
Modularizing
Legacy Projects
Using TDD

Test-Driven Development with
XCTest for iOS
—
Khaled El-Morabea
Hassaan El-Garem

Modularizing Legacy
Projects Using TDD

Test-Driven Development
with XCTest for iOS

Khaled El-Morabea
Hassaan El-Garem

Modularizing Legacy Projects Using TDD: Test-Driven Development
with XCTest for iOS

ISBN-13 (pbk): 978-1-4842-7427-9 ISBN-13 (electronic): 978-1-4842-7428-6
https://doi.org/10.1007/978-1-4842-7428-6

Copyright © 2021 by Khaled El-Morabea and Hassaan El-Garem

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY
Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978- 1- 4842- 7427- 9.
For more detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Khaled El-Morabea
Giza, Egypt

Hassaan El-Garem
Cairo, Egypt

https://doi.org/10.1007/978-1-4842-7428-6

When I started writing this book, it was in the middle of the
pandemic, and we had a new arrival to our family, Noah. It
was a tough period. Imagine raising a new baby during the

pandemic and with all these restrictions to stay at home
and you need to focus on writing your first book. So I would
like to dedicate this book to my wife, Yasmina—without her
help and support, it wouldn't have been possible. And to my

parents, Huda and Mohamed—without their continuous
support and love, I wouldn’t be where I am now.

—Khaled El-Morabea

To my sister, Rana, for pushing me to take on this
challenging yet fulfilling project. And to my parents, Sahar
and Saleh, for their unending love and their much-needed

emotional support. And to Aya, without her love and
support, this book would have never seen the light of day.

—Hassaan El-Garem

v

About the Authors ��xiii

About the Technical Reviewer ��xv

Acknowledgments ��xvii

Table of Contents

Chapter 1: TDD Basics ��1

Types of Testing ��2

Trouble with Automated Testing ��3

TDD in a Nutshell ��3

Why Use TDD? ���5

External and Internal Quality ���6

When to Use TDD? ���7

When Not to Use TDD? ��8

Refactoring��8

Modularization ��8

Test Structure ��9

Let’s TDD ���9

Maximum Out of TDD ��13

Exercise ��16

Summary���17

vi

Chapter 2: Unit Tests ���19

Your First Test ���19

What Do We Want to Test? ���20

Creating a Unit Test Target ���21

Adding a Test Case Class ���23

Assert Methods ���25

Assert Method Types ���28

Expectations ���33

Expectation Types ��35

Test Ordering ���36

Randomized Ordering ��38

Code Coverage ��39

Exercise ��41

Summary���42

Chapter 3: UI Tests ��45

Your First Test ���45

XCUITest Components ���49

Our Chapter Goal ���50

First Test Case ���50

Launching the App ��50

Querying the UI ���51

Relationships ���51

Interacting with the UI ���54

UI Events ��56

Assertions ���56

Value Assertion ��57

Table of ConTenTs

vii

Accessibility ��57

Accessibility Tips ���59

Putting It All Together ��61

Improve UI Tests ��62

Exercise ��63

Summary���63

Chapter 4: Testing Pyramid ��65

Our App ���66

UI Tests ��67

Integration Tests ��70

Unit Tests���77

Summary���81

Chapter 5: TDD Deep Dive ���85

CoffeePot���85

Eye on the Big Picture ���86

Requirements ��87

Testing Pyramid ��89

First Story ���90

Architecture ��91

MVP ���92

First Integration Test ���93

Unit Tests���96

CoffeeDrinksDataSource ���96

CoffeeDrinksModelTests ��98

CoffeeDrinksPresenterTests ��102

Table of ConTenTs

viii

Test Health Check ���107

Second Story ���109

Architecture ��111

Exercise ��116

Summary���116

Chapter 6: Modularization for the Win ���119

Why Bother with Modularization? ���119

What Is a Module? ��122

Modularizing Your App ��126

Introducing Books ���128

Modularization Process ���131

Initial Module Map ���132

Choose a Class as a Starting Point ��133

Identify the Class’s Responsibilities ��134

Refactor Responsibilities ���135

Refactor the Rest of the Responsibilities ��152

Next Starting Point ��153

Exercise ��153

Summary���153

Chapter 7: Dependency Injection and Mocks �����������������������������������157

Stubbing ��157

Mocking ��160

Test Doubles Creation ���163

Creation Using Inheritance ��163

Creation Using Protocols ���165

Table of ConTenTs

ix

Dependency Injection ��168

Initializer Injection ���169

Property Injection ��170

Stubbing the Network in UI Tests ��171

Summary���180

Chapter 8: Avoiding Multithreading Nightmares ������������������������������183

What Is Concurrency? ���183

GCD ��184

Queues ��184

Serial vs� Concurrent ���185

Sync vs� Async ���186

Cost of Concurrency ��188

Reader-Writer Problem ���190

Singleton Classes ��190

Identifying a Race Condition ��191

Applying TDD to the Problem ���193

Thread Sanitizer ��201

Make It Pass ��203

Fixing Threading Issues in Books ��205

Applying TDD ���207

Summary���210

Chapter 9: Testing Your Network ��213

Networking ABCs ��213

HTTP Requests ��214

HTTP Responses ��214

URL ��215

Table of ConTenTs

x

Networking in iOS ���216

URLSession ��217

URLSessionConfiguration ��217

URLRequest ���218

URLSessionTask ��218

Networking in Books ���219

Process Overview ��219

Identify the Class’s Responsibilities ��220

Design Overview ��220

Kickoff ���222

Verification Tests ���222

Make a Network Request ��222

RequestProtocol ��224

Execute Request ��227

Showcasing Test Value ��233

Handle a Failing Request ���233

Putting It All Together ��237

Exercise ��243

Summary���243

Chapter 10: Taming Core Data ��245

The Core Data Stack ���246

Managed Object Model ��247

Persistent Store Coordinator ���248

Persistent Store ���248

Managed Object Context ���249

Persistent Container ��249

Table of ConTenTs

xi

Core Data in Books ��250

Testing Stack ���250

CoreDataManager ��251

CoreDataStack ���253

Inject the Stack into CoreDataManager ���262

TestEntity ���264

Creation ���265

Fetching ���270

Updating ��272

Advanced Fetching ��274

Next Steps ���277

Putting It All Together ��283

Exercise ��285

Summary���285

Chapter 11: Adding Features to a Legacy App ����������������������������������287

Legacy Code Disclaimer ��288

A/B Testing ���288

New Feature ��289

Kickoff ���290

UI Tests ��291

Integration Tests ��294

Unit Tests and Actual Implementation ���297

Final Steps ���310

Summary���310

Table of ConTenTs

xii

Chapter 12: Handling Production Issues ��311

Our Tool ���311

Integration ���312

Production Bug ���313

Debugging ���313

UI Test ��314

Unit Tests ���315

Production Crash ���319

Debugging ���320

UI Test ��323

Handle A/B Testing ���325

Fixing Our Test ���326

Summary���327

Index ���329

Table of ConTenTs

xiii

About the Authors

Khaled El-Morabea is an engineering manager at Instabug. He has been

an iOS developer for more than 8 years and leading the iOS team for more

than 3 years. In that time he has worked on several projects. During his

time at Instabug, he has worked on multiple integral products, both as a

developer and as a strategic engineering manager.

Hassaan El- Garem has been involved in the field of iOS development for

5 years, during which he worked on multiple apps and projects. He has a

passion for testing and for working on complex projects while maintaining

the highest level of quality. Following his passion for testing has led him

to create a closed-source testing framework used for randomized stress

testing.

xv

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated in 2018 from BITS Pilani, where he studied

mechanical engineering. Since then, he has worked with Big Vision LLC

on deep learning and computer vision and was involved in creating official

OpenCV AI courses. Currently, he is working at Mercedes- Benz Research and

Development India Pvt. Ltd. He has a keen interest in programming and AI

and has applied that interest in mechanical engineering projects. He has also

written multiple blogs on OpenCV and deep learning on LearnOpenCV, a

leading blog on computer vision. He has also coauthored Machine Learning

for OpenCV 4 (Second Edition) by Packt. When he is not writing blogs or

working on projects, he likes to go on long walks or play his acoustic guitar.

xvii

Acknowledgments

We would like to thank the many people who helped us write this book.

We are very grateful to Vishwesh Shrimali—his constant and thorough

feedback was integral in making this book. We would also like to thank

Moataz Soliman, Ahmed AbouElhamayed, Mahmoud Othman, Aprille

Muscara, and Anwar El-Wakil—without their feedback, this book would've

been in a much worse state. We also thank Aaron Black, for believing in

this project from day one. And, finally, we especially thank our editor,

Jessica Vakili, who was extremely supportive throughout the whole process

of writing this book.

1© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_1

CHAPTER 1

TDD Basics
A developer is a craftsman, a skilled individual driven by passion. Most

developers enjoy what they do for a living, to the extent that a lot of

developers choose coding as their secondary hobby in their free time.

They are proud of what they develop and set high quality standards for

their work. Nothing feels better than releasing new code that works well

and meets users’ expectations. The user here could be the customer or

the developer who developed the code themselves. This is important to

realize. This sets the intention of the developer as someone who wants to

produce high-quality results.

It is no secret that everyone out there including you wants their

software projects to be of the highest quality. Yet achieving such a standard

isn’t particularly easy, and maintaining it can be even harder. Let’s say you

have worked on an MVP (Minimal Viable Product) and it got released. In

most cases this is not the end of the story. You’ll probably keep on adding

features to it. At some point you’ll even realize you need to rewrite a big

part of your code or swipe out a dependency for another. These constant

changes will eventually compromise your project’s quality. Even bug fixes

can make a dent at your quality. It’s very common to fix one bug and have

it cause another more serious bug someplace else. So how can we reach a

high quality standard and maintain it? We need to have constant feedback

that tells us if our changes introduce any issues. And how can we get such

feedback? The answer is simple: testing.

https://doi.org/10.1007/978-1-4842-7428-6_1

2

 Types of Testing
There is more than one type of testing you can utilize to address these

problems. The first solution we will discuss is manual testing. Manual

testing is a type of testing in which test cases are executed manually

either by a tester or directly by the developer. Manual testing in many

cases is considered to be an imperative part of the software cycle. Good

testers often have a knack of thinking of highly irregular scenarios, which

ultimately leads to identifying hidden bugs.

Humans are amazing creatures. However, for a system of any size,

solely depending on manual testing is highly impractical for a variety

of reasons. Due to the limited speed of humans, depending on manual

testing will ultimately slow down the release process as well as hinder the

ability to scale your system. Also, no matter how good a tester is, they are

still susceptible to human errors. Switching out the number “0” with the

letter “O,” for example, in some contexts can be the sign of a major bug,

but many humans might miss this. And last but certainly not least, if you

depend only on manual testing, your testing budget will cost you an arm

and a leg.

Since we can’t solely depend on manual testing, we need to introduce

automated testing into our process. Automated tests address all the

problems with manual testing. It’s fast; a machine can run a test in

milliseconds. It’s accurate; a machine will not make humanlike mistakes,

unless the human who wrote the test makes a mistake. It’s inexpensive

in the long run. Only the creation of tests is expensive, but running tests

after that costs close to nothing. Generally, a combination of manual and

automated testing yields the best results. But in many cases, where the

project is small enough, we can actually depend solely on automated

testing.

Chapter 1 tDD BasiCs

3

 Trouble with Automated Testing
The introduction of automated tests gives you and the testers more

confidence in your project. It provides an immediate validation that

all the basic requirements are being met and leaves the testers to focus

on identifying those hidden bugs. However, writing automated tests is

considered by many developers a boring activity. We saw many cases

where developers started off the project with the intention of writing tests,

but they ditched adding tests once the ball actually started rolling. And the

main reason for that was that they just didn’t like adding tests.

Even if you were able to bite the bullet and commit to writing tests

or if you are one of the minority that finds testing fun, you can still be

writing bad or unnecessary tests. To be able to see a direct positive effect

on quality, we need to ensure the quality of our tests themselves. Yes, tests

have quality. Just like we can have bad code, we can have bad tests. After

all, tests are also code. Another point to consider is how relevant our tests

are. A higher test coverage does not mean that our code is properly tested.

We could be adding lots of tests that are useless. For example, we could be

adding tests for unused code or multiple tests that test the same thing or

even tests that can never fail, like testing getters and setters.

We need to be writing the right tests with good quality and for the right

components. This is where Test-Driven Development (TDD) comes in. It

helps us in achieving just that and more.

 TDD in a Nutshell
TDD in its essence is a very simple programming process. It consists

merely of four steps (Figure 1-1).

Chapter 1 tDD BasiCs

4

 1. Write a failing test.

 2. Make the test pass.

 3. Refactor.

 4. Repeat.

This cycle is called the TDD cycle. This process is arguably the best way

to ensure high quality of any project. This is because it ensures that your

code is fully covered by tests, because writing of the code is test-driven.

The cycle is often color-coded:

 1. Red: Write a failing test. Since you haven’t written

anything before that, it’s only natural that this test

will fail.

 2. Green: Write the minimum amount of code that gets

your test to pass.

 3. Refactor: Clean up your test and code to get it up to

standards if needed.

 4. Repeat: Do this cycle again. This is what makes it

a cycle. We only stop when all requirements are

implemented.

Figure 1-1. The TDD cycle

Chapter 1 tDD BasiCs

5

The cycle is color-coded as the colors correspond to how most editors

(including Xcode) display test results:

• Failing tests are shown with red color.

• Passing tests are shown with green color.

 Why Use TDD?
We’ve mentioned a few troubling problems with writing tests. The most

popular problem among developers is how boring and demotivating

writing tests can be. Many can’t wrap their heads around writing a test

for code they themselves wrote. And even if they are able to look past this

and see the value of having tests, they can end up writing bad tests. And

we can’t blame them. It’s normal to not perform well when you’re not

enjoying what you’re doing.

This is where TDD changes the game. TDD transforms testing from a

boring practice to a design activity. By writing tests before writing code,

TDD redefines how we look at testing. We no longer use tests to merely

validate that the code we just wrote works (while knowing in the back of

our minds it probably works since we just wrote it). In TDD, we use them

to think about what we want the code to do and how we’ll implement it.

As we mentioned before, not all tests are good. TDD helps in ensuring

the quality of our tests. For us we consider a test to be good when it follows

the FIRST rules that are defined by Uncle Bob Martin in his well-known

book Clean Code. FIRST is an acronym with each letter referring to a rule:

• Fast: Tests need to be fast. With TDD we always run our

tests with every step, which pushes us to have fast tests.

If we have slow tests, say 1 second each, and we keep

adding tests as we go, this will eventually discourage

us from running the test suite. If we end in this state, it

means this is no longer TDD. Therefore, to keep using

TDD, we’re always encouraged to keep tests fast.

Chapter 1 tDD BasiCs

6

• Independent: Tests should not depend on each other.

In TDD, we always run all our tests to make sure

everything is passing before we proceed. This makes

sure that a test passes even when run with other tests.

• Repeatable: Tests should be repeatable in any

environment. As we just mentioned, in TDD, we

constantly run all our tests with every step. This ensures

that our tests are always passing and forces us to keep

them unaffected by any external factors.

• Self-validating: Tests should have a Boolean output,

either pass or fail. The first step in TDD is to write a

failing test. And then we add code to make it pass. This

proves that the test can fail and pass. Having a test that

always passes is counterintuitive and is just a waste of

time.

• Timely: Tests should be written right before writing

code. Which is basically Uncle Bob telling you: “Use

TDD!”

In addition to being a good test, a test needs to be relevant and add

value. With TDD we write our tests before writing the code. Since each

test we write directly corresponds to an acceptance criteria for a part in

our code, this gives us confidence that the tests we’re adding actually have

value.

 External and Internal Quality
Our project’s quality is divided into two sections, the external quality

and the internal quality. External quality is how well the system meets

customer expectations. With external quality we care about our app being

functional and providing the expected experience for our end user. We also

Chapter 1 tDD BasiCs

7

care whether or not our app is reliable, responsive, etc. Internal quality,

on the other hand, is how well the system meets developer expectations.

With internal quality we care about how our internal components

behave in different situations. We also care about how easy our code is to

understand, change, scale, etc.

When using TDD, you always think of the requirement first and write

a test for it and then think about the implementation. This gives us high

confidence that our test correctly validates our end requirement. In other

words, it upholds and maintains the external quality. When it comes to

internal quality, every step in TDD helps us gather feedback both on our

design and actual implementation. As you’ll see in future chapters, we

always cover each component completely with tests. This ensures that

each internal component performs as expected. It also upholds the quality

of the code itself, since developing using TDD forces you to constantly

rethink your design at every step. Having to write a failing test at first

encourages us to write loosely coupled code so that it can be easily tested.

So thinking test-first directly contributes to the quality of our design, and

in each cycle it pushes us to write a better-structured code if needed.

 When to Use TDD?
You can use TDD at any point in the lifetime of a project. You can use it

with projects from the get-go or on outdated legacy projects. We strongly

encourage using TDD whenever possible. Best-case scenario is using TDD

on a brand-new project and sticking with it. Then you would truly feel the

blessing of having a completely comprehensive test suite, and you will

reap the full rewards of TDD. We can also use TTD to guide the process

of adding new features to legacy apps. We can even use TDD to guide the

refactoring of parts inside a legacy app.

Chapter 1 tDD BasiCs

8

 When Not to Use TDD?
The answer to that question is subjective. In almost all cases, it will make

sense to use TDD. However, some use cases do not warrant the use of

TDD. The benefits of TDD are most evident in long-term projects. So if

you’re working on a small project that will be done in a short time and

you won’t revisit it again, then it might make sense to skip TDD in favor of

speed and just add tests after or even don’t add tests. It all depends on the

nature of the project. At the end of the day, TDD is a tool, and it’s up to you

to use it when you think it is needed.

 Refactoring
We’ve mentioned refactoring a couple times now. It is the third step in the

TDD cycle. So what is refactoring? Refactoring is the process of changing

how internal code is structured/written without changing its behavior.

Refactoring is always done in small iterative steps. Each step should

enhance the structure of our code and be small enough at the same time

so that it’s understandable. An example of a small meaningful refactor

is moving a block of code to a new helper function or extracting it into a

new class. Though it might not seem like much, when numerous small

refactorings are performed, we eventually start to see an impact on our

code. With each change applied, we can make sure that it doesn’t break

anything by running our tests, that is, of course if we had been using TDD.

 Modularization
The term “modularization” refers to the division of a system into a number

of relatively independent and interchangeable modules with well- defined

interfaces. Each one is tiny enough and simple enough to be well understood

and extensively tested; each one contains everything required to carry out

Chapter 1 tDD BasiCs

9

the intended functionality. We can go for a modularized approach when

designing our system, and using TDD will encourage us to do so. However,

if we have a non-modularized system, we can still modularize it through the

use of refactoring. A non-modularized app, by its nature, will contain lots of

code smells, will not be testable, and will be harder to maintain. You’ll learn

more about the process of modularizing a legacy app by using TDD in future

chapters. For the remainder of this chapter, let’s look at some examples of

TDD in action beginning with test structure.

 Test Structure
Before we start writing tests using TDD, let’s talk about how we’ll structure

our tests. A good structure for all your tests is this one:

 1. Set up the test data.

 2. Call your method under test.

 3. Assert that the expected results are returned.

An easier way to remember this pattern is the “given,” “when,” and “then”

triad, which is inspired from Behavior-Driven Development (BDD), where

given reflects the setup, when the method call, and then the assertion part.

This pattern ensures that your tests remain consistent and easy to read.

On top of that, tests written with this structure in mind tend to be shorter

and more verbose. We will be using this structure throughout this book in

all our tests.

 Let’s TDD
Now let’s take an example and try to implement it using TDD. Go ahead

and open up this chapter’s starter project. You can find it in the chapter’s

resources. We want to create a tax calculator that calculates the net salary

Chapter 1 tDD BasiCs

10

out of an original salary after subtracting 30% taxes. Let’s start with the first

step, writing the test. Our first test can be something like this:

func testExample() throws {

 // Given

 let calculator = TaxCalculator()

}

Ultimately a test represents a requirement, and the preceding

test details our most basic requirement: that we have a class named

TaxCalculator. Since this one line won’t even compile, you might think

we are heading in the wrong direction, but we’re now actually done with

our first step; we wrote a failing test.

On to step 2, let’s make this test pass using the minimum amount of

code. To do so we need to add the following:

class TaxCalculator: NSObject {

}

Now if we run our test, it will pass, meaning we’re done with step 2.

Now for step 3, we check if there’s anything to refactor. Right now there’s

none, since we only wrote two lines of code.

Since we’re done with our three steps, what we do now is repeat

our TDD cycle. Let’s start by adding a new requirement to our test that

will make it fail. The next requirement is that we have a function in

TaxCalculator that takes salary and calculates net salary. When we

translate this requirement, our test will look like this:

func testExample() throws {

 // Given

 let calculator = TaxCalculator()

 // When

 let netSalary = calculator.calculate(100)

 }

Chapter 1 tDD BasiCs

11

Now let’s fix this test by modifying TaxCalculator but again using

minimum code. So basically all we need to do is this:

class TaxCalculator: NSObject {

 public func calculate(salary: Int) -> Int {

 return 0

 }

}

Since now the test is passing and there’s no need for refactoring, let’s

repeat our cycle one more time. Now we’ll add the requirement for the

output of our function:

func testExample() throws {

 // Given

 let calculator = TaxCalculator()

 // When

 let netSalary = calculator.calculate(100)

 // Then

 XCTAssertEqual(netSalary, 70,

 "Net salary failed")

 }

If you run this test, it will fail, which is what we’re expecting. But before

going to fix the test, we need to test something essential. If you see this

message "Net salary failed" while working on your project, do you

think you will know your project’s current problem or you will need to

debug? If the answer is no, you will need to write a descriptive message to

help whoever is working on this project (possibly your future self) to know

what they just broke:

Chapter 1 tDD BasiCs

12

func testExample() throws {

 // Given

 let calculator = TaxCalculator()

 // When

 let netSalary = calculator.calculate(salary: 100)

 // Then

 XCTAssertEqual(netSalary, 70,

 "Net salary should be 70$ when you

subtract 30% taxes from 100$")

 }

If you saw "Net salary should be 70$ when you subtract 30%

taxes from 100$", you will precisely know what the problem is and

which method you need to check.

Now we need to write the code that makes the test pass. After adding

the code, it should be something like this:

class TaxCalculator: NSObject {

 public func calculate(salary: Int) -> Int {

 return salary - ((salary * 30)/100);

 }

}

After running the test, the test is green now, and we still don’t need

refactoring (Figure 1-2).

Figure 1-2. testExample passed

Chapter 1 tDD BasiCs

13

 Maximum Out of TDD
What we did in the introduction is a quick brief about TDD. But to make

TDD improve your quality significantly, you need to change your way of

thinking about test cases. Test cases are not just happy scenarios, they

should also cover corner cases. Most of the time, you will write code that

fulfills all happy scenarios. Let’s try to improve our test cases. You need to

think about how to break it. What if someone passes a fraction? What if

someone passes a negative value? What if someone passes zero?

We’re gonna handle these using the exact same steps. Let’s take the

fraction scenario and write a test for it:

 func testPassingFractionNumber() throws {

 // Given

 let calculator = TaxCalculator()

 // When

 let netSalary = try calculator.calculate(salary: 0.5)

 // Then

 XCTAssertEqual(netSalary, 0.35,

 "Net salary should be 0.35$ when you

subtract 30% taxes from 0.5$")

 }

Now to fix the test we’ll have to do the following:

class TaxCalculator: NSObject {

 public func calculate(salary: Double) throws -> Double {

 return salary - (salary * 0.3);

 }

}

Chapter 1 tDD BasiCs

14

Still no need for refactoring, so we’ll repeat once again. Now let’s

consider the cases for zero and negative. We’ll probably need to throw

an error in these cases. Which is exactly what we’re going to reflect in our

tests:

 func testPassingNegativeNumber() throws {

 // Given

 let calculator = TaxCalculator()

 // When

 do {

 _ = try calculator.calculate(salary: -1)

 } catch let caughtError as TaxCalculatorError {

 // Then

 XCTAssertEqual(caughtError, .negativeSalaryError,

"Should throw error when passing a negative

salary.")

 }

 }

 func testPassingZero() throws {

 // Given

 let calculator = TaxCalculator()

 // When

 do {

 _ = try calculator.calculate(salary: 0)

 } catch let caughtError as TaxCalculatorError {

 // Then

 XCTAssertEqual(caughtError, .zeroSalaryError,

"Should throw error when passing a zero salary.")

 }

 }

Chapter 1 tDD BasiCs

15

After applying step 2, our class would look like this:

enum TaxCalculatorError: Error {

 case negativeSalaryError

 case zeroSalaryError

}

class TaxCalculator: NSObject {

 public func calculate(salary: Double) throws -> Double {

 if salary < 0 {

 throw TaxCalculatorError.negativeSalaryError

 }

 if salary == 0 {

 throw TaxCalculatorError.zeroSalaryError

 }

 return salary - (salary * 0.3);

 }

}

Now that all tests are passing, we can move on to step 3. We can

probably refactor error handling into a helper function:

enum TaxCalculatorError: Error {

 case negativeSalaryError

 case zeroSalaryError

}

class TaxCalculator: NSObject {

 public func calculate(salary: Double) throws -> Double {

 try handleErrors(salary: salary)

 return salary - (salary * 0.3);

 }

Chapter 1 tDD BasiCs

16

 private func handleErrors(salary: Double) throws {

 if salary < 0 {

 throw TaxCalculatorError.negativeSalaryError

 }

 if salary == 0 {

 throw TaxCalculatorError.zeroSalaryError

 }

 }

}

And after any refactor, we can simply run our tests to make sure we did

not break any functionality in the process (Figure 1-3).

 Exercise
TaxCalculator now calculates the salary after removing a constant

percentage, which is always 30%. For your exercise, try making this

percentage dynamic, meaning that we can pass the calculate function the

salary and a custom percentage. We also want to keep the 30% as the default.

Figure 1-3. All tests passed

Chapter 1 tDD BasiCs

17

 Summary
Untested code is basically a ticking time bomb that can explode at any

second in the form of bugs and crashes. Even the tiniest of changes can

introduce regressions. And these regressions can only be caught by testing.

We found that we can’t solely depend on manual testing and need to make

use of automated testing.

Though writing tests has tremendous value and directly contributes to

a project’s quality, most developers don’t do it. This is because for many

developers, writing tests is quite boring. They’d rather be writing actual

code instead of writing tests for code they just wrote. However, there is one

way of developing that completely revolutionized how we look at tests,

which is Test-Driven Development (TDD).

TDD is the process of writing tests first before writing code. Doing so

leads to us having a project that is highly covered by tests. TDD transforms

the process of writing tests from a boring ordeal to a fun design activity.

By having to write tests before we write code, tests now become a way

of defining our requirements and help us think how to achieve these

requirements.

TDD has a direct and substantial effect on the number of tests in our

projects. We add a test before writing any code, which means all our code

will be covered by tests. Working on a code base that has high test coverage

can be life changing. It efficiently catches regressions and gives confidence

for the developer whenever a change is made through a very fast feedback

loop.

TDD doesn’t only affect our test coverage, which helps in maintaining

our external quality. It also directly affects the quality of code. Writing

tests before code makes us clearly think about what the code should do

and how it will do it. And having to write tests first also forces us to write

testable code, which in turn translates to loosely coupled code with good

design.

Chapter 1 tDD BasiCs

18

We can use TDD in various settings. We can use it on new projects

from the start or when adding new features to old legacy projects. We can

also apply TDD when attempting to refactor parts of old code or even

when attempting to modularize a legacy app.

The TDD process is a very simple one. We have just three steps. First,

we write a failing test. In order to write a failing test, we need to think about

what the code should do and translate this requirement into a test. The

second step is to write as little code as possible to make this test pass. And

finally when we have a passing test, we start to think if we can improve

our code in any way, be it a design change or an implementation change.

When we finish step 3 and we’re sure that our change (if any) didn’t

make any of our tests break, we loop back again to step 1 and find a new

requirement that we can translate into a failing test.

Chapter 1 tDD BasiCs

19© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_2

CHAPTER 2

Unit Tests
As you know by now, TDD is a process in which you write a test first before

writing actual code. But before jumping into TDD, you need to understand

the basics of testing in iOS. Luckily, every year, Xcode and Swift are

becoming more and more powerful when it comes to testing. And the

testing framework “XCTest” is also evolving with them.

This chapter covers how to use XCTAssert functions to write functional

tests. These are the main components of XCTest. You’ll also learn how to

use expectations to test async code. Next, you’ll go through best practices

when it comes to organizing your test suite and tests. Then you’ll use the

debugger to find and fix errors in your tests. Finally, you’ll go through

gathering code coverage to make sure the tests you’ve written are

sufficient.

 Your First Test
Let’s forget about TDD for a while and just focus on testing basics. Go

ahead and download and open the starter project Calc, which you can find

in this chapter’s resources. Calc is a framework (Figure 2-1) that provides

some basic mathematical operations as well as some special operations.

Calc also logs and saves the output from each operation.

https://doi.org/10.1007/978-1-4842-7428-6_2

20

Calc has two components: Calculator and Logger. Calculator has the

following functions: add, subtract, multiply, divide, addRandomNumber,

and subtractRandomNumber. It also has a function to check if logging is

enabled and functions to enable/disable logging. As for Logger, it has one

function that takes a number and logs it. If the number is within the limit,

it saves it. Else, it throws an error. Calculator uses Logger to log the output

of each operation.

If you look around the project, you’ll find that there are no tests added

at all. And that’s what we’ll fix while walking you through the basics of

XCTest.

 What Do We Want to Test?
• Logging is enabled by default,

• The disableLogging function correctly disables logging.

• The enableLogging function correctly enables logging.

• The Logger instance inside Calculator is initialized by

default.

Figure 2-1. Calculator framework class diagram

Chapter 2 Unit tests

21

• The Logger instance is cleared when logging is

disabled.

• All operations are working as expected.

• Logger’s log function saves the provided number if it’s

less than the limit.

• Logger’s log function throws an error if it’s greater than

the limit.

 Creating a Unit Test Target
In order to run tests, first, we need a unit test target. A unit test target is a

separate executable with a single purpose, running your unit tests. When

you ship your app to the App Store or distribute your framework, this test

target is not included.

Open the Test navigator by pressing Command+6.

Click the + button in the lower-left corner. Then select New Unit Test
Target… from the menu (Figure 2-2).

Chapter 2 Unit tests

22

Accept all the default values and click Finish.

You should now see the newly added test target in the Test navigator

(Figure 2-3).

Figure 2-2. Add a unit test target

Chapter 2 Unit tests

23

Xcode automatically generates a test case file named CalcTests.swift.

We will not be needing that, so go ahead and delete it.

 Adding a Test Case Class
We will start by writing tests for Calculator, and the first step would be to

create a test case class to include these tests.

Go to the Test navigator and select our now empty test target

CalcTests. Then click the + button in the lower-left corner. Then

select New Unit Test Class… from the menu. In the Class field, enter

“CalculatorTests” and then press Next and then Create.

The default template (Figure 2-4) imports the testing framework,

XCTest, and defines a CalculatorTests subclass of XCTestCase, with

setUpWithError(), tearDownWithError(), and example test methods.

Figure 2-3. Test navigator

Chapter 2 Unit tests

24

Go ahead and remove the example test methods. Also remove the

setup and teardown methods as we will not be needing them for now.

Now it’s time to add the very first test in this project. We want to

test that logging is enabled by default. We can check whether logging is

enabled or not using the public function isLoggingEnabled().

First add this new line to the beginning of the file to import our framework:

import Calc

Then add the following inside CalculatorTests:

func testIsLoggingEnabledByDefault() {

 // Given

 let calc = Calculator()

 // When

 let isEnabled = calc.isLoggingEnabled()

 // Then

 XCTAssertTrue(isEnabled)

}

Figure 2-4. CalculatorTests

Chapter 2 Unit tests

25

Here we create a new instance of Calculator, and then we call

isLoggingEnabled and save the outcome in the variable isEnabled. And

in the Then section, we assert that isEnabled is true.

Run the test by clicking the diamond next to it or from the Test

navigator. The test should pass (Figure 2-5).

You’ve just written and run your first test!

 Assert Methods
In the first test we wrote, we used XCTAssertTrue, which asserted that the

given expression evaluated to true. However, our method has another

possible outcome that returns false. If disableLogging() is called,

Figure 2-5. Your first test!

Chapter 2 Unit tests

26

isLoggingEnabled() should return false. Let’s go ahead and write that

test:

func testDisableLogging() {

 // Given

 let calc = Calculator()

 // When

 calc.disableLogging()

 let isEnabled = calc.isLoggingEnabled()

 // Then

}

Now we want to assert that isEnabled is false. Your first instinct might

be to do something like this:

XCTAssertTrue(!isEnabled)

Let’s go ahead and add it and run the test.

The test passes!

As you can see, we can assert on anything we want using

XCTAssertTrue alone, equality, nullability, comparison, or anything.

However, this introduces two problems: bad test readability and bad test

output readability. Let’s take a look at the following test for instance:

func testExample() {

 let x = "foo"

 let y = "bar"

 let z = foo == bar

 XCTAssertTrue(z)

}

Chapter 2 Unit tests

27

By glancing at this test, we can see that we’re asserting that z is true,

but in order to understand what we’re actually testing, we need to go back

and check what “z” is. You might think that this is not too big of a problem,

but when tests get more complex and elaborate, this problem will be very

evident.

The second and more important problem is the test result. This is the

test result error when running the preceding test:

XCTAssertTrue failed

As you can see, it’s a bit uninformative and tells us nothing about what

went wrong or the values of x and y.

Now that we’ve identified the problems with using XCTAssertTrue

only, where should we go from here? Fortunately, XCTest has got us

covered. As we’ve mentioned before, XCTest is a very powerful testing

framework, and one of those core powers is it’s versatile suite of assertion

methods. One of those methods is XCTAssertEqual.

We can refactor the previous test case to use XCTAssertEqual, and it

would look like this:

func testExample() {

 let x = "foo"

 let y = "bar"

 XCTAssertEqual(x, y)

}

This makes the test a little bit more verbose and easier to understand.

And if we run this test, the test result error is far more descriptive:

XCTAssertEqual failed: ("foo") is not equal to ("bar")

Chapter 2 Unit tests

28

 Assert Method Types
XCTest has many assertion methods, and they can be categorized into five

categories:

 1. Truthfulness

 2. Equality

 3. Nullability

 4. Comparison

 5. Errors

 Truthfulness Asserts

• XCTAssertTrue

Asserts that the given expression evaluates to true

• XCTAssertFalse

Asserts that the given expression evaluates to false

• XCTAssert

An alias for XCTAssertTrue

So far, we have been using XCTAssertTrue exclusively. However, now

we can refactor testDisableLogging to use XCTAssertFalse. Go ahead

and replace the last line in the test with this:

XCTAssertFalse(isEnabled)

 Equality Asserts

• XCTAssertEqual

Asserts that the given two expressions are equal to each other

Chapter 2 Unit tests

29

• XCTAssertNotEqual

 Asserts that the given two expressions are not equal to

each other

For all equality assertions, the passed expressions need to be of the

same type, and that type should conform to Equatable or FloatingPoint.

Let’s add a test for add(firstArgument: FloatingPoint,

secondArgument: FloatingPoint):

func testAdd() {

 // Given

 let calc = Calculator()

 // When

 let output = calc.add(firstArgument: 1, secondArgument: 2)

 // Then

 XCTAssertEqual(output, 3)

}

Here we simply assert that the output of the function is equal to the

expected output, which is “3.”

 Nullability Asserts

• XCTAssertNil

Asserts that the given expression is nil

• XCTAssertNotNil

Asserts that the given expression is not nil

Chapter 2 Unit tests

30

When a Calculator instance is initialized, a new Logger object

is created and saved as a variable inside Calculator. And when

disableLogging() is called, this variable is set to nil. Let’s add tests to

cover this part:

func testLoggerIsInitializedByDefault() {

 // Given

 let calc = Calculator()

 // Then

 XCTAssertNotNil(calc.logger)

}

func testDisableLoggingResetsLogger() {

 // Given

 let calc = Calculator()

 // When

 calc.disableLogging()

 // Then

 XCTAssertNil(calc.logger)

}

When you add these tests, you’ll face a build error that looks like this:

'logger' is inaccessible due to 'internal' protection level

To fix this, replace

import Calc

with

@testable import Calc

Chapter 2 Unit tests

31

When we add the @testable attribute to an import statement for a

module compiled with testing enabled, we activate elevated access for that

module in that scope. Classes and class members marked as public behave

as if they were marked open. Other entities marked as internal act as if they

were declared public.

 Comparison Asserts

• XCTAssertGreaterThan

• XCTAssertGreaterThanOrEqual

• XCTAssertLessThan

• XCTAssertLessThanOrEqual

For all comparison assertions, the passed expressions need to be of the

same type, and that type should conform to Comparable.

Let’s make use of the comparison asserts and write a test for

addRandomNumber. Here we want to assert that the output is greater than

the passed argument:

func testAddRandomNumber() {

 // Given

 let calc = Calculator()

 // When

 let output = calc.addRandomNumber(argument: 1)

 // Then

 XCTAssertGreaterThan(output, 1)

}

Chapter 2 Unit tests

32

 Errors Asserts

• XCTAssertThrowsError

• XCTAssertNoThrow

These assert methods are used to assert functions that throw errors.

Our Logger throws an error if we try to log a number greater than 1000.

Let’s use these assert methods to cover this part.

First, we’ll need to add a new test case class to include the Logger test.

Create it the same way as before and name it “LoggerTests.” First, add the

@testable import statement. Then remove the autogenerated code and

replace it with this:

func testAddLogShouldThrowIfExceedsLimit() {

 // Given

 let logger = Logger()

 let number: Double = 2000

 // Then

 XCTAssertThrowsError(try logger.log(number))

}

func testAddLogShouldNotThrowIfUnderLimit() {

 // Given

 let logger = Logger()

 let number: Double = 500

 // Then

 XCTAssertNoThrow(try logger.log(number))

}

These two tests cover the two scenarios where the logger throws an

error and where it doesn’t.

Chapter 2 Unit tests

33

 Expectations
Now that you are familiar with the assertion functions, we’ll kick it up a

notch. Let’s try testing async code. First of all, what is async code? When

you execute something synchronously, you wait for it to finish before

moving on to another task. When you execute something asynchronously,

you can move on to another task before it finishes.

Our Logger.log(_ number: Double, completion: LogCompletion)

function adds the log asynchronously. And it accepts a completion handler

and calls it when it’s done executing.

Let’s try writing a test for it:

func testAddingLog() throws {

 // Given

 let logger = Logger()

 let number: Double = 1

 // When

 try logger.log(number) {

 // Then

 XCTAssertEqual(logger.logs.count, 0)

 }

}

If you examine the function and test we just wrote closely, you’ll find

out that the assertion should fail, as the logs count is expected to be 1,

not 0. But when we run this test, it passes and only fails occasionally.

This is because log is async, and what basically happens is that the test

execution scope finishes before the function finishes execution or calls the

completion handler. So our assert is never actually called. This is where

XCTAssertTrue alone falls short, async code.

Chapter 2 Unit tests

34

We can fix this test by forcing it to wait until the log finishes. There are

many ways we can do that: wait for a specific time or use DispatchGroup.

But these could be somewhat of an overkill and/or unnecessary, because

as you have guessed it, XCTest has got our back again, this time with

XCTestExpectation.

XCTestExpectation is an object that describes something we are

expecting to happen in the future, and we want to wait until it happens.

We can create an expectation this way:

let exp = expectation(description: "Log added")

Go ahead and add this line at the start of our test.

And to wait for an expectation, we need to add this line:

wait(for: [exp], timeout: 1)

Let’s fix our assert statement as well. Now the test should look like this:

func testAddingLog() throws {

 let exp = expectation(description: "Log added")

 // Given

 let logger = Logger()

 let number: Double = 1

 // When

 try logger.log(number) {

 // Then

 XCTAssertEqual(logger.logs.count, 1)

 }

 wait(for: [exp], timeout: 1)

}

Chapter 2 Unit tests

35

Now run the test. The test should still be failing but now with a

different error:

Asynchronous wait failed: Exceeded timeout of 1 seconds, with

unfulfilled expectations: "Log added".

This here means that the timeout has passed without our expectation

being fulfilled, which makes sense since we never defined when the

expectation is fulfilled. This here shows the beauty of XCTestExpectations.

They don’t just help us wait for async tasks to finish; they also act as

assertion that the expectation is fulfilled in the given time, and if not they

report an error.

Let’s fix our test by defining when the expectation is fulfilled. Add this

line right after the XCTAssertEqual line:

exp.fulfill()

Now the test passes when we run it!

 Expectation Types
Just like XCTAssertTrue, XCTestExpectation is our base expectation, and

we can use it to wait and test any async code. But we also have other types

of expectations that make it easier to wait for specific events:

 1. Normal

 2. Key-Value Observing (KVO)

 3. Notification

 4. Predicate

We covered the normal expectation type, and we’ll cover the rest in

later chapters.

Chapter 2 Unit tests

36

 Test Ordering
We are done with adding tests for now. Open up the checkpoint version of

the project, which can be found in the chapter’s resources. Run all the tests

by pressing Command+U.

You should find that one test is failing, which is testIsLoggingEnabled

ByDefault. A helpful tip for debugging failing tests is to use breakpoints.

Xcode has a special breakpoint called Test Failure Breakpoint, which

pauses execution automatically whenever an assertion or expectation

failure occurs. You can then make use of Xcode’s debugger to examine the

current state of your variables.

To add Test Failure Breakpoint, open the Breakpoint navigator by

pressing Command+8.

Click the + button in the lower-left corner. Then select Test Failure

Breakpoint from the menu (Figure 2-6).

Chapter 2 Unit tests

37

One interesting thing you might have noticed is that this test was

passing before and the only changes we made were adding more tests.

This means that our tests are not correctly encapsulated and that some

tests affect other tests. Therefore, we need to reset the state of the shared

Calculator instance before every test. This can be done by overriding the

setUp() function. Before each test begins, XCTest calls setUpWithError(),

followed by setUp(). If state preparation might throw errors, we should

override setUpWithError(). Since we won’t be calling any throwing

functions, setUp() will be enough. Sometimes we might need to perform

some sort of cleanup after each test. Then we could use tearDown() or

tearDownWithError().

Figure 2-6. Test Failure Breakpoint

Chapter 2 Unit tests

38

Add this inside CalculatorTests and before the tests:

override func setUp() {

 UserDefaults.standard.removeObject(forKey: Calculator.

kLoggingEnabledDefaultsKey)

}

This resets the value of logging enabled as if it was a clean run. Now

run all tests again. They should pass again.

 Randomized Ordering
There is an option in the Test action of the scheme to randomize the test

order.

Edit the Calc scheme (Command+Shift+,). Select the Test action. In

the center pane, next to CalcTests is an Options... button (Figure 2-7).

Figure 2-7. Randomize the test order

Chapter 2 Unit tests

39

Click that and, in the pop-up, check Randomize execution order

(Figure 2-8). This will cause the tests to run in a random order each time.

This can help you discover more bugs and expose dependencies

between tests that you wouldn’t catch using normal static ordering. The

downside, however, is that ordering issues are hard to reproduce if they are

too specific.

 Code Coverage
Since we were just editing our scheme, let’s open it up again to enable code

coverage. Code coverage enables you to visualize and measure how much

of your code is being exercised by tests.

To enable code coverage, open up the Test action again. This time

select the Options tab. There is a checkbox for Code Coverage. Check it

(Figure 2-9).

Figure 2-8. Randomize execution order

Chapter 2 Unit tests

40

Now run the tests again. After the tests pass, open up the Report

navigator by pressing Command+9. Choose to display the reports By
Group. And under the latest test, you should find the coverage report,

which you can select to display it (Figure 2-10).

Figure 2-9. Code coverage

Chapter 2 Unit tests

41

There will be a list of each file in the target along with the percentage

of the code lines that were executed. You should always aim for the highest

coverage percentage possible.

Opening up an individual file will show the coverage on a per-function

and per-closure basis. Double-clicking a file or function name will open up

that file in the editor.

You should note that having a high coverage percentage doesn’t

necessarily mean that you have added all the required tests.

 Exercise
Open the final version of the project from the chapter’s resources. Now that

you have enabled code coverage, try adding tests till you reach at least 90%

coverage. You should make use of the list under the “What Do We Want to

Test?” section.

Figure 2-10. Code coverage results

Chapter 2 Unit tests

42

 Summary
In this chapter, you got introduced to the basics of unit testing in iOS

and to all the powerful functionalities that come with the native testing

framework XCTest. We learned of the function of test targets and test case

classes. We created a test target to be able to add tests for our Calculator

project. And then we proceeded to add test case classes for each of our

components to be able to add tests inside them.

We then started exploring all the different types of assertion that

XCTest has to offer. We have our Truthfulness assertions, which basically

verify that the expression we provide is either true or false. We then have

our Equality assertions, which we use to verify that two expressions are

either equal or not equal. We also have Nullability assertions to verify

that the expression we provide is either null or not null. We have our

Comparison assertions, which can be used to compare two expressions

and make sure that one is greater than the other or vice versa. And finally,

we have our Errors assertions, which we use to verify that a certain

expression throws an error or that it doesn’t.

It’s important to point out that we can perform all the needed

assertions using the plain XCTAssert or XCTAssertTrue. However, using

other types of assertions when applicable makes our tests more readable

and also makes the error messages that Xcode outputs when an assertion

fails more readable and much more useful.

Other than the various assertions that XCTest offers, there are also

expectations, which make testing asynchronous code rather seamless.

We basically create an expectation object, and then we mark it as fulfilled

whenever our asynchronous task is finished. And to make our test wait

for our async task, we add a single line that tells our test to wait till the

expectation is fulfilled.

When running our whole test suite, we might run into the situation

where one test causes another test to fail. This happens when tests share

the same environment and our tests make changes to that environment,

Chapter 2 Unit tests

43

which then leak to other tests. So when running tests in a specific order,

tests might start failing due to them not running in a clean environment.

For that, we learned how to use XCTestCase’s setup and teardown

functions to make any common setup between all our tests and to make

any necessary cleanup after each test is done.

Finally we explored some of Xcode’s hidden features. We added Test
Failure Breakpoint to make debugging a failing test easier using Xcode’s

debugger. With this breakpoint enabled, Xcode will pause whenever an

assertion fails, and then you could inspect the state of your variables at

the moment of failure. We also enabled randomized test ordering, which

tells Xcode to run your tests in a different order every time. This can help

in spotting even more bugs. And finally, we enabled code coverage to get

a sense of how much of our code is covered by tests. When this feature is

enabled, Xcode generates a report after each test run, which can help in

identifying areas with poor coverage that need more tests.

Chapter 2 Unit tests

45© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_3

CHAPTER 3

UI Tests
UI tests are your first line of defense, which will tell you whether your

application works or not; they interact with the application precisely

like what your user does. The XCUITest framework will help you query

UI elements inside your app and do interactions and then validate UI

properties and states. UI tests access your app using the iOS accessibility

system. Accessibility is a technology that gives disabled people the same

experience on our applications that all our users receive. It offers rich

semantic data about the UI, so that voice-over can be used to guide users

through the application.

 Your First Test
This chapter aims to explore the UI tests in Xcode since we are going to

depend on them heavily moving forward. We are going to be writing UI

tests for a simple app that displays a list of cities. You can find the starter

project for this app in the chapter’s resources. The app (Figure 3- 1)

contains the main screen, which shows a list of cities. Once you select

one of them, it will open another screen in which the title will match the

chosen city name. You will find a button; once you tap this button, it will

show a welcome alert.

https://doi.org/10.1007/978-1-4842-7428-6_3

46

If we open up the demo app, we’ll see that there is no UI test target for

our app. So you need to create a new target for UI tests. A UI test target is

a separate executable with a single purpose, running your UI tests. When

you ship your app to the App Store or distribute your framework, this test

target is not included.

Open the Test navigator by pressing Command+6.

Click the + button in the lower-left corner. Then select New UI Test
Target… from the menu (Figure 3-2).

Figure 3-1. App to be tested

Chapter 3 UI tests

47

Once you create the UI test target, it will create a new folder that

contains your first UI test class that inherits from XCTestCase (Figure 3-3).

Figure 3-2. New UI Test Target

Chapter 3 UI tests

48

Requirements:

• iOS 9 is the minimum version that supports UI tests.

• UI tests’ minimum iOS version should match the

version of the application to be tested.

You need to click the diamond button beside testExample. You’ve just

run your first test! (Figure 3-4)

Figure 3-3. Boilerplate tests

Chapter 3 UI tests

49

 XCUITest Components
The XCUITest framework consists of three main components. We will

cover them on the go. These components are

• XCUIApplication

• XCUIElementQuery

• XCUIElements

Figure 3-4. Running dummy test

Chapter 3 UI tests

50

 Our Chapter Goal
As we mentioned earlier, UI tests interact with the application exactly as

our user. So we want to interact with our application as our user will do

and validate if everything is working as expected or not.

 First Test Case
• As a user, I should see six cities in a table view; when I

tap on San Francisco city, the app should navigate into

another view, and the title should match the selected

city. Upon navigating into another view, I should be

able to see a "Say Hello !" button, and when I tap it, it

should show a welcome message.

If we converted the test case into actions, it would be as follows:

 1. Launch the app.

 2. Count all cities inside the table view.

 3. Select "San Francisco" city.

 4. Make sure that the title in the details view is San

Francisco.

 5. Tap the "Say Hello !" button.

 6. Make sure that you see a welcome alert.

 Launching the App
To run your tests, you must launch the app. So XCUITest provides

XCUIApplication, which is a proxy for your application, so that you can

launch, terminate, and activate your application. Inside each test you

must have a single instance from XCUIApplication and call app.launch().

Chapter 3 UI tests

51

After using the launch API, our first test will be

func testExample() throws {

 // UI tests must launch the application that they test.

 let app = XCUIApplication()

 app.launch()

}

XCUIApplication contains a potent API; we will use it heavily later,

which is in launchArguments. It helps you send a launch argument to the

app to make specific customization. We will use this API heavily in the

book. Before every UI test, you must launch your application, whether

with launch arguments or not, which will clear the application’s previously

existing instance.

 Querying the UI
We need to have access to the table view to count the cells inside. But how

can we do this? XCUITest provides a class to do this. XCUIElementQuery

is a query to locate UIElements so that I can assert on UIElement or do an

interaction. Let’s dig deep into how XCUIElementQuery works.

XCUIElementQuery does two main functions, relationships and

filtering.

 Relationships
• Descendants: Which will get all descendant elements

under a specific UIElement.

For example: View’s descendants contain all elements under View:

view.descendants (Figure 3-5).

Chapter 3 UI tests

52

• Children: Which will get all elements directly below a

specific UIElement. For example: TableView’s children

contain all elements directly below TableView, which

are cells (Figure 3-6).

Figure 3-6. Children relationship

Figure 3-5. Descendants relationship

Chapter 3 UI tests

53

• Containment: Which will be helpful if UIElement is not

unique, but it contains a unique element. For example:

cells.containing(NSPredicate(format: "label

CONTAINS %@", "San Francisco")) (Figure 3-7).

Filtering
We can combine filters and relationships to be more assertive. We can

filter the descendants to get only the labels under a specific UIElement.

tableView.descendants(matching: .button) will return all

descendant elements under TableView filtered by type button. This is also

equivalent to the following query: tableView.buttons. We can combine

queries to build up more complex queries, for example, app.tables.

staticTexts will get all labels under TableView (Figure 3-8).

Figure 3-7. Containment relationship

Chapter 3 UI tests

54

You can use the query itself to be the end of the assertions, so you can

check the count of cells after adding a new cell: let query = app.tables.

cells and then query.count. But be careful every time you call this query;

it will be evaluated again and get the most updated query result.

After using the query API, our first test will be

func testExample() throws {

 // UI tests must launch the application that they test.

 let app = XCUIApplication()

 app.launch()

 XCTAssertEqual(app.tables.cells.count, 6)

}

 Interacting with the UI
We should use the power of XCUIElementQuery to find the "San

Francisco" cell. First, you need to fetch all table view’s descendants and

to return labels only, which will be something like this: app.tables.

staticTexts. This query will return all labels inside the table view. The

Figure 3-8. Combining relationships

Chapter 3 UI tests

55

next step now is to find the label that contains "San Francisco". The

query will return an array of XCUIElements.

XCUIElement is a proxy for UIElements in the application. Elements

have types like button, cell, staticText, etc. They also have identifiers,

which we get from an accessibility system, an accessibility identifier, or an

accessibility label or title. Most of the time, we will find UIElement with

a combination of type and identifier; for example, let button = app.

buttons["Edit"]. We find a UIElement of type button with identifier Edit.

Another way to query elements is to query based on the element’s content.

If we know that a label should display a specific text for example we can

search for that label by querying its content. We can use this to find the

"San Francisco" label. Also, there is another important property, which

you can use to check if the UIElement exists or not: element.exists.

After asserting on the San Francisco label, our first test will be

func testExample() throws {

 // UI tests must launch the application that they test.

 let app = XCUIApplication()

 app.launch()

 XCTAssertEqual(app.tables.cells.count, 6)

 let cell = app.tables.staticTexts["San Francisco"]

 XCTAssertTrue(cell.exists)

}

Note It’s very risky to depend on content when this content is
dynamic or can differ from one run to another. In these cases you
should always depend on accessibility identifiers.

Chapter 3 UI tests

56

 UI Events
Once you find your element, you need to simulate user interactions.

XCUIElements provides some APIs you can use to interact with

UIElement:

• tap()

• doubleTap()

• press(forDuration: , thenDragTo:)

• twoFingerTap()

• swipeUp(), swipeDown(), swipeLeft(), swipeRight()

• typeText("")

After using tap API, our first test will be

func testExample() throws {

 // UI tests must launch the application that they test.

 let app = XCUIApplication()

 app.launch()

 XCTAssertEqual(app.tables.cells.count, 6)

 let cell = app.tables.staticTexts["San Francisco"]

 cell.tap()

}

 Assertions
Like what we did in step 3, we need to fetch all navigation bar’s

descendants and to return labels only and then assert if it contains the

"San Francisco" label.

After asserting on the title label, our first test will be

Chapter 3 UI tests

57

func testExample() throws {

 // UI tests must launch the application that they test.

 let app = XCUIApplication()

 app.launch()

 XCTAssertEqual(app.tables.cells.count, 6)

 let cell = app.tables.staticTexts["San Francisco"]

 cell.tap()

 let titleLabel = app.navigationBars.staticTexts["San

Francisco"]

 XCTAssertTrue(titleLabel.exists)

}

 Value Assertion
You can assert on the value of UIElement using the value property, which

varies based on the element’s type. If the UIElement is UISwitch, it will be

its state:

let genderSwitch = app.tables.switches["Gender"].value

Here if the switch is turned off, the value will be a string with the value

“0,” and the value will be “1” if the switch is turned on.

 Accessibility
Application is the root of a tree of elements. All these are elements that

you can access using types and identifiers. To make your life easy when UI

testing, you need to make each UIElement unique. In a way we will repeat

what we did in step 4, but we will use the accessibility identifier to get the

"Say Hello !" button. Let’s recall the elements hierarchy of the app.

Chapter 3 UI tests

58

You can add accessibility identifiers using Storyboard from the Identity

Inspector by checking if Accessibility is enabled and adding an identifier

(Figure 3-9) or using API view.isAccessibilityElement = true and

view.accessibilityIdentifier = "Hello".

Figure 3-9. Adding an identifier

Chapter 3 UI tests

59

After using Accessibility to find the Hello button, our first test will
be

func testExample() throws {

 // UI tests must launch the application that they test.

 let app = XCUIApplication()

 app.launch()

 XCTAssertEqual(app.tables.cells.count, 6)

 let cell = app.tables.staticTexts["San Francisco"]

 cell.tap()

 let titleLabel = app.navigationBars.staticTexts["San

Francisco"]

 XCTAssertTrue(titleLabel.exists)

 let helloButton = app.buttons["Hello"]

 helloButton.tap()

}

 Accessibility Tips
• Add breakpoints inside tests (Figure 3-10) and

print the description of a UIElement inside LLDB

using this command: p print(helloButton.

debugDescription).

Chapter 3 UI tests

60

• When you launch the Accessibility Inspector

(Figure 3-11), you can touch UIElements inside the

simulator to check the accessibility system’s output

(Figure 3-12).

Figure 3-10. Debugging accessibility

Figure 3-11. Opening the Accessibility Inspector

Chapter 3 UI tests

61

 Putting It All Together
After asserting on alert content, our first test will be

func testExample() throws {

 // UI tests must launch the application that they test.

 let app = XCUIApplication()

 app.launch()

 XCTAssertEqual(app.tables.cells.count, 6)

 let cell = app.tables.staticTexts["San Francisco"]

 cell.tap()

Figure 3-12. Debugging using the Accessibility Inspector

Chapter 3 UI tests

62

 let titleLabel = app.navigationBars.staticTexts["San

Francisco"]

 XCTAssertTrue(titleLabel.exists)

 let helloButton = app.buttons["Hello"]

 helloButton.tap()

 XCTAssertTrue(app.alerts.staticTexts["Welcome"].exists)

 XCTAssertTrue(app.alerts.staticTexts["in San

Francisco"].exists)

 }

 Improve UI Tests
UI tests are much slower than normal unit tests. This is due to their nature

as they directly interact with the UI the same as a normal user would.

However, there are a few things to keep in mind in order to make your UI

tests efficient:

• Waiting times: Do not use sleep inside your tests to

wait for a specific operation because it makes your tests

slower and still can make them flaky; you need to use

.waitForExistence(timeout:).

• Parallel UI tests execution starting from Xcode 10, but

it’s more stable on Xcode 11 (Figure 3-13).

Chapter 3 UI tests

63

 Exercise
We are done with the first UI test, which navigates to the first city and taps

the “Say Hello !” button. Try writing another UI test that navigates to the

first city and taps the “Say Hello !” button and then goes back and navigates

to the second one and taps the “Say Hello !” button.

 Summary
In UI tests we interact with the app exactly as an actual user would. In this

chapter we explored the basics of UI testing in iOS and how we can use the

XCUITest framework to write all tests by searching for UI elements on-

screen, interacting with them, and verifying the expected UI state of the app.

We used XCUIApplication to create a proxy for our app and used that

proxy to launch our app. We can also use that proxy to terminate our app.

After the app is launched, in order to start interacting with it, we need to

access the UI elements on the screen. To search and find a certain UI element,

we use the powerful XCUIElementQuery to search inside our app’s view. And

by combining multiple queries together, we can reach the element we need.

Figure 3-13. Parallelize test execution

Chapter 3 UI tests

64

When we have an element, we can either assert on its state using

normal XCTAsserts discussed in the previous chapter, or we can interact

with this element. There are multiple user interactions that we can

simulate using XCUITest. We can tap or double-tap, we can press and hold,

we can swipe in any direction, and we can even type text if applicable.

UI testing in iOS and accessibility features work hand in hand. Adding

accessibility identifiers, labels, and values to your views will not only make

your app accessible to people with vision, motor, learning, or hearing

disabilities but will also make writing UI tests much easier. When you

make your views accessible, you enable your tests to query these elements

using accessibility identifiers or labels and can check on the value to verify

correct behavior.

Chapter 3 UI tests

65© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_4

CHAPTER 4

Testing Pyramid
Now that we know how to use XCTest and XCUITest to write tests in iOS,

we need to know the types of tests we should be writing, as well as the

quantity of each type of testing. And this is where the “Testing Pyramid”

comes in (Figure 4-1). It is a concept that helps in answering both of these

questions. Mike Cohn came up with this concept in his book Succeeding

with Agile. It’s a great visual metaphor telling you to think about different

layers of testing. It also tells you how much testing to do on each layer.

Instead of showing the conclusion Mike Cohn reached, we will try to

deduce it by going through a few examples. In this chapter, you will be

introduced to three types of testing, and we’ll implement some tests for

each type. And by the end of the chapter, we will try to deduce the position

of each type in the Testing Pyramid.

Figure 4-1. Empty Testing Pyramid

https://doi.org/10.1007/978-1-4842-7428-6_4

66

 Our App
Let’s take a look at our demo app for this chapter, TestingPyramid. You

can find the starter project for this app in the chapter’s resources. It’s

an extremely simple app with just two screens (Figure 4-2). The initial

screen is the login screen, where the user is asked to enter their email and

password. If successful, they are routed to our second screen, which is the

statistics page. The statistics page shows the number of successful and

failed logins since the app was installed.

Figure 4-2. App screens

Chapter 4 testing pyramid

67

The app internally has the following components:

• Validator: Validates email and password

• DatabaseManager: Queries the local database to check

if the login attempt is valid

• PersistenceManager: Saves the number of failed logins

and successful logins in user defaults

• LoginManager: Responsible for executing the whole

path of logging in, which is validating the entered

credentials, making the network request, and updating

the saved statistics based on the result

 UI Tests
The first type we will explore is UI testing. When writing UI tests, we want

to test two interconnected things, that our UI is displayed correctly and

that the app functionalities are working as expected. When UI testing,

we’re seeing the app exactly how users do. We also interact with the app

the same way users do. We have no access to any internal code, we can’t

check on network requests, and we can’t query our persistence layer or

write to an internal variable.

Let’s take a look at some UI tests we can write for our app:

func testInvalidLogin() throws {

 // Initial state

 let title = app.staticTexts[AccessibilityIdentifiers.

kLoginWelcomeLabelIdentifier]

 let emailTextField = app.textFields[Accessibility

Identifiers.kLoginEmailTextFieldIdentifier]

 let passwordTextField = app.textFields[Accessibility

Identifiers.kLoginPasswordTextFieldIdentifier]

Chapter 4 testing pyramid

68

 let loginButton = app.buttons[AccessibilityIdentifiers.

kLoginButtonIdentifier]

 XCTAssertTrue(title.exists)

 XCTAssertTrue(emailTextField.exists)

 XCTAssertTrue(passwordTextField.exists)

 XCTAssertTrue(loginButton.exists)

 // Invalid login

 loginButton.tap()

 // Then

 let alert = app.alerts.element

 let alertExists = alert.waitForExistence(timeout: 5)

 XCTAssertTrue(alertExists)

 XCTAssertEqual(alert.label, "Login Error")

 XCTAssertTrue(alert.staticTexts["Email can not be

empty"].exists)

 }

 func testValidLogin() throws {

 // Initial state

 let title = app.staticTexts[AccessibilityIdentifiers.

kLoginWelcomeLabelIdentifier]

 let emailTextField = app.textFields[Accessibility

Identifiers.kLoginEmailTextFieldIdentifier]

 let passwordTextField = app.textFields[Accessibility

Identifiers.kLoginPasswordTextFieldIdentifier]

 let loginButton = app.buttons[AccessibilityIdentifiers.

kLoginButtonIdentifier]

 XCTAssertTrue(title.exists)

 XCTAssertTrue(emailTextField.exists)

Chapter 4 testing pyramid

69

 XCTAssertTrue(passwordTextField.exists)

 XCTAssertTrue(loginButton.exists)

 // Valid login

 emailTextField.tap()

 emailTextField.typeText("valid@valid.com")

 passwordTextField.tap()

 passwordTextField.typeText("Password!")

 loginButton.tap()

 // Then

 let statisticsTitle = app.staticTexts[Accessibility

Identifiers.kStatisticsTitleLabelIdentifier]

 let failedLabel = app.staticTexts[Accessibility

Identifiers.kFailedCountLabelIdentifier]

 let successfulLabel = app.staticTexts[Accessibility

Identifiers.kSuccessfulCountLabelIdentifier]

 XCTAssertTrue(statisticsTitle.exists)

 XCTAssertTrue(failedLabel.exists)

 XCTAssertTrue(successfulLabel.exists)

 }

Here we test two scenarios, one where the login is successful and the

other where the login is unsuccessful because the email and password

are empty. And in both scenarios, we assert on the expected behavior.

However, when it comes to unsuccessful login, we know that this is not the

only scenario that leads to an unsuccessful login. One option is to add a UI

test for each scenario where the login fails, but since UI tests are expensive

in terms of execution time, it doesn’t make sense to add multiple new

tests, which are all almost identical. So what we will do is try to cover these

scenarios within a different level in our Testing Pyramid. Another aspect

in which UI tests fall short is asserting on internal changes. For example,

Chapter 4 testing pyramid

70

we would want to assert that login counts are updated when an attempted

login occurs. But since we have no access to our internal code, we will

need to cover this within a different level as well.

 Integration Tests
For each component, we can describe it based on its level of isolation.

We’ll call completely isolated components (components that depend on

no other components) solitary components. And we’ll call components

that depend on/integrate with other components sociable components.

Just like in human beings, some sociable components can be more

sociable than other sociable components.

Integration tests are targeted toward highly sociable components,

components that integrate other smaller components together. Normally,

the numbers of these components are relatively small.

There is no one rule on which components should be the subject of

integration tests. You will have to use your judgement here when it comes

to this. However, there are some things to consider when making this

judgment. No integration tests are needed for solitary components, since

they don’t integrate with anything. Highly sociable components will most

likely fall under the integration testing level. Components in between don’t

always have to be subject of integration tests. Yes, we can add integration

tests for all sociable components. However, for components that are

closer to being solitary than to being sociable, adding integration tests will

probably not add much value and will slow up our integration test suite.

Adding unit tests for these components will probably be enough. But this

will ultimately depend on your judgement.

When it comes to our demo app, LoginManager is a highly sociable

component, as it interacts with our other three components. Let’s take a

look at some integration tests we can write for LoginManager:

Chapter 4 testing pyramid

71

func testInvalidCredentialsLogin() {

 // Given

 let databaseManager = TestDatabaseManager() // #1

 let persistenceManager = PersistenceManager.shared

 let manager = LoginManager(databaseManager: databaseManager)

 // That

 let expectation = self.expectation(description: "Login

finished")

 // When

 manager.login(email: "invalid", password: "invalid") {

(success, error) in

 // Then

 XCTAssertFalse(success, "Login should not be

successful") // #2

 XCTAssertEqual(error, ValidationError.invalidEmail.

message, "Wrong error returned from login") // #3

 expectation.fulfill()

 }

 // Then

 self.wait(for: [expectation], timeout: 2)

 XCTAssertEqual(persistenceManager.failedLoginsCount, 1,

"Failed login counts should be incremented") // #4

 XCTAssertEqual(persistenceManager.successfulLoginsCount, 0,

"Successful login counts should not be incremented") // #5

 XCTAssertEqual(databaseManager.queriesCount, 0, "Database

should not be queried") // #6

}

Chapter 4 testing pyramid

72

Here we wrote a test to verify that LoginManager interacts correctly

with its dependencies. In the case of invalid credentials, we make the

following assertions:

 1. We create an instance of TestDatabaseManager

which behaves the same as the normal

DatabaseManager except it keeps record of how

many queries to the database are made.

 2. We assert that the login function returns a false

success flag.

 3. We assert that the error returned is a validation error

of type “invalidEmail.”

 4. We assert that the login manager asks the persistence

manager to increment failed login count.

 5. We assert that the login manager does not ask the

persistence manager to increment successful login

count.

 6. We assert that the login manager does not query the

database.

func testIncorrectCredentialsLogin() {

 // Given

 let databaseManager = TestDatabaseManager(databaseFilename:

"testAccounts")

 let persistenceManager = PersistenceManager.shared

 let manager = LoginManager(databaseManager:

databaseManager)

 // That

 let expectation = self.expectation(description: "Login

finished")

Chapter 4 testing pyramid

73

 // When

 manager.login(email: "test@test.com", password:

"Incorrect!") { (success, error) in

 // Then

 XCTAssertFalse(success, "Login should not be

successful") // #1

 XCTAssertEqual(error, DatabaseError.credentialMismatch.

message, "Wrong error returned from login") // #2

 expectation.fulfill()

 }

 // Then

 self.wait(for: [expectation], timeout: 2)

 XCTAssertEqual(persistenceManager.failedLoginsCount, 1,

"Failed login counts should be incremented") //#3

 XCTAssertEqual(persistenceManager.successfulLoginsCount, 0,

"Successful login counts should not be incremented") // #4

 XCTAssertEqual(databaseManager.queriesCount, 1, "Database

should be queried") // #5

}

For the second test, we look at the case of incorrect credentials, and we

make the following assertions:

 1. We assert that the login function returns a false

success flag.

 2. We assert that the error returned is a database error

of type “credentialMismatch.”

 3. We assert that the login manager asks the persistence

manager to increment failed login count.

 4. We assert that the login manager does not ask the

persistence manager to increment successful login

count.

Chapter 4 testing pyramid

74

 5. We assert that the login manager queries the

database exactly once.

func testSuccessfulLogin() {

 // Given

 let databaseManager = TestDatabaseManager(databaseFilename:

"testAccounts")

 let persistenceManager = PersistenceManager.shared

 let manager = LoginManager(databaseManager: databaseManager)

 // That

 let expectation = self.expectation(description: "Login

finished")

 // When

 manager.login(email: "test@test.com", password: "!2345678")

{ (success, error) in

 // Then

 XCTAssertTrue(success, "Login should be successful")

 XCTAssertNil(error, "No error should be returned from

login")

 expectation.fulfill()

 }

 // Then

 self.wait(for: [expectation], timeout: 2)

 XCTAssertEqual(persistenceManager.failedLoginsCount, 0,

"Failed login counts should not be incremented")

 XCTAssertEqual(persistenceManager.successfulLoginsCount, 1,

"Successful login counts should be incremented")

 XCTAssertEqual(databaseManager.queriesCount, 1, "Database

should be queried")

}

Chapter 4 testing pyramid

75

Finally, for the successful login case, we make the following assertions:

 1. We assert that the login function returns a true

success flag.

 2. We assert that no error is returned.

 3. We assert that the login manager does not ask the

persistence manager to increment failed login

count.

 4. We assert that the login manager asks the

persistence manager to increment successful login

count.

 5. We assert that the login manager queries the

database exactly once.

Now the question we need to answer is: Should we add more tests for

LoginManager? We probably can, since, for example, we haven’t covered

all cases in which the initial validation will fail. So if we take a look at the

first test we wrote, testInvalidCredentialsLogin, we could probably add

multiple similar tests, each having a different validation fault and assert on

the matching error. This would be an example for a new test:

func testInvalidCredentialsLoginEmptyEmail() {

 // Given

 let databaseManager = TestDatabaseManager()

 let persistenceManager = PersistenceManager.shared

 let manager = LoginManager(databaseManager:

databaseManager)

 // That

 let expectation = self.expectation(description: "Login

finished")

Chapter 4 testing pyramid

76

 // When

 manager.login(email: "", password: "invalid") { (success,

error) in

 // Then

 XCTAssertFalse(success, "Login should not be

successful") // #1

 XCTAssertEqual(error, ValidationError.emptyEmail.

message, "Wrong error returned from login") // #2

 expectation.fulfill()

 }

 // Then

 self.wait(for: [expectation], timeout: 2)

 XCTAssertEqual(persistenceManager.failedLoginsCount, 1,

"Failed login counts should be incremented") // #3

 XCTAssertEqual(persistenceManager.successfulLoginsCount, 0,

"Successful login counts should not be incremented") // #4

 XCTAssertEqual(databaseManager.queriesCount, 0, "Database

should not be queried") // #5

}

If you look closely at the preceding test, you will find that it’s almost

a duplicate of our first test. And we could also add five more duplicate

tests, each with a different error. But the problem with these tests is

that they will all be performing the exact same checks (checks related

to PersistenceManager and DatabaseManager) over and over again,

meaning that if one of the duplicates passes or fails when it comes to

PersistenceManager or DatabaseManager checks, all other tests will for

sure behave the same way. So the only value from them is testing the

Validator, since it’s the only variable among them. Once we spot this

problem, we can safely deduce that these tests should not be here in the

integration test level, which brings us to our third and final level: unit tests.

Chapter 4 testing pyramid

77

 Unit Tests
Before we talk about unit tests, we need to first define what a unit is. This

is not a fairly easy thing to answer. However, there has been a general

consensus that when it comes to object-oriented languages (Swift), every

class is considered a “unit.”

When testing a specific class, we should at least test the public

interface of the class. Unit tests should cover the happy scenarios as well as

edge cases.

Unit tests run in a high degree of isolation, meaning each unit should

be tested to ensure that it’s working properly on its own. This means that if

a unit depends on another component, this component needs to be stubbed.

We will talk about stubbing and mocking in detail later in Chapter 7.

Due to this high degree of isolation, unit tests are the fastest type of tests

we will write.

When it comes to our demo app, we will need to add unit tests for

Validator, PersistenceManager, and DatabaseManager. Let’s take a look

at unit tests that we can write for Validator. In our tests for LoginManager,

we went through scenarios in which the validation failed and asserted that

the error returned from the login function is equal to expected validation

error. And we also went through scenarios where the validation passed.

But for Validator tests, we will cover all possible scenarios when it comes

to validating our credentials:

// Test validating a valid credential

func testValidCredentials() {

 // Given

 let validator = Validator()

 let credentials = Credentials(email: "valid@valid.com",

password: "Password!")

Chapter 4 testing pyramid

78

 // When

 let result = validator.validateCredentials(credentials)

 // Then

 XCTAssertTrue(result.success)

 XCTAssertNil(result.error)

}

// Test validating an invalid credential with empty email

func testEmptyEmail() {

 // Given

 let validator = Validator()

 let credentials = Credentials(email: "", password:

"Password!")

 // When

 let result = validator.validateCredentials(credentials)

 // Then

 XCTAssertFalse(result.success)

 XCTAssertEqual(result.error, .emptyEmail)

}

// Test validating an invalid credential with invalid email

func testInvalidEmail() {

 // Given

 let validator = Validator()

 let credentials = Credentials(email: "invalid", password:

"Password!")

 // When

 let result = validator.validateCredentials(credentials)

 // Then

 XCTAssertFalse(result.success)

Chapter 4 testing pyramid

79

 XCTAssertEqual(result.error, .invalidEmail)

}

// Test validating an invalid credential with long email

func testTooLongEmail() {

 // Given

 let validator = Validator()

 let email = randomString(100) + "@valid.com"

 let password = "Password!"

 let credentials = Credentials(email: email, password:

password)

 // When

 let result = validator.validateCredentials(credentials)

 // Then

 XCTAssertFalse(result.success)

 XCTAssertEqual(result.error, .tooLongEmail)

}

// Test validating an invalid credential with empty password

func testEmptyPassword() {

 // Given

 let validator = Validator()

 let credentials = Credentials(email: "valid@valid.com",

password: "")

 // When

 let result = validator.validateCredentials(credentials)

 // Then

 XCTAssertFalse(result.success)

 XCTAssertEqual(result.error, .emptyPassword)

}

Chapter 4 testing pyramid

80

// Test validating an invalid credential with short password

func testShortPassword() {

 // Given

 let validator = Validator()

 let credentials = Credentials(email: "valid@valid.com",

password: "1234!")

 // When

 let result = validator.validateCredentials(credentials)

 // Then

 XCTAssertFalse(result.success)

 XCTAssertEqual(result.error, .tooShortPassword)

}

// Test validating an invalid credential with long password

func testLongPassword() {

 // Given

 let validator = Validator()

 let email = "valid@valid.com"

 let password = randomString(41)

 let credentials = Credentials(email: email, password:

password)

 // When

 let result = validator.validateCredentials(credentials)

 // Then

 XCTAssertFalse(result.success)

 XCTAssertEqual(result.error, .tooLongPassword)

}

Chapter 4 testing pyramid

81

// Test validating an invalid credential with password having

no special

//characters

func testNoSpecialCharacterPassword() {

 // Given

 let validator = Validator()

 let credentials = Credentials(email: "valid@valid.com",

password: "12345678")

 // When

 let result = validator.validateCredentials(credentials)

 // Then

 XCTAssertFalse(result.success)

 XCTAssertEqual(result.error, .noSpecialCharacters)

}

For our Validator component, we cover all the possible scenarios

when it comes to validation logic. We have a high degree of freedom when

adding unit tests, since unit tests are the least expensive type of tests. So

all the scenarios we chose not to cover with UI or integration tests, we can

cover them in this level.

 Summary
In the unit tests, we tested the isolated functionality of the validator,

network, and persistence. In the integration tests, we tested a special

component (LoginManager) that basically integrates all our components

together, and by these tests, we made sure that our units integrate correctly

with each other. And in our UI tests, we also tested the integration of all our

components, as well as testing that our UI is working properly.

Chapter 4 testing pyramid

82

Your unit tests make sure that a certain component works as intended.

When testing a component, we carry out the test with complete isolation

from other components. The number of unit tests in your test suite will

largely outnumber any other type of test, and thankfully they are also the

fastest type of testing.

Integration tests are targeted toward components that link and

integrate other smaller components together. They make sure that smaller

components work together as expected. Without integration tests, many

bugs can be left unnoticed even if you have very high coverage with your

unit tests. And when it comes to speed, integration tests are slower than

unit tests.

Your UI tests make sure that the UI behaves correctly and that the

app’s main functionalities are working. When it comes to UI testing,

we can actually say that it’s a very high-level type of integration testing.

You’re seeing the app exactly how users do—there’s no special internal

knowledge of how your code is structured as we get with unit and

integration tests, and you can’t add mocks or stubs to isolate specific

functionality. Without UI tests, you will have no guarantee that your app

works as expected, as this tests the app the same way your user does.

Because this type of testing deals with the UI, it is the slowest type of

testing.

And this brings us to our Testing Pyramid (Figure 4-3), now populated

with three equally important levels of testing.

Chapter 4 testing pyramid

83

The Testing Pyramid serves as a good rule of thumb when it comes to

establishing your own test suite. Stick to the pyramid shape to come up

with a healthy, fast, and maintainable test suite: write lots of small and fast

unit tests. Write some more integration tests for your sociable components

and very few high-level tests that test your application from end to end.

Figure 4-3. Final Testing Pyramid

Chapter 4 testing pyramid

85© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_5

CHAPTER 5

TDD Deep Dive
So far you have been introduced to the basics of testing and TDD. We have

also utilized TDD to implement somewhat simple examples. This chapter

aims to take this to an even further step. One of our goals in writing

this book was to show you the whole experience of test-driven software

development. We want to show you how TDD fits in different types of

projects and not just simple examples. We will start implementing this

project from scratch and keep adding a small piece of code incrementally

and safely using TDD, until we finish the project together.

 CoffeePot
Have you ever found yourself standing in line at your favorite coffee

shop struggling to understand the difference between the vast variety of

options and then just ending up ordering the one coffee order you know

by heart? Even if you are a coffee buff now, there must have been a time

when you were still a coffee newbie. Here comes CoffeePot. It is all coffee

newbies’ best friend. CoffeePot is an app aimed at helping you understand

the differences between all types of coffee, as well as different ways of

preparing coffee. You can think of it as an ultimate coffee guide. By the end

of this chapter, we will have CoffeePot up and running, ready to assist with

any coffee order. This app is heavily inspired by this article from Taste of
Home, and it’s where we got our data.

https://doi.org/10.1007/978-1-4842-7428-6_5
https://www.tasteofhome.com/article/types-of-coffee/
https://www.tasteofhome.com/article/types-of-coffee/

86

 Eye on the Big Picture
The golden rule for tackling any project/problem is granularity; you can’t

complete a project in one go. You have to break it into tiny chunks and

finish them one by one. The key is how to add a tiny chunk and make

sure that it is being integrated correctly and does not break the previous

features. Each chunk should be significant and concrete enough that you

can tell when it’s done and small enough to be focused on one concept

and achievable quickly. Dividing our work into small, coherent chunks

also helps to manage the development risk.

Granularity (Figure 5-1) is powerful, but you need to keep your eyes

on the big goal or get lost, which is finishing the project. So, when we start

implementing a new feature, we start with acceptance tests, which exercise

the functionality we want to build end to end; when the acceptance test

fails, it’s an indication that we are not done yet. When it passes, we are

done. When implementing a new feature, the test loop is a measure of our

progress, and the growing test suite of tests protects us against regression

of failures when we change the system moving forward. Also, we need to

keep the code as simple as possible, making it easier to understand and

modify. Always remember: developers spend more time reading code

than writing it. So that’s what we should optimize for. Inside TDD, we can

continuously refactor our code to simplify and improve the design. The

test suites in the feedback loop protect us from mistakes.

Chapter 5 tDD Deep Dive

87

 Requirements
Let’s begin with user stories:

If you are not familiar with user stories, a user story is a general

explanation of a software feature written from the perspective of the end

user.

 1. As a user, I want to know all types of hot and cold

coffee drinks, including a picture of the coffee drink.

 2. As a user, I want to tap any coffee drink type to show

more details about this drink, including a picture of

the coffee and a brief description of ingredients.

 3. As a user, I want to know all types of coffee

machines, including a picture of the coffee machine.

Figure 5-1. Granularity visualized

Chapter 5 tDD Deep Dive

88

 4. As a user, I want to tap any coffee maker type to

show more details about this machine, including

a picture of the machine and a brief description of

how to use it.

Note all required data are inside the start project as a plist file.

Project wireframes (Figure 5-2):

Figure 5-2. Wireframes

Chapter 5 tDD Deep Dive

89

 Testing Pyramid
As mentioned in the previous chapter, we have three types of testing; each

one is doing a specific task or answering a particular question. In the unit

tests, we test the isolated functionality of each class; do our objects do the

right thing? In the integration tests, we test components that integrate a

group of other components; do our objects work with each other correctly?

And in our UI tests, we test the system end to end; does the whole system

work? We will use all three testing levels while implementing this project.

And we’ll see how we can combine the Testing Pyramid concept with a

TDD implementation approach.

A user story is the smallest feature that can add value to a user on its

own. We will work on user stories one by one. Although the user story is

minimal, we cannot implement it in one go; we need to break it into tiny

chunks and finish these chunks one by one. Our strategy (Figure 5-3) to

finish each user story is writing a failing end-to-end test, and then we will

design our user story using a set of integration tests. Integration tests will

define how our objects will communicate with each other; after that, we

will go through each object and write a failing unit test that will describe

how this object will do its job. Our integration tests will pass by making all

failing unit tests pass.

Figure 5-3. Testing plan diagram

Chapter 5 tDD Deep Dive

90

 First Story
“As a user, I want to know all types of hot and cold coffee
drinks, including a picture of the coffee drink.”

Let’s open up the starter project, which can be found in this

chapter’s resources. Firstly, we will need to write a failing end-to-end

test that validates that the coffee drinks view shows all coffee drinks

(Figure 5-4). When this end-to-end test passes, this will indicate that we

finished this story.

Let’s write our first test, which will be a UI test:

func testShowsAllCoffeeDrinks() {

 let app = XCUIApplication()

 app.launchEnvironment = ["coffee_drinks_stubbed": "coffee_

drinks_stub"]

 app.launch()

 let coffeeCollectionView = app.collectionViews

Figure 5-4. Testing plan diagram (end-to-end test added)

Chapter 5 tDD Deep Dive

91

 XCTAssertTrue(coffeeCollectionView.cells["coffee1"].exists,

"Failed to show the first coffee item in plist")

 XCTAssertTrue(coffeeCollectionView.cells["coffee2"].exists,

"Failed to show the second coffee item in plist")

}

Here we wrote our first end-to-end test. We set up our app using

launch arguments, which we will discuss in detail later on in this chapter

(see section “CoffeeDrinksDataSource”). And then we assert that the data

is displayed correctly inside our collection view.

 Architecture
First, let’s talk about object-oriented design before making the end-to-end

test pass. Object-oriented design focuses more on the communication

between modules and communication between objects inside these

modules rather than the object itself. An object communicates by

messages: it receives messages from other objects and reacts by sending

messages to other objects, returning a value to the original sender. An

object must do a single task. This lets us change the system’s behavior by

changing objects’ composition—adding and removing instances, plugging

different modules together.

We now need to design how our objects will interact under the hood

to deliver the required story. There are multiple patterns we can apply,

patterns like MVC, MVP, MVVM, and many more. All these design patterns

help in developing applications that are loosely combined and easy to test

and maintain. These patterns always aim to divide the application into

distinct component groups, each group carrying a specific aspect of the

application. In this project, we will use simple MVP.

Chapter 5 tDD Deep Dive

92

 MVP
The Model View Presenter (MVP) architecture pattern (Figure 5-5)

separates the data model from a view through a presenter.

 1. The view

A view component in MVP contains a visual part of

the application.

It contains only the UI, and it does not contain any

logic or knowledge of the data displayed. It also

handles any interaction a user may have with the

screen and directs it to the presenter.

 2. The presenter

The presenter is a layer that connects models and

views. It triggers the business logic and tells the view

when to update. It interacts with the model and

fetches and formats data from the model to update

the view.

 3. The model

This contains a data provider, the code to fetch and

update, the data and the business logic. Usually, this

data is fetched from the network or a local database.

Chapter 5 tDD Deep Dive

93

 First Integration Test
Integration tests are mainly responsible for how our objects integrate and

communicate with each other. The integration test allows us to think about

the design first and how all objects will do their job and interact inside the

system. As mentioned in Chapter 4, we write integration tests for highly

sociable components. By applying the MVP design pattern on the logic we

need in the first story, we’ll find that our presenter is considered a sociable

component. Our design can look something like Figure 5-6.

Figure 5-5. MVP design pattern

Chapter 5 tDD Deep Dive

94

If we convert the diagram into code, once CoffeeDrinksController

is loaded, we will initialize CoffeeDrinksPresenter, which will take

CoffeeDrinksModel inside the constructor. CoffeeDrinksPresenter

will contain a method that will fetch all coffee drinks and abstract the

communication to CoffeeDrinksModel under the hood; then, the model

will return the drinks. Last, CoffeeDrinksPresenter will update the view.

Converting this to a test will be something like the following:

func testFetchingAllCoffeeDrinks() {

 //Given

 let expectedDrinks = """

 [

 {

 "name": "coffee1",

 "image_name": "black",

 "desc": "desc1"

 },

 {

 "name": "coffee2",

 "image_name": "black",

 "desc": "desc2"

 }

]

Figure 5-6. MVP applied

Chapter 5 tDD Deep Dive

95

 """

 let coffeeDrinksDataSource = CoffeeDrinksDataSourceStub(stu

bbedDataJSON:expectedDrinks)

 let coffeeDrinksModel = CoffeeDrinksModel(source:

coffeeDrinksDataSource)

 let coffeeDrinksPresenter = CoffeeDrinksPresenter(model:cof

feeDrinksModel)

 // when & then

 XCTAssertEqual(coffeeDrinksPresenter.getDrinksCount(), 2)

 XCTAssertEqual(coffeeDrinksPresenter.getDrinkName(index:0),

"coffee1")

 XCTAssertEqual(coffeeDrinksPresenter.

getDrinkImageName(index:0), "black")

 XCTAssertEqual(coffeeDrinksPresenter.getDrinkName(index:1),

"coffee2")

 XCTAssertEqual(coffeeDrinksPresenter.

getDrinkImageName(index:1), "black")

}

The chart status now will be something like Figure 5-7.

Figure 5-7. Testing plan diagram (integration #1 test added)

Chapter 5 tDD Deep Dive

96

 Unit Tests
If you run the integration test, it will definitely fail. We need to go through

each object and start implementing it using unit tests until we make the

integration test pass. We will write a failing unit test, then make it pass, and

then refactor it; check Figure 5-8.

 CoffeeDrinksDataSource
We’ll start with our smallest unit, which is CoffeeDrinksDataSource.

It’s an object that has the sole responsibility of reading a plist file from

disk and returning it in the form of Data. Due to its nature, we’ll find that

writing a test for it will be basically duplicating the implementation code.

This is an example of the very rare cases where we encounter a class that

doesn’t need to be tested. But at the same time, we can’t inject this logic

into another class because we’ll need it to facilitate other tests. (More on

that later in this chapter.)

Now let’s write our class:

class CoffeeDrinksDataSource {

 func plistDataSourcePath() -> String? {

 var fileName = "coffee_drinks"

Figure 5-8. TDD cycle on units

Chapter 5 tDD Deep Dive

97

 // UITests

 if let stubbedFileName = ProcessInfo.processInfo.

environment["coffee_drinks_stubbed"] {

 fileName = stubbedFileName

 }

 return Bundle.main.path(forResource: fileName, ofType:

"plist")

 }

 public func getData() -> Data? {

 let dataPath = plistDataSourcePath()

 guard let path = dataPath, let dataArray =

NSArray(contentsOfFile:path) else {

 return nil

 }

 var data:Data?

 do {

 data = try JSONSerialization.data(withJSONObject:

dataArray)

 }catch {

 print("JSON serialization failed: \(error)")

 }

 return data

 }

}

CoffeeDrinksDataSource is implemented to read data from the plist

file and return data from this plist file. There is some extra logic we need to

add used only for UI tests. There are times when we need our UI test code

to pass some information to our mobile app, not by typing it into a text

field or a user interaction but by sending it as a command-line argument

Chapter 5 tDD Deep Dive

98

or as a launch environment/arguments. If you remember the first UI test

we wrote, we needed to stub the data inside the coffee drinks view instead

of depending on the actual data that may change over the application’s

life and can cause our test to be unreliable. Here we add the ability to

stub the data returned by the data source through environment variables.

We access the environment variables using ProcessInfo.processInfo.

environment.

 CoffeeDrinksModelTests
Since CoffeeDrinksModel depends on CoffeeDrinksDataSource, if

we need to test it precisely, we need to exclude all these objects that

CoffeeDrinksModel depends on and make it return expected data and

assert on all public methods inside CoffeeDrinksModel. This is called

stubbing.

Stubbing means creating a fake version of an object that can stand in

for the real one, helping your tests run more quickly and more reliably. We

will need to stub some components from here on out. We won’t dive deep

in this topic as we will be covering it later on in Chapter 7.

Figure 5-9. CoffeeDrinksModel dependency on
CoffeeDrinksDataSource

Chapter 5 tDD Deep Dive

99

In Figure 5-9 the CoffeeDrinksModel class uses

CoffeeDrinksDataSource to fetch all coffee drinks from the plist file.

Testing CoffeeDrinksModel without stubbing CoffeeDrinksDataSource

will be challenging and will not be reliable; in other words, if we change

the data inside the plist file, this test will fail. The purpose of stubbing

(Figure 5-10) is to isolate and focus on the code being tested and not on

external dependencies’ behavior or state. The external dependency here is

CoffeeDrinksDataSource, which provides the data from the plist file.

Now let’s write our stub object:

class CoffeeDrinksDataSourceStub: CoffeeDrinksDataSource {

 var stubbedDataJSON: String?

 init(stubbedDataJSON: String){

 self.stubbedDataJSON = stubbedDataJSON

 }

 public override func getData() -> Data? {

 let jsonData = self.stubbedDataJSON?.data(using: .utf8)

 return jsonData

 }

}

CoffeeDrinksDataSourceStub will take the expected data in its

constructor and return it as data inside the getData() function. So no logic,

and we can test CoffeeDrinksModel separately.

Figure 5-10. Replace the dependency with a stub object

Chapter 5 tDD Deep Dive

100

Let’s now write tests for CoffeeDrinksModel using the newly created

stub object:

func testFetchingAllCoffeeDrinks() {

 //Given

 let expectedDrinks = """

 [

 {

 "name": "coffee1",

 "image_name": "black",

 "desc": "desc1"

 },

 {

 "name": "coffee2",

 "image_name": "black",

 "desc": "desc2"

 }

]

 """

 let coffeeDrinksDataSource = CoffeeDrinksDataSourceStub(stu

bbedDataJSON:expectedDrinks)

 let coffeeDrinksModel = CoffeeDrinksModel(source:

coffeeDrinksDataSource)

 // when

 let actualDrinks = coffeeDrinksModel.fetchAllCoffeDrinks()

 // then

 let coffeeDrink1 = actualDrinks![0]

 XCTAssertEqual(coffeeDrink1.name, "coffee1")

 XCTAssertEqual(coffeeDrink1.imageName, "black")

 XCTAssertEqual(coffeeDrink1.description, "desc1")

Chapter 5 tDD Deep Dive

101

 let coffeeDrink2 = actualDrinks![1]

 XCTAssertEqual(coffeeDrink2.name, "coffee2")

 XCTAssertEqual(coffeeDrink2.imageName, "black")

 XCTAssertEqual(coffeeDrink2.description, "desc2")

}

After applying the TDD cycle as we slowly build our test case till we

reach the preceding comprehensive test, we will end up with the following

two components:

struct CoffeeDrink: Codable, Equatable {

 let name:String?

 let imageName: String?

 let description: String?

 private enum CodingKeys : String, CodingKey {

 case name = "name"

 case imageName = "image_name"

 case description = "desc"

 }

}

class CoffeeDrinksModel {

 private var dataSource:CoffeeDrinksDataSource?

 init(source:CoffeeDrinksDataSource?) {

 self.dataSource = source

 }

 public func fetchAllCoffeDrinks() ->[CoffeeDrink]? {

 guard let data = self.dataSource?.getData() else {

 return []

 }

Chapter 5 tDD Deep Dive

102

 var drinks:[CoffeeDrink]?

 do {

 drinks = try JSONDecoder().decode([CoffeeDrink].

self, from: data)

 } catch {

 }

 return drinks

 }

}

Let’s comment out the previous test inside

CoffeeDrinksIntegrationTests and run CoffeeDrinksModelTests.

It should pass now ✅.

This will be our current status (Figure 5-11).

 CoffeeDrinksPresenterTests
We already added an integration test for our presenter, so you might think

we don’t need unit tests for it. But that’s never the case. Integration tests

can never be a substitute for unit tests. As we covered in Chapter 4, each

Figure 5-11. Testing plan diagram (first unit added)

Chapter 5 tDD Deep Dive

103

type serves a different purpose. We already wrote a test to validate that our

presenter integrates correctly with other components. Now we need to

write tests for it but in isolation.

Again CoffeeDrinksPresenter is dependent on CoffeeDrinksModel.

If we need to test it, we need to stub all these objects that

CoffeeDrinksPresenter depends on and return expected data. Here we

write a stub for CoffeeDrinksModel, which takes the expected data in

its constructor and returns it as data inside the fetchAllCoffeDrinks()

function:

class CoffeeDrinksModelStub: CoffeeDrinksModel {

 var stubbedDrinks:[CoffeeDrink]?

 init(stubbedDrinks:[CoffeeDrink]) {

 super.init(source: nil)

 self.stubbedDrinks = stubbedDrinks

 }

 public override func fetchAllCoffeDrinks() ->[CoffeeDrink]? {

 return self.stubbedDrinks

 }

}

Now let’s start writing our tests one by one:

func testFetchingDrinksCount() {

 //Given

 let drinks = [CoffeeDrink(name: "coffee1",imageName:

"black",description: "desc1"),

 CoffeeDrink(name: "coffee2",imageName:

"black",description: "desc2")]

 let coffeeDrinksModel = CoffeeDrinksModelStub(stubbedDrin

ks: drinks)

 let coffeeDrinksPresenter = CoffeeDrinksPresenter(model:cof

feeDrinksModel)

Chapter 5 tDD Deep Dive

104

 // when & then

 XCTAssertEqual(coffeeDrinksPresenter.getDrinksCount(), 2)

}

func testFetchingDrinksName() {

 //Given

 let drinks = [CoffeeDrink(name: "coffee1",imageName:

"black",description: "desc1"),

 CoffeeDrink(name: "coffee2",imageName:

"black",description: "desc2")]

 let coffeeDrinksModel = CoffeeDrinksModelStub(stubbedDrin

ks: drinks)

 let coffeeDrinksPresenter = CoffeeDrinksPresenter(model:cof

feeDrinksModel)

 // when & then

 XCTAssertEqual(coffeeDrinksPresenter.getDrinkName(index:0),

"coffee1")

 XCTAssertEqual(coffeeDrinksPresenter.getDrinkName(index:1),

"coffee2")

}

func testFetchingDrinksImagesName() {

 //Given

 let drinks = [CoffeeDrink(name: "coffee1",imageName:

"black",description: "desc1"),

 CoffeeDrink(name: "coffee2",imageName:

"black",description: "desc2")]

 let coffeeDrinksModel = CoffeeDrinksModelStub(stubbedDrin

ks: drinks)

 let coffeeDrinksPresenter = CoffeeDrinksPresenter(model:cof

feeDrinksModel)

Chapter 5 tDD Deep Dive

105

 // when & then

 XCTAssertEqual(coffeeDrinksPresenter.

getDrinkImageName(index:0), "black")

 XCTAssertEqual(coffeeDrinksPresenter.

getDrinkImageName(index:1), "black")

}

As you know by now, after writing each test, we go and apply the

TDD cycle over and over again. And after writing all the preceding tests

and making all of them pass one after the other, we will end up with the

following class:

class CoffeeDrinksPresenter {

 private var model:CoffeeDrinksModel?

 var drinks:[CoffeeDrink]?

 init(model:CoffeeDrinksModel?) {

 self.model = model

 self.drinks = self.model?.fetchAllCoffeDrinks()

 }

 public func getDrinksCount() -> Int {

 self.drinks?.count ?? 0

 }

 public func getDrinkName(index:Int) -> String? {

 guard let drink = self.drinks?[index] else {

 return nil

 }

 return drink.name

 }

Chapter 5 tDD Deep Dive

106

 public func getDrinkImageName(index:Int) -> String? {

 guard let drink = self.drinks?[index] else {

 return nil

 }

 return drink.imageName

 }

}

Now we can run CoffeeDrinksPresenterTests, and it should pass ✅.

And we can uncomment CoffeeDrinksIntegrationTests and run; it

should pass too. Now, the current status (Figure 5-12) is that every object is

working well separately as well as working well when integrated together.

Let’s now implement the last part of our feature to populate the data

inside the view. After that, we need to run our end-to-end test to ensure

everything is working fine. Once we see Figure 5-13, we are done with our

first user story. This feature seems to be simple. We will implement the

same process for the rest of the stories.

Figure 5-12. Testing plan diagram (second unit added)

Chapter 5 tDD Deep Dive

107

We did not go into details on implementing the UI element of this

feature, but you’ll find the code in this chapter’s resources.

 Test Health Check
We need to validate that when our tests pass, it indicates that everything is

working fine, and when they fail, we have a problem, and the problem is

identified from the tests. In Figure 5-14 are all possible locations for bugs.

So let’s try to introduce a bug intentionally and see if our tests are able to

catch it or not.

Figure 5-13. All added tests

Chapter 5 tDD Deep Dive

108

Example: Let’s try to change getDrinkName inside

CoffeeDrinksPresenter and make it return imageName instead of name

(Figure 5-15) and run our tests.

Figure 5-15. Faulty code change

Figure 5-14. Possible bugs

Chapter 5 tDD Deep Dive

109

Now let’s run our tests (Figure 5-16).

The tests were able to catch the bug successfully.

 Second Story
“As a user, I want to tap any coffee drink type to show more
details about this drink, including a picture of the coffee and a
brief description of ingredients.”

We need to write a failing end-to-end test that validates that pressing

on any coffee drink type will show details about this drink. (Figure 5-17)

Figure 5-16. Failing tests

Chapter 5 tDD Deep Dive

110

Let’s write the first test for this story:

func testDetailedCoffeeView() {

 let app = XCUIApplication()

 app.launchEnvironment = ["coffee_drinks_stubbed": "coffee_

drinks_stub"]

 app.launch()

 let coffeeCollectionView = app.collectionViews

 coffeeCollectionView.cells["coffee1"].tap()

 XCTAssertTrue(app.navigationBars["coffee1"].exists)

 XCTAssertEqual(app.textViews["desc"].value as? String,

"description1")

}

Here we wrote our end-to-end test for this story. We set up our app

using launch arguments. Then we navigate to a specific drink page and

assert that its details are correctly displayed.

Figure 5-17. Testing plan diagram

Chapter 5 tDD Deep Dive

111

Figure 5-18. MVP applied

 Architecture

As we can see from Figure 5-18, there aren’t too many objects integrated

to deliver this story. Which basically means there aren’t any sociable

components to write integration tests for. So it’s enough to write only unit

tests for CoffeeDetailsPresenter.

Let’s start writing our tests one by one:

func testFetchingDrinkName() {

 //Given

 let coffeeDetailsPresenter = CoffeeDetailsPresenter(drink:

CoffeeDrink(name: "coffee1",imageName: "black",description:

"desc1"))

Chapter 5 tDD Deep Dive

112

 // when & then

 XCTAssertEqual(coffeeDetailsPresenter.getName(), "coffee1")

}

func testFetchingDrinkDescription() {

 //Given

 let coffeeDetailsPresenter = CoffeeDetailsPresenter(drink:

CoffeeDrink(name: "coffee1",imageName: "black",description:

"desc1"))

 // when & then

 XCTAssertEqual(coffeeDetailsPresenter.getDescription(),

"desc1")

}

func testFetchingDrinkImageName() {

 //Given

 let coffeeDetailsPresenter = CoffeeDetailsPresenter(drink:

CoffeeDrink(name: "coffee1",imageName: "black",description:

"desc1"))

 // when & then

 XCTAssertEqual(coffeeDetailsPresenter.getImageName(),

"black")

}

After writing all the preceding tests and making all of them pass one

after the other using TDD, we will end up with the following class:

class CoffeeDetailsPresenter {

 private var drink:CoffeeDrink?

 init(drink:CoffeeDrink?) {

 self.drink = drink

 }

Chapter 5 tDD Deep Dive

113

 public func getName() -> String? {

 guard let drink = self.drink else {

 return nil

 }

 return drink.name

 }

 public func getImageName() -> String? {

 guard let drink = self.drink else {

 return nil

 }

 return drink.imageName

 }

 public func getDescription() -> String? {

 guard let drink = self.drink else {

 return nil

 }

 return drink.description

 }

}

After adding all our tests, this is how our test suite should look like

(Figure 5-19) as well as our app (Figure 5-20):

Chapter 5 tDD Deep Dive

114

Figure 5-19. Final test suite

Chapter 5 tDD Deep Dive

115

The same as the first feature, we did not go into details on

implementing the UI, but you’ll find the code in this chapter’s resources.

Figure 5-20. App main screen

Chapter 5 tDD Deep Dive

116

 Exercise
We are done with the first and second stories. But there are still two more

stories to go. You should be able to apply the same process we equipped

in this chapter and implement these two stories. You can find the final

project, with the first two stories implemented, in the chapter’s resources.

 Summary
In this chapter, we took a look at how TDD can be employed on a slightly

complex project, which is a challenge similar to what you’ll encounter in

your day-to-day life. You got introduced to CoffeePot, which is an app that

helps users understand the differences between different types of coffee.

The app has two views: one is a view that lists all types of coffee, and the

other is a detailed view for a single type of coffee.

When working on such a project, we can’t aim to complete it in one

go. This is both unrealistic and will have us ending up with poorly written

code. The key here is granularity, where we break up our project into

smaller chunks of logic and finish them one by one. TDD helps us to think

in a granular manner. Since we need to always start with one failing test,

which is basically a single requirement, in this case this requirement is our

small chunk. And by applying the TDD cycle, we finish this chunk before

thinking about the next chunk.

In order to break up our project into smaller chunks, the first step is to

properly define and think thoroughly about all the project requirements.

Then we take these requirements and translate them to tests. The first

requirement acts as our first test, which kicks off the TDD cycle. We keep

going through this cycle until we’ve fulfilled all the requirements we have

defined.

We took our first requirement—which is viewing all the types of coffee

including a picture for each type—and we wrote a UI test for that before

Chapter 5 tDD Deep Dive

117

Figure 5-21. Test plan diagram used for TDD

we even started thinking of how we would implement it. Normally this

test failed since we hadn’t added any code. As mentioned many times

before, TDD forces us to think clearly about our design and architecture.

In this case we went with a popular design pattern called Model View

Presenter (MVP), which gave us a good idea of the components we’d add

and how they’d interact. Since we knew how we’d design our code, we then

went down a level and added an integration test. Finally we went down

another level and started adding unit tests, and we just looped through

the TDD cycle until all tests passed, including integration and UI tests we

added at the very beginning (Figure 5-21). Our end-to-end test passing

was an indication that we’re done with this feature. We then took another

requirement and did the same test-driven process all over again.

Chapter 5 tDD Deep Dive

119© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_6

CHAPTER 6

Modularization
for the Win
Modularization is dividing the system into a number of relatively

independent and interchangeable modules with well-defined interfaces,

such that each one contains everything necessary to execute the desired

functionality. Each one is small enough and simple enough to be

thoroughly understood and well tested.

Though an extremely important design aspect, modularization

typically is one of the first things that developers sacrifice when their code

base grows. They may still have modules by name, but they all depend on

each other and they end up with a big ball of mud. Which is a term used to

describe software systems that lack a perceivable architecture.

 Why Bother with Modularization?
From that brief definition of what modularization is, it might already seem

that it’s a nice-to-have characteristic in your app. But do we need it? Do we

need to put that extra effort while designing the app’s architecture to make

sure it’s properly modularized? And do we need to put that even greater

effort into modularizing an existing app?

Well, one way to answer these questions is to look at how a

modularized and a non-modularized app would handle the challenge

https://doi.org/10.1007/978-1-4842-7428-6_6

120

of scaling. Scaling is a process that any successful app goes through, and

it basically means an increase in number of users, an increase in size of

the app and number of features and functionalities inside the app, more

frequent releases, and in most cases larger teams.

Let’s talk about how our two types of apps can handle the scaling of

their features and functionality. If we take a look at a non-modularized app

and try to figure out how its components depend on and communicate

with one another, we will end up with a dependency diagram that might

look like the diagram in Figure 6-1. It’s a dummy diagram, but it’s quite

realistic for a non-modularized app. A diagram like this would probably

represent a simple, feature-poor app. So if you already think this diagram

looks complex, then if we try to scale this said app, the diagram would

most definitely turn into a chaotic mesh of nodes and edges. Sadly, the

readability of an app’s dependency diagram is not our only problem in this

situation. If our only concern is that our diagram is not pretty, then we can

just avoid looking at it. However, our real problem lies in what the diagram

represents: dependencies. The more dependencies we have, the more

unpredictable our app becomes.

This unpredictability becomes evident when we start adding new

features in one place and end up introducing a bug or a crash in a

completely different place in our app. So basically due to our complex

unmanaged dependencies, when introducing a change, we would never

be able to know the extent of this change’s impact on our app. On the

other hand, doing the same thing in a modularized app is vastly different

(Figure 6-2). Due to the complete separation in our code, implementing a

change means only impacting the module that we are changing. Another

aspect to think about is dealing with bugs. It’s definitely easier to track

down a bug in an organized, structured app like our modularized app

in Figure 6-2 than the one in Figure 6-1. Probably by just reading the

description of the bug, we can identify which module to look at. However,

in a non-modularized app, debugging bugs will be much more tedious.

Chapter 6 Modularization for the Win

121

Other than the size of the app, the size of the team that manages

and maintains the app can also scale. This will introduce a couple of

challenges; one of them is onboarding new members. The more readable

your code base is, the smoother the onboarding. Attempting to understand

the code base of a non-modularized app with lots of interconnected

components can be very confusing. That’s why a modularized app, with

Figure 6-1. Non-modularized app

Figure 6-2. Modularized app

Chapter 6 Modularization for the Win

122

its separated design, makes it much more readable. Trying to find a part

in the code responsible for a specific feature in a modularized app is as

simple as finding the related module and just looking there, instead of

looking through the whole code base.

Another challenge that arises with large teams is how teams

collaborate with each other. In a modularized app, you can have multiple

members working on different features at the same time without having

to communicate with each other; that’s of course given that each one

is working on a different module. This simultaneous work on different

modules will also rarely result in conflicts due to the separation of changes.

That definitely doesn’t apply to non-modularized apps, where attempting

the same simultaneity would require a lot of extra effort to communicate

changes across team members and solve conflicts. Another thing that’s

made possible by modularization is assigning code ownership. It’s much

easier to assign ownership of modules to certain team members or

subteams.

The advantages and disadvantages of a modularized app and non-

modularized app, respectively, do not only apply to applications of large

scale. The advantages and disadvantages apply on apps of all sizes.

However, the larger the application, the more amplified they are. The

takeaway from this is that you don’t need to wait for your app to scale to

start thinking about modularization. You will reap a lot of benefits even

if your app is of small scale. And you will set yourself for exponentially

increasing benefits as your app scales in the future.

 What Is a Module?
We’ve mentioned the word module ten times by now during this chapter,

but we still haven’t properly defined what a module actually is. By now you

probably have an idea in mind, and you’re probably not far out. But let’s

Chapter 6 Modularization for the Win

123

agree on a proper definition. Generally speaking, a module is a standalone

piece of code that provides specific and tightly coupled functionality.

While that definition makes sense, let’s take a look at a real-life

example to see what a module can actually look like. If you’ve owned an

iOS device, then you’ve definitely used the App Store before. Let’s take a

close look at the App Store iOS application (Figure 6-3) and try to divide it

into modules.

Figure 6-3. App Store app

Chapter 6 Modularization for the Win

124

We can split the main app into five modules; each module represents

a tab inside the bottom tab bar. And we can split these main modules into

way more sub-modules. So in this case a module is a group of features that

provides a coupled functionality for the end user:

 1. Today module

 2. Games module

 3. Apps module

 4. Arcade module

 5. Search module

Besides main modules, we will need to separate shared code into

modules to be easily used across different modules. If we explore the app a

little bit, we’ll find that the app view in Figure 6-4 can be accessed from all

our five main modules. This means that this functionality belongs to a sub-

module that the five main modules use.

If we for some reason decide not to have this sub-module, then we’d

have to do one of two things. Either duplicate the app page functionality

in all our five main modules, which is a really bad code smell. If we

do that, then whenever we need to make a change in our app page

functionality, we’ll need to update it in five places. And this is just the

tip of the iceberg when it comes to problems with duplicating code. The

other option is to implement this common functionality in one of the

five modules, the Today module, for example, and have the other four

modules depend on the Today module. This kind of design decisions

will soon lead us to a situation much like in Figure 6-1, where we have

modules with dependencies that they don’t need, and might eventually

lead to dependency cycles. So it’s always best to separate unrelated code

completely.

Chapter 6 Modularization for the Win

125

Modules are not only made up of coupled features, like our five

main modules or the app module; we can create modules for low-level

functionalities as well, given that they are coupled together. For the App

Store, we can have a module for networking, a module for analytics, and

many more. The beauty of these low-level modules is that if they are

written well enough, they can be reused across different apps.

So if we modularize the App Store app, it will be something like

Figure 6-5.

Figure 6-4. App page in App Store

Chapter 6 Modularization for the Win

126

We should always try avoiding dependency cycles between modules,

meaning we can’t have module A depending on module B and module B

depending on module A. Having such a cycle indicates a code smell, and

we should attempt to break it by refactoring.

 Modularizing Your App
When working on a brand-new app from scratch, it’s always best to

adopt a modularized approach while designing it. Transforming a non-

modularized app to a modularized one is a costly process. And it’s always

Figure 6-5. App Store module map

Chapter 6 Modularization for the Win

127

better to avoid a problem before it happens. However, if you find yourself

in that position, solving this problem is not impossible. The rest of this

chapter will walk you through how to tackle such a process.

When you find yourself with a non-modularized app and you want

to modularize it, you have one of two options: rewrite the whole app, or

refactor the app.

Rewriting the app is simple. You would basically throw most of what

you have and start from scratch. This is a very aggressive approach and

will require a huge and sudden investment. And due to that high level of

investment needed, it comes with high risk. The rewrite time will probably

end up being more than predicted, which could cause many problems. But

as with most things in life, when you put in high investment and accept

the high risks and all goes well, you will end up with high reward. If you go

with this approach, you will start feeling the impact right away. Another

thing about rewriting an app is that you will have to pause all work on new

features until the rewrite is done. The alternative to pausing is duplicating

the effort, as you’ll have to implement new features once in an old app and

once in a new rewritten app, which is quite expensive.

Though the vigorous rewriting approach has some perks, it has some

pretty major drawbacks, and in most cases it’s unfeasible to go that route.

Luckily, we have another option, which is gradual refactoring. Contrary

to the rewriting approach, it’s a low-investment, low-risk, and low-impact

approach. It allows us to modularize our app at our own pace without

blocking the release of new features. And since the changes are of low

impact, this means that so are the risks. One drawback is the slow speed of

modularization, but that’s completely in our hands as we can speed up or

slow down based on many deciding factors.

Chapter 6 Modularization for the Win

128

The biggest drawback, however, is that taking this approach requires

skill and following a thought-out process. Otherwise, our refactoring might

lead to introducing regressions on our app. To avoid that, we need to make

sure, through the use of tests, that the part of code we’re refactoring is

working correctly before and after refactoring. But this is not the only thing

we’ll use tests for. It’s important to have your refactor be driven by tests

just as you would while writing new code. And it’s always recommended

to take a step-by-step approach and not take too big steps, to avoid making

breaking changes.

 Introducing Books
Books is a simple app that displays the latest bestselling books (Figure 6-6).

We will be working on maintaining and improving Books in this chapter

and in following chapters as well. You can find this project in this chapter’s

resources. Though it might seem simple, it will showcase many issues you

may encounter while working on a legacy app. For us a legacy app is an app

with no tests; it’s an app that can easily be broken by introducing simple

changes. In the upcoming chapters, we will transform Books from an easy-

to-break legacy app to a scalable and maintainable app.

Books depends on making requests to the new York times api. for
the app to function properly you’ll need a valid api key. You can find
steps on how to obtain one in the project’s readMe. Make sure to
replace all instances of "YOUR_API_KEY" in the project with the
actual api key. also make sure to replace all instances in any future
snippets you will add throughout the coming chapters.

Chapter 6 Modularization for the Win

129

One challenge working with Books is that it does not use modern

architecture. Instead, a lot of the business logic, network calls, and

persistence logic exist in monolithic view controllers. For the time being,

it works, as all legacy code. But as we interact with it more, you’ll see just

how hard and risky it is to add new things.

Our goal for this chapter is to convert this legacy monolithic app,

which contains many features (Figure 6-7), into a modularized app with

separated modules for each set of related features or functionalities.

Figure 6-6. Legacy Books app

Chapter 6 Modularization for the Win

130

And the final result should be something like Figure 6-8.

Figure 6-7. Legacy app module map

Chapter 6 Modularization for the Win

131

 Modularization Process

Figure 6-8. Modularized app module map

Figure 6-9. Modularization process

Chapter 6 Modularization for the Win

132

The preceding diagram (Figure 6-9) illustrates the process we will apply

to modularize our project. It might look a bit complicated, but once we go

through it step by step, you’ll get the hang of it.

 Initial Module Map

Before we start modularizing Books, we will perform an exercise first. The

goal of this exercise is to come up with a module map similar to the one

we created for the App Store app (Figure 6-5). This is a one-time exercise

that we’ll only perform before kicking off our modularization process

(Figure 6-10). We will create this map without looking at our code. Instead,

we’ll just start navigating our app with fresh eyes and try to group related

features and functionalities together into modules. This module map

will act as a guide and as a blurry goal that we’re actively trying to reach

through our process of modularization. However, this module map is not

binding; it only acts as an initial proposed design. While we’re actually in

the process of modularizing the app, we might make decisions to add new

modules or merge two modules together, and that’s totally fine.

If we create an initial module map based on the available features and

functionalities in Books, it will be something like that in Figure 6-11.

Figure 6-10. Step 0

Chapter 6 Modularization for the Win

133

 Choose a Class as a Starting Point

First thing we need to do is to pick a class to act as our starting point for

the rest of the coming steps (Figure 6-12). This is a pretty trivial step,

and there’s really no right or wrong here. However, one thing to take into

consideration is that it’s better to try to look for classes with a bloated

amount of responsibilities, as these tend to have higher impact when

Figure 6-11. Books module map

Figure 6-12. Step 1

Chapter 6 Modularization for the Win

134

refactored into modules. And in legacy apps like Books that don’t follow

any real design patterns, you’ll find that the best starting points are usually

our ViewControllers.

As mentioned before, the module map in Figure 6-8 can help guide

us during our process. It can also help us choose our starting point. From

the module map, we’ll choose one module; in this case, we’ll choose the

MainView Module. And then we’ll start looking for a starting point that

has the most responsibilities related to that module. The best starting point

in our case is MainViewController.

 Identify the Class’s Responsibilities

Now that we have our starting point, we need to actually start. What we’ll

do next is we’ll identify all the key features and functionalities that our

starting point is responsible for (Figure 6-13). We do that by basically

traversing the code of said class and understanding what it does. If the

code is too complex and hard to understand, then we can focus on a

few entry points to our code in order to make it easier to grasp the scope

of responsibilities of this particular class. We need to look at all public

functions, at all functions triggered when the object is created (init), and

at all functions triggered either by user interactions (taps, gestures, view

lifecycle events, etc.) or something else (notifications, KVO, etc.).

Figure 6-13. Step 2

Chapter 6 Modularization for the Win

135

If you take a deep dive into what the code inside MainViewController

does, you’ll find out it can be simply represented by the diagram in

Figure 6-14.

Let’s formally define the key responsibilities of MainViewController:

 1. Fetch latest books on startup.

 2. Display each book in a separate cell.

 3. Fetch latest books when the table is pulled down.

 4. User can filter the books.

 5. User can view a specific book’s details.

 6. User can view their favorites.

 Refactor Responsibilities
Now that we’ve identified the responsibilities of our class, it’s time to start

refactoring. For each responsibility, we’re going to do the following steps:

Figure 6-14. MainViewController responsibilities diagram

Chapter 6 Modularization for the Win

136

 1. Add verification tests.

 2. Refactor related code.

 3. Rerun verification tests.

 Verification Tests

Let’s start with our first responsibility, which is “Fetch latest books on

startup.” Before we start refactoring the related code, we first need to add

verification tests (Figure 6-15). Verification tests are high-level tests that

verify that the feature or functionality that we’re refactoring is working

fine. For user- facing features like the one we’re trying to refactor now,

a verification can be in the form of a UI test, as that’s the highest level

of testing we have. If the part we’re refactoring is not user-facing, then

integration tests can be used. Verification tests are an integral part of our

process, as they help in avoiding regressions due to our refactor.

Let’s write a verification test for our feature:

func testShowingBestSellerBooks() throws {

 // Given

 let app = XCUIApplication()

 app.launch()

Figure 6-15. Step 3.1

Chapter 6 Modularization for the Win

137

 // When

 let booksTableView = app.tables

 let cells = booksTableView.cells

 _ = cells.firstMatch.waitForExistence(timeout: 1.0)

 // Then

 XCTAssertGreaterThan(cells.count, 0)

}

Our verification test simply makes sure that the list table view contains

at least one cell. For the scope of this feature, we only care about the table

view being populated on startup, and we don’t care about the content of

the cells yet.

The preceding test highly depends on the back end and could easily

fail if the back-end server fails. This dependency is not optimum at all, and

we’ll talk about how we can remove it in Chapter 8. However, for now, this

test will do as it is.

 Refactoring

Now that we have our verification test, we can safely start refactoring

(Figure 6-16). To refactor this feature, we need to ask ourselves a few

questions. Is the code responsible for this feature in the right place, or

should it be moved to a new component or even a new module? And after

we move that code to its right place, does it need to be refactored?

Figure 6-16. Step 3.2

Chapter 6 Modularization for the Win

138

If we take a look at the code responsible for our feature, we’ll find that

the function we need to address is fetchBooks(). So the first question

is, is it in the right place? Since there is no specific design pattern or an

architecture inside the app, we will try to apply a design pattern while

refactoring. We are going to use MVP as we did in Chapter 5. And from

MVP we know that view controllers should not contain any business

logic and should only be responsible for handling the UI. Therefore, we

know that we need to move fetchBooks() somewhere else, but where?

We already know that it will be included in the MainView Module, but

what component? For that question, we’ll try to understand more what

fetchBooks() does. fetchBooks() makes a network request and parses

the responses in order to extract the lists of books and then uses that to

update the data source of the table. We will apply the MVP design pattern

on the logic we want to implement as if we’ll implement it from scratch.

We should think about how the new objects will interact with each other

without looking at the current code in order not to be affected by the

current implementation. By doing that, we will end up with the following

design in Figure 6-17.

Figure 6-17. MVP design pattern

Chapter 6 Modularization for the Win

139

Now it’s time to bust out our TDD skills. If you look at Figure 6-18,

you’ll probably remember it from Chapter 5. For the end-to-end test, we

already have that covered by our verification test. And since we already

know how the objects will interact with each other, we are ready to start

writing some integration tests.

Integration Test

Let’s create a new class called MainViewIntegrationTests, which will

include all integration tests related to this module. It’s very useful to group

the same types of tests together so that you have the flexibility to run a

specific type of tests easily.

From Figure 6-17 we know that once MainViewController is loaded,

we will initialize MainViewPresenter, which will take MainViewModel

inside the constructor. MainViewPresenter will contain a method that

will fetch all books and abstract the communication to MainViewModel

under the hood; then, the model will return the books. Lastly,

MainViewPresenter will update the view. Now let’s convert this to a test:

Figure 6-18. Testing plan diagram

Chapter 6 Modularization for the Win

140

func testFetchBestSellerBooksReturnsList() throws {

 // Given

 let testBundle = Bundle(for: type(of: self))

 let booksJSONURL = testBundle.url(forResource:

"BestSellerBooksStub", withExtension: "json")

 let booksJSON = try Data(contentsOf: booksJSONURL!)

 let expectedLists: [List] = stubbedlists()

 var actualLists: [List] = []

 let networkLayer = NetworkLayerStub(stubbedData: booksJSON)

 let mainViewModel = MainViewModel(networkLayer: networkLayer)

 let mainViewPresenter = MainViewPresenter(mainViewModel:

mainViewModel)

 // when & then

 let waitForBooks = XCTestExpectation(description: "Wait to

fetch books")

 mainViewPresenter.fetchBestSellerBooks { lists in

 actualLists = lists ?? []

 waitForBooks.fulfill()

 }

 self.wait(for: [waitForBooks], timeout: 0.1)

 XCTAssertEqual(actualLists, expectedLists, "Fetched books

does not match the expected")

}

func stubbedlists() -> [List] {

 let firstBook = BookModel(title: "THE LAST THING HE TOLD

ME", contributor: "by Laura Dave", author: "Laura Dave",

createdDate: "2021-05-26 22:10:24")

 let secondBook = BookModel(title: "SOOLEY", contributor:

"by John Grisham", author: "John Grisham", createdDate:

"2021-05-26 22:10:24")

Chapter 6 Modularization for the Win

141

 let firstList = List(listID: 704, listName: "Combined Print

and E-Book Fiction", displayName: "Combined Print & E-Book

Fiction", books: [firstBook,secondBook])

 return [firstList]

}

The test will not even build because we still haven’t added any of the

components that it’s testing, and that’s normal.

It makes sense to allow our network layer to stub API requests to return

the expected JSON so that we can assert on values and prevent our tests

from depending on network calls, which will make it flaky. We will talk

more on stubbing in Chapter 7.

NetworkLayer

Now that we have our integration test, it’s time to go down a level to unit

tests. We will start with the Network Module. But since testing the network

layer can be quite tricky, we’ll skip its tests for now. But don’t worry.

We will go deep on how we can test our network layer later in Chapter 9.

What we’ll do is add our network layer class in its separate module. It’s a

real simple class. It will only execute a single request and return data:

class NetworkLayer {

 let host = "api.nytimes.com"

 let API_KEY = "YOUR_API_KEY"

 let bestSellerBooks = "/svc/books/v3/lists/overview.json"

 public func executeNetworkRequest(callBack: @escaping

(_ data:Data?) -> Void) {

 var components = URLComponents()

 components.scheme = "https"

 components.host = host

Chapter 6 Modularization for the Win

142

 components.path = bestSellerBooks

 components.queryItems = [URLQueryItem(name: "api-key",

value: API_KEY), URLQueryItem(name: "offset", value: "20")]

 guard let url = components.url else {

 callBack(nil)

 preconditionFailure("Failed to construct URL")

 }

 let task = URLSession.shared.dataTask(with: url) {

 data, response, error in

 guard let data = data else {

 callBack(nil)

 return

 }

 callBack(data)

 }

 task.resume()

 }

}

MainViewModel

Let’s jump to the next class, which will be MainViewModel. It’s part of the

MainView Module and will be responsible for creating a NetworkLayer

object and performing network requests and then parsing the response

data and returning the parsed data through a callback. As usual we will

start with MainViewModelTests. We will write all tests to make sure that

this class is working fine and as expected:

Chapter 6 Modularization for the Win

143

func testFetchingAndParsingBestSellerBooks() throws {

 // Given

 let testBundle = Bundle(for: type(of: self))

 let booksJSONURL = testBundle.url(forResource:

"BestSellerBooksStub", withExtension: "json")

 let booksJSON = try Data(contentsOf: booksJSONURL!)

 let expectedLists: [List] = stubbedlists()

 var actualLists: [List] = []

 let networkLayer = NetworkLayerStub(stubbedData: booksJSON)

 let mainViewModel = MainViewModel(networkLayer: networkLayer)

 // when & then

 let waitForBooks = XCTestExpectation(description: "Wait to

fetch books")

 mainViewModel.fetchBestSellerBooks { lists in

 actualLists = lists ?? []

 waitForBooks.fulfill()

 }

 self.wait(for: [waitForBooks], timeout: 0.1)

 XCTAssertEqual(actualLists, expectedLists, "Fetched books

does not match the expected")

}

func stubbedlists() -> [List] {

 let firstBook = BookModel(title: "THE LAST THING HE TOLD

ME", contributor: "by Laura Dave", author: "Laura Dave",

createdDate: "2021-05-26 22:10:24")

 let secondBook = BookModel(title: "SOOLEY", contributor:

"by John Grisham", author: "John Grisham", createdDate:

"2021-05-26 22:10:24")

Chapter 6 Modularization for the Win

144

 let firstList = List(listID: 704, listName: "Combined Print

and E-Book Fiction", displayName: "Combined Print & E-Book

Fiction", books: [firstBook,secondBook])

 return [firstList]

}

The preceding test first sets up an instance of MainViewModel by

initializing it using a NetworkLayer instance. We then call the function that

we’re trying to test, which fetches the data from the server, and then we

wait till it’s done. And finally we assert on the returned data.

In order to test MainViewModel, we need to stub NetworkLayer to

return specific JSON so that we can assert on the output of MainViewModel.

We need to create a new class that will stub the network, as our just added

test is not building because of that. NetworkLayerStub will look like this:

class NetworkLayerStub: NetworkLayer {

 var stubbedData:Data?

 init(stubbedData:Data) {

 self.stubbedData = stubbedData

 }

 public override func executeNetworkRequest(callBack:

@escaping (_ data:Data?) -> Void){

 let jsonData = self.stubbedData

 callBack(jsonData)

 }

}

We solved one build error by adding NetworkLayerStub, but the test is

still not building. Now it’s time to write code to make MainViewModelTests

pass. For that to happen, we need to create MainViewModel, and it should

look like this:

Chapter 6 Modularization for the Win

145

class MainViewModel: NSObject {

 private var networkLayer:NetworkLayer?

 init(networkLayer:NetworkLayer?) {

 self.networkLayer = networkLayer

 }

 public func fetchBestSellerBooks(callBack: @escaping

(_ data:[List]?) -> Void) {

 self.networkLayer?.executeNetworkRequest(callBack:

{ data in

 guard let data = data else {

 callBack(nil)

 return

 }

 var response:Response?

 do {

 response = try JSONDecoder().decode(

Response.self, from: data)

 } catch {

 print(error.localizedDescription)

 }

 if let lists = response?.results.lists {

 callBack(lists)

 return;

 }

 callBack(nil)

 })

 }

Chapter 6 Modularization for the Win

146

Here we simply implement the function we need, which is

fetchBestSellerBooks. The function is passed a callback block as a

parameter, which should be called with the fetched books when done. We

use the instance of NetworkLayer to make the request, and we decode the

response and then return it in the callback.

Now if we run MainViewModelTests (Figure 6-19), it should pass ✅.

MainViewPresenter

Next, it’s time to write unit tests for MainViewPresenter. First we'll create a

new class to act as a stub for the MainViewModel:

@testable import Books

class MainViewModelStub: MainViewModel {

 var stubbedLists:[List]?

 init(stubbedLists:[List]) {

 self.stubbedLists = stubbedLists

 super.init(networkLayer: nil)

 }

 public override func fetchBestSellerBooks(callBack:

@escaping (_ lists:[List]?) -> Void) {

 callBack(self.stubbedLists)

 }

}

Figure 6-19. MainViewModelTests passing

Chapter 6 Modularization for the Win

147

And now we can write our test:

func testFetchingBestSellerBooksReturnsLists() throws {

 // Given

 let expectedLists: [List] = stubbedlists()

 var actualLists: [List] = []

 let mainViewModel = MainViewModelStub(stubbedLists:

expectedLists)

 let mainViewPresenter = MainViewPresenter(mainViewModel:

mainViewModel)

 // when & then

 let waitForBooks = XCTestExpectation(description: "Wait

to fetch books")

 mainViewPresenter.fetchBestSellerBooks { lists in

 actualLists = lists ?? []

 waitForBooks.fulfill()

 }

 self.wait(for: [waitForBooks], timeout: 0.1)

 XCTAssertEqual(actualLists, expectedLists, "Fetched

books does not match the expected")

 }

 func stubbedlists() -> [List] {

 let firstBook = BookModel(title: "THE LAST THING HE

TOLD ME", contributor: "by Laura Dave", author: "Laura

Dave", createdDate: "2021-05-26 22:10:24")

 let secondBook = BookModel(title: "SOOLEY",

contributor: "by John Grisham", author: "John Grisham",

createdDate: "2021-05-26 22:10:24")

Chapter 6 Modularization for the Win

148

 let firstList = List(listID: 704, listName: "Combined

Print and E-Book Fiction", displayName: "Combined Print

& E-Book Fiction", books: [firstBook,secondBook])

 return [firstList]

 }

The preceding test is a bit similar to the test we just wrote for

MainViewModel. We set up an instance of our presenter using a stub object.

We then call our function and wait for it to finish fetching the bestseller

books. And finally we assert on the returned books.

We can now write code to make MainViewPresenterTests pass:

class MainViewPresenter: NSObject {

 private var mainViewModel:MainViewModel?

 init(mainViewModel:MainViewModel?) {

 self.mainViewModel = mainViewModel

 }

 public func fetchBestSellerBooks(callBack: @escaping

(_ data:[List]?) -> Void) {

 self.mainViewModel?.fetchBestSellerBooks(callBack: {

lists in

 callBack(lists)

 })

 }

}

The presenter implementation is quite straightforward. It implements

a function that fetches the best-seller books. And the implementation

of this function is basically calling the corresponding function inside

MainViewModel. You might think that we don’t need the presenter and

Chapter 6 Modularization for the Win

149

that it just acts as a wrapper, but that’s only for now. The separation of

logic is extremely important, and as we keep refactoring more code, this

importance will become more prominent.

Now if we run MainViewPresenterTests (Figure 6-20), it should pass ✅.

Last Touches

All our unit tests are passing now. But not only that, now if we run the

integration test, it should pass as well. Last thing we need to do is replace

the old implementation of fetchBooks() with the new one that makes use

of the newly added components. Let’s replace the existing fetchBooks()

func with the following:

func fetchBooks() {

 self.mainViewPresenter?.fetchBestSellerBooks(callBack:

{ lists in

 if let lists = lists {

 self.lists = lists

 DispatchQueue.main.async {

 self.refreshControl.endRefreshing()

 self.tableView?.reloadData()

 }

 }

 })

 }

This here marks the end of step 3.2. We have now completely

refactored the logic related to our feature.

Figure 6-20. MainViewPresenterTests passing

Chapter 6 Modularization for the Win

150

Test Value

Before we jump to the next step, let’s try to do something that might

showcase the value of all the tests that we’ve been adding. Inside

MainViewModel let’s replace the fetchBestSellerBooks method

with the following code. We simply remove the return function after

callBack(lists) , and as a result of this, the callback will be called twice.

This is a ticking time bomb, as this misbehavior is not causing bugs now

but can cause problems in the future. If you run the app now, it will work

as expected because we have a guard on nil inside MainViewController.

But if we remove that guard one day or reuse that code somewhere else,

bugs will start showing. However, if we just run our tests now, we’ll see that

they’ll catch this (Figure 6-21).

public func fetchBestSellerBooks(callBack: @escaping

(_ lists:[List]?) -> Void) {

 self.networkLayer?.executeNetworkRequest(callBack: {

data in

 guard let data = data else {

Figure 6-21. Failing unit tests

Chapter 6 Modularization for the Win

151

 callBack(nil)

 return

 }

 var response:Response?

 do {

 response = try JSONDecoder().decode(Response.

self, from: data)

 } catch {

 print(error.localizedDescription)

 }

 if let lists = response?.results.lists {

 callBack(lists)

 }

 callBack(nil)

 })

 }

 Rerun Verification Tests

Figure 6-22. Step 3.3

Chapter 6 Modularization for the Win

152

All this time we’ve been working on refactoring one responsibility of

MainViewController, which is “Fetch latest books on startup.” Before we

can say we’re done with this responsibility, we need to run the verification

test we added in step 3.1 to verify that everything is running as expected

(Figure 6-22). If we try to run testShowingBestSellerBooks() (Figure 6-23),

it should pass ✅.

 Refactor the Rest of the Responsibilities

Figure 6-23. Test passing

Figure 6-24. Repeats step 3 and its substeps

Chapter 6 Modularization for the Win

153

Back in step 2 we identified six responsibilities of MainViewController. We

have just finished refactoring the first responsibility. Now we should carry out

the same steps for the rest of the responsibilities one by one (Figure 6-24).

 Next Starting Point

Once we’re done refactoring all the responsibilities in

MainViewController, we will basically go back to step 1 and repeat the

process all over again (Figure 6-25). So we will pick a new starting point

and refactor it completely as we did for MainViewController.

 Exercise
We are done with the first responsibility of MainViewController. For your

exercise, try refactoring the rest of the responsibilities using the same

process we followed in this chapter.

 Summary
In this chapter, we talked about the concept of modularization, which is

the idea of breaking up a system into multiple modules that are relatively

independent and interchangeable. Generally, a module is a standalone

Figure 6-25. Step 4

Chapter 6 Modularization for the Win

154

piece of code that provides specific and tightly coupled functionality.

When we ignore modularization completely, we tend to end up with a

messy architecture, which is commonly referred to as a big ball of mud

architecture.

Having a modularized app has many benefits over non-modularized

apps. Non-modularized apps tend to be unpredictable whenever change

is introduced into the project. This is due to interconnected dependencies

between components. On the other hand, in a modularized app, when

we’re introducing a change in a module, we are certain that we will only

affect this module. This is thanks to the strong separation in our code. This

code separation provides another very important benefit, which is code

readability. We’ve mentioned before that developers spend more time

reading code than writing it, and having a modularized app makes it much

easier to read and understand how it works. In a properly modularized

app, one developer can actively work on a module without understanding

or touching other modules in the app.

Given these many benefits, it’s probably best to take a modularized

approach when working on a new app from scratch. However, if we have

a legacy app that’s not modularized, we can still transform it. There are

two ways we can do that: First, we can rewrite our whole app. Rewriting

as a concept is pretty straightforward; we basically throw all what we

have and start with a clean (modularized) slate. However, this approach

is pretty aggressive and requires a huge investment in a short time. The

other approach is refactoring, which is a more granular approach where

we modularize our app one step at a time. This approach is much slower,

but it allows us to continue working on our app and add features while we

actively transform it at the same time.

Modularizing an app through gradual refactoring is not an easy task.

However, there’s a systematic process (Figure 6-26) that we can follow.

First, we create a projection of what our app would look like internally if we

would divide it into modules to give us an idea of our end goal. After that

Chapter 6 Modularization for the Win

155

we pick a class as a starting point and list down this class’s responsibilities.

Then for each responsibility we write a verification test to make sure

that our following changes will not introduce any regressions. Then we

proceed with refactoring this responsibility if needed. We could move

it to a different class or even a different module or even create a whole

new module for it. Once we refactor all responsibilities for that class,

we would just loop over our process again by choosing a new starting

point. And we’ll keep going through that loop until we run out of starting

points. When we reach this point, this means that we no longer have un-

modularized code.

Figure 6-26. Modularization process

Chapter 6 Modularization for the Win

157© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_7

CHAPTER 7

Dependency Injection
and Mocks
Writing tests for a component can be a tedious task if this component

depends on another component that has an unpredictable behavior. To

test such a component, we need to be able to control this unpredictable

behavior. We can do that with the help of a test double. The term test

double was first introduced in Gerard Meszaros’s book XUnit Test Patterns.

Test double is a generic term for any kind of pretend object used in place

of a real object for testing purposes. Another situation in which it can be

challenging to write tests is if we have a component that communicates

with another component and we want to verify something related to this

interaction. In this case, a test double is also the best course of action. Test

doubles are an imperative tool in any programmer’s arsenal. And using

them is essential for having an application that’s highly covered with tests

and makes our tests more stable.

 Stubbing
One type of test doubles is stubs. A stub is an object that holds predefined

data and provides these data during tests. It is used when we don’t want

to use real data and to have a more consistent data source. A test doesn’t

really care if the function is called or not on a stub, as long as the test object

https://doi.org/10.1007/978-1-4842-7428-6_7

158

(or system under test) gets the data it needs from the stub and does the

right thing. And if the stub is passed a value, the test doesn’t care about

that value. Also, regardless of the input, the stub always outputs the same

predefined data. Due to its nature, a stub is considered a fairly lightweight

test double.

An example of when we need stubs is when we have an object that

depends on making a network call to a server. Making an actual network

request will lead to our test being both slow and unpredictable as we can’t

control what the server will return each time.

Let’s say that we have an object A that has a Boolean variable status

whose value depends on the data returned from the server. So if the

server returns success, then status will be true; and if the server returns

failure, then status will be false (Figure 7-1). To be able to test both these

scenarios with confidence, we will need to use a stub.

We will create a new object called ServerStub, and we will use it in

place of the real Server object as seen in Figure 7-2. Our stub has two

methods to control the kind of data it should return. We will use these

methods to set up our tests.

Figure 7-1. Dependency example

Chapter 7 DepenDenCy InjeCtIon anD MoCks

159

When we write tests for our two scenarios, they will look like this:

func testObjectASuccessStatus() {

 // Given

 let server = ServerStub()

 server.returnSuccess()

 // When

 let objectA = ObjectA(server)

 // Then

 XCTAssertTrue(objectA.status)

}

func testObjectAFailureStatus() {

 // Given

 let server = ServerStub()

 server.returnFailure()

 // When

 let objectA = ObjectA(server)

 // Then

 XCTAssertFalse(objectA.status)

}

Figure 7-2. Stubbing a dependency

Chapter 7 DepenDenCy InjeCtIon anD MoCks

160

In each test we create an instance of our stub and then set it up using

either returnSuccess() or returnFailure(). Then we pass the stub to

our test object and do our assertion on status. We will talk about injecting

stubs into our test objects later on in this chapter.

 Mocking
Another type of test doubles is mocks. A mock is slightly more complex

than a stub. It could return some fake data just like a stub and can also

verify whether a particular method was called. Mocks register calls

they receive, and in our tests, we can verify that all expected actions

were performed on a specific mock. We use mocks when we don’t want

to invoke production code or when there is no easy way to verify that

intended code was executed.

Let’s say we have three objects: objects A, B, and C. Object A has a

method that takes an input, and based on that input, it decides to either

call object B or object C (Figure 7-3). If we pass true to our test object, it

should call object B, and if we pass it false, it should call object C. To be

able to verify both these scenarios, we will need to use a mock.

Figure 7-3. Dependency example

Chapter 7 DepenDenCy InjeCtIon anD MoCks

161

We create two new objects that will act as our mocks (Figure 7-4).

ObjectBMock and ObjectCMock will both do the same simple task, which is

register if they are called and save this info in the public property isCalled.

Now we can write our tests like this:

func testObjectALogic1 () {

 // Given

 let objectB = ObjectBMock()

 let objectC = ObjectCMock()

 let objectA = ObjectA(objectB, objectC)

 // When

 objectA.doLogic(true)

 // Then

 XCTAssertTrue(objectB.isCalled)

 XCTAssertFalse(objectC.isCalled)

}

func testObjectALogic2 () {

 // Given

 let objectB = ObjectBMock()

Figure 7-4. Mocking dependencies

Chapter 7 DepenDenCy InjeCtIon anD MoCks

162

 let objectC = ObjectCMock()

 let objectA = ObjectA(objectB, objectC)

 // When

 objectA.doLogic(false)

 // Then

 XCTAssertFalse(objectB.isCalled)

 XCTAssertTrue(objectC.isCalled)

}

As well as registering if they are called, mocks can also register the

values they are passed with each call. And in our tests, we can verify that

the values passed to our mocks are correct.

So, for our example, we can modify our two mocks to save the values

they are passed. And then we can modify our tests to be like this:

func testObjectALogic1 () {

 // Given

 let objectB = ObjectBMock()

 let objectC = ObjectCMock()

 let objectA = ObjectA(objectB, objectC)

 // When

 objectA.doLogic(true)

 // Then

 XCTAssertTrue(objectB.isCalled)

 XCTAssertEqual(objectB.value, "Test")

 XCTAssertFalse(objectC.isCalled)

}

func testObjectALogic2 () {

 // Given

 let objectB = ObjectBMock()

Chapter 7 DepenDenCy InjeCtIon anD MoCks

163

 let objectC = ObjectCMock()

 let objectA = ObjectA(objectB, objectC)

 // When

 objectA.doLogic(false)

 // Then

 XCTAssertFalse(objectB.isCalled)

 XCTAssertTrue(objectC.isCalled)

 XCTAssertEqual(objectC.value, "Test")

}

Test Doubles Creation
We talked about different types of test doubles: mocks and stubs. But we

did not talk about how we can create them. Doubles by their definition

are objects that can be used in place of real objects. So a double has to be

somewhat related to the original object so that we can seamlessly swap

in our double in our tests. There are multiple ways of creating doubles. In

this chapter, we’ll talk about creation using inheritance and creation using

protocols.

 Creation Using Inheritance
We used this approach a lot in the previous chapters. The inheritance

concept in general is a mechanism where you can derive a class

from another class. It is one of the core concepts of Object-Oriented

Programming (OOP). When we inherit from a class, we inherit all

characteristics of the parent class. And this is the essence of this approach.

We inherit all properties and functions of the object to be mocked or

stubbed, and we change the behavior of the part we want to mock or stub

through overriding (Figure 7-5). The good thing about this approach is that

Chapter 7 DepenDenCy InjeCtIon anD MoCks

164

we have access to the original implementation, so we can either change

the implementation or if needed we can just extend it, keeping the old

logic as it is and just adding new logic that’s specific to testing.

If you recall, we used this approach in Chapter 6 when we were writing

tests for MainViewModel. MainViewModel depended on NetworkLayer, so

we created NetworkLayerStub using inheritance. And it looked like this:

class NetworkLayerStub: NetworkLayer {

 var stubbedData:Data?

 init(stubbedData:Data) {

 self.stubbedData = stubbedData

 }

 public override func executeNetworkRequest(callBack: @

escaping (_ data:Data?) -> Void){

 let jsonData = self.stubbedData!

 callBack(jsonData)

 }

}

Figure 7-5. Creation by inheritance

Chapter 7 DepenDenCy InjeCtIon anD MoCks

165

We inherit from NetworkLayer, and we override

executeNetworkRequest and make it return stubbedData instead of

actually making a network request. We set stubbedData from our tests as

needed.

 Creation Using Protocols
Creation using protocols is a bit similar to creation using inheritance,

and it goes hand in hand with Protocol-Oriented Programming (POP). A

protocol acts as a blueprint to what we expect from the type (class, struct,

or enum) that conforms to it. In the protocol-oriented approach, we

start designing our system by defining protocols. So if we need to create

a component that will be doing some logic, we will abstract this logic to

APIs and define it inside a protocol. Then we create our component by

conforming to that protocol and implementing the required functions.

We can use the same protocol-oriented approach when creating test

doubles. If we have a dependency that we need to exchange with a double,

we add a protocol describing this dependency. Now our original object

will conform to this dependency, and we can now say that our test object

depends on a component that conforms to this protocol. In our tests, we

can now add a new component that conforms to the protocol and inject it

into our test object, and this will be our test double (Figure 7-6).

Chapter 7 DepenDenCy InjeCtIon anD MoCks

166

Let’s try to rewrite the MainViewModel example using a protocol.

MainViewModel needs to depend on the protocol instead of the

NetworkLayer object. Our protocol will look like this:

protocol NetworkProtocol {

 func executeNetworkRequest(callBack: @escaping (_

data:Data?) -> Void)

}

And now we will modify MainViewModel so that it now depends on

NetworkProtocol instead of NetworkLayer:

class MainViewModel: NSObject {

 private var networkLayer:NetworkProtocol?

 init(networkLayer:NetworkProtocol) {

 self.networkLayer = networkLayer

 }

Figure 7-6. Creation by protocol conformance

Chapter 7 DepenDenCy InjeCtIon anD MoCks

167

 public func fetchBestSellerBooks(callBack: @escaping (_

lists:[List]?) -> Void) {

 self.networkLayer?.executeNetworkRequest(callBack: {

data in

 guard let data = data else {

 callBack(nil)

 return

 }

 var response:Response?

 do {

 response = try JSONDecoder().decode(Response.

self, from: data)

 } catch {

 print(error.localizedDescription)

 }

 if let lists = response?.results.lists {

 callBack(lists)

 return;

 }

 callBack(nil)

 })

 }

}

Finally, we will create our test double by creating a new class that

conforms to NetworkProtocol:

class NetworkLayerStub: NetworkProtocol {

 var stubbedData:Data?

Chapter 7 DepenDenCy InjeCtIon anD MoCks

168

 init(stubbedData:Data) {

 self.stubbedData = stubbedData

 }

 func executeNetworkRequest(callBack: @escaping (_

data:Data?) -> Void){

 let jsonData = self.stubbedData!

 callBack(jsonData)

 }

}

 Dependency Injection
We talked about mocks and stubs, and we talked about how we can create

these helpful test doubles. But we are still to learn how we can inject

these test doubles into our code. There are multiple ways to inject our

test dependencies. We will talk about property injection and initializer

injection.

We have the following class Example that we would like to write tests

for. Example depends on Network.shared, which is a singleton instance.

However, we need to mock Network in order to verify that our request is

made:

class Example {

 func doWork() {

 Network.shared.makeRequest()

 }

}

So let’s refactor our class so that we can easily inject our mock from our

tests.

Chapter 7 DepenDenCy InjeCtIon anD MoCks

169

 Initializer Injection
We used this approach a lot in the previous chapters. In this approach our

entry for injecting a dependency is our initializer. We pass the dependency

to our object whenever we create a new instance. We save a reference

to this dependency in our object, and we use that reference whenever

we need to access our dependency. So in tests, when we’re creating an

instance of our object, we simply pass our test double in the initializer

instead of the real thing (Figure 7-7).

When in our code we always pass the same dependency to our object

and only need to pass something different in tests, then it’s a good idea to

use default arguments in Swift. Here we tell our initializer that the default

for the dependency is this object, but we can override it when we need.

This is useful as it makes our code neater and more readable.

When we refactor our class, it should look like this:

class Example {

 private var network:Network?

 init(network:Network = Network.shared) {

 self.network = network

 }

Figure 7-7. Initializer injection

Chapter 7 DepenDenCy InjeCtIon anD MoCks

170

 func doWork() {

 self.network.makeRequest()

 }

}

And to inject a test double, now we can simply do this:

let networkMock = NetworkMock()

let testObject = Example(network: networkMock)

 Property Injection
Injection using a property is the easiest way to inject, but it will not be

applicable in most of the cases. Let’s imagine that we have object A that

uses object B to perform a specific task. If object A has a public property

that holds object B, then we can use this to inject our mock in place of the

original object B inisdee our tests (Figure 7-8). But we need to be careful

not to expose properties only for tests as this will break the abstraction of

our objects and it will lead to a lot of code smells.

When we refactor our class to use property injection, it should look like

this:

Figure 7-8. Property injection

Chapter 7 DepenDenCy InjeCtIon anD MoCks

171

class Example {

 public var network:Network?

 init() {

 self.network = Network.shared

 }

 func doWork() {

 self.network.makeRequest()

 }

}

And to inject a test double, now we can simply do this:

let networkMock = NetworkMock()

let testObject = Example()

testObject.network = networkMock

 Stubbing the Network in UI Tests
All previous approaches can be implemented inside unit and integration

tests. It’s not recommended to use these approaches inside UI tests

because UI tests should test your app as a black box exactly like what your

customer will use. It does not make sense to test a mock object inside an

end-to-end test and not the actual code. However, in some cases, we’ll

need to stub a certain behavior, and we can do that with a higher level of

stubbing.

First, let’s open up the starter project from this chapter’s resources.

This is a version of Books, the app we’ve worked on in the previous

chapter. Let’s take a look at the end-to-end test implemented in Chapter 6,

step 3.2:

Chapter 7 DepenDenCy InjeCtIon anD MoCks

172

func testShowingBestSellerBooks() throws {

 // Given

 let app = XCUIApplication()

 app.launch()

 // When

 let booksTableView = app.tables

 let cells = booksTableView.cells

 _ = cells.firstMatch.waitForExistence(timeout: 1.0)

 // Then

 XCTAssertGreaterThan(cells.count, 0)

}

This test is not useful at all. First, it’s depending on the network request

so it’s slow, and we are not asserting on the data shown inside the table.

The app may show the wrong data, and the test will pass.

In order to fix this test, we are going to stub the network request and

return specific data (Figure 7-9), and the test should make sure that the

data is rendered correctly inside the app.

Figure 7-9. Network stubbing

Chapter 7 DepenDenCy InjeCtIon anD MoCks

173

We are going to use a third-party library called Swifter to mock

network requests. We can achieve this using different other libraries or

even manually. But for this example, we will be going with this lightweight

third-party dependency.

First, we need to integrate Swifter. We will use Swift Package Manager

(SPM) to install the dependency (Figure 7-10). We need to make sure to

add it to the BooksUITests target, not the app (Figure 7-11).

Figure 7-10. Integrate a third party using SPM (Step 1)

Chapter 7 DepenDenCy InjeCtIon anD MoCks

174

Now that we have Swifter installed, we need to make a minor change

inside our network layer to allow Swifter to stub the network requests. We

need to check on the launch argument inside ProcessInfo, and in case

it contains TESTING, we need to change the domain to localhost, change

HTTPS to HTTP, and add 8080 to port:

func getHost() -> String {

 if ProcessInfo.processInfo.arguments.

contains("TESTING") {

 return "localhost"

 } else {

 return "api.nytimes.com"

 }

 }

 func getScheme() -> String {

 if ProcessInfo.processInfo.arguments.

contains("TESTING") {

 return "http"

 } else {

Figure 7-11. Integrate a third party using SPM (Step 2)

Chapter 7 DepenDenCy InjeCtIon anD MoCks

175

 return "https"

 }

 }

 public func executeNetworkRequest(callBack: @escaping (_

data:Data?) -> Void) {

 var components = URLComponents()

 components.scheme = getScheme()

 components.host = getHost()

 components.port = 8080

 components.path = bestSellerBooks

 components.queryItems = [URLQueryItem(name: "api-key",

value: API_KEY), URLQueryItem(name: "offset", value:

"20")]

 guard let url = components.url else {

 callBack(nil)

 preconditionFailure("Failed to construct URL")

 }

 let task = URLSession.shared.dataTask(with: url) {

 data, response, error in

 guard let data = data else {

 callBack(nil)

 return

 }

 callBack(data)

 }

 task.resume()

 }

Chapter 7 DepenDenCy InjeCtIon anD MoCks

176

What we need to do in the setup is start the server. If the server fails to

start, it will throw an error, which will fail our test. This makes sense as the

test will be useless if our stub server is not running:

class BooksUITests: XCTestCase {

 var server = HttpServer()

 override func setUpWithError() throws {

 continueAfterFailure = false

 try server.start()

 }

 override func tearDownWithError() throws {

 server.stop()

 }

}

We are going to use the same BestSellerBooksStub.json, so we will

make sure to include it in both targets (Figure 7-12).

Chapter 7 DepenDenCy InjeCtIon anD MoCks

177

Also we need to allow only the local host domain to use HTTP instead

of HTTPS. This will prevent the system from blocking our requests due to

security reasons. We can do that by modifying the Info.plist (Figure 7-13).

Figure 7-12. Setting target membership for BestSellerBooksStub.
json

Chapter 7 DepenDenCy InjeCtIon anD MoCks

178

Now it’s time to actually stub the network and update our test:

func testShowingBestSellerBooks() throws {

 // Given

 let testBundle = Bundle(for: type(of: self))

 let booksJSONURL = testBundle.url(forResource:

"BestSellerBooksStub", withExtension: "json")

 let booksJSON = try String(contentsOf: booksJSONURL!)

 server.GET["/svc/books/v3/lists/overview.json"] = {_ in

HttpResponse.ok(.text(booksJSON))}

 let app = XCUIApplication()

 app.launchArguments += ["TESTING"]

 app.launch()

 // When

 let booksTableView = app.tables

Figure 7-13. Enabling HTTP for localhost

Chapter 7 DepenDenCy InjeCtIon anD MoCks

179

 let cells = booksTableView.cells

 _ = cells.firstMatch.waitForExistence(timeout: 1.0)

 // Then

 XCTAssertTrue(cells.staticTexts["book_title_0"].label

== "THE LAST THING HE TOLD ME")

 XCTAssertTrue(cells.staticTexts["book_desc_0"].label

== "Hannah Hall discovers truths about her missing

husband and bonds with his daughter from a previous

relationship.")

 XCTAssertTrue(cells.staticTexts["book_date_0"].label ==

"2021-05-26 22:10:24")

 XCTAssertTrue(cells.staticTexts["book_title_1"].label

== "SOOLEY")

 XCTAssertTrue(cells.staticTexts["book_desc_1"].label

== "Samuel Sooleymon receives a basketball scholarship

to North Carolina Central and determines to bring his

family over from a civil war-ravaged South Sudan.")

 XCTAssertTrue(cells.staticTexts["book_date_1"].label ==

"2021-05-26 22:10:24")

 }

In our test, first, we tell Swifter to stub our path and return the expected

JSON so that we can assert on it inside the UI presented. We then launch

our app with extra launch arguments to indicate that we’re testing. Then

we assert on the existence of the expected cells and assert on the data

displayed as well.

Chapter 7 DepenDenCy InjeCtIon anD MoCks

180

This updated test should pass. But the important thing is that now,

thanks to our network stubbing, we are able to assert on actual data in our

UI (Figure 7-14). Later on, if we display something wrong, for example, this

test will catch it.

 Summary
When writing tests, we often find ourselves in a position where we need to

assert on something that we don’t have access to, and sometimes we need

to control a certain behavior to avoid unpredictability. In these situations,

our solution to all our problems is test doubles. A test double is any kind

of fake object that we use in place of the real object, and they have many

Figure 7-14. Stubbed app

Chapter 7 DepenDenCy InjeCtIon anD MoCks

181

forms and uses. In this chapter we talked about different types of test

doubles. We also talked about how to create and inject doubles into our

code being tested.

Stubs are one type of test doubles. A stub holds some predefined

data and returns it instead of returning real data. This is useful in tests

to improve speed and eliminate unpredictability. Another type of test

doubles is mock objects. Mocks can also return fake data, but their main

function is that they register calls made to them. And they can also register

the values passed to them through function calls. This allows us to assert

if a specific interaction between the object we’re testing and our mock

happened or not.

There are multiple ways to create our test doubles. We can create

them using inheritance, where we would subclass the original class

and then override and change the functions we want to stub or mock.

Another way to create doubles is by using protocols. If our test object

depends on a certain protocol, then we can create our double by creating

a new component that conforms to that protocol and implementing the

protocol’s requirement.

As for injecting our doubles into our code to be tested, this is a fairly

simple task. We can either inject it through the initializer of the object

being tested; this is called initializer injection. Or we can use property

injection, where we would create our object normally and then inject our

double by accessing its property and assigning our double to it.

Finally, we explored a specific but highly important type of stubbing,

which is network stubbing in the UI test layer. We used a third-party

library to stub network requests. And that allowed us to write more

comprehensive UI tests. At the same time, this increased the test’s stability

and speed.

Chapter 7 DepenDenCy InjeCtIon anD MoCks

183© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_8

CHAPTER 8

Avoiding
Multithreading
Nightmares
Concurrency and multithreading are a core part of iOS development.

Understanding them and understanding how to properly leverage them is

a key part of developing a high-quality app. Lack of concurrency usually

leads to having nonresponsive apps that freeze up once a heavy operation

is being performed.

 What Is Concurrency?
The concept of concurrency is that two or more tasks can be defined

independently and each task can be executed regardless if the other tasks

are executing or not. This means that two or more tasks can be executed at

the same time, in other words, executing concurrently.

Concurrency can be achieved in one of two ways, either by context

switching (time slicing) or by parallelism. Which way is used depends on

the type of processor. With a single-core processor, context switching is

used, in which the system switches between threads quick enough that

it virtually seems that both tasks are running at the same time. With a

https://doi.org/10.1007/978-1-4842-7428-6_8

184

multi-core processor, however, concurrency is achieved through actually

running each thread on a separate core in parallel.

 GCD
So far we have talked about threads and how it’s possible to execute two or

more tasks on separate threads at the same time. But threads are a low-

level tool, and managing threads manually to achieve concurrency is a

fairly complicated task

Grand Central Dispatch (GCD) was created by Apple and has been

available since iOS 4. GCD basically abstracts the manual handling

of threads away from the developer. It helps developers leverage the

multithreading features of the system without actually having to create or

manage threads themselves. Instead of creating threads, you use GCD to

schedule tasks, and the system will execute these tasks in the most efficient

way possible.

 Queues
As mentioned before, GCD abstracts the handling of threads. So after this

abstraction, what do you deal with? You deal with dispatch queues. You

can deduce its functionality from its name. You submit tasks to a queue,

and GCD will execute them in FIFO order (First In, First Out). Depending

on the available resources, the type of queue used, and the dispatching

function (function used to submit a task), GCD will decide when and on

what thread this task will be executed.

We’ve been saying how great GCD is, and rightfully so. However, just

using GCD does not guarantee bug-free code. The key is choosing the right

type of dispatch queue and the right dispatching function.

Chapter 8 avoiding Multithreading nightMares

185

 Serial vs. Concurrent
Queues have two types, serial and concurrent:

A serial queue (Figure 8-1) guarantees that all tasks submitted to it

run one after the other, meaning that first task has to finish in order for the

second task to start. This means that a serial queue will not run on more

than one thread.

A concurrent queue (Figure 8-2) can run on more than one thread,

meaning that the tasks submitted to it can run simultaneously. A very

important distinction between a concurrent and serial queue is that a

concurrent queue only guarantees FIFO order when it comes to starting

the task. However, because the queue doesn’t wait for tasks to finish before

starting a new task, FIFO order is not guaranteed for the finishing of the

tasks.

Figure 8-1. Serial queue tasks illustration

Chapter 8 avoiding Multithreading nightMares

186

 Sync vs. Async
When dispatching a task onto a queue, you can either dispatch it

synchronously or asynchronously. Your choice of serial vs. concurrent

affects the destination—the queue on which the task is submitted to run.

This is contrary to sync vs. async, where your choice affects the source—

the queue from which you submit the task.

When you use a sync statement (Figure 8-3), it will block the current

queue (source) until the block is executed and finished. When it finishes, it

returns control back to the caller, and the source queue can resume.

Figure 8-2. Concurrent queue tasks illustration

Chapter 8 avoiding Multithreading nightMares

187

On the other hand, an async statement (Figure 8-4) gets executed

asynchronously with respect to the current queue (source). Control is

returned immediately to the caller, and the source queue is never blocked.

And there’s also no guarantee as to when exactly the block gets executed.

Figure 8-3. Sync task illustration

Chapter 8 avoiding Multithreading nightMares

188

 Cost of Concurrency
GCD is meant to simplify the use of threads and add concurrency to the

tasks performed by our app. And concurrency is meant to improve the

performance of our app and ultimately lead to a highly responsive app even

when performing heavy operations. But sadly there is a negative cost to

concurrency, which means we can’t just apply it whenever and wherever.

Concurrency is used to enhance the app’s performance, but misusing

it might actually lead to the exact opposite. Imagine having a very low-

impact operation that we want to perform 10,000 times. You might think

we have to use GCD to improve performance in this case. But if we create

10,000 tasks and submit them all to a queue, this will actually result in

extremely high memory consumption and will negatively impact the

allocation and deallocation of operation blocks. So in this case, while

trying to enhance our performance, we actually end up degrading it. GCD

is not a magical technology that enhances the performance regardless of

any other factors. Just like any technology, it has its limitations. So it all

Figure 8-4. Async task illustration

Chapter 8 avoiding Multithreading nightMares

189

comes down to how GCD is used. It’s up to you to use it in a way that is

effective.

Other than introducing overhead on the system resources, using

GCD also introduces some serious risks. One risk in particular is the risk

of encountering a deadlock. In simple terms, a deadlock is a state where

two threads are waiting on each other to finish so that they can resume.

In the following figure, thread A is waiting on thread B to finish so that it

can resume, and thread B is waiting on thread A to finish so it can resume.

Since this means that neither can finish, then neither can resume. Which

causes these two threads to be suspended indefinitely (Figure 8-5). This is

a very common risk when working with multithreaded programming, and

in turn it’s very common when using GCD.

Other risks when working with GCD also include race conditions.

Race conditions occur when two threads are trying to access or modify the

same resource at the exact same time. The problem with race conditions

is that it solely depends on when threads are scheduled to perform certain

tasks, which, by the nature of GCD, is completely unpredictable. Which

Figure 8-5. Deadlock

Chapter 8 avoiding Multithreading nightMares

190

makes identifying, debugging, and reproducing them really tricky. This is a

synchronization problem and can be fixed using serial queues or dispatch

barriers if we’re using a concurrent queue. There are other ways to achieve

synchronization, but we won’t be discussing them in our book.

 Reader-Writer Problem
There are many problems that can lead to race conditions. One of these is

the reader-writer problem. It is one of the more common problems that we

might find ourselves facing. This problem occurs when there is a shared

resource and one thread is trying to read the shared resource and another

thread is trying to write to it.

Let's talk about how we can identify that our code introduces this kind

of problem. Our keyword here is shared resource. Once we have a shared

resource that we're not handling properly, it's highly likely to cause a race

condition. The first place to look for shared resources in any app is our

infamous singleton classes.

 Singleton Classes
Singleton classes are classes that can only have one instance. One

instance is created and usually held statically in the class and then shared

everywhere this object is needed. Creating a singleton in Swift is as simple

as adding an empty private init to our class or struct, which makes sure our

singleton can't be initialized from outside the class. And then we just add a

static variable that holds the only created instance of this class. Here is an

example of a singleton class:

struct TestStruct {

 static let shared = TestStruct()

 private init() { }

}

Chapter 8 avoiding Multithreading nightMares

191

Due to their nature, singleton classes can be easily accessed from

two threads at the same time because a single object serves our whole

application. However, normal classes can have a shared resource between

two threads as well. It all depends on how the objects of these classes

are being handled and used and how each object handles its resources.

Once we find a resource that we suspect, we need to ask ourselves, is

this resource accessible from multiple threads? And can this resource

be accessed (read) and modified (write)? If the answer to both these

questions is yes, then we have found a potential race condition.

 Identifying a Race Condition
First, let’s take a look at the project ReaderWriter, which you can find in

this chapter’s resources. This is an empty project that has only one class

Database, which was written using TDD:

public class Database {

 // MARK:- Singleton

 public static let shared = Database.shared

 // MARK:- Initializer

 private init() {}

 // MARK:- Private Variables

 private var dictionary: [String:Any] = [:]

 // MARK:- Public Functions

 public func addObject(_ object: Any, for key: String) {

 dictionary[key] = object

 }

Chapter 8 avoiding Multithreading nightMares

192

 public func removeObject(for key: String) {

 dictionary.removeValue(forKey: key)

 }

 public func object(for key: String) -> Any? {

 return dictionary[key]

 }

 public func recordsCount() -> Int {

 return dictionary.count

 }

 public func reset() {

 dictionary = [:]

 }

}

This is a singleton class that acts as a very primitive database. It stores

key/value pairs inside an internal dictionary. And it has some public APIs

to interact with the database. There’s an API to add a new record, an API

to delete a record, an API to retrieve a record, and an API to get the current

number of records.

This class has an internal dictionary. Could this resource cause a

reader/writer data race? To answer this, let’s ask our two questions for this

resource:

 1. Is this resource accessible from multiple threads?

Since Database is a singleton class, then it’s highly

possible for any of its public APIs to be called from

multiple threads. Therefore, yes.

 2. Can this resource be accessed (read) and modified

(write)?

Chapter 8 avoiding Multithreading nightMares

193

By looking at the public functions, we have

object(for key: String) and recordsCount(),

and both access our resource. We also have

addObject(_ object: Any, for key: String)

and removeObject(for key: String), and both

modify our resources. Therefore, yes.

The answers of these two questions tell us that this class is not thread-

safe and could cause a race condition.

 Applying TDD to the Problem
By now, once you read “TDD,” you should immediately think of the

following cycle (Figure 8-6).

As always we will start with the first step, writing a failing test. We know

that our code can cause a race condition when we try to read and write

at the same time. So now our goal is to write a test that fails due to this

problem.

Now let’s write our test. First, we’ll start by setting up our test. We need

to create a new Database object and add to it a record that we’ll attempt

retrieving later on in the test. Our Given should look like this:

// Given

let database = Database.shared

database.addObject("InitialValue", for: "InitialKey")

Figure 8-6. The TDD cycle

Chapter 8 avoiding Multithreading nightMares

194

Next, we’ll attempt to write to our database and read from it, in hopes

that this will cause a race condition. Our When should look like this:

// When

database.addObject("Test", for: "Key1")

let _ = database.object(for: "InitialKey")

Finally, in our Then section of the test, we usually assert that the

expected behavior actually happened. In our case, we actually have two

assertions. We have an explicit assertion that the record was actually

added. We don’t actually care much about that assertion. What we care

more about is our implicit assertion. If the test runs normally, this means

that no race condition occurred, but if a race condition occurs, the test will

crash and fail. This here acts as our implicit assertion. Our Then should

look like this:

// Then

let count = database.recordsCount()

XCTAssertEqual(count, 2)

If we run the test we just wrote, it will actually pass. But why did it not

cause a race condition and fail? Let’s take a deeper look into the test we

just wrote:

func testReadWriteDataRace() {

 // Given

 let database = Database.shared

 database.addObject("InitialValue", for: "InitialKey")

 // When

 database.addObject("Test", for: "Key1") // #1

 let _ = database.object(for: "InitialKey") // #2

 // Then

 let count = database.recordsCount()

Chapter 8 avoiding Multithreading nightMares

195

 XCTAssertEqual(count, 2)

}

We know that this whole test is a single block. And we know that in the

context of a block each line is executed one after the other (serially). So this

means that the call to addObject (#1) is executed and finished and then

the call to object (#2) is executed. Which means that the read and write

operations never execute concurrently (Figure 8-7).

Now what we need to do is add concurrency between our two

operations. We’ll do that by using a concurrent queue. After modifying our

test, it should look like this:

func testReadWriteDataRace() {

 // Given

 let queue = DispatchQueue(label: "com.ReaderWriterTests.

DatabaseTests", attributes: .concurrent)

 let database = Database.shared

 database.addObject("InitialValue", for: "InitialKey")

 // When

 queue.async { // #1

 database.addObject("Test", for: "Key1") // #2

Figure 8-7. Test illustration

Chapter 8 avoiding Multithreading nightMares

196

 }

 queue.async { // #3

 let _ = database.object(for: "InitialKey") // #4

 }

 // Then

 let count = database.recordsCount()

 XCTAssertEqual(count, 2) // #5

}

Here we create a new concurrent queue and give it a label. And in the

When section, we dispatch both our operations asynchronously onto our

concurrent queue. We use async not sync because if we use sync, as we

mentioned before, this will affect the source, which is the thread the test is

running on, meaning our test will be paused at the first sync call until it’s

finished and then we’ll dispatch the second operation onto our concurrent

queue. In this case, our two operations will never exist on the queue at the

same time, which defeats the purpose.

If we try running our test now, it will fail. At first glance this is a good

thing because that’s what we were trying to reach. But when we actually

look at the cause of failure, we’ll find that our XCTAssertEqual fails. If you

recall, we don’t really care about this assertion as it doesn’t indicate a

race condition and it should pass in all cases. This means that the call to

addObject was not executed, which means there’s an issue with our test.

Let’s take a look at what happens when we run our test (Figure 8-8).

Because we dispatch our two operations using async, this means that the

source thread is not blocked. And because it’s not blocked, the test will

immediately resume after we dispatch our operation onto our queue. If

we look at our test, this means that it will immediately execute our Then

section. And that’s why the test fails. We execute our assertion before our

operations are even executed.

Chapter 8 avoiding Multithreading nightMares

197

To fix our test, we’ll need to block the test until our operations are

done. We can’t use sync as mentioned before. Instead, we need our

test to wait after dispatching our two tasks. We can achieve this using

XCTestExpectation. We’ll create an expectation for each operation and

fulfill them inside the async block. Then we’ll wait for both expectations

right before our assertion. Our test should look like this:

func testReadWriteDataRace() {

 // Given

 let queue = DispatchQueue(label: "com.ReaderWriterTests.

DatabaseTests", attributes: .concurrent)

 let database = Database.shared

 database.addObject("InitialValue", for: "InitialKey")

 // When

 let exp1 = expectation(description: "Adding Key1 done")

 let exp2 = expectation(description: "Adding Key2 done")

Figure 8-8. Test illustration

Chapter 8 avoiding Multithreading nightMares

198

 queue.async {

 database.addObject("Test", for: "Key1")

 exp1.fulfill()

 }

 queue.async {

 let _ = database.object(for: "InitialKey")

 exp2.fulfill()

 }

 wait(for: [exp1, exp2], timeout: 1)

 // Then

 let count = database.recordsCount()

 XCTAssertEqual(count, 2)

}

Now that we fixed the test and made it wait for the operations to be

performed (Figure 8-9), let’s run it again while looking out for the race

condition we’re looking for. When we run our test, it will (most probably)

pass. This is both good and bad news. It’s good news because it means the

expectations we added actually did their job. But bad news because we

now have two operations running on a concurrent queue, but they are still

not being performed at the same time.

Chapter 8 avoiding Multithreading nightMares

199

Where is our race condition? Does this mean that Database is thread-

safe?

Actually the answer to these questions is hidden in the previous

paragraph. If you take a look at it, you’ll find that it’s mentioned that the

test will most probably pass. There’s a reason why we’re not 100% certain

if the test will pass. This is because there’s a very small chance that the

race condition we’re looking for actually happens. Since the queue we’re

using is concurrent, then GCD might decide to run each operation on a

separate thread, leading to the race condition. But as mentioned before,

the probability of this happening is extremely low. The reason for this is

that the two operations in question are light operations and there are also

only two tasks dispatched on the queue. And it’s highly unlikely for GCD to

decide to allocate an extra thread for our queue. And even if GCD allocates

an extra thread, because of the nature of our operations and how light

they are and how quick they take to finish, the probability of them being

executed at the exact same time is really low as well.

Figure 8-9. Test illustration

Chapter 8 avoiding Multithreading nightMares

200

So now what? We know that there's a very low probability that our test

will fail (close to zero). Sadly this means that our test has little to no value.

If the test doesn’t fail even though it should, then there’s no reason to even

have that test. Luckily, there’s still something we can do. We know that the

probability of a race condition is extremely low because there’s only two

tasks on our queue and they’re both light. Which means if we add more

tasks to our queue, we will increase this probability. We can even increase

this probability significantly till we reach a point where we’re certain that a

race condition will happen. Let’s take a look at how we can do that:

func testReadWriteDataRace() {

 // Given

 let queue = DispatchQueue(label: "com.ReaderWriterTests.

DatabaseTests", attributes: .concurrent)

 let database = Database.shared

 database.addObject("InitialValue", for: "InitialKey")

 // When

 var expectations:[XCTestExpectation] = []

 for i in 0..<500 {

 let key = "Key\(i+1)"

 let exp = expectation(description: "Adding \(key) done")

 queue.async {

 database.addObject("Test", for: key)

 exp.fulfill()

 }

 expectations.append(exp)

 }

 for i in 0..<500 {

 let key = "Key\(i+1)"

 let exp = expectation(description: "Adding \(key) done")

Chapter 8 avoiding Multithreading nightMares

201

 queue.async {

 let _ = database.object(for: "InitialKey")

 exp.fulfill()

 }

 expectations.append(exp)

 }

 wait(for: expectations, timeout: 10)

 // Then

 let count = database.recordsCount()

 XCTAssertEqual(count, 501)

}

We simply modified our test so we would be performing 500 read

operations and 500 write operations. By overloading our queue with this

extremely high number of tasks, we’re basically forcing GCD to allocate

more than one thread for this queue, and due to the high number of reads

and writes, it is almost certain that two of these operations are executed at

the same time.

If we try running our test now, it will finally fail due to a race condition. 🎉

 Thread Sanitizer
However, now we have a different problem. Our test now takes too much

time. And if we try to reduce the number of iterations, we will reduce its

accuracy in catching threading issues. Luckily, we have access to a tool in

Xcode that can help us with this, the Thread Sanitizer.

The Thread Sanitizer, commonly referred to as TSan, is a tool Apple

provides as part of the LLVM compiler. It helps in auditing threading issues

in your Swift and C language written code. This sanitizer is able to detect

when multiple threads attempt to access the same resource and at least

Chapter 8 avoiding Multithreading nightMares

202

one of these accesses is a write operation. It’s able to do that by rebuilding

the whole app and adding checks around each memory access in your

code. These checks record that a memory access occurred along with

when it occurred and from which thread. And from that information, it’s

able to add a breakpoint whenever an illegal memory access occurs.

The beauty of the Thread Sanitizer is that it’s able to detect the

silent data races. In many cases, the same resource can be accessed

and modified from different threads, but the threads miss collision by

microseconds. Without the sanitizer, this scenario will go unnoticed as

it won’t cause misbehavior or a crash. However in other times, they may

collide. This randomness is what makes threading issues so hard to debug.

But with the Thread Sanitizer enabled, catching threading issues becomes

far more likely to happen.

To enable the Thread Sanitizer, we need to go into our scheme

configuration (Figure 8-10).

Figure 8-10. Enabling Thread Sanitizer

Chapter 8 avoiding Multithreading nightMares

203

Let’s enable the sanitizer for our Run and Test configurations.

Now in order to make Xcode pause whenever a data race is detected,

we need to add Runtime Issue Breakpoint. We can add that from the

Breakpoint navigator (Figure 8-11).

Since we now have the Thread Sanitizer enabled, we can actually

reduce the number of iterations a bit if we want.

 Make It Pass
Now that we’re finally done with the first step in the TDD cycle, it’s time

to fix the test whose failure we just celebrated. As mentioned before, race

conditions are a problem of synchronization and can be fixed using many

ways. Let’s try fixing it using a serial queue. The goal is to leverage a serial

Figure 8-11. Adding Runtime Issue Breakpoint

Chapter 8 avoiding Multithreading nightMares

204

queue in order to achieve synchronization between all the operations

performed by our database object. We need to make sure that only one

operation is performed at any given time.

When we add the serial queue, our Database class should look like

this:

public class Database {

 // MARK:- Singleton

 public static let shared = Database.shared

 // MARK:- Private Variables

 private var dictionary: [String:Any] = [:]

 private let queue = DispatchQueue(label: "com.ReaderWriter.

Database")

 // MARK:- Public Functions

 public func addObject(_ object: Any, for key: String) {

 queue.sync {

 dictionary[key] = object

 }

 }

 public func removeObject(for key: String) {

 queue.sync {

 _ = dictionary.removeValue(forKey: key)

 }

 }

 public func object(for key: String) -> Any? {

 queue.sync {

 return dictionary[key]

 }

 }

Chapter 8 avoiding Multithreading nightMares

205

 public func recordsCount() -> Int {

 queue.sync {

 return dictionary.count

 }

 }

 public func reset() -> Int {

 queue.sync {

 dictionary = [:]

 }

 }

}

Now let’s try running our test once again. It should be passing ✅.

Let’s run the rest of our tests as well to make sure our change did not

cause any regressions. Since all tests are passing and there’s nothing

that needs refactoring, this means we’re done fixing this issue. So there

you have it. We identified a problem in our code that had to do with

multithreading, and we successfully applied TDD to fix this issue.

 Fixing Threading Issues in Books
Books is the project introduced in Chapter 6. Currently, Books is a

modularized app, but that doesn’t mean it’s bug-free. Luckily for us, when

Books was being written, concurrency issues weren't a top priority. So we

now have a chance to see a threading issue in a real app and attempt to fix

it using TDD like we just did for our reader-writer problem in the Database

class.

Let’s open up the project, which can be found in this chapter’s

resources, and start looking for potential threading issues. If we look

carefully, we’ll find that there’s one place in our code that could potentially

be not thread-safe. That part is our extension on UIImageView that handles

image caching:

Chapter 8 avoiding Multithreading nightMares

206

extension UIImageView {

 static var dictionaryImageCache = [String:UIImage]()

 func load(url: URL) {

 DispatchQueue.global().async { [weak self] in

 if (UIImageView.dictionaryImageCache[url.path] !=

nil) {

 DispatchQueue.main.async {

 self?.image = UIImageView.

dictionaryImageCache[url.path]

 }

 return

 }

 if let data = try? Data(contentsOf: url) {

 if let image = UIImage(data: data) {

 UIImageView.dictionaryImageCache[url.path]

= image

 DispatchQueue.main.async {

 self?.image = image

 }

 }

 }

 }

 }

}

How that extension works is that it has a static dictionary that we store

images in and that dictionary is accessible for all instances of UIImageView.

This here indicates that data race could occur on the shared dictionary. To

be certain, let’s ask our two questions:

Chapter 8 avoiding Multithreading nightMares

207

 1. Is this resource accessible from multiple threads?

The extension by its nature is global and applies to

all UIImageView instances, which means that we can

call load(url: URL) from more than one thread

easily.

 2. Can this resource be accessed (read) and
modified (write)?

By looking at the load function, what it does is that

it accesses the dictionary to check if the image is

available in cache to return it; if not, it loads the

image and then modifies the dictionary to save the

newly loaded image.

The answers of these two questions tell us that this extension is not

thread-safe and could cause a race condition.

 Applying TDD
The first step to TDD is to write a failing test. This test will be very similar to

the one we ended up with in the previous example:

func testLoadImageMultiThreading() {

 // Given

 let queue = DispatchQueue(label: "com.

ReaderWriterTests.DatabaseTests", attributes:

.concurrent)

 let image = UIImageView()

 // When

 var expectations:[XCTestExpectation] = []

 for i in 0..<500 {

 let key = "Key\(i+1)"

Chapter 8 avoiding Multithreading nightMares

208

 let exp = expectation(description: "Adding \(key)

done")

 queue.async {

 image.load(url: URL(string: "https://

storage.googleapis.com/du-prd/books/

images/9781501171345.jpg")!)

 exp.fulfill()

 }

 expectations.append(exp)

 }

 for i in 0..<500 {

 let key = "Key\(i+1)"

 let exp = expectation(description: "Adding \(key)

done")

 queue.async {

 image.load(url: URL(string: "https://

storage.googleapis.com/du-prd/books/

images/9781501171345.jpg")!)

 exp.fulfill()

 }

 expectations.append(exp)

 }

 wait(for: expectations, timeout: 10)

 }

Now that we have a failing test that showcases that our code is not

thread-safe, now it’s time to fix our code. We can fix our extension using a

serial queue like we did in the database example, but let’s try something

new. We’ll use locks this time, which are a common method for ensuring

synchronization:

Chapter 8 avoiding Multithreading nightMares

209

extension UIImageView {

 // MARK:- Variables

 static var dictionaryImageCache = [String:UIImage]()

 static var lock = NSRecursiveLock()

 // MARK:- Functions

 func load(url: URL) {

 DispatchQueue.global().async { [weak self] in

 Self.lock.lock()

 if (Self.dictionaryImageCache[url.path] != nil) {

 DispatchQueue.main.async {

 self?.image = Self.

dictionaryImageCache[url.path]

 }

 Self.lock.unlock()

 return

 }

 Self.lock.unlock()

 if let data = try? Data(contentsOf: url) {

 if let image = UIImage(data: data) {

 Self.lock.lock()

 Self.dictionaryImageCache[url.path] = image

 Self.lock.unlock()

 DispatchQueue.main.async {

 self?.image = image

 }

 }

 }

 }

 }

}

Chapter 8 avoiding Multithreading nightMares

210

What we do here is that before accessing or modifying, we first acquire

the lock by calling lock(). This makes sure that whenever any other thread

tries to acquire the same lock, it will be forced to wait until the thread

holding the lock lets go of it. We release the lock by calling unlock().

Now if we run our test again (Figure 8-12), it will pass ✅.

 Summary
In this chapter you learned about some of the main concepts in

multithreading programming. First of all was the concept of concurrency,

which is that two or more tasks can be executed simultaneously on

different threads. Concurrency is achieved in iOS by the use of Grand

Central Dispatch (GCD). GCD abstracts the manual handling of threads

away from the developer. Instead of creating threads, you create your tasks

and dispatch on a queue, and GCD handles the low-level execution of

these tasks on multiple threads if needed.

Dispatch queues are at the core of how GCD operates. When tasks are

submitted to a queue, GCD will execute these tasks in First In, First Out

order. However, we have two types of queues, serial and concurrent. Serial

queues make sure that only one task in that queue is running at any given

time, and when a task finishes, the next task in line starts. Concurrent

queues, on the other hand, are able to run more than one task at the same

time.

When submitting a task to a queue, we can submit it using sync or

async. This distinction affects the source queue (queue that performs

the dispatch), not the destination queue (queue to which the task is

Figure 8-12. Multithreading test passing

Chapter 8 avoiding Multithreading nightMares

211

submitted). When using sync, this blocks the calling queue until the task is

completed. While using async, this calling queue continues normally.

Concurrency has many benefits especially when it comes to

performance. Since we're able to perform multiple tasks at the same

time and not block one task by another heavy task, this naturally leads to

enhancement in our app's performance. But this is actually not always

the case, as overusing concurrency can degrade the performance due to

unnecessary high memory consumption.

Apart from negative performance impact, concurrency has some

serious drawbacks. When not used correctly, concurrency can result

in bugs and crashes. When two operations depend on the same shared

resource and get executed concurrently relative to each other, this can

cause an array of problems. We might encounter a deadlock or even a data

race condition.

Race conditions occur when one thread is modifying a resource and

another thread is either trying to read the same resource or trying to

modify it as well. Race conditions tend to lead to unexpected behavior

that's extremely hard to debug and in some cases might cause crashes.

In this chapter we looked at how we can apply TDD to fix our data races.

We apply the first step in TDD by adding a special type of test that tests

our code in a multithreaded environment (plus the use of the Thread

Sanitizer). And then we go about the second and third steps in the TDD

cycle as we would normally do.

Chapter 8 avoiding Multithreading nightMares

213© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_9

CHAPTER 9

Testing Your Network
Most apps these days will communicate with the Internet at some point.

Purely local apps are great, but communicating with a web service can

help transform your app to a truly extraordinary app. There is a huge

collection of diverse public web services that your app can make use of.

And you can also hook into your own private web service to provide an

expanded set of features to your users that you just can’t provide if your

app is purely local.

 Networking ABCs
When one thinks of the Internet, many things might come to mind. One

of them is “www.” This stands for the World Wide Web, which is the

information system that we’re able to access through the Internet. From

its name, this system is worldwide. For something this big to evolve to

what we know today, it had to be governed by some agreements so that it

can be accessed by all the machines worldwide. So for two machines to

communicate, they do so using defined protocols. A protocol is basically

a contract between two parties with an established set of rules that dictate

how data is transferred between different devices.

https://doi.org/10.1007/978-1-4842-7428-6_9

214

 HTTP Requests
Hypertext Transfer Protocol (HTTP) is a protocol that allows transfer of

resources between two parties.

An HTTP request normally contains the following:

• URL: Which identifies the resource we want.

• HTTP method: Which states the type of action that can

be performed.

• Headers (optional): These are key/value pairs that

allow us to pass additional information to the server.

• Data (optional): This can be in multiple forms, for

example, JSON. Often referred to as the body of the

request.

There are various options for HTTP methods:

• GET: For fetching a resource

• POST: For creating or updating a resource

• PATCH: For modifying a resource

• PUT: For replacing a resource

• DELETE: For deleting a resource

 HTTP Responses
When you make an HTTP request to a server, the server returns a response.

A response usually contains the following:

• Status code: This is a number that tells you whether

your request succeeded or failed due to some error.

Chapter 9 testing Your network

215

• Headers: This is similar to headers in the request. They

carry additional information about the response.

• Data: This is also similar to the data in the request. This

carries the data you requested if any. It can be in many

forms, but most servers return data in JSON format.

 URL
A Uniform Resource Locator (URL) is basically an address to a unique

resource. This resource can be an HTML page, an image, JSON data, etc.

A basic URL has different components (Figure 9-1):

• Scheme: Which indicates the protocol the client must

use to access the resource.

• Host: Which is usually a domain name (but an IP

address can also be used), which indicates the server

we are communicating with.

• Path: Which identifies the specific resource we are

requesting from the server.

• Query (optional): With this, we can add extra

parameters that the server might use to further process

the resource before returning it.

There are other possible parts, but they are not relevant for basic usage.

So we won’t be discussing them.

Figure 9-1. URL components

Chapter 9 testing Your network

216

 Networking in iOS
As mentioned before, almost every app that’s worth its salt will make a

network request at some point. Which makes performing network requests

a skill that any iOS developer must master. Many developers nowadays

rely on third-party libraries to handle their network calls. Some of these

libraries are quite powerful, but in many cases they can be an overkill, and

by using them, you will just be adding an external dependency, which is

always a risk. Instead, we can use the native iOS URL Loading System,

with the main component being URLSession. URLSession is a part of a

collection of classes that work together to handle network requests.

Let’s talk about the most important components in the iOS URL
Loading System in detail (Figure 9-2).

Figure 9-2. iOS URL Loading System

Chapter 9 testing Your network

217

 URLSession
The session is a core concept of HTTP. You can think of a session as

an open tab or window of your web browser, through which you make

multiple network requests. Loading a single web page can be fetching

many resources through multiple requests under the hood, to be able to

render the page. These requests are made using a single session as they

share multiple things. URLSession, from the name, is used to manage

an HTTP session. Making multiple requests using the same URLSession

allows us to share configurations and cached data among requests.

 URLSessionConfiguration
Since we just mentioned that requests made with the same session

share the same configuration, let’s talk about the object that holds these

configurations. A URLSessionConfiguration defines the behavior and

policies used when making requests using a URLSession. We can use it

to set the timeout values, caching policies, connection requirements, etc.

There are three types of URLSessionConfiguration:

• Default: A session configuration that uses disk-

persistent storage for caches, cookies, or credentials.

• Ephemeral: A session configuration that uses no

persistent storage for caches, cookies, or credentials.

• Background: A session configuration that allows

app uploads or downloads to be performed in the

background, even when the app itself is suspended or

terminated.

Chapter 9 testing Your network

218

 URLRequest
We’ve already discussed the components that make up an HTTP request:

URL, HTTP method, headers, and data. URLRequest is a structure that

encapsulates all these components that describe a single request.

 URLSessionTask
This is what actually performs the request. Normally we don’t directly use

URLSessionTask, but we use one of its subclasses. There are four native

types of tasks:

• Data task: This type of task is able to send and receive

data. It’s the most common type of task and is used

when sending or requesting JSON, for example.

• Upload task: This type of task is similar to a data task,

but it also supports uploading data in the background.

• Download task: This type of task is able to download

data from a server and directly write it to a file on disk.

You can also track the download progress and can

pause and resume the download.

• Stream task: This type of task provides a stream of data

by establishing a connection with the server.

We don’t create the tasks directly. Instead, we use one of the functions

inside URLSession to create a new task. Once we create a task, we start it by

calling the resume() function.

Chapter 9 testing Your network

219

 Networking in Books
The main premise of our app is that we fetch a list of bestseller books and

display it for our users. A substantial part of our functionality depends

on networking. And we might need to add new features in the future that

depend on networking. However, when we take a look at our network

layer, we’ll find that it’s highly coupled with a specific request to the single

resource we’re requesting from our server. We’ll also find out that our

network layer is not properly covered by tests.

Luckily, this is fixable, and this will be our aim during the rest of

this chapter. Our goal will be to create a generic enough network layer

(Figure 9-3), so that it becomes easy to reuse for different requests. And as

always, we will implement this refactor using a test-driven approach. You

can find the project in this chapter’s resources.

 Process Overview
Our network layer is already separated from the rest of our code. What

we’re attempting to do here is just to refactor it. Even though what we’re

attempting is not considered modularization, we will apply the same

principles and almost the same process outlined in Chapter 6 (Figure 9-4).

Let’s take a look at this process and see what we can apply in our case.

Figure 9-3. Network Module

Chapter 9 testing Your network

220

 Modularization process

First of all, we don’t really have to choose a starting point, because we only

have one point, which is the class NetworkLayer. Which makes step 1 and

step 4 redundant.

 Identify the Class’s Responsibilities
The class in question is the NetworkLayer class. If we scan this class, we’ll

find that it has only one responsibility, which is executing a request to fetch

books from our server. However, as we already mentioned before, we need

to tweak this responsibility a bit and make it more generic. We want to

make this class able to make any request, not just fetch our books from the

server. We’ll attempt to achieve this in the next steps.

 Design Overview
Now before we start refactoring, let’s take a closer look at what

NetworkLayer does internally. We can see that it’s doing a lot of things.

First, it’s storing a lot of static information related to the environment

like host, API key, etc. Second, it contains information about creating the

request itself, which is messy, and we already know we want to make it

more generic. Third, it creates a URLSessionTask and executes the request.

A good idea would be to separate all these coherent tasks.

Figure 9-4. Modularization process

Chapter 9 testing Your network

221

 NetworkLayer Tasks to Be Refactored

 1. Storing static information

 2. Creating a URL request

 3. Creating a URLSessionTask and executing the

request

 NetworkLayer New Design

We should think about how the new objects will interact with each

other without looking at the current code in order not to be affected

by the current implementation. Our design can be something like

Figure 9-5. NetworkLayer will use APIEnvironment to get all static

data. RequestProtocol is a protocol that encapsulates creation of

URLRequests. So, whenever we want to make a network call, we need to

implement RequestProtocol. NetworkLayer will now be able to create a

URLSessionTask and execute the request.

Figure 9-5. Network layer design

Chapter 9 testing Your network

222

 Kickoff
Since we’ve identified the responsibilities of our NetworkLayer class and

also identified how these responsibilities should be modified, it’s time to

start refactoring.

From our modularization process, we know we need to follow these

steps when refactoring:

 1. Add verification tests.

 2. Refactor related code.

 3. Rerun verification tests.

 Verification Tests
So let’s start with our verification test. We need to verify that the

functionality of MainViewModel is exactly the same after the refactor.

MainViewModel fetches the list of books by consuming NetworkLayer,

which will make a network request call and return the list of books

to MainViewModel through a callback. We need our verification test

to verify that this flow is working fine after refactor. By looking at our

current test suite, we can see that testFetchBestSellerBooks inside

MainViewIntegrationTests can act as our verification test. Also if we go

up a level, we’ll find that we have UI tests covering this as well. Now if we

break anything in integration between MainViewModel and NetworkLayer,

our tests will fail. We can now refactor the NetworkLayer with confidence.

 Make a Network Request
Let’s start by writing a test for this. We’ll create a new test case class and

call it NetworkLayerTests and add this to it:

Chapter 9 testing Your network

223

func testExecutingSuccessfulRequest() {

 // Given

 let network = NetworkLayer()

 let request = TestRequest()

 let env = APIEnvironment.production

 // When

 let expectation = XCTestExpectation(description: "Request

is done")

 network.executeRequest(request, callBack: {

 expectation.fulfill()

 })

 self.wait(for: [expectation], timeout: 0.1)

 // Then

 // Missing assertion

}

To fix the build errors, let’s add some code. First, let’s add the new API

in NetworkLayer but leave the implementation empty for now:

public func executeRequest<T: RequestProtocol>(_ request: T,

callBack: @escaping NetworkCompletion) {

 // We'll leave it empty for now

}

And add this type alias at the top of the file outside the scope of the

class:

typealias NetworkCompletion = () -> Void

Chapter 9 testing Your network

224

 RequestProtocol
Now in order to use the new API, we’ll always need to pass an instance that

conforms to our request protocol. This instance will carry all the info we

need to make a request. It’s time to define this protocol. Let’s create a new

file and add this inside:

enum HTTPMethod: String {

 case GET

 case POST

 case PATCH

 case PUT

 case DELETE

}

protocol RequestProtocol {

 var method: HTTPMethod { get }

 var body: Data? { get }

 var path: String { get }

 var queryItems: [URLQueryItem]? { get }

}

Right now our test is still not building. This is because we need to

create our TestRequest struct inside our test target and make it conform to

RequestProtocol:

import Foundation

@testable import Books

struct TestRequest: RequestProtocol {

 var method:HTTPMethod {

 return .GET

 }

Chapter 9 testing Your network

225

 var body: Data? {

 return "Request Data".data(using: .utf8)

 }

 var path: String {

 return "/api/mock"

 }

 var queryItems: [URLQueryItem]? {

 return [URLQueryItem(name: "offset", value: "20")]

 }

}

We can add a very useful function to RequestProtocol through an

extension, which is creating a URL describing the request. This will keep

our code clean. The URL creation still needs the host and scheme to be

defined. This won’t change between requests; however, it will change

between production and testing environments. We’ll extract this info to be

saved into a new component.

Let’s start by writing a test for URL request creation and see how it

goes. We’ll add a new test case class and name it RequestProtocolTests,

and we’ll add this test to it:

func testCreateURLRequest() {

 // Given

 let environment = APIEnvironment(scheme: "http", host:

"test.com", port: 433, API_KEY: "KEY")

 let request = TestRequest()

 // When

 let urlRequest = request.createURLRequest(with:

environment)

Chapter 9 testing Your network

226

 // Then

 XCTAssertEqual(urlRequest?.url?.absoluteString, "http://

test.com:433/api/mock?offset=20")

 XCTAssertEqual(urlRequest?.httpMethod, "GET")

 XCTAssertEqual(urlRequest?.httpBody, "Request Data".

data(using: .utf8))

}

For this test to build, we’ll need to create APIEnvironment. We’ll skip

the detailed TDD steps for this component as it is very simple. But after

multiple TDD cycles, we should end up with this struct:

struct APIEnvironment {

 let scheme: String

 let host: String

 let port: Int?

 let API_KEY: String

 static let production: APIEnvironment = .init(scheme:

"https", host: "api.nytimes.com", port: nil, API_KEY:

"YOUR_API_KEY")

 static let testing: APIEnvironment = .init(scheme: "http",

host: "localhost", port: 8080, API_KEY: "KEY")

}

This just encapsulates the scheme and host of the environment. And

also we included the API key. And we added two preset instances as static

variables.

To have our create URL request test pass, we’ll need to add this

extension:

Chapter 9 testing Your network

227

extension RequestProtocol {

 func createURLRequest(with environment: APIEnvironment) ->

URLRequest? {

 guard let url = createURL(with: environment) else {

 return nil

 }

 var request = URLRequest(url: url)

 request.httpMethod = method.rawValue

 request.httpBody = body

 return request

 }

 private func createURL(with environment: APIEnvironment) ->

URL? {

 var components = URLComponents()

 components.scheme = environment.scheme

 components.host = environment.host

 components.port = environment.port

 components.path = path

 components.queryItems = queryItems

 return components.url

 }

}

We can add this anywhere, but it makes sense to keep it in the same file

as the protocol.

 Execute Request
After this detour to add the create URL function to RequestProtocol, let’s

get back on track. If we run testExecutingSuccessfulRequest, we’ll find

that it’s failing due to the expectation never being fulfilled. Let’s fix this by

simply calling the completion handler inside executeRequest:

Chapter 9 testing Your network

228

public func executeRequest<T: RequestProtocol>(_ request: T,

callBack: @escaping NetworkCompletion) {

 callBack()

}

Now our test will pass ✅.

 Mocking URLSession

We need to update our test, since now it’s passing even though we don’t

even make any network requests. To be able to test what NetworkLayer

does internally, we need to insert a mock of a URLSession and use it to

assert that the request is performed. Let’s create our mock:

class URLSessionMock: URLSession {

 typealias CompletionHandler = (Data?, URLResponse?, Error?)

-> Void

 public var stubbedData: Data?

 public var request: URLRequest?

 override func dataTask(with request: URLRequest,

completionHandler: @escaping CompletionHandler) ->

URLSessionDataTask {

 let data = self.stubbedData

 self.request = request

 return URLSessionDataTaskMock {

 completionHandler(data, nil, nil)

 }

 }

}

Chapter 9 testing Your network

229

class URLSessionDataTaskMock: URLSessionDataTask {

 private let closure: () -> Void

 init(closure: @escaping () -> Void) {

 self.closure = closure

 }

 override func resume() {

 closure()

 }

}

Here we create a test double to be able to mock a URLSession. We

create this mock by subclassing URLSession and overriding the function

that creates a data task. We override it so that it does two things: first, it

saves the inputs that are passed to it, and second, it returns an instance of

URLSessionDataTaskMock, which is a test double for URLSessionDataTask.

Instead of making the network request, this mock executes a block that’s

passed to it. We use this block to identify if the task was run or not.

Now that we’ve created our test double, it’s time to inject it into our

NetworkLayer instance in our test:

func testExecutingSuccessfulRequest() {

 // Given

 let session = URLSessionMock()

 let network = NetworkLayer(session: session)

 let request = TestRequest()

 let env = APIEnvironment.production

 // When

 let expectation = XCTestExpectation(description: "Request

is done")

Chapter 9 testing Your network

230

 network.executeRequest(request, callBack: {

 expectation.fulfill()

 })

 self.wait(for: [expectation], timeout: 0.1)

 // Then

 // Missing assertion

}

Now we need to update our class to accept this injection of a

URLSession. We’ll add this variable to our class:

let session: URLSession

And add a new initializer:

init(session:URLSession = .shared) {

 self.session = session

}

Here we pass a session in the initializer and save it in a local variable so

we can use it to make requests. If no custom session is passed, we default

to the shared session.

Now that we have successfully injected our mock, we can now update

our test to actually assert on the creation and running of a data task:

func testExecutingSuccessfulRequest() {

 // Given

 let expectedData = "Sample Data".data(using: .utf8)

 let session = URLSessionMock()

 session.stubbedData = expectedData // #1

 let network = NetworkLayer(session: session)

 let request = TestRequest()

 let env = APIEnvironment.production

Chapter 9 testing Your network

231

 // When

 l et expectation = XCTestExpectation(description: "Request

is done")

 var actualData: Data?

 var actualError: APIError?

 network.executeRequest(request, callBack: { data, error in

// #2

 actualData = data // #

 actualError = error

 expectation.fulfill()

 })

 self.wait(for: [expectation], timeout: 0.1)

 // Then

 XCTAssertNotNil(session.request)

 XCTAssertEqual(session.request?.httpMethod, "GET")

 XCTAssertEqual(session.request?.httpBody, "Request Data".

data(using: .utf8))

 XCTAssertEqual(session.request?.url, request.

createURLRequest(with: env)?.url)

 XCTAssertEqual(expectedData, actualData)

 XCTAssertNil(actualError)

}

In this test, we do a couple of things:

 1. Here we tell our session mock what data to return

when a request is made.

 2. We change our block since we now expect our

function to return data.

 3. Here we save the returned data and error so we can

assert on them later on.

Chapter 9 testing Your network

232

And in our Then section, we assert that the request that’s passed to

the session is created correctly and has the correct method, body, and

URL. We also assert that the data returned is the data expected. We also

assert that there is no error returned.

 Using URLSession

To fix this test, we need to utilize the URLSession and actually make the

request. First, we’ll need to add the following so that NetworkLayer can

provide the base URL for our request:

public static var environment: APIEnvironment {

 return isTesting() ? .testing : .production

}

Here we make use of our two APIEnvironment instances we already

created. And we return one of them based on the current environment.

We’ll need to update our NetworkCompletion type alias and also add

our error enum:

typealias NetworkCompletion = (Data?, APIError?) -> Void

enum APIError: Error {

 // We'll leave it empty for now

}

Then we’ll update our function to actually make the request:

public func executeRequest<T: RequestProtocol>(_ request: T,

callBack: @escaping NetworkCompletion) {

 guard let urlRequest = request.createURLRequest(with: Self.

environment) else {

 return

 }

Chapter 9 testing Your network

233

 let task = self.session.dataTask(with: urlRequest) { data,

response, error in

 guard let data = data else {

 return

 }

 callBack(data, nil)

 }

 task.resume()

}

After these changes, our test will pass ✅.

 Showcasing Test Value
To showcase the value of our test, if for any reason we don’t call task.

resume(), which can happen if we refactor our code moving forward,

our test will fail. We can simulate this by commenting out the call to task.

resume() and running our test. It will fail as you see in Figure 9-6.

 Handle a Failing Request
Now that we’ve covered making a successful request with a test case,

let’s write test cases for failure scenarios. In this chapter, we’ll cover two

situations where our request might fail. First is if the server doesn’t return

data at all. The second is a client-side failure, which happens if we don’t

provide a valid URL to perform the request on. So let’s write these two tests.

Figure 9-6. Failing test

Chapter 9 testing Your network

234

Let’s add this test that simulates the server returning no data and an

error:

func testExecutingFailedRequest() {

 // Given

 let session = URLSessionMock()

 session.stubbedData = nil

 let network = NetworkLayer(session: session)

 let request = TestRequest()

 let env = APIEnvironment.production

 // When

 let expectation = XCTestExpectation(description: "Request

is done")

 var actualData: Data?

 var actualError: APIError?

 network.executeRequest(request, callBack: { data, error in

 actualData = data

 actualError = error

 expectation.fulfill()

 })

 self.wait(for: [expectation], timeout: 0.1)

 // Then

 XCTAssertNotNil(session.request)

 XCTAssertEqual(session.request?.httpMethod, "GET")

 XCTAssertEqual(session.request?.httpBody, "Request Data".

data(using: .utf8))

 XCTAssertEqual(session.request?.url, request.

createURLRequest(with: env)?.url)

 XCTAssertNil(actualData)

 XCTAssertEqual(actualError, .requestFailed)

}

Chapter 9 testing Your network

235

Here we tell our mock session to not return any data, and then we

assert that NetworkLayer correctly handles this scenario by checking the

value of the returned error. This test will fail for now. Let’s add the second

test and then we’ll fix both.

We want to add another test that simulates the scenario where we

attempt to make an invalid request. To create this test, we need to create a

new struct that conforms to RequestProtocol. This struct should describe

our invalid request:

struct InvalidRequest: RequestProtocol {

 var body: Data? {

 return nil

 }

 var path: String {

 return "INVALID PATH"

 }

 var queryItems: [URLQueryItem]? {

 return nil

 }

 var method:HTTPMethod {

 return .GET

 }

}

Now let’s add our test:

func testExecutingRequestWithInvalidURL() {

 // Given

 let session = URLSessionMock()

 session.stubbedData = "Sample Data".data(using: .utf8)

 let network = NetworkLayer(session: session)

 let request = InvalidRequest()

Chapter 9 testing Your network

236

 // When

 let expectation = XCTestExpectation(description: "Request

is done")

 var actualData: Data?

 var actualError: APIError?

 network.executeRequest(request, callBack: { data, error in

 actualData = data

 actualError = error

 expectation.fulfill()

 })

 self.wait(for: [expectation], timeout: 0.1)

 // Then

 XCTAssertNil(session.request)

 XCTAssertNil(actualData)

 XCTAssertEqual(actualError, .invalidRequest)

}

To make our tests pass, we’ll have to modify the executeRequest

function to handle these two scenarios.

First, we’ll need to add two cases to APIError:

enum APIError: Error {

 case requestFailed

 case invalidRequest

}

And we’ll need to change the implementation of executeRequest to

this:

Chapter 9 testing Your network

237

public func executeRequest<T: RequestProtocol>(_ request: T,

callBack: @escaping NetworkCompletion) {

 guard let urlRequest = request.createURLRequest(with: Self.

environment) else {

 callBack(nil, .invalidRequest)

 return

 }

 let task = self.session.dataTask(with: urlRequest) { data,

response, error in

 guard let data = data else {

 callBack(nil, .requestFailed)

 return

 }

 callBack(data, nil)

 }

 task.resume()

}

When we detect that the request is invalid or the request failed, we call

our completion handler with the appropriate value of type APIError.

 Putting It All Together
Since all our tests are passing, then it’s time to use the new API in our app.

Let’s take a look at a high-level overview of how our design should look like

(Figure 9-7).

Chapter 9 testing Your network

238

Our MainViewModel will use the public API of NetworkLayer that is

executeRequest and will pass it a request. This request will be of type

BookRequest. Then NetworkLayer will use the passed books request to

retrieve the required information and then execute the request. When the

request is done, NetworkLayer will return the response back to the view

model through the callback.

Given this overview, we know we need to create a new component,

which is BookRequest. Let’s create a test case class for it and name it

BookRequestTests. And we’ll add these tests in it:

func testBookRequestHTTPMethod() {

 //Given

 let bookRequest = BooksRequest()

Figure 9-7. Integrating new network layer

Chapter 9 testing Your network

239

 //When & Then

 XCTAssertEqual(bookRequest.method, .GET)

}

func testBookRequestURL() {

 //Given

 let bookRequest = BooksRequest()

 let env = APIEnvironment(scheme: "http", host: "test.com",

port: 433, API_KEY: "")

 // When

 let urlRequest = bookRequest.createURLRequest(with: env)

 //When & Then

 XCTAssertEqual(urlRequest?.url?.absoluteString,

"http://test.com:433/svc/books/v3/lists/overview.

json?offset=20&api- key=\(APIEnvironment.production.API_

KEY)")

}

func testBookRequestBody() {

 //Given

 let bookRequest = BooksRequest()

 //When & Then

 XCTAssertNil(bookRequest.body)

}

To make these tests pass, we’ll have to actually add BookRequest and

have it conform to RequestProtocol:

struct BooksRequest: RequestProtocol {

 var path: String {

 return "/svc/books/v3/lists/overview.json"

 }

Chapter 9 testing Your network

240

 var queryItems: [URLQueryItem]? {

 return [URLQueryItem(name: "offset", value: "20"),

URLQueryItem(name: "api-key", value: NetworkLayer.

environment.API_KEY)]

 }

 var method:HTTPMethod {return .GET}

 var body: Data? {return nil}

}

Now let’s remove our old code from NetworkLayer and fix the build

error that will arise by using the new API along with the newly created

BookRequest. Our NetworkLayer class should finally look like this:

typealias NetworkCompletion = (Data?, APIError?) -> Void

enum APIError: Error {

 case requestFailed

 case invalidRequest

}

class NetworkLayer {

 // MARK:- Variables

 let session: URLSession

 static var environment: APIEnvironment {

 return isTesting() ? .testing : .production

 }

 // MARK:- Initializer

 init(session:URLSession = .shared) {

 self.session = session

 }

Chapter 9 testing Your network

241

 // MARK:- Public Functions

 public func executeRequest<T: RequestProtocol>(_ request:

T, callBack: @escaping NetworkCompletion) {

 guard let url = request.createURL(with: Self.

environment) else {

 callBack(nil, ..invalidRequest)

 return

 }

 var urlRequest = URLRequest(url: url)

 urlRequest.httpMethod = request.method.rawValue

 urlRequest.httpBody = request.body

 let task = self.session.dataTask(with: urlRequest) {

data, response, error in

 guard let data = data else {

 callBack(nil, .requestFailed)

 return

 }

 callBack(data, nil)

 }

 task.resume()

 }

 // MARK:- Helper Functions

 static func isTesting() -> Bool {

 return ProcessInfo.processInfo.arguments.

contains("TESTING")

 }

}

Chapter 9 testing Your network

242

Now we’ll have to make two changes. First, we’ll modify our code in

MainViewModel to use the new API.

We’ll replace this line

self.networkLayer?.executeNetworkRequest(callBack: { data in

by this line:

self.networkLayer?.executeRequest(BooksRequest(), callBack: {

(data, error) in

We’ll also need to update NetworkLayerStub as it’s causing a build

error as well:

class NetworkLayerStub: NetworkLayer {

 var stubbedData:Data?

 init(stubbedData:Data) {

 self.stubbedData = stubbedData

 }

 override func executeRequest<T>(_ request: T, callBack:

@escaping NetworkCompletion) where T : RequestProtocol {

 let jsonData = self.stubbedData!

 callBack(jsonData, nil)

 }

}

Now we are all done! If we run our whole test suite including our

verification tests (Figure 9-8), everything will pass. 🎉

Chapter 9 testing Your network

243

 Exercise
We have an extension on UIImageView that we use for downloading

images. This extension uses a native API to load the image from a given

URL. Your exercise is to change the implementation of this extension to

instead use our newly created NetworkLayer.

 Summary
Networking is a requirement for almost every app out there. It allows us

to take our app to the next level. Being able to request resources from any

web service opens the door to countless ways we can improve our apps.

The iOS URL Loading System is made up of a number of classes and

structs that are provided natively within iOS’s Foundation framework. We

use this system to communicate with servers using Internet protocols.

Figure 9-8. Test suite passing

Chapter 9 testing Your network

244

The main class in this system is URLSession, which mimics a session in an

open tab or window in your web browser. Requests made within the same

session share the same configurations and caching. We use an instance of

URLSession to create instances of URLSessionTask. These tasks can fetch

data from a server, download/upload files, or open a stream with a server.

We use URLSessionConfiguration to configure how a session behaves.

When our app is performing network calls, it’s extremely important

to cover our networking code with tests. Any problem in the network

layer can easily cause critical bugs in any app. And it can also cause

performance issues, if we’re doing unnecessary network calls, for example.

Writing tests for a network layer can sometimes be challenging, but it’s

integral for maintaining the app’s quality.

In this chapter we rewrote our network layer by following a test-driven

approach. We separated that environment-specific code and covered that

with tests. We also made use of protocols to be able to easily create new

requests with different endpoints and parameters. This was also covered

by tests. Finally, when it came to actually performing the network calls,

we were able to cover this as well with tests by the use of test doubles.

We injected a mock URLSession and used that to be able to assert on

the requests going out. Because the part of our app that consumed our

network code was already covered by tests, we were able to make this

change with confidence. And after we were done, we were able to verify

that our changes were functional and didn’t break anything.

Chapter 9 testing Your network

245© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_10

CHAPTER 10

Taming Core Data
Core Data is one of the most famous frameworks known to iOS developers.

Core Data has been available since the release of iOS 3, and it has evolved

a lot since then. A common misconception is that Core Data is a database

or a database wrapper. Though persisting data is one of its features, Core

Data is much more than that. The essence of Core Data is that it manages

our application’s object graph. An object graph is basically a collection of

objects connected with relationships (Figure 10-1). Core Data manages

the objects in these graphs, and we can use Core Data to persist the graph

on disk if we want. In addition to that, the framework has multiple other

features such as data validation and undo/redo management.

Figure 10-1. Object graph

https://doi.org/10.1007/978-1-4842-7428-6_10

246

As famous as Core Data is, many developers suffer when using it. This

is largely caused by two things. First, many developers dive headfirst into

using Core Data without fully grasping how it operates internally and even

externally. Core Data is known to have many building blocks, and not fully

understanding what each block is responsible for increases the likelihood

of misusing it. Second, and just as important, is the lack of testing. Core

Data is one of the most challenging parts in any application to write tests

for. Therefore, many developers opt out of covering their Core Data layer

with tests. We’ve talked about the importance of testing over and over

again in past chapters, and this importance is even magnified when it

comes to Core Data.

 The Core Data Stack
Now that we know what Core Data is and what it’s capable of, it’s time to

explore how it functions internally. Core Data has many building blocks

that interact together (Figure 10-2). Understanding the function of each

building block is crucial in fully grasping this framework and being able to

use it properly.

The main building blocks are

 1. Managed object model

 2. Persistent store coordinator

 3. Managed object context

Chapter 10 taming Core Data

247

 Managed Object Model
A managed object model is a description of the object graph to be

managed. This description is basically the schema for our model. It is the

entities with their properties as well as relationships to other entities. A

data schema is represented by an .xcdatamodeld file, and Xcode comes

with a powerful editor that makes it easy to edit our schema file. We

can easily create entities, create relationships, version our schema, and

prepare migration, all from within Xcode’s editor. Core Data does not

interact with files; it interacts with instances of NSManagedObjectModel.

This class provides a programmatic representation of the .xcdatamodeld

file describing our schema, which Core Data can understand and use.

While a typical Core Data implementation has one instance of the

NSManagedObjectModel class, it’s possible to have multiple.

Figure 10-2. The Core Data stack

Chapter 10 taming Core Data

248

 Persistent Store Coordinator
A persistent store coordinator is represented by an instance of the

NSPersistentStoreCoordinator class, and it plays a key role in the

functionality of Core Data. From its name, a persistent store coordinator

coordinates between managed object contexts and persistent stores. It

takes care of loading, caching, and persisting data. Despite it being one

of the most important members of the Core Data stack, you will rarely

interact with it directly.

 Persistent Store
A persistent store represents where your data actually lives. We’ve

mentioned that Core Data manages an object graph, but in order for

the framework to be useful, the persistent store coordinator needs to be

connected to at least one persistent store. This allows the coordinator to

load data into contexts and push new data into the store making the new

change a permanent part of the object graph’s state.

Core Data provides four different types of persistent store built in:

 1. SQLite: This store is backed by a SQLite database,

and it’s the most widely used store type.

 2. XML: This store is backed by an XML file.

 3. Binary: This store is backed by a binary data file.

 4. In-memory: This store utilizes the app’s memory for

storage. It’s only partially persistent as data is lost

when the app is terminated for any reason.

And you can also create your own store types by subclassing

NSAtomicStore or NSIncrementalStore,

Chapter 10 taming Core Data

249

 Managed Object Context
A managed object context is an object that is responsible for managing

a collection of managed objects. It is represented by an instance of the

NSManagedObject class. A Core Data application can have one or more

managed object contexts. Each context is connected to a persistent store

coordinator. You can think of a context as a scratch pad where you can

make any changes you want to the objects inside the context. You can fetch

objects into your context from the persistent store coordinator. You can

also insert new objects, make changes to existing objects, or undo/redo

changes. Any changes you make to objects inside a context remain local

to that context and only saved in-memory, which means that changes are

not propagated to the persistent store coordinator. Changes remain local to

the context until you manually commit these changes by telling the context

to save its changes. You can think of this as if you’re writing on a board

using a nonpermanent marker, which gives you the ability to clear all your

writing at any time. And when you’re ready to commit what you wrote, you

then save your writing by going over them by a permanent marker.

 Persistent Container
Before iOS 10, we used to have to manually set up the preceding three

components to have a functioning Core Data stack. But from iOS 10, Apple

introduced NSPersistentContainer, which was a real game changer as it

completely simplified the process of setting up Core Data. It is a container

that encapsulates the Core Data stack and takes care of the creation and

management of the managed object model, persistent store coordinator,

and managed object context.

Chapter 10 taming Core Data

250

 Core Data in Books
If we take a look at Books, we will find that it uses Core Data. However,

this part of our app is still not modularized. Actually, if we look closely,

we’ll find that our Core Data code is all over the place. We will attempt to

fix this during this chapter. You will find the Books project in this chapter’s

resources.

Our goal for this following section is to do the following:

• Create a generic Core Data interface.

• Create a component that consumes this interface to

provide needed functionality for our app.

• Use this new component instead of the old

implementation.

We will go through these incremental steps while following a test-

driven approach.

 Testing Stack
We want our new Core Data layer to operate using a SQLite persistent

store, as it’s the store type that makes most sense in our case. This store

type persists on disk and at the same time has low performance overhead

and low memory footprint.

However, when it comes to testing, this store type causes a few

problems. Since data is persisted on disk in a database, this makes data

persistent between tests. Persisting data between tests might lead to one

test failing due to a change in environment caused by a previous test. This

can be fixed by deleting and then recreating the database after each test,

but this makes our tests slow, and we need our unit tests to be fast.

You might think that we’ve hit a dead end here. Well, think again.

We’ve already mentioned that there are other store types. One of them is

Chapter 10 taming Core Data

251

the in-memory store type, and it’s exactly what we need. This solves our

problem because with this store, data isn’t persisted to disk; it stays in

memory. So with each test, the in-memory store releases its data.

So this means we need to use different stacks for testing and

production. We need to use the SQLite store in our production code and

in-memory store in our tests. We’ll keep that in mind moving forward.

 CoreDataManager
Now that we know how Core Data operates, let’s kick off the

implementation.

We’ll start with our first goal, which is creating a generic interface for

Core Data (Figure 10-3). This interface should provide CRUD (Create,

Read, Update, Delete) operations and should operate on generic models.

We know that we’ll need to create a new object to be our interface, and this

object should be accessible from anywhere in the app. And it makes sense

to have only one instance of it. So let’s translate this into a test. First, let’s

add a new test case class and call it CoreDataManagerTests. And we’ll add

this test to it:

func testSharedInstance() {

 // When

 let manager = CoreDataManager.shared

 // Then

 XCTAssertNotNil(manager)

}

Figure 10-3. Current UML

Chapter 10 taming Core Data

252

Normally there’s a build error as we haven't created the class yet. Let’s

go ahead and fix our test by adding this new class to our app:

class CoreDataManager {

 // MARK:- Singleton

 public static let shared = CoreDataManager()

}

The test should now be passing.

Make sure to add “@testable import Books” at the beginning of all your

test files.

Now on to the next test. We know that CoreDataManager should

provide an interface for CRUD operations. So we should now start adding

these tests.

All our tests will require initializing an instance of CoreDataManager.

This can be added inside the common setup function:

// MARK:- Variables

var manager: CoreDataManager!

// MARK:- Setup

override func setUp() {

 super.setUp()

 self.manager = CoreDataManager()

}

override func tearDown() {

 super.tearDown()

 self.manager = nil

}

Chapter 10 taming Core Data

253

Now if you remember, we decided on using different stacks for

production and testing. This means that we need to create a stack for

testing and inject it into our manager. Creating a custom stack for testing

should look like this:

let stack = CoreDataStack(name: "TestModel", storageType:

.inMemory)

 CoreDataStack

CoreDataStack is the class responsible for initializing the Core Data stack.

Since we haven’t created it yet, adding the preceding line will cause a

build error. So we’ll pause working on CoreDataManagerTests for now

and move our focus on creating CoreDataStack (Figure 10-4). Once we’re

done, we’ll circle back to it.

So what exactly is CoreDataStack responsible for? It should initialize a

persistent container, and by default the underlying managed model should

be the app’s model. So let’s translate this into a test. First, we’ll add a new

test case class named CoreDataStackTests, and then add this test inside it:

Figure 10-4. Current UML

Chapter 10 taming Core Data

254

func testDefaultStoreName() {

 // Given

 let stack = CoreDataStack()

 // When

 let container = stack.storeContainer

 // Then

 XCTAssertEqual(container.name, "Books")

 }

To fix this test, we’ll need to create the new class CoreDataStack as in

the following:

import CoreData

class CoreDataStack {

 // MARK:- Lazy Variables

 lazy var storeContainer: NSPersistentContainer = {

 let container = NSPersistentContainer(name: "Books")

 container.loadPersistentStores { _, error in

 if let error = error as NSError? {

 print("Unresolved error \(error), \(error.

userInfo)")

 }

 }

 return container

 }()

}

Now we need to be able to customize our stack so that it uses custom

models, not just the default. We’ll heavily depend on this in our tests. So

let’s add a test for this:

Chapter 10 taming Core Data

255

func testCustomStoreName() {

 // Given

 let stack = CoreDataStack(name: "TestModel")

 // When

 let container = stack.storeContainer

 // Then

 XCTAssertEqual(container.name, "TestModel")

}

To make this pass, we’ll need to do two things. First, update our class to

handle custom model names:

class CoreDataStack {

 // MARK:- Variables

 private let modelName: String

 // MARK:- Lazy Variables

 lazy var storeContainer: NSPersistentContainer = {

 let container = NSPersistentContainer(name: self.

modelName)

 container.loadPersistentStores { _, error in

 if let error = error as NSError? {

 print("Unresolved error \(error), \(error.

userInfo)")

 }

 }

 return container

 }()

Chapter 10 taming Core Data

256

 // MARK:- Initializer

 public init(name: String = "Books") {

 self.modelName = name

 }

}

Second, we need to add the new data model. To do this, we’ll add a

new data model file (Figure 10-5) and name it “TestModel.”

After adding the model, head to the project file. Open the test target and

under Build Phases make sure that the data model file is NOT in Compile
Sources and is included under Copy Bundle Resources (Figure 10-6).

This will prevent build errors that might happen later on when we create

entities.

Figure 10-5. Adding a new data model file

Chapter 10 taming Core Data

257

Sadly, our test will still be failing after adding the new model. This is

because the persistent container searches for the data model file by default

inside the app’s main bundle. However, our test data model is inside our

tests bundle. To do this we need to manually pass the object model for our

data model to the Core Data stack. Let’s update our test to this:

func testCustomStoreName() {

 // Given

 let testBundle = Bundle(for: type(of: self))

 let modelUrl = testBundle.url(forResource: "TestModel",

withExtension: "momd")!

 let objectModel = NSManagedObjectModel(contentsOf:

modelUrl)

Figure 10-6. Setting up the test data model correctly

Chapter 10 taming Core Data

258

 let stack = CoreDataStack(name: "TestModel", objectModel:

objectModel)

 // When

 let container = stack.storeContainer

 // Then

 XCTAssertEqual(container.name, "TestModel")

}

And update our class to this:

class CoreDataStack {

 // MARK:- Variables

 private let modelName: String

 private let objectModel: NSManagedObjectModel?

 // MARK:- Lazy Variables

 lazy var storeContainer: NSPersistentContainer = {

 var container: NSPersistentContainer

 if let objectModel = self.objectModel {

 container = NSPersistentContainer(name: self.

modelName, managedObjectModel: objectModel)

 }

 else {

 container = NSPersistentContainer(name: self.

modelName)

 }

 container.loadPersistentStores { _, error in

 if let error = error as NSError? {

 print("Unresolved error \(error), \(error.

userInfo)")

 }

 }

Chapter 10 taming Core Data

259

 return container

 }()

 // MARK:- Initializer

 public init(name: String = "Books", objectModel:

NSManagedObjectModel? = nil) {

 self.modelName = name

 self.objectModel = objectModel

 }

}

Here we add the ability to inject a custom object model. And when

initializing our container, we check if a custom model is passed. If so, we

use it to create the container. If not, then we create the container normally.

Now if you recall, we need to be able to create Core Data stacks that

utilize in-memory stores. Right now our stack can only be set up using the

default store, which is the SQLite store. So let’s add tests for this:

func testPersistentStoreType() {

 // Given

 let stack = CoreDataStack(storageType: .persistent)

 // When

 let container = stack.storeContainer

 // Then

 XCTAssertEqual(container.persistentStoreDescriptions[0].

type, NSSQLiteStoreType)

}

func testInMemoryStoreType() {

 // Given

 let stack = CoreDataStack(storageType: .inMemory)

Chapter 10 taming Core Data

260

 // When

 let container = stack.storeContainer

 // Then

 XCTAssertEqual(container.persistentStoreDescriptions[0].

type, NSInMemoryStoreType)

}

To fix our tests, we need to add an enum that represents store type.

We can add it in a separate file or inside the CoreDataStack file. The enum

should look like this:

enum StorageType {

 case persistent, inMemory

}

Then to fix our tests, we need to change our class to this:

class CoreDataStack {

 // MARK:- Variables

 private let modelName: String

 private let objectModel: NSManagedObjectModel?

 private let storageType: StorageType

 // MARK:- Lazy Variables

 lazy var storeContainer: NSPersistentContainer = {

 var container: NSPersistentContainer

 if let objectModel = self.objectModel {

 container = NSPersistentContainer(name: self.

modelName, managedObjectModel: objectModel)

 }

 else {

 container = NSPersistentContainer(name: self.

modelName)

Chapter 10 taming Core Data

261

 }

 if self.storageType == .inMemory {

 let description = NSPersistentStoreDescription()

 description.type = NSInMemoryStoreType

 container.persistentStoreDescriptions =

[description]

 }

 container.loadPersistentStores { _, error in

 if let error = error as NSError? {

 print("Unresolved error \(error), \(error.

userInfo)")

 }

 }

 return container

 }()

 // MARK:- Initializer

 public init(name: String = "Books", objectModel:

NSManagedObjectModel? = nil, storageType: StorageType =

.persistent) {

 self.modelName = name

 self.objectModel = objectModel

 self.storageType = storageType

 }

}

Here we add a new variable to hold our storage type. And we add a

new parameter in the init to be able to set the storage type. We also set the

default value to .persistent. And finally we check if the storage type is

in-memory; if so, we override the store type. Else, we leave the default store

type, which is SQLite. After these changes, our tests should be passing

now.

Chapter 10 taming Core Data

262

Lastly, we need our stack to provide us with a context. This context

should be used on the main thread. In our app, all of our usage of Core

Data is lightweight and will reflect on our app’s UI. Which means we don’t

need background contexts.

Let’s add a test for this:

func testContext() {

 // Given

 let stack = CoreDataStack(storageType: .inMemory)

 // When

 let context = stack.context

 // Then

 XCTAssertNotNil(context)

 XCTAssertEqual(context.concurrencyType,

.mainQueueConcurrencyType)

}

To fix the test, we need to add the following inside CoreDataStack:

public lazy var context: NSManagedObjectContext = {

 return storeContainer.viewContext

}()

 Inject the Stack into CoreDataManager
Now that we have our CoreDataStack ready, let’s go back to

CoreDataManagerTests, which triggered all this. Now we can create a

custom stack and pass it to the manager:

// MARK:- Variables

var manager: CoreDataManager!

var stack: CoreDataStack!

Chapter 10 taming Core Data

263

// MARK:- Setup

override func setUp() {

 super.setUp()

 let testBundle = Bundle(for: type(of: self))

 let modelUrl = testBundle.url(forResource: "TestModel",

withExtension: "momd")!

 let objectModel = NSManagedObjectModel(contentsOf:

modelUrl)

 self.stack = CoreDataStack(name: "TestModel", objectModel:

objectModel, storageType: .inMemory)

 self.manager = CoreDataManager(coreDataStack: stack)

}

override func tearDown() {

 super.tearDown()

 self.manager = nil

 self.stack = nil

}

This will cause a build error. To fix this, we need to update

CoreDataManager to accept a CoreDataStack as a dependency:

// MARK:- Variables

 private var stack: CoreDataStack

 // MARK:- Singleton

 public static let shared = CoreDataManager(coreDataStack:

CoreDataStack())

 // MARK:- Initializer

 public init(coreDataStack: CoreDataStack) {

 self.stack = coreDataStack

 }

Chapter 10 taming Core Data

264

 TestEntity
Before we start writing tests for the CRUD operations, it makes sense

to create an entity to be able to perform operations on. We’ll head to

TestModel.xcdatamodel and add a new entity from Xcode’s editor and call

it TestEntity. And we’ll add the two attributes in Figure 10-7.

Now to finish off the setup of our new entity, we need to add code

representation for it. We’ll follow the conventions here and add two files

(both in the test target). First, the file TestEntity+CoreDataClass should

contain this:

import CoreData

@objc(TestEntity)

public final class TestEntity: NSManagedObject {

}

Figure 10-7. Adding TestEntity to a data model file

Chapter 10 taming Core Data

265

And the second file TestEntity+CoreDataProperties should contain

this:

import CoreData

extension TestEntity {

 @ nonobjc public class func fetchRequest() ->

NSFetchRequest<TestEntity> {

 return NSFetchRequest<TestEntity>(entityName:

String(describing: TestEntity.self))

 }

 @NSManaged public var name: String?

 @NSManaged public var number: Int32

}

 Creation

Now let’s start with the first CRUD operation, which is create, and let’s

write a test for it:

Figure 10-8. Current UML

Chapter 10 taming Core Data

266

func testCreateEntity() {

 // When

 let testModel = manager.create(TestEntity.self)

 // Then

 XCTAssertNotNil(testModel)

 XCTAssertEqual(stack.context.insertedObjects.count, 0)

}

Here we create a new object and assert that it’s not nil and that it

actually gets saved in the persistent store, not just in the context.

This will result in a build error, because there is no create function. So

let’s add it:

public func create<T: Storable>(_ entity: T.Type) -> T? {

 return nil

}

 Introducing Storable

Storable is a protocol that describes a class that can be stored using

our Core Data manager (Figure 10-8). And any Storable needs to be an

NSManagedObject. Let’s add this protocol:

import CoreData

public protocol Storable: NSManagedObject {

}

Now the test is still not building because TestEntity does not conform

to Storable.

We fix this by simply conforming to the protocol like so:

extension TestEntity: Storable {

}

Now that our test is building, if we try to run it, it will fail.

Chapter 10 taming Core Data

267

 Creation Implementation

Let’s fix this by actually creating a new entity:

public func create<T: Storable>(_ entityType: T.Type) -> T? {

 guard let entityDescription = NSEntityDescription.

entity(forEntityName: entityType.entityName, in: stack.

context) else {

 return nil

 }

 let entity = NSManagedObject(entity: entityDescription,

insertInto: stack.context)

 return entity as? T

}

We’ll need to add this to Storable:

public protocol Storable: NSManagedObject {

 static var entityName: String {get}

}

And update TestEntity’s implementation to this:

extension TestEntity: Storable {

 public static var entityName: String {

 String(describing: Self.self)

 }

}

If we run our test, we’ll find that the second assertion is still failing.

This means we need to save our changes.

Chapter 10 taming Core Data

268

 Saving Changes

Inside the create function, we’ll add a line to save our context right before

we return. Our function should now look like this:

public func create<T: Storable>(_ entityType: T.Type) -> T? {

 guard let entityDescription = NSEntityDescription.

entity(forEntityName: entityType.entityName, in: stack.

context) else {

 return nil

 }

 let entity = NSManagedObject(entity: entityDescription,

insertInto: stack.context)

 stack.saveContextIfNeeded()

 return entity as? T

}

This will lead to a build error. To fix it, we need to add a new function to

CoreDataStack (Figure 10-9):

public func saveContextIfNeeded() {

}

Figure 10-9. Current UML

Chapter 10 taming Core Data

269

Now let’s add a test for saving a context inside CoreDataStackTests:

func testSavingContextIfNeeded() {

 // Given

 let testBundle = Bundle(for: type(of: self))

 let modelUrl = testBundle.url(forResource: "TestModel",

withExtension: "momd")!

 let objectModel = NSManagedObjectModel(contentsOf:

modelUrl)

 let stack = CoreDataStack(name: "TestModel", objectModel:

objectModel, storageType: .inMemory)

 let context = stack.context

 let _ = TestEntity(context: context)

 // Expected

 expectation(forNotification:

.NSManagedObjectContextDidSave, object: context,

handler: nil)

 // When

 stack.saveContextIfNeeded()

 // Then

 waitForExpectations(timeout: 1.0, handler: nil)

}

To fix our test, we’ll update saveContextIfNeeded to this:

public func saveContextIfNeeded() {

 if context.hasChanges {

 do {

 try context.save()

 }

Chapter 10 taming Core Data

270

 catch let error as NSError {

 print("Unresolved error \(error), \(error.

userInfo)")

 }

 }

}

Now all our tests are passing, testSavingContextIfNeeded and

testCreateEntity. This means we’re done with our first CRUD operation.

 Fetching

Now let’s move on to the second CRUD operation, which is fetching data

(Figure 10-10).

We’ll start by adding a test that creates a new entity and then fetches all

entities and checks that the returned value is correct. This test will look like

this:

func testFetchEntities() {

 // Given

 let testModel = manager.create(TestEntity.self)

Figure 10-10. Current UML

Chapter 10 taming Core Data

271

 // When

 let models = manager.fetchAll(TestEntity.self)

 // Then

 XCTAssertNotNil(models)

 XCTAssertEqual(models?.count, 1)

 XCTAssertEqual(models?[0].objectID, testModel?.objectID)

}

To fix this test, we’ll go and implement the fetch function.

Add this func:

public func fetchAll<T: Storable>(_ entityType: T.Type) -> [T]?

{

 let request: NSFetchRequest<T> = T.fetchRequest()

 do {

 let results = try stack.context.fetch(request)

 return results

 } catch let error as NSError {

 print("Unresolved error \(error), \(error.userInfo)")

 }

 return nil

}

We’ll need to update Storable because we require each Storable to

provide its own fetch request, and we need this fetch request to be able to

fetch our objects. It should now look like this:

public protocol Storable: NSManagedObject {

 static var entityName: String {get}

 static func fetchRequest() -> NSFetchRequest<Self>

}

Chapter 10 taming Core Data

272

 Updating

Now let’s move to a new CRUD operation (Figure 10-11). Let’s add a test for

updating:

func testUpdateEntity() {

 // Given

 let testModel = manager.create(TestEntity.self)

 testModel?.name = "Test"

 testModel?.number = 123

 // When

 manager.update(testModel)

 stack.context.rollback()

 // Then

 let updatedModel = manager.fetchAll(TestEntity.self)?[0]

 XCTAssertNotNil(updatedModel)

 XCTAssertEqual(updatedModel?.name, "Test")

 XCTAssertEqual(updatedModel?.number, 123)

}

Figure 10-11. Current UML

Chapter 10 taming Core Data

273

You might have noticed that we call rollback() on our context inside

our test. So what does this do? First, let’s look at what we’re attempting

to do in our test. We insert a new object using create, and then we make

some changes to it. We call our update function, and we’re expecting it

to persist these changes. Given the nature of Core Data, we know that the

changes we make will be applied only locally to the current context we’re

in. And since we use the same context for creating and updating as we do

for fetching, then even if we don’t persist our changes in the store, the fetch

will return the updated data. To showcase this, let’s add implementation

for update that doesn’t actually save the changes:

@discardableResult

public func update<T: Storable>(_ entity: T?) -> T? {

 return entity

}

The test now fails because we do not save. To showcase the importance

of rollback(), comment out the line where we call rollback() and rerun

the test. We’ll find that our test passes. So in this test the use of rollback is

essential to clear all unsaved data and assert only on the saved data.

To fix the test, we need to change our implementation so that we

actually save the changes:

@discardableResult

public func update<T: Storable>(_ entity: T?) -> T? {

 stack.saveContextIfNeeded()

 return entity

}

Chapter 10 taming Core Data

274

 Advanced Fetching

Since tests are now passing, let’s add a new functionality. We need to be

able to sort our fetched results (Figure 10-12). Sorting them while fetching

is much more optimized than sorting them in memory after fetching. In

addition to sorting, we need to be able to filter our fetch results. We also need

to set a limit for fetch results. Let’s add tests for these two functionalities:

func testFetchSorted() {

 // Given

 for i in 1...10 {

 let testModelOne = manager.create(TestEntity.self)

 testModelOne?.number = Int32(i)

 manager.update(testModelOne)

 }

 // When

 let sort = NSSortDescriptor(key: "number", ascending:

false)

 let models = manager.fetchAll(TestEntity.self, sort: sort)

Figure 10-12. Current UML

Chapter 10 taming Core Data

275

 // Then

 XCTAssertNotNil(models)

 XCTAssertEqual(models?.count, 10)

 XCTAssertEqual(models?[0].number, 10)

 XCTAssertEqual(models?[9].number, 1)

}

func testFetchWithLimit() {

 // Given

 for i in 1...10 {

 let testModelOne = manager.create(TestEntity.self)

 testModelOne?.number = Int32(i)

 manager.update(testModelOne)

 }

 // When

 let models = manager.fetchAll(TestEntity.self, limit: 5)

 // Then

 XCTAssertNotNil(models)

 XCTAssertEqual(models?.count, 5)

}

func testFetchWithPredicate() {

 // Given

 for i in 1...10 {

 let testModelOne = manager.create(TestEntity.self)

 testModelOne?.number = Int32(i)

 manager.update(testModelOne)

 }

 // When

 let predicate = NSPredicate(format: "number > 5")

 let models = manager.fetchAll(TestEntity.self, predicate:

predicate)

Chapter 10 taming Core Data

276

 // Then

 XCTAssertNotNil(models)

 XCTAssertEqual(models?.count, 5)

}

To fix these tests, update fetchAll to this:

public func fetchAll<T: Storable>(_ entityType: T.Type,

sort: NSSortDescriptor? = nil, limit: Int = 0, predicate:

NSPredicate? = nil) -> [T]? {

 let request: NSFetchRequest<T> = T.fetchRequest()

 if let sort = sort {

 request.sortDescriptors = [sort]

 }

 if let predicate = predicate {

 request.predicate = predicate

 }

 request.fetchLimit = limit

 do {

 let results = try stack.context.fetch(request)

 return results

 } catch let error as NSError {

 print("Unresolved error \(error), \(error.userInfo)")

 }

 return nil

}

Chapter 10 taming Core Data

277

 Next Steps
Let’s recall our goal we stated earlier. It was divided into three subgoals:

• Create a generic Core Data interface ✅.

• Create a component that consumes this interface to

provide needed functionality for our app.

• Use this new component instead of the old

implementation.

Since we’re done with the creation of the generic Core Data interface

(CoreDataManager), let’s move now to our second subgoal. We will create

a new component called FavoritesManager, which will be responsible for

adding, deleting, and fetching our favorites (Figure 10-13).

Figure 10-13. Current UML

Chapter 10 taming Core Data

278

We’ll start as usual with tests. Let’s add a new test case class named

FavoritesManagerTests, which will house our tests. Next, let’s set up

our manager. We need to set it up using a custom in-memory Core Data

manager that consumes our app’s data model. Our file should look like

this:

import XCTest

@testable import Books

import CoreData

class FavoritesManagerTests: XCTestCase {

 // MARK:- Variables

 var favoritesManager: FavoritesManager!

 var coredataManager: CoreDataManager!

 var stack: CoreDataStack!

 // MARK:- Setup

 override func setUp() {

 super.setUp()

 self.stack = CoreDataStack(storageType: .inMemory)

 self.coredataManager = CoreDataManager(coreDataStack:

stack)

 self.favoritesManager = FavoritesManager(coredataManage

r: coredataManager)

 }

 override func tearDown() {

 super.tearDown()

 self.favoritesManager = nil

 self.coredataManager = nil

 self.stack = nil

 }

}

Chapter 10 taming Core Data

279

This will cause build errors. To fix these, we’ll need to add a new class

FavoritesManager that has an internal dependency on CoreDataManager.

Our class should look like this:

class FavoritesManager {

 // MARK:- Variables

 private var coredataManager: CoreDataManager

 // MARK:- Singleton

 public static let shared = FavoritesManager()

 // MARK:- Initializer

 init(coredataManager: CoreDataManager = .shared) {

 self.coredataManager = coredataManager

 }

}

Now we know from before that interacting with CoreDataManager

requires our models to conform to the Storable protocol. Let’s go ahead

and get this out of the way. We’ll do the same thing we did with TestEntity

for our two managed object classes: Book and BuyLink. We need to also

make sure that both classes are marked with the final keyword to avoid

build errors.

Now let’s write tests for the operations FavoritesManager is

responsible for. Normally we would tackle this in a normal TDD fashion.

However, we won’t go through this part step by step to avoid repetitiveness.

After going through multiple TDD cycles, we will end up with this set of

new tests:

func testAddingBook() {

 // Given

 let buyLink = BuyLinkModel(name: .amazon, url: "URL")

Chapter 10 taming Core Data

280

 var book = BookModel(title: "BookTitle", contributor:

"Contributor", author: "Author", createdDate: "2021-05-26

22:10:24")

 book.amazonProductURL = "Amazon"

 book.bookImage = "Image"

 book.bookDescription = "Description"

 book.publisher = "Publisher"

 book.buyLinks = [buyLink]

 // When

 favoritesManager.addFavorite(book)

 // Then

 let books = coredataManager.fetchAll(Book.self)

 XCTAssertNotNil(books)

 XCTAssertEqual(books?.count, 1)

 let retrievedBook = books![0]

 XCTAssertEqual(retrievedBook.title, book.title)

 XCTAssertEqual(retrievedBook.contributor, book.contributor)

 XCTAssertEqual(retrievedBook.author, book.author)

 XCTAssertEqual(retrievedBook.created_date, book.

createdDate)

 XCTAssertEqual(retrievedBook.amazon_product_url, book.

amazonProductURL)

 XCTAssertEqual(retrievedBook.book_image, book.bookImage)

 XCTAssertEqual(retrievedBook.desc, book.bookDescription)

 XCTAssertEqual(retrievedBook.publisher, book.publisher)

 XCTAssertEqual(retrievedBook.buyLinks?.count, 1)

 let link = retrievedBook.buyLinks?.allObjects[0] as?

BuyLink

 XCTAssertEqual(link?.name, buyLink.name.rawValue)

 XCTAssertEqual(link?.url, buyLink.url)

}

Chapter 10 taming Core Data

281

func testFetchingFavoritesSorted() {

 // Given

 let book1 = BookModel(title: "Book1", contributor:

"Contributor", author: "Author", createdDate: "2021-05-01

22:00:00")

 let book2 = BookModel(title: "Book2", contributor:

"Contributor", author: "Author", createdDate: "2021-05-02

22:00:00")

 let book3 = BookModel(title: "Book3", contributor:

"Contributor", author: "Author", createdDate: "2021-05-03

22:00:00")

 favoritesManager.addFavorite(book1)

 favoritesManager.addFavorite(book3)

 favoritesManager.addFavorite(book2)

 // When

 let favorites = favoritesManager.fetchAllFavorites()

 // Then

 XCTAssertEqual(favorites.count, 3)

 XCTAssertEqual(favorites[0].title, "Book3")

 XCTAssertEqual(favorites[1].title, "Book2")

 XCTAssertEqual(favorites[2].title, "Book1")

}

And the code that makes these tests pass is this:

// MARK:- Public Functions

func fetchAllFavorites() -> [Book] {

 let sort = NSSortDescriptor(key: "created_date", ascending:

false)

 return coredataManager.fetchAll(Book.self, sort: sort) ?? []

}

Chapter 10 taming Core Data

282

func addFavorite(_ model: BookModel) {

 guard let book = coredataManager.create(Book.self) else {

 return

 }

 book.title = model.title

 book.amazon_product_url = model.amazonProductURL

 book.author = model.author

 book.book_image = model.bookImage

 book.contributor = model.contributor

 book.created_date = model.createdDate

 book.desc = model.bookDescription

 book.publisher = model.publisher

 let links:NSMutableSet? = []

 guard let buyLinks = model.buyLinks else {

 return

 }

 for buyLink in buyLinks {

 if let link = coredataManager.create(BuyLink.self) {

 link.url = buyLink.url

 link.name = buyLink.name.rawValue

 link.book = book

 links?.add(link)

 }

 }

 book.buyLinks = links

 coredataManager.update(book)

}

// MARK:- Private Helpers

func getBook(from model: BookModel) -> Book? {

Chapter 10 taming Core Data

283

 let predicate = NSPredicate(format: "title == %@", model.

title ?? "")

 let results = coredataManager.fetchAll(Book.self, limit: 1,

predicate: predicate)

 guard let books = results, books.count == 1 else {

 return nil

 }

 return books[0]

}

• fetchAllFavorites uses the fetchAll function of

CoreDataManager to fetch all objects of type Book and

returns them sorted by date.

• addFavorite takes a BookModel object. It inserts a new

Book object into our store and then populates this book

with data from the passed model.

 Putting It All Together
So far we have not changed any of our old code. We’ve only added new

code, but we haven’t used it anywhere in our app yet. Which brings us to

the last goal we had when we started this Core Data–themed journey: we

want to use the new code we’ve written instead of the old implementation.

Making this change will directly affect our app. So as with any step we

take in TDD, we need to start it with tests. We need to make sure that we

have verification tests in place covering all the logic that will be affected.

The logic that’s going to be affected is everything related to favorites

handling in our app. Luckily, if we take a look at our UI test suite, we’ll find

that we have tests for all our scenarios. This means we can now switch out

the implementations with confidence.

Chapter 10 taming Core Data

284

Easiest way to guide this change is to remove the old Core Data code

from its root. So let’s head to our AppDelegate and remove all code related

to Core Data. This will result in an array of build errors in our app. Now

we just go over the errors one by one and replace the old code by calls to

FavoritesManager.

In FavViewController the function loadSavedData will now look like

this:

func loadSavedData() {

 let results = FavoritesManager.shared.fetchAllFavorites()

 for book in results {

 books.append(convertToBookModel(book: book))

 }

 self.tableView?.reloadData()

}

And the saveBookAsFavorite implementation in both

BookViewControllerA and BookViewControllerB will look like this:

func saveBookAsFavorite(withBook bookModel:BookModel) {

 FavoritesManager.shared.addFavorite(bookModel)

 let alert = UIAlertController(title: "Saved", message:

"Your book saved to favorites", preferredStyle: .alert)

 alert.addAction(UIAlertAction(title: "Ok", style: .default,

handler: nil))

 self.present(alert, animated: true, completion: nil)

}

Now that we’re done with our changes, we need to rerun our

verification tests to make sure our changes did not break anything. When

we run our tests, everything passes, which means we’ve successfully

written a testable Core Data layer and integrated it swiftly in our app!

Chapter 10 taming Core Data

285

 Exercise
We have one last operation to add, which is the deletion operation. Your

exercise is to add a new delete API to CoreDataManager. And use that new

API to implement deleting a book inside FavoritesManager. Then you’ll

update FavViewController to use the new API in FavoritesManager.

After adding the delete API, the final design should look like

Figure 10- 14.

 Summary
Core Data is indeed a powerful framework, and it’s used by many

developers due to its vast array of features. But as mentioned before, using

Core Data can sometimes be a tedious task. This is largely due to two

Figure 10-14. Final UML

Chapter 10 taming Core Data

286

things. First is that many developers use Core Data without fully grasping

what this framework really is and how it functions. Second is that many

developers find it challenging to write tests for their Core Data code,

which ultimately leads to hard-to-spot regressions. In this chapter, we’ve

attempted to address these two issues.

We talked about what Core Data really is and what it’s not. Core

Data is not a database. Though it’s capable of persisting data on disk,

Core Data is much more than that. In its essence, Core Data manages

object graphs, meaning it manages the lifecycle of our objects. Internally

Core Data depends on multiple objects to function, each having a

specific responsibility. There is the managed object model, which is

a programmatic representation of our object schema. And there’s the

managed object context, which acts as a scratch pad for us to apply the

changes we want, and then we can either discard them or persist them.

Finally, there’s the persistent store coordinator, which acts as a middleman

between our contexts and the persistent store, which is responsible for

actually saving the data. These represent the main building blocks of

the Core Data stack. And then finally there’s the persistent container,

which encapsulates the Core Data stack and simplifies its creation and

management.

We then went on and debunked the myth that Core Data is not

testable. Yes, testing Core Data can be challenging, but once you get

the hang of it, it becomes a piece of cake. We created a generic Core

Data layer and used it in our app (Books) instead of the old Core Data

implementation. And we did all that using TDD. We saw how using a

SQLite store in testing can cause issues in our tests. And we were able to

overcome this by using an in-memory store. We also saw how we can write

tests that are completely isolated from our app’s data model by adding a

separate data model just for testing and initializing our Core Data stack in

tests using this new model.

Chapter 10 taming Core Data

287© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_11

CHAPTER 11

Adding Features
to a Legacy App
If you recall in Chapter 1, we talked about the various situations where

we can use TDD. TDD can basically be applied at any stage in a project’s

lifetime. The most obvious option is start using TDD from the very

beginning. This is what we always recommend. However, what if you

only just recently heard about TDD and you already have a project you’re

working on? Well, TDD is still for you. TDD can help guide the refactor

of old legacy code, and also we can use TDD to properly modularize and

decouple our code base. We’ve already put this to action extensively in

previous chapters.

We can also use TDD when adding new functionalities to our existing

legacy code. This is what we will discuss in this chapter. Let’s assume

we have a legacy app that is on its way to being fully refactored and

modularized using TDD. But in the middle of that process, we got a request

for a new feature. Given the fast-paced world we’re living in, in most cases

we won’t have the luxury of pausing all new advancements of a project

until a big refactor is done. We need to continue developing new features

while simultaneously enhancing/refactoring our legacy code.

So how can we do this? First, we’ll examine our feature to determine

if the feature is coupled with an old feature or a completely new feature

that doesn’t depend on any old code. And if the feature is coupled with old

code, is this code legacy or refactored and modularized? But don’t get this

https://doi.org/10.1007/978-1-4842-7428-6_11

288

wrong. We’re not doing this examination to determine if we need TDD or

not. We’ll be using TDD in all cases. This will only affect the complexity

of our task. Working on a completely separated feature will be relatively

simple, since we are almost writing code from scratch, so we will spend

less time refactoring code.

On the other hand, working on a feature coupled with old legacy code

is a bit challenging because we can’t first refactor our code and then add

the feature. In these scenarios, you might be tempted to ditch TDD and

testing altogether because the parent code is not tested. However, there’s a

rule of thumb we should always try to follow from Uncle Bob’s clean code,

which states “Always leave the code better than you found it.” That’s why

we should try not to give in to that temptation.

 Legacy Code Disclaimer
We will be adding a new feature to Books. Let’s open up the starter project,

which can be found in the chapter’s resources. If we take a look at our code,

we’ll find that we have two view controllers for the detailed book view:

BookViewControllerA and BookViewControllerB. This exists because we’re

running an A/B testing experiment. Even though the two view controllers

have a lot of common functionalities, the code is duplicated between them,

which is something expected from legacy code. This is a huge code smell,

and if we have time we should definitely fix this, but sadly we don’t.

 A/B Testing
A/B testing is essentially an experiment where two or more variants of

a page are shown to users at random, and statistical analysis is used to

determine which variation performs better for a given conversion goal. So

the motivation of having an A/B test here was to determine which design

for BookViewController gives a better conversion for purchasing books.

Chapter 11 adding Features to a LegaCy app

289

 New Feature
The feature we want to add is to display reviews for each book, which can

help our users in making a decision whether they want to read this book or

not (Figure 11-1).

As we already pointed out, there are two view controllers for the

book view: BookViewControllerA and BookViewControllerB. And we

need to make this change in both view controllers. Knowing that the

Figure 11-1. Reviews wireframe

Chapter 11 adding Features to a LegaCy app

290

change is common between both controllers, we can follow the current

implementation and add the change in both controllers. However, this

way we won’t be following Uncle Bob’s rule we mentioned earlier. Let’s

start implementing the feature and see how we can address this problem

without having to refactor the entirety of the code.

 Kickoff
We’ll start by listing the possible scenarios a user can go through:

 1. When a user opens a book view that contains no

review, they should be able to see an indication that

there are no reviews.

 2. When a user opens a book view that contains

reviews, they should be able to see the first review.

We will follow our approach in implementing this feature as you can

see in Figure 11-2.

Now let’s transform these scenarios into UI tests. These tests are our

end goal. Once these tests pass, we then know that we’re done with our

new feature ✅.

Figure 11-2. Testing plan diagram

Chapter 11 adding Features to a LegaCy app

291

 UI Tests
Let’s transform our first scenario to a test. We’ll open up BooksUITests and

add a new test called testShowingBookViewWithNoReveiws. Let’s take a

look at the “Given” section of our test:

// Given

let testBundle = Bundle(for: type(of: self))

let booksJSONURL = testBundle.url(forResource:

"BestSellerBooksStub", withExtension: "json")

let booksJSON = try! String(contentsOf: booksJSONURL!)

let booksNoReveiwsJSONURL = testBundle.url(forResource:

"booksNoReview", withExtension: "json")

let booksNoReveiwsJSON = try! String(contentsOf:

booksNoReveiwsJSONURL!)

server.GET["/svc/books/v3/lists/overview.json"] = {_ in

HttpResponse.ok(.text(booksJSON))}

server.GET["/svc/books/v3/reviews.json?title=THE+LAST+THING+HE+

TOLD+ME"] = {_ in HttpResponse.ok(.text(booksNoReveiwsJSON))}

let app = XCUIApplication()

app.launchArguments += ["TESTING"]

app.launch()

This is almost identical to how we set up the already existing tests. The

only difference is that we now need to stub one more request, which is the

reviews request. Here we stub it and return a response having no reviews.

Now on to the “When” section:

// When

let booksTableView = app.tables

let cells = booksTableView.cells

let firstCell = cells.firstMatch

_ = firstCell.waitForExistence(timeout: 1.0)

firstCell.tap()

Chapter 11 adding Features to a LegaCy app

292

Here we just tap on a book to go to the book details view.

And now for the “Then” section:

let reviewsCell = cells.staticTexts["book_review"]

_ = reviewsCell.waitForExistence(timeout: 1.0)

XCTAssertTrue(cells.staticTexts["book_review"].label == "No

Reviews Available")

Here we make sure that the text “No Reviews Available” is shown.

Now that we’ve added a UI test for our first scenario, let’s add a test for

the second scenario:

func testShowingBookViewWithReveiws () {

 // Given

 let testBundle = Bundle(for: type(of: self))

 let booksJSONURL = testBundle.url(forResource:

"BestSellerBooksStub", withExtension: "json")

 let booksJSON = try! String(contentsOf: booksJSONURL!)

 let booksReveiwsJSONURL = testBundle.url(forResource:

"booksReview", withExtension: "json")

 let booksReveiwsJSON = try! String(contentsOf:

booksReveiwsJSONURL!)

 server.GET["/svc/books/v3/lists/overview.json"] = {_ in

HttpResponse.ok(.text(booksJSON))}

 server.GET["/svc/books/v3/reviews.json?title=THE+

LAST+THING+HE+TOLD+ME"] = {_ in HttpResponse.ok(.

text(booksReveiwsJSON))}

 let app = XCUIApplication()

 app.launchArguments += ["TESTING"]

 app.launch()

Chapter 11 adding Features to a LegaCy app

293

 // When

 let booksTableView = app.tables

 let cells = booksTableView.cells

 let firstCell = cells.firstMatch

 _ = firstCell.waitForExistence(timeout: 1.0)

 firstCell.tap()

 // Then

 let reviewsCell = cells.staticTexts["book_review"]

 _ = reviewsCell.waitForExistence(timeout: 1.0)

 XCTAssertTrue(cells.staticTexts["book_review"].label ==

"The book is interesting")

}

This is almost identical to the first test we’ve added. The only changes

are that we stub the request using a different response. And we check that

the review returned in the response is displayed.

Now that we’re done with our UI tests (Figure 11-3), let’s go down a

level.

Figure 11-3. Testing plan diagram (end-to-end tests added)

Chapter 11 adding Features to a LegaCy app

294

 Integration Tests
Now, we can design how the feature will work using integration tests. We

will use MVP again as we did before in all previous chapters. However,

BookViewControllerA and BookViewControllerB contain a lot of

spaghetti code. They both make a network request and save data into

the database. They also share a lot of duplicated code between them.

Unfortunately as we said before, we don’t have time to refactor this whole

mess. So we need to design this feature to be added into our spaghetti

code so that the added code is loosely coupled with each other and well

tested and enhances the already implemented code without refactoring

the whole class.

We will implement/inject this feature inside BookViewControllerA

and BookViewControllerB as if these viewControllers don’t do anything

else. So this feature will be implemented using the MVP design pattern

(Figure 11-4), and the old feature will remain the same with no change.

Figure 11-4. MVP Design

Chapter 11 adding Features to a LegaCy app

295

As we can see in the diagram, BookViewControllerA depends on

the presenter to return data that will be displayed inside the TableView.

BookViewPresenter depends on BookViewModel in order to return the

reviews array. BookViewModel depends on NetworkLayer to make the

request.

Now let’s convert this to a test. Let’s create a new test case class named

BookViewIntegrationTests and add this test to it:

func testFetchingBooksReturnsAReviewInPresenterDelegate () {

 // Given

 let testBundle = Bundle(for: type(of: self))

 let booksReveiwsJSONURL = testBundle.url(forResource:

"booksReview", withExtension: "json")

 let booksReveiwsJSON = try! Data(contentsOf:

booksReveiwsJSONURL!)

 let networkLayer = NetworkLayerStub(stubbedData:

booksReveiwsJSON)

 let bookViewModel = BookViewModel(network: networkLayer)

 let bookViewPresenter = BookViewPresenter(bookViewModel:

bookViewModel)

 let delegateMock = BookViewPresenterDelegateMock()

 bookViewPresenter.delegate = delegateMock

 let expectation = XCTKVOExpectation(keyPath: "review",

object: delegateMock)

 // When

 bookViewPresenter.fetchBookReviews(title: "THE LAST THING

HE TOLD ME")

Chapter 11 adding Features to a LegaCy app

296

 // Then

 self.wait(for: [expectation], timeout: 0.1)

 XCTAssertTrue(delegateMock.review == "The book is

interesting", "Fetched fetch and view expected reviews")

}

This is a slightly complicated test, so let’s break it down:

• Given section:

 – We create an instance of NetworkLayerStub that returns the

content of booksReview.json.

 – We create an instance of BookViewModel that depends on

NetworkLayerStub.

 – We create an instance of BookViewPresenter that depends on

BookViewModel.

 – We create an instance of BookViewPresenterDelegateMock

and set it as the delegate of our presenter.

• When section: We call fetchBookReviews with the

expectation that the presenter will eventually call its

delegate and pass it the book reviews.

• Then section: We wait for the expectation and assert on

the value of the reviews.

Since almost all the classes we used in this test are still not created,

we’ll have to comment out this test until we’re done with our unit test

phase. This is to allow our tests to build. Then we’ll come back and run it to

make sure we’re done.

Chapter 11 adding Features to a LegaCy app

297

 Unit Tests and Actual Implementation
So far we’ve just been adding tests as you can see in Figure 11-5. But since

we’ve reached this level of testing, it means we’re close to actually adding

code. We’ll need to implement each component in our design (Figure 11- 5).

 BookViewModel

We’ll start by implementing BookViewModel. To do that we’ll create a new

test case class and name it BookViewModelTests (Figure 11-6). And add

this to it:

func testFetchingBookReveiws() throws {

 // Given

 let expectedReviews: [Review] = stubbedReviews()

 let testBundle = Bundle(for: type(of: self))

 let booksReveiwsJSONURL = testBundle.url(forResource:

"booksReview", withExtension: "json")

 let booksReveiwsJSON = try Data(contentsOf:

booksReveiwsJSONURL!)

 let networkLayer = NetworkLayerStub(stubbedData:

booksReveiwsJSON)

Figure 11-5. Testing plan diagram (integration test added)

Chapter 11 adding Features to a LegaCy app

298

 let bookViewModel = BookViewModel(network: networkLayer)

 // When

 var actualReviews: [Review]?

 let waitForBookReviews = XCTestExpectation(description:

"Wait to fetch book reviews")

 bookViewModel.fetchBookReviews(with: "Title", callBack: {

reviews in

 actualReviews = reviews

 waitForBookReviews.fulfill()

 })

 // Then

 self.wait(for: [waitForBookReviews], timeout: 0.1)

 XCTAssertEqual(actualReviews, expectedReviews, "Fetched

books does not match the expected")

}

func stubbedReviews() -> [Review]{

 return [Review(byLine:"ERROL MORRIS", summary:"The book is

interesting")]

}

Let’s break it down.

• Given section:

 – We create an array of stubbed reviews that returns the content

of booksReview.json.

 – We create an instance of NetworkLayerStub that returns the

content of booksReview.json.

 – We create an instance of BookViewModel that depends on

NetworkLayerStub.

Chapter 11 adding Features to a LegaCy app

299

• When section: We call fetchBookReviews with the

expectation that the model will return the actual reviews.

• Then section: We wait for the expectation and assert on

the value of the reviews.

For our test to build, we need to do a couple of things. First, we need

to create the Review object and make sure it implements Codable and

Equatable:

// MARK: - ReviewsResponse

struct ReviewsResponse: Codable {

 let status, copyright: String

 let numResults: Int

 let results: [Review]

 enum CodingKeys: String, CodingKey {

 case status, copyright

 case numResults = "num_results"

 case results

 }

}

Figure 11-6. Testing plan diagram (unit test added)

Chapter 11 adding Features to a LegaCy app

300

// MARK: - Review

struct Review: Codable, Equatable {

 var byLine: String?

 var summary: String?

 init(byLine:String, summary:String) {

 self.byLine = byLine

 self.summary = summary

 }

 enum CodingKeys: String, CodingKey {

 case byLine = "byline"

 case summary = "summary"

 }

 static func == (lhs: Review, rhs: Review) -> Bool {

 lhs.byLine == rhs.byLine &&

 lhs.summary == rhs.summary

 }

}

Now let’s update the BookViewModel class. The class should have a

dependency on NetworkLayer and should have the fetchBookReviews

public function:

class BookViewModel {

 private var favoritesManager:FavoritesManager?

 private var networkLayer: NetworkLayer?

 init(networkLayer: NetworkLayer? = .init(), favoritesManager:

FavoritesManager? = .shared) {

 self.networkLayer = networkLayer

 self.favoritesManager = favoritesManager

 }

Chapter 11 adding Features to a LegaCy app

301

 public func addFavorite(_ model: BookModel) {

 self.favoritesManager?.addFavorite(model)

 }

 public func fetchBookReviews(with title:String, callBack:

@escaping (_ reviews:[Review]?) -> Void) {

 callBack(nil)

 }

}

Here we create our class and add the needed function with empty

implementation.

If we run our test, it will fail, which is expected. Now we need to

actually implement fetchBookReviews. To do so we need to make a

network request. This means we need to create a new struct conforming to

RequestProtocol that describes the request we need to make.

Let’s create a new test case class and name it ReviewsRequestTests.

And we’ll add these tests to it:

func testReviewsRequestHTTPMethod() {

 //Given

 let reviewsRequest = ReviewsRequest(title: "title")

 //When & Then

 XCTAssertEqual(reviewsRequest.method, .GET)

}

func testReviewsRequestURL() {

 //Given

 let bookRequest = ReviewsRequest(title: "title")

 let env = APIEnvironment(scheme: "http", host: "test.com",

port: 433, API_KEY: "")

 // When

 let urlRequest = bookRequest.createURLRequest(with: env)

Chapter 11 adding Features to a LegaCy app

302

 //When & Then

 XCTAssertEqual(urlRequest?.url?.absoluteString, "http://

test.com:433/svc/books/v3/reviews.json?title=title&api-

key=\(APIEnvironment.production.API_KEY)")

}

func testReviewsRequestBody() {

 //Given

 let reviewsRequest = ReviewsRequest(title: "title")

 //When & Then

 XCTAssertNil(reviewsRequest.body)

}

Now to get these tests to pass, we’ll need to create ReviewsRequest

like so:

struct ReviewsRequest: RequestProtocol {

 var title:String

 var path: String {

 return "/svc/books/v3/reviews.json"

 }

 var queryItems: [URLQueryItem]? {

 return [URLQueryItem(name: "title", value: self.title),

URLQueryItem(name: "api-key", value: NetworkLayer.

environment.API_KEY)]

 }

 var method:HTTPMethod {return .GET}

 var body: Data? {return nil}

}

Chapter 11 adding Features to a LegaCy app

303

Now if we run ReviewsRequestTests (Figure 11-7), they will pass ✅.

Now that we have ReviewsRequest ready, we can implement

fetchBookReviews properly:

public func fetchBookReviews(with title:String, callBack:

@escaping (_ reviews:[Review]?) -> Void) { self.

network?.executeRequest(ReviewsRequest(title: title), callBack:

{ data, Error in

 guard let data = data else {

 callBack(nil)

 return

 }

 var response:ReviewsResponse?

 do {

 response = try JSONDecoder().

decode(ReviewsResponse.self, from: data)

 } catch {

 print(error.localizedDescription)

 }

 if let reviews = response?.results {

 callBack(reviews)

 return

 }

Figure 11-7. ReviewsRequest tests passing

Chapter 11 adding Features to a LegaCy app

304

 callBack(nil)

 })

}

Here we make our network request, and we then parse the response

to Review objects and return it in the callback. And if any error occurs, we

return nil.

Now if we run the test in BookViewModelTests, it should pass ✅.

 BookViewPresenter

Now let’s jump to our presenter. As usual, we’ll start by creating a test case

class and name it BookViewPresenterTests. And we’ll add this test to it:

func testFetchingBookReveiwsInDelegate() {

 // Given

 let bookViewModel = BookViewModelStub(stubbedReviews:

stubbedReviews())

 let bookViewPresenter = BookViewPresenter(bookViewModel:

bookViewModel)

 let delegateMock = BookViewPresenterDelegateMock()

 bookViewPresenter.delegate = delegateMock

}

func stubbedReviews() -> [Review]{

 return [Review(byLine:"ERROL MORRIS", summary:"The book is

interesting")]

}

Here we create an instance of BookViewPresenter injected with

a stub for our view model. And we set its delegate to an instance of

BookViewPresenterDelegateMock. Since all these classes don’t exist, we’ll

need to create them so that our test can build.

Chapter 11 adding Features to a LegaCy app

305

We’ll start with BookViewPresenter:

protocol BookViewPresenterDelegate: AnyObject {

 func reviewDidFinish(_ review: String?)

}

class BookViewPresenter {

 private var bookViewModel:BookViewModel

 weak var delegate: BookViewPresenterDelegate?

 init(bookViewModel:BookViewModel) {

 self.bookViewModel = bookViewModel

 }

}

Here we define the protocol for our delegate. And we create our class

that has a dependency on BookViewModel.

Now let’s create BookViewModelStub:

class BookViewModelStub: BookViewModel {

 var stubbedReviews:[Review]?

 init(stubbedReviews:[Review]) {

 self.stubbedReviews = stubbedReviews

 super.init(network: nil)

 }

 override public func fetchBookReviews(with title:String,

callBack: @escaping (_ reviews:[Review]?) -> Void) {

 callBack(self.stubbedReviews!)

 }

}

This simply takes an array of reviews as the stubbed data and returns it

whenever fetchBookReviews is called.

Chapter 11 adding Features to a LegaCy app

306

Finally we need to create BookViewPresenterDelegateMock:

class BookViewPresenterDelegateMock: BookViewPresenterDelegate

{

 public var review:String?

 func reviewDidFinish(_ review: String?) {

 self.review = review

 }

}

This here simply conforms to BookViewPresenterDelegate and saves

the passed value in a variable.

Since our test is building now, it’s time to write the rest of it:

func testFetchingBookReveiwsInDelegate() throws {

 // Given

 let bookViewModel = BookViewModelStub(stubbedReviews:

stubbedReviews())

 let bookViewPresenter = BookViewPresenter(bookViewModel:

bookViewModel)

 let delegateMock = BookViewPresenterDelegateMock()

 bookViewPresenter.delegate = delegateMock

 // When

 let expectation = XCTKVOExpectation(keyPath: "review",

object: delegateMock)

 bookViewPresenter.fetchBookReviews(title: "Title")

 // Then

 self.wait(for: [expectation], timeout: 0.1)

 XCTAssertEqual(delegateMock.review, "The book is

interesting")

}

Chapter 11 adding Features to a LegaCy app

307

Here we call fetchBookReviews and expect that our delegate will be

called. We then assert on the value passed to our delegate.

We use a KVO expectation in our test. And in order to make this

expectation work, we need to make BookViewPresenterDelegateMock

inherit from NSObject and annotate the variable we are listening on with @

objc and dynamic:

class BookViewPresenterDelegateMock: NSObject,

BookViewPresenterDelegate {

 @objc dynamic var review:String = ""

 func reviewDidFinish(_ review: String?) {

 self.review = review ?? ""

 }

}

Now to make our test build and pass, we need to implement

fetchBookReviews:

func fetchBookReviews(title:String) {

 self.bookViewModel?.fetchBookReviews(with:title, callBack:

{ reviews in

 var dataToBeDisplayed: String?

 if let reviews = reviews, reviews.count > 0 {

 let firstReview = reviews[0]

 dataToBeDisplayed = firstReview.summary

 }

 DispatchQueue.main.async {

 self.delegate?.reviewDidFinish(dataToBeDisplayed)

 }

 })

}

Chapter 11 adding Features to a LegaCy app

308

Here we use the view model to fetch the reviews, and we get the

summary of the first review and pass it to our delegate.

Now if we run our test (Figure 11-8), it should pass ✅.

Let’s add a new test to handle the scenario where the view model does

not return reviews. It will be almost identical to our first test:

func testFetchingBookReveiwsReturnsNoResultsInDelegate() throws

{

 // Given

 let bookViewModel = BookViewModelStub(stubbedReviews: [])

 let bookViewPresenter = BookViewPresenter(bookViewModel:

bookViewModel)

 let delegateMock = BookViewPresenterDelegateMock()

 bookViewPresenter.delegate = delegateMock

 // when

 let expectation = XCTKVOExpectation(keyPath: "review",

object: delegateMock)

 bookViewPresenter.fetchBookReviews(title: "Title")

 self.wait(for: [expectation], timeout: 0.1)

 // Then

 XCTAssertEqual(delegateMock.review, "No Reviews Available")

}

Here we just pass an empty array to our view model stub, and we assert

that the value passed to our delegate is the expected empty state text.

Figure 11-8. Presenter test passing

Chapter 11 adding Features to a LegaCy app

309

This test will fail. To fix it, we need to handle this case in our code. It

will be as simple as adding a default value like so:

func fetchBookReviews(title:String) {

 self.bookViewModel?.fetchBookReviews(with:title, callBack:

{ reviews in

 var dataToBeDisplayed: String?

 if let reviews = reviews, reviews.count > 0 {

 let firstReview = reviews[0]

 dataToBeDisplayed = firstReview.summary

 }

 DispatchQueue.main.async {

 self.delegate?.reviewDidFinish(dataToBeDisplayed ??

"No Reviews Available")

 }

 })

}

Since the value passed back to the BookViewPresenterDelegate is no

longer optional, we can update our delegate to this:

protocol BookViewPresenterDelegate: AnyObject {

 func reviewDidFinish(_ review: String)

}

If we run our presenter tests (Figure 11-9), they should pass ✅.

Figure 11-9. Presenter tests passing

Chapter 11 adding Features to a LegaCy app

310

Now that all our unit tests are passing, let's uncomment our integration

test inside BookViewIntegrationTests and try to run it. It should pass now

as well ✅.

 Final Steps
We will not be doing this step in detail in this chapter as it’s a bit trivial.

However, what we need to do is to make use of our new presenter

inside our view controllers. The view controllers need to conform to

BookViewPresenterDelegate, and we need to call fetchBookReviews

in viewDidLoad. When the presenter calls reviewDidFinish, we should

use the data passed and populate our view. When we do this, our UI tests

should all pass.

We can go the extra mile and create a new class called

BookViewControllerBase and implement this functionality inside it. And

then we’ll have our two view controllers inherit from it.

 Summary
Using TDD on legacy code can be a bit challenging. Developers normally

tend to avoid using TDD and best practices when working on legacy code.

However, we should always try to leave any code we work on better than

we’ve found it. And this applies to adding new features to legacy apps.

Even if we don’t have the time to refactor the whole app, the code we add

needs to be well designed, tested, and maintainable. And this actually sets

the path to transforming the legacy code to well-designed code.

In this chapter we worked on adding a new feature to our legacy app. If

we had followed the standards the old code followed, we would’ve ended

up with more duplicated code that is impossible to test. Instead we applied

TDD and ended up with a new feature that works perfectly with the old

code and is well designed and highly covered by tests at the same time.

Chapter 11 adding Features to a LegaCy app

311© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6_12

CHAPTER 12

Handling Production
Issues
App quality has been a prominent topic in this book. We talked about our

external quality and internal quality. We also talked about how using TDD

can significantly enhance our quality. But quality is something we need

to be always working toward. Even the biggest companies are constantly

working toward enhancing their quality. As we said, having a well-tested

project helps in avoiding setbacks in our quality. But it doesn’t eliminate

them. Even if we follow TDD in everything we do, we might still miss a few

corner cases. In the end we’re only human.

 Our Tool
To be able to proactively work toward better quality, we need to be able

to track two things: bugs and crashes. We need to be able to track the

crashes our users encounter. This is an extremely hard thing to implement

ourselves. However, thankfully there are many third-party tools that can

provide us with this. We also need to provide our users with a way to

communicate with us any bugs they encounter while using our app. We

can manually implement this in a very basic way. However, there are also

tools that can provide us with this functionality along with a collection of

https://doi.org/10.1007/978-1-4842-7428-6_12

312

added functionalities (network logs, console logs, user steps, device state

with every bug reported).

In this chapter, we are going to use Instabug for bug reporting and

crash reporting. It’s perfectly fitting what we exactly need to keep track

of our bugs/crashes. We will show you how you can use it to be able to

reproduce your bugs/crashes so that you can write tests to fix them.

 Integration
First, let’s open up our starter project from this chapter’s resources. Now

in order to integrate our tool, we’ll need to go to their website and sign up.

When we sign up, we’ll be provided with a token, which is what we’ll need

to link our account to our app.

Next, we will add Instabug’s SDK to our app using Swift Package

Manager (Figure 12-1). Their package lives in this repo: https://github.

com/Instabug/Instabug- SP.

Figure 12-1. Adding a third-party library using SPM

Chapter 12 handling produCtion issues

http://dashboard.instabug.com
https://github.com/Instabug/Instabug-SP
https://github.com/Instabug/Instabug-SP

313

Finally we will add this line to the AppDelegate.swift, and you are

ready to go 🚀.

Instabug.start(withToken: "TOKEN", invocationEvents: .shake)

 Production Bug
We just received our first bug (Figure 12-2). A user is complaining that they

can’t find any books.

 Debugging
From the attached screenshot (Figure 12-2), we can see that the

MainViewController is empty. So this means that their complaint is valid.

After checking the bug report and looking at the network logs

(Figure 12-3), we can see that the books request failed. So this behavior is

expected. However, we don’t show any error messages at all.

Figure 12-2. User submitted a bug report

Chapter 12 handling produCtion issues

314

What we need to do here is once the books request failed, we need to

make sure to show this message: “Failed to load best seller books”.

Fixing this should be simple. But even if it was as simple as adding

one letter, we still need to use TDD. The rule of TDD is that we can’t write

any code without having a failing test. And given that we’ve shipped this

bug to production, then this means that we don’t have tests covering this

scenario.

 UI Test
Let’s open BooksUITests and add a new test to simulate this bug. The test

should look like this:

func testShowingErrorMessageWhenFailedToFetchBooksRequest() {

 // Given

 server.GET["/svc/books/v3/lists/overview.json"] = {_ in

HttpResponse.notFound}

Figure 12-3. Network logs from bug report

Chapter 12 handling produCtion issues

315

 let app = XCUIApplication()

 app.launchArguments += ["TESTING"]

 app.launch()

 // When

 let booksTableView = app.tables

 // Then

 let failureMessage = booksTableView.staticTexts["Failed to

fetch best seller books"]

 _ = failureMessage.waitForExistence(timeout:10)

}

Here we stub our request as we used to do, but now we return a failed

response. Then we assert that the error message is displayed.

 Unit Tests
The MainViewPresenter is the class that should be responsible

for returning an error message based on the list returned from the

MainViewModel.

fetchBestSellerBooks returns a list only. We need to extend this

method to return a Boolean to indicate if the presenter succeeded in

fetching the request or not and an error message to be displayed to our

user. Let’s add a new test in MainViewPresenterTests:

func testFailureToFetchBooks() throws {

 // Given

 let mainViewModel = MainViewModelStub(stubbedLists: [])

 let mainViewPresenter = MainViewPresenter(mainViewModel:

mainViewModel)

 var status:Bool?

 var message:String?

Chapter 12 handling produCtion issues

316

 var actualLists: [List] = []

 // when & then

 let waitForBooks = XCTestExpectation(description: "Wait to

fetch books")

 mainViewPresenter.fetchBestSellerBooks { lists, success,

errorMessage in

 actualLists = lists ?? []

 status = success

 message = errorMessage

 waitForBooks.fulfill()

 }

 self.wait(for: [waitForBooks], timeout: 0.1)

 XCTAssertEqual(actualLists, [])

 XCTAssertEqual(status, false)

 XCTAssertEqual(message, "Failed to fetch best seller books")

}

Here we tell our stub to return an empty array. And then we call

fetchBestSellerBooks that now returns a Boolean indicating success and

an error message in case of failure. Then we assert on the values returned

in the callback.

To fix this test, we need to update fetchBestSellerBooks to handle

this case:

public func fetchBestSellerBooks(callBack: @escaping (_

data:[List]?, _ success:Bool, _ errorMessage:String?) -> Void)

{

 self.mainViewModel?.fetchBestSellerBooks(callBack: { lists in

 if let lists = lists, lists.count > 0 {

 callBack(lists, true, nil)

 } else {

Chapter 12 handling produCtion issues

317

 callBack([], false, "Failed to fetch best seller

books")

 }

 })

}

This will cause multiple build errors in our code and tests since we’ve

changed the signature of the function. We just need to pass through every

build error and update the signature.

After fixing all build errors, if we run our new test in

MainViewPresenterTests (Figure 12-4), it should now pass ✅.

Figure 12-4. All tests passing

Chapter 12 handling produCtion issues

318

Now we just need to update our view controller to display the error:

func fetchBooks() {

 self.mainViewPresenter?.fetchBestSellerBooks(callBack: {

lists,success,errorMessage in

 if success {

 if let lists = lists {

 self.lists = lists

 DispatchQueue.main.async {

 self.refreshControl.endRefreshing()

 self.tableView?.reloadData()

 }

 }

 } else {

 self.lists = lists

 DispatchQueue.main.async {

 self.refreshControl.endRefreshing()

 self.tableView?.reloadData()

 self.showErrorMessage(errorMessage:

errorMessage)

 }

 }

 })

}

func showErrorMessage(errorMessage:String?) {

 let label = UILabel(frame: CGRect(x: 0, y: 0, width: 100,

height: 40))

 label.translatesAutoresizingMaskIntoConstraints = false

 label.text = errorMessage

 label.sizeToFit()

 self.tableView?.addSubview(label)

Chapter 12 handling produCtion issues

319

 label.centerXAnchor.constraint(equalTo: (self.tableView?.

centerXAnchor)!).isActive = true

 label.centerYAnchor.constraint(equalTo: (self.tableView?.

centerYAnchor)!).isActive = true

}

Now if we run the UI test (Figure 12-5), it should also pass ✅.

 Production Crash
We just received our first crash with number of occurrences 3 (Figure 12-6).

Figure 12-5. UI test passing

Chapter 12 handling produCtion issues

320

 Debugging
If we look at the crash stack trace (Figure 12-7), we’ll find that it happens

when someone tries to buy a book using Amazon.

Figure 12-6. Crash report

Figure 12-7. Crash stack trace

Chapter 12 handling produCtion issues

321

First though, it could be that it’s an issue from the web service we’re

using. It’s possible that the book returned does not contain an Amazon link

or something. But if we check the network logs (Figure 12-8), we’ll find that

the web service returned a correct response.

If we debug our crash further and look at the user steps for all three

occurrences (Figure 12-9), we can reach the conclusion that all crashes

happened inside BookViewControllerA. And they always happened after

going to the background and coming back to foreground.

Figure 12-8. Network logs

Chapter 12 handling produCtion issues

322

If we check the code inside BookViewControllerA, we’ll find the

culprit:

NotificationCenter.default.addObserver(self, selector:

#selector(didEnterBackground), name: UIApplication.

didEnterBackgroundNotification, object: nil)

We listen on the didEnterBackground notification, and when it’s fired

we do this:

@objc func didEnterBackground() {

 self.book = nil

}

And when a user taps on the Amazon button

@IBAction func buyByAmazon() {

 for buyLink in self.book!.buyLinks! {

 if buyLink.name == .amazon {

 if let url = URL(string: buyLink.url) {

 UIApplication.shared.open(url)

Figure 12-9. Steps prior to crash

Chapter 12 handling produCtion issues

323

 }

 }

 }

 }

we force-unwrap our book instance to be able to use it.

Gotcha!!!

So now that we have our root cause, we will do the same thing we did

with our bug. We’ll apply TDD.

 UI Test
Let’s open BooksUITests and add a new test named

testShowingBookViewAfterEnterBackground to simulate the scenario that

causes the crash.

The Given section of the test should look like this:

// Given

let testBundle = Bundle(for: type(of: self))

let booksJSONURL = testBundle.url(forResource:

"BestSellerBooksStub", withExtension: "json")

let booksJSON = try! String(contentsOf: booksJSONURL!)

let booksNoReveiwsJSONURL = testBundle.url(forResource:

"booksNoReview", withExtension: "json")

let booksNoReveiwsJSON = try! String(contentsOf:

booksNoReveiwsJSONURL!)

server.GET["/svc/books/v3/lists/overview.json"] = {_ in

HttpResponse.ok(.text(booksJSON))}

server.GET["/svc/books/v3/reviews.json?title=THE+LAST+THING+HE+

TOLD+ME"] = {_ in HttpResponse.ok(.text(booksNoReveiwsJSON))}

Chapter 12 handling produCtion issues

324

let app = XCUIApplication()

app.launchArguments += ["TESTING"]

app.launch()

Here we just set up our test by stubbing our two requests and then

launching the app.

Now on to the “When” section:

// When

// Go to book

let booksTableView = app.tables

let cells = booksTableView.cells

let firstCell = cells.firstMatch

_ = firstCell.waitForExistence(timeout: 1.0)

firstCell.tap()

// Move to background

XCUIDevice.shared.press(.home)

// Move back to foreground

app.activate()

Here we navigate to a book details page. And then we go to the

background and then back to the foreground.

Finally our “Then” section:

// Then

let amazonButton = app.buttons["amazon"]

_ = amazonButton.waitForExistence(timeout: 1.0)

amazonButton.tap()

Here we should tap on the Amazon button. Normally in the Then

section we do some assertions. However, for this test, our assertion is that

the app doesn’t crash.

Chapter 12 handling produCtion issues

325

 Handle A/B Testing
Now we have a problem: every time the test runs, it may open

BookViewControllerA or BookViewControllerB. This is because of our

A/B testing experiment that chooses a view controller by random. So if it

chooses to go to BookViewControllerB, our test will pass even though it

should fail. For our test to be effective, we need it to fail consistently.

So we need to add another launch argument inside our UI test to force

our app to use the first experiment:

let app = XCUIApplication()

app.launchArguments += ["TESTING", "detailsA"]

app.launch()

We need to adjust the AppDelegate to force a specific experiment:

if ProcessInfo.processInfo.arguments.contains("TESTING"){

 if ProcessInfo.processInfo.arguments.

contains("detailsA") {

 UserDefaults.standard.set(true, forKey: "detailsA")

 } else {

 UserDefaults.standard.set(false, forKey: "detailsA")

 }

} else {

 let randomBool = Bool.random()

 if randomBool {

 Instabug.addExperiments(["detailsA"])

 } else {

 Instabug.addExperiments(["detailsB"])

 }

 UserDefaults.standard.set(randomBool, forKey: "detailsA")

}

Chapter 12 handling produCtion issues

326

Here we check if a launch argument is passed. If it is, we use the

value passed; if not, we fall back to our normal implementation, which is

choosing a view randomly.

Now, if we run our test, it should crash (Figure 12-10).

 Fixing Our Test
Fixing our test, and in turn our production issue, is pretty simple. We just

need to remove the force casting inside and replace our implementation

with this:

@IBAction func buyByAmazon() {

 guard let buyLinks = self.book?.buyLinks else {

 return

 }

 for buyLink in buyLinks {

 if buyLink.name == .amazon {

 if let url = URL(string: buyLink.url) {

 UIApplication.shared.open(url)

 }

 }

 }

}

Figure 12-10. Crash reproduced

Chapter 12 handling produCtion issues

327

Here we use a guard to check if the book exists or not.

We should always avoid using force casting as it’s extremely unsafe.

Most crashes happening on iOS are caused by force casting.

We can also remove the code that listens on the didEnterBackground

notification altogether as we don’t seem to need it.

Now if we run our test (Figure 12-11), it should pass ✅.

 Summary
Our goal is to continuously improve our app quality. Sometimes it’s

possible to miss a certain scenario and not have it handled. We can’t

always predict how our users will interact with our app. That’s why it’s

always best to have a way to track the fatal crashes happening to our

production users and to also provide our users with a way to report faulty

behaviors in our app.

In this chapter we talked about how to use third-party tools to keep

track of bugs and crashes on production. When encountering a production

issue, fixing it should also be test-driven. We used TDD when adding

features by transforming our requirements to tests. With production bugs

and crashes, it’s the exact same thing, and our requirement is simply

for the issue to not happen. When we do this, we will be preventing this

specific issue from ever happening again.

Figure 12-11. UI test passing

Chapter 12 handling produCtion issues

329© Khaled El-Morabea and Hassaan El-Garem 2021
K. El-Morabea and H. El-Garem, Modularizing Legacy Projects Using TDD,
https://doi.org/10.1007/978-1-4842-7428-6

Index

A
A/B testing, 288, 325
Accessibility identifier, 55, 57, 64
Accessibility inspector, 60, 61
addRandomNumber, 31
App Store app, 123, 125, 132
App Store module map, 126
Assertion methods

comparison asserts, 31
equality asserts, 28
errors asserts, 32
nullability asserts, 29
truthfulness asserts, 28

Async task illustration, 188
Automated testing, 2, 3, 17

B
Behavior-driven

development (BDD), 9
Boilerplate tests, 48
Books

fixing threading issues,
205–208, 210

networking (see Networking)
BooksUITests target, 173
BookViewModel, 297, 299–304
BookViewPresenter, 304–309

BookViewPresenterDelegate, 306
Bug reporting, 312

C
CalcTests.swift, 23
CalculatorTests, 24, 38
Code coverage, 39, 41
CoffeeDrinksDataSource, 96–98
CoffeeDrinksDataSourceStub, 99
CoffeeDrinksModel, 100
CoffeeDrinksModelTests,

98–102
CoffeeDrinksPresenter, 103
CoffeeDrinksPresenterTests,

102, 104–108
Comparison asserts, 31
Concurrency

cost, 188–190
definition, 183
GCD, 184
queues, 184
serial vs. concurrent queues, 185
sync vs. async, 186–188

Core data
advanced fetching, 274–276
CoreDataManager, 251–253
CoreDataManagerTests, 262, 263

https://doi.org/10.1007/978-1-4842-7428-6

330

CoreDataStack, 253–262
creation

implementation, 267
saving changes, 268, 270
storable, 266

fetching, 270, 271
object graph, 245
TestEntity, 264, 265
testing stack, 250, 251
updating, 272, 273

CoreDataManagerTests, 251, 253,
262, 263

Core data stack, 253–260
managed object context, 249
managed object model, 247
persistent container, 249
persistent store, 248
persistent store coordinator, 248

Cost of concurrency, 188–190
Crash report, 312, 320
Crash stack trace, 320

D
DatabaseManager, 67
Deadlock, 189, 211
Debugging

accessibility, 60
accessibility inspector, 61
production bug, 313
production crash, 320, 321, 323

Dependency injection
initializer injection, 169, 170

property injection, 170, 171
Descendants relationship, 52
Double creation

by inheritance, 163, 164
protocols, 165–168

E
Equality asserts, 28
Errors asserts, 32, 42
Expectations

creation, 34
types, 35
XCTest, 34
XCTAssertTrue, 33

Explicit assertion, 194

F
Failing unit tests, 89, 96, 150
FavoritesManager, 277
FavoritesManager class, 279
fetchBestSellerBooks, 316
fetchBookReviews, 301, 303, 307
fetchBookReviews public

function, 300
fetchBooks(), 138, 149

G
getData() function, 99
Grand central dispatch (GCD),

184, 210
Granularity, 86, 87, 116

Core data (cont.)

INDEX

331

H
Health check testing

bugs, 108
failing tests, 109
faulty code change, 108

Hypertext Transfer
Protocol (HTTP)

methods, 214
requests, 214
responses, 214

I, J, K
Implicit assertion, 194
Inheritance, 163, 164
Initializer injection, 169, 170
Instabug, 312
Integration tests, 70–76, 93–95
iOS URL Loading System, 216, 243
isLoggingEnabled(), 24, 26

L
Legacy App

feature, 289
implementation

BookViewModel, 297–304
BookViewPresenter, 304–309

integration tests, 294, 296
testing plan diagram, 290
UI tests, 291–293

Legacy app module map, 130
Legacy Books app, 129

Legacy code disclaimer, A/B
testing, 288

LoginManager, 67, 72, 77

M
MainViewController, 134, 135
MainViewController

responsibilities
diagram, 135

MainViewIntegrationTests,
139–141, 222

MainViewModel, 142–146, 222
MainViewModelTests, 144, 146
MainViewPresenter, 146, 148,

149, 315
MainViewPresenterTests, 148
Managed object context, 249
Minimal viable product (MVP), 1
Mocking, 160–163
Mocking URLSession, 228–230, 232
Model View Presenter (MVP),

92, 117
Modularization process

class as starting point, 133
class’s responsibilities, 134, 135
definition, 119
initial module map, 132, 133
refactor responsibilities (see

Refactor responsibilities)
Modularized app, 121

advantages and
disadvantages, 122

module map, 131

INDEX

332

Module, 122, 124, 125
MVP design pattern, 138

N
Networking

class’s responsibilities, 220
design overview, 220, 221
execute request

mocking URLSession,
228–230, 232

URLSession, 232, 233
failing request handling,

233, 235–237
Kickoff, 222
make request, 222
module, 219
process overview, 219
RequestProtocol, 224–227
showcasing test value, 233
verification tests, 222

Networking ABCs
HTTP requests, 214
HTTP responses, 214
in iOS

URLRequest, 218
URLSession, 217
URLSessionConfiguration,

217
URLSessionTask, 218

URL, 215
Non-modularized app, 121
NSManagedObject class, 249
NSManagedObjectModel, 247

NSPersistentContainer, 249
NSURLSessionTask., 244
Nullability asserts, 29

O
Object-oriented design, 91
Object-oriented programming

(OOP), 163

P
Parallelize test execution, 63
Persistent store

coordinator, 240, 246,
248, 286

Presenter test passing, 308
Production bug

debugging, 313
UI test, 314, 315
unit tests, 315–319

Production crash
A/B testing handle, 325, 326
debugging, 320, 321, 323
fixing our test, 326, 327
report, 320
UI test, 323, 324

Property injection, 170, 171
Protocol-oriented programming

(POP), 165

Q
Queues, 184, 185, 190, 210

INDEX

333

R
Race conditions, 189, 190
Randomized ordering, 38, 39
Randomize execution order, 39
Reader-writer problem

race condition identifying,
191–193

singleton classes, 190, 191
TDD

cycle, 193
failing test, writing, 193–197
make it pass, 203–205
race condition, 199
XCTestExpectation, 197

thread sanitizer, 201–203
Refactoring, 8, 14
Refactor responsibilities

fetchBooks() func, 149
integration test, 139–141
MainViewModel, 142–146
MainViewPresenter,

146, 148, 149
NetworkLayer, 141, 142
rerun verification tests, 152
test value, 150, 151
verification tests, 136, 137

RequestProtocol, 224–227, 235
RequestProtocolTests, 225
returnFailure(), 160
returnSuccess(), 160
ReviewsRequestTests, 301
ReviewsRequest tests passing, 303
Runtime issue breakpoint, 203

S
Serial queue, 185, 190, 203, 208
Serial queue task illustration, 185
setUp() function, 37
setUpWithError(), 23, 37
Shared resource, 190
Singleton classes, 190, 191
Sociable components, 70
Solitary components, 70
Stubbing, 160

app, 180
definition, 157
dependency, 158, 159
network, UI tests

BestSellerBooksStub.json, 176
target membership,

BestSellerBooksStub.json,
177

enabling HTTP for
localhost, 178

implementation, 178
SPM, 173, 174
swifter, 173

Swift Package Manager (SPM),
173, 312

Sync task illustration, 187

T
tearDownWithError(), 23
Test double

creation
by inheritance, 163, 164

INDEX

334

using protocols, 165–168
mocks, 160–163
stubs, 157–160

Test-driven development (TDD), 3
benefits, 8
cycle, 4, 5
external and internal quality, 6
fraction scenario, 13
implementing, 9, 11, 12
in Nutshell, 3
refactor error handling, 15
TaxCalculator, 16
test cases, 13
testing, 5

TestEntity, 264, 265
Test failure breakpoint, 36, 37
Testing pyramid

app screens, 66
integration tests, 70–76
plan diagram, 89
UI tests, 67–70
unit tests, 77–81

testInvalidCredentialsLogin, 75
testShowingBestSellerBooks(), 152
testShowingBookViewWithNo

Reveiws, 291
Thread sanitizer, 201–203
Tool, integration, 312
Truthfulness asserts, 28

U
UIImageView, 205, 206

UITests
accessibility, 57–59
assertions, 56
boilerplate tests, 48
children relationship, 52
combining relationships, 54
containment relationship, 53
debugging accessibility, 60
descendants relationship, 52
improvement, 62, 63
interaction, UIElement, 56
launchArguments, 51
network stubbing, 171–180
querying, 51
target, 46, 47
test case, 50
testing pyramid, 67–70
Xcode, 45
XCUITest components, 49

Uniform resource locator (URL), 215
Unit tests

CoffeeDrinksDataSource,96–97
CoffeeDrinksModelTests,

98–102
CoffeeDrinksPresenterTests,

102, 104–108
MainViewPresenter, 146–149
PersistenceManager/

DatabaseManager, 77
production bug, 315–319
validating, 77–80

URLRequest, 218
URLSession, 216, 217, 232, 233, 244
URLSessionConfiguration, 217

Test double (cont.)

INDEX

335

URLSessionDataTask, 229
URLSessionDataTaskMock, 229
URLSessionTask, 218, 220

V
Validator component, 81
Value assertion, 57
ViewControllers, 134

W
Wireframes, 88

X, Y, Z
Xcode, 19, 23, 36
XCTAssertEqual, 196
XCTAssertEqual line, 35
XCTAssert functions, 19
XCTAssertTrue, 27
XCTest, 19, 27
XCTestExpectation,

34, 35, 197
XCUIElement, 55
XCUIElementQuery, 51
XCUITest components, 49

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: TDD Basics
	Types of Testing
	Trouble with Automated Testing
	TDD in a Nutshell
	Why Use TDD?
	External and Internal Quality
	When to Use TDD?
	When Not to Use TDD?
	Refactoring
	Modularization
	Test Structure
	Let’s TDD
	Maximum Out of TDD
	Exercise
	Summary

	Chapter 2: Unit Tests
	Your First Test
	What Do We Want to Test?
	Creating a Unit Test Target
	Adding a Test Case Class

	Assert Methods
	Assert Method Types
	Truthfulness Asserts
	Equality Asserts
	Nullability Asserts
	Comparison Asserts
	Errors Asserts

	Expectations
	Expectation Types

	Test Ordering
	Randomized Ordering

	Code Coverage
	Exercise
	Summary

	Chapter 3: UI Tests
	Your First Test
	XCUITest Components
	Our Chapter Goal
	First Test Case

	Launching the App
	Querying the UI
	Relationships

	Interacting with the UI
	UI Events

	Assertions
	Value Assertion

	Accessibility
	Accessibility Tips

	Putting It All Together
	Improve UI Tests
	Exercise
	Summary

	Chapter 4: Testing Pyramid
	Our App
	UI Tests
	Integration Tests
	Unit Tests
	Summary

	Chapter 5: TDD Deep Dive
	CoffeePot
	Eye on the Big Picture
	Requirements
	Testing Pyramid
	First Story
	Architecture
	MVP
	First Integration Test
	Unit Tests
	CoffeeDrinksDataSource
	CoffeeDrinksModelTests
	CoffeeDrinksPresenterTests

	Test Health Check
	Second Story
	Architecture
	Exercise
	Summary

	Chapter 6: Modularization for the Win
	Why Bother with Modularization?
	What Is a Module?
	Modularizing Your App
	Introducing Books
	Modularization Process
	Initial Module Map
	Choose a Class as a Starting Point
	Identify the Class’s Responsibilities
	Refactor Responsibilities
	Verification Tests
	Refactoring
	Integration Test
	NetworkLayer
	MainViewModel
	MainViewPresenter
	Last Touches
	Test Value

	Rerun Verification Tests

	Refactor the Rest of the Responsibilities
	Next Starting Point

	Exercise
	Summary

	Chapter 7: Dependency Injection and Mocks
	Stubbing
	Mocking
	Test Doubles Creation
	Creation Using Inheritance
	Creation Using Protocols

	Dependency Injection
	Initializer Injection
	Property Injection

	Stubbing the Network in UI Tests
	Summary

	Chapter 8: Avoiding Multithreading Nightmares
	What Is Concurrency?
	GCD
	Queues
	Serial vs. Concurrent
	Sync vs. Async

	Cost of Concurrency
	Reader-Writer Problem
	Singleton Classes
	Identifying a Race Condition
	Applying TDD to the Problem
	Thread Sanitizer
	Make It Pass

	Fixing Threading Issues in Books
	Applying TDD

	Summary

	Chapter 9: Testing Your Network
	Networking ABCs
	HTTP Requests
	HTTP Responses
	URL

	Networking in iOS
	URLSession
	URLSessionConfiguration
	URLRequest
	URLSessionTask

	Networking in Books
	Process Overview
	Modularization process

	Identify the Class’s Responsibilities
	Design Overview
	NetworkLayer Tasks to Be Refactored
	NetworkLayer New Design

	Kickoff
	Verification Tests
	Make a Network Request
	RequestProtocol
	Execute Request
	Mocking URLSession
	Using URLSession

	Showcasing Test Value
	Handle a Failing Request
	Putting It All Together

	Exercise
	Summary

	Chapter 10: Taming Core Data
	The Core Data Stack
	Managed Object Model
	Persistent Store Coordinator
	Persistent Store
	Managed Object Context
	Persistent Container

	Core Data in Books
	Testing Stack
	CoreDataManager
	CoreDataStack
	Inject the Stack into CoreDataManager
	TestEntity
	Creation
	Introducing Storable
	Creation Implementation
	Saving Changes

	Fetching
	Updating
	Advanced Fetching
	Next Steps
	Putting It All Together

	Exercise
	Summary

	Chapter 11: Adding Features to a Legacy App
	Legacy Code Disclaimer
	A/B Testing

	New Feature
	Kickoff
	UI Tests
	Integration Tests
	Unit Tests and Actual Implementation
	BookViewModel
	BookViewPresenter

	Final Steps

	Summary

	Chapter 12: Handling Production Issues
	Our Tool
	Integration

	Production Bug
	Debugging
	UI Test
	Unit Tests

	Production Crash
	Debugging
	UI Test
	Handle A/B Testing
	Fixing Our Test

	Summary

	Index

