you know when it’s being created and destroyed, among
other information. Fragments go inside activities.

www.it-ebooks.info

http://www.it-ebooks.info/

18 Part I: The Nuts and Bolts of Android

Loaders
A fragment is often used to display data to the user. For example, you might
list some tasks by loading the list from the database. However, it’s important
to never perform I/O operations on the main user interface thread. If you
perform a database operation in the main user interface thread, the user may
see the (dreaded) Application Not Responsive dialog box, which is intrusive
and confusing and often looks like a crash to many users.

A loader provides an easy way to load data on a background thread so that
you don’t delay the user interface (UI) thread and hang your app. You can
find out more about loaders in Chapter 10.

Android support library
Fragments and loaders are effective ways to add usefulness to Android 3.x
and 4.x applications. However, you may need to support older devices that
use Android 1.x and 2.x, which don’t support these new features.

Luckily, Android provides a solution. You can use the Android support
library to make fragments and loaders compatible with devices all the way
back to the Android Stone Age (circa 2009 A.D.).

In addition to supplying fragments and loaders, the support library adds
several other excellent features to old devices, such as:

	 ✓	ViewPager: Swipes pages left and right

	 ✓	GridLayout: A new way to lay out views

	 ✓	ShareCompat: For sharing activities with your friends

	 Visit http://developer.android.com/tools/extras/support-
library.html to see the complete list of features in the Android support
library.

Action bar
The Menu button is an important element in any application using Android
1.x or 2.x. All Android phones have (unlike another popular type of smart-
phone) the hardware Menu button, which can be used to access functions
that aren’t otherwise shown onscreen.

www.it-ebooks.info

http://developer.android.com/tools/extras/support-library.html
http://developer.android.com/tools/extras/support-library.html
http://www.it-ebooks.info/

19 Chapter 1: Developing Spectacular Android Applications

Or, rather, all Android phones did have this button. Beginning with Android
3.0, Android has dropped the Menu button. It still shows up on a few devices,
such as on the Samsung Galaxy S III, but for the most part it’s a relic of the
past. Generally speaking, elements placed on the Android menu weren’t easy
to find, and users even tended to forget that they were there.

In place of the menu in devices using Android 3.x and later, the action bar
is almost always present across the top of the screen — and it’s therefore
extremely difficult not to notice. See Figure 1-3 for an example of the action
bar from the YouTube application.

	

Figure 1-3:
The

YouTube
action bar
for a funny
cat video.

	

Check out these elements on the action bar:

	 ✓	Up Button, app logo: Tap the Up button or the app logo on the action
bar to move up one level.

		 Note the subtle distinction between the Up button and the Back button:
Pressing the Back button returns the user to the previous activity,
regardless of which app is being used; pressing the Up button returns
the user to the previous activity in the current application, even if that
activity wasn’t an activity the user was just performing.

		 Suppose that you’re viewing a web page in the Chrome browser and you
tap a link to open the YouTube app. Pressing the Back button returns
you to Chrome; pressing the Up button takes you to the YouTube app’s
home page.

	 ✓	Page: Next to the application icon on the action bar is the title of the
current page. If your application lets you filter data on the current page,
you can add a drop-down menu there to allow users to change the filter.

	 ✓	Tab: You can put tabs (rather than the page title) on the action bar to let
users switch tabs in the current activity.

www.it-ebooks.info

http://www.it-ebooks.info/

20 Part I: The Nuts and Bolts of Android

	 ✓	Action: You can see, on the right end of the action bar, various actions
that the user can perform. In the YouTube app shown in Figure 1-3, the
user can add the video to a list, share the video, or search for more
videos. Actions can take the form of text or icons (as shown in the
figure) or both. You can add as many actions as you want. Actions that
don’t fit onscreen are placed on an overflow submenu on the right end.

	 ✓	Context action bar: The action bar can change to show what the user is
doing. For example, if a user chooses several items from a list, you can
replace the standard action bar with a contextual action bar to let users
choose actions based on those items. For example, if you want to allow
bulk deletions, you can provide a Delete Items button on the contextual
action bar.

Visit http://developer.android.com/guide/topics/ui/actionbar.
html for more information about the versatility that this element of the user
interface can add to your app.

	 The action bar doesn’t exist at all on Android 2.x and earlier! It’s not sup-
ported by the support library either. Any action bars you add to your appli-
cation will not show up in these versions of Android. But don’t dismay, the
actions you put in your action bar will still show up under the Menu button for
those devices, so users can still find them.

	 If you’re interested in placing the action bar in an app running on an earlier
version of Android (on an older phone or on the Kindle Fire, for example), try
ActionBarSherlock at http://actionbarsherlock.com.

Holo
Android 3.0 adds three holographic themes to help you create beautiful
Android applications:

	 ✓	Holo Dark

	 ✓	Holo Light

	 ✓	Holo Light with dark action bars

These somewhat darker themes may require some getting used to, but
they’re much cleaner and more consistent than Android 2.x themes. The
Holo themes are also visually less cluttered, which leaves more “real estate”
for the important information you want your app to display.

www.it-ebooks.info

http://developer.android.com/guide/topics/ui/actionbar.html
http://developer.android.com/guide/topics/ui/actionbar.html
http://actionbarsherlock.com
http://www.it-ebooks.info/

21 Chapter 1: Developing Spectacular Android Applications

The best quality of Holo is its consistency (at long last) across all Android
devices and manufacturers — a manufacturer can’t modify the Holo theme to
make its version of Android look different.

Widgets, notifications, performance
The list of new features in Android 3.0, 4.0, and 4.1 seems endless. Here’s a
brief description of a few standouts:

	 ✓	Widgets: Widgets are much improved in later versions of Android.
They’re easier to find, now that they’ve been moved to the Applications
list. You can even add list views to widgets, to handle limited swip-
ing and scrolling, and you can resize widgets to occupy more or less
space. In fact, these user-friendly widgets automatically resize as they’re
dragged around the screen. These changes make them feel much more
lively and responsive than in earlier versions.

	 ✓	Notifications: Android 4.1 brings stylish new options to the formerly
staid Android notification system. Because a notification is now expand-
able and collapsible, a user can see more information about it. For
example, if your mother sends you a photo of her new puppy in a text
message, you can see it directly in the notification without having to
open the app. A notification about a new e-mail message can show a
preview of the message text so that it can be read directly.

		 In addition, a notification now also lets the user take action on it directly
from whichever app is being used. To reply to a birthday e-mail from
Grandma, for example, simply tap the Reply button on the notification
to launch Gmail with an editor so that you can thank her.

	 ✓	Performance: Android 4.1 brings significant performance improvements
to the platform. You don’t have to do anything special to benefit from a
faster, smoother interface in your app — it will run smoothly on devices
running Android 4.1 or later.

Hardware Tools
Google gives developers (even independent ones) the tools that are neces-
sary to create top-notch, full-featured mobile apps. Google makes it simple to
tap into, and make use of, all available hardware on a device.

www.it-ebooks.info

http://www.it-ebooks.info/

22 Part I: The Nuts and Bolts of Android

To create a spectacular Android app, you should take advantage of all that
the hardware has to offer. Don’t get us wrong — if you have an idea for an
app that needs no hardware assistance, that’s okay, too.

Android devices come supplied with several hardware features that you can
use to build apps. Table 1-1 describes the hardware features available on
most Android devices.

Table 1-1	 Android Device Hardware
Android Hardware Feature What It Does

Accelerometer Indicates whether the phone is moving
Bluetooth radio Indicates whether a headset is connected
Built-in compass Indicates in which direction the user is heading
Camera Records video
GPS radio Indicates the user’s location
Proximity sensor Indicates whether the device is facing up or down

Most Android devices are released with the hardware discussed in the fol-
lowing four sections, but not all devices are created equal. Android is free for
hardware manufacturers to distribute, so it’s used in a wide range of devices,
including some made by small manufacturers overseas (and it isn’t uncom-
mon for some of these devices to be missing a feature or two).

Android devices come in all shapes and sizes: phones, tablets, and e-book
readers. You will find many other implementations of Android in the future,
such as Google TV (an Android-powered home appliance) as well as cars with
built-in, Android-powered, touchscreen computers. The engineers behind
Android provide tools that let you easily deploy apps on multiple screen
sizes and resolutions. Don’t worry — the Android team has done all the hard
work for you. Chapter 4 covers the basics of screen sizes and densities.

Touchscreen
The Android touchscreen opens a ton of possibilities to enhance users’
interaction with your apps. Users can swipe, flip, drag, or pinch to zoom,
for example, by moving a finger on the touchscreen. You can even supply
custom gestures in your app, which opens even more possibilities.

www.it-ebooks.info

http://www.it-ebooks.info/

23 Chapter 1: Developing Spectacular Android Applications

Android also supports multitouch capability, which lets a user touch the
entire screen with more than one finger at a time.

Hardware buttons are old news. You can place buttons of any shape any-
where on the screen to create the user interface best suited for your app.

GPS
Combining the Android operating system with the GPS radio on a device
lets the developer access, and track, a user’s location at any time. The
Foursquare social networking app is a good example — it uses the GPS fea-
ture to determine the user’s location and then accesses the web to determine
the closest venues to the user.

Another helpful example is the Maps application’s ability to pinpoint a
user’s location on a map and provide directions to that person’s destination.
Combining Android with GPS hardware gives you access to the user’s exact
GPS location. Many apps use this combination to show users where the near-
est gas station, coffeehouse, or even restroom is located.

Accelerometer
An accelerometer is a device that measures acceleration, and Android comes
packed with accelerometer support. The accelerometer tells you whether a
user’s device is being moved or shaken, and even in which direction it’s being
turned. You can then use this information as a way to control your application.

You can use the accelerometer to perform simple tasks, such as determine
when the device has been turned upside down and then complete an action.
For example, you can immerse users in game play by having them shake their
device to roll the dice. This level of usefulness is setting mobile devices apart
from typical desktop personal computers.

SD card
Android gives you the tools you need to access (save and load) files on the
device’s SD card — a portable storage medium that you can insert into com-
patible phones, tablets, and computers. Starting with Android version 2.2
(Froyo), if a device is equipped with an SD card, you can use the card to store

www.it-ebooks.info

http://www.it-ebooks.info/

24 Part I: The Nuts and Bolts of Android

and access files that are needed by your application. To avoid bloating your
app with extra required resources and hogging limited built-in memory, you
can download some or all of your application’s resources from your web host
and save them to the device’s SD card (which makes users less likely to unin-
stall your app when they need to clear space on their devices).

	 Not every device has an SD card preinstalled, though most do. Always ensure
that a device has an SD card installed and that adequate space is available
before trying to save files to it.

Software Tools
Various Android tools are at your disposal while you’re writing Android
applications. The following sections outline some of the most popular tools
to use in your day-to-day Android development process.

Internet
Thanks to the Internet capabilities of Android devices, users can find real-
time information on the Internet, such as the next showing of a new movie or
the next arrival of a commuter train. As a developer, you can have your apps
use the Internet to access real-time, up-to-date data, such as weather, news,
and sports scores, or (like Pandora and YouTube) to store your application’s
icons and graphics.

	 You can even offload your application’s more intense processes to a web
server whenever appropriate, to save processing time or to streamline the
app. In this well-established software architecture, known as client–server com-
puting, the client uses the Internet to make a request to a server that’s ready
to perform some work for your app. The built-in Maps app is an example of a
client that accesses map and GPS data from a web server.

Audio and video support
Including audio and video in your apps is a breeze in the Android operating
system. Many standard audio and video formats are supported, and adding
multimedia content to your apps — such as sound effects, instructional videos,
background music, and streaming video and audio from the Internet — couldn’t
be easier. Be as creative as you want to be. The sky’s the limit.

www.it-ebooks.info

http://www.it-ebooks.info/

25 Chapter 1: Developing Spectacular Android Applications

Contacts
Your app can access a user’s Contacts list, which is stored on the device, to
display the contact information in a new or different way or you can create
your own Contacts list. You might even write an app that couples the contact
information with the GPS system to alert the user whenever she’s near a con-
tact’s address.

	 Don’t use information from the Contacts list in a malicious way. Use your
imagination, but be responsible about it. (See the next section “Security.”)

Security
Suppose that someone releases an app that sends a user’s entire Contacts
list to a server for malicious purposes. For this reason, most functions that
modify a user’s Android device or access its protected content need specific
permissions. For example, if you want to download an image from the web, you
need permission to use the Internet so that you can download the file to your
device, and you need a separate permission to save the image file to an SD
card. When your app is being installed, the user is notified of the permissions
your app is requesting and can decide whether to proceed. Though asking for
permission isn’t optional, it’s as easy as implementing a single line of code in
your application’s manifest file. (Manifest files are described in Chapter 3.)

Google APIs
Users of the Android operating system aren’t limited to making calls, organiz-
ing contacts, or installing apps. As a developer, you have great power at your
fingertips — you can even integrate maps into your application, for example.
To do so, you use the Maps APIs that contain map widgets.

Pinpointing locations on a map
Perhaps you want to write an app that displays a user’s current location to
friends. You can spend hundreds of hours developing a mapping system, or
you can use the Android Maps API, which Google provides for use in your
apps. You can embed the API in your application and you don’t have to
invest hundreds of development hours or even a single cent. Using the Maps
API, you can find almost anything that has an address. The possibilities are
endless — a friend’s location, the nearest grocery store, or your favorite gas
station, for example.

www.it-ebooks.info

http://www.it-ebooks.info/

26 Part I: The Nuts and Bolts of Android

	 Showing your current location to friends is cool, but the Android Maps API
can also access the Google Navigation API, to pinpoint your location and show
your users how to reach it.

Messaging in the clouds
Suppose that your application’s data is stored in the cloud (the Internet) and
you download all its assets the first time it runs. And then you realize, after the
fact, that an image is outdated. To update the image, the app needs to know
that the image has changed. You can use the Google Cloud Messaging frame-
work to send a cloud-to-device notification (a message from the web server to
the device) to direct the app to update the image. This process works even if
your app isn’t running. When the device receives the message, it dispatches a
message to start your app so that it can take the appropriate action.

The KISS principle
The most difficult task in developing applica-
tions is remembering the KISS principle: Keep
It Simple, Stupid. One way to unnecessarily
complicate the code you create is to dive into
development before understanding the role of
the built-in APIs. Choosing this route may take
more of your time than simply glossing over
the Android documentation; you don’t have to
memorize the documentation, but do yourself a
favor and at least skim it. Then you can see how
easily you can use the built-in functionality —
and how much time it can save you. You can
easily write multiple lines of code to complete
a one-line task. Changing the volume of the

media player or creating a menu, for example,
is a simple process, but if you don’t know how
to use the APIs, you may cause more problems
by having to rewrite them.

Another way to muck things up is to add unnec-
essary functionality — give users the simplest
way to operate their devices. For example,
avoid designing a fancy, custom-tab layout
when a couple of menu items will suffice. Also,
Android comes supplied with enough widgets
(built-in controls) to help you accomplish virtu-
ally any task. Using these controls makes your
app even easier for users to work with because
they already know and love them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Prepping Your Development
Headquarters

In This Chapter
▶	Becoming an Android application developer
▶	Collecting your tools of the trade
▶	Downloading and installing the Android software development kit
▶	Getting and configuring Eclipse
▶	Working with the Android development tools

A
ll the software that you need to develop Android applications is free.
That’s where the beauty of developing Android applications lies. The

basic building blocks you need to develop rich Android applications — the
tools, the frameworks, and even the source code — are free. No one gives
you a free computer, but you get to set up your development environment
and start developing applications for free, and you can’t beat free. Well,
maybe you can — if someone pays you to write an Android application, but
you’ll reach that point soon enough.

This chapter walks you through the necessary steps to install the tools and
frameworks so that you can start building kick-butt Android applications.

Developing the Android
Developer Inside You

Becoming an Android developer isn’t a complicated task. And it’s likely sim-
pler than you believe. To see what’s involved, ask yourself these questions:

	 ✓	Do I want to develop Android applications?
	 ✓	Do I like free software development tools?
	 ✓	Do I like to pay no developer fees?
	 ✓	Do I have a computer to develop on?

www.it-ebooks.info

http://www.it-ebooks.info/

28 Part I: The Nuts and Bolts of Android

If you answered yes to every question, today is your lucky day — you’re
ready to become an Android developer. You may be wondering what we
mean by pay no developer fees. You’re reading that question correctly: You
pay no fees to develop Android applications.

There’s always a catch, right? You can develop for free to your heart’s con-
tent, but as soon as you want to publish your application to the Google Play
Store, where you upload and publish your apps, you need to pay a small,
nominal registration fee. At this writing, the fee is $25.

	 If you’re developing an application for a client, you can publish your applica-
tion as a redistributable package to give to him. Then your client can publish
the application to the Google Play Store, using his Google account, to ensure
that you don’t have to pay a fee for client work. You can then be a bona fide
Android developer and never have to pay a fee. That’s cool.

Assembling Your Toolkit
After you know that you’re ready to be an Android developer, grab your com-
puter and get cracking on installing the tools and frameworks necessary to
build your first blockbuster application.

Linux 2.6 kernel
Android was created on top of the open source Linux 2.6 kernel. The Android
team chose to use this kernel because it provided proven core features on
which to develop the Android operating system. The features of the Linux 2.6
kernel include (but aren’t limited to)

	 ✓	Security model: The Linux kernel handles security between the applica-
tion and the system.

	 ✓	Memory management: The kernel handles memory management, leav-
ing you free to develop your app.

	 ✓	Process management: The Linux kernel manages processes well, allocat-
ing resources to processes as they need them.

	 ✓	Network stack: The Linux kernel also handles network communication.

	 ✓	Driver model: The goal of Linux is to ensure that the application works.
Hardware manufacturers can build their drivers into the Linux build.

You can see a good sampling of the Linux 2.6 feature set in Figure 2-1.

www.it-ebooks.info

http://www.it-ebooks.info/

29 Chapter 2: Prepping Your Development Headquarters

	

Figure 2-1:
Some Linux

kernel
features.

	

Android framework
Atop the Linux 2.6 kernel, the Android framework was developed with vari-
ous features. These features were pulled from numerous open source proj-
ects. The output of these projects resulted in these elements:

	 ✓	The Android runtime: The Android runtime is composed of Java core
libraries and the Dalvik virtual machine.

	 ✓	Open GL (graphics library): This cross-language, cross-platform appli-
cation program interface (API) is used to produce 2D and 3D computer
graphics.

	 ✓	WebKit: This open source web browser engine provides the functional-
ity to display web content and to simplify page loading.

	 ✓	SQLite: This open source relational database engine is designed to be
embedded in devices.

	 ✓	Media frameworks: These libraries allow you to play and record audio
and video.

	 ✓	Secure Sockets Layer (SSL): These libraries are responsible for Internet
security.

See Figure 2-2 for a list of common Android libraries.

Android source code
You should be aware that the full Android source
code is open source, which means that it’s not
only free to use but also free to modify. If you
want to download the Android source code and

create a new version of Android, you’re free to
do so. Check the Android Open Source Project
at http://source.android.com.

www.it-ebooks.info

http://source.android.com
http://www.it-ebooks.info/

30 Part I: The Nuts and Bolts of Android

	

Figure 2-2:
Android

and other
third-party
libraries sit

atop the
Linux 2.6

kernel.
	

Application framework
If you’ve read the preceding section, you may say, “Well, that’s all nice and
well, but how do these libraries affect me as a developer?” It’s simple: All
these open source frameworks are available to you via Android. You don’t
have to worry about how Android interacts with SQLite and the surface
manager; you use them as tools in your Android tool belt. The Android team
has built on a known set of proven libraries, built in the background, and has
given them to you, all exposed through Android interfaces. These interfaces
wrapped up the various libraries and made them useful to the Android plat-
form and to you as a developer. You benefit from these features because you
don’t have to build any of the functionality they provide:

	 ✓	Activity manager: Manages the activity life cycle.

	 ✓	Telephony manager: Provides access to telephony services as well as to
certain subscriber information, such as phone numbers.

	 ✓	View system: Handles the views and layouts that make up your user
interface (UI).

	 ✓	Location manager: Finds the device’s geographic location.

Take a look at Figure 2-3 to see the libraries that make up the application
framework.

	

Figure 2-3:
A glimpse
at part of

the Android
application
framework.

	

www.it-ebooks.info

http://www.it-ebooks.info/

31 Chapter 2: Prepping Your Development Headquarters

From kernel to application, the Android operating system has been devel-
oped with proven open source technologies. You, as a developer, can
therefore build rich applications that have been fostered in the open source
community. See Figure 2-4 for a full picture of how the Android application
framework stacks up. The Applications section is where your application sits.

	

Figure 2-4:
How the
Android

application
framework
stacks up.

	

	 Sometimes when you’re developing an Android application, you want to use
the same resource as in the core Android system. A good example is an icon
for a Settings menu option. By accessing the Android source code, you can
browse the various resources and download the resources you need for your
project. Having access to the source code also allows you to dig in and see
exactly how Android does what it does. Be aware though that you need to
follow Google’s branding guidelines when borrowing these resources. Find out
more at http://developer.android.com/distribute/googleplay/
promote/brand.html.

Open Handset Alliance libraries
Huh? You didn’t join an “alliance,” so what’s the Open Handset Alliance
about? Don’t worry — you don’t have to use The Force to battle Darth Vader.
It’s not that big of a deal, and it’s even kind of cool, like a bunch of smart
companies combining their efforts to achieve the same goal.

The Open Handset Alliance (OHA) was announced in November 2007. At the
time, the alliance consisted of 34 members, led by Google. With 84 members
at the time this book was published, this group of technology and mobile

www.it-ebooks.info

http://developer.android.com/distribute/googleplay/promote/brand.html
http://developer.android.com/distribute/googleplay/promote/brand.html
http://www.it-ebooks.info/

32 Part I: The Nuts and Bolts of Android

companies (including T-Mobile, Sprint, LG, Motorola, HTC, NVidia, and Texas
Instruments) have come together to pursue innovation in the mobile field
and make the world a better place. Their goal is to provide users with com-
prehensive, compelling, and useful handsets. You can read more about the
OHA at www.openhandsetalliance.com.

You should be aware of the OHA because all the libraries that comprise the
Android operating system are based on open source code. Every member
contributes in its own, special way. Chip manufacturers ensure that chip-
sets support the platform; hardware manufacturers build devices; and other
companies contribute intellectual property (code and documentation, for
example). The goal is to make Android a commercial success.

As these members contribute, they also start to innovate on the Android plat-
form. Some of this innovation is incorporated into the Android source code,
and some of it remains the intellectual property of the alliance members as
decided by the OHA.

	 Just because one device has a fancy doohickey on it doesn’t mean that
another device will. The only thing you can count on as a developer is the core
Android framework. OHA members may have added an extra library to help
facilitate something on a device, but you have no guarantee that this library
will be available on another device in, say, Turkey or England. An exception
occurs if you’re developing for a particular device, and only that device, such
as an e-book reader. If that hardware has the sole function of reading books,
you can program it for that specific purpose. Such as the Barnes & Noble
Nook, which is powered by Android. It has special Forward and Back buttons
that other Android devices don’t have. Therefore, you’d program for these
buttons because this device is a special case (if you’re developing for the
Nook), but you can’t expect these buttons to be used on other devices.

Java knowledge
The Java programming language is one of the glorious tools that make pro-
gramming Android a breeze compared with programming for other mobile
platforms. Whereas other languages insist that you manage memory, de-
allocate and allocate bytes, and then shift bits around like a game of domi-
noes, Java’s little buddy, the Java Virtual Machine (JVM), helps take care of
that for you. The JVM allows you to focus on writing code to solve a business
problem by using a clean, understandable programming language (or to build
that next cool first-person shooter game you’ve been dreaming of) instead of
focusing on the “plumbing” just to get the screens to show up.

www.it-ebooks.info

http://www.openhandsetalliance.com
http://www.it-ebooks.info/

33 Chapter 2: Prepping Your Development Headquarters

	 You’re expected to understand the basics of the Java programming language
before you write your first Android application. If you’re feeling rusty and
need a refresher course on Java, you can visit the Java tutorials site at
http://docs.oracle.com/javase/tutorial.

	 Though you find a little Java information in this book, you may want to spend
some time with a good book like Java All-in-One For Dummies, by Doug Lowe
(John Wiley & Sons, Inc.), if you have no Java experience.

Tuning Up Your Hardware
You can develop Android applications on various operating systems, includ-
ing Windows, Linux, and Mac OS X. In this book, you find a combination of the
Windows 7 operating system and Mac OS X, but you can use Linux as well.

Operating system
Android supports these platforms:

	 ✓	Windows XP or later

	 ✓	Mac OS X 10.5.8 or later (x86 only)

	 ✓	Ubuntu Linux

Note that 64-bit Linux distributions must be capable of running 32-bit applica-
tions. Visit http://developer.android.com/sdk/installing/index.
html for more details.

	 Throughout this book, some examples use Windows 7 64-bit Edition. Windows
paths look similar to this:

c:\path\to\file.txt

Some examples use Mac OS X; a Mac or Linux path looks similar to this:

/path/to/file.txt

www.it-ebooks.info

http://docs.oracle.com/javase/tutorial/
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html
http://www.it-ebooks.info/

34 Part I: The Nuts and Bolts of Android

Computer hardware
Before you start installing the required software, make sure that your com-
puter can run it adequately. Just about any desktop or laptop computer man-
ufactured in the past four years will suffice. A laptop with a 1.6GHz Pentium D
processor with 1GB of RAM running Windows XP and Windows 7 can run and
debug Eclipse applications with no problem. (Eclipse — the software you use
to develop your applications — should run smoothly on whatever computer
you use.)

To ensure that you can install all the tools and frameworks you’ll need, make
sure that you have enough hard drive space to accommodate them. The
Android developer site has a list of hardware requirements, outlining how
much hard drive space each component requires, at http://developer.
android.com/sdk/requirements.html.

	 To save you time, you need about 3GB of free hard drive space to install all
the tools and frameworks necessary to develop Android applications.

Installing and Configuring
Your Support Tools

It’s time to put these exciting Android concepts into action, but before you
can do so, you need to install and configure a few tools, including the soft-
ware development kits (SDKs):

	 ✓	Java JDK: Lays the foundation for the Android SDK.

	 ✓	Android SDK: Provides access to Android libraries and allows you to
develop for Android.

	 ✓	Eclipse IDE (integrated development environment): Brings together
Java, the Android SDK, and the Android Android Development Tools
(ADT) and provides tools for you to write Android programs.

	 ✓	Android ADT: Does a lot of the grunt work for you, such as creating the
files and structure required for an Android app.

The following sections show you how to acquire and install all these tools.

	 A benefit of working with open source software is that, most of the time, you
can get the tools to develop the software for free. Android is no exception to
that rule. All the tools that you need to develop rich Android applications
are free.

www.it-ebooks.info

http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/requirements.html
http://www.it-ebooks.info/

35 Chapter 2: Prepping Your Development Headquarters

Getting the Java Development Kit
For some reason, the folks responsible for naming the Java SDK decided that
it would be more appropriate to name it the Java Development Kit, or JDK.

The following steps work for Windows machines, but the steps are similar for
Macs or Linux machines. Follow these steps to install the JDK:

	 1.	 Go to www.oracle.com/technetwork/java/javase/downloads/
index.html.

		 The Java SE downloads page appears. See Figure 2-5.

	 2.	 Click the Download button for the Java Platform (JDK).

		 A new Java SE Downloads page appears, asking you to specify which
platform (Windows, Linux, or Mac) you’re using for your development
work.

		 The web page shown in Figure 2-5 may look different in the future.
To ensure that you’re visiting the correct page, visit the Android SDK
System Requirements page in the online Android documentation for a
direct link to the Java SDK download page. View the requirements page
at http://developer.android.com/sdk/requirements.html.

	

Figure 2-5:
Select JDK.

	

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/requirements.html
http://www.it-ebooks.info/

36 Part I: The Nuts and Bolts of Android

	 3.	 Click the Download link for the particular operating system you’re using.

		 On Windows, choose the 32-bit install. If you’re on a 64-bit machine, you
can install both the 32-bit (x86) and 64-bit (x64) JDKs if you like, but you
must install the 32-bit to develop with Android.

		 Windows may open a message box with a security warning.

	 4.	 In the Save As dialog box, select the location where you want to save
the file, and click Save.

	 5.	 When the download is complete, double-click the file to install the JDK.

		 A dialog box asks whether you want to allow the program to make
changes to your computer.

	 6.	 Click the Yes button.

		 If you click the No button, the installation stops.

	 7.	 When you’re prompted to do so, read and accept the license agreement.

That’s all there is to it. You have the JDK installed and are ready to move to
the next phase.

Acquiring the Android SDK
The Android SDK is composed of a debugger, Android libraries, a device
emulator, documentation, sample code, and tutorials. You can’t develop
Android apps without the SDK.

Downloading the Android SDK
To download the Android SDK, follow these steps:

	 1.	 Go to http://developer.android.com/sdk/index.html.

	 2.	 Choose the latest version of the SDK starter package for your platform
to download the SDK.

		 You’ve just downloaded the Android SDK.

	 3.	 Open SDK Manager.

	 •	Windows: Run the SDK Installer and install the SDK to the default
location. When finished, check the Start SDK Manager check box
and click Finish. If you’re prompted to accept the authenticity of
the file, click Yes. The Android SDK Manager dialog box opens.

www.it-ebooks.info

http://developer.android.com/sdk/index.html
http://www.it-ebooks.info/

37 Chapter 2: Prepping Your Development Headquarters

	 •	Mac: Double-click the SDK file to unzip it. Move the resulting
android-sdk-mac_x86 directory to a safe place, such as your
Applications directory. Open the Terminal and enter cd to go
to the android-sdk-mac_x86 directory, and then run tools/
android. You may be prompted to install Java at this point if you
don’t already have it. If so, click Install.

	 4.	 Select the SDK Platform Android 4.1 check box.

		 For the purposes of this book, select version 4.1, as shown in Figure 2-6. At
this writing, 4.1 is the latest and greatest version of Android. You should
also select the check boxes for the documentation and samples that corre-
spond with Android version 4.1 (API 16).

		 Every time a new version of the Android operating system is released,
Google also releases an SDK that contains access to the added function-
ality in that version. If you want to include Bluetooth functionality in
your app, for example, make sure that you have Android SDK version 2.0
or later because this functionality isn’t available in earlier versions.

	

Figure 2-6:
Choose

packages to
install.

	

	 5.	 Click Install packages.

		 The Choose Packages to Install dialog box opens.

	 6.	 Select the Accept radio button to accept the license, and then click
Install, as shown in Figure 2-7.

		 The Installing Archives dialog box opens, displaying a progress bar.

	 7.	 When the archives installation is complete, click the Close button.

www.it-ebooks.info

http://www.it-ebooks.info/

38 Part I: The Nuts and Bolts of Android

	

Figure 2-7:
The Choose
Packages to

Install
dialog box.

	

	 While the Android SDK is attempting to connect to the servers to obtain the
files, you may occasionally see the Failure to fetch URL error. If this hap-
pens to you, navigate to Settings, select Force https://... Sources to Be Fetched
Using http://, and then attempt to download the available packages again.

Following and setting your tools path
Setting the tools path is optional, but doing so saves you from having to
remember and type the full path when you’re accessing the Android Debug
Bridge (adb) via the command line.

The adb lets you manage the state of an emulator or Android device so
that you can debug your application or interact with the device at a high
level. The adb tool has a lot of capabilities. For detailed information, see the
Android documentation.

Adding the optional Android NDK
The set of tools known as the Android Native
Development Kit (NDK) is a set of tools that
allows lets you to embed components that use
native code — code that you’ve written in a
native language such as C or C++. Most develop-
ers won’t ever need the NDK to build their apps.

If you decide to take on the NDK, you still have
to download the SDK. The NDK isn’t a replace-
ment for the SDK. It’s an added functionality set
that complements the SDK.

www.it-ebooks.info

http://www.it-ebooks.info/

39 Chapter 2: Prepping Your Development Headquarters

To add the Android tools to your system-path variable on a Windows
machine, follow these steps:

	 1.	 Open Control Panel, and double-click the System icon to open System
Preferences.

	 2.	 Click the Advanced System Settings link to open the System Properties
window.

	 3.	 Click the Environment Variables button to open the Environment
Variables dialog box.

	 4.	 Click the New button.

		 The New System Variable dialog box opens, as shown in Figure 2-8.

	

Figure 2-8:
The

Environment
Variables

dialog box.
	

	 5.	 In the Variable Name field, type ANDROID.

	 6.	 Type the full path to the SDK directory (c:\android\android-sdk-
windows\) in the Variable Value field.

	 7.	 Click OK.

		 The Environment Variables dialog box opens, as shown in Figure 2-9.

	

Figure 2-9:
Editing the

PATH
variable.

	

www.it-ebooks.info

http://www.it-ebooks.info/

40 Part I: The Nuts and Bolts of Android

	 8.	 In the System Variables section, select the PATH variable.

	 9.	 Click Edit and then type the following text at the end of the Variable
Value field and click OK:

;%ANDROID%/tools;%ANDROID%/platform-tools

If you’re on a Mac, open the .profile file in your home directory (/Users/
<your username>) using TextEdit. If you can’t see it, press ⌘+Shift+
period in the Open File dialog box to show hidden files. At the end of
.profile, add the following:

export ANDROID=<full path to Android SDK, eg. /Applications/android-sdk-mac_x86>
export PATH=$PATH:$ANDROID/tools:$ANDROID/platform-tools

Then save the file and restart your Mac.

That’s it — you’re done. Now any time you access the Android tools direc-
tory, simply use your newly created environment variable.

	 In most operating systems, the system PATH variable won’t be updated until
you log out of and log back on to your operating system. If you find that your
PATH variable values aren’t present, try logging out of your computer and log-
ging back on to your computer.

Getting the Total Eclipse
After you have the SDK, you need an integrated development environment
(IDE) to use it. It’s time to download Eclipse!

Installing Eclipse
To download Eclipse, navigate to the Eclipse downloads page at www.
eclipse.org/downloads. Select Eclipse IDE for Java Developers (Eclipse
IDE for JAVA EE Developers works as well) and download the zip file.

To install Eclipse, extract the contents of the Eclipse .zip file to the location
of your choice, such as C:\Program Files\Eclipse on Windows or in
your Applications folder on a Mac.

On Windows, once you unzip Eclipse, pin a shortcut to your Start menu
instead so that Eclipse is easy to find when you need it.

www.it-ebooks.info

http://www.eclipse.org/downloads
http://www.eclipse.org/downloads
http://www.it-ebooks.info/

41 Chapter 2: Prepping Your Development Headquarters

To start Eclipse, follow these steps:

	 1.	 To run Eclipse, double-click the Eclipse icon.

		 If you’re running a recent version of Windows, the first time you run
Eclipse, a Security Warning dialog box may appear, as shown in Figure
2-10. It tells you that the publisher hasn’t been verified and asks whether
you still want to run the software. Clear the Always Ask Before Opening
This File check box, and click the Run button.

	

Figure 2-10:
The

Windows
security

warning.
	

	 2.	 Set your workspace.

		 When Eclipse starts, the first thing you see is the Workspace Launcher
dialog box, as shown in Figure 2-11. You can modify your workspace
there, if you want, but for this book, you can stick with the default:
c:\users\<username>\workspace

		 on Windows, or
\Users\<username>\workspace

		 on a Mac

		 Leave the Use This As the Default and Do Not Ask Again check box dese-
lected, and click the OK button.

		 If you plan to develop multiple applications, use a separate workspace
for each project. If you store multiple projects in one workspace, main-
taining organization becomes difficult, and you can easily change a
similarly named file in a different project. Keeping projects in their own
workspaces makes it easier to find the project when you have to go back
to it to fix bugs.

		 When Eclipse finishes loading, you see the Eclipse welcome screen,
shown in Figure 2-12.

www.it-ebooks.info

http://www.it-ebooks.info/

42 Part I: The Nuts and Bolts of Android

	

Figure 2-11:
Set your

workspace.
	

	

Figure 2-12:
The Eclipse

welcome
screen.

	

	 3.	 Click the curved-arrow icon on the right side of the screen to go to the
workbench.

		 Eclipse is installed and easily accessible. You configure it in the next
section.

www.it-ebooks.info

http://www.it-ebooks.info/

43 Chapter 2: Prepping Your Development Headquarters

Configuring Eclipse
The Android Development Tools (ADT) plug-in adds functionality to Eclipse
to do a lot of the work for you. The ADT allows you to

	 ✓	Create new Android projects easily.

	 ✓	Start coding your application quickly because it creates all the neces-
sary base files.

	 ✓	Debug your application using the Android SDK tools.

	 ✓	Export a signed application file, known as an Android Package (APK),
right from Eclipse, eliminating the need for some command-line tools.

		 Programmers used to need various command-line utilities to build an
APK. Although that task wasn’t difficult, it was tedious and sometimes
frustrating. The ADT eliminates this frustrating process by guiding you
through it “wizard style” from within Eclipse. Flip to Chapter 8 to export
a signed APK.

Setting up Eclipse with the ADT
To set up Eclipse with the ADT, follow these steps:

	 1.	 Start Eclipse, if it’s not already running.

	 2.	 Choose Help➪Install New Software.

		 The Install window opens. You use this window to install new plug-ins
in Eclipse.

	 3.	 Click the Add button to add a new site.

		 A site is a web address where software is hosted on the Internet. Adding
a site to Eclipse makes it easier for you to update the software when a
new version is released.

		 The Add Repository window opens, as shown in Figure 2-13.

	

Figure 2-13:
Enter the

name and
location of

the site.
	

www.it-ebooks.info

http://www.it-ebooks.info/

44 Part I: The Nuts and Bolts of Android

	 4.	 Type a name in the Name field.

		 This name can be anything you choose, but an easy one to remember is
Android ADT.

	 5.	 Type https://dl-ssl.google.com/android/eclipse/ in the Location field.

	 6.	 Click OK.

		 Android ADT is selected in the Work With drop-down menu, and the
available options are displayed in the Name and Version window of the
Install Details dialog box, as shown in Figure 2-14.

	

Figure 2-14:
Select

Developer
Tools.

	

	 7.	 Select the check box next to Developer Tools, and click the Next
button.

		 The Install Details dialog box should list both the Android DDMS (see
“Getting physical with a real Android device,” later in this chapter) and
the ADT. See Figure 2-15.

	 8.	 Click the Next button to review the software licenses.

	 9.	 Click the Finish button.

	 10.	 When you’re prompted to do so, click the Restart Now button to
restart Eclipse.

		 The ADT plug-in is installed.

www.it-ebooks.info

http://www.it-ebooks.info/

45 Chapter 2: Prepping Your Development Headquarters

	

Figure 2-15:
DDMS and
ADT listed

in the Install
Details

dialog box.
	

	 If you’re having difficulty downloading the tools from https://dl-ssl.
google.com/android/eclipse, try removing the s from https://, like
this: http://dl-ssl.google.com/android/eclipse.

Setting the location of the SDK
This section guides you through the configuration process. Completing it
seems like a lot to do, but you’re almost done, and you have to do this work
only once. Follow these steps:

	 1.	 Choose Window➪Preferences.

		 The Preferences dialog box opens, as shown in Figure 2-16.

	 2.	 Select Android in the left pane.

	 3.	 Set the SDK Location to the folder to which you saved the Android
SDK.

		 If you saved Android SDK to c:\android on your computer, the loca-
tion is c:\android\android-sdk-windows.

	 4.	 Click OK.

Eclipse is configured, and you’re ready to start developing Android apps.

www.it-ebooks.info

https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse
https://dl-ssl.google.com/android/eclipse
http://www.it-ebooks.info/

46 Part I: The Nuts and Bolts of Android

	

Figure 2-16:
Specify

the loca-
tion of the
SDK in the

Preferences
dialog box.

	

Navigating the Android SDK
Whoa — you find a lot of folders in the SDK! Don’t worry: The folder structure
of the Android SDK is easy to understand when you get the hang of it. You
need to understand the structure of the SDK to be able to master it. Table 2-1
outlines the content of each folder.

Table 2-1	 Folders in the Android SDK
SDK Folder What It Contains

usb_driver Drivers for Android devices. If you connect your
Android device to the computer, install this driver
so that you can view, debug, and push applications
to your phone via the ADT.

The usb_driver folder isn’t visible until you
install the USB driver.

www.it-ebooks.info

http://www.it-ebooks.info/

47 Chapter 2: Prepping Your Development Headquarters

SDK Folder What It Contains

tools and
platform-tools

Various tools that are available for use during
development — such as for debugging, view man-
agement, and building.

temp A temporary swapping location for the SDK when it
needs a temporary space to perform work.

samples Sample projects for you to play with. Full source
code is included.

platforms The platforms you target when you build
Android applications, such as folders named
android-16 (which is Android 4.1) and
android-8 (which is Android 2.2).

docs A local copy of the Android SDK documentation.
add-ons Additional APIs that provide extra functionality. The

Google APIs in this folder include mapping func-
tionality. This folder remains empty until you install
any of the Google Maps APIs.

Targeting Android Platforms
Android platform is a fancy way of saying Android version. At this writing,
many versions of Android are available, ranging up through version 4.1. You
can target any platform you choose.

	 Several versions of Android are still widely used on phones. If you want
to reach the largest number of users, target an earlier version. If your app
requires functionality that older platforms can’t support, however, by all
means target the newer platform. It would make no sense to write a Bluetooth
toggle widget targeting any platform earlier than 2.0 because earlier platforms
can’t use Bluetooth.

Figure 2-17 shows the percentage of each platform in use as of May 2012. To
view current platform statistics, visit http://developer.android.com/
resources/dashboard/platform-versions.html.

www.it-ebooks.info

http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://www.it-ebooks.info/

48 Part I: The Nuts and Bolts of Android

	

Figure 2-17:
Android

distribution
as of

May 2012.
	

Using SDK Tools for Everyday
Development

The SDK tools are the building blocks you use in developing Android apps.
New features packed into every release enable you to develop for the latest
version of Android.

Saying hello to the emulator
Google provides not only the tools you need to develop apps but also an awe-
some little emulator to test your app. The emulator has some limitations (for
example, it cannot emulate certain hardware components, such as the accel-
erometer) but not to worry — plenty of apps can be developed and tested
using only an emulator.

When you’re developing an app that uses Bluetooth, for example, you should
use a physical device that has Bluetooth on it. If you develop on a speedy
computer, testing on an emulator is fast; on slower machines, however, the
emulator can take a long time to complete a seemingly simple task. If you’re
developing on an older machine, use a physical device. When you’re develop-
ing on a newer, faster machine, use the emulator.

www.it-ebooks.info

http://www.it-ebooks.info/

49 Chapter 2: Prepping Your Development Headquarters

The emulator is handy for testing apps at different screen sizes and resolu-
tions. It isn’t always practical or possible to have several devices connected
to your computer at the same time, but you can run multiple emulators with
varying screen sizes and resolutions.

Getting physical with
a real Android device
The emulator is awesome, but sometimes you need a physical device for test-
ing. The Dalvik Debug Monitor Server, or DDMS, allows you to debug your
app on an actual device, which comes in handy for developing apps that use
hardware features that aren’t, or can’t be, emulated. Suppose that you’re
developing an app that tracks the user’s location. You can send coordinates
to the device manually, but at some point in your development, you probably
want to test the app to find out whether it, in fact, displays the correct loca-
tion. Using an actual device is the only way to do it.

If you develop on a Windows machine and you want to test your app on
a real-life device, you need to install a driver. If you’re on a Mac or Linux
machine, you can skip this section because you don’t need to install the USB
driver.

To download the Windows USB driver for Android devices, follow these
steps:

	 1.	 In Eclipse, choose Window➪Android SDK Manager.

		 The Android SDK Manager dialog box opens, as shown in Figure 2-18.

	 2.	 Expand the Extras repository, and select the Google USB Driver
package.

	 3.	 Click the Install Packages button.

		 The Choose Packages to Install dialog box opens, as shown in
Figure 2-19.

www.it-ebooks.info

http://www.it-ebooks.info/

50 Part I: The Nuts and Bolts of Android

	

Figure 2-18:
Available

packages.
	

	 4.	 Select the Accept radio button to accept the license, and then click the
Install button.

		 The Installing Archives dialog box opens, displaying a progress bar.

	

Figure 2-19:
Click the

Install
button.

	

www.it-ebooks.info

http://www.it-ebooks.info/

51 Chapter 2: Prepping Your Development Headquarters

	 5.	 When the package finishes downloading and installing, click the Close
button.

	 6.	 Exit the Android SDK Manager dialog box.

Debugging your work
The DDMS equips you with the necessary tools to find those pesky bugs,
allowing you to go behind the scenes as your app is running to see the state
of its hardware, such as the wireless radio. But wait — there’s more! The
DDMS also simulates actions normally reserved for physical devices, such
as sending global positioning system (GPS) coordinates manually, simulat-
ing phone calls, or simulating text messages. Get all the DDMS details at
http://developer.android.com/guide/developing/debugging/
ddms.html.

Trying out the API and SDK samples
The API and SDK samples are provided to demonstrate how to use the func-
tionality provided by the API and SDK. If you’re ever stuck and can’t figure
out how to make something work, visit http://developer.android.com/
resources/samples/index.html to find samples of almost anything, from
using Bluetooth to making a two-way text application or a 2D game.

You also have a few samples in your Android SDK. Simply open the Android
SDK and navigate to the samples directory, which contains various samples
that range from interacting with services to manipulating local databases.
Spend some time playing with the samples — the best way to learn to
develop Android applications is to look at existing working code bases and
then experiment with them in Eclipse.

Giving the API demos a spin
The API demos inside the samples folder in the SDK are a collection of apps
that demonstrate how to use the included APIs. You can find sample apps
with a ton of examples, such as

	 ✓	Notifications

	 ✓	Alarms

www.it-ebooks.info

http://developer.android.com/guide/developing/debugging/ddms.html
http://developer.android.com/guide/developing/debugging/ddms.html
http://developer.android.com/resources/samples/index.html
http://developer.android.com/resources/samples/index.html
http://www.it-ebooks.info/

52 Part I: The Nuts and Bolts of Android

	 ✓	Intents

	 ✓	Menus

	 ✓	Search

	 ✓	Preferences

	 ✓	Background services

If you get stuck or you simply want to prepare yourself for writing your
next spectacular Android application, check out the complete details at
http://developer.android.com/resources/samples/ApiDemos/
index.html.

www.it-ebooks.info

http://developer.android.com/resources/samples/ApiDemos/index.html
http://developer.android.com/resources/samples/ApiDemos/index.html
http://www.it-ebooks.info/

Part II
Building and

Publishing Your
First Android
Application

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

P
art II walks you through developing a useful Android
application. You start with the basics of the Android

tools and then delve into developing the screens and
home-screen widgets that users will interact with. When
the application is complete, you sign your application
digitally so that you can deploy it to the Google Play
Store. You finish by publishing your application to the
Google Play Store.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Your First Android Project
In This Chapter
▶	Creating a new, blank project in Eclipse
▶	Understanding errors
▶	Creating an emulator
▶	Setting up and copying launch configurations
▶	Running your first app
▶	Studying the anatomy of a project
▶	Closing the project

B
efore you start creating that next blockbuster Android application,
we walk you through creating your first Android application to help

solidify a few key aspects in the Android project-creation process. In this
chapter, you create a simple “Hello Android” application that requires no
coding whatsoever. What — no coding? How is that possible? Follow along as
we show you.

Starting a New Project in Eclipse
First things first: Start Eclipse. You should see a screen that looks similar to
the one shown in Figure 3-1. Now you’re ready to start cooking with Android.

	 If you haven’t set up your development environment yet, turn to Chapter 2.
It shows you how to set up all the tools and frameworks necessary to develop
Android applications and, in the process, install the Eclipse Android
Development Tools (ADT) plug-in. It gives you the power to generate new
Android applications directly from within the Eclipse File menu.

www.it-ebooks.info

http://www.it-ebooks.info/

56 Part II: Building and Publishing Your First Android Application

	

Figure 3-1:
The Eclipse

develop-
ment

environment.
	

Follow these steps to create your first Android application project:

	 1.	 In Eclipse, choose File➪New➪Other. Select Android Application
Project.

		 The New Android App Wizard opens, as shown in Figure 3-2.

	 2.	 Enter Hello Android as the application name.

		 The application name is the name of the application as it pertains to
Android. When the application is installed on the emulator or physical
device, this name appears in the application launcher.

		 The Project and Package names should autocomplete for you. The Project
Name field is important. The descriptive name you provide identifies your
project in the Eclipse workspace. After your project is created, a folder in
the workspace is named with the project name you define.

		 When you set up Eclipse in Chapter 2, the Eclipse system asks you to set
your default workspace. The workspace usually defaults to your home
directory, where the system places files pertinent to you and where you
can find your home directory listed in the Location field.

		 If you would rather store your files in a location other than the default
workspace location, deselect the Create Project in Workspace check
box, which enables the Location text box. Click the Browse button, and
select a location where you want your files to be stored.

www.it-ebooks.info

http://www.it-ebooks.info/

57 Chapter 3: Your First Android Project

	

Figure 3-2:
The New

Android App
Wizard.

	

	 3.	 In the Package Name box, type com.dummies.android.helloandroid.

		 This is the name of the Java package. (See the nearby sidebar “Java
package nomenclature.”)

Java package nomenclature
A package in Java is a way to organize Java
classes into namespaces similar to modules.
Each package must have a unique name for the
classes it contains. Classes in the same pack-
age can access one another’s package-access
members.

Java packages have a naming convention
defined as the hierarchical naming pattern. Each
level of the hierarchy is separated by periods.
A package name starts with the highest-level
domain name of the organization; then the sub-
domains are listed in reverse order. At the end
of the package name, the company can choose
what it wants to call the package. The package

name com.dummies.android.hello
android is the name used in this example.

Notice that the highest-level domain is at the front
of the package name (com). Subsequent subdo-
mains are separated by periods. The package
name traverses through the subdomains to get
to the final package name of helloandroid.

A great example of another use for a package is
having a Java package for all your web-related
communications. Any time you needed to find
a web-related Java class, you can open that
Java package and work on your web-related
Java classes. Packages allow you to keep your
code organized.

www.it-ebooks.info

http://www.it-ebooks.info/

58 Part II: Building and Publishing Your First Android Application

Understanding Android versioning
Version codes aren’t the same as version
names. (Huh?) Android has version names and
version codes. Each version name has a single
version code associated with it. The following

table outlines the version names and their
respective version code. You can also find this
information in the Build Target section of the
New Android Project dialog box.

Version Name (Platform Level) Version Code (API Level)
2.0 5
2.0.1 6
2.1 7
2.2 8
2.3.0–2.3.2 9
2.3.3 - 2.3.4 10
3.0 11
3.1 12
3.2 13
4.0.0 - 4.0.2 14
4.0.3 15
4.1 16

	 4.	 Select Android 4.1 from the Build SDK drop-down list and API 8:
Android 2.2 from the Minimum Required SDK drop-down list, and
then click Next.

		 The Build SDK drop-down list identifies which application programming
interface (API) you want to develop for this project. Always set the Build
Target SDK to the latest version that you’ve tested your app on. When
you select Android 4.1, you build and test your app on devices going
up to Android 4.1. Doing so allows you to develop with the Android
4.1 APIs, which include new features such as Android Beam. If you had
selected Android 2.2 as the target, you wouldn’t be able to use any fea-
tures supported by version 4.1 (or 3.1).

		 Setting the Minimum Required SDK version lower than the Build Target
SDK means that your app still runs on older devices, all the way down to
Android 2.2 in this case.

		 When you set the build target and minimum required SDKs to different
values, you can’t use any APIs newer than the minimum required SDK on
old devices. For example, you can’t use Android Beam on an Android 2.2
device; the app will crash.

www.it-ebooks.info

http://www.it-ebooks.info/

59 Chapter 3: Your First Android Project

		 For more information, see the section “Understanding the Build Target
and Min SDK Version settings,” later in this chapter.

		 The Android Application Icon Editor appears.

	 5.	 (Optional) Create an application icon for your project and click Next.

	 6.	 In the Create Activity box, choose BlankActivity and click Next.

		 The New Blank Activity screen appears, as shown in Figure 3-3.

	

Figure 3-3:
Set up your

new activity.
	

	 7.	 Enter MainActivity in the Activity Name box.

		 The New Blank Activity screen defines what the initial activity is called —
the entry point to your application. When Android runs your application,
this file is the first one to be accessed. A common naming pattern for the
first activity in your application is MainActivity.java. (How creative.)

	 8.	 Click the Finish button.

		 You’re done! You should see Eclipse with a single project in the Package
Explorer. For the purpose of this book, Package Explorer and Project
Explorer (which is showing in Figure 3-4) are the same thing. Different
names; same function.

www.it-ebooks.info

http://www.it-ebooks.info/

60 Part II: Building and Publishing Your First Android Application

	

Figure 3-4:
The Eclipse

develop-
ment

environment
with your

first Android
project,

Hello
Android.

	

Deconstructing Your Project
The Android project generated by Eclipse is a fresh, clean project with no
compiled binary sources. Sometimes, Eclipse takes a second to catch up to
you, so you may notice minor oddities about the system. You also need to
understand what happens under the hood of Eclipse at a high level. That’s
what you find in the next couple of sections.

Responding to error messages
If you were quick enough to look (or if your computer runs on the slower
edge of the spectrum), you may have noticed, immediately after you clicked
the Finish button, a little red icon hovering over the Hello Android folder icon
in the Package Explorer in your Eclipse window. (See Figure 3-5.) That icon is
Eclipse’s way of letting you know that something is wrong with the project in
the workspace.

www.it-ebooks.info

http://www.it-ebooks.info/

61 Chapter 3: Your First Android Project

	

Figure 3-5:
A project

with errors
in Eclipse.

	

By default, Eclipse is set up to let you know with this visual cue when an
error is found within a project. How can you have an error with this project?
You just created the project using the New Android Project Wizard — what
gives? Behind the scenes, Eclipse and the Android Development Tools do a
few things for you:

	 ✓	Provide workspace feedback: This feedback lets you know when a
problem exists with any project in the workspace. You receive notifica-
tion in Eclipse via icon overlays, such as the one shown in Figure 3-5.
Another icon overlay you may see often is a small yellow warning icon,
which alerts you to some warnings in the contents of the project.

	 ✓	Automatically compile: By default, Eclipse autocompiles the applica-
tions in your workspace when any files within them are saved after a
change.

	 If you don’t want automatic recompilation turned on, you can turn it off by
choosing Project➪Build Automatically. This command disables the automatic
building of the project. If this option is deselected, build your project manually
by pressing Ctrl+B every time you change your source code.

So why are you getting an error in the first build? When the project was
added to your workspace, Eclipse took over and, in conjunction with the
ADT, determined that the project in the workspace had an error. The issue
that raised the error in Eclipse was that neither the gen folder nor its con-
tents were present. (See the section “Understanding Project Structure,” later
in this chapter, for information about the gen folder.)

The gen folder is automatically generated by Eclipse and the ADT when the
compilation takes place. The process works like this:

	 1.	 As soon as the New Android Project Wizard finishes, Eclipse creates and
saves the new project in its workspace.

	 2.	 Eclipse sees the new project and says, “Hey! I see some new files in my
workspace. I need to report any errors I find and compile the project.”

	 3.	 Eclipse reports the errors by placing an error icon over the folder.
(Refer to Figure 3-5.)

www.it-ebooks.info

http://www.it-ebooks.info/

62 Part II: Building and Publishing Your First Android Application

	 4.	 Eclipse compiles the project.

		 During the compilation step, the gen folder is created by Eclipse, and
the project is successfully built.

	 5.	 Eclipse recognizes that the project has no more errors and removes the
error icon from the folder.

		 You’re left with a clean workspace and a clean folder icon, as shown in
Figure 3-6.

	

Figure 3-6:
A project in

the Package
Explorer

that has no
errors.

	

Understanding the Build Target
and Min SDK Version settings
The build target is the operating system in which you write code. If you choose
4.1, you can write code with all the APIs in version 4.1. If you choose 2.2, you
can write code only with the APIs that are in version 2.2. You can’t use the Wi-Fi
Direct APIs in version 2.2, for example, because they weren’t introduced until
version 4.0. If you’re targeting 4.1, you can write with the Wi-Fi Direct APIs.

	 Know which version you want to target before you start writing your Android
application. Identify which Android features you need to use to ensure that
your app functions as you expect. If you’re positive that you need Bluetooth
support, target at least version 2.0. If you’re not sure which versions support
the features you’re looking for, you can find that information on the platform-
specific pages in the SDK section of http://d.android.com. The Android
4.1 platform page is at http://d.android.com/sdk/android-4.1.html.

Android operating system (OS) versions are backward-compatible. If you
target Android version 2.2, for example, your application can run on Android
4.x, 3.x, and of course 2.2. The benefit of targeting the 2.2 framework is that
your application is exposed to a much larger market share. Your app can
be installed on devices with version 2.2, 3.0, or 4.0 (and on future versions,
assuming that no breaking framework changes are introduced in future
Android OS releases). Selecting an older version isn’t free of consequences,
however. By targeting an older framework, you’re limiting the functionality
you have access to. By targeting 2.2, for example, you don’t have access to
the social media APIs.

www.it-ebooks.info

http://d.android.com
http://d.android.com/sdk/android-4.0.3.html
http://www.it-ebooks.info/

63 Chapter 3: Your First Android Project

The Min SDK Version setting is the minimum version of Android that the user
must be running for the application to run properly on the device. This field
isn’t required to build an app, but if you don’t indicate the Min SDK Version, a
default value of 1 is used, indicating that your application is compatible with
all versions of Android.

	 If your application is not compatible with all versions of Android (for example,
if it uses APIs that were introduced in version code 5 — Android 2.0) and you
haven’t declared the Min SDK Version, when your app is installed on a system
with an SDK version code of less than 5, your application will crash at runtime
when it attempts to access the unavailable APIs. As a best practice, always set
the Min SDK Version in your application to prevent these types of crashes.

Setting Up an Emulator
You’re almost ready to run your application in Eclipse. You have one final
thing to set up, and then you get to see all your setup work come to life in the
Hello Android application. To see this application in a running state, you need
to know how to set up an emulator through the various launch configurations.

You need to create an Android Virtual Device (AVD), also known as an emula-
tor. An AVD is a virtual Android device that looks, acts, walks, and talks (well,
maybe not walks and talks) like a physical Android device. AVDs can be con-
figured to run any particular version of Android as long as the SDK for that
version is downloaded and installed.

It’s time to get reacquainted with the old standbys Android SDK and AVD
Manager. Follow these steps to create your first AVD:

Version codes and compatibility
The Min SDK Version is also used by the Google
Play Store (covered in detail in Chapter 8) to
help identify which applications to show users
based on which version of Android they’re run-
ning. If a user’s device is running version code
8 (Android 2.2), you want your app to show up
if it’s compatible with version code 3, not with
version code 16 (Android 4.1) apps. The Google
Play Store manages which apps to show to
each user via the Min SDK Version setting.

If you’re having trouble deciding which version
to target, the current version distribution chart
can help you decide: http://developer.
android.com/about/dashboards.

A good rule is to analyze the distribution chart
to determine which version will give your app
the best market share. The more devices you
can target, the wider your audience; the more
installs you have, the more successful your app.

www.it-ebooks.info

http://developer.android.com/about/dashboards/
http://developer.android.com/about/dashboards/
http://www.it-ebooks.info/

64 Part II: Building and Publishing Your First Android Application

	 1.	 Click the icon on the Eclipse toolbar, shown in Figure 3-7.

		 The AVD Manager dialog box opens.

	

Figure 3-7:
The Android

AVD
Manager

icon on
the Eclipse

toolbar.

	

AVD nomenclature
Be careful when naming AVDs. Android is available on many devices in the real world, such as
phones, e-book readers, and netbooks. The time will come when you have to test your app on
various configurations; therefore, adhering to a common nomenclature when creating AVDs can
later help you recognize which AVD is intended for what purpose. The following line can help you
remember the purpose of an AVD:
{TARGET_VERSION}_{SKIN}_{SCREENSIZE}[{_Options}]

The AVD
4_1_Default_WVGA

has the TARGET_VERSION value of Android 4.1. The version name 4.1 is transformed into 4_1.
The underscores are used in place of periods to keep the name of the AVD combined. Creating
an AVD name as a single combined word helps when you’re working in advanced scenarios with
AVDs via the command line.

SKIN is the name of the skin of the emulator. Emulators can have various skins that make them
look like actual devices. The default skin is provided by the Android SDK.

The SCREENSIZE value is the size of the screen with regard to the Video Graphics Array (VGA)
size. The default is WVGA800. Other options are QVGA and HVGA.

www.it-ebooks.info

http://www.it-ebooks.info/

65 Chapter 3: Your First Android Project

	 2.	 Click the New button.

		 The Create New Android Virtual Device (AVD) dialog box opens, as
shown in Figure 3-8.

	

Figure 3-8:
The Create

New
Android

Virtual
Device
(AVD)

dialog box.
	

	 3.	 For this AVD, in the Name field, type 4_1_Default_WVGA.

		 For more information on naming your AVDs, see the nearby sidebar
“AVD nomenclature.”

	 4.	 In the Target box, select Android 4.1 — API Level 16.

	 5.	 In the SD Card section, leave the fields blank.

		 You have no use for an SD Card in the Hello Android application. You
would use the SD Card option if you needed to save data to the SD card.
If you want to have an emulator in the future, insert the size of the SD
card in megabytes (MB) that you want to have created for you. At that
time, an emulated SD Card will be created and dropped in your local file
system.

	 6.	 Leave the Skin option set to Default (WVGA800).

www.it-ebooks.info

http://www.it-ebooks.info/

66 Part II: Building and Publishing Your First Android Application

	 7.	 Don’t select new features in the Hardware section.

		 The Hardware section outlines the hardware features your AVD should
emulate. You don’t need extra hardware configuration for the Hello
Android application.

	 8.	 Click the Create AVD button.

		 Figure 3-9 shows the completed AVD Manager dialog box.

	

Figure 3-9:
The recently

created
AVD in the

Android
SDK and

AVD
Manager

dialog box.
	

	 9.	 Close the Android SDK and AVD Manager dialog box.

You may see this error message after you create your AVD:

Android requires .class compatibility set to 5.0. Please
fix project properties

If so, you can fix it by right-clicking the project in Eclipse and choosing
Android Tools➪Fix Project Properties from the context menu.

Creating Launch Configurations
You’re almost at the point where you can run the application. A run configu-
ration specifies the project to run, the activity to start, and the emulator or

www.it-ebooks.info

http://www.it-ebooks.info/

67 Chapter 3: Your First Android Project

device to connect to. Whoa! That’s a lot of stuff happening quickly. Not to
worry — the ADT can help you by automating many key steps so that you
can get up and running quickly.

The Android ADT gives you two options for creating launch configurations:

	 ✓	Run configuration: You need to run your application on a given device.
You’ll use run configurations most of the time during your Android
development career.

	 ✓	Debug configuration: You’re debugging your application while it’s run-
ning on a given device. You can find out how to debug in Chapter 5.

	 When you first run a project as an Android application by choosing Run➪Run,
the ADT automatically creates a run configuration for you. The Android
Application option is visible when you choose Run➪Run. After the run config-
uration is created, it’s the default run configuration, now used every time you
choose Run➪Run.

If you’re feeling ambitious and decide that you want to create a run configu-
ration manually, follow along here. Don’t worry — following these steps is
simple:

	 1.	 Choose Run➪Run Configurations.

		 The Run Configurations dialog box opens, as shown in Figure 3-10. In
this dialog box, you can create many types of run configurations. The
left side of the dialog box lists many types of configurations, but focus
on these:

	 •	Android Application

	 •	Android JUnit Test

	 2.	 Select the Android Application item, and click the New Launch
Configuration icon.

		 Or right-click Android Application and choose New from the context
menu.

		 The New Launch Configuration window opens.

	 3.	 Type ExampleConfiguration in the Name field.

		 If you want to start from an existing launch configuration, right-click it,
and choose Duplicate from the context menu. Change the name of the
run configuration by entering a name in the Name field. You can then
change various settings to give the launch configuration a unique
configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

68 Part II: Building and Publishing Your First Android Application

	

Figure 3-10:
The Run
Config-

urations dia-
log box.

	

	 4.	 On the Android tab, click the Browse button to select the project
you’re creating this launch configuration for.

		 The Project Selection dialog box opens, as shown in Figure 3-11.

	

Figure 3-11:
Selecting

the project
for the new

launch con-
figuration.

	

www.it-ebooks.info

http://www.it-ebooks.info/

69 Chapter 3: Your First Android Project

	 5.	 Select Hello Android and click OK.

		 The Run Configurations dialog box reopens.

	 6.	 On the Android tab, leave the Launch Action option set to Launch
Default Activity.

		 In this case, the default activity is MainActivity, which you set up in
“Starting a New Project in Eclipse,” earlier in this chapter.

	 7.	 On the Target tab, shown in Figure 3-12, leave Automatic selected.

		 Notice that an AVD is listed in the Select a Preferred Android Virtual
Device for Deployment section.

	

Figure 3-12:
A new,

manually
created

launch con-
figuration.

	

	 8.	 Select the 4_1_Default_WVGA device.

		 This device is the AVD you created earlier. By selecting it, you’re
instructing this launch configuration to launch this AVD when a user
runs the app by choosing Run➪Run. This view has both manual and
automatic options. The manual option lets you choose which device to
connect to when using this launch configuration. Automatic sets a pre-
defined AVD to use when launching in the current launch configuration.

	 9.	 Leave the rest of the settings alone, and click the Apply button.

When you have no need for a launch configuration, select it in the left panel
and click the Delete button on the toolbar, or right-click it and choose Delete
from the context menu.

www.it-ebooks.info

http://www.it-ebooks.info/

70 Part II: Building and Publishing Your First Android Application

Running the Hello Android App
Understanding the basics of how to get an Android application up and run-
ning is a simple yet detailed process. You’re now ready to see your hard
work in action. You’ve created a launch configuration and Android Virtual
Device; now it’s time to get the application running. Finally!

Running the app in the emulator
Running the application is simple. Upon your instruction, the ADT launches
an emulator with the default launch configuration you build earlier in this
chapter. Starting your application is as simple as choosing Run➪Run or
pressing Ctrl+F11. Either action launches the application in an emulator using
the default launch configuration — in this case, ExampleConfiguration.
The ADT compiles your application and then deploys it to the emulator.

If you didn’t create a launch configuration, you see the Run As dialog box,
shown in Figure 3-13. Choose Android Application, and a launch configura-
tion is created for you.

	

Figure 3-13:
The Run As

dialog box
appears
when a

launch con-
figuration

isn’t set up.
	

If you created the ExampleConfiguration, you see the emulator loading,
as shown in Figure 3-14.

www.it-ebooks.info

http://www.it-ebooks.info/

71 Chapter 3: Your First Android Project

	

Figure 3-14:
The initial

emulator in
a loading

state, with
the port

number the
emulator

is running
under and

the AVD
name on the

window’s
title bar.

	

	 Help! If your emulator never loads and stays stuck on the ANDROID screen(s),
there’s no need to worry, comrade. The first time the emulator starts, the
emulator can take upward of ten minutes to finish loading, because you’re
running a virtual Linux system in the emulator. The emulator has to boot up
and initialize. The slower your computer, the slower the emulator is in its boot
process.

Figure 3-14 shows the emulator boot screen. The window’s title bar contains
the port number that the emulator is running on your computer (5554) and
the AVD name (4_1_Default_WVGA). The Android logo is the same one
that users of the default Android operating system see when they boot their
phones (if a device manufacturer hasn’t installed its own user interface cus-
tomizations, as on the HTC Sense).

www.it-ebooks.info

http://www.it-ebooks.info/

72 Part II: Building and Publishing Your First Android Application

The third and final screen you see is the loaded emulator, shown in Figure 3-15.

	 Save valuable time by leaving the emulator running. The emulator doesn’t
have to be loaded every time you want to run your application. After the emu-
lator is running, you can change your source code and then rerun your appli-
cation. The ADT finds the running emulator and deploys your application to
the emulator.

	

Figure 3-15:
The loaded

4_1_
Default_

WVGA
emulator.

	

www.it-ebooks.info

http://www.it-ebooks.info/

73 Chapter 3: Your First Android Project

When the emulator completes its loading phase, the default locked Home
screen appears, as shown in Figure 3-16.

To unlock the Home screen, click and drag the Lock icon to the right side of
the screen. When the icon reaches the far side of the Android screen, release
the icon. During the drag, the icon’s background turns green and its label
changes to Unlock.

	

Figure 3-16:
Unlocking

a locked
Home

screen.
	

www.it-ebooks.info

http://www.it-ebooks.info/

74 Part II: Building and Publishing Your First Android Application

After the emulator is unlocked, the Home screen appears, as shown in Figure
3-17.

	

Figure 3-17:
The emula-

tor Home
screen.

	

Immediately thereafter, the ADT starts the Hello Android application for you.
You see an empty screen containing the words Hello world!, as shown in
Figure 3-18.

You’ve just created and started your first Android application.

www.it-ebooks.info

http://www.it-ebooks.info/

75 Chapter 3: Your First Android Project

	

Figure 3-18:
The Hello

Android
application

in the
emulator.

	

	 If you don’t unlock the screen when the emulator starts, the ADT can’t start
the application. If you unlock the Home screen and your application doesn’t
start within five to ten seconds, simply run the application from Eclipse again
by choosing Run➪Run. The application is redeployed to the device, and it
starts running.

You can view the status of the installation via the Console view in Eclipse, as
shown in Figure 3-19.

www.it-ebooks.info

http://www.it-ebooks.info/

76 Part II: Building and Publishing Your First Android Application

	

Figure 3-19:
The Console

view in
Eclipse

allows you
to view
what’s

happen-
ing behind

the scenes
while your

app is
deploying to

a device.
	

Checking deployment status
Inside Console view, you can see information regarding the state of your
application deployment. Here’s the full text of that information:

[2012-07-05 13:13:46 - Hello Android] ------------------------------
[2012-07-05 13:13:46 - Hello Android] Android Launch!
[2012-07-05 13:13:46 - Hello Android] adb is running normally.
[2012-07-05 13:13:46 - Hello Android] Performing com.dummies.android.

helloandroid.MainActivity activity launch
[2012-07-05 13:13:46 - Hello Android] Automatic Target Mode: using existing

emulator ‘emulator-5554’ running compatible AVD ‘4_1_Default_WVGA’
[2012-07-05 13:13:48 - Hello Android] Application already deployed. No need to

reinstall.
[2012-07-05 13:13:48 - Hello Android] Starting activity com.dummies.android.

helloandroid.MainActivity on device
[2012-07-05 13:13:49 - Hello Android] ActivityManager: Starting: Intent {

act=android.intent.action.MAIN cat=[android.intent.category.
LAUNCHER] cmp=com.dummies.android.helloandroid/.MainActivity }

[2012-07-05 13:13:49 - Hello Android] ActivityManager: Warning: Activity not
started, its current task has been brought to the front

www.it-ebooks.info

http://www.it-ebooks.info/

77 Chapter 3: Your First Android Project

	 Console view provides valuable information on the state of the application
deployment. It lets you know it’s launching an activity; shows which device
the ADT is targeting; and shows warning information, as presented in the last
line of Console view:

[2012-07-05 13:13:49 - Hello Android] ActivityManager: Warning: Activity not
started, its current task has been brought to the front

ADT informs you that the activity — MainActivity, in this case — hasn’t
been started because it was already running. Because the activity was
already running, ADT brought that task to the foreground (the Android
screen) for you to see.

Understanding Project Structure
You’ve created your first application. You even did it without coding. It’s nice
that the ADT provides you with the tools to fire up a quick application, but that
won’t help you create your next blockbuster application. The beginning of this
chapter walks you through how to create a boilerplate Android application by
using the New Android Project Wizard. The rest of this chapter shows you how
to use the file structure that the Android wizard created for you.

	 The following sections aren’t ones you should skim (they’re vital!), because
you’ll spend your entire Android development time navigating these folders.
Understanding what they’re for and how they got there is a key aspect of
understanding Android development.

Navigating the app’s folders
In Eclipse, the Package or Project Explorer expands the Hello Android proj-
ect, as shown in Figure 3-20.

After the Hello Android project is expanded, the list of subfolders includes

	 ✓	src

	 ✓	gen

	 ✓	The Android version, such as Android 4.1

	 ✓	assets

	 ✓	res

www.it-ebooks.info

http://www.it-ebooks.info/

78 Part II: Building and Publishing Your First Android Application

	

Figure 3-20:
The Project

Explorer
with the

Hello
Android
project

folder
structure

expanded.
	

These folders aren’t the only ones you can have inside an Android project,
but they’re the default folders created by the New Android Project Wizard.
Other folders include bin, libs, and Android Dependencies.

Two important files in the project are AndroidManifest.xml and project.
properties. The AndroidManifest.xml file helps you identify the
components that build and run the application, whereas the project.
properties file helps you identify the default properties of the Android
project (such as the Android version).

The following sections discuss all these folders and files.

Source (src) folder
The source folder — known as the src folder in Android projects — includes
your stub MainActivity.java file, which you create in the New Android
Project Wizard, earlier in this chapter. To inspect the contents of the src
folder, you must expand it. Follow these steps:

	 1.	 Select the src folder, and click the small arrow to the left of the folder
to expand it.

		 You see your project’s default package: com.dummies.android.
helloandroid.

www.it-ebooks.info

http://www.it-ebooks.info/

79 Chapter 3: Your First Android Project

	 2.	 Select the default package, and expand it.

		 This step exposes the MainActivity.java file within the com.
dummies.android.helloandroid package, as shown in Figure 3-21.

	

Figure 3-21:
The src

folder
expanded

and show-
ing the stub

Main
Activity

.java
file inside

the default
com.

dummies.
android.

hello
android

Java
package.

	

	 You aren’t limited to a single package in your Android applications. In fact,
separating into packages the different pieces of core functionality in your
Java classes is considered to be a best practice. An example is a class whose
responsibility is to communicate with a web API via eXtensible Markup
Language (XML). Also, your application might have Customer objects that
represent a customer domain model, and those customers are retrieved via
the web API classes. At this point, you might have two extra Java packages
that contain the additional Java classes:

	 ✓	com.dummies.android.helloandroid.models

	 ✓	com.dummies.android.helloandroid.http

These packages would contain their respective Java components. com.
dummies.android.helloandroid.models would contain the domain
model Java classes, and com.dummies.android.helloandroid.http
would contain the HTTP-related Java classes (web APIs). Figure 3-22 shows
an Android project set up this way.

www.it-ebooks.info

http://www.it-ebooks.info/

80 Part II: Building and Publishing Your First Android Application

	

Figure 3-22:
Multiple

packages
under the

src folder
that contain

their own
respec-

tive Java
classes.

	

Target Android Library folder
The Target Android Library folder isn’t a folder per se, but it’s more along the
lines of an item in Eclipse presented through the ADT.

This item includes the android.jar file that your application builds against.
The version of this file was determined by the build target that you chose
in the New Android Project Wizard. Expanding the Android 4.1 item in the
project exposes the android.jar file and the path to where it’s installed, as
shown in Figure 3-23.

	

Figure 3-23:
The Android

4.1 version
of the

android.
jar file

with its
location.

	

www.it-ebooks.info

http://www.it-ebooks.info/

81 Chapter 3: Your First Android Project

Assets (assets) folder
The assets folder is empty by default. This folder is used to store raw asset
files.

A raw asset file can be one of many assets you may need for your application
to work. A great example is a file that contains data in a proprietary format
for consumption on the device. Android has the Asset Manager, which can
return all assets in the assets directory. Upon reading an asset, your appli-
cation can read the data in the file. If you create an application that has its
own dictionary for word lookups (for autocomplete, perhaps), you may want
to bundle the dictionary into the project by placing the dictionary file (usu-
ally, an XML or binary file such as a SQLite database) in the assets directory.

Android treats assets as a raw approach to resource management. You aren’t
limited in what you can place in the assets directory. Note, however, that
working with assets can be a little more tedious than working with resources,
because you’re required to work with streams of bytes and convert them to
the objects you’re after — audio, video, or text, for example.

	 Assets don’t receive resource IDs like resources in the res directory. You
have to work with bits, bytes, and streams manually to access the contents.

Resources (res) folder
The res folder contains the various resources that your application can
consume. Always externalize any resources that your application needs to
consume. Classic examples of such resources include strings and images.
As an example, you should avoid placing strings inside your code. Instead,
create a string resource, and reference that resource from within code. (You
find out how to do this later in this book.) These types of resources should
be grouped in the res subdirectory that suits them best.

You should also provide alternative resources for specific device configu-
rations by grouping them in specifically named resource directories. At
runtime, Android determines which configuration the application is run-
ning in and chooses the appropriate resource (or resource folder) to pull
its resources from. You may want to provide a different user interface (UI)
layout depending on the screen size or different strings depending on the lan-
guage setting, for example.

	 After you externalize your resources, you can access them in code via
resource IDs that are generated by the ADT in the R class. (See “The mysteri-
ous gen folder,” later in this chapter.)

You should place each resource in a specific subdirectory of your project’s
res directory. Table 3-1 lists the subdirectories that are the most common
types of resource folders under the parent res directory.

www.it-ebooks.info

http://www.it-ebooks.info/

82 Part II: Building and Publishing Your First Android Application

Table 3-1	 Supported Subdirectories of the res Directory
Directory Resource Type

anim/ XML files that define animations.
color/ XML files that define a list of colors.
drawable/ Bitmap files (.png, .9.png, .jpg, .gif) or XML

files that are compiled into the following drawable
resources.

drawable-xhdpi/ Drawables for screens with extra-high resolution.
The xhdpi qualifier stands for extra-high-density
screens. This is the same as the drawable/
resource folder except that all bitmap or XML files
stored here are compiled into extra-high-resolution
drawable resources.

drawable-hdpi/ Drawables for high-resolution screens. The hdpi
qualifier stands for high-density screens, the same
as the drawable/ resource folder except that all
bitmap or XML files stored here are compiled into
high-resolution drawable resources.

drawable-ldpi/ Drawables for low-resolution screens. The ldpi
qualifier stands for low-density screens. It’s the same
as the drawable/ resource folder except that all
bitmap or XML files stored here are compiled into
low-resolution drawable resources.

drawable-mdpi/ Drawables for medium-resolution screens. The
mdpi qualifier stands for medium-density screens.
It’s the same as the drawable/ resource folder
except that all bitmap or XML files stored here
are compiled into medium-resolution drawable
resources.

layout/ XML files that define a user interface layout.
menu/ XML files that represent application menus.
raw/ Arbitrary files to save in their raw form. Files in this

directory aren’t compressed by the system.
values/ XML files that contain simple values, such as strings,

integers, and colors. Whereas XML resource files in
other res/ folders define a single resource based
on the XML filenames, files in the values/ direc-
tory define multiple resources for various uses. You
should follow a few filename conventions, outlined in
the nearby sidebar “Naming resources in the values
directory,” for the resources you can create in this
directory.

www.it-ebooks.info

http://www.it-ebooks.info/

83 Chapter 3: Your First Android Project

	 Never save resource files directly in the res directory. If you do, a compiler
error occurs.

The resources you save in the resource folders listed in Table 3-1 are known
as default resources — they define the default design and layout of your
Android application. Different types of Android-powered devices may need
different resources, however. If you have a device with a larger-than-normal
screen, for example, provide alternative layout resources to account for the
difference.

A discussion of the powerful resource mechanism inside Android could
require its own chapter, but this book covers the basics to get you up
and running. The resource mechanism can help with internationalization
(enabling your app for different languages and countries), device size and
density, and even resources for the mode that the phone may be in. To dive
into the ocean of resources, review the “Providing Resources” section of
the Dev Guide in the Android documentation, at http://d.android.com/
guide/topics/resources/providing-resources.html.

Bin, libs, and Referenced Libraries folders
Library folders aren’t shown in your Hello Android application, but you
should be aware of a couple of extra folders, one of which is the libs/ direc-
tory. It can contain private third-party libraries that perform a function for
you. An example is jTwitter, a third-party Java library for the Twitter API.
If you were to use jTwitter in your Android application, you’d place the
jtwitter.jar library in the libs directory.

Naming resources in the values directory
You should follow a few filenaming conven-
tions for the resources you can create in the
values directory:

	✓	arrays.xml for resource arrays (stor-
ing like items, such as strings or integers,
together)

	✓	colors.xml for resources that define
color values; accessed via the R.color
class

	✓	dimens.xml for resources that define
dimension values (20px equals 20 pixels,
for example); accessed via the R.dimen
class

	✓	strings.xml for string values;
accessed via the R.string class

	✓	styles.xml for resources that repre-
sent styles; accessed via the R.style
class. A style is similar to a cascading style
sheet in HTML. You can define many styles
and have them inherit from one another.

www.it-ebooks.info

http://d.android.com/guide/topics/resources/providing-resources.html
http://d.android.com/guide/topics/resources/providing-resources.html
http://www.it-ebooks.info/

84 Part II: Building and Publishing Your First Android Application

After a library is placed in the libs directory, add it to your Java build
path — the class path that’s used for building a Java project. If your proj-
ect depends on another third-party or private library, Eclipse should know
where to find that library, and setting the build path via Eclipse does exactly
that. Assuming that you added jtwitter.jar to your libs directory, you
can add it to your build path easily by right-clicking the jtwitter.jar file
and choosing Build Path➪Add to Build Path from the context menu. It’s then
listed in under the libs folder in Package Explorer, as shown in Figure 3-24.

	 You can find out more about jTwitter at www.winterwell.com/software/
jtwitter.php.

	

Figure 3-24:
The libs
folder with

jtwitter.
jar.

	

We don’t use the libs directory in this book, though developers commonly
use third-party libraries in Android applications.

The mysterious gen folder
Ah, you finally get to witness the magic that is the gen folder. When you
create an Android application, before the first compilation, the gen folder
doesn’t exist. Upon the first compilation, ADT generates the gen folder and
its contents.

The gen folder contains Java files generated by ADT. The ADT creates an
R.java file. (We tell you more about that topic in a moment.) The gen folder
contains items generated from the res directory. Without a proper under-
standing of what the res folder is and what it contains, you have no clue
what the gen folder is for. But because you’re already an expert on the res
folder, you can dive into the gen folder.

www.it-ebooks.info

http://www.winterwell.com/software/jtwitter.php
http://www.winterwell.com/software/jtwitter.php
http://www.it-ebooks.info/

85 Chapter 3: Your First Android Project

When you write Java code in Android, you reach a point when you need to
reference the items in the res folder. You do this by using the R class. The
R.java file is an index to all resources defined in your res folder. You use
this class as a shorthand way to reference resources you’ve included in
your project. This is particularly useful with the code-completion features
of Eclipse because you can quickly identify the proper resource via code
completion.

Expand the gen folder in the Hello Android project and the package name
contained within the gen folder. Now open the R.java file by double-clicking
it. You can see a Java class that contains nested Java classes. These nested
Java classes have the same names as some of the res folders defined in the
preceding res section. Under each of those subclasses, you can see mem-
bers that have the same names as the resources in their respective res fold-
ers (excluding their file extensions). The Hello Android project’s R.java file
should look similar to the following code:

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.dummies.android.helloandroid;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

Whoa — what’s all that 0x stuff? The ADT tool generates this code for you so
that you don’t have to worry about what’s happening behind the scenes. As
you add resources and the project is rebuilt, ADT regenerates the R.java
file. This newly generated file contains members that reference your recently
added resources.

www.it-ebooks.info

http://www.it-ebooks.info/

86 Part II: Building and Publishing Your First Android Application

	 You should never edit the R.java file by hand. If you do, your application
may not compile, and then you’re in a world of hurt. If you accidentally edit
the R.java file and can’t undo your changes, you can delete the gen folder
and build your project. At this point, ADT regenerates the R.java file for you.

Viewing the application’s manifest file
You keep track of everything you own and need through lists, don’t you?
Well, that’s exactly what the Android manifest file does. It keeps track of
everything your application needs, requests, and has to use to run.

The Android manifest file is stored at the root of your project and is named
AndroidManifest.xml. Every application must have an Android manifest
file in its root directory.

The application manifest file provides all essential information to the Android
system — information that it must have before it can run any of your applica-
tion’s code. The application manifest file also provides

	 ✓	The name of your Java package for the application, which is the unique
identifier for your application in the Android system as well as in the
Google Play Store

	 ✓	The components of the application, such as the activities and back-
ground services

	 ✓	The declaration of the permissions your application requires to run

	 ✓	The minimum level of the Android API that the application requires

The Android manifest file declares the version of your application. You must
version your application. How you version your application is similar to how
the Android OS is versioned. It’s important to determine your application’s
versioning strategy early in the development process, including consider-
ations for future releases of your application. The versioning requirements
are that each application has a version code and version name.

Version code
The version code is an integer value that represents the version of the appli-
cation code relative to other versions of your application. This value is used
to help other applications determine their compatibility with your applica-
tion. Also, the Google Play Store uses it as a basis for identifying the applica-
tion internally and for handling updates.

www.it-ebooks.info

http://www.it-ebooks.info/

87 Chapter 3: Your First Android Project

You can set the version code to any integer value you like, but you must
make sure that each successive release has a version code greater than the
previous one.

Typically, on the first release, you set the version code to 1. Then you mono-
tonically increase the value in a given order with each release, whether the
release is major or minor. This means that the version code doesn’t have a
strong resemblance to the application release version that’s visible to the
user, which is the version name. (See the next section.) The version code
typically isn’t displayed to users in applications.

	 Upgrading your application code and releasing the app without incrementing
the version code causes different code bases of your app to be released under
the same version. Consider a scenario in which you release your application
with version code 1. This is your first release. A user installs your application
via the Google Play Store and notices a bug in your application, and she lets
you know. You fix the bug in the code, recompile, and release the new code
base without updating the version code in the Android manifest file. At this
point, the Google Play Store doesn’t know that anything has changed because
it’s inspecting your version code in the application manifest. If the version
code had changed to a value greater than 1, such as 2, the Google Play Store
would recognize that an update had been made and would inform users who
installed the version-code 1 app that an update is available. If you didn’t
update the version code, users would never get the update to your code base
and would run a buggy app. No one likes that!

Version name
The version name is a string value that represents the release version of the
application code as it should be shown to users. The value is a string that can
be anything, but it typically follows a common release-name nomenclature
that describes the application version:

<major>.<minor>.<point>

An example of this release-name nomenclature is 2.1.4 or, without the
<point> value (4, in this case), 2.1.

The Android system doesn’t use this value for any purpose other than to
enable applications to display it to users.

	 The version name may be any other type of absolute or relative version identi-
fier. The Foursquare application, for example, uses a version-naming scheme
that corresponds to the date. An example of the version application name is
2012.05.02, which clearly represents a date. The version name is left up

www.it-ebooks.info

http://www.it-ebooks.info/

88 Part II: Building and Publishing Your First Android Application

to you. You should plan ahead and make sure that your versioning strategy
makes sense to you and your users.

Permissions
Assume that your application needs to access the Internet to retrieve some
data. Android restricts Internet access by default. For your application to
have access to the Internet, you need to ask for it.

In the application manifest file, you must define which permissions your
application needs to operate. Table 3-2 lists some commonly requested
permissions.

Table 3-2	 Commonly Requested Application Permissions
Permission What It Means

Internet The application needs access to the Internet.
Write External Storage The application needs to write data to the Secure

Digital card (SD card).
Camera The application needs access to the camera.
Access Fine Location The application needs access to the global positioning

system (GPS) location.
Read Phone State The application needs to access the state of the phone

(such as ringing).

Viewing the project.properties file
The project.properties file is used in conjunction with ADT and Eclipse.
It contains project settings such as the build target. This file is integral to the
project, so don’t lose it.

	 The project.properties file should never be edited manually. To edit
the contents of the file, use the editor in Eclipse: Right-click the project name
in the Package Explorer and choose Properties from the context menu. This
action opens the Properties editor, shown in Figure 3-25.

This editor allows you to change various properties of the project by select-
ing any of the options on the left. You can select the Android property and
change the Android SDK, for example.

www.it-ebooks.info

http://www.it-ebooks.info/

89 Chapter 3: Your First Android Project

	

Figure 3-25:
The

Properties
editor in
Eclipse.

	

Closing Your Project
When you’ve created your application, you need to close any files you have
open in Eclipse before you start your next application. You can do this by
closing each file individually or by right-clicking the files and choosing Close
All from the shortcut menu.

After you have closed all the files, you need to close the project itself. In
Eclipse, in the Package Explorer, right-click the project and choose Close
Project. By closing the project, you’re telling Eclipse that you currently don’t
need to work with that project. This frees resources that Eclipse uses to
track the project state, therefore speeding up your application.

www.it-ebooks.info

http://www.it-ebooks.info/

90 Part II: Building and Publishing Your First Android Application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Designing the User Interface
In This Chapter
▶	Setting up the Silent Mode Toggle application
▶	Designing the layout
▶	Developing the user interface
▶	Adding an image and a button widget
▶	Making a launcher icon
▶	Previewing your work

I
n Chapter 3, you discover what Android is and how to build your first
application. This chapter helps you delve into the fun stuff: building a real

application and publishing it to the Google Play Store.

The application you build in this chapter allows the user to toggle the ringer
mode on the phone by simply pressing a button. This application seems
simple, but it solves a real-world problem.

Imagine that you’re at work and you’re about to go to a meeting. You can
turn down the volume on your phone to silence it and then attend the meet-
ing. (You wouldn’t want to be the one whose phone always rings during a
meeting, would you?) The problem is that you like your ringer loud, but not
too loud, so you use only the second-to-loudest setting. When you leave your
meeting, you remember to restore the ringer volume, but you always have
to move all the way to the maximum volume and then down one setting, to
ensure that you have the correct one. Though this event isn’t life chang-
ing, it’s a nuisance to complete every time you need to silence your phone’s
ringer.

If an application would allow you to tap a button to turn off the ringer and
then, when you leave the meeting, tap the button again to restore the ringer
to the last state it was in, you would never have to readjust it again. That’s
the application you’re about to build.

www.it-ebooks.info

http://www.it-ebooks.info/

92 Part II: Building and Publishing Your First Android Application

Creating the Silent Mode
Toggle Application

Create the new application by choosing File➪New Project. Choose Android
Project from the list, and then click the Next button. Use Table 4-1 for your
project settings.

Table 4-1	 Project Settings for Silent Mode Toggle
Setting Value

Application Name Silent Mode Toggle
Project name Silent Mode Toggle
Contents Leave the default selected (create new project in workspace)
Build target Android 4.1
Package name com.dummies.android.silentmodetoggle

Create activity MainActivity

Min SDK Version 8 (2.2)

Click the Finish button. You should now have the Silent Mode Toggle applica-
tion in your Package Explorer, as shown in Figure 4-1.

	 If you receive an error that looks similar to this — “The project cannot be built
until build path errors are resolved” — you can resolve it by right-clicking
the project and choosing Android Tools➪Fix Project Properties. This realigns
your project with the IDE workspace.

	

Figure 4-1:
The Silent

Mode
Toggle

application
in Eclipse.

	

www.it-ebooks.info

http://www.it-ebooks.info/

93 Chapter 4: Designing the User Interface

	 Notice how you set the build target to 4.1 and the minimum SDK to 2.2 (API
level 8). What you have done is told Android that your code can run on any
device that runs at least version code 8 (Android 2.2). If you were to change
this to version code 16, you would be saying that your app can run on any
device running version 16 (Android 4.1) or higher. When creating a new appli-
cation, you should decide whether you want it to run on older versions.

	 If you need a refresher on how to create a new Android app in Eclipse, see
Chapter 3.

Laying Out the Application
When you have the Silent Mode Toggle application created inside Eclipse, it’s
time for you to design the application’s user interface, the part of an applica-
tion where users interact with the app. This area of your application should
be as snappy as possible.

Your application will have a single button centered in the middle of the
screen to toggle silent mode. Directly above the button, an image will provide
visual feedback to let the user know whether the phone is in silent mode or
normal ringer mode. Figures 4-2 and 4-3 show what the finished application
will look like.

	

Figure 4-2:
The Silent

Mode
Toggle

application
in normal

ringer mode.
	

www.it-ebooks.info

http://www.it-ebooks.info/

94 Part II: Building and Publishing Your First Android Application

	

Figure 4-3:
The Silent

Mode
Toggle

application
in silent

ringer mode.
	

Using the XML layout file
All layout files for an application are stored in the res/layouts directory of
the Android project in Eclipse. When you create the Silent Mode Toggle appli-
cation, the Android Development Tools (ADT) creates a file named activity_
main.xml in the res/layouts directory. This default layout file is the one
the ADT creates for you when you create a new application.

Double-click the file, click the activity_main.xml tab at the bottom of
the screen, and you see some XML in the Eclipse editor window, as shown in
Figure 4-4.

Figure 4-4 shows a simple layout in which a text value is in the middle of the
screen. Your code should look like this:

<RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent” >

 <TextView
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_centerHorizontal=”true”
 android:layout_centerVertical=”true”
 android:padding=”@dimen/padding_medium”
 android:text=”@string/hello_world”
 tools:context=”.MainActivity” />

</RelativeLayout>

www.it-ebooks.info

http://www.it-ebooks.info/

95 Chapter 4: Designing the User Interface

	

Figure 4-4:
The

activity_
main.

xml layout
file opened
in Eclipse.

	

This XML file defines exactly what the view should look like. The following
sections break down this file, element by element.

Default XML declaration
The first element in the XML file provides the default XML declaration, letting
text editors such as Eclipse and platforms such as Android know what type
of file it is:

<?xml version=”1.0” encoding=”utf-8”?>

Layout type
The next element in the XML file defines the layout type. In this case, you’re
working with RelativeLayout, where children can be arranged relative to
one another. RelativeLayout is a container for other items that show up
onscreen:

<RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 xmlns:tools=”http://schemas.android.com/tools”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent” >

www.it-ebooks.info

http://www.it-ebooks.info/

96 Part II: Building and Publishing Your First Android Application

	 The closing </RelativeLayout> tag isn’t showing because this tag is a con-
tainer for other items. The close tag is inserted after all view items have been
added to the container.

See Table 4-2, later in this chapter, for more information about layout types —
RelativeLayout or otherwise.

Views
RelativeLayout can hold views, which are the basic building blocks of user
interface components. The following code shows TextView, which is respon-
sible for displaying text to the screen:

 <TextView
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_centerHorizontal=”true”
 android:layout_centerVertical=”true”
 android:padding=”@dimen/padding_medium”
 android:text=”@string/hello_world”
 tools:context=”.MainActivity” />

	 A view occupies a rectangular space on the screen and is responsible for
drawing and event handling. All items that can show up on a device screen are
views. The View class is the superclass that all items inherit from in Android.

At the end of the XML file, you have the closing tag for the RelativeLayout.
This line closes the container:

</RelativeLayout>

The following section describes the forest that’s filled with different types of
layouts.

Using the Android SDK layout tools
When you create a user interface, you sometimes have to lay out components
relative to each other or in a table or, under certain circumstances, even
using absolute positioning. Thankfully, the engineering geniuses at Google
who created Android thought of all this and provided the necessary tools to

www.it-ebooks.info

http://www.it-ebooks.info/

97 Chapter 4: Designing the User Interface

create those types of layouts. Table 4-2 briefly introduces the common types
of layouts available in the Android Software Development Kit (SDK).

Table 4-2	 Android SDK Layouts
Layout What It Does

LinearLayout Arranges its children in a single row or column.
RelativeLayout Lets the positions of the children be described in rela-

tion to each other or to the parent.
FrameLayout Designed to block out an area on the screen to dis-

play a single item. You can add multiple children to a
FrameLayout, but all children are pegged to the
upper-left area of the screen. Children are drawn in a
stack, with the most recently added child at the top of
the stack.

This layout is commonly used as a way to lay out
views in an absolute position.

GridLayout Arranges its children into a grid.

Other, different types of layout tools exist, such as a TabHost for creating
tabs and Sliding Drawer for finger-swiping motions that hide and display
views. Programmers tend to use these layout tools in special-case scenarios.
The items in Table 4-2 outline the most commonly used layouts.

Using the visual designer
Good news: Eclipse has a visual designer. Bad news: The designer is limited
in what it can do (as are all visual designers).

Opening the visual designer
To view the visual designer, with the activity_main.xml file open in the
Eclipse editor, click the Graphical Layout button, as shown in Figure 4-5.

www.it-ebooks.info

http://www.it-ebooks.info/

98 Part II: Building and Publishing Your First Android Application

	

Figure 4-5:
The

Graphical
Layout but-
ton, which

shows
the visual
designer.

	

The visual designer is now onscreen, as shown in Figure 4-6. From here, you
can drag and drop items from the Layouts or Views toolboxes.

Inspecting a view’s properties
Using the visual designer, you can view the properties of a given view by
simply clicking it. Most likely, your Properties window is hidden. To look at
properties, follow these steps:

	 1.	 Choose Window➪Show View➪Other.

	 2.	 Expand General and choose Properties.

		 The Properties view opens in Eclipse, as shown in Figure 4-7.

	 3.	 Select the “Hello world” view in the visual designer.

		 The view has a blue border, and the properties show up in the
Properties window below it.

	 4.	 Scroll the list of properties to determine which elements can be
changed in the view.

www.it-ebooks.info

http://www.it-ebooks.info/

99 Chapter 4: Designing the User Interface

	

Figure 4-6:
The visual
designer.

	

	 If you’re unsure which properties a view has, open the visual designer, click
the Properties tab, and quickly inspect the Properties view to see what the
view has to offer. If the Properties tab isn’t visible, enable it by choosing
Window➪Show View➪Other➪General➪Properties.

	 A view’s available properties can change depending on its parent layout. For
example, a TextView inside a LinearLayout has a different set of proper-
ties (for layout) than when it’s inside a RelativeLayout.

The visual designer works well for simple scenarios where the contents
are static in nature. But what happens when you need to draw items on the
screen dynamically based on user input? The designer cannot help you in
this scenario — it’s best suited for a static content scenario, where you create
your layout once and it doesn’t update dynamically. The text of TextViews
or images might change, but the actual layout of the views inside the layout
doesn’t change.

www.it-ebooks.info

http://www.it-ebooks.info/

100 Part II: Building and Publishing Your First Android Application

	

Figure 4-7:
A selected

item in
the visual
designer,

with some
properties

listed in the
Properties

window.

	

Developing the User Interface
Okay, it’s time to start developing the user interface. First make sure that
you’re in XML view of your layout by clicking the activity_main.xml tab.
When you’re in XML view, delete the XML and replace it with the following.
Your layout should now look like this:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 >

</LinearLayout>

www.it-ebooks.info

http://www.it-ebooks.info/

101 Chapter 4: Designing the User Interface

Viewing XML layout attributes
Before continuing, you need to understand the attributes of the Android
layout XML you’re working with. See Table 4-3.

Table 4-3	 XML Layout Attributes
Layout What It Does

xmlns:android=”...” Defines the XML namespace that you use
to reference part of the Android SDK

android:orientation=
”vertical”

Informs Android that this view will be
laid out vertically, such as in the portrait
format in printing

android:layout_width=
”match_parent”

Informs the view that it should fill as
much horizontal space as it can, up to its
parent, to make its own width the same
as its parent’s

android:layout_height=
”match_parent”

Informs the view that it should fill as
much vertical space as it can, up to its
parent, to make its own height the same
as its parent’s

At this point, you have defined the layout to fill the entire screen by setting
the width and height to “match_parent”.

Working with views
As stated earlier in this chapter, views in Android are the basic building
blocks of user interface components. Anytime you implement a user interface
component, such as a Layout or TextView, in the Android system, you’re
using a view. When you work with views in Java, you have to cast them to
their appropriate type to be able to work with them.

Setting layout_width and layout_height values
Before a view can be presented to the screen, a couple of settings must be
configured on the view so that Android knows how to layout the view on
the screen. The attributes that are required, layout_width and layout_
height, are known as LayoutParams in the Android SDK.

www.it-ebooks.info

http://www.it-ebooks.info/

102 Part II: Building and Publishing Your First Android Application

The layout_width attribute specifies the given width of a view, and the
layout_height attribute specifies the given height of a view.

Setting match_parent and wrap_content values
The layout_width and layout_height attributes can take any pixel value
or density-independent pixel value to specify their respective dimensions.
However, two of the most common values for layout_width and layout_
height are match_parent and wrap_content constants.

The match_parent value informs the Android system to fill as much space
as possible on screen based on the available space of the parent layout. The
wrap_content value informs the Android system to occupy only as much
space as needed to show the view. As the view’s contents grow, as would
happen with a TextView, the view’s viewable space grows, similar to the
Autosize property in Windows forms development.

If you’re using a static layout, these two attributes must be set in the XML
layout. If you’re creating views dynamically via code, the layout parameters
must be set via Java code. Either way, you cannot be without them. To find
out more about dynamic creation of views, see the API samples that come
with the Android SDK.

	 If you forget to provide values for layout_width or layout_height, your
Android application will crash when rendering the view. Thankfully, you find
out quickly when you test your application.

	 Before Android 2.2, match_parent was named fill_parent (though its
meaning remains the same). If you plan to support Android devices in ver-
sions earlier than 2.2, you need to use fill_parent instead of match_
parent.

Adding an Image to Your Application
Although looking at text is fun, the truly interesting components are added
via input mechanisms and images. The following sections demonstrate how
to include images in your application — it’s time to put some stuff on the
screen!

Placing an image onscreen
The first element to add to the screen is the phone image (refer to Figures 4-2
and 4-3), so first you need the phone image, of course. You can download an
image from this book’s source code, available from this book’s website, or
you can use your own.

www.it-ebooks.info

http://www.it-ebooks.info/

103 Chapter 4: Designing the User Interface

Adding images to a project is simple: Drag them from the folder where
they’re stored to the res/drawable-mdpi folder, as shown in Figure 4-8.

	 For the Silent Mode Toggle application, you need two phone images: normal
and silent. Be sure to put both images in the res/drawable-mdpi folder.

	

Figure 4-8:
Dragging

the image
file into

the res/
draw-
able-
mdpi
folder.

	

Why you should worry about density folders
Android supports various screen sizes and den-
sities. Elsewhere in this chapter, we mention
placing an image in the mdpi folder, which is
for medium-density devices. What about small-
and large-density devices? If Android cannot
find the requested resource in the desired den-
sity, it opts for a density of the resource it can
find. If your device has a high-density screen,
the image is stretched out and most likely

quite pixilated. If your device has a low-density
device, the image is compressed to fit within
the screen dimensions. To avoid this problem,
create multiple versions of your image to target
multiple screen densities. For more informa-
tion, see the Supporting Multiple Screens page
in the Android documentation at http://
developer.android.com/guide/
practices/screens_support.html.

www.it-ebooks.info

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://www.it-ebooks.info/

104 Part II: Building and Publishing Your First Android Application

To follow along in the rest of the chapter, be sure that the images are named
this way:

	 ✓	Normal mode image: phone_on.png

	 ✓	Silent mode image: phone_silent.png

If your images aren’t named correctly, you can rename them now. Your
Eclipse project should then look like the one shown in Figure 4-9.

	

Figure 4-9:
The Silent

Mode
Toggle

project,
with phone

images.
	

	 When you drag images into Eclipse, the ADT recognizes that the project file
structure has changed. The ADT then rebuilds the project because the Build
Automatically selection is enabled on the Project menu. The gen folder, where
the R.java file resides, regenerates, and the R.java file then includes a ref-
erence to the two new images you added.

You can use the references to these resources to add images to your layout
in code or in XML definition. You declare them in the XML layout in the fol-
lowing section.

www.it-ebooks.info

http://www.it-ebooks.info/

105 Chapter 4: Designing the User Interface

Adding the image to the layout
To add an image to the layout, type the following into the activity_main.
xml file, overwriting the current content of the file:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 >
 <ImageView
 android:id=”@+id/phone_icon”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center_horizontal”
 android:src=”@drawable/phone_on” />

</LinearLayout>

This code adds the ImageView inside the LinearLayout. An ImageView
allows you to project an image to the screen on the device.

Setting image properties
The ImageView contains a couple of extra parameters:

	 ✓	The android:id=”@+id/phone_icon” property: The id attribute
defines the unique identifier for the view in the Android system. You can
find an in-depth explanation of the android:id value nomenclature at
http://developer.android.com/guide/topics/ui/declaring-
layout.html.

	 ✓	The layout_gravity property: This property defines how to place the
view (both its x- and y-axes) with its parent. In this example, the value
is defined as the center_horizontal constant. This value instructs
the Android system to place the object in the horizontal center of its
container, not changing its size. You can use many other constants, such
as center_vertical, top, bottom, left, right, and many more. See
the LinearLayout.LayoutParams Android documentation for a full
list.

	 ✓	The android:src=”@drawable/phone_on” property: This property
is a direct child of the ImageView class. You use this property to set the
image that you want to show up on the screen.

www.it-ebooks.info

http://developer.android.com/guide/topics/ui/declaring-layout.html
http://developer.android.com/guide/topics/ui/declaring-layout.html
http://www.it-ebooks.info/

106 Part II: Building and Publishing Your First Android Application

Notice the value of the src property — “@drawable/phone_on”. What
you’re seeing is the use of the R.java file. You can reference drawable
resources via XML by typing the at symbol (@) and the resource you want.

	 Certain Android attributes begin with the layout_ prefix — android:
layout_width, android:layout_height, android:layout_gravity
are all examples. The layout_ convention tells you that the attribute
relates to the view’s parent. Attributes that don’t begin with layout_ per-
tain to the view itself. So the ImageView’s android:src attribute tells the
ImageView which image to use, but its android:layout_gravity tells
the ImageView’s parent (the LinearLayout, in this case) to lay out the
ImageView in the center of the parent.

Setting drawable resources
You don’t type @drawable-mdpi for the drawable resource identifier,
@drawable, because it’s Android’s job (not yours) to support multiple
screen sizes. The Android layout system knows only about drawables —
it knows nothing of low-, medium-, high-, or extra high density drawables
during design time. At runtime, Android determines whether and when it
can use low-, medium-, or high-density drawables.

For example, if the app is running on a high-density device and the requested
drawable resource is available in the drawable-hdpi folder, Android uses
that resource. Otherwise, it uses the closest match it can find. Support for
various screen sizes and densities is a broad topic (and complex, in some
aspects). For an in-depth view into this subject, read the “Managing Multiple
Screen Sizes” article in the Android documentation at http://developer.
android.com/guide/practices/screens_support.html.

The phone_on portion identifies the drawable you want to use. The image
filename is phone_on.png. To stay within Java’s member-naming guidelines,
however, the file extension is removed, leaving phone_on. If you were to
open the R.java file in the gen folder, you would see a member variable
with the name phone_on, not phone_on.png.

Thanks to the ADT, you can see your available options for this property via
code completion. Place the cursor directly after @drawable/ in the src
property of the ImageView in the Eclipse editor, and press Ctrl+spacebar.
The code completion window opens, as shown in Figure 4-10. The other
resource names in the window are other options you could choose for the
src portion of the drawable definition.

www.it-ebooks.info

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://www.it-ebooks.info/

107 Chapter 4: Designing the User Interface

	

Figure 4-10:
Code com-

pletion, with
resources.

	

Creating a Launcher Icon
for the Application

When your app is installed, its icon helps users identify its presence in the
application launcher. When you create the Silent Mode Toggle application,
the ADT automatically includes a default launcher icon, as shown on the left
in Figure 4-11.

You should change this somewhat bland icon to one of your own. A round
phone icon works for the Silent Mode Toggle application, as shown on the
right in Figure 4-11. You can create your own (as shown in the following sec-
tion) or use the one from the downloaded source code from this book’s
website.

	

Figure 4-11:
The default

icon (left)
and a

unique icon
(right).

	

www.it-ebooks.info

http://www.it-ebooks.info/

108 Part II: Building and Publishing Your First Android Application

Designing a custom launcher icon
Creating your own launcher icons is fairly easy, thanks to the Android proj-
ect. The article “Icon Design Guidelines” in the Android documentation
covers all aspects of icon design — a how-to manual for creating icons for
the Android platform, a style guide, a list of do’s and don’ts, materials and
colors, size and positioning guidelines, and (best of all) icon templates that
you can use. You can find useful resources for designing icons at http://d.
android.com/guide/practices/ui_guidelines/icon_design.html
and http://d.android.com/design/style/iconography.html.

Working with templates
After you download the Android SDK, these icon templates and materials are
available for you to use immediately on your computer’s hard drive. Navigate
to your Android SDK installation directory (see Chapter 2), and from there
navigate to the docs/shareables directory. You’ll find various .zip files
that contain templates and samples. Open the templates in the image-editing
program of your choice, and follow the design guidelines in the documenta-
tion to create your next rockin’ icon set.

Matching icon sizes with screen densities
Because every screen density requires an icon in a different size, you, as the
designer, need to know how large the icon should be. Each density must have
its own icon size to look appropriate (no pixilation, stretching, or compress-
ing) on the screen.

Table 4-4 summarizes the finished icon sizes for each of the three generalized
screen densities.

Table 4-4	 Finished Icon Sizes
Screen Density Icon Size in Pixels
Low-density screen (ldpi) 36 x 36
Medium-density screen (mdpi) 48 x 48
High-density screen (hdpi) 72 x 72
Extra-high-density screen (xhdpi) 96 x 96

www.it-ebooks.info

http://d.android.com/guide/practices/ui_guidelines/icon_design.html
http://d.android.com/guide/practices/ui_guidelines/icon_design.html
http://d.android.com/design/style/iconography.html
http://www.it-ebooks.info/

109 Chapter 4: Designing the User Interface

Adding a custom launcher icon
To place your custom launcher icon into the project, follow these steps:

	 1.	 Rename the image icon to ic_launcher.png.

	 2.	 Drag your icon into the drawable-mdpi folder.

		 Eclipse asks whether you want to overwrite the existing ic_launcher.
png.

	 3.	 Click Yes.

		 The ic_launcher.png file is now in the drawable-mdpi folder.

You’re not done yet! For the ldpi, hdpi and xhdpi folders, you need a low-,
high-, and extra high density version of the icon. Copy the respective icons
into the ldpi, hdpi, and xhdpi folders.

If you don’t copy the icons of other densities into their respective folders,
users who have a low- or high-density device receive the default launcher
icon (refer to Figure 4-11), whereas the medium-density devices receive the
new icon that you included in the project.

You dragged the file into the drawable-mdpi folder — what gives? Each of
the other folders contains its own version of the icon. Open the drawable-
hdpi, drawable-xhdpi, and drawable-ldpi folders in your Eclipse proj-
ect, and you can see that each density has its own ic_launcher.png file. Be
sure to place the correct icon in each density-specific folder.

Adding a Toggle Button View
Android devices come fully equipped with various views that include but-
tons, check boxes, and text-entry fields so that you can quickly build your
user interface. Some views are more complex, such as a date picker, a clock,
and zoom controls.

Views also provide user interface events that inform you when a user has
interacted with the particular view, such as tapping a button.

You need to add a button view to your application so that you can toggle
silent mode on the phone.

www.it-ebooks.info

http://www.it-ebooks.info/

110 Part II: Building and Publishing Your First Android Application

To add a button to your layout, type the following code after ImageView:

 <Button
 android:id=”@+id/toggleButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center_horizontal”
 android:text=”Toggle Silent Mode”
 />

You have now added a button to your view with an ID resource of toggle
Button. That’s how you reference the button in the Java code. (Chapter 5
tackles coding.)

The height and width are set to wrap_content, which informs the Android
layout system to place the view onscreen and occupy only as much usable
space as it needs. The layout_gravity property is the same as the
ImageView above it, centered horizontally.

The final property that has been introduced in this view is the text property
of the button, which sets the button’s text to Toggle Silent Mode.

Your full code base should now look like this:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 >
 <ImageView
 android:id=”@+id/phone_icon”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center_horizontal”
 android:src=”@drawable/phone_on” />
 <Button
 android:id=”@+id/toggleButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center_horizontal”
 android:text=”Toggle Silent Mode” />

</LinearLayout>

www.it-ebooks.info

http://www.it-ebooks.info/

111 Chapter 4: Designing the User Interface

Previewing the Application
in the Visual Designer

To take a look at what the layout looks like in the visual designer, click the
Graphical Layout tab to view it, as shown in Figure 4-12.

	

Figure 4-12:
Visual

designer
view of the

layout.
	

Yuck! The background is black, and your image is white. It doesn’t look right.
You should make the background of your layout white to make the image
blend into the background accordingly. Here’s how to do it:

	 1.	 Select the activity_main.xml tab.

	 2.	 Add the background property to your LinearLayout:

android:background=”#ffffff”

www.it-ebooks.info

http://www.it-ebooks.info/

112 Part II: Building and Publishing Your First Android Application

		 The hexadecimal value of #ffffff is an opaque white color. You can
type any color, such as #ff0000, which is red.

		 You can also set an image as a background, by using a resource.

	 3.	 Verify that the definition of LinearLayout looks like this:

<LinearLayout xmlns:android=”http://schemas.android.
com/apk/res/android”

 android:orientation=”vertical”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:background=”#ffffff”>

	 4.	 Save the file.

	 5.	 Select the Graphical Layout tab to view the visual designer.

		 Figure 4-13 shows the final layout.

	

Figure 4-13:
The final

Silent Mode
Toggle
layout.

	

www.it-ebooks.info

http://www.it-ebooks.info/

113 Chapter 4: Designing the User Interface

The ADT visual designer
The visual designer has many different configu-
rations. By default, the designer is set to Nexus
One, one of Google’s first flagship smartphones.
Selecting the Devices drop-down list in the
visual designer shows you which devices you
can simulate your layout on. The configurations
represent the various possible configurations of
the device. The Nexus One had two states that
were valid at runtime:

	✓	 Landscape: The phone is in horizontal
Landscape mode.

	✓	 Portrait: The phone is held in a vertical
Portrait mode.

Each device on the Devices drop-down list has
its own set of configurations. You can create
your own, custom configurations by choosing
Devices➪Custom➪Custom➪New.

www.it-ebooks.info

http://www.it-ebooks.info/

114 Part II: Building and Publishing Your First Android Application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Coding Your Application
In This Chapter
▶	Seeing how activities work in Android
▶	Coding your own activity
▶	Using the Android framework classes
▶	Installing an application
▶	Using debugging tools
▶	Testing your app in the real world

Y
ou’re probably eager to start coding your application. In this chapter,
you code it, from soup to nuts. Before you can start banging out bits

and bytes, though, you need a firm understanding of activities.

Understanding Activities
An activity is a single, focused action that a user can take. For example, an
activity might present a list of menu items that a user can choose from, or it
might display photographs along with captions. An application may consist
of only one activity or (like most applications in the Android system) several.
Though activities may work together to appear to be one cohesive applica-
tion, they work independently from each other.

	 An activity in Android is an important part of an application’s overall life
cycle, and the way the activities are launched and put together is a fundamen-
tal aspect of the Android application model. Every activity is implemented as
an implementation of the Activity base class.

Almost all activities interact with the user, so the Activity class creates for
you the window in which you can place your user interface (UI). Activities
are most often presented in full-screen mode, but in some instances you can
find an activity floating in a window or embedded inside another activity —
known as an activity group.

www.it-ebooks.info

http://www.it-ebooks.info/

116 Part II: Building and Publishing Your First Android Application

Working with methods, stacks, and states
Two important methods that almost all activities implement are

	 ✓	onCreate: Where the activity is initialized. Most importantly, it’s where
you tell the activity which layout to use by using a layout resource iden-
tifier — considered the entry point of your activity.

	 ✓	onPause: Where you deal with the user leaving your activity. Any
changes made by the user should be committed at this point (if you
need to save them).

Activities in the system are managed as an activity stack. When a new activ-
ity is created, it’s placed on top of the stack and becomes the running activ-
ity. The previous running activity always remains below it in the stack and
returns to the foreground only when the new activity exits.

	 To be a successful programmer, you must understand the importance of how
and why the activity works behind the scenes. You can not only better under-
stand the Android platform but also accurately troubleshoot your applica-
tion’s odd behavior at runtime.

An activity has essentially four states, as described in Table 5-1.

Table 5-1	 Essential States of an Activity
Activity State Description

Active/running The activity is in the foreground of the screen (at the top of the
stack).

Paused The activity has lost focus but is still visible. (A new, non-
full-size or transparent activity has the focus on top of your
activity.) Because a paused activity is completely alive, it can
maintain state and member information and remains attached
to the window manager in Android. However, up through
Gingerbread (3.0) the activity can be killed by the Android
system in extreme low-memory conditions.

Stopped If an activity becomes obscured by another activity, it’s
stopped. It retains all state and member information, but isn’t
visible to the user. Therefore, the window is hidden and will
often be killed by the Android system when memory is needed
elsewhere.

Created and
resumed

The system has either paused or stopped the activity. The
system can reclaim the memory by asking it to finish, or it can
kill the process. When it displays the activity to the user, it
must resume by restarting and restoring to its previous state.

www.it-ebooks.info

http://www.it-ebooks.info/

117 Chapter 5: Coding Your Application

Tracking an activity’s life cycle
Figure 5-1 shows the important paths of an activity — the activity life cycle.

The rectangles represent callback methods you can implement to respond
to events in the activity. The shaded ovals represent the major states of the
activity.

The activity life cycle is a large and complex topic, and the following sec-
tions cover only the basics. If you want to read more about activity life
cycles, check out the “Activity Life Cycle and Process Life Cycle” article in
the Android documentation at http://d.android.com/reference/
android/app/Activity.html#ProcessLifecycle.

	

Figure 5-1:
The activity

life cycle.
	

www.it-ebooks.info

http://d.android.com/reference/android/app/Activity.html#ProcessLifecycle
http://d.android.com/reference/android/app/Activity.html#ProcessLifecycle
http://www.it-ebooks.info/

118 Part II: Building and Publishing Your First Android Application

Monitoring key loops
You may be interested in monitoring these three loops in your activity:

	 ✓	The entire lifetime takes place between the first call to onCreate()
and the final call to onDestroy(). The activity performs all global setup
in onCreate() and releases all remaining resources in onDestroy().
For example, if you create a thread to download a file from the Internet
in the background, it may be initialized in the onCreate() method.
That thread can be stopped in the onDestroy() method.

	 ✓	The visible lifetime of the activity takes place between the onStart()
and onStop() methods. During this time, the user can see the activ-
ity onscreen (though it may not be in the foreground interacting with
the user, which can happen when the user is interacting with a dialog
box). Between these two methods, you can maintain the resources
that are needed to show and run your activity. For example, you can
create an event handler to monitor the state of the phone. The phone
state can change, and this event handler can inform the activity of the
phone entering Airplane mode and react accordingly. You would set up
the event handler in onStart() and tear down any resources you’re
accessing in onStop(). The onStart() and onStop() methods can
be called multiple times as the activity becomes visible or hidden to the
user.

	 ✓	The foreground lifetime of the activity begins at the call to onResume()
and ends at the call to onPause(). During this time, the activity is in
front of all other activities and is interacting with the user. An activity
normally toggles between onResume() and onPause() multiple times,
for example, when the device goes to sleep or when a new activity han-
dles a particular event — therefore, the code in these methods must be
fairly lightweight.

Viewing activity methods
The entire activity life cycle boils down to these methods:

public class Activity extends ApplicationContext {
 protected void onCreate(Bundle savedInstanceState);
 protected void onStart();
 protected void onRestart();
 protected void onResume();
 protected void onPause();
 protected void onStop();
 protected void onDestroy();
 }

All methods can be overridden, and custom code can be placed in all of
them. All activities implement onCreate() for initialization and may also
implement onPause() for clean-up. You should always call the superclass
(base class) when implementing these methods.

www.it-ebooks.info

http://www.it-ebooks.info/

119 Chapter 5: Coding Your Application

Following an activity’s path
The movement of an activity throughout its life cycle looks like this:

	 ✓	onCreate(): Called when the activity is first created. You initialize
most of your activity’s class-wide variables here. onStart() is always
called next. Killable: No. Next: onStart().

	 ✓	onRestart(): Called after your activity has been stopped before being
started again. onStart() is always called next. Killable: No. Next:
onStart().

	 ✓	onStart(): Called when your activity is becoming visible to the user.
Followed by onResume() if the activity is brought to the foreground
or onStop() if it becomes hidden from the user. Killable: No. Next:
onResume() or onStop().

	 ✓	onResume(): Called when the activity will be available for interacting
with the user. The activity is at the top of the activity stack at this point.
Killable: No. Next: onPause().

	 ✓	onPause(): Called when the system is about to resume a previous
activity or if the user has navigated away to another portion of the
system, such as by pressing the Home key. This stage is typically used
to commit unsaved changes to data that needs to be persisted. If the
activity is brought back to the foreground, onResume() is called; if
the activity becomes invisible to the user, onStop() is called. Killable:
Yes, but only on Gingerbread (2.3) or earlier. Next: onResume() or
onStop().

	 ✓	onStop(): Called when the activity is no longer visible to the user
because another activity has resumed and is covering this one. This may
happen because another activity has started or a previous activity has
resumed and is now in the foreground of the activity stack. It’s followed
by onRestart() if this activity is returning to interact with the user
or by onDestroy() if this activity is going away. Killable: Yes. Next:
onRestart() or onDestroy().

	 ✓	onDestroy(): The final call you receive before your activity is
destroyed. This method gets called either because the activity is finish-
ing (such as someone calling finish() on it) or because the system
is temporarily destroying the activity to reclaim space. You can distin-
guish between these two with the isFinishing() method, which helps
identify whether the method is finishing or the system is killing it. The
isFinishing() method is often used inside onPause() to determine
whether the activity is pausing or being destroyed. Killable: Yes. Next:
Nothing.

www.it-ebooks.info

http://www.it-ebooks.info/

120 Part II: Building and Publishing Your First Android Application

	 The killable indicator at the end of each activity method description notes the
activities the Android system can kill at any time and without notice. You
should therefore use the onPause() method to complete any clean-up to
write persistent data (such as user edits to data) to your storage mechanism.

Recognizing configuration changes
A configuration change is a change that’s made to the screen orientation (for
example, if the user moves the screen to the side and back or moves it from
portrait to landscape mode or vice versa), the language, or an input device. A
configuration change causes your activity to be destroyed while completing
the normal activity life cycle: onPause() followed by onStop() and then
onDestroy(). After the onDestroy() method is called, the system cre-
ates a new instance of the activity to be created, which takes place because
resources and layout files and other elements might need to change depend-
ing on the current system configuration. For example, an application may
look completely different if the user is interacting with it in Portrait mode, as
compared to being displayed in Landscape mode (on its side).

Creating Your First Activity
You may have already created your first activity if you created a project
using the New Android Project Wizard in Chapter 3: the MainActivity
activity. Open the MainActivity.java file in your project to enhance it in
the following sections.

Starting with onCreate
The entry point into your application is the onCreate() method. The code
for the MainActivity.java file already contains an implementation of the
onCreate() method. It’s where you start writing code! For now, your code
should look like this:

public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

121 Chapter 5: Coding Your Application

You write the initialization code directly below the setContentView()
method.

	 Be sure to always include this method call to your onCreate() method:

super.onCreate(savedInstanceState);

It’s required for the application to run. This line directs the base Activity
class to perform setup work for the MainActivity class. If you omit this line
of code, you receive a runtime exception.

Telling Android to display
the user interface
By default, an activity has no idea what its user interface is. It can be a simple
form that allows the user to type information to be saved; a visual, camera-
based, augmented, virtual reality application (such as Layar in the Google
Play Store); or a drawn-on-the-fly user interface, such as in a 2D or 3D game.
As a developer, it’s your job to tell the activity which layout the activity
should load.

To show the user interface onscreen, you have to set the content view for the
activity, by adding this line of code:

setContentView(R.layout.activity_main);

R.layout.activity_main is the activity_main.xml file that’s located
in the res/layouts directory. It’s the layout you define in the Chapter 4.

Handling user input
The Silent Mode Toggle application has little user interaction. The only user
interaction that your application will have is a single button that the user
taps to toggle silent mode.

To respond to this tap event, you need to register an event listener, which
responds to an event in the Android system. Though you find various types
of events in the Android system, two of the most commonly used are key-
board events and touch events (also known as clicks).

www.it-ebooks.info

http://www.it-ebooks.info/

122 Part II: Building and Publishing Your First Android Application

Keyboard events
A keyboard event occurs whenever a particular keyboard key is pressed.
For example, if the user presses the Alt+E hot key in your application, you
may want the view to toggle into Edit mode. Responding to keyboard events
allows you to do this. If you need to override the onKeyDown method to use
your own keyboard event, do it this way:

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 // TODO Auto-generated method stub
 return super.onKeyDown(keyCode, event);
}

Touch events
A touch event occurs whenever the user taps a widget on the screen. The
Android platform recognizes each tap event as a click event. Examples of
views that can respond to touch events include (but aren’t limited to)

	 ✓	Button

	 ✓	ImageButton

	 ✓	EditText

	 ✓	Spinner

	 ✓	ListView Rows

	 ✓	MenuItem

	 All views in the Android system can react to a tap; however, some widgets
have their clickable property set to false by default. You can override this set-
ting in your layout file or in code to allow a view to be clickable by setting the
clickable attribute on the view or the setClickable() method in code.

Writing your first event handler
For your application to respond to the click event of the user toggling silent
mode, you respond to the click event that’s exposed by the button.

www.it-ebooks.info

http://www.it-ebooks.info/

123 Chapter 5: Coding Your Application

Entering the code
Type into your editor the code shown in Listing 5-1. It demonstrates how
to implement a click handler for toggleButton. The code consists of the
entire onCreate() method with the new code. You can either fill in the
button code (in bold) or overwrite your entire onCreate code.

Listing 5-1:   The Initial Class File with a Default Button OnClickListener
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button toggleButton = (Button)findViewById(R.id.toggleButton);
 toggleButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 }
 });
}

This listing uses the findViewById() method, which is available to all
activities in Android. This method, which allows you to find any view inside
the activity’s layout and do some work with it, always returns a View class
that you must cast to the appropriate type before you can begin. In the fol-
lowing code (which is a line from Listing 5-1), you’re casting the returned
View from findViewById() to a Button (which is a subclass of View).

Button toggleButton = (Button)findViewById(R.id.toggleButton);

Immediately following this line of code, you start setting up the event handler.

The event handling code is placed inline after you retrieve the Button from
the layout. Setting up the event handler is as simple as setting a new View.
OnClickListener. This click listener contains an onClick() method
that’s called after the user taps the button. It’s where you place the code to
handle the silent mode toggle.

	 Be sure to cast to the appropriate type. If the type in your layout file is differ-
ent from what you’re casting it to (if you’re trying to cast an ImageView in the
layout file to ImageButton, for example), you’ll crash your application.

When you type this code into your editor, you may see red, squiggly lines, as
shown in Figure 5-2. These lines are Eclipse’s way of telling you that it doesn’t
know what the “button” is.

www.it-ebooks.info

http://www.it-ebooks.info/

124 Part II: Building and Publishing Your First Android Application

	

Figure 5-2:
Eclipse

informs you
that it can-
not find the

class.
	

Follow these steps to correct the problem:

	 1.	 Place the cursor over the squiggly line and leave it there for a
moment.

		 A small context window opens to give you several options. (Refer to
Figure 5-2.)

	 2.	 Select the first option — Import ‘Button’.

		 The following import statement is added to the top of the file:
import android.widget.Button;

		 This import statement informs Eclipse where the Button is located in
the Android packages.

Extracting the code to a method
The code is starting to become unwieldy and difficult to read. At this point,
the best thing you can do is extract the new button code to a method that
you can call from within onCreate(). To do it, you create a private void
method named setButtonClickListener() that contains the button code
you just typed. This new method is placed in the onCreate() method. The
new code is shown in Listing 5-2.

www.it-ebooks.info

http://www.it-ebooks.info/

125 Chapter 5: Coding Your Application

Listing 5-2:   Button Listener Extracted to a Method
public class MainActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 setButtonClickListener();	 ➝8
 }

 private void setButtonClickListener() {	 ➝11
 Button toggleButton = (Button)findViewById(R.id.toggleButton);
 toggleButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 // TODO Auto-generated method stub
 }
 });
 }
}

Listing 5-2 works this way:

	 ➝8	 On this line, a method is called to set up the button click listener.

	 ➝11	 The new method is getting called.

Now you can respond to the click event by providing code for the
onClick() method of your button.

Working with the Android
Framework Classes

This section gets into the good stuff — the nitty-gritty of Android develop-
ment and its Android framework classes! Yes, activities and views are inte-
gral parts of the system, but they’re simply the “plumbing” that’s required
in any modern operating system (in one capacity or another). The real fun is
just about to start.

www.it-ebooks.info

http://www.it-ebooks.info/

126 Part II: Building and Publishing Your First Android Application

The following sections describe how to check the state of the phone ringer
to determine whether it’s in normal mode (ringing loud and proud) or silent
mode. At this point, you can begin to start toggling the phone’s ringer mode.

Getting good service
To access the Android ringer, you’ll need lots of access to the
AudioManager in Android, which is responsible for managing the ringer
state, so you should initialize it in onCreate().

	 All important initialization needs to happen in onCreate().

You first need to create a private class-level AudioManager variable by
the name of mAudioManager. Type this name at the top of your class file,
directly after the class declaration line, as shown in Listing 5-3.

Listing 5-3:  � Adding the Class-Level AudioManager Variable
package com.dummies.android.silentmodetoggle;

import android.app.Activity;

import android.media.AudioManager;	 ➝4
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

public class MainActivity extends Activity {

 private AudioManager mAudioManager;	 ➝11

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 setButtonClickListener();

 mAudioManager = (AudioManager)getSystemService(AUDIO_SERVICE);	 ➝20
 }

 private void setButtonClickListener() {
 Button toggleButton = (Button)findViewById(R.id.toggleButton);
 toggleButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 // TODO Auto-generated method stub
 }
 });
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

127 Chapter 5: Coding Your Application

This list briefly explains what the numbered lines:

	 ➝4	 The import statement that brings in the necessary package so
that you can use AudioManager.

	 ➝11	 The private class-level AudioManager variable. Because it’s
class wide, you can have access to it in other parts of the activity.

	 ➝20	 Initializes the mAudioManager variable by getting the service
from the base Activity getSystemService() method call.

Whoa! What’s getSystemService()? By inheriting from the base
Activity class, AudioManager receives all the benefits of being an activ-
ity, including access to the getSystemService() method call. This method
returns the base Java Object class, so you have to cast it to the type of ser-
vice you’re requesting.

This call returns all available system services that you might need to work
with. All services that are returned can be found in the Context class in
the Android documentation, at http://d.android.com/reference/
android/content/Context.html. Popular system service types include

	 ✓	AUDIO_SERVICE

	 ✓	LOCATION_SERVICE

	 ✓	ALARM_SERVICE

Toggling Silent mode with AudioManager
After you have a class-wide instance of AudioManager, you can start check-
ing the state of the ringer and toggling the ringer. The code you need to add
or modify is in bold in Listing 5-4.

Listing 5-4:   Adding the Application Toggle to the App
package com.dummies.android.silentmodetoggle;

import android.app.Activity;
import android.graphics.drawable.Drawable;
import android.media.AudioManager;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.ImageView;

public class MainActivity extends Activity {

(continued)

www.it-ebooks.info

http://d.android.com/reference/android/content/Context.html
http://d.android.com/reference/android/content/Context.html
http://www.it-ebooks.info/

128 Part II: Building and Publishing Your First Android Application

Listing 5-4 (continued)

 private AudioManager mAudioManager;

 private boolean mPhoneIsSilent;	 ➝14

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mAudioManager = (AudioManager)getSystemService(AUDIO_SERVICE);

 checkIfPhoneIsSilent();	 ➝23

 setButtonClickListener()	 ➝25
 }

 private void setButtonClickListener() {
 Button toggleButton = (Button)findViewById(R.id.toggleButton);
 toggleButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {

 if (mPhoneIsSilent) {	 ➝32
 // Change back to normal mode
 mAudioManager
 .setRingerMode(AudioManager.RINGER_MODE_NORMAL);
 mPhoneIsSilent = false;
 } else {
 // Change to silent mode
 mAudioManager
 .setRingerMode(AudioManager.RINGER_MODE_SILENT);
 mPhoneIsSilent = true;
 }

 // Now toggle the UI again

 toggleUi();	 ➝44
 }
 });
 }

 /**
 * Checks to see if the phone is currently in Silent mode.
 */

 private void checkIfPhoneIsSilent() {	 ➝53
 int ringerMode = mAudioManager.getRingerMode();
 if (ringerMode == AudioManager.RINGER_MODE_SILENT) {
 mPhoneIsSilent = true;
 } else {
 mPhoneIsSilent = false;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

129 Chapter 5: Coding Your Application

 }

 /**
 * Toggles the UI images from silent to normal and vice versa.
 */

 private void toggleUi() {	 ➝66

 ImageView imageView = (ImageView) findViewById(R.id.phone_icon);
 Drawable newPhoneImage;

 if (mPhoneIsSilent) {
 newPhoneImage =
 getResources().getDrawable(R.drawable.phone_silent);

 } else {
 newPhoneImage =
 getResources().getDrawable(R.drawable.phone_on);
 }

 imageView.setImageDrawable(newPhoneImage);
 }

 @Override		 ➝84
 protected void onResume() {
 super.onResume();
 checkIfPhoneIsSilent();
 toggleUi();
 }
 }

This list briefly explains what each new section of code does:

	 ➝14	 Sets up a new class-level boolean mPhoneIsSilent variable to
keep track of the ringer state.

	 ➝23	 Calls the checkIfPhoneIsSilent() method to initialize mPhone
IsSilent. The default value of a boolean is false — which can
be wrong if the phone is in Silent mode. This line figures out what
happens when the ringer mode is toggled.

	 ➝25	 The button event-handling code was moved to the bottom of
the onCreate() method because it depends on the setup of
the mPhoneIsSilent variable. Even though nothing is likely to
happen, you should keep the code organized.

		 Clean code is manageable code.

	 ➝32	 The code between Lines 32 and 44 handles a user tap on the
toggle button, by checking to see whether the ringer is enabled
via the class-level mPhoneIsSilent variable.

www.it-ebooks.info

http://www.it-ebooks.info/

130 Part II: Building and Publishing Your First Android Application

		 If the ringer is silent, the code falls into the first if block and
changes the ringer mode to RINGER_MODE_NORMAL, which
turns the ringer back on. The mPhoneIsSilent variable is also
changed to false for the next time this code runs.

		 If the ringer isn’t silent, the code falls into the else code block.
This code block turns the ringer mode from its current state to
RINGER_MODE_SILENT, which turns off the ringer. The else
block also sets the mPhoneIsSilent variable to true for the
next time around.

	 ➝44	 The toggleUi() method changes the user interface to give the
user a visual identifier that the mode on the phone has changed.
Anytime the ringer mode changes, the toggleUi() method
needs to get called.

	 ➝53	 The checkIfPhoneIsSilent() method initializes the mPhone
IsSilent class-level variable in the onCreate() method. If
you fail to do this, your application doesn’t know what state the
AudioManager’s ringer is in. If the phone is silent, mPhoneIs
Silent gets set to true; otherwise, it’s false.

	 ➝66	 This toggleUi() method changes the ImageView from the
layout you created in Chapter 4, depending on the state of the
ringer.

		 If the ringer is silent, the user interface displays an image show-
ing that the phone ringer is off. If the phone’s ringer is in Normal
mode, the image indicates that the phone ringer is on.

		 Both these images are in the resource directories. (See Chapter 4.)
The ImageView is found inside the layout, and after detecting
the mode, the View is updated by pulling the correct image from
getResources().getDrawable(...) and set with the set
ImageDrawable(...) call on the ImageView. This method
updates the image that’s displayed on the ImageView onscreen.

	 ➝84	 The onResume() method is overridden for your application to
correctly identify its state. The mPhoneIsSilent variable keeps
track of the phone’s ringer state, but only for the class. The
person using your application also needs to know what state the
phone is in, so onResume() calls toggleUi() to toggle the user
interface.

		 The toggleUi() call is strategically placed in the onResume()
method for a simple reason: to assume that the user opens the
Silent Toggle Mode application and then returns to the Home
screen and turns off the phone using the phone controls. When
the user returns to the activity, the activity is resumed and
brought to the foreground. At that time, onResume() is called to
check the state of the ringer mode and update the user interface
accordingly. If the user changed the mode, the app reacts as the
user would expect.

www.it-ebooks.info

http://www.it-ebooks.info/

131 Chapter 5: Coding Your Application

Installing Your Application
You’ve done it — you’ve written your first application. In the next sections,
you install your app on the emulator and put that baby into action!

Running your app in an emulator
When you run your application in an emulator, the ADT is smart enough to
remember the last launch configuration and uses it by default. (If you ever
need to change the launch configuration — say to launch a different activity
or application — turn to Chapter 3.)

The emulator and Eclipse speak to each other through the Android Debug
Bridge (adb). You installed the adb with the Android Development Tools
(ADT) in Chapter 2.

It’s time to install this app on the emulator. Follow these steps:

	 1.	 In Eclipse, choose Run➪Run or press Ctrl+F11 to run the application.

		 You see the Run As window, shown in Figure 5-3.

	 2.	 Choose Android Application and click OK to start the emulator.

	

Figure 5-3:
The Run As
configura-
tion dialog

box.
	

	 3.	 Wait for the emulator to load and then unlock the emulator.

		 If you’re unsure how to unlock the emulator, refer to Chapter 3. When
the emulator is unlocked, your application starts and the emulator runs
your program, as shown in Figure 5-4.

www.it-ebooks.info

http://www.it-ebooks.info/

132 Part II: Building and Publishing Your First Android Application

		 If your application doesn’t start, rerun the application by choosing
Run➪Run or pressing Ctrl+F11.

	

Figure 5-4:
The emula-
tor running

the
application.

	

	 4.	 Click the Toggle Silent Mode button to see the image change to the
phone in the red slashed circle, shown in Figure 5-5.

		 Notice the new icon on the notification bar — the Silent Notification
icon.

	

Figure 5-5:
The app
in Silent

mode, with
the Silent

Notification
icon.

	

www.it-ebooks.info

http://www.it-ebooks.info/

133 Chapter 5: Coding Your Application

	 5.	 Return to the Home screen by clicking the Home button on the
emulator.

	 6.	 Open the application. (It’s the center button at the bottom of screen.)

		 You see the application launcher icon in the list of applications.

After the emulator is running, it’s running on its own. The emulator has no
dependencies on Eclipse. In fact, you can close Eclipse and still interact with
the emulator.

Installing on a physical Android device
Installing an application on a device is no different from installing it on the
emulator, except for having to make a few small adjustments to get it to
work. You likely installed the driver in Chapter 2, so the remaining steps are
straightforward:

	 1.	 From the Home screen of your phone, access the Settings panel.

	 2.	 Under Security for newer phones and Applications for older phones,
select the Unknown Sources check box, as shown in Figure 5-6.

		 Select this setting to install applications that aren’t in the Google Play
Store.

	

Figure 5-6:
This setting

allows the
installation
of applica-

tions that
don’t origi-
nate in the

Google Play
Store.

	

www.it-ebooks.info

http://www.it-ebooks.info/

134 Part II: Building and Publishing Your First Android Application

	 3.	 Choose Development and select the USB Debugging option, as shown
in Figure 5-7.

		 This step allows you to debug your application on a device. (You can
find more about debugging later in this chapter, in the “Using the Eclipse
debugger” section.)

	

Figure 5-7:
Enabling

your device
to perform

USB
debugging.

	

	 4.	 Connect your phone to the computer by using a USB cable.

	 5.	 When the phone is detected on your system, run the application by
either choosing Run➪Run or pressing Ctrl+F11.

		 The ADT recognizes another option for a launch configuration, so it asks
you (in the Android Device Chooser dialog box, shown in Figure 5-8) on
which device you want to run the application.

		 The emulator doesn’t show up in the list of available options unless it’s
running.

www.it-ebooks.info

http://www.it-ebooks.info/

135 Chapter 5: Coding Your Application

	

Figure 5-8:
The Android

device
chooser.

	

	 6.	 Choose your phone from the list and click OK.

		 This step sends the application to your phone, and it launches it just as
it would on the emulator. In a few seconds, the app should show up on
your phone.

		 You’ve now deployed the application to your phone.

	 If you change the app and you need to test it again, you have to reinstall it on
your phone. It’s a simple matter of plugging in your phone and choosing
Run➪Run or pressing Ctrl+F11.

Uh-Oh! (Responding to Errors)
You write perfect code, right? Even if it’s perfect this time, though, the day
will come when it isn’t. When coding doesn’t go as planned, you have to
figure out the problem. To help developers in the dire situation of a random
application crash, the ADT provides valuable tools to help debug
applications.

www.it-ebooks.info

http://www.it-ebooks.info/

136 Part II: Building and Publishing Your First Android Application

Using the Dalvik Debug Monitor Server
The Dalvik Debug Monitor Server (DDMS) is a debugging tool that provides
these features, among others:

	 ✓	Port forwarding

	 ✓	Screen capturing

	 ✓	Thread and heap information on the device

	 ✓	System log messages via LogCat

	 ✓	Process and radio state information

	 ✓	Incoming call and SMS spoofing

	 ✓	Location data spoofing

DDMS, located in the Android SDK platform-tools directory, can work with
an emulator and a connected device. In Chapter 2, you add the platform-
tools directory to your path, so you should be able to access DDMS from
the command line.

Why you should get to know DDMS
Debugging is rarely fun. Thankfully, DDMS provides the tools necessary to
help you dig yourself out of a hole filled with bugs. One of the most com-
monly used features in DDMS is the LogCat viewer, which allows you to view
the output of system log messages from your system, as shown in Figure 5-9.

This system log reports everything from basic information messages (which
include the state of the application and device) to warning and error informa-
tion. Seeing only an “Application Not Responding” or a force-close error mes-
sage on the device doesn’t clarify what has happened. Opening the DDMS and
reviewing the entries in LogCat can help identify, down to the line number,
where the exception is occurring.

	

DDMS doesn’t solve the problem for you (darn it!), but it can make tracking
down the root cause of the issue much easier.

www.it-ebooks.info

http://www.it-ebooks.info/

137 Chapter 5: Coding Your Application

	

Figure 5-9:
A view of

LogCat.
	

DDMS is also useful in scenarios where you have no physical device for
testing. For example, if your application is based on tracking a user who is
moving across a map and the user’s device has no GPS (or the user has no
device), the task becomes nontrivial. Thankfully, DDMS is here to help. DDMS
provides tools via location control. As a developer, you can manually provide
GPS coordinates or a GPS eXchange Format (GPX) file or a Keyhole Markup
Language (KML) file that represents points on a map that can be timed
accordingly. For example, you might specify that the user stay at this point
for 5 seconds, move to another point, move to the next point, and so on.

Displaying log messages in DDMS
Displaying log messages in DDMS is as simple as adding one line of code
to your app. Open the MainActivity.java file, and at the bottom of the
method, add a log entry, as shown in bold in Listing 5-5.

Listing 5-5:   The onCreate() Method
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 mAudioManager = (AudioManager)getSystemService(AUDIO_SERVICE);

 checkIfPhoneIsSilent();

 setButtonClickListener();

 Log.d(“SilentModeApp”, “This is a test”);	 ➝12
}

www.it-ebooks.info

http://www.it-ebooks.info/

138 Part II: Building and Publishing Your First Android Application

Line 12 demonstrates how to output a message into the system log.
SilentModeApp is known as the TAG that you’re giving to this log entry; the
second parameter to the log call is the message you want to output. The tag
helps filter messages while looking at them in DDMS.

	 Declare a TAG constant in your code and use it instead of repeatedly typing
the TAG, as in this example:

private static final String TAG = “SilentModeApp”;

Notice the d in Log.d in Listing 5-5, indicating that this is a debug message.
Other options are

	 ✓	e: error

	 ✓	i: info

	 ✓	wtf: What a terrible failure (Yes, it’s an option.)

	 ✓	v: verbose

The various logging types exist for you to decide how various messages
should be logged.

	 For logging to work, you have to import the android.util.Log package.

Viewing DDMS messages
You can view DDMS messages by either opening DDMS manually or opening
the DDMS perspective in Eclipse:

	 ✓	Manually: Navigate to wherever you installed the Android SDK. Inside
the tools directory, double-click the ddms.bat file. The DDMS applica-
tion opens outside the Eclipse IDE, as shown in Figure 5-10.

	 ✓	In Eclipse: The ADT has installed a DDMS perspective. To open it, click
the Open Perspective button (see Figure 5-11) and choose DDMS.

		 If DDMS isn’t visible in this view, select the Other option and then select
DDMS, to add a DDMS perspective to the list of perspectives that you
can easily toggle.

		 If you prefer to move the LogCat window (usually near the bottom of the
screen) to the main area of the screen, as shown in Figure 5-12, simply
drag the LogCat tab title and drop it on the location you want.

www.it-ebooks.info

http://www.it-ebooks.info/

139 Chapter 5: Coding Your Application

	

Figure 5-10:
An instance

of DDMS
running sep-
arately from

Eclipse.
	

		 Start the application by choosing Run➪Run or pressing Ctrl+F11. When
your application is running in the emulator, open the DDMS perspective
and look for your log message. It should look somewhat similar to the
one shown in Figure 5-13.

		 You can now switch back to the Java perspective by clicking the Java
Perspective button. (Refer to Figure 5-11.)

	

Figure 5-11:
The Open

Perspective
button.

	

www.it-ebooks.info

http://www.it-ebooks.info/

140 Part II: Building and Publishing Your First Android Application

	

Figure 5-12:
The LogCat
window, in

the main
viewing
area of

Eclipse.
	

	

Figure 5-13:
Viewing

your LogCat
message in
Eclipse via
the DDMS

perspective.

	

www.it-ebooks.info

http://www.it-ebooks.info/

141 Chapter 5: Coding Your Application

Using the Eclipse debugger
Although DDMS might be one of your best allies, your number-one weapon in
the battle against the army of bugs is the Eclipse debugger, which lets you set
various breakpoints, inspect variables using the watch window, view LogCat,
and much more. You use the debugger for either runtime errors or logic
errors.

Eclipse catches errors in syntax. When the application doesn’t compile,
Eclipse alerts you by placing a colored, squiggly line underneath the prob-
lematic area.

Checking runtime errors
The runtime error is the Wicked Witch of the East — it comes out of nowhere
and leaves everything a mess. In Android, runtime errors occur while an
application is running. Your application might be humming along and, all of a
sudden, your application crashes when you click a menu option or a button,
for example. The possible reasons for this behavior are innumerable — per-
haps you didn’t initialize the AudioManager in the onCreate() method,
and then you tried to access the variable later in the app, which would cause
a run-time exception.

The debugger can help in this situation because you can set a breakpoint at
the start of onCreate() that allows you to inspect the values of the vari-
ables through the debug perspective. You would likely then realize that you
forgot to initialize the AlarmManager.

Listing 5-6 demonstrates what would create this scenario — commenting out
the AlarmManager initialization causes an exception to be thrown at runtime.

Listing 5-6:   Commenting Out the AlarmManager Initialization
private AudioManager mAudioManager;	 ➝1
private boolean mPhoneIsSilent;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 //mAudioManager =	 ➝9
 // (AudioManager)getSystemService(AUDIO_SERVICE);

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

142 Part II: Building and Publishing Your First Android Application

Listing 5‑6 (continued)
 checkIfPhoneIsSilent();

 setButtonClickListener();

 Log.d(“SilentModeApp”, “This is a test”);
}
/**
 * Checks to see if the phone is currently in silent mode.
 */
private void checkIfPhoneIsSilent() {

 int ringerMode = mAudioManager.getRingerMode();	 ➝22
 if (ringerMode == AudioManager.RINGER_MODE_SILENT) {
 mPhoneIsSilent = true;
 } else {
 mPhoneIsSilent = false;
 }

}

Listing 5-6 works this way:

	 ➝1	 The class-level AudioManager is introduced.

	 ➝9	 This code, which is commented out, leaves the mAudioManager
variable in a null state.

	 ➝22	 When onCreate() called checkIfPhoneIsSilent(), the appli-
cation threw a runtime exception because mAudioManager was
null and the application tried to reference a member on an object
that doesn’t exist.

Attaching a debugger to the onCreate() method allows you to track down
the root cause of the error.

Creating breakpoints
You have a couple ways to create a breakpoint, which will pause your appli-
cation mid-execution and let you examine its running state:

	 ✓	Choose the line where you want to place the breakpoint by clicking it
with the mouse. Choose Run➪Toggle Breakpoint, as shown in Figure
5-14, or press Ctrl+Shift+B.

	 ✓	Double-click the left gutter in the Eclipse editor where you want to
create a breakpoint.

www.it-ebooks.info

http://www.it-ebooks.info/

143 Chapter 5: Coding Your Application

	

Figure 5-14:
Setting a

breakpoint
by using a

menu or hot
keys.

	

Either method creates a small, round icon in the left gutter of the Eclipse
editor, as shown in Figure 5-15.

To try debugging in Eclipse, comment out line 3 of the onCreate() method,
as shown in Listing 5-7.

Listing 5-7:   Commenting Out Code to Throw an Error
setContentView(R.layout.activity_main);

//mAudioManager = (AudioManager)getSystemService(AUDIO_SERVICE);	 ➝3

checkIfPhoneIsSilent();	 ➝5

	 ➝3	 The AudioManager is commented out.

	 ➝5	 The method is called, which causes the application to fail.

Set a breakpoint on line 5.

www.it-ebooks.info

http://www.it-ebooks.info/

144 Part II: Building and Publishing Your First Android Application

	

Figure 5-15:
A set break-
point in the

left gutter
of Eclipse’s

editor
window.

	

Starting the debugger and the Debug perspective
You have one task to tend to before you start debugging: Tell the Android
application that it’s debuggable. To do so, open the AndroidManifest.
xml file, select the Application tab at the bottom (see Figure 5-16), and then
choose the debuggable property and set it to true, as shown in the figure.
Then save the file.

	

Figure 5-16:
Setting up
the appli-
cation as

debuggable.

	

www.it-ebooks.info

http://www.it-ebooks.info/

145 Chapter 5: Coding Your Application

	 Failing to set the debuggable property to true ensures that you never get to
debug your application. Your application won’t even attempt to connect to the
debugger. If you ever have problems with debugging, check to see whether
this property is set to true.

Follow these steps to debug your code:

	 1.	 Choose Run➪Debug or press F11.

		 The ADT and Eclipse install the application on the emulator (or device)
and then attach the debugger to it.

	 2.	 Open your emulator.

		 The application installs, and you see the screen shown in Figure 5-17. It
notifies you that the ADT and the emulator are trying to make a connec-
tion behind the scenes.

	

Figure 5-17:
The emula-

tor waits
for the

debugger to
attach.

	

		 The emulator might sit for a moment while the debugger attaches. Then
the emulator runs your application code and stops when it finds its first
breakpoint.

		 You then see a dialog box asking whether the Debug perspective can be
opened.

www.it-ebooks.info

http://www.it-ebooks.info/

146 Part II: Building and Publishing Your First Android Application

	 3.	 Click Yes to open the Debug perspective.

		 You’re now at a breakpoint, as shown in Figure 5-18. You can hover the
cursor over variables to see their values.

	 4.	 Hover the cursor over the mAudioManager variable.

		 The variable is null because you had commented out the code, as shown
in Figure 5-18.

	

Figure 5-18:
The Debug

perspective
is explained.

	

www.it-ebooks.info

http://www.it-ebooks.info/

147 Chapter 5: Coding Your Application

		 You can also step through the execution of the code by operating the
debug navigation, as shown in Figure 5-18. If you click the Continue
button (or press F8), you can see the Debug perspective change and
eventually say source not found. Open the emulator, and you can
see that your application has crashed, as shown in Figure 5-19. In the
Google Play Store, users have come to know this screen as the force-
close (or FC) screen. A force-close occurs when a runtime exception
isn’t handled inside your code.

	

Figure 5-19:
The force-

close dialog
box opens

after a
runtime

exception.
	

	 5.	 To disconnect the debugger, click the Disconnect button.

Return to the Java perspective, and uncomment line 3 from Listing 5-7 in the
MainActivity.java file to ensure that the application builds successfully.

Checking logic errors
Computers do exactly what you tell them to do, and this little smartphone
isn’t smart enough to understand what’s right or wrong in literal logic. An
example of an error in literal logic is demonstrated in Listing 5-8.

Listing 5-8:   Code That Doesn’t Check the Phone for Silent Mode
/**
 * Toggles the UI images from silent
 * to normal and vice versa.
 */
private void toggleUi() {

 ImageView imageView =
 (ImageView) findViewById(R.id.phone_icon);
 Drawable newPhoneImage;

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

148 Part II: Building and Publishing Your First Android Application

Listing 5‑8 (continued)

 if (mPhoneIsSilent) {	 ➝11
 newPhoneImage =
 getResources().getDrawable(R.drawable.phone_silent);

 } else {
 newPhoneImage =
 getResources().getDrawable(R.drawable.phone_on);
 }

 imageView.setImageDrawable(newPhoneImage);
}

@Override
protected void onResume() {
 super.onResume();

 //checkIfPhoneIsSilent();	 ➝26
 toggleUi();
};

Listing 5-8 works this way:

	 ➝11	 This line checks to see whether the phone is in Silent mode.

	 ➝26	 For the toggleUi() method to properly display the correct user
interface to the user, the application has to know what state the
ringer is in. This line comments out the checkIfPhoneIs
Silent() method, which updates the class-level mPhoneIs
SilentVariable.

		 Because this occurs in the onResume() method, the user can
leave the app, change its ringer state via the phone’s Settings app,
then return to the app — and the app would be in an incorrect
state simply because of a logic error.

		 Using a debugger, you can attach a breakpoint on the first line
of the toggleUi() method to inspect the various variables that
help make the logic calls. Then you would notice that mPhone-
IsSilent isn’t being set.

www.it-ebooks.info

http://www.it-ebooks.info/

149 Chapter 5: Coding Your Application

Thinking Beyond the Application
Boundaries

At times, the device may perform extraneous work that can affect your
application, such as downloading a large file in the background while play-
ing music from an online radio application. Will these heavy network-bound
activities affect the application in any way? It depends. If your app needs a
connection to the Internet and for some reason cannot connect, will it crash?
What will happen? Knowing the answers to these questions means that
you’re thinking beyond your application boundaries.

Not all apps are created equal — some good ones are out there, along with
some bad ones. Before building or releasing your first Android application,
ensure that you know the ins and outs of your application and anything that
can affect it. Be sure that the app doesn’t crash when users perform routine
tap events and screen navigation.

Building applications on embedded devices is much different from building
them on a PC or Mac, and the reason is simple: The resources (memory and
processor, for example) are limited. If the Android device happens to be a
phone, its main purpose is to perform phone-like duties, such as recognizing
an incoming call, maintaining a signal, and sending and receiving text
messages.

If a phone call is in progress, the Android system treats that process as vital,
whereas a downloading file in the background is considered nonvital. If the
phone starts to run out of resources, Android kills all nonvital processes to
keep the vital ones alive. A file can be downloaded again, but when a call is
lost, it’s lost forever — you have to make that call again, which would only
frustrate the user if the main purpose for purchasing the device was to have
a phone. Your app might download a file in the background and the process
gets killed — this is a scenario that you need to test. It can also happen if
your phone encounters an area with a poor or non-existent wireless signal. If
the connection gets dropped, your file isn’t downloaded.

Test for all possible solutions and have a safety guard for them. Otherwise,
your app will be prone to runtime exceptions, which can lead to poor reviews
from users at the Google Play Store.

www.it-ebooks.info

http://www.it-ebooks.info/

150 Part II: Building and Publishing Your First Android Application

Interacting with your application
To ensure that your app works, fire it up and play with its features. While
your app is running, start another app, such as the browser. Visit a few sites,
and then return to your app. Click any buttons related to your app to see
what happens. Try all kinds of things to see whether you find outcomes that
you didn’t consider. What happens if a user is interacting with your app and
receives a phone call? Are you saving the necessary state in onPause() and
restoring it in onResume()?

	

Android handles the difficult task management for you, but it’s ultimately your
responsibility to manage the state of your application.

What about automated testing?
With the rise of agile methodologies over the
past decade, it’s only a matter of time before
you start to wonder how to perform automated
testing in Android. The SDK installs Android
unit-testing tools that you can use to test not
only Java classes but also Android-based
classes and user interface interactions. You
can read more about unit testing in the Android
documentation at http://d.android.
com/guide/topics/testing/
testing_android.html.

Here are the tools at your disposal:

	✓	 jUnit: The SDK installs jUnit integration
with the ADT. You can use jUnit, a popular

unit-testing framework that’s used in Java,
to perform unit testing or interaction test-
ing, and you can find more information
about jUnit at www.junit.org. To make
your development life easier, Eclipse has
built-in tools to help facilitate testing in jUnit
through Eclipse.

	✓	 Monkey: The user interface and application
exerciser known as Monkey runs on your
emulator or device and generates pseu-
dorandom streams of user events, includ-
ing taps, gestures, touches, clicks, and a
number of system events. Monkey, which
is installed with the Android SDK, is a help-
ful way to stress-test an application.

www.it-ebooks.info

http://d.android.com/guide/topics/testing/testing_android.html
http://d.android.com/guide/topics/testing/testing_android.html
http://d.android.com/guide/topics/testing/testing_android.html
http://www.junit.org
http://www.it-ebooks.info/

151 Chapter 5: Coding Your Application

Testing whether your application works
In the emulator, open the Silent Mode Toggle application from the launcher.
You’ve already performed the first step in the testing process — making sure
that the app starts!

After the app is open, check to see whether the phone is in Silent mode by
looking for the small phone icon on the notification bar (refer to Figure 5-5).

Click the Toggle Silent Mode button to toggle the ringer mode. Did the
application’s image change from the green phone to the silent phone (or
vice versa)? Try various actions to ensure that your application works as
expected. If you find a flaw, use the debugging tools featured in this chapter
to help identify the issue.

www.it-ebooks.info

http://www.it-ebooks.info/

152 Part II: Building and Publishing Your First Android Application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Understanding Android Resources
In This Chapter
▶	Knowing why resources are important in Android
▶	Extracting resources
▶	Working with image resources

R
esources are mentioned in detail throughout this book, so you might
wonder why an entire chapter is devoted to them. Discussing resources

and their use in Chapters 3 and 4 is necessary to help you understand the
basic structure of the resource directory and the use of resources to build a
simple application. One compelling reason to use resources in your applica-
tion, globalization, is covered in this chapter.

Understanding Resources
Resources are the additional static content and files that are an intrinsic part
of your application but aren’t part of your Java code. Resources can take
these forms:

	 ✓	Layout

	 ✓	String

	 ✓	Image

	 ✓	Dimension

	 ✓	Style

	 ✓	Theme

	 ✓	Value

	 ✓	Menu

	 ✓	Color

www.it-ebooks.info

http://www.it-ebooks.info/

154 Part II: Building and Publishing Your First Android Application

Earlier chapters in this book introduce you to layouts, strings, and images
because they’re the most common types of resources that you use in every-
day Android application development. The remaining resources may be
muddy, so the following few sections clear them up.

Dimensions
In an Android resource, a dimension is a number followed by a unit of mea-
surement, such as 10px, 2in, or 5sp. You use a dimension when specifying
any property in Android that requires a numeric unit of measure. For exam-
ple, you may want the padding of a layout to be 10px. The following units of
measure are supported by Android:

	 ✓	density-independent pixel (dp): This abstract unit is based on the phys-
ical density of the screen. These units are relative to a screen measuring
160 dots per inch (dpi); therefore, 1 dp is equivalent to 1 pixel on a 160
dpi screen. The ratio of dp to pixels changes with screen density, but
not necessarily in proportion. This unit of measure is the one that most
developers use when developing layouts.

		 The dp concept is complex; if you plan to actively support multiple
screen densities, the Supporting Multiple Screen Sizes article at
http://developer.android.com/guide/practices/screens_
support.html is a must read.

	 ✓	scale-independent pixel (sp): This unit resembles the dp unit but is
scaled according to the user’s font-size preference. Use sp dimensions
when specifying font sizes in your application.

	 ✓	pixel (px): A pixel corresponds to a pixel on the screen. This unit of
measure isn’t recommended. Your app may look great on a medium-
density device but look distorted and out of place on a high-density
screen (and vice versa) because the dpi differs.

	 ✓	point (pt): A point is 1⁄72 inch, based on the physical size of the screen.
Like px, pt is not recommended.

	 ✓	millimeter (mm): This unit is based on the size of the screen. Like px,
mm is not recommended.

	 ✓	inch (in): This unit is based on the physical size of the screen. Like px,
in is not recommended.

www.it-ebooks.info

http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://www.it-ebooks.info/

155 Chapter 6: Understanding Android Resources

Styles
Styles in Android are similar to Cascading Style Sheets (CSS) in the web
development realm: You use styles to (you guessed it) style an application.
A style is officially a collection of properties that can be applied to an indi-
vidual view (within the layout file) or to an activity or to your entire applica-
tion (from within the manifest file). Styles support inheritance, so you can
provide a basic style and then modify it for each particular use case in your
application. Style property examples include font size, font color, and screen
background.

Themes
A theme is a style applied to an entire activity or application, rather than an
individual view. When a style is applied as a theme, every view in the activ-
ity and/or application inherits the style settings. For example, you can set all
TextView views to a particular font, and all views in the themed activity or
application then display their text in that font.

Values
The value resource can contain many different types of value type resources
for your application, including

	 ✓	Bool: A Boolean value defined in XML whose value is stored in an arbi-
trary filename in the res/values/<filename>.xml file, where <file-
name> is the name of the file. An example is bools.xml.

	 ✓	Integer: An integer value defined in XML whose value is stored with an
arbitrary filename in the res/values/<filename>.xml file. An exam-
ple is integers.xml.

	 ✓	Integer array: An array of integers defined in XML whose set of values
is stored with an arbitrary name in the res/values/<filename>.xml
file, where <filename> is the name of the file. An example is integers.
xml. You can reference and use these integers in your code to help
define loops, lengths, and other elements.

	 ✓	Typed array: A typed array is used to create an array of resources,
such as drawables. You can create arrays of mixed types. Therefore,
the arrays aren’t required to be homogeneous — however, you
must be aware of the data type so that you can appropriately cast
it. As with other resources, the filename is arbitrary in the res/
values/<filename>.xml file. An example is types.xml.

www.it-ebooks.info

http://www.it-ebooks.info/

156 Part II: Building and Publishing Your First Android Application

Menus
Whether your app is using the action bar or a menu, Android treats them
both the same and you’ll define them the same way. A menu can be defined
via either code or XML. The preferred way to define one is via XML; there-
fore, the various menus you create should be placed into the menu/ direc-
tory. Each menu has its own .xml file.

Colors
The colors file, located in the values/colors.xml file, lets you name
colors, such as login_screen_font_color. This might depict the color of
the font you’re using on the logon page, for example. Each color is defined as
a hexadecimal value.

Working with Resources
You may have worked with resources a few times in this book, and at this
point you’re likely familiar with using the R class to access resources from
within your application. If you’re rusty on resources and the generated R file,
see Chapter 3.

Moving strings into resources
As you become an experienced programmer, you may start to take shortcuts
to get your project built and working. Say that initially you forget to move
strings into resources, and you have to come back at a later time to do it. You
can extract a string into a resource using the built-in tools.

The long way
Here’s one way to extract a string into a resource:

	 1.	 Create a new string resource.

	 2.	 Copy its name.

	 3.	 Replace the string value in your layout with the resource identifier.

www.it-ebooks.info

http://www.it-ebooks.info/

157 Chapter 6: Understanding Android Resources

This task may not be a huge pain, but it takes time, possibly 30 to 45 seconds
for the average developer.

The fast way
You can cut the time to create a string resource to fewer than 15 seconds. If
you do this 30 times a day (which is feasible in an 8-hour day), you can save
15 minutes of just copying and pasting. That’s five hours a month doing the
copy-and-paste dance!

Follow these steps:

	 1.	 In Eclipse, open the main.xml file in the layouts directory.

	 2.	 Find the following chunk of code in the file:

<Button
 android:id=”@+id/toggleButton”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center_horizontal”
 android:text=”Toggle Silent Mode”
/>

	 3.	 Select the boldface line “Toggle Silent Mode”.

	 4.	 Press Ctrl+1 on Windows or ⌘+1 on a Mac.

		 A menu opens with three options.

	 5.	 Choose the Extract Android String option.

		 The Extract Android String dialog box opens, as shown in Figure 6-1, and
you can set various options for the resource.

	 6.	 Leave the defaults alone, and click OK.

		 You can now see that the layout file has been modified. The text
“Toggle Silent Mode” has been replaced with “@string/toggle_
silent_mode”.

		 If you open the strings.xml file in the res/values folder, you
can see a new string resource with that name and the value “Toggle
Silent Mode”.

That’s pretty cool! You can see that doing this 20 or 30 times a day can add
up and save you a lot of time.

www.it-ebooks.info

http://www.it-ebooks.info/

158 Part II: Building and Publishing Your First Android Application

	

Figure 6-1:
The Extract

Android
String dialog

box.
	

Wrestling the image beast
One of the most difficult parts about resources can be images. They might
look great on medium-density devices but look like garbage on high-density
devices. This is where multiple-density folders come into play. These density-
specific drawable folders are explained in Chapter 3.

Battling pixelation and compression
The issue you’ll most likely encounter is pixelation and compression/expan-
sion (moving from higher- to lower-density devices and vice versa). To work
around this issue, design your graphics at a high resolution, such as 300dpi
in large-size format. For example, if you’re building the launcher icon, build
it at 250px high and 250px wide. Although the xhdpi folder might need an
image of only 96px high by 96px wide (the largest in use), it doesn’t mean
that in two or three months a higher resolution device won’t be released.

This situation can be painful because working with large image files in image
editing programs can be difficult if you don’t have a computer with decent
capabilities. But you have to trust us on this one: Having a large raw-image
file that’s high density is much easier to mold and shape into the correct den-
sities you’ll need.

www.it-ebooks.info

http://www.it-ebooks.info/

159 Chapter 6: Understanding Android Resources

	 Downsizing a high-density image doesn’t distort its quality (other than losing
its fine edges and detail), but upscaling distorts it because it creates pixelation
and distortion. Starting with a large file reduces the chance that you’ll ever
have to upscale, which means that your app graphics will always look crisp.

Using layers
If you’re creating graphics in an image editing tool that supports layers, place
each item in your graphic on a different layer. The reasons are many, but
here are the key factors:

	 ✓	Changes: At some point, you will need to change something in your
graphic — its background, font, or logo, for example. If you have all
these items in different layers, you can make the change without affect-
ing the rest of the graphic.

	 ✓	Localization: An example from an earlier section in this chapter talks
about various strings in different languages, and graphics are no differ-
ent. Many times as you develop applications, you will encounter graph-
ics with stylized text in the graphic itself. If your application is being
translated into Japanese and your graphics contain stylized English text,
you can create a Japanese version of those graphics and place them in
a Japanese drawable region folder, such as res/drawable-ja. The
Android platform recognizes which region it’s in (in this case, Japan).
If the region’s resource folders (res/drawable-ja, res/values-ja,
and so on) are available, Android uses them in the application. That
being said, it’s always easier to keep your text in text resources and your
images in image resources. Translating text resources is easier than
making new copies of your images for every new language.

Making your apps global with resources
The Android platform surpassed the Apple iPhone in U.S. market share in the
first quarter of 2010. Now carriers around the world are developing Android-
based smartphones, which simply means more potential users for your apps.

What this statement means to you as a developer is that Android is a huge
market with tons of opportunity waiting to be tapped. Though this opportunity
is exciting, taking the greatest advantage of it requires that you understand
resources and how they affect the usability of your apps. For example, if a user
in the United States uses your app and it was written for an English-speaking
audience (using resources or not), the user would be able to use it. However,
if you hard-code all your string values into your views and activities and then
need to release a Chinese version, you have to rewrite your application to use
resources. When you use resources, you can have a linguist translate your
strings and drawables into the region you’re targeting — such as China.

www.it-ebooks.info

http://www.it-ebooks.info/

160 Part II: Building and Publishing Your First Android Application

Resources allow you to extract human-readable strings, images, and viewable
layouts into resources that you can reference. Various resource folders can
be created to handle screens of various sizes, different languages (strings and
drawables), and layout options such as landscape and portrait. Landscape
and portrait views come into play when a user rotates the device 90 degrees
in either direction.

If you want your apps to be viewable on as many Android devices as pos-
sible around the world, you should use resources at all times. Always put all
strings into the strings.xml file because, someday, someone from another
country will want your application in another language. To transport your
application to another language, you simply need to have a linguist translate
your strings.xml file into her language, and then you can create various
values folders to hold the appropriate region’s values. Android takes care of
the hard work. For example, if the user is in China and his phone is set to the
Chinese character set, Android looks for the values folder named values-cn,
which is where Chinese values are stored — including the Chinese version
of the strings.xml file. If Android cannot find such a folder, the platform
defaults to the default values folder, which contains the English version of
the strings.xml file. (For more on strings, see the section “Moving strings
into resources,” earlier in this chapter.)

When it comes down to it, having a linguist update your strings and creat-
ing a new folder with the new strings.xml file located within are simple
tasks. Expand this concept to other languages and tablets and televisions and
you can see the potential. You’re no longer looking at mobile users as your
target audience. You’re looking at Android users, and with the options being
released, you could be looking at billions of users. Using resources correctly
can make your expansion into foreign markets that much easier.

	 While nothing beats having a person to translate your app strings for you, find-
ing a native speaker for every language you want to support can be tough. There
is a simple shortcut you can take to have Google do the translation for you. Visit
http://translate.google.com/toolkit and upload your strings.xml
file to have it automatically translated by a computer. The results may sound a
little clumsy to a native speaker, but it will at least give you a head start.

Designing your application for various regions is a big topic. You can find
more in-depth information in the “Localization” article of the SDK documenta-
tion at http://developer.android.com/guide/topics/resources/
localization.html.

	 Although designing an application to be ready for various regions sounds
compelling, it also helps to know that the Google Play Store allows you to
specify the targeted region of your device. You’re not forced into releasing
your application to all regions. Therefore, if you have written an application
for the Berlin bus route system in Germany, it probably doesn’t make sense to
have a Chinese version, unless you want to cater to Chinese tourists as well as
to German residents.

www.it-ebooks.info

http://translate.google.com/toolkit
http://developer.android.com/guide/topics/resources/localization.html
http://developer.android.com/guide/topics/resources/localization.html
http://www.it-ebooks.info/

Chapter 7

Turning Your Application into
a Home Screen Widget

In This Chapter
▶	Seeing how app widgets work in Android
▶	Understanding pending intents
▶	Building an App Widget Provider
▶	Putting your widget on the Home screen

U
sability is the name of the game in regard to all disciples of application
development: If your application isn’t usable, users simply won’t use it.

If you’ve followed the first six chapters of this book to build the Silent
Mode Toggle application, it undoubtedly works well and is highly usable.
Unfortunately, if the application were published at the Google Play Store, it
likely wouldn’t be popular yet because a user would have to open the app
and then tap a button to silence the phone. If the user hasn’t created a Home
screen shortcut to the application, and the app is buried in the application
launcher with other applications, a few extra steps are required: Unlock
the phone, open the launcher, locate the app, open the app, and then tap
the Silent button. At this point, the user might as well press the Volume Up
and Volume Down keys to silence the phone. To make this application more
usable and feasible, simply turn it into a Home screen widget.

In this chapter, you build a Home screen widget for your application. An app
widget normally is a small icon or tiny view on the Home screen. Users can
interact with your application by simply tapping its icon — the Home screen
widget. Then the core functionality kicks in and toggles Silent mode. This
chapter introduces you to these classes:

www.it-ebooks.info

http://www.it-ebooks.info/

162 Part II: Building and Publishing Your First Android Application

	 ✓	Intent

	 ✓	BroadcastReceiver

	 ✓	AppWidgetProvider

	 ✓	IntentService

Each of these classes plays a vital role in Android as well as in the app widget
framework.

Working with App Widgets in Android
A Home screen widget (or app widget) in Android is a special kind of view that
can be embedded on your device’s Home screen. An app widget can accept
user input via click events, and it can update itself regularly. A user can add
an app widget to the Home screen by tapping the Applications button and
then selecting Widgets. The result is shown in Figure 7-1.

	

Figure 7-1:
Adding a
widget to
the Home

screen.
	

www.it-ebooks.info

http://www.it-ebooks.info/

163 Chapter 7: Turning Your Application into a Home Screen Widget

To make the Silent Mode Toggle application more usable, build a Home
screen widget for it so that users can add the widget to the Home screen.
Tapping the widget changes the phone’s ringer mode automatically without
having to open the application. The widget also updates its layout to indicate
what state the phone is in, as shown in Figure 7-2.

	

Figure 7-2:
The two

states of the
app widget.

	

Working with remote views
When you develop apps in Android, remember that it’s based on the Linux
2.6 kernel. Linux comes supplied with its own idioms (or “dialect”) about
security, and the Android platform inherits them. For example, the Android
security model is heavily based around the Linux user, file, and process secu-
rity model.

	 Because every Android application is (usually) associated with its own unique
user, Android prevents applications from modifying the files of other applica-
tions. This prevents developers from attempting to inject malicious code into
other apps.

Because the Home screen is its own application and thus has its own unique
user, developers such as yourself aren’t allowed to directly run your applica-
tion code on the Home screen for safety reasons. To provide a way to access
the Home screen and modify the contents of a particular area on it from an
application, the Android developers implemented the RemoteViews archi-
tecture: It lets you run code inside your application, in a separate process
from the Home screen application, but it still allows a widget’s view to be
updated on the Home screen. The result is that you can still have your widget
but no arbitrary code needs to be run inside the Home screen application —
all your app widget code runs within your application.

Suppose that a user taps the Home screen app widget (in this case, an icon
she added to the Home screen). This action sends a request — addressed to
your application — to change the ringer mode. Android routes the request
to your application, and the application processes the request, instructing
the Android platform to change the ringer mode and update the app widget

www.it-ebooks.info

http://www.it-ebooks.info/

164 Part II: Building and Publishing Your First Android Application

on the Home screen with a new image. None of this code is run in the Home
screen application — it’s all run remotely in your application, with Android
messaging routing the message to the appropriate application.

A remote view combines a little magic with innovative engineering. Known
as the RemoteViews class on the Android platform, it allows your applica-
tion to programmatically supply a remote user interface to the Home screen
in another process. The app widget code isn’t an actual activity (as in ear-
lier chapters), but is an implementation of an AppWidgetProvider. When
Android routes a message (as described in the preceding paragraph) to your
application from the Home screen, the message is handled in your implemen-
tation of the AppWidgetProvider class.

Using AppWidgetProviders
The AppWidgetProvider class allows the developer to programmatically
interact with the app widget on the Home screen. When this interaction takes
place, messages are sent from the Home screen app widget to your applica-
tion via broadcast events. Using these broadcast events, you can respond
when the app widget is updated, enabled, disabled, or deleted. You can also
update the look and feel of the app widget on the Home screen by providing
a new view. Because this view is located on the Home screen and not within
your running application, you use RemoteViews to update the Home screen
layout. All the logic that determines what should happen is initiated via an
implementation of AppWidgetProvider.

Picture the app widget framework as the translator of a conversation between
two entities. If you need to speak to someone who knows Italian, but you don’t
know how to speak Italian, you would find a translator who would accept
your input, translate it into Italian, and relay the message to the native Italian
speaker. The same process applies to the app widget framework: This frame-
work is your translator.

When the Italian native (the Home screen, in this case) needs to let you know
that something has happened (such as a user tapping a button), the transla-
tor (the app widget framework in the Android system) translates the action
into a message that you can understand (tapping a particular button). At
that time, you can respond with the action you want to take (such as change
the app widget background color to lime green), and the translator (the app
widget framework) relays the message to the native Italian speaker (to the
Home screen via the Android system). The Home screen updates the back-
ground color of the view.

www.it-ebooks.info

http://www.it-ebooks.info/

165 Chapter 7: Turning Your Application into a Home Screen Widget

	 App widgets can only accept input from tap-type events. When you’re working
within an app widget, you have no access to other basic input views, such as
an editable text box or drop-down lists.

Working with Pending Intents
When the user needs to interact with your application, she communicates
by tapping the app widget using the Android messaging architecture (as
described earlier), and you aren’t immediately notified. However, this doesn’t
mean you can’t be notified about a click event on your app widget — it’s just
done a little differently than regular views.

App widget click events contain instructions for what to do when a click
event happens via the PendingIntent class in the Android framework.
A pending intent is an implementation of the Intent class in Android, as
explained in the following section.

Understanding the Android intent system
An Intent object in Android is a message telling Android to make some-
thing happen. When you turn on a light using a wall switch, the action of
your intent is to turn on the light, so you flip the switch to the On position.
In Android, this action correlates to creating an instance of the Intent class
with an action in it specifying that the light is to be turned on:

Intent turnLightOn = new Intent(“TURN_LIGHT_ON”);

This intent is fired off into the Android messaging system (as described
in Chapter 1), and the appropriate activity handles the Intent. (If mul-
tiple activities respond, Android lets the user choose one to do the work.)
However, in the physical world, an electrical connection is made by posi-
tioning the switch to the On position, resulting in illuminating the light. In
Android, you have to provide code, in the form of an activity, to make this
happen. This activity (that can be named TurnLightOnActivity) responds
to the turnLightOn intent. If you’re working with an app widget, you must
handle the intent in a BroadcastReceiver rather than in an activity. An
AppWidgetProvider is an instance of a BroadcastReceiver with a few
extra bells and whistles that configure a lot of the app widget framework for
you. The BroadcastReceiver object is responsible for receiving broadcast
messages.

www.it-ebooks.info

http://www.it-ebooks.info/

166 Part II: Building and Publishing Your First Android Application

The AppWidgetProvider handles the intent from the Home screen and
responds with the appropriate result that you determined, using your
code, inside your custom AppWidgetProvider. It doesn’t work with any
intent, though. If you want to receive input from your app widget, use
PendingIntent.

To understand what a PendingIntent class is, you need to fully grasp
the concept of the basic Intent class. A PendingIntent contains a child
Intent object. At a high level, a pending intent acts like a regular intent.
An intent is a message that can carry a wide variety of data describing an
operation that needs to be performed. An intent can be addressed to a
specific activity or broadcast to a generic category of receivers known
as BroadcastReceivers (which includes AppWidgetProvider). The
Intent, Activity, and BroadcastReceiver system is reminiscent of the
message bus architecture, where a message is placed on a message bus and
any of the endpoints on the bus respond to the message if (and only if) they
know how. If no endpoint knows how to respond to the message, or if the
message wasn’t addressed to the endpoint, the message is ignored.

An intent can be launched into the message bus system in a couple of ways:

	 ✓	Start another activity: Use the startActivity() call, which accepts
an Intent object as a parameter.

	 ✓	Notify any interested BroadcastReceiver components: Use the
sendBroadcast() call, which also takes an intent as a parameter.

	 ✓	Communicate with a background service: Use the startService()
or bindService() call, which both accept intents as parameters.

An activity is the glue that binds various components of the application
because it provides a late-binding mechanism that allows inter-application
and intra-application communication.

Understanding intent data
An intent’s data consists of these elements:

	 ✓	Action: The general action to be performed. A few common actions
include ACTION_VIEW, ACTION_EDIT, and ACTION_MAIN. You can also
provide your own custom action.

	 ✓	Data: The data to operate on, such as a record in a database or a uni-
form resource identifier that should be opened, such as a URL.

www.it-ebooks.info

http://www.it-ebooks.info/

167 Chapter 7: Turning Your Application into a Home Screen Widget

Table 7-1 demonstrates a few action and data parameters for Intent objects
and their simple data structure.

Table 7-1	 Intent Data Examples
Action Data Result

ACTION_
VIEW

tel:123 Display the dialer with the given
number (123) filled in.

ACTION_
DIAL

content://contacts/
people/1

Display the dialer showing the
phone number from the contact
with the ID of 1.

ACTION_
EDIT

content://contacts/
people/1

Edit the information about the
person whose given identifier
is 1.

ACTION_
VIEW

http://www.example.
org

Display the web page of the
given intent.

ACTION_
VIEW

content://contacts/
people

Display a list of all people in the
Contacts system.

Intents can also carry an array of other data that include these elements:

	 ✓	category: Gives additional information about the action to execute. As
an example, if CATEGORY_LAUNCHER is present, the application should
show up in the application launcher as a top-level application. Another
option, CATEGORY_ALTERNATIVE, can provide alternative actions that
the user can perform on a piece of data.

	 ✓	type: Specifies a particular type (MIME type) of intent data. For example,
when you’re setting the type to audio/mpeg, the Android system recog-
nizes that you’re working with an MP3 file. Normally, the type is inferred
by the data itself. By setting the type, you override the inferred type by
explicitly setting the type in the intent.

	 ✓	component: Specifies an explicit component name of the class on which
to execute the intent. Normally, the component is inferred by inspection
of other information in the intent (action, data/type, and categories),
and matching components can handle it. If this attribute is set, none of
that evaluation takes place, and this component is used exactly as speci-
fied (likely the most common use case in your applications). You can
provide another activity as the component — this addresses Android to
interact with that specific class.

www.it-ebooks.info

http://www.it-ebooks.info/

168 Part II: Building and Publishing Your First Android Application

	 ✓	extras: A bundle of additional, key-based information that’s used to pro-
vide extra information to the receiving component. For example, if you
need to send an e-mail address, you use the extras bundle to supply the
body and subject and other components of the e-mail.

Evaluating intents
Intents are evaluated in the Android system in one of two ways:

	 ✓	Explicitly: The intent has specified an explicit component or the exact
class that will execute the data in the intent. (Again, this is likely the
most common way to address intents.) This type of intent often con-
tains no other data because it’s a means to start other activities within
an application. You find out later in this chapter how to use an explicit
intent in an application.

	 ✓	Implicitly: The intent hasn’t specified a component or class. Instead,
the intent must provide enough information about the action that needs
to be performed with the given data for the Android system to deter-
mine which available components can handle the intent — sometimes
referred to as an address and a payload.

		 An example is setting up an e-mail intent that contains e-mail fields (To,
CC, Subject, and Body) and an e-mail MIME type. Android interprets it
as an e-mail and gives the user of the device the opportunity to choose
which application should handle the intent. Possibilities include Gmail
or Exchange or a POP e-mail account. The user determines which e-mail
program to use. The Android capability to identify possible matches for
the given intent is known as intent resolution.

Using pending intents
A PendingIntent is an intent at its core, but with a slight paradigm shift
in regard to functionality: It’s created by your application and given to
another, completely different application. By giving another application a
PendingIntent, you’re granting the other application the right to perform
the operation you have specified as though the application were your appli-
cation. In layman’s terms, you’re giving information about how to call your
application to perform work on another application’s behalf. When the other
application deems that the given work needs to take place, it executes the
PendingIntent, which instructs the Android messaging system to inform
your application to perform the necessary work.

www.it-ebooks.info

http://www.it-ebooks.info/

169 Chapter 7: Turning Your Application into a Home Screen Widget

For the purpose of the Silent Mode Toggle application, you use the
PendingIntent.getBroadcast() call to obtain a pending intent instance.
This call returns a PendingIntent that’s used for broadcasts throughout
the system. The call takes these four parameters:

	 ✓	Context: The context in which this PendingIntent should perform
the broadcast.

	 ✓	RequestCode: The private request code for the sender. Not currently
used; therefore, a zero is passed in.

	 ✓	Intent: The intent to be broadcast.

	 ✓	Flags: A set of controls used to control the intent when it’s started. Not
currently used in the Silent Mode Toggle application; therefore, a zero is
passed in.

Wait a second — this code uses an Intent as well as a PendingIntent.
Why? The Intent object is wrapped inside a PendingIntent because
a PendingIntent is used for cross-process communication. When the
PendingIntent is fired off, the real work that needs to be done is wrapped
up in the child Intent object.

That’s a lot of information! Now that you understand the basics of the
Android intent system, it’s time to implement the guts of the application
inside this app widget.

Avoiding the dreaded Application
Not Responding (ANR) error

Because all the work that happens in the
AppWidgetProvider takes place on the
main thread of the user interface, you must
complete all your work as quickly as pos-
sible. If your AppWidgetProvider takes
too long to respond, your code holds up the UI
thread and causes your application to display
an Application Not Responding (ANR) dialog
box because the Android system believes
that the application is frozen and not respond-
ing. An example is network communication to
download status updates from a service such
as Twitter. If downloading the statuses takes

too long (which can be much shorter than you
might expect), Android shows the ANR dialog
box letting the user know that the app widget
isn’t responding; at that point, the user can
force-close the application.

One way to avoid the ANR error is to implement
a service inside AppWidgetProvider that
performs its work in a background thread. The
IntentService that you implement in the
following sections helps you avoid ANR errors
and allows the widget to remain very fast.

www.it-ebooks.info

http://www.it-ebooks.info/

170 Part II: Building and Publishing Your First Android Application

Creating the Home Screen Widget
The process of sending messages between the Home screen app widget
and your application is handled via the Android messaging system, the
PendingIntent class, and the AppWidgetProvider. In this section, you
build each component to get your first app widget up and running on the
Home screen.

Implementing the AppWidgetProvider
Implementing the AppWidgetProvider is fairly straightforward: Open
Eclipse and open the Silent Mode Toggle application.

To add a new class to the com.dummies.android.silentmodetoggle
package and provide a name, such as AppWidget.java, follow these steps:

	 1.	 Right-click com.dummies.android.silentmodetoggle in the src/
folder and choose New➪Class.

		 The New Java Class dialog box opens, as shown in Figure 7-3.

	

Figure 7-3:
The New

Java Class
dialog box.

	

www.it-ebooks.info

http://www.it-ebooks.info/

171 Chapter 7: Turning Your Application into a Home Screen Widget

	 2.	 Provide the name of the class and set its superclass to android.app
widget.AppWidgetProvider.

	 3.	 Click Finish when you’re done.

		 The new class is added to the selected package.

The AppWidgetProvider does all the work of responding to events from
the RemoteViews, but how so? If you look at the AppWidgetProvider
Android documentation, you can see that it’s a direct subclass of
BroadcastReceiver. At a high level, a BroadcastReceiver is a com-
ponent that can receive broadcast messages from the Android system.
When a user taps a clickable view in the RemoteViews on the Home screen
(such as a button), the Android system broadcasts a message informing
the receiver that the view was clicked. After the message is broadcast, the
AppWidgetProvider can handle that message.

Note that because these messages are broadcast, they’re sent system-wide.
If the payload of the message and the destination address information are
vague enough, various BroadcastReceiver objects might handle the mes-
sage. The AppWidgetProvider you build in this section is addressed to
a single destination, similar to walking into a room full of building contrac-
tors and asking whether any of them can do some work for you — everyone
would respond. You have a vague message address and payload. However,
if you ask the same group for a small electronics electrician contractor by
the name of Bob Smith, only one might respond. You have a specifically
addressed message with a detailed address and payload information.

Communicating with the app widget
The AppWidgetProvider class has no code in it at first — it’s an empty
shell. To make your AppWidgetProvider able to do something, you
add a code to respond to the intent (the message) that was sent to your
AppWidgetProvider. In the code file you just created, type the code shown
in Listing 7-1 into the editor. (Note: The class is named AppWidget, so if
yours is different, change that line.)

www.it-ebooks.info

http://www.it-ebooks.info/

172 Part II: Building and Publishing Your First Android Application

Listing 7-1:  � The Initial Setup of the App Widget
public class AppWidget extends AppWidgetProvider {	 ➝1
 @Override

 public void onReceive(Context ctxt, Intent intent) {	 ➝4
 if (intent.getAction()==null) {	 ➝5
 // Do Something
 } else {

 super.onReceive(ctxt, intent);	 ➝10
 }
 }

 @Override
 public void onUpdate(Context context, AppWidgetManager

appWidgetManager, int[] appWidgetIds) {	 ➝15
 // Do Something
 }
}

This list briefly describes the numbered lines:

	 ➝1	 This line of code informs Android that this class is an
AppWidgetProvider because the class is inheriting from
AppWidgetProvider.

	 ➝4	 This line overrides the onReceive() method to be able to detect
when a new intent is received from the RemoteViews. This intent
could have been initiated by a user tapping a view to perform an
action such as a button click. The Intent object is contained
within the PendingIntent, which initiated the request.

	 ➝5	 Intent objects can contain various pieces of data. One such slice
of data is the action. This line of code checks whether the intent
has an action. If it doesn’t have an action, the intent is fired off.
This process may sound backward, but you can find out more in
later sections.

	 ➝10	 This line delegates the work to the superclass because you don’t
need to do anything with the intent. (This intent isn’t what you
were expecting; the intent had an action, and you’re expecting an
intent without an action.) This would happen if the app widget
automatically updated itself regularly, as you define it in the
widget metadata. (Metadata is explained in the “Working with
the app widget’s metadata” section, later in this chapter.) Doing
so would call one of the many built-in methods for enabling, dis-
abling, starting, stopping, or updating the app widget, as on line 15.

www.it-ebooks.info

http://www.it-ebooks.info/

173 Chapter 7: Turning Your Application into a Home Screen Widget

	 ➝15	 The onUpdate() method is called by the Android framework on a
timed basis that you can set in the widget metadata. This method
is called because the Android framework first realizes that time
has elapsed and then wants you to have the opportunity to update
the view proactively, without interaction from the user, such as
a news application widget updating itself every 30 minutes with
the latest headlines. It would require no user interaction because
it would occur on a timed basis. This method ensures that your
widget is set up correctly.

Building the app widget’s layout
The app widget needs to have a particular layout for Android to determine
how to display the widget on the Home screen. The widget layout file defines
what the widget will look like while on the Home screen. Earlier in this chap-
ter, Figure 7-2 shows the app widget running in the emulator. The icon on the
Home screen is defined by the widget layout file. If you were to change the
background color of the layout file to lime green, the background color of the
widget on the Home screen would be lime green instead of transparent.

	 The lime green box also identifies the available screen space for the app
widget. Your app widget can occupy one Home screen cell or many cells.
This app widget is occupying only one.

To create the widget layout, create an XML layout file in the res/layouts
directory. Create one now and name it widget.xml.

The contents of widget.xml are shown in Listing 7-2.

Listing 7-2:   The Contents of widget.xml
<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <ImageView android:id=”@+id/phoneState”
 android:layout_height=”wrap_content”
 android:layout_width=”wrap_content”
 android:layout_centerInParent=”true”
 android:src=”@drawable/ic_launcher”

 android:clickable=”true” />	 ➝9
</RelativeLayout>

www.it-ebooks.info

http://www.it-ebooks.info/

174 Part II: Building and Publishing Your First Android Application

This layout should be nothing new. It’s a RelativeLayout that has one
child view: a clickable ImageView. You can click it by setting the clickable
property to true on line 9 in Listing 7-2.

Note the src property of the ImageView, set to the icon of the application.
It may seem odd to you, but when you build the layout, you haven’t yet cre-
ated the phone-state buttons that represented silent and normal states.
You need to preview the view in the layout designer while designing the
layout. Therefore, this code uses @drawable/ic_launcher as the value
of the ImageView to glean a vision of how the view will look. Don’t be con-
cerned about using the application icon — when the app widget loads, the
ToggleService switches the icon value to either the Silent or Normal mode
state icon, as shown later in this chapter.

These icons help the user of the application identify the current state of the
application. The phone_state_normal icon signifies when the phone is
in Normal ringer mode. The phone_state_silent icon signifies when the
phone is in Silent ringer mode.

Doing work inside an AppWidgetProvider
After the pending intent has started your AppWidgetProvider, you perform
some work on behalf of the calling application (in this case, the Home screen
application). In the following sections, you perform time-sensitive work on
behalf of the caller.

Before you delve into the code, you should understand how AppWidget
Provider works. Due to the nature and resource intensity of remote pro-
cesses, all nontrivial work should be done inside a background service,
such as changing the ringer mode via a background service.

Understanding the IntentService
This section explains why you use a background service for a trivial task,
such as changing the phone ringer mode.

Any code that executes for too long without responding to the Android
system is subject to the Application Not Responding (ANR) error. App
widgets are especially vulnerable to ANR errors because they’re executing
code in a remote process and because app widgets execute across process
boundaries that can take time to set up, execute, and tear down — the entire
process is quite CPU-, memory-, and battery-intensive. The Android system
watches app widgets to ensure that they don’t take too long to execute.
When they do, the calling application (the Home screen) locks up and the
device is unusable. Therefore, the Android platform wants to ensure that

www.it-ebooks.info

http://www.it-ebooks.info/

175 Chapter 7: Turning Your Application into a Home Screen Widget

you’re never capable of making the device unresponsive for more than a
couple of seconds.

Because app widgets are expensive in regard to CPU and memory, judging
whether an app widget will cause an ANR error is difficult. If the device isn’t
doing any other expensive tasks, the app widget would probably work just
fine. However, if the device is in the middle of expensive CPU or IO opera-
tions, the app widget can take too long to respond — causing an ANR error.
To work around this problem, move any CPU- or IO-intensive work of the app
widget into an IntentService that can take as long as it needs to complete —
which in turn doesn’t affect the Home screen application.

Unlike most background services, which are long-running, an Intent
Service uses the work queue processor pattern, which handles each intent
in turn using a worker thread, and it stops when it runs out of work. In lay-
man’s terms, the IntentService simply runs the work given to it as a back-
ground service, and then stops the background service when no more work
needs to be done.

Implementing the AppWidgetProvider and IntentService
In the AppWidgetProvider class, type the code in Listing 7-3 into your code
editor.

Listing 7-3:   The Full AppWidget Implementation
public class AppWidget extends AppWidgetProvider {
 @Override
 public void onReceive(Context context, Intent intent) {
 if (intent.getAction()==null) {
 context.startService(new Intent(context,

 ToggleService.class));	 ➝6
 } else {
 super.onReceive(context, intent);
 }
 }

 @Override
 public void onUpdate(Context context, AppWidgetManager
 appWidgetManager, int[] appWidgetIds) {
 context.startService(new Intent(context,

 ToggleService.class));	 ➝16
 }

 public static class ToggleService extends IntentService {	 ➝19

 public ToggleService() {

 super(ToggleService.class.getName());	 ➝22
 }

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

176 Part II: Building and Publishing Your First Android Application

Listing 7-3 (continued)
 @Override

 protected void onHandleIntent(Intent intent) {	 ➝26
 ComponentName me=new ComponentName(this, AppWidget.class);	➝27
 AppWidgetManager mgr=AppWidgetManager.getInstance(this);	 ➝28
 mgr.updateAppWidget(me, buildUpdate(this));	 ➝29
 }

 private RemoteViews buildUpdate(Context context) {	 ➝30
 RemoteViews updateViews=new

 RemoteViews(context.getPackageName(),R.layout.widget);	 ➝32
 AudioManager audioManager =

 (AudioManager)context.getSystemService(Activity.AUDIO_SERVICE);	➝34

 if(audioManager.getRingerMode() ==
 AudioManager.RINGER_MODE_SILENT) {

 updateViews.setImageViewResource(R.id.phoneState,

 R.drawable.phone_state_normal);	 ➝40

 audioManager.setRingerMode(AudioManager.RINGER_MODE_NORMAL);
 } else {
 updateViews.setImageViewResource(R.id.phoneState,

 R.drawable.phone_state_silent);	 ➝45

 audioManager.setRingerMode(AudioManager.RINGER_MODE_SILENT);
 }

 Intent i=new Intent(this, AppWidget.class);	 ➝49

 PendingIntent pi
 = PendingIntent.getBroadcast(context, 0, i,0);

 updateViews.setOnClickPendingIntent(R.id.phoneState,pi);	 ➝54

 return updateViews;	 ➝56
 }
 }
}

The following list briefly explains the purpose of the major sections of code:

	 ➝6	 This line of code starts a new instance of ToggleService. The
context object refers to the Android Context object, which is
an interface to global information about the application. The con-
text is passed into the onReceive() and onUpdate() method
calls. A new intent is created to let the Android system know what
should happen. This method is initiated by the user when the user
taps the app widget on the Home screen.

www.it-ebooks.info

http://www.it-ebooks.info/

177 Chapter 7: Turning Your Application into a Home Screen Widget

	 ➝16	 This line performs the same actions as in line 6.

	 ➝19	 This implementation of an IntentService handles the same
logic as the MainActivity for handling phone-mode switching
but in regard to the app widget infrastructure. It’s an implementa-
tion of a background service in the Android platform. This class is
a nested static class within the app widget.

	 ➝22	 This method calls the superclass with the name “com.dummies.
android.silentmodetoggle.AppWidget$ToggleService”.
This method call is taking place to help with debugging for
the thread name. If you omit this line of code, a compiler error
informs you that you must explicitly invoke the superclass
constructor.

	 ➝26	 The onHandleIntent() method is responsible for handling the
intent that was passed to the service. In this case, it would be
the intent that was created on lines 6 and 16. Because the intent
you created was an explicit intent (you specified a class name to
execute), no extra data was provided, and by the time you get to
line 26, you no longer need to use the intent. (You can provide
extra information to the Intent object to be extracted from this
method parameter. In this case, the Intent object was merely a
courier to instruct the ToggleService to start its processing.)

	 ➝27	 Creates a ComponentName object. This object is used with the
AppWidgetManager (explained next) as the provider of the new
content that will be sent to the app widget via the RemoteViews
instance.

	 ➝28	 Obtains an instance of AppWidgetManager from the static App
WidgetManager.getInstance() call. The AppWidgetManager
class is responsible for updating the state of the app widget and
provides other information about the installed app widget. You
use it to update the app widget state.

	 ➝29	 Updates the app widget with a call to updateAppWidget(). This
call needs two components: the Android ComponentName that’s
doing the update and the RemoteViews object used to update
the app widget. The ComponentName is created on line 27. The
RemoteViews object used to update the state of the app widget
on the Home screen is a little more complicated (as explained
next).

	 ➝30	 This method definition for the buildUpdate() method returns
a new RemoteViews object that‘s used on line 29. The logic
for what should happen and the actions needed to proceed are
included in this method.

www.it-ebooks.info

http://www.it-ebooks.info/

178 Part II: Building and Publishing Your First Android Application

	 ➝32	 This line builds a RemoteViews object with the current package
name as well as the layout that will be returned from this method.
The layout, R.layout.widget, is shown in Listing 7-3.

	 ➝34	 This line obtains an instance of the AudioManager, and then,
directly afterward, checks the state of the ringer. If the ringer is
silent, the user has tapped the app widget to change its state, indi-
cating that she wants the phone’s ringer to be normal now.

	 ➝40	 This line updates the RemoteViews object. The RemoteViews
object is changing the R.id.phoneState ImageView drawable
to the R.drawable.phone_state_normal drawable. (Refer to
the icon on the right side of Figure 7-2.)

	 ➝45	 The else statement located above this line flows through to
update the image in the ImageView to R.drawable.phone_
state_silent because the ringer mode wasn’t in Silent mode
previously. (The user wants to now silence the phone.)

	 ➝49	 Creates an Intent object that starts the AppWidget class when
initiated.

		 App widgets cannot communicate with vanilla intents; they
require the use of a PendingIntent. Remember that because
app widgets use cross-process communication, PendingIntent
objects are needed for communication. On this line, the
PendingIntent instructs the app widget of its next action via
the child intent.

	 ➝52	 Builds the PendingIntent built that instructs the app widget
what to do when someone clicks or taps the view.

	 ➝54	 Sets the click listener for the ImageView in the app widget.
Because you’re working with a RemoteViews, you have to rebuild
the entire event hierarchy in the view, because the app widget
framework replaces the entire RemoteViews with a brand-new
one that you supply via this method. Therefore, you have one
remaining task: Tell the RemoteViews what to do when it’s
tapped or clicked from the Home screen. The setOnClick
PendingIntent() sets up the PendingIntent. This method
accepts two parameters: the ID of the view that was clicked
(in this case, an image), and the pi argument, which is the
PendingIntent.

	 ➝56	 Returns the newly created RemoteViews object so that the
updateAppWidget() call on line 29 can update the app widget.

Working with the app widget’s metadata
After you’ve written the code to handle the updating of the app widget, you
might wonder how to list the app widget on the Widgets menu. This fairly

www.it-ebooks.info

http://www.it-ebooks.info/

179 Chapter 7: Turning Your Application into a Home Screen Widget

simple process requires you to add a single XML file to your project. This
XML file describes basic metadata about the app widget so that the Android
platform can determine how to lay out the app widget on the Home screen.
Follow these steps:

	 1.	 In your project, right-click the res directory and choose New➪New
Folder.

	 2.	 Name the folder xml and click Finish.

	 3.	 Right-click the new res/xml folder, and choose New➪Android XML
File.

	 4.	 In the New Android XML File Wizard, type widget_provider.xml for the
filename.

	 5.	 Select AppWidgetProvider from the drop-down list and then click
Finish.

	 6.	 After the file opens, open the XML editor and type the following code
into the widget_provider.xml file:

<?xml version=”1.0” encoding=”utf-8”?>
<appwidget-provider xmlns:android=”http://schemas.android.com/apk/res/

android”
 android:minWidth=”79px”
 android:minHeight=”79px”
 android:updatePeriodMillis=”1800000”
 android:initialLayout=”@layout/widget”
/>

The minWidth and minHeight properties are used for setting the minimum
amount of space that the view needs on the Home screen. These values can
be larger, if you want, but for a phone app, all you really need is 79x79 to fit
the indicator icon that the widget will display.

The updatePeriodMillis property defines how often the app widget
should attempt to update itself. In the case of the Silent Mode Toggle applica-
tion, you rarely, if ever, need for this to happen. Therefore, this value is set
to 1800000 milliseconds — 30 minutes. Every 30 minutes, the app attempts to
update itself by sending an intent that executes the onUpdate() method call
in the AppWidgetProvider.

The initialLayout property identifies what the app widget looks like when
the app widget is first added to the Home screen, before any work takes
place. The app widget may take a few seconds to initialize and update your
app widget’s RemoteViews object by calling the onReceive() method.

An example of a longer delay is an app widget that checks Twitter for status
updates. The initialLayout is shown until updates are received from
Twitter. Inform the user in the initialLayout that information is loading to
keep him aware of what’s happening when the app widget is initially loaded

www.it-ebooks.info

http://www.it-ebooks.info/

180 Part II: Building and Publishing Your First Android Application

on the Home screen. You can do this by providing a TextView with the con-
tents of “Loading . . .” while the AppWidgetProvider does its work.

Registering your new components
with the manifest
Anytime you add an activity, a service, or a broadcast receiver (or certain
other items) to your application, you need to register them with the applica-
tion manifest file. The application manifest presents vital information to the
Android platform — namely, the components of the application. The system
doesn’t recognize the Activity, Service, and BroadcastReceiver
objects that aren’t registered in the application manifest. Therefore, if you
added the app widget to the Home screen, it would crash because your
AppWidgetProvider is a BroadcastReceiver, and the code in the
receiver is using a service that isn’t registered in the manifest.

To add your AppWidgetProvider and IntentService to your application
manifest file, open the AndroidManifest.xml file and type the code shown
in Listing 7-4 into the already existing file. Bolded lines are newly added lines
for the new components.

Listing 7-4:   An Updated AndroidManifest.xml File with New Components
Registered
<?xml version=”1.0” encoding=”utf-8”?>
<manifest xmlns:android=”http://schemas.android.com/apk/res/android”
 package=”com.dummies.android.silentmodetoggle”
 android:versionCode=”1”
 android:versionName=”1.0”>
 <application android:icon=”@drawable/ic_launcher”
 android:label=”@string/app_name”
 android:debuggable=”true”>
 <activity android:name=”.MainActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 <receiver android:name=”.AppWidget”
 android:label=”@string/app_name”

 android:icon=”@drawable/ic_launcher”>	 ➝18
 <intent-filter>
 <action

 android:name=”android.appwidget.action.APPWIDGET_UPDATE” />	➝21

www.it-ebooks.info

http://www.it-ebooks.info/

181 Chapter 7: Turning Your Application into a Home Screen Widget

 </intent-filter>
 <meta-data
 android:name=”android.appwidget.

provider”

 android:resource=”@xml/widget_provider” />	 ➝25
 </receiver>

 <service android:name=”.AppWidget$ToggleService” />	 ➝27
 </application>
 <uses-sdk android:minSdkVersion=”4” />
</manifest>

The following list briefly describes each section:

	 ➝18	 The opening element registers a BroadcastReceiver as part
of this application. The name property identifies the name of the
receiver — in this case, .AppWidget, which correlates to the
AppWidget.java file in the application. The name and label help
identify the receiver.

	 ➝21	 Identifies what kind of intent (based on the action of the intent in
the intent filter) the app widget automatically responds to when
the particular intent is broadcast. Known as an IntentFilter,
it helps the Android system understand what kind of events your
app should be notified of. In this case, your application is con-
cerned about the APPWIDGET_UPDATE action of the broadcast
intent. This event fires after the updatePeriodMillis property
has elapsed, which is defined in the widget_provider.xml file.
Other actions include enabled, deleted, and disabled.

	 ➝25	 Identifies the location of the metadata that you recently built into
your application. Android uses the metadata to help determine
defaults and to lay out parameters for your app widget.

	 ➝27	 The <service> element registers the AppWidget$ToggleService
IntentService with your application. This is the background
service that does most of the work for your widget.

At this point, your application is ready to be installed and tested. To install
the application, choose Run➪Run or press Ctrl+F11. It should show up on the
emulator. Return to the Home screen by pressing the Home key. You can now
add to the Home screen the app widget that you recently created.

Placing Your Widget on the Home Screen
The usability experts on the Android development team did a great job of
allowing application widgets to be easily added to the Home screen. Adding
one is easy — follow these steps:

www.it-ebooks.info

http://www.it-ebooks.info/

182 Part II: Building and Publishing Your First Android Application

	 1.	 Open the application list on the Home screen of the emulator.

	 2.	 When the list of applications is visible, select Widgets.

	 3.	 Choose Silent Mode Toggle, as shown in Figure 7-4.

	

Figure 7-4:
The Silent

Mode
Toggle wid-

get in the
Widgets list.

	

You have now added the Silent Mode Toggle widget to the Home screen, as
shown in Figure 7-5. You can tap the icon to change the ringer mode, and the
background changes accordingly. (Refer to Figure 7-2.)

	

Figure 7-5:
The app
widget,

added to
the Home

screen.
	

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Publishing Your App to the
Google Play Store

In This Chapter
▶	Building an Android package file
▶	Creating a developer profile in the Google Play Store
▶	Picking a price for your app
▶	Illustrating your app with a screen shot
▶	Uploading and publishing your application
▶	Monitoring downloads

T
he Google Play Store is the official application distribution mechanism
behind Android. Publishing your application to the store enables your

application to be downloaded, installed, and used by millions of users across
the world. Users can also rate your application and leave comments about
it, which helps you identify possible use trends and problematic areas that
users might be encountering.

The Google Play Store also provides a set of valuable statistics that you can
use to track the success of your application.

In this chapter, you publish your application to the Google Play Store. You
find out how to provide a couple of screen shots, a promotional screen shot,
and a short description of your application.

www.it-ebooks.info

http://www.it-ebooks.info/

184 Part II: Building and Publishing Your First Android Application

Creating a Distributable File
So you have a great idea, and it has led you to develop the next hit applica-
tion or game for the Android platform. Now you’re ready to put the applica-
tion into the hands of users. The first thing you need to do is package your
application so that it can be placed on their devices. To do so, you create an
Android package file, or APK file.

In the following sections, you create an APK file.

Revisiting the manifest file
Before you jump in and create the distributable APK file, you should take
great care to ensure that your application is available to as many users
as possible, by familiarizing yourself with the uses-sdk element in the
AndroidManifest.xml file. Your AndroidManifest.xml file now has a
uses-sdk entry (see Chapter 4):

<uses-sdk android:minSdkVersion=”4” />

The minSdkVersion property identifies which versions of the Android plat-
form can install this application — in this instance, level 4. The Silent Mode
Toggle application was developed by setting the target software development
kit (SDK) to version 15.

The Android platform is, for the most part, backward compatible. Most fea-
tures from version 3 are also in version 4. Small changes and sometimes new,
large components are released in each new version, but everything else in
the platform remains basically backward compatible. Therefore, stating that
this application needs a minimum of SDK version 4 signifies that any Android
operating system of version 4 or later can run the application.

Using the minSdkVersion information, the Google Play Store can determine
which applications to show the user of a specific device. If you were to release
the application now with the minSdkVersion value set to 4 and you open the
Google Play Store on an Android device running version 3 (Android 1.5) or ear-
lier, you wouldn’t find your application — Google Play Store filters it out because
you, the developer, have specified that this app can run only on devices of API
Level 4 or greater. If you were to open the Google Play Store on a device running
API Level 4 or higher, you could find and install your application.

	 If you don’t provide a minSdkVersion value in the uses-sdk element of the
application’s manifest, the Google Play Store defaults the minSdkVersion
to 1, which means that this application is compatible with all versions of
Android. If your application happens to use a component that’s unavailable
in older versions of the platform (such as the Account Manager introduced in
Android 2.0) and a user installs your application, the app will crash.

www.it-ebooks.info

http://www.it-ebooks.info/

185 Chapter 8: Publishing Your App to the Google Play Store

	 Always set the minSdkVersion to the lowest version of the SDK on which
you tested your application, and set the targetSdkVersion to the highest
tested version.

Choosing your tools
You can build an Android APK file in numerous ways:

	 ✓	Android Development Tools (ADT) inside Eclipse

	 ✓	Automated build process, such as a continuous integration server

	 ✓	Command line with Ant

	 ✓	Maven or Gradle build systems

You use the ADT within Eclipse to create an APK file. The ADT provides an
array of tools that compiles, digitally signs, and packages your Android appli-
cation into an APK file. Here, the digital signature process takes place, as dis-
cussed in the next section.

Other options, such as Ant and continuous integration, are possible but are
used in more advanced scenarios. You can find more information about set-
ting up an Ant build process in the Android documentation at http://d.
android.com/tools/publishing/app-signing.html.

Digitally signing your application
The Android system requires all installed applications to be digitally signed
with a certificate that contains a public/private key pair. The private key is
held by the developer. The certificate that’s used to digitally sign the appli-
cation identifies developer and establishes the trust relationships between
applications.

You need to know some key information about signing Android applications:

	 ✓	All Android applications must be signed. The system won’t install appli-
cations that aren’t signed.

	 ✓	You can use self-signed certificates to sign your applications; a certifi-
cate authority isn’t needed.

	 ✓	When you’re ready to release your application to the store, you must
sign it with a private key. You cannot publish the application with the
debug key that signs the APK file when debugging the application during
development.

www.it-ebooks.info

http://d.android.com/tools/publishing/app-signing.html
http://d.android.com/tools/publishing/app-signing.html
http://www.it-ebooks.info/

186 Part II: Building and Publishing Your First Android Application

	 ✓	The certificate has an expiration date, and it’s verified only at install
time. If the certificate expires after the application has been installed,
the application continues to operate normally.

	 ✓	If you don’t want to use the ADT tools to generate the certificate, you
can use standard tools such as Keytool or Jarsigner to generate and sign
your APK files.

	 You can create modular applications that can communicate with each other
if the applications were signed with the same certificate. This arrangement
allows applications to run within the same process, and the system can, if
requested, treat them as a single application. Using this methodology, you
can create your application in modules, and users can update each module as
they see fit — for example, to create a game and then release update packs to
upgrade it. Users can decide to purchase only the updates they want.

The certificate process is outlined in detail in the Android documentation at
http://d.android.com/tools/publishing/app-signing.html.

Creating a keystore
A keystore in Android (and in Java) is a container in which your personal cer-
tificates reside. You can use a couple of tools in Android to create a keystore
file:

	 ✓	ADT Export Wizard: Installed with the ADT, it lets you export a self-
signed APK file that can digitally sign the application as well as create
the certificate and keystore (if needed) in a wizard-like process. You
create a keystore when you create your APK file in the upcoming
section.

	 ✓	Keytool application: It lets you create a self-signed keystore via the
command line. Keytool, located in the Java bin directory, provides many
options via the command line.

Safeguarding your keystore
The keystore file contains your private certificate, which Android uses to
identify your application in the Google Play Store. Back up your keystore in a
safe location because if you happen to lose it, you cannot sign the application
with the same private key. Neither can you upgrade your application because
the Google Play Store platform recognizes that the application isn’t signed
by the same key and restricts you from upgrading it — the store sees the file
as a new Android application. This also happens if you change the package
name of the app; Android doesn’t recognize it as a valid update because the
package and/or certificate are not the same.

www.it-ebooks.info

http://d.android.com/tools/publishing/app-signing.html
http://www.it-ebooks.info/

187 Chapter 8: Publishing Your App to the Google Play Store

Creating the APK file
To create your first APK file, follow these steps:

	 1.	 Open Eclipse, if it isn’t already open.

	 2.	 Right-click the Silent Mode Toggle app, choose Android Tools, and
then choose Export Signed Application Package.

		 The Export Android Application Wizard, shown in Figure 8-1, opens with
the current project name filled in.

	

Figure 8-1:
The Export

Android
Application

Wizard.
	

	 3.	 Click the Next button.

		 The Keystore Selection screen opens, as shown in Figure 8-2.

	 4.	 Select the Create New Keystore radio button.

		 If you already have a keystore, choose the Use Existing Keystore option
instead.

	 5.	 Choose the location of your keystore.

		 In the c:\android path, choose a location for the keystore, which
should end with the .keystore extension. For example
c:\android\dummies.keystore

www.it-ebooks.info

http://www.it-ebooks.info/

188 Part II: Building and Publishing Your First Android Application

	

Figure 8-2:
The

Keystore
Selection

screen.
	

	 6.	 Enter a password that you’ll remember, and reenter it in the Confirm
field.

		 If using an existing keystore, you won’t need to confirm your password.

		 Your keystore file has been created, but now you need to create a key.

	 7.	 Click the Next button.

		 The Key Creation screen appears, as shown in Figure 8-3.

	

Figure 8-3:
The Key
Creation
screen.

	

www.it-ebooks.info

http://www.it-ebooks.info/

189 Chapter 8: Publishing Your App to the Google Play Store

	 8.	 Fill out the following fields:

	 •	Alias: The alias that you use to identify the key.

	 •	Password and Confirm: The password that will be used for the key.

	 •	Validity: Indicates how long this key will be valid. Your key must
expire after October 22, 2033.

	 9.	 Complete the certificate issuer section, filling out at least one of these
fields:

	 •	First and Last Name

	 •	Organization Unit

	 •	Organization

	 •	City or Locality

	 •	State or Province

	 •	Country Code (XX)

	 10.	 Click the Next button.

		 The final screen is the Destination and Key/Certificate Checks screen,
shown in Figure 8-4.

	

Figure 8-4:
Choosing a

name and
destination

for your first
APK file.

	

www.it-ebooks.info

http://www.it-ebooks.info/

190 Part II: Building and Publishing Your First Android Application

	 11.	 Enter the location for where you want to save the APK file containing
your signed application.

	 12.	 Click the Finish button.

		 The .apk file is created in your chosen location as well as a keystore in
the location you chose in Step 5. Open these locations, and you can see
a .keystore file as well as an .apk file, as shown in Figure 8-5.

	

Figure 8-5:
Providing a
destination
for the APK

file.
	

You have created a distributable APK file and a reusable keystore for future
updates.

Creating a Google Play Developer Profile
After you have created an APK file, you can release the application on the
Google Play Store. To do so, you create a Google Play developer profile.
To create this profile, you first need a Google account. Any Google-based
account, such as a Gmail account, works. If you have no Google account, you
can open a free one by navigating to www.google.com/accounts.

To create the Google Play developer profile, follow these steps:

	 1.	 Open your web browser and navigate to http://play.google.com/
apps/publish.

	 2.	 On the right side of the screen, sign into your Google account.

		 If you’re already signed into your account, you go straight to Step 3 to
fill in your developer profile.

www.it-ebooks.info

http://www.google.com/accounts
http://play.google.com/apps/publish
http://play.google.com/apps/publish
http://www.it-ebooks.info/

191 Chapter 8: Publishing Your App to the Google Play Store

	 3.	 Fill out the following fields to complete your developer profile, as
shown in Figure 8-6:

	 •	Developer Name: The name that appears as the developer of the
applications you release, such as your company name or your
personal name. You can change it later, after you’ve created your
developer profile.

	 •	E-mail Address: The e-mail address to which users can send e-mail
with questions or comments about your application.

	 •	Web Site URL: The URL of your website. If you don’t have one, try a
free blog from www.tumblr.com.

	 •	Phone Number: A valid phone number at which to contact you to
discuss problems with your published content.

	

Figure 8-6:
Developer

listing
details.

	

www.it-ebooks.info

http://www.tumblr.com
http://www.it-ebooks.info/

192 Part II: Building and Publishing Your First Android Application

	 4.	 Click the Continue button.

		 The Android Developer Agreement page opens.

	 5.	 Read the terms, and then click the I Agree, Continue link to pay the
developer fee via Google Checkout.

		 If you don’t pay the developer fee, you cannot publish applications.

	 6.	 On the Secure Checkout page, fill in your credit card details and bill-
ing information; then click the Agree and Continue button.

		 If you already have a credit card on file with Google, you may not see
this page. If you already have a card set up, select one and continue.

	 7.	 On the order confirmation page, click the Place Your Order Now
button.

		 Depending on the speed of your Internet connection — and your order —
you may not see the loading screen.

		 When the process is complete, you see a message confirming that you’re
an Android developer. (See Figure 8-7.)

	

Figure 8-7:
Confirma

tion of your
registration.

	

	 8.	 Click the Google Play Store Developer Site link.

		 The Android developer home page opens, as shown in Figure 8-8, where
you can upload your application or set up a merchant account (which
you need, if you’ll be charging a fee for your apps). See the nearby
“Google Checkout merchant accounts” sidebar.

www.it-ebooks.info

http://www.it-ebooks.info/

193 Chapter 8: Publishing Your App to the Google Play Store

	

Figure 8-8:
The Android

developer
home page.

	

Pricing Your Application
So you have created an APK file and you’re a registered Android developer.
Now you’re ready to put your app into users’ hands. (Finally!) But you must
answer one last question — is your app a free app or a paid app?

Google Checkout merchant accounts
To have a paid application on the Google Play
Store, you must set up a Google Checkout
merchant account. To set it up, choose Setup
Merchant Account from the Android developer
home page (refer to Figure 8-8) and provide
these types of information:

	✓	 Personal and business name

	✓	 Tax identity (personal or corporation)

	✓	 Expected monthly revenue ($1 billion,
right?)

After you have set up a Google Checkout mer-
chant account, you can sell your applications.

www.it-ebooks.info

http://www.it-ebooks.info/

194 Part II: Building and Publishing Your First Android Application

Make this decision before you release your app, because its price has psy-
chological consequences for potential customers or users and monetary con-
sequences for you. If yours is a paid application, you have to determine your
price point. Only you can make this decision, so inspect similar applications
in the Play Store, and their price points, to determine your pricing strategy.
Because the majority of apps are priced between $0.99 and $9.99, you rarely
see one priced beyond the $10 threshold. Keeping the pricing of your app
competitive with your product is a game of economics that you have to play
to determine what works for your application.

The paid-versus-free discussion is an evergreen debate, and both sides are
profitable. You only have to figure out what works best for your application,
given your situation.

Choosing the paid model
If you choose the paid model for your app, you generally start seeing money
in your pocket within 24 hours of the first sale (barring holidays and week-
ends). However, your paid application probably won’t receive many active
installs.

Users who download your app from the Google Play Store get a free,
15-minute trial period to try out your paid application. During the trial period,
users can experiment with the fully functional application, and if they don’t
like it, simply uninstall it for a full refund. The trial period is extremely useful
because users aren’t penalized for taking your app for a brief test-drive.

Choosing the free model
If you choose to take the free route, users can install the application for free.
Between 50 and 80 percent of the users who install your free app will keep
the application on the device; the others will uninstall it. The elephant in the
room now is the question of how to make money by creating free apps.

As the age-old saying goes, nothing in life is free, and the saying applies to
making money on free apps. You have two basic options:

www.it-ebooks.info

http://www.it-ebooks.info/

195 Chapter 8: Publishing Your App to the Google Play Store

	 ✓	In-app purchases: You identify different “upgrades” that users can buy
when using your app, which are then managed via the Google Play Store.

	 ✓	Advertising: Various mobile advertising agencies provide third-party
libraries to display ads on your mobile application.

The top mobile advertising companies are Google AdSense (www.google.
com/adsense) and AdMob (www.admob.com). Obtaining a free account
from one of these companies is fairly straightforward. They offer useful SDKs
and walk you through the steps to run ads on your native Android applica-
tions. Most of them pay on a net-60-day cycle, so you may have to wait a few
months to receive your first check.

Getting Screen Shots
for Your Application

Screen shots are a vital part of the Google Play Store ecosystem because
they allow users to preview an application before installing it. Allowing users
to view a couple of screen shots of your application can be the determining
factor in installing your application. If you’ve spent weeks (or months) creat-
ing detailed graphics for a game that you want users to play, you want poten-
tial users and buyers to see them so that they can see the overall look of
your app.

To grab real-time shots of your application, you use an emulator or a physical
Android device. To grab screen shots with an emulator, follow these steps:

	 1.	 Open the emulator and place the widget on the Home screen.

	 2.	 In Eclipse, open the DDMS Perspective.

		 Visit Chapter 5 for a refresher on how to use DDMS.

	 3.	 Choose the emulator in the Devices panel, as shown in Figure 8-9.

	 4.	 Click the Screen Shot button to capture a screen shot.

		 After the screen shot is taken, save the file somewhere on your
computer.

www.it-ebooks.info

http://www.google.com/adsense
http://www.google.com/adsense
http://www.admob.com/
http://www.it-ebooks.info/

196 Part II: Building and Publishing Your First Android Application

	

Figure 8-9:
The DDMS

perspective
with the

emulator
screen shot

taken.
	

Uploading Your Application
to the Google Play Store

You’ve finally reached the apex of Android application development: You’re
ready to publish the application. To publish your app, you’ll need to collect
the following information:

	 ✓	The signed application APK

	 ✓	Your application screenshots

	 ✓	A description and promotional text for your application

	 ✓	An optional promotional image used to advertise your app if it’s fea-
tured in the Google Play Store

Publishing an application is easy — follow these steps:

www.it-ebooks.info

http://www.it-ebooks.info/

197 Chapter 8: Publishing Your App to the Google Play Store

	 1.	 On the Android developer’s home page (refer to Figure 8-8), click the
Upload Application button.

		 The Upload an Application page opens, as shown in Figure 8-10.

	

Figure 8-10:
The upload

page.
	

	 2.	 For the Application APK file, choose the .apk file that you create ear-
lier in this chapter, and then click Upload.

		 No two applications can have the same package name in the Google Play
Store. (Google uses the Java package name as the identifier.) Therefore,
if you try to upload the Silent Mode Toggle application at this point, you
see this error message:
The package name of your apk (com.dummies.android.silentmodetoggle) is the

same as the package name of another developer’s application.
Choose a new package name.

www.it-ebooks.info

http://www.it-ebooks.info/

198 Part II: Building and Publishing Your First Android Application

		 When you upload an application that you’ve created, you don’t see this
message.

	 3.	 In the Screenshots section, add two screen shots from your application.

		 Apps with screen shots have higher install rates than apps without
them. These screen shots allow users to preview your application in a
running state without having to install your application.

	 4.	 Add a promotional shot.

		 The promo shot is not a screen shot but rather is an advertisement used
for random promotions that Android chooses to showcase. A promo
shot isn’t required to publish the app.

	 5.	 Set the title of your application.

		 Choose a title that fits your application. This text is indexed for the
Google Play Store search engine.

	 6.	 Set the description for your application.

		 Users see this description when they inspect your application to deter-
mine whether to install it. All this text is indexed for the Google Play
Store search engine.

	 7.	 Set the promotional text of your application.

		 Promotional text is used when your application is featured or promoted
in the Google Play Store. Getting your application featured is likely
based on the popularity of your application. If it’s chosen to be featured
in the promotional area of the Google Play Store (usually in the upper
area of the screen of each category), the promo text shows up as the
promotional component for it.

	 8.	 Set the application type.

		 This app falls into the Applications type; if you have a game app, choose
the Games type.

	 9.	 Set the category for the app.

		 The category is based on your application type.

	 10.	 Turn off copy protection.

		 Copy protection prevents your application from being illegally copied
to other devices. To avoid that, use the Google Play Licensing service
instead at http://d.android.com/guide/google/play/
licensing/index.html.

www.it-ebooks.info

http://d.android.com/guide/google/play/licensing/index.html
http://d.android.com/guide/google/play/licensing/index.html
http://www.it-ebooks.info/

199 Chapter 8: Publishing Your App to the Google Play Store

	 11.	 Select the list of locations where the application should be visible.

		 For example, if your application is meant for an Italian audience, dese-
lect All Locations and select Italy as the destination location, to ensure
that only devices in the Italy region can see it in the store. If you leave
All Locations enabled, all locations can (you guessed it) see your app in
the store.

	 12.	 Fill out the Web Site and E-Mail fields (and Phone, if you want).

		 These fields are used to contact you for various reasons, including app
feature requests and bug reports. If you fill in the Phone field, remember
that users can call to speak with you. If you’re writing an app for one com-
pany and publishing it under your developer account, you can change the
Web Site, E-Mail, and Phone fields so that users can’t contact you.

	 13.	 Verify that your application meets the Android content guidelines and
that you have complied with applicable laws by selecting the perti-
nent check boxes.

	 14.	 Choose one of these options:

	 •	Publish: Saves and publishes the app to the store in real time. The
Upload an Application page opens. (Refer to Figure 8-10.)

	 •	Save: Saves changes, but doesn’t publish the app. Your app is
shown as saved on the Android developer’s home page, as shown
in Figure 8-11. When you’re ready to publish your app, select the
title and click the Upload Application button.

		 You can also choose Delete at this time, but you probably don’t want to.
You’ll delete all your work.

	

Figure 8-11:
The saved

app on your
Android

developer’s
Home

screen.
	

www.it-ebooks.info

http://www.it-ebooks.info/

200 Part II: Building and Publishing Your First Android Application

	 15.	 Scroll to the bottom of the page and click the Publish button.

		 Your application is published to the Google Play Store.

Figure 8-12 shows an application in the Google Play Store on a Nexus One
device.

	

Figure 8-12:
The appli-

cation is
released in
the Google
Play Store.

	

You’ve probably noticed a certain highlight in this process: It has no app-
approval process (like a certain other platform does). You can create an app
now and publish it, and users can install it right away. You can then complete
a quick release cycle and get new features out the door as quickly as you
finish them — very cool.

	 If you ever need to remove your application from the Google Play Store, select
the app title from the Android developer’s home screen, scroll to the bottom,
and clicked the Unpublish button.

Watching the Number of Installs Soar
You’ve finally published your first application. Now it’s time to watch those
millions start rolling in, right? Kind of. You might be an independent devel-
oper who’s releasing the next standout first-person shooter game, or you
might be a corporate developer who’s pushing out your company’s Android

www.it-ebooks.info

http://www.it-ebooks.info/

201 Chapter 8: Publishing Your App to the Google Play Store

application. Regardless, to be aware of the user experience on various
devices, you can identify how your application is doing in various ways:

	 ✓	Five-star rating system: The higher average rating your app receives,
the better.

	 ✓	Comments: Give people the courtesy of reading the comments they
leave. You might be surprised at the outstanding ideas people provide
to you for free. Users get excited about new features and return to the
store to update their comments with a much more positive ratings
boost.

	 ✓	Error reports: Users who were gracious enough to submit error reports
want to let you know that the app experienced a runtime exception for
an unknown reason. Open these reports, examine the error, review the
stack trace, and fix the problem. An app that’s reported to force-close
frequently can quickly receive lots of bad reviews. Stack traces are avail-
able only for devices that are running Android 2.2 and later.

	 ✓	Installs versus active installs: Though this comparison isn’t the best
metric for identifying user satisfaction, it’s an unscientific way to deter-
mine whether users who install your app will tend to keep it on their
devices. Users who keep your app obviously like it.

	 ✓	Direct e-mail: Users will return to the Google Play Store to find your
e-mail address or website address and ask questions about features or
send comments about their user experience. They may also send you
ideas about how to improve your app or ask you to create another app
that does something they cannot find at the Google Play Store. Reply if
you have the time! Though maintaining an active dialogue with users is
difficult if your app has a million active users, it makes users happy to
know that they can contact you about issues with your app.

Staying in touch with your user base is a large task in itself, but doing so can
reap the reward of dedicated, happy customers who refer their friends and
family to your application.

	 Like the Google Play Store, the Amazon App Store for Android (one of the larg-
est non-Google app stores for Android devices) offers applications for users to
buy and install. Developers can sell their applications and receive a competi-
tive rate for their apps from Amazon, or post free apps. Amazon also provides
great sales metrics for developers and marketers. Find out more at http://
developer.amazon.com. You can find out how to port your app to the
Amazon App Store in Chapter 18.

www.it-ebooks.info

http://developer.amazon.com
http://developer.amazon.com
http://www.it-ebooks.info/

202 Part II: Building and Publishing Your First Android Application

www.it-ebooks.info

http://www.it-ebooks.info/

Part III
Creating a Feature-

Rich Application

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

P
art III expands on the knowledge that you acquire in
Part II by demonstrating how you can build a feature-

rich application. There are also a few advanced topics
that can help bridge the gap between beginner and
advanced Android developer.

In this part, you create certain features to enhance users’
experiences with your application. At the end of Part III,
you have a fully functioning advanced application that
interacts with a local database and custom preferences.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Designing the Task Reminder
Application

In This Chapter
▶	Listing the application’s requirements
▶	Developing multiple screens
▶	Building a list activity
▶	Working with intents

B
uilding Android applications is fun, but building truly in-depth applica-
tions is exciting because you dive into the guts of the Android platform.

This chapter introduces you to the Task Reminder application, which you
build in the next few chapters.

The Task Reminder application lets users create a list of items that have a
reminder time associated with every individual item.

Reviewing the Basic Requirements
The Task Reminder application has a few basic requirements so that it can
fulfill what’s expected of it:

	 ✓	The app must be able to accept user input. (Having a personalized task
application that doesn’t allow user input would be silly!)

	 ✓	Tasks must be easy to manage.

	 ✓	Every task must have a reminder date and time when the user will be
reminded of the task.

www.it-ebooks.info

http://www.it-ebooks.info/

206 Part III: Creating a Feature-Rich Application

	 ✓	The user must be notified of the task when the reminder time has
arrived.

	 ✓	Users must be able to delete tasks.

	 ✓	Users must be able to not only add tasks but also edit them.

This application invites lots of interaction between the user and the Android
system. The following sections delve into the features that you need to build
into the application to give users all the functionality they need.

Scheduling a reminder script
(That’s alarming!)
For the Task Reminder application to work well, you need to implement a
reminder-based system. The first thing that comes to mind is a scheduled
task, or cron job. In the Windows operating system, you create a scheduled
task to handle the execution of code and scripts at a given time. In the world
of Unix and Linux, you use cron (short for the Greek word chronos, which
means time) to schedule scripts or applications.

Because Android is running the Linux kernel, you might assume that Android
uses cron to schedule tasks. Unfortunately, Android doesn’t have cron;
however, Android has the AlarmManager class, which accomplishes the
same task. The AlarmManager class lets you specify when your application
should start. An alarm can be set as a single-use alarm or repeating. The Task
Reminder application uses AlarmManager to remind users of pending tasks.

Storing data
All the activities, task data, and alarms needed to make the Task Reminder
app work are stored in these locations:

	 ✓	Activities and broadcast receivers: In a single Java package

	 ✓	Task data: In a ContentProvider backed by a SQLite database

	 ✓	Alarm info: In the AlarmManager via the intent system after being
pulled from the ContentProvider

Distracting the user (nicely)
After an alarm fires, the app has to notify the user of the alarm. The Android
platform provides mechanisms to bring your activity to the foreground when
the alarm fires, but that isn’t an optimal notification method because it steals

www.it-ebooks.info

http://www.it-ebooks.info/

207 Chapter 9: Designing the Task Reminder Application

focus from whatever the user is already doing. Imagine if the user is dialing
a phone number or answering a phone call and an alarm fires that brings an
activity to the foreground. The user is likely to be confused because an activ-
ity started that he didn’t initiate manually.

You have two ways to grab the user’s attention without stealing the main
focus away from the current activity:

	 ✓	Toast: A small view that contains a brief message for the user. The message
doesn’t persist because it’s usually available for only a few seconds — a
toast never receives focus. The Task Reminder app uses a toast not for
reminding the user but uses it instead for notifying the user when her activ-
ity has been saved.

	 ✓	Notification Manager: The NotificationManager class notifies a user
that events have taken place. They can appear on the status bar at the
top of the screen. Notification items can contain various views and are
identified by icons you provide. The user can slide down the notifica-
tion list to view notifications. The Task Reminder application uses the
NotificationManager class to handle alarms. (See Chapter 1 if you’re
unsure how the notification area works.)

	 You can grab a user’s attention by displaying a dialog box that immediately
steals the focus from the already running app. Despite its effectiveness, the
user may become irritated because your app is stealing the focus (possibly
continually, for numerous reminders) from the current action in another
application.

Creating the Application’s Screens
The Task Reminder application needs two different screens to perform all its
basic functions: create, read, update, and delete (CRUD) tasks:

	 ✓	One view lists all current tasks in the application. This view also allows
the user to delete a task by long-pressing the item.

	 ✓	A view to allow the user to view (read), add (create), or edit (update) a
task.

Each screen eventually interacts with a database for changes to be persisted
over the long-term use of the application.

Each screen consists of a single code fragment that contains most of the user
interface for the screen, and that fragment is contained in an activity.

	 You can reuse fragments if — or when — you build tablet support into your
app. See Part IV for tablet development.

www.it-ebooks.info

http://www.it-ebooks.info/

208 Part III: Creating a Feature-Rich Application

Starting the new project
To get started, open Eclipse and create a new Android project with a valid
name, package, and activity. Table 9-1 shows the Eclipse settings for the Task
Reminder app. (If you’re unfamiliar with how to create an Android project,
see Chapter 3.)

If you download the source code from this book’s website, you can also open
the Chapter 9 Android project example.

Table 9-1	 New Project Settings
Property Value

Project Name Task Reminder
Build Target Android 4.0.3 (API Level 15)
Application Name Task Reminder
Package Name com.dummies.android.

taskreminder

Create Activity ReminderListActivity

Min SDK Version 4

Note the Create Activity property value — ReminderListActivity.
Normally, you give the first activity in an application the name of
MainActivity; however, the first screen the user sees in the Task Reminder
app is a list of current tasks. Therefore, this activity is an instance of a
ListActivity; hence the name ReminderListActivity.

The Task Reminder app uses features from the Android Support Library to
support devices running Android 2.x and earlier. Add the library to your
Eclipse project by following these steps:

	 1.	 Copy the android-support-v13.jar file to your project’s libs
directory.

		 It’s in ANDROID_SDK/extras/android/support/v13.

		 If you can’t find the android-support-v13.jar file in your Android
SDK directory, you may not have installed the support library yet. Open
the Android SDK Manager and click Extras to install the support library
from there.

	 2.	 Choose Project➪Clean from the Eclipse menu.

		 Once the project finishes rebuilding, your Android Dependencies listing
should look like the one shown in Figure 9-1.

www.it-ebooks.info

http://www.it-ebooks.info/

209 Chapter 9: Designing the Task Reminder Application

	

Figure 9-1:
The android-
support-v13.

jar file in
your project

listing.
	

Creating the ReminderListActivity
The ReminderListActivity class that Eclipse generated for you is practi-
cally empty so you’ll want to make some changes to it. Do the following:

	 ✓	Rename the activity_main.xml file to reminder_list.xml.
Eclipse starts your project with the activity_main.xml file, located
in the res/layout directory. To make it easy to find your layout file
when you open the directory, rename it to something more informa-
tive. To rename the activity_main.xml file, right-click it and choose
Refactor➪Rename or select the file and press Shift+Alt+R.

	 ✓	Update the Java file. After you change the filename, you need to
update the name of the file in the setContentView() call inside
the ReminderListActivity.java file. Open the file and replace
R.layout.activity_main with R.layout.reminder_list.

	 ✓	Change the inheritance. Because the ReminderListActivity con-
tains fragments, it needs to inherit from the FragmentActivity class
instead of the regular base activity. Make that change, too.

Your new ReminderListActivity class now looks like Listing 9-1.

Listing 9-1:   The ReminderListActivity Class
public class ReminderListActivity extends FragmentActivity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.reminder_list);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

210 Part III: Creating a Feature-Rich Application

setContentView() uses the reminder_list layout file, but you haven’t
defined that yet. Open the res/layout/reminder_list.xml file and
update it to look like Listing 9-2.

Listing 9-2:   The reminder_list.xml Contents
<?xml version=”1.0” encoding=”utf-8”?>
<fragment
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:name=”com.dummies.android.taskreminder.ReminderListFragment”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent” />

The layout file for your activity has only a single element in it, the
ReminderListFragment, which takes up the full height and width of the
screen. The ReminderListFragment does all the hard work to display the
list of tasks to the user.

Creating the ReminderListFragment
Fragments are the parts of your activities that are meant to be re-used
throughout your application. Most activities have one or two fragments. The
list activity needs a fragment to display the list of tasks, so create a new file
named ReminderListFragment and copy the code in Listing 9-3.

Listing 9-3:   The ReminderList Fragment
package com.dummies.android.taskreminder;

import android.os.Bundle;

import android.support.v4.app.ListFragment;	 ➝4
import android.view.View;

public class ReminderListFragment extends ListFragment {

 @Override

 public void onActivityCreated(Bundle savedInstanceState) {	 ➝10
 super.onActivityCreated(savedInstanceState);

 setEmptyText(getResources().getString(R.string.no_reminders));	 ➝12
 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

211 Chapter 9: Designing the Task Reminder Application

Here’s a brief explanation of the code in Listing 9-3:

	 ➝4	 This line ensures that you’re using the android.support.
v4.app.* imports and not their equivalents from android.app.

		 Import android.support.v4.app.Fragment and android.
support.v4.app.FragmentTransaction, and not their equiv-
alents from android.app. Using the android.support.v4.*
classes from the Android Support Library ensures that your appli-
cation works on devices with Android versions going back to v4
(Android 1.6). If you don’t care about versions of Android before
3.x, feel free to skip the support library.

	 ➝10	 The activity’s (not the fragment’s) onCreate() method returns
and calls the onActivityCreated() callback.

		 If you need to do anything with your fragment’s views, onActivity
Created() is a great place to do it because your fragment’s views
are guaranteed to be fully constructed at that point.

	 ➝12	 The ListFragment supports showing a message when the list is
empty. The call uses a value of setEmptyText(), and the mes-
sage uses a value of R.string.no_reminders.

		 Add <string name=”no_reminders”>No Reminders Yet</
string> to your strings.xml file. See Chapter 6 for more infor-
mation about adding strings to your strings.xml file.

Knowing when to use activities or fragments
Both activities and fragments are central parts
of your user interface (UI) code. So how then do
you decide whether to put certain functionality
into a fragment or an activity?

If activities are the lunchbox of UI code, frag-
ments are its Tupperware. You can insert your
UI code directly into your lunchbox, but it would
be a bit of a mess and make the lunchbox code
hard to reuse. Put your UI code into your frag-
ment Tupperware instead, where you can shift

it from lunchbox to lunchbox as you need to use
it again.

If you’re absolutely certain that the code you’re
writing is specific to a given activity, put it
directly into an activity. But it you’re unsure,
put your UI code in a fragment. In most applica-
tions, fragments contain all your UI code, and
your activities contain only the glue that binds
the fragments together.

www.it-ebooks.info

http://www.it-ebooks.info/

212 Part III: Creating a Feature-Rich Application

Using an activity to create
and edit reminders
The Task Reminder application needs an additional screen that allows the
user to edit a task and its information. This new activity and fragment will
allow users to create, read, and update tasks.

In Eclipse, follow these steps:

	 1.	 Create a new activity that can handle the create, read, and update
roles.

		 Right-click the package name in the src folder and choose
New➪Class, or press Shift+Alt+N and then choose Class. Name it
ReminderEditActivity.

	 2.	 In the new Java class window, set the superclass to android.
support.v4.app.FragmentActivity and click Finish.

		 A new activity class file opens.

	 3.	 Replace the contents of the activity class file with Listing 9-4.

		 This code creates the activity, sets its content view, and then sets up the
fragment for the activity.

Listing 9-4:   ReminderEditActivity
package com.dummies.android.taskreminder;

import android.os.Bundle;

import android.support.v4.app.Fragment;	 ➝3
import android.support.v4.app.FragmentActivity;
import android.support.v4.app.FragmentTransaction;

public class ReminderEditActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.reminder_edit_activity);	 ➝11

 Fragment fragment = getSupportFragmentManager().findFragmentByTag(

 ReminderEditFragment.DEFAULT_EDIT_FRAGMENT_TAG);	 ➝15

 if (fragment == null) {	 ➝17
 fragment = new ReminderEditFragment();
 Bundle args = new Bundle();
 args.putExtra(ReminderProvider.COLUMN_ROWID, getIntent()

www.it-ebooks.info

http://www.it-ebooks.info/

213 Chapter 9: Designing the Task Reminder Application

 .getLongExtra(ReminderProvider.COLUMN_ROWID, 0L));	 ➝21
 fragment.setArguments(args);	 ➝22

 FragmentTransaction transaction = getSupportFragmentManager()

 .beginTransaction();	 ➝25
 transaction.add(R.id.edit_container, fragment,

 ReminderEditFragment.DEFAULT_EDIT_FRAGMENT_TAG);	 ➝27
 transaction.commit();	 ➝28
 }
 }
}

Here’s a brief explanation of the code in Listing 9-4:

	 ➝3	 This line ensures you’re using the android.support.v4.app.*
imports and not their equivalents from android.app.

	 ➝11	 This line sets the layout for this fragment. Listing 9-5 shows the
code for the R.layout.reminder_edit_activity.

	 ➝15	 Before a fragment is added for the first time, this line checks to
see whether one is already there.

	 	 If an activity was re-created from another activity — say, after a
screen rotation — the previous fragment would have also been re-
created, and that one is used instead of creating one from scratch.

	 ➝17	 If the activity couldn’t find a previous fragment, this line creates a
new fragment.

	 ➝21	 Intents can have extras, which allow activities to pass information
from one to another. In line 21, the intent uses getLongExtra()
to retrieve the long named COLUMN_ROWID if it’s there. If it’s not,
the intent uses the value 0L (or 0 as a long).

	 ➝22	 Fragments need arguments. Unlike with normal Java classes, you
can’t pass arguments to a fragment via a constructor. Instead, line
22 uses a bundle named Fragment.setArguments().

	 ➝25	 Any time you want to interact with a fragment, you must use a
FragmentTransaction. This line calls FragmentActivity.
getSupportFragmentManager() to get the FragmentManager,
and from there calls FragmentManager.beginTransaction()
to start a transaction. All fragments operate between the Fragment
Transaction.beginTransaction() and Fragment
Transaction.commit() calls.

	 ➝27	 This line adds the fragment to the activity. It places the fragment
in a FrameLayout placeholder named R.id.edit_container
(which you define in Listing 9-5) and names it DEFAULT_EDIT_
FRAGMENT_TAG so that the app can find it again by that name.

	 ➝28	 This line finishes the transaction.

www.it-ebooks.info

http://www.it-ebooks.info/

214 Part III: Creating a Feature-Rich Application

	 You may notice that the fragment is set up differently in this class than for
the ReminderListActivity class. In ReminderListActivity, the
<fragment> element is added directly to the XML because the fragment
needed no parameters. The ReminderEditFragment activity needs the
fragment to be manually added by using Java code to pass the reminder ID.

The reminder_edit_activity.xml layout file shown in Listing 9-5 con-
sists of a single full-screen placeholder element called edit_container that
the Java code in Listing 9-1 uses to attach the ReminderListFragment.

Listing 9-5:   R.layout.reminder_edit_activity
<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

 <FrameLayout
 android:id=”@+id/edit_container”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 />

</LinearLayout>

The ReminderEditActivity uses a constant in a class called
ReminderProvider which doesn’t exist yet, so create that class now and
edit it to look like the following:

package com.dummies.android.taskreminder;

public class ReminderProvider {
 public static final String COLUMN_ROWID = “_id”;
}

You also need to inform the Android platform about the existence of the
ReminderEditActivity by adding it to the Android Manifest. You can do
so by adding it to the Application element of the AndroidManifest.xml
file, as shown here in bold:

 <application android:icon=”@drawable/ic_launcher” android:label=”@string/
app_name”>

 <activity android:name=”.ReminderListActivity”
 android:label=”@string/app_name”>
 <intent-filter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-filter>
 </activity>
 <activity android:name=”.ReminderEditActivity”
 android:label=”@string/app_name” />
 </application>

www.it-ebooks.info

http://www.it-ebooks.info/

215 Chapter 9: Designing the Task Reminder Application

	 If you don’t add the activity to the AndroidManifest.xml file, you receive a
runtime exception informing you that Android cannot find the class (the activity).

Adding a fragment to the activity
After you’ve created an activity to hold the ReminderEditFragment,
it’s time to create the fragment. Create a new Java class, name it
ReminderEditFragment, and copy the following code into the file:

package com.dummies.android.taskreminder;

import android.os.Bundle;

import android.support.v4.app.Fragment;	 ➝4
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.EditText;

public class ReminderEditFragment extends Fragment {

 public static final String DEFAULT_EDIT_FRAGMENT_TAG = “editFragmentTag”;	➝12

 private EditText mTitleText;
 private EditText mBodyText;
 private Button mDateButton;
 private Button mTimeButton;
 private Button mConfirmButton;

 private long mRowId;	 ➝19

 @Override

 public void onCreate(Bundle savedInstanceState) {	 ➝22
 super.onCreate(savedInstanceState);

 Bundle arguments = getArguments();	 ➝25
 if (arguments != null) {
 mRowId = arguments.getLong(ReminderProvider.COLUMN_ROWID);
 }
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {	 ➝33

 View v = inflater.inflate(R.layout.reminder_edit, container, false);	➝35

 mTitleText = (EditText) v.findViewById(R.id.title);

www.it-ebooks.info

http://www.it-ebooks.info/

216 Part III: Creating a Feature-Rich Application

 mBodyText = (EditText) v.findViewById(R.id.body);
 mDateButton = (Button) v.findViewById(R.id.reminder_date);
 mTimeButton = (Button) v.findViewById(R.id.reminder_time);
 mConfirmButton = (Button) v.findViewById(R.id.confirm);

 return v;
 }
}

Here’s how the code works:

	 ➝4	 Make sure you’re using the android.support.v4.app.*
imports and not their equivalents from android.app.

	 ➝12	 Activities need a tag or an ID to refer to when they work with frag-
ments. This line gives the ReminderEditFragment a tag so it
can be found again later using the same tag.

	 ➝19	 Every instance of ReminderEditFragment has an ID for the
reminder. The Row ID corresponds to a row in the database.
When editing existing reminders, mRowId is the ID of the row in
the database for that reminder. New reminders get a mRowId of 0.

	 ➝22	 Fragments have onCreate() methods, just as activities do.
onCreate() is called when the fragment is created, and you gen-
erally do most of the fragment initialization in onCreate.

		 Unlike with activities, though, you don’t do initialization related
to views in onCreate. Those have to wait until onCreateView()
on line 33.

	 ➝25	 The fragment finds out which reminder the user is editing or cre-
ating by calling getArguments().

	 	 Arguments come from the bundle that’s returned by get
Arguments(), not from the bundle that’s passed into on
Create() (an easy mistake to make).

	 ➝33	 Unlike with activities, you inflate your XML layouts in Fragment.
onCreateView() instead of using Activity.setContent
View(). This line inflates R.layout.reminder_edit layout,
and then calls findViewById() to set up the View objects,
much like you would do when initializing an activity.

		 You could set up the View objects in onActivityCreated(),
but it’s convenient to do so in onCreateView() in this case
because you’re not manipulating views. See the sidebar “The
fragment lifecycle” for more information about onActivity
Created() versus onCreateView().

	 ➝35	 This line calls inflate() with attachToRoot set to false,
because the fragment attaches the view.

www.it-ebooks.info

http://www.it-ebooks.info/

217 Chapter 9: Designing the Task Reminder Application

Creating the adding/editing
fragment layout
The layout for adding and editing is fairly simple because the form contains
only a few fields:

	 ✓	Title: The title of the task as it will show in list view

	 ✓	Body: The body of the task, where the user would type details

	 ✓	Reminder Date: The date on which the user should be reminded of the task

	 ✓	Reminder Time: The time at which the user should be reminded on the
reminder date

The fragment lifecycle
Just like activities (see Chapter 5), fragments have their own lifecycle.

Like an activity, a fragment can exist in three states:

	✓	 Resumed: The fragment is visible in the running activity.

	✓	 Paused: Another activity is in the foreground and has focus, but the activity in which this frag-
ment lives is still visible (the foreground activity is partially transparent or doesn’t cover the
entire screen).

	✓	 Stopped: The fragment is not visible. Either the host activity has been stopped or the fragment
has been removed from the activity but added to the back stack. A stopped fragment is still
alive (all state and member information is retained by the system). However, it is no longer vis-
ible to the user and will be killed if the activity is killed.

Most of the fragment callbacks are very similar to the activity callbacks. However, there are some
important differences. The three most common fragment callbacks are

	✓	onCreate: Unlike an activity, fragments don’t have a setContentView() method. Unlike
activities, views are not created at all in a fragment’s onCreate() method, so there is no
way to manipulate views in onCreate().

	✓	onCreateView: To create a view in a fragment, override the onCreateView() method
and inflate the view yourself, and then return it at the end of the function. See Listing 9-1 for
an example. One important thing to note: Even though the views are created, they aren’t fully
constructed yet. If any saved state needs to be restored to the view (for example, if the activity
was destroyed and re-created because of a screen rotation), that state isn’t available until the
next step.

	✓	onActivityCreated: onActivityCreated() is the final step called before your
fragment is fully created. At this point, your fragment is fully set up. Because of this, it’s usually
best to put most of the code involving views or saved state in onActivityCreated().

www.it-ebooks.info

http://www.it-ebooks.info/

218 Part III: Creating a Feature-Rich Application

When the app is complete and running on a device or an emulator, the screen
looks like Figure 9-2.

	

Figure 9-2:
The Add/
Edit Task

Reminder
screen.

	

To create this layout, create a layout file in the res/layout directory with
an appropriate name; for example, reminder_edit.xml. To create this file,
follow these steps:

	 1.	 Right-click the res/layout directory and choose New➪Android XML
File.

	 2.	 Provide the name in the File field.

	 3.	 Leave the default type of resource selected — Layout.

	 4.	 Leave the folder set to res/layout.

	 5.	 Set the root element to ScrollView.

	 6.	 Click the Finish button.

You now need to provide all view definitions to build the screen. (Refer to
Figure 9-2.) To do this, type the code shown in Listing 9-6.

Listing 9-6:   The reminder_edit.xml File
<?xml version=”1.0” encoding=”utf-8”?>
<ScrollView
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”

 android:layout_height=”fill_parent”>	 ➝5

www.it-ebooks.info

http://www.it-ebooks.info/

219 Chapter 9: Designing the Task Reminder Application

<LinearLayout		 ➝6
 android:orientation=”vertical”	 ➝7
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”

 android:text=”@string/title” />	 ➝12
 <EditText android:id=”@+id/title”
 android:layout_width=”fill_parent”

 android:layout_height=”wrap_content” />	 ➝15
 <TextView android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”

 android:text=”@string/body” />	 ➝18
 <EditText android:id=”@+id/body”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:minLines=”5”
 android:scrollbars=”vertical”

 android:gravity=”top” />	 ➝24
 <TextView android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”

 android:text=”@string/date” />	 ➝27
 <Button
 android:id=”@+id/reminder_date”
 android:layout_height=”wrap_content”

 android:layout_width=”wrap_content”/>	 ➝31
 <TextView android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”

 android:text=”@string/time” />	 ➝34
 <Button
 android:id=”@+id/reminder_time”
 android:layout_height=”wrap_content”

 android:layout_width=”wrap_content” />	 ➝38
 <Button android:id=”@+id/confirm”
 android:text=”@string/confirm”
 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />	 ➝42
</LinearLayout>
</ScrollView>

Here’s brief explanation of the code in Listing 9-6:

	 ➝5	 The parent view is ScrollView, which creates a scroll bar and
allows the view to be scrolled when the contents of the view are
too large to fit onscreen. The screen shown in Figure 9-2 is shown
in Portrait mode. However, if the device is rotated 90 degrees, the
view flips and more than half is cut off. The parent ScrollView
allows the remaining contents of the screen to be scrollable.
Therefore, the user can flick a finger upward on the screen to
scroll the contents and see the remainder of the view.

www.it-ebooks.info

http://www.it-ebooks.info/

220 Part III: Creating a Feature-Rich Application

	 ➝6	 A ScrollView can have only one child — in this case, the main
LinearLayout that houses the rest of the layout.

	 ➝7	 The orientation of the linear layout is set to vertical to signify
that the views inside this layout should be stacked on top of one
another.

	 ➝12	 This is the label for the Title field.

	 ➝15	 The EditText that allows the user to provide a title for the
task. You add <string name=”title”>Title</string> to
strings.xml.

	 ➝18	 The label for the Body field and add the <string
name=”body”>Body</string> to the strings.xml.

	 ➝24	 The EditText that defines the Body field. The EditText view
has set the minLines property to 5 and the gravity property to
top to inform the Android platform that the EditText is at least
five lines tall and that when the user starts typing, the text should
be bound to the top of the view (the gravity).

	 ➝27	 The reminder date label also uses a string resource. You need
to add a string resource with the name of “date” and a value of
“Reminder Date”.

	 ➝31	 When this reminder date button is tapped, a DatePickerDialog
is launched. The user can choose a date with a built-in Android
date picker. When the date is set via the DatePicker, the value
of the date is set as the button text.

	 ➝34	 This reminder time label uses a string resource. You need to add a
string resource with the name of “time” and a value of “Time”.

	 ➝38	 When this time reminder button is clicked, a TimePicker is
launched. The user can choose a time with a built-in Android time
picker. When the time is set via the TimePickerDialog, the
value of the time is set as the button text.

	 ➝42	 This confirmation button saves the values of the form when
clicked. Add <string name=”confirm”>Save</string> to
the strings.xml.

Completing Your List Fragment
The ListFragment class displays a list of items by binding to a data source
such as an array or a cursor, and it exposes callback methods when the user

www.it-ebooks.info

http://www.it-ebooks.info/

221 Chapter 9: Designing the Task Reminder Application

selects an item. However, to build a list of items to display in a list, you need
to add a layout that defines what each row will look like.

A cursor provides random read and write access to the result set that’s
returned by a database query.

Add a new layout to the res/layout directory with a root element of
TextView, and give it a proper name for a row type of item; for example,
reminder_row.xml. Inside this view, type the following code:

<?xml version=”1.0” encoding=”utf-8”?>
<TextView
 xmlns:android=”http://schemas.android.com/apk/res/android”

 android:id=”@+id/text1”	 ➝4
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:padding=”10dip”/>

This code simply defines a row in which text values can be placed with a pad-
ding of ten density-independent pixels. Line 4 defines the ID of the view that
you need when loading the list with data.

	 The view you added is provided out of the box in the Android system. If
you look at the Android documentation under Android.R.layout under
simple_list_item_1 and inspect it via the Android source control reposi-
tory, you can see virtually the same XML definition. The source can be
found at

https://github.com/android/platform_frameworks_base/blob/
master/core/res/res/layout/simple_list_item_1.
xml

The ListFragment requires that an adapter fill the contents of the list view.
Various adapters are available, but because you don’t yet have a data store
(built with an SQLite database in Chapter 12), you can temporarily create
fake data so that you can see the list in action. In the following section, you
add fake data, so you can set the ListFragment’s adapter with a call to
setListAdapter().

Getting stubby with fake data
Add the following field and method to your ReminderListFragment class:

www.it-ebooks.info

https://github.com/android/platform_frameworks_base/blob/master/core/res/res/layout/simple_list_item_1.xml
https://github.com/android/platform_frameworks_base/blob/master/core/res/res/layout/simple_list_item_1.xml
https://github.com/android/platform_frameworks_base/blob/master/core/res/res/layout/simple_list_item_1.xml
http://www.it-ebooks.info/

222 Part III: Creating a Feature-Rich Application

 private ListAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 String[] items = new String[] { “Foo”, “Bar”, “Fizz”, “Bin” };	 ➝7

 mAdapter = new ArrayAdapter<String>(getActivity(),	 ➝9
 R.layout.reminder_row, R.id.text1, items);

 setListAdapter(mAdapter);	 ➝11
 }

Here’s a brief explanation of the code:

	 ➝7	 An array of string items that will eventually be displayed in the
list.

	 ➝9	 The creation of a new ArrayAdapter of string types. An
ArrayAdapter manages a ListView backed by an arbitrary
number of arbitrary objects — in this case, a simple string array.
This code is using Java generics, which allow you to specify the
type of object that the ArrayAdapter will work with. The con-
structor of the ArrayAdapter contains these elements:

	 	 • getActivity(): The current context. (Because the activity
is an implementation of the Context class, you can use the
current instance as the context.)

	 	 • R.layout.reminder_row: The row layout that should be
used for each row in the ListView.

	 	 • R.id.text1: The ID of the TextView inside R.layout.
reminder_row in which to place the values from the array.

	 	 • items: The array of strings to load into the ListView.

	 ➝11	 The call to setListAdapter() that informs the ListFragment
how to fill the ListView. In this case, you’re using the
ArrayAdapter, created on line 4, to load the ListView.

Start the Android application by choosing Run➪Run or by pressing Ctrl+F11.
The screen you see should look similar to Figure 9-3.

The previous code and example illustrate how to use a static data source for
the ListFragment. In Chapter 12, you replace this code with code that will
load the data from an SQLite database.

www.it-ebooks.info

http://www.it-ebooks.info/

223 Chapter 9: Designing the Task Reminder Application

	

Figure 9-3:
The Task

Reminder
running with

fake data.
	

Handling user click events
The items in the list expose click events that allow the user to interact with
each item. Android View objects have two main types of click events:

	 ✓	Click: The user briefly taps a view, such as a button.

	 ✓	Long-click: The user taps on a button and holds it for an extra moment.

Every view and activity can intercept these events via various methods.
In the following sections, you respond to each type of event in a List
Fragment. In Chapter 11, you set up the app to respond to Button click
events.

Short clicks
The ListFragment in Android does a lot of the event-handling heavy
lifting for you (which is good because programming shouldn’t be a physical
exercise).

After the onCreate() method in ReminderListFragment, type this
method:

@Override
public void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);
}

www.it-ebooks.info

http://www.it-ebooks.info/

224 Part III: Creating a Feature-Rich Application

This code overrides the default implementation of onListItemClick()
that’s provided by the ListFragment. When a list item is clicked, this
method is called, and the following parameters are passed into the call:

	 ✓	l: The ListView where the click happened

	 ✓	v: The item that was clicked with the ListView

	 ✓	position: The position of the clicked item in the list

	 ✓	id: The row ID of the item that was clicked

Using these variables, you can determine which item was clicked and then
perform an action based on that information. When an item is clicked in this
list, an intent opens the ReminderEditActivity to allow the user to edit
the item, as shown in the section “Starting new activities with intents,” later
in this chapter.

Long clicks
A long-click (or long-press) occurs whenever a user presses a view
for an extended period. To handle the list item’s long-click event in a
ListFragment, add the following line of code at the end of the onView
Created() method in ReminderListFragment:

registerForContextMenu(getListView());

The outer method, registerForContextMenu(), is responsible for regis-
tering a context menu to be shown for a given view. Multiple views can show
a context menu; it isn’t limited to a single view. Every list item is therefore
eligible to create a context menu. The registerForContextMenu()
accepts a View object as a parameter that the ListFragment should regis-
ter as eligible for the context menu creation. The inner method, getList
View(), returns a ListView object that’s used for the registration. The call,
getListView(), is a member of the ListFragment class.

Now that you’ve registered the ListView to be eligible to create a context
menu, you need to respond to the long-click event on any given item. When
an item is long-clicked in the ListView, the registerForContextMenu()
recognizes it and calls the onCreateContextMenu() method when the
context menu is ready to be created. In this method, you set up your context
menu.

At the end of the ReminderListFragment class file, type the following
method:

@Override
public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo

menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
}

www.it-ebooks.info

http://www.it-ebooks.info/

225 Chapter 9: Designing the Task Reminder Application

This method is called with the following parameters:

	 ✓	menu: The context menu that’s being built.

	 ✓	v: The view for which the context is being built (the view that the user
long-clicked).

	 ✓	menuInfo: Extra information about the item for which the context menu
should be shown. (It can vary depending on the type of view in the v
parameter.)

Inside this method, you can modify the menu that’s presented to the user.
For example, when a user long-presses an item in the task list, she should be
allowed to delete it. Therefore, present her with the Delete option on a con-
text menu (as described in Chapter 10).

Identifying Your Intent
Even applications that have only two screens (such as the Task Reminder
application) have a great deal happening behind the scenes. One notable
interaction that happens between the application and the user is the intro-
duction of new screens as the user tries various features of the application.
As with any application that has a rich feature set, the user can interact with
each screen independently. The big question that arises is, “How does a user
open another screen?”

Screen interaction is handled via the Android intent system. In the following
sections, you set up intents that allow the user to navigate from one screen
to the next. Thankfully, it’s a simple process. (Turn to Chapter 7 to find out
more about the intent system.)

Starting new activities with intents
Activities are initiated via the Android intent framework. An Intent is a
class that represents a message that’s placed in the Android intent system
(similar to a message-bus type of architecture), and whoever can respond
to the intent lets the Android platform know, resulting in either an activ-
ity starting or a list of applications to choose from. (This chooser concept
is explained in the later section “Creating a chooser.”) You can think of an
intent as an abstract description of an operation.

Starting a particular activity is easy. In your ReminderListFragment, type
the following code into the onListItemClick() method:

www.it-ebooks.info

http://www.it-ebooks.info/

226 Part III: Creating a Feature-Rich Application

@Override
public void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);

 Intent i = new Intent(getActivity(), ReminderEditActivity.class); 	 ➝4
 i.putExtra(ReminderProvider.COLUMN_ROWID, id);	 ➝5
 startActivity(i);	 ➝6
}

Here’s a brief explanation of each line:

	 ➝4	 This line creates a new intent using the Intent constructor that
accepts the current context, which is the current running activity,
as well as a class that the intent system should attempt to start —
the ReminderEdit activity.

	 ➝5	 This line places extra data into the Intent object. This intent
includes a key/value pair. The key is RowId, and the value is the
ID of the view that was clicked. This value is placed into the intent
so that the receiving activity (the ReminderEditActivity) can
pull this data from the Intent object and use it to load the infor-
mation about the intent. In Chapter 12, you can see data flowing
into the ReminderEditFragment.

	 ➝6	 This line starts the activity from within the current activity. This
call places the intent message into the Android intent system and
allows Android to decide how to open that screen for the user.

Creating a chooser
At some point, you may run into a particular instance where you need to pro-
vide the user with a list of applications that can handle a particular intent. A
common example is sharing data with a friend via a common networking tool,
such as e-mail, SMS, Twitter, Facebook, or Google Latitude.

The Android intent system was built to handle these types of situations.
Though it isn’t used in the Task Reminder application, it can come in handy.
The code to display various available options to the user is shown in Listing
9-7.

Listing 9-7:   Creating an Intent Chooser
Intent i = new Intent(Intent.ACTION_SEND);	 ➝1
i.setType(“text/plain”);	 ➝2
i.putExtra(Intent.EXTRA_TEXT, “Hey Everybody!”);	 ➝3
i.putExtra(Intent.EXTRA_SUBJECT, “My Subject”);	 ➝4
Intent chooser = Intent.createChooser(i, “Who Should Handle this?”);	 ➝5
startActivity(chooser);	 ➝6

www.it-ebooks.info

http://www.it-ebooks.info/

227 Chapter 9: Designing the Task Reminder Application

Here’s a brief explanation of each line in Listing 9-7:

	 ➝1	 The creation of a new intent that informs the intent system that
the user wants to send, or mail, something.

	 ➝2	 The content type of the message. It can be set to any explicit
MIME type. MIME types are case-sensitive, unlike RFC MIME types,
so always type them in lowercase letters to specify the type of the
intent. Only applications that can respond to this type of intent
will then show up in the chooser.

	 ➝3	 Placing extra data into the intent. It’s the body of the message that
the application will use. If an e-mail client is chosen, this line com-
prises the e-mail body. If Twitter is chosen, the message of the
tweet is the body. Every application that responds to the intent
can handle the extra data in its own, special manner. Don’t expect
the data to be handled as you might believe it should be, in the
destination application. The developer of this type of application
determines how the application should handle the extra data.

	 ➝4	 Similar to line 3, but with a subject extra provided. If an e-mail client
responds, this line normally comprises the subject of the e-mail.

	 ➝5	 Creates the chooser. (The Intent object has a static helper
method that helps you.) The chooser is itself an intent. You
simply provide the target intent (the action that you want to
happen) as well as a title for the pop-up chooser that is shown.

	 ➝6	 Starts the intent. It creates the chooser from which you choose an
application.

The chooser that’s created from Listing 9-7 is shown in Figure 9-4.

	

Figure 9-4:
The new

chooser that
was

created.
	

www.it-ebooks.info

http://www.it-ebooks.info/

228 Part III: Creating a Feature-Rich Application

If the intent system can find no valid applications to handle the intent, the
chooser is created with a message informing the user that no applications
can perform the action, as shown in Figure 9-5.

	

Figure 9-5:
The chooser

informs the
user that
Android

cannot find
a matching
application

to handle
the intent.

	

	 The chooser is a helpful way to increase the interoperability of an application.
However, if you simply call startActivity() with your intent without cre-
ating a chooser, your application might crash because Android is giving you
full reign and assumes that you know what you’re doing. By not including a
chooser, you’re assuming that the destination device has at least one applica-
tion to handle the intent. If it doesn’t, Android throws an exception (visible
via DDMS) to inform you that no class can handle the intent. To the user, your
app has crashed.

	 To provide a satisfactory user experience, always provide an intent chooser
when firing off intents that are intended for interoperability with other appli-
cations. The chooser provides a smooth and consistent usability model that
the rest of Android already provides.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Going a la Carte with Your Menu
In This Chapter
▶	Building an options menu
▶	Building a context menu

E
very good Android application includes menus. If you have an Android
device and you’ve downloaded a few applications from the Google Play

Store, you’ve probably encountered a few good and bad menu implementations.

A bad menu provides very little (if any) helpful text in the menu description
and provides no icon. A few common menu faux pas include

	 ✓	A poor menu title

	 ✓	A menu without an icon

	 ✓	No menu

A good menu should have a visual as well as textual appeal to the end user.
The appearance of a menu icon shows that the developer actually thought
through the process of creating the menu and decided which icon best suits
the application.

Activities and fragments can both have menus, in which case they'll both be
combined into one. In this chapter, you add option and context menus to the
fragments in the Task Reminder app, but you could just as easily add them to
an activity, too.

www.it-ebooks.info

http://www.it-ebooks.info/

230 Part III: Creating a Feature-Rich Application

Understanding Options
and Context Menus

Android provides a simple mechanism for you to add menus to your applica-
tions. You find the following types of menus:

	 ✓	Options menu or action bar menu: This is, most likely, the most
common type of menu that you’ll work with. It’s the primary menu for an
activity or fragment.

		 On Android 3.x and later, the Options menu is in the action bar at the
top of the screen (read more about the action bar in Chapter 1). On
Android 2.x and earlier, the Options menu is presented to the user with
the press of the Menu key on the device. Figure 10-1 shows the same
menus on two different devices.

		 Within the options menu are two groups:
	 •	Icon: These menu options are available at the bottom of the screen.

The device supports up to six menu items, and they’re the only
menu items that support the use of icons. They don’t support
check boxes or radio buttons.

	 •	Expanded: The expanded menu is a list of menu items that goes
beyond the six menu items on the Icon menu. This menu is
presented by the More menu icon that is automatically placed
onscreen when the app developer has more items than will fit on
the Icon menu.

	

Figure 10-1:
The options

menu on
an Android
2.x device

(left), and on
an Android
4.x device

(right).

	

www.it-ebooks.info

http://www.it-ebooks.info/

231 Chapter 10: Going a la Carte with Your Menu

	 ✓	Context menu: A floating list of menu items that’s presented when a
user long-presses a view.

	 ✓	Submenu: A floating list of menu items that the user opens by tapping a
menu item on the Options menu or on a context menu. A submenu item
can't support nested submenus.

Creating Your First Menu
You can create a menu through code or through an XML file that’s provided
in the res/menu directory. The preferred method of creating a menu is to
define it through XML and then inflate it into a programmable object that you
can interact with. This helps separate the menu definition from the actual
application code.

Defining the XML file
To define an XML menu, follow these steps:

	 1.	 Create a menu folder in the res directory.

	 2.	 Add a file by the name of list_menu.xml to the menu directory.

	 3.	 Type the following code into the list_menu.xml file.

<?xml version=”1.0” encoding=”utf-8”?>
<menu
 xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item android:id=”@+id/menu_insert”
 android:icon=”@android:drawable/ic_menu_add”
 android:title=”@string/menu_insert” />
</menu>

		 Notice that a new string resource is included (shown in bold). You’ll
create that in Step 4. The android:icon value is a built-in Android
icon. The ldpi, mdpi, hdpi and xhdi versions of this icon are all built
into the Android platform, so you don’t have to provide this bitmap in
your drawable resources. To view other resources available, view the
android.R.drawable documentation at

http://developer.android.com/reference/android/R.
drawable.html

		 All resources in the android.R class give your application a common
user interface and user experience with the Android platform.

www.it-ebooks.info

http://developer.android.com/reference/android/R.drawable.html
http://developer.android.com/reference/android/R.drawable.html
http://www.it-ebooks.info/

232 Part III: Creating a Feature-Rich Application

	 4.	 Create a new string resource with the name menu_insert with the
value of Add Reminder in the strings.xml resource file.

	 5.	 Open the ReminderListFragment class and make sure the bold lines
are in your onViewCreated():
@Override
public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);
 setEmptyText(getResources().getString(string.no_reminders));
 registerForContextMenu(getListView());
 setHasOptionsMenu(true);
}

		 registerForContextMenu() tells Android that the ListView wants
to contribute to the context menu (the one that shows up when a user
long-presses the view). setHasOptionsMenu() tells Android 2.x to
show the menu when the user presses the Menu button, and Android
3.x or later to show the menu in the action bar. Turn to Chapter 9 for
more information about registerForContextMenu() and setHas
OptionsMenu().

	 6.	 Add the onCreateOptionsMenu() method to your class:

@Override
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 super.onCreateOptionsMenu(menu,inflater);
 inflater.inflate(R.menu.list_menu, menu);
}

		 The MenuInflater inflates the XML menu layout created earlier and
adds it to the menu that was passed as an argument in the method call.

	 7.	 Install the application in the emulator, and click the Menu button.

		 Figure 10-2 shows the Add Reminder menu icon that you just created.

	

Figure 10-2:
The Add

Reminder
menu icon.

	

www.it-ebooks.info

http://www.it-ebooks.info/

233 Chapter 10: Going a la Carte with Your Menu

Handling user actions
After you’ve created the menu, you then have to add what happens when a
user clicks it. To do this, type the following code at the end of the class file:

 @Override

 public boolean onOptionsItemSelected(MenuItem item) {	 ➝2
 switch (item.getItemId()) {	 ➝3
 case R.id.menu_insert:	 ➝4
 editReminder(0);	 ➝5
 return true;	 ➝6
 }

 return super.onOptionsItemSelected(item);	 ➝9
 }

The lines of code are explained in detail here:

	 ➝2	 This is the method that’s called when a menu item is selected. The
item parameter identifies which menu item the user tapped.

	 ➝3	 To determine which item you’re working with, compare the ID of
the menu items with the known menu items you have. Therefore, a
switch statement is used to check each possible valid case. You
obtain the menu’s ID through the MenuItem method getItemId().

	 ➝4	 The ID of the Add Reminder menu item checks whether the user
selected that menu item.

	 ➝5	 If the user selected the Add Reminder menu item, the application
is instructed to create a reminder through the editReminder()
method (defined in the next section). By convention, calling edit
Reminder() with an ID of 0 means the app should create a new
reminder.

	 ➝6	 This line returns true to inform the onMenuItemSelected()
method that a menu selection was handled.

	 ➝9	 If the menu selection and return isn’t handled earlier, the parent
class tries to handle the menu item.

You may receive compilation errors at this time, but don’t worry! You finish
the application in the following section.

Creating a reminder task
The editReminder() method allows the user to navigate to the Reminder
EditActivity to edit or create a new task with a reminder. Type the follow-
ing method at the bottom of your ReminderListFragment class file:

www.it-ebooks.info

http://www.it-ebooks.info/

234 Part III: Creating a Feature-Rich Application

public void editReminder(long id) {
 Intent i = new Intent(getActivity(), ReminderEditActivity.class);
 i.putExtra(ReminderProvider.COLUMN_ROWID, id);
 startActivity(i);
}

This code creates a new intent that starts the ReminderEditActivity,
then calls startActivity() to, you guessed it, start the activity.

Creating a Context Menu
A context menu appears when a user long-presses a view. The context menu
is a floating menu that hovers above the current screen and allows users to
choose from various options related to the view they long-pressed.

Thankfully, creating a context menu is quite similar to creating an option
menu. You can define the menu in XML and inflate it using the same mecha-
nism that you used when you created the options menu. All you need to do is
call registerForContextMenu() with a view as the target. (See Chapter 9
to find out how to create a view as the target.) After you create that, you
need to override the onCreateContextMenu() call — also demonstrated in
Chapter 9.

The Task Reminder application needs a mechanism in which to delete a task
when it’s no longer needed. Users can long-press the task in the list, and a
context menu pops up that allows them to delete the task by selecting an
item from the menu.

Creating the menu XML file
To create this menu, create a new XML file in the res/menu directory. Name
it list_menu_item_longpress.xml. Type the following into the XML file:

<?xml version=”1.0” encoding=”utf-8”?>
<menu xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item android:id=”@+id/menu_delete”
 android:title=”@string/menu_delete” />
</menu>

Notice that the title property uses a new string resource menu_delete.
You need to create a new string resource with the name of menu_delete
and the value of Delete Reminder. Also note that you don’t need an icon
associated with this menu.

www.it-ebooks.info

http://www.it-ebooks.info/

235 Chapter 10: Going a la Carte with Your Menu

	 A context menu doesn’t support icons; it’s simply a list of menu options that
floats above the current activity.

Loading the menu
To load the menu XML and display it to the user, type the following code into
the onCreateContextMenu() method:

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 MenuInflater mi = getActivity().getMenuInflater();
 mi.inflate(R.menu.list_menu_item_longpress, menu);
 }

This code performs the same function as the onCreateOptionsMenu() call,
but this time you’re inflating the menu for the context menu — and you’re
loading the context menu. Now, if a user long-presses a list item in the list
view, he receives a context menu, as shown in Figure 10-3.

	

Figure 10-3:
The context

menu in
the Task

Reminder
application.

	

Handling user selections
Handling the selection of the context menu items is very similar to handling
that with an option menu. Type the following code into the bottom of your
class file:

www.it-ebooks.info

http://www.it-ebooks.info/

236 Part III: Creating a Feature-Rich Application

@Override

public boolean onContextItemSelected(MenuItem item) {	 ➝2
 switch(item.getItemId()) {	 ➝3
 case R.id.menu_delete:	 ➝4
 // Delete the task
 return true;
 }
 return super.onContextItemSelected(item);
}

The code lines are explained here:

	 ➝2	 This is the method that’s called when a context menu item is
selected. The item parameter is the item that was selected in the
context menu.

	 ➝3	 A switch statement determines which item was selected, based on
the ID as defined in the list_menu_item_longpress.xml file.

	 ➝4	 This is the ID for the menu_delete button in the list_menu_
item_longpress.xml file. If this menu option is selected, the
following code would perform some action based on that determi-
nation. Nothing is happening in the code block in this chapter, but
that changes in Chapter 12, where you delete the task from the
SQLite database.

	 You can add many different context menu items to the list_menu_item_
longpress.xml file and switch between them in the onContextMenuItem
Selected() method call — each performing a different action.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

Handling User Input
In This Chapter
▶	Working with EditText views
▶	Creating date pickers and time pickers
▶	Setting up alert dialog boxes
▶	Validating user input

R
arely does an application not allow users to interact with it. Whether
they use text, a date or time picker, a radio button, a check box, or any

other input mechanism, users need to interact with your application in one
way or another. The generalization of input also refers to buttons, screen
dragging, menus, long-pressing, and various other options. This chapter
focuses solely on user input in the form of alerts, free-form text, and dates
and times.

Creating the User Input Interface
The most common input type is the EditText view, used for free-form text
entry. Using an EditText view, you can provide an onscreen keyboard or let
the user choose the physical keyboard (if the device provides one) to enter
input.

	 In case you’re familiar with other programming platforms, a text box performs
the same function as an EditText view.

Creating an EditText view
In Chapter 9, you created a view layout XML file, named reminder_edit.
xml, that contained these lines of code:

www.it-ebooks.info

http://www.it-ebooks.info/

238 Part III: Creating a Feature-Rich Application

<EditText android:id=”@+id/title”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content” />

The snippet creates an input mechanism on the screen where the user can
type a task title. The EditText view spans the width of the screen and occu-
pies only as much height as it needs. When the view is selected, Android
automatically opens the onscreen keyboard to allow user input.

The previous example takes a minimalistic approach, compared to the follow-
ing EditText example, which is also present in the reminder_edit.xml
layout file:

<EditText android:id=”@+id/body” android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:minLines=”5”
 android:scrollbars=”vertical”
 android:gravity=”top” />

This code creates the body description text of the task. The layout width and
height are the same as in the EditText view in the previous example, and
the EditText view spans the width of the screen. These three properties
outline the differences in this EditText definition:

	 ✓	minLines: Specifies the height of the EditText view. Because the
EditText view is a subclass of the TextView object, they share this
property. This code specifies a minimum of five lines for the EditText
object onscreen so that the view resembles a text input mechanism for
long messages.

		 Compare this view to the body portion of any e-mail client, and you can
see that they’re much the same — the body is much larger than the sub-
ject. In this case, the body is much larger than the title.

	 ✓	scrollbars: Defines which scroll bars should be present when the text
overflows the available input area; specifies vertical scroll bars on the
side of the EditText view.

	 ✓	gravity: Aligns text (by default) to the middle of the view when the
user places focus into an EditText field (as shown on the left in Figure
11-1), though it isn’t what users would expect when they work with
a multiline input mechanism. To position the cursor at the top of the
EditText view, as users would reasonably expect, you must set the
gravity of the EditText view to top, to force the text to gravitate to the
top of the EditText input as shown on the right in Figure 11-1.

www.it-ebooks.info

http://www.it-ebooks.info/

239 Chapter 11: Handling User Input

	

Figure 11-1:
An

EditText
view, with
the cursor
placed in

the center
(left) and top

(right).
	

Displaying an onscreen keyboard
The EditText view is responsible for the onscreen keyboard display.
Because some devices have no physical keyboard, an onscreen keyboard
must be present for interaction with the input mechanisms. One property
that the EditText view provides is a way to manipulate the visual aspect of
the onscreen keyboard.

You adjust the onscreen keyboard because different EditText input types
might need different keys. For example, if the EditText is a phone number,
the onscreen keyboard should display only numbers. If the EditText
value is an e-mail address, however, the onscreen keyboard should display
common e-mail style attributes — such as the at (@) symbol.

	 Configuring the onscreen keyboard properly can increase the usability of your
application.

You can configure the way the onscreen keyboard looks by using the
inputType property on the EditText view. For example, if you set
android:inputType=”number” on the body EditText, the keyboard dis-
plays number keys instead of letter keys, as shown in Figure 11-2.

www.it-ebooks.info

http://www.it-ebooks.info/

240 Part III: Creating a Feature-Rich Application

	

Figure 11-2:
Keyboard

customized
for number

entry.
	

The inputType property has too many options to cover in this book,
but you can examine the full list at http://developer.android.com/
reference/android/widget/TextView.html#attr_android:inputType.

Getting Choosy with Dates and Times
A Task Reminder application without a way to set the date and time is a poor
Task Reminder application — it would only be a simple task list application.

If you’ve programmed dates and times in another programming language,
you realize that building a mechanism for a user to enter the date and time
can be a painstaking process. The Android platform comes to your rescue by
providing two classes to assist you: DatePicker and TimePicker. These
pickers also provide built-in classes for opening a dialog box where the user
selects a date and time. Therefore, you can either embed the DatePicker
or TimePicker into your application’s views or use the DialogFragment
classes.

Creating picker buttons
The reminder_edit.xml file contains mechanisms to help show the
DatePicker and TimePicker (under the EditText definitions described
earlier). These two buttons have labels above them, as shown in Listing 11-1.

www.it-ebooks.info

http://developer.android.com/reference/android/widget/TextView.html#attr_android:inputType
http://developer.android.com/reference/android/widget/TextView.html#attr_android:inputType
http://www.it-ebooks.info/

241 Chapter 11: Handling User Input

Listing 11-1:   The Date and Time Buttons with Their Corresponding
TextView Labels
<TextView android:layout_width=”wrap_content”	 ➝1
 android:layout_height=”wrap_content”
 android:text=”@string/date” />

<Button		 ➝4
 android:id=”@+id/reminder_date”
 android:layout_height=”wrap_content”
 android:layout_width=”wrap_content”
 />

<TextView android:layout_width=”wrap_content”	 ➝9
 android:layout_height=”wrap_content”
 android:text=”@string/time” />

<Button		 ➝12
 android:id=”@+id/reminder_time”
 android:layout_height=”wrap_content”
 android:layout_width=”wrap_content”
 />

The code lines are explained in this list:

	 ➝1	 The TextView label for the Date button; displays the value of
“Reminder Date” according to the string resource

	 ➝4	 Defines a button that the user clicks to open the DatePicker
DialogFragment (as explained in the following section)

	 ➝9	 The TextView label for the Time button; displays the value of
“Reminder Time” according to the string resource

	 ➝12	 Defines a button that the user clicks to open the
TimePickerDialogFragment (explained in the section,
“Creating the time picker”)

Creating the date picker
A user who clicks the Date button should be able to edit the date, as
described in the following several sections.

Setting up the Date button click listener
To set up the Date button click listener, open the activity where your
code will be placed. For the Task Reminder application, open the
ReminderEditFragment.java file.

Add the code lines shown in bold in Listing 11-2 to the onCreateView()
method.

www.it-ebooks.info

http://www.it-ebooks.info/

242 Part III: Creating a Feature-Rich Application

Listing 11-2:   Implementing the Date Button Click Listener
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {

 View v = inflater.inflate(R.layout.reminder_edit, container, false);

 mTitleText = (EditText) v.findViewById(R.id.title);
 mBodyText = (EditText) v.findViewById(R.id.body);
 mDateButton = (Button) v.findViewById(R.id.reminder_date);
 mTimeButton = (Button) v.findViewById(R.id.reminder_time);
 mConfirmButton = (Button) v.findViewById(R.id.confirm);

 mDateButton.setOnClickListener(new View.OnClickListener() {	 ➝13
 @Override

 public void onClick(View v) {	 ➝15
 showDatePicker();	 ➝16
 }
 });

 return v;
 }

The numbered lines are described in this list:

	 ➝13	 Sets the onClickListener() for the mDateButton. The
onClickListener() executes when the button is clicked. The
action that takes place on the button click is shown on line 16.

	 ➝15	 Overrides the default click behavior of the button so that you can
provide your own set of actions to perform. The View v param-
eter is the view that was clicked.

	 ➝16	 Defines what you want to happen when the button is clicked; calls
a method on the showDatePicker() fragment, as explained in
the later section “Creating the showDatePicker() method.”

Creating the DatePickerDialogFragment
The Android operating system comes supplied with a built-in Date
PickerDialog that lets users select (rather than type) a date. It doesn’t
come wrapped neatly in a fragment, so you have to do it yourself.

	 The old dialog objects were designed to be called from activities, not from
fragments. When opening a dialog box from a fragment, you have to use a
subclass of the DialogFragment class if you want the dialog box to behave
properly.

www.it-ebooks.info

http://www.it-ebooks.info/

243 Chapter 11: Handling User Input

Create a new file, name it DatePickerDialogFragment, and add the follow-
ing code:

package com.dummies.android.taskreminder;

import android.app.DatePickerDialog;
import android.app.Dialog;
import android.os.Bundle;

import android.support.v4.app.DialogFragment;	 ➝6

public class DatePickerDialogFragment extends DialogFragment {
 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {	 ➝10
 Bundle args = getArguments();	 ➝11
 Fragment editFragment = getFragmentManager()	 ➝12
 .findFragmentByTag(
 ReminderEditFragment.DEFAULT_EDIT_FRAGMENT_TAG);

 OnDateSetListener listener = (OnDateSetListener) editFragment;	 ➝15

 return new DatePickerDialog(getActivity(), listener,	 ➝17
 args.getInt(ReminderEditFragment.YEAR),
 args.getInt(ReminderEditFragment.MONTH),
 args.getInt(ReminderEditFragment.DAY));
 }
}

Here’s how the code works:

	 ➝6	 Be sure to use the android.support.v4.app.* imports and
not their equivalents from android.app.

	 ➝10	 The method that’s called when Android wishes to display the
DatePicker dialog box. This method creates it and returns it.

		 Sometimes you may need to use savedInstanceState to
restore the state from previous instances. However, in this case,
the dialog box already does it for you, so you can safely ignore
savedInstanceState in this method.

	 ➝11	 Constructor-like arguments for a fragment are passed via set
Arguments(), not via the fragment’s constructor, so this line
retrieves those arguments using getArguments(), which you
need on line 17.

	 ➝12	 Asks the FragmentManager to find the fragment
named DEFAULT_EDIT_FRAGMENT_TAG, which is the
ReminderEditFragment.

	 ➝15	 Casts the editFragment to an OnDateSetListener.
The dialog box created by the onCreateDialog
needs the OnDateSetListener object to inform the
ReminderEditFragment when the user has picked a date.

www.it-ebooks.info

http://www.it-ebooks.info/

244 Part III: Creating a Feature-Rich Application

	 ➝17	 This line calls the DatePickerDialog constructor and passes
getActivity(), the current context listener obtained on line
12, and args.getInt(ReminderEditFragment.YEAR),
args.getInt(ReminderEditFragment.MONTH), args.
getInt(ReminderEditFragment.DAY), the year, month, and
day, as specified in the arguments to this fragment.

Creating the showDatePicker() method
After you have a DatePickerDialogFragment class, you can create an
instance of it and show it to the user. The date button’s onClickListener
called showDatePicker, so you can implement showDatePicker() now.
Add the following code to the ReminderEditFragment class after your
onCreateView():

 //
 // Dialog Constants
 //
 static final String YEAR = “year”;
 static final String MONTH = “month”;
 static final String DAY = “day”;
 static final String HOUR = “hour”;
 static final String MINS = “mins”;
 static final String CALENDAR = “calendar”;
 private void showDatePicker() {

 FragmentTransaction ft = getFragmentManager().beginTransaction();	 ➝11
 DialogFragment newFragment = new DatePickerDialogFragment();	 ➝12
 Bundle args = new Bundle();	 ➝13
 args.putInt(YEAR, mCalendar.get(Calendar.YEAR));	 ➝14
 args.putInt(MONTH, mCalendar.get(Calendar.MONTH));
 args.putInt(DAY, mCalendar.get(Calendar.DAY_OF_MONTH));

 newFragment.setArguments(args);	 ➝17
 newFragment.show(ft, “datePicker”); 	 ➝18
 }

This is how the code works:

	 ➝11	 Implements a fragment transaction for the new fragment.

	 ➝12	 Creates a DatePickerDialogFragment instance.

	 ➝13	 Creates the fragment constructor arguments in a bundle.

	 ➝14	 Sets the year, month, and day of the dialog box fragment to the
year, month, and day set in the mCalendar object.

	 ➝17	 Sets the fragment’s arguments to the values in the bundle created
in line 4.

www.it-ebooks.info

http://www.it-ebooks.info/

245 Chapter 11: Handling User Input

	 ➝18	 Shows the DatePicker dialog box fragment, which allows the
dialog box to open onscreen. Because show() calls commit(),
you don’t need to call it explicitly.

Creating the time picker
The TimePickerDialogFragment allows users to select a time to be
reminded of a pending task.

Setting up the Time button click listener
Setting up a TimePickerDialogFragment is almost identical to setting up a
DatePickerDialogFragment. You first declare the onClickListener()
for the Time button. In ReminderEditFragment.onCreateView(), add
the following code snippet right before the return at the end:

mTimeButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 showTimePicker();
 }
});

This method is the same as the Date button’s onClickListener(), except
that you’re calling showTimePicker() instead of showDatePicker().

Creating the showTimePicker() method
To help you create the showTimePicker() method, the full method defini-
tion, with code, is shown in Listing 11-3.

Listing 11-3:   The showTimePicker() Method
 private void showTimePicker() {
 FragmentTransaction ft = getFragmentManager().beginTransaction();

 DialogFragment newFragment = new TimePickerDialogFragment();	 ➝3
 Bundle args = new Bundle();

 args.putInt(HOUR, mCalendar.get(Calendar.HOUR_OF_DAY));	 ➝5
 args.putInt(MINS, mCalendar.get(Calendar.MINUTE));
 newFragment.setArguments(args);

 newFragment.show(ft, “timePicker”);	 ➝8
 }

The code in Listing 11-3 is fairly straightforward because it’s almost identical
to that of the showDatePicker() method. However, you can see differences
on these lines:

www.it-ebooks.info

http://www.it-ebooks.info/

246 Part III: Creating a Feature-Rich Application

	 ➝3	 Creates a new instance of TimePickerDialogFragment.

	 ➝5	 Sets the arguments for the TimePickerDialogFragment to be
the calendar’s hour and minute components.

	 ➝8	 Shows the fragment using the tag “timePicker”, which isn’t vis-
ible to the user.

Creating the TimePickerDialogFragment
The Android operating system comes supplied with a built-in TimePicker
Dialog that lets users select (rather than type) a time. Like the Date
PickerDialog, the TimePickerDialog doesn’t come wrapped neatly in a
fragment, so you have to do it yourself.

The code for the TimePickerDialogFragment is nearly identical to the
DatePickerDialogFragment except that it wraps a TimePickerDialog
instead of a DatePickerDialog:

package com.dummies.android.taskreminder;

import android.app.Dialog;
import android.app.TimePickerDialog;
import android.app.TimePickerDialog.OnTimeSetListener;
import android.os.Bundle;
import android.support.v4.app.DialogFragment;

public class TimePickerDialogFragment extends DialogFragment {
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 Bundle args = getArguments();
 OnTimeSetListener listener = (OnTimeSetListener) getFragmentManager()
 .findFragmentByTag(
 ReminderEditFragment.DEFAULT_EDIT_FRAGMENT_TAG);
 return new TimePickerDialog(getActivity(), listener,
 args.getInt(ReminderEditFragment.HOUR),
 args.getInt(ReminderEditFragment.MINS), false);
 }
}

Adding the fragment to handle date picker and time picker callbacks
The remaining step in getting your date and time pickers working is to imple-
ment the OnDateSetListener and OnTimeSetListener so that the dialog
box stores the new date and time when the user chooses a date or time. You
store that value in a Calendar object. It requires three steps:

	 1.	 Add the OnDateSetListener and OnTimeSetListener interfaces to
the ReminderEditFragment.

www.it-ebooks.info

http://www.it-ebooks.info/

247 Chapter 11: Handling User Input

	 2.	 Add a Calendar object called mCalender to store the values that the
user sets.

	 3.	 Set the mCalendar object when the user picks a date or time, and then
update the date and time buttons on the user interface with the new
values.

From Listing 11-4, add the code in bold to the ReminderEditFragment
class to get your date and time pickers working.

Listing 11-4:   Adding the OnDateSetListener and OnTimeSetListener
interfaces to the ReminderEditFragment class
public class ReminderEditFragment extends Fragment implements

 OnDateSetListener, OnTimeSetListener {	 ➝2

 private static final String DATE_FORMAT = “yyyy-MM-dd”;
 private static final String TIME_FORMAT = “kk:mm”;

 private Calendar mCalendar;	 ➝7

 @Override
 public void onDateSet(DatePicker view, int year, int monthOfYear,

 int dayOfMonth) {	 ➝11
 mCalendar.set(Calendar.YEAR, year);
 mCalendar.set(Calendar.MONTH, monthOfYear);
 mCalendar.set(Calendar.DAY_OF_MONTH, dayOfMonth);

 updateButtons();	 ➝15
 }

 @Override

 public void onTimeSet(TimePicker view, int hour, int minute) {	 ➝19
 mCalendar.set(Calendar.HOUR_OF_DAY, hour);
 mCalendar.set(Calendar.MINUTE, minute);
 updateButtons();
 }

 private void updateButtons() {	 ➝25
 // Set the time button text
 SimpleDateFormat timeFormat = new SimpleDateFormat(TIME_FORMAT);
 String timeForButton = timeFormat.format(mCalendar.getTime());
 mTimeButton.setText(timeForButton);

 // Set the date button text
 SimpleDateFormat dateFormat = new SimpleDateFormat(DATE_FORMAT);
 String dateForButton = dateFormat.format(mCalendar.getTime());
 mDateButton.setText(dateForButton);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

248 Part III: Creating a Feature-Rich Application

Listing 11-4 works this way:

	 ➝2	 Implements the OnDateSetListener and OnTimeSetListener
callback objects.

	 ➝7	 Stores the user’s date and time selections with a standard Java
Calendar object.

	 ➝11	 Implements the onDateSet() method of the OnDateSet
Listener. When the user sets the date in the dialog box, the
Calendar object is updated to reflect the new date.

	 ➝15	 Updates the user interface buttons to reflect the new date and
time.

	 ➝19	 Sets the hour and minutes of the Calendar object for the
onTimeSet() method of the OnTimeSetListener.

	 ➝25	 Updates the buttons to reflect the values selected by the user.
The Calendar object is converted into a couple of text strings —
one for the date button and one for the time button — which are
then used to set the text on those buttons. The first Simple
DateFormat uses TIME_FORMAT to produce a time string in
the format kk:mm; the second SimpleDateFormat uses DATE_
FORMAT to produce a date string in the format yyyy-MM-dd.

		 Visit http://docs.oracle.com/javase/6/docs/api/
java/text/SimpleDateFormat.html for more details about
SimpleDateFormat date and time formatting.

To add the mCalendar object, add the following lines to onCreate():

 if (savedInstanceState != null

 && savedInstanceState.containsKey(CALENDAR)) {	 ➝2
 mCalendar = (Calendar) savedInstanceState.getSerializable(CALENDAR);	➝3
 } else {

 mCalendar = Calendar.getInstance();	 ➝5
 }

The code works this way:

	 ➝2	 This line checks a savedInstanceState for a CALENDAR field
indicating that an earlier activity was saved and temporarily
destroyed, such as rotating from Landscape mode to Portrait
mode.

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://www.it-ebooks.info/

249 Chapter 11: Handling User Input

		 If you’re creating a brand-new instance of this fragment, saved
InstanceState is null and the application moves to line 5.

	 ➝3	 If the savedInstanceState includes a CALENDAR field, this line
pulls out the associated Calendar object and sets mCalendar to
that value.

	 ➝5	 When you’re creating a ReminderEditFragment from scratch
and you aren’t resurrecting a previous instance, this line sets
mCalendar to a new Calendar instance (obtained by calling
Calendar.getInstance()). New Calendar instances always
default to the current date and time.

Now the mCalendar instance is initialized.

Because onCreate() is looking for a calendar instance in savedInstance
State on lines 1-2, you have to save your mCalendar object to the saved
InstanceState whenever your activity is destroyed. That way, onCreate()
can pick up the saved value if the activity is ever re-created. To do so, add
the following method to your class:

 @Override

 public void onSaveInstanceState(Bundle outState) {	 ➝2
 super.onSaveInstanceState(outState);

 // Save the calendar instance in case the user changed it	 ➝4
 outState.putSerializable(CALENDAR, mCalendar);
 }

The code works this way:

	 ➝2	 onSaveInstanceState() is a special method that Android calls
whenever it’s about to destroy a fragment. You can store any data
that you might be using, so if Android ever needs to re-create the
same activity, it has all the necessary information.

		 Most views already know how to store their state and resurrect
themselves, and they do it in the call to super.onSaveInstance
State().

	 ➝4	 The only task you have to handle manually is the mCalendar
field, so this line stores it in the bundle to use later when the activ-
ity is re-created.

		 Calendar objects can be serialized (stored as data), so this line
uses the putSerializable() method to save them.

www.it-ebooks.info

http://www.it-ebooks.info/

250 Part III: Creating a Feature-Rich Application

		 Find out more information about Java serialization at http://
java.sun.com/developer/technicalArticles/
Programming/serialization.

		 You can save all kinds of other types into bundles, such as ints,
longs, strings, parcelables, and other exotic elements, so check
http://d.android.com/reference/android/os/Bundle.
html to see the full list.

Creating an Alert Dialog Box
From time to time it may be necessary to alert the user to something that has
happened. In the Task Reminder app, perhaps you want to display a welcome
message and offer instructions on how to create a task. The Android system
has a framework, built around dialog boxes that provide you with the imple-
mentation you may need.

Various types of dialog boxes are available:

	 ✓	Alert: Notifies the user of an important occurrence. Also allows you to
set the text value of a button and the action to be performed when it’s
clicked. As a developer, you can provide the AlertDialog with a list of
items to display, allowing the user to select from a list of items.

Saving field names in Android
Android activities and fragments aren’t
like standard Java objects, where you can
store information in a field in the object and
expect it always to be there. Normally in
Java, if a person object is set to the name
“Michael”, you can expect that name to
always be “Michael”, but surprisingly this
isn’t always the case in Android.

Unlike in Java, Android can destroy activities
and fragments at any time. These elements can
also be re-created later — and a re-created
activity needs to look indistinguishable from
one that was never destroyed and re-created.
Android reserves the right to destroy objects
when memory is running low, but it retains the

ability to re-create them later, to offer the user
a seamless experience.

If you store the string “Michael” in a field
named name, that field isn’t saved automati-
cally if the activity or fragment is destroyed and
re-created. You have to save the field manually,
by storing it in a bundle in onSaveInstance
State() and restoring it from the saved
InstanceState bundle in onCreate().

Remember: Anytime you add a field to an activ-
ity or a fragment, you must add the appropriate
code to the onSavedInstanceState()
and onCreate() methods to save it and
restore it — otherwise, your app will behave
strangely in some circumstances but not in
others.

www.it-ebooks.info

http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://d.android.com/reference/android/os/Bundle.html
http://d.android.com/reference/android/os/Bundle.html
http://www.it-ebooks.info/

251 Chapter 11: Handling User Input

	 ✓	Progress: Used to display a progress wheel or bar. This type of dialog
box is created via the ProgressDialog class.

	 ✓	Custom: A custom dialog box created and programmed by you, the
master Android developer. You create a custom dialog box class by
extending the Dialog base class or using custom layout XML files.

Seeing why you should work
with dialog boxes
If you’ve never worked with an application that failed to alert you, or warn
you appropriately, consider the example of an e-mail client not notifying you
that you have new e-mail. How annoying would that be? Alerting users to
important issues or choices that need to be made is an integral part of any
user experience.

This list gives a few examples of using a dialog box to inform the user of a
message or a necessary action:

	 ✓	Something is happening in the background. (The ProgressDialog
does this.)

	 ✓	The values in an EditText view are invalid.

	 ✓	The network has become unavailable.

	 ✓	The user needs to select a date or time (as in the Task Reminder app).

	 ✓	The state of the phone is incompatible with the application. (It might
need to have GPS enabled or an SD card added, for example.)

	 ✓	The user needs to choose from a list of items.

Though this list isn’t comprehensive, it gives you an inkling into what is pos-
sible with dialog boxes.

	 When you work with any type of blocking process (network communication
or long-running tasks, for example), always provide the user with an infor-
mative dialog box or progress indicator. A user who doesn’t realize that an
element of your app needs attention is likely to mistakenly believe that it
has stopped responding and could even uninstall it. The Android framework
provides various progress indicators, such as the common progress classes
ProgressDialog and ProgressBar.

	 Though a discussion of the AsyncTask class is beyond the scope of this
book, you would use this class to manage long-running tasks while updating
the user interface. (See the helpful “Painless Threading” tutorial at http://
android-developers.blogspot.com/2009/05/painless-thread-
ing.html.) You can also create a new thread in code — the AsyncTask class
helps simplify this process.

www.it-ebooks.info

http://android-developers.blogspot.com/2009/05/painless-threading.html
http://android-developers.blogspot.com/2009/05/painless-threading.html
http://android-developers.blogspot.com/2009/05/painless-threading.html
http://www.it-ebooks.info/

252 Part III: Creating a Feature-Rich Application

Choosing the appropriate
dialog box for a task
Though you determine which dialog box to use for a given scenario, you can
ask a logical series of questions to choose the appropriate one:

	 1.	 Is this task long-running?

	 •	Yes: Use ProgressDialog to let the user know that something
is happening in the background and that the app isn’t frozen.
A great resource that explains how to do this is located here:
http://d.android.com/guide/topics/ui/dialogs.
html#ProgressDialog.

	 •	No: Continue to Step 2.

	 2.	 Does the user need to be able to perform an advanced action in the
dialog box?

		 An advanced action isn’t supported by the AlertDialog class.

	 •	Yes: Create a custom Dialog class by extending the Dialog
base class or creating one from a custom layout XML file.
You can find more information about custom dialog boxes at
http://d.android.com/guide/topics/ui/dialogs.
html#CustomDialog.

	 •	No: Continue to Step 3.

	 3.	 Does the user need to answer a question such as “Are you sure?” with
a Yes or No value?

	 •	Yes: Create an AlertDialog and react to the buttons on the
AlertDialog by using onClickListener() calls.

	 •	No: Continue to Step 4.

	 4.	 Does the user need to make a selection from a simple list of items?

	 •	Yes: Create an AlertDialog.

	 •	No: Continue to Step 5.

	 5.	 Does the user simply need to be alerted?

	 •	Yes: Create a simple AlertDialog.

	 •	No: You may not need a dialog box, if you can notify the user
another way.

www.it-ebooks.info

http://d.android.com/guide/topics/ui/dialogs.html#ProgressDialog
http://d.android.com/guide/topics/ui/dialogs.html#ProgressDialog
http://d.android.com/guide/topics/ui/dialogs.html#CustomDialog
http://d.android.com/guide/topics/ui/dialogs.html#CustomDialog
http://www.it-ebooks.info/

253 Chapter 11: Handling User Input

Creating your own alert dialog box
At times, you need to notify the user of important information by present-
ing a dialog box. Android makes it quite simple with its introduction of the
AlertDialog.Builder class, which lets you easily create an AlertDialog
with various options and buttons. Your app can react to these button clicks
via the onClickListener() of each button.

You don’t need to use the AlertDialog.Builder class in a simple applica-
tion, such as Task Reminder. However, Listing 11-5 shows how to create one
when you create more complex applications.

Suppose that the user has tapped the Save button in the Task Reminder
application and you want to open a window (similar to the one in Figure 11-3)
so that the user can confirm.

In Listing 11-5, you create an AlertDialog object using the AlertDialog.
Builder class and then add an AlertDialogFragment (which works simi-
larly to DatePickerDialogFragment and TimePickerDialogFragment).

Listing 11-5:   Creating an AlertDialogFragment with the AlertDialog.
Builder Class
public class AlertDialogFragment extends DialogFragment {
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 AlertDialog.Builder builder

 = new AlertDialog.Builder(getActivity());	 ➝5
 builder.setMessage(“Are you sure you want to save the task?”)	 ➝6
 .setTitle(“Are you sure?”)	 ➝7
 .setCancelable(false)	 ➝8
 .setPositiveButton(“Yes”,	 ➝9
 new DialogInterface.OnClickListener() {	 ➝10
 public void onClick(DialogInterface dialog, int id) {

 // Perform some action such as saving the item	 ➝12
 }
 })

 .setNegativeButton(“No”, new DialogInterface.OnClickListener() {	➝15
 public void onClick(DialogInterface dialog, int id) {

 dialog.cancel();	 ➝17
 }
 });

 return builder.create();	 ➝20
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

254 Part III: Creating a Feature-Rich Application

	

Figure 11-3:
The con-
firmation
Alert
Dialog
window.

	

The code is explained in this list:

	 ➝5	 Sets up the AlertDialog.Builder class with the context of the
AlertDialog.Builder as the current running activity.

	 ➝6	 Specifies the message to show in the middle of the AlertDialog
(as shown in Figure 11-3). The value can be a string or a string
resource.

	 ➝7	 Sets the title of the AlertDialog. The value can be a string or a
string resource.

	 ➝8	 Sets the cancelable attribute to false, requiring the user to
select a button in the AlertDialog. If this flag is set to false,
the user cannot tap the Back button on the device to exit the
AlertDialog. Set it to true and the user can tap the Back
button.

	 ➝9	 Specifies the text on the positive button. The user clicks the Yes
button to perform the action indicated on line 10. This value can
be a string or a string resource.

	 ➝10	 A block of code (ending on line 12) that defines the onClick
Listener() for the Yes button. The code on line 12 executes
when the button is tapped.

www.it-ebooks.info

http://www.it-ebooks.info/

255 Chapter 11: Handling User Input

	 ➝15	 Specifies the text on the negative button. This button indicates
that the user doesn’t want to perform the action being requested
via AlertDialog. The text value of this button is set to No. It can
be a string or a string resource.

	 ➝17	 Sets the onClickListener() for the negative button. The lis-
tener provides a reference to the dialog box that’s being shown.
It’s called the cancel() method on the Dialog object to close
the dialog box when the user clicks No on the AlertDialog.

	 ➝20	 Notifies Android to create the AlertDialog via the create()
method.

To show the dialog box, you start a fragment transaction in the usual manner:

FragmentTransaction ft = getFragmentManager().beginTransaction();
DialogFragment newFragment = new AlertDialogFragment();
newFragment.show(ft, “alertDialog”);

	 Creating a dialog box with the AlertDialog.Builder class is easier than
having to derive your own Dialog class. If possible, create your dialog box
with the AlertDialog.Builder class because it gives your application a
consistent user experience that’s familiar to most Android users.

When the user taps the Save button (or whatever button the code is attached
to), an AlertDialog opens so that the user can confirm saving the task.
This data most likely is stored in a database, as covered in Chapter 12.

You can find helpful examples of using other options on the Dialog class at
http://d.android.com/guide/topics/ui/dialogs.html.

Validating Input
After you’ve created your application so that users can enter information,
and perhaps you’ve already created the mechanism to save the content to a
database or remote server, what happens when the user enters invalid text
or no text? Input validation now enters the picture.

www.it-ebooks.info

http://d.android.com/guide/topics/ui/dialogs.html
http://www.it-ebooks.info/

256 Part III: Creating a Feature-Rich Application

Input validation verifies the input before the save takes place. If a user enters
no text for the title or the message and attempts to save, should she be
allowed to? Of course not.

The method in which you provide validation to the user is up to you. Here
are some common methods:

	 ✓	EditText.setError(): If you detect that the user has tried to enter
invalid text in a field, simply call setError() and pass the error mes-
sage. Android then decorates EditText with an error icon and displays
an error message. The message stays onscreen until the user changes
the value of the field or until you call setError(null).

	 ✓	TextWatcher: Implement a TextWatcher on the EditText view.
This class provides callbacks to you every time the text changes in the
EditText view. Therefore, you can inspect the text on each keystroke.

	 ✓	On Save: When the user attempts to save a form, inspect all the form
fields at that time and inform the user of any issues that were found.

	 ✓	onFocusChanged(): Inspect the values of the form when the on
FocusChanged() event is called — which is called when the view has
focus and when it loses focus. This is usually a good place to set up
validation.

The Task Reminder application provides no input validation. However, you
can add validation via one of the methods described earlier.

Toasting the user
The most common way to inform the user of a potential problem, such as
an error in input value, is to display a Toast message. This type of message
appears onscreen for only a few seconds by default.

Providing a Toast message is as simple as implementing the following code,
where you inform the user of the input error:

Toast.makeText(getActivity(), “Title must be filled in”, Toast.LENGTH_SHORT).
show();

www.it-ebooks.info

http://www.it-ebooks.info/

257 Chapter 11: Handling User Input

You might show this message when the user fails to enter a title in the title
field and then clicks the Save button.

	 The only problem with a Toast message is that it’s short-lived by default. A
user who happens to glance away at the wrong time will likely miss seeing it.
You can configure your Toast messages to display longer by using Toast.
LENGTH_LONG instead of Toast.LENGTH_SHORT.

Using other validation techniques
A Toast message isn’t the only way to inform users of a problem with their
input. A few other popular validation techniques are described in this list:

	 ✓	AlertDialog: Create an instance of an AlertDialog that informs the
user of errors. This method ensures that the user sees the error mes-
sage because the alert must be either canceled or accepted.

	 ✓	Input-field highlighting: If the field is invalid, the background color of
the input field (the EditText view) can change to indicate that the
value is incorrect.

	 ✓	Custom validation: If you’re feeling adventurous, you can create a
custom validation library to handle validations of all sorts. It might high-
light the field and draw small views with arrows pointing to the error,
for example, similar to the Google validation of its sign-in window when
you log on to a device for the first time.

You can use these common methods to display input validation informa-
tion, or you can dream up new ways to inform users of errors. For example,
Chapter 14 introduces the notification bar, which you can use to inform users
of a problem with a background service.

www.it-ebooks.info

http://www.it-ebooks.info/

258 Part III: Creating a Feature-Rich Application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

Getting Persistent with
Data Storage

In This Chapter
▶	Discovering data-storage media
▶	Getting user permissions
▶	Creating an SQLite database
▶	Querying your database

I
n certain types of applications, Android requires application developers
to use data persistence, where information about a user’s preferences,

such as favorite background colors or radio stations, is saved on the device
for reuse later, after the device is turned off and then on again. For example,
the Task Reminder application wouldn’t be useful if it didn’t save tasks,
would it? Thankfully, the Android platform (in combination with Java) pro-
vides a robust set of tools that you can use to store user data.

This chapter delves deeply into creating and updating an SQLite database
and producing a ContentProvider to access it. You need to be familiar
with a certain level of database theory to tackle the data storage tasks in this
chapter.

	 If you’re unfamiliar with SQL (Structured Query Language) or the SQL data-
base, see the SQLite website at www.sqlite.org for more information.

This chapter is code-intensive — if you start feeling lost, you can download
the completed application source code from this book’s website.

Finding Places to Put Data
Depending on the requirements of your application, you may need to store
data in a variety of places. For example, if an application interacts with music
files and a user wants to play them in more than one music program, you

www.it-ebooks.info

http://www.sqlite.org
http://www.it-ebooks.info/

260 Part III: Creating a Feature-Rich Application

have to store them in a location where all applications can access them.
An application that needs to store sensitive data, such as encrypted user-
names and password details, shouldn’t share data — placing it in a secure,
local storage environment is the best strategy. Regardless of your situation,
Android provides various options for storing data.

Viewing your storage options
The Android ecosystem provides various locations where data can be
persisted:

	 ✓	Shared preferences: Private data stored in key-value pairs. (See Chapter
15 to find out how to handle shared preferences.)

	 ✓	Internal storage: A location for saving files on the device. Files stored
in internal storage are private to your application by default, and other
applications cannot access them. (Neither can the user, except by using
your application.) When the application is uninstalled, the private files
are deleted as well.

	 ✓	Local cache: The internal data directory for caching data rather than
storing it persistently. Cached files may be deleted at any time. You use
the getCacheDir() method, available on the Activity or Context
objects in Android.

		 If you store data in an internal data directory and the internal storage
space begins to run low, Android may delete files to reclaim space. Don’t
rely on Android to delete your files for you though! You should delete
your cache files yourself to stay within a reasonable limit (about 1 MB)
of space consumed in the cache directory.

	 ✓	External storage: Every Android device supports shared external stor-
age for files — either removable storage, such as a Secure Digital card
(SD card) or nonremovable storage. Files saved to external storage are
public (any person or application can alter them), and no level of secu-
rity is enforced. Users can modify files by either using a file manager
application or connecting the device to a computer via a USB cable and
mounting the device as external storage. Before you work with exter-
nal storage, check the current state of the external storage with the
Environment object, using a call to getExternalStorageState() to
check whether the media is available.

		 In Android 2.2, a new set of methods was introduced to handle external
files. The main method is a call on the Context object — getExternal
FilesDir(). This call takes a string parameter as a key to help define
the type of media you’re saving, such as ringtones, music, or photos.
For more information, view the external data storage examples and
documents at http://d.android.com/guide/topics/data/data-
storage.html#filesExternal.

www.it-ebooks.info

http://d.android.com/guide/topics/data/data-storage.html#filesExternal
http://d.android.com/guide/topics/data/data-storage.html#filesExternal
http://www.it-ebooks.info/

261 Chapter 12: Getting Persistent with Data Storage

	 ✓	SQLite database: A lightweight SQL database implementation that’s
available across various platforms (including Android, iPhone, Windows,
Linux, and Mac) and fully supported by Android. You can create tables
and perform SQL queries against the tables accordingly. You implement
an SQLite database in this chapter to handle the persistence of the tasks
in the Task Reminder application.

	 ✓	Content provider: A “wrapper” around another storage mechanism. A
content provider is used by an app to read and write application data
that can be stored in preferences, files, or SQLite databases, for
example.

	 ✓	Network connection: (Also known as remote storage.) Any remote data
source that you have access to. For example, because Flickr exposes
an API that allows you to store images on its servers, your application
might work with Flickr to store images. If your application works with a
popular tool on the Internet (such as Twitter, Facebook, or Basecamp),
your app might send information via HTTP — or any other protocol you
deem necessary — to third-party APIs to store the data.

Choosing a storage option
The various data storage locations offer quite the palette of options.
However, you have to figure out which one to use, and you may even want to
use multiple storage mechanisms.

Suppose that your application communicates with a third-party remote API
such as Twitter, and network communication is slow and less than 100 per-
cent reliable. You may want to retain on the server a local copy of all data
since the last update, to allow the application to remain usable (in some
fashion) until the next update. When you store the data in a local copy of an
SQLite database and the user initiates an update, the new updates refresh the
SQLite database with the new data.

	 If your application relies solely on network communication for information
retrieval and storage, use the SQLite database (or any other storage mecha-
nism) to make the application remain usable when the user cannot connect
to a network and must work offline — a common occurrence. If your appli-
cation doesn’t function when a network connection is unavailable, you’ll
likely receive negative reviews in the Google Play Store — as well as feature
requests to make your app work offline. This strategy introduces quite a bit of
extra work into the application development process, but it’s worth your time
tenfold in user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

262 Part III: Creating a Feature-Rich Application

Creating Your Application’s
SQLite ContentProvider

The best place to store and retrieve a user’s tasks in the Task Reminder
application is inside an SQLite database. Your application needs to be able to
perform CRUD — create, read, update, and delete — tasks from the database
using a ContentProvider.

Understanding how the SQLite
ContentProvider works
The two fragments in the Task Reminder application need to perform various
duties to operate. ReminderEditFragment needs to complete these steps:

	 1.	 Create a new record.

	 2.	 Read a record so that it can display the details for editing.

	 3.	 Update the existing record.

The ReminderListFragment needs to perform these duties:

	 1.	 Read all tasks to show them onscreen.

	 2.	 Delete a task by responding to the click event from the context menu
after a user has long-pressed an item.

To work with an SQLite database, you communicate with the database via a
ContentProvider. Programmers commonly remove as much of the data-
base communication as possible away from the Activity and Fragment
objects. The database mechanisms are placed into a ContentProvider
to help separate the application into layers of functionality. Therefore, if
you need to alter code that affects the database, you know that you need to
change the code in only one location to do so.

Creating a ContentProvider
to hold the database code
To create a ContentProvider in your Android project that will house the
database-centric code, you first name the file ReminderProvider.java.

www.it-ebooks.info

http://www.it-ebooks.info/

263 Chapter 12: Getting Persistent with Data Storage

Defining the key elements of a database
Before you create and open a database, you need to define a few key fields.
Replace the code in your ReminderProvider class with the code from
Listing 12-1.

Listing 12-1:   The Constants, Fields, and Constructors of the
RemindersDbAdapter Class
package com.dummies.android.taskreminder;

import android.content.ContentProvider;
import android.database.sqlite.SQLiteDatabase;

public class ReminderProvider extends ContentProvider {
 // Database Related Constants

 private static final int DATABASE_VERSION = 1;	 ➝8
 private static final String DATABASE_NAME = “data”;	 ➝9
 private static final String DATABASE_TABLE = “reminders”;	 ➝10

 // Database Columns

 public static final String COLUMN_ROWID = “_id”;	 ➝13
 public static final String COLUMN_DATE_TIME = “reminder_date_time”;	 ➝14
 public static final String COLUMN_BODY = “body”;	 ➝15
 public static final String COLUMN_TITLE = “title”;	 ➝16

 private static final String DATABASE_CREATE = “create table “	 ➝18
 + DATABASE_TABLE + “ (“ + COLUMN_ROWID
 + “ integer primary key autoincrement, “ + COLUMN_TITLE
 + “ text not null, “ + COLUMN_BODY + “ text not null, “
 + COLUMN_DATE_TIME + “ integer not null);”;

 private SQLiteDatabase mDb;	 ➝24

 @Override

 public boolean onCreate() {	 ➝27
 mDb = new DatabaseHelper(getContext()).getWritableDatabase();	 ➝28
 return true;
 }

}

The numbered lines are explained in this list:

	 ➝8	 The version of the database. If you were to update the schema
in your database, you would increment the version and pro-
vide an implementation of the onUpgrade() method of the
DatabaseHelper.

www.it-ebooks.info

http://www.it-ebooks.info/

264 Part III: Creating a Feature-Rich Application

	 ➝9	 The physical name of the database that will exist in the Android
file system.

	 ➝10	 The name of the database table that will hold the tasks.

	 ➝13–16	Define the column names of the database table.

	 ➝18	 Defines the create script for the database. Column names from
earlier lines are combined into a single SQL statement that will
create the database.

	 ➝24	 The class-level instance of the SQLite database object that allows
you to create, read, update, and delete records.

	 ➝27	 Creates the ContentProvider and calls the onCreate().

	 ➝28	 Calls getWritableDatabase() on a DatabaseHelper object.

The SQL database is ready to be created!

For information about the database table or components of the script, see
the next section “Visualizing the SQL table.” For information about the data-
base helper or the database table, see the later section “Creating the data-
base table.”

Visualizing the SQL table
The table object in SQL is the construct that holds the data you manage.
Visualizing a table in SQLite is similar to looking at a spreadsheet: Each row
consists of data, and each column represents the data inside the row. Earlier
in this chapter, Listing 12-1 defines column names for the database. These
column names equate to the header values in a spreadsheet, as shown in
Figure 12-1. Each row contains a value for each column, which is how data is
stored in SQLite.

	

Figure 12-1:
Visualizing

data in
the Task

Reminder
application.

	

www.it-ebooks.info

http://www.it-ebooks.info/

265 Chapter 12: Getting Persistent with Data Storage

Line 18 in Listing 12-1 assembles the database create script, which con-
catenates various constants from within the file to create a database create
script. When you run this script in SQLite, SQLite creates a table named
reminders in a database named data. The columns and how they’re built in
the create script are described in this list:

	 ✓	create table DATABASE_TABLE: This portion of the script notifies
SQLite that you want to create a database table named reminders.

	 ✓	COLUMN_ROWID: This property acts as the identifier for the task. This
column has the integer primary key autoincrement attributes
applied to it. The integer attribute specifies that the row is an integer.
The primary key attribute states that the COLUMN_ROWID is the pri-
mary identifier for a task. The autoincrement attribute notifies SQLite,
whenever a new task is inserted, to simply set the row’s ID to the next
available integer automatically. For example, if rows 1, 2, and 3 exist and
you insert another record, the value of the COLUMN_ROWID in the next
row is 4.

	 ✓	COLUMN_TITLE: The user provides this task title, such as Schedule
Vacation. The text attribute informs SQLite that the column is a text
column. The not null attribute states that the value of this column
cannot be null — the user must provide a value.

	 ✓	COLUMN_BODY: This is the body or description of the task. The attri-
butes for this column are the same as for COLUMN_TITLE.

	 ✓	COLUMN_DATE_TIME: The date and time of the reminder are stored in
this field. It stores an integer because SQLite has no storage class associ-
ated with storing dates or times, so you convert the Calendar object
to a Java long, which can be represented — problem free — as an SQL
integer.

	 For more information on dates and times in SQLite, visit www.sqlite.org/
datatype3.html#datetime.

Creating the database table
When you’re ready to create the database table, you provide an imple-
mentation of SQLiteOpenHelper. The ReminderProvider class type,
shown in Listing 12-2, lets you create a nested Java class inside the
RemindersDbAdapter class.

www.it-ebooks.info

http://www.sqlite.org/datatype3.html#datetime
http://www.sqlite.org/datatype3.html#datetime
http://www.it-ebooks.info/

266 Part III: Creating a Feature-Rich Application

Listing 12-2:   Creating a Database Table
private static class DatabaseHelper extends SQLiteOpenHelper {	 ➝1
 DatabaseHelper(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);	 ➝3
 }

 @Override

 public void onCreate(SQLiteDatabase db) {	 ➝7
 db.execSQL(DATABASE_CREATE);	 ➝8
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,

 int newVersion) {	 ➝12
 throw new UnsupportedOperationException();
 }
}

The numbered lines are described in this list:

	 ➝1	 The implementation of SQLiteOpenHelper.
	 ➝3	 The call made to the base SQLiteOpenHelper constructor. This

call creates, opens, and/or manages a database, which isn’t cre-
ated or opened until getReadableDatabase() or getWriteable
Database() is called on the SQLiteOpenHelper instance.

	 ➝7	 The onCreate() method, which is called when the database is
created for the first time.

	 ➝8	 Creates your database and database table (“where the magic hap-
pens”). The execSQL() method accepts an SQL script string as
a parameter. The SQLite database executes the SQL from Listing
12-1 to create the database table.

	 ➝12	 Uses the onUpgrade() method when you need to upgrade an
existing database.

Upgrading your database
Suppose that you release your application
and 10,000 users install it and are using it —
and they love it! Some even send you feature
requests, so you implement one that requires
a change in the database schema. You then
perform SQL ALTER statements inside the
onUpgrade() call to update your database.

You could upgrade the database by “dropping”
the existing one and then creating a new one.
But you don’t want to do this — dropping a
database deletes all of the user’s data. Imagine
updating your favorite Task Reminder applica-
tion, only to see that the upgrade has erased all
preexisting tasks (a major bug).

www.it-ebooks.info

http://www.it-ebooks.info/

267 Chapter 12: Getting Persistent with Data Storage

Resolving ContentProvider URLs
An Android ContentProvider uses URLs to identify data. Typically, you
can use a URL to identify a specific piece of data, such as a single reminder,
or all reminders in your database. If you store other types of data there, you
can use URLs for them, too.

In your application, you use two kinds of URLs — content://com.dummies.
android.taskreminder.ReminderProvider/reminder to retrieve a list
of all reminders in your database or content://com.dummies.android.
taskreminder.ReminderProvider/reminder/9 to retrieve a specific
reminder from the database (in this case the reminder with the ID of 9).

These content provider URLs are undoubtedly similar to the URLs you’re
already familiar with. Their main differences are described in this list:

	 ✓	content://: A ContentProvider begins with content:// rather than
with http://.

	 ✓	com.dummies.android.taskreminder.ReminderProvider: The second
part of the URL identifies the authority (the ReminderProvider
ContentProvider) of the content. Though this string can be virtually
anything, convention dictates using the fully qualified name of your
ContentProvider.

	 ✓	reminder: The third part of the URL identifies the path — in this case,
the type of data you’re looking up. This string identifies which table in
the database to read. If the application stores multiple types in the data-
base (say, a list of users in addition to a list of reminders), a second type
of path might be named user.

	 ✓	9: In the first URL, the path ends with reminder. However, in the
second URL, the path continues to include the specific ID of the
reminder being requested.

Before you can use the ContentProvider, ensure that it’s listed in the Android
Manifest.xml file, by adding this code before the </application> tag:

<provider
 android:name=”com.dummies.android.taskreminder.ReminderProvider”
 android:authorities=”com.dummies.android.taskreminder.ReminderProvider”
 android:exported=”false”
 />

It tells Android that a ContentProvider named ReminderProvider will
handle URLs that use the specific authority of com.dummies.android.
taskreminder.ReminderProvider. It also indicates that the data in the
provider is not exported to other apps on the user’s phone. In general, you
should set exported=”false” unless you want to make your provider avail-
able to other apps.

www.it-ebooks.info

http://www.it-ebooks.info/

268 Part III: Creating a Feature-Rich Application

Now you have to add the code to support these URLs in your Content
Provider. Open ReminderProvider and add the following lines to the
class:

 // Content Provider Uri and Authority
 public static String AUTHORITY = “com.dummies.android.taskreminder.

ReminderProvider”;	 ➝2
 public static final Uri CONTENT_URI = Uri.parse(“content://” + AUTHORITY

 + “/reminder”);	 ➝4

 // MIME types used for searching words or looking up a single definition
 public static final String REMINDERS_MIME_TYPE = ContentResolver.CURSOR_DIR_

BASE_TYPE

 + “/vnd.com.dummies.android.taskreminder.reminder”;	 ➝8
 public static final String REMINDER_MIME_TYPE = ContentResolver.CURSOR_ITEM_

BASE_TYPE
 + “/vnd.com.dummies.android.taskreminder.reminder”;

 // UriMatcher stuff

 private static final int LIST_REMINDER = 0;	 ➝13
 private static final int ITEM_REMINDER = 1;

 private static final UriMatcher sURIMatcher = buildUriMatcher();	 ➝15

 /**
 * Builds up a UriMatcher for search suggestion and shortcut refresh
 * queries.
 */
 private static UriMatcher buildUriMatcher() {

 UriMatcher matcher = new UriMatcher(UriMatcher.NO_MATCH);	 ➝22
 matcher.addURI(AUTHORITY, “reminder”, LIST_REMINDER);	 ➝23
 matcher.addURI(AUTHORITY, “reminder/#”, ITEM_REMINDER);	 ➝24
 return matcher;
 }

 /**
 * This method is required in order to query the supported types. It’s also
 * useful in the query() method to determine the type of Uri received.
 */
 @Override

 public String getType(Uri uri) {	 ➝33
 switch (sURIMatcher.match(uri)) {
 case LIST_REMINDER:
 return REMINDERS_MIME_TYPE;
 case ITEM_REMINDER:
 return REMINDER_MIME_TYPE;
 default:
 throw new IllegalArgumentException(“Unknown Uri: “ + uri);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

269 Chapter 12: Getting Persistent with Data Storage

This chunk of code may seem intimidating, but it consists mostly of con-
stants with one useful method (getType()). Here’s how the numbered lines
work:

	 ➝2	 The authority for the ContentProvider — by convention, the
same as the fully qualified class name. This value must match the
value you added to the AndroidManifest.xml file for the pro-
vider authorities.

	 ➝4	 The base URL (or URI) for the ContentProvider. Every time
your application asks for data for this URL, Android routes the
request to this ContentProvider.

		 The ContentProvider supports two types of URLs: one for list-
ing all reminders and one for listing a specific reminder.

		 The first type of URL is the CONTENT_URI, and the second one is
the CONTENT_URI with the reminder ID appended to the end.

	 ➝8	 Because the ContentProvider supports two types of data, it
defines two types (or MIME types) for this data. MIME types are
simply strings commonly used on the web to identify data types.
For example, web HTML content typically has a MIME type of
text/html, and audio MP3 files have audio/mpeg3. Because the
reminders are of no known standard type, you can make up MIME
type strings as long as you follow Android and MIME conventions.

		 The List MIME type begins with ContentResolver.CURSOR_
DIR_BASE_TYPE, and the individual Reminder MIME type begins
with ContentResolver.CURSOR_ITEM_BASE_TYPE. DIR repre-
sents the list, and ITEM represents the item — simple enough.

		 This line also checks to see whether the subtype (which follows
the /) begins with vnd. The subtype is followed by the fully quali-
fied class name and the type of data — in this case, com.dummies.
android.taskreminder and reminder. Visit http://
developer.android.com/reference/android/content/
ContentResolver.html for more information about the
Android conventions for MIME types.

	 ➝13	 Uses another constant to identify list types versus item types,
which are ints.

	 ➝15	 The UriMatcher is used to determine the URL type: list or item.
You build a UriMatcher using the method named build
UriMatcher() on line 21.

	 ➝22	 Creates the UriMatcher, which can indicate whether a given URL
is the list type or item type. The UriMatcher.NO_MATCH param-
eter tells the application which default value to return for a match.

	 ➝23	 Defines the list type. Any URL that uses the com.dummies.
android.taskreminder.ReminderProvider authority

www.it-ebooks.info

http://developer.android.com/reference/android/content/ContentResolver.html
http://developer.android.com/reference/android/content/ContentResolver.html
http://developer.android.com/reference/android/content/ContentResolver.html
http://www.it-ebooks.info/

270 Part III: Creating a Feature-Rich Application

and has a path named “reminder” returns the value LIST_
REMINDER.

	 ➝24	 Defines the item type. Any URL that uses the com.dummies.
android.taskreminder.ReminderProvider authority and
has a path that looks like reminder/# (where # is a number)
returns the value ITEM_REMINDER.

	 ➝33	 Uses the UriMatcher on line 15 to determine which MIME type to
return. If the URL is a list URL, it returns REMINDERS_MIME_TYPE.
If it’s an item URL, it returns REMINDER_MIME_TYPE.

Creating and Editing Tasks with SQLite
After you have a ContentProvider, you can create a task for it: Insert a
record, and then list all tasks on the ReminderListFragment. The user can
then tap a task to edit it, or long-press the task to delete it. These user inter-
actions cover the create, read, update, and delete(CRUD) operations needed
to make the Task Reminder application work.

Inserting a task entry
Inserting tasks is simple, after you get the hang of it. To insert your first task
into the SQLite database, build the Save button click listener to:

	 1.	 Retrieve values from EditText views.

	 2.	 Store the values to the ReminderProvider database using a
ContentResolver.

	 3.	 Update the user interface by displaying a toast and closing the edit
activity.

After inserting your first task, you should have enough of a grasp on the
ReminderProvider class interaction to perform more tasks. The next sec-
tions introduce you to the entire implementation of ReminderProvider,
which outlines the CRUD operations.

Saving values from the screen to the database
When the user creates a task, it takes place in the OnClickListener
of the mConfirmButton of ReminderEditFragment. There, the app
responds to the user’s Save button click. If the mRowId for the fragment
is 0, the user wants to add a new task. If the mRowId is greater than 0, the

www.it-ebooks.info

http://www.it-ebooks.info/

271 Chapter 12: Getting Persistent with Data Storage

user wants to edit an existing task. You first set up some parameters, ask a
ContentResolver to complete a create or update, and then process the
result and notify the user.

Add the following OnClickListener element to the mConfirmButton in
ReminderEditFragment.onCreateView():

 mConfirmButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {

 ContentValues values = new ContentValues();	 ➝4
 values.put(ReminderProvider.COLUMN_ROWID, mRowId);	 ➝5
 values.put(ReminderProvider.COLUMN_TITLE, mTitleText.getText()

 .toString());	 ➝7
 values.put(ReminderProvider.COLUMN_BODY, mBodyText.getText()
 .toString());
 values.put(ReminderProvider.COLUMN_DATE_TIME,

 mCalendar.getTimeInMillis());	 ➝11

 if (mRowId == 0) {	 ➝13
 Uri itemUri = getActivity().getContentResolver().insert(

 ReminderProvider.CONTENT_URI, values);	 ➝15
 mRowId = ContentUris.parseId(itemUri);	 ➝16
 } else {
 int count = getActivity().getContentResolver().update(
 ContentUris.withAppendedId(
 ReminderProvider.CONTENT_URI, mRowId),

 values, null, null);	 ➝21
 if (count != 1)	 ➝22
 throw new IllegalStateException(“Unable to update “
 + mRowId);
 }

 Toast.makeText(getActivity(),
 getString(R.string.task_saved_message),

 Toast.LENGTH_SHORT).show();	 ➝29
 getActivity().finish ();	 ➝30
}
 });

Here’s how the code works:

	 ➝4	 A query is run by ContentResolver that‘s ultimately served by
the ReminderProvider. Specifically, this line inserts or updates
a reminder. The ContentValues object indicates the record to
update and the data to use.

	 ➝5	 The row ID for the reminder — 0 if the user is creating a new
record, or the specific ID of the task if the user is updating an
existing task.

www.it-ebooks.info

http://www.it-ebooks.info/

272 Part III: Creating a Feature-Rich Application

	 ➝7	 The title of the task, which is the value indicated by the user’s
input in the mTitleText EditText view. The app calls mTitle
Text.getText() to get a CharSequence and then calls
toString() to produce the string.

	 ➝11	 Holds the date and time that the user selected for the reminder. It
also calls Calendar.getTimeInMillis() and puts the result in
a ContentValues object. (SQLite has no way to represent dates
directly, so you must convert the object to a long.)

	 ➝13	 Checks to see whether the user is adding a new task or updat-
ing an existing one. If mRowID is 0, the user is adding a new task.
Otherwise, the user is updating an existing task.

	 ➝15	 Calls getContentResolver() on the activity and then calls
insert() to run the insert query. An insert requires two param-
eters: the data you want to insert and the URI of the table in which
you’re inserting it. In return, insert() gives you the full URI of
the data it inserted.

	 ➝16	 Parses the ID of the URI of the item that was inserted, by using
ContentUris.parseId(), and sets mRowId to that value.

	 ➝21	 Calls update() on ContentResolver to run an update. Rather
than pass in the base URI, it passes the URI of the item being
updated, which is obtained by calling ContentUris.with
AppendedId() and passing the base URI and the reminder ID.
The two last null parameters indicate that no fancy SQL queries
need updating more than a single row at a time.

	 ➝22	 Indicates how many records were updated. It should never be
anything other than 1, so if no rows or multiple rows are updated,
an error message is thrown.

	 ➝29	 Calls Toast.makeText() to display a successful message for
a short time. Then it calls show() so that the message appears
onscreen.

	 ➝30	 Calls finish() on the activity to close the edit activity and show
the list activity again.

The entire ReminderProvider implementation
Sometimes seeing all elements at one time is better than seeing them piece-
meal. Working with SQLite in the ReminderProvider class is no different.
Listing 12-3 shows the entire implementation of the ReminderProvider so
that you can get a feel for what you’re working with.

www.it-ebooks.info

http://www.it-ebooks.info/

273 Chapter 12: Getting Persistent with Data Storage

Listing 12-3:   The Full Implementation of ReminderProvider
package com.dummies.android.taskreminder;

import android.content.ContentProvider;
import android.content.ContentResolver;
import android.content.ContentUris;
import android.content.ContentValues;
import android.content.Context;
import android.content.UriMatcher;
import android.database.Cursor;
import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.net.Uri;

public class ReminderProvider extends ContentProvider {
 // Content Provider Uri and Authority
 public static String AUTHORITY = “com.dummies.android.taskreminder.

ReminderProvider”;
 public static final Uri CONTENT_URI = Uri.parse(“content://” + AUTHORITY
 + “/reminder”);

 // MIME types used for searching words or looking up a single definition
 public static final String REMINDERS_MIME_TYPE = ContentResolver.CURSOR_DIR_

BASE_TYPE
 + “/vnd.com.dummies.android.taskreminder.reminder”;
 public static final String REMINDER_MIME_TYPE = ContentResolver.CURSOR_ITEM_

BASE_TYPE
 + “/vnd.com.dummies.android.taskreminder.reminder”;

 // Database Columns
 public static final String COLUMN_ROWID = “_id”;
 public static final String COLUMN_DATE_TIME = “reminder_date_time”;
 public static final String COLUMN_BODY = “body”;
 public static final String COLUMN_TITLE = “title”;

 // Database Related Constants
 private static final int DATABASE_VERSION = 1;
 private static final String DATABASE_NAME = “data”;
 private static final String DATABASE_TABLE = “reminders”;

 private static final String DATABASE_CREATE = “create table “
 + DATABASE_TABLE + “ (“ + COLUMN_ROWID
 + “ integer primary key autoincrement, “ + COLUMN_TITLE
 + “ text not null, “ + COLUMN_BODY + “ text not null, “
 + COLUMN_DATE_TIME + “ integer not null);”;

 // UriMatcher stuff
 private static final int LIST_REMINDER = 0;
 private static final int ITEM_REMINDER = 1;
 private static final UriMatcher sURIMatcher = buildUriMatcher();

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

274 Part III: Creating a Feature-Rich Application

Listing 12-3 (continued)
 private SQLiteDatabase mDb;

 /**
 * Builds up a UriMatcher for search suggestion and shortcut refresh
 * queries.
 */
 private static UriMatcher buildUriMatcher() {
 UriMatcher matcher = new UriMatcher(UriMatcher.NO_MATCH);
 // to get definitions...
 matcher.addURI(AUTHORITY, “reminder”, LIST_REMINDER);
 matcher.addURI(AUTHORITY, “reminder/#”, ITEM_REMINDER);

 return matcher;
 }

 @Override
 public boolean onCreate() {
 mDb = new DatabaseHelper(getContext()).getWritableDatabase();
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] ignored1, String ignored2,

 String[] ignored3, String ignored4) {	 ➝75

 String[] projection = new String[] { ReminderProvider.COLUMN_ROWID,
 ReminderProvider.COLUMN_TITLE, ReminderProvider.COLUMN_BODY,

 ReminderProvider.COLUMN_DATE_TIME };	 ➝79

 // Use the UriMatcher to see the query type and format the
 // db query accordingly
 Cursor c;

 switch (sURIMatcher.match(uri)) {	 ➝84
 case LIST_REMINDER:	 ➝85
 c = mDb.query(ReminderProvider.DATABASE_TABLE, projection, null,

 null, null, null, null);	 ➝87
 break;

 case ITEM_REMINDER:	 ➝89
 c = mDb.query(ReminderProvider.DATABASE_TABLE, projection,	 ➝90
 ReminderProvider.COLUMN_ROWID + “=?”, new String[] { Long

 .toString(ContentUris.parseId(uri)) },	 ➝92
 null, null, null, null);

 if (c != null && c.getCount() > 0) {	 ➝94
 c.moveToFirst();	 ➝95
 }
 break;

 default:	 ➝98
 throw new IllegalArgumentException(“Unknown Uri: “ + uri);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

275 Chapter 12: Getting Persistent with Data Storage

 c.setNotificationUri(getContext().getContentResolver(), uri);	 ➝102
 return c;	 ➝103
 }

 @Override

 public Uri insert(Uri uri, ContentValues values) {	 ➝107
 values.remove(ReminderProvider.COLUMN_ROWID);	 ➝108
 long id = mDb.insertOrThrow(ReminderProvider.DATABASE_TABLE, null,	➝109
 values);

 getContext().getContentResolver().notifyChange(uri, null);	 ➝111
 return ContentUris.withAppendedId(uri, id);	 ➝112
 }

 @Override

 public int delete(Uri uri, String ignored1, String[] ignored2) {	 ➝116
 int count = mDb.delete(ReminderProvider.DATABASE_TABLE,
 ReminderProvider.COLUMN_ROWID + “=?”,

 new String[] { Long.toString(ContentUris.parseId(uri)) });	➝119
 if (count > 0)	 ➝120
 getContext().getContentResolver().notifyChange(uri, null);

 return count;	 ➝122
 }

 @Override
 public int update(Uri uri, ContentValues values, String ignored1,

 String[] ignored2) {	 ➝127
 int count = mDb.update(ReminderProvider.DATABASE_TABLE, values,
 COLUMN_ROWID + “=?”,

 new String[] { Long.toString(ContentUris.parseId(uri)) });	➝130
 if(count>0)

 getContext().getContentResolver().notifyChange(uri, null);	 ➝132
 return count;	 ➝133
 }

 /**
 * This method is required in order to query the supported types. It’s also
 * useful in our own query() method to determine the type of Uri received.
 */
 @Override
 public String getType(Uri uri) {
 switch (sURIMatcher.match(uri)) {
 case LIST_REMINDER:
 return REMINDERS_MIME_TYPE;
 case ITEM_REMINDER:
 return REMINDER_MIME_TYPE;
 default:
 throw new IllegalArgumentException(“Unknown Uri: “ + uri);
 }

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

276 Part III: Creating a Feature-Rich Application

Listing 12-3 (continued)
 }

 // The SQLite DatabaseHelper code was omitted for brevity.
}

Here’s how the code works:

	 ➝75	 The query() method retrieves a reminder or a list of reminders.
Its URI can be either a list type or an item type.

	 ➝79	 Creates a variable named projection that tells various queries
which columns of data the user wants to retrieve. Various queries
include ID, title, body, date, and time.

	 ➝84	 Calls URIMatcher.match() to determine whether it’s a list URI
or an item URI.

	 ➝85–87	For a list URI, this line calls query() on the SQLiteDatabase to
retrieve all columns for all reminders.

		 The use of the SQLiteDatabase query() method and its parame-
ters is explained in detail in the section “Understanding the query
(read) operation,” later in this chapter.

	 ➝89-90	For an item URI, this line calls query() on the SQLiteDatabase
to retrieve all columns for the specified reminder. It specifies the
database table and the columns to retrieve.

	 ➝92	 The first parameter is a COLUMN_ROWID=? String, where the
value of ? is supplied in the next parameter. The next parameter is
an array of strings, where each one maps to a question mark. This
parameter has one question mark, so it needs one string in the
array, which is the ID of the task (from the URI).

	 ➝94–95	If the call to the query succeeded and returned at least one value,
it moves to the first value. The moveToFirst() method on the
Cursor object instructs the cursor to move to the first record in
the result set. This method is called only if the Cursor isn’t null.
The reason that the cursor isn’t immediately positioned on the
first record is that it’s a result set. Before the app can work with
the record, it must navigate to record. Think of the result set as a
box of items: You can’t work with an item until you take it out of
the box.

	 ➝98	 Displays an error message if the URI was neither a list URI nor an
item URI.

	 ➝102	 Calls setNotificationUri() on the Cursor object to
associate the query result with the URI. It’s passed to the
ContentResolver and the URI that was updated.

www.it-ebooks.info

http://www.it-ebooks.info/

277 Chapter 12: Getting Persistent with Data Storage

		 A ContentProvider can notify users of changes in their data.
For example, if one fragment has opened a list view for your
reminders and another fragment is editing a specific reminder and
you save it, the list view is notified that your content has changed
and automatically updates it.

	 ➝103	 Returns the Cursor object so that it can be used by the fragment
to process the results.

	 ➝107	 The method that’s called when a user inserts a reminder into the
database.

	 ➝108	 Removes the ID parameter if it’s there, because you can’t specify
an ID when you insert reminders. The database gives you the next
available ID.

	 ➝109	 Inserts the reminder into the database using whatever values
were passed in.

		 The insertOrThrow() method usage and its parameters are
explained in detail in the “Understanding the insert operation”
section, later in this chapter.

	 ➝111	 Calls notifyChange() on the ContentResolver for that
URI; the counterpart to the setNotificationUri() call from
line 102. When you modify the table by inserting an item, notify
anyone who has a query open on that table that the query may
have changed.

	 ➝112	 Constructs the final item URI for this reminder by appending to
the base URI the ID that was created.

	 ➝116	 The delete method for the ContentProvider.

	 ➝119	 Using the ContentUris.parseId() method to retrieve the
task’s id from the URI, calls the delete() method on the SQLite
database to delete a task from the database.

		 The usage and parameters of the delete() method are described
in detail in the “Understanding the delete operation” section, later
in this chapter.

	 ➝120	 If the database deleted anything, notifies everyone that the data-
base was updated so that they can refresh their queries.

	 ➝122	 Unlike insert(), delete() returns the number of rows that
were deleted.

	 ➝127	 The update() method is similar to the delete() method.

	 ➝130	 The update() method is responsible for updating an existing
task with new information.

www.it-ebooks.info

http://www.it-ebooks.info/

278 Part III: Creating a Feature-Rich Application

		 The update() method usage and parameters are explained in
detail in the “Understanding the update operation” section, later
in this chapter.

	 ➝132	 If the database updated anything, notifies everyone that the data-
base was updated so that they can refresh their queries.

	 ➝133	 Returns the count of rows that were modified.

A CRUD routine accepts a variety of parameters, which are explained in detail
in the later sections “Understanding the insert operation,” “Understanding
the query (read) operation,” “Understanding the update operation,” and
“Understanding the delete operation.”

Understanding the insert operation
The insert operation is simple to complete because you’re simply inserting
a value into the database. You call insertOrThrow() instead of insert()
because you want to get an exception if a problem occurs while inserting into
the database. The insertOrThrow() method accepts these parameters:

	 ✓	table: The name of the table to insert the data into. It uses the
DATABASE_TABLE constant for the value.

	 ✓	nullColumnHack: SQL doesn’t allow inserting an empty row, so if the
ContentValues parameter (the next parameter) is empty, this column
is explicitly assigned a NULL value. It’s passing null for this value.

	 ✓	values: This parameter defines the initial values as defined as a
ContentValues object. It’s providing the initialValues local vari-
able as the value for this parameter. This variable contains the key-value
pair information for defining a new row.

Understanding the query (read) operation
The query operation is also known as the read operation because most of
the time, the application is reading data from the database with the query()
method. The query method is responsible for providing a result set based
on a list of criteria you provide. This method returns a Cursor that provides
random read-write access to the result set returned by the query.

The query method accepts these parameters:

	 ✓	table: The name of the database table to perform the query against.
The value comes from the DATABASE_TABLE constant.

	 ✓	columns: A list of columns to return from the query. Passing null
returns all columns, which is normally discouraged to prevent read-
ing and returning unnecessary data. If you need all columns, it’s valid
to pass null. For this app, you can pass a string array of columns to
return.

www.it-ebooks.info

http://www.it-ebooks.info/

279 Chapter 12: Getting Persistent with Data Storage

	 ✓	selection: A filter describing what rows to return and formatted as an
SQL WHERE clause (excluding the WHERE itself). Passing a null returns
all rows in the table. If it’s a list operation, you supply null because
you want all rows returned. If it’s a get operation to return a single
reminder, you supply a COLUMN_ROWID=? query string. SQL knows
that a question mark indicates a specific value of COLUMN_ROWID in the
selectionArgs parameter.

	 ✓	selectionArgs: Permissible to include question marks (?) in the selec-
tion string. These marks are replaced by the values from selection
Args in the order they appear in the selection. These values are bound
as string types. Depending on the situation, you either pass null or a
String array containing the ID to be fetched.

	 ✓	groupBy: A filter that shows only rows formatted as an SQL GROUP BY
clause (excluding the GROUP BY). Passing null causes the rows not to
be grouped. A null value is passed here because grouping the results is
unnecessary.

	 ✓	having: A filter that shows only row groups to include in the cursor, if
row grouping is being used. Passing null causes all row groups to be
included, and it’s required when row grouping isn’t being used, which is
why a null value is required here.

	 ✓	orderBy: The order of the rows, formatted as an SQL ORDER BY clause
(excluding the ORDER BY itself). Passing null uses the default sort
order, which may be unordered. You can pass a null value because the
order in which the results are returned is unimportant.

	 ✓	limit: Limits the number of rows returned by the query by using a
LIMIT clause. Passing null states that you don’t have a LIMIT clause.
To avoid limiting the number of rows returned, you can pass null to
return all rows that match your query.

Understanding the update operation
Updating a record in a database simply replaces incoming parameters in the
destination cell that’s inside the row specified (or in the rows, if many rows
are updated). As in the following delete operation, the update can affect
many rows. You should understand the update method’s parameters and
how they can affect the records in the database. The update() method
accepts these parameters:

	 ✓	table: The table to update. The value is provided by the DATABASE_
TABLE constant.

	 ✓	values: The ContentValues object, which contains the fields to
update.

	 ✓	whereClause: The WHERE clause, which restricts which rows should
be updated. You tell the database to update a row with a specific ID by
providing the string value COLUMN_ROWID + “=?”. The ID is specified
in whereArgs.

www.it-ebooks.info

http://www.it-ebooks.info/

280 Part III: Creating a Feature-Rich Application

	 ✓	whereArgs: Additional whereClause arguments. You supply the ID
that’s plugged into the ? in the whereClause argument. In this case, the
whereArgs is a String array containing the ID of the reminder to be
updated. There should always be exactly one value in the array for each
? in the whereClause.

Understanding the delete operation
When using the delete() method, various parameters are used to define
the deletion criteria in the database. A delete statement can affect none of
the records in the database or all of them. You should understand the param-
eters of the delete call to ensure that you don’t mistakenly delete data. The
parameters for the delete() method are

	 ✓	table: The table to delete the rows from. The value of this parameter is
provided by the DATABASE_TABLE constant.

	 ✓	whereClause: The optional WHERE clause to apply when deleting rows.
If you pass null, all rows are deleted. This value is provided by manu-
ally creating the WHERE clause with the string COLUMN_ROWID + “=?”.

	 ✓	whereArgs: The optional WHERE clause arguments. You supply the ID
that’s plugged into the ? in the whereClause argument. In this case,
whereArgs is a string array containing the ID of the reminder to be
deleted. There should always be exactly one value in the array for each
? in the whereClause.

Loaders
When you’re doing any kind of IO operation, such as reading from a network
or from disk (reading a database, for example), you must do this work from
a background thread. If you work from the main thread of the user interface,
you run the risk of locking it up for an unknown period, which can cause it
to feel jerky and unresponsive. Under particularly bad circumstances, it can
even lead to displaying the dreaded Application Not Responsive dialog box,
which can leave many users believing that your application has crashed.

The loader was introduced in Android 3.x to help solve this problem — it
provides a mechanism by which you can launch background tasks (such as
reading from your database) and then get a callback when those tasks finish
so that you can update the user interface.

A typical example of a loader is a CursorLoader. You use a CursorLoader
to load data from a SQLite database using a cursor. To add a CursorLoader
to one of your list fragments, you implement the LoaderCallback interface
in your callback and implement the three LoaderCallback methods:

www.it-ebooks.info

http://www.it-ebooks.info/

281 Chapter 12: Getting Persistent with Data Storage

	 ✓	onCreateLoader(): This method is called in a background thread
when you create a loader using initLoader(). In this method, you’re
responsible for creating a CursorLoader object and returning it. The
CursorLoader uses a URI to ask a ContentProvider for data.

	 ✓	onLoadFinished(): This method is called when the CursorLoader
object finishes loading its data from the database. In this method, you’re
responsible for updating the UI to show the new data to the user.

	 ✓	onLoaderReset(): This method is called when the loader is being
reset or shutdown. When this happens you’re responsible for making
sure your fragment no longer uses the loader or its cursor.

To kick off a loader, you first obtain a LoaderManager from your activity
by calling getLoaderManager() and then initLoader(). initLoader()
starts loading data in the background by calling onCreateLoader(), and
when it finishes it executes onLoaderFinished() in your LoaderCall
back object.

	 You can use loaders for things other than loading data from a database, but
all loaders must implement the same three methods regardless of whether
they’re loading their data from a database, a network, or somewhere else
entirely.

Visit http://developer.android.com/guide/components/loaders.
html for more information about loaders.

Returning all the tasks with a cursor
You can create a task, but what good is it if you can’t see the task in the task
list? None, really. You have to list the tasks that currently exist in the data-
base in the ListView in the ReminderListFragment.

Listing 12-4 outlines the entire ReminderListFragment with the new code
that can read the list of tasks from the database into the ListView.

Listing 12-4:   The Entire ReminderListFragment with Database Access
package com.dummies.android.taskreminder;

import android.database.Cursor;
import android.os.Bundle;
import android.support.v4.app.ListFragment;
import android.support.v4.app.LoaderManager.LoaderCallbacks;
import android.support.v4.content.CursorLoader;
import android.support.v4.content.Loader;

(continued)

www.it-ebooks.info

http://developer.android.com/guide/components/loaders.html
http://developer.android.com/guide/components/loaders.html
http://www.it-ebooks.info/

282 Part III: Creating a Feature-Rich Application

Listing 12-3 (continued)
import android.support.v4.widget.SimpleCursorAdapter;
import android.view.View;
import android.widget.ListView;

import com.dummies.android.taskreminder.R.string;

public class ReminderListFragment extends ListFragment implements

 LoaderCallbacks<Cursor> {	 ➝16

 private SimpleCursorAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Create an array to specify the fields to display in the list
// (only TITLE)

 String[] from = new String[] { ReminderProvider.COLUMN_TITLE };	 ➝26

 // and an array of the fields to bind those fields to (in this
 // case, just text1)

 int[] to = new int[] { R.id.text1 };	 ➝30

 // Now create a simple cursor adapter and set it to display
 mAdapter = new SimpleCursorAdapter(getActivity(),

 R.layout.reminder_row, null, from, to, 0);	 ➝34
 setListAdapter(mAdapter);	 ➝35

 getLoaderManager().initLoader(0, null, this);	 ➝37
 }

 @Override
 public void onViewCreated(View view, Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);
 setEmptyText(getResources().getString(string.no_reminders));
 registerForContextMenu(getListView());
 setHasOptionsMenu(true);
 }

 @Override
 public void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);

 startActivity(new Intent(getActivity(), ReminderEditActivity.class)	➝51
 .putExtra(ReminderProvider.COLUMN_ROWID, id));
 }

 @Override

 public boolean onContextItemSelected(MenuItem item) {	 ➝56
 switch (item.getItemId()) {

www.it-ebooks.info

http://www.it-ebooks.info/

283 Chapter 12: Getting Persistent with Data Storage

 case R.id.menu_delete:
 AdapterContextMenuInfo info = (AdapterContextMenuInfo) item

 .getMenuInfo();	 ➝60
 getActivity().getContentResolver().delete(
 ContentUris.withAppendedId(ReminderProvider.CONTENT_URI,

 info.id), null, null);	 ➝63
 return true;
 }
 return super.onContextItemSelected(item);
 }

 @Override

 public Loader<Cursor> onCreateLoader(int ignored, final Bundle args) {	➝70
 return new CursorLoader(getActivity(), ReminderProvider.CONTENT_URI,

 null, null, null, null);	 ➝71
 }

 @Override

 public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {	 ➝75
 mAdapter.swapCursor(cursor);
 }

 @Override

 public void onLoaderReset(Loader<Cursor> loader) {	 ➝80
 // This is called when the last Cursor provided to onLoadFinished()
 // above is about to be closed. Ensure that the adapter is no
 // longer using the cursor by setting it to null
 mAdapter.swapCursor(null);
 }

 // Menu code removed for brevity
}

This list describes the numbered lines of code for reading the list of tasks:

	 ➝16	 Adds the LoaderCallbacks interface to the list of interfaces.

		 For this line to work, you implement a few loader-related callbacks
later in the class so that you can handle loading data in an asyn-
chronous background thread. See the earlier section “Loaders” for
more details.

	 ➝26	 Looks at the title field of the reminder.

	 ➝30	 Defines the array of views to bind to as the view for the row. The
title then corresponds to a particular task ID, which is why the
variable in line 26 is named from and the variable on this line is
named to. The values from line 26 map to the values on line 30.

www.it-ebooks.info

http://www.it-ebooks.info/

284 Part III: Creating a Feature-Rich Application

	 ➝34	 Creates a SimpleCursorAdapter that maps columns from a
Cursor to TextViews as defined in a layout XML file. Using this
method, you can specify which columns to display and specify the
XML file that defines the appearance of these views. Initially, the
SimpleCursorAdapter is empty because it has no data yet.

		 The use of a SimpleCursorAdapter and its associated param-
eters is described in the following section.

	 ➝35	 Passes the SimpleCursorAdapter as the adapter parameter to
the setListAdapter() method to inform the list view where to
find its data.

	 ➝37	 Asks the LoaderManager to start loading the loader with an ID of
0. When the loader is finished, it executes the callback methods
in the LoaderCallback class that you pass in as the final param-
eter of this call (in this case, “this”).

	 ➝51	 Places into the intent the ID of the task to be edited. The
ReminderEditActivity inspects this intent and, if it finds the
ID, attempts to allow the user to edit the task.

	 ➝56	 Defines the method that handles the user context menu events
that occur when a user first long-presses the task in the list view
and then selects a menu item from the context menu.

	 ➝60	 Uses the getMenuInfo() method of the item that was clicked
to obtain an instance of AdapterContextMenuInfo. This class
exposes various bits of information about the menu item and the
item the user long-pressed in the list view.

	 ➝63	 Gets a ContentResolver and requests that it delete the task
whose ID is retrieved from the AdapterContextMenuInfo
object’s id field. This field contains the ID of the row in the
list view, which is used to construct the URI for the row using
ContentUris.withAppendedId(). When the reminder is
deleted, the ListView automatically refreshes to show the latest
data.

	 ➝70	 When you call initLoader() on line 37, the onCreate
Loader() method is called. Here, you create the loader that
Android starts running in a background thread. Complicated frag-
ments can have multiple loaders of different types, but you can
use a single loader on this simple fragment and safely ignore the
ID parameter of the onCreateLoader() method.

	 ➝71	 Creates a new CursorLoader, which is used when you load
items from a ContentProvider or SQLiteDatabase. The
CursorLoader loads data using the ReminderProvider, so be
sure to specify the CONTENT_URI of the ReminderProvider. It’s
a simple list operation, so you can ignore the optional projection,
selection, selectionArgs, and sortOrder parameters to the
CursorLoader constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

285 Chapter 12: Getting Persistent with Data Storage

	 ➝75	 When a loader finishes, calls the onLoadFinished() callback
and returns the cursor containing the data that was loaded. Then
the adapter swaps the new cursor for the old one and automati-
cally refreshes the ListView.

	 ➝80	 Calls onLoaderReset() when the last Cursor provided to
onLoadFinished() is about to be closed. The adapter’s cursor
is set to null because it’s no longer needed.

Understanding the SimpleCursorAdapter
Line 34 in Listing 12-4 creates a SimpleCursorAdapter. It does a lot of the
work for you when you want to bind data from a Cursor object to a list view.
To set up a SimpleCursorAdapter, provide these parameters:

	 ✓	getActivity() - Context: The context associated with the
adapter.

	 ✓	R.layout.reminder_row – layout id: The layout resource identi-
fier that defines the file to use for this list item.

	 ✓	null - Cursor: The database cursor that the adapter uses to load
data. You have no cursor yet, so use null.

	 ✓	from - from: An array of column names that are used to bind data
from the cursor to the view; defined on line 26.

	 ✓	to - to: An array of view IDs that should display the column informa-
tion from the from parameter. The To field is defined on line 30.

	 ✓	0 - flags: Any optional flags to be passed to the
SimpleCursorAdapter. You don’t need optional flags, so use 0.

The to and from parameters create a map informing the SimpleCursor
Adapter how to map data in the cursor to views in the row layout.

When you start the application now, you see a list of items you have created
that are being read from the SQLite database. If you don’t see this list, create
one by pressing the menu and selecting the menu item to add a new task.

Deleting a task
To the user, deleting a task is as simple as long-pressing an item in the
ReminderListFragment and selecting the delete action. To actually delete
the task from the database, though, you use the delete() method on the
SQLite database object. This method is called in Listing 12-3 on line 119.

www.it-ebooks.info

http://www.it-ebooks.info/

286 Part III: Creating a Feature-Rich Application

The ContentResolver delete () method is called from within the
onContextSelectedItem() method call on line 63 of Listing 12-4.
The only item that’s needed before deleting the task from the database
is the ID of the task in the database. To obtain the ID, you must use the
AdapterContextMenuInfo object, which provides extra menu information.
This information is provided to the context menu selection when a menu is
opened for the ListView. Because you’re loading the list with a database
cursor, the ListView contains the ID you’re looking for. Line 60 of Listing
12-4 obtains the AdapterContextMenuInfo object, and line 63 calls the
delete() method with the ID as a parameter.

When you fire up the application in the emulator, you can now create, read,
update, and delete tasks!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

Reminding the User with
AlarmManager

In This Chapter
▶	Understanding scheduled tasks
▶	Planning permissions
▶	Setting up alarms
▶	Seeing how device reboots affect alarms

M
any tasks need to happen daily, right? Wake up, take a shower, eat
breakfast — we do all these things every day. These tasks comprise

the standard Monday-through-Friday prework morning routine (or a variance
of it). You may have an internal clock and awaken every day on time, but
most people have to set alarms to wake up on time. At work, employees have
calendars that remind them of upcoming events they need to attend, such as
meetings and important server upgrades. Reminders and alarms are part of
most everyday routines, and people rely on them in one way or another.

Building your own scheduled task system would be a pain. Thankfully
Windows has scheduled tasks, Linux has cron, and Android has the
AlarmManager class. Though Android is based on Linux, it doesn’t have
access to crontherefore, you have to set up scheduled actions via the
Android AlarmManager.

Seeing Why You Need AlarmManager
The Task Reminder application has one key word in its name — Reminder.
The user can set a task title, description, and reminder date and time to be
reminded of a task, as in this example: A user adds a couple of tasks in the
Task Reminder application (all due later today), puts his device away, and goes

www.it-ebooks.info

http://www.it-ebooks.info/

288 Part III: Creating a Feature-Rich Application

about his business. If he isn’t reminded about the tasks, he might forget about
them; therefore, he needs a way to be reminded of what should happen —
which is where the AlarmManager class comes into play.

The AlarmManager class allows users to schedule a time when the Task
Reminder application should be run. When an alarm goes off, an intent is
broadcast by the system. Your application then responds to that broadcast
intent and performs an action, such as opening the application, notifying the
user via a status bar notification (which you can accomplish in Chapter 14),
or performing another type of action.

Asking the User for Permission
You wouldn’t let your next-door neighbor store holiday decorations in your
shed without permission, would you? Probably not. Android is no different.
Performing some actions on a user’s Android device requires permission, as
explained in the following sections.

Seeing how permissions affect
the user experience
When a user installs an application from the Google Play Store, the applica-
tion’s manifest file is inspected for required permissions. Anytime your appli-
cation needs access to sensitive components (such as external storage, the
Internet, or device information), the user is notified and decides whether to
continue the installation.

	 Don’t request unnecessary permissions for your app — security-savvy
users are likely to reject it. For example, the Silent Mode Toggle application
(described in Part II) doesn’t need GPS locations, Internet access, or hardware-
related information.

If your application doesn’t need a permission, yank it. The fewer number of
permissions your application requests, the more likely the user is to install it.

www.it-ebooks.info

http://www.it-ebooks.info/

289 Chapter 13: Reminding the User with AlarmManager

Setting requested permissions in
the AndroidManifest.xml file
When you need to request permissions, add them to the AndroidManifest.
xml file in your project. You need to add the following permissions to the
Task Reminder application:

	 ✓	android.permission.RECEIVE_BOOT_COMPLETED: Allows the appli-
cation to know when the device reboots so that it can re-register its
alarms with the Alarm Manager.

	 ✓	android.permission.WAKE_LOCK: Allows the device to remain awake
during background processing for short periods of time.

	 Because AlarmManager holds a CPU wake lock as long as the alarm receiv-
er’s onReceive() method is executing, it guarantees that the device doesn’t
sleep until the app is finished working with the broadcast.

If your application needs access to the Internet or needs to write data to the
SD card (the Task Reminder app doesn’t), you would add these permissions,
respectively:

	 ✓	Internet: android.permission.INTERNET

	 ✓	SD Card: android.permission.WRITE_EXTERNAL_STORAGE

You can add permissions to the AndroidManifest.xml file in one of two
ways:

	 ✓	The AndroidManifest.xml Permissions Editor: Choose Add➪Uses
Permission, and then select permission from the drop-down list.

	 ✓	The XML file: Edit the file manually to add the uses-permission ele-
ment to the manifest element. The XML permission request looks like
this:
<uses-permission android:name=”android.permission.WAKE_LOCK” />

If you haven’t done so already, add the WAKE_LOCK and RECEIVE_BOOT_
COMPLETED permissions to the Task Reminder application. To view a full
list of available permissions, view the Android permission documentation at
http://d.android.com/reference/android/Manifest.permission.
html.

	 If you don’t declare the permissions that your application needs, it won’t func-
tion as expected on either a device or an emulator, and any runtime excep-
tions that are thrown may crash your application. Always ensure that your
permissions are present.

www.it-ebooks.info

http://d.android.com/reference/android/Manifest.permission.html
http://d.android.com/reference/android/Manifest.permission.html
http://www.it-ebooks.info/

290 Part III: Creating a Feature-Rich Application

Waking Up a Process
with AlarmManager

To wake up a process with AlarmManager, you have to set the alarm first. In
the Task Reminder application, the best place to do it is right after you save
a task in the save button’s onClickListener(). Before you add that code,
however, you need to add four class files to your project:

	 ✓	ReminderManager.java: This class is responsible for setting up
reminders using AlarmManager. The code for this class is shown in
Listing 13-1.

	 ✓	OnAlarmReceiver.java: This class is responsible for handling the
broadcast when the alarm goes off. The code for this class is shown in
Listing 13-2. (See the section “Creating the OnAlarmReceiver class,” later
in this chapter.) You need to add the following line of code to the appli-
cation element in the AndroidManifest.xml file for your application
to recognize this receiver:
<receiver android:name=”.OnAlarmReceiver” />

		 The leading-period syntax informs Android that the receiver is in the
current package — the one that’s defined in the application element of
the AndroidManifest.xml file.

	 ✓	WakeReminderIntentService.java: This abstract class is
responsible for acquiring and releasing the wake lock. The code for
this class is shown in Listing 13-3. (See the section “Creating the
WakeReminderIntentService class,” later in this chapter.)

	 ✓	ReminderService.java: This class is an implementation of the
WakeReminderIntentService that handles the building of the noti-
fication, as shown in Chapter 14. The code for this class is shown in
Listing 13-4. (See the section “Creating the ReminderService class,” later
in this chapter.)

		 You need to add the following line of code to the application element
in the AndroidManifest.xml file for your application to recognize
WakeReminderIntentService:
<service android:name=”.ReminderService” />

www.it-ebooks.info

http://www.it-ebooks.info/

291 Chapter 13: Reminding the User with AlarmManager

Creating the ReminderManager class
The ReminderManager class is responsible for setting up alarms using the
AlarmManager class in Android. You place into this class all actions that
pertain to setting alarms from AlarmManager.

Add the following line to the end of the mConfirmButton’s onClick
Listener() in the ReminderEditFragment class to add an alarm for that
task:

new ReminderManager(getActivity()).setReminder(mRowId,
mCalendar);

This line of code instructs ReminderManager to set a new reminder for the
task with a row ID of mRowId at the particular date and time as defined by the
mCalendar variable.

Listing 13-1 shows the code for the ReminderManager class.

Listing 13-1:   The ReminderManager Class
public class ReminderManager {

private Context mContext;
private AlarmManager mAlarmManager;

public ReminderManager(Context context) {	 ➝5
 mContext = context;
 mAlarmManager =

 (AlarmManager)context.getSystemService(Context.ALARM_SERVICE);	 ➝8
}

public void setReminder(Long taskId, Calendar when) {	 ➝11
 Intent i = new Intent(mContext, OnAlarmReceiver.class);	 ➝12
 i.putExtra(RemindersProvider.COLUMN_ROWID, (long)taskId);	 ➝13

 PendingIntent pi =
 PendingIntent.getBroadcast(mContext, 0, i,

 PendingIntent.FLAG_ONE_SHOT);	 ➝17

 mAlarmManager.set(AlarmManager.RTC_WAKEUP, when.getTimeInMillis(), pi);	➝19
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

292 Part III: Creating a Feature-Rich Application

The numbered lines of code are explained in this list:

	 ➝5	 The ReminderManager class is instantiated with a Context
object.

	 ➝8	 An AlarmManager is obtained via the getSystemService()
call.

	 ➝11	 The setReminder() method is declared with the database ID of
the task and the Calendar object of when the alarm should fire.

	 ➝12	 A new Intent object is created and is responsible for specifying
what should happen when the alarm goes off. In this instance,
the line specifies that the OnAlarmReceiver receiver should be
called.

	 ➝13	 The Intent object is provided with extra information — the ID of
the task in the database.

	 ➝17	 The AlarmManager operates in a separate process, and for
AlarmManager to notify an application that an action needs to
be performed, a PendingIntent must be created. It contains
an Intent object that was created on line 12. On this line, a
PendingIntent is created with a flag of FLAG_ONE_SHOT to indi-
cate that this PendingIntent can be used only once.

	 ➝19	 The AlarmManager’s set() method is called to schedule the
alarm. The set() method is provided with these parameters:

	 •	 type: AlarmManager.RTC_WAKEUP is the wall-clock time in
UTC. This parameter awakens the device when the specified
triggerAtTime argument time elapses.

	 •	 triggerAtTime: when.getTimeInMillis() is the time
the alarm should go off. The Calendar object provides the
getTimeInMillis() method, which converts the time into
long value, which represents time in units of milliseconds.

	 •	 operation: pi is the pending intent to act on when the
alarm goes off. The alarm goes off at the requested time.

	 If an alarm is already scheduled with a pending intent that contains the same
signature, the previous alarm is canceled and the new one is set up.

Creating the OnAlarmReceiver class
The OnAlarmReceiver class, shown in Listing 13-2, is responsible for han-
dling the intent that’s fired when an alarm is raised. This class acts as a hook
into the alarm system because it’s essentially a simple implementation of
BroadcastReceiver — which can react to broadcast events in the Android
system.

www.it-ebooks.info

http://www.it-ebooks.info/

293 Chapter 13: Reminding the User with AlarmManager

Listing 13-2:   The OnAlarmReceiver Class
public class OnAlarmReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 long rowid =

 intent.getExtras().getLong(ReminderProvider.COLUMN_ROWID);	 ➝5

 WakeReminderIntentService.acquireStaticLock(context);	 ➝7

 Intent i = new Intent(context, ReminderService.class);	 ➝9
 i.putExtra(ReminderAdapter.COLUMN_ROWID, rowid);	 ➝10
 context.startService(i);	 ➝11

 }
}

The numbered lines are explained in this list:

	 ➝5	 This line retrieves the database ID of the task from the intent after
the receiver has started handling the intent.

	 ➝7	 The WakeReminderIntentService acquires a lock on the CPU
to keep the device alive while work is performed.

	 ➝9	 This line defines a new Intent object that starts the
ReminderService.

	 ➝10	 This line places the ID of the task into the intent that starts the
service that does the work. This gives the ReminderService
class the ID of the task that it needs to work with.

	 ➝11	 This line starts the ReminderService.

The OnAlarmReceiver’s onReceive() is the first entry point for the alarm
you’ve set. In this BroadcastReceiver, you don’t want the device to go
back to sleep during processing. Your task would never complete and could
possibly leave your application in a broken state from data corruption in the
database.

When an alarm goes off, the pending intent that’s scheduled with the alarm
is broadcast through the system, and any broadcast receiver capable of han-
dling it handles it.

	 A BroadcastReceiver component does nothing but receive and react to
system broadcast messages. It doesn’t display a user interface; however, it
starts an activity in response to the broadcast. The OnAlarmReceiver is an
instance of a BroadcastReceiver.

www.it-ebooks.info

http://www.it-ebooks.info/

294 Part III: Creating a Feature-Rich Application

When the AlarmManager broadcasts the pending intent, the OnAlarm
Receiver class responds to the intent — because it’s addressed to that
class, as shown earlier, on line 12 of Listing 13-1. This class then accepts the
intent, locks the CPU, and performs the necessary work.

Creating the WakeReminderIntentService
class
The WakeReminderIntentService class is the base class for the
ReminderService class, as shown in Listing 13-3. This class handles the
management of acquiring and releasing a CPU wake lock, which keeps the
device (but not necessarily the screen) on while work takes place. After the
work is complete, this class releases the wake lock so that the device may
return to sleep.

Listing 13-3:   The WakeReminderIntentService Class
public abstract class WakeReminderIntentService extends IntentService {

 abstract void doReminderWork(Intent intent);	 ➝2

 public static final String

 LOCK_NAME_STATIC=”com.dummies.android.taskreminder.Static”;	 ➝5
 private static PowerManager.WakeLock lockStatic=null;	 ➝6

 public static void acquireStaticLock(Context context) {

 getLock(context).acquire();	 ➝9
 }

 synchronized private static PowerManager.WakeLock

 getLock(Context context) { 	 ➝13
 if (lockStatic==null) {
 PowerManager
 mgr=(PowerManager)context

 .getSystemService(Context.POWER_SERVICE);	 ➝17

 lockStatic=mgr.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,

 LOCK_NAME_STATIC);	 ➝20

 }

 return(lockStatic);	 ➝23
 }

 public WakeReminderIntentService(String name) {	 ➝26
 super(name);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

295 Chapter 13: Reminding the User with AlarmManager

 @Override

 final protected void onHandleIntent(Intent intent) {	 ➝31
 try {

 doReminderWork(intent);	 ➝33
 } finally {

 getLock(this).release();	 ➝35
 }

 }
}

The numbered lines are explained in this list:

	 ➝2	 This abstract method is implemented in any children of this
class — such as in the child ReminderService, as shown a little
later in this chapter, on line 7 of Listing 13-4.

	 ➝5	 This is the tag name of the lock that acquires the CPU lock. This
tag name assists in debugging.

	 ➝6	 This is the private static wake lock variable, which is referenced
and set later in this class.

	 ➝9	 This calls the getLock() method. After that call is returned, the
acquire() method is called to ensure that the device is on in the
state you requested, a partial wake lock. This wake lock prevents
the device from sleeping, but it doesn’t turn on the screen.

	 ➝13	 This line defines the getLock() method that returns the
PowerManager.WakeLock, which lets you inform Android that
you want the device to stay to do some work.

	 ➝17	 This line retrieves the PowerManager from the getSystem
Service() call. It’s used to create the lock.

	 ➝20	 This creates a new WakeLock using the newWakeLock() method
call. This method accepts the following parameters:

	 •	 flags: The PARTIAL_WAKE_LOCK tag informs Android that
you need the CPU to be on, but the screen does not have to
be on. You can provide other numerous tags to this call as
well.

	 •	 tag: LOCK_NAME_STATIC is the name of the class name
or another string. It’s used for debugging purposes. This
custom string is defined on line 3.

	 ➝23	 This returns the WakeLock to the caller.

	 ➝26	 This is the constructor with the name of the child instance that
has created it. This name is used for debugging only.

www.it-ebooks.info

http://www.it-ebooks.info/

296 Part III: Creating a Feature-Rich Application

	 ➝31	 This is the onHandleIntent() call of the IntentService. As
soon as the service is started, this method is called to handle the
intent that was passed to it.

	 ➝33	 The service attempts to perform the necessary work by calling
doReminderWork().

	 ➝35	 Regardless of whether the call to doReminderWork() is suc-
cessful, ensure that WakeLock is returned. If you don’t release it,
the device can be left in the On state until the phone is rebooted,
which is undesirable because of battery drain. That’s why the
release() method is called in the final portion of the try-
finally block. The final portion of the try-finally block is
always called, regardless of whether the try succeeds.

		 You must make sure that you always call release() on a wake
lock exactly as many times as you call acquire(). You can put
your acquire() and release() calls in a try-finally block
to make sure that release() is always called whether an excep-
tion is thrown. Visit http://docs.oracle.com/javase/
tutorial/essential/exceptions/finally.html for more
information on try-finally blocks.

Although no implementation of doReminderWork() exists in the
ReminderService yet, the Task Reminder application responds to alarms.
Feel free to set up multiple tasks and to set break points in the debugger to
watch the execution path break in the ReminderService doReminderWork()
method.

	 The AlarmManager doesn’t persist alarms — if the device is rebooted, the
alarms must be set up again. Every time the phone is rebooted, the alarms
need to be set up again.

Listing 13-3 demonstrates what is necessary to perform work on a device that
might be asleep or locked. The code acquires the wake lock, and while the
device is locked into a wakeful state, doReminderWork() is called, which is
implemented in the ReminderService.

Creating the ReminderService class
The ReminderService class (see Listing 13-4) is responsible for doing the
work when an alarm is fired. The implementation in this chapter simply cre-
ates a shell for work to take place. (You implement the status bar notification
in Chapter 14.)

www.it-ebooks.info

http://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html
http://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html
http://www.it-ebooks.info/

297 Chapter 13: Reminding the User with AlarmManager

Listing 13-4:   The ReminderService Class
public class ReminderService extends WakeReminderIntentService {	 ➝1
 public ReminderService() {
 super(“ReminderService”);
 }

 @Override

 void doReminderWork(Intent intent) {	 ➝7
 Long rowId = intent.getExtras()

 .getLong(ReminderProvider.COLUMN_ROWID);	 ➝9

 // Status bar notification Code Goes here.
 }
}

The numbered lines of code are explained in this list:

	 ➝1	 This line defines the ReminderService class by inheriting from
the WakeReminderIntentService.

	 ➝7	 The abstract method doReminderWork() in the
WakeReminderIntentService is implemented.

	 ➝9	 This line retrieves the task ID that was inside the Intent object
that passed in this class.

	 The ReminderService class contains no implementation — other than
retrieving the ID of the task from the intent.

Rebooting Devices
You probably forget things from time to time. It’s only human. The Android
AlarmManager is no different. The AlarmManager doesn’t persist alarms;
therefore, when the device reboots, you must set up the alarms again.

	 If you don’t set up your alarms again, they simply don’t fire, because, to
Android, they don’t exist.

Creating a boot receiver
The RECEIVE_BOOT_COMPLETED permission allows your application to
receive a broadcast notification from Android when the device is done boot-
ing and is eligible to be interactive with the user. Because the Android system
can broadcast a message when this event is complete, you need to add
another BroadcastReceiver to your project. This BroadcastReceiver

www.it-ebooks.info

http://www.it-ebooks.info/

298 Part III: Creating a Feature-Rich Application

is responsible for handling the boot notification from Android. When the
broadcast is received, the receiver needs to retrieve the tasks from the
ReminderProvider and loop through each task and schedule an alarm for
it, to ensure that your alarms don’t get lost in the reboot.

Add a new BroadcastReceiver to your application. For the Task Reminder
application, the BroadcaseReceiver has the name OnBootReceiver. You
also need to add the following lines of code to the application element in the
AndroidManifest.xml file:

<receiver android:name=”.OnBootReceiver” android:exported=”false”>
 <intent-filter>
 <action android:name=”android.intent.action.BOOT_COMPLETED” />
 </intent-filter>
</receiver>

This snippet informs Android that OnBootReceiver should receive boot
notifications for the BOOT_COMPLETED action. In layman’s terms, it lets
OnBootReceiver know when the device is done booting up.

The full implementation of OnBootReceiver is shown in Listing 13-5.

Listing 13-5:   The OnBootReceiver Class
public class OnBootReceiver extends BroadcastReceiver {	 ➝1

 private static final String TAG = OnBootReceiver.class.getSimpleName();

 @Override

 public void onReceive(Context context, Intent intent) {	 ➝6

 ReminderManager reminderMgr = new ReminderManager(context);	 ➝8

 Cursor cursor = context.getContentResolver().query(

 ReminderProvider.CONTENT_URI, null, null, null, null);	 ➝11

 if (cursor != null) {

 cursor.moveToFirst();	 ➝14

 int rowIdColumnIndex = cursor

 .getColumnIndex(ReminderProvider.COLUMN_ROWID);	 ➝17
 int dateTimeColumnIndex = cursor

 .getColumnIndex(ReminderProvider.COLUMN_DATE_TIME);	 ➝19

 while (cursor.isAfterLast() == false) {	 ➝21

 long rowId = cursor.getLong(rowIdColumnIndex);	 ➝23

www.it-ebooks.info

http://www.it-ebooks.info/

299 Chapter 13: Reminding the User with AlarmManager

 long dateTime = cursor.getLong(dateTimeColumnIndex);	 ➝24

 Calendar cal = Calendar.getInstance();	

 cal.setTime(new java.util.Date(dateTime));	 ➝27

 reminderMgr.setReminder(rowId, cal);	 ➝29

 cursor.moveToNext();	 ➝31
 }

 cursor.close();	 ➝33
 }
 }
}

The numbered lines are detailed in this list:

	 ➝1	 This is the definition of the OnBootReceiver.

	 ➝6	 This is the onReceive() method that’s called when the receiver
receives an intent to perform an action.

	 ➝8	 This sets up a new ReminderManager object that allows the user
to schedule alarms.

	 ➝11	 This obtains a cursor with all the reminders from the
ReminderProvider via the ContentResolver. It’s simi-
lar to the calls used to update and delete reminders in the
ReminderEditFragment and ReminderListFragment.

	 ➝14	 This moves to the first record in the Cursor.

	 ➝17–19	Each row in the cursor contains several columns of data. Line 17
finds the index for the ID, and line 19 finds the index for the date
and time.

		 You want to find the ID of the row as well as the date and time
so that you can schedule the reminder. To get this information,
you need to find the index of the columns that contain this
information.

	 ➝21	 This sets up a while loop that checks to see whether the cursor
has moved past the last record. If it equals false, the cursor moves
to line 23. If this value is true, no more records are available to use
in the cursor.

	 ➝23–24	The ID and dateTime are retrieved from the cursor for this row
using the column indices from lines 17–19.

www.it-ebooks.info

http://www.it-ebooks.info/

300 Part III: Creating a Feature-Rich Application

	 ➝27	 After the date is retrieved from the cursor, the Calendar variable
needs to be updated with the correct time. This line sets the local
Calendar object to the time of the task in the row.

	 ➝29	 This schedules a new reminder with the row ID from the database
at the time defined by the recently built Calendar variable.

	 ➝31	 This line moves to the next record in the cursor. If no more
records exist in the cursor, the call to isAfterLast() on line 21
returns true, which means that the while loop exits. Otherwise,
the next row is processed.

	 ➝33	 This line closes the cursor because it’s no longer needed.
BroadcastReceivers generally don’t use loaders, so you need
to close the cursor.

		 When you previously worked with the Cursor object in Chapter
12, you didn’t have to close the cursor. This is because the
Loader object was managing the cursor.

If you were to start the application, create a few reminders, and then reboot
the device, you would see that the reminders persisted.

Checking the boot receiver
If you’re unsure whether OnBootReceiver is working, you can place log
statements into the while loop, like this:

Log.d(“OnBootReceiver”, “Adding alarm from boot.”);
Log.d(TAG, “Row Id - “ + rowId);

This snippet prints messages to the system log that are viewable via the
Dalvik Debug Monitor Service, or DDMS. You can then shut down the emula-
tor (or device) and start it again. Watch the messages stream in DDMS, and
look for OnBootReceiver messages. If you have two tasks in your database,
you should see two sets of messages informing you of the system adding
an alarm from boot. Then the next message should be the ID for the task
reminder. See Chapter 5 for more information about DDMS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Updating the Android Status Bar
In This Chapter
▶	Understanding the status bar
▶	Working with Android’s notification manager
▶	Updating and clearing notifications

T
hroughout this book, you discover various ways to grab the user’s atten-
tion by using dialog boxes, toast messages, and new activities. Though

these techniques work well in their respective situations, at other times you
need to inform the user of something — without stealing his attention from
the current activity. That’s the purpose of the status bar.

Deconstructing the Status Bar
Figure 14-1 shows the status bar, the area where you can notify the user of an
event. The status bar can hold many icons. The status bar shown in Figure
14-1 holds, starting on the left, a calendar notification announcing an appoint-
ment, and an icon signifying that USB debugging is enabled.

www.it-ebooks.info

http://www.it-ebooks.info/

302 Part III: Updating the Android Status Bar

	

Figure 14-1:
The status

bar, with
a couple

icons
present.

	

Users can also swipe the status bar downward to see more information, as
shown in Figure 14-2. Every status bar icon now has an expanded view, where
more information can be shown.

	

Figure 14-2:
Opening the

status bar.
	

www.it-ebooks.info

http://www.it-ebooks.info/

303 Chapter 14: Updating the Android Status Bar

You can inform users of various activities, such as device state, mail notifica-
tions, and even download progress, as shown in Figure 14-3.

	

Figure 14-3:
The prog-

ress loader
on the sta-

tus bar.
	

Adding an icon to the status bar isn’t your only option for alerting the user
to a notification. You can augment a notification using one — or more — of
these three options:

	 ✓	Vibration: The device vibrates briefly when a notification is received —
useful when the device is in the user’s pocket.

	 ✓	Sound: An alarm sounds when the notification is received. A ringtone or
a prerecorded tone that you install along with your application is useful
when the user has cranked up the notification sound level.

	 ✓	Light: The LED light on the device flashes at a given interval in the color
you specify. (Many devices contain an LED that you can program.) If the
LED supports only a single color, such as white, it flashes in that color
and ignores your color specification. If the user has set the volume
level to silent, the light provides an excellent cue that something needs
attention.

Android 4.1 Jelly Bean introduces dramatic improvements to Android
notifications. Devices that run Jelly Bean can have notifications with these
features:

www.it-ebooks.info

http://www.it-ebooks.info/

304 Part III: Updating the Android Status Bar

	 ✓	Expandable preview: The user can expand a notification by using the
pinch-and-zoom gesture. The expandable notification is a helpful way to
show users an expanded preview of the notification content, such as a
message preview for an e-mail application.

	 ✓	Action buttons: A user has always been able to tap a notification to
launch the app that created it. However, you can add as many as three
additional buttons to a Jelly Bean app to make it perform whatever oper-
ations you want. One outstanding example in the Task Reminder app is
having the Snooze button temporarily dismiss the notification and bring
it back later.

	 ✓	Varied template styles: Jelly Bean ships with three new styles of notifi-
cations, as shown in Figure 14-4:

	 •	BigTextStyle: Shows a multiline TextView

	 •	BigInboxStyle: Shows a list of information

	 •	BigPictureStyle: Shows an image

	 ✓	Larger size: Jelly Bean notifications can be as tall as 256 dp.

	

Figure 14-4:
Custom noti-

fications in
Jelly Bean.

	

These features aren’t available on older devices, so you can’t use them in ver-
sions earlier than 4.1. To give your notifications more impact in Jelly Bean,
visit http://developer.android.com/guide/topics/ui/notifiers/
notifications.html for more information.

www.it-ebooks.info

http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://www.it-ebooks.info/

305 Chapter 14: Updating the Android Status Bar

	 Adding various options to your notification arsenal is immensely useful
because they let the user know that the device needs attention even when the
screen is turned off.

Using the Notification Manager
You use the Notification Manager to interact with the Android notification
mechanism. Working with the Notification Manager is as simple as requesting
it from the current context.

The following line of code obtains the NotificationManager object from
the getSystemService() call of Context:

NotificationManager mgr = (NotificationManager)getSystemService(NOTIFICATION_
SERVICE);

Creating a notification
The Task Reminder application needs a way to notify the user that a task
needs attention, such as an alarm signifying that task. To set this notification
on the status bar, you use the NotificationManager.

In the doReminderWork() method of the ReminderService class, type the
code shown in Listing 14-1.

Listing 14-1:   Implementation of doReminderWork()
Long rowId = intent.getExtras().getLong(ReminderProvider.COLUMN_ROWID);	 ➝1

NotificationManager mgr =

 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);	➝4

Intent notificationIntent = new Intent(this, ReminderEditActivity.class);	 ➝6
notificationIntent.putExtra(ReminderProvider.COLUMN_ROWID, rowId);	 ➝7

PendingIntent pi = PendingIntent.getActivity(this, 0, notificationIntent,

PendingIntent.FLAG_ONE_SHOT);	 ➝9

Notification note=new Notification(android.R.drawable.stat_sys_warning,

 getString(R.string.notify_new_task_message),

 System.currentTimeMillis());	 ➝14

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

306 Part III: Updating the Android Status Bar

Listing 14-1 (continued)
note.setLatestEventInfo(this, getString(R.string.notify_new_task_title),

 getString(R.string.notify_new_task_message), pi);	 ➝17

note.defaults |= Notification.DEFAULT_SOUND;	 ➝19
note.flags |= Notification.FLAG_AUTO_CANCEL;	 ➝20

// An issue can occur if the user enters more than 2,147,483,647 tasks (the
maximum int value).

// Unlikely, but good to note.

int id = (int)((long)rowId);	 ➝27
mgr.notify(id, note);	 ➝28

The numbered lines in Listing 14-1 are explained in this list:

	 ➝1	 The intent that started the ReminderService contains the
row ID of the task you’re working with. This ID is necessary
because you set it as part of the PendingIntent for the status.
When the notification is selected from the status bar, the
ReminderEditActivity starts with the row ID as part of the
pending intent. That way, the ReminderEditActivity opens,
reads the data about that particular row ID, and displays it to the
user.

	 ➝4	 This line gets an instance of the NotificationManager.

	 ➝6	 This line builds a new intent and sets the class to ReminderEdit
Activity. This activity starts when the user selects the notification.

	 ➝7	 This line puts the row ID into the intent.

	 ➝9	 This line sets up a pending intent to be used by the notification
system. Because the notification system runs in another process,
a PendingIntent is required. The FLAG_ONE_SHOT flag indi-
cates that this pending intent can be used only once.

	 ➝14	 This line builds the Notification that shows up on the status
bar. The Notification class accepts these parameters:

	 •	 icon: android.R.drawable.stat_sys_warning is the
resource ID of the icon to place on the status bar. This icon
is an exclamation point enclosed in a triangle. Because it’s a
built-in Android icon, you don’t have to worry about provid-
ing small-, medium-, high-, or extra-high-density graphics —
they’re already built into the platform.

www.it-ebooks.info

http://www.it-ebooks.info/

307 Chapter 14: Updating the Android Status Bar

	 •	 tickerText: getString(R.string.notify_new_task_
message) is the text that flows by on the one-line status bar
when the notification first appears.

	 •	 when: System.currentTimeMillis() is the time to show
in the Time field of the notification.

		 Eclipse may tell you that this constructor and the sub-
sequent call to setLatestInfo() is deprecated and to
use Notification.Builder instead. Notification.
Builder is available only on API level 11 or later, so you
can’t use Notification.Builder on older devices.

	 ➝17	 This line sets the content of the expanded view with the standard
Latest Event layout as provided by Android. For example, you
can provide a custom XML layout to display. In this instance, you
simply provide the stock notification view, not a custom layout.
The setLatestEventInfo() method accepts these parameters:

	 •	 context: this is the context to associate with the event
information.

	 •	 contentTitle: getString(R.string.notifiy_new_
task_title) is the title that’s displayed in the notification
when it’s expanded.

	 •	 contextText: getString(R.string.notify_new_
task_message) is the text that’s displayed below the title
in the notification when it’s expanded.

	 •	 contentIntent: pi is the intent to launch when the
expanded view is selected.

	 ➝19	 You use this bitwise OR-ed in setting the Notification object
to include sound during the notification process. It forces the
default notification sound to be played if the notification volume
is on. Visit http://en.wikipedia.org/wiki/Bitwise_
operation#OR for more information about bitwise operators.

	 ➝20	 You use this bitwise OR-ed in setting the Notification object
flag’s property that cancels the notification after it’s selected by
the user.

	 ➝27	 This line casts the ID to an integer. The ID stored in the SQLite
database is a long; however, this line casts it to an integer. A loss
of precision is happening, but this application will likely never
set up more than 2,147,483,647 tasks (the maximum number that
an integer can store in Java). Therefore, this casting should be
acceptable. The casting to an integer is necessary because the
code on line 20 accepts an integer as the ID only for the notification.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Bitwise_operation#OR
http://en.wikipedia.org/wiki/Bitwise_operation#OR
http://www.it-ebooks.info/

308 Part III: Updating the Android Status Bar

	 ➝28	 Raises the notification to the status bar. The notify() call
accepts two parameters:

	 •	 id: This ID is unique within your application. You use the
task’s row ID here.

	 •	 Notification: The note object you just created describes
how to notify the user.

Viewing the workflow
Listing 14-1 allows this workflow to occur:

	 1.	 The user is active in another application, such as e-mail.

	 2.	 A task is due, and therefore the alarm fires. The notification is created
on the status bar.

	 3.	 The user can elect to swipe the status bar downward and then select the
notification or ignore it for now.

		 If the user chooses to slide open the status bar and select an item, the
pending intent within the notification is activated. This in turn causes
the ReminderEditActivity to open with the given row ID of the task.

	 4.	 The notification is removed from the status bar.

	 5.	 The task information is retrieved from the database and displayed on
the form in the ReminderEditActivity.

Adding string resources
You may notice that you need to add these two string resources to your
strings.xml file:

	 ✓	notify_new_task_message: The value is set to the text A task needs
to be reviewed! This message has a dual purpose — in the expanded
view and as the ticker text when the notification first arrives.

	 ✓	notify_new_task_title: The value is set to Task Reminder, which is
used as the title for the expanded view.

www.it-ebooks.info

http://www.it-ebooks.info/

309 Chapter 14: Updating the Android Status Bar

Updating a Notification
At some point, you might need to update the view of your notification, such
as when your code runs in the background, to see whether tasks have been
reviewed. This code checks to see whether any notifications are overdue.
Suppose that after the 2-hour mark passes, you want to change the icon of
the notification to a red exclamation point and quickly flash the LED in red.
Thankfully, updating the notification is a fairly simple process.

If you call the notify() method again with an ID that’s already active on the
status bar, the notification is updated on the status bar. Therefore, to update
the notification, you simply create a new Notification object with the
same ID and text (but with a different red icon) and then call notify() again
to update the notification.

Clearing a Notification
Users constitute an unpredictable group — whether they’re first-time users
or advanced power users, they can be located anywhere in the world. All
Android users use their devices in their own, special ways. At some point,
a user may see a notification and decide to open the app using the app
launcher instead. If this happens while a notification is active, the notification
persists. Even if the user looks at the task at hand, the notification still per-
sists on the status bar. Your application should be able to simply recognize
the state of the application and take the appropriate measures to cancel any
existing notifications for the task. However, if the user opens your app and
reviews a different task that has no active notification, your app shouldn’t
clear the notification.

	 Clear only the notification that the user is reviewing.

The NotificationManager makes it simple to cancel an existing notification
by using the cancel() method. This method accepts one parameter — the ID
of the notification. You may recall using the ID of the task as the ID of the note.
The ID of the task is unique to the Task Reminder application. By doing this,
you can easily open a task and cancel any existing notification by calling the
cancel() method with the ID of the task.

At some point, you might also need to clear all previously shown noti-
fications. To do this, simply call the cancelAll() method on the
NotificationManager.

www.it-ebooks.info

http://www.it-ebooks.info/

310 Part III: Updating the Android Status Bar

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 15

Working with Android’s
Preferences Framework

In This Chapter
▶	Seeing how preferences work in Android
▶	Building a preferences screen
▶	Working with preferences programmatically

M
ost programs need to be configured to suit a user’s needs (for the
most part), with individual settings or preferences. Allowing users to

configure your Android application gives it a usability advantage. Thankfully,
creating and providing a mechanism to edit preferences in Android are fairly
easy processes.

Android provides, out of the box, a robust preferences framework that lets
you declaratively — and programmatically — define preferences for your
application. Android stores preferences as persistent key-value pairs of
primitive data types for you. You aren’t required to store the values in a file
or database or in any other mechanism. The Android preferences framework
commits the values you provide to internal storage on behalf of your appli-
cation. You can use the preferences framework to store Boolean, float, int,
long, and string elements. The data persists across user sessions — if the user
closes the app and reopens it later, the preferences are saved and can be
used, even if your application is killed.

This chapter delves into the Android preferences framework and describes
how to incorporate it into your applications. You find out how to use the
built-in PreferenceActivity to create and edit preferences and how to
read and write preferences from code within your application. At the end of
this chapter, you’ll have integrated preferences fully into the Task Reminder
application.

www.it-ebooks.info

http://www.it-ebooks.info/

312 Part III: Creating a Feature-Rich Application

	 If you’re using Android 3.x or later and you don’t care to support older
devices, consider using the new PreferenceFragment instead of Preference
Activity. However, the PreferenceFragment isn’t yet available as part of
the support library, so you cannot use PreferenceFragments on older
devices. For this reason, this chapter sticks with using the tried-and-true
PreferenceActivity.

Understanding the Android
Preferences Framework

One outstanding quality of the Android preferences framework is the simplic-
ity of developing a screen that allows users to modify their preferences. Most
of the heavy lifting is done for you by Android because developing a prefer-
ences screen is as simple as defining it in the XML located in the res/xml
folder of your project. Though these XML files aren’t the same as layout files,
there are specific XML definitions that define screens, categories, and actual
preferences. Common preferences that are built into the framework include

	 ✓	EditTextPreference: Stores plain text as a string

	 ✓	CheckBoxPreference: Stores a Boolean value

	 ✓	RingtonePreference: Allows the user to store a preferred ringtone
from those available on the device

	 ✓	ListPreference: Allows the user to select a preferred item from a list
of items in the dialog box

If the built-in preferences don’t suit your needs, you can create your
own preference by deriving it from the base Preference class or
DialogPreference. A DialogPreference is the base class for pref-
erences that are dialog-box-based. Tapping one of these preferences
opens a dialog box showing the preference controls. Examples of built-in
DialogPreferences are EditTextPreference and ListPreference.

Android also provides a PreferenceActivity in which you can
load a preferences screen in the same manner as you load a layout
for a basic Activity class. This base class allows you to tap into the
PreferenceActivity events and perform advanced work, such as setting
an EditTextPreference to accept only numbers.

www.it-ebooks.info

http://www.it-ebooks.info/

313 Chapter 15: Working with Android’s Preferences Framework

Understanding the PreferenceActivity
Class

The responsibility of the PreferenceActivity class is to show a hierar-
chy of Preference objects as lists, possibly spanning multiple screens, as
shown in Figure 15-1.

	

Figure 15-1:
The pref-
erences

screen for
the call

settings in
Android.

	

When preferences are edited, they’re stored using an instance of Shared
Preferences. The SharedPreferences class is an interface for access-
ing and modifying preference data returned by getSharedPreferences()
from any Context object.

A PreferenceActivity is a base class that’s similar to the Activity
base class. However, the PreferenceActivity behaves a bit differ-
ently. One of the most important features that the PreferenceActivity
handles is the displaying of preferences in the visual style that resembles
the system preferences. This gives your application a consistent feel across
the board in regard to Android user interface components. You should use
the PreferenceActivity when dealing with preferences screens in your
Android applications.

www.it-ebooks.info

http://www.it-ebooks.info/

314 Part III: Creating a Feature-Rich Application

Persisting preference values
Because the Android framework stores preferences in the Shared
Preferences, which automatically stores the preference data in internal
storage, you can easily create a preference. When a user edits a preference,
the value is automatically saved for you; you don’t have to do any persisting
yourself.

Figure 15-2 shows a preference being set in the Task Reminder application.
After the user taps OK, Android persists the value to SharedPreferences.
Android does all the heavy lifting in regard to persisting the preference
values.

	

Figure 15-2:
Setting a

preference.
	

Laying out preferences
Working with layouts in Android can sometimes be a painstaking process of
alignment, gravity, and other complicating factors. Building layouts is almost
like building a website with various tables all over the place. Sometimes it’s
easy; sometimes it isn’t. Thankfully, laying out Android preferences is much
simpler than defining a layout for the application screen.

Android preferences screens are broken into these categories:

	 ✓	PreferenceScreen: Represents a top-level preference that’s the root
of a preference hierarchy. You can use a PreferenceScreen in these
two places:

www.it-ebooks.info

http://www.it-ebooks.info/

315 Chapter 15: Working with Android’s Preferences Framework

	 •	In a PreferenceActivity: The PreferenceScreen isn’t shown
because it shows only the containing preferences within the
PreferenceScreen definition.

	 •	In another preference hierarchy: When present in another hier-
archy, the PreferenceScreen serves as a gateway to another
screen of preferences (similar to nesting PreferenceScreen dec-
larations inside other PreferenceScreen declarations). Though
this concept might seem confusing, you can think of it as XML,
where you can declare an element and any element can contain the
same parent element. At that point, you’re nesting the elements.
The same statement applies to the PreferenceScreen. By nest-
ing PreferenceScreens, you’re informing Android that it should
show a new screen when selected.

	 ✓	PreferenceCategory: This preference is used to group preference
objects and provide, above the group, a title that describes the
category.

	 ✓	Preference: A preference that’s shown onscreen. This preference can
be any common preference or a custom one that you define.

By laying out a combination of the PreferenceScreen, Preference
Category, and Preference in XML, you can easily create a preferences
screen that looks similar to Figure 15-1.

Creating Your Preferences Screen
Creating preferences using the PreferenceActivity and a preference
XML file is a fairly straightforward process. The first thing you do is create
the preference XML file, which defines the layout of the preferences and the
string resource values that show up onscreen. These string resources are
presented as TextViews onscreen to help the user determine what the pref-
erence does.

Your PreferenceScreen should give users the chance to set the default
time for a reminder (in minutes) and a default title for a new task. As the
application stands now, the default title is empty and the default reminder
time is set to the current time. These preferences allow the user to save a
couple of steps while building new tasks. For example, if the user normally
builds tasks with a reminder time of 60 minutes from the current time, the
user can now specify it in the preferences. This new value becomes the value
of the reminder time when the user creates a new task.

www.it-ebooks.info

http://www.it-ebooks.info/

316 Part III: Creating a Feature-Rich Application

Building the preferences file
To build your first preferences screen, create a res/xml folder in your
project. Inside the res/xml folder, create an XML file and name it task_
preferences.xml. Add the code in Listing 15-1 to the file.

Listing 15-1:   The task_preferences.xml File
<?xml version=”1.0” encoding=”utf-8”?>

<PreferenceScreen	 ➝2
 xmlns:android=”http://schemas.android.com/apk/res/android”>

 <PreferenceCategory	 ➝4
 android:key=”@string/pref_category_task_defaults_key”	 ➝5
 android:title=”@string/pref_category_task_defaults_title”>	 ➝6
 <EditTextPreference	 ➝7
 android:key=”@string/pref_task_title_key”	 ➝8
 android:dialogTitle=”@string/pref_task_title_dialog_title”	 ➝9
 android:dialogMessage=”@string/pref_task_title_message”	 ➝10
 android:summary=”@string/pref_task_title_summary”	 ➝11
 android:title=”@string/pref_task_title_title” />	 ➝12
 </PreferenceCategory>

 <PreferenceCategory	 ➝13
 android:key=”@string/pref_category_datetime_key”	 ➝14
 android:title=”@string/pref_category_datetime_title”>	 ➝15
 <EditTextPreference	 ➝16
 android:key=”@string/pref_default_time_from_now_key”	 ➝17
 android:dialogTitle=”@string/pref_default_time_from_now_dialog_title”	 ➝18
 android:dialogMessage=”@string/pref_default_time_from_now_message”	 ➝19
 android:summary=”@string/pref_default_time_from_now_summary”	 ➝20
 android:title=”@string/pref_default_time_from_now_title” />	 ➝21
 </PreferenceCategory>
</PreferenceScreen>

Quite a few string resources are introduced in Listing 15-1 (see the next sec-
tion). Each numbered line of code is explained as follows:

	 ➝2	 This is the root-level PreferenceScreen; it’s the container for
the screen itself. All other preferences live below this declaration.

	 ➝4	 This is a PreferenceCategory that defines the category for
task defaults, such as title or body. As you may have noticed,
line 13 declares another PreferenceCategory for the default
task time. Normally, you place these two items into the same
category; they’re split here to show how to use multiple
PreferenceCategory elements on one screen.

	 ➝5	 This line defines the key that’s used to store and retrieve the pref-
erence from the SharedPreferences. This key must be unique.

www.it-ebooks.info

http://www.it-ebooks.info/

317 Chapter 15: Working with Android’s Preferences Framework

	 ➝6	 This line defines the category title.

	 ➝7	 This line contains the definition of the EditTextPreference,
which is responsible for storing the preference for the default title
of a task.

	 ➝8	 This line contains the key for the default title text EditText
Preference.

	 ➝9	 The EditTextPreference is a child class of Dialog
Preference. When a user selects the preference, he sees a dialog
box similar to the one shown in Figure 15-2. This line of code
defines the title for that dialog box.

	 ➝10	 This line defines the message that appears in the dialog box.

	 ➝11	 This line defines the summary text that’s present on the prefer-
ences screen, as shown in Figure 15-1.

	 ➝12	 This line defines the title of the preference on the preferences
screen.

	 ➝13	 This line defines the PreferenceCategory for the default task
time.

	 ➝14	 This line defines the category key.

	 ➝15	 This line defines the title of the category.

	 ➝16	 This line is the start of the definition of the EditText
Preference, which stores the default time in minutes (digits)
that the task reminder time defaults to from the current time.

	 ➝17	 This line defines the key for the default task time preference.

	 ➝18	 This line defines the title of the dialog box that opens when the
preference is selected.

	 ➝19	 This line defines the message that’s present in the dialog box.

	 ➝20	 This line defines the summary of the preference that’s present on
the main preferences screen, as shown in Figure 15-1.

	 ➝21	 This line defines the title of the preference on the preferences
screen.

Adding string resources
For your application to compile, you need the string resources for the prefer-
ences. In the res/values/strings.xml file, add these values:

www.it-ebooks.info

http://www.it-ebooks.info/

318 Part III: Creating a Feature-Rich Application

<!-- Preferences -->
<string name=”pref_category_task_defaults_key”>task_default_category</string>
<string name=”pref_category_task_defaults_title”>Task Title Default</string>
<string name=”pref_task_title_key”>default_reminder_title</string>
<string name=”pref_task_title_dialog_title”>Default Reminder Title</string>
<string name=”pref_task_title_message”>The default title for a reminder.</

string>
<string name=”pref_task_title_summary”>Default title for reminders.</string>
<string name=”pref_task_title_title”>Default Reminder Title</string>
<string name=”pref_category_datetime_key”>date_time_default_category</string>
<string name=”pref_category_datetime_title”>Date Time Defaults</string>
<string name=”pref_default_time_from_now_key”>time_from_now_default</string>
<string name=”pref_default_time_from_now_dialog_title”>Time From Now</string>
<string name=”pref_default_time_from_now_message”>The default time from now (in

minutes) that a new reminder should be set to.</string>
<string name=”pref_default_time_from_now_summary”>Sets the default time for a

reminder.</string>
<string name=”pref_default_time_from_now_title”>Default Reminder Time</string>

You should now be able to compile your application.

Working with the PreferenceActivity
Class

Defining a preferences screen is fairly simple: Provide the values to the
necessary attributes and you’re done. Though the preferences screen
may be defined in XML, simply defining it in XML doesn’t mean that it
will show up onscreen. To display your preferences screen, you create a
PreferenceActivity.

The PreferenceActivity shows a hierarchy of preferences onscreen
according to a preferences file defined in XML — such as the one you may
have just created. The preferences can span multiple screens (if multiple
PreferenceScreen objects are present and nested). These preferences are
automatically saved to SharedPreferences. As a bonus, the preferences
that are shown automatically follow the visual style of the system prefer-
ences, which allows your application to have a consistent user experience in
conjunction with the default Android platform.

To inflate and display the PreferenceScreen you may have just built, add
an activity that derives from PreferenceActivity to your application and
name it TaskPreferences. Add the code in Listing 15-2.

www.it-ebooks.info

http://www.it-ebooks.info/

319 Chapter 15: Working with Android’s Preferences Framework

Listing 15-2:   The TaskPreferences File
public class TaskPreferences extends PreferenceActivity {	 ➝1
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.task_preferences);	 ➝5

 EditTextPreference timeDefault = (EditTextPreference)

 findPreference(getString(R.string.pref_default_time_from_now_key));	 ➝8
 timeDefault.getEditText().setKeyListener(DigitsKeyListener.getInstance());	➝9
 }
}

That’s all the code needed to display, edit, and persist preferences in
Android. The numbered lines of code are explained in this list:

	 ➝1	 The TaskPreferences class file is defined by inheriting from the
PreferenceActivity base class.

	 ➝5	 The call to addPreferencesFromResource() method is pro-
vided with the resource ID of the task_preferences.xml file
that’s stored in the res/xml directory. This method is depre-
cated in favor of PreferenceFragment from the support library
so Eclipse may give you a warning that you can ignore.

	 ➝8	 This line retrieves the EditTextPreference for the default
task reminder time by calling the findPreference() method
and providing it with the key that was defined in the task_
preferences.xml file. This method is also deprecated in favor
of PreferenceFragment from the support library so Eclipse may
give you a warning that you can ignore.

	 ➝9	 This line obtains the EditText object, which is a child of the
EditTextPreference, using the getEditText() method. This
object sets the key listener, which is responsible for listening to key-
press events. The setKeyListener() method sets the key listener,
and by providing it with an instance of DigitsKeyListener, the
EditTextPreference allows digits to be typed in the EditText
Preference only for the default reminder time.

	 	 You don’t want users to enter string values such as foo or bar
into the field because it isn’t a valid integer value. Using the
DigitsKeyListener ensures that the only values passed into
the preferences are digits.

At this point, you can use your activity. This PreferenceActivity allows
users to edit and save their preferences. As you can see, this implementation
requires only a snippet of code. The next step is displaying the preferences
screen by adding a menu item.

www.it-ebooks.info

http://www.it-ebooks.info/

320 Part III: Creating a Feature-Rich Application

Add your new PreferenceActivity to the AndroidManifest.xml file by
using this line of code:

<activity android:name=”.TaskPreferences” android:label=”@string/app_name” />

Opening the PreferenceActivity class
To open this new activity, you add a menu item to the ReminderList
Activity. To add a new menu item, you add a new menu definition to the
list_menu.xml file that’s located in the res/menu directory. Updating this
file updates the menu on the ReminderListActivity. The updated list_
menu.xml file is shown here with the new entry in bold:

<?xml version=”1.0” encoding=”utf-8”?>
<menu
 xmlns:android=”http://schemas.android.com/apk/res/android”>
 <item android:id=”@+id/menu_insert”
 android:icon=”@android:drawable/ic_menu_add”
 android:title=”@string/menu_insert” />
 <item android:id=”@+id/menu_settings”
 android:icon=”@android:drawable/ic_menu_preferences”
 android:title=”@string/menu_settings” />
</menu>

The last item adds a menu item for settings, which uses the built-in Android
Settings icon and the menu_settings string resource. You add a new string
resource named menu_settings with a value of Settings in your string
resources.

Handling menu selections
After your menu is updated, the app needs to respond whenever the user
taps a menu item. To make it do this, you add code to the onOptions
ItemSelected() method in the ReminderListFragment. The code to
handle the settings menu selection is bold in this snippet:

@Override
public boolean onOptionsItemSelected (MenuItem item) {
 switch(item.getItemId()) {
 case R.id.menu_insert:
 ((OnEditReminder) getActivity()).editReminder(0);
 return true;
 case R.id.menu_settings:
 Intent i = new Intent(getActivity(), TaskPreferences.class);
 startActivity(i);
 return true;
 }
 return super.onOptionsItemSelected(item);
}

www.it-ebooks.info

http://www.it-ebooks.info/

321 Chapter 15: Working with Android’s Preferences Framework

This code creates a new Intent object with a destination class of Task
Preferences. A user who selects the Settings menu item is shown the
preferences screen, to edit his preferences. If you start the app and select
Settings, you should see a screen similar to the one shown in Figure 15-3.

	

Figure 15-3:
The pref-
erences
screen.

	

Working with Preferences in
Your Activities at Runtime

Though setting preferences in a PreferenceActivity is useful, it pro-
vides no value in the end unless you can read the preferences from the
SharedPreferences object at runtime and use them in your application.
Thankfully, Android makes the process fairly simple.

In the Task Reminder application, you read these values in the Reminder
EditFragment to set the default values when a user creates a new task.
Because the preferences are stored in SharedPreferences, you can access
the preferences across various activities in your application.

Retrieving preference values
Open the ReminderEditFragment and navigate to the onCreateView()
method. It determines whether the task is an existing task or a new task. If
the task is new, you pull the default values from SharedPreferences and
load them into the activity for the user. If for some reason the user has never
specified her preferences, they’re empty strings and you ignore the defaults.
You use the preferences only if the user has set them.

www.it-ebooks.info

http://www.it-ebooks.info/

322 Part III: Creating a Feature-Rich Application

To retrieve preference values, you use the SharedPreferences object, as
shown in Listing 15-3. Add the bold code to the very bottom of onCreate
View().

Listing 15-3:   Retrieving Values from SharedPreferences
 if (mRowId == 0) {	 ➝1
 // This is a new task - add defaults from preferences if set.

 SharedPreferences prefs = PreferenceManager	 ➝3
 .getDefaultSharedPreferences(getActivity());

 String defaultTitleKey = getString(R.string.pref_task_title_key);	➝5
 String defaultTimeKey = getString(R.string.pref_default_time_from_

now_key);	 ➝7
 String defaultTitle = prefs.getString(defaultTitleKey, null);	 ➝8
 String defaultTime = prefs.getString(defaultTimeKey, null);	 ➝9

 if (defaultTitle != null)

 mTitleText.setText(defaultTitle);	 ➝12

 if (defaultTime != null && defaultTime.length()>0)
 mCalendar.add(Calendar.MINUTE, Integer.parseInt(defaultTime));	

➝15

 updateButtons();	 ➝17

 } else {

 // Fire off a background loader to retrieve the data from the
 // database.
 getLoaderManager().initLoader(0, null, this);

 }

Each new line of code is explained in this list:

	 ➝1	 The if statement handles the logic for a new task.

	 ➝3	 This line retrieves the SharedPreferences object from
the static getDefaultSharedPreferences() call on the
PreferenceManager object.

	 ➝5	 This line retrieves the key value for the default title preference
from the string resources. This same key is used in Listing 15-1 to
define the preference.

	 ➝7	 This line retrieves the key value for the default time offset, in min-
utes, from the preferences.

www.it-ebooks.info

http://www.it-ebooks.info/

323 Chapter 15: Working with Android’s Preferences Framework

	 ➝8	 This line retrieves the default title value from the preferences
with a call to getString() on the SharedPreferences object.
The first parameter is the key for the preference, and the second
parameter is the default value if the preference doesn’t exist (or
hasn’t been set). In this instance, the default value is null if the
preference doesn’t exist.

	 ➝9	 This line retrieves the default time value from the preferences,
using the same method as described on line 8 with a different key.

	 ➝12	 This line sets the text value of the EditText view — which is the
title of the task. This value is set if the preference wasn’t equal to
an empty string.

	 ➝15	 This line increments time on the local Calendar object by call-
ing the add() method with the parameter of Calendar.MINUTE
if the value from the preferences wasn’t equal to an empty string.
The Calendar.MINUTE constant informs the Calendar object
that the next parameter should be treated as minutes and the
value should be added to the calendar’s Minute field. If the min-
utes force the calendar into a new hour or day, the Calendar
object updates the other fields for you.

		 For example, if the calendar was originally set to 2012-08-
31 11:45 p.m. and you added 60 minutes to the calendar, the
new value of the calendar is 2012-09-01 12:45 a.m. Because
EditTextPreference stores all values as strings, the string
parses the minute value to an integer with the Integer.parse
Int() method. By adding time to the local Calendar object,
the time picker and button text associated with opening the time
picker are updated as well.

	 ➝17	 This line updates the time button text to reflect the time that was
added to the existing local Calendar object.

When you start the application, you can now set the preferences and see
them reflected when you choose to add a new task to the list. Try clear-
ing the preferences and then choosing to create a new task. Notice that the
defaults no longer apply — easy!

Setting preference values
Though updating preference values via Java isn’t done in the Task Reminder
application, at times you might need to in your own apps. Suppose that you
develop a help desk ticket system application that requires users to enter
their current departments. You have a preference object for the default
department, but the user never uses the preferences screen and therefore
repeatedly enters the department into your application manually. Using logic

www.it-ebooks.info

http://www.it-ebooks.info/

324 Part III: Creating a Feature-Rich Application

that you define and write, you determine that the user is entering the same
department for each help desk ticket (assume that it’s the Accounting depart-
ment), so you prompt him to determine whether he wants to set the default
department to Accounting. If he chooses Yes, you programmatically update
the preferences for him.

To edit preferences programmatically, you need an instance of Shared
Preferences. You can obtain it via PreferenceManager, as shown in
Listing 15-4. After you obtain an instance of SharedPreferences, you can
edit various preferences by obtaining an instance of the preference Editor
object. After the preferences are edited, you need to commit them, also dem-
onstrated in Listing 15-4.

Listing 15-4:   Programmatically Editing Preferences
SharedPreferences prefs =

 PreferenceManager.getDefaultSharedPreferences(this);	 ➝1
Editor editor = prefs.edit();	 ➝2
editor.putString(“default_department”, “Accounting”);	 ➝3
editor.commit();	 ➝4

The numbered lines of code are explained in this list:

	 ➝1	 An instance of SharedPreferences is retrieved from the
PreferenceManager.

	 ➝2	 An instance of the preferences Editor object is obtained by call-
ing the edit() method on the SharedPreferences object.

	 ➝3	 This line edits a preference with the key value of default_
department by calling putString() method on the Editor
object. The value is set to “Accounting”. Normally, the key value
is retrieved from the string resources and the value of the string
is retrieved via your program or user input. The code snippet
remains simple for brevity.

	 ➝4	 After changes are made to any preferences, you must call the
commit() method on the Editor object to persist them to
SharedPreferences. The commit call automatically replaces
any value stored in SharedPreferences with the key given in
the putString() call.

	 If you don’t call commit() on the Editor object, your changes don’t persist
and your application doesn’t function as you expect.

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV
Tablets

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

P
art IV introduces you to the world of Android tablet
development. Android tablets are a different sort of

beast than Android phones, and this part walks you
through all the changes you need to make to your Task
Reminder application to make it run on Android tablets.

Should you like to go beyond the realm of standard
Google Android tablets, you find everything you need to
know to add support for Android-based (but non-Google)
devices, such as the Amazon Kindle Fire, in Chapter 18.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 16

Developing for Tablets
In This Chapter
▶	Zeroing in on why a tablet is a different digital beast
▶	Modifying your existing app to run on tablets

Y
ou need to master some tricks of the trade to make your apps work on
tablets and on phones. In this chapter, you can get an overview of the

differences in phones and tablets, and then find out how to design the Task
Reminder application to work on both types of devices.

Considering the Difference Between
Phones and Tablets

Android tablets and Android phones have some obvious differences, and size
immediately comes to mind, but there are a few other differences:

	 ✓	Android tablets tend to be much larger than their phone counterparts.

	 ✓	Tablets are designed to be held in two hands, whereas phones are
designed for only one.

	 ✓	Android tablet screens tend not to extend past the 7-to-10-inch range,
and the largest phones max out around 5 inches.

		 The line between tablet and phone can blur at the 5-inch mark. Some
“tweener” devices are marketed as phones, and others with nearly the
same specs are marketed as tablets.

	 ✓	Tablet orientation varies depending on usage, whereas almost all
Android phones have settled on portrait orientation for their screens.

		 Many Android tablets are designed for wide-screen media viewing, so
they favor landscape orientation. Others, such as the Nexus 7 and Kindle
Fire, are designed primarily for use in Portrait mode. That’s not to say
that you can’t run an app in Portrait mode on a landscape tablet (or vice
versa), but be aware that many users may run your app in an orientation
other than the one in which you completed most of your testing.

www.it-ebooks.info

http://www.it-ebooks.info/

328 Part IV: Tablets

Tablets and phones also have some differences in hardware design and
operation that affect app design. This list describes them from the tablet
perspective:

	 ✓	Tablets often lack always-on 3G or 4G data connections.

	 ✓	Tablets tend to be larger, use larger batteries, and benefit from much
longer battery life than their phone counterparts.

	 ✓	Tablets may have cheaper cameras — or no cameras — because tablet
cameras typically get less use than phone cameras.

	 ✓	Tablets often lack such common phone capabilities as GPS location
service.

In addition, don’t be surprised if you have to design your app (or tweak an
existing one) to accommodate new tablet features. Both the original 3.0 and
later 4.0 versions of Android tablets support fragments, the user interface
element known as the action bar, and the holographic theme (named Holo).
Users expect you to add these new tools to your arsenal as you upgrade your
app to add tablet support.

Tweaking the Task Reminder
App for Tablets

To help accommodate the differences, you use a few techniques to upgrade
the Task Reminder app so that it can work on both tablets and phones.

	 Use these strategies every time you design an Android application because it’s
likely that most of your apps target users of both types of devices.

Anticipating screen size
with a flowing layout
Go with the flow when you’re designing your layout to fit multiple screen
sizes. A flowing layout skips a lot of hassle and frustration for both the
designer and the user.

If you’re familiar with iOS development, you know that you have only two
screen sizes to worry about: iPhone and iPad. Each size requires both low-
and high-resolution images, but that’s easy enough to handle: Design for

www.it-ebooks.info

http://www.it-ebooks.info/

329 Chapter 16: Developing for Tablets

iPhone first, and then for iPad, and then plug in the low- and high-resolution
images in the respective versions and you’re done.

Android isn’t quite as simple to design for. Layouts in Android need to “flow” —
that is, resize and rearrange themselves — so that they can accommodate minor
(and sometimes major) differences in the width and height of users’ devices.
Where iOS has only two different sizes, Android has dozens or hundreds.

It’s similar to designing for websites — when you’re building a website, you
can’t assume that all users will view it in browser windows that are exactly
the same size (800x600pixels). Users may view the site from bigger (or some-
times smaller) browser windows; your design must be flexible enough to give
a good experience to the whole range of sizes. Designing for Android makes
the same requirement.

So how do you perform this bit of magic? For openers, don’t try to use fixed
dimensions (such as 10px or 120dp) in your layouts. Instead, favor relative
dimensions, such as “wrap_content” and “fill_parent” as much as pos-
sible. The idea is to achieve a flowing layout that can resize to fit the device.

The following code shows a layout that makes too many assumptions about
the device it’s on:

<?xml version=”1.0” encoding=”utf-8”?>
<TextView xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”300px”
 android:layout_height=”match_parent”
 android:lines=”1”
 android:text=”Occurrences of the word 'Internet' in the Gettysburg

Address: 0 (unverified)” />

The code has multiple problems:

	 ✓	It uses a fixed sized TextView rather than flexible dimensions, like
wrap_content and fill_parent.

	 ✓	It uses pixels (px) to measure size, which doesn’t scale automatically
across different devices, as dp (device-independent pixels) would.

	 ✓	It hard-codes the number of lines in TextView to 1 and doesn’t tell
Android what to do with any overflow.

	 ✓	It doesn’t use ScrollView, so if your layout is taller than the device
screen there’s no way to see the offscreen views.

		 Generally speaking, many of your layouts should be wrapped in a single
ScrollView to handle unanticipated overflow off the bottom of the
screen. Exceptions include layouts that already handle scrolling, such
as ListView, which shouldn’t be wrapped in a ScrollView. The Task
Reminder app needs only a single TextView, but more complicated lay-
outs should consider them.

www.it-ebooks.info

http://www.it-ebooks.info/

330 Part IV: Tablets

	 Though “fill_parent” was renamed to “match_parent” in Android 2.2,
older devices don’t support “match_parent”. As long as your minSdk
Version is set to a value lower than 8, however, you should use “fill_
parent” instead of “match_parent”.

Figure 16-1 shows the TextView in Listing 16-1. It abruptly cuts off text mid-
sentence because of the fixed size. If the developer had used a flowing layout,
the text wouldn’t have been cut off.

	

Figure 16-1:
A nonflow-
ing layout.

	

Fixing this particular example is easy by changing the width of the TextView
and replacing android:lines=”1” with android:maxLines=”3”:

<?xml version=”1.0” encoding=”utf-8”?>
<TextView xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:maxLines=”3”
 android:text=”Occurrences of the word 'Internet' in the Gettysburg

Address: 0 (unverified)” />

	 When you’re designing your layouts, always consider the maximum size of
each item in your layout. The app content can take up more space than you
expect, and it’s important to anticipate these situations and plan for them
rather than end up with an app that looks ugly.

Adding more fragments
If you’re like many developers, you might expect Google — as the fount of
all knowledge— to know everything. But one thing the folks at Google didn’t
know when they started building Android was how popular tablets would
become in five years. But tablets did become popular and brought with them
all that onscreen space to fill.

Android 3.0 Honeycomb introduced fragments to help you deal with this
newfound real estate. The basic idea is that a typical phone activity centers
on one, two, or three distinct groups of reusable onscreen items. Put each of

www.it-ebooks.info

http://www.it-ebooks.info/

331 Chapter 16: Developing for Tablets

these groups into its own fragment and it becomes easy to reuse across mul-
tiple activities.

You’re going to do exactly this in Chapter 17 — you’ll add the Reminder
EditFragment and the ReminderListFragment from your two phone
activities into a single new activity that tablet users will enjoy.

Figure 16-2 shows how Reminder fragments lay out on a phone and on a
tablet.

	

Figure 16-2:
Fragments
can handle

a single
activity on

a phone
(left) or two

activities
on a tablet

(right).
	

	 Without fragments, you’d have to reinvent the wheel every time you want to
make an activity that shows a list of tasks. Using fragments, just write the code
once and you can reuse it as many times as you want.

Creating different layouts
for different devices
The fragment is a handy feature for the designer, but how do you slice and
dice fragments to show the right experience for the right device? The tablet’s
relatively vast screen real estate (compared to a phone) can show one or two
more fragments on a single activity.

www.it-ebooks.info

http://www.it-ebooks.info/

332 Part IV: Tablets

You can use one layout containing a single activity for your phone and
another layout containing multiple fragments for your tablet. For example,
here’s the ReminderListActivity layout for the phone size in the Task
Reminder app:

<?xml version=”1.0” encoding=”utf-8”?>
 <fragment
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:name=”com.dummies.android.taskreminder.ReminderListFragment”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 />

And here’s how you might modify the code using two fragments to create a
2-column layout on a tablet:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:orientation=”horizontal”
 android:layout_height=”fill_parent”>

 <fragment
 android:id=”@+id/list_fragment”
 android:name=”com.dummies.android.taskreminder.ReminderListFragment”
 android:layout_width=”0dp”
 android:layout_weight=”1”
 android:layout_height=”fill_parent”
 />

 <fragment
 android:id=”@+id/edit_fragment”
 android:name=”com.dummies.android.taskreminder.ReminderEditFragment”
 android:layout_width=”0dp”
 android:layout_weight=”1”
 android:layout_height=”fill_parent”
 />

</LinearLayout>

You can find an explanation for how this code works in Chapter 17.

Using the action bar
User interfaces change continually, and Android is no exception. One con-
venient example is the action bar — standard on all Android 3.0 and 4.0
devices. If you’re targeting tablets, you’ll definitely make use of this new
element.

www.it-ebooks.info

http://www.it-ebooks.info/

333 Chapter 16: Developing for Tablets

Before Android 3.0, all Android phones had a dedicated Menu button. (For
more about the Menu button, see Chapter 10.) This button isn’t in Android
3.0 devices and later. The items on the menu are on the action bar.

The action bar makes these functions (for example, how to add or delete a
task or access an app’s settings) significantly easier to find. The important
ones are onscreen at all times; less important ones are tucked away on a sub-
menu, as shown in Figure 16-3.

	

Figure 16-3:
The action
bar, ready
for action,

with several
items on the

overflow
submenu.

	

As the developer, you get to choose which actions are the most important,
and Android tries to keep them onscreen. You can add three different actions
to your menu items:

	 ✓	android:showAsAction=”ifRoom”: This XML is for unimport-
ant items that you prefer to have on the action bar if it has room, but
Android can move into the overflow menu.

	 ✓	android:showAsAction=”always”: This XML is for the first couple
of items that you know you want to always have onscreen, and for items
you always want showing on the action bar.

	 ✓	android:showAsAction=”never”: Use this XML for the items you
can safely position on the overflow menu.

www.it-ebooks.info

http://www.it-ebooks.info/

334 Part IV: Tablets

	 It’s tempting to list all of your actions as android:showAsAction=
”ifRoom” or “always”, but don’t clutter the action bar with too many
actions. Consider putting many actions, such as “Settings”, on the overflow
submenu using “never”.

The best part about the action bar is that you don’t have to do anything
to add it to your app. All menus magically turn into action bar items when
they’re run on Android 3.x devices or later.

Using the Support Library and
ActionBarSherlock
Of course, not everybody snaps up the latest technology right away. At the
time this book was written, a large number of devices are still running older
versions of Android (earlier than 4.0). You had better take them into account.

	 Know your target audience! Visit http://developer.android.com/
about/dashboards to see the latest statistics on which versions of Android
your users are most likely to be running. At the time of this writing, Android
2.3.3 (Gingerbread) has the most users, but its lead is shrinking.

You want to make use of fragments and the action bar, but if most of your
users’ devices are running Android 2.x, those older devices don’t support
these newfangled features yet. What’s a developer to do?

Luckily, these tools can help:

	 ✓	Android Support Library (from Google): Brings fragments to your pre-
4.0 apps.

	 ✓	ActionBarSherlock, by Jake Wharton: Lets you use the action bar
for pre-4.0 apps. Go to http://actionbarsherlock.com for more
details.

www.it-ebooks.info

http://developer.android.com/about/dashboards/
http://developer.android.com/about/dashboards/
http://actionbarsherlock.com
http://www.it-ebooks.info/

Chapter 17

Porting Your App to
Android Tablets

In This Chapter
▶	Downloading a tablet emulator
▶	Using activities
▶	Creating separate fragments

Y
our phone app is poised to conquer the tablet, and the situation is get-
ting exciting. Here’s where this chapter shows you how to modify the

Task Reminder application (developed in Part III) to work on an Android
tablet.

Configuring a Tablet Emulator
First things first —you need a tablet on which to test your application. If you
already have a tablet, you’re well on your way; if you don’t, then you need
an emulator to simulate an Android device on your computer. Google calls
these Android Virtual Devices (AVDs). Follow these steps to get the Google
Nexus 7 AVD:

	 1.	 Click the Android AVD Manager icon on the Eclipse toolbar.

	 2.	 Click New.

	 	 The Create New Android Virtual Device dialog box opens, as shown in
Figure 17-1.

www.it-ebooks.info

http://www.it-ebooks.info/

336 Part IV: Tablets

	

Figure 17-1:
Create a

Nexus 7 tab-
let emulator.

	

	 3.	 Choose Android 4.1 – API Level 16 from the Target drop-down list.

	 	 The Nexus 7 uses Android 4.1.

	 4.	 From the Skin section, select the Built-In radio button and choose
WXGA800-7 from the drop-down menu.

	 5.	 Click the Create AVD button.

	 6.	 Choose the AVD you just created from the list of AVDs and click the
Start button to launch it.

www.it-ebooks.info

http://www.it-ebooks.info/

337 Chapter 17: Porting Your App to Android Tablets

Updating the AndroidManifest File
You need to tell Android that your app works on the large and extra-large
screens of tablets. Without it, your app runs in Compatibility mode as though
it was on a smaller screen, and Android expands your app so that it fills the
screen. Your app can look “jaggy” and ugly.

Edit the AndroidManifest.xml file to add the following lines to the
supports-screens element inside the <manifest> element before the
<application> element:

<supports-screens
 android:largeScreens=”true”
 android:normalScreens=”true”
 android:smallScreens=”true”
 android:xlargeScreens=”true” />

	 You might think that setting one of these attributes to false prevents your app
from being downloaded by devices of that size, but that isn’t necessarily the
case. If xlargeScreens=”false”, for example, your app is still download-
able on extra-large devices, but it runs in Compatibility mode and Android
scales it up to fit the screen. On the other hand, while it’s easy to expand an
app, it’s hard to shrink it, so if smallScreens=”false” your app isn’t down-
loadable by small screen devices.

Programming Activities for Tablets
After you update your AndroidManifest file, the next step is to begin
coding the new activities that are unique to the tablet version of your app.

Creating the
ReminderListAndEditorActivity
The tablet version of your app needs a new, main activity. One that
works for phones doesn’t work with tablets because you want to retain
that activity so that your app continues to work on phones. Create a
ReminderListAndEditorActivity.java file and add this code to it:

www.it-ebooks.info

http://www.it-ebooks.info/

338 Part IV: Tablets

package com.dummies.android.taskreminder;

import android.os.Bundle;

import android.support.v4.app.FragmentActivity;	 ➝4

public class ReminderListAndEditorActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.reminder_list_and_editor);	 ➝10
 }
}

Here’s how the code works:

	 ➝4	 This line ensures you use the FragmentActivity from the sup-
port library rather than the one built into Android 3.x and later.
Otherwise your code doesn’t work on earlier versions of Android.

	 ➝10	 The R.layout.reminder_list_and_editor layout, which
defines the layout for this activity doesn’t exist yet, but you create
it later in this chapter.

Add the new activity to the AndroidManifest.xml file beneath the
ReminderEditActivity that already exists for phones:

<activity android:name=”.ReminderListAndEditorActivity” android:label=”@string/
edit_reminder_title”/>

	 Give the activity a title. Open strings.xml and add a string for edit_
reminder_title, such as Task Reminder – Edit.

Choosing the right activity
The Task Reminder application now has two different main activities — one
for phones and one for tablets. When the user launches your app, which one
will Android choose?

At the moment, Android chooses the phone activity because that’s the only
one associated with the android.intent.action.MAIN intent filter.
Because there’s no way for the app to automatically choose the correct
activity for you, you need to detect it manually when the app starts and then
switch to the tablet version, if necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

339 Chapter 17: Porting Your App to Android Tablets

Add the following method to your ReminderListActivity class:

private Boolean isTablet() {
 int sizeMask = getResources().getConfiguration().screenLayout &

Configuration.SCREENLAYOUT_SIZE_MASK;
 boolean large = (sizeMask == Configuration.SCREENLAYOUT_SIZE_LARGE);
 boolean xlarge = (sizeMask == 4);
 return large || xlarge;
}

This code detects whether the device has a screen in large or extra-large
format. If it does, it returns true.

	 Why sizeMask == SCREENLAYOUT_SIZE_LARGE for the large Boolean,
but sizeMask == 4 for the xlarge Boolean? On later versions of
Android, SCREENLAYOUT_SIZE_XLARGE is equal to 4, so you might think
you could replace the 4 with SCREENLAYOUT_SIZE_XLARGE. However,
SCREENLAYOUT_SIZE_XLARGE did not appear in Android until API level 9,
so if you try to use this constant on an older device the device will crash.
Because the Task Reminder app supports devices older than API level
9, you can’t use the SCREENLAYOUT_SIZE_XLARGE constant directly.
See http://d.android.com/reference/android/content/res/
Configuration.html for more information about SCREENLAYOUT_SIZE_
XLARGE.

	 Beginning with Android 3.2, the SCREENLAYOUT_SIZE_MASK has been dep-
recated in favor of a new system of device size qualifiers. The system is much
more reliable for choosing whether to show a phone or tablet layout, but
because it isn’t available before version 3.2 (even with the support library),
it’s beyond the scope of this book. Visit http://developer.android.
com/guide/practices/screens_support.html for details about the
new size qualifiers.

In your onCreate() method, add the code shown in bold before the call to
setContentView():

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Switch to Tablet activity and finish this one if we’re on a tablet.
 if (isTablet()) {
 startActivity(new Intent(this, ReminderListAndEditorActivity.class));
 finish();
 return;
 }

 setContentView(R.layout.reminder_list);
}

www.it-ebooks.info

http://d.android.com/reference/android/content/res/Configuration.html
http://d.android.com/reference/android/content/res/Configuration.html
http://developer.android.com/guide/practices/screens_support.html
http://developer.android.com/guide/practices/screens_support.html
http://www.it-ebooks.info/

340 Part IV: Tablets

The idea is that if this code runs on a tablet, the ReminderListActivity
immediately quits and starts the ReminderListAndEditorActivity
instead. This way, if a user opens your app on a phone, your app works
optimally for the phone size. But if a user opens your app on a tablet, it runs
optimally for a tablet. A slight overhead cost is involved in doing this kind of
switching, but it should be unnoticeable to your users.

Creating the activity layout
After you have the activity, you need to create its layout.

At this point, you already know the basic idea of what this layout will look
like: a list fragment and an edit fragment placed side by side.

Create a reminder_list_and_editor.xml file in your res/layout direc-
tory and add the following code to it:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”

 android:orientation=”horizontal” >	 ➝5

 <fragment

 android:id=”@+id/list_fragment”	 ➝8
 android:name=”com.dummies.android.taskreminder.ReminderListFragment”	➝9
 android:layout_width=”0dp”	 ➝10
 android:layout_height=”fill_parent”	 ➝11
 android:layout_weight=”1” />	 ➝12

 <FrameLayout

 android:id=”@+id/edit_container”	 ➝15
 android:layout_width=”0dp”
 android:layout_height=”fill_parent”

 android:layout_weight=”1” />	 ➝18

</LinearLayout>

Here’s how the code works:

	 ➝5	 The line wraps your two fragments in a full-screen, horizontal
LinearLayout so that they appear side by side.

	 ➝8–9	 These lines designate the first fragment as the list fragment, called
“@+id/list_fragment”, and specify its full class name as com.
dummies.android.taskreminder.ReminderListFragment.

www.it-ebooks.info

http://www.it-ebooks.info/

341 Chapter 17: Porting Your App to Android Tablets

	 ➝10	 This line gives the layout of a width 0dp. See line 12 to find out
why zero width is a benefit.

	 ➝11	 This line tells the list fragment to occupy half the screen horizon-
tally and the full screen vertically.

	 ➝12–18	 LinearLayouts support the special “layout_weight” param-
eter, which can be used to flexibly split the screen between two
or more views. To use it, set the widths or heights of the children
of LinearLayout to 0dp, and then set a weight for each one. The
LinearLayout adds all the weight values and assigns each child
the proportion that the individual child’s weight represents.

		 Line 12 designates list_fragmentand edit_container views
have a weight of 1 so that each view occupies half the screen.

		 You can also make the list_container have a value of 1 and
the edit_container have a value of 2, in which case the
list_fragment occupies a third of the screen and the
edit_container takes the remaining two-thirds.

		 Note that this strategy works only for LinearLayouts, though it
can be quite handy.

	 ➝15	 This line designates a placeholder (“@+id/edit_container”)
for ReminderEditFragment. A placeholder is preferable
because, even though list view is always onscreen, edit view may
come and go, depending on whether a user is editing an item. If an
item isn’t being edited, it would be confusing to the user to see an
empty edit fragment on the screen.

Run your application on both your phone and the tablet emulator. Though
the new ReminderListAndEditorActivity shows up on the tablet emula-
tor, it won’t on the phone emulator.

Working with Fragments
on Tablet Applications

You create a new activity for your table app, and now you have to add frag-
ments to it. There’s no need to write new fragments to use with the tablet
activity. However, you need to make some changes to your fragments to
make sure they work properly in this new environment.

www.it-ebooks.info

http://www.it-ebooks.info/

342 Part IV: Tablets

Communicating between fragments
If you try to add a task with your tablet application, it doesn’t show the edit
fragment next to the list fragment as you expect, but instead opens a new
activity to add a task.

The reason that your app opens the edit fragment in a new activity, rather
than adjacent to the list fragment, is that it’s still doing exactly what it was
told. It’s still executing the old phone behavior, which is to start a new activ-
ity for each fragment.

The code that does it is this line in ReminderListFragment:

startActivity(new Intent(this, ReminderEditActivity.class).putExtra(
 ReminderProvider.COLUMN_ROWID, id));

It should be easy to change, right? Not so fast. If you change this line to make
it work for tablets, you “break” your existing phone app. The problem is that
you want one behavior (the existing one) for phones and another behavior
for tablets.

To solve this problem, you create an abstract method named edit
Reminder() that does one thing for phones and another thing for tablets.
You then replace the existing call to startActivity() with this updated
method.

	 Don’t be so quick to put the new editReminder() method in the Reminder
ListFragment. The fragment doesn’t know whether it’s running on a phone
or a tablet. It has a method that it can call — editReminder() — that lets
the user edit a reminder.

Communicating with fragments
Allowing fragments to communicate with each
other by using activities as their intermediar-
ies is a common best practice when using
fragments. Visit http://developer.
android.com/guide/components/
fragments.html for more details on this
important pattern. Anytime you need to interact
with another fragment, you should always use
a method in the fragment’s activity rather than

access the other fragment directly. The only
time it makes sense to access one fragment
from another is when you know that you won’t
need to reuse your fragment in another activity.
However, life is always full of surprises — you
should almost always write fragments assum-
ing that you’ll reuse them rather than hard-code
them to each other.

www.it-ebooks.info

http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://www.it-ebooks.info/

343 Chapter 17: Porting Your App to Android Tablets

The key is to realize that because you need one version of editReminder()
for phones and one for tablets, you need to put the editReminder() in two
places — one that runs on phones and one that runs on tablets. Where does
one class run on phones and another class run on tablets? In the activity,
of course. So you put editReminder() in the phone and tablet Activity
classes.

To create the editReminder() callback for your fragment to call, follow
these steps:

	 1.	 Create a new OnEditReminder.java interface, and put the edit
Reminder() method in it, like this:

package com.dummies.android.taskreminder;

public interface OnEditReminder {
 public void editReminder(long id);
}

	 2.	 Implement this method in the ReminderListActivity for the
phones.

		 Modify ReminderListActivity by adding the bits in bold:
package com.dummies.android.taskreminder;

import android.content.Intent;
import android.os.Bundle;
import android.support.v4.app.FragmentActivity;

public class ReminderListActivity extends FragmentActivity implements
 OnEditReminder {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.reminder_list);

 // Switch to tablet activity and finish this one if user is on a
tablet.

 if (isTablet()) {
 startActivity(new Intent(this, ReminderListAndEditorActivity.

class));
 finish();
 return;
 }
 }

 @Override
 public void editReminder(long id) {
 startActivity(new Intent(this, ReminderEditActivity.class).

putExtra(
 ReminderProvider.COLUMN_ROWID, id));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

344 Part IV: Tablets

		 The editReminder() call is identical, line-for-line, to what you
had in the ReminderListFragment, except that now it’s in the
ReminderListActivity instead.

	 3.	 Call this method from the fragment:

		 Visit ReminderListFragment and modify the onOptionsItem
Selected() and onListItemClick() methods as follows:
@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 caseR.id.menu_insert:
 ((OnEditReminder) getActivity()).editReminder(0);
 return true;
 caseR.id.menu_settings:
startActivity(new Intent(getActivity(), TaskPreferences.class));
return true;
 }

return super.onOptionsItemSelected(item);
 }

@Override
public void onListItemClick(ListView l, View v, int position, long id) {
 super.onListItemClick(l, v, position, id);
 ((OnEditReminder) getActivity()).editReminder(id);
 }

		 Now, rather than call startActivity() directly in each method,
the app calls getActivity() to get the activity, casting it to an
OnEditReminder and then calling editReminder().

		 Casting is normally frowned on in Java because it’s often unsafe.
However, it’s safe to cast the result of getActivity() to an OnEdit
Reminder because the ReminderListFragment will always be in
either ReminderListActivity or ReminderListAndEditor
Activity, and both implement OnEditReminder. If ever you want to
add the fragment to another activity, ensure that it, too, implements
OnEditReminder.

	 4.	 Implement the same OnEditReminder interface in your
ReminderListAndEditorActivity for tablets.

		 Add the code in bold to your ReminderListAndEditorActivity:

www.it-ebooks.info

http://www.it-ebooks.info/

345 Chapter 17: Porting Your App to Android Tablets

public class ReminderListAndEditorActivity extends FragmentActivity
implements OnEditReminder {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.reminder_list_and_editor);
 }

 @Override
 public void editReminder(long id) {
 // TBD
 }
}

		 Check out the next section to see exactly how to implement edit
Reminder() for the tablet app.

Before you do that, you need to address one more subtle interaction between
fragments. Take a look at the OnClickListener for the mConfirmButton
in ReminderEditFragment and you’ll see this line:

getActivity().finish();

No good. Calling getActivity().finish() from the phone app returns
the user to the list activity, but calling it from the tablet app closes the app.
Clearly, from the tablet app you want to remove the edit fragment, not finish
the entire activity.

To fix this problem, follow these steps:

	 1.	 Create a new interface named OnFinishEditor, and make it look
like this:

package com.dummies.android.taskreminder;

public interface OnFinishEditor {
 public void finishEditor();
}

	 2.	 Modify the ReminderEditFragment to call this interface instead of
calling finish() directly.

		 Replace both instances of getActivity().finish() with the follow-
ing (there should be two):
((OnFinishEditor) getActivity()).finishEditor();

www.it-ebooks.info

http://www.it-ebooks.info/

346 Part IV: Tablets

	 3.	 Modify the two activities of ReminderEditFragment to add this inter-
face and implement the finishEditor() method.

		 Add the following to your ReminderEditActivity:
public class ReminderEditActivity extends FragmentActivity implements
 OnFinishEditor {

 @Override
 public void finishEditor() {
 finish();
 }
}

		 This is the same code that used to be called in your OnClickListener
and onLoadFinished().

	 4.	 Add the following code to ReminderListAndEditorActivity:

public class ReminderListAndEditorActivity extends FragmentActivity
implements

 OnEditReminder, OnFinishEditor {

 @Override
 public void finishEditor() {
 FragmentManager fragmentManager = getSupportFragmentManager();	

➝6
 FragmentTransaction transaction = fragmentManager.

beginTransaction();	➝7
 Fragment previousFragment = fragmentManager
 .findFragmentByTag(ReminderEditFragment.DEFAULT_EDIT_FRAGMENT_

TAG);	 ➝9

 transaction.remove(previousFragment);	 ➝10

 transaction.commit();	 ➝11
 }

}

As before, you’re using the FragmentManager and a Fragment
Transaction to manage the adding and removing of fragments from the
activity. Here’s what the code does:

	 ➝6	 Asks the FragmentActivity for the FragmentManager.

	 ➝7	 Starts the FragmentTransaction by calling begin
Transaction().

	 ➝9	 Asks the FragmentManager to find the previous fragment named
DEFAULT_EDIT_FRAGMENT_TAG, if any. This name must agree
with the name that you used when you initially added the frag-
ment in editReminder().

www.it-ebooks.info

http://www.it-ebooks.info/

347 Chapter 17: Porting Your App to Android Tablets

	 ➝10	 Removes the fragment. If previousFragment was null, this line
does nothing.

	 ➝11	 Commits the transaction. Remember that every call to begin
Transaction() must end with a call to commit().

Adding fragment transactions
Fundamentally, editReminder() should show an edit fragment for the task
that the user tapped. Or it should show an empty edit fragment if the user
tapped the Add button on the action bar so that the user can add a new task.
If a user taps several tasks in a row, editReminder() should replace the
existing edit fragment with a new one representing the last item.

You’ve already put fragments into activities using XML in your reminder_
list.xml layout. Because you want to dynamically add and remove frag-
ments, this time you use Java instead of XML. The process isn’t hard; it’s just
a little different from XML.

When you want to add or remove fragments in Java, you need to use the
FragmentManager to begin a FragmentTransaction. You then make your
changes and call commit() on the FragmentTransaction, much like you
might do when interacting with a database transaction.

Inside editReminder(), add the following code:

/**
* Set the edit fragment, replacing the existing fragment if there’s one
* already there.
*/
@Override
public void editReminder(long id) {

 ReminderEditFragment fragment = new ReminderEditFragment();	 ➝7
 Bundle arguments = new Bundle();	 ➝8
 arguments.putLong(ReminderProvider.COLUMN_ROWID, id);	 ➝9
 fragment.setArguments(arguments);	 ➝10

 FragmentTransaction transaction = getSupportFragmentManager()

 .beginTransaction();	 ➝13
 transaction.replace(R.id.edit_container, fragment,

 ReminderEditFragment.DEFAULT_EDIT_FRAGMENT_TAG);	 ➝15
 transaction.addToBackStack(null);	 ➝16
 transaction.commit();	 ➝17
}

www.it-ebooks.info

http://www.it-ebooks.info/

348 Part IV: Tablets

Here’s how the code works:

	 ➝7	 Creates a new ReminderEditFragment fragment.

		 Fragments must have no-argument constructors. All arguments go
into a bundle.

	 ➝8–10	 Tells the fragment which task is being edited. An ID of 0 indicates
that a new fragment is being created.

	 ➝13	 Gets the FragmentManager by calling FragmentActivity.
getSupportFragmentManager(), and then calls begin
Transaction() to start a new fragment transaction.

	 ➝15	 Calls FragmentTransaction.replace() to replace the exist-
ing fragment with the new fragment. The edit_container view
tells you where to place the fragment, fragment tells you which
fragment to use, and ReminderEditFragment.DEFAULT_EDIT_
FRAGMENT_TAG reveals the fragment name.

	 ➝16	 Calls addToBackStack() and passes null for the optional state
name.

		 This line requires a little explanation. Think about what happens
whenever you start a new activity — it is added to the activity
stack and, if users tap the Back button, they return to the previous
activity. This standard interaction is expected by users for almost
all activities.

		 The default behavior for fragments, though, is the opposite. By
default, when you add a fragment to an activity, it doesn’t go on
the back stack. So a user who taps the Back button exits the activ-
ity rather than removes the fragment you just added. This may
not be what you want to happen. If you want the Back button to
remove the fragment, you need to call addToBackStack().

		 When adding fragments dynamically, think about what your users
are most likely to expect the Back button to do. In this case, when
the user taps a list item to display an edit fragment, it’s reason-
able for him to expect to be able to tap the Back button to close
the edit fragment.

	 ➝17	 Every call to beginTransaction() must be accompanied by a
call to commit(). This is where Android does the actual work to
add fragments to, or remove them from, your activity.

Congratulations — you should now have a fully implemented version of your
phone application running on your tablet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 18

Moving beyond Google
In This Chapter
▶	Finding out which features don’t work with Kindle
▶	Configuring and testing with an emulator
▶	Uploading your app to the Amazon store.

F
or Android, Google may be the biggest game in town — but it isn’t the
only one. Because Google makes every release of Android open to the

public via the Android Open Source Project, many companies produce their
own, custom versions of the Android source code.

One version that you may be familiar with, Amazon, chose Android to run on
its tablet, the Kindle Fire.

The Android-based Kindle can run apps with few or no modifications. It has
no access to the Google Play Store, though, which means that if you want
Kindle Fire users to be able to download your application, you have to pub-
lish your app to the Amazon Appstore for Android. In this chapter, you find
out how to port your application to the Kindle Fire and then publish it via
Amazon.

	 One reason you may want to port to the Kindle Fire is to reach more users.
But only you can decide whether the additional users you’ll acquire are worth
the extra effort that’s necessary. Do your homework and read relevant statis-
tics on how many users each new platform has before you commit to expend-
ing the effort.

Working Around Google Features
Because the Kindle Fire isn’t a “true” Android device (it doesn’t use the
official Google Android source code but instead uses its custom version),
it doesn’t have access to any of the closed-source Google services that you

www.it-ebooks.info

http://www.it-ebooks.info/

350 Part IV: Tablets

might already be using. In addition, the device itself may not have certain fea-
tures that you’re accustomed to:

	 ✓	Google Maps: If you’re using the Google Maps library to bring maps to
your Android application, you can’t use this library on the Kindle Fire.

	 ✓	Location services: You cannot use Maps, and neither do you have
access to location services on the Kindle Fire. It has no GPS or Wi-Fi–
based location services, so you have no way to tell where the device is
physically located.

	 ✓	Google Play Store in-app purchasing: If your app uses in-app purchas-
ing to allow users to purchase from inside it, you can’t use this same API
in your Kindle Fire app. Luckily, Amazon has a version of in-app purchas-
ing that you can use on the Kindle Fire.

	 ✓	Camera, microphone, Bluetooth, 3G, external storage: The Kindle Fire
has none of these items, so if your app uses them, either find a way
around the limitation or consider not releasing your app on the Kindle
Fire.

	 ✓	Honeycomb, Ice Cream Sandwich, Jelly Bean: Amazon uses the ver-
sion of Android source code before Honeycomb was released, so the
Kindle Fire has no access to any of the features in these three versions.
In particular, you’ll notice that the Kindle Fire has a unique look and feel
that is unlike any other Android tablet. See Chapter 1 for the features
that come with these three Android versions.

Even without these features and services, many Android applications work
on the Kindle Fire with little or no modification. If this includes your app,
read on.

Setting Up Your Kindle Fire or Emulator
If you want to develop for the Kindle Fire, you need either the Kindle Fire
itself to test your app with or an emulator that can act as a surrogate.
Because the Kindle Fire is its own breed of Android, you can’t use the same
ADB you use with other Android devices unless you make a few configuration
changes.

www.it-ebooks.info

http://www.it-ebooks.info/

351 Chapter 18: Moving beyond Google

Creating Kindle-like emulator
If you don’t have access to a Kindle Fire, you need to create an emulator
for one. The process for doing so is slightly different than it is for a regular
Android emulator because the Kindle Fire runs its own version of Android.
Follow these steps:

	 1.	 Install the Android 2.3.3 (API Level 10) SDK using the SDK Manager.

		 Check out Chapter 2 for more details on how to use the SDK Manager.

	 2.	 In the SDK Manager, choose Tools➪Manage Add-on Sites.

		 The Add-on Sites dialog box opens, as shown in Figure 18-1.

	

Figure 18-1:
Add a SDK.

	

	 3.	 On the User Defined Sites tab, click the New button.

	 4.	 Enter the URL http://kindle-sdk.s3.amazonaws.com/addon.
xml and click Close.

		 The Android SDK Manager dialog box opens, as shown in Figure 18-2.

www.it-ebooks.info

http://kindle-sdk.s3.amazonaws.com/addon.xml
http://kindle-sdk.s3.amazonaws.com/addon.xml
http://www.it-ebooks.info/

352 Part IV: Tablets

	

Figure 18-2:
Install the

Kindle Fire
emulator.

	

	 5.	 Scroll down to Android 2.3.3 (API 10), select Kindle Fire, and then
click the Install Packages button.

	 6.	 Accept the license agreement and click Install again.

	 7.	 Open the AVD Manager and click the New button.

	 8.	 Select Target Kindle Fire (Amazon) – API Level 10.

		 The Create New Android Virtual Device dialog box opens, as shown in
Figure 18-3.

	 9.	 Enter a name for your emulator and click Create AVD.

	 10.	 Select the 2_3_3_Kindle_Fire AVD you just created and click Start, and
then click the Launch button to run your new emulator.

		 The Kindle Fire emulator is now running in a window. See Figure 18-4.

www.it-ebooks.info

http://www.it-ebooks.info/

353 Chapter 18: Moving beyond Google

	

Figure 18-3:
Name your

emulator.
	

	

Figure 18-4:
The emula-
tor running
Kindle Fire.

	

www.it-ebooks.info

http://www.it-ebooks.info/

354 Part IV: Tablets

Now you can run your Android application from Eclipse in your Kindle Fire
emulator.

Configuring ADB (Mac)
If you’re using a real Kindle Fire device (as opposed to the emulator), you
can’t connect to a Kindle Fire directly out of the box using ADB without
making a few modifications first. Follow these steps:

	 1.	 On your Mac, edit the adb_usb.ini file in the .android folder of
your home directory.

		 Add the following lines to the bottom of the file:
0x1949
0x0006

	 2.	 Plug in your Kindle Fire and restart ADB:

adb kill-server
adb devices

You now see your Kindle Fire listed in the output from the adb devices
command.

Configuring ADB (Windows)
As on a Mac, you can’t connect to a Kindle Fire device directly out of the box
using ADB, without making a few modifications first.

	 1.	 On your Windows machine, edit the adb_usb.ini file in the
.android folder of your home directory.

		 Add the following line to the bottom of the file:
0x1949

	 2.	 Edit the android_winusb.inf file.

		 Add the following two lines to both the Google.NTx86 and Google.NTamd64
sections:
;Kindle Fire
%SingleAdbInterface% = USB_Install, USB\VID_1949&PID_0006
%CompositeAdbInterface% = USB_Install, USB\VID_1949&PID_0006&MI_01

www.it-ebooks.info

http://www.it-ebooks.info/

355 Chapter 18: Moving beyond Google

	 3.	 Plug in your Kindle Fire and, when prompted, choose to install the
driver manually.

	 4.	 Browse to the android_winusb.inf file you just edited and install it.

	 5.	 Restart ADB by running the following commands in a command
window:

adb kill-server
adb devices

You now see your Kindle Fire in the output from the adb devices
command.

Publishing to Amazon
Appstore for Android

Publishing to the Android Appstore for Android is similar to publishing to the
Google Play Store: You create an account, and then you may need to pay a
developers’ fee.

	 Unlike the Google Play Store, apps must be reviewed on the Amazon Appstore
for Android, so plan a few days between the day you submit your app and the
day it becomes available on the store.

Follow these steps:

	 1.	 Go to https://developer.amazon.com/welcome.html.

	 2.	 Sign in using your Amazon login, or create a new account.

	 3.	 Click the Accept and Continue button to accept the developer’s
license agreement.

	 4.	 Fill out the monetization information if you intend to charge for your
app or for in-app purchases. Then click Save.

		 See Figure 18-5.

	 5.	 Click the Add a New App button.

	 6.	 Enter your app’s title, form factor (phone, tablet, or both), and contact
information on the General Information tab. Click Save when you’re
done.

		 Feel free to fill in the other optional fields such as SKU if it’s useful to
you. See Figure 18-6.

www.it-ebooks.info

https://developer.amazon.com/welcome.html
http://www.it-ebooks.info/

356 Part IV: Tablets

	

Figure 18-5:
Choose

whether to
charge for
your apps.

	

	

Figure 18-6:
Give

Amazon the
details of
your app.

	

www.it-ebooks.info

http://www.it-ebooks.info/

357 Chapter 18: Moving beyond Google

	 7.	 Choose in which countries to make your app available — and its
price.

	 8.	 Choose a category for your app, the language it uses, its title, and
short and long descriptions. Then click Save.

		 See Figure 18-7.

	

Figure 18-7:
Select a

category
and lan-

guage for
your app.

	

	 9.	 Upload a small icon, a large icon, screenshots to include in your app
description, and a promotional screenshot. Then click Save.

	 10.	 Choose your app’s content rating and age restrictions by clicking the
appropriate radio buttons. Then click Save.

	 11.	 Upload your app’s binary code. Then click Save.

		 See Chapter 8 for more information about how to build and upload your
app’s APK file.

	 12.	 Click the Submit App button.

The review process can take anywhere from hours to days to weeks.
However, when your app launches in the app store, you can find it in the
Amazon Appstore for Android alongside other apps as shown in Figure 18-8.

www.it-ebooks.info

http://www.it-ebooks.info/

358 Part IV: Tablets

	

Figure 18-8:
The Amazon
Appstore for

Android.
	

www.it-ebooks.info

http://www.it-ebooks.info/

Part V
The Part of Tens

www.it-ebooks.info

http://www.it-ebooks.info/

In this part . . .

P
art V consists of some of the best secret-sauce-covered
Android nuggets that you acquire only after having

been in the development trenches for quite some time.
Chapter 19 lists some of the best sample applications that
can help springboard you on your way to creating the next
hit application. These applications range from database-
oriented apps to interactive games to applications that
interact with third-party Web application programming
interfaces (APIs).

Part V closes with a list of professional tools and libraries
that can help streamline and improve the productivity of
your application development process and make your life
as a developer much easier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 19

Ten Free Sample Applications
and SDKs

W
hen you develop Android apps, you may run into various roadblocks
based on the code. Perhaps you want an app to communicate with a

third-party API that returns JSON or to perform collision detection in a game.
You can usually search the web for sample code because someone else has
likely already written it. Then all you have to do is review the code, alter it to
fit your needs, and continue with development.

Reviewing sample code increases your knowledge even if you don’t need the
code in an application. In fact, a good way to find out how to program for
Android is to look at sample code. Sure, it comes supplied with the Android
SDK — in the API Demos, for example (see Chapter 2) — but a truly cool
plethora of real world application code is freely available on the web. You
can find on the Internet plenty of high-quality open source applications to
serve as examples, thanks to the open source nature of Android.

Most of the ten excellent open source applications and samples in this chap-
ter are real world Android applications that you can install from the Google
Play Store. Try an application on your device, and then crack open its source
code to see how the gears turn.

The Google I/O 2012 App
http://code.google.com/p/iosched

Every year, throngs of Google developer groupies descend on Moscone
Center in San Francisco for a multiday conference to discuss all things
Google. The official conference app is written for Android devices, and the
app serves as an example of how to write good applications for the platform.

www.it-ebooks.info

http://code.google.com/p/iosched
http://www.it-ebooks.info/

362 Part V: The Part of Tens

LOLcat Builder
http://code.google.com/p/apps-for-android

LOLcat shows you how to manipulate images in Android — how to take a
picture using the device’s camera, add captions to the picture, and then save
the resulting file on the SD card. You can see how to create various intents,
which allow you to send the image in multimedia message service (MMS)
format or as an e-mail attachment.

Amazed
http://code.google.com/p/apps-for-android

The fun game Amazed demonstrates the use of a device’s built-in accelerometer
to navigate a 2D marble through various obstacles inside increasingly difficult
levels of a maze. If you’re interested in accelerometer-based applications,
reviewing its Amazed source code can help you immensely. The application
not only shows you how to use the accelerometer but also demonstrates
other game development fundamentals, such as collision detection and the
game loop principle.

API Demos
The samples folder of the Android SDK holds the source code for the API
Demos app, which demonstrates how to use various Android APIs via small,
digestible, working examples. You can find tons of simple, straight-to-the-
point examples in the API Demos source code. Incorporating animation into
your project or playing an audio file inside your app is easy because API
Demos provides examples of both. If you have a lot of ideas but not a lot of
time, you should definitely install this demo app on your device and play
with its numerous examples to see exactly what they can do.

www.it-ebooks.info

http://code.google.com/p/apps-for-android
http://code.google.com/p/apps-for-android
http://www.it-ebooks.info/

363 Chapter 19: Ten Free Sample Applications and SDKs

HoneycombGallery
If you want your app to run well on phones and tablets, check out the
HoneycombGallery example in the Android SDK because it can save you
hours of debugging and positioning views of the user interface. The working
sample app shows how to support multiple screen sizes and resolutions, and
it demonstrates the proper way to use fragments on different sized devices.
You can find the source code in the samples folder of your Android SDK.

K-9 Mail
http://code.google.com/p/k9mail/

K-9 Mail is a popular e-mail client for Android that used to ship with Android
before it became a separate app. It’s an extraordinarily full-featured open-
source application, with functionality such as search, push, sync, flagging,
signatures, and more.

Agit
https://github.com/rtyley/agit

Git is a popular open-source Distributed Version Control System (DVCS). Agit
lets you view, from the palm of your hand, all your favorite Git repositories
located on GitHub.com. The application demonstrates how to use the GitHub
API as well as the RoboGuice framework.

Facebook SDK for Android
http://github.com/facebook/facebook-android-sdk

If you’re feeling ambitious, you can tackle the task of creating the next popu-
lar Facebook application, even if you don’t know where to begin. Use the
Facebook Android SDK to easily integrate Facebook functionality into your
application — authorize users, make API requests, and much more. Integrate
all the goodness of Facebook without breaking a sweat.

www.it-ebooks.info

http://code.google.com/p/k9mail/
https://github.com/rtyley/agit
http://github.com/facebook/facebook-android-sdk
http://www.it-ebooks.info/

364 Part V: The Part of Tens

Replica Island
http://code.google.com/p/replicaisland

Perhaps you want to make a 2D, side-scrolling game for the Android platform
but have no clue how to get started. Well, it’s your lucky day because the
cool side-scrolling game Replica Island features none other than the little
green android (BugDroid) that developers know and love. Replica Island
is not only a popular, free game on the Google Play Store, it’s also an open
source learning tool for game developers.

Notepad Tutorial
http://d.android.com/guide/tutorials/notepad/index.html

If you’re interested in understanding the basic principles of SQLite without
all the fluff of services, background tasks, and other technical concepts,
Notepad Tutorial is for you. Although simple in its execution and usage, the
source code and tutorial that go along with it are helpful.

www.it-ebooks.info

http://code.google.com/p/replicaisland
http://d.android.com/guide/tutorials/notepad/index.html
http://www.it-ebooks.info/

Chapter 20

Ten Tools to Simplify Your
Development Life

A
s a developer, you inherently build tools to become more productive —
for example, to assist in asynchronous communication, XML and JSON

parsing, date and time utilities, and much more. Before you write a ton of
helper classes or frameworks to handle items for you, seek out tools that
already exist. This chapter lists ten tools and utilities that can simplify your
development life by increasing your productivity and ensuring that your app
is up to snuff.

droid-fu and ignition
http://github.com/kaeppler/droid-fu
https://github.com/kaeppler/ignition

The droid-fu open source library has a handful of methods to help you apply
a karate chop to slice your development time drastically. The library is com-
posed of utility classes that do all the mundane heavy lifting for you, such
as handling asynchronous background requests, retrieving images from the
web, and, most amazingly, enhancing the application life cycle.

Also check out ignition, a replacement for droid-fu by the same authors but
now in the alpha stage.

RoboGuice
http://code.google.com/p/roboguice

No, RoboGuice isn’t the latest and greatest energy drink marketed to
developers — it’s a framework that uses the Google Guice library to streamline

www.it-ebooks.info

http://github.com/kaeppler/droid-fu
https://github.com/kaeppler/ignition
http://code.google.com/p/roboguice
http://www.it-ebooks.info/

366 Part V: The Part of Tens

dependency injection. Dependency injection handles the initializing of variables
at the right time so that you don’t have to. This concept cuts down the amount
of code you have to write overall, and it makes maintaining your application
a breeze.

Translator Toolkit
http://translate.google.com/toolkit

If you want to increase the number of people who can use your app, there’s
almost no better way to do it than to translate your app into other languages.
The answer is to use Google to find helpers to translate your app for you.
The translations aren’t as clean as if you found a native speaker to translate
for you, but they’re a great place to start on the cheap. You might consider
getting the initial translations done by Google, then reaching out to your user
community to find volunteers to edit the translations for you, or using an
outsourcing website such as ODesk to find translators. Even craigslist can be
a great resource!

Draw 9-patch
http://developer.android.com/tools/help/draw9patch.html

The Draw 9-patch utility lets you easily create scalable images for Android.
You use this utility to embed instructions in an image to tell the operating
system where to stretch images so that they display as crisply and cleanly as
possible regardless of the size or resolution of the device screen.

Hierarchy Viewer
http://developer.android.com/tools/help/hierarchy-viewer.

html

Working with various views inside the layout file to create a user interface
isn’t always a straightforward process. Hierarchy Viewer, located in the
Android SDK tools directory, lets you see exactly how your widgets are laid

www.it-ebooks.info

http://translate.google.com/toolkit
http://developer.android.com/tools/help/draw9patch.html
http://developer.android.com/tools/help/hierarchy-viewer.html
http://developer.android.com/tools/help/hierarchy-viewer.html
http://www.it-ebooks.info/

367 Chapter 20: Ten Tools to Simplify Your Development Life

out onscreen graphically. This format lets you clearly see a widget’s boundar-
ies so that you can determine what’s going on inside the layout. Hierarchy
Viewer, the ultimate tool to make a pixel-perfect user interface, also lets you
magnify the display in the pixel-perfect view to ensure that images and UIs
display flawlessly on all screen sizes and at all densities.

UI/Application Exerciser Monkey
http://developer.android.com/tools/help/monkey.html

Don’t worry: The UI/Application Exerciser Monkey doesn’t need to be fed
bananas to remain happy! You use Exerciser Monkey to stress-test your
application. It simulates random touches, clicks, and other user events to
ensure that abnormal usage doesn’t make the app explode. Exerciser Monkey
can be used to test apps on either your emulator or your own device.

zipalign
http://developer.android.com/tools/help/zipalign.html

The zipalign tool aligns all uncompressed data in an APK. Running zipalign
minimizes memory consumption during runtime. If you’re using the ADT in
Eclipse, your application always gets zip-aligned when you export a signed
application, as demonstrated in Chapter 8.

layoutopt
http://developer.android.com/tools/help/layoutopt.html

The layoutopt command-line tool analyzes layouts and reports any problems
or inefficiencies. It’s a helpful tool to run against all your layouts and resource
directories because it identifies problems that may slow down your app and
cause problems later on.

www.it-ebooks.info

http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/zipalign.html
http://developer.android.com/tools/help/layoutopt.html
http://www.it-ebooks.info/

368 Part V: The Part of Tens

Git
http://git-scm.com

Git — a superfast, free, and open-source-distributed version control system —
manages repositories quickly and efficiently, making it painless to back up
work. Don’t let a system crash ruin your day by not having a version control
system for your next spectacular app. Git makes working with branching
simple and effective, and it integrates into your workflow easily. Eclipse
plug-ins exist to help manage your Git repository from within the Eclipse IDE.
Although Git is distributed, you’ll likely want a remote location where the
Git repository is stored. You can obtain a free, private Git repository from
Projectlocker (http://projectlocker.com) or Unfuddle (https://
unfuddle.com). If your code is open source, you can create free repositories
on Github.com.

Paint.NET and GIMP
www.getpaint.net
www.gimp.org

You will work with images at some point during Android development. Most
professionals use Adobe Photoshop, but you may not be able to shell out
much money for an image editing program. Therefore, you have two free
alternatives: Paint.NET and GIMP.

The Paint.NET image manipulation program was written on top of the .NET
Framework. Paint.NET, which is targeted for Windows, works great and is
used by many developers around the world.

The GIMP open source program is similar to Photoshop. GIMP can be
installed on Windows, Linux, or Mac.

www.it-ebooks.info

http://git-scm.com
http://projectlocker.com
https://unfuddle.com
https://unfuddle.com
http://www.getpaint.net
http://www.gimp.org
http://www.it-ebooks.info/

Index
• Symbols •
@ (at symbol), 239

• A •
accelerometer, 23–24
access fine location permissions, 88
acquire() method, 295
action

action bar, 20
intents, 13
pending intent, 166

action bar
actions, 20
app logo, 19
Back button, 19
contextual, 20
page, 19
tablet, 332–334
tabs, 19
Up button, 19

action bar menu, 230
ActionBarSherlock, 20, 334
ACTION_DIAL action, 167
ACTION_EDIT action, 166–167
ACTION_MAIN action, 166
ACTION_VIEW action, 166–167
active/running activity state, 116
activity

adding fragment to, 215–216
configuration change, 120
creating, 120–125
development basics, 13
following path of, 119
group, 115
importance of, 115
killable indicator, 120
life cycle, 117–120
methods, 116, 118

stack, 116
states, 116
user input handling, 121–122
using to create and edit reminders,

212–215
when to use, 211

Activity class, 115, 121
Activity manager, 30
activity_main.xml file, 121
AdapterContextMenuInfo object, 286
adb (Android Debug Bridge) tool, 131
adb devices command, 354–355
add() method, 323
Add Reminder menu icon, 232
Add Repository window, 43–44
Add/Edit Task Reminder screen, 218
add-ons folder, 47
Add-on-Sites dialog box, 351
addPreferencesFromResource()

method, 319
addToBackStack() method, 348
AdMob advertising company, 195
ADT (Android Development Tools)

Export Wizard, 186
setting up Eclipse with, 43–45
visual designer, 113

advertising, 195
Agit application, 363
AlarmManager class

creating OnAlarmReceiver class,
292–294

creating ReminderManager class,
291–292

creating ReminderService class,
296–297

creating WakeReminderIntentService
class, 294–296

reasons for using, 287–288
rebooting devices, 296–297
runtime error, 141–142
waking up processes with, 290

www.it-ebooks.info

http://www.it-ebooks.info/

370 Android Application Development For Dummies, 2nd Edition

ALARM_SERVICE system service type, 127
alert dialog box
AlertDialog window confirmation, 254
basic description, 250
choosing for task, 251
creating, 253–255
reasons for using, 251

AlertDialog class, 257
AlertDialog.Builder class, 253
AlertDialogFragment fragment, 253
ALTER statements, 266
Amazed application, 362
Amazon Appstore

features, 201
publishing to, 355–358

Android ADT
basic description, 34
Export Wizard, 186
setting up Eclipse with, 43–45
visual designer, 113

Android Beam, 58
Android Debug Bridge (adb) tool, 131
Android Development Tools. See ADT
Android Device Chooser dialog box,

134–135
Android 4.0 (Ice Cream Sandwich), 17, 21
Android 4.1 (Jelly Bean), 17, 21
Android framework features, 29–30
Android Native Development Kit (NDK), 38
Android Open Source Project, 29
Android Package file. See APK
Android SDK

adb tool, 38
API demos, 51–52
basic description, 34
download, 36–37
folders, 46–47
navigation, 46–47
New System Variable dialog box, 39
packages, 49–50
Silent Mode Toggle application, 96–97
tools path, setting, 38–40

Android SDK Manager dialog box, 351–352
Android source code, 29

Android Support Library, 18, 334
Android 3.0 (Honeycomb), 17, 20–21
Android version, 47
Android Virtual Device (AVD), 63–66,

335–336
android:icon value, 231
android.intent.action.MAIN intent

filter, 338
android.jar file, 80
android:layout_height=”match_

parent” attribute, 101
android:layout_width=”match_

parent” attribute, 101
AndroidManifest.xml file, 78, 180–181,

289, 337
android:orientation=”vertical”

attribute, 101
android.R class, 231
android.util.Log package, 138
anim/ directory, 82
ANR (Application Not Responding) dialog

box, 16
API demos, 51–52
API Demos application, 362
APK (Android Package) file

creating, 187–190
description, 43
manifest file, 184–185
signing applications, 185–186
tools to build, 185

app logo (action bar), 19
application

activity, 13
adding images to, 102–106
API demos, 51–52
creating launcher icon for, 107–109
cross-compatibility, 11
folder navigation, 77–86
framework, 30–31
global, 159–160
Hello Android, 70–77
intents, 13–14
Java, 13
Keytool, 186

www.it-ebooks.info

http://www.it-ebooks.info/

371371 Index

manifest file, 86–88
market share, 10
marketing, 10
mashup capability, 11–12
name, 56
open platform, 10
previewing in visual designer, 111–112
pricing, 193–195
publishing, 196–200
rating, 200–201
reasons for developing for Android, 9–12
running on emulator, 131–132
sample, 361–364
signing, 185–186
Silent Mode Toggle, 92–99
testing, 151
title, 198
uploading to Google Play Store, 196–200

AppWidgetProvider class
app widget layout, 173–174
broadcast message, 170–171
code listing, 175–176
home screen widget, 164–165
implementation, 170–171
IntentService class, 174–175
metadata, 178–180
registering new components with

manifest file, 180–181
responding to intent, 171–172
widget.xml layout, 173–174

array
arrays.xml filename conventions, 83
integer, 155
typed, 155

assets folder, 81
asynchronous processing, 15–16
AsyncTask class, 15
at symbol (@), 239
audio and video support, 24
AudioManager variable

getting good service, 126–127
toggling silent mode with, 127–130

AUDIO_SERVICE system service type, 127
automated testing, 150

automatic recompilation, 61
AVD (Android Virtual Device), 63–66,

335–336
AVD Manager dialog box, 66

• B •
Back button (action bar), 19
background services, 16
backward-compatiblity, 62
Barnes & Noble Nook, 32
beginTransaction() method, 348
bin folder, 78, 83–84
bindService() method, 166
blocking processes, 251
Bluetooth, 49
Bluetooth radio, 22
body field, 217
Boolean value, 155
boot receiver

checking, 300
creating, 297–299

branding guidelines, 31
breakpoints, 142–144
broadcast message, 170–171
broadcasting intents, 14
BroadcastReceiver object, 165, 292–293
Build Target settings, 62
buildUpdate() method, 177
button

date and time, 241
picker, 240–241
toggle button view, 109–110

• C •
cache, 260
Calendar object, 246–247
callbacks, date and time picker, 246–247
camera

basic description, 22
permissions, 88

cancel() method, 309
cancelAll() method, 309

www.it-ebooks.info

http://www.it-ebooks.info/

372 Android Application Development For Dummies, 2nd Edition

Cascading Style Sheets (CSS), 155
case-sensitivity, 2
category, pending intent, 167
certificate process, signing application, 186
CheckBoxPreference preference, 312
checkIfPhoneIsSilent() method, 129
Choose Packages to Install dialog box,

38, 49–50
chooser, intent, 226–228
class
Activity, 115, 121
AlarmManager, 287–288, 290–297
AlertDialog.Builder, 253
android.R, 231
AppWidgetProvider, 164–165
AsyncTask, 15
DatePicker, 240
DialogFragment, 240, 242
DialogPreference, 312
framework, 125–130
ImageView, 105–106
Intent, 165–166
IntentService, 174–175
ListFragment, 220–225
LoaderManager, 284
MainActivity, 121
MenuInflater, 232
NotificationManager, 207
Object, 127
OnAlarmReceiver, 292–294
OnAlarmReceiver.java, 290
OnBootReceiver, 298–299
OnClickListener, 123
OnDateSetListener, 246–248
OnTimeSetListener, 246–248
ProgressBar, 251
ProgressDialog, 251
ReminderEditActivity, 212
ReminderEditFragment, 247
ReminderListActivity, 209–210
ReminderManager, 291–292
ReminderManager.java, 290
ReminderProvider, 263
RemindersDbAdapter, 265
ReminderService, 296–297

ReminderService.java, 290
RemoteViews, 163–164
SharedPreferences, 313–314
SQLiteOpenHelper, 265–266
TimePicker, 240
View, 96, 123
WakeReminderIntentService, 294–296
WakeReminderIntentService.java, 290

clearing notifications, 309
click events

long, 224–225
short, 223–224

client-server computing, 24
Cloud Messaging framework, 26
code

commenting out, 143
entering, 123–124
extracting to method, 124–125
red, squiggly lines in, 123

coding applications
activities, 115–125
automated testing, 150
errors, 136–148
framework classes, 125–130
installing application, 131–136
interaction, 150
recognizing all possible solutions,

149–151
testing applications, 151

color/ directory, 82
color resource, 156
colors.xml filename conventions, 83
COLUMN_BODY property, 265
COLUMN_DATE_TIME property, 265
COLUMN_ROWID property, 265
columns and rows, 264–265
columns parameter, 278
COLUMN_TITLE property, 265
comment, 201
commenting out code, 143
commit() method, 245, 324, 348
compass, 22
compatibility

cross-compatiblity, 11
version code, 63

www.it-ebooks.info

http://www.it-ebooks.info/

373373 Index

component, pending intent, 167
compression, image, 158–159
computer hardware, 34
configuration

debug, 67
Eclipse, 43–45
run, 66–69

configuration change, 120
Console view (Eclipse), 75–76
contacts

mashup capability, 12
ways to use, 25

content provider
constants, fields, and constructors, 263–264
creating to hold database code, 262
description, 261
SQLite database, 262–270
URLs, 267–270

ContentResolver delete() method, 286
ContentUris.parseId() method, 277
context menu

basic description of, 231
loading the menu, 235
menu XML file, 234–235
user selection handling, 235–236

context parameter, 169
contextual action bar, 20
copy protection, 198
Create New Android Virtual Device dialog

box, 65, 335–336
create table DATABASE_TABLE

property, 265
created activity state, 116
cron job, 206
cross-compatibility, 11
CRUD (create, read, update, and delete)

task, 207, 278
CSS (Cascading Style Sheets), 155
cursor

cursorless controls, 15
returning all task with, 281–285

Cursor object, 276–277
CursorLoader loader, 280–281
custom dialog box, 251
custom validation, 257
Customer objects, 79

• D •
Dalvik Debug Monitor Server. See DDMS
data

intents, 13
pending intent, 166–168

data storage. See also SQLite database
basic description, 259–260
content provider, 261–270
external storage, 260
internal storage, 260
local cache, 260
network connection, 261
public files, 260
remote storage, 261
selecting storage options, 261
shared preferences, 260
SQLite content provider creation, 262–270

database table, 265, 267
date and time buttons, 241
Date button click listener, 241–242
date picker

callbacks, 246–247
Date button click listener, 241–242
DatePickerDialogFragment file,

242–243
showDatePicker() method, 244–245

DATE_FORMAT, 248
DatePicker class, 240
DatePickerDialogFragment file,

242–243
DDMS (Dalvik Debug Monitor Server)

debugging, 49–51
displaying log messages in, 137–138
features, 136
force-close error message, 136–137
LogCat viewer, 136–137, 140
viewing messages, 138–139

debug configuration, 67
default resource, 83
delete() method, 277, 280, 285–286
delete operation, task entry, 280
deleting task, 285–286
density folder, 103
density-independent pixel (dp), 154

www.it-ebooks.info

http://www.it-ebooks.info/

374 Android Application Development For Dummies, 2nd Edition

dependency injection, 366
deployment status, Hello Android

application, 76–77
developer

considerations of becoming, 22–23
reasons for developing for Android, 9–12
registration fee, 28

developer profile (Google Play Store),
190–193

development
activity, 13
Android framework, 29–30
Android platform, 47
Android source code, 29
application framework, 30–31
asynchronous processing, 15–16
background services, 16
cursorless controls, 15
emulator, 48–49
hardware, 33–34
installing and configuring support tools, 34
intent, 13–14
Java programming language, 13, 32–33
Linux 2.6 kernel, 28–29
Open Handset Alliance (OHA) libraries,

31–32
resources, 12
user interface, 100–102
views, 15

device
downloading Windows USB driver for,

49–50
hardware, 22
installing application on, 133–135
rebooting, 296–297

dialog box
alert, 250–255
custom, 251
progress, 251

DialogFragment class, 240, 242
DialogPreference class, 312
dimension, 154
dimens.xml filename conventions, 83
docs folder, 47
doReminderWork() method, 296, 305–306

dots per inch (dpi), 154
download

Android SDK, 36–37
Eclipse, 40

dp (density-independent pixel), 154
dpi (dots per inch), 154
Draw 9-patch utility, 366
drawable/ directory, 82
drawable resources, 106
drawable-hdpi/ directory, 82, 106
drawable-ldpi/ directory, 82
drawable-mdpi directory, 82
drawable-xhdpi/ directory, 82
driver model (Linux 2.6 kernel), 28
droid-fu tool, 365

• E •
Eclipse

configuration, 43–45
Console view, 75–76
download, 40
IDE, 34
installation, 40
Open Perspective button, 138–139, 141
running, 41
setting up, 43–45
Silent Mode Toggle application in, 92
staring project in, 55–60
welcome screen, 41–42
workspace settings, 41–42

Eclipse debugger
breakpoints, 142–144
debug navigation, 147
Debug perspective, 146–147
debuggable property, 144–145
logic error, 147–148
runtime error, 141–142
setting up application as debuggable,

144–145
starting the, 144–147

edit() method, 324
editing preferences, 324
editReminder() method, 233–234,

342–344, 347

www.it-ebooks.info

http://www.it-ebooks.info/

375375 Index

EditText view, 237–240
EditTextPreference preference, 312
EditText.setError() method, 256
e-mail, 201
emulator

benefits, 49
boot screen, 71
Hello Android app running in, 48–49
Home screen, 72–75
limitations, 48
port number, 71
running application on, 131–132
setting up, 63–66

entire lifetime (activity life cycle), 118
Environment Variables dialog box, 39–40
error

coding application, 136–148
commenting out code to throw an, 143
Dalvik Debug Monitor Server (DDMS),

136–141
Eclipse Debugger, 141–148
force-close message, 136–137
logic, 147–148
resource file, 83
runtime, 141–142
setError() method, 256

error message, 60–62
error report, 201
evaluation, pending intent, 168
event listener

click events, 121–123
entering code, 123–124
keyboard event, 122

expanded menu, 230
expiration date, signing application, 186
explicit component, pending intent, 168
Export Android Application Wizard, 187–190
Export Wizard, 186
external storage, 260
Extract Android String dialog box, 157–158

• F •
Facebook SDK for Android, 363
feature detection, 11
field names, 250
fill_parent value, 102, 329–330

findPreference() method, 319
findViewById() method, 123
finish() method, 119, 345
finishEditor() method, 346
five-star rating system, 201
FLAG_ONE_SHOT flag, 306
flags parameter, 169
folder

Android SDK, 46–47
assets, 81
bin, 78, 83–84
density, 103
gen, 61–62, 84–86
hdpi, 109
ldpi, 109
libs, 78, 83–84
mdpi, 103
navigation, 77–86
resources, 81, 83
source, 78–80
Target Android Library, 80
xhdpi, 109

force-close error message, 136–137
foreground lifetime (activity life cycle), 118
foreign language translation, 159–160
Foursquare social networking app, 23
fragment

adding to activity, 215–216
basic description of, 17
creating the adding/editing layout,

217–220
lifecycle, 217
ListFragment class, 220–225
tablet, 330–331
when to use, 211

FrameLayout layout, 97
framework

Android, 29–30
application, 30–31
media, 29

framework class
basic description, 125–126
checking phone ringer state, 126–130
getting good service, 126–127
toggling silent mode with

AudioManager, 127–130
free model, application price, 194

www.it-ebooks.info

http://www.it-ebooks.info/

376 Android Application Development For Dummies, 2nd Edition

• G •
gaming, 12
gen folder, 61–62, 84–86
geolocation

location-based gaming, 12
mashup capability, 11
social networking, 11

getActivity() method, 285
getArguments() method, 216
getCacheDir() method, 260
getDefaultSharedPreferences()

method, 322
getEditText() method, 319
getExternalFilesDir() method, 260
getExternalStorageState()

method, 260
getListView() method, 224
getLoaderManager() method, 281
getLock() method, 295
getMenuInfo() method, 284
getString() method, 323
getSupportFragmentManager()

method, 348
getSystemService() method,

126–127, 292
getType() method, 269
GIMP open source program, 368
Git tool, 368
global resource, 159–160
Gmail application, 14
Google

branding guidelines, 31
Cloud Messaging framework, 26
Maps API, 25–26

Google AdSense advertising company, 195
Google Checkout merchant account, 193
Google I/O 2012 application, 361
Google Nexus 7 AVD, 335–336
Google Play Store

application pricing, 193–195
basic description, 183
developer profile, 190–193
paid application on, 193

screen shots, 195–196
uploading application to, 196–200

GPS feature, 23–24
GPX (GPS eXchange Format) file, 137
Graphical Layout tab, 111
graphics library (Open GL), 29
gravity property, 238
GridLayout layout, 18, 97
group, activity, 115
groupBy parameter, 279

• H •
hardware

accelerometer, 23–24
computer, 34
description, 21
features, 22
GPS feature, 23–24
operating system, 33
SD card, 23–24
touchscreen, 22–23

having parameter, 279
hdpi folder, 109
Hello Android application

checking deployment status, 76–77
running in emulator, 70–75

Hierarchy Viewer tool, 366–367
Holo themes, 20–21
Home screen, 72–75
home screen widget

adding widget to, 181–182
AppWidgetProvider class, 164–165,

170–181
basic description, 161–162
classes associated with, 162
creating, 170–181
pending intent, 165–168
RemoteViews class, 163–164
Silent Mode Toggle application, 163
states, 163

Honeycomb (Android 3.0), 17, 20–21
HoneycombGallery application, 363

www.it-ebooks.info

http://www.it-ebooks.info/

377377 Index

• I •
Ice Cream Sandwich (Android 4.0), 17, 21
icon

options menu, 230
template, 108

id attribute, 105
id parameter, 224
if statement, 322
ignition tool, 365
image

adding to application, 102–106
adding to layout, 105–106
compression, 158–159
drawable resources, 106
layers, 159
pixelation, 158–159
placing onscreen, 102–104
properties, setting, 105–106
resolution, 158–159

ImageView class, 105–106
implicit component, pending intent, 168
in (inch), 154
in-app purchases, 195
initialLayout property, 179
initLoader() method, 281, 284
input validation
AlertDialog instance, 257
custom validation, 257
input-field highlight, 257
methods for, 256
Toast message, 256–257

input-field highlighting, 257
inputType property, 239–240
insert() method, 278
insert operation, 278
insertOrThrow() method, 277–278
Install Details dialog box, 43–45
installation

application on physical device, 133–136
Eclipse, 40
Java JDK, 35–36
running application on emulator, 131–132

installs versus active installs, 201
integer array, 155
integer value, 155
intent. See also pending intent

broadcasting, 14
chooser, 226–228
development basics, 13–14
elements, 13
receiver, registering, 14
sending messages with, 14
starting new activity with, 225–226

Intent class, 165–166
Intent object, 165
intent parameter, 169
intent resolution, 168
IntentService class, 174–175
interaction, coding applications, 150
internal storage, 260
Internet

client-server computing, 24
mashup capability, 12
permissions, 88, 289

isFinishing() method, 119

• J •
Java
Object class, 127
package, 57

Java JDK
basic description, 34
installation, 35–36

Java Platform, Enterprise Edition (J2EE), 13
Java programming language

Android development basics, 13
case-sensitivity, 2
development basics, 32–33

Jelly Bean (Android 4.1), 17, 21
jtwitter.jar library, 83–84
J2EE (Java Platform, Enterprise Edition), 13
jUnit unit-testing framework, 150
JVM (Java Virtual Machine), 32

www.it-ebooks.info

http://www.it-ebooks.info/

378 Android Application Development For Dummies, 2nd Edition

• K •
Key Creation screen, 189
keyboard

keyboard event, 122
onscreen display, 239–240

Keyhole Markup Language (KML) file, 137
keystore, 186
Keystore Selection screen, 188
Keytool application, 186
Kindle Fire

basic description, 349–350
configuring ADB, 354–355
creating Kindle-like emulator, 351–354

KISS principle (Keep It Simple, Stupid), 26
KML (Keyhold Markup Language) file, 137
K-9 Mail application, 363

• L •
l parameter, 224
landscape mode, 113
language translation, 159–160
launch configuration, 66–69
launcher icon

default, 107
matching sizes with screen density, 108
placing into project, 109
templates, 108

layers, image, 159
layout

app widget, 173–174
drawable resources, 106
fragment, 217–220
Silent Mode Toggle application, 93–96
static content scenario, 99
tablet, 331–332

layout/ directory, 82
layout_height attribute, 101–102
layoutopt tool, 367
layout_width attribute, 101–102
ldpi folder, 109
LED light, 303
libs folder, 78, 83–84

life cycle, activity
activity methods, 118
activity paths, 119–120
callback methods, 117
configuration change, 120
key loops, 118

light notification, 303
limit parameter, 279
LinearLayout layout, 97
Linux 2.6 kernel, 28–29
list view, 21
ListFragment class

description, 220–221
fake data, 221–222
list view, 221
user click events, 223–225

list_menu_item_longpress.xml
file, 236

ListPreference preference, 312
ListView view, 329
loader

basic description of, 18
CursorLoader, 280–281
SQLite database, 280–281

LoaderCallback interface, 280–281, 283
LoaderManager class, 284
localization, image layers, 159
location data spoofing, 136
Location manager, 30
LOCATION_SERVICE system service

type, 127
log message, DDMS, 137–138
LogCat viewer, 136–137, 140
logic error, 147–148
LOLcat Builder application, 362
long click event, 224–225

• M •
MainActivity class, 121
MainActivity.java file, 78–79, 120
manifest file

Android package file, 184–185
contents, 86

www.it-ebooks.info

http://www.it-ebooks.info/

379379 Index

permissions, 88
version code, 86–87
version name, 87–88

Maps API, 25–26
Maps app, 23
market share, 10
marketing, 10
mashup capability, 11–12
match_parent value, 102, 329
mAudioManager variable, 126–127
mCalendar object, 248–249
mdpi folder, 103
measurement units, 154
media frameworks, 29
memory, app widget, 175
memory management (Linux 2.6 kernel), 28
menu

action bar, 230
context, 231, 234–237
expanded, 230
good/bad examples, 229
options, 230–231
reminder task, 233–234
submenu, 231
user actions, 233
XML, 231–232

Menu button, 18–19
menu/ directory, 82
menu parameter, 225
menu resource, 156
menu_delete value, 234
MenuInflater class, 232
menuInfo parameter, 225
Messaging application, 14
metadata, 178–180
method

activity, 116
extracting code to, 124–125

millimeter (mm), 154
MIME type, 167
Min SDK Version settings, 62
minHeight property, 179
minLines property, 238
minSdkVersion value, 184–185
minWidth property, 179
mm (millimeter), 154

MMS (multimedia message service), 362
Monkey user interface and application, 150
moveToFirst() method, 276

• N •
name

Android Virtual Device, 64
application, 56
Google Play developer profile, 191
Java package, 57
values directory naming resources, 83

network connection, 261
network stack (Linux 2.6 kernel), 28
New Android App Wizard, 56–57
New Blank Activity screen, 59
New Java Class dialog box, 171
New System Variable dialog box, 39
newWakeLock() method, 295
Nexus One device, 113
normal mode image, 104
Notepad Tutorial, 364
Notification Manager

adding string resources, 308
clearing notification, 309
creating notification, 305–308
doReminderWork() method, 305–306
updating notification, 309
viewing the workflow, 308

Notification object, 309
NotificationManager class, 207
notify() method, 308–309
notify_new_task_message string

resource, 308
notify_new_task_title string

resource, 308
nullColumnHack parameter, 278

• O •
Object class, 127
OHA (Open Handset Alliance), 31–32
On Save method, 256
onActivityCreated() method, 217
onAlarmReceiver class, 292–294
onAlarmReceiver.java class, 290

www.it-ebooks.info

http://www.it-ebooks.info/

380 Android Application Development For Dummies, 2nd Edition

OnBootReceiver class, 298–299
onClick() method, 123
OnClickListener class, 123
onContextMenuItemSelected()

method, 236
OnContextSelectedItem() method, 286
onCreate() method, 116, 118–121, 123, 217
onCreateContextMenu() method, 224, 235
onCreateLoader() method, 281, 284
onCreateView() method, 217
OnDateSet() method, 248
OnDateSetListener class, 246–248
onDestroy() method, 118–120
OnEditReminder.java interface, 343
onFocusChanged() method, 256
onHandleIntent() method, 177, 296
onKeyDown() method, 122
onListItemClick() method, 224–226, 344
onLoaderReset() method, 281, 285
onLoadFinished() method, 281, 285, 346
onOptionsItemSelected() method,

320, 344
onPause() method, 116, 118–120
onReceive() method, 176, 289, 299
onRestart() method, 119
onResume() method, 118–119, 129
onSaveInstanceState() method, 250
onStart() method, 118–119
onStop() method, 118–120
OnTimeSet() method, 248
OnTimeSetListener class, 246–248
onUpdate() method, 176
onUpgrade() method, 266
onViewCreated() method, 224, 232
Open GL (graphics library), 29
Open Handset Alliance (OHA), 31–32
Open Perspective button, 138–139, 141
open platform, 10
open source code, 10
operating system

backward-compatibility, 62
build target, 62
platforms, 33
roots of, 11

options menu, 230–231
orderBy parameter, 279

• P •
package, Java, 57
page (action bar), 19
paid model, application price, 194
Paint.Net image manipulation program, 368
paused activity state, 116
paused fragment state, 217
pending intent

actions, 166
Android intent system, 165–166
category, 167
component, 167
data, 166–168
evaluation, 168
explicit component, 168
how to use, 168–169
implicit component, 168
intent resolution, 168
parameters, 169
type, 167

permissions
commonly requested, 88
Internet, 289
security, 25
setting in AndroidManifest.xml

file, 289
user experience affects, 288

phone ringer state, 126–130
phone versus tablet, 327–328
physical device, 133–135
picker buttons, 240–241
pixel (px), 154, 329
pixelation, 158–159
platforms folder, 47
platform-tools folder, 47
Play Store. See Google Play Store
point (pt), 154
port forwarding, 136
port number, 71
portrait mode, 113
position parameter, 224
preference

in activities at runtime, 321–324
adding values, 323–324
CheckBoxPreference, 312

www.it-ebooks.info

http://www.it-ebooks.info/

381381 Index

DialogPreference class, 312
editing, 324
EditTextPreference, 312
file, 316–317
key-value pairs, 311
laying out, 314–315
ListPreference, 312
persisting values, 314
retrieving values, 321–323
RingtonePreference, 312
setting a, 314
shared, 313–314
string resources, 317–318

PreferenceActivity class
description, 313
menu selections, 320–321
opening the, 320
Preference objects, 313
preference screen, 318
TaskPreferences file, 318–319

PreferenceCategory preference, 315
Preferences dialog box, 45–46
PreferenceScreen preference, 314–315
price, application, 193–195
process management (Linux 2.6 kernel), 28
progress classes, 251
progress dialog box, 251
ProgressBar class, 251
ProgressDialog class, 251
project

application manifest file, 86–88
Build Target and Min SDK Version

settings, 62–63
closing, 88
Eclipse, 55–60
emulator setup, 63–66
error message, 60–62
folder navigation, 77–86
Hello Android app, 70–77
launch configuration, 66–69
placing launcher icon into, 109
properties file, 88
structure, 77–88
Task Reminder application, 208

Project Selection dialog box, 68
projection variable, 276

project.properties file, 78, 88
promotional shot, 198
promotional text, 198
proximity sensor, 22
pt (point), 154
public files, 260
publishing

to Amazon Appstore, 355–358
to Google Play Store, 196–200

putString() method, 324
px (pixel), 154, 329

• Q •
query() method, 276, 278
query (read) operation, 278–279

• R •
radio, 22
rating applications, 200–201
raw asset file, 81
raw/ directory, 82
read phone state permissions, 88
read (query) operation, 278–279
real-time screen shot, 195–196
rebooting devices, 296–297
RECEIVE_BOOT_COMPLETED

permission, 297
red icon (error message), 60
registerForContextMenu() method,

224, 232, 234
registration

developer registration fee, 28
intent receiver, 14

RelativeLayout layout type, 95–97
release() method, 296
reminder date field, 217
reminder script, 206
reminder task, 233–234
reminder time field, 217
ReminderEditActivity class, 212
ReminderEditFragment class, 247
reminder_edit.xml file, 218–220
reminder.edit.xml layout file, 237–238

www.it-ebooks.info

http://www.it-ebooks.info/

382 Android Application Development For Dummies, 2nd Edition

ReminderListActivity class, 209–210
ReminderListAndEditorActivity.

java file, 337–338
reminder_list_and_editor.xml

file, 340
ReminderListFragment fragment,

210–211, 281–285
ReminderManager class, 291–292
ReminderManager.java class, 290
ReminderProvider class, 263, 272–277
RemindersDbAdapter class, 265
ReminderService class, 296–297
ReminderService.java class, 290
remote storage, 261
RemoteViews class, 163–164
Replica Island application, 364
Reply button, 21
RequestCode parameter, 169
res directory, 82
res (resources) folder, 81, 83
res/menu directory, 234
resolution, image, 158–159
resource

color, 156
default, 83
dimensions, 154
global, 159–160
images, 158–159
menu, 156
moving strings into, 156–157
style, 155
themes, 155
types, 153
value, 155

resource file error, 83
resources (res) folder, 81, 83
resumed activity state, 116
resumed fragment state, 217
res/values/strings.xml file, 317–318
ringtone, 303
RingtonePreference preference, 312
R.java file, 84–86
R.layout.activity_main file, 121
R.layout.reminder_edit_activity

file, 214
RoboGuice tool, 365–366

Run As dialog box, 70, 131
run configuration, 66–69
Run Configurations dialog box, 67–69
runtime

Android framework, 29
working with preferences in activities at,

321–324
runtime error, 141–142

• S •
sample application, 361–364
samples folder, 47
savedInstanceState() method, 242, 250
saving field names, 250
scale-independent pixel (sp), 154
screen capturing, 136
screen shot, 195–196
screen size, tablet, 328–330
SCREENSIZE emulator value, 64
scrollbars property, 238
ScrollView view, 329
SD card (Secure Digital Card)

basic description, 23–24
permissions, 289
removable storage, 260

SDK Manager, 36–37, 50
SDK (software development kit)

Android SDK, 36–40
Build Target and Min SDK Version

settings, 62–63
folders, 46–47
Java JDK, 34–36
navigation, 46–47
packages, 49–50
setting location of, 45
Silent Mode Toggle application, 96–97

Secure Digital Card. See SD card
Secure Sockets Layer (SSL), 29
security

permissions, 25
security model (Linux 2.6 kernel), 28

Security Warning dialog box, 41
selection parameter, 279
selectionArgs parameter, 279
sendBroadcast() method, 166

www.it-ebooks.info

http://www.it-ebooks.info/

383383 Index

service, background, 16
set() method, 292
setButtonClickListener() method,

124–125
setClickable() method, 122
setContentView() method, 121, 209–210
setError() method, 256
setHasOptionsMenus() method, 232
setKeyListener() method, 319
setLatestEventInfo() method, 307
setLatestInfo() method, 307
setListAdapter() method, 284
setNotificationUri() method, 276
setReminder() method, 292
ShareCompat, 18
shared preferences, 260, 313–314
SharedPreferences class, 313–314
short click events, 223–224
show() method, 245
showDatePicker() method, 242, 244–245
showTimePicker() method, 245–246
signing application, 185–186
silent mode image, 104
Silent Mode Toggle application

default XML declaration, 95
home screen widget, 163
layout, 93–96
layout type, 95–96
in normal ring mode, 93
phone images, 104
project settings, 92–93
SDK layout tools, 96–97
in silent ring mode, 93–94
views, 96
XML layout file, 94–96

Silent Notification icon, 132–133
SimpleCursorAdapter adapter, 284–285
SimpleDateFormat, 248
SKIN emulator value, 64
social networking, 11
software development kit. See SDK
software tools

audio and video support, 24
contacts, 25
Google APIs, 25–26

Internet, 24
security, 25

sound option, 303
source (src) folder, 78–80
sp (scale-independent pixel), 154
SQL (Structured Query Language), 259
SQLite database. See also data storage

basic description, 29, 261
database table creation, 265, 267
inserting task into, 270–280
loaders, 280–281
returning all task with cursor, 281–285
table object, 264–265

SQLLiteOpenHelper class, 265–266
src (source) folder, 78–80
SSL (Secure Sockets Layer), 29
stack, activity, 116
startActivity() method, 166, 228,

234, 342
startService() method, 166
states, activity, 116
status bar

augmenting a notification, 303
basic description, 301–302
expandable preview notification, 304
light notification, 303
progress loader, 303
sound notification, 303
vibration notification, 303

stopped activity state, 116
stopped fragment state, 217
storage. See data storage
string

moving into resources, 156–157
strings.xml file, 308
strings.xml filename conventions, 83

Structured Query Language (SQL), 259
style, 155
styles.xml filename conventions, 83
submenu, 231

• T •
TabHost layout, 97
table, database, 265, 267

www.it-ebooks.info

http://www.it-ebooks.info/

384 Android Application Development For Dummies, 2nd Edition

table object, 264–265
table parameter

delete operation, 280
insert operation, 278
query (read) operation, 278
update operation, 279

tablet
action bar, 332–334
adding fragment transactions, 347–348
choosing activity, 338–340
communicating between fragments,

342–347
configuring emulator, 335–336
creating activity layout, 340–341
creating

ReminderListAndEditorActivity.
java file, 337–338

developing for, 327–334
fragments, 330–331
layout, 331–332
versus phone, 327–328
porting application for, 335–348
screen size, 328–330

tabs, action bar, 19
TAG constant, 138
Target Android Library folder, 80
TARGET_VERSION value, 64
task

choosing alert dialog for, 251
deleting, 285–286
reminder, 233–234

task entry
delete operation, 280
insert operation, 278
query (read) operation, 278–279
ReminderProvider class

implementation, 272–277
saving values from screen to database,

270–272
update operation, 279–280

Task Reminder application
activity, using to create and edit

reminders, 212–215
adding fragment to activity, 215–216
application’s screens, 207–220
basic requirements, 205–206

create, read, update, and delete (CRUD)
task, 207

creating the adding/editing fragment
layout, 217–220

distracting the user, 206–207
fragment lifecycle, 217
fragment versus activity, 211
intents, 225–228
ListFragment class, 220–225
NotificationManager class, 207
reminder script, 206
ReminderEditActivity class, 212
reminder_edit.xml file, 218–220
ReminderListActivity class, 209–210
ReminderListFragment fragment,

210–211
R.layout.reminder_edit_activity

file, 214
starting new projects, 208
storing data, 206
for tablets, 328–334
Toast view, 207

TaskPreferences file, 318–319
task_preferences.xml file, 316–317
Telephony manager, 30
temp folder, 47
template, icon, 108
testing

application, 151
automated, 150

TextView view, 96, 330
TextWatcher() method, 256
theme, 155
thread, 15
time and date buttons, 241
time picker

callbacks, 246–247
showTimePicker() method, 245–246
Time button click listener, 245
TimePickerDialogFragment, 245–246

TIME_FORMAT, 248
TimePicker class, 240
TimePickerDialogFragment, 245–246
title, 198
title field, 217

www.it-ebooks.info

http://www.it-ebooks.info/

385385 Index

Toast message, 256–257
Toast view, 207
toggle button view, 109–110
toggleUI() method, 129
tool

Draw 9-patch utility, 366
droid-fu, 365
GIMP open source program, 368
Git, 368
Hierarchy Viewer, 366–367
ignition, 365
layoutopt, 367
Paint.Net image manipulation program, 368
RoboGuice, 365–366
Translator Toolkit, 366
UI/Application Exerciser Monkey, 367
zipalign, 367

tools folder, 47
touch event, 122
touchscreen

basic description of, 22
multitouch capability, 23

Translator Toolkit, 366
try-finally block, 296
typed array, 155

• U •
UI (user interface)

activities, 115, 121
adding images to applications, 102–106
basic description, 91
creating launcher icons for applications,

107–109
development, 100–102
loaders, 18
open source code, 10
previewing applications in visual

designer, 111–112
Silent Mode Toggle application, 92–99
toggle button view, 109–110
View system, 31
views, 101–102
visual designer, 97–99
XML layout attributes, 101

UI/Application Exerciser Monkey tool, 367

units of measure, 154
Up button (action bar), 19
update() method, 277–278
update operation, task entry, 279–280
updateAppWidget() method, 177–178
updatePeriodMillis property, 179
updating notifications, 309
uploading application, 196–200
URIMatcher.match() method, 276
URLs, 267–270
USB Debugging, 134–135
usb_driver folder, 46
user actions, menus, 233
user input

alert dialog box, 250–255
creating interface, 237–240
date picker, 241–245
EditText view, 237–240
event listener, 121–122
field names, 250
input validation, 256–257
keyboard event, 122
monitoring user experience, 201
onscreen keyboard display, 239–240
picker buttons, 240–241
time picker, 245–250
touch event, 122

user interface. See UI

• V •
v parameter, 224–225
validating user input, 256–257
value resource, 155
values/ directory, 82–83
values parameter, 278–279
version code, 58, 63, 86–87
version name, 87–88
VGA (Video Graphics Array), 64
vibration option, 303
video and audio support, 24
view

development basics, 15
properties, viewing, 98–99
Silent Mode Toggle application, 96
user interface, 101–102

www.it-ebooks.info

http://www.it-ebooks.info/

386 Android Application Development For Dummies, 2nd Edition

View class, 96, 123
View system, 30
ViewPager, 18
visible lifetime (activity life cycle), 118
visual designer

ADT, 113
Nexus One device, 113
opening the, 97–98
previewing applications in, 111–112
view properties, 98–99

void method, 124

• W •
WakeLock object, 295
WakeReminderIntentService class,

294–296
WakeReminderIntentService.java

class, 290
WebKit web browser engine, 29
whereArgs parameter, 280
whereClause parameter, 279–280
widget. See home screen widget
Wi-Fi Direct API, 62

workspace, Eclipse, 41–42
wrap_content value, 102, 329
writer external storage permissions, 88

• X •
xhdpi folder, 109, 158
XML layout attributes, 101
XML layout file, Silent Mode Toggle

application, 94–96
XML menu, 231–232
xmlns:android=”...” attribute, 101

• Y •
yellow warning icon, 61
YouTube application, 19

• Z •
zipalign tool, 367

www.it-ebooks.info

http://www.it-ebooks.info/

Apple & Mac

iPad 2 For Dummies,
3rd Edition
978-1-118-17679-5

iPhone 4S For Dummies,
5th Edition
978-1-118-03671-6

iPod touch For Dummies,
3rd Edition
978-1-118-12960-9

Mac OS X Lion
For Dummies
978-1-118-02205-4

Blogging & Social Media

CityVille For Dummies
978-1-118-08337-6

Facebook For Dummies,
4th Edition
978-1-118-09562-1

Mom Blogging
For Dummies
978-1-118-03843-7

Twitter For Dummies,
2nd Edition
978-0-470-76879-2

WordPress For Dummies,
4th Edition
978-1-118-07342-1

Business

Cash Flow For Dummies
978-1-118-01850-7

Investing For Dummies,
6th Edition
978-0-470-90545-6

Job Searching with Social
Media For Dummies
978-0-470-93072-4

QuickBooks 2012
For Dummies
978-1-118-09120-3

Resumes For Dummies,
6th Edition
978-0-470-87361-8

Starting an Etsy Business
For Dummies
978-0-470-93067-0

Cooking & Entertaining

Cooking Basics
For Dummies, 4th Edition
978-0-470-91388-8

Wine For Dummies,
4th Edition
978-0-470-04579-4

Diet & Nutrition

Kettlebells For Dummies
978-0-470-59929-7

Nutrition For Dummies,
5th Edition
978-0-470-93231-5

Restaurant Calorie Counter
For Dummies,
2nd Edition
978-0-470-64405-8

Digital Photography

Digital SLR Cameras &
Photography For Dummies,
4th Edition
978-1-118-14489-3

Digital SLR Settings
& Shortcuts
For Dummies
978-0-470-91763-3

Photoshop Elements 10
For Dummies
978-1-118-10742-3

Gardening

Gardening Basics
For Dummies
978-0-470-03749-2

Vegetable Gardening
For Dummies,
2nd Edition
978-0-470-49870-5

Green/Sustainable

Raising Chickens
For Dummies
978-0-470-46544-8

Green Cleaning
For Dummies
978-0-470-39106-8

Health

Diabetes For Dummies,
3rd Edition
978-0-470-27086-8

Food Allergies
For Dummies
978-0-470-09584-3

Living Gluten-Free
For Dummies,
2nd Edition
978-0-470-58589-4

Hobbies

Beekeeping
For Dummies,
2nd Edition
978-0-470-43065-1

Chess For Dummies,
3rd Edition
978-1-118-01695-4

Drawing For Dummies,
2nd Edition
978-0-470-61842-4

eBay For Dummies,
7th Edition
978-1-118-09806-6

Knitting For Dummies,
2nd Edition
978-0-470-28747-7

Language &
Foreign Language

English Grammar
For Dummies,
2nd Edition
978-0-470-54664-2

French For Dummies,
2nd Edition
978-1-118-00464-7

German For Dummies,
2nd Edition
978-0-470-90101-4

Spanish Essentials
For Dummies
978-0-470-63751-7

Spanish For Dummies,
2nd Edition
978-0-470-87855-2

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Connect with us online at www.facebook.com/fordummies or @fordummies

Eric Tyson
Bestselling author of Personal Finance For
Dummies and Mutual Funds For Dummies

Learn to:
Develop and manage a portfolio

Invest in stocks, bonds, mutual,
funds, and real estate

Open a small business

Investing

6th Edition
Making Everything Easier!™

Andy Rathbone
Author of all previous editions of
Windows For Dummies

Learn to:
• lanosreP ize your Windows 7 desktop

with your own photos

• iub htiw swodniW pu deepS lt-in
shortcuts

• lno ot sgninraw swodniW ezimotsuC y
give the notices you want

• evoM your files from your old PC to a
Windows 7 computer

Windows® 7
™

Jamie Combs
Professor at the Herron School of Art & Design

Brenda Hoddinott
Award-winning artist and art educator

Learn to:
• Draw animals, people, still life, and more

• Master shading, blending, composition,
and perspective

• Create your drawings from simple
geometric shapes to finished artwork

Drawing

2nd Edition
Making Everything Easier!™

Edward C. Baig
Bob “Dr. Mac” LeVitus

• Set up your iPad, browse the Web,
and download apps

• View and send e-mail, listen to music,
watch movies, and make FaceTime® calls

• Capture photos, record video, play
games, read your favorite books and
magazines, and text with iMessage

IN FULL COLOR!

Learn to:

iPad
®

 2
3rd Edition

Covers the iPad 2, iPad, and iOS 5!

www.it-ebooks.info

http://www.it-ebooks.info/

Math & Science

Algebra I For Dummies,
2nd Edition
978-0-470-55964-2

Biology For Dummies,
2nd Edition
978-0-470-59875-7

Chemistry For Dummies,
2nd Edition
978-1-1180-0730-3

Geometry For Dummies,
2nd Edition
978-0-470-08946-0

Pre-Algebra Essentials
For Dummies
978-0-470-61838-7

Microsoft Office

Excel 2010 For Dummies
978-0-470-48953-6

Office 2010 All-in-One
For Dummies
978-0-470-49748-7

Office 2011 for Mac
For Dummies
978-0-470-87869-9

Word 2010
For Dummies
978-0-470-48772-3

Music

Guitar For Dummies,
2nd Edition
978-0-7645-9904-0

Clarinet For Dummies
978-0-470-58477-4

iPod & iTunes
For Dummies,
9th Edition
978-1-118-13060-5

Pets

Cats For Dummies,
2nd Edition
978-0-7645-5275-5

Dogs All-in One
For Dummies
978-0470-52978-2

Saltwater Aquariums
For Dummies
978-0-470-06805-2

Religion & Inspiration

The Bible For Dummies
978-0-7645-5296-0

Catholicism For Dummies,
2nd Edition
978-1-118-07778-8

Spirituality For Dummies,
2nd Edition
978-0-470-19142-2

Self-Help & Relationships

Happiness For Dummies
978-0-470-28171-0

Overcoming Anxiety
For Dummies,
2nd Edition
978-0-470-57441-6

Seniors

Crosswords For Seniors
For Dummies
978-0-470-49157-7

iPad 2 For Seniors
For Dummies, 3rd Edition
978-1-118-17678-8

Laptops & Tablets
For Seniors For Dummies,
2nd Edition
978-1-118-09596-6

Smartphones & Tablets

BlackBerry For Dummies,
5th Edition
978-1-118-10035-6

Droid X2 For Dummies
978-1-118-14864-8

HTC ThunderBolt
For Dummies
978-1-118-07601-9

MOTOROLA XOOM
For Dummies
978-1-118-08835-7

Sports

Basketball For Dummies,
3rd Edition
978-1-118-07374-2

Football For Dummies,
2nd Edition
978-1-118-01261-1

Golf For Dummies,
4th Edition
978-0-470-88279-5

Test Prep

ACT For Dummies,
5th Edition
978-1-118-01259-8

ASVAB For Dummies,
3rd Edition
978-0-470-63760-9

The GRE Test For
Dummies, 7th Edition
978-0-470-00919-2

Police Officer Exam
For Dummies
978-0-470-88724-0

Series 7 Exam
For Dummies
978-0-470-09932-2

Web Development

HTML, CSS, & XHTML
For Dummies, 7th Edition
978-0-470-91659-9

Drupal For Dummies,
2nd Edition
978-1-118-08348-2

Windows 7

Windows 7
For Dummies
978-0-470-49743-2

Windows 7
For Dummies,
Book + DVD Bundle
978-0-470-52398-8

Windows 7 All-in-One
For Dummies
978-0-470-48763-1

Gary McCord
CBS golf analyst and Champions Tour winner

Learn to:
• Master your grip, stance, and swing

• Improve your game with tips from
the pros

• Overcome the game’s mental
challenges with tricks and exercises

Golf

4th Edition
Making Everything Easier!™

Joshua Waldman, MBA
Consultant and entrepreneur

Learn to:
Harness the power of Twitter, Facebook,
LinkedIn, and more to research and
identify job opportunities

Create a winning strategy for securing
a position

Build your personal brand online

Job Searching
with Social Media

Making Everything Easier!™

Carolyn Abram
Leah Pearlman
Coauthors of all previous editions of
Facebook For Dummies

Learn to:
Create your profile and find new and old
friends

Set your security so only certain people
see your profile and posts

Upload high definition photos and tag
your friends

Stay connected on the go with Facebook
mobile

Facebook
4th Edition

Making Everything Easier!™

David D. Busch

Use all the features of your new Canon®,
Nikon®, Sony®, Pentax®, or Olympus® dDSLR

Shift out of your camera’s automatic
mode for better pictures

Fine-tune your photos with Adobe®
Photoshop®

IN FULL COLOR!

Learn to:

Digital SLR Cameras

& Photography

4th Edition
Making Everything Easier!™

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call (0) 1243 843291. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Connect with us online at www.facebook.com/fordummies or @fordummies
www.it-ebooks.info

http://www.it-ebooks.info/

Wherever you are
in life, Dummies
makes it easier.

Visit us at Dummies.com and connect with us online at
 www.facebook.com/fordummies or @fordummies

From fashion to Facebook ®,
wine to Windows®,
and everything in between,
Dummies makes it easier.

www.it-ebooks.info

http://www.facebook.com/fordummies
http://www.it-ebooks.info/

• DIY
• Consumer Electronics
• Crafts
• Software
• Cookware

• Hobbies
• Videos
• Music
• Games
• and More!

For more information, go to Dummies.com®
and search the store by category.

 Dummies products
make life easier!

Connect with us online at
www.facebook.com/fordummies or @fordummies

www.it-ebooks.info

http://Dummies.com
http://www.facebook.com/fordummies
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.Dummies.com/go/iphone/apps
http://www.Dummies.com/go/mobile
http://www.it-ebooks.info/

	Android Application Development For Dummies®, 2nd Edition
	Contents at a Glance
	Table of Contents
	Introduction
	About This Book
	Conventions Used in This Book
	Foolish Assumptions
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: The Nuts and Bolts of Android
	Chapter 1: Developing Spectacular Android Applications
	Why Develop for Android?
	Android Development Basics
	Honeycomb, Ice Cream Sandwich, and Jelly Bean Features
	Hardware Tools
	Software Tools

	Chapter 2: Prepping Your Development Headquarters
	Developing the Android Developer Inside You
	Assembling Your Toolkit
	Tuning Up Your Hardware
	Installing and Configuring Your Support Tools
	Getting the Java Development Kit
	Acquiring the Android SDK
	Getting the Total Eclipse
	Navigating the Android SDK
	Targeting Android Platforms
	Using SDK Tools for Everyday Development

	Part II: Building and Publishing Your First Android Application
	Chapter 3: Your First Android Project
	Starting a New Project in Eclipse
	Deconstructing Your Project
	Setting Up an Emulator
	Creating Launch Configurations
	Running the Hello Android App
	Understanding Project Structure
	Closing Your Project

	Chapter 4: Designing the User Interface
	Creating the Silent Mode Toggle Application
	Laying Out the Application
	Developing the User Interface
	Adding an Image to Your Application
	Creating a Launcher Icon for the Application
	Adding a Toggle Button View
	Previewing the Application in the Visual Designer

	Chapter 5: Coding Your Application
	Understanding Activities
	Creating Your First Activity
	Working with the Android Framework Classes
	Installing Your Application
	Uh-Oh! (Responding to Errors)
	Thinking Beyond the Application Boundaries

	Chapter 6: Understanding Android Resources
	Understanding Resources
	Working with Resources

	Chapter 7: Turning Your Application into a Home Screen Widget
	Working with App Widgets in Android
	Working with Pending Intents
	Creating the Home Screen Widget
	Placing Your Widget on the Home Screen

	Chapter 8: Publishing Your App to the Google Play Store
	Creating a Distributable File
	Creating a Google Play Developer Profile
	Pricing Your Application
	Getting Screen Shots for Your Application
	Uploading Your Application to the Google Play Store
	Watching the Number of Installs Soar

	Part III: Creating a Feature-Rich Application
	Chapter 9: Designing the Task Reminder Application
	Reviewing the Basic Requirements
	Creating the Application’s Screens
	Completing Your List Fragment
	Identifying Your Intent

	Chapter 10: Going a la Carte with Your Menu
	Understanding Options and Context Menus
	Creating Your First Menu
	Creating a Context Menu

	Chapter 11: Handling User Input
	Creating the User Input Interface
	Getting Choosy with Dates and Times
	Creating an Alert Dialog Box
	Validating Input

	Chapter 12: Getting Persistent with Data Storage
	Finding Places to Put Data
	Creating Your Application’s SQLite ContentProvider
	Resolving ContentProvider URLs
	Creating and Editing Tasks with SQLite

	Chapter 13: Reminding the User with AlarmManager
	Seeing Why You Need AlarmManager
	Asking the User for Permission
	Waking Up a Process with AlarmManager
	Rebooting Devices

	Chapter 14: Updating the Android Status Bar
	Deconstructing the Status Bar
	Using the Notification Manager
	Updating a Notification
	Clearing a Notification

	Chapter 15: Working with Android’s Preferences Framework
	Understanding the Android Preferences Framework
	Understanding the PreferenceActivity Class
	Creating Your Preferences Screen
	Working with the PreferenceActivity Class
	Working with Preferences in Your Activities at Runtime

	Part IV: Tablets
	Chapter 16: Developing for Tablets
	Considering the Difference Between Phones and Tablets
	Tweaking the Task Reminder App for Tablets

	Chapter 17: Porting Your App to Android Tablets
	Configuring a Tablet Emulator
	Updating the AndroidManifest File
	Programming Activities for Tablets
	Working with Fragments on Tablet Applications

	Chapter 18: Moving beyond Google
	Working Around Google Features
	Setting Up Your Kindle Fire or Emulator
	Publishing to Amazon Appstore for Android

	Part V: The Part of Tens
	Chapter 19: Ten Free Sample Applications and SDKs
	The Google I/O 2012 App
	LOLcat Builder
	Amazed
	API Demos
	HoneycombGallery
	K-9 Mail
	Agit
	Facebook SDK for Android
	Replica Island
	Notepad Tutorial

	Chapter 20: Ten Tools to Simplify Your Development Life
	droid-fu and ignition
	RoboGuice
	Translator Toolkit
	Draw 9-patch
	Hierarchy Viewer
	UI/Application Exerciser Monkey
	zipalign
	layoutopt
	Git
	Paint.NET and GIMP

	Index

Android
JpkatinDevicpmet

