

iPhone Programming

The Big Nerd Ranch Guide

Joe Conway
Aaron Hillegass

iPhone Programming: The Big Nerd Ranch Guide
by Joe Conway and Aaron Hillegass

Copyright © 2010 Big Nerd Ranch, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permis-
sion must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recoring, or likewise. For informa-
tion regarding permissions, contact

Big Nerd Ranch, Inc.
1963 Hosea L. Williams Drive SE
Suite 209
Atlanta, GA 30317
(404) 478-9005

http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, Inc.
Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

ISBN-13 978-0321706249
ISBN-10 0321706242

First printing May 2010

The authors and publisher have taken care in writing and printing this book but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or con-
sequential damages in connection with or arising out of the use of the information or programs contained herein.

App Store, Apple, Bonjour, Cocoa, Cocoa Touch, Finder, Instruments, Interface Builder, iPad, iPhone, iPod, iPod
touch, iTunes, iTunes Store,

Keychain, Leopard, Mac, Mac OS, Multi-Touch, Objective-C, Quartz, Snow Leopard, and Xcode are trademarks of
Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

Acknowledgements
While our names appear on the cover, many people helped make this book a reality. We
would like to take this chance to thank them.

•	 The other instructors who teach the iPhone Bootcamp fed us with a never-ending stream
of suggestions and corrections. They are Scott Ritchie, Brian Hardy, and Alex von Below.

•	 Our tireless editor, Susan Loper, took our distracted mumblings and made them into read-
able prose.

•	 Several	technical	reviewers	helped	us	find	and	fix	flaws.	They	are	Bill	Monk,	Mark	Miller,	
Alex Silverman,
Jonathan Saggau, and Mikey Ward.

•	 Ellie Volckhausen designed the cover. (The photo is of the bottom bracket of a bicycle
frame.)

•	 The amazing team at Pearson Technology Group patiently guided us through the busi-
ness end of book
publishing.

The	final	and	most	important	thanks	goes	to	our	students	whose	questions	inspired	us	to	write	
this book and whose frustrations inspired us to make it clear and comprehensible.

PDF: CrUmp

請勿打印此書，若條件許可，請購買。

iPhone Programming: The Big Nerd Ranch Guide

Chapter 1. A Simple iPhone Application 1
Creating an Xcode Project 2
Using Interface Builder 4
Model-View-Controller 8

Declarations� 10
Declaring�methods� 12

Making Connections 12
Setting�pointers� 13
Setting�targets�and�actions� 14
Summary� 16

Implementing Methods 17
Build and Run on the Simulator 19
Event-driven Programming 20
Application Icons 22
Default Images 24

Chapter 2. Objective-C 26
Using Instances 27
Writing the RandomPossessions Tool 30

NSArray�and�NSMutableArray� 34
Subclassing an Objective-C Class 36

Accessors�and�properties� 40
Instance�methods� 42
Initializers� 43
self� 45
super� 46
Initializer�chain� 47
Class�methods� 48

Exceptions and the Console Window 52
Objective-C 2.0 Additions 54

Chapter 3. Memory Management 56
Memory Management Concepts 56

Managing�memory�in�C� 57
Managing�memory�with�objects� 58

Reference Counting 59
Using�retain�counts� 60
Avoiding�memory�leaks�with�autorelease� 62
Managing�memory�in�accessors�and�properties� 64
Retain�count�rules� 65

Managing Memory in RandomPossessions 66

Chapter 4. Delegation and Core Location 73
Delegation 73
Beginning the Whereami Application 77

Using�frameworks� 77
Core�Location� 78
Receiving�updates�from�CLLocationManager� 81

Releasing Controller Instance Variables 83
Challenge: Heading 84
For the More Curious: Compiler and Linker Errors 84
For the More Curious: Protocols 86

Chapter 5. MapKit and Text Input 89
Object Diagrams 89
Interface Properties 92
Being a MapView Delegate 94

Your�own�MKAnnotation� 97
Tagging�locations� 100
Text�Input�and�the�First�Responder� 101
Putting�the�Pieces�Together� 103

Challenge: Annotation Extras 105
Challenge: Reverse Geocoding 105
Challenge: Changing the Map Type 105
For the More Curious: Renaming an Application 105

Chapter 6. Subclassing UIView 108
Creating a Custom View 108

The�drawRect:�method� 110
Instantiating�a�UIView� 112

Drawing Text and Shadows 114
Using UIScrollView 115
Zooming 117
Hiding the Status Bar 119
Challenge: Colors 119
For the More Curious: Retain Cycles 119
For the More Curious: Redrawing Views 120

Chapter 7. View Controllers 122
View Controllers and XIB Files 122
Using View Controllers 125
Creating the UITabBarController 126

Creating�views�for�the�view�controllers� 132
The Lifecycle of a View Controller 139
Challenge: Map Tab 141
For the More Curious: Paging 141

Chapter 8. The Accelerometer 143
Setting Up the Accelerometer 144
Getting Accelerometer Data 145
Orientation and Scale of Acceleration 146
Using Accelerometer Data 146
Smoothing Accelerometer Data 148
Detecting Shakes 148

Challenge: Changing Colors 152
For the More Curious: Filtering and Frequency 152

Chapter 9. Notification and Rotation 155
Notification Center 155
UIDevice Notifications 156
Autorotation 158
For the More Curious: Forcing Landscape Mode 162
Challenge: Proximity Notifications 164
For the More Curious: Overriding Autorotation 164

Chapter 10. UITableView and UITableViewController 166
Beginning the Homepwner Application 167
UITableViewController 167

Subclassing�UITableViewController� 168
UITableView’s Data Source 173

UITableViewDataSource�protocol� 175
UITableViewCells 178
Reusing UITableViewCells 181
Challenge: Sections 183

Chapter 11. Editing UITableViews 184
Editing Mode 184
Deleting Rows 189
Moving Rows 190

Chapter 12. UINavigationController 198
UINavigationController 199

UINavigationBar� 203
An Additional UIViewController 206
The XIB File and File’s Owner 208

Setting�up�ItemDetailViewController� 209
Navigating with UINavigationController 211

Appearing�and�disappearing�views� 217
Challenge: Number Pad 218

Chapter 13. Camera and UIImagePickerController 219
ImageCache: a Singleton 219

NSDictionary� 220

Taking�pictures�and�UIImagePickerController� 227
Creating�and�using�keys� 232
Dismissing�the�Keyboard� 237

Challenge: Removing an Image 238
For the More Curious: Recording Video 238

Chapter 14. Saving and Loading 242
Application Sandbox 242
Archiving 245
Writing to Disk with NSData 253
Challenge: Archiving Wherewasi 256
For the More Curious: The Application Bundle 258

Chapter 15. Low-Memory Warnings 262
Handling Low-Memory Warnings 262
Simulating Low-Memory Warnings 266

Chapter 16. Subclassing UITableViewCell 268
Creating HomepwnerItemCell 269

Create�subviews� 270
Layout�subviews� 272
Using�the�custom�cell� 273

Image Manipulation 275
Challenge: Accessory Views 281
Challenge: Make it Pretty 281

Chapter 17. Multi-Touch, UIResponder, and Using Instruments 282
Touch Events 282
Creating the TouchTracker Application 283
Turning Touches Into Lines 288
The Responder Chain 290

The�ObjectAlloc�Instrument� 292
The�Sampler�Instrument� 296

Challenge: Saving and Loading 298
Challenge: Circles 298
For the More Curious: UIControl 298

Chapter 18. Core Animation Layer 301
Creating a CALayer 303
For the More Curious: Programmatically Generating Content 312
For the More Curious: Layers and Views 313
Challenge: Dynamic Layer Content 316

Chapter 19. Controlling Animation with CAAnimation 317
Animation Objects 317
Spinning the Time with CABasicAnimation 321

Bouncing the Time with a CAKeyframeAnimation 327
Challenge: More Animation 330
For the More Curious: Presentation and Model Layers 330

Chapter 20. Playing Audio and Video 332
Creating the MediaPlayer Application 332
Playing System Sounds 335
Playing Audio Files 339
Playing Movie Files 341
Low-level APIs 344
Challenge: Audio Recording 344

Chapter 21. Web Services 345
Creating the TopSongs Application 345

Setting�up�the�interface� 347
Fetching Data From a URL 349

Working�with�NSURLConnection� 350
Parsing�XML� 353

For the More Curious: The Request Body 358
Challenge: More Data 358
For the More Curious: Credentials 358

Chapter 22. Address Book 361
The People Picker 361
Additions to Possession Class 366
Address Book Functions 368
For the More Curious: That Other Delegate Method 372

Chapter 23. Localization 374
Internationalization using NSLocale 375
Localizing Resources 376
NSLocalizedString and Strings Tables 381
Challenge: Another Localization 384
For the More Curious: NSBundle’s Role in Internationalization 384

Chapter 24. Bonjour 386
Publishing a Service 386
Browsing for Services 388
TXT Record 392
Socket Connections 395

Chapter 25. Settings 398
Settings Bundle 398
NSUserDefaults 402

Registering�defaults� 402
Using�the�defaults� 403

Chapter 26. SQLite 405

Creating the Nayshunz Application 405
Creating the Database 409
Fetching Data 410
Making and Using the Tree 414
Challenge: Fetching More Data 418
Challenge: Custom Objects 419

Chapter 27. Core Data 420
Creating the Inventory Application 422

Editing�the�model�file� 424
AppController� 428
LabelSettingViewController� 432
LocationListViewController� 438
AssetListViewController� 442
CountViewController� 448

How It All Works 455
Trade-offs of Persistence Mechanisms 457
Challenge 1: Deleting 458
Challenge 2: Custom NSManagedObject Subclasses 458

Chapter 28. Preparing for the iPad 459
Universal Applications 459
Porting existing projects to the iPad 459
Re-designing Wherewasi’s interface 461
More considerations: universal view controllers 463
New Stuff 464

Chapter 1. A Simple iPhone Application

Page 1

Chapter 1. A Simple iPhone Application

In	this	chapter,	you	are	going	to	write	your	first	iPhone	application.	You	probably	
won’t understand everything that you are doing, and you may feel stupid just
going through the motions. But going through the motions is enough for now.
Mimicry is a powerful form of learning; it is how you learned to speak, and it is how
you will start to do iPhone programming. As you become more capable, you can
experiment and challenge yourself to do creative things on the platform. For now,
just do what we show you. The details will be explained in later chapters.

When you are writing an iPhone application, you must answer two basic
questions:

•	 How	do	I	get	my	objects	created	and	configured	properly?	(Example:	“I	
want a button here entitled Show Estimate.”)

•	 How	do	I	deal	with	user	interaction?	(Example:	“When	the	user	presses	
the button, I want this piece of code to be executed.”)

Most of this book is dedicated to answering these questions.

When	an	iPhone	application	starts,	it	puts	a	window	on	the	screen.	You	can	think	
of the window as the canvas on which everything else appears: buttons, labels,
etc. Anything that can appear on the window is a view.

The iPhone SDK is an object-oriented library, and the window and views are
represented by objects. The window is an instance of the class UIWindow. Each
view is an instance of one of several subclasses of UIView. For example, a button
is an instance of UIButton, which inherits from UIView.

Views can be placed on a window in two different ways:

•	 create views and controls programmatically and add them to the UIWindow

•	 use Interface Builder to visually lay out views

In this chapter, you will use Interface Builder to visually lay out the views and build
the	user	interface	for	your	first	iPhone	application,	Quiz	(Figure 1.1).

Chapter 1. A Simple iPhone Application

Page 2

Figure 1.1. Your first application

Creating an Xcode Project
Open Xcode and select New Project... from the File menu. A window will appear
giving you several application templates to choose from. Create a barebones
Cocoa Touch application by selecting the Window-Based Application icon (Figure
1.2). Click theChoose... button. A sheet will drop down and ask you to name this
new	project.	Save	it	as	“Quiz.”

Chapter 1. A Simple iPhone Application

Page 3

Figure 1.2. Creating a new project

Once the project is created, the project window will appear on your screen (Figure
1.3). Take a look at the contents of the Groups and Files table on the left hand
side	of	the	project	window.	Overall,	there	are	two	kinds	of	files	used	to	create	
an application: code and resources. Code is written in Objective-C, C, or C++.
The	code	files	are	listed	in	the	Classes	and	Other	Sources	groups.	Resources	
are things like images and sounds that are used by the application at runtime.
The	groups	in	the	project	window	are	purely	for	the	organization	of	files.	You	can	
rename them whatever you want.

Chapter 1. A Simple iPhone Application

Page 4

Figure 1.3. Xcode project window

Inside	the	Resources	group	you’ll	find	two	files:	MainWindow.xib and Quiz-Info.
plist. The Info property list (Quiz-Info.plist) contains a list of key-value pairs.
The values in this list specify things like the icon to display on the home screen,
whether the application needs a persistent Wi-Fi connection, and the default
language of the application.

The MainWindow.xib	file	contains	the	interface	for	your	application.	Double-click	
on MainWindow.xib to open it in Interface Builder.

Using Interface Builder
At the simplest level, Interface Builder is a GUI builder. Most GUI builders let the
developer describe what they want the application to look like. Then the developer
presses a button, and the builder generates reams upon reams of code. Interface
Builder,	however,	is	an	object	editor:	the	developer	creates	and	configures	objects	
and	then	saves	them	into	an	archive.	This	archive	is	a	XIB	(pronounced	“zib”)	or	
a	NIB	file.	A	XIB	file	is	an	XML	representation	of	your	objects	and	their	instance	
variables,	and	it	is	compiled	into	a	NIB	file	when	your	application	is	built.	The	XIB	
file	is	easier	to	work	with,	but	the	NIB	file	is	smaller	and	easier	to	parse,	which	is	

Chapter 1. A Simple iPhone Application

Page 5

why	the	file	that	actually	ships	with	your	application	is	a	NIB.

When	you	build	your	application,	the	NIB	file	is	copied	into	the	application’s	
bundle. (An iPhone application is really a directory containing the executable
and any resources the executable uses. We refer to this directory as a bundle.)
When	your	application	reads	in	the	NIB	file,	all	of	the	objects	in	the	archive	are	
brought	back	to	life.	This	particular	application	has	only	one	NIB	file	created	from	
MainWindow.xib,	but	a	complex	application	can	have	many	NIB	files	that	are	
read in as they are needed.

Once Interface Builder starts up, you will see several windows as shown in Figure
1.4.

Figure 1.4. Windows in Interface Builder

Chapter 1. A Simple iPhone Application

Page 6

In Figure 1.4,	find	the	window	with	the	title	bar	that	reads	MainWindow.xib. We
call	this	window	the	“doc	window,”	and	it	represents	the	open	XIB	file.	The	doc	
window contains four objects:

File’s Owner An instance of UIApplication. The
event queue for your application is
managed by this object.

First Responder This object doesn’t have much of a use
on the iPhone right now; it is more of
a	relic	from	Desktop	Cocoa.	You	can	
ignore it.

QuizAppDelegate An instance of QuizAppDelegate,
a subclass of NSObject that was
created	by	Xcode	specifically	for	this	
project.	You	will	be	editing	the	source	
code for this class.

Window An instance of UIWindow that
represents this application’s only
window. (All iPhone applications have
only one window.)

The Library and the Inspector are two tools you will use all the time, so leave
those windows open. (If these windows are not visible, select them from the Tools
menu.)	You	drag	objects	from	the	Library	to	create	new	instances	in	your	XIB	
file.	You	use	the	Inspector	to	“inspect”	and	edit	the	configuration	of	objects	in	the	
XIB	file.	The	Inspector	has	four	panels:	Attributes,	Connections,	Size,	and	Info	
represented	by	the	icons	at	the	top	of	the	frame.	You’ll	be	using	the	Attributes	and	
the Connections panels in this chapter.

In the doc window, double-click on the UIWindow object to make it appear full-
sized. (Feel free to close and re-open that window. Sometimes beginners close
the window and fear that they have deleted it.)

From the Library, drag two instances of UILabel onto the window. Make the labels
nearly as wide as the window (Figure 1.5). Then, drag two instances of UIButton
onto	the	window.	You	can	change	the	text	an	object	displays	by	double-clicking	it.	
Set the text for one button to Show Question and the other to Show Answer.

Chapter 1. A Simple iPhone Application

Page 7

Figure 1.5. Adding buttons and labels to the window

Objects have instance variables, and many of these can be set in the Inspector.
As an example, you are going to center the text in the UILabel objects. Select
a UILabel. In the Attributes panel of the Inspector, you will see the options for
Alignment (Figure 1.6). Select the option that centers the text.

Chapter 1. A Simple iPhone Application

Page 8

Figure 1.6. Centering the label text

Now center the text in the other label.

Model-View-Controller
You	will	hear	iPhone	programmers	speak	of	the	“Model-View-Controller	pattern.”	
What that means is every object you create will be exactly one of the following: a
model object, a view object, or a controller object.

View objects are visible to the user; the button, the label, and the window are
all view objects. The views are often standard UIView subclasses (UIButton,
UISlider), but you will sometimes write custom view classes. These typically have
names like DangerMeterView or IncomeGraphView.

Model objects hold data and should know nothing about the user interface. In this
application, the model objects will be two arrays of strings: the questions array
and the answers array. Figure 1.7 displays the object diagram of the Quiz app’s
model objects.

Chapter 1. A Simple iPhone Application

Page 9

Figure 1.7. Diagram of model objects in Quiz

Model objects typically use standard collection classes (NSArray, NSDictionary,
NSSet) and standard value types (NSString, NSDate, NSNumber). But there
can be custom classes, which typically have names that sound like data-bearing
objects like InsurancePolicy or PlayerHistory.

Controller	objects	keep	the	view	and	model	objects	in	sync,	control	the	“flow”	of	
the	application,	and	save	the	model	objects	out	to	the	filesystem.	Controllers	are	
the least reusable classes that you will write, and they tend to have names like
ScheduleController and ScoreViewController. When you create a new iPhone
project from a template, as you did at the beginning of this chapter, the template
will automatically give you a controller object called BlahAppDelegate, where
Blah is the name of your application.

The controller for your application is the instance of QuizAppDelegate. Pressing
one of the application’s buttons will trigger a method in that object. The instance of
QuizAppDelegate will have pointers to the questions and answers arrays. It will
use those model objects to update the button label. These interactions are laid out
in the object diagram for Quiz (Figure 1.8).

Chapter 1. A Simple iPhone Application

Page 10

Figure 1.8. Object diagram for Quiz

Declarations
To pull all this off, QuizAppDelegate	will	need	five	instance	variables	
and	two	methods.	In	this	section,	you	will	declare	them	in	the	header	file	
QuizAppDelegate.h

Declaring instance variables
Here	are	the	five	instance	variables	QuizAppDelegate needs:

questions a pointer to an NSMutableArray
containing instances of NSString

answers a pointer to another NSMutableArray
containing instances of NSString

Chapter 1. A Simple iPhone Application

Page 11

currentQuestionIndex an int that holds the index of the
current question in the questionsarray

questionField a pointer to the UILabel object where
the current question will be displayed

answerField a pointer to the UILabel object where
the current answer will be displayed

Back	in	Xcode,	take	a	look	at	the	header	file	QuizAppDelegate.h. Inside the curly
braces,	add	declarations	for	five	instance	variables.	(Notice	the	bold	type?	In	this	
book, code that you need to type in is always bold; the code that’s not bold is
there to tell you where to type in the new stuff.)

@interface QuizAppDelegate : NSObject <UIApplicationDelegate>
{
 int currentQuestionIndex;

 // The model objects
 NSMutableArray *questions;
 NSMutableArray *answers;

 // The view objects
 IBOutlet UILabel *questionField;
 IBOutlet UILabel *answerField;

 UIWindow *window;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

(Scary	syntax?	Feelings	of	dismay?	Don’t	worry:	you	will	learn	the	Objective-C	
language in the next chapter. For now, just keep going.)

In	Interface	Builder,	you	will	see	items	referred	to	as	“Outlets”.	An	outlet	is	a	
pointer that you can set in Interface Builder. (We’ll see how in just a moment.) In
this	header	file,	we	used	the	macro	IBOutlet,	which	is	predefined	in	the	Cocoa	
Touch frameworks, to explicitly mark these pointers as outlets that can be set in
Interface Builder.

Chapter 1. A Simple iPhone Application

Page 12

Declaring methods
Each of the buttons needs to trigger a method. A method is a lot like a function – a
list of instructions to be executed. Declare two methods in QuizAppDelegate.h
after the closing curly brace and the line containing @property. (We will talk
about @property later in the book; you can ignore it for now.)

@interface QuizAppDelegate : NSObject <UIApplicationDelegate>
{
 int currentQuestionIndex;

 // The model objects
 NSMutableArray *questions;
 NSMutableArray *answers;

 // The view objects
 IBOutlet UILabel *questionField;
 IBOutlet UILabel *answerField;
 UIWindow *window;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;

- (IBAction)showQuestion:(id)sender;
- (IBAction)showAnswer:(id)sender;

@end

In Objective-C, instance variables are declared inside the curly braces, and
methods are declared after the closing curly brace. Save QuizAppDelegate.h.

Making Connections
The views and the controller object that your application needs have been
created, but they know nothing about each other. Now you’re going to introduce
them to each other by making these connections:

•	 The controller object has two pointers that need to point to the UILabel objects.

•	 The UIButton objects need to be wired up to trigger the appropriate methods in
the controller object.

Chapter 1. A Simple iPhone Application

Page 13

Setting pointers
The instance of QuizAppDelegate has a pointer called questionField. Let’s start
by setting that to point to the instance of UILabel that is closest to the top of the
window. In Interface Builder, control-click or right-click on the QuizAppDelegate
to bring up the connections panel (Figure 1.9). Then drag from the circle beside
questionField to the UILabel.

Figure 1.9. Setting questionField

(If you do not see questionField here, double check your QuizAppDelegate.h
file.	Did	you	end	each	line	with	a	semicolon?	Has	the	file	saved	since	you	added	
questionField?)

When	the	NIB	file	is	read	in,	the	QuizAppDelegate’s questionField pointer will
now automatically point to the instance of UILabel.

Now drag from the circle beside answerField to the other UILabel (Figure 1.10).

Chapter 1. A Simple iPhone Application

Page 14

Figure 1.10. Setting answerField

Notice that you drag from the object with the pointer and to the object that you
want that pointer to point at.

Setting targets and actions
UIButton is a subclass of UIControl (which is a subclass of UIView). A control
sends a message to another object when it is activated. So the control needs
answers	to	two	questions:	what’s	the	action	and	who’s	the	target?	An	action	is	the	
name of the method that is triggered by a control. The target is the object that is
sent the message.

In the case of the Show Question button, the button is activated when the user
touches it. The action the touch triggers is showQuestion:, and the target is
QuizAppDelegate.

In Interface Builder, you set an object’s target and action by Control-dragging
from the control to its target. At that point, a pop-up menu appears that lets you
choose an action. Control-drag (or right-drag) from the Show Question button to
theQuizAppDelegate. Release the mouse button and choose showQuestion:
from the pop-up menu as shown in Figure 1.11.

Chapter 1. A Simple iPhone Application

Page 15

Figure 1.11. Setting Show Question target/action

Now set the target and action of the Show Answer button. Control-drag from the
button to the QuizAppDelegate. Choose showAnswer: from the pop-up menu
(Figure 1.12). Notice that the choices in this menu are the actions you added to
the	header	file.

Chapter 1. A Simple iPhone Application

Page 16

Figure 1.12. Setting Show Answer target/action

Summary
There are now six connections between your QuizAppDelegate and other
objects.	You’ve	set	its	pointers	answerField and questionField. That’s two.
The QuizAppDelegate is the target for both buttons. That’s four. And the
template project had two additional connections. First, the UIApplication object
(File’s	Owner	in	this	XIB	file)	has	a	pointer	called	delegate which points at the
QuizAppDelegate. Second, the window pointer of your QuizAppDelegate was
set to the instance of UIWindow.	That	makes	six.	You	can	check	all	of	these	
connections in the Connections panel of the Inspector shown in Figure 1.13.

Chapter 1. A Simple iPhone Application

Page 17

Figure 1.13. Checking connections in the Inspector

Your	XIB	file	is	complete.	The	view	objects	and	the	one	controller	object	have	
been	created.	The	views	have	been	configured	to	look	and	act	the	way	you	wish.	
All the necessary connections have been made.

Now	it’s	time	to	write	the	methods.	Save	your	XIB	file	and	return	to	Xcode.

Implementing Methods
Methods	and	instance	variables	are	declared	in	the	header	file	(in	this	case,	
QuizAppDelegate.h), but the actual code for the methods is placed in the
implementation	file	(in	this	case,	QuizAppDelegate.m). In Xcode, open
QuizAppDelegate.m. First, add an init method that creates the two arrays and
fills	them	with	some	questions	and	answers.

@implementation QuizAppDelegate

@synthesize window;

- (id)init
{
 // Call the init method implemented by the superclass
 [super init];

Chapter 1. A Simple iPhone Application

Page 18

 // Create two arrays and make the pointers point to them
 questions = [[NSMutableArray alloc] init];
 answers = [[NSMutableArray alloc] init];

 // Add questions and answers to the arrays
 [questions addObject:@”What is 7 + 7?”];
 [answers addObject:@”14”];

 [questions addObject:@”What is the capitol of Vermont?”];
 [answers addObject:@”Montpelier”];

 [questions addObject:@”From what is cognac made?”];
 [answers addObject:@”Grapes”];

 // Return the address of the new object
 return self;
}

When an Objective-C object is created and memory is allocated for the object to
live in, all its instance variables are zeroed. The init method is where the instance
variables are given useable initial values.

After the init method, add the two action methods.

- (IBAction)showQuestion:(id)sender
{
 // Step to the next question
 currentQuestionIndex++;

 // Am I past the last question?
 if (currentQuestionIndex == [questions count]) {

 // Go back to the first question
 currentQuestionIndex = 0;
 }

 // Get the string at that index in the questions array
 NSString *question = [questions objectAtIndex:currentQuestionIndex];

 // Log the string to the console

Chapter 1. A Simple iPhone Application

Page 19

 NSLog(@”displaying question: %@”, question);

 // Display the string in the question field
 [questionField setText:question];

 // Clear the answer field
 [answerField setText:@”???”];
}

- (IBAction)showAnswer:(id)sender
{
 // What is the answer to the current question?
 NSString *answer = [answers objectAtIndex:currentQuestionIndex];

 // Display it in the answer field
 [answerField setText:answer];
}

You	will	use	the	default	implementations	for	dealloc and application:didFinishLa
unchingWithOptions:, so leave those alone.

Build and Run on the Simulator
Now you are ready to build the application and run it in the debugger. Use the
Xcode	keyboard	shortcut	for	Build	and	Debug	-	Command-Y.	If	there	are	any	
errors or warnings, a Build Results window with a list of problems will open. Find
and	fix	any	problems	(i.e.,	code	typos!)	and	build	and	debug	again.	Repeat	this	
process until your application compiles. (If you close the Build Results window,
press Command-Shift-B or click on the Failed icon in the bottom right of the
project window to get it back.) Once your application has compiled, it will launch in
the iPhone simulator, and you will be able to test it. Note that the output from the

Chapter 1. A Simple iPhone Application

Page 20

log statements will appear in the debugger console window. To open this window,
select Console from the Run menu. (Or hit Command-Shift-R.)

Event-driven Programming

When the application launches, it enters a loop as shown in Figure 1.14.

Figure 1.14. iPhone application event loop

The UIApplication object waits around for an event. When the user touches the
screen, the touch event is forwarded by the UIApplication object to the view
that was touched. This is often a control (like a button) that then sends its action
message	to	a	controller.	This	triggers	your	custom	code.	Your	code	changes	the	
state	of	a	view,	which	redraws	itself	to	reflect	the	new	state.

In iPhone programming, the event loop drives everything. If you are used to a
programming environment where you drive the application from a main function
that calls other functions, the event loop may seem confusing. We will discuss the
event loop in more detail in later chapters.

Deploying an Application
Now	that	you	have	finished	writing	the	code	for	your	first	iPhone	application	and	
have run it on the simulator, it’s time to deploy it to a device.

Chapter 1. A Simple iPhone Application

Page 21

To install an application onto your development device, you need a developer
certificate	from	Apple.	Developer	certificates	are	issued	to	registered	iPhone	
Developers	who	have	paid	the	developer	fee.	This	certificate	grants	you	the	ability	
to	sign	your	code,	allowing	it	to	run	on	a	device.	Without	a	valid	certificate,	devices	
will not allow your application to run.

Apple’s Developer Program Portal (http://developer.apple.com/iphone/) contains
all	the	instructions	and	resources	to	get	a	valid	certificate.	The	interface	for	the	
set up process is continually being updated by Apple, so it would be fruitless to
describe it in detail. However, a step-by-step guide, the Development Provisioning
Assistant, is available on the program portal.

Work through the Development Provisioning Assistant, paying careful attention to
each	screen.	At	the	end,	you	will	have	added	the	required	certificates	to	Keychain	
Access	and	the	mobile	provision	file	to	Xcode.	You	might	be	curious	as	to	what	
exactly is going on here. In the provisioning process, there are four important
items:

Developer	Certificate This	certificate	file	is	added	to	your	
Mac’s keychain using Keychain
Access. It is used to digitally sign your
code.

App ID The	application	identifier	is	a	string	
that	uniquely	identifies	your	application	
on the App Store. Application
identifiers	typically	look	like	this:	com.
bignerdranch.AwesomeApp, where
the name of the application follows
the name of your company. The App
ID	in	your	provisioning	profile	must	
match	the	bundle	identifier	of	your	
application.	A	development	profile,	like	
you just created, can have a wildcard
character for its App ID and therefore
will	match	any	Bundle	Identifier.	To	see	
the	bundle	identifier	for	an	application,	
open the AppName-Info.plist	file	in	
the Resources group of the project
window.

Chapter 1. A Simple iPhone Application

Page 22

Device ID (UDID) Each iPhone OS device has a unique
identifier.

Provisioning	Profile This	is	a	file	that	lives	on	your	
development device and on your
computer. It references a Developer
Certificate,	a	single	App	ID,	and	a	list	
of the device IDs for the devices that
application can be installed on. This
file	is	suffixed	with	mobileprovision.

When an application is deployed to the device, Xcode uses a provisioning
profile	on	your	computer	to	access	the	appropriate	certificate.	This	certificate	
is used to sign the application binary. Then, the development device’s UDID is
matched	to	one	of	the	UDIDs	contained	within	the	provisioning	profile,	and	the	
App	ID	is	matched	to	the	bundle	identifier.	This	signed	binary	is	then	sent	to	your	
development	device	where	it	is	confirmed	by	the	provisioning	profile	on	the	device	
and launched.

Open Xcode and plug your development device (iPhone or iPod touch) into your
computer. This will automatically open the Organizer window, which can be re-
opened by selecting Organizer from the Window menu. This window is useful for
all things device-related.

To run the Quiz application on your device, you must tell Xcode that it should
deploy to the device instead of the simulator. From the Project menu, mouse
over the Set Active SDK menu item and select Device - iPhone OS 3.0 (Project
Setting).	Build	and	run	your	application	(Command-Y),	and	it	will	appear	on	your	
device!

Application Icons
When the quiz application installs on your development device, its icon is a plain
white tile. But don’t worry - you’re going to give Quiz a better icon.

For	any	iPhone	application,	the	icon	image	must	be	a	57×57	pixel	PNG	file.	You	
can download Icon.png (along with resources for other chapters) from http://www.
bignerdranch.com/solutions/iPhoneProgramming.zip to use as Quiz’s icon. If you
open this image, you’ll notice that it isn’t glossy and doesn’t have rounded corners
like	other	application	icons;	these	effects	are	applied	for	you.	Drag	this	file	into	the	

Chapter 1. A Simple iPhone Application

Page 23

Resources group in the project window.

There are a couple of options for the application icon that can be set in Quiz-Info.
plist	also	located	in	the	Resources	group.	If	you	want	to	use	an	icon	filename	
other than the default Icon.png,	you	can	set	the	value	of	the	Icon	file	key	within	
this	file.	Also,	if	you	don’t	want	the	glossy	effect	added	to	the	application	icon,	you	
can disable it here by adding the key UIPrerenderedIcon and setting its value to
true. To add this key to the property list, select a row within the property list and
click the plus button that appears on the right hand side. A new row will appear
and you can type in UIPrerenderedIcon into the Key column or select Icon already
includes gloss and bevel effects from the pop-up list.

In addition to the 57×57 pixel icon that appears on the home screen, you can
also add a 512×512 pixel JPEG or PNG image to the Resources group named
iTunesArtwork. This image will be shown to iTunes shoppers when viewing your
application	iniTunes.	(You	should	create	a	richer	and	more	detailed	version	of	
your icon for display in the iTunes Store. Users typically won’t be impressed by a
scaled-up, pixellated version of your home screen icon.)

Figure 1.15. The Info Property List

Chapter 1. A Simple iPhone Application

Page 24

Build and run your application again. The Big Nerd Ranch logo will appear as the
icon for Quiz.

Default Images
When launching an application, the code and resources (like MainWindow.xib)
need to be loaded into memory. This takes time, and in the meantime all the user
sees is a black screen. The iPhone is intended to create an interface that feels like
a real object instead of a computer screen, and a delay while loading ruins this
effect.

You	can	fix	this	problem	by	using	a	default	image.	A	default	image	appears	as	the	
application is loading, and the name Default.png is reserved for it.

Typically, the default image is a screen shot of your application’s user interface
as it appears in its freshly opened state. This gives the user the illusion that
the application loaded instantly. By the time the user touches the screen, your
application will have seamlessly replaced the default image with the actual user
interface. (Note that this screen shot is not typically a splash screen. A splash
screen draws attention to the loading delay whereas a dummy image of the actual
interface minimizes the user’s experience of the delay.)

Xcode makes the process of creating and using a default image very easy. Open
the Organizer window and select the Screenshots tab while your application is
running on your connected device (Figure 1.16).

Figure 1.16. Setting Default.png in the Organizer

Chapter 1. A Simple iPhone Application

Page 25

Press the Capture button. Xcode will save the image currently displaying on your
development device’s screen to the view on the left. Select that image and click
Save as Default Image.... When you’re prompted to add it to an application, add it
to Quiz. The selected image is renamed Default.png and added to your project’s
resources. Run your application again, and the interface will pop up as soon as
you touch the application icon.

Congratulations!	You	have	written	your	first	application	and	installed	it	on	your	
device. Now it is time to dive into the big ideas that make it work.

Page 26

Chapter 2. Objective-C

Page 26

Chapter 2. Objective-C

iPhone applications are written in the Objective-C language, a simple extension
of the C language. This book doesn’t have enough pages to cover the entire C
language. Instead, this book will assume you know some C and understand the
ideas of object-oriented programming. If C or object-oriented programming makes
you feel uneasy, Kochan’s Programming in Objective-C is a worthwhile read.

In this chapter, you will learn the basics of Objective-C and create
RandomPossessions, a command-line tool that you will reuse in an iPhone
application later in the book. (So even if you’re familiar with Objective-C, you’ll still
want to go through this chapter in order to create RandomPossessions.)

Objects
Let’s say you need a way to represent a car. That car has a few attributes that
are unique to it, like a model name, four wheels, a steering wheel and whatever
other fancy stuff they put on automobiles since the old Model T. The car can also
perform actions, like accelerating and turning left.

In	C,	you	would	define	a	structure	to	hold	all	of	the	data	that	describes	a	car.	The	
structure would have data members, one for each of these attributes. Each data
member would have a name and a type.

To create an individual car, you would use the function malloc to allocate a chunk
of	memory	large	enough	to	hold	the	structure.	You	would	write	C	functions	to	set	
the value of its attributes and have it perform actions.

In Objective-C, instead of using a structure to represent a car, you would use a
class. Following the car analogy, think of this class as a car factory. When you
write the Car class, you build a factory that knows how to create cars.

When you ask the Car class to make you a car, you get back a car object. This
object, like all objects, is a chunk of data allocated from the heap. The car object
is an instance of the Car class, and it stores the values for its attributes in instance
variables (Figure 2.1).

Page 27

Chapter 2. Objective-C

Page 27

Figure 2.1. A class and its instances

A C structure is a chunk of memory, and so is an object. A C structure has
data members, each with a name and a type. Similarly, an object has instance
variables, each with a name and type.

But there is an important difference between a structure in C and a class in
Objective-C: a class has methods. A method is similar to a function: it has a name,
a return type, and a list of parameters that it expects. A method also has access
to an object’s instance variables. If you want an object to run the code in one of its
methods, you send that object a message.

Using Instances
An instance of a class (an object) has a life span: it is created, sent messages,
and then destroyed when it is no longer needed.

To create an object, you send an alloc message to a class. In response, that class
creates an object in memory and gives you a pointer to it. In code, creating an
object looks like this:

NSMutableArray *arrayInstance = [NSMutableArray alloc];

Here an instance of type NSMutableArray is created, and you are returned

Page 28

Chapter 2. Objective-C

Page 28

a pointer to it in the variable arrayInstance. When you have a pointer to an
instance,	you	can	send	messages	to	it.	The	first	message	you	always	send	to	a	
newly allocated instance is an initialization message.

[arrayInstance init];

Although sending the alloc message to a class creates an instance, the object
isn’t valid until it has been initialized. Since an object must be allocated and
initialized before it can be used, we always combine these two messages in one
line.

NSMutableArray *arrayInstance = [[NSMutableArray alloc] init];

This	line	of	code	says,	“Create	an	instance	of	NSMutableArray and send it the
message init.” Both alloc and init return a pointer to the newly created object so
that you have a reference to it. Typically, you will use the assignment operator (=)
to store that pointer in a variable, as in this line of code.

Combining two messages in a single line of code is called nested message
sends.	The	innermost	brackets	are	evaluated	first,	so	the	message	alloc is sent
to the class NSMutableArray	first.	This	returns	a	new,	uninitialized	instance	of	
NSMutableArraythat is then sent the message init.

Methods	come	in	two	flavors:	instance	methods	and	class	methods.	Instance	
methods (like init) are sent to instances of the class, and class methods (like
alloc) are sent to the class itself, typically either to create new instances of the
class or to retrieve some global property of the class. (We will talk more about
class and instance methods later.)

What	do	you	do	with	an	instance	that	has	been	initialized?	You	send	it	more	
messages. Messages have three parts:

receiver a pointer to the object being asked to
execute a method

selector the name of the method to be
executed

arguments the values to be supplied as the
parameters to the method

Page 29

Chapter 2. Objective-C

Page 29

One such message you can send an NSMutableArray instance is addObject:

[arrayInstance addObject:anotherObject];

(How	do	you	know	you	can	send	this	message?	addObject: is a method
of NSMutableArray. Sending the addObject: message to an instance of
NSMutableArray will trigger the addObject: method.)

The addObject: message is an example of a message with one argument.
Objective-C methods can take a number of arguments or none at all. The
message init, for instance, has no arguments. On the other hand, you can also
send the message replaceObjectsInRange:withObjectsFromArray:range:,
which takes three arguments (Figure 2.2).

Figure 2.2. Anatomy of a message

Each argument has a label, and each label ends with a colon. One thing that
confuses Objective-C beginners is that the name of the message is all of the
labels in a selector. For example, addObject: has one label (addObject:) for its
one argument. The message replaceObjectsInRange:withObjectsFromArray:r
ange: has three arguments, so it has three labels.

In C++ or Java, this method would look like this:

arrayInstance.replaceObjectsInRangeWithObjectsFromArrayRange(aRange,
 anotherArray,
 anotherRange);

In these languages, it isn’t completely obvious what each of the arguments sent
to this function are. In Objective-C, however, each argument is paired with the
appropriate label:

[arrayInstance replaceObjectsInRange:aRange
 withObjectsFromArray:anotherArray
 range:anotherRange];

Page 30

Chapter 2. Objective-C

Page 30

Objective-C developers learn to appreciate the clarity of having a label for each
argument even though it requires a little more typing. For example, you can have
two methods replaceObjectsInRange:withObjectsFromArray:range: and
replaceObjectsInRange:. These methods do not have to be related; they are two
distinct messages that you can send to an instance of NSMutableArray.

To destroy an object, you send it the message release.

[arrayInstance release];

This line of code destroys the object pointed to by the arrayInstance variable.
(It’s actually a bit more complicated than that, and you’ll learn about the details of
memory management in the next chapter.) It is important to note that although you
destroyed the object, the variable arrayInstance still has a value – the address
of where the NSMutableArray instance used to exist. If you send a message
to arrayInstance, it will cause a problem because that object no longer exists.
However, if arrayInstance is set to nil, the problem goes away. (nil is the zero
pointer. C programmers know it as NULL. Java programmers know it as null.)

arrayInstance = nil;

Now there is no danger of sending a message to the outdated memory address.
Sending a message to nil is okay in Objective-C; nothing will happen. In a
language like Java, sending messages to nil is illegal, so you see this sort of thing
a lot:

if	(rover	!=	nil)	{
 [rover doSomething];
}

In Objective-C, this check is unnecessary because a message sent to nil is just
ignored. (A corollary: if your program doesn’t do anything when you think it should
be doing something, an unexpectedly nil pointer is often the culprit.)

Writing the RandomPossessions Tool
Before you dive into the UIKit (the set of libraries you use to create iPhone
applications), you’re going to write a command-line tool that will let you focus on
the Objective-C language. Open Xcode and select New Project... from the File
menu. On the left hand table, select Application from underneath the Mac OS X
section. Select Command Line Tool from the upper right panel. A list of options will

Page 31

Chapter 2. Objective-C

Page 31

appear in the pop-up menu of the bottom right panel. Choose Foundation from
this pop-up menu as shown in Figure 2.3. Click the Choose... button.

Figure 2.3. Creating a command line utility

Name this project RandomPossessions. A project window will appear.

One	source	file	(RandomPossessions.m) has been created for you in the
Source group on the left hand side of the project window (Figure 2.4).

Page 32

Chapter 2. Objective-C

Page 32

Figure 2.4. Project window

Double-click	on	this	file	to	open	it,	and	you’ll	see	some	code	has	already	been	
written for you – most notably, a main function that is the entry point of any C (or
Objective-C) application.

Time to put your knowledge of Objective-C basics to the test. Delete the line
of code that NSLogs	“Hello,	World!”	and	replace	it	with	a	line	that	creates	an	
instance of an NSMutableArray.

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[])
{
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 NSMutableArray *items = [[NSMutableArray alloc] init];

 [pool drain];
 return 0;
}

Once you have an instance of NSMutableArray, you can send it some messages.
In this code, the receiver is the object pointed to by items. Add a few strings to
this array instance.

 NSMutableArray *items = [[NSMutableArray alloc] init];

Page 33

Chapter 2. Objective-C

Page 33

 [items addObject:@"One"];
 [items addObject:@"Two"];
 [items addObject:@"Three"];
 [items insertObject:@"Zero" atIndex:0];

 [pool drain];

When	you	want	a	string	object	in	Objective-C,	you	prefix	a	literal	C	string	with	an	
@ symbol. This tells the compiler that you want to use an instance of NSString
(another Objective-C class) to contain this string.

When this application executes, it creates an NSMutableArray	and	fills	it	with	four	
NSString	instances.	However,	you	need	to	confirm	your	success.	After	adding	the	
final	object	to	the	array,	loop	through	every	item	in	the	array	and	print	them	to	the	
console.	(You	can	find	out	how	many	items	are	in	an	NSMutableArray by sending
it the message count.)

 [items insertObject:@"Zero" atIndex:0];
 for(int i = 0; i < [items count]; i++) {
 NSLog(@"%@", [items objectAtIndex:i]);
 }
 [pool drain];

Select Build and Run from the Build menu. It may seem like nothing has
happened since the program exits fairly quickly, but the console tells another story.
From the Run menu, select Console. Ah, there we go – your hard work has paid
off, and you now have output from your application (Figure 2.5).

Figure 2.5. Console output

Page 34

Chapter 2. Objective-C

Page 34

NSArray and NSMutableArray
What exactly is this NSMutableArray?	An	array	is	a	collection	object	(also	called	
a container). In the Cocoa Touch frameworks, there are a few collection objects,
such as NSDictionary and NSSet, and each has a slightly different use. An array
is an ordered list of objects that are accessed by an index. Other languages might
call it a list or a vector. An NSArray is immutable, which means you cannot add or
remove	objects	after	the	array	is	instantiated.	You	can,	however,	access	objects	
within the array. NSArray’s mutable subclass, NSMutableArray, lets you add and
remove objects dynamically.

In Objective-C, an array does not actually contain the objects that belong to it;
instead it holds a pointer (a reference) to each object. When an object is added to
an array,

 [array addObject:object];

the address of that object in memory is stored inside the array.

Arrays can hold any type of Objective-C object. This means primitives and C
structures cannot be added to an array. For example, you cannot have an array of
ints. Also, because arrays only hold a pointer to an object, you can have objects
of different types in a single array. This is different from many other compiled
languages where an array can only hold objects of its declared type.

Note that you cannot add nil to an array. If you need to add holes to an array, you
must use the NSNull object. NSNull is an object that represents nil and is used
specifically	for	this	task.

 [array addObject:[NSNull null]];

To retrieve the pointer to an object later, you send the message objectAtIndex: to
the array,

 NSString *object = [array objectAtIndex:0];

How	do	you	know	the	order	of	the	objects	in	an	array?	When	an	object	is	added	to	
an array with the message addObject:,	it	is	added	at	the	end	of	the	array.	You	can	
ask an array how many objects it is currently storing by sending it the message
count. This information is important because if you ask for an object from an array
at an index that is greater than the number of objects in the array, an exception
will be thrown. (Exceptions are very bad; they will most likely ruin your application

Page 35

Chapter 2. Objective-C

Page 35

and cause it to crash.)

 int numberOfObjects = [array count];

You	can	also	insert	objects	at	a	specific	index	–	as	long	as	that	index	is	less	than	
or equal to the current number of objects in the array.

 int numberOfObjects = [array count];
 [array insertObject:object
 atIndex:numberOfObjects];

Objects added to an array are sent the message retain. When an object is
removed from an array, it is sent the message release. When an array is
deallocated, all of its objects are sent the message release. If you don’t know
what retain, release, and deallocate mean, that’s okay; you’ll learn about them in
the following chapter.

So, to recap, you created an instance of NSMutableArray to which you added
four instances of NSString as shown in Figure 2.6.

Figure 2.6. NSMutableArray instance

Then, you looped through every instance in that array. Each time you iterated
through this loop, you called the C function NSLog with a single parameter. That
single parameter was the description of the object at the ith index of the array.

The NSLog function is to Objective-C as the printf function is to C. The NSLog
function uses the same format list with one addition: you can print Objective-C
objects.	To	print	an	Objective-C	object,	the	format	is	“%@”.	When	the	format	string	
is parsed, the NSLog	function	finds	the	matching	argument	in	the	argument	list	
and sends it the message description. (Every object has a description method.)
The string returned from that method then replaces the format string. And

Page 36

Chapter 2. Objective-C

Page 36

remember, the NSLog function expects an NSString for the format list, so you
have	to	prefix	an	@	character	before	the	string	literal.

Subclassing an Objective-C Class
Where does the description	method	come	from?	Every	class	has	exactly	one	
superclass – except for the root class of the entire hierarchy: NSObject. That
means, at minimum, every class inherits from NSObject. NSObject implements a
method named description.

Sending the description message to an NSObject returns an NSString
containing information about that instance. By default, that string is the object’s
class and its address in memory. A subclass of NSObject, like NSString, will
override this method to return something that does a better job describing an
instance of that subclass. For NSString, description just returns the string itself
since that is the best way to describe an NSString instance.

So	how	do	these	subclasses	get	created?	Glad	you	asked	because	now	you	are	
going to create one of your own. From the File menu, select New File.... Select
Cocoa Class from the Mac OS X section in the left hand table. Then, select
Objective-C class from the upper right panel. Choose NSObject from the pop-up
menu as shown in Figure 2.7.

Page 37

Chapter 2. Objective-C

Page 37

Figure 2.7. Creating a class

Hit	the	Next	button,	and	you	will	be	given	a	chance	to	configure	this	new	
Objective-C	class.	Change	the	filename	to	Possession.m.	The	files	for	this	class	
will be created and added to your project when you click Finish (Figure 2.8).

Page 38

Chapter 2. Objective-C

Page 38

Figure 2.8. Configuring a new class

For	every	Objective-C	class,	there	are	two	files:	a	header	file	and	an	
implementation	file.	The	header	file	(also	called	an	interface	file)	declares	the	
name of the new class, its superclass, the instance variables that each instance
of	this	class	has,	and	any	methods	this	class	implements.	This	file	is	suffixed	with	
.h. Open Possession.h by double-clicking on it in the Groups & Files table in the
project window.

The	goal	of	the	header	file	is	to	declare	an	Objective-C	class.

@interface Possession : NSObject {

}
@end

Let’s	break	down	this	interface	declaration	to	figure	out	what	it	all	means.	First,	
note that the C language retains all of its keywords and any additional keywords
from	Objective-C	are	distinguishable	by	the	@	prefix.	To	declare	a	class	in	
Objective-C, you use the keyword @interface followed by the name of this new
class. After a colon comes the name of the superclass. Possession’s superclass

Page 39

Chapter 2. Objective-C

Page 39

is NSObject. Objective-C only allows single inheritance, so you will only ever see
the following pattern:

@interface ClassName : SuperclassName

Next comes the space for declaring instance variables. Instance variables must
be declared inside the curly brace block immediately following the class and
superclass declaration. After the the closing curly brace, you declare any methods
that this class implements. Once you declare methods here, you must implement
them	in	the	implementation	file	or	the	compiler	will	give	you	a	warning.	Finally,	the	
@end	keyword	finishes	off	the	declaration	for	your	new	class.

Instance variables
So far, the Possession class doesn’t add a whole lot of interesting information to
its superclass NSObject, so let’s give it some possession-like instance variables.
A possession, in our world, is going to have a name, serial number, value, and
date	of	creation.	You	are	going	to	declare	an	instance	variable	for	each	of	these	
attributes (Figure 2.9).

Figure 2.9. A Possession instance

Type this new code into Possession.h. Also, make sure to change the imported
header from Cocoa to Foundation. We are going to reuse this class later for an
iPhone application, and the Cocoa framework doesn’t exist on the iPhone.

// Don't forget to change this line from Cocoa/Cocoa.h!
#import <Foundation/Foundation.h>
@interface Possession : NSObject
{
 NSString *possessionName;
 NSString *serialNumber;
 int valueInDollars;

Page 40

Chapter 2. Objective-C

Page 40

 NSDate *dateCreated;
}
@end

Accessors and properties
Now that you have instance variables, you need a way to get and set them. In
object-oriented languages, we call methods that get and set instance variables
accessors. Individually, we call them getters and setters. Without these methods,
one object cannot access the instance variables of another object.

Prior	to	Objective-C	version	2.0,	we	had	to	explicitly	declare	and	define	every	
accessor method. That was a lot of typing. Fortunately, Objective-C 2.0 introduces
a shortcut called properties. By creating a property, you are declaring two
accessor methods. Before properties were introduced, you would have declared
those two accessor methods as follows:

// Getter
- (int)fido;

// Setter
- (void)setFido:(int)v;

You	might	wonder	why	the	name	of	the	getter	is	simply	fido instead of getFido.
This is another Objective-C style convention. The name of the instance variable
you are accessing is the name of the getter method for it. While there is no
compiler warning or error if you use get, stylish iPhone programmers stick to the
convention.

With properties, you can declare the same two accessors in one line of code:

@property	int	fido;

When you create a property, the accessors are declared according to the naming
convention above. Properties also declare how the accessors are implemented
by setting property attributes. One attribute addresses how the setter method
will	set	the	variable.	The	default	is	simple	assignment.	You	can	change	this	to	
copy or retain. (The reasons why you might do this will make more sense after
we talk about memory management in the next chapter.) Another attribute deals
with whether the variable can be changed. The default is readwrite, but it can be
set to readonly. In that case, only the getter method is declared. A third attribute
tells us if the variable requires a lock. This attribute defaults to atomic, which

Page 41

Chapter 2. Objective-C

Page 41

means a lock must be acquired to get or set the variable. Specifying a property
as nonatomic means no lock is required. In this book, you’ll stick to nonatomic
because it’s a touch faster.

Property declarations are made in the same place as method declarations – after
the closing curly brace. Add the following property declarations to Possession.h.

#import <Foundation/Foundation.h>
@interface Possession : NSObject
{
 NSString *possessionName;
 NSString *serialNumber;
 int valueInDollars;
 NSDate *dateCreated;
}
@property (nonatomic, copy) NSString *possessionName;
@property (nonatomic, copy) NSString *serialNumber;
@property (nonatomic) int valueInDollars;
@property (nonatomic, readonly) NSDate *dateCreated;
@end

Just declaring these properties doesn’t implement the accessor methods; you
have	to	synthesize	them.	To	do	this,	you	turn	to	the	second	file	associated	with	
an	Objective-C	class	–	the	implementation	file	with	the	.m	extension.	This	file	
is where you implement all of your methods and synthesize any properties.
Synthesizing	properties	defines	their	accessor	methods.

At	the	top	of	an	implementation	file,	you	always	import	the	header	(.h)	file	
of that class. The implementation of a class needs to know how it has been
declared.	All	of	the	method	definitions	in	the	implementation	file	will	be	inside	an	
implementation block. An implementation block begins with the @implementation
keyword followed by the name of the class that is being implemented. Methods
are	defined	until	you	close	out	the	block	with	the	@end keyword.

Open Possession.m. Use the @synthesize keyword followed by a comma-
delimited list of all properties you are synthesizing. Remember that this must
occur inside the implementation block.

#import "Possession.h"

@implementation Possession
@synthesize possessionName, serialNumber, valueInDollars, dateCreated;

Page 42

Chapter 2. Objective-C

Page 42

@end

If you chose to write your own accessors for valueInDollars, instead of using @
synthesize, they would look like this:

// Getter
- (int)valueInDollars
{
 return valueInDollars;
}

// Setter
- (void)setValueInDollars:(int)x
{
 valueInDollars = x;
}

Build your application to ensure that there are no compiler errors or warnings.
Now that your properties have been synthesized, you can send messages
to Possession instances to get and set instance variables. For example,
synthesizing valueInDollars allows you to send the messages valueInDollars
and setValueInDollars: to instances of Possession.

Instance methods
Not	all	instance	methods	are	accessors.	You	will	regularly	find	yourself	wanting	to	
send messages to instances that perform other code, like description. Because
Possession is a subclass of NSObject (the class that originally declares the
description method), when you re-implement this method in the Possession
class, you are said to be overriding that method.

When	overriding	a	method,	all	you	need	to	do	is	define	it	in	the	implementation	
file,	you	do	not	need	to	declare	it	in	the	header	file	because	it	has	already	been	
declared by the superclass. Override the description method in Possession.m.
(Be sure to include the -	in	the	first	line	of	code.	It	denotes	that	description is an
instance method, not a class method.)

Page 43

Chapter 2. Objective-C

Page 43

- (NSString *)description
{
 NSString *descriptionString =
 [[NSString alloc] initWithFormat:@"%@ (%@): Worth $%d, Recorded on
%@",
 possessionName,
 serialNumber,
 valueInDollars,
 dateCreated];

 return descriptionString;
}

Now whenever you send the message description to an instance of Possession,
it returns an NSString that describes that instance. (To those of you familiar with
Objective-C	and	managing	memory,	don’t	panic	–	you	will	fix	the	obvious	problem	
with this code soon.)

What if you want to create an entirely new instance method, one that you are not
overriding	from	its	superclass?	You	typically	declare	a	method	in	the	header	file	
and	define	it	in	the	implementation	file.	A	good	method	to	begin	with	is	an	object’s	
initializer.

Initializers
At the beginning of this chapter, we talked about how an instance is created:
its class is sent the message alloc, which creates an instance of that class
and returns a pointer to it, and that instance is sent the message init. The init
message isn’t a special type of instance method, though; it is simply a naming
convention.	Your	initialization	method	could	have	a	totally	different	name,	like	
finishMakingInstance. However, by convention, all initialization methods begin
with the word init. Objective-C is all about naming conventions, which you should
strictly adhere to. (Seriously. Disregarding naming conventions in Objective-C
results in problems that are worse than most beginners would imagine.)

The class NSObject implements a method named init. This is the initializer
message you need to send to an instance of NSObject to initialize it. Because
init is the main (or, in this case, only) initialization method for NSObject, we call it
thedesignated initializer. Classes can have multiple initializers, but for every class,
there is one designated initializer. The designated initializer must make sure that

Page 44

Chapter 2. Objective-C

Page 44

each of the instance variables has a valid value. Only then will the newly created
instance	be	valid.	(“Valid”	has	different	meanings,	but	the	meaning	in	this	context	
is,	“When	you	send	messages	to	this	object	after	initializing	it,	you	can	predict	the	
outcome and nothing bad will happen.”) Typically, the designated initializer is the
initialization method with the most arguments.

Your	Possession class has four instance variables, but only three are writeable.
(The NSDate object used to set the read-only variable dateCreated is created
inside the body of the method instead of being passed in.) Possession’s
designated initializer needs to accept three arguments: one for each of the
writable instance variables. In Possession.h, declare the designated initializer:

@property (nonatomic, readonly) NSDate *dateCreated;

- (id)initWithPossessionName:(NSString *)pName
 valueInDollars:(int)value
 serialNumber:(NSString *)sNumber;
@end

Take another look at this method declaration. Its return type is id. The id type
definition	is	“a	pointer	to	any	object.”	(This	is	a	lot	like	void * in C.) init methods
are always declared to return id.	(Why?	If	Possession gets subclassed, its
initializer will need to return the subclass’s type. When you override a method, you
cannot change its return type in the subclass. Therefore, initialization methods
should always return id. Objects know which class created them anyway; the type
they are declared is more or less a hint for the compiler.)

This method’s name, or selector, is initWithPossessionName:valueInDollar
s:serialNumber:. This selector has three labels (initWithPossessionName:,
valueInDollars:, and serialNumber:), and the method accepts three arguments.

These arguments each have a type and a parameter name. The type follows the
label in parentheses. The parameter name then follows the type. So the label
initWithPossessionName: is expecting an instance of type NSString. Within the
body of that method, you can use pName to reference the object that was passed
in.

Now that you have declared the designated initializer, you need to implement
it. Open Possession.m.	Recall	that	the	definitions	for	methods	go	within	the	
implementation	block	in	the	implementation	file.	Add	the	designated	initializer	
inside the implementation block.

Page 45

Chapter 2. Objective-C

Page 45

@implementation Possession

- (id)initWithPossessionName:(NSString *)pName
 valueInDollars:(int)value
 serialNumber:(NSString *)sNumber
{
 // Call the superclass's designated initializer
 [super init];

 // Give the instance variables initial values
 [self setPossessionName:pName];
 [self setSerialNumber:sNumber];
 [self setValueInDollars:value];
 dateCreated = [[NSDate alloc] init];

 // Return the address of the newly initialized object
 return self;
}

In the designated initializer, you always call the superclass’s designed initializer
using super. The last thing you do is return a pointer to the successfully initialized
object using self. So to understand what’s going on in an initializer, you will need
to know about self and super.

self
Inside a method, self is an implicit local variable. There is no need to declare it,
and it is automatically initialized to the address of the object running the method.
Typically, self is used so that an object can send a message to itself:

- (void)chickenDance
{
 [self pretendHandsAreBeaks];
				[self	flapWings];
 [self shakeTailFeathers];
}

Most object-oriented languages have this concept, but some call it this instead of
self.

In the last line of an init method, you always return the newly initialized object:

Page 46

Chapter 2. Objective-C

Page 46

return self;

If things go badly and the init method fails, you will return nil instead of the new
object.

super
Often when you are overriding a method in a subclass, you want to do some
special subclass stuff and then invoke the implementation of the method as it was
defined	in	the	superclass.	To	make	this	possible,	there	is	a	compiler	directive	in	
Objective-C called super:

- (void)someMethod
{
 [self doSomeSpecialStuff];
 [super someMethod];
}

How does super	work?	Usually	when	you	send	a	message	to	an	object,	the	
search for a method of that name starts in the object’s class. If there is no such
method, the search continues in the superclass of the object. The search will
continue up the inheritance hierarchy until a suitable method is found. (If it gets to
the top of the hierarchy and no method is found, an exception is thrown.) When
you send a message to super, you are sending a message to self but demanding
that the search for the method begin at the superclass.

In	a	designated	initializer,	the	first	thing	you	do	is	call	the	superclass’s	designated	
initializer using super. What if the superclass’s initializer fails and returns nil?	It	
is probably a good idea to save the return value of the superclass’s initializer into
theself	variable	and	confirm	that	it	is	not	nil before doing any further initialization.
In Possession.m,	edit	your	designated	initializer	to	confirm	the	initialization	of	the	
superclass.

- (id)initWithPossessionName:(NSString *)pName
 valueInDollars:(int)value
 serialNumber:(NSString *)sNumber
{
 // Call the superclass's designated initializer
 self = [super init];

 // Did the superclass's designated initializer fail?
 if (!self)

Page 47

Chapter 2. Objective-C

Page 47

 return nil;

 // Give the instance variables initial values
 [self setPossessionName:pName];
 [self setSerialNumber:sNumber];
 [self setValueInDollars:value];
 dateCreated = [[NSDate alloc] init];

 // Return the address of the newly initialized object
 return self;
}

Initializer chain
Let’s say you are creating an instance of Possession, but you only know its name
–	not	its	value	or	serial	number.	You	can	create	another	initializer	that	accepts	just	
one NSString meant for the possessionName instance variable. Declare another
initializer for when you only know the name of the possession in Possession.h.

@property (nonatomic, readonly) NSDate *dateCreated;

- (id)initWithPossessionName:(NSString *)pName
 valueInDollars:(int)value
 serialNumber:(NSString *)sNumber;

- (id)initWithPossessionName:(NSString *)pName;
@end

An initializer that is not the designated initializer must always call its own class’s
designated initializer message with default values for the parameters that not
specified.	To	implement	your	new	initializer	in	Possession.m, simply call the
designated initializer using the passed-in parameter and default values for the
other arguments. (Make sure this code is in between the @implementation and
@end	directives	and	not	inside	the	curly	brackets	of	another	method!)

- (id)initWithPossessionName:(NSString *)pName
{
 return [self initWithPossessionName:pName
 valueInDollars:0
 serialNumber:@""];
}

Page 48

Chapter 2. Objective-C

Page 48

When an instance of Possession is created with this initializer, it uses the name
of the possession passed to it. The valueInDollars instance variable defaults
to 0, and the serialNumber defaults to the empty string. Using initializers as a
chain like this reduces the chance for error and makes maintaining code easier.
You	only	write	the	core	of	the	initializer	once	in	the	designated	initializer;	other	
initialization methods simply call that core with default values.

Furthermore, a subclass needs to override its superclass’s designated initializer
to invoke its own designated initializer. Right now, an instance of Possession
could be sent the message init. To the programmer and compiler, the object
would appear valid. However, only the superclass’s (NSObject) instance variables
would have been initialized – all of the stuff added by the Possession class would
not be. To make sure this doesn’t happen, override init to invoke Possession’s
designated initializer with default values in Possession.m.

- (id)init
{
 return [self initWithPossessionName:@"Possession"
 valueInDollars:0
 serialNumber:@""];
}

(Remember, because you’re overriding this method, you don’t have to declare it in
Possession.h.)

Class methods
So far, you have been creating instance methods. These are messages you can
send to any instance of Possession. However, in Objective-C, classes can also
receive messages. We call these class methods. (alloc is an example of a class
method.) Class methods do not operate on an instance or have any access to
instance variables.

Syntactically,	class	methods	differ	from	instance	methods	by	the	first	character	in	
their declaration. While an instance method uses the - character right before the
return type, a class method uses the + character. Also, class methods can only be
sent to the class itself, never to an instance of that class.

One common use for class methods is to provide convenient ways to create
instances of that class. For the Possession class, it would be nice if you could
create a random possession. That way, you could test your possession class

Page 49

Chapter 2. Objective-C

Page 49

without having to think up a bunch of clever names. Declare a class method in
Possession.h that will create a random possession.

@interface Possession : NSObject
{
 NSString *possessionName;
 NSString *serialNumber;
 int valueInDollars;
 NSDate *dateCreated;
}
@property (nonatomic, copy) NSString *possessionName;
@property (nonatomic, copy) NSString *serialNumber;
@property (nonatomic) int valueInDollars;
@property (nonatomic, readonly) NSDate *dateCreated;

+ (id)randomPossession;

- (id)initWithPossessionName:(NSString *)pName
 valueInDollars:(int)value
 serialNumber:(NSString *)sNumber;
- (id)initWithPossessionName:(NSString *)pName;
@end

Notice the order of the declarations for properties and methods. Properties
come	first,	followed	by	class	methods,	followed	by	initialization	methods.	Further	
instance methods will follow after these. This is a convention that makes your
header	files	easier	to	read.

Class methods that return an instance of their type are simply creating an instance
as you normally would (with alloc and init),	configuring	it,	and	then	returning	it.	In	
Possession.m, implement randomPossession	to	create,	configure,	and	return	a	
Possession instance:

+ (id)randomPossession
{
 static NSString *randomAdjectiveList[3] =
 {
 @"Fluffy",
 @"Rusty",
 @"Shiny"
 };

Page 50

Chapter 2. Objective-C

Page 50

 static NSString *randomNounList[3] =
 {
 @"Bear",
 @"Spork",
 @"Mac"
 };

 NSString *randomName = [NSString stringWithFormat:@"%@ %@",
 randomAdjectiveList[random() % 3],
 randomNounList[random() % 3]];

 int randomValue = random() % 100;

 NSString *randomSerialNumber = [NSString
stringWithFormat:@"%c%c%c%c%c",
 '0' + random() % 10,
 'A' + random() % 26,
 '0' + random() % 10,
 'A' + random() % 26,
 '0' + random() % 10];

 // Once again, ignore the memory problems with this method
 // We use "self" instead of the name of the class in class methods...
 // Keep reading to find out why
 Possession *newPossession =
 [[self alloc] initWithPossessionName:randomName
 valueInDollars:randomValue
 serialNumber:randomSerialNumber];
 return newPossession;
}

This method creates a string from a random adjective and noun, another string
from some random numbers and letters, and a random integer value. It then
creates an instance of Possession and sends it the designated initializer with
these random objects as parameters.

You	might	notice	that	you	actually	used	a	class	method	of	NSString in the
implementation of this method. The message stringWithFormat: is sent directly
to NSString; it is a class method that returns an NSString instance with the
parameters that are sent to it. In Objective-C, class methods that return an
object of their type (like stringWithFormat: and randomPossession) are called

Page 51

Chapter 2. Objective-C

Page 51

convenience methods.

Notice the use of self in randomPossession. This method is a class method,
so self refers to the Possession class itself. Class methods should use self in
convenience methods instead of their class name so that if you create a subclass
of Possession, you can send that subclass the message randomPossession.
Using self (instead of Possession) guarantees that the object returned by this
method is the same type as the class being sent the message.

Now you get to use the neat little class you’ve created. Open
RandomPossessions.m. In the main function, you were adding NSString
instances to the NSMutableArray instance you created and then printing them to
the console. Now you can add Possession instances to the array instead. Don’t
forget	to	import	the	header	file	Possession.h.

#import <Foundation/Foundation.h>

#import "Possession.h"

int main (int argc, const char * argv[])
{
 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

 NSMutableArray *items = [[NSMutableArray alloc] init];

 for (int i = 0; i < 10; i++) {
 [items addObject:[Possession randomPossession]];
 }

 for (int i = 0; i < [items count]; i++) {
 NSLog(@"%@",	[items	objectAtIndex:i]);
 }
 [pool drain];
 return 0;
}

Build and run your application, making sure to show the console again. All you did
was	replace	what	objects	you	added	to	the	array,	and	the	code	runs	perfectly	fine	
with a wildly different output (Figure 2.10). Creating this subclass was a success.

Page 52

Chapter 2. Objective-C

Page 52

Figure 2.10. Application result

Check out the new #import statement at the top of RandomPossessions.m.
Why did you have to import Possession.h when you didn’t you have to import,
say, NSMutableArray.h?	Well,	NSMutableArray comes from the Foundation
framework, so it is included when you import Foundation/Foundation.h. On the
other	hand,	your	subclass	exists	in	its	own	file,	so	you	have	to	explicitly	import	it	
into RandomPossession.m. Otherwise, the compiler won’t know it exists and will
complain loudly.

Importing	a	file	is	the	same	as	including	a	file	in	the	C	language	except	you	are	
ensured	that	the	file	will	only	be	included	once.

If	you	don’t	want	to	import	the	header	file	for	a	class,	but	you	want	the	compiler	to	
know that the class exists, you can use a forward declaration like this:

@class Possession;

In a large project, judicious use of @class can speed up compiles considerably.

Exceptions and the Console Window
In a language like C, we have functions. When we call a function, code is
executed.	If	we	try	and	call	a	function	that	doesn’t	exist,	the	compiler	says,	“Hey,	
that’s	not	right!”	and	the	code	will	fail	to	compile.	This	is	known	as	a	compile-time	
error.

Objective-C,	being	a	dynamically	typed	language,	isn’t	able	to	figure	out	at	
compile time whether an object can respond to a message. The compiler will warn
you if it thinks you are sending a message to an object that won’t respond, but

Page 53

Chapter 2. Objective-C

Page 53

the code will still compile. If, for some reason (and there are many), you end up
sending a message to an object whose class doesn’t implement the associated
method, your application will throw an exception.

In RandomPossessions.m, add the following line of code after you create your
array:

 NSMutableArray *items = [[NSMutableArray alloc] init];
 [items doSomethingWeird];

The class NSMutableArray does not implement a method called
doSomethingWeird. Sending this message to an instance of NSMutableArray is
going to throw an exception. Build and run your application.

Open the console window. When you ran this application before, the console
contained the contents of the array. Now it is saying this:

2009-07-19 01:34:53.602 RandomPossessions[25326:10b]
*** -[NSCFArray doSomethingWeird]: unrecognized selector sent to instance
0x104b40

This	is	what	an	exception	looks	like.	What	exactly	is	this	output	saying?	In	every	
output statement to the console, the date, time, and name of the application
are	printed	out.	You	can	ignore	that	information.	You	are	concerned	with	the	
information	after	the	“***.”	That	line	tells	us	that	an	unrecognized	selector	was	sent	
to	an	instance.	You	know	that	selector	means	message.	You	sent	a	message	to	
an object, and that object does not implement that method.

The type of the receiver and the name of the message sent are also in this output.
This makes it easier for you to debug. An instance of NSCFArray was sent the
message doSomethingWeird. (The - at the beginning tells you the receiver was
an instance of NSCFArray. A + would mean the class was the receiver.) Remove
the line of code you added and take away this very important lesson: always keep
the console window open. Run-time errors are just as important as compile-time
errors.

(What does NSCFArray	mean?	The	CF stands for Core Foundation. We’ll get
into that later in the book. For now, you can just drop the CF out of the name. An
NSArray, the superclass of NSMutableArray is the type of the object that was
sent this bad message.)

Page 54

Chapter 2. Objective-C

Page 54

Some languages use try and catch blocks to handle exceptions. While
Objective-C has this ability, we don’t use it very often. Typically, an exception is a
programmer	error	and	should	be	fixed	in	the	code	instead	of	handled	at	runtime.

Objective-C 2.0 Additions
The newest version of Objective-C added a few syntax-level changes to
the	language	specification.	The	most	useful	one	is	fast	enumeration.	Before	
Objective-C 2.0, iterating through an NSArray looked like this:

for (int i = 0; i < [items count]; i++) {
 Possession *item = [items objectAtIndex:i];
				NSLog(@"%@",	item);
}

Now you can write that code segment much more succinctly with fast
enumeration.

for (Possession *item in items)
				NSLog(@"%@",	item);

Try changing the for loop in your main function to use fast enumeration.

Another addition to Objective-C 2.0 is dot-notation for property accessors. Instead
of using brackets to invoke an accessor method, you can use a . operator instead
and get the same results.

int v = [object foo];
[object setFoo:v];

...is identical to...

int v = object.foo;
object.foo = v;

According to the compiler, these two snippets are the same. There is no difference
in speed – they are seriously identical.

Because these lines are identical, I think dot-notation is goofy. However, others do
not. Whether to use dot-notation has become something of a religious war in the

Page 55

Chapter 2. Objective-C

Page 55

Objective-C community. (And no one is ever right in those wars.)

The	argument	for	using	dot-notation	is	that	the	dot	signifies	that	the	code	is	
accessing	the	state	of	an	object	whereas	using	the	brackets	signifies	that	it	is	
asking the object to perform some behavior. This supposedly gives the code
clarity. The arguments against dot-notation are that it creates ambiguity with the
C structure access operator and it confuses beginning programmers, especially
when it comes to memory management.

This book will not use dot-notation because it is confusing to beginning
programmers. If you choose to use dot-notation after you’ve mastered the
concepts behind Objective-C, more power to you. For now, you will be better
served by sticking with the brackets.

Chapter 3. Memory Management

Page 56

Chapter 3. Memory Management

Understanding memory management in the Cocoa Touch framework is one of the
first	major	roadblocks	for	newcomers.	Unlike	Objective-C	on	the	Mac,	Objective-C	
on the iPhone has no garbage collector. Thus, it is your responsibility to clean up
after yourself.

Memory Management Concepts
This	book	assumes	you	are	coming	from	a	C	background,	so	the	words	“pointer,”	
“allocate,”	and	“deallocate” shouldn’t scare you. If your memory is a little fuzzy,
here’s a review. The iPhone has a limited amount of random access memory.
Random access memory (RAM) is much faster to write to and read from than a
hard drive, so when an application is executing, all of the memory it consumes
is taken from RAM. When an operating system like iPhone OS launches your
application, it reserves a heaping pile of the system’s unused RAM for your
application. Not-so-coincidentally, the memory your application has to work with is
called the heap. The heap is your application’s playground; it can do whatever it
wants to it, and it won’t affect the rest of the OS or any other applications.

When your application creates an instance of a class, it goes to the giant heap
of memory it was given and takes a little scoop. As you typically create objects
during the course of your application’s execution, you start using more and more
of the heap. Most objects are not permanent, and when an object is no longer
needed, the memory it was consuming should be returned to the heap. This way,
it can be reused for another object created later.

There are two major problems in managing memory:

premature deallocation You	must	never	return	memory	to	the	
heap until you are sure that no part of
the program is still using it.

memory leaks When a chunk of memory is no longer
needed by any part of a program, it
must be freed so that the memory can
be used again.

Chapter 3. Memory Management

Page 57

Managing memory in C
In the C programming language, you have to explicitly ask the heap for a certain
number	of	bytes.	This	is	called	allocation.	It	is	the	first	stage	of	the	heap	life	cycle	
shown in Figure 3.1. To do this, you use a function like malloc. If you want 100
bytes from that heap, you do something like this:

void function(void)
{
 char *buffer = malloc(100);
}

Figure 3.1. Heap allocation life cycle

You	then	have	100	bytes	with	which	you	can	perform	some	task	like	writing	a	
string to it and then printing that string (which would require reading from those
bytes).	The	location	of	the	first	of	those	100	bytes	is	stored	in	the	pointer	buffer.

Chapter 3. Memory Management

Page 58

You	access	the	100	bytes	by	using	this	pointer.

When you don’t want to use those bytes anymore, you have to give them back to
the heap by using the free function. This is called deallocation.

void function(void)
{
 char *buffer = malloc(100);
 ... Fill the buffer with text ...
 ... Print to the console ...
 free(buffer);
}

By calling free, those 100 bytes (starting at the address stored in buffer) are
returned to the heap. If another malloc function is executed, any of these 100
bytes are fair game to be returned. Those bytes could be divvied up into smaller
sections, or they could become part of a larger allocation. Because you don’t
know what will happen with those bytes when they are returned to the heap, it isn’t
safe to access them through the buffer pointer anymore.

Managing memory with objects
Even though at the base level an object is bytes allocated from the heap, you
never explicitly call malloc or free with objects.

Every class knows how many bytes of memory it needs to allocate for an instance.
When you create an instance of a class by sending it the alloc message, the
correct number of bytes is allocated from the heap. Like with malloc, you are
returned a pointer to this memory (Figure 3.2). However, when using Objective-C,
we think in terms of objects rather than raw memory. While our pointers are still
pointing to a spot in memory, we don’t need to know the details of that memory;
we just know we have an object.

Chapter 3. Memory Management

Page 59

Figure 3.2. Allocating an object

Of course, once you allocate memory from the heap, you need a way to return
that memory back to the heap. Every object implements the method dealloc.
When an object receives this message it returns its memory back to the heap.

So, malloc is replaced with the class method alloc, and the function free is
replaced with the instance method dealloc. However, you never explicitly send
a dealloc message to an object; an object is responsible for sending dealloc to
itself. That begs the question: if an object is in charge of destroying itself, how
can	it	know	if	other	objects	are	relying	on	its	existence?	This	is	where	reference	
counting comes into play.

Reference Counting
In the Cocoa Touch framework, Apple has adopted manual reference counting to
manage memory and avoid premature deallocation and memory leaks.

To understand reference counting, imagine a puppy. When the puppy is born, it
has an owner. That owner later gets married, and the new spouse also becomes
an owner of that dog. The dog is alive because they feed it. Later on, this couple
gives the dog away. The new owner of the dog decides he doesn’t like the dog
and lets it know by kicking it out of the house. Having no owner, the dog runs
away and, after a series of unfortunate events, ends up in doggy heaven.

What	is	the	moral	of	this	story?	As	long	as	the	dog	had	an	owner	to	care	for	it,	it	
was	fine.	When	it	no	longer	had	an	owner,	it	ran	away	and	ceased	to	exist.	This	
is how reference counting works. When an object is created, it has an owner.
Throughout its existence, it can have different owners, and it can have more than
one owner at a time. When it has zero owners, it deallocates itself and goes to
instance heaven.

Chapter 3. Memory Management

Page 60

Using retain counts
An object never knows who its owners are. It only knows its retain count as
diagrammed in Figure 3.3.

Figure 3.3. Retain count for a dog

When an object is created – and therefore has one owner – its retain count is set
to 1. When an object gains an owner, its retain count is incremented. When an
object loses an owner, its retain count is decremented. When that retain count
reaches 0, the object sends itself the message dealloc, which returns all of the
memory it occupied to the heap.

Imagine how you would write the code to implement this scheme yourself:

- (id)retain
{
 retainCount++;
 return self;
}
- (void)release
{
 retainCount--;
 if (retainCount == 0)
 [self dealloc];
}

Simple,	right?	Now	let’s	consider	how	retain counts work between objects. If
object A creates object B (through alloc and init), A must send B the message
release at some point in the future. Releasing B doesn’t necessarily deallocate it;
it is left to B to decide if it should be deallocated. (If B has another owner, it won’t
destroy itself.)

Chapter 3. Memory Management

Page 61

If some other object C wants to keep B around, C becomes an owner of B by
sending it the message retain.	What	reason	does	C	have	to	keep	B	around?	C	
wants to send B messages.

Let’s	imagine	you	have	a	grocery	list.	You	created	it,	so	you	own	it.	Later	on,	you	
give	that	grocery	list	to	your	friend	to	do	the	shopping.	You	don’t	need	to	keep	the	
grocery list anymore, so you release	it.	Your	friend	is	smart,	so	he	retained	the	list	
as soon as he was given it. Therefore, the grocery list will still exist whenever he
needs it, and your friend is now the sole owner of the list.

Here is your code:

- (void)createAndGiveAwayTheGroceryList
{
 // Create a list
 GroceryList *g = [[GroceryList alloc] init];

 // (The retain count of g is 1)

 // Share it with your friend who retains it
 [smartFriend takeGroceryList:g];

 // (The retain count of g is 2)

 // Give up ownership
 [g release];

 // (The retain count of g is 1)
 // But we don't really care here, as this method's
			//	responsibility	is	finished.
}

Here is your friend’s code:

- (void)takeGroceryList:(GroceryList *)x
{
 // Take ownership
 [x retain];
 // Hold onto a pointer to the object
 myList = x
}

Chapter 3. Memory Management

Page 62

Retain counts can still go wrong in the two classic ways: leaks and premature
deallocation. First, you could give the grocery list to your friend who retains it, but
you don’t release	it.	Your	friend	finishes	the	shopping	and	releases	the	list.	You	
have forgotten where it is, but because you never released it, it still exists. Nobody
has this grocery list anymore, but it still exists because its retain count is greater
than 0. This is a leak.

Now think of the grocery list as an NSString.	You	have	a	pointer	to	this	NSString
in the method where you created it. If you leave the scope of the method without
releasing the NSString, you’ll lose the pointer along with the ability to release
theNSString later. Even if every other object releases the NSString, it will never
be deallocated.

Consider the other way this process can go wrong - premature deallocation.
You	create	a	grocery	list	and	give	it	to	a	friend	who	doesn’t	retain it. When you
release it (thinking it was safe with your friend), it is deallocated because you
were	its	only	owner.	When	your	friend	attempts	to	use	the	list,	he	can’t	find	it	
because it doesn’t exist anymore.

When an object attempts to access another object that no longer exists, your
application accesses bad memory, starts to fail, and eventually (although sooner
is better than later for debugging) crashes.

If an object retains another object, that other object is guaranteed to exist. So
correct use of retain counts avoids premature deallocation. Now let’s look more
closely at memory leaks.

Avoiding memory leaks with autorelease
You	already	know	that	an	object	is	responsible	for	returning	its	own	bytes	to	the	
heap and that an object will do that when it has no owners. What happens when
you	want	to	create	an	object	to	give	away,	not	to	own?	You	own	it	by	virtue	of	
creating it, but you don’t have any use for it.

Let’s make this idea more concrete with an example from the
RandomPossessions tool you wrote last chapter. In the Possession class, you
implemented a convenience method called randomPossession that would
return an instance of Possession with random parameters. The owner of this
instance is the class Possession (because the object was created inside of a
Possession class method), but Possession is only creating it because another
object wants it. The pointer to the Possession instance is lost when the scope of
randomPossession runs out, but the object still has a retain count of 1.

Chapter 3. Memory Management

Page 63

Now, in your main function, you could release the instance returned to you
by this method. But, you didn’t allocate the random possession in the main
function. Therefore, releasing the memory isn’t main’s responsibility. Since the
alloc message was sent to the Possession class inside randomPossession’s
implementation, it is randomPossession’s responsibility to release the memory.
But looking at the following block of code, where could you safely release	it?

+ (id)randomPossession
{
 ... Create random variables ...
 Possession *newPossession = [[self alloc]
 initWithPossessionName:randomName
 valueInDollars:randomValue
 serialNumber:randomSerialNumber];
 // If we release newPossession here,
 // the object is deallocated before it is returned.
 return newPossession;
 // If we release newPossession here, this code is never executed.
}

How	can	you	avoid	this	memory	leak?	You	need	some	way	of	saying	“Don’t	
release this object yet, but I don’t want to be an owner of it anymore.” Fortunately,
you can mark an object for future release by sending it the message autorelease.
When an object is sent autorelease, it is not immediately released; instead, it
is added to an instance of the NSAutoreleasePool. This NSAutoreleasePool
keeps track of all the objects that have been autoreleased. Periodically, the
autorelease pool is drained; it sends the message release to the objects in the
pool and then removes them.

An object marked for autorelease after its creation has two possible destinies: it
can either continue its death march to deallocation or another object can retain it.
If another object retains it, its retain count is now 2. (It is owned by the retaining
object, and it has not yet been sent release by the autorelease pool.) Sometime in
the future that autorelease pool will release it, which will set its retain count back
to 1. (The return value for autorelease is the instance that is sent the message, so
you can method chain autorelease.)

// Because autorelease returns the object being autoreleased, we can do this:
NSObject *x = [[[NSObject alloc] init] autorelease];

Chapter 3. Memory Management

Page 64

Sometimes	the	idea	of	“the	object	will	be	released	some	time	in	the	future”	
confuses developers. When an iPhone application is running, there is a run
loop that is continually cycling. This run loop checks for events (like a touch or
a	timer	firing)	and	then	processes	that	event	by	calling	the	methods	you	have	
written in your classes. Whenever an event occurs, it breaks from that loop and
starts	executing	your	code.	When	your	code	is	finished	executing,	the	application	
returns to the loop. At the end of the loop, all autoreleased objects are sent the
message release as shown in Figure 3.4. So, while you are executing a method,
which may call other methods, you can safely assume that an autoreleased object
will not be released.

Figure 3.4. Autorelease pool draining

Managing memory in accessors and properties
Accessors are methods that get and set instance variables. Getter methods don’t
require any additional memory management:

- (Dog *)pet
{
 return pet;
}

Setters, however, need to take care to properly retain new values and release old
ones.

Chapter 3. Memory Management

Page 65

- (void)setPet:(Dog *)d
{
 [d retain]; // Retain the new value
 [pet release]; // Release the old value
 pet = d; // Make the pointer point at the new value
}

Notice that if the pet hasn’t been set, it is nil, and [pet release] would have no
effect.

It is important to retain	the	new	value	before	releasing	the	old	one.	Why?	What	if	
pet and d	are	pointers	to	the	same	object?	What	if	that	object	has	a	retain count
of	1?	If	you	release it before you retain it, the retain count goes to 0, and the
object is deallocated.

Here is the same thing in another style:

- (void)setPet:(Dog *)d
{
				if	(pet	!=	d)	{
 [d retain];
 [pet release];
 pet = d;
 }
}

Once again, properties come to the rescue. If you use properties, all of the
memory management code for your accessors is written for you when you
synthesize the property. To have the compiler generate an accessor that properly
releases and retains for you, you can use the retain attribute when declaring your
properties	in	a	header	file:

@property (nonatomic, retain) Dog *pet;

Then,	in	the	implementation	file,	synthesize	the	method:

@synthesize pet;

Retain count rules
Let’s make a few rules from these ideas:

Chapter 3. Memory Management

Page 66

•	 If you send the message alloc to a class, the instance returned has a
retain count of 1, and you are responsible for releasing it.

•	 If you send the message copy (or mutableCopy) to an instance, the
instance returned has a retain count of 1, and you are responsible for
releasing it (just as if you had allocated it).

•	 Assume that an object created through any other means (like a
convenience method) has a retain count of 1 and is marked for
autorelease.

•	 If an object wants to keep another object around (and the keeper didn’t
allocate it), it must send the wanted object the message retain.

•	 If an object no longer wants to keep another object around, it sends that
object the message release.

There is one exception to the rules: in any method that starts with new, the object
returned should be assumed to not be autoreleased.

Managing Memory in RandomPossessions
Now that you have the theory and some rules, you can implement better
memory management in RandomPossessions. Open the RandomPossessions.
xcodeproj	file	that	you	created	in	the	last	chapter.	There	are	four	memory	
management	problems	to	fix	in	this	project.

The	first	is	found	in	the	main function of RandomPossessions.m where you
created an instance of NSMutableArray named items.	You	know	two	things	
about this instance: its owner is the main function and it has a retain count of
one. It is then main’s responsibility to send this instance the message release
when it no longer needs it. The last time you reference items in this function is
when you print out all of its entries, so you can release it after that:

 for(int i = 0; i < [items count]; i++) {
								NSLog(@"%@",	[items	objectAtIndex:i]);
 }

 [items release];

The object pointed to by items decrements its retain count when this line of code

Chapter 3. Memory Management

Page 67

is executed. In this case, that object is deallocated because main was the only
owner. If another object had retained items, it wouldn’t have been deallocated.

There is one more detail to take care of. The instance of NSMutableArray that
items pointed to is now gone. However, items is still storing the address that was
the instance’s location in memory. It is much safer to set the value of items to nil.
Then any messages mistakenly sent to items will have no effect.

 [items release];
 items = nil;

The ordering of those two statements is important. Ordering them this way says,
“Send	the	object	release, and then clear my pointer to it.” What would happen
if	you	swapped	the	order	of	these	statements?	It	would	be	the	same	thing	as	
saying,	“Set	my	pointer	to	this	object	to	nil and then send the message release
to....	Oh,	no!	I	don’t	know	where	that	object	went!”	You	would	leak	that	object:	it	
wasn’t released before you erased your pointer to it.

The second memory problem occurs when you create an instance of
NSMutableArray	and	fill	it	with	instances	of	Possession returned from the
randomPossession convenience method:

NSMutableArray *items = [[NSMutableArray alloc] init];
for (int i = 0; i < 10; i++) {
 [items addObject:[Possession randomPossession]];
}

The implementation for randomPossession returns an instance of type
Possession that it created by sending the message alloc. This object is owned
by this class method and therefore has a retain count of 1.

When you add a Possession instance to an NSMutableArray, the array
becomes an owner of that object, so its retain count is increased to 2. After
randomPossession	finishes	executing,	however,	it	loses	its	pointer	to	the	
Possession it created. The Possession instance still has two owners – but only
one still has a pointer to it (items).	Memory	leak!

This is a perfect opportunity to use autorelease. The method randomPossession
should send autorelease to an instance it creates and relinquish its ownership
of that instance. The object will still exist temporarily and be retained when it is
added to the NSMutableArray. The instance of NSMutableArray will then be the
sole owner of this new Possession. In effect, you have transferred ownership

Chapter 3. Memory Management

Page 68

of the instance from randomPossession to items. When the array deallocates
itself and releases the objects it contains, each object will have a retain count of 0
and will deallocate itself. Memory leak solved.

Now	fix	the	leak	in	the	randomPossession method in Possession.m.

+ (id)randomPossession
{
 ... Create random variables ...
 Possession *newPossession = [[self alloc]
 initWithPossessionName:randomName
 valueInDollars:randomValue
 serialNumber:randomSerialNumber];
 return [newPossession autorelease];
}

When working with an instance of NSMutableArray, three rules apply to object
ownership:

•	 When an object is added to an NSMutableArray, that object gets sent the
message retain; the array becomes an owner of that object and has a
pointer to it.

•	 When an object is removed from an NSMutableArray, that object gets sent the
message release; the array relinquishes ownership of that object and no
longer has a pointer to it.

•	 When an NSMutableArray is deallocated, it sends the message release
to all of its entries as shown in Figure 3.5.  Figure 3.5. Deallocating an
NSMutableArray    

The third memory problem in RandomPossessions is in the description method
that Possession implements. This method creates and returns an instance of
NSString that needs to be autoreleased.

- (NSString *)description
{
 NSString *descriptionString =
							[[NSString	alloc]	initWithFormat:@"%@	(%@):	Worth	$%d,	Recorded	on	
%@",
 possessionName,

Chapter 3. Memory Management

Page 69

 serialNumber,
 valueInDollars,
 dateCreated];
 return [descriptionString autorelease];
}

You	can	make	this	even	simpler	by	using	a	convenience	method.	NSString
(as well as many other other classes in the iPhone SDK) includes convenience
methods that return autoreleased objects. Update description to use the
convenience method stringWithFormat: to ensure that the NSString instance
that description creates will be autoreleased.

- (NSString *)description
{
 return [NSString stringWithFormat:@"%@ (%@): Worth $%d, Recorded on
%@",
 possessionName,
 serialNumber,
 valueInDollars,
 dateCreated];
}

The	final	memory	problem	has	to	do	with	the	instance	variables	within	
Possession objects.

When the retain count of a Possession instance hits zero, it will send itself the
message dealloc. The dealloc method of Possession has been implemented
by its superclass, NSObject, but NSObject knows nothing about the instance
variables added to Possession. So you must override dealloc in Possession.m
to release any instance variables that have been retained.

- (void)dealloc
{
 [possessionName release];
 [serialNumber release];
 [dateCreated release];
 [super dealloc];
}

Always call the superclass implementation of dealloc at the end of the method.
When an object is deallocated, it should release all of its own instance variables

Chapter 3. Memory Management

Page 70

first.	Then,	it	should	go	up	its	class	hierarchy	and	release any instance variables
of its superclass. In the end, the implementation of dealloc in NSObject will return
the object’s memory to the heap.

Now let’s check your understanding of memory management.

Why send release to instance variables and not dealloc?

One object should never send dealloc to another. Always use release and let the
object check its own retain count and decide whether to send itself dealloc.

Why do you need to release	these	instance	variables	in	the	first	place?	Where	are	
the calls to alloc, retain, or copy that make an instance of Possession an owner
of	these	objects?

Let’s start with the instance variable dateCreated. Because it is allocated in the
designated initializer for Possession, that instance of Possession becomes an
owner and needs to release the object pointed to by dateCreated according to
the	first	of	the	retain count rules laid out on page 57.

To	figure	out	the	other	two	instance	variables,	possessionName and
serialNumber, you have to go back to their property declarations in
Possession.h.

@property (nonatomic, copy) NSString *possessionName;
@property (nonatomic, copy) NSString *serialNumber;

Both of the properties associated with these instance variables have the copy
attribute. When the message setPossessionName: is sent to an instance of
Possession, the incoming parameter is sent the message copy. The instance
variable possessionName is then set to point at that copied instance. If you
wrote the code for setSerialNumber: instead of using @synthesize, it would look
something like this:

- (void)setSerialNumber:(NSString *)newSerialNumber
{
 newSerialNumber = [newSerialNumber copy];
 [serialNumber release];
 serialNumber = newSerialNumber;
}

The second retain count rule states that, if an object copies something, the object

Chapter 3. Memory Management

Page 71

becomes an owner of that thing. Therefore, the owning object needs to release
the copied object in its dealloc method. The same would hold true of these
instance variables if their property attribute was retain (but not if the attribute were
assign, which is a simple pointer assignment).

Strings	come	in	two	flavors:	NSString and NSMutableString. Because an
NSString can never be changed, there is seldom a need to copy it. Thus, in the
case of NSString (and most other immutable objects), the copy method looks like
this:

- (id)copyWithZone:(NSZone *)z
{
 [self retain];
 return self;
}

This approach prevents unnecessary copying. For example, the code above is
basically equivalent to this:
- (void)setSerialNumber:(NSString *)newSerialNumber
{
 NSString *newValue;

				//	Is	it	a	mutable	string?
 if ([newSerialNumber isKindOfClass:[NSMutableString class]])
 // I need to copy it
 newValue = [newSerialNumber copy];
 else
								//	It	is	sufficient	to	retain	it
 newValue = [newSerialNumber retain];

 [serialNumber release];

Chapter 3. Memory Management

Page 72

 serialNumber = newValue;
}

Congratulations!	You’ve	implemented	retain counts	and	fixed	four	memory	leaks.	
Your	RandomPossessions	application	now	manages	its	memory	like	a	champ!

Keep this code around because you are going to use it in later chapters.

Chapter 4. Delegation and Core Location

Page 73

Chapter 4. Delegation and Core Location

In this chapter we introduce delegation, a recurring design pattern of Cocoa Touch
development, and demonstrate its use with the Core Location service, which
provides	the	location-finding	features	of	the	iPhone.

Delegation
We spend a lot of time sending messages to objects. Sometimes, however, we
want objects to send messages to us – a callback. A callback is a function that is
triggered when an event occurs. Usually, this is an event that happens in response
to user input. We don’t exactly know when this event might occur, but we set up
a callback so that when it does occur, our code will be called. In some systems,
callbacks are sent to objects that are known as listeners.

In Cocoa Touch, callbacks are implemented using a technique known as
delegation. Let’s start with an example. Every instance of UITextView has a
delegate	property,	which	is	a	pointer	to	an	object.	That	object	is	“the	delegate” of
the	text	view.	You	can	set	that	pointer	to	refer	to	any	object,	as	long	as	that	object	
conforms to the protocol of the class for which it is a delegate. For instance,
when you create a class that will be a UITextView delegate, you need to declare
it to conform to the UITextViewDelegate	protocol.	You	declare	which	protocols	a	
class conforms to by listing the names of the protocols in a comma-delimited list in
angled brackets after the name of the superclass:

// SuperGoodController conforms to the UITextViewDelegate
// and SomeOtherDelegate protocol.
@interface SuperGoodController : NSObject
 <UITextViewDelegate, SomeOtherDelegate>

A protocol is simply a list of method declarations. (Other languages, like Java,
sometimes call them interfaces.) When a class conforms to a protocol, it is
promising to implement all required methods from that protocol and reserving the
option to implement any optional methods. For example, here is the protocol that
declares all the delegate methods for UITextView:

@protocol UITextViewDelegate

@optional
- (BOOL)textViewShouldBeginEditing:(UITextView *)textView;

Chapter 4. Delegation and Core Location

Page 74

- (BOOL)textViewShouldEndEditing:(UITextView *)textView;

- (void)textViewDidBeginEditing:(UITextView *)textView;
- (void)textViewDidEndEditing:(UITextView *)textView;

- (BOOL)textView:(UITextView *)textView
 shouldChangeTextInRange:(NSRange)range
 replacementText:(NSString *)text;

- (void)textViewDidChange:(UITextView *)textView;

- (void)textViewDidChangeSelection:(UITextView *)textView;
@end

Notice that this particular protocol doesn’t have any required methods (which is
not	unusual).	Also	notice	that	the	first	argument	to	all	of	the	delegate methods is
a pointer to the object that is sending the callback. This lets the delegate know
exactly which object is sending it a delegate message and is always the case with
delegate methods.

In Apple’s developer documentation, each protocol has its own page that lists
and describes each method. To get to the documentation, go to the Help menu
and click Developer Documentation. There you can search for the protocol.
By convention, the name of a delegate protocol is the name of the class
doing	the	delegation	suffixed	with	Delegate.	For	example,	to	find	all	of	the	
delegate methods for a UITextView, search for UITextViewDelegate. The
“UITextViewDelegate Protocol Reference” is shown in Figure 4.1.

Chapter 4. Delegation and Core Location

Page 75

Figure 4.1. UITextViewDelegate Documentation

Once	you	have	declared	a	class	as	conforming	to	a	protocol,	you	find	the	methods	
you need in the documentation, implement them for that class, and you’re good
to go. For example, if the delegate of a UITextView has implemented the method
textViewDidChange:, that method will be called every time the user changes the
text of that text view as shown in Figure 4.2.

Figure 4.2. A UITextView delegate

When implementing a delegate method, it is important to make sure you match
the name and the types of arguments exactly as they are declared in the protocol.
If you change the name in any way (capitalization or spelling errors are the most
common	“changes”),	the	method	will	not	get	called.	If	you	change	the	types	of	the	
arguments, your application may not work as you intend it to.

There are two basic categories of delegate	methods.	Some	are	“for-your-
information” methods. These methods are sent to a delegate to inform

Chapter 4. Delegation and Core Location

Page 76

it that something has happened. For example, you would implement
textViewDidChange: to be informed when the text in a UITextView changes.

Other delegate	methods	are	“what-should-I-do?”	methods.	These	methods	expect	
a response back from the delegate that will dictate the behavior of the delegating
object. For example, if a delegate implements textView:shouldChangeTextInRa
nge:replacementText:, it can prevent an inappropriate edit by returning NO.

Sometimes protocols have required methods. A class that conforms to a protocol
that has required methods must implement those methods or else the compiler will
warn you and your application will probably crash. How can you tell if a method is
required?	In	the	protocol	reference,	the	absence	of	the	text	optional	method	next	
to the method name indicates that it is a required method. (Some versions of the
documentation label the required methods instead of optional methods.)

You	can	also	determine	which	methods	are	required	by	looking	at	the	header	
file	in	which	the	protocol	is	declared.	Any	required	methods	appear	above	the	@
optional directive in the protocol body. Methods that appear below the @optional
directive are optional and do not have to be implemented by a class that conforms
to that protocol. (If there is no @optional tag, then all methods in that protocol are
required.)

// SuperCoolProtocol is a protocol that also
// includes methods from the NSObject protocol
@protocol SuperCoolProtocol <NSObject>
- (void)requiredMethod;
@optional
- (void)optionalMethod1;
- (void)optionalMethod2;
@end

Many classes use delegates: AVAudioPlayer, CLLocationManager,
NSNetServices, NSStream, NSURLConnection, NSXMLParser, CALayer,
UIAccelerometer, UIApplication, UIPickerView, UIImagePickerController,
UIScrollView, UITableView,UITextField, UIWebView, and UIWindow. Take a
moment to browse through some of these protocol references. (Here’s a shortcut:
in Xcode, hold down the Option and Command keys and double-click the name
of the protocol. The documentation browser will appear displaying a list of every
method for that protocol.)

To review, in order implement delegate methods for an object, you must:

Chapter 4. Delegation and Core Location

Page 77

1. declare a class to conform to the object’s delegate	protocol 

2. implement the necessary delegate methods (required ones and optional
ones	you	want	to	use)	in	the	class 

3. set the delegate	pointer	of	the	object	to	point	to	an	instance	of	your	class 

Beginning the Whereami Application
To help you understand delegation, you’re going to write an application called
Whereami that uses it over and over again. This application will display a map
and allow the user to scroll, zoom, and tag the device’s current location with
a pin and a title. This exercise spans two chapters. At the end of this chapter,
the	application	won’t	look	like	much,	but	the	final	product	–	and	the	clearer	
understanding of delegation – will be worth it. Create a Window-Based Application
and name it Whereami.

Using frameworks
Open WhereamiAppDelegate.h	and	find	the	following	line	of	code	at	the	top.	
(You	may	have	noticed	it	at	the	top	of	your	other	application	delegate	files,	too.)

#import <UIKit/UIKit.h>

This	translates	to	“From	the	UIKit	framework,	import	the	UIKit.h header.”
A framework is a collection of related classes, and Cocoa Touch is a set of
frameworks.	One	of	the	benefits	of	Cocoa	Touch	being	organized	into	frameworks	
is that you only need to import what your application needs. The UIKit framework
is in every iPhone application because it contains all of the user interface
classes like UIButton and UILabel. Whereami will also need the Core Location
framework. It won’t, for example, need the Media Player framework.

The UIKit framework is added automatically by Xcode, but to use the code in the
Core Location framework, you need to add it to your project. Select Edit Active
Target from the Project menu. In the Target Info window that appears, select
the General tab. At the bottom of the window is a list of Linked Libraries. Click
the + button on the bottom-left corner of the window. A sheet will drop down
from this window listing all of the available frameworks for iPhone OS. Choose
CoreLocation.framework from that list and click the Add button as shown in
Figure 4.3. This application can now use the classes and functions available in the
Core Location framework.

Chapter 4. Delegation and Core Location

Page 78

Figure 4.3. Adding the Core Location framework

While there are other ways to add frameworks to your project, this is the
recommended way because it allows you to switch freely between target SDKs.
For example, you could recompile your application for a different version of the
iPhone OS without making any other changes to your project in Xcode.

Make sure you remember how to add a framework to a project – you will have to
do	it	fairly	frequently!

Core Location
Location Services enables applications to determine the device’s geographical
location. Core Location is the framework that you use to talk to Location Services.
No matter what type of device is being used, the Core Location code you write
does not change.

The class that interfaces with the hardware is called CLLocationManager.
Instances of this class are given a pointer to a delegate	and	then	told	to	find	
the device’s location in the world. At this point, the CLLocationManager starts
doing its own thing while the rest of the application continues with other tasks –

Chapter 4. Delegation and Core Location

Page 79

like accepting user input or updating the interface. This is possible because the
location manager operates on another thread.

When a CLLocationManager instance succeeds or fails in determining the
location of the device, it informs its delegate by sending it one of the messages in
the CLLocationManagerDelegate protocol.

For the Whereami application, you need to create an instance of
CLLocationManager and give it a delegate. WhereamiAppDelegate is
the controller object for this exercise; it will contain a CLLocationManager
and also be its delegate. Therefore,WhereamiAppDelegate must conform
to the CLLocationManagerDelegate protocol. Add the following code to
WhereamiAppDelegate.h

#import <UIKit/UIKit.h>
#import <CoreLocation/CoreLocation.h>

@interface WhereamiAppDelegate : NSObject
 <UIApplicationDelegate, CLLocationManagerDelegate>
{
 UIWindow *window;
 CLLocationManager *locationManager;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

A CLLocationManager instance has properties you can set to specify how often
it should update and how accurate it should be. The property distanceFilter
determines how far the device must move in meters before CLLocationManager
informs its delegate of a new location. Its setter method is setDistanceFilter:.

The second property, desiredAccuracy, can be set with the method
setDesiredAccuracy:. The desired accuracy is important because it has
consequences for battery power and CPU time. There is a tradeoff between the
accuracy and the amount of battery life and CPU time required to determine a
location. Moreover, the accuracy is ultimately dependent on the type of device the
user has, the availability of cellular towers and satellites, and the availability of
known wireless access points.

In the method application:didFinishLaunchingWithOptions:, you will instantiate
a CLLocationManager to track a device’s location. For this application, you will
set its properties to request the most accurate location data available from the

Chapter 4. Delegation and Core Location

Page 80

CLLocationManager as often as possible. (This will use the most amount of
battery and take the longest amount of time.)

Add the following to WhereamiAppDelegate.m.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Create location manager object -
 locationManager = [[CLLocationManager alloc] init];

 // Make this instance of WhereamiAppDelegate the delegate
 // it will send its messages to our WhereamiAppDelegate
 [locationManager setDelegate:self];

 // We want all results from the location manager
 [locationManager setDistanceFilter:kCLDistanceFilterNone];

 // And we want it to be as accurate as possible
 // regardless of how much time/power it takes
 [locationManager setDesiredAccuracy:kCLLocationAccuracyBest];

 // Tell our manager to start looking for its location immediately
 [locationManager startUpdatingLocation];

 [window makeKeyAndVisible];
				return	YES;
}

Notice that you have set the locationManager’s delegate to self. Because we
are within the implementation block for WhereamiAppDelegate, self refers
to this instance of WhereamiAppDelegate. Therefore, all of the delegate
methods for this instance of CLLocationManager will be implemented in
WhereamiAppDelegate.m.

Also, the locationManager does not retain its delegate. In fact, delegates are
never	retained	by	the	object	doing	the	delegating.	Why?	Because	a	controller	
object usually owns the object for which it is a delegate. If an object then retains
its delegate, it would create a problem called a retain cycle. Right now, you have
other things to concentrate on, so we will leave the discussion of retain cycles for
a future chapter; just remember that setting a delegate is always an assignment

Chapter 4. Delegation and Core Location

Page 81

and that delegates are never retained or copied.

Because the delegate is not retained, it is important that the delegate pointer is
never	“dangling.”	For	example,	if	the	instance	of	WhereamiAppDelegate could
get deallocated, we would be sure to set the delegate pointer to nil:

- (void)dealloc
{
 [locationManager setDelegate:nil];
 [super dealloc];
}

Receiving updates from CLLocationManager
When a CLLocationManager has enough data to produce a new location,
it creates an instance of CLLocation. That CLLocation object is sent to the
CLLocationManager’s delegate via the locationManager:didUpdateToLocati
on:fromLocation:delegate method as shown in Figure 4.4. (This method is from
the CLLocationManagerDelegate protocol.)

Figure 4.4. A CLLocation object

CLLocation objects contain the latitude and longitude of the user’s device.
Each location object will also contain the accuracy of its reading in the
horizontalAccuracy property. Depending on the device, information like the
elevation above sea level and the current heading of the device may also be

Chapter 4. Delegation and Core Location

Page 82

recorded.

You	must	implement	the	delegate method locationManager:didUpdateToLoca
tion:fromLocation: from the CLLocationManagerDelegate protocol in order to
start receiving CLLocation instances from the CLLocationManager. For now,
implement this method in WhereamiAppDelegate.m so that it prints out the
CLLocation’s description to the console. (Be careful that there are no typos in
the method signature; remember, the name of the method must exactly match
the declaration in the protocol. The compiler won’t tell you if you made a mistake.
It	will	just	think	you	are	defining	a	brand	new	method.	Most	developers	copy	and	
paste the method from the documentation.)

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
 NSLog(@"%@", newLocation);
}

You	also	need	to	know	if	the	CLLocationManager	fails	to	find	its	location	and	
why. When it fails, it sends a different message to its delegate. Implement that
method in WhereamiAppDelegate.m.

- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error
{
 NSLog(@"Could not find location: %@", error);
}

Build and run the application. After giving permission for the application to use
location services and waiting for a few seconds while the location is determined,
your console should read something like this:

<+37.33168900, -122.03073100> +/- 100.00m (speed -1.00 mps / course -1.00)

So that’s how delegation works with a real example. If it feels odd or doesn’t quite
make	sense,	don’t	worry.	It	can	be	hard	to	understand	at	first,	but	you’ll	get	it	in	
time.	In	the	next	chapter,	you	are	going	to	finish	off	the	Whereami application.
And yeah, you guessed it, you will be using more delegation in that chapter, too.

Chapter 4. Delegation and Core Location

Page 83

Releasing Controller Instance Variables
Deallocating objects while an application is running is important because it frees
up memory for future objects. When an application terminates, the memory it was
consuming is returned to the operating system. In most applications, however,
controller objects exist the entire time an application is running. They never get
released and therefore never get deallocated.

This holds true for Whereami: the instance of WhereamiAppDelegate will never
get released because it needs to exist the entire time the application is running.
Therefore, you do not need to implement the dealloc method for this class. Most
of the applications in this book have controller objects that exist the entire time
an application is running. This is the behavior for many controller objects in real
applications for two reasons:

•	 Controller objects are the brains of an application. They take on a lot of roles
and typically are needed throughout the execution of an application.

•	 Controller objects do not consume a lot of memory themselves. They only hold
pointers to view and model objects, which are the two types of classes that
consume the majority of memory. If memory is running low, the controller
can get rid of the big objects it has pointers to (and, ideally, be able to
reload those objects when needed).

Now, this isn’t to say that all controller objects exist throughout an application’s
lifetime.	Some	controller	objects	can	exist	temporarily	for	a	specific	task.	In	these	
circumstances, you will need to release the appropriate instance variables in the
controller’s dealloc method.

We won’t waste your time showing you the implementation of dealloc methods
that will never get called, but you can’t go wrong by getting in the habit of always
writing correct dealloc methods. (An unused method never hurts you.)

In Snow Leopard, a static analyzer was added to Xcode. The static analyzer
evaluates your code and looks for potential problems like memory leaks or
uninitialized	variables.	(You	can	run	the	static	analyzer	on	your	code	by	selecting	
Build	and	Analyze	from	the	Project	menu.)	It’s	not	without	flaws,	though.	If	you	

Chapter 4. Delegation and Core Location

Page 84

have a controller object that you never intend to release, the static analyzer may
warn	you	that	you	are	leaking	that	object.	You	can	ignore	those	warnings.

Challenge: Heading
Using delegation, retrieve the heading information from the CLLocationManager
and	print	it	to	the	console.	(Hint:	You	need	to	implement	at	least	one	more	
delegate method and send another message to the location manager.)

For the More Curious: Compiler and Linker Errors
Building an application in Xcode is a multi-step process. Two of these steps are
compiling and linking, and each comes with its own type of error.

One	of	the	first	building	steps,	compiling,	takes	your	Objective-C	code	and	turns	it	
into	the	binary	code	a	computer	understands.	Each	implementation	file	(suffixed	
with .m)	is	turned	into	an	object	file	that	contains	that	binary	code.

If an error is found in your code during this phase, the compile fails. (And if an
implementation	file	fails	to	compile,	the	corresponding	object	file	is	not	created.)	
An error during this phase is called a compile-time error or syntax error. These
errors mean that the compiler cannot understand your source code – usually
because of little things like misplaced semicolons, unbalanced brackets ([]) or
braces ({}), spelling or capitalization errors.

A syntax error is also generated if you declare a variable of a type that the
compiler doesn’t recognize. For each Objective-C class, there is a header
file	that	declares	it,	and	importing	the	header	file	tells	the	compiler	about	that	
class. To see an example of a syntax error, comment out the following line in
WhereamiAppDelegate.h:

//#import <CoreLocation/CoreLocation.h>

Build your application again. It will fail, and the Build Results window will show you
several errors (Figure 4.5).

Chapter 4. Delegation and Core Location

Page 85

Figure 4.5. Build results with compile-time error

These errors tell you that the compiler doesn’t know about CLLocationManager
or its delegate protocol. That’s because the declarations for these things are
in CoreLocation/CoreLocation.h. Now that you’ve seen this error, you know
how	to	fix	it.	Uncomment	the	#import directive, build again, and the errors will
disappear.	(So,	what	does	importing	a	file	really	do?	When	an	implementation	file	
is	compiled,	each	import	directive	is	replaced	with	the	text	of	the	imported	file.	The	
text is effectively copied and pasted at the spot of the import directive.)

The next step in the building process is linking. The linker reads all of the object
files,	determines	what	functions	and	classes	are	being	used,	and	then	links	them	
to	the	object	file	that	contains	the	definition	for	those	functions	and	classes.	If	the	
linker	cannot	find	a	definition,	it	generates	a	linker	error.	Typically,	you	get	this	
error when you forget to add a framework to a project.

Linker	errors	are	more	difficult	for	new	developers	to	understand	because	they	
use	unfamiliar	terms	(like	“symbol”	and	“literal-pointer”).	So	let’s	go	ahead	and	
cause a linker error just for practice. Select the CoreLocation.framework icon
from the project window and press the delete key to remove it from your project.
Build your application again, and the Build Results window will tell you of your folly
(Figure 4.6).

Chapter 4. Delegation and Core Location

Page 86

Figure 4.6. Build results with linker error

This error tells you that the compiler knew about CLLocationManager (because
you	imported	the	header	file),	but	the	linker	can’t	find	the	object	file	that	defines	it.	
Add the Core Location framework back to your project to eliminate this error.

For the More Curious: Protocols
A protocol is a list of methods. Here’s an example:

@protocol CLLocationManagerDelegate<NSObject>

@optional
- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation;

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading;

- (BOOL)locationManagerShouldDisplayHeadingCalibration:

Chapter 4. Delegation and Core Location

Page 87

 (CLLocationManager *)manager;
- (void)locationManager:(CLLocationManager *)manager
 didFailWithError:(NSError *)error;

@end

In the iPhone SDK, most classes that have a delegate	property	define	a	protocol	
that declares the methods that can be sent to their delegate. Typically, a delegate
protocol only has optional methods. (Not all protocols are delegate protocols;
you’ll	work	with	other	protocols	later	in	this	book.	In	fact,	while	“delegate protocol”
is a handy term for a protocol that declares delegate methods, there is no
such thing as a delegate protocol according to the compiler; a protocol is just a
protocol.)

When an object wants to send an optional delegate message to its delegate, it
first	sends	the	message	respondsToSelector: to see if the delegate implements
the optional method. (If the response is negative, the object won’t send the
corresponding message.) For example, when text is added to an instance of
UITextView, it informs its delegate through an optional delegate method. If you
were writing the UITextView class, the implementation of UITextView would look
something like this:

@implementation UITextView
- (void)setText:(NSString *)t
{
 NSString *tCopy = [t copy];
 [text release];
 text = tCopy;

 // Find out if the delegate responds to textViewDidChange:
 if ([[self delegate] respondsToSelector:@selector(textViewDidChange:)]) {
								//	Send	the	delegate	a	message	saying	the	text	did	change!
 [[self delegate] textViewDidChange:self];
 }
}

However, with a required method, an object does not check before sending the
message; it assumes that this method is implemented. If you don’t implement
a required delegate method for an object, your application will throw an
unrecognized selector exception when the object sends the required message to

Chapter 4. Delegation and Core Location

Page 88

its delegate.

Some classes in the iPhone SDK are borrowed from Mac OS X and do not
declare a delegate protocol even if they have a delegate property. (Usually
these	classes	are	prefixed	with	NS and are part of the Foundation framework.)
These classes were written before Objective-C 2.0 when there was no @optional
directive. Back then, every method in a given protocol had to be implemented by a
class that conformed to that protocol.

In order to have optional delegate methods, these classes declared their
protocols in informal protocols. Informal protocols are a bit of a legacy and beyond
the scope of this book. However, it’s good to know about them for the purpose
of reading the documentation. If you’re looking for delegate methods for one
of	these	classes,	you’ll	find	them	in	the	same	documentation	page	as	the	class	
that uses them instead of in a separate protocol reference. For example, the
delegate methods forNSXMLParser	are	documented	in	the	“NSXMLParser Class
Reference” page (Figure 4.7).

Figure 4.7. NSXMLParser Documentation

Chapter 5. MapKit and Text Input

Page 89

Chapter 5. MapKit and Text Input
In	this	chapter,	you	will	finish	the	Whereami	application	using	delegation	with	the	
MapKit framework and UITextField, a text input control from the UIKit framework
(Figure 5.1). MapKit is the framework that allows you to display maps and the
geographical data associated with them. It is only available on iPhone OS 3.0 and
greater.

Figure 5.1. Finished Whereami

Object Diagrams
iPhone applications can get very large and use many classes and methods. One
way to keep your head wrapped around a large and complex project is to draw an
object diagram. Object diagrams show the major objects in an application and any

Chapter 5. MapKit and Text Input

Page 90

objects they have as instance variables. (At Big Nerd Ranch, we use a program
called	OmniGraffle	to	draw	our	object	diagrams.)	Most	exercises	in	this	book	will	
show	you	an	object	diagram	to	give	you	the	“big	picture”	of	the	application	you	
are developing. Figure 5.2 shows the object diagram for the complete Whereami
application.

Figure 5.2. Whereami object diagram

Let’s look more closely at this diagram. At the top, there are three view objects:

•	 An MKMapView displays the map and the labels for the recorded locations.

•	 A UIActivityIndicatorView indicates that the device is working and not stalled.

•	 A UITextField allows the user to input text to label the current location on the
map.

On the bottom are the model objects. One is an instance of CLLocationManager.
A CLLocationManager interacts with the device’s hardware to determine the
user’s location.

Finally, in the middle of everything is the controller object,

Chapter 5. MapKit and Text Input

Page 91

WhereamiAppDelegate. WhereamiAppDelegate is responsible for processing
updates and requests from objects and for updating the user interface. It is the
delegate for MKMapView,UITextField, and CLLocationManager.

Now take a look at the messages sent to WhereamiAppDelegate by these
objects. MKMapView sends mapViewDidAddAnnotationViews: when a view
(or views) is added. UITextField sends textFieldShouldReturn: when the user
has	finished	entering	text.	CLLocationManager sends locationManager:didUp
dateToLocation:fromLocation: to inform WhereamiAppDelegate of a location
update.

MapKit Framework
The Core Location framework tells us where we are in the world; the MapKit
framework shows us that world. At the end of this chapter, the user will be able
place a MapKit annotation at their current location and name it. The default
MapKit annotation appears as a red pin on the map.

Add	the	MapKit	framework	to	your	project.	(If	you’ve	forgotten	how,	flip	back	to	
page 65 and refresh your memory.) Once you have added the MapKit framework,
you	must	import	the	header	file	in	any	file	that	will	use	classes	from	that	
framework. At the top of WhereamiAppDelegate.h, import the MapKit header.

#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

Most of MapKit’s work is done by the class MKMapView. Instances of this type
display a map, track touches, and display annotations. (They also do quite a bit
more, but that’s all you’ll need for this application.) To determine the necessary
instance variables for the Whereami project, review the object diagram in Figure
5.2.	You’ll	need	an	instance	of	MKMapView, an instance of UITextField, and
an instance of UIActivityIndicatorView. Declare these instance variables in
WhereamiAppDelegate.h.

@interface WhereamiAppDelegate : NSObject
 <UIApplicationDelegate, CLLocationManagerDelegate>
{
 UIWindow *window;

 CLLocationManager *locationManager;

 IBOutlet MKMapView *mapView;

Chapter 5. MapKit and Text Input

Page 92

 IBOutlet UIActivityIndicatorView *activityIndicator;
 IBOutlet UITextField *locationTitleField;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

In	Interface	Builder,	open	the	file	MainWindow.xib in the Resources group of the
Whereami project. Then open the UIWindow	instance	in	this	XIB	file	by	double-
clicking on the Window object in the doc window.

Interface Properties
Drag an MKMapView onto the window. Then drop a UITextField and a
UIActivityIndicatorView on the MKMapView.	(If	you	are	having	trouble	finding	
these objects, use the search box at the bottom of the Library window.) Reposition
them and make the outlet connections as shown in Figure 5.3. When connecting
the delegate for an object, remember to drag from the object that is delegating
to the object that will be the delegate. For example, to set the MKMapView’s
delegate, Control-click the MKMapView to bring up the connection panel and drag
to the WhereamiAppDelegate instance.

Figure 5.3. Whereami XIB layout

Chapter 5. MapKit and Text Input

Page 93

Now you’re going to change some of the properties of your UITextField and
UIActivityIndicatorView to improve the user interface. When a UITextField
is activated, a keyboard appears on the screen. (We’ll see why this happens
later.) The keyboard’s appearance is determined by a set of the UITextField’s
properties called UITextInputTraits. For Whereami, the keyboard should display
the	placeholder	text	“Enter	Location	Name”	and	a	blue-tinted	Search	key.	To	make	
these changes, select the UITextField to get to its attributes in the Inspector
window. Change the values for Placeholder and Return Key to match what is
shown in Figure 5.4.

Figure 5.4. UITextField attributes

Chapter 5. MapKit and Text Input

Page 94

Wouldn’t it be nice if the UIActivityIndicatorView hid itself when it’s not
animating?	Select	UIActivityIndicatorView and check the box labeled Hide When
Stopped in the Attributes panel as shown in Figure 5.5 to make this happen.

Figure 5.5. UIActivityIndicator attributes

Save MainWindow.xib and quit Interface Builder.

Being a MapView Delegate
When Whereami launches, the user will be shown a map around the current
location and be able to tag the location by entering a name in the UITextField.
Core Location will get the latitude and longitude of the current location and
create an object to represent it. WhereamiAppDelegate will then annotate the
MKMapView at that location. In effect, the user will label locations that have been
visited for future reference.

An MKMapView knows how to use Core Location to place the user’s location on
itself; you do not have to use Core Location directly when dealing with this type of
object. If you set the showsUserLocation property of an MKMapView to YES, it
will show the location of the user on the map. At the end of application:didFinis
hLaunchingWithOptions:, replace the message that tells the locationManager
to update its location with one that tells the MKMapView to show the current
location.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

Chapter 5. MapKit and Text Input

Page 95

 locationManager = [[CLLocationManager alloc] init];
 [locationManager setDelegate:self];

 [locationManager setDistanceFilter:kCLDistanceFilterNone];
 [locationManager setDesiredAccuracy:kCLLocationAccuracyBest];

 // [locationManager startUpdatingLocation];
 [mapView setShowsUserLocation:YES];
 [window makeKeyAndVisible];

				return	YES;
}

Build and run the application. A few moments after the application launches, the
map will display a blue annotation dot on your current location. (If you are using
the simulator, the current location is always Apple’s Headquarters.) However,
because you are still looking at the entire world, that blue dot is the size of Brazil
and	not	exactly	useful	for	figuring	out	where	you	are!	Clearly,	the	application	
needs to zoom in closer to the current location.

To	fix	this	problem,	you	could	send	some	message	to	mapView telling it to zoom
in on a region,	but	when	would	you	do	that?	You	can’t	do	it	when	the	application	
starts because mapView	needs	a	moment	to	figure	out	where	the	user	is.	Nor	
do you want to continually tell the MKMapView to update its viewing region; that
would be a waste of time.

Instead,	how	about	delegation?	MKMapView has a delegate –
the WhereamiAppDelegate	instance.	So,	first,	declare	that	the	
WhereamiAppDelegate instance conforms to that protocol in
WhereamiAppDelegate.h:

@interface WhereamiAppDelegate : NSObject
 <UIApplicationDelegate, CLLocationManagerDelegate, MKMapViewDelegate>
{

When an annotation is added to the map (like the blue dot that represents the
user’s current location), the map view should zoom in on a small area around the
annotation. In the protocol documentation for MKMapViewDelegate,	try	to	find	a	
delegate method that will do that (Figure 5.6).

Chapter 5. MapKit and Text Input

Page 96

Figure 5.6. MKMapViewDelegate Protocol Reference

One method sticks out here: mapView:didAddAnnotationViews:. The
documentation explains what the message name already makes rather
clear – mapView:didAddAnnotationViews: will be called whenever an
annotation is added to the map. This method can initiate the zoom any
time an annotation is added. In WhereamiAppDelegate.m, implement
mapView:didAddAnnotationViews:

- (void)mapView:(MKMapView *)mv didAddAnnotationViews:(NSArray *)
views
{
 MKAnnotationView *annotationView = [views objectAtIndex:0];
 id <MKAnnotation> mp
 = [annotationView annotation];
 MKCoordinateRegion region = MKCoordinateRegionMakeWithDistance([
mp coordinate], 250, 250);
 [mv setRegion:region animated:YES];
}

Take	a	closer	look	at	this	method	body.	You	will	need	an	MKCoordinateRegion

Chapter 5. MapKit and Text Input

Page 97

to send to the MKMapView’s method setRegion:animated:. The
MKCoordinateRegion is a structure (not an Objective-C object), so
you can’t send it messages. To create a region, you call the function
MKCoordinateRegionMakeWithDistance with the center and two distances:
meters east-west and meters north-south. The coordinate of the annotation is
passed along with the number of meters the region spans.

Skip the type declaration of the variable mp for a moment and focus on the
array access. When the message mapView:didAddAnnotationViews: is sent
to the delegate, an NSArray of MKAnnotationViews is also passed as an
argument. This array contains all of the views that were just added to the map.
An MKAnnotationView is a view that is displayed on the MKMapView. It has a
pointer to an object that contains the name, coordinate, and other annotation
data. Here are where things get fun: the object that MKAnnotationView points
to can be any object that conforms to the MKAnnotation	protocol.	You	don’t	
have to worry about what kind of object the annotation is; you know that you can
send it the messages in the MKAnnotation protocol, and, therefore, its data can
be used by an MKAnnotationView. (There may be more objects in the views
array, depending on how many annotations were added to the map. In this simple
exercise,	you	only	care	about	the	first	one.)

Why is MKAnnotation	a	protocol	and	not	a	class?	Any	object	can	conform	to	a	
protocol, and that lets your application display different types of objects on one
map. Imagine an application that maps everything in a neighborhood including
restaurants and movie theaters. A restaurant has a menu, and a theater has a list
of showtimes; they are different types of objects. However, both can be displayed
on the map if they conform to MKAnnotation.	It’s	brilliant!

Now consider the variable mp. Its type is id,	which	means	“any	Objective-C	
object.”	The	angled	brackets	further	specify	“as	long	it	conforms	to	this	protocol.”	
The MKAnnotation protocol says you can send the message coordinate to any
conforming object, and it will return a CLLocationCoordinate2D structure. Here
you use that structure to set the center of the region. Then, you hand the region
off to the MKMapView with setRegion:animated: to do the zoom.

Build	and	run	the	application	again.	When	the	map	figures	out	where	you	are	in	
the world, it zooms in on that location.

Your	own	MKAnnotation
Now, you will write a class MapPoint that conforms to the MKAnnotation protocol
and use instances of it for tagging locations in Whereami. From the File menu in

Chapter 5. MapKit and Text Input

Page 98

Xcode, select New File.... A window will appear, and on the lefthand side of the
window, select Cocoa Touch Class from the iPhone OS section. On the upper-
right side, choose Objective-C class. Select NSObject from the pop-up menu and
hit the Next button (Figure 5.7).

Figure 5.7. Creating an NSObject subclass

When prompted, name this class MapPoint.m and check the box labeled Also
create	“MapPoint.h”.	Click	Finish,	and	the	class	files	for	this	object	will	be	added	
to your project (Figure 5.8).

Chapter 5. MapKit and Text Input

Page 99

Figure 5.8. Naming the subclass

While most of the methods declared in the MKAnnotation protocol are optional,
there is one required method – coordinate. If MapPoint is to conform to the
MKAnnotation protocol, it must implement that method. (The protocol actually
defines	coordinate as a property, so you will as well. Remember from our
discussion of accessors that a property is essentially a collection of method
declarations.)

MKAnnotationView will interact with its annotation object through the methods
declared in the MKAnnotation protocol. However, because a protocol can’t
declare instance variables, it is up to MapPoint to store the data that will be
returned from the methods declared in the MKAnnotation protocol. Change
MapPoint.h to read as follows:

#import <Foundation/Foundation.h>
#import <CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

Chapter 5. MapKit and Text Input

Page 100

@interface MapPoint : NSObject <MKAnnotation>
{
 NSString *title;
 CLLocationCoordinate2D coordinate;
}
@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, copy) NSString *title;

- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t;

@end

Switch to MapPoint.m to enter the implementation. (The keyboard shortcut for
switching	between	the	header	file	and	the	implementation	file	is	Command-
Option-Up Arrow.)

#import "MapPoint.h"

@implementation MapPoint
@synthesize coordinate, title;
- (id)initWithCoordinate:(CLLocationCoordinate2D)c title:(NSString *)t
{
 [super init];
 coordinate = c;
 [self setTitle:t];
 return self;
}
- (void)dealloc
{
 [title release];
 [super dealloc];
}
@end

Note that you don’t release coordinate in the dealloc method because it is not an
Objective-C object and can’t receive messages. The CLLocationCoordinate2D
structure’s memory will live inside each instance of MapPoint, and it will be
created and destroyed automatically along with the object.

Tagging locations

Chapter 5. MapKit and Text Input

Page 101

Now that you have your own class that conforms to MKAnnotation, you can
start tagging locations on the MKMapView. As we decided earlier, the user can
enter text into the UITextField and tap the Search button on the keyboard to tag a
location. But you don’t have an IBAction hooked up to that button, so how will you
know	when	the	Search	button	was	tapped?

Delegation, once again, comes to the rescue. Whenever a keyboard is dismissed
from the screen by its return key, the UITextField that displayed the keyboard
is told to return. When that happens, the UITextField sends its delegate the
message textFieldShouldReturn: to see if it really should return. Because you
set up locationTitleField’s delegate to be WhereamiAppDelegate, you can
implement this delegate method in WhereamiAppDelegate.m.

- (BOOL)textFieldShouldReturn:(UITextField *)tf
{
			[self	findLocation];
 [tf resignFirstResponder];
			return	YES;
}

Text Input and the First Responder
For now, ignore findLocation.	You	will	write	the	implementation	for	that	in	a	
moment.	Let’s	talk	about	text	editing	and	the	first	responder.

There is a class in the UIKit framework named UIResponder. A responder is
responsible for receiving events and processing them. A UITextField is a direct
subclass of UIControl, which is a subclass of UIView which is a subclass of
UIResponder(Figure 5.9). Thus, UITextField can receive events, like a touch.

Chapter 5. MapKit and Text Input

Page 102

Figure 5.9. Class hierarchy of a UIControl object

When a UITextField receives a touch, it becomes a special type of responder:
the	first	responder.	On	the	iPhone,	the	first	responder	only	has	a	few	uses.	(On	
the	Desktop,	it	has	significantly	more.)	There	can	only	be	one	first	responder	for	a	
window at a time, and, since there is only one window in an application, there can
only	be	one	first	responder	for	an	application.

Every UIResponder has a pointer called nextResponder. A view’s
nextResponder is typically its superview. Thus, you can think of the responder
chain as a linked list of objects – each responder has a pointer to the next
responder in the chain.

When	an	object	is	the	first	responder,	it	gets	a	chance	to	handle	keyboard	and	
motion	events	(like	shakes)	first.	(Touch	events	go	to	whatever	view	was	touched	
first,	regardless	of	what	object	is	the	first	responder.)	If	the	first	responder	
doesn’t handle the event, the event is passed to its nextResponder. If the
nextResponder doesn’t handle that event, it goes to its nextResponder and so
on.

When a UITextField	becomes	the	first	responder,	it	slides	a	keyboard	onto	the	
screen. This keyboard will remain on the screen as long as the UITextField
remains	the	first	responder.	When	you	want	to	dismiss	the	keyboard,	you	send	the	
message resignFirstResponder	to	the	text	field	that	put	it	there.

(Everything about UITextField holds true for instances of UITextView, too. The
difference between UITextView and UITextField is that a UITextView allows
for multi-line editing. As a result, a text view’s Return key enters the newline

Chapter 5. MapKit and Text Input

Page 103

character	whereas	a	text	field’s	Return	key	dispatches	the	delegate	method	
textFieldShouldReturn:.)

Putting the Pieces Together
Now you need to implement the method findLocation. This method tells the
locationManager to start looking for the current location. It also updates the user
interface	so	that	the	user	can’t	re-enter	text	into	the	text	field	and	starts	the	activity	
indicator spinning. Declare findLocation in WhereamiAppDelegate.h along with
its counterpart, foundLocation.

@interface WhereamiAppDelegate : NSObject
 <UIApplicationDelegate, CLLocationManagerDelegate, MKMapViewDelegate>
{
 UIWindow *window;

 CLLocationManager *locationManager;

 IBOutlet MKMapView *mapView;
 IBOutlet UIActivityIndicatorView *activityIndicator;
 IBOutlet UITextField *locationTitleField;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

- (void)findLocation;
- (void)foundLocation;

@end

In WhereamiAppDelegate.m, implement these two methods. They set the state
of your UI elements and the locationManager.

- (void)findLocation
{
 [locationManager startUpdatingLocation];
 [activityIndicator startAnimating];
 [locationTitleField setHidden:YES];
}

- (void)foundLocation

Chapter 5. MapKit and Text Input

Page 104

{
 [locationTitleField setText:@""];
 [activityIndicator stopAnimating];
 [locationTitleField setHidden:NO];
 [locationManager stopUpdatingLocation];
}

One last bit: when the locationManager	finds	the	current	location,	it	should	create	
a new MapPoint and add it to the MKMapView instead of printing the description
on the console. Add the following code to locationManager:didUpdateToLocatio
n:fromLocation: in WhereamiAppDelegate.m.

- (void)locationManager:(CLLocationManager *)manager
 didUpdateToLocation:(CLLocation *)newLocation
 fromLocation:(CLLocation *)oldLocation
{
				NSLog(@"%@",	newLocation);
 // How many seconds ago was this new location created?
 NSTimeInterval t = [[newLocation timestamp] timeIntervalSinceNow];
 // CLLocationManagers will return the last found location of the
 // device first, you don't want that data in this case.
 // If this location was made was more than 3 minutes ago, ignore it.
 if (t < -180) {
 // This is cached data, you don't want it, keep looking
 return;
 }
 MapPoint *mp = [[MapPoint alloc]
 initWithCoordinate:[newLocation coordinate]
 title:[locationTitleField text]];
 [mapView addAnnotation:mp];
 [mp release];

 [self foundLocation];
}

Of course, WhereamiAppDelegate.m needs to know about the MapPoint class
in	order	to	use	it.	So,	at	the	top	of	this	file,	import	the	MapPoint header.

#import "WhereamiAppDelegate.h"
#import "MapPoint.h"

Chapter 5. MapKit and Text Input

Page 105

@implementation WhereamiAppDelegate

Note that you use quotation marks for this import and angled brackets for
frameworks.	Angled	brackets	tell	the	compiler,	“Only	look	in	your	system	libraries	
for	this	file.”	Quotation	marks	say,	“Look	in	all	the	directories	for	this	project	first,	
and	if	you	don’t	find	something,	then	look	in	the	system	libraries.”

Build	and	run	the	application.	Enter	a	title	into	the	text	field	and	watch	as	an	
annotation	with	that	title	is	displayed	on	the	map	at	your	current	location!

Challenge: Annotation Extras
Using the NSDate and NSDateFormatter classes, have your tagged annotations
show the dates they were tagged.

Challenge: Reverse Geocoding
Use delegation and the class MKReverseGeocoder to display the city and state
of a MapPoint on the map.

Challenge: Changing the Map Type
Add a UISegmentedControl to the interface. Have this segmented control switch
the MKMapView between the standard, satellite, and hybrid maps.

For the More Curious: Renaming an Application

Chapter 5. MapKit and Text Input

Page 106

When you create an application, you give it a name. But you aren’t stuck with that
name for life, and there are at least a couple of reasons you might want to change
it.

You	can	change	your	mind.	Usually	when	I’m	working	on	a	new	application,	I	
come up with a totally cool name. I show all of my friends every time I see them
and	talk	non-stop	about	how	“SupercoolApp”	is	going	to	be	so	great.	When	I	
finish	the	application,	however,	I	look	at	the	name	and	think,	“That’s	a	really	stupid	
name.”

Or you can be too late. Once in a blue moon, I write an application and still
love	the	name	when	I’m	finished.	(Baaahlast,	for	example,	still	makes	me	laugh	
when	I	see	it.)	Then	reality	hits,	and	I	find	out	someone	else	has	already	used	
the	name!Whereami	is	one	of	those	applications.	Another	iPhone	book	has	a	
Whereami application example, so our (way cooler) application needs a name
change.	How	does	Wherewasi	sound?

To change the name of an application, choose Edit Active Target from the Project
menu.	You’ve	been	here	before,	but	this	time	select	the	Build	tab	at	the	top	of	the	
window.	Select	All	Configurations	from	the	Configuration:	popup	button.	While	
there are many groups in the table (and each contains plenty of settings for the
target), you are looking for the Packaging group. Find the Product Name setting
within that group and double-click on that row (Figure 5.10).

Chapter 5. MapKit and Text Input

Page 107

Figure 5.10. Renaming an application

A sheet will drop down. Enter Wherewasi into this box and hit OK. Build and run
your application again. Check out the name of the application on the home screen
now.

Chapter 6. Subclassing UIView

Page 108

Chapter 6. Subclassing UIView

In previous chapters, you’ve created several views: a UIButton, a UILabel, etc.
But	what	exactly	is	a	view?

•	 A view is an instance of a subclass of UIView.

•	 A view knows how to draw itself on the application’s window.

•	 A view is arranged within a hierarchy: the window (an instance of
UIWindow) is itself a view and the root of the hierarchy. It has subviews
(that appear on the window). Those views can also have subviews.

•	 A view handles touch events.

In this chapter, you are going to create your own UIView	subclass	that	fills	the	
screen with concentric circles as shown in Figure 6.1.	You	will	also	learn	how	to	
add text and enable scrolling and zooming.

Figure 6.1. View that draws concentric circles

Creating a Custom View
In Xcode, create a new Window-based Application. Name it Hypnosister.

To create a new UIView subclass, select New File... from the File menu. On the
lefthand side of the next window, select Cocoa Touch Class within the iPhone OS
group. Choose the Objective-C class option for the template. In the pop-up menu
labeled Subclass of, select UIView. (Figure 6.2)

Chapter 6. Subclassing UIView

Page 109

Figure 6.2. Creating a UIView subclass

Apple frequently (and pointlessly) changes this interface, so your window may
look	different.	If	it	does,	make	sure	you	are	finding	a	template	that	is	a	subclass	of	
UIView (not UIViewController). Click the Next button.

Name	this	file	HypnosisView.m and make sure that Also create
“HypnosisView.h” is toggled on as shown in Figure 6.3. Click the Finish button.

Chapter 6. Subclassing UIView

Page 110

Figure 6.3. Creating a HypnosisView

The HypnosisView.h	file	will	open	automatically.	Open	its	counterpart,	
HypnosisView.m. Locate the drawRect:	method	in	this	file.

The drawRect: method
Every UIView subclass implements the method drawRect:. The drawRect:
method is where the drawing code for the view goes. For example, a UIButton’s
drawRect: method draws a rounded rectangle with a title string in the center.

Each time an instance of UIView is drawn, the system prepares a graphics
context	specifically	for	that	view.	The	context	is	then	activated,	and	the	message	
drawRect: is sent to the instance of UIView that is being drawn. The graphics
context’s type is CGContextRef (Core Graphics Context Reference), and it is
responsible for aggregating drawing commands and producing an image as a
result. This image is the appearance of the view instance. A graphics context
also stores its drawing state, which includes things like the current drawing color,

Chapter 6. Subclassing UIView

Page 111

coordinate system, and the width of lines.

When	drawing	a	view,	you	will	sometimes	use	Objective-C	to	make	calls	defined	
in UIKit that implicitly use the active graphics context. Other times, you will get
hold of the graphics context explicitly and draw using the C functions of the Core
Graphics framework. In this chapter, you will do both.

In HypnosisView.m, change the drawRect: method:

- (void)drawRect:(CGRect)rect
{
 // What rectangle am I filling?
 CGRect bounds = [self bounds];

 // Where is its center?
 CGPoint center;
 center.x = bounds.origin.x + bounds.size.width / 2.0;
 center.y = bounds.origin.y + bounds.size.height / 2.0;

 // From the center how far out to a corner?
 float maxRadius = hypot(bounds.size.width, bounds.size.height) / 2.0;

 // Get the context being draw upon
 CGContextRef context = UIGraphicsGetCurrentContext();

 // All lines will be drawn 10 points wide
 CGContextSetLineWidth(context, 10);

 // Set the stroke color to light gray
 [[UIColor lightGrayColor] setStroke];

 // Draw concentric circles from the outside in
 for (float currentRadius = maxRadius; currentRadius > 0; currentRadius -=
20)
 {
 CGContextAddArc(context, center.x, center.y,
 currentRadius, 0.0, M_PI * 2.0, YES);
 CGContextStrokePath(context);
 }
}

Chapter 6. Subclassing UIView

Page 112

Notice that you are passed a CGRect structure. This is the rectangle that needs
to be redrawn, sometimes called a dirty rectangle. Typically, you ignore the dirty
rectangle and issue the drawing instructions as though the entire view needed to
be redrawn. If, however, your drawing code is particularly intricate, you might be
more careful and only redraw the parts in the dirty rectangle to speed up drawing.

A CGRect structure (Figure 6.4) contains the members origin and size. These
two members are also structures. The origin is of type CGPoint and contains two
more float members: x and y. The size is of type CGSize and also has two float
members: width and height. These three structures are the basic building blocks
of Core Graphics routines.

Figure 6.4. CGRect

Instantiating a UIView
Recall that there are two ways to create an instance of your view:

•	 create it programmatically with alloc and initWithFrame: and make the new
view a subview of the window

•	 create it in Interface Builder

In this chapter, you are going to create the view programmatically.

Open HypnosisterAppDelegate.h and add an instance variable for the new view:

#import <UIKit/UIKit.h>
@class HypnosisView;

Chapter 6. Subclassing UIView

Page 113

@interface HypnosisterAppDelegate : NSObject <UIApplicationDelegate>
{
 UIWindow *window;
 HypnosisView *view;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

In HypnosisterAppDelegate.m, create the new instance and place it on the
window:

#import "HypnosisterAppDelegate.h"
#import "HypnosisView.h"

@implementation HypnosisterAppDelegate

@synthesize window;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 CGRect wholeWindow = [window bounds];
 view = [[HypnosisView alloc] initWithFrame:wholeWindow];
 [view setBackgroundColor:[UIColor clearColor]];
 [window addSubview:view];
 [window makeKeyAndVisible];
				return	YES;
}
// A dealloc method that will never get called because
// HypnosisterAppDelegate will exist for the life of the application
- (void)dealloc
{
 [view release];
 [window release];
 [super dealloc];
}

@end

Chapter 6. Subclassing UIView

Page 114

Notice that you are calling initWithFrame:, the designated initializer for UIView.
The view then has a size and position. When it is added to a view hierarchy
(addSubview:), its position will be in the coordinate system of its superview
(window).
(Retain count trivia: Because you created the view with alloc and added it
to the window, the view is being retained by HypnosisterAppDelegate and
the window, and therefore it has a retain count of two. But note that neither
HypnosisterAppDelegate nor the window will ever get released or deallocated
because they exist the entire time the application is running.)

Build and run your application.

Drawing Text and Shadows
While we are talking about drawing, let’s add some text with a shadow to the view
as shown in Figure 6.5.

Figure 6.5. View that draws text

Open HypnosisView.m and add the following code to the end of your drawRect:
method:

for	(float	currentRadius	=	maxRadius;	currentRadius	>	0;	currentRadius	-=	20)
{
 CGContextAddArc(context, center.x, center.y,

Chapter 6. Subclassing UIView

Page 115

																				currentRadius,	0,	M_PI	*	2.0,	YES);
 CGContextStrokePath(context);
}

// Create a string
NSString *text = @"You are getting sleepy.";

// Get a font to draw it in
UIFont *font = [UIFont boldSystemFontOfSize:28];

// Where am I going to draw it?
CGRect textRect;
textRect.size = [text sizeWithFont:font];
textRect.origin.x = center.x - textRect.size.width / 2.0;
textRect.origin.y = center.y - textRect.size.height / 2.0;

// Set the fill color
[[UIColor blackColor] setFill];

// Set the shadow
CGSize offset = CGSizeMake(4, -3);
CGColorRef color = [[UIColor darkGrayColor] CGColor];
CGContextSetShadowWithColor(context, offset, 2.0, color);

// Draw the string
[text drawInRect:textRect
 withFont:font];
}

Build	and	run	the	application.	You	will	see	the	text	with	a	shadow	appear	on	the	
view.

Notice that you only call drawing routines inside drawRect:. Outside of a
drawRect: method, there is no active CGContextRef and drawing routines will
fail. (In a later chapter, you will manage your own CGContextRef for offscreen
drawing. Only then can you draw outside of drawRect:.)

Using UIScrollView
When you want to let the user scroll around your view, you typically make your
view the subview of a UIScrollView as shown in Figure 6.6.

Chapter 6. Subclassing UIView

Page 116

Figure 6.6. Object diagram

In HypnosisterAppDelegate.m, put your view inside a scroll view and add that
scroll view to the window:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 CGRect wholeWindow = [window bounds];

 UIScrollView *scrollView = [[UIScrollView alloc]
initWithFrame:wholeWindow];
 [window addSubview:scrollView];
 [scrollView release];
 // Make your view twice as large as the window
 CGRect reallyBigRect;
 reallyBigRect.origin = CGPointZero;
 reallyBigRect.size.width = wholeWindow.size.width * 2.0;
 reallyBigRect.size.height = wholeWindow.size.height * 2.0;
 [scrollView setContentSize:reallyBigRect.size];

 // Center it in the scroll view
 CGPoint offset;
 offset.x = wholeWindow.size.width * 0.5;
 offset.y = wholeWindow.size.height * 0.5;
 [scrollView setContentOffset:offset];

 // Create the view
 view = [[HypnosisView alloc] initWithFrame:reallyBigRect];
 [view setBackgroundColor:[UIColor clearColor]];
 [scrollView addSubview:view];

 [window makeKeyAndVisible];
				return	YES;

Chapter 6. Subclassing UIView

Page 117

}

Build	and	run	your	application.	You	will	be	able	to	push	your	view	up	and	down,	
left and right as shown in Figure 6.7.

Figure 6.7. HypnosisView in UIScrollView

However,	zooming	doesn’t	work.	Yet.

Zooming
To add zooming, you need to give the scroll view a delegate. The
delegate will tell the scroll view which view needs to be transformed. In
HypnosisterAppDelegate.h, declare that HypnosisterAppDelegate conforms to
the UIScrollViewDelegate protocol:

@interface HypnosisterAppDelegate : NSObject
 <UIApplicationDelegate, UIScrollViewDelegate>

Open HypnosisterAppDelegate.m. In application:didFinishLaunchingWithOp
tions:, set the delegate and the limits of the zoom:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 CGRect wholeWindow = [window bounds];

Chapter 6. Subclassing UIView

Page 118

 UIScrollView *scrollView = [[UIScrollView alloc] initWithFrame:wholeWindow];
 [window addSubview:scrollView];
 [scrollView release];

 // Make your view twice as large as the window
 CGRect reallyBigRect;
 reallyBigRect.origin = CGPointZero;
 reallyBigRect.size.width = wholeWindow.size.width * 2.0;
 reallyBigRect.size.height = wholeWindow.size.height * 2.0;
 [scrollView setContentSize:reallyBigRect.size];

 // Center it in the scroll view
 CGPoint offset;
 offset.x = wholeWindow.size.width * 0.5;
 offset.y = wholeWindow.size.height * 0.5;
 [scrollView setContentOffset:offset];

 // Enable zooming
 [scrollView setMinimumZoomScale:0.5];
 [scrollView setMaximumZoomScale:5];
 [scrollView setDelegate:self];

 // Create the view
 view = [[HypnosisView alloc] initWithFrame:reallyBigRect];
 [view setBackgroundColor:[UIColor clearColor]];
 [scrollView addSubview:view];

 [window makeKeyAndVisible];
				return	YES;
}

In	that	same	file,	implement	the	necessary	delegate	method:

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView
{
 return view;
}

Chapter 6. Subclassing UIView

Page 119

Build	and	run	the	application	and	zoom	away!

Hiding the Status Bar
When you’re being hypnotized, you probably don’t want to see the time or your
remaining battery charge; these things cause anxiety. So, hide the status bar
before you make the window visible. Add a line near the end of application:didFi
nishLaunchingWithOptions: in HypnosisterAppDelegate.m:

 [scrollView addSubview:view];

 [[UIApplication sharedApplication] setStatusBarHidden:YES
 animated:NO];
 [window makeKeyAndVisible];
				return	YES;
}

Build and run the application again. The status bar will no longer be visible while
Hypnosister is running.

Challenge: Colors
Make the circles appear in assorted colors.

For the More Curious: Retain Cycles
A view hierarchy is made up of many parent-child relationships. When we talk
about view hierarchies, we call parents superviews and their children subviews.
When a view is added it to a view hierarchy, it is retained by its superview as
shown in Figure 6.8.

Figure 6.8. View hierarchy ownership

It is sometimes necessary for a subview to send a message to its superview.
Every subview, then, has a pointer back to its superview. The superview

Chapter 6. Subclassing UIView

Page 120

property of a UIView is set to its superview when the view is added to a view
hierarchy. (When a view is not part of a view hierarchy, superview is nil.)

Superviews	are	not	retained	by	their	subviews.	Why	not?	Well,	imagine	what	
would happen if they were. Every time a subview was added to a view (let’s call
it BigView), BigView would increment its retain count. For example, if BigView
had six subviews, it would have a retain count of seven – one for each subview
and one for its superview.

What would happen if BigView’s superview wanted to get rid of BigView?	The	
superview would send BigView the message release. However, BigView would
still be retained by each of its subviews and would not be deallocated. As a result,
BigView’s subviews would never be sent the message release. BigView, and all
of its subviews, would be cut off from the rest of the application and exist in their
own little cycle of independent objects where no other object could reach them.

We call this problem a retain cycle, and it can arise in any parent-child
relationship, not just with view objects. The solution is simple: children should
never retain their parents. In fact, a child should never retain its parent’s
parent, or its parent’s parent’s parent, and so on. When you adhere to this rule,
deallocating a parent object will appropriately release its children objects. If the
parent is the only owner of its children, these children objects will be deallocated.

For the More Curious: Redrawing Views
When a UIView instance is sent the message setNeedsDisplay, that view
is marked for re-display. View subclasses send themselves the message
setNeedsDisplay when their drawable content changes. For example,
UITextField will be marked for re-display if it is sent the message setText:. (It has
to	redraw	if	the	text	it	displays	changes,	right?)

When a view is marked for re-display, it is not immediately redrawn; it is simply
added	to	a	list	of	views	that	need	to	be	updated.	Why?	Because	your	application	
is	actually	one	giant	infinite	loop	called	the	run	loop.	The	run	loop’s	job	is	to	check	
for input (a touch, Core Location updates, data coming in through a network
interface,	etc.)	and	then	find	the	appropriate	handlers	for	that	event	(like	an	action	
or delegate method for an object). Those handler methods call other methods,
those other methods call more methods, and so on. Views are not redrawn until
after your methods have completed and control returns to the run loop as shown
in Figure 6.9.

Chapter 6. Subclassing UIView

Page 121

Figure 6.9. Redrawing views with the run loop

When	control	returns	to	the	run	loop,	it	says,	“Well,	a	bunch	of	code	was	just	
executed. I’m going to check if any views need to be redrawn.” The run loop
prepares the necessary drawing contexts and sends the message drawRect: to
all of the views that have been sent setNeedsDisplay in this iteration of the loop.

Chapter 7. View Controllers

Page 122

Chapter 7. View Controllers
In	the	Quiz	application,	you	had	one	“screen,”	one	controller,	and	one	XIB	file:

Figure 7.1. Quiz, a single screen application

View Controllers and XIB Files
But	what	about	applications	with	multiple	“screens”?	Typically,	each	screen	gets	
its	own	controller	and	XIB	file.	Figure 7.2 shows an example application with two
screens	and	the	resulting	controllers	and	XIB	files.

Chapter 7. View Controllers

Page 123

Figure 7.2. Example of an application with two screens

Each controller has a view that gets placed on the window. (The view often has
subviews like buttons and labels.) Thus, we call these controllers view controllers.
A view controller is a subclass of UIViewController that acts as the controller for
its view. And, we typically need an object to take care of the view swapping for us.

Chapter 7. View Controllers

Page 124

In the example application below, the swapping is done by a UITabBarController.
The object diagram for this application is shown in Figure 7.3.

Figure 7.3. Object diagram for tab bar application

Note that this approach means that when you write an application with seven
screens, you will typically write seven subclasses of UIViewController. Therefore,
you	may	have	up	to	eight	XIB	files	(one	for	the	window	and	one	for	each	view	
controller).

However,	sometimes	there	are	fewer	XIB	files.	When	a	view	controller	has	just	

Chapter 7. View Controllers

Page 125

one view, it is usually easier to create a single view programmatically as you did in
the last chapter.

Ready	to	have	your	mind	blown	a	little?	UITabBarController is also a subclass
of UIViewController. It is a view controller that swaps in and out other view
controllers.

Using View Controllers
In this chapter, you are going to write an application with two screens. One will
display the HypnosisView you created in the last chapter, and the other will let
the user get the current time by tapping a button (Figure 7.4). We will swap in the
views using a UITabBarController.

Figure 7.4. HypnoTime screens

Chapter 7. View Controllers

Page 126

In Xcode, create a new Window-based Application project named HypnoTime.
(Yes,	there	is	a	Tab	Bar	Application	project	template,	but	using	that	template	
makes things seem more complicated and magical than they are. Do not use it for
this application.)

You	will	re-use	HypnosisView in this application. Use Finder to locate
HypnosisView.h and HypnosisView.m and drag them into the Classes group
in Xcode (not the Classes	directory	in	the	filesystem).	When	the	next	sheet	
appears, check the box labeled Copy items into destination group’s folder and
click Add. Also, add the icons Hypno.png and Time.png (available at http://www.
bignerdranch.com/solutions/iPhoneProgramming.zip) to the Resources group.

Creating the UITabBarController
Open HypnoTimeAppDelegate.h and add an instance variable for the tab bar
controller:

#import <UIKit/UIKit.h>

@interface HypnoTimeAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 UITabBarController *tabBarController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

In HypnoTimeAppDelegate.m, create the tab bar controller and put its view on
the window:
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Create the tabBarController
 tabBarController = [[UITabBarController alloc] init];

 // Put the tabBarController's view on the window
 [window addSubview:[tabBarController view]];

 // Show the window
 [window makeKeyAndVisible];

Chapter 7. View Controllers

Page 127

}

Build and run the application. Notice that the black tab bar appears at the bottom
of the window, but there are no tab bar items. Notice, also, the big white space
where your views will get swapped in.

Creating view controllers and tab bar items
To	create	the	first	view	controller	for	HypnoTime,	select	the	New	File...	menu	
item and then UIViewController subclass. For this view controller, toggle
on the checkbox titled With XIB for user interface (Figure 7.5).	Name	the	file	
CurrentTimeViewController.m.

Figure 7.5. Creating CurrentTimeViewController

Now create another UIViewController subclass. This time, toggle off the XIB
checkbox.	Name	this	file	HypnosisViewController.m.

Chapter 7. View Controllers

Page 128

Every view controller has a tab bar item that controls the text or icon that appears
in the tab bar as shown in Figure 7.6.

Figure 7.6. UITabBarItem example

Let’s start by putting a title on the tab bar items.

Open HypnosisViewController.m. Create a new init method, override the
designated initializer for the superclass, UIViewController, and edit the
viewDidLoad method to match the code below:

- (id)init
{
 // Call the superclass's designated initializer
 [super initWithNibName:nil
 bundle:nil];

 // Get the tab bar item
 UITabBarItem *tbi = [self tabBarItem];

 // Give it a label
 [tbi setTitle:@"Hypnosis"];

Chapter 7. View Controllers

Page 129

 return self;
}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
{
 // Disregard parameters - nib name is an implementation detail
 return [self init];
}

// This method gets called automatically when the view is created
- (void)viewDidLoad
{
 [super viewDidLoad];

 // Set the background color of the view so we can see it
 [[self view] setBackgroundColor:[UIColor orangeColor]];
}

Open CurrentTimeViewController.m and do the same thing:

- (id)init
{
 // Call the superclass's designated initializer
 [super initWithNibName:nil
 bundle:nil];

 // Get the tab bar item
 UITabBarItem *tbi = [self tabBarItem];

 // Give it a label
 [tbi setTitle:@"Time"];

 return self;
}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
{
 // Disregard parameters - implementation detail
 return [self init];

Chapter 7. View Controllers

Page 130

}

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Set the background color of the view so we can see it
 [[self view] setBackgroundColor:[UIColor greenColor]];
}

Now you need to create instances of the view controllers and add them to the
tab bar controller. Open HypnoTimeAppDelegate.m and make the following
changes:

#import "HypnoTimeAppDelegate.h"
#import "HypnosisViewController.h"
#import "CurrentTimeViewController.h"

@implementation HypnoTimeAppDelegate

@synthesize window;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Create the tabBarController
 tabBarController = [[UITabBarController alloc] init];

 // Create two view controllers
 UIViewController *vc1 = [[HypnosisViewController alloc] init];
 UIViewController *vc2 = [[CurrentTimeViewController alloc] init];

 // Make an array containing the two view controllers
 NSArray *viewControllers = [NSArray arrayWithObjects:vc1, vc2, nil];

 [vc1 release];
 [vc2 release];

Chapter 7. View Controllers

Page 131

 // Attach them to the tab bar controller
 [tabBarController setViewControllers:viewControllers];

 // Put the tabBarController's view on the window
 [window addSubview:[tabBarController view]];

 // Show the window
 [window makeKeyAndVisible];
}

// A dealloc method that will never get called
- (void)dealloc
{
 [tabBarController release];
 [window release];
 [super dealloc];
}

@end

Build and run the application. Two labeled tab bar items will appear on the tab bar
(Figure 7.7). Tap one and then the other, and you will see that the views for the
view controllers are getting swapped in.

Figure 7.7. Tab bar items with labels

Now let’s put an icon on the tab bar items. Open HypnosisViewController.m and
edit the init method:

- (id)init
{
 [super initWithNibName:nil
 bundle:nil];

 UITabBarItem *tbi = [self tabBarItem];
 [tbi setTitle:@"Hypnosis"];

Chapter 7. View Controllers

Page 132

 // Create a UIImage from a file
 UIImage *i = [UIImage imageNamed:@"Hypno.png"];

 // Put that image on the tab bar item
 [tbi setImage:i];

 return self;
}

Next, open CurrentTimeViewController.m and edit its init method:
- (id)init
{
 [super initWithNibName:nil
 bundle:nil];

 UITabBarItem *tbi = [self tabBarItem];
 [tbi setTitle:@"Time"];
 UIImage *i = [UIImage imageNamed:@"Time.png"];
 [tbi setImage:i];

 return self;
}

Now when you build and run the application, you will also see icons in the tab bar
(Figure 7.8).

Figure 7.8. Tab bar items with labels and icons

Creating views for the view controllers
Now that you have a perfectly nice tab bar with two view controllers (and the two
corresponding tab bar items), it’s time to give your view controllers views. There
are two ways to do this:

•	 create the view programmatically

•	 create	a	XIB	file

Chapter 7. View Controllers

Page 133

How	do	you	know	when	to	do	one	versus	the	other?	Here’s	a	good	rule-of-thumb:	
if the view has no subviews, create it programmatically; if it has subviews, create a
XIB	file.

When the view needs to be created, the view controller is sent the message
loadView. In HypnosisViewController, you are going to override this method
so that it creates an instance of HypnosisView programmatically. When an
instance of a UIViewController is instantiated, its view is not created right away.
A UIViewController’s view is created when it is placed in a view hierarchy (also
known	as	“the	first	time	it	appears	on	screen”).	Add	the	following	method	to	
HypnosisViewController.m:

- (void)loadView
{
 HypnosisView *hv = [[HypnosisView alloc] initWithFrame:CGRectZero];
 [hv setBackgroundColor:[UIColor whiteColor]];
 [self setView:hv];
 [hv release];
}

HypnosisViewController.m needs to know about the class HypnosisView. At
this	top	of	this	file,	import	HypnosisView’s	header	file.

#import "HypnosisViewController.h"
#import "HypnosisView.h"

@implementation HypnosisViewController

We no longer want the background of the view to be orange; delete the following
line from the viewDidLoad method in HypnosisViewController.m:

 [[self view] setBackgroundColor:[UIColor orangeColor]];

Also, delete the similar line of code from the viewDidLoad method in
CurrentTimeViewController.m.

 [[self view] setBackgroundColor:[UIColor greenColor]];

(These two lines of code were just to test that the UITabBarController was
working properly.)

Chapter 7. View Controllers

Page 134

Build	and	run	the	application.	You	should	see	a	HypnosisView like the one in
Figure 7.9.

Figure 7.9. HypnosisViewController

Double-click on CurrentTimeViewController.xib to open it in Interface Builder.
Double-click on the View object in the doc window to open it. From the Library,
drop a button and a label on the View’s window. Make them both nearly as wide
as	the	window.	Change	the	title	on	the	button	to	What	time	is	it?.	Change	the	label	
to	???	and	set	the	alignment	to	centered	(Figure 7.10).

Chapter 7. View Controllers

Page 135

Figure 7.10. Button and Label

See	that	icon	labeled	File’s	Owner?	It	is	a	placeholder	for	an	object	to	be	supplied	
when	the	XIB	file	is	read	in.	When	the	view	controller	loads	the	XIB	file,	it	says	
“Load	the	XIB	named	CurrentTimeViewController.xib, and I will act as File’s
Owner.”	Thus,	you	can	know	that	the	file’s	owner	is	the	view	controller	for	this	
XIB.	You	know	it	is	going	to	be	an	instance	of	CurrentTimeViewController, but
Interface Builder does not.

In Xcode, add the necessary outlet and action to CurrentTimeViewController.h:

#import <UIKit/UIKit.h>

@interface CurrentTimeViewController : UIViewController
{

Chapter 7. View Controllers

Page 136

 IBOutlet UILabel *timeLabel;
}
- (IBAction)showCurrentTime:(id)sender;

@end

Save	that	file	and	return	to	Interface	Builder.

Control-click on File’s Owner to see its connection panel (Figure 7.11). Drag from
timeLabel to the UILabel.

Figure 7.11. Connecting timeLabel and UILabel

The view controller has a pointer called view that needs to point to the entire view
that is to be displayed. Notice that the view outlet is already connected to the
instance of UIView in the doc window. (The template did this for you.)

Control-drag from the button to the File’s Owner (Figure 7.12). Choose the action
showCurrentTime:.

Chapter 7. View Controllers

Page 137

Figure 7.12. Setting the showCurrentTime: action

Return to Xcode and open CurrentTimeViewController.m. In init, tell it the name
of	the	XIB	file	it	is	to	load.	Also	delete	the	line	that	sets	the	background	color	to	
green:

- (id)init
{
 [super initWithNibName:@"CurrentTimeViewController"
 bundle:nil];
 UITabBarItem *tbi = [self tabBarItem];
 [tbi setTitle:@"Time"];
 UIImage *i = [UIImage imageNamed:@"Time.png"];
 [tbi setImage:i];

 return self;
}

Finally, implement the action method:
- (IBAction)showCurrentTime:(id)sender
{
 NSDate *now = [NSDate date];
 static NSDateFormatter *formatter = nil;
 if (!formatter) {
 formatter = [[NSDateFormatter alloc] init];
 [formatter setTimeStyle:NSDateFormatterShortStyle];
 }

Chapter 7. View Controllers

Page 138

 [timeLabel setText:[formatter stringFromDate:now]];
}

Build	and	run	the	application.	You	will	be	able	to	switch	back	and	forth	between	
the two views. Clicking the button on the time view will display the current time.

viewWillAppear
UIViewController has several methods that get called at certain times:

viewWillAppear: when its view is about to be added to
the window

viewDidAppear: when its view has been added to the
window

viewWillDisappear: when its view is about to be dismissed,
covered, or otherwise hidden from
view

viewDidDisappear: when its view has been dismissed,
covered, or otherwise hidden from
view

These methods are useful because a view controller is only created once but
usually	gets	displayed	(and	dismissed	or	hidden)	several	times.	You	often	
need a way to override the default behavior at these times in the life of view
controller. For example, you may want to do some sort of initialization each time
the view controller is moved on screen. Here you would use viewWillAppear:
or viewDidAppear:. Similarly, if you had a large data structure that you only
need while the view controller is being displayed, you might want to do some
clean-up each time the view controller is moved off screen. Then you would use
viewWillDisappear: or viewDidDisappear:.

Note	that	these	methods,	as	defined	in	UIViewController, do nothing. They are
there so that your subclasses can override them.

 - (void)viewWillAppear:(BOOL)animated;
 - (void)viewDidAppear:(BOOL)animated;

Chapter 7. View Controllers

Page 139

 - (void)viewWillDisappear:(BOOL)animated;
 - (void)viewDidDisappear:(BOOL)animated;

Now let’s override viewWillAppear: to initialize the time label of the
CurrentTimeViewController to the current time each time it is displayed. In
CurrentTimeViewController.m, make the following changes:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 [self showCurrentTime:nil];
}

Build and run the application. Note that each time you return to the Time page, the
time label is updated.

The Lifecycle of a View Controller
A view controller is created through alloc and init. It does not, however, create its
view at that time. Instead, it waits until the view is really needed before it executes
loadView. (Remember that the default implementation of loadView reads in a
NIB	file,	but	you	can	override	it	to	create	the	view	programmatically.)	This	lazy	
creation of the view is good. For example, if you have a tab view with a dozen
view controllers, the view for any particular view controller will only be created if
that particular tab is selected.

First rule: Never manipulate your view in init. Wait until loadView or viewDidLoad
before sending messages to the view. Trying to interact with the view in init will
cause it to be created, which will destroy the lazy nature of your view controller.

Furthermore, a view controller’s view may get created and destroyed several
times. Let’s say that you have several view controllers in memory (but
only one on screen) and that all their views have been created. This could
take up a lot of memory and trigger a low-memory warning. At that point,
didReceiveMemoryWarning is sent to all the view controllers. The default
implementation of didReceiveMemoryWarning releases the view if it has no
superview. (No superview indicates it is not on screen and no other view cares
about it.) After the view is released, the view controller is sent viewDidUnload.

If the view is needed again, the view controller is sent loadView again. Thus,
loadView may be called many times on a single view controller. However, init
is only sent to a view controller once. If you were to send messages to a view

Chapter 7. View Controllers

Page 140

controller’s view in init, they would not be sent to a reloaded view.

(When the view controller is deallocated, it releases its view, but viewDidUnload
is not called.)

Second rule: For a view controller, any outlets that you set in Interface Builder
must be released and set to nil in viewDidUnload. They must also be released in
dealloc.

By default, any outlet from your view controller to a subview is retained by that
subview. For example, CurrentTimeViewController retains a UILabel because
it has the outlet timeLabel. Thus, the timeLabel has a retain count of two: it is
being retained its superview and by CurrentTimeViewController directly. Thus,
if the view is unloaded because of a low-memory warning, it will not be correctly
deallocated. Add a viewDidUnload method to CurrentTimeViewController.m to
release timeLabel:	and	fix	this	problem:

- (void)viewDidUnload
{
 NSLog(@"Must have received a low-memory warning. Releasing timeLa-
bel");
 [super viewDidUnload];
 [timeLabel release];
 timeLabel = nil;
}

Also, you need to release timeLabel in dealloc. While
CurrentTimeViewController will never be deallocated HypnoTime, other view
controllers in other applications may. Accordingly, subviews of a view controller’s
view that are also retained by the view controller must be released in dealloc:

- (void)dealloc
{
 [timeLabel release];
 [super dealloc];
}

Build and run the application in the simulator. While the
CurrentTimeViewController is off-screen, simulate a low-memory warning by
selecting	Simulate	Low	Memory	Warning	from	the	Hardware	menu.	You	should	

Chapter 7. View Controllers

Page 141

see the log statement from viewDidUnload on the console.

Challenge: Map Tab
Add another view controller to the tab bar controller that displays an MKMapView.
When the map view appears on the screen, have it show the user’s location.

For the More Curious: Paging
Some	applications,	like	Weather,	allow	you	to	“page”	through	views	by	swiping	
your	finger	from	left	to	right.	People	occasionally	mistake	this	behavior	for	
something that UITabBarController can do. It is actually the work of another class
you have already used, UIScrollView.

Each page is a UIView subclass. All of the pages are typically controlled by a
single UIViewController, and the UIScrollView is responsible for managing
which view is currently on screen. There actually is not a whole lot to it once you
have used a UIScrollView.

Let’s say you wanted two views to be pages within a UIScrollView that is
controlled by a UIViewController. The view controller’s view would be an instance
of UIScrollView, and the scroll view’s subviews would be the two pages.

- (void)loadView
{
 CGRect frame = [[UIScreen mainScreen] applicationFrame];
 UIScrollView *sv = [[[UIScrollView alloc]
 initWithFrame:frame] autorelease];

 frame.origin.y = 0;
 UIView *aView = [[[UIView alloc]
 initWithFrame:frame] autorelease];

 frame.origin.x += frame.size.width;
 UIView *bView = [[[UIView alloc]
 initWithFrame:frame] autorelease];

 [aView setBackgroundColor:[UIColor redColor]];
 [bView setBackgroundColor:[UIColor greenColor]];

 [sv addSubview:aView];

Chapter 7. View Controllers

Page 142

 [sv addSubview:bView];

 // ContentSize should be wide enough for 2 pages
 [sv setContentSize:CGSizeMake(2 * frame.size.width, frame.size.height)];
 [self setView:sv];
}

Notice	how	the	second	page	view	is	offset	from	the	first	page	view	by	the	width	of	
the screen. This puts the two views side-by-side, but the second one is off to the
righthand side of the screen. The contentSize of the scroll view accommodates
for this by having a width that is twice the size of the screen (and a height that is
the same as the screen).

If you stopped here, the scroll view will work normally: the user can move around
the double screen-sized area and see the content of the two pages. However, a
scroll view can also automatically stop at each page. To enforce the display of
only one page at a time, the scroll view needs to enable paging:

				[sv	setPagingEnabled:YES];

Now when the user swipes to the left or right, one of the pages will lock itself onto
the screen. The scroll view will automatically stop and recenter its content based
on the bounds of the scroll view. Just make sure the UIScrollView’s size matches
the size of each page and that the contentSize has enough room for all of the
pages.

Chapter 8. The Accelerometer

Page 143

Chapter 8. The Accelerometer
One	of	the	flashiest	features	of	the	iPhone	is	the	accelerometer.	The	
accelerometer detects the device’s real-world orientation by tracking the force of
the	earth’s	gravity	on	its	X,	Y,	and	Z	axes.	You	can	also	use	the	accelerometer	
data to detect changes in the device’s velocity.

In this chapter, you are going to use the accelerometer to skew the center of the
HypnosisView according to orientation: when the user tilts the phone, the center
will slide in the direction of the tilt (Figure 8.1).

Figure 8.1. HypnosisView

Chapter 8. The Accelerometer

Page 144

Setting Up the Accelerometer
To receive accelerometer data, your application needs to give the single instance
of UIAccelerometer an updateInterval and a delegate. The delegate needs
to implement the method accelerometer:didAccelerate:. This method reports
changes in the accelerometer data every updateInterval seconds in the form of a
UIAcceleration object.

Open your HypnoTime project. Before you add any code, you need to decide
which object will be the UIAccelerometer delegate. There are two options:

•	 Make the HypnosisView the delegate. It will handle changing the center of
drawing internally.

•	 Make the HypnosisViewController the delegate. In this case, you will also
need	to	set	a	“center”	property	for	view when the orientation of the device
changes.

If the HypnosisView is the accelerometer delegate, it becomes a self-contained
object, which makes reusing it simpler. However, there can only be one
accelerometer delegate. If other objects need input from the accelerometer,
HypnosisView, a view object, can’t forward that information on to those objects
– it’s not a controller. Therefore, the more stylish option is to let the controller
object, HypnosisViewController, be the delegate and receive the accelerometer
updates as shown in Figure 8.2.HypnosisViewController can easily inform
the HypnosisView of a change in orientation, and it can inform other objects if
necessary.

Figure 8.2. Object diagram for HypnoTime

Chapter 8. The Accelerometer

Page 145

In HypnosisViewController.m, instantiate the accelerometer and set its update
interval and delegate in viewWillAppear:.

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 NSLog(@"Monitoring accelerometer");
 UIAccelerometer *a = [UIAccelerometer sharedAccelerometer];
 // Receive updates every 1/10th of a second.
 [a setUpdateInterval:0.1];
 [a setDelegate:self];
}

When the HypnosisViewController’s view is moved off of the screen, the
controller should stop receiving accelerometer updates. Also, when the singleton
instance of UIAccelerometer does not have a delegate object, the accelerometer
hardware is powered down to conserve battery life. In general, you should set
the accelerometer’s delegate to nil when it is not in use. Make this change in
HypnosisViewController.m:

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
 [[UIAccelerometer sharedAccelerometer] setDelegate:nil];
}

Getting Accelerometer Data
Write a stub implementation of the UIAccelerometer delegate method in
HypnosisViewController.m. Notice that the parameters for this method are two
different types even though they look similar:

- (void)accelerometer:(UIAccelerometer *)meter
 didAccelerate:(UIAcceleration *)accel
{
 NSLog(@"%f, %f, %f", [accel x], [accel y], [accel z]);
}

In HypnosisViewController.h, declare that the class conforms to the

Chapter 8. The Accelerometer

Page 146

UIAccelerometerDelegate protocol:

#import <UIKit/UIKit.h>

@interface HypnosisViewController : UIViewController <UIAccelerometerDel-
egate>
{
}
@end

Build and run the application on your device. Watch the console as you rotate and
shake the phone to get a feel for the data that the accelerometer will produce.

Orientation and Scale of Acceleration
The device’s acceleration is measured in Gs. 1G is the force due to the earth’s
gravity. (When the device is still, the accelerometer doesn’t know if it is moving
at a constant velocity in the earth’s gravity well or if it is far out in space and
accelerating upwards at 9.8 meters per second every second.)

While the application is running, hold the device vertically in front of your face
as if you were using it. The y-component of the acceleration is about -1, and the
x- and z-components are approximately 0. If you lay the device on its back, the
z-component of the acceleration is about -1, and the others are approximately
0. If you balance the device on the edge with the volume switch down, the
x-component of the acceleration is about -1, and the others are approximately 0. If
you drop your device, it will feel weightless as it falls: all three components will be
0.	Well,	until	it	hits	the	floor.

Using Accelerometer Data
This application will use the accelerometer data to offset the center of drawing in
the HypnosisView. HypnosisViewController receives the accelerometer data
and must send it to the view. Therefore, HypnosisView needs two properties to
define	the	offset.	Add	them	in	HypnosisView.h.

@interface HypnosisView : UIView
{
 float xShift, yShift;
}

Chapter 8. The Accelerometer

Page 147

@property (nonatomic, assign) float xShift;
@property (nonatomic, assign) float yShift;
@end

Now synthesize these properties in HypnosisView.m:
@implementation HypnosisView
@synthesize xShift, yShift;

HypnosisView needs to know how to use these properties when it draws. In
HypnosisView.m, add code to drawRect: that uses the xShift and yShift
instance variables:

` // Draw concentric circles
				for	(float	currentRadius	=	maxRadius;	currentRadius	>	0;	currentRadius	-=	20)
 {
 center.x += xShift;
 center.y += yShift;
 CGContextAddArc(context, center.x, center.y,
																								currentRadius,	0,	M_PI	*	2.0,	YES);
 CGContextStrokePath(context);
 }

Using the UIAcceleration object the accelerometer gives you, set xShift and
yShift and redraw the view. In HypnosisViewController.m, replace the following
method:

- (void)accelerometer:(UIAccelerometer *)meter
 didAccelerate:(UIAcceleration *)accel
{
 HypnosisView *hv = (HypnosisView *)[self view];
 [hv setXShift:10.0 * [accel x]];
 [hv setYShift:-10.0 * [accel y]];

 // Redraw the view
 [hv setNeedsDisplay];
}

Build and run your application. The center of the view will move as the phone is

Chapter 8. The Accelerometer

Page 148

rotated and shaken.

Smoothing Accelerometer Data
The movement of the HypnosisView does not have a smooth feel. (And this is
not conducive to hypnosis.) Each time the accelerometer updates, the center
of the view changes to represent the orientation of the device. Because the
updateInterval is constant and the device’s movement is not, the center appears
to	jump	around.	It	would	be	more	appropriate	to	“smooth”	the	data	from	the	
accelerometer, thus smoothing the movement of the center of the view. To smooth
the	accelerometer	data,	you	need	to	apply	a	low-pass	filter.

In HypnosisViewController.m,	apply	a	low-pass	filter	to	the	accelerometer	data:

- (void)accelerometer:(UIAccelerometer *)meter
 didAccelerate:(UIAcceleration *)accel
{
 HypnosisView *hv = (HypnosisView *)[self view];
 float xShift = [hv xShift] * 0.8 + [accel x] * 2.0;
 float yShift = [hv yShift] * 0.8 - [accel y] * 2.0;
 [hv setXShift:xShift];
 [hv setYShift:yShift];

 // Redraw the view
 [hv setNeedsDisplay];
}

Build and run your application. The application will have a smoother response and
a nicer feel.

Detecting Shakes
In the original iPhone SDK, developers had to implement their own shake-
detection algorithms in the accelerometer delegates. However, the 3.0 SDK
contains three new methods for UIResponder (the superclass of UIView) that
make detecting shakes easier.

// Triggered when a shake is detected
- (void)motionBegan:(UIEventSubtype)motion
 withEvent:(UIEvent *)event;

// Triggered when the shake is complete

Chapter 8. The Accelerometer

Page 149

- (void)motionEnded:(UIEventSubtype)motion
 withEvent:(UIEvent *)event;

// Triggered when a shake is interrupted (by a call for example)
// Or if a shake lasts for more than a second
- (void)motionCancelled:(UIEventSubtype)motion
 withEvent:(UIEvent *)event;

In this chapter, you are going to override motionBegan:withEvent: to change
the stripe color when the phone is shaken. First, add an instance variable to
HypnosisView.h to hold on to the new color:

#import <UIKit/UIKit.h>

@interface HypnosisView : UIView <UIAccelerometerDelegate> {
 UIColor *stripeColor;
				float	xShift,	yShift;
}
@property	(nonatomic,	assign)	float	xShift;
@property	(nonatomic,	assign)	float	yShift;
@end

Now initialize stripeColor in the initWithFrame: method of HypnosisView.m:

- (id)initWithFrame:(CGRect)r
{
 [super initWithFrame:r];
 stripeColor = [[UIColor lightGrayColor] retain];
 return self;
}

Finally, use the stripeColor in your drawRect: method of HypnosisView.m.

 CGContextSetLineWidth(context, 10);

 // Set the stroke color to light gray
 [stripeColor setStroke];

 // Draw concentric circles
				for	(float	currentRadius	=	maxRadius;	currentRadius	>	0;	currentRadius	-=	20)
 {

Chapter 8. The Accelerometer

Page 150

Build and run the application just to make sure you haven’t broken anything. It
should work exactly as before.

Because stripeColor is owned by HypnosisView, it must be released in the
view’s dealloc method.

- (void)dealloc
{
 [stripeColor release];
 [super dealloc];
}

Now override motionBegan:withEvent: to change the color and redraw the view
in HypnosisView.m.

- (void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event
{
 // Shake is the only kind of motion for now,
 // but we should (for future compatibility)
 // check the motion type.
 if (motion == UIEventSubtypeMotionShake) {
 NSLog(@"shake started");
 float r, g, b;
 r = random() % 256 / 256.0;
 g = random() % 256 / 256.0;
 b = random() % 256 / 256.0;
 [stripeColor release];
 stripeColor = [UIColor colorWithRed:r
 green:g
 blue:b
 alpha:1];
 [stripeColor retain];
 [self setNeedsDisplay];
 }
}

There’s one more important detail: the window’s firstResponder is the only
object that gets sent motion events. Right now, HypnosisView	is	not	the	first	

Chapter 8. The Accelerometer

Page 151

responder, but you can make it so in two steps. First, you need to override
canBecomeFirstResponder	so	that	your	view	can	become	a	first	responder.	Add	
this method to HypnosisView.m:

- (BOOL)canBecomeFirstResponder
{
 return YES;
}

(You	may	remember	that	instances	of	UITextField	become	the	first	responder	
of the window when tapped, and then the keyboard slides onto the screen.
UITextField implements this same method to return YES.)

Then, when your view appears on the screen, you need to make it become the
first	responder.	In	HypnosisViewController.m, add the following line of code:

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 NSLog(@"Monitoring accelerometer");
 UIAccelerometer *a = [UIAccelerometer sharedAccelerometer];
 [a setUpdateInterval:0.1];
 [a setDelegate:self];

 [[self view] becomeFirstResponder];
}

Build and run the application. Shake the device and watch the color of the
stripes change. Notice that the color does not continue to change if you
continue shaking it. This is because motion events happen when a motion
begins	and	when	a	motion	ends,	but	not	in	the	middle.	There	is	no	“while	
motion continues” method. To change the color, you have to shake the device,
stop	shaking	it,	and	then	shake	it	again.	(The	fix	for	this	would	be	to	use	an	
NSTimer	to	send	periodic	“Change	the	color	now.”	messages.	Create	the	timer	
in motionBegan:withEvent:, and destroy it in motionEnded:withEvent: and
motionCancelled:withEvent:.)

Also note that motion events have nothing to do with the UIAccelerometer
delegate. The system determines there is a shake by querying the accelerometer
hardware and then sending the appropriate messages to the firstResponder

Chapter 8. The Accelerometer

Page 152

of the application. The accelerometer data is delivered to the UIAccelerometer
delegate separately.

Challenge: Changing Colors
Change the colors of the stripes based on the orientation of the device. There
are	three	color	channels	(Red,	Green,	Blue)	and	three	axes	of	movement	(X,	Y,	
Z). Assign a color to each axis. When the G force on an axis is closer to -1, set
its color channel to 0 and when it is closer to 1 set its color channel to 1. Use the
documentation!

For the More Curious: Filtering and Frequency
In general, there are two ways of altering the accelerometer data in order to suit
your needs: you can change the frequency of accelerometer data updates and
you	can	apply	a	filter	to	the	data.	An	application	that	relies	on	accelerometer	data	
needs	to	be	carefully	tuned	to	find	an	update	interval	and	filtering	algorithm	that	
gives the user the best experience.

Here are some examples of types of applications and their recommended update
frequencies to give you a starting point:

Orientation Applications If your application relies on the current
orientation of the device, for example,
to rotate an arrow to point in a certain
direction, the accelerometer can
update infrequently. A value of 1/20 to
1/10 seconds for the updateInterval is
sufficient.

Game Applications An application that uses accelerometer
data as input for controlling a visual
object in real-time needs a slightly
faster update interval. For applications
like this, the updateIntervalshould be
between 1/30 to 1/60 seconds.

Chapter 8. The Accelerometer

Page 153

High-Frequency Applications Applications that need to squeeze
every little update out of the
accelerometer should set the
updateInterval between 1/70 and
1/100 seconds (the smallest possible
interval). An application that detects
shakes is updating at a high frequency.

Once you have chosen the right update interval, you need to choose what type of
filter	is	best	for	your	application.	Typically,	you’ll	choose	either	a	low-pass	filter	or	
a	high-pass	filter.

Using	a	low-pass	filter,	as	you	did	in	the	exercise,	isolates	the	gravity	component	
of the acceleration data and reduces the effect of sudden changes in the device’s
orientation. In most situations, it gives you just the orientation of the device. A
basic	low-pass	filter	equation	looks	like	this:

float	filteringFactor	=	0.1;
lowPassed	=	newValue	*	filteringFactor	+	lowPassed	*	(1.0	-	filteringFactor);

where lowPassed is the output. Notice that the previous output is used the next
time the equation is solved and that the new value produced by the accelerometer
is	blended	with	all	of	the	previous	values.	The	output	of	a	low-pass	filter	is	
essentially a weighted average of previous inputs. Therefore, sudden movements
will	not	affect	the	output	as	much	as	they	would	with	unfiltered	data.

On the other hand, sometimes you want to ignore the orientation (which is usually
constant) and focus on sudden changes such as a shake. For this, you would use
a	high-pass	filter.	Now	that	you	have	mastered	the	low-pass	filter,	the	high-pass	
signal is what’s left if you subtract out the low-pass signal:

float	filteringFactor	=	0.1;

Chapter 8. The Accelerometer

Page 154

lowPassed	=	newValue	*	filteringFactor	+	lowPassed	*	(1.0	-	filteringFactor);

Chapter 8. The Accelerometer

Page 155

Chapter 9. Notification and Rotation
Objective-C code is all about objects sending messages to other objects. This
communication usually occurs between two objects – the sender and receiver.
However, sometimes a bunch of objects are concerned with one object. They all
want to know when this object does something interesting. But it’s just not feasible
for that object to keep track of every interested object and send every one a
message.

Instead,	an	object	can	post	notifications	about	what	it	is	doing	to	a	centralized	
notification	center.	Interested	objects	can	register	to	receive	a	message	when	a	
particular	notification	is	posted	or	when	a	particular	object	posts.	In	this	chapter,	
you	will	learn	how	to	use	a	notification	center	to	handle	these	notifications.	You	will	
also learn about the autorotation behavior of UIViewController.

Notification	Center
In every application, there is an instance of NSNotificationCenter, which works
like	a	smart	bulletin	board.	An	object	can	register	as	an	observer	(“Send	any	
‘lost	dog’	notifications	to	me.”).	When	another	object	posts	a	notification	(“I	lost	
my	dog.”),	the	notification	center	forwards	that	notification	to	the	appropriate	
registered observers.

These	notifications	are	instances	of	NSNotification. Every NSNotification object
has a name and a pointer back to the object that posted it. When you register as
an	observer,	you	can	specify	a	notification	name	and	a	posting	object	that	you	
care about.

Here’s	is	a	snippet	of	code	that	shows	how	you	would	register	for	notifications	with	
the name LostDog posted by any object:

NSNotificationCenter	*nc	=	[NSNotificationCenter	defaultCenter];
[nc addObserver:self
 selector:@selector(thatMethodThatShouldBeTriggered:)
 name:@"LostDog"
 object:nil];

Note that nil works as a wildcard; in this case, the code requests that this method
be	triggered	regardless	of	who	posts	the	notification.

The	method	that	is	triggered	when	the	notification	arrives	takes	an	NSNotification

Chapter 8. The Accelerometer

Page 156

object as the argument:

-	(void)thatMethodThatShouldBeTriggered:(NSNotification	*)note
{
 id poster = [note object];
 NSString *name = [note name];
 NSDictionary *extraInformation = [note userInfo];

}

Notice	that	the	notification	object	may	also	have	a	userInfo dictionary attached
to it. This dictionary is used to pass added information. For example, when a
keyboard is coming onto the screen, it posts a UIKeyboardDidShowNotification
that has a userInfo dictionary. This dictionary contains the on-screen region that
the newly visible keyboard occupies.

Here’s	an	example	of	an	object	posting	a	notification:

NSDictionary *extraInfo = ...;
NSNotification	*note	=	[[NSNotification	notificationWithName:@"LostDog"
 object:self
 userInfo:extraInfo];
[[NSNotificationCenter	defaultCenter]	postNotification:note];

This	is	important:	the	notification	center	does	not	retain the observers. If you
have	an	object	that	registered	itself	with	the	notification	center,	that	object	should	
unregister itself before it is deallocated. If an object does not unregister itself from
the	notification	center,	the	next	time	any	notification	it	was	registered	for	is	posted,	
the center will try and send the object a message. But that object will have been
deallocated, and your application will crash.

- (void)dealloc
{
				[[NSNotificationCenter	defaultCenter]	removeObserver:self];
 [super dealloc];
}

UIDevice	Notifications
One	object	that	regularly	posts	notifications	is	UIDevice. Here are the constants
for	the	notifications	that	a	UIDevice posts:

Chapter 8. The Accelerometer

Page 157

UIDeviceOrientationDidChangeNotification
UIDeviceBatteryStateDidChangeNotification
UIDeviceBatteryLevelDidChangeNotification
UIDeviceProximityStateDidChangeNotification

Wouldn’t	it	be	cool	to	get	a	message	when	the	phone	rotates?	Or	when	the	phone	
is	placed	next	to	the	user’s	face?	These	notifications	do	just	that.

Create a new Window-based Application project and name it HeavyRotation.
In HeavyRotationAppDelegate.m,	register	to	receive	notifications	when	the	
orientation of the device changes:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{

 // Get the device object
 UIDevice *device = [UIDevice currentDevice];

 // Tell it to start monitoring the accelerometer for orientation
 [device beginGeneratingDeviceOrientationNotifications];

 // Get the notification center for the app
 NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];

 // Add yourself as an observer
 [nc addObserver:self
 selector:@selector(orientationChanged:)
 name:UIDeviceOrientationDidChangeNotification
 object:device];
 [window makeKeyAndVisible];
}

Now, whenever the device’s orientation changes, the message
orientationChanged: will be sent to the instance of HeavyAppDelegate. In the
same	file,	add	an	orientationChanged: method:

-	(void)orientationChanged:(NSNotification	*)note
{
 // Log the constant that represents the current orientation

Chapter 8. The Accelerometer

Page 158

			NSLog(@"orientationChanged:	%d",	[[note	object]	orientation]);
}

Build and run the application. (This is best run on the device because the
simulator won’t let you achieve some orientations.)

Many	classes	post	notifications	including	UIApplication,
NSManagedObjectContext, MPMoviePlayerController, NSFileHandle, UIWindow,
UITextField, and UITextView. See the reference pages for these classes in the
docs for details.

Autorotation
Many applications rotate and resize all of their views when the user rotates the
phone.	You	could	implement	this	using	notifications,	but	it	would	be	a	lot	of	work.	
Thankfully, Apple created autorotation to simplify the process.

When the device is rotated and if the view on screen is controlled by a view
controller, the view controller is asked if it is okay to rotate the view. If the view
controller agrees, the view is resized and rotated. The subviews are also resized
and rotated.

To implement autorotation in HeavyRotation, you must

•	 override shouldAutorotateToInterfaceOrientation: in HeavyViewController to
allow autorotation

•	 carefully set the autoresize mask on each subview so that it acts reasonably
when	the	superview	is	resized	to	fill	the	rotated	window.

In Xcode, create a UIViewController	subclass	with	a	XIB	file	and	name	it	
HeavyViewController.m.

In HeavyViewController.m, you could create an init	method	that	specifies	the	
NIB to load and override the designated initializer of the superclass to call that init
method:

- (id)init
{
 [super initWithNibName:@"HeavyViewController"
 bundle:nil];

Chapter 8. The Accelerometer

Page 159

 return self;
}

- (id)initWithNibName:(NSString *)nibName bundle:(NSBundle *)bundle
(
 return [self init];
}

However, it really isn’t necessary. The init method of UIViewController calls [self
initWithNibName:nil bundle:nil]. And if the nibName is nil, the view controller
assumes	that	the	name	of	the	NIB	file	is	the	same	as	the	name	of	the	view	
controller. Because you don’t need to initialize any instance variables, this class
doesn’t need an initializer at all; the default behavior is perfect.

Have your view controller allow autorotation for any orientation except upside-
down:

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)x
{
 return (x == UIInterfaceOrientationPortrait)
 || UIInterfaceOrientationIsLandscape(x);
}

(Other UIDevice orientation constants can be found in the documentation page for
UIDevice.)

Drag any image from Finder into your project under the Resources group.

Double-click HeavyViewController.xib to open it in Interface Builder. Drop a slider,
an image view, and two buttons onto the window. In the Attributes panel of the
Inspector	for	the	image	view,	set	Image	to	your	image	file.	Choose	Aspect	Fit	
mode	to	fit	the	image	to	the	view	without	changing	its	aspect	ratio	and	set	the	
background color to gray as shown in Figure 9.1.

Chapter 8. The Accelerometer

Page 160

Figure 9.1. UIImageView

Now you need to set the autoresize mask for each view. The autoresize mask
controls what happens to the view when its superview resizes. In the Size
inspector, a view is a rectangle within a rectangle. The inner rectangle represents
the selected view, and the outer rectangle represents its superview (Figure 9.2).

Figure 9.2. Autosizing in Size inspector

Chapter 8. The Accelerometer

Page 161

Clicking	to	turn	on	a	red	arrow	inside	the	inner	box	means	“It’s	okay	if	this	view	
resizes in this dimension.” Turning on a red strut between the inner and outer box
means	“The	distance	between	this	edge	of	the	view	and	the	corresponding	edge	
of	the	superview	is	never	allowed	to	change.”	Still	confused?	Check	out	the	little	
movie inside the inspector that demonstrates these choices.

Select each view and set the autoresize mask appropriately. The image view
should resize with the window. The slider should get wider but not taller. The
buttons should stay with their respective corners but not resize (Figure 9.3).

Figure 9.3. Autoresizing mask for views

Finally, you need to create an instance of HeavyViewController and place its view

Chapter 8. The Accelerometer

Page 162

into your view hierarchy. Add the following lines of code to application:didFinishLa
unchingWithOptions: in HeavyRotationAppDelegate.m. Make sure to include the
import	statement	at	the	top	of	the	file.

#import "HeavyViewController.h"
@implementation HeavyRotationAppDelegate
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 ...
 HeavyViewController *hvc = [[HeavyViewController alloc] init];
 [window addSubview:[hvc view]];

 [window makeKeyAndVisible];
}

Build and run the application. It should autorotate when you rotate the device as
shown in Figure 9.4.

Figure 9.4. Running rotated

For the More Curious: Forcing Landscape Mode
If your application only makes sense in landscape mode, you can force it to run
that way. First, make your view controller only allow autorotation to landscape
orientations:

- (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)x
{
 return UIInterfaceOrientationIsLandscape(x);
}

Chapter 8. The Accelerometer

Page 163

Figure 9.5. Choosing the Initial Orientation

In an application’s Info.plist, you can specify that the device be launched in a
particular orientation. Double-click on the application’s Info.plist to open it. Add
a key-value pair by selecting a row and clicking the plus button next to it. From
the Keycolumn’s pop-up menu, choose Initial interface orientation (or type in
UIInterfaceOrientation) and select the desired orientation from the pop-up list in
the Value column.

Build and run your application. Regardless of how you rotate the device, it will only
appear in landscape mode.

Chapter 8. The Accelerometer

Page 164

Challenge:	Proximity	Notifications
Register	for	proximity	notifications	too.	You	will	need	to	turn	on	proximity	
monitoring:

[device	setProximityMonitoringEnabled:YES];

For the More Curious: Overriding Autorotation
In most cases, autorotation does the right thing as long as the autoresizing
masks are properly set. However, you might want to take additional action on an
autorotation or override the autorotation process altogether to change the way the
view	looks	when	it	rotates.	You	can	do	this	by	overriding	willAnimateRotationToInt
erfaceOrientation:duration: in a view controller subclass.

When a view controller is about to autorotate its view, it checks to see if you have
implemented this method. If you have, it invokes this method during the animation
block of the rotation code. Therefore, all changes to subviews in this method will
be	animated	as	well.	You	can	also	perform	some	custom	code	within	this	method.	
Here is an example that will reposition a button and change the background color
on autorotation:

- (void)willAnimateRotationToInterfaceOrientation:(UIInterfaceOrientation)x
 duration:(NSTimeInterval)duration
{
 // Assume "button" is a subview of this view controller's view

 UIColor *color = nil;
 CGRect bounds = [[self view] bounds];
 // If the orientation is rotating to Portrait mode...
 if (UIInterfaceOrientationIsPortrait(x)) {

 // Put the button in the top right corner
 [button setCenter:CGPointMake(bounds.size.width - 30,
 20)];

 // the background color of the view will be red
 color = [UIColor redColor];
 } else { // If the orientation is rotating to Landscape mode

 // Put the button in the bottom right corner

Chapter 8. The Accelerometer

Page 165

 [button setCenter:CGPointMake(bounds.size.width - 30,
 bounds.size.height - 20)];

 // the background color of the view will be blue
 color = [UIColor blueColor];
 }
 [[self view] setBackgroundColor:color];
}

Overriding this method is useful when you want to update your user interface for
a different orientation. For example, you could change the zoom or position of a
scroll view or a table view (which you will learn about shortly) or even swap in an
entirely different view. Make sure, however, that you do not replace the view of the
view controller in this method. If you wish to swap in another view, you must swap
a subview of the view controller’s view.

This method is only available in iPhone OS 3.0. In earlier versions of the OS,
autorotation was performed in two steps. To implement additional actions for
applications that support earlier versions of the OS, you can override two metho
ds,willAnimateFirstHalfOfRotationToInterfaceOrientation:duration: and willAnim
ateSecondHalfOfRotationFromInterfaceOrientation:duration:. One caveat: if you
implement either of these two methods, the one-step method,willAnimateRotation
ToInterfaceOrientation:duration:, will not be invoked.

Chapter 10. UITableView and UITableViewController

Page 166

Chapter 10. UITableView and UITableViewController

iPhone applications frequently show an interactive list of items that allows the user
to select, delete, or reorder items on the list. Whether it’s a list of people in the
user’s address book or a list of items on the App Store, a UITableView is doing
the work. A UITableView displays a single column of data with a variable number
of rows. Figure 10.1 shows some examples of UITableView.

Figure 10.1. Examples of UITableView

Chapter 10. UITableView and UITableViewController

Page 167

Beginning the Homepwner Application
Over the next six chapters, you’re going to develop an application called
Homepwner that keeps an inventory of all your possessions. In the case of a
fire	or	other	catastrophe,	you’ll	have	a	record	for	your	insurance	company.	So	
far, all of your iPhone projects have been small, but Homepwner will grow into
a realistically complex application. This will give you a feeling for what it is like to
work	on	a	large	iPhone	application.	(By	the	way,	“Homepwner” is not a typo. If
you	need	a	definition	for	the	word	“pwn,”	please	visit	http://www.urbandictionary.
com.)

Select New Project from the File menu. In the New Project window, select
Window-Based Application template (without Core Data). Click the Choose...
button and name this project Homepwner. At that point, you will be taken to the
familiar project window.

UITableViewController
By the end of this chapter, Homepwner will present a list of Possession objects
in a UITableView as shown in Figure 10.2.

Figure 10.2. Homepwner: phase 1

Chapter 10. UITableView and UITableViewController

Page 168

UITableView is a view object, so, according to Model-View-Controller, it knows
how to draw itself, but it doesn’t handle application logic or data. Thus, when
using a UITableView, you must consider what helper objects are necessary. A
UITableView usually occupies the entire screen, so it needs a UIViewController
to handle placing it on the screen. A UITableView also typically needs a delegate
so that other objects can be informed of events involving the UITableView.
The	delegate	can	be	any	object	that	(you	guessed	it!)	conforms	to	the	
UITableViewDelegate protocol.

Additionally, a UITableView always needs a data source. A UITableView will
ask its data source for the number of rows, the data to be shown in those
rows, and many other tidbits that make a UITableView useful. Without a data
source, a table view would be just an empty container. The dataSource for a
UITableView can be any type of Objective-C object as long as it conforms to the
UITableViewDataSource protocol.

Meet UITableViewController,	a	class	that	can	fill	all	three	roles:	view
controller, delegate, and data source. A UITableViewController is a subclass
of UIViewController, and it handles most of the preparation and presentation
of a UITableView. AUITableViewController’s view is always an instance
of UITableView. The delegate and dataSource instance variables of the
UITableView are automatically set to point at its UITableViewController (Figure
10.3).

Figure 10.3. UITableViewController-UITableView relationship

Subclassing UITableViewController
Now you’re going to write a subclass of UITableViewController for Homepwner.
To create a UITableViewController subclass, select New File... from the File
menu and select UIViewController subclass from iPhone OS’s Cocoa Touch

Chapter 10. UITableView and UITableViewController

Page 169

Classes group. While there is a checkbox for a UITableViewController, do not
check this. (The Xcode template for a UITableViewController	subclass	fills	in	too	
much code.) Also, uncheck the box for With XIB for user interface (Figure 10.4).
Click the Next button, and you will be prompted for the name of this subclass. Call
it ItemsViewController.m and click the Finish button.

Figure 10.4. Creating a UITableViewController subclass

Open ItemsViewController.h. Change the superclass of ItemsViewController
from UIViewController to UITableViewController

#import <UIKit/UIKit.h>
@interface ItemsViewController : UITableViewController
{

}
@end
Once you have a UITableViewController subclass, you need to add its
UITableView to the window’s view hierarchy in order for the UITableView to
appear on the screen.

Chapter 10. UITableView and UITableViewController

Page 170

Every UIViewController has a property named view. A UITableViewController’s
view is always its UITableView. Every UITableViewController also has a
property named tableView. This property will return the same object as view,
but the compiler will see the object’s type as UITableView instead of the generic
UIView. This is useful for sending messages to a UITableViewController’s table
view	that	are	specific	to	table	views.

Once you have a UITableViewController instantiated and thus have a pointer to
its UITableView, you can add the table view	to	the	window.	You	have	access	to	
your application’s UIWindow in HomepwnerAppDelegate where the template
connected	it	in	Interface	Builder.	But	first,	HomepwnerAppDelegate needs to
know about ItemsViewController.	Open	the	file	HomepwnerAppDelegate.m
import the header for ItemsViewController.

#import "HomepwnerAppDelegate.h"
#import "ItemsViewController.h"

When your application launches, you will create an instance of
ItemsViewController and add its view to the window. Once this happens,
user events will go to the UITableView and get handled by its controller,
ItemsViewController. Add an instance variable to HomepwnerAppDelegate.h to
hold on to the the instance of ItemsViewController.

#import <UIKit/UIKit.h>

@class ItemsViewController;

@interface HomepwnerAppDelegate : NSObject <UIApplicationDelegate>
{
 UIWindow *window;
 ItemsViewController *itemsViewController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

In application:didFinishLaunchingWithOptions: in HomepwnerAppDelegate,
create an instance of ItemsViewController and add its view to the window.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

Chapter 10. UITableView and UITableViewController

Page 171

{
 // Create a ItemsViewController
 itemsViewController = [[ItemsViewController alloc] init];

 // Place ItemsViewController's table view in the window hierarchy
 [window addSubview:[itemsViewController view]];
 [window makeKeyAndVisible];
}

(Note that the itemsViewController doesn’t leak or need to be released because
it will be alive the entire time the application is running. If you did release it here,
you would also release the data source and delegate for its UITableView. That
would be bad.)

Build	and	run	your	application.	You	will	see	the	default	appearance	of	a	plain	
UITableView with no content as shown in Figure 10.5.

Figure 10.5. Empty UITableView

Poor empty table view!	You	should	give	it	some	rows	to	display.	In	Chapter 2, you
wrote a class that can describe a possession. Now you’re going to use that class
again to have each row of your table view display an instance of Possession.
Locate	the	interface	and	implementation	files	for	Possession (Possession.h and

Chapter 10. UITableView and UITableViewController

Page 172

Possession.m) and drag them onto Homepwner’s project window and into the
Classes group on the Groups & Files table.

When	dragging	these	files	into	your	project	window,	make	sure	to	select	the	
checkbox labeled Copy items into destination group’s folder as shown in Figure
10.6.

Figure 10.6. Adding files to a project

This	will	copy	the	files	from	their	current	directory	to	your	project’s	directory	on	the	
filesystem	and	add	them	to	your	project.	The	project	window	will	now	appear	as	
shown in Figure 10.7.

Chapter 10. UITableView and UITableViewController

Page 173

Figure 10.7. Project window with possession files added

UITableView’s Data Source
The process of providing a UITableView with rows in Cocoa Touch is different
from a procedural programming task. In a procedural design, you would tell the
table view what it should display. In Cocoa Touch, the table view asks another
object – its datasource – what it should display. Its data source is prepared to
answer that question; it just needs to know for which row it should provide the
content.

As a view object, a UITableView displays rows but doesn’t store the data
used to populate those rows. That’s the job of the data source; therefore,
ItemsViewController needs a way to store possession data. In Chapter 2, you
used anNSMutableArray to store Possession instances and then print them out.
You’ll	do	the	same	thing	in	this	exercise,	but	instead	of	printing	to	the	console,	
you’ll	“print”	to	a	UITableView (Figure 10.8).

Chapter 10. UITableView and UITableViewController

Page 174

Figure 10.8. Homepwner object diagram

First, add an instance variable to ItemsViewController.h.

@interface ItemsViewController : UITableViewController
{
 NSMutableArray *possessions;
}
@end

The possessions array will be a list of Possession instances, and the
UITableView will display these objects in its rows. Fortunately, you’ve already
written a convenience method to create random Possession objects, and you
already know how to populate an NSMutableArray. Implement the initialization
methods in ItemsViewController.m.

#import "ItemsViewController.h"

Chapter 10. UITableView and UITableViewController

Page 175

#import "Possession.h"

@implementation ItemsViewController

- (id)init
{

 // Call the superclass's designated initializer
 [super initWithStyle:UITableViewStyleGrouped];

 // Create an array of 10 random possession objects
 possessions = [[NSMutableArray alloc] init];
 for(int i = 0; i < 10; i++) {
 [possessions addObject:[Possession randomPossession]];
 }
 return self;
}

- (id)initWithStyle:(UITableViewStyle)style
{
 return [self init];
}

In the code above, initWithStyle: (the designated initializer of the superclass) is
overridden to call the new designated initializer, init. One reason for this change
is users of this class now only have to send it the message init; they don’t have
to worry about passing it any arguments. It also forces ItemsViewController to
appear in grouped table view style. (It looks prettier this way.)

UITableViewDataSource protocol
Now that ItemsViewController has some possessions, you need to teach it
how to turn those possessions into rows that its UITableView can display. When
a UITableView needs to know what to display, it has a set of messages it sends
to itsdataSource. These methods are declared in the UITableViewDataSource
protocol.

Once	again,	you	will	peer	into	the	iPhone	SDK	documentation	to	find	these	
methods. In ItemsViewController.h, Command-Option-double click on the string
UITableViewController to pull up the Developer Documentation window and the
class reference for UITableViewController (Figure 10.9).

Chapter 10. UITableView and UITableViewController

Page 176

Figure 10.9. Documentation window

This reference will tell you everything you would ever want to know about
UITableViewController. The basic information about the class is in a table at
the top of the page. For instance, the Inherits from section tells you the class
hierarchy ofUITableViewController; ItemsViewController will also respond to
any	methods	these	classes	implement.	You	can	click	on	any	of	the	items	in	this	
table to get to the reference for them.

Experienced iPhone developers spend a lot of time in the documentation. Many
developers new to the Apple way of doing things don’t understand the importance
of the documentation. Regardless of the amount of experience you have with
the iPhone SDK, you will still spend a lot of time checking the documentation for
the method or class you need. (The documentation browser is always open on
any Big Nerd Ranch employee’s computer.) When starting or struggling with an
implementation,	browse	the	documentation	to	find	the	appropriate	classes	and	
methods	to	work	with.	Remember,	if	a	common	task	is	difficult	in	Cocoa	Touch,	
you are probably doing it wrong. The documentation will usually show you the
easy way.

Chapter 10. UITableView and UITableViewController

Page 177

Right now, you are looking for the methods from the UITableViewDataSource
protocol that ItemsViewController could implement to turn Possession instances
into rows for the table view. Click on UITableViewDataSource in the Conforms to
section to get to the protocol reference. There you can scroll down and see all the
messages that a UITableView can send to its dataSource.

There are many methods here, but the two that are marked required method
must be implemented. For UITableViewController to properly conform to
UITableViewDataSource, it must implement tableView:numberOfRowsInSecti
on: andtableView:cellForRowAtIndexPath:. These methods tell the table view
how many rows it should display and what content to display in each row.

In ItemsViewController.m, you can see that the required methods have already
been implemented by the template. Delete the implementation for them because
you’re going to write your own. (If you aren’t sure which methods to delete, just
delete everything between @implementation and @end except for the init
methods you already implemented.)

Whenever a UITableView needs to display itself, it sends a series of messages
(the required methods plus any optional ones that have been implemented) to its
dataSource. The required method tableView:numberOfRowsInSection: returns
an integer value for the number of rows that the UITableView should display.
Because there needs to be a row for each entry in the possessions array, the
implementation of this method should return the number of entries in the array as
shown inFigure 10.10.

Figure 10.10. Obtaining the number of rows

Now implement tableView:numberOfRowsInSection: in
ItemsViewController.m.

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section

Chapter 10. UITableView and UITableViewController

Page 178

{
 return [possessions count];
}

(You	might	be	wondering	what	a	“section” means in this method name. Table
views can be broken up into sections, and each section can have its own set
of	rows.	For	example,	in	the	address	book,	all	the	names	beginning	with	“D”	are	
grouped together in a section. By default, a table view has one section. For this
exercise, we will work with only one section. Once you understand how a table
view works, it’s not hard to use multiple sections. In fact, using multiple sections is
one of the challenges at the end of this chapter.)

UITableViewCells
A UITableViewCell is a subclass of UIView, and each row in a UITableView is
represented by a UITableViewCell. (Recall that a table on the iPhone can only
have one column, so a row will only have one cell.) UITableView is a container for
UITableViewCells. A cell consists of a content view where the cell displays data
and an accessory view (Figure 10.11). In the accessory view, the cell can display
an action-oriented icon – like a checkbox, a disclosure button, or a fancy blue dot
with	a	chevron	inside.	These	icons	are	accessed	through	pre-defined	constants	
for the appearance of the accessory view. (See the docs for UITableViewCell for
details.)

Figure 10.11. UITableViewCell layout

However, the real meat of a UITableViewCell is the content view. Each cell’s
contentView has three subviews. Two of those subviews are UILabel instances,
textLabel and detailTextLabel. The third is a UIImageView called imageView
(Figure 10.12).

Chapter 10. UITableView and UITableViewController

Page 179

Figure 10.12. UITableViewCell hierarchy

Each cell also has a UITableViewCellStyle that determines which of these
subviews are used and their position within the contentView. These styles are
show in Figure 10.13.

Figure 10.13. UITableViewCellStyles

In this chapter, each cell will display the description of a Possession. To make
this happen, you will implement the tableView:cellForRowAtIndexPath: in
the data source (ItemsViewController). This method will create a cell, set its
textLabel to the description of the corresponding Possession, and return it to

Chapter 10. UITableView and UITableViewController

Page 180

the UITableView that requested it (Figure 10.14).

Figure 10.14. UITableViewCell retrieval

How do you decide which cell a Possession	corresponds	to?	One	of	the	
parameters sent to tableView:cellForRowAtIndexPath: is an NSIndexPath,
which has two properties, section and row. When this message is sent to a data
source, the table view	is	asking,	“Can	I	have	a	cell	to	display	in	section X at row
Y?”	Because	there	is	only	one	section in this exercise, the row is the only value
of consequence. Therefore, implement this method in ItemsViewController.m so
that the nth row displays the nth entry in the possessions array.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 // Create an instance of UITableViewCell, with default appearance
 UITableViewCell *cell =
 [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"UITableViewCell"] autorelease];

 // Set the text on the cell with the description of the possession
 // that is at the nth index of possessions, where n = row this cell

Chapter 10. UITableView and UITableViewController

Page 181

 // will appear in on the tableview
 Possession *p = [possessions objectAtIndex:[indexPath row]];
 [[cell textLabel] setText:[p description]];
 return cell;
}

You	can	build	and	run	the	application	now,	and	you’ll	see	a	UITableView
populated with a list of random Possessions.	Yep,	it	was	that	easy!	Thanks,	
Cocoa	Touch!	Also	note	that	you	didn’t	have	to	change	anything	about	
Possession – you simply changed the controller object to interface with a
different view. This is why Model-View-Controller is such a powerful concept. With
a minimal amount of code, you were able to show the same data in an entirely
different way.

Reusing UITableViewCells
The iPhone has a limited amount of memory. If we were displaying a list with
thousands of entries in a UITableView, we would have thousands of instances
of UITableViewCell. And the iPhone would sputter and die. In its dying breath, it
would	say	“You	only	needed	enough	cells	to	fill	the	screen...	arrrghhh!”	It	would	be	
right.

Reusing UITableViewCells prevents senseless iPhone death. A UITableView
retains any UITableViewCell returned to it by the method tableView:cellForRow
AtIndexPath: (which is why you can autorelease it in tableView:cellForRowAtI
ndexPath:). When the user scrolls the table, some cells are moved offscreen and
put into a pool of cells available for reuse. Then, instead of creating a brand new
cell for every request, the data source can check the pool. If there is an unused
cell,	the	data	source	configures	it	with	new	data	and	returns	it	to	the	table	view.

Chapter 10. UITableView and UITableViewController

Page 182

Figure 10.15. Reusable UITableViewCells

There is one problem: sometimes a UITableView has different types of cells.
Occasionally, you have to subclass UITableViewCell to create a special look or
behavior.	However,	subclasses	floating	around	the	pool	of	reusable	cells	create	
the	possibility	of	getting	back	a	cell	of	the	wrong	type.	You	must	be	sure	of	the	
type of the cell returned to you so that you can be sure of what properties and
methods it has.

Note	that	you	don’t	care	about	getting	any	specific	cell	out	of	the	pool	because	
you’re	going	to	change	the	cell	data	anyway.	What	you	want	is	a	cell	of	a	specific	
type. The good news is every cell has a reuseIdentifier (an NSString) that the
table view	uses	to	distinguish	it	from	other	cells.	If	the	reuse	identifier	is	the	name	
of	the	cell	class,	then	it	becomes	easy	to	ask	for	a	specific	type	of	a	cell.	Update	
tableView:cellForRowAtIndexPath: to implement reusable cells:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 // Check for a reusable cell first, use that if it exists
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"UITableViewCell"];

 // If there is no reusable cell of this type, create a new one
 if (!cell) {

Chapter 10. UITableView and UITableViewController

Page 183

 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"UITableViewCell"] autorelease];
 }

 Possession *p = [possessions objectAtIndex:[indexPath row]];
 [[cell textLabel] setText:[p description]];
 return cell;
}

Reusing cells means that you only have to create a handful of cells. When one
needs to be reinserted in the table, you simply update its contents with new
information.	Your	iPhone	(and	your	application’s	users)	will	thank	you	for	it.	Build	
and run the application. The behavior of the application should remain the same.

In the next chapter, you’re going to expand Homepwner and allow the user to
reorder, delete, and insert new rows.

Challenge: Sections
Have the UITableView display two sections – one for possessions worth more
than	$50	and	one	for	the	rest.	To	make	this	process	easier,	use	two	separate	
possessions arrays. Before you start this challenge, copy the folder containing
the	project	and	all	of	its	source	files	in	the	Finder.	Then	tackle	the	challenge	in	the	
copied project; you’ll need the original to build on in the coming chapters.

Chapter 11. Editing UITableViews

Chapter 11. Editing UITableViews
In the last chapter, you began an application that displayed a list of Possession
instances in a UITableView. The next step in this application is allowing the user
to interact with that table by moving, deleting, and inserting rows. Figure 11.1
shows what your Homepwner application will look like by the end of this chapter.

Figure 11.1. Homepwner in Editing Mode

Editing Mode
Every UITableView has an editing variable. When this boolean variable is set
to YES, the UITableView enters editing mode, and the rows of the table can be
manipulated by the user. The user can change the order of the rows, add rows, or
remove rows. Editing mode, however, does not allow the user to edit the content
of a row.

But before any of this can happen, the user needs a way to put the UITableView
in editing mode. For now, you’re going to display a button that toggles editing
mode in the header view of the table. A header view appears at the top of a
section of a table and is useful for adding section-wide or table-wide titles or
controls. It can be any UIView subclass. There’s also a footer view for the bottom
of a section that works the same way. Figure 11.2 shows a table with two sections.
Each section has a UISlider for a header view and a UILabel for a footer view.

Page 184

Chapter 11. Editing UITableViews

Figure 11.2. UITableView header and footer views

Open Homepwner.xcodeproj again. In ItemsViewController.h, declare an
instance variable of type UIView for your header view. Also, declare a new method
that will create this header view.

@interface ItemsViewController : UITableViewController
{
 UIView *headerView;
 NSMutableArray *possessions;
}
- (UIView *)headerView;
@end

The standard UIView you’ve declared will be a container for a UIButton
that toggles editing mode on and off. Now implement headerView in

Page 185

Chapter 11. Editing UITableViews

ItemsViewController.m.

- (UIView *)headerView
{
 if (headerView)
 return headerView;

 // Create a UIButton object, simple rounded rect style
 UIButton *editButton = [UIButton buttonWithType:UIButtonTypeRoundedR
ect];

 // Set the title of this button to "Edit"
 [editButton setTitle:@"Edit" forState:UIControlStateNormal];

 // How wide is the screen?
 float w = [[UIScreen mainScreen] bounds].size.width;

 // Create a rectangle for the button
 CGRect editButtonFrame = CGRectMake(8.0, 8.0, w - 16.0, 30.0);
 [editButton setFrame:editButtonFrame];

 // When this button is tapped, send the message
 // editingButtonPressed: to this instance of ItemsViewController
 [editButton addTarget:self
 action:@selector(editingButtonPressed:)
 forControlEvents:UIControlEventTouchUpInside];

 // Create a rectangle for the headerView that will contain the button
 CGRect headerViewFrame = CGRectMake(0, 0, w, 48);
 headerView = [[UIView alloc] initWithFrame:headerViewFrame];

 // Add button to the headerView's view hierarchy
 [headerView addSubview:editButton];

 return headerView;
}

In the method above, you added the target-action pair for the button in the code
as opposed to previous chapters where you used Interface Builder. Remember
when you Control-clicked a button and dragged back to the application delegate

Chapter 11. Editing UITableViews

or	view	controller	in	the	doc	window?	You	were	adding	a	target-action	pair	to	that	
button so that whenever it received an event, it would send the action message to
the target object. When you added this bit of code to headerView

 [editButton addTarget:self
 action:@selector(editingButtonPressed:)
 forControlEvents:UIControlEventTouchUpInside];

you were doing the same thing as making the connection in Interface Builder.
Now, whenever the editButton is tapped (UIControlEventTouchUpInside),
it will send the message editingButtonPressed: to the instance of
ItemsViewController as shown in Figure 11.3.

Figure 11.3. Target-Action pair

To get your header view to appear in a UITableView, you need to implement two
UITableViewDelegate methods to check for a header view and obtain the view
and its height. Implement these two methods in ItemsViewController.m.

- (UIView *)tableView:(UITableView *)tv viewForHeaderInSection:(NSInteger)
sec
{
 return [self headerView];
}

- (CGFloat)tableView:(UITableView *)tv heightForHeaderInSection:(NSInteg
er)sec
{

Chapter 11. Editing UITableViews

 return [[self headerView] frame].size.height;
}
Build and run the application. An Edit button will appear at the top of the table,
but pressing it will generate an exception, of course, because you haven’t yet
implemented its action – editingButtonPressed:.

The implementation of editingButtonPressed: needs to toggle the editing
mode of the table view. In this method, you could set the editing property
of UITableView directly. However, a UITableViewController, like every
UIViewController, also has an editing property. A UITableViewController
instance automatically sets the editing property of its table view to the same
value as its own editing property. To set the editing property for a view controller
and toggle editing mode, you send it the message setEditing:animated:.
Therefore, both the view controller and the table view will know whether editing
is occurring, which will be important for implementing controller logic. Implement
editingButtonPressed: in ItemsViewController.m.

- (void)editingButtonPressed:(id)sender
{
 // If we are currently in editing mode...
 if ([self isEditing]) {
 // Change text of button to inform user of state
 [sender setTitle:@"Edit" forState:UIControlStateNormal];
 // Turn off editing mode
 [self setEditing:NO animated:YES];
 } else {
 // Change text of button to inform user of state
 [sender setTitle:@"Done" forState:UIControlStateNormal];
 // Enter editing mode
 [self setEditing:YES animated:YES];
 }
}

Build and run your application and touch the Edit button. The UITableView will
enter editing mode (Figure 11.4)!

Chapter 11. Editing UITableViews

Figure 11.4. UITableView in editing mode

Deleting Rows
The red circles with the dash (shown in Figure 11.4) are deletion controls, and
touching one will delete that row. However, at this point, touching a deletion
control deletes nothing. (Test it for yourself.) Before a row can be deleted, the
table view needs to ask the data source how to delete that row. This includes
choosing what type of animation to display and how the data being displayed is
affected by the deletion of that row.

A UITableView	asks	its	data	source	for	the	cells	it	should	display	when	it	is	first	
added to the screen and at least three other times:

•	 when the user scrolls the table view

•	 when the table view is removed from the view hierarchy and then added back to
the view hierarchy

•	 when your code sends the message reloadData to the UITableView

Chapter 11. Editing UITableViews

Now consider what would happen if deleting a row only removed the row from the
table view and not the data source. The possessions array would still have the
Possession instance displayed by that row, and the next time the UITableView
reloaded its rows, the data source would create a cell for that supposedly deleted
Possession. The unwanted row would rise from the dead and return to the table.

Therefore, when a row is deleted, you must remove the object that the
row displayed from the data source. The method to implement is tableV
iew:commitEditingStyle:forRowAtIndexPath:. When that message is
sent to your data source, two extra arguments are passed along with it.
The	first	is	the	UITableViewCellEditingStyle, which, in this case, will be
UITableViewCellEditingStyleDelete. The other argument is the NSIndexPath of
the row within the table. Implement this method in ItemsViewController.m.

- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath
{
 // If the table view is asking to commit a delete command...
 if (editingStyle == UITableViewCellEditingStyleDelete) {

 // We remove the row being deleted from the possessions array
 [possessions removeObjectAtIndex:[indexPath row]];

 // We also remove that row from the table view with an animation
 [tableView deleteRowsAtIndexPaths:[NSArray
arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 }
}

Build and run your application and then delete a row. It will disappear. Now scroll
the list, return to where the deleted row was, and check to see if your data source
was	updated.	No	zombie	cells	–	hooray!

Moving Rows
To change the order of rows in a UITableView, you will use another data source
method – tableView:moveRowAtIndexPath:toIndexPath:. The implementation

Chapter 11. Editing UITableViews

of this method needs to remove the object at fromIndexPath from the
possessions array and re-insert it at toIndexPath. Implement this method in
ItemsViewController.m.

- (void)tableView:(UITableView *)tableView
 moveRowAtIndexPath:(NSIndexPath *)fromIndexPath
 toIndexPath:(NSIndexPath *)toIndexPath
{
 // Get pointer to object being moved
 Possession *p = [possessions objectAtIndex:[fromIndexPath row]];

 // Retain p so that it is not deallocated when it is removed from the array
 [p retain];
 // Retain count of p is now 2

 // Remove p from our array, it is automatically sent release
 [possessions removeObjectAtIndex:[fromIndexPath row]];
 // Retain count of p is now 1

 // Re-insert p into array at new location, it is automatically retained
 [possessions insertObject:p atIndex:[toIndexPath row]];
 // Retain count of p is now 2

 // Release p
 [p release];
 // Retain count of p is now 1
}

When you were deleting a row, you had to explicitly send the message deleteRo
wsAtIndexPaths:withRowAnimation: to the UITableView. When moving rows,
however, you don’t have to send a message to the table view that it’s okay to
move	a	row;	the	table	view	will	move	it	without	further	instruction.	You	just	have	
to catch the message to update your data source. Build and run your application.
Then touch and hold the reordering control (the three horizontal lines) on the side
of a row and move it to a new position (Figure 11.5).

Chapter 11. Editing UITableViews

Figure 11.5. Moving a row

Note that before you implemented this method, the reordering controls did not
appear on the table view. Simply implementing this method made them appear.
This is because Objective-C is a very smart language. The UITableView can ask
its data source whether it implements tableView:moveRowAtIndexPath:toInde
xPath:	at	runtime.	If	it	does,	the	table	view	says,	“Good,	you	can	handle	moving	
rows.	I’ll	add	the	re-ordering	controls.”	If	not,	it	says,	“You	bum.	If	you	are	too	lazy	
to implement that method, I’m too lazy to put the controls there.”

Inserting Rows
Deleting and moving rows is easy; inserting them is trickier. First, let’s discuss the
one way of inserting a row that isn’t tricky at all: sending the message reloadData.
You	know	that	a	UITableView displays rows based on what its dataSource
tells it to display. If you wanted to add a row, you could simply insert an entry
into possessions and send the message reloadData to the UITableView. The
method reloadData restarts the process of asking the data source for the number
of rows and getting the cells, and the new row would be added as part of that

Chapter 11. Editing UITableViews

process.	(You	could	do	the	same	thing	for	deleting	and	moving	rows,	too,	but	the	
implementation	would	be	more	difficult	–	how	would	the	user	select	which	row	to	
delete	or	move?)

Figure 11.6. Adding a row

The	approach	you’re	going	to	implement	is	more	difficult	but	totally	worth	it	in	
terms of user experience. What you want is a row at the bottom of the table that
has an insertion control (a green icon with a plus symbol) next to it. This row will
only be visible during editing mode, and touching it will place a new random
Possession at the bottom of the list along with an animation.

To begin, the table view needs to display an additional row when it is in editing
mode. Override setEditing:animated: for ItemsViewController so that it either
adds or removes a row at the bottom of the table depending on whether you are
entering or leaving editing mode. (Recall that this is the method that is invoked
when the editing button is tapped.)

- (void)setEditing:(BOOL)flag animated:(BOOL)animated
{
 // Always call super implementation of this method, it needs to do work
 [super setEditing:flag animated:animated];

Chapter 11. Editing UITableViews

 // You need to insert/remove a new row in to table view
 if (flag) {
 // If entering edit mode, we add another row to our table view
 NSIndexPath *indexPath =
 [NSIndexPath indexPathForRow:[possessions count] inSection:0];
 NSArray *paths = [NSArray arrayWithObject:indexPath];

 [[self tableView] insertRowsAtIndexPaths:paths
 withRowAnimation:UITableViewRowAnimationLeft];
 } else {
 // If leaving edit mode, we remove last row from table view
 NSIndexPath *indexPath =
 [NSIndexPath indexPathForRow:[possessions count] inSection:0];
 NSArray *paths = [NSArray arrayWithObject:indexPath];

 [[self tableView] deleteRowsAtIndexPaths:paths
 withRowAnimation:UITableViewRowAnimationFade];
 }
}

Notice that you send the same message to the superclass. This is to take
advantage of UITableViewController’s special property that matches the
UITableView’s editing property with its own.

When the user enters editing mode, another row is added to the bottom.
However, now the view is out of sync with the data source: there are eleven rows
visible, but the data source only has ten entries in possessions. Change the
following method in ItemsViewController.m	to	resolve	this	conflict:

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 int numberOfRows = [possessions count];
 // If we are editing, we will have one more row than we have possessions
 if ([self isEditing])
 numberOfRows++;

 return numberOfRows;
}

Chapter 11. Editing UITableViews

The UITableView will now have the correct number of rows while it
is being edited. Now update tableView:cellForRowAtIndexPath: in
ItemsViewController.m so that the last row in editing mode displays something
useful	like	“Add	New	Item...”:

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
												[tableView	dequeueReusableCellWithIdentifier:@"UITableViewCell"];

				if	(!cell)	{
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
																		reuseIdentifier:@"UITableViewCell"]	autorelease];
 }

 // If the table view is filling a row with a possession in it, do as normal
 if ([indexPath row] < [possessions count]) {
 Possession *p = [possessions objectAtIndex:[indexPath row]];
 [[cell textLabel] setText:[p description]];
 } else { // Otherwise, if we are editing we have one extra row...
 [[cell textLabel] setText:@"Add New Item..."];
 }

 return cell;
}

Build and run your application. Touch the Edit button and scroll down to the bottom
of the table. There’s your new row... but it still has a deletion control next to it. To
give this row an insertion control instead, you’ll need to change the row’s editing
style. When a UITableView begins editing, it asks its delegate for the editing
style at each row. Implement the following method in ItemsViewController.m so
that the last row has a UITableViewCellEditingStyleInsert style.

- (UITableViewCellEditingStyle)tableView:(UITableView *)tableView
 editingStyleForRowAtIndexPath:(NSIndexPath *)indexPath
{

Chapter 11. Editing UITableViews

 if ([self isEditing] && [indexPath row] == [possessions count]) {

 // The last row during editing will show an insert style button
 return UITableViewCellEditingStyleInsert;
 }
 // All other rows remain deleteable
 return UITableViewCellEditingStyleDelete;
}

Building and running now shows an insertion control next to the last row.

Now, you have to implement code to handle what happens when this control is
touched.	You	have	already	written	the	data	source	method	for	this;	you	just	need	
to write some additional code to handle inserts. Add the following code to tableVie
w:commitEditingStyle:forRowAtIndexPath: in ItemsViewController.m.

- (void)tableView:(UITableView *)tableView
 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle
 forRowAtIndexPath:(NSIndexPath *)indexPath
{
 if (editingStyle == UITableViewCellEditingStyleDelete) {
 [possessions removeObjectAtIndex:[indexPath row]];
 [tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationFade];
 } else if (editingStyle == UITableViewCellEditingStyleInsert) {

 // If the editing style of the row was insertion,
 // we add a new possession object and new row to the table view
 [possessions addObject:[Possession randomPossession]];
 [tableView insertRowsAtIndexPaths:[NSArray
arrayWithObject:indexPath]
 withRowAnimation:UITableViewRowAnimationLeft];
 }
}

Adding the Add New Item... row introduces two potential bugs in Homepwner.
First, the user could use the reordering control to move the Add New Item...
row.	This	would	blow	up	the	entire	application.	(Try	it	–	it’s	fun!)	The	table	view	
assumes that all rows can move in editing mode because its data source
implemented the method to move rows. However, you can trim the set of
moveable rows by implementing another data source method, tableView:canMo

Chapter 11. Editing UITableViews

veRowAtIndexPath:, in ItemsViewController.m. This method will return NO for
the last row, and that row will not show a reordering control.

- (BOOL)tableView:(UITableView *)tableView
 canMoveRowAtIndexPath:(NSIndexPath *)indexPath
{
 // Only allow rows showing possessions to move
 if ([indexPath row] < [possessions count])
 return YES;
 return NO;
}

The second problem will occur if the user moves another row beneath the Add
New Item... row. This will cause all sorts of havoc in the data source methods.
Fixing this problem requires another delegate method, and yes, you may scream
“I	knew	it!”	This	method	gives	you	the	NSIndexPath of the row that wants to move
as well as the row it wants to occupy. If you don’t want to allow the proposed
move to take place, you return the NSIndexPath of the row that it should move to
instead. Add the following implementation to ItemsViewController.m.

- (NSIndexPath *)tableView:(UITableView *)tableView
 targetIndexPathForMoveFromRowAtIndexPath:(NSIndexPath *)sourceInd-
exPath
 toProposedIndexPath:(NSIndexPath *)proposedDestinationIndexPath
{
 if ([proposedDestinationIndexPath row] < [possessions count]) {
 // If we are moving to a row that currently is showing a possession,
 // then we return the row the user wanted to move to
 return proposedDestinationIndexPath;
 }
 // We get here if we are trying to move a row to under the "Add New
Item..."
 // row, have the moving row go one row above it instead.
 NSIndexPath *betterIndexPath =
 [NSIndexPath indexPathForRow:[possessions count] - 1 inSection:0];

 return betterIndexPath;
}

Build and run the application. Try moving the last row. Now try moving another
row	beneath	it.	Ha!	You	can’t!	Homepwner	is	so	safe	that	even	a	child	could	use	it.	

Chapter 12. UINavigationController

Page 198

Chapter 12. UINavigationController
Earlier in this book, you learned about UITabBarController and how it allows
a user to access different screens. A tab bar controller is great when you have
screens that don’t rely on each other, but what if you want to move between
related	screens?

For example, the iPhone Settings application has multiple related screens of
information: a list of settings (like Sounds), a detailed page for each setting,
and a selection page for each detail. This type of interface is called a drill-down
interface. In this chapter, you will use a UINavigationController to add a drill-
down interface to Homepwner (Figure 12.1).

Figure 12.1. Homepwner with UINavigationController

Chapter 12. UINavigationController

Page 199

UINavigationController
When you have an application that presents multiple screens of information,
UINavigationController maintains a stack of those screens. The stack is an
NSArray of view controllers, and each screen is the view instance controlled by
a UIViewController. When a UIViewController is on top of the stack, its view is
visible.

When you initialize an instance of UINavigationController, you give it one
UIViewController. This UIViewController is called the root view controller, and
its position in the stack is shown in Figure 12.2. In the Homepwner application,
the root view controller will be ItemsViewController.	It	is	the	first	screen	the	user	
sees and can navigate from.

Figure 12.2. UINavigationController’s stack

The root view controller is always on the bottom of the stack (which is also
the top if there is only one item). More UIViewControllers can be pushed
on top of this stack during execution. When this happens, the view of the
pushedUIViewController slides onto the screen. When the stack is popped, the
top view controller is removed from the stack, and the view of the one below it
slides onto the screen. This ability to add to the stack during execution is missing
in UITabBarController, which must have all of the view controllers it maintains at
initialization time. Navigation controllers are more dynamic, and only the root view

Chapter 12. UINavigationController

Page 200

controller is guaranteed to always be in the stack.

The UIViewController that is on top of the stack can be accessed by sending the
message topViewController to the UINavigationController	instance.	You	can	
also get the entire stack as an NSArray by sending the navigation controller the
message viewControllers. The viewControllers array is ordered so that the root
view	controller	is	the	first	entry	and	the	top	view controller is the last entry.

UINavigationController is actually a subclass of UIViewController, so it also has
a view instance. Its view always has at least two subviews: a UINavigationBar
and the view of the UIViewController that is on top of the stack (Figure 12.3).
The only requirements for using a UINavigationController are that you add its
view to the visible view hierarchy and give it a root view controller.

Figure 12.3. A UINavigationController’s view

Chapter 12. UINavigationController

Page 201

In this chapter, you will be adding a UINavigationController to the Homepwner
application. When the user selects one of the possession rows, a new
UIViewController’s view will slide onto the screen. That view controller will allow
the user to view and edit the properties of the Possession. The object diagram
for the updated Homepwner application is shown in Figure 12.4.

Figure 12.4. Homepwner object diagram

This application is starting to get fairly large, as demonstrated by the massive
object diagram. Fortunately, view controllers and UINavigationController know
how to deal with this type of complicated object diagram. When writing iPhone
applications, it is important to treat each UIViewController as its own little world.
The stuff that has already been implemented in Cocoa Touch will do the heavy
lifting.

In Homepwner.xcodeproj	that	you	created	earlier,	open	the	file	
HomepwnerAppDelegate.m. Instead of adding the ItemsViewController’s
view directly to the window as before, you are going to create an instance

Chapter 12. UINavigationController

Page 202

of UINavigationController and add its view to the window instead. This
UINavigationController will be initialized with ItemsViewController as its root
view controller. Make these changes in application:didFinishLaunchingWithOp
tions:.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 itemsViewController = [[ItemsViewController alloc] init];

 // Create an instance of a UINavigationController
 // its stack contains only itemsViewController
 UINavigationController *navController = [[UINavigationController alloc]
 initWithRootViewController:itemsViewController];

 // Place navigation controller's view in the window hierarchy
 [window addSubview:[navController view]];

 [window makeKeyAndVisible];
				return	YES;
}

Build and run the application. Homepwner will look the same as it did before
– except now it has a UINavigationBar at the top of the screen (Figure 12.5).
Notice how ItemsViewController’s view	was	resized	to	fit	the	screen	with	a	
navigation bar.UINavigationController did this for you.

Figure 12.5. Homepwner with an empty navigation bar

Chapter 12. UINavigationController

Page 203

UINavigationBar
The UINavigationBar isn’t very interesting right now. At a minimum, a
UINavigationBar should display a descriptive title for the UIViewController that
is currently on top of the UINavigationController’s stack.

Every UIViewController has a property navigationItem of type
UINavigationItem. While UINavigationBar is a subclass of UIView (which
means it can be appear on screen), UINavigationItem is not. However, it supplies
the navigation bar with the content it needs to draw. When a UIViewController
comes to the top of a UINavigationController’s stack, the navigation controller’s
UINavigationBar uses the UIViewController’s navigationItem	to	configure	itself	
as shown in Figure 12.6.

Figure 12.6. UINavigationItem

That’s	not	the	easiest	thing	to	understand	at	first	glance.	So,	consider	the	
following analogy. Think of UIViewController as an NFL football team, and
moving to the top of the stack as going to the Super Bowl. The UINavigationItem
is the team logo design, and, no matter what, its team logo remains unchanged;
it’s an internal design. The UINavigationController is the stadium, and
the UINavigationBar is an end zone. When a team makes it to the Super
Bowl, its team logo is painted in one end zone of the stadium. And when a
UIViewController is moved to the top of the stack, its UINavigationItem is
painted on the UINavigationBar within the UINavigationController.

By default, a UINavigationItem is empty. At the most basic level, a
UINavigationItem has a simple title string. When a UIViewController is moved
to the top of the navigation stack and its navigationItem has a valid string for its
title property, the navigation bar will display that string (Figure 12.7).

Chapter 12. UINavigationController

Page 204

Figure 12.7. UINavigationItem with title

A navigation item can hold more than just a title string, as shown in Figure 12.8.
There are three customizable areas for each UINavigationItem: a titleView, a
leftBarButtonItem, and a rightBarButtonItem. The left and right bar button items
are pointers to instances of UIBarButtonItem, a type of button that can only be
displayed on a UINavigationBar or a UIToolbar.

Figure 12.8. UINavigationItem with everything

Like UINavigationItem, UIBarButtonItem is not a subclass of UIView but
supplies the content that a UINavigationBar needs to draw. Consider the
UINavigationItem and its UIBarButtonItems to be containers for strings,
images, and other content. A UINavigationBar knows how to look in those
containers and draw the content that’s there.

The third customizable area of a UINavigationItem is its titleView.	You	have	a	
choice with each navigation item: use a basic string as the title (as you’ll do in this
chapter) or have any subclass of UIView sit in the center of the navigation item.
You	cannot	have	both.	If	it	suits	the	context	of	a	specific	view controller to have a

Chapter 12. UINavigationController

Page 205

custom view (such as a button, a slider, an image view, or even a map) instead
of a title, you would set the titleView of the navigation item to that custom view.
Typically,	however,	a	title	string	is	sufficient.

Set up ItemsViewController to have a proper navigationItem. Update the init
method by adding the following lines of code to ItemsViewController.m.

- (id)init
{
 [super initWithStyle:UITableViewStyleGrouped];

 possessions = [[NSMutableArray alloc] init];
 for (int i = 0; i < 10; i++) {
 [possessions addObject:[Possession randomPossession]];
 }
 // Set the nav bar to have the pre-fab'ed Edit button when
 // ItemsViewController is on top of the stack
 [[self navigationItem] setLeftBarButtonItem:[self editButtonItem]];

 // Set the title of the nav bar to Homepwner when ItemsViewController
 // is on top of the stack
 [[self navigationItem] setTitle:@"Homepwner"];

 return self;
}

Building and running the application now will show a lovely UINavigationBar
with	a	title	and	–	surprise!	–	an	Edit	button.	Go	ahead	and	tap	that	Edit	button	
and watch the UITableView	enter	editing	mode!	Where	did	editButtonItem
come	from?	Every	UIViewController has a editButtonItem property. When
sent editButtonItem, the view controller creates a UIBarButtonItem with the
title Edit. This button came with a target-action pair: it will send the message
setEditing:animated: to its UIViewController when tapped.

This	means	you	can	simplify	the	code	a	bit.	You	no	longer	need	the	header	view
with the button labeled Edit. To get rid of the header view, delete the following two
methods from ItemsViewController.m.

//	Delete	these!

Chapter 12. UINavigationController

Page 206

- (UIView *)tableView:(UITableView *)aTableView
 viewForHeaderInSection:(NSInteger)section
{
 return [self headerView];
}
- (CGFloat)tableView:(UITableView *)tableView
 heightForHeaderInSection:(NSInteger)section
{
 return [[self headerView] frame].size.height;
}

The headerView will no longer be used, and your code will still build the correct
application. Also, you will want to remove the instance variable headerView along
with the implementation of the methods headerView and editingButtonPressed:.

Now you can build and run again. The old Edit button is gone, and you have a
much	more	efficient	editButtonItem in the UINavigationBar that does the same
thing (Figure 12.9).

Figure 12.9. Homepwner with navigation bar

An Additional UIViewController
To see the real power of UINavigationController, you need another
UIViewController to put on its stack. Create a new UIViewController subclass by
selecting New File... from the File menu. Choose UIViewController subclass and
select With XIB for user interface only. Name this class ItemDetailViewController

Chapter 12. UINavigationController

Page 207

and add it to the Homepwner project (Figure 12.10).

Figure 12.10. Creating an ItemDetailViewController

In Homepwner, the user will be able to tap one of the rows and have
another view	slide	onto	the	screen	with	editable	text	fields	for	each	
property of that Possession. This view will be controlled by an instance of
ItemDetailViewController.

You	need	four	subviews	for	each	instance	variable	of	a	Possession instance.
ItemDetailViewController’s view will display these and allow the user to edit
them. And because you need to be able to access these subviews during runtim
e,ItemDetailViewController needs outlets for these subviews. Add the following
instance variables to ItemDetailViewController.h.

@interface ItemDetailViewController : UIViewController
{

Chapter 12. UINavigationController

Page 208

 IBOutlet UITextField *nameField;
 IBOutlet UITextField *serialNumberField;
 IBOutlet UITextField *valueField;
 IBOutlet UILabel *dateLabel;
}
@end

Save	this	file.	The	IBOutlet in front of each of these instance variables should clue
you into the fact you are going to use Interface Builder to lay out the interface for
ItemDetailViewController’s view. When you created ItemDetailViewController,
a	XIB	file	of	the	same	name	was	also	created	and	added	to	the	project.	Open	
ItemDetailViewController.xib now.

The XIB File and File’s Owner
You	have	seen	a	XIB	file	in	previous	exercises.	You’ve	also	added	subviews	to	the	
window, made outlet connections, and connected action messages. In those XIB
files,	there	was	a	File’s	Owner	object	in	the	Doc	Window	that	you	used	without	
really understanding. Now, it is time to learn what the File’s Owner really is.

File’s	Owner	is	a	placeholder	for	an	object	that	is	supplied	when	the	NIB	file	is	
read	in.	That	is,	File’s	Owner	is	a	hole,	and	whatever	causes	the	NIB	file	to	be	
unarchived, supplies something to go into that hole.

This	is	a	little	abstract	because	you	have	never	explicitly	unarchived	a	NIB	file.	
Instead, the UIApplication object implicitly unarchived the MainWindow.nib	file	
and your view	controllers	have	implicitly	unarchived	their	NIB	files.	How	does	
this	work?	When	a	view	controller	loads	its	NIB	file,	it	will	supply	itself	to	fill	the	
role of File’s Owner. The implementation of loadView in UIViewController looks
something like this:

- (void)loadView
{
 NSBundle *bundle = [self nibBundle];
 NSString *nibName = [self nibName];
 if (bundle == nil)
 bundle = [NSBundle mainBundle];
 if (nibName == nil)
 nibName = NSStringFromClass([self class]);

 [bundle loadNibNamed:nibName owner:self options:nil];
}

Chapter 12. UINavigationController

Page 209

So,	this	object	(which	exists	before	the	NIB	file	is	read	in)	gets	wired	to	the	newly	
created objects.

Setting up ItemDetailViewController
Back in ItemDetailViewController.xib, double-click the View object in the doc
window. This view will be the view of ItemDetailViewController when it is loaded
from	this	XIB	file.	(Don’t	believe	me?	Check	the	connections	for	the	File’s	Owner.)	
Drag four UILabels and three UITextFields from the Library window onto the
view so that it matches Figure 12.11.

Figure 12.11. ItemDetailViewController’s configured view

Make connections from the File’s Owner to each of these objects as shown in
Figure 12.11.

For each UITextField instance, uncheck the Clear When Editing Begins checkbox
on the Inspector window (Figure 12.12).	Save	this	XIB	file	and	quit	Interface	

Chapter 12. UINavigationController

Page 210

Builder.

Figure 12.12. UITextField attributes

While you are here, fancy the application up a bit. Right now, the view for
ItemDetailViewController has a plain white background. Let’s give it the
same background as the UITableView.	When	should	you	do	this?	After	
a UIViewController loads its view, it is immediately sent the message
viewDidLoad. Whether that view	is	loaded	from	a	XIB	file	or	using	the	method	
loadView, this message gets sent to the view controller. If you need to do
any extra initialization to a UIViewController that requires its view to already
exist, you must override loadView. (Remember, instantiating a view controller
doesn’t create the view. The view is created only when it is needed.) Override
viewDidLoad in ItemDetailViewController.m.

- (void)viewDidLoad
{
 [super viewDidLoad];
 [[self view] setBackgroundColor:[UIColor groupTableViewBackground-
Color]];
}

Chapter 12. UINavigationController

Page 211

When ItemDetailViewController’s view gets unloaded, its subviews will still be
retained by ItemDetailViewController. They need to be released and set to nil in
viewDidUnload. Override this method in ItemDetailViewController.m.

- (void)viewDidUnload
{
 [super viewDidUnload];

 [nameField release];
 nameField = nil;

 [serialNumberField release];
 serialNumberField = nil;

 [valueField release];
 valueField = nil;

 [dateLabel release];
 dateLabel = nil;
}

And,	finally,	you	need	a	dealloc	method:

- (void)dealloc
{
 [nameField release];
 [serialNumberField release];
 [valueField release];
 [dateLabel release];
 [super dealloc];
}

Navigating with UINavigationController
Now you have a navigation controller, navigation bar, and two view
controllers. Time to put all the pieces together. The user should be able to
tap on one of the rows in ItemsViewController’s table view and have the
ItemDetailViewController’s view slide onto the screen displaying the properties
of the selected Possession instance.

Chapter 12. UINavigationController

Page 212

Of course, you then need to create an instance of ItemDetailViewController.
Where should this object be created and what object should hold the pointer to
it?	Think	back	to	previous	exercises	where	you	instantiated	all	of	your	controllers	
in the method application:didFinishLaunchingWithOptions:. For example, in
the tab bar controller chapter, you created both view controllers and immediately
added them to tab bar controller’s viewControllers array.

However, when using a UINavigationController, you cannot simply store
all of the possible view controllers in its stack. The viewControllers array
of a navigation controller is dynamic – you start with a root view controller
and additional view controllers are added depending on user input.
Therefore, some object other than the navigation controller needs to own
the instance of ItemDetailViewController and be responsible for adding it
to the stack. This owner needs two things: it needs to know when to push
ItemDetailViewController onto the stack, and it needs a pointer to the
navigation controller. Why must this object have a pointer to the navigation
controller?	If	it	is	to	dynamically	add	view controllers to the navigation controller’s
stack, it must be able to send the navigation controller messages, namely,
pushViewController:animated:.

ItemsViewController meets both of these needs. Whenever a row is tapped in a
table view, the table view’s delegate receives the message tableView:didSele
ctRowAtIndexPath:. Therefore, ItemsViewController knows when to push the
other view controller on the stack. Furthermore, when a view controller belongs to
a navigation controller’s stack, it can be sent the message navigationController
to get a pointer to the navigation controller it belongs to. As the root view
controller,ItemsViewController always belongs to the navigation controller and
thus can always access it.

In any application that uses a UINavigationController, there is one root view
controller. It often owns the next view controller, and the next view controller owns
the one after that and so on. Some applications, like the Photos application, may
have more than one combination of view controllers that can be on the stack at a
given time. In Photos, there are four view controllers:

AlbumListViewController This view controller displays a list of
all of the albums in the user’s media
library. It is the root view controller.

AlbumViewController This view controller displays
thumbnails for all of the videos and
images.

Chapter 12. UINavigationController

Page 213

ImageViewController When an image is selected in the
AlbumViewController, this view
controller is pushed onto the stack and
it will display that image.

VideoViewController If the user chooses to view a video,
this view controller is pushed on the
stack to watch the movie.

Therefore, AlbumListViewController owns AlbumViewController.
AlbumViewController owns both ImageViewController, and
VideoViewController (Figure 12.13).

Figure 12.13. Controller hierarchy in Photos

Back in ItemsViewController.h, add an instance variable for an
ItemDetailViewController.

@class ItemDetailViewController;

@interface ItemsViewController : UITableViewController
{
 ItemDetailViewController *detailViewController;

Recall that when a row is tapped in a table view, its delegate is sent a message
containing the index path of the selected row. In ItemsViewController.m,
implement this method to lazily allocate the ItemDetailViewController and then
push it on top of the navigation controller’s stack.

Chapter 12. UINavigationController

Page 214

- (void)tableView:(UITableView *)aTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
 // Do I need to create the instance of ItemDetailViewController?
 if (!detailViewController) {
 detailViewController = [[ItemDetailViewController alloc] init];
 }

 // Push it onto the top of the navigation controller's stack
 [[self navigationController] pushViewController:detailViewController
 animated:YES];
}

Finally, at the top of ItemsViewController.m,	import	the	header	file	for	
ItemDetailViewController.

#import "ItemsViewController.h"
#import "ItemDetailViewController.h"

@implementation ItemsViewController

Build and run the application. Select one of the rows from the UITableView. Not
only will you be taken to ItemDetailViewController’s view, but you will get a
free animation and a button in the UINavigationBar titled Homepwner. Tapping
this button will take you back to ItemsViewController. All of that comes for free.
Thanks, UINavigationController!

Of course, the UITextFields on the screen are currently empty. How do
you pass data between these two UIViewControllers?	You	have	all	of	the	
Possessions in ItemsViewController, and you want to display a single
Possession inItemDetailViewController.	You	need	to	implement	a	method	
in ItemDetailViewController that will take a Possession	instance	and	fill	
the contents of its UITextFields with it. ItemsViewController will select the
appropriate possession from its array and pass it through that method to the
ItemDetailViewController.

In ItemDetailViewController.h, add an instance variable to hold the Possession
that is being edited and declare a method to set that instance variable. The class
declaration should now look like this:

#import <UIKit/UIKit.h>

Chapter 12. UINavigationController

Page 215

@class Possession;
@interface ItemDetailViewController : UIViewController
{
 IBOutlet UITextField *nameField;
 IBOutlet UITextField *serialNumberField;
 IBOutlet UITextField *valueField;
 IBOutlet UILabel *dateLabel;

 Possession *editingPossession;
}
@property (nonatomic, assign) Possession *editingPossession;
@end

Use @synthesize to create accessors for editingPossession in
ItemDetailViewController.m.

@implementation ItemDetailViewController
@synthesize editingPossession;

At the top of ItemDetailViewController.m,	make	sure	to	import	the	header	file	for	
the Possession class.

#import "ItemDetailViewController.h"
#import "Possession.h"

@implementation ItemDetailViewController

When the ItemDetailViewController’s view appears on the screen, it needs to
set the values of its subviews to match the properties of the editingPossession.
Override viewWillAppear: in ItemDetailViewController.m to transfer
theeditingPossession’s properties to the various UITextFields.

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 [nameField setText:[editingPossession possessionName]];
 [serialNumberField setText:[editingPossession serialNumber]];
 [valueField setText:[NSString stringWithFormat:@"%d",
 [editingPossession valueInDollars]]];

Chapter 12. UINavigationController

Page 216

 // Create a NSDateFormatter that will turn a date into a simple date string
 NSDateFormatter *dateFormatter = [[[NSDateFormatter alloc] init]
 autorelease];
 [dateFormatter setDateStyle:NSDateFormatterMediumStyle];
 [dateFormatter setTimeStyle:NSDateFormatterNoStyle];

 // Use filtered NSDate object to set dateLabel contents
 [dateLabel setText:
 [dateFormatter stringFromDate:[editingPossession dateCreated]]];

 // Change the navigation item to display name of possession
 [[self navigationItem] setTitle:[editingPossession possessionName]];
}

Now you must invoke this method when the ItemDetailViewController is being
pushed onto the navigation stack. Add the following line of code to this method in
ItemsViewController.m.

- (void)tableView:(UITableView *)aTableView
 didSelectRowAtIndexPath:(NSIndexPath *)indexPath
{
				//	Do	I	need	to	create	the	instance	of	ItemDetailViewController?
				if	(!detailViewController)	{
 detailViewController = [[ItemDetailViewController alloc] init];
 }

 // Give detail view controller a pointer to the possession object in row
 [detailViewController setEditingPossession:
 [possessions objectAtIndex:[indexPath row]]];

 [[self navigationController] pushViewController:detailViewController
																																											animated:YES];}

Many programmers new to the iPhone SDK struggle with how data is passed
between UIViewControllers. The technique you just implemented, having all
of the data in the root view controller and passing subsets of that data to the

Chapter 12. UINavigationController

Page 217

nextUIViewController,	is	a	very	clean	and	efficient	way	of	performing	this	task.

Build and run your application. Select one of the rows of the UITableView, and
the view that appears on your screen will contain all of the information for the
Possession that was in that row. While you can edit this data, the UITableView
won’t	have	changed	when	you	return	to	it.	To	fix	this	problem,	you	need	to	
implement code to update the properties of the Possession being edited.

Appearing and disappearing views
Whenever a UINavigationController is about to swap views, it sends out two
messages: viewWillDisappear: and viewWillAppear:. The UIViewController
that is about to be popped off the stack is sent the message viewWillDisappear:.
The UIViewController that will then be on top of the stack is sent
viewWillAppear:.

When ItemDetailViewController is popped off the stack, you will set the
properties of the editingPossession to the values in the UITextFields. When
implementing these methods for views appearing and disappearing, it is important
to call the superclass’s implementation – it has some work to do as well.
Implement viewWillDisappear: in ItemDetailViewController.m.

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];

 // Clear first responder
 [nameField resignFirstResponder];
 [serialNumberField resignFirstResponder];
 [valueField resignFirstResponder];

 // "Save" changes to editingPossession
 [editingPossession setPossessionName:[nameField text]];
 [editingPossession setSerialNumber:[serialNumberField text]];
 [editingPossession setValueInDollars:[[valueField text] intValue]];
}

Now the values of the Possession will be updated when the user taps the
Homepwner back button on the UINavigationBar. When ItemsViewController
appears back on the screen, it is sent the message viewWillAppear:. Take

Chapter 12. UINavigationController

Page 218

this opportunity to reload its UITableView so the user can immediately see the
changes. Implement that viewWillAppear: in ItemsViewController.m.

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 [[self tableView] reloadData];
}

Build	and	run	your	application	now.	You	will	be	able	to	move	back	and	forth	
between each of the UIViewControllers you created and change the data with
ease.

•	
Challenge: Number Pad
The keyboard for the UITextField that displays a Possession’s valueInDollars
is	a	QWERTY	keyboard.	It	would	look	better	if	it	was	a	number	pad.	Change	the	
Keyboard Type of that UITextField	to	the	Number	Pad.	(Hint:	You	can	do	this	in	
Interface Builder in the Attributes tab of the Inspector.)

Chapter 13. Camera And UIImagePickerController

Page 219

Chapter 13. Camera and UIImagePickerController
In this chapter, you’re going to use UIImagePickerController, a subclass of
UIViewController,	to	add	photos	to	the	Homepwner	application.	You	will	present	
a UIImagePickerController so that the user can take and save a picture of each
possession. The image will then be associated with a Possession instance,
stored in an image cache, and viewable in the possession’s detail view. Then,
when the insurance company demands proof, the user has a visual record of
owning	that	70″	HDTV.

Figure 13.1. Homepwner with camera addition

ImageCache: a Singleton
First, you are going to create an image cache to hold all the pictures the user

Chapter 13. Camera And UIImagePickerController

Page 220

will take. In Chapter 14, the Possession objects will write out their instance
variables	to	a	file,	which	will	then	be	read	in	when	the	application	starts.	However,	
images tend to be very large, so you’re going to keep them in the image cache
and separate from the other possession data. The image cache will fetch the
images	as	they	are	needed	and	flush	the	cache	when	the	device	runs	low	on	free
memory.

All of that nifty saving/fetching/loading stuff comes later; in this chapter the image
cache is little more than a dictionary of key-value pairs in which the keys are
unique strings and the values are images. Open Homepwner.xcodeproj and, in
Xcode, create a new subclass of NSObject (from the Cocoa Touch Class section)
called ImageCache. Open ImageCache.h and create its interface:

#import <UIKit/UIKit.h>

@interface ImageCache : NSObject
{
 NSMutableDictionary *dictionary;
}
+ (ImageCache *)sharedImageCache;
- (void)setImage:(UIImage *)i forKey:(NSString *)s;
- (UIImage *)imageForKey:(NSString *)s;
- (void)deleteImageForKey:(NSString *)s;

@end

NSDictionary
The dictionary is an instance of NSMutableDictionary, the mutable subclass
of NSDictionary. An NSDictionary is a collection object and similar to an
NSArray. However, an NSArray is an ordered list of pointers to objects that can
be accessed by an index. When you have an array, you can ask it for the object at
the nth index:

 // Put some object at the end of an array
 [someArray addObject:someObject];
 // Get that same object out
 someObject = [someArray objectAtIndex:[someArray count] - 1];

On the other hand, dictionary objects are not ordered within the collection. So
instead of accessing entries with an index, you use a key. The key is usually an
instance of NSString.

Chapter 13. Camera And UIImagePickerController

Page 221

 // Add some object to a dictionary for the key, "MyKey"
 [someDictionary setObject:someObject forKey:@"MyKey"];
 // Get that same object out
 someObject = [someDictionary objectForKey:@"MyKey"];

Here are some more important facts about NSDictionary:

•	 Whenever you add an object to a dictionary, the dictionary retains it.
Whenever you remove an object from a dictionary, the dictionary
releases it.

•	 There can only be one object for each key. Therefore, if you add an object to a
dictionary and an object is already stored with that key, the new object is
added to the dictionary and the previous one is removed.

•	 If you want to associate multiple objects with one key, you can add them to the
dictionary as an array.

•	 An NSDictionary is useful when you want to name the entries within a
collection. In other development environments, this is called a hash map or
hash	table	(Figure	13.2).  Figure	13.2.	NSDictionary	diagram   

Open ImageCache.m and add the following methods to save and retrieve images
from a dictionary:

- (id)init
{
 [super init];
 dictionary = [[NSMutableDictionary alloc] init];
 return self;
}

#pragma mark Accessing the cache

- (void)setImage:(UIImage *)i forKey:(NSString *)s
{
 [dictionary setObject:i forKey:s];
}

- (UIImage *)imageForKey:(NSString *)s
{
 return [dictionary objectForKey:s];

Chapter 13. Camera And UIImagePickerController

Page 222

}

- (void)deleteImageForKey:(NSString *)s
{
 [dictionary removeObjectForKey:s];
}

Note that there is no dealloc method because the cache itself will live for the
entire life of the application.

Singletons
Note that there will be exactly one instance of ImageCache that will hold all the
images and be accessible to all the controllers in the application. We call this a
singleton.	A	singleton	is	a	class	that	can	only	be	instantiated	once.	(You’ve	already	
used a singleton: UIAccelerometer.) The instance of a singleton class often
represents a single resource that must be shared by many objects. Singletons
also might contain instance variables that act as global variables without the
possibility of a namespace collision.

Add a static variable in ImageCache.m that will hold on to the single instance:

#import "ImageCache.h"

static ImageCache *sharedImageCache;

@implementation ImageCache

(Some object-oriented languages have class variables. Static variables declared
in the .m	file	serve	the	same	purpose	for	Objective-C	programmers.)

Now make it impossible to decrement the retain count of that instance or create
another instance. Add the following methods to ImageCache.m:

#pragma mark Singleton stuff

+ (ImageCache *)sharedImageCache
{
 if (!sharedImageCache) {
 sharedImageCache = [[ImageCache alloc] init];
 }
 return sharedImageCache;

Chapter 13. Camera And UIImagePickerController

Page 223

}

+ (id)allocWithZone:(NSZone *)zone
{
 if (!sharedImageCache) {
 sharedImageCache = [super allocWithZone:zone];
 return sharedImageCache;
 } else {
 return nil;
 }
}

- (id)copyWithZone:(NSZone *)zone
{
 return self;
}

- (void)release
{
 // No op
}

@end

Displaying Images and UIImageView
Once you have an image cache, you’ll want to get images from it to display using
the ItemDetailViewController. An easy way to display an image is to put an
instance of UIImageView on the window. Open ItemDetailViewController.h and
add an outlet for an image view:

@interface ItemDetailViewController : UIViewController
{
 IBOutlet UIImageView *imageView;

Save ItemDetailViewController.h or Interface Builder won’t recognize the
changes.

As a new subview of ItemDetailViewController’s view that is instantiated by
loading	a	XIB	file,	imageView needs to be released and its pointer cleared in
viewDidUnload. Make the following changes to ItemDetailViewController.m.

Chapter 13. Camera And UIImagePickerController

Page 224

- (void)viewDidUnload
{
 [super viewDidUnload];

 [nameField release];
 nameField = nil;

 [serialNumberField release];
 serialNumberField = nil;

 [valueField release];
 valueField = nil;

 [dateLabel release];
 dateLabel = nil;

 [imageView release];
 imageView = nil;
}

Also release the image view in dealloc:

- (void)dealloc
{
 [nameField release];
 [serialNumberField release];
 [valueField release];
 [dateLabel release];
 [imageView release];
 [super dealloc];
}

Open ItemDetailViewController.xib. Double-click on the View instance
in the doc window and drag a UIImageView onto it. The interface of
ItemDetailViewController should look like Figure 13.3.

Chapter 13. Camera And UIImagePickerController

Page 225

Figure 13.3. ItemDetailViewController’s interface with a UIImageView

The UIImageView will display an image according to its contentMode
property. This property determines where to position and how to resize the
content of a view within its frame. The default value for contentMode is
UIViewContentModeCenter, which centers but does not appropriately resize the
content	to	fit	within	the	bounds	of	the	view.	If	you	keep	the	default,	the	large	image	
produced by the camera takes up most of the screen.

To change the contentMode of the image view so that it resizes the image,

Chapter 13. Camera And UIImagePickerController

Page 226

select the UIImageView	and	open	the	Inspector	window	to	the	first	tab,	Attributes.	
Change the popup button titled Mode to Aspect Fit as shown in Figure 13.4. This
will	resize	the	image	to	fit	within	the	bounds	of	the	UIImageView.

Figure 13.4. Image view attributes

Finally, make the connection from File’s Owner to the UIImageView, selecting
imageView as the outlet. (Remember, anything you can do in Interface
Builder can be done in code; to change the contentMode a UIImageView
programmatically, you would send it the message setContentMode:.)

Before	exiting	Interface	Builder,	find	the	UITextFields that display Possession
instance variables and hook up their delegate outlets to the File’s Owner
object. This is necessary because you’re going to implement a method from
the UITextFieldDelegate protocol in ItemDetailViewController.m later in this
chapter.	Save	the	XIB	file	and	quit	Interface	Builder.

Chapter 13. Camera And UIImagePickerController

Page 227

Taking pictures and UIImagePickerController
Now you need a button to initiate the photo-taking process. There is plenty of
room on the UINavigationBar to add a UIBarButtonItem. UIBarButtonItems
have a few stock icons they can display including a camera icon. Create
a bar button item with a camera icon and add it to right slot of the
ItemDetailViewController’s navigationItem.	You	also	need	to	instantiate	the	
imageCache instance variable. In ItemDetailViewController.m, replace the
method init to make these changes:

- (id)init
{
 [super initWithNibName:@"ItemDetailViewController" bundle:nil];

 // Create a UIBarButtonItem with a camera icon, will send
 // takePicture: to our ItemDetailViewController when tapped
 UIBarButtonItem *cameraBarButtonItem =
 [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemCamera
 target:self
 action:@selector(takePicture:)];

 // Place this image on our navigation bar when this viewcontroller
 // is on top of the navigation stack
 [[self navigationItem] setRightBarButtonItem:cameraBarButtonItem];

 // cameraBarButton is retained by the navigation item
 [cameraBarButtonItem release];
 return self;
}

When this button is tapped, it sends the message takePicture: to the
instance of ItemDetailViewController. This method will create an instance of
UIImagePickerController, if one has not yet been created, and then present it on
the screen.

Chapter 13. Camera And UIImagePickerController

Page 228

Figure 13.5. Interface with camera button

When creating an instance of UIImagePickerController, you must set its
sourceType property. The sourceType is a constant that tells the image picker
where to get the images. There are three possible values:

• UIImagePickerControllerSourceTypeCamera The image picker will allow the
user to take a new picture.

• UIImagePickerControllerSourceTypePhotoLibrary The user will be prompted
to select an album and then a photo from that album.

• UIImagePickerControllerSourceTypeSavedPhotosAlbum The user picks
from the most recently taken photos.

Chapter 13. Camera And UIImagePickerController

Page 229

Figure 13.6 shows the results of using each constant.

Figure 13.6. UIImagePickerControllerTypes

The	first	source	type,	UIImagePickerControllerSourceTypeCamera, won’t
work on a device that doesn’t have a camera. So you have to check for device
support before using this type by sending the UIImagePickerController
class methodisSourceTypeAvailable:. When you send this message to the
UIImagePickerController class with one of the image picking constants, you are
returned a boolean value for whether the device supports that source type.

In addition to a source type, the UIImagePickerController also needs a
delegate to handle requests from its view. When the user taps Use button on
UIImagePickerController’s interface, the delegate is sent the messageimag
ePickerController:didFinishPickingMediaWithInfo:. (The delegate receives
another message – imagePickerControllerDidCancel: – if the process was
cancelled.)

Once the UIImagePickerController has a source type and a delegate, it’s time
to put its view on the screen. Unlike other UIViewController subclasses you’ve
used before, UIImagePickerControllers are presented modally. When a view
controller	is	modal,	it	takes	over	the	entire	screen	until	it	has	finished	its	work.	(On	
the	desktop,	modal	windows	are	windows	that	cannot	be	dismissed	until	a	specific	
task is completed.) To present a view modally, presentModalViewController:an
imated: is sent to the UIViewController whose view is on the screen. The view

Chapter 13. Camera And UIImagePickerController

Page 230

controller to be presented is passed to it, and its view slides up from the bottom of
the screen.

Implement the method takePicture: in ItemDetailViewController.m to create,
configure,	and	present	the	UIImagePickerController.

- (void)takePicture:(id)sender
{
 UIImagePickerController *imagePicker =
 [[UIImagePickerController alloc] init];

 // If our device has a camera, we want to take a picture, otherwise, we
 // just pick from photo library
 if ([UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])
{
 [imagePicker setSourceType:UIImagePickerControllerSourceTypeCame
ra];
 } else {
 [imagePicker setSourceType:UIImagePickerControllerSourceTypePhoto
Library];
 }
 // image picker needs a delegate so we can respond to its messages
 [imagePicker setDelegate:self];

 // Place image picker on the screen
 [self presentModalViewController:imagePicker animated:YES];

 // The image picker will be retained by ItemDetailViewController
 // until it has been dismissed
 [imagePicker release];
}

Build and run the application on your device. Navigate to the
ItemDetailViewController and tap the camera button on the UINavigationBar.
UIImagePickerController’s interface will appear on the screen, and you can
take a picture (or choose an existing image if you’re developing on a device
that doesn’t have a camera). Tapping the Use Photo button will dismiss the
UIImagePickerController.	But,	wait!	–	you	don’t	yet	have	a	reference	to	the	
image	anywhere	in	the	code.	You	need	to	implement	the	delegate method image

Chapter 13. Camera And UIImagePickerController

Page 231

PickerController:didFinishPickingMediaWithInfo: in ItemDetailViewController
to hold on to the selected image.

Figure 13.7. UIImagePickerController preview interface

Before you implement this method, you have to address the two warnings
that	appeared	when	you	last	built	the	application:	“ItemDetailViewController
does not conform to the UIImagePickerControllerDelegate or
UINavigationControllerDelegate protocol.” In ItemDetailViewController.h, add
the protocols to the class declaration. (Why UINavigationControllerDelegate?	
UIImagePickerController is a subclass of UINavigationController.)

@interface ItemDetailViewController : UIViewController
 <UINavigationControllerDelegate, UIImagePickerControllerDelegate>
{

Chapter 13. Camera And UIImagePickerController

Page 232

When the Use Photo button is tapped, the message imagePickerController:di
dFinishPickingMediaWithInfo: will be sent to its delegate. In this method, put
the image into the UIImageView you created earlier. Implement this method in
ItemDetailViewController.m.

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 // Get picked image from info dictionary
 UIImage *image = [info objectForKey:UIImagePickerControllerOriginalIma
ge];

 // Put that image onto the screen in our image view
 [imageView setImage:image];

 // Take image picker off the screen -
 // you must call this dismiss method
 [self dismissModalViewControllerAnimated:YES];
}

Build and run the application again. Take a photo and tap the Use Photo button.
After the image picker slides off the screen, you will see a scaled version of the
image in the UIImageView. That’s great, but, if you choose another possession,
you	will	see	the	same	image.	You	need	a	way	to	identify	individual	images	and	tie	
them	to	specific	possessions.

Creating and using keys
How can a Possession	know	which	photo	in	the	cache	is	its	very	own?	Because	
you’re using a dictionary as the image cache, a Possession only needs to know
the	key	for	its	image	to	find	the	right	one	in	the	cache.	Add	an	instance	variable	to	
Possession.h to store the key.

 NSDate *dateCreated;
 NSString *imageKey;
}
@property (nonatomic, copy) NSString *imageKey;
Synthesize	this	new	property	in	the	implementation	file.
@implementation Possession
@synthesize imageKey;

Chapter 13. Camera And UIImagePickerController

Page 233

You	also	need	to	release this object when a Possession is deallocated. Add this
code to Possession.m.

- (void)dealloc
{
 [imageKey release];

The image keys need to be unique in order for your dictionary to work. While
there are many ways to hack together a unique string, Cocoa Touch has a
mechanism	for	creating	universally	unique	identifiers	(UUIDs),	also	known	as	
globally	unique	identifiers	(GUIDs).	Objects	of	type	CFUUIDRef can represent
a	UUID	and	are	generated	using	the	time,	a	counter,	and	a	hardware	identifier,	
usually the MAC address of the ethernet card.

However, CFUUIDRef is not an Objective-C object; it is a C structure and part of
the Core Foundation API. Core Foundation is a C API that is already included in
the template projects and contains the building blocks for applications including
strings,	arrays,	and	dictionaries.	Core	Foundation	“classes”	are	prefixed	with	CF
and	suffixed	with	Ref. Other examples include CFArrayRef and CFStringRef.
Many objects in Core Foundation have an Objective-C counterpart, and NSString
is the Objective-C version of CFStringRef. However, CFUUIDRef does not have
an Objective-C counterpart and knows nothing at all about Objective-C. Thus,
when it produces a UUID as a string, that string cannot be an NSString – it must
be a CFStringRef.

Recall that your instance variable for the image key is of type NSString. Do you
have to change it to CFStringRef?	Nope.	Many	Core	Foundation	objects	can	
simply be typecast as their Objective-C counterpart. Here’s an example:

 // Create an instance of a CFStringRef
 CFStringRef someString = CFSTR("String");
 // Turn it in to an NSString
 NSString *coolerString = (NSString *)someString;

We call this toll-free bridging. (And it works because the structures in memory are
equivalent.	How	smart	is	that?)

Now, in ItemDetailViewController.m, make changes to imagePickerControll
er:didFinishPickingMediaWithInfo: to create and use a key for a possession
image.

Chapter 13. Camera And UIImagePickerController

Page 234

- (void)imagePickerController:(UIImagePickerController *)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSString *oldKey = [editingPossession imageKey];

 // Did the possession already have an image?
 if (oldKey) {
 // Delete the old image
 [[ImageCache sharedImageCache] deleteImageForKey:oldKey];
 }

 UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];

 // Create a CFUUID object - it knows how to create unique identifiers
 CFUUIDRef newUniqueID = CFUUIDCreate (kCFAllocatorDefault);

 // Create a string from unique identifier
 CFStringRef newUniqueIDString =
 CFUUIDCreateString (kCFAllocatorDefault, newUniqueID);

 // Use that unique ID to set our possessions imageKey
 [editingPossession setImageKey:(NSString *)newUniqueIDString];

 // We used "Create" in the functions to make objects, we need to release
them
 CFRelease(newUniqueIDString);
 CFRelease(newUniqueID);

 // Store image in the ImageCache with this key
 [[ImageCache sharedImageCache] setImage:image
 forKey:[editingPossession imageKey]];

 // Put that image on to the screen in our image view
 [imageView setImage:image];

 // Take image picker off the screen
				[self	dismissModalViewControllerAnimated:YES];
}
In this method, we call the C functions CFUUIDCreate and CFUUIDCreateString.

Chapter 13. Camera And UIImagePickerController

Page 235

When a C function name contains the word Create, you are responsible for
releasing its memory just as if you had sent the message alloc to a class. To
release a Core Foundation object, you call the function CFRelease with the object
as a parameter.

Figure 13.8. Cache

Now, when ItemDetailViewController’s view appears on the screen, it should
grab an image from the imageCache using the imageKey of the Possession
to be displayed. Then, it should place the image in the UIImageView. Add the
following code to viewWillAppear: in ItemDetailViewController.m.

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 [nameField setText:[editingPossession possessionName]];
 [serialNumberField setText:[editingPossession serialNumber]];
				[valueField	setText:[NSString	stringWithFormat:@"%d",
 [editingPossession valueInDollars]]];

 NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init];
 [dateFormatter setDateStyle:NSDateFormatterMediumStyle];
 [dateFormatter setTimeStyle:NSDateFormatterNoStyle];

Chapter 13. Camera And UIImagePickerController

Page 236

 [dateLabel setText:
 [dateFormatter stringFromDate:[editingPossession dateCreated]]];
 [dateFormatter release];

 [[self navigationItem] setTitle:[editingPossession possessionName]];

 NSString *imageKey = [editingPossession imageKey];

 if (imageKey) {
 // Get image for image key from image cache
 UIImage *imageToDisplay =
 [[ImageCache sharedImageCache] imageForKey:imageKey];

 // Use that image to put on the screen in imageView
 [imageView setImage:imageToDisplay];
 } else {
 // Clear the imageView
 [imageView setImage:nil];
 }
}

Notice that if no image exists in the cache for that key (or there is no key for that
possession), the pointer to the image will be nil and that UIImageView just won’t
display an image.

Make	sure	to	import	the	header	file	that	contains	the	ImageCache class
declaration at the top of ItemDetailViewController.m.

#import "ImageCache.h"
@implementation ItemDetailViewController

Build	and	run	the	application.	Select	the	first	row	of	the	UITableView and tap
the camera button. After taking a picture, return to the list of possessions, tap a

Chapter 13. Camera And UIImagePickerController

Page 237

different row, and take another picture. Now verify that the appropriate image is
displayed for each possession.

Dismissing the Keyboard
When the keyboard appears on the screen in the possession detail view, it
obscures ItemDetailViewController’s imageView. Because this is annoying
when you’re trying to see an image, the user may want to get rid of the keyboard.
You’re	going	to	allow	the	user	to	dismiss	the	keyboard	by	implementing	the	
delegate method textFieldShouldReturn: in ItemDetailViewController.m. (This
is why you hooked up the delegate outlets earlier in the chapter.)

- (BOOL)textFieldShouldReturn:(UITextField *)textField
{
 [textField resignFirstResponder];
 return YES;
}

However, it would also be stylish to dismiss the keyboard automatically when the
user taps the camera button. In order to dismiss the keyboard, you must send the
message resignFirstResponder	to	the	first	responder.

Unfortunately, when the camera button is tapped, you don’t know which
UITextField	in	the	detail	view	is	currently	the	first	responder.	While	you	could	
send resignFirstResponder to every UITextField, it’s easier to let UIView do it.
UIViewimplements an endEditing: method that will send resignFirstResponder
to all of its subviews. In ItemDetailViewController.m, send this message to
ItemDetailViewController’s view when the camera button is tapped.

- (void)takePicture:(id)sender
{
 [[self view] endEditing:YES];

 UIImagePickerController *imagePicker = [[UIImagePickerController alloc] init];

 if ([UIImagePickerController
 isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera]) {
 [imagePicker setSourceType:UIImagePickerControllerSourceTypeCamera];
 } else {
 [imagePicker
 setSourceType:UIImagePickerControllerSourceTypePhotoLibrary];

Chapter 13. Camera And UIImagePickerController

Page 238

 }
 [imagePicker setDelegate:self];

				[self	presentModalViewController:imagePicker	animated:YES];

 [imagePicker release];
}

You’ve	done	a	lot	in	this	chapter	with	Homepwner:	accessed	the	camera,	created	
an image cache, stored images in the cache, and tied them to possessions
with	unique	identifiers.	In	the	next	chapter,	you’ll	learn	more	about	the	nuts	and	
bolts of saving and loading data in an iPhone application and add that ability to
Homepwner.

Challenge: Removing an Image
Add a button that clears the image for a possession.

For the More Curious: Recording Video
Once you understand how to use UIImagePickerController to take pictures,
making the transition to recording video is trivial. Recall that an image picker
controller has a sourceType property that determines whether an image comes
from the camera, photo library, or saved photos album. Image picker controllers
also have a mediaTypes	property,	an	array	of	strings	that	contains	identifiers	for	
what types of media can be selected from the three source types.

There are two types of media a UIImagePickerController can select: still images
and video. By default, the mediaTypes array only contains the constant string
kUTTypeImage. Thus, if you do not change the mediaTypes property of an
image picker controller, the camera will only allow the user to take still photos, and
the photo library and saved photos album will only display images.

Adding the ability to record video or choose a video from the disk is as simple as
adding the constant string kUTTypeMovie to the mediaTypes array. However,
not all devices support video through the UIImagePickerController. Just like the
class method is SourceTypeAvailable: allows you to determine if the device has

Chapter 13. Camera And UIImagePickerController

Page 239

a camera, the availableMediaTypesForSourceType: method is for checking
if that camera can capture video. To set up an image picker controller that can
record video or take still images, you would write the following code:

 UIImagePickerController *ipc = [[UIImagePickerController alloc] init];
 NSArray *availableTypes = [UIImagePickerController availableMediaTypes
 ForSourceType:UIImagePickerControllerSourceTypeCamera];
 [ipc setMediaTypes:availableTypes];
 [ipc setSourceType:UIImagePickerControllerSourceTypeCamera];
 [ipc setDelegate:self];

Now, when this image picker controller interface is presented to the user, there
will be a switch that allows them to choose between the still image camera or the
video recorder. If the user chooses to record a video, you need to handle that in
the UIImagePickerController delegate method imagePickerController:didFin
ishPickingMediaWithInfo:. When dealing with images, the info dictionary that
is passed as an argument to this method contains the full image as a UIImage
object.

However,	there	is	no	“UIVideo”	class	(loading	an	entire	video	into	memory	at	once	
would be tough to do with the iPhone’s memory constraints). Therefore, recorded
video	is	written	to	disk	in	a	temporary	directory.	When	the	user	finalizes	the	video	
recording, imagePickerController:didFinishPickingMediaWithInfo: is sent to
the image picker controller’s delegate, and the path of the video on the disk will
be in the info dictionary.	You	can	get	the	path	in	the	delegate method like so:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSURL *mediaURL = [info objectForKey:UIImagePickerControllerMediaURL];
}

While	we	will	talk	about	the	filesystem	in	the	next	chapter	in	depth,	what	you	
should know now is that the temporary directory is not a safe place to store the
video. It needs to be moved to another location.

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSURL *mediaURL = [info objectForKey:UIImagePickerControllerMediaURL];
 if (mediaURL) {

Chapter 13. Camera And UIImagePickerController

Page 240

 // Make sure this device supports videos in its photo album
 if (UIVideoAtPathIsCompatibleWithSavedPhotosAlbum([mediaURL path])) {

 // Save the video to the photos album
 UISaveVideoAtPathToSavedPhotosAlbum([mediaURL path], nil, nil, nil);

 // Remove the video from the temporary directory it was saved at
 [[NSFileManager defaultManager] removeItemAtPath:[mediaURL path]
 error:nil];
 }
 }
}

That is really all there is to it. There is just one situation that requires some
additional information: suppose you want to restrict the user to choosing only
videos. Restricting the user to images only is simple (leave mediaTypes as the
default). Allowing the user to choose between images and videos is just as simple
(pass the return value from availableMediaTypesForSourceType:). However, to
allow video only, you have to jump through a few hoops. First, you must makes
sure the device supports video and then set the mediaTypes property to an array
containing	the	identifier	for	video	only.

NSArray *availableTypes =
[UIImagePickerController availableMedia
 TypesForSourceType:UIImagePickerControllerSourceTypeCamera];

 if([availableTypes containsObject:(NSString *)kUTTypeMovie])
 [ipc setMediaTypes:[NSArray arrayWithObject:(NSString *)kUTTypeMovie]];

If you build this code it will fail, and Xcode will complain about not knowing what
kUTTypeMovie is. Oddly enough, both kUTTypeMovie and kUTTypeImage are
declared	and	defined	in	another	framework	–	MobileCoreServices.	You	will	have	
to	explicitly	add	this	framework	and	import	its	header	file	into	your	project	to	use	
these two constants.

You	might	also	wonder	why	kUTTypeMovie is cast to an NSString. This constant
is declared as:

Chapter 13. Camera And UIImagePickerController

Page 241

 const CFStringRef kUTTypeVideo;

A CFStringRef is the standard string type in Core Foundation. Core Foundation
is another API that is a bit lower-level than Cocoa Touch. Core Foundation
technically doesn’t know anything about Objective-C – it is a C API. Some bits of
the iPhone SDK, like this constant, use Core Foundation and C instead of Cocoa
Touch and Objective-C.

The string pointed to by kUTTypeMovie is of type CFStringRef. Two methods
in this code snippet (containsObject: and arrayWithObject:) want Objective-C
objects	as	arguments	–	not	a	Core	Foundation	C	object.	To	fix	this	problem,	
some Core Foundation objects are toll-free bridged with Cocoa Touch objects. A
toll-free bridged object can be cast back and forth between its Core Foundation
and Cocoa Touch counterpart. Underneath the hood, the objects are essentially
the same and by casting them, the compiler won’t complain that an object is the
wrong type. CFStringRef and NSString are toll-free bridged. Note that casting an
object changes nothing about it – only the compiler cares about this detail.

Chapter 14. Saving and Loading

Page 242

Chapter 14. Saving and Loading
On iPhone OS, every application has its own application sandbox. An application
sandbox	is	a	directory	on	the	filesystem	that	is	barricaded	from	the	rest	of	the	
filesystem.	Your	application	must	stay	in	its	sandbox,	and	no	other	application	can	
access its sandbox.

Application Sandbox
Figure 14.1. Application sandbox

The application sandbox has a number of directories, and each of them has a
different use.
Application bundle This directory contains all the

resources and the executable. It is
read-only.

Library/Preferences/ This directory is where any
preferences are stored and where
the Settings application will look
for application preferences.Library/
Preferences is handled automatically
by the class NSUserDefaults (which
you will learn about in Chapter 25)
and is backed up when the device is
synchronized with iTunes.

Chapter 14. Saving and Loading

Page 243

tmp/ directory This directory is where you write data
that you will use temporarily during
an	application’s	runtime.	You	should	
remove	files	from	this	directory	when	
done with them, but the operating
system may purge them while your
application is not running. It does
not get backed up when the device
is synchronized with iTunes. The
convenience function for getting
the path to the tmp directory in the
application sandbox is:
NSString *tmpDirectory =
NSTemporaryDirectory();

Documents/ This directory is where you write
data that the application generates
during runtime that you want to persist
between runs of the application.
It is backed up when the device is
synchronized with iTunes. If something
goes	wrong	with	the	device,	files	in	this	
directory can be restored from iTunes.
For example, if you were writing a
game,	the	saved	game	files	would	be	
stored here.

Chapter 14. Saving and Loading

Page 244

Library/Caches/ This directory is where you write
data that the application generates
during runtime that you want
to persist between runs of the
application. However, unlike the
Documentsdirectory, it does not
get backed up when the device is
synchronized with iTunes. A major
reason for not backing up cached data
is that the data can be very large and
extend the time it takes to synchronize
your device. Data stored somewhere
else – like a web server – can be
placed in this directory. If the user
ever needs to restore the device, this
data can be downloaded from the web
server again.

To get the full path for one of these directories in the sandbox, you use the C
function NSSearchPathForDirectoriesInDomains. This function takes three
parameters: the type of directory, the domain mask, and a boolean value that
decides if it should expand a tilde (~) if one exists in the path. The last two
parameters are always the same on the iPhone: NSUserDomainMask and YES.
The	first	parameter	is	an	NSSearchPathDirectory constant. For example, if you
wanted to get the Documents directory for an application, you would call the
function as follows:

 NSArray *documentPaths =
 NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
																																												NSUserDomainMask,	YES);

 NSString *ourDocumentPath = [documentPaths objectAtIndex:0];

The function returns an NSArray because this function comes from Mac OS X
where there could be multiple directories for the parameters. On the iPhone,
however, there is only one directory for the possible constants, and it is safe to
grab	the	firstNSString from the array.

You	can	also	get	the	path	for	the	sandbox	itself	and	navigate	within	it	using	the	
function NSHomeDirectory.

Chapter 14. Saving and Loading

Page 245

 NSString *sandboxPath = NSHomeDirectory();
 // Once you have the full sandbox path, you can create a path from it
 NSString *documentPath = [sandboxPath
 stringByAppendingPathComponent:@"Documents"];

However,	you	cannot	write	files	or	create	directories	at	the	root-level	of	the	
sandbox (the path returned by the NSHomeDirectory function). Any new
directories	or	files	must	be	created	within	one	of	the	writable	directories	in	the	
sandbox: Documents,Library, or tmp.

Armed with these functions, you can read and write to the appropriate directories
within the application sandbox.

Archiving
There are many ways to write data to the disk on the iPhone, and one of the most
important is called archiving. Archiving is handled by the NSCoding protocol
and its two required methods: encodeWithCoder: and initWithCoder:.	You	can	
implement these two methods in any class, and instances of that class will know
how to save and load themselves from disk. Therefore, when a class conforms to
the NSCoding protocol, it can be archived and later reloaded into an application.
(In	fact,	this	is	exactly	what	a	XIB	file	is	–	a	bunch	of	archived	objects.)

In this chapter, you will make Possession instances in Homepwner conform to
the NSCoding protocol. These possessions will then persist between runs of the
application. Open Homepwner.xcodeproj.

Implementing the two NSCoding methods is easy. First, declare that Possession
conforms to NSCoding. In Possession.h, declare the protocol in the interface
declaration.

@interface Possession : NSObject <NSCoding>

When an object needs to be archived, it is sent the message encodeWithCoder:.
An NSCoder instance is passed to the object, and all of the instance variables
are encoded into it. If any of those instance variables are objects, those objects
are then told to encodeWithCoder:. So archiving is a recursive process that
starts at one object that encodes his friends, and they encode their friends, and
so on. Thus, you can only encode supported primitives like int and objects that
conform to the NSCoding protocol. This is because these objects are also sent
encodeWithCoder: as shown in Figure 14.2.

Chapter 14. Saving and Loading

Page 246

Figure 14.2. Encoding an object

Implement encodeWithCoder: in Possession.m.

- (void)encodeWithCoder:(NSCoder *)encoder
{
 // For each instance variable, archive it under its variable name
 [encoder encodeObject:possessionName forKey:@"possessionName"];
 [encoder encodeObject:serialNumber forKey:@"serialNumber"];
 [encoder encodeInt:valueInDollars forKey:@"valueInDollars"];
 [encoder encodeObject:dateCreated forKey:@"dateCreated"];
 [encoder encodeObject:imageKey forKey:@"imageKey"];
}

So what exactly is this NSCoder	instance?	It	is	an	abstract	superclass	for	
different types of data transfers. On the iPhone, NSCoder has only one available
concrete subclass: NSKeyedArchiver. (Desktop Cocoa has two more options.)
A NSKeyedArchiver knows how transfer data from disk to RAM and vice versa.
NSKeyedArchiver instances work a lot like an NSMutableDictionary; you add
an object to it with a key. When you want that object back, you use the key to
retrieve it. Typically, you use the name of the instance variable you are encoding
as the key.

To unarchive an instance of Possession, you allocate a Possession instance
and send it the message initWithCoder:. This method will use the keys to
decode the same objects you encoded with encodeWithCoder:. Implement

Chapter 14. Saving and Loading

Page 247

initWithCoder: in Possession.m.

- (id)initWithCoder:(NSCoder *)decoder
{
 [super init];

 // For each instance variable that is archived, we decode it,
 // and pass it to our setters. (Where it is retained)
 [self setPossessionName:[decoder decodeObjectForKey:@"possessionN
ame"]];
 [self setSerialNumber:[decoder decodeObjectForKey:@"serialNumber"]];
 [self setValueInDollars:[decoder decodeIntForKey:@"valueInDollars"]];
 [self setImageKey:[decoder decodeObjectForKey:@"imageKey"]];

 // dateCreated is read only, we have no setter. We explicitly
 // retain it and set our instance variable pointer to it
 dateCreated = [[decoder decodeObjectForKey:@"dateCreated"] retain];

 return self;
}

Build	your	application	to	check	for	any	syntax	errors.	Your	application	should	run	
the same as before.

Note that initWithCoder: does not replace the other initialization methods. If you
wish to create a Possession in code, you use the other initialization methods. If
you want to create an instance from an archive, you use initWithCoder:.

You	actually	don’t	create	an	NSCoder explicitly; instead NSKeyedArchiver
creates it for you and sends the appropriate messages to your Possession
instances. In fact, you never invoke initWithCoder: or encodeWithCoder: on
your own;NSKeyedArchiver handles these methods.

Here’s	where	it	gets	fun.	You’ve	implemented	these	two	methods,	and	now	the	
Possession class conforms to the NSCoding protocol. Not only can Possession
instances	be	written	to	a	file	by	itself,	but	other	objects	that	contain	Possession
instances	can	also	be	written	to	a	file.

What object in your code contains Possession	instances?	The	possessions
array in ItemsViewController. Its type, NSMutableArray, also conforms to

Chapter 14. Saving and Loading

Page 248

NSCoding. Because the array and its contents conform to NSCoding, you can
simply archive the entire array and unarchive it the next time the application
launches.	Brilliant!

To	archive	this	array,	you	need	to	have	a	path	on	the	filesystem	to	write	to.	You	
will	create	a	function	that	will	return	the	full	path	of	a	file	in	the	Documents
directory. This function will not be part of an Objective-C class but a stand-alone
C	function.	You	are	going	to	want	to	use	this	function	many	different	places,	so	
create	a	separate	file	for	it.	From	the	New	File...	window,	select	C	and	C++	from	
underneath the Mac OS X group. Choose C File from the template list as shown in
Figure 14.3.	Name	this	file	FileHelpers.m.	(Make	sure	to	change	the	file	suffix	to	
.m!)

Figure 14.3. Creating a C file

Chapter 14. Saving and Loading

Page 249

Open FileHelpers.h,	import	the	header	file	from	UIKit,	and	declare	this	new	
function.

#import <UIKit/UIKit.h>

NSString	*pathInDocumentDirectory(NSString	*fileName);

In FileHelpers.m,	define	the	following	function.	To	use	this	function,	you	pass	it	a	
file	name,	and	it	will	construct	the	full	path	for	that	file	in	the	Documents directory.

NSString *pathInDocumentDirectory(NSString *fileName)
{
 // Get list of document directories in sandbox
 NSArray *documentDirectories =
 NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);

 // Get one and only document directory from that list
 NSString *documentDirectory = [documentDirectories objectAtIndex:0];

 // Append passed in file name to that directory, return it
 return [documentDirectory stringByAppendingPathComponent:fileName];
}

You	want	to	load	all	of	the	Possession instances when the application launches
and then save them all when the application terminates. The object that receives
messages for these two events is HomepwnerAppDelegate.	You	are	going	
to create the possessions array when the application launches and pass it to
ItemsViewController. Change the interface of HomepwnerAppDelegate to the
following:

@interface HomepwnerAppDelegate : NSObject <UIApplicationDelegate>
{
 UIWindow *window;
 ItemsViewController *itemsViewController;
}
- (NSString *)possessionArrayPath;
@property (nonatomic, retain) IBOutlet UIWindow *window;
@end

Chapter 14. Saving and Loading

Page 250

The method possessionArrayPath will return the full path to where you will save
the possessions array. Implement that method in HomepwnerAppDelegate.m.

- (NSString *)possessionArrayPath
{
 return pathInDocumentDirectory(@"Possessions.data");
}

Because HomepwnerAppDelegate.m uses pathInDocumentDirectory, it
must	import	the	header	file	that	this	function	was	declared	in.	You	could	import	
FileHelpers.h at the top of HomepwnerAppDelegate.m, but you are going to
use	this	function	in	other	files,	too.	You	would	then	have	to	import	this	file	in	every	
file	that	used	pathInDocumentDirectory. Wouldn’t it be great if you could tell the
compiler,	“Import	FileHelpers.h	into	ALL	of	my	files.”?	Well,	you	can.

Every	project	has	a	prefix	file,	and	any	declarations	or	compiler	directives	in	this	
file	are	prefixed	to	all	of	your	source	code.	Open	the	prefix	file	for	this	project,	
Homepwner_Prefix.pch	(pch	stands	for	precompiled	header).	In	this	file,	import	
FileHelpers.h.

#ifdef __OBJC__
 #import <Foundation/Foundation.h>
 #import <UIKit/UIKit.h>
 #import "FileHelpers.h"
#endif

In application:didFinishLaunchingWithOptions:, you will unarchive
all of the possession instances. To do this, you will use the class method
unarchiveObjectWithFile: of NSKeyedUnarchiver. By passing it a path, the
contents at that path are unarchived by reading the data, creating the archived
objects, and sending initWithCoder: to each of them. Replace the code for ap
plication:didFinishLaunchingWithOptions: in HomepwnerAppDelegate.m.
(Because there are subtle changes to the previous lines of code in this method,
replace	the	whole	thing	–	don’t	try	and	edit	it!)

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Get the full path of our possession archive file
 NSString *possessionPath = [self possessionArrayPath];

Chapter 14. Saving and Loading

Page 251

 // Unarchive it into an array
 NSMutableArray *possessionArray =
 [NSKeyedUnarchiver unarchiveObjectWithFile:possessionPath];

 // If the file did not exist, our possession array will not either
 // Create one in its absence.
 if (!possessionArray)
 possessionArray = [NSMutableArray array];

 // Create an instance of ItemsViewController
 itemsViewController = [[ItemsViewController alloc] init];

 // Give it the possessionArray
 [itemsViewController setPossessions:possessionArray];

 // Push it onto the navController's stack
 UINavigationController *navController = [[UINavigationController alloc]
 initWithRootViewController:itemsViewController];

 // Place navigation controller's view into window hierarchy
 [window addSubview:[navController view]];
 [window makeKeyAndVisible];
 return YES;
}

Notice that you create an empty NSMutableArray if nothing was returned from
unarchiving the data at possessionPath.	This	is	important	because	the	first	
time the application launches, there won’t be any data at that path, and nil will
be returned from unarchiveObjectWithFile:.	You	must	create	an	empty	array	if	
this happens so that you can add Possessions	to	it	during	execution.	(You	will	
implement the method that does this, setPossessions: shortly; ignore it for now.)

When the application terminates, you need to get the possessions array
from the ItemsViewController. (This is why you created the instance variable
for it in HomepwnerAppDelegate – so that you have a pointer to it here.) To
write objects that conform to NSCoding to disk, you will use the class method
archiveRootObject:toFile: of NSKeyedArchiver. When the possessions array
and possessionArrayPath are passed through this method, the array and all of
the Possession instances inside of it are sent the method encodeWithCoder:
and the archive is written to the path (Figure 14.4).

Chapter 14. Saving and Loading

Page 252

Figure 14.4. Archived object

The UIApplicationDelegate protocol has a method that you can implement to
perform tasks right before the application terminates. Implement that method in
HomepwnerAppDelegate.m.

- (void)applicationWillTerminate:(UIApplication *)application
{
 // Get full path of possession archive
 NSString *possessionPath = [self possessionArrayPath];

 // Get the possession list
 NSMutableArray *possessionArray = [itemsViewController possessions];

 // Archive possession list to file
 [NSKeyedArchiver archiveRootObject:possessionArray
toFile:possessionPath];
}

Let’s review what you have done so far. When the application launches, it creates
an NSMutableArray (either by unarchiving one from disk or by making a brand
new one) and passes it to ItemsViewController. ItemsViewController uses the
array as its possessions instance. When the application terminates, you grab
that array back from ItemsViewController and write it to disk. Simple enough,
right?	Now	in	ItemsViewController.h, declare a new property.

}

Chapter 14. Saving and Loading

Page 253

@property (nonatomic, retain) NSMutableArray *possessions;
@end

Synthesize	this	property	in	the	implementation	file.

@implementation ItemsViewController
@synthesize possessions;

The @synthesize directive will implement the two new messages
(setPossessions: and possessions) you are sending to ItemsViewController
in HomepwnerAppDelegate. Now that your data can persist between
runs	of	the	application,	you	will	no	longer	fill	the	possessions array with
random possessions. Remove the following code in the init method in
ItemsViewController.m.

				//	Delete	this	stuff!
 possessions = [[NSMutableArray alloc] init];
 for(int i = 0; i < 10; i++) {
 [possessions addObject:[Possession randomPossession]];
 }

Build and run the application. There will be an empty table on the screen. Add
some possessions using the Edit button. Play with some of the values of the
Possessions and exit the application. (If you are using the simulator to run this
application, you must click the Home button on the simulator window for the
application to exit properly and archive the possessions. Quitting the simulator
or stopping execution in Xcode will not properly exit the application.) Reopen the
application, and your possessions will be there. So far, so good. However, you
still have to write out the possession images to disk.

Writing to Disk with NSData
The images for Possession instances are created by user interaction and are
only stored within the application. Therefore, the Documents directory is the best
choice to store them. Let’s extend the image cache to save images as they are
added	and	fetch	them	as	they	are	needed.	You	can	use	the	image	key	generated	
when	the	user	takes	a	picture	to	name	the	image	in	the	file	system.

In this section, you are going to copy the JPEG representation of an image into
a buffer in memory. Instead of just malloc’ing a buffer, Objective-C programmers
have found it handy to have an object to create, maintain, and destroy these sorts

Chapter 14. Saving and Loading

Page 254

of buffers. Thus, NSData instances hold some number of bytes of binary data, and
you’ll use NSData in this exercise.

Open ImageCache.m and extend the setImage:forKey: method to write a JPEG
of the image to the Documents directory.

- (void)setImage:(UIImage *)i forKey:(NSString *)s
{
 // Put it in the dictionary
 [dictionary setObject:i forKey:s];

 // Create full path for image
 NSString *imagePath = pathInDocumentDirectory(s);

 // Turn image into JPEG data,
 NSData *d = UIImageJPEGRepresentation(i, 0.5);

 // Write it to full path
 [d writeToFile:imagePath atomically:YES];
}

When an image is deleted from the cache, make sure to delete it from the
filesystem:

- (void)deleteImageForKey:(NSString *)s
{
 [dictionary removeObjectForKey:s];
 NSString *path = pathInDocumentDirectory(s);
 [[NSFileManager defaultManager] removeItemAtPath:path error:nil];
}

The function UIImageJPEGRepresentation takes two parameters, a UIImage
and a compression quality. The compression quality is a float from 0 to 1, where
1 is the highest quality. The function returns an instance of NSData, a wrapper for
a buffer of bytes. This NSData instance can be written to disk by sending it the
message writeToFile:atomically:. The bytes held in this NSData instance are
then	written	to	the	path	of	the	first	parameter.	The	second	parameter,	atomically,
is a boolean value. If it is YES,	the	file	is	written	to	a	temporary	place	on	the	disk,	
and,	once	the	writing	operation	is	complete,	that	file	is	renamed	to	the	path	of	the	
first	parameter,	replacing	any	previously	existing	file.	This	prevents	data	corruption	
should your application crash during the write procedure.

Chapter 14. Saving and Loading

Page 255

It is worth noting that the way you are writing the image data to disk is not
archiving. While NSData instances can be archived, using the method
writeToFile:atomically: is a binary write to disk. Other classes, like NSString,
have similar methods, and those are not archiving either. When an NSString is
written to disk by sending it the message writeToFile:atomically:encoding:err
or:,	the	data	written	is	a	text	file.	These	methods	are	useful	when	you	are	saving	
binary or text data to the disk.

Now when the user takes a picture, the image is stored to disk, and
ImageCache will need to load that image when it is requested. The class method
imageWithContentsOfFile: of UIImage	will	read	in	an	image	from	a	file,	given	a	
path. In ImageCache.m, replace the method imageForKey:.

- (UIImage *)imageForKey:(NSString *)s
{
 // If possible, get it from the dictionary
 UIImage *result = [dictionary objectForKey:s];

 if (!result) {
 // Create UIImage object from file
 result = [UIImage imageWithContentsOfFile:pathInDocumentDirectory
(s)];

 // If we found an image on the file system, place it into the cache
 if (result)
 [dictionary setObject:result forKey:s];
 else
 NSLog(@"Error: unable to find %@", pathInDocumentDirectory(s));
}
 return result;
}

Build and run the application again. Take a photo of one of the possessions and
exit the application. Launch the application again. Selecting that same possession
will reveal the photo you took.

Chapter 14. Saving and Loading

Page 256

Challenge: Archiving Wherewasi
Another	application	you	wrote	could	benefit	from	archiving:	Wherewasi.	Go	back	
to that application and archive the MapPoint objects so they can be reused.

For the More Curious: Reading and Writing to Disk
In addition to archiving and NSData’s binary read and write methods, there are a
few more methods for transferring data to and from the disk. A few of them, like
SQLite and Core Data, will be discussed in their own chapters later. The others
are worth mentioning here.

You	have	access	to	the	standard	file	I/O	functions	from	the	C	library.	These	
functions look like this:

FILE	*inFile	=	fopen("textfile",	"rt");
char* buffer = malloc(someSize);
fread(buffer, byteCount, 1, inFile);

FILE	*outFile	=	fopen("binaryfile",	"w");
fwrite(buffer, byteCount, 1, outFile);

You	won’t	see	these	functions	used	much	because	there	are	more	convenient	
ways	of	reading	and	writing	text	and	binary	data.	You	already	implemented	code	
in this exercise that read and writes binary data when you save and load the
images for a Possession. For text data, NSString has two instance methods wr
iteToFile:atomically:encoding:error: and initWithContentsOfFile:. They are
used as follows:

// A local variable to store an error object if one comes back
NSError *err;

NSString *someString = @"Text Data";
BOOL success = [someString writeToFile:@"/some/path/"
																												atomically:YES
 encoding:NSUTF8StringEncoding
 error:&err];
if	(!success)	{
				NSLog(@"Error	writing	file:	%@",	[err	localizedDescription]);
}

Chapter 14. Saving and Loading

Page 257

NSString *x = [[NSString alloc] initWithContentsOfFile:@"/some/path/"
 encoding:NSUTF8StringEncoding
 error:&err];
if	(!x)	{
				NSLog(@"Error	reading	file:	%@",	[err	localizedDescription]);
}

What’s that NSError	object?	Some	methods	might	fail	for	a	variety	of	reasons	
– for example, writing to disk might fail because the path is invalid or the user
doesn’t	have	permission	to	write	to	the	specified	path.	NSError objects contain
the	reason	for	failure.	You	can	send	the	message	localizedDescription to
an instance of NSError for a human-readable description of the error. This is
something you can show to the user or print out to a debug console.

Error objects also have code and domain properties. The code is an integer
representing the error. The domain represents the error domain. For example, not
having permission to write to a directory results in error code 513 in error domain
NSCocoaErrorDomain. Each domain has its own set of error codes and those
codes within different domains can have the same integer value, therefore, an
error	is	uniquely	specified	by	its	code	within	an	error	domain.	You	can	check	out	
most of the error codes for the NSCocoaErrorDomain	in	the	file	Foundation/
FoundationErrors.h.

The syntax for getting back an NSError instance is a little strange, though. Error
objects are only created if an error occurred; otherwise, there is no need for the
object. When a method can return an error through one of its arguments, you
create a local variable that is a pointer to an NSError object. Notice that you don’t
instantiate	the	error	object	–	that	is	the	job	of	the	method	you	are	calling.	You	pass	
the address of the pointer variable you have to the method that might generate an
error. If an error occurs in the implementation of that method, an NSError instance
is created and your pointer is set to point at that new object. (The error object is
autoreleased.) If you don’t care about the error object, you can always pass nil.

In addition to NSString, two other objects have writeToFile: and
initWithContentsOfFile: methods: NSDictionary and NSArray. In order to write
objects of these types to disk in this fashion, they must contain only property
list serializableobjects. The only objects that are property list serializable are
NSString, NSNumber, NSDate, NSData, NSArray, and NSDictionary. When an
NSArray or NSDictionary is written to disk with these methods, an XML property
list is created. (XML is a markup language, similar to HTML.) An XML property list
is therefore a collection of values that are tagged.

Chapter 14. Saving and Loading

Page 258

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	plist	PUBLIC	"-//Apple//DTD	PLIST	1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <dict>
								<key>firstName</key>
 <string>Joe</string>
 <key>lastName</key>
 <string>Conway</string>
 </dict>
 <dict>
								<key>firstName</key>
 <string>Aaron</string>
 <key>lastName</key>
 <string>Hillegass</string>
 </dict>
</array>
</plist>

XML property lists are a convenient way to store data because they can be read
on nearly any system. Many web service applications use property lists as input
and output. The code for writing and reading a property list looks like this:

NSMutableDictionary *d = [NSMutableDictionary dictionary];
[d setObject:@"A string" forKey:@"String"];
[d	writeToFile:@"/some/path"	atomically:YES];

NSMutableDictionary *anotherD = [[NSMutableDictionary alloc]
 initWithContentsOfFile:@"/some/path"];

For the More Curious: The Application Bundle
When you build an iPhone application project in Xcode, you create an application
bundle. The application bundle contains the application executable and any
resources you have bundled with your application. Resources are things like NIB
files,	images,	audio	files	–	any	files	that	will	be	used	at	runtime.	When	you	add	
a	resource	file	to	a	project,	Xcode	is	smart	enough	to	realize	that	it	should	be	
bundled with your application and categorizes it accordingly.

Chapter 14. Saving and Loading

Page 259

How	can	you	tell	which	files	are	being	bundled	with	your	application?	In	the	
Homepwner project window, open the Targets group by clicking the disclosure
button next to it. The Homepwner target will appear. Click the disclosure button
next to it. Three gray boxes will appear underneath it as shown in Figure 14.5.

Figure 14.5. Target Details

Each item in the Homepwner target group is one of the phases that occurs
when you build a project. The Copy Bundle Resources phase is where all of the
resources in your project get copied into the application bundle.

You	can	check	out	what	an	application	bundle	looks	like	on	the	filesystem	after	
you install an application on the simulator. Navigate to ~/Library/Application
Support/iPhone Simulator/(version number)/Applications. The directories
within this directory are the application sandboxes for applications installed on
your computer’s iPhone Simulator. Opening one of these directories will show
you what you expect in an application sandbox: an application bundle and the
Documents, tmp and Library directories. Right or Command-click the application
bundle and choose Show Package Contents from the contextual menu.

Chapter 14. Saving and Loading

Page 260

Figure 14.6. Viewing an Application Bundle

A Finder window will appear, showing you the contents of the application bundle.
When	a	user	downloads	your	application	from	the	App	Store,	these	files	are	
copied to their device.

Figure 14.7. The Application Bundle

You	can	load	files	in	the	application’s	bundle	at	runtime.	To	get	the	full	path	for	
files	in	the	application	bundle,	you	need	to	get	a	pointer	to	the	application	bundle	
and ask it for the path of a resource.

Chapter 14. Saving and Loading

Page 261

// Get a pointer to the application bundle
NSBundle *applicationBundle = [NSBundle mainBundle];

// Ask for the path to a resource named myImage.png in the bundle
NSString *path = [applicationBundle pathForResource:@"myImage"
 ofType:@"png"];

If	you	ask	for	the	path	to	a	file	that	is	not	in	the	application’s	bundle,	this	method	
will return nil.	If	the	file	does	exist,	then	the	full	path	is	returned	and	you	can	use	
this	path	to	load	the	file	with	the	appropriate	class.

Also,	files	within	the	application	bundle	are	read-only.	You	cannot	modify	them	
nor	can	you	dynamically	add	files	to	the	application	bundle	at	runtime.	Files	in	the	
application bundle are typically things like button images, interface sound effects,
or	the	initial	state	of	a	database	you	ship	with	your	application.	You	will	use	this	
method in later chapters to load these types of resources at runtime.

Chapter 15. Low-Memory Warnings

Page 262

Chapter 15. Low-Memory Warnings

The iPhone, while extremely powerful, still has its limitations. One of
the most important and often overlooked limitations is the amount of
memory an application can consume before the device simply gives
up. iPhone OS constantly monitors an application’s memory usage and
alerts the application when it is in danger of running out of memory.

When the operating system detects that it is low on memory, it sends
your application a low-memory warning. A low-memory warning will
occur when the device is consuming a large percentage of the available
RAM. Overuse of graphical memory is typically the reason why an
application receives a low-memory warning. Apple suggests that you
don’t use more than 24 MB of graphics memory. For an image the
size of the iPhone screen, the amount of memory used is over half a
megabyte. Each UIView, image, Core Animation layer, and anything else
that can be displayed on the screen consumes some of the allotted 24
MB. (Apple doesn’t suggest any maximum for other types of data like
NSStrings.)

It is up to your application to release reload-able resources or unneeded
memory back to the heap. If your application does not release enough
memory for the operating system to continue running it, iPhone OS
will terminate your application. Unfortunately, there is no indication of
how much memory should be released or at what percentage of used
memory a low-memory warning occurs. Therefore, handling a low-
memory warning is not an exact science, and you should simply free up
any memory that you can.

Handling Low-Memory Warnings
When an application receives a low-memory warning, it
forwards that event to its delegate by sending the message
applicationDidReceiveMemoryWarning: as shown in Figure 15.1. You
can also register any object for the low-memory warning notification:
UIApplicationDidReceiveMemoryWarningNotification.

Chapter 15. Low-Memory Warnings

Page 263

Figure 15.1. Low-memory warning handlers

If Homepwner receives a low-memory warning, the culprit is likely the
ImageCache. The ImageCache is maintaining a dictionary of images and
could be huge. It’d be a good idea to have the cache register to receive
memory warning notifications and clear the cache when a notification
arrives. In ImageCache.m, extend the init method:

- (id)init
{
 [super init];
 dictionary = [[NSMutableDictionary alloc] init];
 NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
 [nc addObserver:self
 selector:@selector(clearCache:)
 name:UIApplicationDidReceiveMemoryWarningNotification
 object:nil];

 return self;

Chapter 15. Low-Memory Warnings

Page 264

}

Now implement clearCache: in ImageCache.m:

- (void)clearCache:(NSNotification *)note
{
 NSLog(@"flushing %d images out of the cache", [dictionary count]);
 [dictionary removeAllObjects];
}

Build and run your application on the device. Take a few pictures
and watch the output from the NSLog statement in the console.
The operating system will see these memory-hogging images being
allocated and will issue a low-memory warning to your application. If
your application doesn’t shut down and the user is not at all interrupted
after the memory warning is issued, your memory warning was handled
successfully.

Remember that the notification center does not retain its observers. If
the image cache were ever deallocated, it would need to also remove
itself from the notification center. The dealloc method would look like
this:

- (void)dealloc
{
 [dictionary release];
				[[NSNotificationCenter	defaultCenter]	removeObserver:self];
 [super dealloc];
}

View controller memory warnings

In addition to the application delegate and registered observers,
every instantiated UIViewController is sent the message
didReceiveMemoryWarning when a low-memory warning occurs.
Thus, in Homepwner, the instances of ItemsViewController
and ItemDetailViewController are both sent the message
didReceiveMemoryWarning when the operating system decides too
much memory is being used (Figure 15.1).

The default implementation of this method will release the view of

Chapter 15. Low-Memory Warnings

Page 265

the view controller if it has no superview. (A view controller typically
only has a superview when it is on the screen.) The view of a
UIViewController is a reload-able resource. View controllers know how
to reload their views by reloading from the XIB file or invoking their
loadView method. A view controller’s view will be reloaded if it needs to
go back on the screen; you don’t have to handle this yourself.

Figure 15.2. View controller memory warning cycle

There are three steps to take when handling a low-memory warning for
a view controller.

First, if a view controller needs to free up any memory for objects
that are not views but can be reloaded later, you will override
didReceiveMemoryWarning. It is important to always invoke the
superclass’s implementation of this method because it is responsible for
destroying the view of the view controller.

// Example implementation:
- (void)didReceiveMemoryWarning
{
 [self cleanupCaches];

Chapter 15. Low-Memory Warnings

Page 266

 [super didReceiveMemoryWarning];
}

Second, if a view controller is initialized with a XIB file and its view has
subviews that are IBOutlets connected in that XIB file, the subviews
are being retained twice: once by their superview and once by the
controller with the outlets. You will need to override viewDidUnload to
release them and set them to nil. Because the view controller still exists
after a memory warning, it is possible that a message might be sent to
one of its instance variables after that object was released. By releasing
the object and setting the pointer to it to nil, you avoid sending a
message to an object that doesn’t exist anymore.

// Example implementation - myButton declared as: IBOutlet UIButton *myButton;
- (void)viewDidUnload
{
 // the view property has already been released and set to
 // nil by the time this method is invoked.
 [super viewDidUnload];

 [myButton release];
 myButton = nil;
}

Last, make sure that you can fully reconstruct a view controller’s view
hierarchy with the loadView and viewDidLoad methods. These two
messages will be sent to a view controller when it needs to reload its
view after a low-memory warning occurs. Some view controllers may
dynamically change their interface during runtime. It is important that
you keep track of those changes so that you can replicate them if a
view controller receives a memory warning.

Simulating Low-Memory Warnings
Most applications will not consume the entirety of the iPhone’s memory
on their own; however, as a developer, you must always plan for the
worst. The simulator allows you to simulate a low-memory warning by

Chapter 15. Low-Memory Warnings

Page 267

selecting Simulate Low-Memory Warningfrom the Hardware menu.

In general, you should simulate a low-memory warning for every
UIViewController in an application. Navigate to each view controller
in Homepwner, simulate a warning, and then make sure your application
doesn’t crash and can still run smoothly.

Finally, remember that just releasing some memory during a low-
memory warning doesn’t guarantee that your application will survive. If
you are simply using too much memory, the OS will have no choice but
to shut down your application.

Chapter 16. Subclassing UITableViewCell

Page 268

Chapter 16. Subclassing UITableViewCell
UITableViews display a list of UITableViewCells. For many applications, the
basic cell, with its textLabel, detailTextLabel, and imageView,	is	sufficient.	
However, when you need a cell with more detail or a different layout, you subclass
UITableViewCell.

In this chapter, you are going to create a subclass of UITableViewCell to display
Possession instances more eloquently. Each one of these cells will show a
Possession’s name, its value in dollars, and a thumbnail of its image as shown
in Figure 16.1.

Figure 16.1. Homepwner with subclassed UITableViewCells

Chapter 16. Subclassing UITableViewCell

Page 269

Open Homepwner.xcodeproj. Select the New File... menu item from the File
menu and create a new subclass of UITableViewCell (Figure 16.2). Name this
subclass HomepwnerItemCell.m.

Figure 16.2. Creating a UITableViewCell subclass

Creating HomepwnerItemCell
A UITableViewCell is a UIView subclass. When subclassing UIView (or any of
its subclasses), you typically override its drawRect: method to customize the
view’s appearance. However, subclassing UITableViewCell requires a different
approach. Each cell has a subview named contentView, which is a container for
the various view objects that will make up the layout of a cell subclass (Figure
16.3). For instance, you could create instances of the classes UITextField,
UILabel, and UIButton and add them to the contentView. (If you wanted
something even more daring, you could create a UIView subclass, override its
drawRect:, and add an instance of it to the contentView.)

Chapter 16. Subclassing UITableViewCell

Page 270

Figure 16.3. HomepwnerItemCell hierarchy

The contentView is important because it knows about the editing controls on
either side of the row and automatically adjusts its subviews to allow for the
presence of these controls when a cell enters editing mode (Figure 16.4). If you
were to add subviews directly to the UITableViewCell, these editing controls
would appear on top and obscure the cell’s content.

Figure 16.4. Table view cell layout in standard and editing mode

Create subviews
In your cell subclass, you need an instance variable for each subview so that you
can set its content as it is displayed in a table view. In HomepwnerItemCell.h,

Chapter 16. Subclassing UITableViewCell

Page 271

create instance variables for the necessary subviews and declare a method to set
their values with a Possession instance.

@class Possession;
@interface HomepwnerItemCell : UITableViewCell
{
 UILabel *valueLabel;
 UILabel *nameLabel;
 UIImageView *imageView;
}
- (void)setPossession:(Possession *)possession;
@end

When an instance of HomepwnerItemCell is created, its valueLabel,
nameLabel, and imageView are instantiated. Then, these subviews are
added to the cell’s contentView. Override the designated initializer in
HomepwnerItemCell.m to create each of the subviews. HomepwnerItemCell.m
should now look like this:

#import "HomepwnerItemCell.h"
#import "Possession.h"
@implementation HomepwnerItemCell
- (id)initWithStyle:(UITableViewCellStyle)style
 reuseIdentifier:(NSString *)reuseIdentifier
{
 if (self = [super initWithStyle:style reuseIdentifier:reuseIdentifier])
 {
 // Create a subview - don't need to specify its position/size
 valueLabel = [[UILabel alloc] initWithFrame:CGRectZero];

 // Put it on the content view of the cell
 [[self contentView] addSubview:valueLabel];

 // It is being retained by its superview
 [valueLabel release];

 // Same thing with the name
 nameLabel = [[UILabel alloc] initWithFrame:CGRectZero];
 [[self contentView] addSubview:nameLabel];
 [nameLabel release];

Chapter 16. Subclassing UITableViewCell

Page 272

 // Same thing with the image view
 imageView = [[UIImageView alloc] initWithFrame:CGRectZero];
 [[self contentView] addSubview:imageView];

 // Tell the imageview to resize its image to fit inside its frame
 [imageView setContentMode:UIViewContentModeScaleAspectFit];
 [imageView release];
 }
 return self;

}
@end

Layout subviews
Note that you don’t set the size or position of the cell’s subviews here in the
initialization method; you need to know the dimensions of the cell itself before
you can set the subviews. Instead, the subviews should be sized and positioned
in the methodl ayoutSubviews. This message is sent to the cell right before it is
displayed and, thus, after its size has been determined. (In fact, layoutSubviews
is an instance method of UIView and is sent to any instance of UIView that is
about to be displayed.)

Implement layoutSubviews in HomepwnerItemCell.m. (If you have a hard time
picturing the sizes of frame rectangles in your head, draw them out on a piece of
paper	first.)

- (void)layoutSubviews
{
 // We always call this, the table view cell needs to do its own work first
 [super layoutSubviews];

 float inset = 5.0;
 CGRect bounds = [[self contentView] bounds];
 float h = bounds.size.height;
 float w = bounds.size.width;
 float valueWidth = 40.0;

 // Make a rectangle that is inset and roughly square

Chapter 16. Subclassing UITableViewCell

Page 273

 // (using the height of the contentView as the width
 // and height of the image view)
 CGRect innerFrame = CGRectMake(inset, inset, h, h - inset * 2.0);
 [imageView setFrame:innerFrame];

 // Move that rectangle over and resize the width for the nameLabel
 innerFrame.origin.x += innerFrame.size.width + inset;
 innerFrame.size.width = w - (h + valueWidth + inset * 4);
 [nameLabel setFrame:innerFrame];

 // Move that rectangle over again and resize the width for valueLabel
 innerFrame.origin.x += innerFrame.size.width + inset;
 innerFrame.size.width = valueWidth;
 [valueLabel setFrame:innerFrame];
}

This method is fairly ugly, but let’s look at it more closely. First, you always
invoke the superclass’s implementation of layoutSubviews. Invoking this
method allows the UITableViewCell to layout its subview, its contentView.
Then, you get the bounds of the contentView	to	find	out	how	much	area	you	
have to work with when sizing and positioning all of the subviews. (If you don’t
invoke the superclass’ implementation of layoutSubviews, the bounds of the
contentView may not be correct.) Finally, you set the frame of each subview
relative to the contentView’s bounds. This process ensures that instances of
HomepwnerItemCell will have an appropriate layout regardless of the size of the
UITableViewCell.

Using the custom cell
Now let’s look at the two options for setting the content of the subviews
(imageView, nameLabel, and valueLabel).	The	first	option	is	to	create	a	property	
for each subview to use when you set the cell content in tableView:cellForRowA
tIndexPath:(similar to the way you have been accessing the textLabel property
of each cell). The second option is to pass the cell an instance of Possession
and	have	it	fill	its	own	subviews.	In	this	chapter,	you	will	use	the	second	option.	
Either way is perfectly reasonable; however, in the second option, the cell is made
specifically	to	represent	a	Possession instance, so the code is written in a way
that’s easier to follow. (The drawback is that HomepwnerItemCell will only be

Chapter 16. Subclassing UITableViewCell

Page 274

able to represent Possession instances.) Implement the method setPossession:
in HomepwnerItemCell.m to extract values from a Possession instance and
display them in the cell.

- (void)setPossession:(Possession *)possession
{
 // Using a Possession instance, we can set the values of the subviews
 [valueLabel setText:
 [NSString stringWithFormat:@"$%d", [possession valueInDollars]]];
 [nameLabel setText:[possession possessionName]];
}

You	can	build	the	application	to	make	sure	there	are	no	compile	errors.	Running	it	
won’t show anything new because you aren’t yet returning HomepwnerItemCells
from the UITableView data source method implemented by ItemsViewController.
In ItemsViewController.m,	import	the	header	file	for	HomepwnerItemCell.

#import "HomepwnerItemCell.h"

@implementation ItemsViewController

Replace the method tableView:cellForRowAtIndexPath: to return instances of
your new cell subclass. However, for the Add New Item..., you still need to return
a standard cell. Check the incoming NSIndexPath before you decide what type of
cell to return.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 // This will occur when editing, extra row that shows "Add New Item..."
 if ([indexPath row] >= [possessions count]) {

 // Create a basic cell
 UITableViewCell *basicCell = [tableView
 dequeueReusableCellWithIdentifier:@"UITableViewCell"];
 if (!basicCell)
 basicCell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault

Chapter 16. Subclassing UITableViewCell

Page 275

 reuseIdentifier:@"UITableViewCell"] autorelease];

 // Set its label to say "Add New Item..."
 [[basicCell textLabel] setText:@"Add New Item..."];

 return basicCell;
 }

 // Get instance of a HomepwnerItemCell - either an unused one or a new
one
 HomepwnerItemCell *cell = (HomepwnerItemCell *)[tableView
 dequeueReusableCellWithIdentifier:@"HomepwnerItemCell"];
 if (!cell)
 cell = [[[HomepwnerItemCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"HomepwnerItemCell"] autorelease];
 // Instead of setting each label directly, we pass it a possession object
 // it knows how to configure its own subviews
 Possession *p = [possessions objectAtIndex:[indexPath row]];
 [cell setPossession:p];

 return cell;
}

When creating a cell for a row that is intended to display Add New Item..., this
method creates and returns a standard UITableViewCell. When creating a cell
to display a Possession instance, this method creates and returns your new
HomepwnerItemCell.	Notice	that	you	use	different	reuse	identifiers	for	each	type	
of cell; if you didn’t, you might get a UITableViewCell back for a cell intended
to display a Possession. Then, the UITableViewCell’s lack of response to the
message setPossession: would throw an exception and kill the application.
(That’s bad.)

Build	and	run	the	application.	Your	new	cells	will	display	the	name	and	value	of	a	
Possession. However, remember that you also want to display an image of the
Possession within the cell.

Image Manipulation
To display an image within a cell, you could just resize the 1024×1024 image of
the possession already in the image cache. However, it would be better to create

Chapter 16. Subclassing UITableViewCell

Page 276

and use a thumbnail of the image instead. Using the larger image would incur a
performance	penalty	because	a	larger	number	of	bytes	need	to	be	read,	filtered,	
and	resized	to	fit	within	the	cell	whereas	a	thumbnail requires far fewer bytes. To
create a thumbnail of an image, you are going to draw a scaled down version of
the full image to an offscreen context and keep a pointer to that new image inside
a Possession instance.

However, this application will only create a thumbnail when an image is taken,
and, if the user exits the application, the thumbnails are lost. Therefore, you
need a place to store this thumbnail image so that it can be reloaded when
the application launches again – like the archive along with the rest of the
Possession instance variables. (It’s okay to store thumbnails in the archive
because they are so much smaller than the original images. Those images are
still	in	the	image	cache	where	they	can	easily	be	flushed	if	there	is	a	low	memory	
warning.)

Big problem, though: UIImage doesn’t conform to the NSCoding protocol, so it
can’t be encoded in an NSCoder. The thumbnail can, however, be encoded as
data (JPEG format) and wrapped in an NSData object (which does conform to
NSCoding). Open Possession.h. Declare two instance variables: a UIImage
and an NSData.	You	will	also	want	a	method	to	turn	a	full-sized	image	into	a	
thumbnail.

@interface Possession : NSObject <NSCoding> {
 NSString *possessionName;
 NSString *serialNumber;
 int valueInDollars;
 NSDate *dateCreated;
 NSString *imageKey;
 UIImage *thumbnail;
 NSData *thumbnailData;
}
@property (readonly) UIImage *thumbnail;
- (void)setThumbnailDataFromImage:(UIImage *)image;

In Possession.m, create a getter method for thumbnail that will create it from the
data if necessary:
- (UIImage *)thumbnail
{
 // Am I imageless?
 if (!thumbnailData) {

Chapter 16. Subclassing UITableViewCell

Page 277

 return nil;
 }
 // Is there no cached thumbnail image?
 if (!thumbnail) {
 // Create the image from the data
 thumbnail = [[UIImage imageWithData:thumbnailData] retain];
 }
 return thumbnail;

}

Both objects (the data and the image) will be retained. Therefore, you need to
send a matching release message to them when a Possession instance is
deallocated.

- (void)dealloc
{
 [thumbnail release];
 [thumbnailData release]
 [possessionName release];
 [serialNumber release];
 [dateCreated release];
 [imageKey release];
 [super dealloc];
}

The setThumbnailDataFromImage: method will take a full size image, create a
smaller representation of it in an offscreen context object, and set the thumbnail
pointer to the image produced by the offscreen context. The iPhone SDK
provides a convenient function suite to create offscreen contexts and produce
images from them. To create an offscreen image context, you use the function
UIGraphicsBeginImageContext. This function accepts a CGSize structure that
specifies	the	width	and	height	of	the	image	context.

When this function is called, a new CGContextRef is created and becomes the
current context. To draw to a CGContextRef, you use Core Graphics, just as
though you were implementing a drawRect: method for a UIView subclass. To
get a UIImage from this context after it has been drawn, you call the function
UIGraphicsGetImageFromCurrentImageContext. Finally, once you have
produced an image from an image context, you must clean up that context with
the function UIGraphicsEndImageContext.

Chapter 16. Subclassing UITableViewCell

Page 278

Implement the following method in Possession.m to create a thumbnail using an
offscreen context.

- (void)setThumbnailDataFromImage:(UIImage *)image
{
 // Release the old thumbnail data
 [thumbnailData release];

 // Release the old thumbnail
 [thumbnail release];

 // Create an empty image of size 70 × 70
 CGRect imageRect = CGRectMake(0, 0, 70, 70);
 UIGraphicsBeginImageContext(imageRect.size);

 // Render the big image onto the image context
 [image drawInRect:imageRect];

 // Make a new one from the image context
 thumbnail = UIGraphicsGetImageFromCurrentImageContext();

 // Retain the new one
 [thumbnail retain];

 // Clean up image context resources
 UIGraphicsEndImageContext();
 // Make a new data object from the image
 thumbnailData = UIImageJPEGRepresentation(thumbnail, 0.5);
 // You may get malloc warnings from the simulator on this line
 // That is a bug in the simulator.

 // Retain it
 [thumbnailData retain];
}

Because you create a thumbnail when the camera takes the original image, you
need to add the following line of code to imagePickerController:didFinishPickin
gMediaWithInfo: in ItemDetailViewController.m.

- (void)imagePickerController:(UIImagePickerController *)picker

Chapter 16. Subclassing UITableViewCell

Page 279

didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 NSString *oldKey = [editingPossession imageKey];

 if (oldKey) {

 // Delete the old image
 [[ImageCache sharedImageCache] deleteImageForKey:oldKey];
 }
 UIImage *image = [info objectForKey:UIImagePickerControllerOriginalImage];

 CFUUIDRef newUniqueID = CFUUIDCreate (kCFAllocatorDefault);

 CFStringRef newUniqueIDString =
 CFUUIDCreateString (kCFAllocatorDefault, newUniqueID);

 [editingPossession setImageKey:(NSString *)newUniqueIDString];

 CFRelease(newUniqueIDString);
 CFRelease(newUniqueID);

 [[ImageCache sharedImageCache] setImage:image
 forKey:[editingPossession imageKey]];
 [imageView setImage:image];

 [editingPossession setThumbnailDataFromImage:image];

 // Take image picker off the screen
				[self	dismissModalViewControllerAnimated:YES];
}

Because you use this thumbnail to set the imageView of the cells when they are
configured	for	the	table	view,	add	the	following	line	of	code	to	setPossession: in
HomepwnerItemCell.m.

- (void)setPossession:(Possession *)possession
{
 [valueLabel setText:
												[NSString	stringWithFormat:@"$%d",	[possession	valueInDollars]]];

Chapter 16. Subclassing UITableViewCell

Page 280

 [nameLabel setText:[possession possessionName]];
 [imageView setImage:[possession thumbnail]];
}

Build and run the application now. Take a picture for a Possession instance.
That row will display a thumbnail image along with the name and value of the
Possession.

Don’t forget to add the thumbnail	data	to	your	archive!	Open	Possession.m:

- (id)initWithCoder:(NSCoder *)decoder
{
 self = [super init];
 [self setPossessionName:[decoder decodeObjectForKey:@"possessionNa
me"]];
 [self setSerialNumber:[decoder decodeObjectForKey:@"serialNumber"]];
 [self setValueInDollars:[decoder decodeIntForKey:@"valueInDollars"]];
 [self setImageKey:[decoder decodeObjectForKey:@"imageKey"]];
 dateCreated = [[decoder decodeObjectForKey:@"dateCreated"] retain];

 thumbnailData = [[decoder decodeObjectForKey:@"thumbnailData"] re-
tain];

 return self;
}

- (void)encodeWithCoder:(NSCoder *)encoder
{
 // For each instance variable, archive it under its variable name
 [encoder encodeObject:possessionName forKey:@"possessionName"];
 [encoder encodeObject:serialNumber forKey:@"serialNumber"];
 [encoder encodeInt:valueInDollars forKey:@"valueInDollars"];
 [encoder encodeObject:dateCreated forKey:@"dateCreated"];
 [encoder encodeObject:imageKey forKey:@"imageKey"];

 [encoder encodeObject:thumbnailData forKey:@"thumbnailData"];
}
Build and run the application. Take some photos of possessions and then exit and

Chapter 16. Subclassing UITableViewCell

Page 281

relaunch the application. The thumbnails will now appear for saved possession
objects.

Challenge: Accessory Views
HomepwnerItemCell only displays three properties of a Possession instance in
the content. Allow HomepwnerItemCell to have an accessory view. When that
accessory view is tapped, it will toggle between two different display modes: one
that shows the serial number and date created of a Possession and another that
shows the name and value in dollars.

Challenge: Make it Pretty
The thumbnail could be much prettier. Make it preserve the aspect ratio of the
original	image.	Round	the	corners.	You	might	even	want	to	add	a	nice	glossy	
gradient to make it look 3-dimensional.

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 282

Chapter 17. Multi-Touch, UIResponder, and Using
Instruments

In Chapter 6, you created a UIScrollView that dealt with multi-touch events to
translate	and	scale	your	view.	You	have	also	used	UIControl, setting a target/
action pair to be triggered for certain types of events. What if you want to do
something	else,	something	special	or	unique,	with	touch	events?

In this chapter, your are going to create a view that lets the user draw lines by
dragging across the view (Figure 17.1). Using multi-touch, the user will be able to
draw more than one line at a time. Double-tapping will clear the screen and allow
the user to begin again.

Figure 17.1. A drawing program

Touch Events
A UITouch	object	represents	one	finger	touching	the	screen.	Because	you	can	
use	multiple	fingers	simultaneously,	touches	are	processed	in	sets.	NSSet is a
container class like NSArray, but it has no order and an object can only appear in
a set once.

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 283

As a subclass of UIResponder, your view can override four methods to handle
touch events:

•	 a	finger	or	fingers	touches	the	screen 
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event; 

•	 a	finger	or	fingers	move	across	the	screen	(This	message	is	sent	repeatedly	
as	a	finger	moves.) 
- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event; 

•	 a	finger	or	fingers	is	removed	from	the	screen
 - (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event; 

•	 a	system	event,	like	an	incoming	phone	call,	interrupts	a	touch	before	it	ends 
- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event; 

When the user touches the screen, a UITouch instance is created. The same
UITouch object is updated and reused for all touch events associated with an
individual	finger.	It	holds	all	of	the	information	about	that	finger:	where	it	is,	its	
state, when its state last changed, the view it is on, the number of times it has
tapped	the	screen,	and	where	it	has	been	most	recently.	When	that	finger	is	
removed from the screen, the UITouch is discarded.

After the UITouch instance is created, it is sent to the UIView on which the touch
occurred via the message touchesBegan:withEvent:. This method has two
arguments: an NSSet and a UIEvent. The NSSet instance contains the touch
object. Why send an NSSet and not a UITouch?	An	NSSet is necessary in case
two	(or	more)	fingers	touch	the	screen	at	the	exact	same	time.	(In	practice,	this	is	
very unlikely; we humans are not as precise as we think we are.) If simultaneous
touches occur, multiple UITouch instances can be sent in the NSSet.

(Apple could have used NSArray instead of NSSet, but the implementation of
NSSet makes it faster to use in this context. The good news is you can iterate
over an NSSet in the same way you do an array using fast enumeration in
Objective C 2.0.)

Creating the TouchTracker Application
Now let’s get started with your application. In Xcode, create a new Window-based
Application and name it TouchTracker. Create a new UIView subclass called
TouchDrawView.

The TouchDrawView is going to need an object that can hold the two end points

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 284

of a line. Create a new NSObject subclass named Line. In Line.h, declare two
CGPoint instance variables and the accessors for setting and getting them:

#import <Foundation/Foundation.h>

@interface Line : NSObject {
 CGPoint begin;
 CGPoint end;
}
@property (nonatomic) CGPoint begin;
@property (nonatomic) CGPoint end;
@end

In Line.m, synthesize the accessors:

#import "Line.h"

@implementation Line

@synthesize begin, end;

@end

In TouchDrawView.h declare two collections: an array to hold complete lines and
a dictionary to hold lines that are still being drawn.

#import <UIKit/UIKit.h>
@interface TouchDrawView : UIView {
 NSMutableDictionary *linesInProcess;
 NSMutableArray *completeLines;
}

@end

You	might	be	surprised	to	see	that	you	are	using	a	dictionary	to	hold	the	lines	that	
are	in	the	process	of	being	drawn.	What	do	lines	have	to	do	with	key-value	pairs?	
In this case, you’re using a dictionary to keep track of which UITouch created
whichLine. So you’ll want to use the UITouch as the key and the Line as the
value. However, only objects that have a v method (from the NSCoding protocol)
can be used as keys in a dictionary. UITouch does not implement this method, so
you can’t use UITouch instances themselves as keys. However, you can wrap a

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 285

pointer to the UITouch in an NSValue instance and use the NSValue as the key.

Figure 17.2 shows the object diagram for TouchTracker. Take a moment to look it
over before continuing on with the creation of your view.

Figure 17.2. Object diagram for TouchTracker

In Chapter 6, you instantiated your custom view programmatically. This time,
you will instantiate a custom view in Interface Builder. Open up MainWindow.
xib. From the Library, drag an instance of UIView onto the window. In the Identity
panel of theInspector, set its class to TouchDrawView as shown in Figure 17.3.

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 286

Figure 17.3. Identity Inspector

Views created programmatically have their initWithFrame: method called; views
created in Interface Builder are unarchived using initWithCoder:. Thus, for
TouchDrawView, you will override initWithCoder: instead of initWithFrame:.

Save MainWindow.xib and return to Xcode. In TouchDrawView.m, take care of
the creation and destruction of the two collections:

#import "TouchDrawView.h"
#import "Line.h"

@implementation TouchDrawView

- (id)initWithCoder:(NSCoder *)c
{

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 287

 [super initWithCoder:c];
 linesInProcess = [[NSMutableDictionary alloc] init];
 completeLines = [[NSMutableArray alloc] init];
 [self setMultipleTouchEnabled:YES];
 return self;
}

- (void)dealloc
{
 [linesInProcess release];
 [completeLines release];
 [super dealloc];
}

Notice that you had to explicitly enable multi-touch events. Without this, only one
touch at a time can be active on a view.

Now edit the drawRect: method:

- (void)drawRect:(CGRect)rect
{
 CGContextRef context = UIGraphicsGetCurrentContext();
 CGContextSetLineWidth(context, 10.0);
 CGContextSetLineCap(context, kCGLineCapRound);

 // Draw complete lines in black
 [[UIColor blackColor] set];
 for (Line *line in completeLines) {
 CGContextMoveToPoint(context, [line begin].x, [line begin].y);
 CGContextAddLineToPoint(context, [line end].x, [line end].y);
 CGContextStrokePath(context);
 }

 // Draw lines in process in red
 [[UIColor redColor] set];
 for (NSValue *v in linesInProcess) {
 Line *line = [linesInProcess objectForKey:v];
 CGContextMoveToPoint(context, [line begin].x, [line begin].y);
 CGContextAddLineToPoint(context, [line end].x, [line end].y);
 CGContextStrokePath(context);
 }

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 288

}

Finally, create a method that clears the collections and redraws the view:

- (void)clearAll
{
 // Clear the containers
 [linesInProcess removeAllObjects];
 [completeLines removeAllObjects];

 // Redraw
 [self setNeedsDisplay];
}

Turning Touches Into Lines
When a touch begins, you will create a new Line instance and store it in an
NSMutableDictionary. The key to retrieve the line is the address of the UITouch
object stored in an NSValue.

Override touchesBegan:withEvent: in TouchDrawView.m.

- (void)touchesBegan:(NSSet *)touches
 withEvent:(UIEvent *)event
{
 for (UITouch *t in touches) {

								//	Is	this	a	double	tap?
 if ([t tapCount] > 1) {
 [self clearAll];
 return;
 }

 // Use the touch object (packed in an NSValue) as the key
 NSValue *key = [NSValue valueWithPointer:t];

 // Create a line for the value
 CGPoint loc = [t locationInView:self];
 Line *newLine = [[Line alloc] init];
 [newLine setBegin:loc];
 [newLine setEnd:loc];

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 289

 // Put pair in dictionary
 [linesInProcess setObject:newLine forKey:key];

 // There is a memory leak in this method
								//	You	will	find	it	using	Instruments	later	in	the	chapter
 }
}

In this method, you will update the end point of the line associated with the moving
touch. Override this method in TouchDrawView.m.

- (void)touchesMoved:(NSSet *)touches
 withEvent:(UIEvent *)event
{
 // Update linesInProcess with moved touches
 for (UITouch *t in touches) {
 NSValue *key = [NSValue valueWithPointer:t];

 // Find the line for this touch
 Line *line = [linesInProcess objectForKey:key];

 // Update the line
 CGPoint loc = [t locationInView:self];
 [line setEnd:loc];
 }
 // Redraw
 [self setNeedsDisplay];
}

When	a	touch	ends,	you	need	to	finalize	the	line.	However,	a	touch	can	
end	for	two	reasons:	the	user	lifts	the	finger	off	the	screen	or	the	operating	
system interrupts your application. A phone call, for example, will interrupt
your application. In many applications, you’ll want to handle these two events
differently. However, for TouchTracker, you’re going to write one single method to
handle both cases. Implement these methods in TouchDrawView.m.

- (void)endTouches:(NSSet *)touches
{
 // Remove ending touches from dictionary
 for (UITouch *t in touches) {

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 290

 NSValue *key = [NSValue valueWithPointer:t];
 Line *line = [linesInProcess objectForKey:key];

 // If this is a double tap, 'line' will be nil
 if (line) {
 [completeLines addObject:line];
 [linesInProcess removeObjectForKey:key];
 }
 }
 // Redraw
 [self setNeedsDisplay];
}

- (void)touchesEnded:(NSSet *)touches
 withEvent:(UIEvent *)event
{
 [self endTouches:touches];
}

- (void)touchesCancelled:(NSSet *)touches
 withEvent:(UIEvent *)event
{
 [self endTouches:touches];
}

Build	and	run	the	application.	Then	draw	lines	with	one	or	more	fingers.

The Responder Chain
Every UIResponder can receive touch events. UIView is one example, but
there are many other UIResponder subclasses including UIViewController,
UIApplication, and UIWindow.	You	are	probably	thinking,	“But	you	can’t	touch	
a UIViewController.	It’s	not	an	on-screen	object!”	And	you	are	right	–	you	can’t	
send a touch event directly to a UIViewController. (And you get two bonus points
for keeping the view controller and its view separate in your brain.)

In Chapter 4, you learned a little about the responder chain. When a responder
doesn’t handle an event, it passes it to its nextResponder. How does a
UIResponder	not	handle	an	event?	For	starters,	the	default	implementation	of	

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 291

methods like touchesBegan:withEvent: simply passes the message to the next
responder. So if a method is not overridden, you ensure its next responder will
attempt to handle the touch event.

You	can	explicitly	send	a	message	to	a	next	responder,	too.	Let’s	say	there	is	a	
view that wants to track touches, but if a double tap occurs, its next responder
should handle it. The code would look like this:

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 if ([touch tapCount] == 2)
 [[self nextResponder] touchesBegan:touches withEvent:event];

 ... Go on to do code that isn't a double tap
}

Figure 17.4 shows the objects that make up the responder chain. An event
starts at the view that was touched. The nextResponder of a view is its
UIViewController. If that view has a view controller that owns it, then the
controller is next in line. After that, the superview of the view is given a chance to
handle the event. If the touch runs out of views and view controllers, it goes to the
window. If the window doesn’t handle it, the singleton instance of UIApplication
does. (Note that the window and application objects won’t do anything with an
event unless you subclass them.) If the application doesn’t handle the event, then
it is discarded.

Figure 17.4. Responder chain

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 292

Instruments
After Xcode and Interface Builder, the most important tool that Apple gives
developers is Instruments. When you run your applications in Instruments, it
shows you the objects that are allocated, where the CPU is spending all its time,
file	I/O,	network	I/O,	etc.Instruments	has	plug-ins	that	enable	you	to	inspect	these	
issues in more detail. Each plugin is known as an Instrument. Together, they can
help	you	track	down	inefficiencies	in	your	application	so	that	you	can	optimize	
your code.

The ObjectAlloc Instrument
There is a memory leak in TouchTracker. When the user double-taps, the screen
clears. At this point, all instances of Line should be deallocated, but they aren’t.
You’re	now	going	to	use	the	ObjectAlloc	instrument	to	confirm	this.

While	you	can	profile	the	application	running	on	the	simulator,	you’ll	get	more	
accurate data on the device. So, build the application for the device, and under
the Run menu, choose Run with Performance Tool -> Object Allocations.

Instruments will launch, and, as you interact with your application, it will keep track
of every object created and destroyed. Draw a while, double-tapping a few times
to clear the lines, and switch back to Instruments and click the Stop button to stop
recording.

In	the	Instruments	window,	find	the	row	for	instances	of	Line by scrolling through
the table or using the search bar underneath the table. Notice two counts for the
instance, Overall and Living.

Overall is a count of all the instances of Line that have been created during this
run of the application. It is the number of times alloc has been sent to the class
Line. Living is a count of all the instances of Line that have been created minus
those that have been deallocated (the number of Line objects that exist currently).
Because the overall and living Line counts are the same in this sampling, you
know that no instances of Line were deallocated even when you double-tapped to
clear lines from the screen. These Lines were leaked.

At the top of Instruments, there is a graph next to the ObjectAlloc instrument.
Right now, it is graphing all memory allocations.	You	can	modify	that	list	by	
checking and unchecking the boxes in the Graph column of the table. Uncheck
the	box	next	to	“*	All	Allocations	*”	and	check	Line as shown in Figure 17.5. (If you
don’t	see	“*	All	Allocations	*”,	clear	the	search	bar.)

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 293

Figure 17.5. Basic ObjectAlloc

If your Line objects were being properly deallocated, the graph would drop to zero
when you double-tapped to clear the drawing. Want to know more about those
pesky Line	instances	that	won’t	die?	If	you	select	the	row	for	Line, a small arrow
will appear in the Category column next to the word Line. Click that arrow to see
the detailed view (Figure 17.6). Select a particular instance to see the call stack as
it appeared when the instance was allocated. If you don’t see the stack, choose
View -> Extended Detail from the menu. Also, if the stack does not show the
names of the methods being called, make sure your application is being built with
the most recent version of the SDK. (In Xcode, choose the most recent version
from the Project menu’sSet Active SDK menu item and rebuild.)

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 294

Figure 17.6. Detail of one instance’s allocation

You	can	also	set	Instruments	to	show	you	every	retain and release. While
Instruments is not recording, open the Inspector for the ObjectAlloc instrument by
clicking on the info button next to it. Check Record Reference Counts as shown in
Figure 17.7. Run the application again by clicking the Record button.

Figure 17.7. Record reference counts

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 295

Now when you browse the instances, you can see how the stack appeared for
every retain and release (Figure 17.8).

Figure 17.8. Inspecting a release

OK,	time	to	fix	the	memory	leak.	In	touchesBegan:withEvent:, release newLine
after you add it to the dictionary:

- (void)touchesBegan:(NSSet *)touches
 withEvent:(UIEvent *)event
{
 for (UITouch *t in touches) {
 if ([t tapCount] > 1) {
 [self clearAll];
 return;
 }
 NSValue *key = [NSValue valueWithPointer:t];
 CGPoint loc = [t locationInView:self];
 Line *newLine = [[Line alloc] init];
 [newLine setBegin:loc];
 [newLine setEnd:loc];
 [linesInProcess setObject:newLine forKey:key];
 [newLine release];
 }
}

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 296

The Sampler Instrument
Now that you have hunted down wasted memory, let’s look for wasted CPU cycles
using the Sampler instrument. Add the following CPU wasting code to the end of
your drawRect: method:

 float f = 0.0;
 for (int i = 0; i < 1000; i++) {
 f = f + sin(sin(time(NULL) + i));
 }
 NSLog(@"f = %f", f);

Build your application. (Make sure you do this; otherwise Instruments will
use the previously built application.) Under the Run menu, select Run with
Performance Tool->CPU Sampler to install the application on your device and
launch Instruments with the Samplerand the CPU Monitor instruments. Run your
application by clicking the Record button and then draw something pretty.

CPU	Sampler	is	useful	for	finding	bottlenecks	in	your	code.	The	time	that	your	
application takes to call each function is compared to the total running time of
your application and expressed as a percentage. In a responsive application, the
majority of time will be spent in a function called mach_msg_trap. This is the
function your application sits in when it is doing nothing. Therefore, you want most
of your application’s time to be spent in this function.

Many	developers	using	Instruments	for	the	first	time	will	be	concerned	over	
this mach_msg_trap function. Don’t worry about it – a responsive application
may	report	near	100%	for	this	function.	However,	just	because	your	application	
does	not	spend	near	100%	of	its	time	in	mach_msg_trap does not mean it is
performing poorly. An application might spend a lot of time performing a task that
requires no user input – like processing an image after the user takes a picture.
This application would report a lot of time spent in some image processing
method.	Therefore,	there	is	no	rule	that	says,	“If	X	percentage	is	spent	in	this	
function, your application has a problem.”

Without	a	handy	rule,	how	do	you	determine	if	you	have	a	problem,	then?	You	
need to use the results of Instruments in conjunction with the user experience
of your application. If, for example, you draw a line in TouchTracker and the
application feels unresponsive, you should be concerned with the amount of time
being	spent	in	methods	while	your	finger	is	on	the	screen.	When	you	want	to	look	
at	a	specific	time	interval	(like	when	your	finger	is	on	the	screen),	you	can	drag	the	

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 297

playhead on top of the graph and click on the Inspection Range buttons to set the
start and stop time of the interval you are interested in.

Now, TouchTracker purposely wastes CPU time by calling the sin function over
and over again every time the view is redrawn. Find the number of samples that
your CPU spent running the sin function by locating sin symbol name in the table
(Figure 17.9).

Figure 17.9. Sampler

You	will	notice	that	a	small	percentage	of	time	is	spent	in	this	function;	however,	
relative	to	the	rest	of	the	function	calls,	the	percentage	is	very	high.	You	can	
select the row with sin in it and click the arrow next to it to see the call stack trace
for when this function is called. This will show you where you can optimize your
code. In this case, you aren’t using sin for anything other than learning how to
use Instruments, so the optimization is just to delete the CPU wasting code from
drawRect:.

When you get more comfortable with Instruments, you will see some common
function calls that always use a lot of CPU time. Most of the time, these are
harmless and unavoidable. For example, the objc_msgSend function will
occasionally creep up to the top of the list when you are sending a lot of
messages to objects. (It is the central dispatch function for any Objective-C
message.) Usually, it’s nothing to worry about. However, if you are spending more

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 298

time dispatching messages than actually doing the work in the methods that are
triggered and your application isn’t performing well, there is a problem that needs
solving.

As a real world example, some Objective-C developers might be tempted to
create classes for things like vectors, points, and rectangles for drawing. These
classes would likely have methods to add, subtract, or multiply instances in
addition to accessor methods to get and set instance variables. When such
classes are used, however, the drawing code has to send a lot of messages
to do simple things, like creating two vectors and adding them together. These
messages add excessive overhead to the simple operation that is being
performed. Therefore, the better alternative is to create data types like these as
structures and access their memory directly. (This is why CGRect and CGPoint
are structures and not Objective-C classes.)

This should give you a good start with the Instruments application. The more you
play	with	it,	the	more	adept	at	using	it	you	will	become.	However,	there	is	one	final	
word	of	warning	before	you	invest	a	significant	amount	of	your	development	time	
using Instruments: if there is no performance problem, don’t fret over every little
row	in	Instruments.	It	is	a	tool	for	finding	problems,	not	for	creating	them.	Write	
clean	code	that	works	first;	then,	if	there	is	a	problem,	you	can	find	and	fix	it	with	
the help ofInstruments.

Challenge: Saving and Loading
Save the lines when the application terminates. Reload them when the application
resumes.

Challenge: Circles
Use	two	fingers	to	draw	circles.	Try	having	each	finger	represent	one	corner	of	the	
bounding box around the circle. (Hint: This is much easier if you track touches that
are	working	on	a	circle	in	a	separate	dictionary.)	You	can	simulate	two	fingers	on	
the simulator by holding down the option button.

For the More Curious: UIControl
The class UIControl is the superclass for many objects in Cocoa Touch:
UIButton, UISlider, UITextField, etc. These objects seem magical – when a
touch event occurs in one of these views, an action message is dispatched

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 299

to a target. But there is no magic to any of these; UIControl simply overrides
UIResponder methods.

Consider a very common control event: UIControlEventTouchUpInside.	You’ve	
used this control event for the target-action pairs of all of the buttons in this book.
Now it’s time to see how UIControl implements it:

//	In	UIControl.m	-	Not	the	exact	code.	There	is	a	bit	more	going	on!
- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 // Reference to the touch that is ending
 UITouch *touch = [touches anyObject];

 // Location of that point in this control's coordinate system
 CGPoint touchLocation = [touch locationInView:self];

				//	Is	that	point	still	in	my	viewing	bounds?
 if (CGRectContainsPoint([self bounds], touchLocation))
 {
								//	Send	out	action	messages	to	all	targets	registered	for	this	event!
 [self sendActionsForControlEvents:UIControlEventTouchUpInside];
 } else {
 [self sendActionsForControlEvents:UIControlEventTouchUpOutside];
 }
}

Pretty	simple,	right?	Let’s	look	at	UIControlEventTouchDownRepeat:

//	In	UIControl.m	-	Not	the	exact	code.	There	is	a	bit	more	going	on!
- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 if ([[touches anyObject] tapCount] > 1)
 [self sendActionForControlEvents:UIControlEventTouchDownRepeat];
}

Those are easy. What about a UISlider?	When	a	touch	is	dragged	across	a	slider,	
the control knob moves, and then all targets are sent their action message for
UIControlEventValueChanged.

//	In	UISlider.m	-	Not	the	exact	code.	There	is	a	bit	more	going	on!

Chapter 17. Multi-Touch, UIResponder, and Using Instruments

Page 300

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];
 CGPoint touchLocation = [touch locationInView:self];
 CGRect bounds = [self bounds];
				float	sliderWidth	=	bounds.size.width;

 // Make sure the knob stays within the bounds
 if (touchLocation.x < bounds.origin.x)
 touchLocation.x = bounds.origin.x;
 if (touchLocation.x > bounds.origin.x + sliderWidth)
 touchLocation.x = bounds.origin.x + sliderWidth;

 // Update interface
 [self moveSliderKnobTo:touchLocation];

 // Figure out the new value
				float	normalizedPositionOfKnob
 = (touchLocation.x - bounds.origin.x) / sliderWidth;
				float	range	=	[self	maximumValue]	-	[self	minimumValue];
				float	newValue	=	[self	minimumValue]
 + normalizedPositionOfKnob * range;
 [self setValue:newValue];

 [self sendActionsForControlEvents:UIControlEventValueChanged];
}

So	how	do	these	actions	get	sent	to	the	right	target?	The	
method sendActionsForControlEvents: sends the message
sendAction:to:from:forEvent: to the singleton UIApplication instance for
each target-action pair registered for that event.UIApplication then delivers the
message to the appropriate target.

The controls could send the action messages to the target on their own, but
controls can also have nil-targeted actions. In fact, having nil-targeted actions
can be very useful. If a UIControl’s target is nil, UIApplication	finds	the	first	
responder of its UIWindow and sends the action message to it. This is exactly
how keyboard input works – each of the buttons on the keyboard have nil-
targeted actions, and UIApplication	sends	the	action	message	to	the	first	
responder, which is the active UITextField.	How	cool	is	that?

Chapter 18. Core Animation Layer

Page 301

Chapter 18. Core Animation Layer

One of the things that makes iPhone interfaces so beautiful is the use of
animation. When used properly, animation can increase the functionality of an
application	by	giving	the	user	visual	cues	about	the	workflow	of	the	application.

On the iPhone, the Core Animation API contains the classes and functions needed
to animate an application’s interface.

There are two classes that make Core Animation work: CALayer and
CAAnimation.

CALayer is, at its core, a buffer containing a bitmap. When you draw a layer (or,
more importantly, a stack of layers), the rendering is hardware-accelerated. This
makes drawing a layer to the screen incredibly fast. The idea of layers may be
new, but you’ve been been using layers this entire time: every view has a layer,
and when a view draws, it is drawing upon its layer.

CAAnimation is an object that causes a change over time. Typically, it is
changing one property (like opacity) of a layer while being driven by a timer
object.

In this chapter, we are going to focus on CALayer, and in the next chapter, we’ll
focus on CAAnimation.

To use any part of Core Animation, you need to add the QuartzCore framework to
your project. (In addition to Core Animation, the QuartzCore framework contains
the Core Image and Core Video APIs, although neither are available on the
iPhone yet.) Open your HypnoTime project. Double-click on the Target called
HypnoTime. In the General page of the info panel, add QuartzCore.framework to

Chapter 18. Core Animation Layer

Page 302

the linked libraries for the project as shown in Figure 18.1.

Figure 18.1. QuartzCore.framework

Chapter 18. Core Animation Layer

Page 303

Creating a CALayer
Like views, layers are arranged hierarchically: each layer can have sublayers.
Your	HypnosisView, like all views, already has one layer. In this section, you are
going to explicitly add a sublayer to it.

Figure 18.2. Object diagram

Add an instance variable to HypnosisView.h to hold on to the layer object you are
about to create:

#import <UIKit/UIKit.h>
#import <QuartzCore/QuartzCore.h>
@interface HypnosisView : UIView {
 CALayer *boxLayer;
 UIColor *stripeColor;

Chapter 18. Core Animation Layer

Page 304

				float	xShift,	yShift;
}

@end

The designated initializer for a CALayer is simply init. After you instantiate a
layer, you set its size, position (relative to its superlayer), and contents. In
HypnosisView.m, change the initWithFrame: method to create a new layer and
add it as a sublayer to HypnosisView’s layer.

- (id)initWithFrame:(CGRect)r
{
 [super initWithFrame:r];

 stripeColor = [[UIColor lightGrayColor] retain];

 // Create the new layer object
 boxLayer = [[CALayer alloc] init];

 // Give it a size
 [boxLayer setBounds:CGRectMake(0.0, 0.0, 85.0, 85.0)];

 // Give it a location
 [boxLayer setPosition:CGPointMake(160.0, 100.0)];

 // Make half-transparent red the background color for the layer
 UIColor *reddish = [UIColor colorWithRed:1.0 green:0.0 blue:0.0 al-
pha:0.5];

 // Get a CGColor object with the same color values
 CGColorRef cgReddish = [reddish CGColor];
 [boxLayer setBackgroundColor:cgReddish];

 // Make it a sublayer of the view's layer
 [[self layer] addSublayer:boxLayer];

 // boxLayer is retained by its superlayer
 [boxLayer release];

 return self;
}

Chapter 18. Core Animation Layer

Page 305

Build	and	run	the	application.	You	will	see	a	semi-transparent,	red	block	appear	on	
the view as shown in Figure 18.3.

Figure 18.3. Red layer

Layer Content
Layers interpret their size and position a little differently than views do. With
a UIView,	we	typically	define	the	frame of the view to establish its size and
position. The origin of the frame rectangle is the upper-left corner of the view,
and the size stretches right and down from the origin.

For a CALayer,	instead	of	defining	a	frame, you set the bounds and position
properties of the layer. By default, the position is the center of the layer in its
superlayer. (The anchorPoint property determines where the position lies within

Chapter 18. Core Animation Layer

Page 306

the layer’s bounds: the default value is (0.5, 0.5), the center.) Therefore, you can
change the size of the layer, but if the position remains constant, the layer will still
be centered on the same point.

You	can	still	set	or	get	the	frame of a layer by sending it the messages setFrame:
and frame. However, it is considered better practice to use the position and
bounds	properties.	Why?	You	cannot	animate	a	layer’s	frame. In fact, layers
do not have a frame property at all. When a layer is sent the message frame, it
computes a rectangle from its position and bounds properties. Similarly, when
sending a layer the message setFrame:, it does some math and then sets the
bounds and position properties. The mental math you will need to do to animate
a layer will be much simpler if you stick to setting the bounds and position
properties separately.

A layer is simply a bitmap. We refer to a layer’s appearance as its contents,
which can be set from an image or programmatically. To draw to a layer
programmatically, you either subclass CALayer or assign a delegate to an
instance of CALayer. The delegate will then implement drawing routines. The
drawing in these methods is done using Core Graphics. We will discuss these two
approaches for drawing a layer at the end of this chapter. For now, however, you
will	use	an	image	file	to	set	the	contents of the layer. Add the following code to
the initWithFrame: method:

- (id)initWithFrame:(CGRect)r
{
 [super initWithFrame:r];

 stripeColor = [[UIColor lightGrayColor] retain];

 boxLayer = [[CALayer alloc] init];
 [boxLayer setBounds:CGRectMake(0.0, 0.0, 85.0, 85.0)];
 [boxLayer setPosition:CGPointMake(160.0, 100.0)];

 UIColor *reddish = [UIColor colorWithRed:1.0 green:0.0 blue:0.0 alpha:0.5];
 CGColorRef cgReddish = [reddish CGColor];
 [boxLayer setBackgroundColor:cgReddish];

 // Create a UIImage
 UIImage *layerImage = [UIImage imageNamed:@"Hypno.png"];

 // Get the underlying CGImage
 CGImageRef image = [layerImage CGImage];

Chapter 18. Core Animation Layer

Page 307

 // Put the CGImage on the layer
 [boxLayer setContents:(id)image];

 // Inset the image a bit on each side
 [boxLayer setContentsRect:CGRectMake(-0.1, -0.1, 1.2, 1.2)];

 // Let the image resize (without changing the aspect ratio)
 // to fill the contentRect
 [boxLayer setContentsGravity:kCAGravityResizeAspect];

 [[self layer] addSublayer:boxLayer];
 [boxLayer release];
 return self;
}

Build	and	run	the	application.	You	will	see	an	image	on	the	layer	as	shown	in	
Figure 18.4.

Figure 18.4. Layer with image

Chapter 18. Core Animation Layer

Page 308

The contents and backgroundColor properties of the CALayer were set with
objects of type CGImageRef and CGColorRef,	respectively.	You	are	used	to	
working with UIImage and UIColor, so why doesn’t Core Animation just use these
types	of	objects?

UIKit (where we get UIImage	and	anything	else	prefixed	with	UI) only exists on
the iPhone. Core Animation, however, exists on the iPhone and on the Mac.
This means using the Core Graphics types makes your code portable between
systems. Fortunately, UIKit objects have methods to easily switch between
themselves and their Core Graphics counterparts (for example, UIImage’s
CGImage and initWithCGImage: methods).

Just like with views, layers have a pointer to their parent layer. While views
call this pointer superview, layers, as you may have guessed, call this pointer
superlayer. When a layer is drawn, it copies its contents to the screen, and then
each sublayer copies its contents to the screen. Therefore, a layer always draws
on top of its superlayer.

Each layer has a property, zPosition, that determines how far away it is from
the plane of the screen. If two layers are siblings (that is, they have the same
superlayer) and they overlap, then the layer with the higher z-position is drawn
last. (A sublayer always draws on top of its superlayer, regardless of zPosition.)
A layer’s zPosition defaults to 0 and can be set to a negative value.

 [aLayer setZPosition:-5];
 [bLayer setZPosition:5];
 [parentLayer addSublayer:bLayer];
 [parentLayer addSublayer:aLayer];

				//	bLayer	draws	on	top	of	aLayer!

Chapter 18. Core Animation Layer

Page 309

Figure 18.5. Perspective vs. Orthographic

When the Z-axis is discussed, some developers think there is perspective applied,
and they expect a layer to appear larger as its zPosition increases. However,
Core Animation layers are presented orthographically and thus, will not appear as
a different size based on their zPositions.	(You	can	of	course	fake	perspective	
by changing the transform or bounds properties of a layer, but at that point, you
might be better served using OpenGL ES directly.)

Implicitly Animatable Properties
Several of the properties of CALayer are implicitly animatable. Changes to these
properties are animated just by invoking the setter method for them. The property
position is an example of an implicitly animatable property. Therefore, sending
the message setPosition: to a CALayer will trigger an animation that changes
the position of that layer over a small amount of time.

In this section, you are going to add a response to user taps: the layer will move
to wherever the user starts a touch by sending it the message setPosition:. The
motion will be animated because position is an implicitly animatable property.
Add the following to HypnosisView.m:

- (void)touchesBegan:(NSSet *)touches
 withEvent:(UIEvent *)event
{

Chapter 18. Core Animation Layer

Page 310

 UITouch *t = [touches anyObject];
 CGPoint p = [t locationInView:self];
 [boxLayer setPosition:p];
}

Build and run the application. The layer will move smoothly to where you start a
touch.

What	if	the	user	drags?	The	layer	should	follow	the	user’s	finger.	Implement	a	
similar method:

- (void)touchesMoved:(NSSet *)touches
 withEvent:(UIEvent *)event
{
 UITouch *t = [touches anyObject];
 CGPoint p = [t locationInView:self];
 [boxLayer setPosition:p];
}

Build and run the application. Notice how the animation makes the layer lag
behind the drag. This makes the application seem sluggish.

Implicit animation is convenient, but it causes problems in some cases. All
implicitly animatable properties change to their destination value over a constant
time interval. However, changes to the property of a layer while it is currently
being animated restarts an implicit animation. Therefore, if a layer is in the middle
of traveling from point A to point B, and you tell it to go to point C, it will never
reach B; and that little instantaneous change of direction coupled with the timer
restarting is what makes the animation look choppy. (Figure 18.6)

Chapter 18. Core Animation Layer

Page 311

Figure 18.6. Animation missing waypoints

If you wish to disable an implicit animation, you can use an animation transaction.
Animation transactions allow you to batch implicit animations and set the
parameters of the animation, like the duration and animation curve. To begin
a transaction, you send the message begin to the class CATransaction. To
end a transaction, you send commit to CATransaction. Within the begin and
commit block, you can set properties of a layer as normal and also set values for
CATransaction. In touchesMoved:withEvent:, use CATransaction to disable
the animation during a drag:

- (void)touchesMoved:(NSSet *)touches
 withEvent:(UIEvent *)event
{
 UITouch *t = [touches anyObject];
 CGPoint p = [t locationInView:self];
 [CATransaction begin];
 [CATransaction setValue:[NSNumber numberWithBool:YES]
 forKey:kCATransactionDisableActions];
 [boxLayer setPosition:p];
 [CATransaction commit];
}

Chapter 18. Core Animation Layer

Page 312

Build and run the application. Dragging should feel much more responsive.

For the More Curious: Programmatically Generating
Content
In this chapter, you provided the content of a layer with the instance method
setContents:. There are two other ways of drawing to a layer which use Core
Graphics: subclassing and delegation. In practice, subclassing is the last thing
you want to do. The only reason to subclass CALayer to provide custom content
is if you need to draw differently depending on the state of the layer. If this is the
approach you wish to take, you must override the method drawInContext:.

@implementation LayerSubclass

- (void)drawInContext:(CGContextRef)ctx
{
 UIImage *layerImage = nil;
 if (hypnotizing)
 layerImage = [UIImage imageNamed:@"Hypno.png"];
 else
 layerImage = [UIImage imageNamed:@"Plain.png"];

 CGRect boundingBox = CGContextGetClipBoundingBox(ctx);
 CGContextDrawImage(ctx, boundingBox, [layerImage CGImage]);
}
@end

Delegation is the more common way to programmatically draw to a layer. A layer
sends the message drawLayer:inContext: to its delegate object when it is being
displayed. The delegate can then perform Core Graphics calls on this context.

@implementation Controller

- (void)drawLayer:(CALayer *)layer inContext:(CGContextRef)ctx
{
 if (layer == hypnoLayer)
 {
 UIImage *layerImage = [UIImage imageNamed:@"Hypno.png"];
 CGRect boundingBox = CGContextGetClipBoundingBox(ctx);
 CGContextDrawImage(ctx, boundingBox, [layerImage CGImage]);
 }

Chapter 18. Core Animation Layer

Page 313

}
@end

For both subclassing and delegation, you must send an explicit setNeedsDisplay
to the layer in order for these methods to be invoked. Otherwise, the layer thinks
it doesn’t have any content and won’t draw. Another fun tip: don’t ever set the
delegate of an explicit layer to a UIView. We’ll discuss why in the next section.

For the More Curious: Layers and Views
In conversation, we talk about a view as though it is visible object that is drawn to
the screen – and this works well for discussing views and understanding higher
level concepts. However, this is technically inaccurate. A view doesn’t know how
to draw to the screen; it only knows how to draw to a layer. A layer is the only thing
that draws to the screen in iPhone OS. (On the Desktop, Core Animation was
introduced later in the game, so views and layers draw differently.)

Okay, okay, take a deep breath, slow down, I know it’s crazy, but it’s true. Every
view has a layer and there is a matching layer hierarchy that mimics the view
hierarchy (Figure 18.7). We call layers created automatically by a view implicit
layers (and we will call layers created by sending alloc to the class CALayer
explicit	layers).	You	might	hear	implicit	layers	referred	to	as	the	layer	in	layer-
backed views, but this only makes sense on the Desktop where views are the
focus and layers are optional.

Figure 18.7. View and corresponding layer hierarchy

Chapter 18. Core Animation Layer

Page 314

A layer is simply a bitmap – a chunk of memory that holds the red, green, blue
and alpha values of each pixel. When you send the message setNeedsDisplay
to a UIView instance, that method is forwarded to the view’s layer. After the run
loop is done processing an event, every layer marked for re-display prepares a
CGContextRef. Drawing routines called on this context generate pixels that end
up in the layer’s bitmap.

How	do	drawing	routines	get	called	on	the	layer’s	context?	After	an	implicit	
layer prepares its context, it sends the message drawLayer:inContext: to its
delegate. The delegate of an implicit layer is its view. In the implementation
fordrawLayer:inContext:, the view sends drawRect: to itself. Therefore, when
you see this line on top of your drawRect: implementations,

- (void)drawRect:(CGRect)r
{
 CGContextRef ctx = UIGraphicsGetCurrentContext();
}

you are getting a pointer to the layer’s context. All of the drawing in drawRect:
is	filling	the	layer’s	bitmap,	which	is	then	copied	to	the	screen.	Need	to	see	for	
yourself?	Set	an	Xcode	breakpoint	in	HypnosisView’s drawRect: and check out
the stack trace as shown in Figure 18.8.

Figure 18.8. Stack trace in drawRect:

A few paragraphs up, we mentioned that the pixels generated by drawing routines
end	up	in	the	layer’s	bitmap.	What	exactly	does	that	mean?	When	you	want	
to create a bitmap context in Cocoa Touch (as you did when you created the
thumbnails for the possessions), you typically do something like this:

 // Create context
 UIGraphicsBeginImageContext(size);

Chapter 18. Core Animation Layer

Page 315

 ... Do drawing here ...

 // Get image result
 UIImage *result = UIGraphicsGetImageFromCurrentImageContext();

 // Clean up image context
 UIGraphicsEndImageContext();

A bitmap context is created and drawn to, and the resulting pixels are then stored
in a UIImage instance.

The UIGraphics suite of functions is a convenient way of creating a bitmap
CGContextRef and writing that data to a UIImage object by calling the following
code:

 // Create a color space to use for the context
 CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

 // Create a context of appropriate width and height
 // with 4 bytes per pixel - RGBA
 CGContextRef ctx =
 CGBitmapContextCreate(NULL, width, height, 8, width * 4,
 colorSpace, kCGImageAlphaPremultipliedLast);

 // Make this context the current one
 UIGraphicsPushContext(ctx);

 ... Do drawing here ...

 // Get image result
 CGImageRef image = CGBitmapContextCreateImage(ctx);
 UIImage *result = [[[UIImage alloc] initWithCGImage:image] autorelease];

 // Clean up image context - make previous context current if one exists
 UIGraphicsPopContext();
 CGImageRelease(image);
 CGContextRelease(ctx);
 CGColorSpaceRelease(colorSpace);

A layer creates the same kind of context when it needs to redraw its contents.

Chapter 18. Core Animation Layer

Page 316

However, it does it a little differently. See the NULL	as	the	first	parameter	to	
CGBitmapContextCreate?	That	is	where	you	pass	a	data	buffer	to	hold	the	
pixels generated by drawing routines in this context. By passing NULL, we say,
“Core	Graphics,	figure	out	how	much	memory	is	needed	for	this	buffer,	create	it,	
and then dispose of it when the context is destroyed.” A CALayer already has a
buffer (its contents), so it would call the function as follows:

 CGContextRef ctx =
 CGBitmapContextCreate(myBitmapPixels, width, height, 8, width * 4,
 colorSpace, kCGImageAlphaPremultipliedLast);

Therefore, when this context is drawn to, all of the resulting pixels are immediately
written	to	the	bitmap	that	is	the	layer.	Cool,	huh?

So	what	is	the	point	of	having	views	when	we	have	layers?	UIView is a subclass
of UIResponder and can handle touches. A view is really an abstraction of a
visible object that can be interacted with on the screen, conveniently wrapped into
a tidy class.

Challenge: Dynamic Layer Content
Give boxLayer a delegate to draw its content. When the layer is near the top
of the screen, draw the Hypno image to the layer in the delegate method with
full opacity. As the layer approaches the bottom of the screen, draw the image
more	transparently.	This	is	a	very	difficult	challenge,	so	you	can	have	three	
hints: 1) the delegate of boxLayer cannot be HypnosisView, 2) you must send
setNeedsDisplay to the layer every time it changes in position, and 3) to set the
opacity of drawing in a context, use the function CGContextSetAlpha. Happy
coding.

Chapter 19. Controlling Animation With CAAnimation

Page 317

Chapter 19. Controlling Animation with
CAAnimation
An animation object drives change over time. While you have not yet used anima-
tion objects explicitly, all the animation in iPhone OS is driven by instances of the
different	animation	classes.	An	animation	object	is	an	instruction	set	(“Move	from	
point A to point B over 2 seconds”) that can be added to a CALayer instance.
Many properties of CALayer can be animated by animation objects: opacity,
position, transform, bounds and contents are just a few. When an animation
object is added to a layer, that layer begins following the instructions of the anima-
tion.

Animation Objects
The abstract superclass for all animation objects is CAAnimation. CAAnimation
is responsible for handling timing; it has a duration	property	that	specifies	the	
length of the animation. As an abstract superclass, you do not use CAAnimation
objects directly. Instead, you will use one of its several concrete subclasses that
are shown in Figure 19.1.

Figure 19.1. Inheritance

CAPropertyAnimation is a subclass of CAAnimation and extends on the ability
of its superclass to keep track of time by adding functionality to change the
properties of a layer. Each property animation has a key path of type NSString.
This string is the name of an animatable property of a CALayer. Many of

Chapter 19. Controlling Animation With CAAnimation

Page 318

CALayer’s properties are animatable; the documentation has an Animatable
Properties section for a list of the possibilities (Figure 19.2). Typically, the key path
matches the name of the property. For example, a property animation that will
animate a layer’s opacity property will have a key path of opacity.

 // This property animation will be able to modify the opacity
 // property of any layer it is added to
 CAPropertyAnimation *propAnimation =
 [CAPropertyAnimation animationWithKeyPath:@"opacity"];

Figure 19.2. Animatable Properties in the documentation

Sometimes properties whose type is a structure (like position, whose type is
CGPoint) can have each of their members accessed by a key path. (The available
options for this are in the documentation under Core Animation Extensions To
Key-Value Coding.)

 CAPropertyAnimation *propAnimation =
 [CAPropertyAnimation animationWithKeyPath:@"position.x"];

Chapter 19. Controlling Animation With CAAnimation

Page 319

However, just like with CAAnimation, you do not create instances of type
CAPropertyAnimation. To create animation objects that modify a property of
a layer, you use one of the two concrete subclasses of CAPropertyAnimation:
CABasicAnimation or CAKeyframeAnimation. Instances of these two classes
allow you to specify the actual values that the key path property will change to
over the duration of an animation. Most of the time you will spend with Core
Animation will involve these two classes. CABasicAnimation is the simpler
version of the two. It has two properties: fromValue and toValue. When a basic
animation is added to a layer, the property it is modifying is set to the value in
fromValue. As the animation progresses, the value of the property is interpolated
linearly from fromValue to toValue as shown in Figure 19.3.

 // This animation object will act on a layer's opacity property
 CABasicAnimation *fader = [CABasicAnimation animationWithKeyPath:@"opac
ity"];
 // ... it will last for 1 second ...
 [fader setDuration:1.0];
 // ... the layer's opacity will start at 1.0 at t = 0 and move towards...
 [fader setFromValue:[NSNumber numberWithFloat:1.0]];
				//	...	0.0	where	it	finishes	at	t	=	1.0
 [fader setToValue:[NSNumber numberWithFloat:0.0]];

Figure 19.3. Interpolating a CABasicAnimation that animates the
position of a layer

Notice how these properties take an NSNumber as an argument. Because
animation objects need to be able to support different data types (an animation
that changes the position of a layer would need values that are of type CGPoint,
for example), the type of these properties is id – any Objective-C object.

Chapter 19. Controlling Animation With CAAnimation

Page 320

However, you can’t just pass any object you like, CABasicAnimation expects the
appropriate object determined by the key path. For scalar values, like opacity,
you can wrap a number in an NSNumber instance. For properties represented by
structures, like position, you will wrap the structures in instances of NSValue.

 CABasicAnimation *mover =
 [CABasicAnimation animationWithKeyPath:@"position"];
 [mover setDuration:1.0];
 [mover setFromValue:[NSValue valueWithCGPoint:CGPointMake(0.0, 100.0)]];
 [mover setToValue:[NSValue valueWithCGPoint:CGPointMake(100.0, 100.0)]];

The difference between CABasicAnimation and CAKeyframeAnimation is
that basic animations only interpolate two values while keyframe animations
can interpolate as many values as you want. For a CAKeyframeAnimation, the
values are put into an NSArray in the order they are to occur. This array is then
set as the values property of the CAKeyframeAnimation instance.

 CAKeyframeAnimation *mover =
 [CAKeyframeAnimation animationWithKeyPath:@'position"];
 NSArray *vals = [NSMutableArray array];
 [vals addObject:[NSValue valueWithCGPoint:CGPointMake(0.0, 100.0)]];
 [vals addObject:[NSValue valueWithCGPoint:CGPointMake(100.0, 100.0)]];
 [mover setValues:vals];
 [mover setDuration:1.0];

Each value is called a keyframe. Keyframes are the values that the animation will
interpolate through. The animation will take the property it is animating through
each of these keyframes over its duration, interpolating between each one. A
basic animation is actually the same thing as a keyframe animation except it is
limited to only two keyframes. Regardless of which type of animation object is
used, the values are called keyframes. (CAKeyframeAnimation also adds the
ability to change the timing of each of the keyframes, but that is getting a little too
advanced for what we want to talk about right now.)

The other two CAAnimation subclasses are used less often.
CAAnimationGroup instances hold an array of animation objects. When one is
added to a layer, all of the animations in the group will run concurrently.

Chapter 19. Controlling Animation With CAAnimation

Page 321

 CABasicAnimation *mover = [CABasicAnimation animationWithKeyPath:@"pos
ition"];
 [mover setDuration:1.0];
 [mover setFromValue:[NSValue valueWithCGPoint:CGPointMake(0.0, 100.0)]];
 [mover setToValue:[NSValue valueWithCGPoint:CGPointMake(100.0, 100.0)]];

 CABasicAnimation *fader = [CABasicAnimation animationWithKeyPath:@"opac
ity"];
 [fader setDuration:1.0];
 [fader setFromValue:[NSNumber numberWithFloat:1.0]];
 [fader setToValue:[NSNumber numberWithFloat:1.0]];

 CAAnimationGroup *group = [CAAnimationGroup animation];
 [group setAnimations:[NSArray arrayWithObjects:fader, mover, nil]];

CATransition animates layers as they are transitioning on and off the screen.
On Mac OS X, CATransition is made very powerful by Core Image Filters.
On iPhone OS, it can only do a couple of simple transitions like fading and
sliding. (CATransitionis used by UINavigationController when pushing a view
controller’s view on to the screen.)

Spinning the Time with CABasicAnimation
As mentioned in Chapter 18, every view has an implicit layer. In this section, you
are	going	to	use	an	animation	object	to	spin	the	implicit	layer	of	the	time	field	
in HypnoTime’s CurrentTimeViewController when it is updated (Figure 19.4).
Quick update on what we mean by explicit and implicit animations and layers:

•	 explicit animation: an instance of a CAAnimation subclass

•	 implicit animation: an animation that occurs when setting an implicitly
animatable property of a CALayer; happens automatically

•	 explicit layer: a layer created by calling [[CALayer alloc] init] or [CALayer
layer]

•	 implicit layer: a layer created by a view when the view is instantiated; happens
automatically

Chapter 19. Controlling Animation With CAAnimation

Page 322

Figure 19.4. Current time mid-spin

Open HypnoTime.xcodeproj. Before you can write any Core Animation code,
you need link to the framework that contains Core Animation: QuartzCore. (This
framework is not named Core Animation because it also contains Core Image and
Core Video, although they are only available on the Desktop.)

Add the QuartzCore framework to your project. The animation code you will write
in this exercise will be in CurrentTimeViewController.m.	So,	at	the	top	of	this	file,	
import the header from the QuartzCore framework.

#import <QuartzCore/QuartzCore.h>

@implementation CurrentTimeViewController

Chapter 19. Controlling Animation With CAAnimation

Page 323

In order to spin the timeLabel, you need an animation object that will apply a 360
degree rotation over time to a layer. So we need to determine four things:

•	 What	type	of	animation	object	suits	this	purpose?

•	 What	key	path	handles	rotation?

•	 How	long	should	the	animation	take	to	complete?

•	 What	values	should	the	animation	interpolate	over?

To	answer	the	first	question,	think	about	the	number	of	keyframes	an	animation	
that does a complete revolution needs. It only needs two: an non-rotated value
and a fully rotated value. The animation will interpolate between these two points;
therefore, CABasicAnimation can handle this task.

To	determine	the	key	path,	we	must	find	the	property	of	CALayer that deals with
rotation. This property is its transform, the transformation matrix that is applied to
the layer when it draws. The transform of a layer can rotate, scale, translate, and
skew its frame. This exercise only calls for rotating the layer, and, fortunately, you
can isolate the rotation of the transform in a key path (Figure 19.5). Therefore,
the key path of the basic animation will be transform.rotation.

Figure 19.5. Core Animation Extensions To
Key-Value Coding Documentation

Chapter 19. Controlling Animation With CAAnimation

Page 324

The duration of this animation should be one second; enough time for the user to
see the spin but not too much time that they get bored watching it.

Lastly, the values of the two keyframes: the documentation says that the
transform.rotation is in radians. The two values will then be 0 radians and 2 *
PI radians for a full revolution. The default value of the transform property is the
identity matrix – it has no rotation. When using a CABasicAnimation, if you do
not supply a fromValue, the animation will assume that fromValue is the current
value	of	that	property.	Therefore,	you	only	have	to	supply	the	final	keyframe	to	
this animation object. Add the creation of the animation object to the method
showCurrentTime: in CurrentTimeViewController.m.

- (IBAction)showCurrentTime:(id)sender
{
 NSDate *now = [NSDate date];
 static NSDateFormatter *formatter = nil;
				if	(!formatter)	{
 formatter = [[NSDateFormatter alloc] init];
 [formatter setDateStyle:NSDateFormatterShortStyle];
 }
 [timeLabel setText:[formatter stringFromDate:now]];

 // Create a basic animation
 CABasicAnimation *spin =
 [CABasicAnimation animationWithKeyPath:@"transform.rotation"];

 // fromValue is implied
 [spin setToValue:[NSNumber numberWithFloat:M_PI * 2.0]];
 [spin setDuration:1.0];
}

Now that you have an animation object, it needs to be applied to a layer
for it to have any effect. CALayer instances implement the method
addAnimation:forKey: for this purpose. This method takes two arguments: an
animation object and a key. This key is not the key path; it is simply a human-
readable name for this animation. Later on, you might want to reference an
animation	that	a	layer	is	performing.	You	will	use	this	key	to	get	that	animation	
object. Add the following line of code to showCurrentTime:.
- (IBAction)showCurrentTime:(id)sender
{

Chapter 19. Controlling Animation With CAAnimation

Page 325

 NSDate *now = [NSDate date];
 static NSDateFormatter *formatter = nil;
				if	(!formatter)	{
 formatter = [[NSDateFormatter alloc] init];
 [formatter setDateStyle:NSDateFormatterShortStyle];
 }
 [timeLabel setText:[formatter stringFromDate:now]];

 CABasicAnimation *spin =
 [CABasicAnimation animationWithKeyPath:@"transform.rotation"];

 [spin setToValue:[NSNumber numberWithFloat:M_PI * 2.0]];
 [spin setDuration:1.0];

 // Kick off the animation by adding it to the layer
 [[timeLabel layer] addAnimation:spin
 forKey:@"spinAnimation"];
}

Build	and	run	the	application.	The	label	field	should	spin	360	degrees	when	it	is	
updated – either by switching to the Time tab or tapping the button. Note how the
animation object exists independently of the layer it is applied to. This animation
object could be added to any layer and that layer would rotate 360 degrees.
You	can	create	animation	objects	and	keep	them	around	for	later	use,	however,	
make sure you retain them if you plan to do this. (Because there is no alloc in
animationWithKeyPath:, the animation object is autoreleased.)

Timing functions
You	may	notice	that	the	label	field’s	layer	lurches	into	motion	and	stops	suddenly.	
It would look nicer if it gradually accelerated and decelerated. This sort of behavior
is controlled by the animation’s timing function. By default, the timing function
is linear – values are interpolated linearly. The timing functions will change how
these animations are interpolated. They will not change the duration or the
keyframes, though. Change the timing function of the animation:

- (IBAction)showCurrentTime:(id)sender
{
 NSDate *now = [NSDate date];
 static NSDateFormatter *formatter = nil;
				if	(!formatter)	{

Chapter 19. Controlling Animation With CAAnimation

Page 326

 formatter = [[NSDateFormatter alloc] init];
 [formatter setDateStyle:NSDateFormatterShortStyle];
 }
 [timeLabel setText:[formatter stringFromDate:now]];

 // Create a basic animation
 CABasicAnimation *spin =
 [CABasicAnimation animationWithKeyPath:@"transform.rotation"];

 [spin setToValue:[NSNumber numberWithFloat:M_PI * 2.0]];
 [spin setDuration:1.0];

 // Set the timing function
 CAMediaTimingFunction *tf = [CAMediaTimingFunction
 functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
 [spin setTimingFunction:tf];

 // Make the animation move the layer
 [[timeLabel layer] addAnimation:spin
 forKey:@"spinAnimation"];
}

Build and run the application. Note the difference.

There are four timing functions, you have seen linear and ease-in-ease-out. There
is also kCAMediaTimingFunctionEaseIn (accelerates gradually, stops suddenly)
and kCAMediaTimingFunctionEaseOut (accelerates suddenly, stops slowly).

Animation completion
Sometimes,	you	want	to	know	when	an	animation	is	finished.	How	would	you	
know	when	the	animation	is	complete?	Every	animation	object	can	have	a	
delegate, and it sends the message animationDidStop:finished: to its delegate
when an animation stops. Edit CurrentTimeViewController.m so that it logs a
message to the console when the animations stops.

- (void)animationDidStop:(CAAnimation *)anim finished:(BOOL)flag
{
 NSLog(@"%@ finished: %d", anim, flag);
}

Chapter 19. Controlling Animation With CAAnimation

Page 327

- (IBAction)showCurrentTime:(id)sender
{
 NSDate *now = [NSDate date];
 static NSDateFormatter *formatter = nil;
				if	(!formatter)	{
 formatter = [[NSDateFormatter alloc] init];
 [formatter setDateStyle:NSDateFormatterShortStyle];
 }
 [timeLabel setText:[formatter stringFromDate:now]];

 // Create a basic animation
 CABasicAnimation *spin =
 [CABasicAnimation animationWithKeyPath:@"transform.rotation"];
 [spin setToValue:[NSNumber numberWithFloat:M_PI * 2.0]];
 [spin setDuration:1.0];

 // Set the timing function
 CAMediaTimingFunction *tf = [CAMediaTimingFunction
 functionWithName:kCAMediaTimingFunctionEaseInEaseOut];
 [spin setTimingFunction:tf];

 [spin setDelegate:self];

 // Make the animation move the layer
 [[timeLabel layer] addAnimation:spin
 forKey:@"spinAnimation"];
}

Build and run the application. Notice the log statements when the animation is
complete. If you press the button several times quickly, the animation in progress
will be interrupted by a new one. The interrupted animation will still send the
message animationDidStop:finished:	to	its	delegate;	however,	the	finished	flag	
will be NO.	You	will	typically	use	this	delegate	method	to	either	chain	animations	
or update another object when an animation completes.

Bouncing the Time with a CAKeyframeAnimation
As an example of CAKeyframeAnimation,	you	are	going	to	make	the	label	field	
grow and shrink (Figure 19.6).

Chapter 19. Controlling Animation With CAAnimation

Page 328

Figure 19.6. Current time mid-bounce

Comment out the spin animation, and replace it with a nice bounce. The method
showCurrentTime: should look like this:

- (IBAction)showCurrentTime:(id)sender
{
 NSDate *now = [NSDate date];
 static NSDateFormatter *formatter = nil;
				if	(!formatter)	{
 formatter = [[NSDateFormatter alloc] init];
 [formatter setDateStyle:NSDateFormatterShortStyle];
 }
 [timeLabel setText:[formatter stringFromDate:now]];

Chapter 19. Controlling Animation With CAAnimation

Page 329

 // Create a key frame animation
 CAKeyframeAnimation *bounce =
 [CAKeyframeAnimation animationWithKeyPath:@"transform"];

 // Create the values it will pass through
 CATransform3D forward = CATransform3DMakeScale(1.3, 1.3, 1);
 CATransform3D back = CATransform3DMakeScale(0.7, 0.7, 1);
 CATransform3D forward2 = CATransform3DMakeScale(1.2, 1.2, 1);
 CATransform3D back2 = CATransform3DMakeScale(0.9, 0.9, 1);
 [bounce setValues:[NSArray arrayWithObjects:
 [NSValue valueWithCATransform3D:CATransform3DIdentity],
 [NSValue valueWithCATransform3D:forward],
 [NSValue valueWithCATransform3D:back],
 [NSValue valueWithCATransform3D:forward2],
 [NSValue valueWithCATransform3D:back2],
 [NSValue valueWithCATransform3D:CATransform3DIdentity],
 nil]];
 // Set the duration
 [bounce setDuration:0.6];

 // Animate the layer
 [[timeLabel layer] addAnimation:bounce
 forKey:@"bounceAnimation"];
}

Build	and	run	the	application.	The	time	field	should	now	scale	up	and	down	and	
up and down when it is updated. The constant CATransform3DIdentity is the
identity matrix. When the transform of a layer is the identity matrix, no scaling,
rotation, or translation is applied to the layer: it sits squarely within its bounding
box at its position. So, this animation starts at no transformation, scales it a few
times, and then reverts back to no transformation.

Once you understand layers and the basics of animation, there isn’t a whole lot
to	it	–	other	than	finding	the	appropriate	key	path	and	getting	the	timing	of	things	
right. (There might also be some linear algebra in there... but we don’t want to
scare you.) Core Animation is one of those things you can play around with and
see	results	immediately.	So	play	with	it!

Chapter 19. Controlling Animation With CAAnimation

Page 330

Challenge: More Animation
When the time label bounces, it should also change its opacity. Try and match
the fading of the opacity with the shrinking and growing of the label. As another
challenge, after the CurrentTimeViewController’s view slides onto the screen,
have	theWhat	time	is	it?	button	slide	in	from	the	other	direction.

For the More Curious: Presentation and Model Layers
What	would	happen	if	you	were	to	omit	the	final	CATransform3DIdentity from
the	bounce	animation?	You	can	see	for	yourself	that	the	bounce	“snaps”	back	
into its original position as the animation ends. Why doesn’t the layer just stop
at	the	final	position	when	the	animation	ends?	A	layer	has	properties	like	any	
other	object.	When	an	animation	is	added	to	a	layer,	it	temporarily	modifies	the	
layer but does not change the actual property it is modifying. Therefore, if you are
animating a layer to a new value at which it should remain after the animation is
finished,	you	must	set	the	property	you	are	animating	to	the	final	value.

Let’s use an example to make this easier to understand: you want a layer to move
from point A to B and then stay at point B using CABasicAnimation with key
path position. To do this, you must add the animation to the layer to perform the
animation and then set the layer’s position property to point B so it remains there
after the animation completes. When would you set the position	property?	Crazily	
enough, you can do it before or after you apply the animation.

 CABasicAnimation *move = [CABasicAnimation animationWithKeyPath:@"posi
tion"];
 [move setFromValue:[NSValue valueWithCGPoint:[layer position]];
 [move setToValue:[NSValue valueWithCGPoint:pointB]];

				//	You	could	set	the	destination	position	here...
 [layer setPosition:pointB];

 [layer addAnimation:move forKey:@"move"];

 // Or you could set the destination position here
 [layer setPosition:pointB];

Okay,	so	why	does	setting	the	final	position	work	in	either	of	those	spots?	

Chapter 19. Controlling Animation With CAAnimation

Page 331

Redrawing doesn’t happen while the thread of execution is in your method. The
run loop has to regain control and only then will it begin animating and drawing.
Since the layer is animating the next time it is supposed to be drawn, it doesn’t
matter what its position property is set to, the animated version of the layer is
being drawn instead.

Core Animation makes a distinction between the values of the properties of a
layer and the values of the properties of a layer while animating. When a layer
is not animating, you can, of course, determine the values of its properties
by sending the appropriate messages to the layer instance. When a layer is
animating, you can get the current value of its properties that are being displayed
on the screen by accessing a layer’s presentationLayer. Sending the message
presentationLayer to a layer will return a copy of the layer object, and the copy
will have the current values for each property while animating.

 CGPoint whereIsItWhenAnimationStops = [layer position];
 CGPoint whereIsItNow = [[layer presentationLayer] position];

This is useful if you need to change a layer’s animation while another animation
is already occurring. If a layer is moving from point A to point B, and the user’s
input forces the layer to move to point C during the animation, you would have to
know where the layer currently is to make a smooth transition to point C. Querying
the presentation layer is also useful if you are using a layer for timing in your
application. Imagine a game that has animating objects on the screen, and if the
user taps one of the objects, it blows up. Only the presentation layer knows where
the object currently is on the screen.

There	is	one	“gotcha”	to	this	process:	if	you	do	not	specify	a	fromValue when
using CABasicAnimation and set the property to the ending point of the
animation,	no	animation	occurs.	Why?	Without	a	fromValue, the animation
assumes that the starting point of the animation is the current value of the layer
for	that	key	path.	If	the	starting	value	is	the	same	as	the	final	value,	there	is	no	
change and therefore no animation. (If the fromValue is not set, it is computed
when the run loop starts the animation, not when you add the animation to a
layer.)

Chapter 20. Playing Audio and Video

Page 332

Chapter 20. Playing Audio and Video
Many applications on a mobile device have a need for audio and video playback.
The iPhone SDK offers a few options for audio playback routines and a single way
to	play	video	files,	and,	in	this	chapter,	you	will	learn	how	to	use	them.

Creating the MediaPlayer Application
Create a Window-Based Application in Xcode. Name this project MediaPlayer.

This application will have a very simple interface so that you can concentrate
on the guts of media playback. The window will display three buttons, and each
button will initiate playback of a different kind of media: compressed audio, video,
or system sounds (Figure 20.1).

Figure 20.1. MediaPlayer

Chapter 20. Playing Audio and Video

Page 333

Figure 20.2. MediaPlayer object diagram

Each button needs an action method. Declare these methods (and an instance
variable for one of the buttons whose title will change during runtime) in
MediaPlayerAppDelegate.h.

@interface MediaPlayerDelegate : NSObject <UIApplicationDelegate>
{
 UIWindow *window;
 IBOutlet UIButton *audioButton;
}
@property (nonatomic, retain) IBOutlet UIWindow *window;

Chapter 20. Playing Audio and Video

Page 334

- (IBAction)playAudioFile:(id)sender;
- (IBAction)playVideoFile:(id)sender;
- (IBAction)playShortSound:(id)sender;
@end

Save	this	file.	Open	the	project’s	MainWindow.xib	file	in	Interface	Builder	to	
configure	the	interface.

In Interface Builder, double-click the Window object in the doc window to open
it. Drag three UIButton objects onto it, and title them as shown in Figure
20.3. Then, make the action connections from each of the buttons back to the
MediaPlayerAppDelegate. Finally, connect the audioButton outlet to the top
button labeled Play Audio File.

Figure 20.3. Interface Builder connections

Save MainWindow.xib and quit Interface Builder.

In order to build and run the application without warnings, you will need a stub
method for each of the IBActions you declared. In MediaPlayerAppDelegate.m,
implement them as follows.

Chapter 20. Playing Audio and Video

Page 335

- (IBAction)playAudioFile:(id)sender
{
 NSLog(@"playAudioFile!");
}
- (IBAction)playVideoFile:(id)sender
{
 NSLog(@"playVideoFile!");
}
- (IBAction)playShortSound:(id)sender
{
 NSLog(@"playSound!");
}

If you want to check your connections, you can build and run the application. The
log messages should show up on the console.

Playing System Sounds
Audio	files	come	in	many	different	formats.	The	format	describes	the	organization	
of	the	audio	data	within	the	file.	Some	files,	like	MP3	and	M4A,	have	been	
compressed	and	require	the	work	of	a	decoder	for	playback.	Compressed	files	
are much smaller in size but require more work by the processor to play. For
short sound effects, however, compression doesn’t save much disk space, and
the	extra	work	it	takes	to	decode	a	compressed	file	may	affect	an	application’s	
performance. Short sound effects are typically used as an interface element.
They are not critical to an application but add to the atmosphere you are trying to
create.

The AudioToolbox framework gives you the ability to register short sound effects
on the system sound server. We call sounds registered with the system sound
server system sounds. Systems sounds are short sound effects that must

•	 be	a	sound	file	less	than	30	seconds	in	length

•	 have data in linear PCM or IMA4 format

•	 be packaged as one of the following three types: Core Audio Format (.caf),
Waveform audio format (.wav), or Audio Interchange File Format (.aiff)

To start registering and playing system sounds, add the AudioToolbox framework
to your project (Figure 20.4).

Chapter 20. Playing Audio and Video

Page 336

Figure 20.4. Adding the AudioToolbox framework

After a system sound is registered, you are given a new SystemSoundID that
references that sound. A SystemSoundID is really just an integer that you can
think of as a ticket. When you want to play a registered sound effect, you tell the
sound server the number on your ticket. Declare a SystemSoundID instance
variable in MediaPlayerAppDelegate.h. Because this type is declared in
AudioToolbox framework, you will also need to import AudioToolbox’s top-level
header	file.

#import <AudioToolbox/AudioToolbox.h>

Chapter 20. Playing Audio and Video

Page 337

@interface MediaPlayerAppDelegate : NSObject <UIApplicationDelegate>
{
 UIWindow *window;
 IBOutlet UIButton *audioButton;
 SystemSoundID shortSound;
}

The	audio	data	for	a	system	sound	must	be	contained	in	a	file	located	on	the	
device.	In	this	chapter,	you	will	bundle	a	short	audio	clip	file	with	the	application.	
Locate	the	file	Sound12.aif and add it to the Resources group of the project. (This
file	and	other	resources	can	be	downloaded	from	http://www.bignerdranch.com/
solutions/iPhoneProgramming.zip.)

You	will	grab	the	full	path	to	the	Sound12.aif	file	and	register	its	contents	with	
the system sound server when the application launches using NSBundle’s
pathForResource:ofType: method. This object returned from this method is
of type NSString, but, to register a system sound, you need to call the function
AudioServicesCreateSystemSoundID and pass the path as a CFURLRef
object.

You	will	use	NSURL’s fileURLWithPath: to create an NSURL instance
and cast that to its toll-free bridged counterpart: CFURLRef. In
MediaPlayerAppDelegate’s application:didFinishLaunchingWithOptions:
method, get a path to the Sound12.aif file	and	register	its	contents	as	a	system	
sound. Add the following code to MediaPlayerAppDelegate.m.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Get the full path of Sound12.aif
 NSString *soundPath = [[NSBundle mainBundle]
pathForResource:@"Sound12"
 ofType:@"aif"];
 // If this file is actually in the bundle...
 if (soundPath) {
 // Create a file URL with this path
 NSURL *soundURL = [NSURL fileURLWithPath:soundPath];

 // Register sound file located at that URL as a system sound
 OSStatus err = AudioServicesCreateSystemSoundID((CFURLRef)soun-
dURL,

Chapter 20. Playing Audio and Video

Page 338

 &shortSound);
 if (err != kAudioServicesNoError)
 NSLog(@"Could not load %@, error code: %d", soundURL, err);
 }

AudioServicesCreateSystemSoundID has a return value – an error code.
Only one value can be returned from a function; therefore, the SystemSoundID
cannot be returned to the caller. To get that value back from the function, you
pass the address of a SystemSoundID variable to the function. This function then
writes the value of the SystemSoundID to that location in memory. This is called
passing by reference and allows the function to change the value of a variable.

void passByReference(int *intPointer)
{
 *intPointer = 5;
}
void passByValue(int intValue)
{
 intValue = 10;
}
void function()
{
 int value = 0;
 passByValue(value); // value still equal 0 here
 passByReference(&value); // value now equals 5
}

You	will	now	implement	code	to	play	this	sound	when	the	appropriate	button	
is tapped. Back in the MediaPlayerAppDelegate.m, implement the method
playShortSound:.

- (IBAction)playShortSound:(id)sender
{
 AudioServicesPlaySystemSound(shortSound);
}

Build	and	run	your	application.	You	should	hear	a	pleasant	noise	every	time	
you tap the Play Short Sound button. (Make sure your volume is turned up.)
Most of the time, you will keep a system sound available the entire time an
application is running. However, if you want to dispose of a short sound to
free up memory while an application is running, you can call the C function

Chapter 20. Playing Audio and Video

Page 339

AudioServicesDisposeSystemSoundID.

 AudioServicesDisposeSystemSoundID(aSystemSound);

On the iPhone (but not the iPod touch), you can use system sounds to vibrate the
device. Add the following line of code to MediaPlayerAppDelegate.m to trigger
vibration.

- (IBAction)playShortSound:(id)sender
{
 AudioServicesPlaySystemSound(shortSound);
 AudioServicesPlaySystemSound(kSystemSoundID_Vibrate);
}

Build and run the application on an iPhone and tap the short sound button. It will
play the sound and vibrate in your hand.

Playing Audio Files
Playing	a	compressed	audio	file	is	as	simple	as	playing	a	short	sound.	To	play	a	
compressed	audio	format	or	a	file	that	is	longer	than	30	seconds,	you	will	use	the	
class AVAudioPlayer. In addition to playing longer, compressed audio, this class
also	gives	you	much	more	control	over	audio	playback.	You	will	use	an	instance	
of	this	class	to	play	an	MP3	file.	Locate	the	file	Music.mp3 and add it to your
Resources	group.	(This	file	and	other	resources	can	be	downloaded	fromhttp://
www.bignerdranch.com/solutions/iPhoneProgramming.zip.)

This	class	is	defined	in	the	AVFoundation	framework.	Add	the	
AVFoundation	framework	to	your	project	and	import	its	header	file	into	
MediaPlayerAppDelegate.h. Declare an instance variable of type
AVAudioPlayer.

#import <AVFoundation/AVFoundation.h>
@interface MediaPlayerAppDelegate : NSObject
 <AVAudioPlayerDelegate, UIApplicationDelegate>
{
 UIWindow *window;
 IBOutlet UIButton *audioButton;
 SystemSoundID shortSound;

 AVAudioPlayer *audioPlayer;

Chapter 20. Playing Audio and Video

Page 340

Once again, you will implement the set up for this form of media playing in
MediaPlayerAppDelegate.m. Add the following code to the top of application:di
dFinishLaunchingWithOptions:.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSString *musicPath = [[NSBundle mainBundle]
pathForResource:@"Music"
 ofType:@"mp3"];
 if (musicPath) {
 NSURL *musicURL = [NSURL fileURLWithPath:musicPath];
 audioPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:musicURL
 error:nil];
 [audioPlayer setDelegate:self];
 }

And as before with the short sound, you will have the associated button begin
playback of the audioPlayer.

- (IBAction)playAudioFile:(id)sender
{
 if ([audioPlayer isPlaying]) {
 // Stop playing audio and change text of button
 [audioPlayer stop];
 [sender setTitle:@"Play Audio File"
 forState:UIControlStateNormal];
 }
 else {
 // Start playing audio and change text of button so
 // user can tap to stop playback
 [audioPlayer play];
 [sender setTitle:@"Stop Audio File"
 forState:UIControlStateNormal];
 }
}

Build and run the application. Tap the Play Audio File and listen for the sound.

With AVAudioPlayer, you have more control over the audio playback, and you

Chapter 20. Playing Audio and Video

Page 341

can	halt	its	playback	whenever	you	choose.	You	can	also	implement	delegate	
methods for an AVAudioPlayer that will allow you to control what happens when
the	audio	player	finishes	playing	or	when	it	gets	interrupted.

When	the	audio	player	finishes,	you	will	want	to	revert	the	title of the button that
plays	the	audio	file	back	to	Play	Audio	File.	Implement	the	delegate	method	for	
this in MediaPlayerAppDelegate.m.

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player
 successfully:(BOOL)flag
{
 [audioButton setTitle:@"Play Audio File"
 forState:UIControlStateNormal];
}

Build	and	run	the	application.	Let	the	audio	file	finish	on	its	own	and	watch	the	
playback	button	return	to	its	original	state	when	the	file	ends.

Audio playback will be interrupted when a phone call occurs. When the
iPhone interrupts an AVAudioPlayer instance from playing, it pauses the
music	for	you.	You	can	also	perform	additional	tasks	with	the	delegate	method	
audioPlayerDidBeginInterruption:, such as updating your user interface.
Another delegate method, audioPlayerEndInterruption:, is sent to the
AVAudioPlayer’s delegate when the phone call ends. Implement this method in
MediaPlayerAppDelegate.m.

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)player
{
 [audioPlayer play];
}
Playing Movie Files
MPMoviePlayerController is responsible for playing movies on the iPhone. The
YouTube	application	uses	the	same	class	to	play	its	movies,	so	you’ve	probably	
seen the interface before (Figure 20.5).

Chapter 20. Playing Audio and Video

Page 342

Figure 20.5. MPMoviePlayerController in action

Playing	a	movie	file	on	the	iPhone	is	fairly	restricted.	You	are	limited	to	two	
formats:

•	 H.264	Baseline	Profile	Level	3.0,	up	to	640	×	480	resolution	at	30	frames	per	
second

•	 MPEG-4	Part	2	video,	Simple	Profile

(Fortunately,	iTunes	has	an	option	to	convert	video	files	into	these	formats.	In	
iTunes,	select	a	movie	file	and	choose	Create	iPod	or	iPhone	Version	from	the	
Advanced menu.)

Instances of MPMoviePlayerController can also play streaming video from a
URL somewhere off in internet land. However, you should seriously consider
the problems of this approach on a mobile device. If you have the choice, either
bundle	a	movie	file	with	the	application	or	have	your	application	download	the	
video to the application sandbox after a user launches it. If you do not have the
choice,	be	aware	that	Apple	can	reject	your	application	if	a	video	file	is	too	large	
to be transported over the network in an appropriate amount of time. For example,
your application can be rejected if it claims to support the original iPhone (using
the Edge network) and streams video at more than 1MB per second.

In order to use MPMoviePlayerController, you must add yet another framework
to your project. Add the MediaPlayer framework to your project and import the

Chapter 20. Playing Audio and Video

Page 343

appropriate	header	file	at	the	top	of	MediaPlayerAppDelegate.h. Create an
instance variable in MediaPlayerAppDelegate for the movie player, as well.

#import <MediaPlayer/MediaPlayer.h>
@interface MediaPlayerAppDelegate : NSObject
 <AVAudioPlayerDelegate, UIApplicationDelegate>
{
 MPMoviePlayerController *moviePlayer;

Loading a movie and playing it is nearly the same syntax as playing an audio
file.	In	this	chapter,	you	will	bundle	the	Layer.m4v movie with the application.
Locate	this	file	and	add	it	to	your	project’s	Resources	group.	(This	file	and	other	
resources can be downloaded from http://www.bignerdranch.com/solutions/
iPhoneProgramming.zip.)

To load the movie, add the following code to the top of application:didFinishLau
nchingWithOptions: in MediaPlayerAppDelegate.m.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 NSString *moviePath = [[NSBundle mainBundle]
pathForResource:@"Layers" ofType:@"m4v"];
 if (moviePath) {
 NSURL *movieURL = [NSURL fileURLWithPath:moviePath];
 moviePlayer = [[MPMoviePlayerController alloc]
 initWithContentURL:movieURL];
 }

Implement the action for the Play Movie File button as below in order to play the
movie.

- (IBAction)playVideoFile:(id)sender
{
 [moviePlayer play];
}

Build and run the application. Tap the Play Movie File button, and
MPMoviePlayerController will take over the screen and play the video.

When you instantiate an MPMoviePlayerController, it immediately begins

Chapter 20. Playing Audio and Video

Page 344

loading the video you ask it to. This loading happens on another thread so that
your application does not halt while the video loads. A video loaded from disk
will most likely be ready to play immediately, but one being streamed from the
internet	may	take	some	time	to	load.	You	may	not	want	to	play	an	unloaded	video	
right	away.	Therefore,	you	can	register	for	a	preloading	notification	from	the	video	
player.	This	notification	will	be	sent	to	interested	observers	when	enough	data	has	
been loaded to play the video without pause.

					[[NSNotificationCenter	defaultCenter]
 addObserver:self
 selector:@selector(playPreloadedVideo:)
																name:MPMoviePlayerContentPreloadDidFinishNotification
 object:moviePlayer];

-	(void)playPreloadedVideo:(NSNotification	*)note
{
 [[note object] play];
}

Now	you	can	play	any	sort	of	media	you	like!	Remember	that	audio	and	video	files	
are relatively large compared to other resources you might have in an application.
Gratuitous use of these types of resources may increase an application bundle’s
size over 10 megabytes. At 10MB, your application cannot be downloaded over
the cellular network and must be downloaded via Wi-Fi or docked with your
computer.

Low-level APIs
In this section, you have been exposed to the simplest, highest-level API for
sound and video. If you plan to do a lot of audio work (either recording or playing),
you should go deeper and learn about the audio queues, which are part of the
AudioToolbox	framework.	You	may	also	want	to	study	CoreAudio,	the	framework	
upon which all of this is built.

Sadly, there is no low-level API for video at this time (iPhone OS 3.1).

Challenge: Audio Recording
You	can	also	record	audio	with	the	iPhone	SDK.	Using	the	class	
AVAudioRecorder, record audio data and then play it back with a new button.
(Remember, you can’t write data to the application bundle.)

Chapter 21. Web Services

Page 345

Chapter 21. Web Services
A web service is an application that runs on a web server. An iPhone application
can ask a web service to execute methods that the web service implements.
Typically, a web service’s methods will collect data from the iPhone application
and store it in a database or return information from that database to the iPhone
application (or both.) The data transferred between a web service and a client
application is typically formatted into XML or JSON format.

To work with a web service, an iPhone application must make a connection to a
web server, transfer properly formatted data between the two, and parse any data
returned.

Figure 21.1. TopSongs Application

Creating the TopSongs Application
In this chapter, you will use the Cocoa Touch web service classes to pull data from
a	RSS	feed.	Apple	publishes	a	number	of	RSS	feeds	that	can	be	consumed.	(You	
can see them all at http://www.apple.com/rss/.) One of them keeps track of the top
10 downloaded songs from iTunes. The application you will write in this chapter
will present a list of these songs.

Chapter 21. Web Services

Page 346

Figure 21.2. Object Diagram

Create a new Window-Based Applicaton application and name it TopSongs.
TopSongs will have a UITableView that shows the artist and title of each song.

Create a new UIViewController subclass and name it RSSTableViewController.
(Remember: New File... from the File menu, select Cocoa Touch Class then
UIViewController subclass.)

RSSTableViewController will be responsible for fetching the song list, storing the
song titles in an NSMutableArray and presenting those titles in its tableView. In
RSSTableViewController.h, add an instance variable for the array. (Also, change
the superclass to UITableViewController.)

@interface RSSTableViewController : UITableViewController
{
 NSMutableArray *songs;
}
@end

Chapter 21. Web Services

Page 347

Setting up the interface
Let’s get the interface details out of the way before the fun stuff. In
RSSTableViewController.m, override the designated initializer initWithStyle: to
instantiate songs.

- (id)initWithStyle:(UITableViewStyle)style
{
 if (self = [super initWithStyle:style]) {
 songs = [[NSMutableArray alloc] init];
 }
 return self;
}

Implement the data source methods to return cells that have the textLabel
displaying the NSString instances that will be held in songs.

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return [songs count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"UITableViewCell"];
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"UITableViewCell"] autorelease];
 }

 [[cell textLabel] setText:[songs objectAtIndex:[indexPath row]]];

 return cell;
}

In TopSongsAppDelegate.m, instantiate an RSSTableViewController and place
its view on the window. (Don’t forget to import RSSTableViewController.h.)

Chapter 21. Web Services

Page 348

#import "TopSongsAppDelegate.h"
#import "RSSTableViewController.h"

@implementation TopSongsAppDelegate

@synthesize window;
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 RSSTableViewController *tvc = [[RSSTableViewController alloc]
 initWithStyle:UITableViewStylePlain];
 [window addSubview:[tvc view]];
 [window makeKeyAndVisible];
				return	YES;
}

Build	and	run	the	application.	You	should	see	an	empty	table	view	on	the	screen.

Also, note that, in this application, we don’t keep a pointer to the instance of
RSSTableViewController anywhere. Some of the other applications in this book
do the same thing: we instantiate a view controller in the application delegate, and
then the application delegate forgets that the view controller ever existed. (There
is no instance variable for the view controller in the application delegate.)

Some programmers keep pointers to their view controller objects in the application
delegate. Other objects then access these view controllers by doing something
like this:

 TopSongsAppDelegate *del = [[UIApplication sharedApplication] delegate];
 RSSTableViewController *tvc = [del rssTableViewController];

This is bad. In a well-designed application, the application delegate is not
responsible	for	passing	around	controller	objects.	If	you	find	yourself	needing	to	
ask the application delegate for a reference to a view controller, you may need
to re-think the design of your application. Page through this book and study
the object diagrams for each exercise for an example of how to architect an
application.

The only reason you would keep a pointer to a view controller in the application

Chapter 21. Web Services

Page 349

delegate is if a view controller needs to be sent messages when an application
event occurs. For example, if a view controller has model objects that need to
be written to disk when the application terminates, the application delegate will
have an instance variable that points to the view controller. Then, you can send
messages to that view controller in the method applicationWillTerminate:.

Fetching Data From a URL
Now you are going to fetch some data from a web server. To help with
this process, there are three classes: NSURL, NSURLRequest, and
NSURLConnection (Figure 21.3).

Figure 21.3. Relationship of web service classes

Each of these classes has an important role in communicating with a web server:

• NSURL instances contain the location of the web application in URL format. For
simple web services, the URL will be composed of the base address, the
web application you are communicating with, and any arguments that are
being passed.

•	 Instances of NSURLRequest hold all the data necessary to communicate with a
web server. This includes an NSURL object, as well as a caching policy, a
limit on how long the you will give the web server to respond, and additional
data passed through the HTTP protocol. (NSMutableURLRequest is the
mutable subclass of NSURLRequest.)

• NSURLConnection instances are responsible for actually making the
connection to a web server, sending the information in its NSURLRequest,
and gathering the response from the server.

Open RSSTableViewController.h and add two instance variables and a method
declaration:

#import <UIKit/UIKit.h>

@interface RSSTableViewController : UITableViewController

Chapter 21. Web Services

Page 350

{
 NSMutableArray *songs;
 NSMutableData *xmlData;
 NSURLConnection *connectionInProgress;
}
- (void)loadSongs;
@end

Working with NSURLConnection
NSURLConnection instances can communicate with a web server in two ways:
synchronously or asynchronously. Because passing data back and forth between
a remote server can take some time, synchronous connections are generally
frowned upon as they will stall your application until the connection completes.

Therefore, this chapter will teach you how to perform an asynchronous connection
with NSURLConnection. When an instance of NSURLConnection is created,
it needs to know the location of the web application and the data it is passing to
that web server. It also needs a delegate. When told to start communicating with
the web server, NSURLConnection will initiate a connection to the location, begin
passing it data, and possibly receive data back. Its delegate will be updated along
the way with information you can use.

In RSSTableViewController.m, implement the loadSongs method to create
an NSURLRequest and a connection to the web server in that request. The
NSURLRequest will ask the http://ax.itunes.apple.com website for the top
10 songs in XML format, and the NSURLConnection instance makes the
connection.

- (void)loadSongs
{
 // In case the view will appear multiple times,
 // clear the song list (In case you add this to an application
 // that has multiple view controllers...)
 [songs removeAllObjects];
 [[self tableView] reloadData];

 // Construct the web service URL
 NSURL *url = [NSURL URLWithString:@"http://ax.itunes.apple.com/"
 @"WebObjects/MZStoreServices.woa/ws/RSS/topsongs/"
 @"limit=10/xml"];

Chapter 21. Web Services

Page 351

 // Create a request object with that URL
 NSURLRequest *request =
 [NSURLRequest requestWithURL:url
 cachePolicy:NSURLRequestReloadIgnoringCacheData
 timeoutInterval:30];

 // Clear out the existing connection if there is one
 if (connectionInProgress) {
 [connectionInProgress cancel];
 [connectionInProgress release];
 }

 // Instantiate the object to hold all incoming data
 [xmlData release];
 xmlData = [[NSMutableData alloc] init];

 // Create and initiate the connection - non-blocking
 connectionInProgress = [[NSURLConnection alloc]
initWithRequest:request
 delegate:self
 startImmediately:YES];
}

Kick off the loading whenever RSSTableViewController’s table view appears
on the screen by overriding viewWillAppear: in RSSTableViewController.m.
- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
 [self loadSongs];
}

Build the application to make sure there are no syntax errors. This code, as it
stands, will make the connection to the web service and retrieve the top 10 songs.
However,	there	is	one	problem:	you	don’t	see	those	songs	anywhere.	You	need	
to implement some of the delegate methods for NSURLConnection to collect the
XML document returned from this request.

The delegate of an NSURLConnection is responsible for overseeing the
connection and collecting the data returned from the request. (This data is
typically	an	XML	or	JSON	document;	for	this	specific	web	service,	it	is	XML.)	

Chapter 21. Web Services

Page 352

However, the data returned usually comes back in pieces. The delegate needs
to collect the pieces and put them together. Implement the following method in
RSSTableViewController.m to put all of the data received by the connection into
the instance variable xmlData.

// This method will be called several times as the data arrives
- (void)connection:(NSURLConnection *)connection
didReceiveData:(NSData *)data
{
 [xmlData appendData:data];
}

When	a	connection	has	finished	retrieving	all	of	the	data	from	a	web	service,	it	
then sends the message connectionDidFinishLoading: to its delegate. In this
method, you are guaranteed to have the complete response from the web service
request and can start working with that data. For now, just print out the string
representation of that data to the console to make sure good stuff is coming back.
Implement this method in RSSTableViewController.m.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 // We are just checking to make sure we are getting the XML
 NSString *xmlCheck = [[[NSString alloc] initWithData:xmlData
 encoding:NSUTF8StringEncoding]
 autorelease];
 NSLog(@"xmlCheck = %@", xmlCheck);
}

There is a possibility that a connection might fail. If an instance of
NSURLConnection cannot make a connection to a web service, it will tell
its delegate through the message connection:didFailWithError:. Note
that this message gets sent for aconnection failure, like having no internet
connectivity or a server that doesn’t exist. For other types of errors, like the
data sent to a web service is in the wrong format, information will be returned in
connection:didReceiveData:. Implement the following delegate method to inform
your application of a connection failure in RSSTableViewController.m.

- (void)connection:(NSURLConnection *)connection
 didFailWithError:(NSError *)error

Chapter 21. Web Services

Page 353

{
 [connectionInProgress release];
 connectionInProgress = nil;

 [xmlData release];
 xmlData = nil;

 NSString *errorString = [NSString stringWithFormat:@"Fetch failed: %@",
 [error localizedDescription]];
 UIActionSheet *actionSheet =
 [[UIActionSheet alloc] initWithTitle:errorString
 delegate:nil
 cancelButtonTitle:@"OK"
 destructiveButtonTitle:nil
 otherButtonTitles:nil];
 [actionSheet showInView:[[self view] window]];
 [actionSheet autorelease];
}

Try	building	and	running	your	application.	You	should	see	the	XML	results	in	
the console. If you put your device in Airplane Mode (or it is not connected to a
network), you should see a friendly error message when you try to fetch again.

Parsing XML
Now you’re going to parse the XML that has come back using the class
NSXMLParser.	You’re	going	to	create	the	parser,	give	it	a	delegate,	and	tell	it	to	
start. As the parser reads through the data, it will send messages to its delegate
like	“Hey,	I	just	started	a	new	element!”	and	“Hey,	I	just	read	some	text!”

In connectionDidFinishLoading:, delete the code you wrote to log the XML
and replace it with code to kick off the parsing and set its delegate to point at the
instance of RSSTableViewController.

- (void)connectionDidFinishLoading:(NSURLConnection *)connection
{
 // Create the parser object with the data received from the web service
 NSXMLParser *parser = [[NSXMLParser alloc] initWithData:xmlData];

 // Give it a delegate
 [parser setDelegate:self];

Chapter 21. Web Services

Page 354

 // Tell it to start parsing - the document will be parsed and
 // the delegate of NSXMLParser will get all of its delegate messages
 // sent to it before this line finishes execution - it is blocking
 [parser parse];

 // The parser is done (it blocks until done), you can release it immediately
 [parser release];
 [[self tableView] reloadData];
}

As the text within an XML tag is read, you may get many delegate methods that
contain	pieces	of	the	text	in	that	element.	You	will,	however,	want	all	the	chunks	
of useful data gathered into one string. So, declare a mutable string instance
variable in RSSTableViewController.h:

@interface RSSTableViewController : UITableViewController
{
 NSMutableString *titleString;
 NSMutableArray *songs;
 NSMutableData *xmlData;
 NSURLConnection *connectionInProgress;
}
- (void)loadSongs;
@end

Now implement the delegate methods in RSSTableViewController.m. The XML
data contains a number of entry elements. Each entry refers to one song and
within that element are more elements that hold information about the song:
its title, the iTunes Store link to it, an image representing it, and more. This
application will grab the title of each song entry and put it in the array songs.
Therefore, when the delegate is informed of a new element, check to see if it
is a title element and prepare a NSMutableString to collect the text within it.
Implement the following delegate method in RSSTableViewController.m.

- (void)parser:(NSXMLParser *)parser
didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName

Chapter 21. Web Services

Page 355

 attributes:(NSDictionary *)attributeDict
{
 if ([elementName isEqual:@"title"]) {
 NSLog(@"found title!");
 titleString = [[NSMutableString alloc] init];
 }
}

This method has a lot of arguments. For this application, only elementName is of
any use. However, if you are interested in some of the other elements in this XML
document you can check the values of these parameters to further qualify the
element.

Once inside an element, the parser will read the string data and pass it to its
delegate through the message parser:foundCharacters:. This method may get
called multiple times for a single title. Implement this method to append the newly
found characters to the titleString.

- (void)parser:(NSXMLParser *)parser
 foundCharacters:(NSString *)string
{
 [titleString appendString:string];
}

Notice that in this method there is no parameter for the name of the element that
the characters appeared in. It is up to you to set any needed state in the method
that informs the delegate of the start of a tag (the method you implemented
before this one). In this application, titleString is nil unless a title tag was
found. Therefore, when parser:foundCharacters: is sent to the instance of
RSSTableViewController, the characters in a title element are stored while
others are ignored. (Messages to nil do nothing.)

When	an	element	is	finished,	the	delegate	is	informed	with	the	following	message.	
Implement this method so that it takes the text found in the title element and adds
the	final	string	to	songs.

- (void)parser:(NSXMLParser *)parser
 didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
{
 if ([elementName isEqual:@"title"]) {

Chapter 21. Web Services

Page 356

 NSLog(@"ended title: %@", titleString);
 [songs addObject:titleString];

 // Release and nil titleString so that the next time characters
 // are found and not within a title tag, they are ignored
 [titleString release];
 titleString = nil;
 }
}

Build and run the application. After a moment of running, the top 10 downloaded
songs will appear on the screen. Now you can conform to popular culture in
iPhone style.

There	is	one	little	issue	left	to	resolve.	The	first	“song”	that	appears	on	the	list	is	
actually not a song at all: it is the title of the RSS feed. All entry elements contain
a title element, but the top-level element, feed, also has a title	element.	You	will	
check to make sure that title elements are only read from entry elements. In
RSSTableViewController.h, add an instance variable to keep track of whether
the parser is reading an entry element.

@interface RSSTableViewController : UITableViewController
{
 BOOL waitingForEntryTitle;

Right now, when a title element begins, you instantiate an NSMutableString
so that any characters found in this element are added to it. When the element
ends, that string is added to the list of songs. Instead of doing this for every title
element, you will make sure that you are currently inside an entry element. Add
the following code to parser:didStartElement:namespaceURI:qualifiedName:at
tributes: in RSSTableViewController.m.

- (void)parser:(NSXMLParser *)parser
didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
	qualifiedName:(NSString	*)qName
 attributes:(NSDictionary *)attributeDict
{
 if([elementName isEqual:@"entry"]) {
 NSLog(@"Found a song entry");

Chapter 21. Web Services

Page 357

 waitingForEntryTitle = YES;
 }
 if ([elementName isEqual:@"title"] && waitingForEntryTitle) {
								NSLog(@"found	title!");
 titleString = [[NSMutableString alloc] init];
 }
}

Now, when an entry element begins, waitingForEntryTitle is set to YES and
a subsequent title element will be collected. Therefore, when a entry element
ends, you will revoke permission for RSSTableViewController to create a new
titleString. Add the following code in RSSTableViewController.m.

- (void)parser:(NSXMLParser *)parser
didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString	*)qName
{
 if ([elementName isEqual:@"title"] && waitingForEntryTitle) {
								NSLog(@"ended	title:	%@",	titleString);
 [songs addObject:titleString];
 [titleString release];
 titleString = nil;
 }
 if ([elementName isEqual:@"entry"]) {
 NSLog(@"ended a song entry");
 waitingForEntryTitle = NO;
 }
}

Build	and	run	the	application	again.	You	will	see	the	top	10	songs	and	nothing	
more.

There are a few more things worth mentioning about web services and parsing
XML:

•	 There is no one generic solution for communicating with web servers. In the
real	world,	a	web	service	will	have	specific	requirements	for	parameter	
submission. It is up to you, the developer, to read the documentation for
any web service you plan on using and to provide the expected format.

Chapter 21. Web Services

Page 358

•	 You	have	implemented	only	three	of	the	XML	parser	delegate	methods;	there	
are seventeen others. Not all XML is this simple, so remember to check
the documentation for the NSXMLParser class if you need to handle more
intricate areas of XML parsing.

•	 In this chapter, you made a simple request and cherry-picked the resulting XML
for the data you wanted. Some applications, however, will need to do more
with the returned XML. This can require building up a class hierarchy to be
used later. (Note that there is no tree-based XML parser in the iPhone SDK,
and you will have to implement your own if you need that type of object
hierarchy.)

For the More Curious: The Request Body
Sometimes, especially when dealing with SOAP web services, you will need to
pack data (usually XML) into the body of the URL request. To do this, you’ll need
to use NSMutableURLRequest, a subclass of NSURLRequest.

NSURL *someURL = ...;
NSString *xmlString = ...;
NSData *data = [xmlString dataUsingEncoding:NSUTF8StringEncoding];
NSMutableURLRequest *req =
 [NSMutableURLRequest requestWithURL:someURL
 cachePolicy:NSURLRequestReloadIgnoringCacheData
 timeoutInterval:90];
[req setHTTPBody:data];
[req setHTTPMethod:@"POST"];

Creating	a	general-purpose	solution	to	all	SOAP-based	web	services	is	difficult,	
but	solving	the	problem	for	a	specific	SOAP-based	web	service	is	not	too	tricky.	
Just get the person who wrote the web service to send you an example of the
XML in a request and the resulting response XML.

Challenge: More Data
Create another UIViewController subclass that will display more of the data for
each song entry. When one of the songs is selected, push that view controller
onto the screen.

For the More Curious: Credentials
When	you	try	to	access	a	web	service,	sometimes	it	will	respond	with	a	“Who	the	

Chapter 21. Web Services

Page 359

heck	are	you?”	This	is	known	as	an	authentication	challenge.	You	then	need	to	
send a username and password (a credential) before the challenge sender will
send its genuine response.

There are objects to represent these ideas. When the challenge is received,
your connection delegate is sent a message that includes an instance of
NSURLAuthenticationChallenge. The sender of that challenge conforms to
the NSURLAuthenticationChallengeSender protocol. If you want the data, you
give the challenge sender an instance of NSURLCredential. It typically looks
something like this:

- (void)connection:(NSURLConnection *)conn
 didReceiveAuthenticationChallenge:(NSURLAuthenticationChallenge *)challenge
{
				//	Have	I	already	failed	at	least	once?
 if ([challenge previousFailureCount] > 0) {

								//	Why	did	I	fail?
 NSError *failure = [challenge error];
								NSLog(@"Can't	authenticate:	%@",	[error	localizedDescription]);

 // Give up
 [[challenge sender] cancelAuthenticationChallenge:challenge];
 return;
 }

 // Create a credential
 NSURLCredential *newCred =
 [NSURLCredential credentialWithUser:@"sid"
 password:@"MomIsCool"
 persistence:NSURLCredentialPersistenceNone];

 // Supply the credential to the sender of the challenge
 [[challenge sender] useCredential:newCred
 forAuthenticationChallenge:challenge];
}

If you are dealing with a more secure and sophisticated web service, it may want
a	certificate	(or	certificates)	to	confirm	your	identity.	Most,	however,	just	want	a	
username and a password.

Chapter 21. Web Services

Page 360

Credentials can have persistence. There are three possibilities:

•	 When you supply NSURLCredentialPersistenceNone, you are saying to the
URL	loading	system,	“Forget	this	credential	as	soon	as	you	use	it.”

•	 When you supply NSURLCredentialPersistenceForSession, you are saying
to	the	URL	loading	system,	“Forget	this	credential	when	this	application	
terminates.”

•	 When you supply NSURLCredentialPersistencePermanent, you are saying to
the	URL	loading	system,	“Put	this	credential	in	my	keychain	so	that	other	
applications can use it.”

Chapter 22. Address Book

Page 361

Chapter 22. Address Book
Any	application	can	access	the	iPhone’s	contact	database.	You	can	read	from	
and write to that database, and you also have access to the interface elements
of the Address Book. In this chapter, you will add Address Book support to your
Homepwnerapplication. In particular, you will specify which contact in your
address book will inherit a possession in the case of your death.

Figure 22.1. Homepwner with Address Book

The People Picker
To get a person-picking interface like the Contacts application, you will use
ABPeoplePickerNavigationController.

Open Homepwner.xcodeproj, and add both AddressBook.framework and
AddressBookUI.framework as shown in Figure 22.2.	The	first	framework	is	
for low-level Address Book operations that manipulate the data that is stored in

Chapter 22. Address Book

Page 362

the Address Book. The AddressBookUI framework is the code for the interface
elements of the Address Book.

Figure 22.2. Framework list

Shortly, you will add a button and three labels to the ItemDetailViewController’s
view.	Because	the	view	is	being	created	in	a	XIB	file,	you	will	need	outlets	for	
two of the labels and an action for the button. Add the following declarations the
ItemDetailViewController.h.

#import <AddressBookUI/AddressBookUI.h>

@interface ItemDetailViewController : UIViewController
 <UINavigationControllerDelegate, UIImagePickerControllerDelegate>
{
 ...

 IBOutlet UILabel *inheritorNameField;
 IBOutlet UILabel *inheritorNumberField;
}
- (IBAction)chooseInheritor:(id)sender;

Chapter 22. Address Book

Page 363

...
@end

Save	this	file	and	open	ItemDetailViewController.xib	in	Interface	Builder.	You	
will start to run out of room on this UIView as you add the necessary subviews. It
is	difficult	to	position	the	objects	when	you	know	that	a	UINavigationBar is going
to shift them all down during runtime. To simulate the interface as it will appear
with a navigation bar, select the View in the doc window. In the Attributes tab of
the Inspector, change the Top Bar popup button in the Simulated User Interface
Elements section. Set this to Navigation Bar instead of None as shown in Figure
22.3. (By default, the simulated Status Bar will be set to Gray – the default for an
application.)

Figure 22.3. Simulating the Navigation Bar

This won’t change the view itself, but it will show you how much space you have
to work with if there is a UINavigationBar on screen the same time as this view.

Drag three UILabel instances and a UIButton onto the View and position them
as shown in Figure 22.4. Then connect the outlets from File’s Owner to the labels
and set the UIButton’s target-action pair to File’s Owner’s chooseInheritor:
method.

Chapter 22. Address Book

Page 364

Figure 22.4. Additions to ItemDetailViewController

Save	the	XIB	file	and	return	to	Xcode.	You	will	implement	
the method chooseInheritor: to lazily create an instance of
ABPeoplePickerNavigationController and present it modally on the screen.
This is the same technique you used to show the camera interface in an earlier
exercise. Enter the action method for the button in ItemDetailViewController.m.

- (void)chooseInheritor:(id)sender
{
 // Allocate a people picker object
 ABPeoplePickerNavigationController *peoplePicker
 = [[ABPeoplePickerNavigationController alloc] init];

 // Put that people picker on the screen

Chapter 22. Address Book

Page 365

 [self presentModalViewController:peoplePicker animated:YES];
}

Build and run the application. Tap the Choose Inheritor button. A list of all of
the contacts stored on the device will slide onto the screen. It’s stuck on this
screen, though, because you have yet to implement the delegate methods for
ABPeoplePickerNavigationController. This class, from the AddressBookUI
framework, will show the user’s contacts database in the same way the Phone
and Contacts applications do.

First, declare that that ItemDetailViewController conforms to the
ABPeoplePickerNavigationControllerDelegate protocol (a mouthful, to say the
least). Add the following declaration to ItemDetailViewController.h.

@interface ItemDetailViewController : UIViewController
 <UINavigationControllerDelegate, UIImagePickerControllerDelegate,
 ABPeoplePickerNavigationControllerDelegate >

When you want an object to receive messages from the
ABPeoplePickerNavigationController, you will set the people picker’s
peoplePickerDelegate property. Why call it peoplePickerDelegate instead
of delegate?ABPeoplePickerNavigationController is a subclass of
UINavigationController, which can also have a delegate object. Therefore,
the navigation controller behavior of the people picker can be delegated
to another object. Set the people picker’s peoplePickerDelegate to the
ItemDetailViewController instance after it is created.

- (void)chooseInheritor:(id)sender
{
 // Allocate a people picker object
 ABPeoplePickerNavigationController *peoplePicker
 = [[ABPeoplePickerNavigationController alloc] init];

 // Give our people picker a delegate so we can respond to messages
 [peoplePicker setPeoplePickerDelegate:self];

 // Put that people picker on the screen
				[self	presentModalViewController:peoplePicker	animated:YES];
}

The ABPeoplePickerNavigationControllerDelegate protocol has three methods,

Chapter 22. Address Book

Page 366

and	all	three	are	required.	The	first	method	you	will	implement	from	this	protocol	
is peoplePickerNavigationControllerDidCancel:. This message is sent to the
peoplePickerDelegate when the Cancel button is tapped on the people picker’s
view.	You	will	just	dismiss	the	people	picker	from	the	screen	when	this	message	is	
sent. Implement the method in ItemDetailViewController.m.

- (void)peoplePickerNavigationControllerDidCancel:
 (ABPeoplePickerNavigationController *)aPeoplePicker
{
 // Take people picker off the screen
 [self dismissModalViewControllerAnimated:YES];
}

Build	and	run	the	application.	You’ll	get	two	warnings	that	say	you	haven’t	fully	
implemented the ABPeoplePickerNavigationControllerDelegate, but ignore
them for now. Tap the Choose Inheritor button and then tap the Cancel button
on top of ABPeoplePickerNavigationController. It will slide off the screen now.
Easy	enough,	right?

Additions to Possession Class
In order for this application to work properly, the Possession class must have
variables for the name and phone number of the inheritor. It also needs to know
how to encode and decode these two variables. In Possession.h, add these
instance variables and the properties for them.

@interface Possession : NSObject <NSCoding>
{
 ...

 NSString *inheritorName, *inheritorNumber;
}
@property (nonatomic, copy) NSString *inheritorName;
@property (nonatomic, copy) NSString *inheritorNumber;

In Possession.m, handle the lifetime of each of these instance variables. First,
synthesize them.

@implementation Possession
@synthesize inheritorName, inheritorNumber;

Then allow them to be unarchived by decoding them in initWithCoder:.

Chapter 22. Address Book

Page 367

- (id)initWithCoder:(NSCoder *)decoder
{
 self = [super init];

 [self setPossessionName:[decoder decodeObjectForKey:@"possessionNa
me"]];
 [self setSerialNumber:[decoder decodeObjectForKey:@"serialNumber"]];
 [self setValueInDollars:[decoder decodeIntForKey:@"valueInDollars"]];
 [self setImageKey:[decoder decodeObjectForKey:@"imageKey"]];
 dateCreated = [[decoder decodeObjectForKey:@"dateCreated"] retain];

 thumbnailData = [[decoder decodeObjectForKey:@"thumbnailData"] retain];

 [self setInheritorName:[decoder decodeObjectForKey:@"inheritorNa
me"]];
 [self setInheritorNumber:[decoder decodeObjectForKey:@"inheritorNumb
er"]];

 return self;
}

For	them	to	be	decoded,	you	need	to	encode	them	in	the	first	place.	Add	these	
lines to encodeWithCoder:.

- (void)encodeWithCoder:(NSCoder *)encoder
{
 // For each instance variable, archive it under its variable name
 [encoder encodeObject:possessionName forKey:@"possessionName"];
 [encoder encodeObject:serialNumber forKey:@"serialNumber"];
 [encoder encodeInt:valueInDollars forKey:@"valueInDollars"];
 [encoder encodeObject:dateCreated forKey:@"dateCreated"];
 [encoder encodeObject:imageKey forKey:@"imageKey"];
 [encoder encodeObject:thumbnailData forKey:@"thumbnailData"];

 // Put new inheritor data in to an archive
 [encoder encodeObject:inheritorName forKey:@"inheritorName"];
 [encoder encodeObject:inheritorNumber forKey:@"inheritorNumber"];
}

Chapter 22. Address Book

Page 368

And	finally,	release the new instance variables in the dealloc method.

- (void)dealloc
{
 [thumbnail release];
 [thumbnailData release];
 [possessionName release];
 [serialNumber release];
 [dateCreated release];
 [imageKey release];
 [inheritorName release];
 [inheritorNumber release];
 [super dealloc];
}
Address Book Functions
Now that Possession instances have a place for the inheritor’s
name and number, you can retrieve that information from the
ABPeoplePickerNavigationController and add them to a possession.

When	the	people	picker	first	appears	on	the	screen,	it	lists	all	of	the	contacts	in	
the Address Book by name. When one of these contacts is selected, the message
peoplePickerNavigationController:shouldContinueAfterSelectingPerson:
is sent to its peoplePickerDelegate. This message’s parameters contains an
ABRecordRef. An ABRecordRef stores all of the information for one contact.

You’re	going	to	use	the	C	functions	in	the	AddressBook	framework	to	access	the	
properties of an ABRecordRef. To get a property from a record, you will copy the
value	for	one	of	its	pre-defined	properties.	A	property,	in	the	context	of	the	Address	
Book,	is	a	constant.	For	example,	the	name	of	the	property	for	the	first	name	of	
a record is kABPersonFirstNameProperty. There are many different properties
that an ABRecordRef	can	store	a	value	for.	(You	can	also	create	your	own	
properties.)

You	can	think	of	an	ABRecordRef as an NSDictionary. The properties are
the keys and the values are, well, the values. When you want a value, you will
copy it to a variable by using the function ABRecordCopyValue. Because the
AddressBook is a collection of C functions, the objects returned by this method
are not Objective-C objects.

You	can	get	the	name	and	phone	number	out	of	the	ABRecordRef
passed to this delegate method. Implement the following method in

Chapter 22. Address Book

Page 369

ItemDetailViewController.m.

- (BOOL)peoplePickerNavigationController:(ABPeoplePickerNavigationCont
roller *)p
 shouldContinueAfterSelectingPerson:(ABRecordRef)person
{
 // Get the first and last name from the selected person
 NSString *firstName = (NSString *)ABRecordCopyValue(person,
 kABPersonFirstNameProperty);
 NSString *lastName = (NSString *)ABRecordCopyValue(person,
 kABPersonLastNameProperty);

 // Get all of the phone numbers for this selected person
 ABMultiValueRef numbers = ABRecordCopyValue(person, kABPerson-
PhoneProperty);

 // Make sure we have at least one phone number for this person
 if (ABMultiValueGetCount(numbers) > 0) {
 // Grab the first phone number we see
 CFStringRef number = ABMultiValueCopyValueAtIndex(numbers, 0);
 // Add that phone number to the possession object we are editing
 [editingPossession setInheritorNumber:(NSString *)number];
 // Set the on screen UILabel to this phone number
 [inheritorNumberField setText:(NSString *)number];

 // We used "Copy" to get this value, we need to manually release it
 CFRelease(number);
 }

 // Create a string with first and last name together - full name
 // Ignore last or first name if it is null
 NSString *name = [NSString stringWithFormat:@"%@ %@",
 (firstName ? firstName : @""),
 (lastName ? lastName : @"")];
 [editingPossession setInheritorName:name];

 // Manually release all copied objects
 [firstName release];
 [lastName release];
 CFRelease(numbers);

Chapter 22. Address Book

Page 370

 // Update onscreen UILabel
 [inheritorNameField setText:name];

 // Get people picker object off the screen
 [self dismissModalViewControllerAnimated:YES];

 // Do not perform default functionality (which is go to detailed page)
 return NO;
}

If you remember that CFStringRef is toll-free bridged with NSString, most of this
code becomes self-explanatory. Just note that the word Copy in the C functions
for getting values from an ABRecordRef means you are responsible for releasing
these variables using CFRelease. (Or, if you cast them to an NSString, you can
send them the message release. If you leave them as CFStringRef, it’s important
to know that, just as with any Core Foundation object, you can’t call CFRelease
on NULL.)

Some values of an ABRecordRef are multi-values. The
kABPersonPhoneProperty is a multi-value, which works a lot like an array. An
ABMultiValueRef contains an ordered list of items. Each one of these items has
a value and a label. For the kABPersonPhoneProperty (shown in Figure 22.5),
the value of an item is the phone number itself (as a string), and the label is the
location	of	that	number	(home,	mobile,	office,	etc.,	also	as	a	string).	In	this	code,	
you made sure there is at least one number for this contact before accessing the
first	number	in	the	multi-value.

Figure 22.5. ABMultiValue

Chapter 22. Address Book

Page 371

Many properties of an ABRecordRef are multi-values, and they aren’t always
strings. The documentation will give you all the information you need for each
standard Address Book property.

Build and run the application. Tap the Choose Inheritor button and then one of
the contacts from the list. The name and phone number of that person will now
appear on the ItemDetailViewController page as shown in Figure 22.6. When
you	exit	the	application,	this	information	will	get	archived.	Your	possessions	now	
have a home in case bad things happen to you.

Figure 22.6. ItemDetailViewController with Inheritor

To update the two new inheritor labels when ItemDetailViewController’s view
appears on the screen, place these two lines at the end of viewWillAppear: in
ItemDetailViewController.m.

Chapter 22. Address Book

Page 372

 [inheritorNameField setText:[editingPossession inheritorName]];
 [inheritorNumberField setText:[editingPossession inheritorNumber]];
}

Build	and	run	the	application.	You	can	now	set,	view,	and	archive	the	beneficiary	
of a Possession instance.

For the More Curious: That Other Delegate Method
The compiler still has a complaint about not implementing the last
method in ABPeoplePickerNavigationControllerDelegate, peoplePi
ckerNavigationController:shouldContinueAfterSelectingPerson:pr
operty:identifier:. While you don’t need this method in this application,
we will talk about it anyway. When the people picker is on the screen,
the user can tap a contact and the delegate is sent the message
peoplePickerNavigationController:shouldContinueAfterSelectingPerson:.
That method returns a boolean value for whether the people picker should
continue. If you returned YES (and didn’t dismiss the modal view controller), a
detailed page for the selected contact will appear (Figure 22.7).

Figure 22.7. Address Book detail page

Chapter 22. Address Book

Page 373

When	that	detailed	page	is	on	the	screen	and	the	user	selects	one	of	the	fields	–	
like a phone number – a message is sent to the people picker delegate:

- (BOOL)peoplePickerNavigationController:(ABPeoplePickerNavigationController
*)p
 shouldContinueAfterSelectingPerson:(ABRecordRef)person
 property:(ABPropertyID)property
																														identifier:(ABMultiValueIdentifier)identifier
{
 // Perform default functionality (like dial phone number, send email)
				return	YES;
}

When this method returns YES,	the	action	for	the	selected	field	takes	place.	With	
a phone number, the Phone application takes over and dials it. For an e-mail
address, the Mail application opens a new message to that address. The last
two parameters sent with this message are the property that was selected (the
phone	property,	for	example)	and	the	identifier	if	the	selected	field	is	part	of	an	
ABMultiValueRef	(the	identifier	would	be	something	like	“mobile”	or	“home”	for	
the phone property).

You	can	implement	this	method	as	above	in	ItemDetailViewController.m to get
rid	of	the	final	warning	about	not	implementing	the	people	picker	protocol.

Chapter 23. Localization

Page 374

Chapter 23. Localization
The appeal of the iPhone is global – iPhone users live in many different countries
and	speak	many	different	languages.	You	can	ensure	that	your	application	is	
ready for this global audience through the processes of internationalization and
localization. Internationalization is making sure your native cultural information is
not hard-coded into your application. (By cultural information, we mean language
as well as currency, date formats, number formats, and more.) Localization, on
the other hand, is providing the appropriate data in your application based on
the user’s settings. Two user settings are involved in localization: Language and
Region	Format.	You	can	find	both	in	the	Settings	application	by	selecting	the	
General row and then the International row.

Figure 23.1. International Settings

Incredibly, Apple makes these processes simple. An application that takes
advantage of the localization APIs does not even need to be recompiled to be
distributed in other languages or regions. (By the way, internationalization and

Chapter 23. Localization

Page 375

localization are big words. Commonly, they are abbreviated to i18n and L10n,
respectively. In order to prevent confusion, I will type out the full words. But you
owe me a beer at the next WWDC.)

Internationalization using NSLocale
In this chapter, you’re going to to localize the possession detail view
of	Homepwner.	In	this	first	section,	you	will	use	the	class	NSLocale to
internationalize the currency symbol for a value of a possession and the format of
the date on which it was created.

NSLocale knows how different regions display symbols, dates, and decimals and
whether they use the metric system. NSLocale instances represent one region’s
settings for these variables. In the Settings application, the user can choose
a	region	like	United	States	or	United	Kingdom.	(Why	does	Apple	use	“region”	
instead	of	“country”?	Some	countries	have	more	than	one	region	with	different	
settings. Scroll through the options in Region Format to see for yourself.)

When you send the message currentLocale to NSLocale, the instance of
NSLocale that represents the user’s region choice is returned. Once you have
a pointer to that instance of NSLocale, you can start asking it questions like,
“What’s	the	currency	symbol	for	this	region?”	or	“Does	this	region	use	the	metric	
system?”	To	ask	a	question,	you	send	the	NSLocale instance the message
objectForKey: with one of the NSLocale	constants	as	an	argument.	(You	can	
find	all	of	these	constants	in	the	NSLocale documentation page.)

First, let’s internationalize the currency symbol displayed in each
HomepwnerItemCell. Open Homepwner.xcodeproj and, in
HomepwnerItemCell.m, locate the method setPossession:. When the text of
the valueLabel	is	set	in	this	method,	the	string	“$%d”	is	used,	which	makes	the	
currency symbol always a dollar sign. Replacing that code with the following will
get and display the appropriate currency symbol for the user’s region.

- (void)setPossession:(Possession *)possession
{
 NSString *currencySymbol = [[NSLocale currentLocale]
 objectForKey:NSLocaleCurrencySymbol];
 [valueLabel setText:[NSString stringWithFormat:@"%@%d",
 currencySymbol,
 [possession valueInDollars]]];

 [nameLabel setText:[possession possessionName]];

Chapter 23. Localization

Page 376

 [imageView setImage:[possession thumbnail]];
}

Build and run the application. If the currency symbol is the dollar sign in your
region, you’ll need to change your region format in order to test this code. Exit the
Homepwner application in the simulator by clicking the Home button and change
your region format to United Kingdom in the Settings application.

Run your application again. This time, you will see values displayed in pounds
(£). (Note that this is not a currency conversion from dollars to pounds; you’re
replacing the symbol, but the numbers stay the same.)

NSDateFormatter has a locale property, which is automatically set to the device’s
current locale. Run the application again. Select a possession, and (if your region
is still set to United Kingdom) the date will appear in the British format: day/month/
year.

Localizing Resources
Now that you’ve internationalized the currency symbol and date, let’s turn to
localization. Localization is the process in which substitutions for a region or a
language setting are created. This usually means one of two things:

•	 generating multiple copies of resources like images, sounds, and interfaces for
different regions and languages

•	 creating	and	accessing	“strings	tables”	to	translate	text	into	different	languages

Any	resource,	whether	an	image	or	a	XIB	file,	can	be	localized	with	very	
little work. In this section, you’re going to localize one of Homepwner’s
interfaces: the ItemDetailViewController.xib	file.	Right-click	(or	Control-click)
ItemDetailViewController.xib in the project window and select Get Info from the
contextual menu. In the General tab of the window that appears, click the button
labeled Make File Localizable as shown in Figure 23.2.

Chapter 23. Localization

Page 377

Figure 23.2. Resource before localization

This window will change, and a list of all of the localizations for
ItemDetailViewController.xib will appear. As of now, there’s only English. Click
the Add Localization button at the bottom of the window and enter Spanish in the
drop-down box that appears. Then click Add. Now the window should match the

Chapter 23. Localization

Page 378

one shown in Figure 23.3.

Figure 23.3. Localized resource

When	you	add	a	localization,	two	things	happen:	a	copy	of	the	resource	file	
is made and the existing copies are separated into distinct .lproj directories
named after the localizations. In this case, look in the Finder where
ItemDetailViewController.xib was, and you will see two directories: English.
lproj and Spanish.lproj. There is a copy of ItemDetailViewController.xib in
each.

Now, back in Xcode, look under Homepwner’s Resources. Click the disclosure

Chapter 23. Localization

Page 379

button next to ItemDetailViewController.xib in the project window as shown in
Figure 23.4	and	then	open	the	Spanish	file.	This	is	the	ItemDetailViewController.
xib that is in the Spanish.lproj folder.

Figure 23.4. Localized XIB in the project window

When	the	Spanish	XIB	file	opens,	the	text	is	unfortunately	still	in	English.	You	do	

Chapter 23. Localization

Page 380

have to translate it yourself; that part isn’t automatic. Use Figure 23.5 as a guide

to change the labels and button titles to Spanish.

Figure 23.5. Spanish ItemDetailViewController.xib

Remember	that	there’s	nothing	special	about	localizing	a	XIB	file	as	opposed	to	
another	resource	like	an	image	file.	You	follow	the	same	procedure.

Once	you	have	finished	localizing	this	XIB	file,	you	will	want	to	test	it.	There	is	a	
little	Xcode	glitch	to	be	aware	of:	sometimes	Xcode	just	ignores	a	resource	file’s	
changes when you build an application. To ensure that the application gets the
updated resources when it is built, select Clean from the Build menu. Build and

Chapter 23. Localization

Page 381

run the application. Cleaning a project simply trashes the application bundle and
forces it to be rebuilt from scratch.

Homepwner’s detail view will not appear in Spanish until you change the language
settings on the device. Exit the application and change the language settings to
Español in Settings. Once you have changed the device’s language to Spanish,
run your application again. Select a possession row, you will see the interface in
Spanish.

NSLocalizedString and Strings Tables
In many places in your applications, you create NSString instances dynamically
or use string literals that are displayed to the user. To display translated versions
of	these	strings,	you	must	create	a	strings	table.	A	strings	table	is	a	file	containing	
a list of key-value pairs for all of the strings your application uses and their
associated	translations.	It’s	a	resource	file	that	you	add	to	your	application,	but	
you don’t need to do a lot of work to get data from it.

Whenever you have a string in your code, it appears like this:

 @"Add New Item..."

To internationalize a string in your code, you replace literal strings with the macro
NSLocalizedString().

NSString *translatedString =
				NSLocalizedString(@"Hello!",	@"The	greeting	for	the	user");

This function takes two arguments: a key (which is required) and a comment
(which is not). The key is the lookup value in a strings table. At runtime, the
NSLocalizedString function will look through the strings tables bundled with your
application for a table that matches the user’s language settings. Then, in that
table, the function gets a translation that matches the key. (The second argument
is unused by the function; you will see why it matters in a moment.)

Now	you’re	going	to	internationalize	the	string	“Add	New	Item...”.	In	
ItemsViewController.m, locate the method tableView:cellForRowAtIndexPath:
and change the line of code that sets the text of the basicCell.

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{

Chapter 23. Localization

Page 382

 if ([indexPath row] >= [possessions count]) {
 UITableViewCell *basicCell = [tableView
																dequeueReusableCellWithIdentifier:@"UITableViewCell"];

								if	(!basicCell)
 basicCell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
																										reuseIdentifier:@"UITableViewCell"]	autorelease];

 // Set the textLabel of the basic cell from a strings table lookup
 [[basicCell textLabel] setText:NSLocalizedString(@"AddNewItem",
 @"textLabel for add cell: Add New Item...")];
 return basicCell;
}
...

Once	you	have	a	file	that	has	been	internationalized	with	the	NSLocalizedString
function, you can generate strings tables with a command-line application.

Open Terminal.app in the /Applications/Utilities directory. Once Terminal
launches, you’ll need to navigate to the location of ItemsViewController.m. If
you are familiar with Unix, have at it. If not, you’re about to learn a cool trick. In
Terminal, type the following:

cd

followed by a space.

Use	Finder	to	find	the	Classes directory of your project, which contains
ItemsViewController.m. Drag the Classes	folder	icon	from	the	file	system	onto	
the	Terminal	window.	Terminal	will	fill	out	the	path	for	you.	Hit	return.	The	current	
working directory ofTerminal is now the Classes directory. For example, my
terminal command looks like this:

cd /iphone/Solutions/Homepwner/Classes/

To generate the strings table, enter the following into Terminal and hit return:

genstrings ItemsViewController.m

A	file	named	Localizable.strings will be created in your Classes directory. Drag

Chapter 23. Localization

Page 383

this	file	into	the	Resources	group	of	your	project	window.	When	the	application	is	
compiled, this resource will be copied into the main bundle.

Oddly enough, Xcode sometimes has a problem with strings tables. Open the
Localizable.strings	file	in	your	project	window.	If	you	see	a	bunch	of	upside-
down	question	marks,	you	need	to	reinterpret	this	file	as	Unicode	(UTF-16).	Right-
click	to	Get	Info	on	the	file	and	select	Unicode	(UTF-16)	from	the	pop-up	menu	
next to File Encoding. It will ask if you if you want reinterpret or convert. Choose
Reinterpret.

The	file	should	look	like	this:

/* textLabel for add cell: Add New Item... */
"AddNewItem" = "AddNewItem";

Change it to this:

/* textLabel for add cell: Add New Item... */
"AddNewItem" = "Add New Item...";

Notice that the comments in your strings table are the ones you supplied to the
NSLocalizedString function.

Now that you’ve created Localizable.strings, localize it the same way you did the
XIB	file.	(Strings	tables	are	resources,	too!)	Select	Get	Info	from	the	contextual	
menu and click Make File Localizable. Add the Spanish localization and then

Chapter 23. Localization

Page 384

return to theResources directory and open the Spanish version of Localizable.

strings (Figure 23.6). The text on the left hand side is the key that is passed to
the NSLocalizedString function, and the string on the right hand side is what is
returned. Change the text on the right hand side to the Spanish translation shown
below.

Figure 23.6. Localized Strings Tables in the Project window

/* textLabel for add cell: Add New Item... */
"AddNewItem" = "Agregue el nuevo artículo...";

Build and run the application again. Tap the Edit button and the bottom row will
appear in Spanish. If it does not, you might need to clean your project and rebuild.
(Or check your user language setting.)

Challenge: Another Localization
Practice makes perfect. Localize Homepwner for another language.

For the More Curious: NSBundle’s Role in
Internationalization
The real work of adding a localization is done for you by the class NSBundle.
When a UIViewController is initialized, it is given two arguments: the name of
a	XIB	file	and	an	NSBundle object. The bundle argument is typically nil, which

Chapter 23. Localization

Page 385

is interpreted as the application’s main bundle. (The main bundle is another
name for the application bundle – all of the resources and the executable for the
application. When an application is built, all of the lproj directories are copied into
this bundle.)

When	the	view	controller	loads	its	view,	it	asks	the	bundle	for	the	XIB	file.	The	
bundle, being very smart, checks the current language settings of the device
and looks in the appropriate lproj	directory.	The	path	for	the	XIB	file	in	the	lproj
directory is returned to the view controller and loaded.

NSBundle knows how to search through localization directories for every type of
resource using the instance method pathForResource:ofType:. When you want
a path to a resource bundled with your application, you send this message to the
main	bundle.	Here’s	an	example	using	the	resource	file	myImage.png:

 NSString *path = [[NSBundle mainBundle] pathForResource:@"myImage"
 ofType:@"png"];

The	bundle	first	checks	to	see	if	there	is	a	myImage.png	file	in	the	top-level	of	
the	application	bundle.	If	so,	it	returns	the	full	path	to	that	file.	If	not,	the	bundle	
gets the device’s language settings and looks in the appropriate lproj directory to
construct	the	path.	If	no	file	is	found,	it	returns	nil.

Chapter 24. Bonjour

Page 386

Chapter 24. Bonjour
Bonjour is Apple’s implementation of the ZeroConf standard, which allows
services to advertise themselves on a network. It also allows clients to search for
services. In this chapter, you are going to create an application that advertises its
presence on the local network. It will also search for other devices on the network
that advertise the same Bonjour service. The application will display a table view
that lists every device running the Bonjour service on the network and a message
that the application includes in its advertisement.

Figure 24.1. Two Users Have Published Messages

Publishing a Service
Create	a	new	Window-based	Application	called	Nayberz.	The	first	step	
is to advertise a Bonjour service. This is done by creating an instance of
NSNetService and publishing it. In NayberzAppDelegate.h, add an instance
variable for the net service you are publishing:

#import <UIKit/UIKit.h>

@interface NayberzAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 NSNetService *netService;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

Chapter 24. Bonjour

Page 387

@end

Then, in NayberzAppDelegate.m, create and publish the service:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Create an instance of NSNetService
 netService = [[NSNetService alloc]
 initWithDomain:@""
 type:@"_nayberz._tcp."
 name:[[UIDevice currentDevice] name]
 port:9090];

 // As the delegate, you will know if the publish is successful
 [netService setDelegate:self];

 // Try to publish it
 [netService publish];

 [window makeKeyAndVisible];
				return	YES;
}

In	that	same	file,	add	two	net	service	delegate	methods:

- (void)netServiceDidPublish:(NSNetService *)sender
{
 NSLog(@"published: %@", sender);
}

- (void)netService:(NSNetService *)sender didNotPublish:(NSDictionary *)
errorDict
{
 NSLog(@"not published: %@ -> %@", sender, errorDict);
}

When the instance of NSNetService is deallocated (or the application terminates),

Chapter 24. Bonjour

Page 388

it will automatically stop publishing itself. However, stylish programmers
explicitly stop the publishing. Add another application delegate method to
NayberzAppDelegate.m to do this:

- (void)applicationWillTerminate:(UIApplication *)application
{
 [netService stop];
}

Build	and	run	the	application.	You	will	see	on	the	console	that	the	service	was	
successfully published.

Browsing for Services
Now you’re going to create a UITableViewController that displays the Bonjour
services that the application discovers in its table view. It will have an instance
of NSNetServiceBrowser and an array of NSNetService	objects	that	it	finds.	
In Xcode, create a new UIViewController subclass (without a XIB) and name it
TableController.

Open TableController.h and change the superclass to UITableViewController.

@interface TableController : UITableViewController

Now create an instance of this view controller and put it on the window.
Return to NayberzAppDelegate.h and declare an instance variable for the
TableController:

#import <UIKit/UIKit.h>
@class TableController;

@interface NayberzAppDelegate : NSObject <UIApplicationDelegate> {
 UIWindow *window;
 NSNetService *netService;
 TableController *tableController;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

In application:didFinishLaunchingWithOptions:, create the instance and put its

Chapter 24. Bonjour

Page 389

view	on	the	window.	Also,	import	the	header	file	for	TableController at the top of
NayberzAppDelegate.m:

#import "TableController.h"
@implementation NayberzAppDelegate
- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 netService = [[NSNetService alloc]
 initWithDomain:@""
 type:@"_nayberz._tcp."
 name:[[UIDevice currentDevice] name]
 port:9090];
 [netService setDelegate:self];

 [netService publish];

 tableController = [[TableController alloc] init];
 UIView *v = [tableController view];
 [v setFrame:[window bounds]];
 [window addSubview:v];
 [application setStatusBarHidden:YES];

 [window makeKeyAndVisible];
				return	YES;
}

Build and run the application. The table view will appear, but it will be empty. Next
you	are	going	to	fill	it	with	data.

Open TableController.h and add two instance variables:

#import <UIKit/UIKit.h>

@interface TableController : UITableViewController
{
 NSMutableArray *netServices;
 NSNetServiceBrowser *serviceBrowser;
}

Chapter 24. Bonjour

Page 390

@end

In TableController.m, create an init	method	which	specifies	the	style	of	the	
table view and creates an empty mutable array. Then, create an instance of
NSNetServiceBrowser and start it searching:

- (id)init
{
 [super initWithStyle:UITableViewStylePlain];

 // Create an empty array
 netServices = [[NSMutableArray alloc] init];

 // Create a net service browser
 serviceBrowser = [[NSNetServiceBrowser alloc] init];

 // As the delegate, you will be told when services are found
 [serviceBrowser setDelegate:self];

 // Start it up
 [serviceBrowser searchForServicesOfType:@"_nayberz._tcp."
 inDomain:@""];
 return self;
}

Also edit the required data source methods:

- (NSInteger)tableView:(UITableView *)table
 numberOfRowsInSection:(NSInteger)section
{
 return [netServices count];
}

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSNetService *ns = [netServices objectAtIndex:[indexPath row]];

 UITableViewCell *cell = [[self tableView]
 dequeueReusableCellWithIdentifier:@"UITableViewCell"];

Chapter 24. Bonjour

Page 391

 if (!cell) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue2
 reuseIdentifier:@"UITableViewCell"];
 [cell autorelease];
 }
 [[cell textLabel] setText:[ns name]];
 return cell;
}

Now implement the net service browser delegate methods:

// Called when services are found
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing
{
 NSLog(@"adding %@", aNetService);

 // Add it to the array
 [netServices addObject:aNetService];

 // Update the interface
 NSIndexPath *ip = [NSIndexPath indexPathForRow:[netServices count] - 1
 inSection:0];
 [[self tableView] insertRowsAtIndexPaths:[NSArray arrayWithObject:ip]
 withRowAnimation:UITableViewRowAnimationRight];
}

// Called when services are lost
- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didRemoveService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing
{
 NSLog(@"removing %@", aNetService);

 // Take it out of the array
 NSUInteger row = [netServices indexOfObject:aNetService];
 if (row == NSNotFound) {
 NSLog(@"unable to find the service in %@", netServices);
 return;

Chapter 24. Bonjour

Page 392

 }
 [netServices removeObjectAtIndex:row];

 // Update the interface
 NSIndexPath *ip = [NSIndexPath indexPathForRow:row inSection:0];
 [[self tableView] deleteRowsAtIndexPaths:[NSArray arrayWithObject:ip]
 withRowAnimation:UITableViewRowAnimationRight];
}

Build and run the application on more than one device on the local network. (One
of these devices can be the simulator.) In the table view, you will see the device
names of all the phones on the local network.

TXT Record
Sometimes it is convenient for a service to include additional useful information
that can be read by clients. The data is not, however, in the initial contact from the
published	service;	the	client	must	first	resolve	it.

In NayberzAppDelegate.m, add a TXT record to the published service:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 netService = [[NSNetService alloc]
 initWithDomain:@""
 type:@"_nayberz._tcp."
 name:[[UIDevice currentDevice] name]
 port:9090];
 [netService setDelegate:self];

 NSString *messageString = @"You all kinda smell";

 // Pack the string into an NSData
 NSData *d = [messageString dataUsingEncoding:NSUTF8StringEncodi
ng];

 // Put the data in a dictionary
 NSDictionary *txtDict = [NSDictionary dictionaryWithObject:d

Chapter 24. Bonjour

Page 393

 forKey:@"message"];

 // Pack the dictionary into an NSData
 NSData *txtData = [NSNetService dataFromTXTRecordDictionary:txtDict];

 // Put that data into the net service
 [netService setTXTRecordData:txtData];

 [netService publish];

 tableController = [[TableController alloc] init];
 UIView *v = [tableController view];
 [v setFrame:[window bounds]];
 [window addSubview:v];

				[application	setStatusBarHidden:YES];
 [window makeKeyAndVisible];
				return	YES;
}

In TableController.m, start the resolve when new services are found.

- (void)netServiceBrowser:(NSNetServiceBrowser *)browser
 didFindService:(NSNetService *)aNetService
 moreComing:(BOOL)moreComing
{
				NSLog(@"adding	%@",	aNetService);

 // Add it to the array
 [netServices addObject:aNetService];

 // Update the interface
 NSIndexPath *ip = [NSIndexPath indexPathForRow:[netServices count] - 1
 inSection:0];
 [[self tableView] insertRowsAtIndexPaths:[NSArray arrayWithObject:ip]
 withRowAnimation:UITableViewRowAnimationRight];

 // Start resolution to get TXT record
 [aNetService setDelegate:self];
 [aNetService resolveWithTimeout:30];
}

Chapter 24. Bonjour

Page 394

Implement the net service delegate method that will get called when the service
resolves:

- (void)netServiceDidResolveAddress:(NSNetService *)sender
{
 // What row just resolved?
 int row = [netServices indexOfObjectIdenticalTo:sender];
 NSIndexPath *ip = [NSIndexPath indexPathForRow:row inSection:0];
 NSArray *ips = [NSArray arrayWithObject:ip];

 // Reload that row
 [[self tableView] reloadRowsAtIndexPaths:ips
 withRowAnimation:UITableViewRowAnimationRight];
}

Display the message in the table view cell:

- (UITableViewCell *)tableView:(UITableView *)tv
 cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 NSNetService *ns = [netServices objectAtIndex:[indexPath row]];

 NSString *message = nil;

 // Try to get the TXT Record
 NSData *data = [ns TXTRecordData];

 // Is there TXT data? (no TXT data in unresolved services)
 if (data) {

 // Convert it into a dictionary
 NSDictionary *txtDict = [NSNetService dictionaryFromTXTRecordData:d
ata];

 // Get the data that the publisher put in under the message key
 NSData *mData = [txtDict objectForKey:@"message"];

 // Is there data?
 if (mData) {

Chapter 24. Bonjour

Page 395

 // Make a string
 message = [[NSString alloc] initWithData:mData
 encoding:NSUTF8StringEncoding];
 [message autorelease];
 }
 }

 // Did I fail to get a string?
 if (!message) {
 // Use a default message
 message = @"<No message>";
 }

 UITableViewCell *cell = [[self tableView]
																dequeueReusableCellWithIdentifier:@"UITableViewCell"];
				if	(!cell)	{
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleValue2
																																						reuseIdentifier:@"UITableViewCell"];
 [cell autorelease];
 }

 // Name on the left
 [[cell textLabel] setText:[ns name]];

 // Message on the right
 [[cell detailTextLabel] setText:message];
 return cell;
}

Build and run the application.

Socket Connections
A	lot	of	people	may	read	this	chapter	and	think	to	themselves,	“Well,	I	guess	
Bonjour is cool. But I don’t see the point – all I can do is advertise a single chunk
of	text.”	Oh,	but	there	is	so	much	more!

When an NSNetService is resolved, you can send it the message addresses.
This method returns an NSArray of NSData instances. Each NSData instance
actually contains a sockaddr_in. A sockaddr_in is a TCP/IP structure that can be
used for low-level TCP/IP communication. (There is typically only one address for

Chapter 24. Bonjour

Page 396

a server, but there could be more.)

What’s	that	mean?	You	can	make	socket	connections	to	a	server	advertising	an	
NSNetService, and, once you have a socket connection, you can communicate
back and forth. Unfortunately, making a socket connection and passing data back
and forth on it are beyond the scope of this book. Network programming is a huge
topic, and there are plenty of resources out there. The best one is Beej’s Guide to
Network Programming (http://beej.us/guide/bgnet/).

To get you started, here’s how to extract the sockaddr_in structure from an
NSNetService. At the top of TableController.m,	import	two	header	files	from	the	
standard C library.

#import <netinet/in.h>
#import <arpa/inet.h>

When a Bonjour service is resolved, you will print out its IP address and
port number. Add the following code to netServiceDidResolveAddress: in
TableController.m.

- (void)netServiceDidResolveAddress:(NSNetService *)sender
{
 int row = [netServices indexOfObjectIdenticalTo:sender];
 NSIndexPath *ip = [NSIndexPath indexPathForRow:row inSection:0];
 NSArray *ips = [NSArray arrayWithObject:ip];
 [[self tableView] reloadRowsAtIndexPaths:ips
 withRowAnimation:UITableViewRowAnimationRight];

 // Get all addresses for this server
 NSArray *addrs = [sender addresses];
 if([addrs count] > 0) {
 // Just grab the first address that it advertises
 NSData *firstAddress = [addrs objectAtIndex:0];

 // Point a sockaddr_in structure at the data wrapped
 // by firstAddress
 const struct sockaddr_in *addy = [firstAddress bytes];

 // Get a string that shows the IP address in x.x.x.x format
 // from the sockaddr_in structure
 char *str = inet_ntoa(addy->sin_addr);

Chapter 24. Bonjour

Page 397

 // Print that IP address as well as the port
 NSLog(@"%s:%d", str, ntohs(addy->sin_port));
 }
}

Build and run the application. When a net service resolves, check the console.
You	will	see	the	IP	address	and	port	of	the	Bonjour	server	you	found.	Notice	that	
the port printed to the console is the same port number you advertise the Bonjour
service on.

If	you	wish	to	dive	deeper	into	network	programming,	definitely	read	Beej’s	
guide. Whether you program using standard C networking code or using Core
Foundation or Foundation’s streaming APIs, the concepts discussed in the guide
are very important.

Chapter 25. Settings

Page 398

Chapter 25. Settings
Many applications include preferences that users can customize. Whether users
are picking the size of the text or storing passwords, there is a standard way
of enabling iPhone application preferences. In this chapter, you will use the
NSUserDefaults class to add a preference to your Nayberz application. This
preference will specify the message that you publish in your net service (Figure
25.1)

Figure 25.1. Nayberz Settings Pane

Settings Bundle
In the top-level directory of an iPhone application bundle,	the	filename	Settings.
bundle is reserved for a directory to contain the application’s preference settings.
To add application preferences to your application, you add a Settings.bundle
directory	to	your	application.	This	directory	must	contain	a	file,	Root.plist, where

javascript:moveTo('ch25fig01');
javascript:moveTo('ch25fig01');

Chapter 25. Settings

Page 399

you	set	key-value	pairs	to	define	the	application	preferences.	Once	you’ve	done	
this, your application will have its own pane in the Settings application where the
user can set these preferences.

XCode makes it very easy to add a Settings.bundle to an application. Reopen
Nayberz.xcodeproj. From the File menu, select New File.... In the table on the
left side, under the iPhone OS group, select Resource. Then in the table on the
right side, selectSettings Bundle and click Next. The next screen will let you
change the File Name and Location, but don’t change them. Just be sure that the
Add	to	Project:	field	is	set	to	Nayberz	and	Targets:	Nayberz	is	checked	before	you	
click Finish.

The Settings.bundle will now appear in your project’s Groups & Files table. Use
the disclosure buttons to reveal its contents, Root.plist and en.lproj. The en.lproj
directory contains a strings table called Root.strings.	The	file	en.lproj/Root.
strings contains the English version of the text that will appear in the Nayberz
pane of Settings. This means you can localize Root.strings.

Double-click on Root.plist	to	open	it	in	the	Property	List	Editor.	You	will	see	that	
it contains two keys at the root level: StringsTable and PreferenceSpecifiers.
The value of the StringsTable key (Root)	gives	the	name	of	the	strings	table	file	
(Root.strings) that will be found in each localization directory. A value for this key
is not required but your application’s settings will not be localized without one.

Right now, you are interested in the other key, PreferenceSpecifiers. The
value	of	this	key	is	an	array	of	dictionaries.	Each	of	these	dictionaries	defines	a	
preference	specifier.	If	you	expand	the	PreferenceSpecifiers key in the Property
List	Editor,	you	will	see	the	preference	specifier	dictionaries.	These	“sample”	
preferences were added by XCode when it created the Settings.bundle for you.
If	you	expand	these	dictionaries,	you	will	see	the	key-value	pairs	that	define	each	
of the preferences. Build and run Nayberz with these sample preferences. After
your application starts, exit it. Then open Settings and scroll down to see Nayberz
in the list. Select it and compare the key-value pairs in the dictionaries to the
appearance	of	the	properties	inSettings.	Pretty	cool,	huh?

Each	preference	specifier	defines	an	attribute	in	Settings using key-value pairs.
Here we’ll discuss three of those keys: Type, Key, and DefaultValue.	(Yeah,	I	
know. One of the keys is actually named Key.)

The value for Type	is	one	of	seven	constants	that	specifies	the	widget	type	used	
for this preference in Settings:

Chapter 25. Settings

Page 400

PSTextFieldSpecifier a	text	field	preference	(a	string)
PSTitleValueSpecifier a read-only string preference (used to

display preference values as formatted
strings)

PSToggleSwitchSpecifier a toggle switch preference (one of two
values)

PSSliderSpecifier a slider preference (a range of real
number values)

PSMultiValueSpecifier a multi-value preference (a set of
mutually exclusive values)

PSGroupSpecifier a group item preference (used to
organize groups of preferences on a
single page)

PSChildPaneSpecifier a child pane preference (used to link to
a new page of preferences)

Note that PSGroupSpecifier and PSChildPaneSpecifier do not specify actual
preferences; they control the grouping and paging of preferences in Settings.

The value for Key is a string to be associated with the preference. Each of these
strings must be unique within your PreferenceSpecifiers.	Your	application	code	
will use this key to reference that preference.

The value for DefaultValue	is	the	“factory	setting”	–	the	value	of	the	preference	
when	the	user	first	downloads	the	application.	This	value	must	be	of	the	type	that	
the	preference	specifier	expects	(e.g.,	string for PSTextFieldSpecifier).

Depending	on	the	type	of	the	preference	specifier,	there	may	be	other	keys	
available	to	configure	the	appearance	of	the	associated	widget.	Some	of	these	
keys are required, some are not. The documentation of the preference types and
the	available	keys	for	each	of	those	types	is	in	the	“Settings Application Schema
Reference” in the documentation.

Now you are going to delete the sample preferences and replace them with a
single new preference. This preference will have the key BNRMessagePrefKey,
and it will specify the user’s preference for the message broadcast by Nayberz.

Chapter 25. Settings

Page 401

The	factory	setting	will	be	“I	love	you	all.”	If	you	double-click	on	Root.plist, it will
open in the Property List Editor (and the XML will be hidden). In this editor, you
could add and remove items and edit their values. In this case, however, you’re
going	to	edit	the	XML	file	directly.	Right-click	on	Root.plist. Select Open As
from the pop-up menu and then select Source Code File. Remove the existing
preferences and replace them with the single preference shown below.

<?xml	version="1.0"	encoding="UTF-8"?>
<!DOCTYPE	plist	PUBLIC	"-//Apple//DTD	PLIST	1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>StringsTable</key>
 <string>Root</string>
				<key>PreferenceSpecifiers</key>
 <array>

<dict>
 <key>Type</key>
 <string>PSTextFieldSpecifier</string>
 <key>Title</key>
 <string>Message</string>
 <key>Key</key>
 <string>BNRMessagePrefKey</string>
 <key>DefaultValue</key>
 <string>I love you all.</string>
 </dict>

 </array>
</dict>
</plist>

Save	the	file.	You	have	just	created	a	text	field	in	the	Nayberz	pane	of	Settings
where the user can set a personal value for the BNRMessagePrefKey
preference. Here you only created a single preference, but there could be many in
a complex application. Remember that each preference needs a unique key. It is
best	to	be	verbose	with	these	key	names.	Here	you	have	a	prefix	(“BNR”,	for	Big	
Nerd	Ranch),	a	name	(“Message”),	and	the	suffix	“PrefKey”.	This	way,	no	one	will	
get confused about what the keys in your code mean.

Chapter 25. Settings

Page 402

Save Root.plist and build and run your application. After your application starts
up, exit it. Open Settings	and	scroll	down	to	find	Nayberz.	Select	it	and	set	your	
preference for the Nayberz message.

NSUserDefaults
Now the user can set the preference for BNRMessagePrefKey. But you still
need to write a little code to respect the user’s preference in your application.
The NSUserDefaults class makes this very simple. It has a class method
standardUserDefaults that returns the singular instance of NSUserDefaults for
your application. NSUserDefaults is essentially an NSMutableDictionary with
keys	and	values.	Its	keys	are	the	keys	for	your	preference	specifiers	in	Root.plist,
and its values are the user’s settings for those preferences.

Registering defaults
Every time the app launches, you will need to remind the application what the
factory	defaults	are	by	“registering”	your	factory	defaults	using	the	DefaultValues
from your Settings.bundle. To register your defaults, you build an NSDictionary
containing a key-value pair for each preference. Each key will be a preference
key, and its value will be the corresponding DefaultValue for the preference.
Then you send this dictionary to the instance of NSUserDefaults using the
registerDefaults: message.

The priority of the various defaults settings is as follows:

1. preferences set by the user in Settings	(highest) 

2. default values set in Root.plist in the Settings.bundle 

3. default values set with registerDefaults:	(lowest) 

So if the user has already set a preference, it will override the other default values.

Your	application	needs	to	register	its	defaults	before	using	the	instance	of	
NSUserDefaults to get the user defaults. So you’re going to register them in the
initialize method. In initialize in NayberzAppDelegate.m, load the Root.plist
in the settings bundle and pull out the default values for every key. Note that
initialize	is	a	class	method	(denoted	with	a	“+”):

Chapter 25. Settings

Page 403

+ (void)initialize

{
 NSString *path = [[NSBundle mainBundle] bundlePath];
 NSString *pListPath = [path
 stringByAppendingPathComponent:@"Settings.bundle/Root.
plist"];

 NSDictionary *pList = [NSDictionary dictionaryWithContentsOfFile:pList
Path];

 NSMutableArray *prefsArray = [pList objectForKey:@"PreferenceSpecifi
ers"];
 NSMutableDictionary *regDictionary = [NSMutableDictionary dictionary];
 for (NSDictionary *dict in prefsArray) {
 NSString *key = [dict objectForKey:@"Key"];
 if (key) {
 id value = [dict objectForKey:@"DefaultValue"];
 [regDictionary setObject:value forKey:key];
 }
 }
 [[NSUserDefaults standardUserDefaults] registerDefaults:regDictionary];
}

This generic implementation is a bit of overkill for our single preference, but you
will	definitely	want	this	snippet	of	code	when	you	write	an	application	that	has	
multiple preferences.

Using the defaults
Now you are ready to use NSUserDefaults to get the user’s recorded preference
for the message. Open NayberzAppDelegate.m and edit the application:didFini
shLaunchingWithOptions: method:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 netService = [[NSNetService alloc]
 initWithDomain:@""
 type:@"_nayberz._tcp."
 name:[[UIDevice currentDevice] name]

Chapter 25. Settings

Page 404

 port:9090];
 [netService setDelegate:self];

 // Get the shared instance of NSUserDefaults
 NSUserDefaults *ud = [NSUserDefaults standardUserDefaults];

 // Ask for the message string
 NSString *messageString = [ud stringForKey:@"BNRMessagePrefKey"];

 NSData *d = [messageString dataUsingEncoding:NSUTF8StringEncoding];
 NSDictionary *txtDict = [NSDictionary dictionaryWithObject:d
 forKey:@"message"];
 NSData *txtData = [NSNetService dataFromTXTRecordDictionary:txtDict];
 [netService setTXTRecordData:txtData];

 [netService publish];

 tableController = [[TableController alloc] init];
 UIView *v = [tableController view];
 [v setFrame:[window bounds]];
 [window addSubview:v];

				[application	setStatusBarHidden:YES];
 [window makeKeyAndVisible];
				return	YES;
}

At	last!	Users	can	set	their	own	messages,	and	Nayberz	is	complete.	You	don’t	
have	to	do	it	this	way,	though.	You	could	write	your	own	settings	interface	within	
your	application	and	not	register	preference	specifiers	in	a	settings	bundle. Then,
only your application could change the preferences. Or you could do both: write
an interface and set up a Settings.bundle. The two ways will respect each other
as long as you use NSUserDefaults.

Chapter 26. SQLite

Page 405

Chapter 26. SQLite
Once upon a time, SQL was created to access data in relational databases. While
powerful, SQL required a database infrastructure. One day, Richard Hipp decided
to	create	a	library	that	would	store	data	in	tables	and	store	those	tables	in	a	file	
instead of a relational database. With this library, you could use SQL commands
to	fetch	data	from	the	tables	without	requiring	a	database	server	process.	You	
could also use SQL commands to insert, update, and delete rows of data. Dr. Hipp
released the code for this library into the public domain and called it SQLite. The
SQLite libraries are part of the iPhone OS.

SQLite is a nifty C library. It has great performance and reliability. Both the source
for	the	library	and	the	data	files	it	creates	are	portable	to	a	large	number	of	
platforms.

In the Homepwner application, you stored your data using an archive. Archives
are very easy to use and support arbitrary object models. The downside of an
archive is that it is read and written in its entirety. With SQLite, you can fetch
only	the	data	you	need.	You	can	also	update	individual	rows	of	data.	Thus,	if	you	
are dealing with a lot of data, using SQLite can radically improve the speed and
memory footprint of your application. If you are dealing with a small amount of
data, say, less than a thousand rows, archiving is all you need.

Creating the Nayshunz Application
This	chapter	will	show	you	how	to	open	a	SQLite	file	and	fetch	data	from	it.	It	
is done using a C API, so you will spend some time converting C strings into
NSString	objects	and	back	again.	You	will	create	an	application	that	displays	the	
names of nations stored in a SQLite database as shown in Figure 26.1.

Chapter 26. SQLite

Page 406

Figure 26.1. Nayshunz

The	first	step	is	to	create	a	SQLite	database	file	on	the	desktop	and	copy	it	into	
the	resources	of	the	application.	The	first	time	the	application	runs,	it	will	copy	
that starting database to the Documents directory. In this chapter, you are
only reading from a database, so making a copy of the database is not strictly
necessary. However, this step is crucial if you want to edit a database.

The second step is to create a table view with sections using a common data
structure: a tree of dictionaries and arrays. The tree for Nayshunz is shown in
Figure 26.2.

Chapter 26. SQLite

Page 407

Figure 26.2. Tree

In Xcode, create a new Window-based Application called Nayshunz. Open
NayshunzAppDelegate.h and add the following:

#import <UIKit/UIKit.h>
#import <sqlite3.h>

@interface NayshunzAppDelegate : NSObject
 <UIApplicationDelegate, UISearchBarDelegate, UITableViewDataSource>
{
 // Outlets
 IBOutlet UIWindow *window;
 IBOutlet UITableView *countryTable;
 IBOutlet UISearchBar *searchBar;

 // Model
 NSMutableArray *continents;

 // Database stuff

Chapter 26. SQLite

Page 408

 sqlite3 *database;
 sqlite3_stmt *statement;
}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@end

Open MainWindow.xib. Drop a search bar and a table view onto the window.
Leave room under the table view for the keyboard as shown in Figure 26.3.

Figure 26.3. Layout

Chapter 26. SQLite

Page 409

Make the connections shown in Figure 26.4.	Your	instance	of	
NayshunzAppDelegate will be the delegate of the UISearchBar. It will also
be the dataSource of the UITableView. Set the pointers searchBar and
countryTable to point to the UISearchBar and the UITableView, respectively.

Figure 26.4. Connections

Creating the Database
Put	the	countries.sql	file	(downloaded	from	http://www.bignerdranch.com/
solutions/iPhoneProgramming.zip)	on	your	desktop.	(Take	a	look	at	the	file	in	a	
text editor; it is a collection of SQL commands.) Start up Terminal. To create the
new	SQLite	database	file,	issue	these	commands:

$ cd ~/Desktop
$ sqlite3 countries.db < countries.sql

If you are familiar with SQL, you can now use the sqlite3 command line to access
the database from Terminal. Here’s an example:

Chapter 26. SQLite

Page 410

$ sqlite3 countries.db
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> SELECT name, population FROM country
 WHERE name like 'z%' ORDER BY population;
Zambia|9169000
Zimbabwe|11669000
sqlite> .q
$

(If you’d like more help with SQL, check out Joe Celko’s SQL for Smarties.)

From Finder, drag countries.db into your project under the Resources group.
When the sheet appears, check the box that says Copy items into destination
group’s folder.

You	will	also	need	libsqlite3.0.dylib added to your project. Add it the same way
you add a framework – from the Targets menu item in the project window.

Fetching Data
Now you are going fetch the rows, but the results will not appear in the table view
yet. Open NayshunzAppDelegate.m and make it look like this:

#import "NayshunzAppDelegate.h"

@implementation NayshunzAppDelegate

@synthesize window;

- (id)init
{
 [super init];

 // Create the root of the tree
 continents = [[NSMutableArray alloc] init];

 // Where do the documents go?
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
 NSUserDomainMask, YES);

Chapter 26. SQLite

Page 411

 NSString *path = [paths objectAtIndex:0];

 // What would be the name of my database file?
 NSString *fullPath = [path stringByAppendingPathComponent:@"countri
es.db"];

 // Get a file manager for file operations
 NSFileManager *fm = [NSFileManager defaultManager];

 // Does the file already exist?
 BOOL exists = [fm fileExistsAtPath:fullPath];

 // Does it already exist?
 if (exists) {
 NSLog(@"%@ exists – just opening", fullPath);
 } else {
 NSLog(@"%@ does not exist – copying and opening", fullPath);
 // Where is the starting database in the application wrapper?
 NSString *pathForStartingDB =
 [[NSBundle mainBundle] pathForResource:@"countries"
 ofType:@"db"];

 // Copy it to the documents directory
 BOOL success = [fm copyItemAtPath:pathForStartingDB
 toPath:fullPath
 error:NULL];
 if (!success) {
 NSLog(@"database copy failed");
 }
 }

 // Open the database file
 const char *cFullPath = [fullPath cStringUsingEncoding:NSUTF8StringEnc
oding];
 if (sqlite3_open(cFullPath, &database)
 != SQLITE_OK) {
 NSLog(@"unable to open database at %@", fullPath);
 }

 return self;

Chapter 26. SQLite

Page 412

}

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)
searchText
{
 // Only search if the user has typed something in
 if ([searchText length] != 0) {

 // Does the statement need to be prepared?
 if (!statement) {

 // '?' is a placeholder for parameters
 char *cQuery = "SELECT Continent, Name, Code FROM Country "
 "WHERE Name LIKE ? ORDER BY Continent, Name";

 // Prepare the query
 if (sqlite3_prepare_v2(database, cQuery, -1, &statement, NULL)
 != SQLITE_OK)
 {

 NSLog(@"query error: %s", statement);
 }
 }

 // Add % to the end of the search text
 searchText = [searchText stringByAppendingString:@"%"];

 NSLog(@"searching for %@", searchText);

 // This C string will get cleaned up automatically
 const char *cSearchText =
 [searchText cStringUsingEncoding:NSUTF8StringEncoding];

 // Replace the first (and only) parameter with the search text
 sqlite3_bind_text(statement, 1, cSearchText, -1, SQLITE_TRANSIENT);

 // Loop to get all the rows
 while (sqlite3_step(statement) == SQLITE_ROW) {

 // Get the string in the first column

Chapter 26. SQLite

Page 413

 const char *cContinentName =
 (const char *)sqlite3_column_text(statement, 0);

 // Convert C string into an NSString
 NSString *continentName = [[[NSString alloc]
 initWithUTF8String:cContinentName] autorelease];
 // Get the string in the second column
 const char *cCountryName =
 (const char *)sqlite3_column_text(statement, 1);

 // Convert C string into an NSString
 NSString *countryName = [[[NSString alloc]
 initWithUTF8String:cCountryName] autorelease];

 // Get the string in the third column
 const char *cCountryCode =
 (const char *)sqlite3_column_text(statement, 2);

 // Convert C string into an NSString
 NSString *countryCode = [[[NSString alloc]
 initWithUTF8String:cCountryCode] autorelease];

 NSLog(@"%@: %@ of %@", countryCode, countryName, continent-
Name);
 }
 // Clear the query results
 sqlite3_reset(statement);
 }

 // Load the table with the new data
 [countryTable reloadData];
}

#pragma mark Table View Data Source Methods

- (NSInteger)tableView:(UITableView *)table
numberOfRowsInSection:(NSInteger)section
{
 return 0;
}

Chapter 26. SQLite

Page 414

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)ip
{
 return nil;
}
#pragma mark application Delegate Methods

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
 {
 [window makeKeyAndVisible];

 // Bring up the keyboard immediately
 [searchBar becomeFirstResponder];
 return YES;
}

- (void)applicationWillTerminate:(UIApplication *)application
{
 sqlite3_close(database);
}

@end

Build	and	run	the	application.	Watch	the	log.	You	will	see	a	list	of	countries	when	
the user types characters into the search bar.

Making and Using the Tree
Now that you are successfully getting the data, you need to put it into a tree so
that you can access it with the table view data source methods.

In NayshunzAppDelegate.m, extend the searchBar:textDidChange: delegate
method:

- (void)searchBar:(UISearchBar *)searchBar textDidChange:(NSString *)search-
Text
{
 // Clear the data structures

Chapter 26. SQLite

Page 415

 [continents removeAllObjects];

				if	([searchText	length]	!=	0)	{

								if	(!statement)	{

 char *cQuery = "SELECT Continent, Name, Code FROM Country "
																												"WHERE	Name	LIKE	?	ORDER	BY	Continent,	Name";

 if (sqlite3_prepare_v2(database,cQuery, -1, &statement, NULL)
												!=	SQLITE_OK)
 {
																NSLog(@"query	error:	%s",	statement);
 }
 }

									searchText	=	[searchText	stringByAppendingString:@"%"];

 const char *cSearchText =
 [searchText cStringUsingEncoding:NSUTF8StringEncoding];

 sqlite3_bind_text(statement, 1, cSearchText, -1, SQLITE_TRANSIENT);

 NSString *lastContinentName = nil;
 NSMutableArray *currentNationList;

 while (sqlite3_step(statement) == SQLITE_ROW) {

 const char *cContinentName =
 (const char *)sqlite3_column_text(statement, 0);

 NSString *continentName = [[[NSString alloc]
 initWithUTF8String:cContinentName] autorelease];

 // Is this a new continent?
 if (!lastContinentName || ![lastContinentName
isEqual:continentName])
 {

 // Create an array for the nations of this new continent

Chapter 26. SQLite

Page 416

 currentNationList = [[NSMutableArray alloc] init];

 // Put the name and the array in a dictionary
 NSDictionary *continentalDict =
 [[NSDictionary alloc] initWithObjectsAndKeys:
 continentName, @"name",
 currentNationList, @"list", nil];

 // Release array retained by the dictionary
 [currentNationList release];

 // Add the new continent to the array of continents
 [continents addObject:continentalDict];

 // Release the dictionary being retained by the array
 [continentalDict release];
 }

 // Note the continent name so that we know if we need to make a
 // new continent dictionary next time through the loop
 lastContinentName = continentName;

 const char *cCountryName =
 (const char *)sqlite3_column_text(statement, 1);
 NSString *countryName = [[[NSString alloc]
 initWithUTF8String:cCountryName] autorelease];

 const char *cCountryCode =
 (const char *)sqlite3_column_text(statement, 2);
 NSString *countryCode = [[[NSString alloc]
 initWithUTF8String:cCountryCode] autorelease];

 // Create a dictionary for this nation
 NSMutableDictionary *countryDict = [[NSMutableDictionary alloc]
init];
 [countryDict setObject:countryName forKey:@"name"];
 [countryDict setObject:countryCode forKey:@"code"];

 // Put the nation's dictionary in the list for the current continent
 [currentNationList addObject:countryDict];

Chapter 26. SQLite

Page 417

 // Release the dictionary retained by the array
 [countryDict release];

 }
 sqlite3_reset(statement);
 }
 // Load the table with the new data
 [countryTable reloadData];
}

Now the table view data source methods must use the tree. Add (or replace) these
methods in NayshunzAppDelegate.m:

#pragma mark Table View Data Source Methods

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView
{
 // Return the number of continents
 return [continents count];
}
- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section
{
 // Get the dictionary for the continent for this section
 NSDictionary *continentDict = [continents objectAtIndex:section];

 // Return the name of the continent
 return [continentDict objectForKey:@"name"];
}

- (NSInteger)tableView:(UITableView *)table
 numberOfRowsInSection:(NSInteger)section
{
 // Get the dictionary for the continent for this section
 NSDictionary *continentDict = [continents objectAtIndex:section];

 // Get the array of nations for this continent
 NSArray *nations = [continentDict objectForKey:@"list"];
 // Return the number of nations on this continent

Chapter 26. SQLite

Page 418

 return [nations count];
}
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)ip
{
 // Get the dictionary for the continent for this section
 NSDictionary *continentDict = [continents objectAtIndex:[ip section]];

 // Get the array of nations for this continent
 NSArray *nations = [continentDict objectForKey:@"list"];

 // Which nation is at the required row?
 NSDictionary *nationDict = [nations objectAtIndex:[ip row]];

 // What is its name?
 NSString *nationName = [nationDict objectForKey:@"name"];

 // Try to reuse an existing cell
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:@"UITableViewCell"];

 // None available?
 if (!cell) {

 // Make a new cell
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:@"UITableViewCell"];
 [cell autorelease];
 }
 // Put the name of the country on the cell
 [[cell textLabel] setText:nationName];

 return cell;
}

Build and run the application.

Challenge: Fetching More Data

Chapter 26. SQLite

Page 419

There is lots more data in the database. When someone selects a country, bring
up another view with details about the selected country.

Challenge: Custom Objects
In this chapter, the information retrieved from the database was stored in the
collection objects NSArray and NSDictionary. Try storing the data as an array of
custom objects. The type of these objects will be called Nation, and you will write
the implementation for it. It should have, at the very least, an NSString instance
variable that stores the name of the nation.

Chapter 27. Core Data

Page 420

Chapter 27. Core Data
Using the C API for SQLite is one way to store and access data on the iPhone.
The	Core	Data	framework	simplifies	this	process	by	providing	an	ORM	for	
Objective-C and SQLite. ORM stands for Object-Relational Mapping. If you think
of a table in a relational database as a class, then each row represents one
instance of the class and each column represents an instance variable. Core Data
fetches rows from the table and turns them into objects (Figure 27.1). When these
objects are edited, Core Data updates the row in the table accordingly. It also
takes care of inserting and deleting rows as objects are created and destroyed.

Figure 27.1. Role of Core Data

The class/table is known as an entity in Core Data. The column/instance variable
is an attribute of that entity. In this diagram, there is one entity called Person. It
has three attributes: personID, firstName, and lastName.

It gets a little more complicated if you have more than one table and relationships
between them. In a relational database, these relationships are handled using
primary keys and foreign keys. Each row in a table gets a unique ID number,
which is the primary key of that table. If another table has a column that
references that ID number, the column is a foreign key. The relationship from the
table	with	the	foreign	key	is	“to-one”;	after	all,	that	unique	ID	can	only	refer	to	
one	row.	The	relationship	going	the	other	way	is	typically	“to-many”.	(If	you’d	like	
more help understanding relational data, we suggest reading Joe Celko’s SQL for
Smarties.)

Thus, Core Data uses two distinct types of properties: attributes and relationships.
Attributes can be expressed as simple data types: NSNumber, NSString,
NSDate, NSData, etc. Relationships refer to other entities and are represented
by pointers (for to-one relationships) and instances of NSSet (for to-many
relationships) as shown in Figure 27.2.

Chapter 27. Core Data

Page 421

Figure 27.2. Relationships

To	use	Core	Data,	you	must	first	describe	your	entities	and	their	attributes	and	
relationships	in	a	model	file.	(Some	programmers	refer	to	this	as	“the	model,”	
but	since	we	are	already	using	“model”	to	mean	classes	that	are	not	views	or	
controllers,	we	will	be	specifically	refer	to	“the	model	file.”)	The	model	file	is	
created in Xcode.

Objects that hold data are instances of NSManagedObject.	You	can	subclass	
NSManagedObject to add custom behavior to your managed object. For
example, consider the Person objects in Figure 27.1.	You	might	create	a	subclass	
of NSManagedObject called Person so that you could give it a fullName
method.

Core Data also needs to know when these objects are edited so that the
changes can be written to the SQLite database. An instance of the class
NSManagedObjectContext monitors the managed objects to provide this
information.	You	fetch	managed	objects	into	a	managed	object	context.	When	you	
want to save the changes, you ask the context to save them for you.

Chapter 27. Core Data

Page 422

Figure 27.3. NSManagedObjectContext

Creating the Inventory Application
To get a feel for Core Data, you need an object model of some complexity. (For
simple object models, using SQLite directly is just as easy.) So, in this chapter,
you are going to write a real application called Inventory with several screens and
a complex object model.

Big Nerd Ranch keeps an inventory of stuff like T-shirts and coffee mugs
(“schwag”).	The	inventory,	however,	is	kept	in	several	locations.	We	need	to	write	
a simple application to keep track of our inventory using Core Data. We will have
a	table	of	locations	(like	“Jaye’s	Basement”)	and	a	table	of	assets	(like	“Coffee	
Mug”). There will be a third table with a count, a date, and references to the other
two	tables.	(“There	were	12	Coffee	Mugs	in	Jaye’s	Basement	on	June	12,	2009”).	
We	will	refer	to	the	rows	of	that	table	as	“inventories.” The data model is shown
in Figure 27.4.

Chapter 27. Core Data

Page 423

Figure 27.4. Data Model

In Inventory, you will keep the interface as simple as possible: the user will be
able to create new assets and locations but not edit or delete them (Figure 27.5).

Figure 27.5. Screens for Inventory

In Xcode, create a new project of type Window-based Application and check the
box labeled Use Core Data for storage. Name the project Inventory. When the
project window appears, open the Resources group and open the Inventory.
xcdatamodel.

Chapter 27. Core Data

Page 424

Editing	the	model	file
Create three new entities in the model: Asset, Inventory, and Location by
clicking on the + button at the bottom Entity table. In each case, leave the class
NSManagedObject as shown in Figure 27.6. These are concrete entities, not
abstract. And they have no parent entity.

Figure 27.6. Create Three Entities

Now add the properties for each entity starting with Asset. Asset has one
attribute and one relationship. The attribute is named label and is a String.
The relationship is named inventories, and it is a to-many relationship with the
Inventory entity (Figure 27.7).

Chapter 27. Core Data

Page 425

Figure 27.7. Properties of Asset entity

You	must	select	a	delete	rule	for	the	inventories relationship. The delete rule is
the	answer	to	the	question	“What	happens	to	the	Inventory objects associated
with an asset when that asset	is	deleted?”	There	are	four	possible	answers:

Cascade When an asset is deleted, the
inventories for that asset are also
deleted automatically.

Nullify When an asset is deleted, the
inventories for that asset have their
asset pointer set to nil.

Deny You	can’t	delete	an	asset if
inventories for that asset exist.

Chapter 27. Core Data

Page 426

No Action This	says,	“Core	Data,	don’t	worry	
about it. I’ll take care of it.” (This option
is rarely used.)

Set the delete rule for the inventories relationship to be Cascade.

The Location entity is similar to Asset. It needs an attribute named label of type
String and a to-many relationship to Inventory called inventories. Set the delete
rule for the relationship to Cascade (Figure 27.8).

Figure 27.8. Properties of Location entity

The Inventory entity is a little different from the others. It has two attributes: count
(a 16-bit integer) and date (a date). Inventory also has relationships to the Asset
and Location entities.

Add a to-one relationship named asset to the Inventory entity. The destination
is the Asset entity. This relationship is the inverse to Asset’s inventories
relationship. Set the delete rule to Nullify (Figure 27.9).

Chapter 27. Core Data

Page 427

Figure 27.9. Inventory’s asset relationship

Add a second to-one relationship named location to the Inventory entity. The
destination is the Location entity. This relationship is the inverse to Location’s
inventories relationship. Set the delete rule to Nullify (Figure 27.10).

Chapter 27. Core Data

Page 428

Figure 27.10. Inventory’s location relationship

Your	model	file	is	complete.	Save	it.

In this exercise, you are using generic instances of NSManagedObject,
which are very much like dictionaries. If you wanted to, you could subclass
NSManagedObject and create the classes Inventory, Asset, and Location.

AppController
The name InventoryAppDelegate is weak; this object is much more than just
a delegate. So, let’s rename it AppController using the refactoring tool. Select
the text InventoryAppDelegate after @interface in InventoryAppDelegate.h.
In the Editmenu, select Refactor. In the panel, rename InventoryAppDelegate
AppController:

Chapter 27. Core Data

Page 429

Figure 27.11. Renaming InventoryAppDelegate

Take a minute before we go any further to browse AppController.m. Notice how
it lazily loads the model, creates an NSPersistentStoreCoordinator, and puts
an NSManagedObjectContext atop the coordinator. Also, notice that it saves the
changes you have made to the objects when the application is terminating.

In AppController.h, add an instance variable to hold on to the navigation
controller that you will be using later. Also add a class method for getting hold of
the AppController (there will be only one). Finally, declare a method for fetching
arrays of objects from the NSManagedObjectContext:

@interface AppController : NSObject <UIApplicationDelegate>
{
 NSManagedObjectModel *managedObjectModel;
 NSManagedObjectContext *managedObjectContext;
 NSPersistentStoreCoordinator *persistentStoreCoordinator;
 UIWindow *window;

 UINavigationController *navigationController;
}

// Class method for convenience
+ (AppController *)sharedAppController;

Chapter 27. Core Data

Page 430

- (NSArray *)allInstancesOf:(NSString *)entityName
 orderedBy:(NSString *)attName;

// In later versions of Xcode, these property declarations may appear in a
// category in AppController.m. If that is the case, move them here.
@property (nonatomic, retain, readonly) NSManagedObjectModel
 *managedObjectModel;
@property (nonatomic, retain, readonly) NSManagedObjectContext
 *managedObjectContext;
@property (nonatomic, retain, readonly) NSPersistentStoreCoordinator
 *persistentStoreCoordinator;
@property (nonatomic, retain) IBOutlet UIWindow *window;
- (NSString *)applicationDocumentsDirectory;
@end

Open AppController.m. At the beginning of the class, add the static variable and
methods that you will need:

#import "AppController.h"

static AppController *sharedInstance;

@implementation AppController

@synthesize window;

- (id)init
{
 if (sharedInstance) {
 NSLog(@"Error: You are creating a second AppController");
 }
 [super init];
 sharedInstance = self;
 return self;
}

+ (AppController *)sharedAppController
{
 return sharedInstance;

Chapter 27. Core Data

Page 431

}

- (NSArray *)allInstancesOf:(NSString *)entityName
 orderedBy:(NSString *)attName
{
 // Get the managed object context
 NSManagedObjectContext *moc =
 [[AppController sharedAppController] managedObjectContext];

 // Create a fetch request that fetches from 'entityName'
 NSFetchRequest *fetch = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription
entityForName:entityName
 inManagedObjectContext:moc];
 [fetch setEntity:entity];

 // If 'attName' is not nil, have the results sorted
 if (attName) {
 NSSortDescriptor *sd = [[NSSortDescriptor alloc] initWithKey:attName
 ascending:YES];
 NSArray *sortDescriptors = [NSArray arrayWithObject:sd];
 [sd release];

 [fetch setSortDescriptors:sortDescriptors];
 }

 // Try to do the fetch
 NSError *error;
 NSArray *result = [moc executeFetchRequest:fetch
 error:&error];
 [fetch release];

 // Did the fetch fail?
 if (!result) {

 // Display an alert view
 UIAlertView *alertView = [[UIAlertView alloc]
 initWithTitle:@"Fetch Failed"
 message:[error localizedDescription]
 delegate:nil
 cancelButtonTitle:@"OK"

Chapter 27. Core Data

Page 432

 otherButtonTitles:nil];
 [alertView autorelease];
 [alertView show];
 return nil;
 }

 // Return the array of instances of NSManagedObject
 return result;
}

LabelSettingViewController
Now you’re going to create two subclasses of UITableViewController (no XIB
file):

• LocationListViewController

• AssetListViewController

and two subclasses of UIViewController	(with	XIB	file):

• LabelSettingViewController

• CountViewController

If you feel particularly stylish, you can create a group in your project for each view
controller as shown in Figure 27.12.

Chapter 27. Core Data

Page 433

Figure 27.12. New View Controllers

Depending on your version of Xcode, you may have boilerplate code that will not
compile in LocationListViewController.m and AssetListViewController.m. It
would look like this:

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {
 // Return the number of sections.
 return <#number of sections#>;
}
- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInt
eger)section {
 // Return the number of rows in the section.
 return <#number of rows in section#>;
}

If this is the case, delete numberOfSectionsInTableView: and make the other
method return 0:

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInt
eger)section {
 // Return the number of rows in the section.
 return 0;

Chapter 27. Core Data

Page 434

}

In earlier chapters, we had you create subclasses of UITableViewController
by creating a subclass of UIViewController and then you would change the
superclass	in	the	header	file	to	UITableViewController.	We	did	this	specifically	
to avoid the problem this template code might create. Now you are familiar
enough with Xcode and UITableViewController that it doesn’t hurt to create your
subclasses with this potentially problematic template.

The least interesting view controller is LabelSettingViewController. Its only job is
to	give	the	user	a	text	field	to	name	new	assets	and	locations	(Figure 27.13).

Figure 27.13. LabelSettingViewController

Open LabelSettingViewController.h and add an outlet, two actions, and a
property called value:

#import <UIKit/UIKit.h>

Chapter 27. Core Data

Page 435

@interface LabelSettingViewController : UIViewController
{
 IBOutlet UITextField *textField;
 NSString *value;
}
- (IBAction)cancel:(id)sender;
- (IBAction)create:(id)sender;
@property (nonatomic, copy) NSString *value;

@end

Now open LabelSettingViewController.xib.	Drop	a	label	and	a	text	field	on	the	
window. Set File’s Owner’s textField	outlet	to	point	to	the	text	field	as	shown	in	
Figure 27.14.

Figure 27.14. LabelSettingViewController.xib

In LabelSettingViewController.m,	keep	the	variable	value	and	the	text	field	in	
sync:

@synthesize value;

- (id)init
{
 [super initWithNibName:nil bundle:nil];

Chapter 27. Core Data

Page 436

 [self setTitle:@"New Record"];

 // Set up navigation items
 UIBarButtonItem *bbi;

 // Done item
 bbi = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone
 target:self
 action:@selector(create:)];
 [[self navigationItem] setRightBarButtonItem:bbi];
 [bbi release];

 // Cancel item
 bbi = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemCancel
 target:self
 action:@selector(cancel:)];
 [[self navigationItem] setLeftBarButtonItem:bbi];
 [bbi release];

 return self;
}

// Override the superclass's designated initializer
- (id)initWithNibName:(NSString *)n bundle:(NSBundle *)b
{
 return [self init];
}

- (void)dealloc
{
 [textField release];
 [value release];
 [super dealloc];
}

#pragma mark View Controller Lifecycle

Chapter 27. Core Data

Page 437

- (void)viewDidLoad
{
 [super viewDidLoad];
 [textField setAutocorrectionType:UITextAutocorrectionTypeNo];
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 [textField release];
 textField = nil;
}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];

 // Make the keyboard appear
 [textField becomeFirstResponder];
}

#pragma mark Actions

- (IBAction)cancel:(id)sender
{
 // Clear the value
 [self setValue:nil];

 // Slide back to the previous view controller
 [[self navigationController] popViewControllerAnimated:YES];
}

- (IBAction)create:(id)sender
{
 // Set the value
 [self setValue:[textField text]];

 // Slide bck to the previous view controller
 [[self navigationController] popViewControllerAnimated:YES];
}

Chapter 27. Core Data

Page 438

LocationListViewController
LocationListViewController will fetch the Location objects into the
NSManagedObjectContext and display them in a table view (Figure 27.15).

Figure 27.15. LocationListViewController

You’re	also	going	to	add	a	navigation	item	that	the	user	can	click	to	get	to	the	
LabelSettingViewController. In LocationListViewController.h, declare an
instance variable to hold the fetched Location objects. Also, declare a variable to
hold on to the LabelSettingViewController:

#import <UIKit/UIKit.h>
@class LabelSettingViewController;

@interface LocationListViewController : UITableViewController
{
 NSMutableArray *locationList;
 LabelSettingViewController *labelSettingViewController;
}
@end
Now in LocationListView.m, add these methods:

Chapter 27. Core Data

Page 439

#import "LocationListViewController.h"
#import "AppController.h"
#import "LabelSettingViewController.h"

@implementation LocationListViewController

- (id)init
{
 [super initWithStyle:UITableViewStylePlain];

 // Fetch the location list
 AppController *ac = [AppController sharedAppController];
 NSArray *list = [ac allInstancesOf:@"Location" orderedBy:@"label"];
 locationList = [list mutableCopy];

 [self setTitle:@"Locations"];

 // Create the Add navigation item
 UIBarButtonItem *item = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self
 action:@selector(createNewLocation:)];
 [[self navigationItem] setRightBarButtonItem:item];
 [item release];

 return self;
}

// Override the superclass's designated initializer
- (id)initWithStyle:(UITableViewStyle)style
{
 return [self init];
}
- (void)dealloc
{
 [locationList release];
 [super dealloc];
}

#pragma mark Action methods

Chapter 27. Core Data

Page 440

- (void)createNewLocation:(id)sender
{
 labelSettingViewController = [[LabelSettingViewController alloc] init];
 [[self navigationController] pushViewController:labelSettingViewControll
er
 animated:YES];
}

#pragma View Controller Lifecycle

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 // Am I coming back from the LabelSettingViewController?
 if (labelSettingViewController) {
 NSString *value = [labelSettingViewController value];

 // Did the user give a value for the label?
 if ([value length] > 0) {

 AppController *ac = [AppController sharedAppController];
 NSManagedObjectContext *moc = [ac managedObjectContext];

 // Create a new object and insert it into the managed object context
 NSManagedObject *newLoc =
 [NSEntityDescription insertNewObjectForEntityForName:@"Locati
on"
 inManagedObjectContext:moc];
 [newLoc setValue:value forKey:@"label"];
 [locationList addObject:newLoc];

 // Resort the array
 NSSortDescriptor *sd = [[NSSortDescriptor alloc]
initWithKey:@"label"
 ascending:YES];
 NSArray *sds = [NSArray arrayWithObject:sd];
 [sd release];
 [locationList sortUsingDescriptors:sds];

Chapter 27. Core Data

Page 441

 // Redisplay the table view
 [[self tableView] reloadData];
 }
 [labelSettingViewController release];
 labelSettingViewController = nil;
 }

 // Clear the selection
 NSIndexPath *selectedPath = [[self tableView] indexPathForSelectedRow];
 if (selectedPath) {
 [[self tableView] deselectRowAtIndexPath:selectedPath animated:NO];
 }
}

#pragma mark Table view methods
// These methods are replacing methods that were generated automatically
// when the class was generated.

- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return [locationList count];
}

- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)ip
{
 static NSString *CellIdentifier = @"LocationCell";

 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 [cell autorelease];

 }

Chapter 27. Core Data

Page 442

 NSManagedObject *location = [locationList objectAtIndex:[ip row]];
 [[cell textLabel] setText:[location valueForKey:@"label"]];
 [cell setAccessoryType:UITableViewCellAccessoryDisclosureIndicator];
 return cell;
}

Now put this view controller in a navigation controller and onto the screen. Go
back to AppController.m and import the header at the top:

#import "LocationListViewController.h"

Then, in application:didFinishLaunchingWithOptions:, create the
UINavigationController and the LocationListViewController:

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 LocationListViewController *rvc = [[LocationListViewController alloc] init];

 navigationController =
 [[UINavigationController alloc] initWithRootViewController:rvc];
 [rvc release];

 [window addSubview:[navigationController view]];
 [window makeKeyAndVisible];
				return	YES;
}

Build	and	run	the	application.	You	can	add	new	locations,	but	selecting	an	existing	
location in the table view won’t do anything yet.

AssetListViewController
The AssetListViewController is a lot like the LocationListViewController. For a
given location, it will display a list of all the assets. If there is an inventory for that
asset at that location, it will display the inventory data (Figure 27.16).

Chapter 27. Core Data

Page 443

Figure 27.16. AssetListViewController

Open AssetListViewController.h. Add variables to hold the selected location,
the list of all assets, and the LabelSettingViewController:

#import <UIKit/UIKit.h>
@class LabelSettingViewController;

@interface AssetListViewController : UITableViewController {
 NSManagedObject *location;
 NSMutableArray *assetList;
 LabelSettingViewController *labelSettingViewController;
}
- (NSManagedObject *)inventoryForAsset:(NSManagedObject *)asset;
- (void)setLocation:(NSManagedObject *)loc;

@end

Open AssetListViewController.m.

Chapter 27. Core Data

Page 444

#import "AssetListViewController.h"
#import "AppController.h"
#import "LabelSettingViewController.h"

// All instances of AssetListViewController will share a single
// instance of NSDateFormatter
static NSDateFormatter *dateFormatter;

@implementation AssetListViewController

- (id)init
{
 [super initWithStyle:UITableViewStylePlain];

 AppController *ac = [AppController sharedAppController];
 // Fetch all the assets
 NSArray *list = [ac allInstancesOf:@"Asset" orderedBy:@"label"];
 assetList = [list mutableCopy];

 // Set the navigation items
 UIBarButtonItem *item = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
 target:self
 action:@selector(createNewAsset:)];

 [[self navigationItem] setRightBarButtonItem:item];
 [item release];

 // Is the dateFormatter nil?
 if (!dateFormatter) {

 // Create a date formatter
 dateFormatter = [[NSDateFormatter alloc] init];
 [dateFormatter setDateStyle:NSDateFormatterShortStyle];
 }

 return self;
}

- (id)initWithStyle:(UITableViewStyle)style

Chapter 27. Core Data

Page 445

{
 return [self init];
}

- (void)dealloc
{
 [location release];
 [assetList release];
 [super dealloc];
}

- (NSManagedObject *)inventoryForAsset:(NSManagedObject *)asset
{
 NSArray *inventoriesForLocation = [location
valueForKey:@"inventories"];
 for (NSManagedObject *mo in inventoriesForLocation) {
 if ([mo valueForKey:@"asset"] == asset) {
 return mo;
 }
 }
 return nil;

}

- (void)setLocation:(NSManagedObject *)loc
{
 [loc retain];
 [location release];
 location = loc;

 [self setTitle:[location valueForKey:@"label"]];
}

#pragma mark Action methods

- (void)createNewAsset:(id)sender
{
 labelSettingViewController = [[LabelSettingViewController alloc] init];
 [[self navigationController] pushViewController:labelSettingViewControll
er animated:YES];
}

Chapter 27. Core Data

Page 446

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 // Am I coming back from the LabelSettingViewController?
 if (labelSettingViewController) {

 NSString *value = [labelSettingViewController value];
 if ([value length] > 0) {

 AppController *ac = [AppController sharedAppController];
 NSManagedObjectContext *moc = [ac managedObjectContext];

 NSManagedObject *newAsset =
 [NSEntityDescription insertNewObjectForEntityForName:@"Ass
et"
 inManagedObjectContext:moc];
 [newAsset setValue:value forKey:@"label"];
 [assetList addObject:newAsset];

 NSSortDescriptor *sd = [[NSSortDescriptor alloc]
initWithKey:@"label"
 ascending:YES];
 NSArray *sds = [NSArray arrayWithObject:sd];
 [sd release];
 [assetList sortUsingDescriptors:sds];
 [[self tableView] reloadData];
 }
 [labelSettingViewController release];
 labelSettingViewController = nil;
 }

 NSIndexPath *selectedPath = [[self tableView] indexPathForSelectedRow];
 if (selectedPath) {
 [[self tableView] deselectRowAtIndexPath:selectedPath animated:NO];
 }
}

#pragma mark Table view methods

Chapter 27. Core Data

Page 447

// Customize the number of rows in the table view
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section
{
 return [assetList count];
}

// Customize the appearance of table view cells
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)ip
{

 static NSString *CellIdentifier = @"InventoryCell";

 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if (cell == nil) {
 cell = [[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier];
 [cell autorelease];
}

NSManagedObject *asset = [assetList objectAtIndex:[ip row]];

NSManagedObject *inventory = [self inventoryForAsset:asset];

NSString *assetName = [asset valueForKey:@"label"];
 if (inventory) {
 NSDate *date = [inventory valueForKey:@"date"];
 NSString *inventorySummary = [NSString stringWithFormat:@"%@ %@
- %@",
 [inventory valueForKey:@"count"],
 assetName,
 [dateFormatter stringFromDate:date]];
 [[cell textLabel] setText:inventorySummary];
 } else {
 [[cell textLabel] setText:assetName];
 }

 [cell setAccessoryType:UITableViewCellAccessoryDisclosureIndicator];

Chapter 27. Core Data

Page 448

 return cell;
}

@end
A view controller is no good if you can’t get to it. Go back to
LocationListViewController.m, and push the new view controller onto the
navigation controller when the location is selected:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)ip
{
 AssetListViewController *anotherViewController =
 [[AssetListViewController alloc] init];
 [anotherViewController setLocation:[locationList objectAtIndex:[ip row]]];
 [[self navigationController] pushViewController:anotherViewController
 animated:YES];
 [anotherViewController release];
}

You	also	need	to	import	AssetListViewController.h at the top of
LocationListViewController.m.

Build and run the application. Now you can create new assets. Note, however,
that a new asset appears at all locations.

CountViewController
The last view controller that you are going to create enables the user to enter
counts for assets at particular locations (Figure 27.17).

Chapter 27. Core Data

Page 449

Figure 27.17. CountViewController

Open CountViewController.h and declare some instance variables and methods:

#import <UIKit/UIKit.h>

@interface CountViewController : UIViewController {
 IBOutlet UITextField *numberField;
 IBOutlet UILabel *promptField;
 NSManagedObject *asset;
 NSManagedObject *location;
 NSNumber *count;
}
- (IBAction)update:(id)sender;
- (IBAction)cancel:(id)sender;

@property (nonatomic, retain) NSManagedObject *asset;
@property (nonatomic, retain) NSManagedObject *location;
@property (nonatomic, retain) NSNumber *count;

Chapter 27. Core Data

Page 450

@end

Save	the	file.

Open CountViewController.xib	and	drop	a	label	and	a	text	field	on	the	view.	
Connect the outlet numberField	to	the	text	field.	Connect	the	outlet	promptField
to	the	label.	Set	the	text	field	to	take	number	input	as	shown	in	Figure 27.18.

Figure 27.18. CountViewController.xib

Open CountViewController.m:

#import "CountViewController.h"

@implementation CountViewController

@synthesize asset, location, count;

- (id)init
{
 [super initWithNibName:nil bundle:nil];

 UIBarButtonItem *bbi;
 bbi = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone

Chapter 27. Core Data

Page 451

 target:self
 action:@selector(update:)];
 [[self navigationItem] setRightBarButtonItem:bbi];
 [bbi release];

 bbi = [[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemCancel
 target:self
 action:@selector(cancel:)];
 [[self navigationItem] setLeftBarButtonItem:bbi];
 [bbi release];

 [self setTitle:@"Update Count"];

 return self;
}

- (id)initWithNibName:(NSString *)n bundle:(NSBundle *)b
{
 return [self init];
}

- (void)dealloc
{
 [numberField release];
 [promptField release];
 [count release];
 [asset release];
 [location release];
 [super dealloc];
}

- (void)updateInteface
{
 NSString *prompt = [NSString stringWithFormat:@"%@: %@",
 [asset valueForKey:@"label"],
 [location valueForKey:@"label"]];

 [promptField setText:prompt];
 [numberField setText:[count stringValue]];

Chapter 27. Core Data

Page 452

}

#pragma mark View Controller Lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];
 [self updateInteface];
 [numberField becomeFirstResponder];
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 [numberField release];
 numberField = nil;
 [promptField release];
 promptField = nil;
}

#pragma mark Actions

- (IBAction)update:(id)sender
{
 NSString *countString = [numberField text];
 int countInt = [countString intValue];
 [self setCount:[NSNumber numberWithInt:countInt]];
 [[self navigationController] popViewControllerAnimated:YES];
}

- (IBAction)cancel:(id)sender
{
 [self setCount:nil];
 [[self navigationController] popViewControllerAnimated:YES];
}

@end

Once again, the new view controller is unreachable. Go back to
AssetListViewController.h and declare an instance variable to hold a reference

Chapter 27. Core Data

Page 453

to the CountViewController:

 CountViewController *countViewController;

Near the top of AssetListViewController.h, let the compiler know about the
class:

@class CountViewController;

In AssetListViewController.m, display the view controller if the user selects a
row:

- (void)tableView:(UITableView *)tableView
 didSelectRowAtIndexPath:(NSIndexPath *)ip
{
 countViewController = [[CountViewController alloc] init];
 [countViewController setLocation:location];
 NSManagedObject *asset = [assetList objectAtIndex:[ip row]];
 [countViewController setAsset:asset];

 [[self navigationController] pushViewController:countViewController
 animated:YES];
 // Will release countViewController in viewWillAppear: when it is popped
}

You	will	also	need	to	import	the	header	file	at	the	top	of	
AssetListViewController.m:

#import "CountViewController.h"

If the user returns from a CountViewController, take the input:
- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

				//	Am	I	coming	back	from	the	LabelSettingViewController?
 if (labelSettingViewController) {
 NSString *value = [labelSettingViewController value];
 if ([value length] > 0) {

Chapter 27. Core Data

Page 454

 AppController *ac = [AppController sharedAppController];
 NSManagedObjectContext *moc = [ac managedObjectContext];

 NSManagedObject *newAsset =
 [NSEntityDescription insertNewObjectForEntityForName:@"Asset"
 inManagedObjectContext:moc];
 [newAsset setValue:value forKey:@"label"];
 [assetList addObject:newAsset];

 NSSortDescriptor *sd = [[NSSortDescriptor alloc] initWithKey:@"label"
																																																															ascending:YES];
 NSArray *sds = [NSArray arrayWithObject:sd];
 [sd release];
 [assetList sortUsingDescriptors:sds];
 [[self tableView] reloadData];
 }
 [recordViewController release];
 recordViewController = nil;
 }

 // Am I coming back from the CountViewController?
 if (countViewController) {
 NSNumber *count = [countViewController count];
 if (count) {
 NSManagedObject *asset = [countViewController asset];
 NSManagedObject *inventory = [self inventoryForAsset:asset];

 if (!inventory) {
 AppController *ac = [AppController sharedAppController];
 NSManagedObjectContext *moc = [ac managedObjectContext];

 inventory = [NSEntityDescription
 insertNewObjectForEntityForName:@"Inventory"
 inManagedObjectContext:moc];

 [[asset mutableSetValueForKey:@"inventories"]
 addObject:inventory];
 // The inverse relationship is set automatically, thus this line:
 // [inventory setValue:asset forKey:@"asset"];
 // is unnecessary

Chapter 27. Core Data

Page 455

 [[location mutableSetValueForKey:@"inventories"]
 addObject:inventory];
 }
 [inventory setValue:count forKey:@"count"];
 NSDate *now = [NSDate date];
 [inventory setValue:now forKey:@"date"];

 [[self tableView] reloadData];
 }
 [countViewController release];
 countViewController = nil;
 }
 NSIndexPath *selectedPath = [[self tableView] indexPathForSelectedRow];
 if (selectedPath) {
 [[self tableView] deselectRowAtIndexPath:selectedPath animated:NO];
 }
}

Be sure to import CountViewController.h	at	the	top	of	the	file!

Build	and	run	the	application.	Nice,	huh?

How It All Works
In the last chapter, you worked with SQLite directly. In this chapter, you used
SQLite	via	Core	Data.	You	might	wonder	what	SQL	commands	Core	Data	is	
executing. Using private API, you can get Core Data to log its activities to the
console. (While the SQL commands are interesting to see, the use of private API
may cause this code to break one day. So do not ship an application that uses it.)
Add to the init method in AppController.m:

- (id)init
{
 if (sharedInstance) {
								NSLog(@"Error:	You	are	creating	a	second	AppController");
 }
 [super init];
 sharedInstance = self;

 Class privateClass = NSClassFromString(@"NSSQLCore");
 // You will get a compiler warning here, ignore it

Chapter 27. Core Data

Page 456

 [privateClass setDebugDefault:YES];

 return self;
}

Build and run the application again. Make sure the Debugger Console is visible
so you can see the SQL logging. Add a few locations and inventory items; then
navigate around the app looking at various items. Notice that managed objects
are fetched in a lazy manner. This is done with faults.

Managed objects can have a relationship to another entity, either to-one or to-
many (recall that you created relationships for your managed objects earlier in
this chapter in your Inventory.xcdatamodel	file).	If	a	managed	object	has	such	
a relationship, when it is fetched, the objects at the other end of the relationship
are not fetched. Instead fault objects are created. There are to-many faults (which
stand in for sets) and to-one faults (which stand in for managed objects). So, for
example, when the locations are fetched into your application, the instances of
Inventory and Asset are not. The relationship inventories is represented by a to-
many fault that is pretending to be a set (Figure 27.19).

Figure 27.19. Faults

When you send a message to a set, it might actually be a fault, but luckily your
code doesn’t need to know or care about that. If the set is a fault, Core Data will
fetch the objects for that relationship as shown in Figure 27.20. (In practice, the
message count usually triggers the to-many fault.)

Chapter 27. Core Data

Page 457

Figure 27.20. Faults, part 2

This	lazy	fetching	makes	Core	Data	not	only	easy	to	use,	but	also	quite	efficient.

Watching the SQL in the console, also notice that the data is only saved to the
SQLite	file	when	you	quit	the	application.

Trade-offs of Persistence Mechanisms
At this point, you have seen all the common ways that iPhone applications can
store their data: archiving, web services, direct SQLite, and Core Data. Which is
best	for	your	application?	Use	Table 27.1 to help you decide.

Table 27.1. Data storage pros and cons

Technique Pros Cons
Archiving Allows ordered

relationships (arrays, not
sets). Easy to deal with
versioning.

Reads all the objects
in (no faulting). No
incremental updates.

Web Service Makes it easy to share
data to other devices and
applications.

Requires a server and
a connection to the
internet.

SQLite Can fetch lazily.
Incremental updates. Full
power of SQL.

Requires more code
than archiving or Core
Data. No real ordered
relationships.

Chapter 27. Core Data

Page 458

Core Data Lazy fetches by default.
Incremental updates.

Versioning is awkward
(but can certainly
be done using a
NSModelMapping).
No real ordered
relationships. Much of
the power of SQL is
inaccessible.

Challenge 1: Deleting
Add	deletion	of	assets	or	locations	to	the	application.	You	will	need	tell	the	
managed object context to delete the object:

AppController *ac = [AppController sharedAppController];
NSManagedObjectContext *moc = [ac managedObjectContext];
[moc deleteObject:someObject];

Challenge 2: Custom NSManagedObject Subclasses
You	may	have	noticed	that	you	used	the	method	valueForKey: many times. This
can	become	awkward	and	error-prone	in	a	large	application.	You	can	simplify	
this code by subclassing NSManagedObject to represent each of the entities
you	defined	in	your	model.	These	subclasses	will	have	@property declarations
corresponding to the properties you created in the model editor, and you will
replace code like this:

NSManagedObject *newAsset = [NSEntityDescription insertNewObjectForEntityF
orName:@"Asset" inManagedObjectContext:moc];
[newAsset setValue:value forKey:@"label"];

with direct accessor calls:

MyAsset *newAsset = [NSEntityDescription insertNewObjectForEntityForName:@
"Asset" inManagedObjectContext:moc];
[newAsset setLabel:value];

Hint: Xcode will generate the .h and .m	files	for	you.

Chapter 28. Preparing for the iPad

Page 459

Chapter 28. Preparing for the iPad
After revolutionizing personal computing and the mobile device, Apple has taken
its game to tablet computing with the introduction of the iPad. Fortunately for
you, the iPad runs iPhone OS. Writing an iPad application is nearly identical to
writing an iPhone application – you will use the same classes and design patterns.
However, there are a few minor differences that you should be aware of. This
chapter will help you prepare for those differences.

Throughout this chapter, we will refer to the iPad, iPhone, and iPhone OS. To
clarify those terms: iPhone OS is the operating system that runs on the iPad,
iPhone, and iPod touch; iPhone refers to both the iPhone and the iPod touch
devices.

Universal Applications
When writing an application for iPhone OS, you can create two separate
applications for the two devices (the iPad and the iPhone) or a single universal
application. While you have the option of creating two applications and submitting
them to the App Store independently, Apple recommends creating a universal
application. A universal application will run on both the iPhone and iPad and will
be a single entry on the App Store, but it takes a bit more work to get it to run
cleanly.

Porting existing projects to the iPad
An application built for the iPhone can be run on the iPad without any changes.
However, it will run in an iPhone-sized window. If you wish for users to experience
your application in all its glory on the iPad or take advantage of iPad-only features,
you will need to upgrade your application to support the iPad. In this chapter, you
will create a universal Wherewasi application. Open the Whereami.xcodeproj
project that you created in Chapter 4. (Remember, we changed the name of the
application toWherewasi, but the project is still named Whereami.xcodeproj.)

In Whereami’s project window, locate the Whereami target in the Targets group.
Right- or Control-click the Whereami target and select Upgrade Current Target for
iPad from the contextual menu that appears. (Figure 28.1).	You	will	be	prompted	
with	a	sheet	that	asks	if	you	want	a	universal	application	or	device-specific	
applications. Choose One Universal application and hit OK (Figure 28.2).

Chapter 28. Preparing for the iPad

Page 460

Figure 28.1. Upgrading to a Universal Application 1

Chapter 28. Preparing for the iPad

Page 461

Figure 28.2. Upgrading to a Universal Application 2

Two noticeable things will happen after upgrading the target: a Resources-iPad
group will appear in the project window and the Whereami-Info.plist will be
updated. Open Whereami-Info.plist (found in the Resources group of the project
window).	A	new	key	has	been	added	to	the	property	list:	Main	nib	file	base	name	
(iPad), and it has been set to MainWindow-iPad. Now, when this application is
executed, the operating system will determine the device it is being run on and
choose	the	correct	NIB	file	to	load.

In addition to these two changes, some of the build settings for your project will
have changed. These changes are taken care of by Apple; you shouldn’t try and
set them manually.

Wherewasi now technically runs natively on the iPad, so build and run the
application.	Oh,	gross!	The	interface	is	a	disaster.	Let’s	fix	that.

Re-designing Wherewasi’s interface
Check out the Resources-iPad group in the project window. Inside this group is
a MainWindow-iPad.xib	file,	matching	the	name	of	the	value	for	the	Main	nib	
file	base	name	(iPad)	key	in	the	info	property	list.	This	is	the	NIB	file	that	will	get	
loaded	whenWherewasi	is	launched	on	an	iPad.	Open	this	file	in	Interface	Builder.

Chapter 28. Preparing for the iPad

Page 462

Double-click on the Window object to view it. This window is much larger than the
window in the iPhone’s MainWindow.xib, and your interface is scattered about
the window. Resize the MKMapView so it spans the entire window. Reposition the
UITextField and UIActivityIndicator near the top and in the center of the window
(Figure 28.3).

Figure 28.3. Updated Wherewasi Interface

Chapter 28. Preparing for the iPad

Page 463

Save MainWindow-iPad.xib	and	exit	Interface	Builder.	Yes,	it	really	was	that	
simple. Build and run the application again to see your updated interface.

Want	to	make	sure	your	iPhone	interface	still	looks	good?	Select	Set	Active	
Executable from the Project menu and choose the iPhone option from the sub-
menu that appears next to it. Build and run your application again to see the
original iPhone application.

More considerations: universal view controllers
The previous section outlined the basic steps you must take to prepare a universal
application. However, more complicated applications will require more changes. If
your application has view controllers, you must load the correct view for the device
your application is running on.

If	your	view	controller	is	loading	its	view	from	a	NIB	file,	you	must	create	another	
NIB	file	that	has	a	view	configured	for	the	larger	window	size.	Stick	with	Apple’s	
convention	and	suffix	your	iPad	NIB	files	with	-iPad. (MainWindow.xib and
MainWindow-iPad.xib, for example.)

Also, within your view controller’s init method, you will need to perform a run-time
check	to	see	which	NIB	file	to	load.	Here	is	the	point	where	you	get	excited	that	
we taught you to override the designated initializer for your UIViewControllers
toinit	and	determine	the	NIB	file	to	load	from	within	that	method.	A	view	controller	
in a universal application will take advantage of the UI_USER_INTERFACE_
IDIOM()	function	to	determine	which	NIB	file	to	load	in	its	init method. Here is an
example:

@implementation MyUniversalViewController
- (id)init
{
 NSString *nibFileToLoad = @"MyUniversalViewController";
				//	If	the	device	is	an	iPad,	suffix	the	nibFileToLoad	with	"-iPad"
 if(UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad)
 nibFileToLoad = [nibFileToLoad stringByAppendingString:@"-iPad"];

 // Extra initialization goes here

 return [super initWithNibName:nibFileToLoad bundle:nil];
}
@end

Chapter 28. Preparing for the iPad

Page 464

New Stuff
iPad applications have a few more classes to work with than their itty-bitty
predecessors. As of this writing, these classes are only available on the iPad.
Time will tell if these new classes will become available on the iPhone. Some of
the more important classes are:

• NSAttributedString: Strings can now have different attributes that change
their look. Attributes are things like bold, italic, colors, alignment, and other
things that make up rich text.

• UISplitViewController: A replacement or supplement for navigation
controllers.	In	a	way,	it	is	a	navigation	controller	that	fits	multiple	views	on	
the screen at once.

• UIGestureRecognizer (and subclasses): These classes will perform
gesture recognition (like pinch-pull or rotate) for you so you won’t have to
implement your own technique in the various UIResponder methods.

• Core Text: The text editing APIs from the desktop have made their way to
the	iPad.	You	can	write	your	very	own	text	editor!

All of the concepts and classes you have learned in this book leave you more than
prepared to use these new features. Check out the documentation to add these
new classes to your toolkit. And always remember, just because a feature is new
doesn’t mean you have to use it.

For more information about developing for the iPad, check out the iPad
Programming Guide in the developer documentation.

	Chapter 1. A Simple iPhone Application
	Creating an Xcode Project
	Using Interface Builder
	Model-View-Controller
	Declarations
	Declaring methods

	Making Connections
	Setting pointers
	Setting targets and actions
	Summary

	Implementing Methods
	Build and Run on the Simulator
	Event-driven Programming
	Application Icons
	Default Images

	Chapter 2. Objective-C
	Using Instances
	Writing the RandomPossessions Tool
	NSArray and NSMutableArray

	Subclassing an Objective-C Class
	Accessors and properties
	Instance methods
	Initializers
	self
	super
	Initializer chain
	Class methods

	Exceptions and the Console Window
	Objective-C 2.0 Additions

	Chapter 3. Memory Management
	Memory Management Concepts
	Managing memory in C
	Managing memory with objects

	Reference Counting
	Using retain counts
	Avoiding memory leaks with autorelease
	Managing memory in accessors and properties
	Retain count rules

	Managing Memory in RandomPossessions

	Chapter 4. Delegation and Core Location
	Delegation
	Beginning the Whereami Application
	Using frameworks
	Core Location
	Receiving updates from CLLocationManager

	Releasing Controller Instance Variables
	Challenge: Heading
	For the More Curious: Compiler and Linker Errors
	For the More Curious: Protocols

	Chapter 5. MapKit and Text Input
	Object Diagrams
	Interface Properties
	Being a MapView Delegate
	Your own MKAnnotation
	Tagging locations
	Text Input and the First Responder
	Putting the Pieces Together

	Challenge: Annotation Extras
	Challenge: Reverse Geocoding
	Challenge: Changing the Map Type
	For the More Curious: Renaming an Application

	Chapter 6. Subclassing UIView
	Creating a Custom View
	The drawRect: method
	Instantiating a UIView

	Drawing Text and Shadows
	Using UIScrollView
	Zooming
	Hiding the Status Bar
	Challenge: Colors
	For the More Curious: Retain Cycles
	For the More Curious: Redrawing Views

	Chapter 7. View Controllers
	View Controllers and XIB Files
	Using View Controllers
	Creating the UITabBarController
	Creating views for the view controllers

	The Lifecycle of a View Controller
	Challenge: Map Tab
	For the More Curious: Paging

	Chapter 8. The Accelerometer
	Setting Up the Accelerometer
	Getting Accelerometer Data
	Orientation and Scale of Acceleration
	Using Accelerometer Data
	Smoothing Accelerometer Data
	Detecting Shakes

	Challenge: Changing Colors
	For the More Curious: Filtering and Frequency

	Chapter 9. Notification and Rotation
	Notification Center
	UIDevice Notifications
	Autorotation
	For the More Curious: Forcing Landscape Mode
	Challenge: Proximity Notifications
	For the More Curious: Overriding Autorotation

	Chapter 10. UITableView and UITableViewController
	Beginning the Homepwner Application
	UITableViewController
	Subclassing UITableViewController

	UITableView’s Data Source
	UITableViewDataSource protocol

	UITableViewCells
	Reusing UITableViewCells
	Challenge: Sections

	Chapter 11. Editing UITableViews
	Editing Mode
	Deleting Rows
	Moving Rows

	Chapter 12. UINavigationController
	UINavigationController
	UINavigationBar

	An Additional UIViewController
	The XIB File and File’s Owner
	Setting up ItemDetailViewController

	Navigating with UINavigationController
	Appearing and disappearing views

	Challenge: Number Pad

	Chapter 13. Camera and UIImagePickerController
	ImageCache: a Singleton
	NSDictionary
	Taking pictures and UIImagePickerController
	Creating and using keys
	Dismissing the Keyboard

	Challenge: Removing an Image
	For the More Curious: Recording Video

	Chapter 14. Saving and Loading
	Application Sandbox
	Archiving
	Writing to Disk with NSData
	Challenge: Archiving Wherewasi
	For the More Curious: The Application Bundle

	Chapter 15. Low-Memory Warnings
	Handling Low-Memory Warnings
	Simulating Low-Memory Warnings

	Chapter 16. Subclassing UITableViewCell
	Creating HomepwnerItemCell
	Create subviews
	Layout subviews
	Using the custom cell

	Image Manipulation
	Challenge: Accessory Views
	Challenge: Make it Pretty

	Chapter 17. Multi-Touch, UIResponder, and Using Instruments
	Touch Events
	Creating the TouchTracker Application
	Turning Touches Into Lines
	The Responder Chain
	The ObjectAlloc Instrument
	The Sampler Instrument

	Challenge: Saving and Loading
	Challenge: Circles
	For the More Curious: UIControl

	Chapter 18. Core Animation Layer
	Creating a CALayer
	For the More Curious: Programmatically Generating Content
	For the More Curious: Layers and Views
	Challenge: Dynamic Layer Content

	Chapter 19. Controlling Animation with CAAnimation
	Animation Objects
	Spinning the Time with CABasicAnimation
	Bouncing the Time with a CAKeyframeAnimation
	Challenge: More Animation
	For the More Curious: Presentation and Model Layers

	Chapter 20. Playing Audio and Video
	Creating the MediaPlayer Application
	Playing System Sounds
	Playing Audio Files
	Playing Movie Files
	Low-level APIs
	Challenge: Audio Recording

	Chapter 21. Web Services
	Creating the TopSongs Application
	Setting up the interface

	Fetching Data From a URL
	Working with NSURLConnection
	Parsing XML

	For the More Curious: The Request Body
	Challenge: More Data
	For the More Curious: Credentials

	Chapter 22. Address Book
	The People Picker
	Additions to Possession Class
	Address Book Functions
	For the More Curious: That Other Delegate Method

	Chapter 23. Localization
	Internationalization using NSLocale
	Localizing Resources
	NSLocalizedString and Strings Tables
	Challenge: Another Localization
	For the More Curious: NSBundle’s Role in Internationalization

	Chapter 24. Bonjour
	Publishing a Service
	Browsing for Services
	TXT Record
	Socket Connections

	Chapter 25. Settings
	Settings Bundle
	NSUserDefaults
	Registering defaults
	Using the defaults

	Chapter 26. SQLite
	Creating the Nayshunz Application
	Creating the Database
	Fetching Data
	Making and Using the Tree
	Challenge: Fetching More Data
	Challenge: Custom Objects

	Chapter 27. Core Data
	Creating the Inventory Application
	Editing the model file
	AppController
	LabelSettingViewController
	LocationListViewController
	AssetListViewController
	CountViewController

	How It All Works
	Trade-offs of Persistence Mechanisms
	Challenge 1: Deleting
	Challenge 2: Custom NSManagedObject Subclasses

	Chapter 28. Preparing for the iPad
	Universal Applications
	Porting existing projects to the iPad
	Re-designing Wherewasi’s interface
	More considerations: universal view controllers
	New Stuff

