

Learning Test-Driven
Development

A Polyglot Guide to Writing Uncluttered Code

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Saleem Siddiqui

Learning Test-Driven Development
by Saleem Siddiqui

Copyright © 2022 Saleem Siddiqui. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Melissa Duffield

Development Editor: Michele Cronin

Production Editor: Kristen Brown

Copyeditor:

Proofreader:

Indexer:

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

October 2021: First Edition

Revision History for the Early Release

2021-04-19: First Release

http://oreilly.com

2021-04-27: Second Release

2021-05-11: Third Release

2021-05-11: Fourth Release

2021-07-13: Fifth Release

2021-08-26: Sixth Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098106478 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning
Test-Driven Development, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent
the publisher’s views. While the publisher and the author have used good
faith efforts to ensure that the information and instructions contained in this
work are accurate, the publisher and the author disclaim all responsibility for
errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or
other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to
ensure that your use thereof complies with such licenses and/or rights.

978-1-098-10647-8

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781098106478

Dedication
For

 Ammi,

 Apa,

Janelle, and

Safa.

Without your love and support, neither this book nor its author would be
complete.

Preface

Test-driven development is a way of managing fear during programming.
—Kent Beck

We are so ineffably lucky! We’ve had test-driven development for years.

Several decades have passed since the developers who wrote the code for the
Mercury Space Program practiced “Punch Card TDD”. XUnit libraries that
facilitate the adoption of test-driven development date back to the turn of the
century. In fact, Kent Beck, who wrote “Test-Driven Development By
Example” and developed the JUnit framework, refers to himself as having
“rediscovered” (and not “invented”) the practice of TDD. That statement is
evidence of his humility, yet it is also the truth. TDD is as old as software
development itself.

Then why is it that test-driven development is still far from the standard way
to write code? Why is it often the first practice that gets sacrificed when there
is schedule pressure, or when IT budgets need to be trimmed, or (my personal
favorite) when there is a desire to “increase the velocity of the software
delivery team”? All these reasons are proffered despite the ready availability
of empirical and experimental evidence that TDD reduces defect count,
creates simpler design, and improves developers’ confidence in their own
code.

Why is TDD adopted tentatively and abandoned readily? The following
arguments, heard often from those who are reluctant to practice it, may
explain the reasons:

1. I don’t know where and how to start. Perhaps the most common
reason is lack of awareness and exposure. Like any other skill,
writing code in a test-driven style is something that needs to be
learned. Many developers either haven’t had the external inducement
(time, resources, guidance, encouragement) or internal motivation

https://www.linkedin.com/pulse/tdd-punch-cards-dave-schinkel/
https://www.quora.com/Why-does-Kent-Beck-refer-to-the-rediscovery-of-test-driven-development-Whats-the-history-of-test-driven-development-before-Kent-Becks-rediscovery
https://www.microsoft.com/en-us/research/wp-content/uploads/2009/10/Realizing-Quality-Improvement-Through-Test-Driven-Development-Results-and-Experiences-of-Four-Industrial-Teams-nagappan_tdd.pdf

(overcoming one’s own reluctance and fear) to learn this skill.

2. TDD works in toy programs or during coding interviews, but not
when writing “real world” code. This is untrue yet understandable.
Most test-driven development tutorials and books — including this
one — are constrained to pick relatively simple examples from an
obvious domain. It’s difficult to write a TDD article or book with
actual code from a piece of software plucked from a commercially
deployed application (say, from a financial institution, a healthcare
management system, or a self-driving automobile). For one thing:
much of such real world code is proprietary and is not open-source.
For another: it’s the job of the author to show code from a domain
that has the widest appeal to the largest audience. It would be
illogical, bordering on obscurantism, to show TDD in the context of
a highly specialized problem domain. Doing so would require,
before anything else, a lengthy explanation of the arcane jargon and
cant of that domain. That would defeat the very purpose of the
author: making TDD understandable, approachable, even lovable.

These obstacles to using “real world” code in TDD literature
notwithstanding, developers regularly write production software
using test-driven development. Perhaps the best and most convincing
example is the suite of unit tests for the JUnit framework itself. The
Linux Kernel — possibly the most strenuously used piece of
software in the world — is being improved with unit tests.

3. Writing tests after-the-fact is sufficient, TDD is too restrictive
and/or pedantic. This is more refreshing to hear than the occasional
rant that “unit testing is overrated”! Writing tests after writing
production code is an improvement over writing no tests at all.
Anything that raises the developers’ confidence in their code,
reduces accidental complexity, and provides authentic
documentation is a good thing. However, writing unit tests before
writing the production code provides a forcing function against
creating arbitrarily complexity.

https://github.com/junit-team/junit5/tree/main/platform-tests
https://www.linuxjournal.com/content/unit-testing-linux-kernel
https://tyrrrz.me/blog/unit-testing-is-overrated

TDD guides us to simpler design because it provides these two
practical rules as guardrails:

a. Only write production code to fix a failing test.

b. Refactor energetically when, and only when, tests are green.

Does test-driven development guarantee that all code we ever write will
automatically and inevitably be the simplest code that works? No, it does not.
No practice, rule, book, or manifesto can do that. It’s up to the people who
bring these practices to life to ensure that simplicity is achieved and retained.

This book’s content explains and instructs how test-driven development
works in three different programming languages. Its purpose is to instil in
developers the habit and self-belief to use TDD as a regular practice. That
purpose may be ambitious, but I’m hopeful it isn’t elusive.

What is Test-Driven Development
Test-driven development is a technique for designing and structuring
code so that both its simplicity and one’s confidence in it increase in
proportion to the size of the code.

Let’s take a look at the various parts of this definition

A technique
Test-driven development is a technique. It’s true that this technique is borne
of a set of beliefs about code, viz:

That simplicity — the art of maximizing the amount of work not
done, is essential.

That obviousness and clarity are more virtuous than obscurantism
and cleverness.

That writing uncluttered code is a key component of being
successful.

1

Despite being rooted in these beliefs, as a practical matter, TDD is a
technique. Like riding a bike, kneading dough, or solving differential
equations — it’s a skill that no one is born with and that everyone has to
learn.

Other than this section, this book does not dwell on the belief system behind
test-driven Development. It’s assumed that you either subscribe to it already,
or that you’re willing to give TDD a try as a new (or forgotten) skill.

The mechanics of that technique — writing a failing unit test first, then
briskly writing just enough code to make it pass, and then taking the time to
clean up — occupy the bulk of this book. There will be ample opportunity to
try this technique for yourself.

In the final analysis, it is more satisfying to learn a skill and also imbue
oneself with the beliefs that support it. Just like riding a bike is more
enjoyable if you remind yourself that it’s good for your health and the
environment!

Designing and structuring code
Notice that TDD is not fundamentally about testing code. It is true that we
use unit tests to drive the code, but the purpose of TDD is to improve the
design and structure of the code.

This focus is vital. Because if TDD were only about testing, we couldn’t
really mount an effective case for writing tests before rather than after the
business code is written. It’s the goal of designing better software that moves
us; the tests are simply a vehicle for this motion. The unit-tests that we end
up with via TDD are an added bonus; the primary benefit is the simplicity of
design we get.

How do we achieve this simplicity? It is through the mechanism of RED-
GREEN-REFACTOR, which is described in detail at the beginning of
Chapter 1.

Enhanced simplicity

Simplicity isn’t a mere esoteric notion. In software, we can measure it. Fewer
lines of code per feature, lower cyclomatic complexity, fewer side-effects,
smaller run time or memory requirements — any subset of these (or other)
requirements can be taken as an objective measure of simplicity.

Test-driven development, by forcing us to craft “the simplest thing that
works” (i.e. gets all tests to pass), constantly nudges us towards these metrics
of simplicity. We aren’t allowed to add superfluous code “in case we need it”
or because “we can see it coming”. We must first write a failing test to justify
writing such code. The act of writing the test first acts as a forcing function 
— compelling us to deal with arbitrary complexity early. If the feature we’re
about to develop is ill-defined, or our understanding of it flawed, we’ll find it
hard to write a good test up front. This will force us to address these issues
before we write a line of production code. This is the virtue of TDD: by
exercising the discipline of driving our code through tests, we weed out
arbitrary complexity at every juncture.

This virtue isn’t mystical: using test-driven development won’t cut down
your development time, the lines of code, or defect count by half. What it will
allow you to do is to arrest the temptation to introduce artificial and contrived
complexity. The resultant code — driven by the discipline of writing failing
tests first — will emerge as the most straightforward way to gets the job done,
i.e. the simplest code that meets the needs of the tests.

Increased confidence
Code should inspire confidence, especially code we have authored ourselves.
This confidence, while itself a nebulous feeling, is grounded in an
expectation of predictability. We are confident in things whose behavior we
can presage. If the corner coffee shop under-charges me one day and over-
charges me by the same amount the next day, I’m likely to lose confidence in
them even though I break even over the two days. It’s a nature of human
psychology that we value regularity and predictability even higher than net
value. The world’s luckiest gambler, who may have just won ten times in a
row at a roulette table, wouldn’t say that they “trust” or have “confidence” in
the wheel. Our affinity for predictability survives even dumb luck.

http://mccabe.com/pdf/mccabe-nist235r.pdf

Test-driven development increases our confidence in our code because each
new test flexes the system in new and previously untested ways — literally!
Over time, the suite of tests we create guard us against regression failures.

This steadily growing battery of tests is the reason that the code’s quality and
our confidence in it grow in proportion to the size of the code.

Who is this book for
This is a book for developers — people who write software.

There are many professional titles that go with this vocation: “software
engineer”, “application architect”, “devops engineer”, “test automation
engineer”, “programmer”, “hacker”, “code whisperer”, and countless others.
Titles may be impressive or humble, trendy or solemn, traditional or modern.
However, the one thing that’s common in the people professing these titles is
this: they spend at least a part of their week — if not each day — in front of a
computer, reading and/or writing source code.

I have chosen the term “developers” to represent this community of which
I’m both a humble and grateful member.

Writing code is one of the most liberating and egalitarian activities one may
imagine. In theory, all one needs by way of physical prowess is the
possession of a brain. Age, gender, sex, nationality, national origin — none of
these should be a barrier. Having physical disabilities shouldn’t be a barrier.

However, it would be naive to assume that reality is as neat or fair as that.
Access to computing resources isn’t equitable. A certain level of wealth,
freedom from want, and security are necessary. Access is thwarted even
further by badly written software, badly designed hardware, and myriad other
usability limitations that prevent all people from learning to program based
solely on their interest and effort.

I have tried to make this book accessible to as many people as possible. In
particular, I’ve tried to make it approachable to people with physical
disabilities. The images have alt-text to facilitate e-reading. The code is
available via GitHub. And the prose is simple and straightforward.

In terms of experience, this book is intended both for people who are still
learning how to program and for those who already know how to program. If
you are ramping up on one (or more) of the three languages in this book, you
are well within the target audience.

However, this book does not teach the basics of programming in any
language, including Go, JavaScript, or Python. The ability to read and write
code in at least one of the programming languages is a requirement. If you
are absolutely new to programming, it’d be wise to solidify the foundations
of writing code in one of the three languages before you proceed with this
book.

The sweet spot for this book spans developers who are beyond their early
forays into programming all the way to seasoned architects, as shown in
figure P11. (Kent Beck is an outlier.)

Figure P-1. This is a book for software developers

Writing code can be, by turns, exhilarating and exasperating. However, even
at its most frustrating, there should always be more than a glimmer of
optimism and a bushel of confidence that we can make code do our bidding.
With perseverance, you’ll find that your journey through this book is fruitful
and that the joy of writing code in a test-driven manner is one you want to
savor long after you’re done reading the Reflections chapter.

What are the prerequisites for reading this
book
By way of equipment and technical prowess, you should:

Have access to a computer with Internet connectivity.

Be able to install and delete software on that computer. That is, your
access on that computer should not be restricted; in most cases this
would require having “Administrator” or “Superuser” access on that
computer.

Be able to launch and use a shell program, a web browser, a text
editor, and (optionally) an Integrated Development Environment on
that computer.

Have installed (or can install) the run-time tools for one of the
languages used in this book.

Be able to write and run a simple program — “hello world" — in one
of the languages used in this book.

The “Setting up your development environment” section in Chapter 0 -
Introduction & Setup has more installation details.

How to read this book
The subject matter of this book is “how to do test-driven Development in Go,
JavaScript, and Python”. While the concepts discussed are applicable to all
three languages, the treatment of each language necessitates some separation
of the material in each chapter. The best way to learn test-driven
Development (like any other acquired skill) is through practice. I encourage
you to both read the text and write the code on your own. I call this style
"following the book" — because it includes active reading and active coding.

TIP

To get the most out of this book, write the code for the Money example in all three
languages.

Most of the chapters have general-purpose sections that are applicable to all
three languages. These are followed by language-specific sections, where the
code for one of the three languages is described and developed. These
language-specific sections are always clearly marked by their headings: Go,
JavaScript, or Python. At the end of each chapter are one or two sections
that summarize what we have accomplished thus far and what comes next.

Chapter 5 through Chapter 7 are unique insofar as they deal exclusively with
one of the three languages: Go, JavaScript, and Python, respectively.

Figure P-2 shows a flowchart describing the layout of this book and the
different ways to follow it.

Figure P-2. Flowchart on how to read this book

Here are some “reading pathways” on how to best follow this book.

Follow the book one language at a time
I recommend this pathway if one or more of these conditions apply to you:

1. I am aching to dive into one of these languages before tackling the
other two.

2. I’m particularly curious (or skeptical!) how TDD works in one of the
three languages.

3. I learn best by working in one language at a time, rather than
multiple languages simultaneously.

Follow the flow chart shown in figure P-2 one line at a time. For example: if
you are eager to learn TDD in Go first, skip the sections marked JavaScript
and Python in the first reading. Then do a second pass through the book for
Javascript, and a third to finish things off in Python. Or you may do the
languages in a different order. The second and third pass should be quicker
than the first, however, be prepared for the unique quirks of each language!

If you follow the book this way, you will find that writing the code
successively in each language gives you greater insight on TDD as a
principle — beyond the details of testing as a language feature. Getting into
the habit of writing tests is necessary; however, understanding the reasons for
why test-driven development works across languages is even more important.

Follow the book in two languages first and then in the
third language
I recommend this pathway if you identify with any of the following
statements:

1. I want to build and compare the solutions to the same problem in
two languages.

2. I am less comfortable with one of the languages and want to defer it
after the other two.

3. I can code in two languages at a time but would find it difficult to
juggle all three at once.

Follow the flow chart shown in figure P-2 two lines at a time. After you’re
done with following the Money problem for two languages, do a second pass
through the book to follow the third language.

It can happen that you want to follow two languages in the first pass yet
cannot decide which language to defer to a second reading. Here are some
suggestions on how to pick two out of the three languages:

1. Want to contrast a dynamically-typed language with a statically
typed one and want to keep the language tech stack simple? Follow
Go and Python first and JavaScript next.

2. Ready to learn contrasting ways in how to build code in two
different languages and ready to tackle tech stack variations? Follow
Go and JavaScript first and Python later.

3. Want to compare and contrast two dynamically-typed languages?
Follow JavaScript and Python first and Go next.

If you read the book this way, you’ll quickly discover the similarities and
differences of doing TDD in multiple languages. While the syntactical and
design variations in the languages create obvious differences; you may be

surprised by how deeply the discipline of TDD permeates into how you write
code, regardless of the language in which you write code.

Follow the book in all three languages
simultaneously
I recommend this pathway if any of these statements resonate with you:

1. Want to gain the best value by learning the contrasts and similarities
of the three languages.

2. Find it easier to read a book from start to finish instead of doing
multiple passes through it.

3. Have some experience in all three languages but haven’t practiced
TDD in any of them.

If you can write code in three languages simultaneously without getting
overwhelmed, I recommend this pathway.

Regardless of the pathway you choose, be mindful that when you’re writing
code, you will likely face challenges that have to do with your specific
development environment. While the code in this book has been tested for
correctness (and its continuous integration build is green), that does not mean
it will work on your computer at first go. (On the contrary, I can almost
guarantee that you will find interestingly steep portions on the learning
curve.) One of the key benefits of TDD is that you control the speed at which
you proceed. When you get stuck, slow down. If you make progress in
smaller increments, it is easier to find where the code went astray. Writing
software means dealing with errant dependencies, unreliable network
connections, quirky tools, and the thousand natural shocks that code is heir
to. Slow down when you feel overwhelmed: make your changes smaller and
discrete. Remember: TDD is a way of managing fear of writing code!

Conventions used in this book
There are two categories of conventions used in this book that require

explanation: typographical and contextual.

Typographical conventions
The prose in this book is in the font-type used in this sentence. It is meant to
be read and not entered verbatim as code. When there are words used in prose
that are also used in code — such as class, interface, or Exception 
— a fixed width font is used. This alerts you that the term is or will be used 
— spelled exactly the same way — in code.

Longer segments of code are separated into their own blocks, as shown
below.

package main

import "fmt"

...

func main() {

 fmt.Println("hello world")

}

Ellipses mean irrelevant code or output has been omitted

Everything in a code block is either something you type in verbatim or
something the program produces as the literal output — with two exceptions.

1. Within code blocks, ellipses (...) are used to indicate either
omitted code or omitted output. In both cases, whatever is omitted is
irrelevant to the current topic. You should not type these ellipses in
code, or expect to see them in the output. An example is shown in
the code block above.

2. Within code blocks that show output, there can be ephemeral
values — memory addresses, timestamps, elapsed time, line
numbers, auto-generated filenames, etc. — that will almost certainly
be different for you. When reading such output, you may safely

ignore the specific ephemeral values, such as the memory addresses
in the following block:

AssertionError: <money.Money object at 0x10417b2e0> !=

 <money.Money object at 0x10417b400>

TIP
Tips are suggestions that can be helpful to you while you write code. They are separated
from the main text for easy reference.

IMPORTANT
Important information that is vital to the topic is identified like this. Often there are
hyperlinks or footnotes to resources that provide more information on the subject.

In most chapters, there is extended development and discussion of code in
each of the three languages. (The exceptions are Chapters 5, 6, and 7, which
deal exclusively with Go, JavaScript, and Python respectively.) To separate
the discussion of each language, a heading and an icon in the margin indicate
the language that’s the exclusive purview of that section. Keep your eyes
peeled for these three headings and icons:

Go

JavaScript

Python

Lexical conventions

This book discusses core software concepts and backs it up with code in three
different languages. The languages are sufficiently different in their
individual terminology so as to present challenges when discussing common
concepts.

For example: Go does not have classes or class-based inheritance.
JavaScript’s type system has prototype-based objects — which means that
everything is really an object, including things typically thought of as
“classes”. Python, as used in this book, has the more “traditional” class-based
objects. . A sentence like “We will create a new class named Money.” isn’t
merely confusing, it’s downright incorrect when interpreted in the context of
Go.

To reduce the potential for confusion, I’ve adopted the general terminology
shown in Table P-1 to refer to key concepts in a programming-language-
agnostic fashion.

Table P-1. General terminology used in this book

Term Meaning Equivalent in Go
Equivalent in
JavaScript

Equivalent in
Python

Entity A singular,
independently
meaningful domain
concept; a key noun

Struct type Class Class

Object An instance of an
Entity; a reified
noun

Struct instance Object Object

Sequence A sequential list of
Objects of dynamic
length

Slice Array Array

Hashmap A set of (key,
value) pairs, where
both keys and
values can be
arbitrary Objects
and no two keys
can be the same

Map Map Dictionary

2

Function A set of operations
with a given name;
functions may (or
may not) have
entities has both
inputs and outputs,
but they’re not
associated directly
with any one Entity

Function Function Function

Method A Function that is
associated with an
Entity. A method is
said to be “called
on” an instance of
that Entity (i.e. an
Object)

Method Method Method

Signal an error Mechanism by
which a Function or
Method indicates
failure

Error return value
(conventionally, the
last return value of
a function/method)

Throw an exception Raise an exception

The goal is to use terms that explain the concepts without favoring one
programming language’s terminology over others. After all, the biggest take-
away from this book ought to be that test-driven development is a discipline
that can be practiced in any programming language.

In sections of the book that deal with one of the three languages (and are
clearly marked in the heading), the text uses the language specific terms. For
example, in a Go section, there will be instructions to “define a new struct
named Money.” The context makes it clear that this instruction is specific to
a particular language.

Using Code Examples
The source code for this book is available at https://github.com/saleem/tdd-
book-code.

If you have a technical question or a problem using the code examples, please

https://github.com/saleem/tdd-book-code

send email to bookquestions@oreilly.com.

This book is here to help you learn and practice that art of test-driven
development. In general, you may use any code provided in this book in your
programs and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not
require permission. Selling or distributing examples from O’Reilly books
does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a
significant amount of example code from this book into your product’s
documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Learning Test-Driven Development by Saleem Siddiqui (O’Reilly).
Copyright 2022 Saleem Siddiqui, 978-1-098-10647-8.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

The Apologies
Merriam Webster’s dictionary leads with two definitions of the word
“apology”, shown in figure P-3.

mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

Figure P-3. An apology — either a mea culpa or a defense

An apology is either an expression of contrition, or a pre-emptive
clarification against criticism. This section leans towards the second meaning.
However, I acknowledge that it may also satisfy the first definition!

Why does this book use Go, JavaScript, and Python?
This book uses Go, JavaScript, and Python as the three languages with which
to demonstrate the practice of test-driven development. It’s a fair question:
why these three languages?

Here are some reasons.

1. Variety
The three languages in this book represent a diversity of design options, as
shown in the table P-2.

Table P-2. Comparison of Go, JavaScript, and Python

Feature Go JavaScript Python

Object-Oriented “Yes and no” Yes (as an ES.next
compliant language)

Yes

Static vs. Dynamic
Types

Statically typed Dynamically typed Dynamically typed

Explicit vs. Implicit
Types

Mostly explicit, variable
types can be implicit

Implicitly typed Implicitly typed

Automatic type
coercion

No type coercion Partial type coercion (for
Boolean, Number, String,
Object). No coercion for
arbitrary class types

Some implicit type-
coercion (e.g. 0 and
"" are `false`y

Exception
mechanism

By convention: second return
type of methods is error,
caller must explicitly check
if this is non-nil

throw to signal an
Exception and try ... c
atch to respond to it

raise to signal an
Exception and try
... except to
respond to it

Generics Not yet! Not needed due to dynamic
typing

Not needed due to
dynamic typing

Testing support Part of language (in "testi
ng" package and with go t
est command)

Not part of language, many
libraries available (e.g.
Jasmine, Mocha, Jest)

unittest library
is part of language

https://golang.org/doc/faq#Is_Go_an_object-oriented_language
https://blog.golang.org/generics-next-step

2. Popularity
Python, JavaScript, and Go are the top three new languages that developers
want to learn as found in several annual surveys by Stack Overflow in 2017,
2018, 2019, and 2020. Figure P-4 shows the result of the 2020 survey.

https://insights.stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-wanted

Figure P-4. Most desirable new languages to learn in a survey of developers by StackOverflow

3. A personal reason
Over the last four years or so, I had the opportunity to work on several

projects where the tech stack featured one of these three as the primary
programming language. While working with other developers I found that in
general, their eagerness to learn and practice TDD was evenly matched by
their inability to find resources (or muster the discipline) to do so. They
wanted to practice TDD, but didn’t know how or couldn’t find the time for it.
Tellingly, this was true for both seasoned developers and “noobs”.

I hope this book serves as both a practical guide and a source of inspiration to
those who want to learn and practice TDD in any language; not just in Go,
JavaScript, or Python.

Why not this other language?
For starters: there is a vast number of programming languages. One could
conceivably write half a dozen books like this and still cover only a small
fraction of the languages that developers over the world use on a daily basis
to write code for academic, business, and recreation purposes.

Besides, there is an excellent book already available for test-driven
development in Java. Kent Beck’s seminal work is what inspired me, as it did
countless other developers to fall in love with the art and science of TDD. It
also begot the “money problem” that’s a major theme in this book.

I am sure there are many other languages for which a practical TDD guide
would be beneficial. How about R? Or SQL? Or even COBOL?

Let me assure you: the reference to COBOL was neither a straw man
argument nor a cheap shot. In the mid 2000’s, I worked on a project where I
demonstrated the ability to do TDD in COBOL using COBOLUnit. It was the
most fun I’ve had in a language that’s more than a decade older than I am!

I’m hoping that you will pick up the mantle. That you will learn, teach, and
espouse the skills and discipline necessary to practice test-driven
development in other languages. That you will write a blog, an open-source
project, or the next book in this series.

3

Why does this book have a “Chapter 0”?
The vast majority of programming languages use 0-based indexing for arrays
and other countable lists. This is certainly true for the three programming
languages that form the basis of this book. In one sense, this book honors the
rich history of programming culture by numbering the chapters starting at 0.

As another homage: the number Zero is itself a radical idea. Charles Seife has
written a whole book on this lonely number. In tracing the history of Zero,
Seife notes the reservations that the Greeks had about a number that
represents nothing:

In that [i.e. the Greek] universe there is no such thing as nothing. There is
no zero. Because of this, the West could not accept zero for nearly two
millennia. The consequences were dire. Zero’s absence would stunt the
growth of mathematics, stifle innovation in science, and, incidentally, make
a mess of the calendar. Before they could accept zero, philosophers in the
West would have to destroy their universe.

—Charles Seife, “Zero - the biography of a dangerous idea”

At the risk of getting too sublime: test-driven development occupies a similar
place in programming culture today as Zero did in Western philosophy a few
millennia ago. There is a resistance to adopting it, born of a strange
combination of dismissiveness, unease, and a belief that it’s just too much
fussiness about nothing. “Why should I be fastidious about writing tests first 
— I already know how I’m going to code the feature!” “Test-driven
development is pedantic: it only works in theory and never in practice.”
“Writing tests after you’re done writing production code is at least as
effective as, if not more than, writing tests first”. These and other objections
to TDD make it resembles the number “0” in how radical it is!

The practice of a book having a Chapter Zero isn’t entirely radical, anyway.
Carol Schumacher has written an entire book titled “Chapter Zero:
Fundamental Notions of Abstract Mathematics” which is a standard textbook
for Advanced Mathematics in many college-level curricula. No prizes for
guessing what numbered chapter that book begins with!

4

https://www2.kenyon.edu/Depts/Math/schumacherc/public_html/Professional/Research/Zero/Zero.htm

Dr. Schumacher, in the Instructor’s Manual for her book, says something that
I have found illuminating:

Your task as a writer is to give the right cues to your readers, cues that will
make it as easy as possible for them to understand what you are trying to
say.

—Carol Schumacher, Instructor’s Resource Manual for use
with Chapter Zero

I have taken this advice to heart. Pragmatically, a title containing “0” helps to
set Chapter Zero apart from the treatise that follows it. Chapter 1 of this book
puts us on a TDD journey which carries on through the next dozen chapters.
Chapter Zero is about describing what that journey is, what we need to know
and have before we embark on it, and what to expect when we are on it.

With that last apology out of the way, let’s move right on to Chapter Zero!

1 This definition of simplicity is enshrined in one of the twelve principles behind the Agile
Manifesto. https://agilemanifesto.org/principles.html

2 Python is very fluid in its support for Object Oriented Programming. For example, see
prototype.py which implements prototype-based objects in Python:
https://github.com/airportyh/prototype.py

3 Although a book about TDD on a certain language is unlikely to get approval from publishers.
Its name starts with “Brain” and ends with an expletive!

4 Lua is a notable exception. My friend Kent Spillner once gave a fascinating talk on this subject,
which I summarized here https://www.linkedin.com/pulse/why-arrays-zero-based-so-many-
languages-saleem-siddiqui/

https://agilemanifesto.org/principles.html
https://github.com/airportyh/prototype.py
https://www.linkedin.com/pulse/why-arrays-zero-based-so-many-languages-saleem-siddiqui/

Chapter 0 - Introduction & Setup

Squeaky clean code is critical to success
—Ron Jeffries, https://ronjeffries.com/articles/017-

08ff/clean-code/

Before we start our journey into the demanding and rewarding real of test-
driven development, we need to ensure we have a working development
environment. This chapter is all about preparing and setting things up.

Setting up your development environment
Regardless of which reading pathway you follow (see figure 0.2), a clean
development environment is indispensible to following this book. The rest of
the book assumes that you have set up the development environment as
described in this section.

IMPORTANT
Regardless of which of Go, JavaScript, or Python you start with; set up your development
environment as described in this section.

Common Setup

Folder structure
Create a folder that will be the root for all the source code we’ll write in
this book. Name it something that will be clear and unambiguous to you
weeks from now, e.g. tdd-project.

Under this folder, create a set of folders as shown as follows:

tdd-project

├── go

├── js

└── py

Create all these folders before you write the first line of code, even if you’re
planning to follow this book in multiple passes, one language at a time.
Creating this folder structure provides the following benefits:

1. It keeps code in the three languages separate yet in close proximity
to each other.

2. It ensures that most commands in this book will work without
changes. ..Commands that deal with fully qualified file/folder names
are an exception — and such commands are rare. One of them is in
this section.

3. It allows easy adoption of advanced features, such as continuous
integration, across all three languages.

4. It matches the folder structure in the accompanying code repository.
This can be useful for comparing and contrasting your code as it
evolves.

Throughout the rest of this book, the term TDD Project Root is used to refer
to the root folder containing all the source code — named tdd-project
above. The folders named go, js and py are referred to by these very names 
— the meaning is clear from the context.

IMPORTANT
TDD Project Root is the name used to refer to the folder containing all the source code
developed in this book. It’s the parent of three folders named go, js, and py.

Declare an environment variable named TDD_PROJECT_ROOT and set its
value to the fully qualified name of the TDD Project Root folder. Doing this
once in each shell (or better yet, once in your shell initialization script such as
the .bashrc file) ensures that all subsequent commands work seamlessly.

export TDD_PROJECT_ROOT=/fully/qualified/path/to/tdd-project

https://github.com/saleem/tdd-book-code

For example: on my macOS system, the fully qualified path for the
TDD_PROJECT_ROOT is
/Users/saleemsiddiqui/code/github/saleem/tdd-

project.

REMOVING TEDIUM
You will need to define the environment variable TDD_PROJECT_ROOT
in every new shell you launch. If you find this cumbersome, you may set
it once in the appropriate configuration file. How you set it varies from
one operating system to another and from one shell to another. For bash-
like shells that we will use in this book, the .bashrc is an appropriate
file in which to define any environment variables; although the details
still vary. For example, on most Linuxes (and on MacOS), you can add
the export TDD_PROJECT_ROOT=... statement in a file named
.bashrc in your home folder. If you’re using Git Bash on Windows — 
as described later in this chapter — you may need to use the
.bash_profile file instead.

In short: removing tedium in your work is a good thing. Use an
appropriate mechanism to define the environment variables reliably and
consistently in all shells you use throughout this book.

Text editor or IDE (Integrated Development Environment)
We’ll need a text editor to edit source files. An Integrated Development
Environment (IDE) can help by providing a single tool within which we can
edit, compile, and test code in multiple languages. However, this is a matter
of choice and personal preference; choose what works best for you.

Appendix A describes IDEs in more detail.

Shell
We’ll need a a shell — a command-line interpreter — to run our tests,
examine the output, and for other tasks. Like IDEs, shell choices are many

https://www.golinuxcloud.com/bashrc-vs-bash-profile/
https://stackoverflow.com/questions/32186840/git-for-windows-doesnt-execute-my-bashrc-file

and often the subject of exuberant opinion-sharing amongst developers. This
books assumes a bash like shell for the commands that need to be typed. On
most — if not all — Unix-like Operating Systems (and on macOS), a bash
shell is readily available.

For Windows, shells like Git BASH are available. On Windows 10, the
Windows Subsystem for Linux provides native support for the bash shell,
amongst many other “Linux goodies”. Either of these options, or something
similar, is sufficient (and necessary) to follow the code examples in this
book.

Figure I-1 shows a bash like shell with a the results of a command typed in it.

Figure I-1. A bash like shell, like the one shown here, is needed to follow the coding examples in this
book

Git
Chapter 13 introduces the practice of Continuous Integration using GitHub

https://gitforwindows.org/
https://docs.microsoft.com/en-us/windows/wsl/about

Actions. To follow the content of that chapter, we need to create a GitHub
project of our own and push code to it.

Git is open-source distributed version control system. GitHub is an
collaborative Internet hosting platform that allows people to preserve and
share the source code of their projects with each other.

IMPORTANT
Git is a free, open-source, distributed version-control system. GitHub is a code-sharing
platform that uses Git.

To ensure we can adopt Continuous Integration, we’ll do some preparation
now and defer some work until Chapter 13. Specifically: we’ll set up the Git
version control system on our development environment. We’ll postpone the
creation of a GitHub project until Chapter 13.

First, download and install the Git version-control system. It is available for
macOS, Windows and Linux/Unix. After you install it, verify that it works by
typing git --version on a terminal window and hitting enter. You
should see the installed version of Git in response, as shown in figure I-2.

Figure I-2. Verify that Git is installed by typing git --version and hitting Enter on a shell

Next, we’ll create a new Git project in our TDD_PROJECT_ROOT. In a
shell window, type the following commands.

cd $TDD_PROJECT_ROOT

git init .

https://git-scm.com/
http://www.github.com
https://git-scm.com/downloads

This should produce an output saying Initialized empty Git
repository in

/your/fully/qualified/project/path/.git/. This creates a
shiny new (and currently empty) Git repository in our
TDD_PROJECT_ROOT. We should have these folders under our $TDD-
PROJECT-ROOT folder now:

tdd-project

├── .git

├── go

├── js

└── py

The .git folder is used by Git for bookkeeping. There is no need to make
any changes to its contents.

As we write source code in the following chapters, we will periodically
commit our changes to this Git repository. We’ll use the command line
interface of Git to do this.

IMPORTANT
We’ll frequently commit our code changes to the Git repository in the rest of this book. To

highlight this, we’ll use the Git icon.

Go
We need to install Go version 1.16 to follow this book. This version is
available to download for different operating systems.

To verify that Go is correctly installed, type go on a shell and hit enter.
There should be a rather long message, starting with a description of what Go
is. See figure I-3.

https://golang.org/dl/

Figure I-3. Verify that Go is working by typing go and hitting Enter on a shell

We also need to set a couple of Go-specific environment variables:

1. The GO111MODULE environment variable should be set to on.

2. The GOPATH environment variable should not include the
TDD_PROJECT_ROOT or any folder under in, such as the go
folder.

Execute these two lines of code in the shell:

export GO111MODULE="on"

export GOPATH=""

We need to create a bare-bones go.mod file to get ready to write code.
These are the commands to do it:

cd $TDD_PROJECT_ROOT/go

go mod init tdd

This will create a file named go.mod whose contents should be as shown
below.

module tdd

go 1.16

For all Go development from this point on, make sure that the shell is in the
$TDD_PROJECT_ROOT/go folder.

IMPORTANT
For the Go code in this book, make sure to first cd $TDD_PROJECT_ROOT/go before
running any Go commands.

A quick word on Go package management
Go’s package management is in the midst of a seismic shift. The old style — 
which used the GOPATH environment variable — is being phased out in favor
of the newer style using a go.mod file. The two styles are largely
incompatible with each other.

The two environment variables we defined above and the bare-bones
go.mod file we generated ensure that the Go tools can work correctly with
our source code, especially when we create packages. We’ll create Go
packages in Chapter 5.

JavaScript
We need Node.js v14 (“Fermium”) or v16 to follow this book. Both these
versions are available from the Node.js website for different operating
systems.

To verify that Node.js is correctly installed, type node -v on a shell and hit
enter. It should print a one-line message, listing the version of Node.js. See
figure I-4.

Figure I-4. Verify that Node.js is working by typing node -v and hitting Enter on a shell

https://nodejs.org/en/download/

A quick word on testing libraries
JavaScript has several unit testing frameworks. By and large, they are
excellent for writing tests and doing TDD. However, this book eschews all of
them. Its code uses the assert NPM package for assertions and a simple
class with methods to organize the tests. The simplicity is to keep our focus
on the practice and semantics of TDD instead of the syntax of any one
library. Chapter 6 describes the organization of tests in more detail. Appendix
B enumerates the testing frameworks and the detailed reasons for not using
any of them.

Another quick word, on JavaScript package management
Similar to testing frameworks, JavaScript has many ways to define packages
and dependencies. This book uses the CommonJS style. In Chapter 6, there is
a discussion of the other styles: the ES6 and UMD styles are shown in detail
with source code; and the AMD style more briefly, without source code.

Python
We need Python 3.9 to follow this book, which is available from the
Python website for different operating systems.

The Python language underwent significant changes between “Python 2”
and “Python 3”. While an older version of Python 3 (e.g. 3.6) may also work;
any version of Python 2 will be inadequate for the purpose of following this
book.

It is possible that you have Python 2 already installed on your computer. For
example, many macOS operating systems (including Big Sur) come bundled
with Python 2. It is not necessary (nor recommended) to uninstall Python 2 to
follow this book; however, it is necessary to ensure that Python 3 is the
version that’s used.

To prevent ambiguity, this book uses python3 explicitly as the name of the
executable in commands. It is possible — although also unnecessary — to
“alias” the python command to refer to Python 3.

https://www.python.org/downloads/

Here’s a simple way to find out which command you need to type to ensure
that Python 3 is used. Type python --version on a shell and hit enter.
If you get something starting with Python 3, you’re in good shape. If you
get something like Python 2, you may need to explicitly type in python3
for all the commands in this book.

Figure I-5 shows a development environment with both Python 2 and Python
3.

Figure I-5. Verify that Python 3 is installed and the command you need to type to use it (python3 as
shown here)

IMPORTANT
Use Python 3 to follow the code in this book. Do not use Python 2 — it won’t work.

Figure I-6 shows a mnemonic to simplify the preceding Python version
rigmarole!

Figure I-6. Simple mnemonic to clarify which version of Python is needed for this book!

Where We Are
In this preliminary chapter, we got acquainted with the tool-chain we’ll need

to start writing our code in a test-driven fashion. We also learned how to
prepare our development environment and to verify that it is in working
condition.

Now that we know what this book is about, what’s in it, how to read it, and
most importantly: how to set up our working environment to follow it; we are
ready to solve our problem, chiseling one feature at time, driven forward by
tests. We’ll commence that journey in Chapter 1.

Let’s roll!

Part I. Getting Started

Chapter 1. The Money Problem

I would not give a fig for the simplicity this side of complexity, but I would
give my life for the simplicity on the other side of complexity.

—Oliver Wendell Holmes Jr.

Our development environment are ready. In this chapter, we’ll learn the three
phases that support test-driven development. We’ll then write our first code
feature using test-driven development.

Red-Green-Refactor — The Building Blocks of
TDD
Test-driven development follows a three-phase process. The three phases are:

1. RED. We write a failing test (including possibly compilation
failures). We run the test suite to verify the failing tests.

2. GREEN. We write just enough production code to make the test
green. We run the test suite the verify this.

3. REFACTOR. We remove any code-smells. These may be due to
duplication, hard-coded values, or improper use of language idioms
(e.g. using a verbose loop instead of a built-in iterator). If we break
any tests during refactoring, we prioritize getting them back to green
before exiting this phase.

This is the RED-GREEN-REFACTOR cycle (aka RGR), shown in Figure 1-
1. The three phases of this cycle are the essential building blocks of test-
driven development. All the code we’ll develop in this book will follow this
cycle.

Figure 1-1. The Red-Green-Refactor cycle is the foundation on which test-driven development rests

IMPORTANT
The three phases of the RED-GREEN-REFACTOR cycle are the essential building
blocks of TDD.

What’s the problem?
We have a money problem. No, not the kind that almost everyone has: not
having enough of it! It’s more of a “we want to keep track of our money”
problem.

Say we have to build a spreadsheet to manage money in more than one
currency. This could be to manage a stock portfolio.

Stock Stock Exchange Shares Share Price Total

IBM NASDAQ 100 124 USD 12400 USD

BMW DAX 400 75 EUR 30000 EUR

Samsung KSE 300 68000 KRW 20400000 KRW

To build this spreadsheet, we’d need to do simple arithmetic operations on
numbers in any one currency:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1001.5 KRW

We’d also like to convert between currencies. For example, if exchanging 1
EUR get us 1.2 USD, and exchanging 1 USD gets us 1100 KRW:

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Each of the aforementioned line items will be one (teeny tiny) feature that
we’ll implement using TDD. We already have several features to implement.
In order to help us focus on one thing at a time, we’ll highlight the feature
we’re working on in bold. When we’re done with a feature, we’ll signal our
satisfaction by crossing it out.

So where should we start? If the title of this book isn’t an obvious give-away:
we’ll start by writing a test.

Our first failing test
Let’s start by implementing the very first feature in our list:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Go
In a new file called money_test.go in the go folder, let’s write our
first test:

package main

import (

 "testing"

)

func TestMultiplication(t *testing.T) {

 fiver := Dollar{

 amount: 5,

 }

 tenner := fiver.Times(2)

 if tenner.amount != 10 {

 t.Errorf("Expected 10, got: [%d]", tenner.amount)

 }

}

Package declaration
Imported “testing” package, used in t.Errorf later

Our test method, must start with Test and have one *testing.T
argument
Struct representing “USD 5”. Dollar does not exist yet

Method under test: Times — which also does not exist yet

Comparing actual value with expected value
Ensuring test fails if expected value is not equal to actual value

This test function includes a bit of boilerplate code.

The package main declares that all ensuing code is part of the main
package. This is a requirement for standalone executable Go programs.
Package management is a sophisticated feature in Go. It’s discussed in more
detail in Chapter 5.

Next, we import the testing packages using the import statement. This
package will be used in the unit test.

The unit test func tion is the bulk of the code. We declare an entity
representing “5 USD”. This is the variable named fiver, which we
initialize to a struct holding 5 in its amount field. Then, we multiply this
fiver by 2. And we we expect the result to be 10 dollars, i.e. a variable
tenner whose amount field must equal 10. If this isn’t the case, we print a
nicely formatted error message with the actual value (whatever that may be).

When we run this test using "go test -v ." from the TDD Project Root
folder, we should get an error:

https://medium.com/rungo/everything-you-need-to-know-about-packages-in-go-b8bac62b74cc

... undefined: Dollar

FAIL tdd [build failed]

FAIL

We get the message loud and clear: that’s our first failing test!

TIP
"go test -v ." runs the tests in the current folder; and "go test -v ./..."
runs tests in the current folder and any sub-folders. The -v switch produces verbose
output.

JavaScript
In a new file called test_money.js in the js folder, let’s write our
first test:

const assert = require('assert');

fiver = new Dollar(5);

tenner = fiver.times(2);

assert.strictEqual(tenner.amount, 10);

Importing the assert package, needed for the assertion later

Object representing “USD 5”. Dollar does not exist yet

Method under test: times — which also does not exist yet

Comparing actual value with expected value in a strictEqual assert
statement

JavaScript has minimal boilerplate code — the only line in addition to the test
code is the require statement. This gives us access to the assert NPM
package.

After that line are the three lines of code that form our test. We create an
object representing 5 USD, we multiply it by 2, and we expect the result to be
10.

1

When we run this code from the TDD Project Root folder using node
js/test_money.js, we should get an error that starts like this:

ReferenceError: Dollar is not defined

That’s our first failing test. Hooray!

TIP
node file.js runs the JavaScript code in file.js and produces output. We use this
command to run our tests.

Python
In a new file called test_money.py in the py folder, let’s write our
first test:

import unittest

class TestMoney(unittest.TestCase):

 def testMultiplication(self):

 fiver = Dollar(5)

 tenner = fiver.times(2)

 self.assertEqual(10, tenner.amount)

if __name__ == '__main__':

 unittest.main()

Importing the unittest package, needed for the TestCase superclass

Our test class, which must subclass the unittest.TestCase class

Our method name must start with test to qualify as a test method

Object representing “USD 5”. Dollar does not exist yet

Method under test: times — which also does not exist yet

Comparing actual value with expected value in a assertEqual
statement

The main idiom, ensures this class can be run as a script

Python requires import ing the unittest package, creating a class that
subclasses TestCase, and def ining a function whose name starts with
test. To be able to run the class as a standalone program, we need the
common Python idiom that runs the unittest.main() function when
test_money.py is run directly.

The test function describes how we expect our code to work. We define a
variable named fiver and initialize it to a desired (but yet-to-be-created)
class Dollar with 5 as a constructor argument. We then multiply fiver
by 2 and store the result in a variable tenner. Finally, we expect the
amount in tenner to be 10.

When we run this code from the TDD Project Root folder using python3
py/test_money.py -v, we get an error:

NameError: name 'Dollar' is not defined

That’s our first failing test. Hooray!

TIP
python3 file.py -v runs the python code in file.py and produces verbose
output. We use this command to run our tests.

Going for green
We wrote our tests as we would expect them to work, blithely ignoring all
syntax errors for the moment. Is this smart?

In the very beginning — which is where we are — it is smart to start with the
smallest bit of code that sets us on the path to progress. Of course our tests
fail because we haven’t defined what Dollar is. This may seem the perfect
time to say “duh!” However, a wee bit of patience is warranted for these two

https://docs.python.org/3/library/__main__.html

reasons:

1. We have just finished the first step — getting to RED — of our first
test. Not only is this the beginning, it’s the very beginning of the
beginning.

2. We can (and will) speed up the increments as we go along.
However, it’s important to know that we can slow down when we
need to.

The next step is to get to GREEN.

It’s clear we need to introduce an abstraction Dollar. This section defines
how to introduce this and other abstraction to get our test to pass.

Go
Add an empty Dollar struct to the end of money_test.go.

type Dollar struct {

}

When we run the test now, we get a new error:

... unknown field 'amount' in struct literal of type Dollar

Progress!

The error message is directing us to introduce a field named amount in our
Dollar struct. So let’s do this, using an int data type for now (which is
sufficient for our goal):

type Dollar struct {

 amount int

}

Adding the Dollar struct, rather predictably, gets us to the next error:

... fiver.Times undefined (type Dollar has no field or method

Times)

We see a pattern here: when there is something (a field or method) that’s
undefined, we get this undefined error from the Go runtime. We will use
this information to speed up our TDD cycles in the future. For now, let’s add
a func`tion named `Times. We know, from how we wrote our test,
that this function needs to take a number (the multiplier) and return another
number (the result).

But how should we calculate the result? We know basic arithmetic how to
multiply two numbers. But if we were to write the simplest code that works,
we’d be justified in always returning the result that our test expects, that is, a
struct representing 10 dollars:

func (d Dollar) Times(multiplier int) Dollar {

 return Dollar{10}

}

When we run our code now, we should get a short and sweet response on our
terminal:

=== RUN TestMultiplication

--- PASS: TestMultiplication (0.00s)

PASS

That’s the magic word: we made our test PASS!

JavaScript
In test_money.js, right after the const assert =
require('assert'); line, define an empty class named Dollar:

class Dollar {

}

When we run the test_money.js file now, we get an error:

TypeError: fiver.times is not a function

Progress! The error clearly states that there is no function named times
defined for the object named fiver. So let’s introduce it inside the Dollar
class:

class Dollar {

 times(multiplier) {

 }

}

Running the test now produces a new error:

TypeError: Cannot read property 'amount' of undefined

Our test expects an object with a property amount. Since we’re not
returning anything from our times method, the return value is
undefined, which does not have a amount property (or any other
property, for that matter).

TIP
In the JavaScript language, functions and methods do not explicitly declare any return
types. If we examine the result of a function that returns nothing, we’ll find the return
value is undefined.

So how should we make our test go green? What’s the simplest thing that
could work? How about if we always create an object representing 10 USD
and return it?

Let’s try it out. We add a constructor that can initializes objects to a
given amount and a times method that obstinately creates and returns “10
USD” objects:

class Dollar {

 constructor(amount) {

 this.amount = amount;

 }

 times(multiplier) {

 return new Dollar(10)

 }

}

The constructor function is called whenever a Dollar object is
created
Initialize the this.amount variable to the given parameter

The times method takes a parameter

Simple implementation: always return 10 dollars

When we run our code now, we should get no errors. This is our first green
test!

IMPORTANT
Because strictEqual and other methods in the assert package only produce output
when the assertions fail, a successful test run will be quite silent with no output. We’ll
improve this behavior in Chapter 6.

Python
Since 'Dollar' is not defined, let’s define it in
test_money.py before our TestMoney class:

class Dollar:

 pass

When we run our code now, we get an error:

TypeError: Dollar() takes no arguments

Progress! The error is clearly telling us that there is currently no way to
initialize Dollar objects with any arguments, such as the 5 and 10 we have
in our code. So let’s fix this by providing the briefest possible initializer:

class Dollar:

 def __init__(self, amount):

 pass

Now the error message from our test changes:

AttributeError: 'Dollar' object has no attribute 'times'

We see a pattern here: our test is still failing, but for slightly different reasons
each time. As we define our abstractions — first Dollar and then an
amount field — the error messages “improve” to the next stage. This is a
hallmark of TDD: steady progress at a pace we control.

Let’s speed things up a bit by defining a times function and giving it the
minimum behavior to get to green. What’s the minimum behavior necessary?
Always returning a “ten dollar” object that’s required by our test, of course!

class Dollar:

 def __init__(self, amount):

 self.amount = amount

 def times(self, multiplier):

 return Dollar(10)

The __init__ function is called whenever a Dollar object is created

Initialize the self.amount variable to the given parameter

The times method takes a parameter

Simple implementation entails always returning 10 dollars

When we run our test now, we get a short and sweet response:

Ran 1 test in 0.000s

OK

It’s possible that the test may not run in 0.000s, but let’s not lose sight of
the magic word OK. This is our first green test!

Cleaning up
Refactoring is the third and final stage of the RGR cycle. We may not have
many lines of code at this point, however, it’s still important to keep things
tidy and compact. If we have any formatting clutter or commented out lines
of code, now is the time to clean it up.

More significant is the need to remove duplication and make code readable.
At first blush, it may seem that in our fewer than two dozen lines of code,
there can’t be any duplication. However, there is already a subtle yet
significant bit of duplication.

We can find this duplication by noticing a couple of quirks within our code:

1. We have written just enough code to verify that “doubling 5 dollars
should give us 10 dollars”. If we decide to change our existing test to
say “doubling 10 dollars should give us 20 dollars" — an equally
sensible statement — we will have to change both our test and our
Dollar code. There is a dependency, a logical coupling, between
the two segments of code. In general, coupling of this kind should be
avoided.

2. In both our test and our code, we had the magic number 10. Where
did we come up with that? We obviously did the math in our heads.
We realize that doubling 5 dollars should give us 10 dollars. So we
wrote 10 in both our test and in our Dollar code. We should
realize that the 10 in the Dollar entity is really 5 * 2. This
realization would allow us to remove this duplication.

Duplicated code is often the symptom of some underlying problem: a missing
code abstraction, or bad coupling between different parts of the code.

Let’s remove the duplication and thereby get rid of the coupling as well.

Go
Replace the 10 in the Times function by its equivalent 5 * 2:

2

func (d Dollar) Times(multiplier int) Dollar {

 return Dollar{5 * 2}

}

The test should still be green.

Writing it this way makes us realize the missing abstraction. The hard-coded
5 is really d.amount and the 2 is the multiplier. Replacing these hard-
coded numbers with the correct variables gives us the non-trivial
implementation:

func (d Dollar) Times(multiplier int) Dollar {

 return Dollar{d.amount * multiplier}

}

Yay! The test still passes, and we have removed the duplication and the
coupling.

There is one final bit of cleanup.

In our test, we explicitly used the field name amount when initializing a
Dollar struct. It’s also possible to omit field names when initializing a
struct, as we did in our Times method. Either style — using explicit names
or not using them — works. However, it’s important to be consistent. Let’s
change the Times function to specify the field name:

func (d Dollar) Times(multiplier int) Dollar {

 return Dollar{amount: d.amount * multiplier}

}

TIP
Remember to run go fmt ./... periodically to fix any formatting issues in code.

JavaScript
Let’s replace the 10 in the times method by its equivalent 5 * 2:

3

 times(multiplier) {

 return new Dollar(5 * 2)

 }

The test should still be green.

The missing abstraction is now clear. We can replace 5 with this.amount
and 2 with multiplier:

 times(multiplier) {

 return new Dollar(this.amount * multiplier);

 }

Yay! The test is still green, and we have eliminated the duplication and the
coupling.

Python
Let’s replace the 10 in the times method by its equivalent 5 * 2:

 def times(self, multiplier):

 return Dollar(5 * 2)

The test stays green, as expected.

This reveals the underlying abstraction. The 5 is really self.amount and
the 2 is the multiplier:

 def times(self, multiplier):

 return Dollar(self.amount * multiplier)

Hooray! The test remains green, and the duplication and the coupling are
gone.

Committing our changes
We have finished our first feature using TDD. Lest we forget, it’s
important to commit our code to our version-control repository at

frequent intervals.

A green test is an excellent place to commit code.

In a shell window, let’s type these two commands:

git add .

git commit -m "chore: first green test"

Add all files, including all changes in them, to the Git index
Commit the Git index to the repository with the given message

Assuming code for all three languages exists in the correct folders, we should
get a message like this.

[main (root-commit) bb31b94] chore: first green test

 4 files changed, 56 insertions(+)

 create mode 100644 go/go.mod

 create mode 100644 go/money_test.go

 create mode 100644 js/test_money.js

 create mode 100644 py/test_money.py

The hex number, bb31b94, represents the first several digits of the
unique “SHA hash” associated with the commit. It will be different for
every person (and every commit)

This indicates that all our files are safely in our Git version-control
repository. We can verify this by executing the git log command on our
shell, which should produce output similar to the following:

commit bb31b94e90029ddeeee89f3ca0fe099ea7556603 (HEAD -> main)

Author: Saleem Siddiqui ...

Date: Sun Mar 7 12:26:06 2021 -0600

 chore: first green test

This is the first commit, with its full SHA hash
This is the message we typed for our first commit

It’s important to realize that the Git repository to which we have committed
our code also resides on our local file system. (It’s inside the .git folder
under our TDD_PROJECT_ROOT). While this doesn’t save us from
accidental coffee spills on our computer (always use lids), it does provide
assurance that we can go back to a previous known good version if we get
tangled up somewhere. In Chapter 13, we’ll push all our code to a GitHub
repository.

We’ll use this strategy of committing our code to our local Git repository in
each chapter, using the same set of commands.

IMPORTANT
We will use the two commands git add . and git commit -m _commit
message_ to commit our code frequently in each chapter.

The only thing that’ll vary is the commit message, which will follow the
semantic commit style and include a short, one-line description of the
changes.

Where We Are
This chapter introduced test driven development by showing the very first
RED-GREEN-REFACTOR cycle. With out first tiny feature successfully
implemented, let’s cross it off. Here’s where we are in our feature list:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

https://gist.github.com/joshbuchea/6f47e86d2510bce28f8e7f42ae84c716

Let’s take a moment to review and savor our code before we move on to the
next challenge.

Go
Here’s how the file money_test.go looks right now:

package main

import (

 "testing"

)

func TestMultiplication(t *testing.T) {

 fiver := Dollar{amount: 5}

 tenner := fiver.Times(2)

 if tenner.amount != 10 {

 t.Errorf("Expected 10, got: [%d]", tenner.amount)

 }

}

type Dollar struct {

 amount int

}

func (d Dollar) Times(multiplier int) Dollar {

 return Dollar{amount: d.amount * multiplier}

}

JavaScript
Here’s how the test_money.js file looks at this point:

const assert = require('assert');

class Dollar {

 constructor(amount) {

 this.amount = amount;

 }

 times(multiplier) {

 return new Dollar(this.amount * multiplier)

 }

}

fiver = new Dollar(5);

tenner = fiver.times(2);

assert.strictEqual(tenner.amount, 10);

Python
Here’s how the test_money.py file looks right now:

import unittest

class Dollar:

 def __init__(self, amount):

 self.amount = amount

 def times(self, multiplier):

 return Dollar(self.amount * multiplier)

class TestMoney(unittest.TestCase):

 def testMultiplication(self):

 fiver = Dollar(5)

 tenner = fiver.times(2)

 self.assertEqual(10, tenner.amount)

if __name__ == '__main__':

 unittest.main()

In Chapter 2, we’ll speed things up by building out a couple more features.

1 The three dots in "go test -v ./..." and "go fmt ./..." are to be typed literally; the
only instances in this book where they do not stand for omitted code!

2 Kent Beck’s opinion is worth quoting here: “If dependency is the problem, duplication is the
symptom.”

3 If there are multiple fields in the struct — which we currently do not — then either the order of
the fields must be the same in both struct definition and initialization or field names must be
specified during struct initialization. See https://gobyexample.com/structs

https://gobyexample.com/structs

Chapter 2. Multi-currency Money

Followed fast and followed faster
—Edgar Allen Poe, The Raven

Did the RED-GREEN-REFACTOR cycle we followed in Chapter 1 seem a
tad too slow?

A response of “heck yes!” (or some rhyming phrase) is understandable!

The goal of test-driven development isn’t to force us to go slow. Or fast, for
that matter. Its goal is to allow us to go at a pace we’re comfortable with:
speeding up when we can, slowing down when we should.

In this chapter, we’ll introduce additional currencies and the ability to
multiply and divide money in any currency. Let’s see if we can kick up the
pace a bit.

Enter the Euro
The second item on our list of features introduces a new currency:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

This indicates that we need a more general entity than the Dollar we
created in the previous chapter. Something like Money, which encapsulates
an amount (which we already have) and a currency (which we do not yet

have). Let’s write tests to flush out this new feature.

Go
Let’s write a new test in money_test.go. This test requires that when
a struct representing “10 Euros” is multiplied by 2, we get “20 Euros”:

func TestMultiplicationInEuros(t *testing.T) {

 tenEuros := Money{amount: 10, currency: "EUR"}

 twentyEuros := tenEuros.Times(2)

 if twentyEuros.amount != 20 {

 t.Errorf("Expected 20, got: [%d]", twentyEuros.amount)

 }

 if twentyEuros.currency != "EUR" {

 t.Errorf("Expected EUR, got: [%s]", twentyEuros.currency)

 }

}

The test expresses the concepts of “10 Euros” and “20 Euros” with struct
instances containing a currency as well as amount.

By now, we know that when we run this test, we’ll get an error notifying us
of undefined: Money. We can eliminate this by introducing a new
struct:

type Money struct {

 amount int

 currency string

}

We now get the error type Money has no field or method
Times, which we know how to get around. We define a Times method for
Money:

func (m Money) Times(multiplier int) Money {

 return Money{amount: m.amount * multiplier, currency:

m.currency}

}

Yay! Green tests again.

JavaScript
Let’s write a test for representing a Money object with amount and
currency. We verify that when an object representing “10 Euros” is
multiplied by 2, we get “20 Euros”. We define this test at the very end of
test_money.js:

tenEuros = new Money(10, "EUR");

twentyEuros = tenEuros.times(2);

assert.strictEqual(twentyEuros.amount, 20);

assert.strictEqual(twentyEuros.currency, "EUR");

By now, we anticipate the ReferenceError: Money is not
defined error we get when running the tests. We can eliminate this by
introducing a new class named Money with the minimally desired behavior,
that is: a constructor that initializes both amount and currency, and
a times method that multiplies the amount with a given multiplier
and returns a new Money object.

class Money {

 constructor(amount, currency) {

 this.amount = amount;

 this.currency = currency;

 }

 times(multiplier) {

 return new Money(this.amount * multiplier, this.currency);

 }

}

Yay! Both our tests are now green.

Python
Let’s add a new test in the TestMoney class. This test would verify that
multiplying an object representing “10 Euros” by 2 gives us an object
representing “20 Euros”:

 def testMultiplicationInEuros(self):

 tenEuros = Money(10, "EUR")

 twentyEuros = tenEuros.times(2)

 self.assertEqual(20, twentyEuros.amount)

 self.assertEqual("EUR", twentyEuros.currency)

By now, we anticipate the NameError: name 'Money' is not
defined error we get when we run the tests. We can get rid of this error by
introducing a new Money class with the minimally necessary behavior. This
means an __init__ method that initializes both amount and currency,
and a times method that returns a new Money object whose amount is a
product of the multiplier and the amount of the original Money object:

class Money:

 def __init__(self, amount, currency):

 self.amount = amount

 self.currency = currency

 def times(self, multiplier):

 return Money(self.amount * multiplier, self.currency)

Yay! Both our tests are now green.

Keeping code DRY
Wait a minute: didn’t we just create a horrendous duplication in our code?
The new entity we created to represent Money subsumes what we wrote
earlier for Dollar. This can’t possibly be good. A oft-quoted rule in writing
code is the DRY principle: Don’t Repeat Yourself.

Recall the RED-GREEN-REFACTOR cycle. What we did in the previous
section got us to green, but we haven’t done the necessary refactoring yet.
Let’s remove the duplication in the code while keeping our tests green.

Go
We realize that the Money struct can do everything that the Dollar
struct can, and more. Money has currency, which Dollar does not.

Let’s delete the Dollar struct and its Times method.

When we do this, the TestMultiplication test predictably breaks with
an undefined: Dollar error. Let’s refactor that test to use Money
instead:

func TestMultiplicationInDollars(t *testing.T) {

 fiver := Money{amount: 5, currency: "USD"}

 tenner := fiver.Times(2)

 if tenner.amount != 10 {

 t.Errorf("Expected 10, got: [%d]", tenner.amount)

 }

 if tenner.currency != "USD" {

 t.Errorf("Expected USD, got: [%s]", tenner.currency)

 }

}

Both tests now pass. Notice that we renamed the test to be more descriptive:
TestMultiplicationInDollars.

JavaScript
The Money class can do everything that Dollar does, and more. This
means that we can delete the Dollar class in its entirety.

When we do this and run the tests, we get our old friendly error:
ReferenceError: Dollar is not defined. Let’s refactor the
first test to use Money instead:

fiver = new Money(5, "USD");

tenner = fiver.times(2);

assert.strictEqual(tenner.amount, 10);

assert.strictEqual(tenner.currency, "USD");

Both tests now pass.

Python
The Money class’s functionality is a superset of that of the Dollar

class. Which means we don’t need the latter. Let’s delete the Dollar
class in its entirety.

Having done this, we get the familiar NameError: name 'Dollar'
is not defined message when we run the tests. Let’s refactor the first
test to use Money instead of the erstwhile Dollar:

 def testMultiplicationInDollars(self):

 fiver = Money(5, "USD")

 tenner = fiver.times(2)

 self.assertEqual(10, tenner.amount)

 self.assertEqual("USD", tenner.currency)

Both tests now pass. Notice that we renamed the test to be more descriptive:
testMultiplicationInDollars.

Didn’t we just say “Don’t Repeat Yourself”?!
Hmm. The two tests — the one for Dollars and the one for Euros — are very
similar. The currencies and amounts vary, but they test pretty much the same
feature.

Repetition in code comes in varied forms. Sometimes we have identical lines
of code (perhaps caused by “copy pasta” programming). In these cases,
extracting the common lines to a function or method is what we need to do.
At other times, we have parts of code that are not identical, but conceptually
similar. This is the case with our two tests.

We could delete one of the tests and still feel confident about our code.
However, we also want to safeguard ourselves against accidental regression
in our code. Recall that our very first implementation used hard-coded
numbers (10 or 5 * 2). Having two distinct tests with different values
ensures that we won’t accidentally go back to that naive implementation.

TIP
Regression — “a return to a primitive or less developed state" — is a common theme in

writing software. Having a battery of tests is a reliable way to ensure that we don’t break
existing features as we build new ones.

Let’s keep both test cases for now. We’ll add an item to the end of our
checklist noting our desire to remove redundancy in tests. We’ll revisit this
item later, after we address division.

Here’s our feature list:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Remove redundant Money multiplication tests

Divide and Conquer
The next requirement is to allow division. On the surface, it looks very
similar to multiplication. We know from elementary mathematics that
dividing by x is the same as multiplying by ⁠ /⁠ .

Let’s test-drive this new feature and see how our code evolves. By now, we
are getting into the groove of starting with a failing test. As an indicator of
our growing confidence, we’ll introduce two new things in our test:

1. A new currency: Korean Won (KRW), and

2. Numbers with fractional parts, e.g. 1000.5

Go
Let’s write our new test for division.

1
x
1

func TestDivision(t *testing.T) {

 originalMoney := Money{amount: 4002, currency: "KRW"}

 actualMoneyAfterDivision := originalMoney.Divide(4)

 expectedMoneyAfterDivision := Money{amount: 1000.5, currency:

"KRW"}

 if expectedMoneyAfterDivision != actualMoneyAfterDivision {

 t.Errorf("Expected [%+v] Got: [%+v]",

 expectedMoneyAfterDivision, actualMoneyAfterDivision)

 }

}

Notice that we wrote this test a bit differently. We define variables for the
two structs: actualMoneyAfterDivision and
expectedMoneyAfterDivision. And instead of comparing amount
and currency separately, we compare the two structs as a whole. If the
structs don’t match, we print them both.

TIP
In Go, printing a struct with the %+v format “verb” prints the struct’s field names as well
as values.

We anticipate the type Money has no field or method
Divide error we get when we run this test. Let’s define this missing
method, taking our cue from the existing Times method:

func (m Money) Divide(divisor int) Money {

 return Money{amount: m.amount / divisor, currency: m.currency}

}

Ah! The test fails with a new error: constant 1000.5 truncated to
integer.

It’s clear that we need to change the amount field in the Money struct so
that it can hold fractional values. The float64 data type is appropriate for
this purpose:

type Money struct {

 amount float64

 currency string

}

This gives us new errors when we run our test:

... invalid operation: m.amount * multiplier (mismatched types

float64 and int)

... invalid operation: m.amount / divisor (mismatched types float64

and int)

TIP
Using an IDE can be useful because it flags syntax errors and type errors without any need
to run the tests.

We need to modify our arithmetic operations (multiplication and division) to
use the same data type for all operands. We know from our domain that the
multipliers and divisors are likely to be integers (number of shares of a stock)
whereas the amount can be a fractional number (trading price of a particular
stock). Let’s use this knowledge to convert the multiplier and divisor
to float64 before using them in our arithmetic operations. We can do this
by calling the float64() function:

func (m Money) Times(multiplier int) Money {

 return Money{amount: m.amount * float64(multiplier), currency:

m.currency}

}

func (m Money) Divide(divisor int) Money {

 return Money{amount: m.amount / float64(divisor), currency:

m.currency}

}

Now we get different wrong type failures

... Errorf format %d has arg tenner.amount of wrong type float64

... Errorf format %d has arg twentyEuros.amount of wrong type

float64

A careful reading of the error messages reveals that we are using the wrong
format “verb” in our earlier tests to print the amount field. Since our newest
test — TestDivision — successfully compares entire struct`s, we
can refactor our earlier two multiplication tests to

do something similar. This way, we'll side-step the

whole issue of having used the incorrect formatting

"verb" for `float64 type.

Here’s how TestMultiplicationInDollars looks after changing its
assertion statement. (The other test, TestMultiplicationInEuros,
needs similar changes.)

func TestMultiplicationInDollars(t *testing.T) {

 fiver := Money{amount: 5, currency: "USD"}

 actualResult := fiver.Times(2)

 expectedResult := Money{amount: 10, currency: "USD"}

 if actualResult != actualResult {

 t.Errorf("Expected [%+v], got: [%+v]", expectedResult,

actualResult)

 }

}

TIP
If compilation or assertion failures crop up during a test run, pay attention to the error
messages.

After these changes, all our tests are green.

JavaScript
Let’s write our new test for division at the end of test_money.js.

originalMoney = new Money(4002, "KRW")

actualMoneyAfterDivision = originalMoney.divide(4)

expectedMoneyAfterDivision = new Money(1000.5, "KRW")

assert.deepStrictEqual(actualMoneyAfterDivision,

expectedMoneyAfterDivision)

Notice that we wrote this test a bit differently. We define variables for the
two objects: actualMoneyAfterDivision and
expectedMoneyAfterDivision. And instead of comparing amount
and currency separately, we compare the two objects at once using the
deepStrictEqual method in assert.

TIP
In Node.js’s assert module, the deepStrictEqual method compares two objects
and their child objects for equality using the JavaScript === operator.

We anticipate the TypeError: originalMoney.divide is not
a function error we get when we run this test. So let’s define this missing
method, taking inspiration from the existing times method.

class Money {

...

 divide(divisor) {

 return new Money(this.amount / divisor, this.currency);

 }

}

Yay! The tests are all green. JavaScript’s dynamic types make implementing
this feature easier than languages with static typing.

Python
Let’s write our new test for division in class TestMoney:

 def testDivision(self):

 originalMoney = Money(4002, "KRW")

 actualMoneyAfterDivision = originalMoney.divide(4)

 expectedMoneyAfterDivision = Money(1000.5, "KRW")

 self.assertEqual(expectedMoneyAfterDivision.amount,

 actualMoneyAfterDivision.amount)

 self.assertEqual(expectedMoneyAfterDivision.currency,

2

3

https://www.w3schools.com/js/js_datatypes.asp

 actualMoneyAfterDivision.currency)

Notice that we wrote this test a bit differently. We define variables for the
two objects: actualMoneyAfterDivision and
expectedMoneyAfterDivision.

We anticipate the AttributeError: 'Money' object has no
attribute 'divide' message we get when we run this test. So let’s
define this missing method, taking our cue from the existing times method:

 def divide(self, divisor):

 return Money(self.amount / divisor, self.currency)

Yay! The tests are green. Python is a dynamically (and strongly) typed
language. This makes implementing this feature easier than languages with
static typing.

Cleaning Up
Let’s finish off this chapter with a bit of house cleaning, while keeping the
tests green.

Go
We now have three tests with three assertion blocks, each of which is a 3-
line if block. Except for the variable names in each test, the if blocks
are identical. This duplication is ripe for removal via extracted into a
helper function, which we can call assertEqual.

TIP
“Extract method” or “Extract function” is a common refactoring. It involves replacing
common blocks of code with a call to a new function/method that encapsulates the block
of code once.

4

https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language
https://refactoring.com/catalog/extractFunction.html

func assertEqual(t *testing.T, expected Money, actual Money) {

 if expected != actual {

 t.Errorf("Expected [%+v] Got: [%+v]", expected, actual)

 }

}

The function’s body is identical to any of the three existing if blocks. We
can now call this function from each of the three tests. The TestDivision
function is shown below:

func TestDivision(t *testing.T) {

 originalMoney := Money{amount: 4002, currency: "KRW"}

 actualResult := originalMoney.Divide(4)

 expectedResult := Money{amount: 1000.5, currency: "KRW"}

 assertEqual(t, expectedResult, actualResult)

}

We can modify the TestMultiplicationInEuros and
TestMultiplicationInDollars tests similarly.

JavaScript
The assertion using deepStrictEqual that we used for our last test is
elegant: it compares the two objects (expected value and actual value) at
once. We can use it for our two other tests.

While we’re doing it, we can also address a subtle assumption in these two
lines of code in our tests:

tenner = fiver.times(2);

...

twentyEuros = tenEuros.times(2);

From the perspective of the test, it is a bit presumptuous to assume that
multiplying 5 Dollars or 10 Euros by two will yield 10 Dollars or 20 Euros,
respectively. Indeed, that’s the very thing the tests purport to verify. We can
improve our tests by inlining the call to the times method, thereby saving
ourselves the trouble of naming the variable:

fiveDollars = new Money(5, "USD");

tenDollars = new Money(10, "USD");

assert.deepStrictEqual(fiveDollars.times(2), tenDollars);

TIP
“Inline variable” is a refactoring that replaces a named variable with an directly evaluated
(usually anonymous) variable.

We can refactor the test for multiplying Euros similarly.

Python
Comparing two Money objects piecemeal is verbose and tedious. In our
tests, we verify that the amount and currency fields of Money
objects are equal, over and over. Wouldn’t it be nice to be able to
compare two Money objects directly in a single line of code?

In Python, object equality is ultimately resolved by an invocation of the
__eq__ method. By default, this method returns true if the two object
references being compared in fact point to the same object. This is a very
strict definition of equality: it means that an object is only equal to itself, not
any other object, even of the two objects have the same state.

IMPORTANT
The default implementation of __eq__ method means that in Python, two object
references are equal if and only if they point to the same object. That is:
https://docs.python.org/3/reference/datamodel.html#object.eq[equality is determined by
reference, not by value].

Fortunately, it is not only possible but recommended to override the __eq__
method when needed. Let us explicitly override this method within the
definition of our Money class:

https://refactoring.com/catalog/inlineVariable.html
https://docs.python.org/3/reference/datamodel.html#object

class Money:

...

 def __eq__(self, other):

 return self.amount == other.amount and self.currency ==

other.currency

After defining the __eq__ method, we can compare Money objects in a
single line.

While we’re refactoring, we can also address a subtle assumption implicit in
how we named a couple of variables in our tests:

tenner = fiver.times(2)

...

twentyEuros = tenEuros.times(2)

From the test’s perspective, it isn’t a given that multiplying 5 Dollars or 10
Euros by two will yield 10 Dollars or 20 Euros, respectively. Indeed, that’s
the very thing the test exists to validate. We can improve our tests by doing
an inline-variable refactoring, along with the single-line assertion that we can
now write.

Here’s the complete testMultiplicationInDollars :

 def testMultiplicationInDollars(self):

 fiveDollars = Money(5, "USD")

 tenDollars = Money(10, "USD")

 self.assertEqual(tenDollars, fiveDollars.times(2))

We initialize fiveDollars and tenDollars explicitly. We then verify
that multiplying the former by 2 yields an object that’s equal to the latter. We
also do it in one line, keeping our code readable and succinct.

The other two tests can be refactored similarly.

Committing Our Changes

We have written a couple more tests and the associated code to make
them green. Time to commit these changes to our local Git repository.

git add .

git commit -m "feat: division and multiplication features done"

Add all files, including all changes in them, to the Git index
Commit the Git index to the repository with the given message

At this point, we have two commits in our Git history, a fact we can verify by
examining the output of git log:

commit 1e43b6e6731407a810601d973c83b406249f4d59 (HEAD -> main)

Author: Saleem Siddiqui ...

Date: Sun Mar 7 12:58:47 2021 -0600

 feat: division and multiplication features done

commit bb31b94e90029ddeeee89f3ca0fe099ea7556603

Author: Saleem Siddiqui ...

Date: Sun Mar 7 12:26:06 2021 -0600

 chore: first green test

New SHA hash for our second commit, which represents the HEAD of
the Git repository
The message we used for our second commit
[.small]#The SHA hash for our previous commit from Chapter 1 #

Where We Are
In this chapter, we built a second feature, division, and modified our design
to deal with numbers with fractions. We have introduced a Money entity that
allows us to consolidate how Dollars and Euros (and potentially other
currencies) are multiplied by a number. We have a couple of passing tests.
We have also cleaned up our code along the way.

IMPORTANT
Depending on the specific data types and language, floating point arithmetic can cause
problems of overflow/underflow. If needed, the problems can be surfaced via tests, and
then solved — using RGR cycle. We also refactored our code to make it succinct and
expressive.

With a couple more features crossed off our list, we’re ready to look at
adding up amounts in different currencies — which will get our attention in
the next chapter.

Here’s where we are in our feature list:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Remove redundant Money multiplication tests

Go
Here’s how the file money_test.go looks right now:

package main

import (

 "testing"

)

func TestMultiplicationInDollars(t *testing.T) {

 fiver := Money{amount: 5, currency: "USD"}

 actualResult := fiver.Times(2)

 expectedResult := Money{amount: 10, currency: "USD"}

 assertEqual(t, expectedResult, actualResult)

}

func TestMultiplicationInEuros(t *testing.T) {

 tenEuros := Money{amount: 10, currency: "EUR"}

 actualResult := tenEuros.Times(2)

 expectedResult := Money{amount: 20, currency: "EUR"}

 assertEqual(t, expectedResult, actualResult)

}

func TestDivision(t *testing.T) {

 originalMoney := Money{amount: 4002, currency: "KRW"}

 actualResult := originalMoney.Divide(4)

 expectedResult := Money{amount: 1000.5, currency: "KRW"}

 assertEqual(t, expectedResult, actualResult)

}

func assertEqual(t *testing.T, expected Money, actual Money) {

 if expected != actual {

 t.Errorf("Expected [%+v] Got: [%+v]", expected, actual)

 }

}

type Money struct {

 amount float64

 currency string

}

func (m Money) Times(multiplier int) Money {

 return Money{amount: m.amount * float64(multiplier), currency:

m.currency}

}

func (m Money) Divide(divisor int) Money {

 return Money{amount: m.amount / float64(divisor), currency:

m.currency}

}

JavaScript
Here’s how the test_money.js file looks at this point:

const assert = require('assert');

class Money {

 constructor(amount, currency) {

 this.amount = amount;

 this.currency = currency;

 }

 times(multiplier) {

 return new Money(this.amount * multiplier, this.currency);

 }

 divide(divisor) {

 return new Money(this.amount / divisor, this.currency);

 }

}

fiveDollars = new Money(5, "USD");

tenDollars = new Money(10, "USD");

assert.deepStrictEqual(fiveDollars.times(2), tenDollars);

tenEuros = new Money(10, "EUR");

twentyEuros = new Money(20, "EUR");

assert.deepStrictEqual(tenEuros.times(2), twentyEuros);

originalMoney = new Money(4002, "KRW")

expectedMoneyAfterDivision = new Money(1000.5, "KRW")

assert.deepStrictEqual(originalMoney.divide(4),

expectedMoneyAfterDivision)

Python
Here’s how the test_money.py file looks right now:

import unittest

class Money:

 def __init__(self, amount, currency):

 self.amount = amount

 self.currency = currency

 def times(self, multiplier):

 return Money(self.amount * multiplier, self.currency)

 def divide(self, divisor):

 return Money(self.amount / divisor, self.currency)

 def __eq__(self, other):

 return self.amount == other.amount and self.currency ==

other.currency

class TestMoney(unittest.TestCase):

 def testMultiplicationInDollars(self):

 fiveDollars = Money(5, "USD")

 tenDollars = Money(10, "USD")

 self.assertEqual(tenDollars, fiveDollars.times(2))

 def testMultiplicationInEuros(self):

 tenEuros = Money(10, "EUR")

 twentyEuros = Money(20, "EUR")

 self.assertEqual(twentyEuros, tenEuros.times(2))

 def testDivision(self):

 originalMoney = Money(4002, "KRW")

 expectedMoneyAfterDivision = Money(1000.5, "KRW")

 self.assertEqual(expectedMoneyAfterDivision,

originalMoney.divide(4))

if __name__ == '__main__':

 unittest.main()

1 ∀ x ≠ 0, i.e. as long as x isn’t zero … thank you, all the math teachers, for what you do!

2 The === operator tests whether both the values and the types of the two objects being compared
are equal. See https://www.w3schools.com/nodejs/met_assert_deepstrictequal.asp

3 The ECMAScript standard defines a method as a “function that is the value of a property [of an
object]” https://www.ecma-international.org/ecma-262/11.0/index.html#sec-method

4 The Python standard defines a method as “bound function objects”. That is, methods are always
associated with objects, whereas functions are not. https://docs.python.org/3/c-api/method.html

https://www.w3schools.com/nodejs/met_assert_deepstrictequal.asp
https://www.ecma-international.org/ecma-262/11.0/index.html#sec-method
https://docs.python.org/3/c-api/method.html

Chapter 3. Portfolio

Penny wise and Dollar foolish
—Tired Proverb

We can multiply and divide amounts in any one currency by numbers. Now
we need to add amounts in multiple currencies.

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Remove redundant Money multiplication tests

In this chapter, we’ll deal with the mixed-mode addition of currencies.

Designing our next test
To test drive the next feature — 5 USD + 10 EUR = 17 USD — it’s
enlightening to first sketch out how our program will evolve. TDD plays
nicely with software design, contrary to prevailing myths!

The feature, as described in our feature list, says that 5 Dollars and 10 Euros
should add up to 17 Dollars, assuming we get 1.2 Dollars for exchanging one
Euro.

However, it’s equally true that:

1 EUR + 1 EUR = 2.4 USD

1

Or, rather obviously:

1 EUR + 1 EUR = 2 EUR

Ah: an epiphany! When we add two (or more) Money s, the result can be
expressed in any currency, as long as we know the exchange rate between all
currencies involved (i.e. from currency of each Money into the currency in
which we want to express the result). This is true even if all the currencies
involved are the same, as in the last example — which is just one particular
case out of many.

TIP
Test-driven development gives us an opportunity to pause after each RGR cycle and
design our code intentionally.

We realize that “Adding Dollars to Dollars results in Dollars” is an
oversimplification. The general principle is that adding Money in different
currencies gives us a Portfolio; which we can then express in any one
currency (given the necessary Exchange Rates between currencies).

Did we just introduce a new entity: Portfolio? You bet! It’s vital to let our
code reflect the realities of our domain. We’re writing code to represent a
collection of stock holdings; for which the correct term is a Portfolio.

When we add two or more Money s, we should get a Portfolio. We can
extend this domain model by saying that we should be able to evaluate a
Portfolio in any specific currency. These nouns and verbs give us an idea
about the new abstractions in our code which we’ll drive out through tests.

TIP
Analysis of the problem domain is an effective way to discover new entities, relationships,
functions, and methods.

2

Given this new realization, let’s add the simpler case of adding two Money s
in the same currency first, deferring the case of multiple currencies until later:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Remove redundant Money multiplication tests

Let’s build this feature: adding Money s together. We’ll start with a test to
add two Money s in the same currency, using the Portfolio as a new
entity.

Go
Here’s our new test, TestAddition, which we add after the existing
tests in money_test.go:

func TestAddition(t *testing.T) {

 var portfolio Portfolio

 var portfolioInDollars Money

 fiveDollars := Money{amount: 5, currency: "USD"}

 tenDollars := Money{amount: 10, currency: "USD"}

 fifteenDollars := Money{amount: 15, currency: "USD"}

 portfolio = portfolio.Add(fiveDollars)

 portfolio = portfolio.Add(tenDollars)

 portfolioInDollars = portfolio.Evaluate("USD")

 assertEqual(t, fifteenDollars, portfolioInDollars)

}

Notice that we have declared the portfolio and
portfolioInDollars variables explicitly, to emphasize their types. The
verbosity makes things clear to us as we proceed.

What our test says is:

1. We can start with an empty Portfolio.

2. We can then Add multiple Money structs to a Portfolio.

3. We can ask the Portfolio to Evaluate itself in a specific
currency.

4. Finally, the result of the evaluation should be a Money with the
correct amount and currency.

Of course, in our current simple case, the currency is always the same, so
exchange rates don’t (yet) become a concern. Let’s walk before we run!

By now, we’re very accustomed to errors like undefined: Portfolio.
Let’s speed ahead and implement the barest possible type Portfolio to
get beyond these errors. Here’s what it looks like, added to the end of
money_test.go:

type Portfolio []Money

func (p Portfolio) Add(money Money) Portfolio {

 return p

}

func (p Portfolio) Evaluate(currency string) Money {

 return Money{amount: 15, currency: "USD"}

}

We declare a new type Portfolio as an alias for a slice of Money s. We
then define the two missing methods: Add and Evaluate. The signatures of
these methods are suggested by the failing test we wrote. The implementation
is the least possible code to get the test to pass — including the “silly” hard-
coded Money that Evaluate returns.

In an earlier round of RED-GREEN-REFACTOR, we recognized the subtle
duplication in the test and production code and used it change the “silly”
implementation to a more correct one. Where is the duplication in this case?
Yep: it’s the “15” that’s in both the test and production code.

We should replace the hard-coded 15 in Evaluate method with code that
actually sums up the amount in the Money s:

func (p Portfolio) Evaluate(currency string) Money {

 total := 0.0

 for _, m := range p {

 total = total + m.amount

 }

 return Money{amount: total, currency: currency}

}

Hmm… our TestAddition fails with an assertion failure:

... Expected [{amount:15 currency:USD}] Got: [{amount:0

currency:USD}]

Ah! We are iterating over an empty slice. We made the correct change to
Evaluate, however, our Add method still has a trivial (“silly”)
implementation. Let’s fix that, too:

func (p Portfolio) Add(money Money) Portfolio {

 p = append(p, money)

 return p

}

The test is now green.

We know that the value of currency in the Money struct returned by
Evaluate is whatever was passed in as the first (and only) parameter to that
method. This is obviously not the right implementation: it only works
because our test uses two Money s that both have the same currency, and
then calls Evaluate also with the same currency.

Should we test-drive our way to removing this “silly” behavior of our code,

or use our “refactoring budget” (now that we have green test) to do it?

There is no one-size-fits-all answer. TDD allows us to define for ourselves
how fast we want to go. In our case, we have good reason to defer fixing the
“silly” behavior of our code.

We know that when we Evaluate a Portfolio containing Money s
with different currencies, we’ll have to use exchange rates — a concept we
haven’t defined yet. We also know that we have an item on our to-do list — 5
USD + 10 EUR = 17 USD — that will compel us to test-drive this mixed-
currency feature. Therefore, we can defer the change for a bit: the “silly”
implementation survives to see another day. Or maybe ten more minutes.

JavaScript
Here’s our new test for adding two Money s, which we add to the very
end of test_money.js:

fifteenDollars = new Money(15, "USD");

portfolio = new Portfolio();

portfolio.add(fiveDollars, tenDollars);

assert.deepStrictEqual(portfolio.evaluate("USD"), fifteenDollars);

What our test says is:

1. We start with an empty Portfolio object.

2. We then Add multiple Money objects to this Portfolio. We use
our pre-existing fiveDollars and tenDollars objects.

3. We ask the Portfolio to evaluate itself in a specific currency.

4. Finally, the result of the evaluation should be a Money object with
the correct amount and currency.

In this test case, the currency is the same throughout, so exchange rates don’t
yet become a concern.

By now, we’re very accustomed to errors like ReferenceError:

Portfolio is not defined. Let’s speed ahead and implement the
barest possible class Portfolio to get beyond the errors and a quick
passing test.

class Portfolio {

 add(money) {

 }

 evaluate(currency) {

 return new Money(15, "USD")

 }

}

We define a new Portfolio class below the pre-existing Money class in
test_money.js. We give it the two methods our test demands: add and
evaluate. The signatures of these methods are also evident from our test.
In evaluate, we implement the quickfire solution that gets our test to pass:
always return a Money object representing “15 USD”.

In an earlier round of RED-GREEN-REFACTOR, we recognized the subtle
duplication in the test and production code and used it change the trivial
(“silly”) implementation to a more correct one. Where is the duplication in
this case? Yep: it’s the “15” that’s in both the test and production code.

Now that our tests pass, we should replace the hard-coded 15 in evaluate
method with code that actually sums up the amount in the Money s:

 evaluate(currency) {

 let total = this.moneys.reduce((sum, money) => {

 return sum + money.amount;

 }, 0);

 return new Money(total, currency);

 }

We use the reduce function for an array. We declare an anonymous
function that adds up the amount of each Money object, thereby reducing
the array this.moneys to a single scalar value. We then create a new
Money object with this total and the given currency and return it.

https://www.w3schools.com/jsref/jsref_reduce.asp

TIP
ES6 Arrays are list-like objects whose prototype defines methods like map, reduce, and
filter to facilitate a functional programming style.

The evaluate function, predictably, results in an error:

 let total = this.moneys.reduce((sum, money) => {

 ^

TypeError: Cannot read property 'reduce' of undefined

Let’s define the missing this.moneys array in a new constructor in
the Portfolio class:

 constructor() {

 this.moneys = [];

 }

After adding the constructor, we get an interesting assertion error:

AssertionError [ERR_ASSERTION]: Expected values to be strictly

deep-equal:

+ actual - expected

 Money {

+ amount: 0,

- amount: 15,

 currency: 'USD'

 }

Ah! We are iterating over an empty array. Our evaluate method and
constructor are correct, however, our add method is still empty. Let’s
rectify this shortcoming. We’ll use the implicit arguments object to allow
multiple Money s to be added simultaneously:

 add() {

 this.moneys =

this.moneys.concat(Array.prototype.slice.call(arguments));

 }

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://www.w3schools.com/js/js_function_parameters.asp

The test is now green.

Python
Here’s our new test for the addition of two Money objects, which we
append to our growing list of tests in TestMoney class:

 def testAddition(self):

 fiveDollars = Money(5, "USD")

 tenDollars = Money(10, "USD")

 fifteenDollars = Money(15, "USD")

 portfolio = Portfolio()

 portfolio.add(fiveDollars, tenDollars)

 self.assertEqual(fifteenDollars, portfolio.evaluate("USD"))

What our test says is:

1. We start with an empty Portfolio object.

2. We then Add multiple Money objects to this Portfolio.

3. We ask the Portfolio to evaluate itself in a specific currency.

4. Finally, the result of the evaluation should be a Money object with
the correct amount and currency.

In this test case, the currency is always the same, so exchange rates don’t yet
become a concern.

We’re now quite accustomed to errors like NameError: name
'Portfolio' is not defined. Let’s speed ahead and implement the
smallest possible class Portfolio to get beyond these errors and a
passing test. We add the new class after the Money class definition in
test_money.py.

class Portfolio:

 def add(self, *moneys):

 pass

 def evaluate(self, currency):

 return Money(15, "USD")

The Portfolio class has a no-op add method, and an evaluate method
with a “silly” implementation that always returns a Money object that’s
worth “15 USD”. Just enough code to get a passing test.

In an earlier round of RED-GREEN-REFACTOR, we recognized the subtle
duplication in the test and production code and used it change the trivial
(“silly”) implementation to a more correct one. Where is the duplication
here? Yep: it’s the “15” that’s in both the test and production code.

We can replace the hard-coded 15 in evaluate method with code that
actually sums up the amount in the Money s:

import functools

import operator

...

class Portfolio:

...

 def evaluate(self, currency):

 total = functools.reduce(

 operator.add, map(lambda m: m.amount, self.moneys))

 return Money(total, currency)

The functools package gives us the reduce function

The operator package gives us the add function

This code uses Python’s functional programming idioms. The best way to
understand how total is derived is to unravel the expression from the
inside out:

1. We import the packages we need: functools and operator.

2. Using a lambda expression, we map the self.moneys array to a
map of only the amount s in each Money object.

3. We then reduce this map to a single scalar value, using the
operator.add operation.

4. We assign this scalar value to the variable named total.

5. We finally create a new Money object using this total and the
currency passed in the first (and only) parameter to the
evaluate method.

Phew: that one line of functional code sure packs a lot of punch!

TIP
Python has rich support for functional programming, including map, reduce, and
filter in the functools package; and custom-written lambda functions.

We’re not done yet: when we run our test, the error message
AttributeError: 'Portfolio' object has no attribute

'moneys' reminds us of that. Let’s add an __init__ method that
initializes this missing attribute in Portfolio:

 def __init__(self):

 self.moneys = []

Ah: this gives us a new error! TypeError: reduce() of empty
sequence with no initial value. We realize two things:

1. The add method in Portfolio is still a no-op. That’s why our
self.moneys is an empty array; and

2. Notwithstanding the above problem, our code should still work with
an empty array.

We fix these two shortcomings by the following code changes in
Portfolio:

 def add(self, *moneys):

 self.moneys.extend(moneys)

 def evaluate(self, currency):

https://www.oreilly.com/content/functional-programming-in-python

 total = functools.reduce(

 operator.add, map(lambda m: m.amount, self.moneys), 0)

 return Money(total, currency)

The last parameter to reduce (0 in our case) is the initial value of the
accumulated result

We give the add method its correct implementation: it accumulates any
given Money s in the self.moneys array. And we add an initial value of
0 to our call to functools.reduce. This ensures that the code works
even when there is an empty array.

All tests are now green.

Committing our changes
We have the addition feature implemented for Money s in the same
currency. This suggests the appropriate message for our next commit to
our local Git repository:

git add .

git commit -m "feat: addition feature for Moneys in the same

currency done"

We now have three commits in our Git repository.

Where We Are
We started to tackle the problem of adding different representations of
Money. This new feature requires us to introduce a new entity to our code,
which we named Portfolio. Addition of Money s also requires
introduction of exchange rates. Since that is too much to take on all at once,
we used a divide-and-conquer strategy to first add two Money s and evaluate
the value of the Portfolio all in the same currency. This allows us to
gently introduce the concepts of Portfolio and addition of Money s.

This divide-and-conquer strategy means our Portfolio is far from
finished. It needs to be enhanced to evaluate correctly when the Money s
in it have different currencies, as well as when the currency of evaluation is
different.

Also, we can’t help noticing that our source code is growing as we accrete
tests and features. No surprises there! However, it’s getting a bit too long to
all be in one file. We need to restructure our code: separating the test code
from the production code would be a good start.

For now, let’s take a deep breath and celebrate crossing one more item from
our feature list, before we pick up the next item.

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Remove redundant Money multiplication tests

1 Or, to unfurl the brows of my many and dear British friends, “Penny wise and Pound foolish”!

2 Are there other entities that we should also have in addition to “Money”? Possibly. However,
the “Money” abstraction meets our current needs. We’ll add one more entity later in Chapter 11,
when its time comes.

Part II. Modularization

Chapter 4. Separation of
Concerns

“separation of concerns” … is what I mean by “focusing one’s attention
upon some aspect”: it does not mean ignoring the other aspects, it is just
doing justice to the fact that from this aspect’s point of view, the other is
irrelevant. It is being one- and multiple-track minded simultaneously.

—Edsger Dijkstra, On the role of scientific thought

Our source code has grown. Depending on the language, it’s 50-75 lines in
one source file. That’s more than a screenful on many display monitors and
certainly more than a printed page in this book.

Before we get to the next feature, we’ll spend some time refactoring our
code. That’s the subject of this and the next three chapters.

Test and Production Code
Thus far, we’ve written two different types of code.

1. Code that solves our Money problem. This includes Money and
Portfolio and all the behavior therein. We call this Production
Code

2. Code that verifies that the problem is correctly solved. This includes
all the tests and the code needed to support these tests. We call this
Test Code.

There are similarities between the two types of code: they are in the same
language, we write them in quick succession (through the by-now familiar
RED-GREEN-REFACTOR cycle), and we commit both to our code
repository. However, there are a few key differences between the two types
of code.

1

Unidirectional Dependency
Test code has to depend on Production code — at least on those parts of
Production code that it tests. However, there should be no dependencies in
the other direction.

Currently, all our code for each language is in one file, as shown in Figure 4-
1. So it’s not easy to ensure that there are no accidental dependencies from
production code to test code. There is an implicit dependency from the test
code to the production code. This has a couple of implications:

1. When writing code, we have to be careful to not accidentally use any
test code in our production code.

2. When reading code, we have to recognize the patterns of usage and
also notice the missing patterns, i.e. the fact that production code
cannot call any test code.

Figure 4-1. When test code and production code are in the same module, the dependency from the
former to the latter is implicit

IMPORTANT
Test code depends on production code; however there should be no dependency in the
other direction.

What bad results can ensue if production code is dependent on test code? In
particularly bad cases, it can mislead us to a path where the code-path that is
tested is “pristine” whereas the paths that are not tested are fraught with bugs.
An example is shown in Figure 4-2, which shows how a portion of the
pseudocode for the engine control unit in a car. The code works differently if
the engine is being tested for emissions-compliance from when the engine is
being used “in real world”.

Figure 4-2. Accidental dependency of production code on test code can create production code-paths
that behave differently and in untested ways.

If you’re skeptical that such a blatant case of “be on your best behavior for
tests” can never happen in reality, you’re encouraged to read about the
Volkswagen emissions scandal, from which the above pseudocode is drawn.

Having a unidirectional dependency — where production code does not
depend on test code in any way and is therefore not susceptible to behaving
differently when under test — is vital to ensuring defects of this nature
(whether accidental or malicious) do not creep in.

Dependency Injection
Dependency injection is a practice to separate the creation of an object from

2

its usage. It increases the cohesion of code and reduces its coupling.
Dependency injection requires different code units (classes and methods) to
be independent from each other. Separating test and production code is an
important prerequisite to facilitating dependency injection.

We’ll have more to say about dependency injection in Chapter 11, where
we’ll use it to improve the design of our code.

Packaging and Deployment
When application code is packaged for deployment, the test code is almost
always packaged separately from production code. This allows deploying
production and test code independently. Often, only production code is
deployed in certain “higher” environments such as the Production
environment. This is shown in Figure 4-3.

Figure 4-3. Test code should be packaged separately from production code, so that they can be
deployed independently via the CI/CD pipeline

We’ll describe deployment in more detail in Chapter 13, when we build a
continuous integration pipeline for our code.

Modularization
The first thing we’ll do is to separate the test code from the production code.
This will require us to solve the problem of “including”, “importing”, or
“requiring” the production code in the test code. It is vital that this should
always be a one-way dependency, as shown in Figure 4-4.

Figure 4-4. Only Test Code should depend on Production Code, not the other way around

In practice, this means that the code should be modularized along these lines:

1. The test and production code should be in separate source files. This
allows us to read, edit, and focus on test or production code
independently.

2. The code should be use namespaces to clearly identify which entities
belong together. A namespace can be a “modules” or “packages”,
depending on the language.

3. Insofar as it’s possible, there should be an explicit code directive 
— import, require, or similar, depending on the language — to
indicate that one module depends on another. This ensures that we
can specify the dependency shown in Figure 4-1 explicitly.

We’ll also look for opportunities to make code more self-describing. This
would include renaming and reordering entities, methods, and variables to
better reflect their intent.

Removing Redundancy
The second thing we’ll do is to remove redundancy in our tests.

We have had two multiplication tests for a while now; one for Euros and one
for Dollars. They test the same functionality. In contrast, we have only one
test for division. Should we keep both the multiplication tests?

There is seldom an ironclad “yes” or “no” answer to this. We could argue that
the two tests protect us from inadvertently hard-coding the currency in the
code that does the multiplication — although that argument would be
weakened by the fact that we have one test for division and a similar hard-
coded currency error could crop up there.

To make it a more objective exercise whether we should delete tests, here is a
checklist:

1. Would we have the same code coverage if we delete a test? Line
Coverage is a measure of the number of executable lines of code
that are executed when running a test. In our case, there would be no
loss of coverage if we deleted either one of the multiplication tests.

2. Does one of the tests verify a significant edge case? If, for example,
we were multiplying a really large number in one of our tests and
our goal was to ensure that there was no overflow/underflow on
different CPUs and operating systems, we could make the case for
keeping both tests. However, that is also not the case for our two
multiplication tests.

3. Do the different tests provide unique value as living documentation?
For example, if we were using currency symbols from beyond the
alphanumeric character set ($, €, ₩), we could say that displaying
these disparate currency symbols provides additional value as
documentation. However, we are currently using letters drawn from
the same 26 English alphabet (USD, EUR, KRW) for our currencies;
so the variation between currencies provides minimal documentation
value.

TIP
Line (or Statement) Coverage, Branch Coverage, and Loop Coverage are three different
metrics that measure how much of a given body of code has been tested.

Where We Are
In this chapter, we reviewed the significance of separation of concerns and
removing redundancy. These are the two goals that will garner our attention
in the following three chapters.

Let’s update our feature list to reflect that:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

Separate test code from production code

Remove redundant tests

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

https://www.cs.odu.edu/~cs252/Book/stmtcov.html

Our goals are clear. The steps to accomplish these — especially the first goal
of separation of concerns — will vary significantly from language to
language. Therefore, the implementation has been separated into the next
three chapters.

Chapter 5 - Packages and Modules in Go

Chapter 6 - Modules in JavaScript

Chapter 7 - Modules in Python

Read these chapters in the order that makes most sense to you. Refer to “How
to read this book” for guidance.

1 Remember: you can access the complete source code for this book, including intermediate
commits, at https://github.com/saleem/tdd-book-code.

2 On the Volkswagen “dieselgate” scandal, Felix Domke has done a lot of work. There is a
whitepaper (of which he’s a co-author) https://cseweb.ucsd.edu/~klevchen/diesel-sp17.pdf . He
also delivered a keynote at the Chaos Computer Club conference. https://media.ccc.de/v/32c3-
7331-the_exhaust_emissions_scandal_dieselgate

https://github.com/saleem/tdd-book-code
https://cseweb.ucsd.edu/~klevchen/diesel-sp17.pdf
https://media.ccc.de/v/32c3-7331-the_exhaust_emissions_scandal_dieselgate

Chapter 5. Packages and
Modules in Go

Go programs are constructed by linking together packages. A Go package
in turn is constructed from one or more source files …

—The Go Programming Language Specification,
https://golang.org/ref/spec#Packages

In this chapter, we’ll do a few things that clean up our Go code. We’ll look at
the Go module we created back in Chapter 0 - Introduction & Setup and see
its purpose in separating code. Then we’ll do the work to separate our test
code from our production code using packages. Finally, we’ll remove some
redundancy in our code, making things compact and meaningful.

Separating our code into Packages
Let’s begin by separating our test code from our production code. This entails
two separate tasks:

1. Separating test code from production code.

2. Ensuring the dependency is only from the test code to the production
code.

We have production code for Money and Portfolio sitting next to our
test code in one file — money_test.go. Let’s first create two new files
named money.go and portfolio.go. We’ll put both these files in the
$TDD_PROJECT_ROOT/go folder. Next, we move code for the relevant
classes, Money and Portfolio to their appropriate file. This is how
portfolio.go looks:

package main

type Portfolio []Money

func (p Portfolio) Add(money Money) Portfolio {

 p = append(p, money)

 return p

}

func (p Portfolio) Evaluate(currency string) Money {

 total := 0.0

 for _, m := range p {

 total = total + m.amount

 }

 return Money{amount: total, currency: currency}

}

The file money.go, not shown here, similarly contains the Money
struct and its methods.

If we run our tests now, they’re all green. Yay! Because everything is in the
main package, we didn’t have to do anything special to to access
Portfolio and Money code from our tests. In particular, we don’t have to
add any import statements to our test class, like the one we have to import
the testing module.

We have separated the source code into separate files, but what about higher
level organization of code? We’d like to group Portfolio and Money
together in a namespace to indicate they both belong to the “stock” domain 
— another term borrowed from our domain.

Before we do this separation, let’s take a look at how modules and packages
work in Go.

Go Modules
A Go program typically consists of multiple source files. Each Go source file
declares the package to which it belongs. That declaration is in the very first
line of code in the file. For all three of our source files, the declaration is:
package main, specifying that all our code currently resides in the main
package.

In general, a Go code repository comprises exactly one module. This module
includes multiple packages, which in turn contain several files each.

IMPORTANT
Module support is a fast-evolving feature and a topic of great interest in Go. This book
uses module mode, which is the default (and favored) style in Go v1.13 onwards. The
older style, using GOPATH, is largely incompatible with Go modules. GOPATH-style is not
used in this book.

Any program that has to run as an application — i.e. any files with a main()
function — must be in the main package. There may be other files containing
structs, functions, types, etc., also in the main package. And there may be
other packages. This general structure of a Go program is shown in Figure 5-
1.

https://blog.golang.org/using-go-modules

Figure 5-1. Structure of a typical Go program, showing the hierarchy of program module, packages,
and files

IMPORTANT
We run our tests using go test . command. We do not need to run anything the via
the go run command — which would have required a main() method in the main

package. That’s why we don’t have a main() method anywhere.

Our program has these (and only these) files in our go folder:

go

├── go.mod

├── money.go

├── money_test.go

└── portfolio.go

We generated the go.mod file back in Chapter 0, by running the go mod
init tdd command. Here are the contents of the go.mod file, shown in
their glorious entirety:

module tdd

go 1.16

We are reminded of the fact that our module is named tdd every time we run
our tests. The last couple of lines of every successful test run are virtually
identical:

PASS

ok tdd ...

The execution time, omitted here, is also shown for actual test runs

That tdd in the last line isn’t an appreciation for our newly acquired skill
(although it’s fine to interpret it that way), it’s simply the name of the module
declared in the first line of the go.mod file.

Inside this tdd module, all our code is in the main package. Because
everything is in the same package, there is no need to import either of our
classes — Money or Portfolio — in our test code. The test code is able to
“see” these classes by virtue of being in the same package. The only import
statement we need is for the testing package so that we may access the

struct T defined in it.

Figure 5-2 shows the current structure of our code.

Figure 5-2. The test and production code are in the main package, therefore, the dependencies among
them are implicit and do not require import statements

Creating a package
We have separate source files, but all our code is still in one and the same
package — main. Let’s now separate our production code into a new
package.

We create a subfolder named stocks under go/src folder, and move the
files money.go and portfolio.go in it. Our folder structure looks like
this:

go

├── go.mod

├── money_test.go

└── stocks

 ├── money.go

 └── portfolio.go

The folder stocks takes on added significance by being a subfolder in a
module: it is also a package. This means that the files in it now belong to a
package whose name is also stocks. We can see evidence of this if we try
to run our tests from the go folder: we get a bunch of undefined:
Money and undefined: Portfolio errors. We need to modify our
source files to reflect the new package structure.

In portfolio.go and money.go, we replace the top line, which
currently says package main, with the correct package name:

package stocks

In money_test.go, we add an import statement for our newly created
package using its fully qualified name: tdd/stocks. The import section
in test_money now looks like this:

import (

 "testing"

 "tdd/stocks"

)

IMPORTANT
The fully qualified name of a package starts with the module name containing the
package.

Hmmm … we still have all the errors we got last time, plus an additional one:
imported and not used: "tdd/stocks". In fact, the go test
tool seems to give up after printing a handful of errors and politely tells us
too many errors at the end. Things are not trending in the right
direction, as they say in the stock market!

We spot a hint: the other package we have imported since the very beginning,
testing, requires us to prefix the package name before referring to the
struct T. We need to do the same to refer to the structs within our stocks
folder. Since tdd/stocks is a long and rather unwieldy name, we first give
it an alias s.

import (

 "testing"

 s "tdd/stocks"

)

We use s as an alias for the tdd/stocks package

We change all references to Money and Portfolio in test_money.go
to s.Money and s.Portfolio. For example, here’s the signature of the
assertEqual method:

func assertEqual(t *testing.T, expected s.Money, actual s.Money) {

...

}

Prefixing all occurrences of Money and Portfolio with s. — the
package name alias

Are we done? Let’s run our tests and see.

Yelp! There are “too many errors”, repeatedly informing us that amount and
currency are no longer accessible:

... cannot refer to unexported field 'amount' in struct literal of

type stocks.Money

... cannot refer to unexported field 'currency' in struct literal

of type stocks.Money

...

... too many errors

Looks like moving the Money struct into its own package has caused

reference errors because Money’s fields are no longer in scope. What should
we do?

Encapsulation
This is exactly where we wanted to be! Previously, because all the code was
in the same (i.e. main) package, everything was freely accessible to
everything else. By packaging Money and Portfolio in the stocks
package, we are now compelled to think about encapsulation.

We’d like to specify the amount and currency fields in the Money struct
once when creating the struct, but not modifiable thereafter. In software
parlance, we’d lke to make the Money struct immutable. The way to do this
is to provide some additional behavior to Money:

Make amount and currency accessible only from within Money struct and not from outside

Create a public New function to initialize Money struct

We have already — and somewhat inadvertently — accomplished the first
item on this list. Let’s do the other one.

TIP
“Immutability” is a design dictum that states that the state of an entity should be defined
exactly once — when it’s created — and not modified thereafter. It’s a cornerstone of
functional programming and a useful idiom across programming languages.

To the money.go file, let’s add a function named NewMoney. It takes an
amount and a currency, creates a Money struct from these two values,
and returns it:

func NewMoney(amount float64, currency string) Money {

 return Money{amount, currency}

}

Notice that we can access the fields of the Money struct in NewMoney,
because this function is in the same package as Money.

Now let’s change all the occurrences in money_test.go where Money is
created to call NewMoney instead:

fiveDollars := s.NewMoney(5, "USD")

We change all occurrences, taking extra care to keep the same parameter
values for all these calls to NewMoney!

After correctly changing all such occurrences, we get back to green tests.
Splendid!

That’s all fine and dandy, but there is a bit of curious behavior. We cannot
access the fields in the Money struct from outside the stocks package, so
how are we able to successfully compare different Money structs in the
assertEqual method?

This is because of the way Go compares two different structs when the ==
and “!=” operators are used. Two structs are equal if all the corresponding
fields of both are equal. Thus, it is possible to compare Money structs
without being able to directly access their fields from outside the package
where the struct is defined.

IMPORTANT
Some Go types, like slices, maps, and functions, are inherently non-comparable and will
raise a compilation error if we attempt to compare Go structs containing them.

Removing Redundancy in Tests
We have two tests for multiplication, and one each for division and addition.

Given the criteria given in Chapter 4, let’s delete the
TestMultiplicationInDollars. This way, we have three tests, each

https://golangbyexample.com/struct-equality-golang/

one for a different currency. We’ll rename the remaining multiplication test
to simply TestMultiplication.

Committing Our Changes
We have added code and moved files around. It’s particularly important
to commit our changes to our Git repo.

git add .

git commit -m "refactor: moved Money and Portfolio to stocks Go

package"

The output should verify that three files were changed:

[main b67ab66] refactor: moved Money and Portfolio to stocks Go

package

 3 files changed, 75 insertions(+), 71 deletions(-)

 rewrite go/money_test.go (69%)

 create mode 100644 go/stocks/money.go

 create mode 100644 go/stocks/portfolio.go

The 69% is the similarity index: the percentage of the file that’s
unchanged

Where We Are
We revisited the tdd module we generated in Chapter 0 - Introduction &
Setup. We created a new package named stocks and moved all the
production code into this package. Partitioning code this way forced us to
explicitly indicate the dependency from test code to production code — and
ensure that there is no dependency in the other direction. We also deleted one
of the tests that didn’t add much value.

Figure 5-3 shows the resulting structure of our code.

Figure 5-3. The production code is now in its own package, therefore, the dependency from test code to
it is explicitly declared

Chapter 6. Modules in
JavaScript

A module is a function or object that presents an interface but that hides its
state and implementation.

—Douglas Crockford, JavaScript: The Good Parts

In this chapter, we’ll take several actions that clean up and improve our
JavaScript code. We’ll separate our test code from our production code using
JavaScript modules. There are several ways to write modules in JavaScript 
— we’ll look at four different styles and their applicability to our code. We’ll
turn our attention to how our test code is organized and improve how it runs
and the output it produces. Finally, we’ll remove some redundancy in our
tests. That’s a lot of work, so let’s get to it!

Separating our code into Modules
Let’s separate the Money and Portfolio classes from the test code. We
create two new files named money.js and portfolio.js in the same
folder as test_money.js and move the relevant code there. Here’s our
new folder structure:

js

├── money.js

├── portfolio.js

└── test_money.js

This is how portfolio.js looks:

class Portfolio {

 constructor() {

 this.moneys = [];

 }

 add() {

 this.moneys =

this.moneys.concat(Array.prototype.slice.call(arguments));

 }

 evaluate(currency) {

 let total = this.moneys.reduce((sum, money) => {

 return sum + money.amount;

 }, 0);

 return new Money(total, currency);

 }

}

The file money.js, not shown here, similarly contains the Money class and
its methods.

When we now run our tests by executing node js/test_money.js
from the Project Root folder, we get our old friend, ReferenceError:

ReferenceError: Money is not defined

By moving the classes Money and Portfolio into their own files, they are
no longer accessible from the test code. What to do?

We take a hint in our test code: we use the require statement to access the
assert library. Can we require both Money and Portfolio?

Yes, we can! However, before we do that, we first have to export those
classes from their respective files.

At the very end of money.js, let’s add line to export the Money class:

module.exports = Money;

Similarly, we add a module.exports statement at the end of
portfolio.js file:

module.exports = Portfolio;

Now, at the top of test_money.js, let’s add two require statements:

const Money = require('./money');

const Portfolio = require('./portfolio');

What happens when we run our tests now? We get the ReferenceError
again:

.../portfolio.js:14

 return new Money(total, currency);

 ^

ReferenceError: Money is not defined

Wait: the error is now being reported in the portfolio.js file. Of course!
Portfolio depends on Money, so we need to specify this dependency at
the add top of portfolio.js file, too:

const Money = require('./money');

After all these changes, our tests are passing again. Yay!

Separating our code into module s makes the dependency tree of our code
clearer. Figure 6-1 shows the dependencies.

Figure 6-1. The dependency diagram of our JavaScript code after separating it into three source files

A segue into JavaScript Modules

Modules — components of code packaged as a unit to promote reuse — are a
well-understood concept in many programming languages. JavaScript is no
different. Except, perhaps, in having multiple ways in which modules can be
specified and (re)used.

ES5 and earlier editions of ECMAScript did not define modules. However,
the need to modularize code was very pressing and very real, therefore,
different flavors of modules emerged over time.

CommonJS
CommonJS is the style favored by Node.js. It’s also the style used in the
JavaScript code shown in this chapter.

CommonJS uses a module.exports statement in each source file (i.e.
module) containing an object — which could be a class, a function, a
constant — that other modules need. Those other modules then have an
require statement before they can use that dependent object. Although the
require statement can be put anywhere before the first use of the
dependency, it’s customary to put all require statements in a group at the
top of the file.

Asynchronous Module Definition (AMD)
The AMD specification, as its name implies, facilitates the asynchronous
loading of multiple modules. This means modules can be loaded separately
(and many at a time, if possible) instead of sequentially (one after the other).
This asynchronous loading is highly desireable when JavaScript code runs in
a web browser, as it can noticeably improve the responsiveness of web pages
and web sites. This is shown in Figure 6-2.

https://nodejs.org/api/modules.html
https://github.com/amdjs/amdjs-api

Figure 6-2. Asynchronous Module Definition allows modules to be loaded separately and concurrently
(image from Wikipedia.org, courtesy Ле Лой)

AMD is not supported out-of-the-box by Node.js. A couple of popular
implementations of AMD are RequireJS and Dojo Toolkit. RequireJS is
available as a Node.js package, whereas Dojo Toolkit can be installed via
Bower, which is yet another package management system (similar to
Node.js).

From the previous paragraph, it may appear that grafting AMD on top of a
Node.js app is a bit of work. That is because of a couple of fundamental
decisions that the designers of Node.js and AMD have taken about the
respective styles:

1. Server-side module management: optimized for correctness.
Node.js, whose runtime is designed for building server-side apps
outside the confines of a web browser , strongly favors CommonJS
style of defining module dependencies. CommonJS ensures
deterministic loading of modules, which means that modules may
wait on other modules to load. This is best illustrated by the way
Node.js’s CommonJS implementation ensures that even cyclical
dependencies — which are, in general, a bad choice — are resolved
predictably. This waiting is less of a concern on the server, because
there are other mechanisms to improve application performance (e.g
statelessness and horizontal scaling).

2. Client-side module management: optimized for speed. The AMD
style, which is optimized for use in browsers, is built around the idea
of asynchronous loading — it’s right there in the name! Loading
modules as fast as possible is vital in JavaScript code that runs in a
web browser, because any latency due to slow loading is painfully
obvious to the human user.

Because of the contrasting needs of running JavaScript on a server vs.
running it inside a web browser, the two module definition styles — 
CommonJS and AMD — are optimized in different ways.

1

https://requirejs.org/
https://dojotoolkit.org/documentation/tutorials/1.10/modules/index.html
https://bower.io/
https://nodejs.org/api/modules.html#modules_cycles

This book does not show the AMD style of module management because its
JavaScript code is of a server-side flavor — it’s not intended to be run inside
a web browser.

Universal Module Definition (UMD)
UMD is a design pattern and not an official specification. Think of a it as a
societal convention (like shaking hands with the right hand) and not a law
(like driving on the left side of the road in Ireland). The pattern consists of
two parts: an immediately-invoked function expression (IIFE) and an
anonymous function that creates a module. A robust implementation of this
design pattern accounts for different libraries (such as AMD or CommonJS)
and exports the function accordingly. Implementing AMD with such fallback
features usually results in more lines of code. The code snippet below shows
how to use UMD to export and import the Money class:

// ------------------------------------

// money.js (entire file)

// ------------------------------------

(function (root, factory) {

 if (typeof define === "function" && define.amd) {

 define("Money", [], factory);

 } else {

 root.Money = factory();

 }

}(this, function () {

 class Money {

 constructor(amount, currency) {

 this.amount = amount

 this.currency = currency

 }

 times(multiplier) {

 return new Money(this.amount * multiplier,

this.currency)

 }

 divide(divisor) {

 return new Money(this.amount / divisor, this.currency)

 }

 };

 return Money;

}));

2

// ------------------------------------

// test_money.js (one example usage)

// ------------------------------------

const m = require('./money');

fiveDollars = new m.Money(5, "USD");

Because of the relative verbosity of the UMD pattern, this book eschews its
use.

ESModules
As the name implies, ESModules is the standard promoted by ECMAScript.
It is syntactically similar to CommonJS with a few differences. There is an
export keyword, which can be used to export anything — e.g. a class,
var, or function — from a module. Instead of require, an import
statement allows a dependent module to import and use another module
which it needs.

Node.js has supported ESModules for a few versions. Versions v14 and v16,
referenced in this book, support it fully. To use ESModules instead of the
default CommonJS, we need to do the following steps.

1. Either rename our source files to end in .mjs instead of .js or
add a package.json file with { "type": "module" } in
our source folder.

2. Declare and export modules using directives like export class
Money.

3. Import modules using directives like import {Money} from
'./money.mjs';.

The code snippet below shows how to use ESModules in our code. This
snippet shows the files as renamed to end with .mjs (which is simpler
inasmuch as it does not require the creation of a package.json file).

// ------------------------------------

// portfolio.mjs (entire file)

https://www.ecma-international.org/ecma-262/11.0/index.html#sec-modules

// ------------------------------------

import {Money} from './money.mjs';

export class Portfolio {

 constructor() {

 this.moneys = [];

 }

 add() {

 this.moneys =

this.moneys.concat(Array.prototype.slice.call(arguments));

 }

 evaluate(currency) {

 var total = this.moneys.reduce((sum, money) => {

 return sum + money.amount;

 }, 0);

 return new Money(total, currency);

 }

}

// ------------------------------------

// test_money.mjs (example usage only)

// ------------------------------------

import * as assert from 'assert';

import {Money} from './money.mjs';

import {Portfolio} from './portfolio.mjs';

let fifteenDollars = new Money(15, "USD");

let portfolio = new Portfolio();

portfolio.add(fiveDollars, tenDollars);

assert.deepStrictEqual(portfolio.evaluate("USD"), fifteenDollars);

Notice that we have to declare variables with the let keyword in
test_money.mjs, in strict compliance with ES6 rules, since the file is
now an ES6 file (ending in .mjs).

IMPORTANT
ES2015 introduced the let and const keywords that allow block scope

Improving Our Tests

https://www.w3schools.com/Js/js_let.asp

The most obvious problem plaguing our tests is that they have a loose, almost
accidental structure. There is no organization in test functions, no
encapsulation of data used by each test. We have one JavaScript file with
almost two dozen statements, four of which happen to be calls to assert
methods. That’s about it.

Another smaller problem is that we have two tests for multiplication, and one
each for division and addition. The two tests for multiplication test the same
feature, albeit with different currencies.

JavaScript has several test libraries and frameworks. Appendix B describes a
few of them. As stated in Chapter 0 - Introduction & Setup, we eschew the
use of any of these, settling on using the assert package within Node.
Without the structure enforced by a library or framework, how can we add
structure to our code to make it modular?

In particular, we’d like the items listed in Table 6-1.

Table 6-1. List of improvements to our tests

Item Description

1 Remove one of the two multiplication tests

2 Organize tests in a class comprising test methods with names that reflect the
intent of each test

3 Allow us to run all the test methods automatically, including any future tests we
write

4 Produce succinct output when tests run successfully (while preserving the
verbose messages we already get when tests fail)

5 Run all subsequent tests even if an earlier ones fails with an AssertionErro
r

Let’s take a brief sojourn to incorporating these improvements to our test
code. What’s more, we’ll use TDD to accomplish the above-mentioned goals.
(That should come as no surprise, since we’re roughly halfway into a book on
TDD!)

Removing redundancy in tests
Let’s first delete the line of code that asserts multiplication in dollars, taking
care to not delete the variables named fiveDollars and tenDollars
which we need for our Portfolio test. Let’s move these variables closer to that
Portfolio test. We now have three tests, segmented out by empty lines:

const assert = require('assert');

const Money = require('./money');

const Portfolio = require('./portfolio');

tenEuros = new Money(10, "EUR");

twentyEuros = new Money(20, "EUR");

assert.deepStrictEqual(tenEuros.times(2), twentyEuros);

originalMoney = new Money(4002, "KRW")

expectedMoneyAfterDivision = new Money(1000.5, "KRW")

assert.deepStrictEqual(originalMoney.divide(4),

expectedMoneyAfterDivision)

fiveDollars = new Money(5, "USD");

tenDollars = new Money(10, "USD");

fifteenDollars = new Money(15, "USD");

portfolio = new Portfolio();

portfolio.add(fiveDollars, tenDollars);

assert.deepStrictEqual(portfolio.evaluate("USD"), fifteenDollars);

This is a good starting point for adding some structure.

Adding a test class and test methods
How should we make changes to our test code, using the principles of test-
driven development?

We have one thing going for us: we have green tests right now. We can do
refactoring and add new behavior using TDD as long as we run our tests
frequently.

The current behavior of tests is that if we don’t get any output, it could
indicate one of these scenarios:

All tests ran successfully

OR

One or more broken tests didn’t run.

That’s why item 3 in Table 6-1 is important.

Since silence ≠ success, we’ll adopt a TDD strategy tailored to our situation
as shown in Table 6-2:

Table 6-2. Modified RGR strategy to improve the behavior of our tests

Step Description RGR Phase

1 Run our tests first before we make any changes, verifying
that all tests pass.

GREEN

2 Improve our test code, with a preference to keeping all
changes small. Run our tests again, observing if there are
any failures.

REFACTOR

3 If there are no failures, we deliberately break our tests one
at a time by modifying the assert statements. We’ll run
the tests a third time to verify that the expected error
messages are in the output.

RED

4 When we are satisfied that the tests indeed produce output
when broken, we revert the deliberately induced errors.
This ensures the tests pass again. We’re ready to
recommence the RGR cycle.

GREEN

Notice that the three phases of RGR still occur and in the same order. The
only difference is that, because our tests are currently silent when they pass,
we will deliberately break them in the RED phase to ensure that we’re
making progress.

TIP
Temporarily changing production code to deliberately break a unit test is a nifty trick. It
reassures us that the test is reliably run as part of the suite and that it indeed executes the
particular line(s) of production code. Remember to revert the production code so the test
returns to green!

We’ll repeat the steps listed in Table 6-2 until we accomplish all remaining
items in Table 6-1.

Let’s add a class named MoneyTest in test_money.js. Let’s also move
the three code blocks into three methods named testMultiplication,
testDivision and testAddition respectively. Since we’re now using
full ECMAScript semantics, we’ll need to declare all variables with the let
keyword. Here’s how our newly minted class looks:

const assert = require('assert');

const Money = require('./money');

const Portfolio = require('./portfolio');

class MoneyTest {

 testMultiplication() {

 let tenEuros = new Money(10, "EUR");

 let twentyEuros = new Money(20, "EUR");

 assert.deepStrictEqual(tenEuros.times(2), twentyEuros);

 }

 testDivision() {

 let originalMoney = new Money(4002, "KRW")

 let expectedMoneyAfterDivision = new Money(1000.5, "KRW")

 assert.deepStrictEqual(originalMoney.divide(4),

expectedMoneyAfterDivision)

 }

 testAddition() {

 let fiveDollars = new Money(5, "USD");

 let tenDollars = new Money(10, "USD");

 let fifteenDollars = new Money(15, "USD");

 let portfolio = new Portfolio();

 portfolio.add(fiveDollars, tenDollars);

 assert.deepStrictEqual(portfolio.evaluate("USD"),

fifteenDollars);

 }

}

This runs so silently that we wonder if it’s running at all! Let’s follow the
modified RGR cycle described in Table 6-2 and break one of the assertions
deliberately. In testMultiplication, we change the 2 to 2000:

 assert.deepStrictEqual(tenEuros.times(2000), twentyEuros);

There is still no output. This proves that we’re not running any of the tests.
Let’s add a runAllTests() methods to the class and call it outside the
class:

class MoneyTest {

 testMultiplication() {

...

 }

 testDivision() {

...

 }

 testAddition() {

...

 }

 runAllTests() {

 this.testMultiplication();

 this.testDivision();

 this.testAddition();

 }

}

new MoneyTest().runAllTests();

Now we get the expected error from our deliberately broken test:

 code: 'ERR_ASSERTION',

 actual: Money { amount: 20000, currency: 'EUR' },

 expected: Money { amount: 20, currency: 'EUR' },

When we run our class now, the tests run. We’ve accomplished item 2 in
Table 6-1.

Discovering and running tests automatically
We’d like to create a mechanism whereby we can automatically discover all
the tests and then run them. This can be broken down into two parts:

1. Discover the names of all the test methods in our class (i.e. methods
that start with test because that’s our naming convention);

2. Execute these methods one by one.

Let’s tackle the second part first. If we had the names of all our test methods
in an array, we could use the Reflect object in standard library to execute
them.

TIP
The Reflect object in ES6 provides Reflection capabilities. It allows us to write code that
can inspect, execute, and even modify itself.

Let’s add a new method to MoneyTest that simply returns an array of
strings, where each string is the name of one of our test methods.

 getAllTestMethods() {

 let testMethods = ['testMultiplication', 'testDivision',

'testAddition'];

 return testMethods;

 }

Yes, this is not “discovering the names of all the test methods” that we said in
Part I! We’ll get to this shortly.

We can now call Reflect.get and Reflect.apply in runAllTests
to call our test methods in succession:

 runAllTests() {

 let testMethods = this.getAllTestMethods();

 testMethods.forEach(m => {

 let method = Reflect.get(this, m);

 Reflect.apply(method, this, []);

 });

 }

Get names of all test methods
Get the method object for each test method name via reflection

Invoke the test method with no arguments on this object

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect
https://262.ecma-international.org/6.0/#sec-reflection

We first call the getAllTestsMethods to get the test method names. For
each name, we get the method object by calling Reflect.get. We
invoke this method by calling Reflect.apply. The second parameter to
Reflect.apply is the object on which the method is invoked, which is
this instance of TestMoney. The last parameter to Reflect.apply is
an array of any parameters required to invoke method — which, in our case,
is always an empty array because none of our tests methods require any
parameters.

When we run our tests now, they still run. Deliberately breaking the tests one
by one — pursuant to the strategy described in Table 6-2 — yields the
expected error messages.

Turning our attention to Part I: we’re executing our tests methods using
reflection, but we’re not finding their names automatically. Let’s improve our
getAllTestMethods method to discover all methods whose names start
with test.

 getAllTestMethods() {

 let moneyPrototype = MoneyTest.prototype;

 let allProps = Object.getOwnPropertyNames(moneyPrototype);

 let testMethods = allProps.filter(p => {

 return typeof moneyPrototype[p] === 'function' &&

p.startsWith("test");

 });

 return testMethods;

 }

Get the prototype for this MoneyTest object

Get all the properties defined on the MoneyTest prototype (but not any
inherited ones)
Retain only those functions whose names start with test, filtering out
all the rest

TIP
The Object.getOwnPropertyNames method returns an array of all properties — 

https://www.ecma-international.org/ecma-262/6.0/#sec-object.getownpropertynames

including methods — found directly in a given object. It does not return inherited
properties.

We call the Object.getOwnPropertyNames to get all the properties
defined for MoneyTest.prototype. Why the prototype and not simply
MoneyTest? It is because JavaScript (as well as ES6) has Prototype-based
Inheritance, not class-based inheritance as in many other languages. The
methods declared within the MoneyTest class are in reality attached to the
object reachable via the prototype property of MoneyTest.

IMPORTANT
ECMAScript is a language with Prototype-based inheritance.

Next, we iterate over all the properties of MoneyTest and select all (and
only) those that are of type function and start with test. Because of our
naming convention, these are our test methods. We return this array.

Running our tests validates that all of the are indeed still being executing. We
verify by deliberately breaking each of them and observing the assertion
failures show up. That’s the top three items in Table 6-1 accomplished.

Produce output when tests run successfully
Throughout this section, as we worked through the items described in
Table 6-1, we had to deliberately break our tests to verify that they were still
running as we made changes to test_money.js. This is the modified
RGR cycle described in Table 6-2. It would be really nice if we got a brief
output upon success, instead of the absolute silence we currently have when
the tests are green. (There is a “Soylent Green” joke in there somewhere!)

Let’s add a simple output line to the runAllTests method that prints the
name of each test before executing it:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyNames
https://www.ecma-international.org/ecma-262/6.0/#sec-objects

 runAllTests() {

 let testMethods = this.getAllTestMethods();

 testMethods.forEach(m => {

 console.log("Running: %s()", m);

 let method = Reflect.get(this, m);

 Reflect.apply(method, this, []);

 });

 }

Print the name of the method before invoking it

Now, when we run our tests, we get a short and meaningful message even
when tests are green:

Running: testMultiplication()

Running: testDivision()

Running: testAddition()

Run all tests even when an earlier test assertion fails
As we were following the modified RGR cycle described in Table 6-2, we
noticed that when we deliberately break a test that ran first (e.g.
TestMultiplication), the subsequent tests don’t run at all. This can be
misleading because the first failing test may not be the only failing test.
When test-driving code, it’s vital to be aware of the broad impact of any
change, not a myopic perspective that gets us fixated on the first problem that
shows up.

We’d like our test class to run all the tests, even when one or more of them
fail.

The reason the first assertion failure stops the test execution is because we’re
not handling the AssertionError`s that are thrown. We
could catch `AssertionError s and log them to the console. Let’s
add a try ... catch block around the Reflect.apply call in our
runAllTests method to do just that:

 runAllTests() {

 let testMethods = this.getAllTestMethods();

 testMethods.forEach(m => {

 console.log("Running: %s()", m);

 let method = Reflect.get(this, m);

 try {

 Reflect.apply(method, this, []);

 } catch (e) {

 if (e instanceof assert.AssertionError) {

 console.log(e);

 } else {

 throw e;

 }

 }

 });

 }

Surround the method invocation in a try ... catch block

Log only AssertionError s

Rethrow all other errors

We catch all errors. However, we only output `AssertionError`s to the
console; we rethrow the rest. (We do not want to inadvertently interfere with
other errors, such as the `TypeError`s and `ReferenceError`s we’ve already
seen.)

After this change, all our tests run every time we run MoneyTest. For
example, when we deliberately break testMultiplication, the other
tests — testDivision and testAddition — run successfully after the
assertion error.

Running: testMultiplication()

AssertionError [ERR_ASSERTION]: Expected values to be strictly

deep-equal:

+ actual - expected

 Money {

+ amount: 20,

- amount: 2000,

 currency: 'EUR'

 }

...

Running: testDivision()

Running: testAddition()

Sweet! We’ve accomplished all the items in Table 6-1.

Committing Our Changes
We have added new files and redistributed code among them. This is a
particularly good time to commit our changes to our local Git repository.

git add .

git commit -m "refactor: created Money and Portfolio modules;

improved test design"

The output should validate our changes:

[main 5781251] refactor: created Money and Portfolio modules;

improved test design

 3 files changed, 84 insertions(+), 50 deletions(-)

 create mode 100644 js/money.js

 create mode 100644 js/portfolio.js

 rewrite js/test_money.js (96%)

The 96% is the similarity index: the percentage of the file that’s
unchanged

Where We Are
In this chapter, we separated our code by creating modules for Money and
Portfolio. The separation allowed us to explicitly specify our
dependencies and to ensure there are no dependencies from production code
to test code.

Of the several module definition styles and standards available in JavaScript,
we chose the CommonJS style — which is the default for NodeJS apps.
Going forward, we’ll keep this style of module definition for the remainder of
this book.

We also saw how to adopt the UMD and ESModules styles in our code.

We improved the organization of our tests by introducing a test class, test
methods, and a mechanism to run all tests automatically. The tests now
produce output when they pass (succinctly) and when they fail (verbosely).
We also ensured that all tests run even when some of them fail early due to
assertion errors. Finally, we cleansed our code by removing a redundant
multiplication test.

1 The “Hello World” example on Node.js is an HTTP server, betraying its preference for backend
apps https://nodejs.org/en/docs/guides/getting-started-guide/

2 This UMD pattern is inspired by the code sample
https://riptutorial.com/javascript/example/16339/universal-

module-definition—umd-

https://nodejs.org/en/docs/guides/getting-started-guide/
https://riptutorial.com/javascript/example/16339/universal-module-definition%E2%80%94umd-

Chapter 7. Modules in Python

A module is a file containing Python definitions and statements.
—The Python Tutorial,

https://docs.python.org/3/tutorial/modules.html

In this chapter, we’ll do a few things to improve the organization of our
Python code. We’ll separate our test code from our production code using
modules. We’ll see how the scoping and import rules in Python help us
ensure the dependencies in our code are correct. Finally, we’ll remove a
redundant test from our code, making things compact and meaningful.

Separating Our Code into Modules
We have production code for Money and Portfolio right next to our test
code in the same file. We need to separate them into individual source files.

Let’s first create two new files named money.py and portfolio.py in
the same folder as test_money.py. Our folder structure looks as shown
below:

py

├── money.py

├── portfolio.py

└── test_money.py

We move the code for Money and Portfolio classes to money.py and
portfolio.py, respectively. The code segment below shows the complete
contents of portfolio.py after this code relocation:

import functools

import operator

class Portfolio:

 def __init__(self):

 self.moneys = []

 def add(self, *moneys):

 self.moneys.extend(moneys)

 def evaluate(self, currency):

 total = functools.reduce(operator.add,

 map(lambda m: m.amount,

self.moneys), 0)

 return Money(total, currency)

Notice that we carry the two import statements along with the code for the
Portfolio class, because Portfolio uses functools and
operator.

The file money.py, not shown here, similarly contains the Money class and
its methods.

When we run our tests now, we get our old friend, NameError arising from
our tests:

 File "/Users/saleemsiddiqui/code/github/saleem/tdd-

project/py/test_money.py",

 line 21, in testAddition

 fiveDollars = Money(5, "USD")

NameError: name 'Money' is not defined

We realize that the test class is dependent on both Money and Portfolio,
so we add these import statements near at the top of test_money.py:

from money import Money

from portfolio import Portfolio

Ah: we now get NameError: name 'Money' is not defined
from within Portfolio! A quick look at portfolio.py shows that it
depends on Money, too. So we add from money import Money to the
top of portfolio.py and all tests become green. Yay!

Moving code around and adding import statements makes the dependency

tree of our code clearer. Figure 7-1 shows the dependency diagram of our
code.

Figure 7-1. The dependency diagram of our Python code after separating it into three source files

Removing redundancy in tests
We currently have two tests for multiplication, and one each for division and
addition. The two tests for multiplication test the same functionality in the
Money class. This is a bit of duplication we can do without. Let’s delete the
testMultiplicationInDollars and rename the other test to simply
testMultiplication. The resulting symmetry — three tests for the
three features (Multiplication, Division, and Addition) where each test uses a
different currency (Euros, Wons, and Dollars respectively) — is both
compact and elegant.

Committing Our Changes
We have added a couple of new files and partitioned code among them.
This is an especially opportune moment to commit our changes to our
local Git repository.

git add .

git commit -m "refactor: moved Money and Portfolio classes their

own Python files"

The output of these two commands should validate our changes:

[main c917e7c] refactor: moved Money and Portfolio classes their

own Python files

 3 files changed, 30 insertions(+), 33 deletions(-)

 create mode 100644 py/money.py

 create mode 100644 py/portfolio.py

Where We Are
In this chapter, we separated Money and Portfolio into their own source
files, which in Python, makes them their own modules. The separation
ensured that the dependency from test code to production code was explicit
and that there is no dependency in the other direction.

We also removed an extraneous test, thereby simplifying our code.

Part III. Features and Redesign

Chapter 8. Evaluating a Portfolio

Money itself isn’t lost or made, it’s simply transferred from one perception
to another. Like magic.

—Gordon Gekko, Wall Street (the movie)

We’ve dallied around the question of how to convert the several Money s in
a Portfolio into a single currency. Let’s dally no longer!

The next feature on our list is the one dealing with mixed currencies:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

Separate test code from production code

Remove redundant tests

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Mixing money
A heterogeneous combination of currencies demands that we create a new
abstraction in our code: the conversion of money from one currency to
another. This requires establishing some ground rules about currency
conversions, drawn from our problem domain:

1. Conversion always relates a pair of currencies. This is important
because we want all conversions to be independent. It does happen

in reality that multiple currencies are “pegged” to one single
currency — which means that a particular exchange rate is fixed de
jure. Even in such cases, it’s important to treat each pegged
relationship as a distinct pair.

2. Conversion is from one currency to another with a well defined
exchange rate. The exchange rate — the number of units of the “to”
currency we get for one unit of the “from” currency — is a key
component of currency conversion. The exchange rate is represented
by a fractional number.

3. The two exchange rates between a pair currencies may or may not
be arithmetical reciprocals of each other. For example: the
exchange rate from EUR to USD may or may not be the
mathematical reciprocal (i.e. ⁠ /⁠) of the exchange rate from USD
to EUR.

4. It is possible for a currency to have no defined exchange rate to
another currency. This could be because one of the two currencies is
an inconvertible currency.

Given that currency conversion involves all the above considerations, how
should we implement it? The answer is: one test-driven scenario at a time!

We’ll start by test-driving the scenario listed in the next item on our feature
list: the conversion from EUR to USD. This will help us set up the
scaffolding for the “convert” method and a single exchange rate from EUR to
USD. Because exchange rates are unidirectional, we’ll represent this
particular one as “EUR→USD”.

Starting with this one scenario means it’s likely that we’ll add more items to
our feature list. That’s all right — making controlled progress at a measured
pace isn’t a bad deal!

Go
Let’s write our new test in money_test.go to represent addition of

1

1
x

2

Dollars and Euros:

func TestAdditionOfDollarsAndEuros(t *testing.T) {

 var portfolio s.Portfolio

 fiveDollars := s.NewMoney(5, "USD")

 tenEuros := s.NewMoney(10, "EUR")

 portfolio = portfolio.Add(fiveDollars)

 portfolio = portfolio.Add(tenEuros)

 expectedValue := s.NewMoney(17, "USD")

 actualValue := portfolio.Evaluate("USD")

 assertEqual(t, expectedValue, actualValue)

}

The expected value of 17 USD assumes that we get 1.2 dollars for every
euro we convert

The test creates two Money struct`s representing 5 USD and
10 EUR, respectively. They are added to a newly

created `Portfolio struct. The actualValue from evaluating
the Portfolio in dollars is compared with the expectedValue struct of
17 USD.

The test fails as expected:

... Expected [{amount:17 currency:USD}] Got: [{amount:15

currency:USD}]

This validates what we know: the evaluate method simply adds the
amounts of all Money `struct`s (5 and 10 in our test) to get the result,
regardless of the currencies involved (USD and EUR, respectively, in our
test).

What we need is to first convert the amount of each Money into the target
currency and then add it.

 for _, m := range p {

 total = total + convert(m, currency)

 }

In Evaluate method

How should we write the convert method? The simplest thing that works
is to return the amount when the currencies match and to arbitrarily multiply
by the conversion rate required by our test otherwise:

func convert(money Money, currency string) float64 {

 if money.currency == currency {

 return money.amount

 }

 return money.amount * 1.2

}

New function in portfolio.go file

Hard-coded exchange rate

The test turns green, but something doesn’t seem right about our code!
Specifically:

1. The exchange rate is hard-coded. It should be declared as a variable.

2. The exchange rate isn’t dependent on the currency. It should be
looked up based on the two currencies involved.

3. The exchange rate should be modifiable.

Let’s address the first of these and add the remaining two to our feature list.
We define a variable named eurToUsd in our convert method and use it:

func convert(money Money, currency string) float64 {

 eurToUsd := 1.2

 if money.currency == currency {

 return money.amount

 }

 return money.amount * eurToUsd

}

Exchange rate is defined as an appropriately named variable
The exchange rate variable is used to convert currency

The test is still green.

JavaScript
Let’s start by adding a new test in MoneyTest to test the addition of
Dollars and Euros:

 testAdditionOfDollarsAndEuros() {

 let fiveDollars = new Money(5, "USD");

 let tenEuros = new Money(10, "EUR");

 let portfolio = new Portfolio();

 portfolio.add(fiveDollars, tenEuros);

 let expectedValue = new Money(17, "USD");

 assert.deepStrictEqual(portfolio.evaluate("USD"),

expectedValue);

 }

The expected value of 17 USD assumes that we get 1.2 dollars for every
euro we convert

The test creates two Money objects representing 5 USD and 10 EUR each.
These are added to a Portfolio object. The value from evaluating the
Portfolio in USD is compared with a Money object representing 17
USD.

The test fails as expected:

AssertionError [ERR_ASSERTION]: Expected values to be strictly

deep-equal:

+ actual - expected

 Money {

+ amount: 15,

- amount: 17,

 currency: 'USD'

 }

We expect this failure because the current implementation of evaluate
method simply adds the amount attribute of all Money objects, regardless
of their currencies.

We need to first convert the amount of each Money into the target currency
and then sum it.

 evaluate(currency) {

 let total = this.moneys.reduce((sum, money) => {

 return sum + this.convert(money, currency);

 }, 0);

 return new Money(total, currency);

 }

How should the convert method work? For now, the simplest
implementation that works is one that returns amount when the currencies
match and otherwise multiplies the amount by the conversion rate require by
our test:

 convert(money, currency) {

 if (money.currency === currency) {

 return money.amount;

 }

 return money.amount * 1.2;

 }

New method in Portfolio class

Hard-coded exchange rate

The test is now green. That’s progress, but not everything is hunky-dory. In
particular:

1. The exchange rate is hard-coded. It should be declared as a variable.

2. The exchange rate isn’t dependent on the currency. It should be
looked up based on the two currencies involved.

3. The exchange rate should be modifiable.

Let’s address the first of these right away and add the remaining to our
feature list.

We define a variable named eurToUsd and use it in our convert method:

 convert(money, currency) {

 let eurToUsd = 1.2;

 if (money.currency === currency) {

 return money.amount;

 }

 return money.amount * eurToUsd;

 }

Exchange rate is defined as an appropriately named variable
The exchange rate variable is used to convert currency

All tests are green.

Python
Let’s write a new test in test_money.py that validates adding Dollars
to Euros:

 def testAdditionOfDollarsAndEuros(self):

 fiveDollars = Money(5, "USD")

 tenEuros = Money(10, "EUR")

 portfolio = Portfolio()

 portfolio.add(fiveDollars, tenEuros)

 expectedValue = Money(17, "USD")

 actualValue = portfolio.evaluate("USD")

 self.assertEqual(expectedValue, actualValue)

The expected value of 17 USD assumes that we get 1.2 dollars for every
euro we convert

The test creates two Money objects representing 5 USD and 10 EUR,
respectively. They are added to a pristine Portfolio object. The
actualValue from evaluating the Portfolio in dollars is compared
with a newly minted expectedValue of 17 USD.

We expect the test to fail, of course, because we are in the RED phase of our
of RGR cycle. However, the error message from the assertion failure is rather
cryptic:

AssertionError: <money.Money object at 0x10f3c3280> != <money.Money

object at 0x10f3c33a0>

Who on earth knows what mysterious goblins reside at those obscure
memory addresses!

This is one of those times where we must slow down and write a better
failing test before we attempt to get to GREEN. Can we make the assertion
statement print a more helpful error message?

The assertEqual method — like most other assertion methods in the
unittest package — takes an optional third parameter, which is a custom
error message. Let’s provide a formatted string showing the stringified
representation of expectedValue and actualValue:

self.assertEqual(expectedValue, actualValue,

 "%s != %s"%(expectedValue, actualValue))

Last line of testAdditionOfDollarsAndEuros test method

Nope! That simply prints the obscure memory addresses twice:

AssertionError:

 <money.Money object at 0x1081111f0> != <money.Money object at

0x108111310> :

 <money.Money object at 0x1081111f0> != <money.Money object at

0x108111310>

What we need to do is to override the __str__ method in the Money class
and make it return a more human-readable representation. Something like
“USD 17.00”.

 def __str__(self):

 return f"{self.currency} {self.amount:0.2f}"

In Money class

We format Money’s currency and amount fields, printing the latter up to
two decimal places.

After adding the __str__ method, let’s run our test suite again:

AssertionError: ... USD 17.00 != USD 15.00

Ah, much better! Seventeen dollars certainly aren’t the same thing as 15
dollars!

TIP
Python’s F-strings interpolation provides a succinct and neat way to format strings with a
mixture of fixed text and variables. F-strings were defined in [PEP-
498]https://www.python.org/dev/peps/pep-0498/ and have been a part of Python since
version 3.6.

This validates our belief that the evaluate method, as currently
implemented, mindlessly adds the amounts of all Money objects (5 and 10 in
our test) to get the result, with no regard to the currencies (USD and EUR,
respectively, in our test).

A closer examination of the evaluate method shows that the mindlessness
is in the lambda expression. It maps every Money object to its amount,
regardless of its currency. These amounts are then added up by the reduce
function using the add operator.

What if the lambda expression mapped every Money object to its converted
value? The target currency for the conversion would be the currency in which
the Portfolio is being evaluated.

 total = functools.reduce(operator.add,

 map(lambda m: self.__convert(m, currency), self.moneys),

0)

https://www.python.org/dev/peps/pep-0498/

In Money class

IMPORTANT
Python doesn’t have truly “Private” scope for variables or functions. The naming
convention and something called “name mangling” ensure that names with two leading
underscores are treated as private.

How should we implement the __convert method? Converting to the same
currency as that of the Money is trivial: the Money’s amount doesn’t
change in this case. When converting to a different currency, we’ll multiply
Money’s amount with the (for now) hard-coded exchange rate between USD
and EUR:

 def __convert(self, aMoney, aCurrency):

 if aMoney.currency == aCurrency:

 return aMoney.amount

 else:

 return aMoney.amount * 1.2

New method in Portfolio class

Hard-coded exchange rate

The test is green. Yay … and hmm! We should do the refactoring to remove
the ugliness of this code. Here are some problems with it:

1. The exchange rate is hard-coded. It should be declared as a variable.

2. The exchange rate isn’t dependent on the currency. It should be
looked up based on the two currencies involved.

3. The exchange rate should be modifiable.

Let’s address the first of these three items in the REFACTOR phase and add
the remaining two to our feature list.

We define a private variable named _eur_to_usd in the __init__

https://docs.python.org/3/tutorial/classes.html#private-variables

method and use it instead of the hard-coded value in the __convert
method:

class Portfolio:

 def __init__(self):

 self.moneys = []

 self._eur_to_usd = 1.2

...

 def __convert(self, aMoney, aCurrency):

 if aMoney.currency == aCurrency:

 return aMoney.amount

 else:

 return aMoney.amount * self._eur_to_usd

Exchange rate is defined as an appropriately named variable
The exchange rate variable is used to convert currency

All tests are green.

Committing our changes
We have our first implementation of converting money between two
different currencies, specifically USD → EUR. Let’s commit our changes
to our local Git repository:

git add .

git commit -m "feat: convert from EUR to USD"

Where We Are
We have solved the conversion of Money s in different currencies for the
scenario of converting USD to EUR. However, we cut a few corners while
doing so. The conversion only works for one specific case (USD → EUR).
Furthermore, there is no way to add or modify exchange rates.

Let’s update our feature list to cross out the accomplished items and add the
new ones.

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

Separate test code from production code

Remove redundant tests

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Determine exchange rate based on the currencies involved (from → to)

Allow exchange rates to be modified

1 For an economic discussion of currency pegging, see
https://www.investopedia.com/terms/c/currency-peg.asp

2 Currencies can be inconvertible for a variety of reasons: political, economic, or even military.
https://www.investopedia.com/terms/i/inconvertible_currency.asp

https://www.investopedia.com/terms/c/currency-peg.asp
https://www.investopedia.com/terms/i/inconvertible_currency.asp

Chapter 9. Currencies,
Currencies, Everywhere

Small change, small wonders — these are the currency of my endurance
and ultimately of my life.

—Barbara Kingsolver

Here’s the current state of our evaluate feature vis-à-vis Money s in a
Portfolio:

1. When “converting” a Money in a currency to the same currency, it
returns the amount of the Money. This is correct: the exchange rate
for any currency to itself is 1.

2. In all other cases, the amount of the Money is multiplied by a fixed
number (1.2). This is correct in a very limited sense: this rate ensures
conversions from USD to EUR only. There is no way to modify this
exchange rate or specify any other rate.

Our currency conversion code does one thing correctly and another thing
almost correctly. It’s time to make it work correctly in both cases. In this
chapter, we’ll introduce — at long last — the conversion of money from one
currency into another using currency-specific exchange rates.

Making a Hash(map) of Things
What we need is a hashmap that allows us to look up exchange rates given a
“from” currency and a “to” currency. The hashmap would be a representation
of an exchange rate table we regularly see in banks and currency exchange
counters at airports, as shown in Table 9-1.

Table 9-1. Exchange rate table

From To Rate

EUR USD 1.2

USD EUR 0.82

USD KRW 1100

KRW USD 0.00090

EUR KRW 1344

KRW EUR 0.00073

To read this table, use this pattern: given an amount in “From” currency,
multiply with the “Rate” to get the equivalent amount in “To” currency.

As noted in Chapter 8, the mutual rates for any pair of currencies are not
arithmetical reciprocals of each other. Let’s use an example to illustrate this
point: based on the rates given in Table 9-1, if we convert 100 EUR to USD
and back to EUR, we’ll get 98.4 EUR; not the original 100 EUR we started
with. This is common for exchange rate tables; it’s one way how banks make
money!

The next couple of items on our feature list give us the opportunity to build
out an implementation of the exchange rate table in our code. We’ll do this
by introducing a new currency.

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

Separate test code from production code

Remove redundant tests

1

2

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Determine exchange rate based on the currencies involved (from → to)

Allow exchange rates to be modified

As we introduce the additional currency, we’ll see the Transformation
Priority Premise in action. That is, instead of adding more conditional code in
a Tower of Babel style if-else chain, we’ll introduce a new data structure that
allows us to look up the exchange rate.

TIP
The Transformation Priority Premise states that as tests get more specific, the production
code gets more generic through a series of transformations.

Go
Let’s write a new test. This test will also involve multiple currencies — 
like our last one. We’ll name it after the two currencies used in this case.

func TestAdditionOfDollarsAndWons(t *testing.T) {

 var portfolio s.Portfolio

 oneDollar := s.NewMoney(1, "USD")

 elevenHundredWon := s.NewMoney(1100, "KRW")

 portfolio = portfolio.Add(oneDollar)

 portfolio = portfolio.Add(elevenHundredWon)

 expectedValue := s.NewMoney(2200, "KRW")

 actualValue := portfolio.Evaluate("KRW")

 assertEqual(t, expectedValue, actualValue)

}

The expected value of 2200 KRW assumes that we get 1100 won for
every dollar we convert

3

https://blog.cleancoder.com/uncle-bob/2013/05/27/TheTransformationPriorityPremise.html

The test fails, of course. The error message is interesting:

... Expected [{amount:2200 currency:KRW}] Got: [{amount:1101.2

currency:KRW}]

Since we don’t yet have any mechanism to choose the correct exchange rates,
our convert method chose the incorrect eurToUsd rate, producing the
odd result of “1101.2 KRW”.

Let’s introduce a map[string]float64 to represent the exchange rates.
We will initialize this map with the two exchange rates needed by our tests:
EUR→USD = 1.2 and USD→KRW = 1100. For now, let’s keep this map
local to the convert method:

 exchangeRates := map[string]float64{

 "EUR->USD": 1.2,

 "USD->KRW": 1100,

 }

In convert method, at the very top

Instead of always multiplying money.amount by eurToUsd (which is
1.2) in convert, we can use the “from” and “to” currencies to create a key
and look up the exchange rate. We delete the line defining the eurToUsd
variable and replace the final return statement with this lookup and
calculation:

 key := money.currency + "->" + currency

 return money.amount * exchangeRates[key]

In convert method, at the very bottom

With these changes to the convert method, all our tests pass.

Out of curiosity: what will happen if we try to evaluate a Portfolio in a
currency for which the relevant exchange rates are not specified? Let’s
momentarily comment out both the entries in the exchangeRates map:

 exchangeRates := map[string]float64{

 // "EUR->USD": 1.2,

 // "USD->KRW": 1100,

 }

Temporarily comment out all entries in exchangeRates as an
experiment

When we run the tests now, we get assertion errors in both of our addition
tests:

=== RUN TestAdditionOfDollarsAndEuros

 ... Expected [{amount:17 currency:USD}] Got: [{amount:5

currency:USD}]

--- FAIL: TestAdditionOfDollarsAndEuros (0.00s)

=== RUN TestAdditionOfDollarsAndWons

 ... Expected [{amount:2200 currency:KRW}] Got: [{amount:1100

currency:KRW}]

--- FAIL: TestAdditionOfDollarsAndWons (0.00s)

With no entries in exchangeRates a value of 0 is used in every call to
convert method

It’s clear from the actual values (printed after Got:) that when an entry isn’t
found in our map, an exchange rate of 0 is used; effectively burning the
Money that needs to be converted into an ash pile!

IMPORTANT
In Golang, an attempt to get a map entry with a non-existent key will return the “default
zero” value. E.g. 0 (or 0.0) for int or float, false for boolean, empty string for
string, etc.

Looks like we need better error handling. We’ll add this to our feature list.
(Let’s not forget to revert the two commented out lines of code!)

https://tour.golang.org/moretypes/22

JavaScript
Let’s write a test in test_money.js for our new scenario, converting
Dollars to Wons.

 testAdditionOfDollarsAndWons() {

 let oneDollar = new Money(1, "USD");

 let elevenHundredWon = new Money(1100, "KRW");

 let portfolio = new Portfolio();

 portfolio.add(oneDollar, elevenHundredWon);

 let expectedValue = new Money(2200, "KRW");

 assert.deepStrictEqual(portfolio.evaluate("KRW"),

expectedValue);

 }

The expected value of 2200 KRW assumes that we get 1100 won for
every dollar we convert

The test fails with an interesting error message:

Running: testAdditionOfDollarsAndWons()

AssertionError [ERR_ASSERTION]: Expected values to be strictly

deep-equal:

+ actual - expected

 Money {

+ amount: 1101.2,

- amount: 2200,

 currency: 'KRW'

 }

The convert method is using the incorrect eurToUSD rate, even though
we don’t have any Euros in our test. That’s how we ended up with the funny
amount of “1101.2”.

Let’s introduce a Map to represent the exchange rates. The two entries we
define in the map are those needed by our tests: EUR→USD = 1.2 and
USD→KRW = 1100. For now, we’ll keep this map inside the convert
method:

 let exchangeRates = new Map();

 exchangeRates.set("EUR->USD", 1.2);

 exchangeRates.set("USD->KRW", 1100);

In convert method, at the top

We can delete the line defining the eurToUsd variable and use this
exchangeRates map instead. We use the “from” and “to” currencies to
create a key and look up the exchange rate. The last two lines of convert
embody this logic:

 let key = money.currency + "->" + currency;

 return money.amount * exchangeRates.get(key);

In convert method, at the bottom

With this improvement, all our tests are green again.

What if we try to evaluate a Portfolio in a currency for which the
relevant exchange rates are unspecified? Let’s momentarily comment out
both the entries in the exchangeRates Map:

 // exchangeRates.set("EUR->USD", 1.2);

 // exchangeRates.set("USD->KRW", 1100);

Temporarily comment out all entries in exchangeRates as an
experiment

Both of our addition tests fail with assertion errors.

Running: testAdditionOfDollarsAndEuros()

AssertionError [ERR_ASSERTION]: Expected values to be strictly

deep-equal:

+ actual - expected

 Money {

+ amount: NaN,

- amount: 17,

 currency: 'USD'

 }

...

Running: testAdditionOfDollarsAndWons()

AssertionError [ERR_ASSERTION]: Expected values to be strictly

deep-equal:

+ actual - expected

 Money {

+ amount: NaN,

- amount: 2200,

 currency: 'KRW'

 }

When an entry isn’t found in our Map, the exchangeRate lookup value is
undefined. The arithmetic operation of multiplying a number
(money.amount) with this undefined is “not a number” (i.e. NaN).

IMPORTANT
In JavaScript, an attempt to get a map entry with a non-existent key will always return
undefined as the value.

Let’s revert the two commented out lines to get back to a green test suite.
We’ll add the need for better error handling to our feature list.

Python
Let’s write a test in test_money.py to reflect our new feature:
converting Dollars to Wons.

 def testAdditionOfDollarsAndWons(self):

 oneDollar = Money(1, "USD")

 elevenHundredWon = Money(1100, "KRW")

 portfolio = Portfolio()

 portfolio.add(oneDollar, elevenHundredWon)

 expectedValue = Money(2200, "KRW")

 actualValue = portfolio.evaluate("KRW")

 self.assertEqual(expectedValue, actualValue,

 "%s != %s"%(expectedValue, actualValue))

https://262.ecma-international.org/6.0/#sec-map.prototype.get

The expected value of 2200 KRW assumes that we get 1100 won for
every dollar we convert

This test predictably fails. The error message gives an insight as to what’s
wrong:

AssertionError: ... KRW 2200.00 != KRW 1101.20

The __convert method is using the rate eurToUsd, which is incorrect for
this case. That’s where the peculiar amount 1101.20 comes from.

Let’s introduce a dictionary to store exchange rates. We’ll add the two entries
we need currently: EUR→USD = 1.2 and USD→KRW = 1100. We’ll keep
this dictionary in the __convert method to begin with:

 exchangeRates = {'EUR->USD': 1.2, 'USD->KRW': 1100}

In __convert method, at the top

We can delete the self.eur_to_usd variable and use the values in this
dictionary instead. We create a key using the “from” and “to” currencies and
look up the exchange rate. The else: block in __convert changes to the
code shown below:

 else:

 key = aMoney.currency + '->' + aCurrency

 return aMoney.amount * exchangeRates[key]

In __convert method, at the bottom

With these changes, all our tests turn green again.

Out of curiosity: what if we try to evaluate a Portfolio in a currency
when the necessary exchange rates are not specified? Let’s temporarily
remove all entries from the exchangeRates map in the convert
method, making it empty:

 exchangeRates = {}

Temporarily delete all entries in exchangeRates as an experiment

When we run our tests, both the addition tests fail with `KeyError`s:

ERROR: testAdditionOfDollarsAndEuros (__main__.TestMoney)

...

KeyError: 'EUR->USD'

...

ERROR: testAdditionOfDollarsAndWons (__main__.TestMoney)

...

KeyError: 'USD->KRW'

In Python, missing keys in dictionary cause KeyErrors when a lookup is
performed.

IMPORTANT
In Python, an attempt to get a dictionary entry via the key-lookup operator [] with a non-
existent key will always raise a KeyError.

We need to improve error handling in our code. We’ll add this to our feature
list. (Let’s not forget to restore the exchangeRates dictionary with the
two values!)

Committing our changes
We now have the ability to define multiple exchange rates and convert
between arbitrary currencies accordingly. Our Git commit message
should reflect this new feature:

git add .

git commit -m "feat: convert between any currencies with defined

exchange rates"

https://python-reference.readthedocs.io/en/latest/docs/brackets/key_lookup.html

Where We Are
Our code has progressed to the point where we can maintain a Portfolio
of disparate Money s and evaluate it in multiple currencies, as long as the
necessary exchange rates are known. That’s nothing to sneer at!

We’ve also identified a need for more robust error handling, particularly
when exchange rates are not specified. We’ll add this to our list and turn our
attention to it in Chapter 10.

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

Separate test code from production code

Remove redundant tests

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW#

Determine exchange rate based on the currencies involved (from → to)

Improve error handling when exchange rates are unspecified

Allow exchange rates to be modified

1 The arithmetic reciprocal of a fraction a/b is the fraction b/a, assuming that neither a nor b is
zero. For example: the reciprocal of 6/5 (i.e. 1.2) is 5/6 (~0.833).

2 This is putatively more legal than the “penny rounding subroutine” that the three protagonists
use to make money in the now-classic movie Office Space!

3 Fred Brooks has analyzed the Biblical Tower of Babel narrative in a chapter of his classical
book “The Mythical Man Month”. Brooks said that the Tower project failed because of lack of
clear communication and organization — two things that are also missing from a long chain of if-
else statements.

Chapter 10. Error Handling

What error drives our eyes and ears amiss?
—William Shakespeare (through the tongue of Antipholus

of Syracuse), The Comedy of Errors

Mistakes are a part of life. One of the reasons for adopting test-driven
development is to ensure that we can go as fast as we safely can, minimizing
bugs in code.

The next item on our feature list is to improve error handling.

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

Separate test code from production code

Remove redundant tests

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW#

Determine exchange rate based on the currencies involved (from → to)

Improve error handling when exchange rates are unspecified

Allow exchange rates to be modified

Error wish list
The way our code currently handles missing exchange rates is buggy. Let’s
address this shortcoming. Table 10-1 shows our wish list for handling errors

due to missing exchange rates.

Table 10-1. Wish list for handling errors due to missing exchange rates

Item Description

1 The evaluate method should signal an explicit error when one or more necessary
exchange rates are missing.

2 The error message should be “greedy" — that is, it should indicate all the
missing exchange rates that prevent a Portfolio from being evaluated, not just the
first missing exchange rate.

3 To prevent the error from being ignored by the caller, no valid Money should be
returned when an error happens due to missing exchange rates.

For instance, if we try to evaluate a portfolio in the currency “Kalganid”,
for which there are no defined exchange rates, we should get a detailed error
message listing all the missing exchange rates.

Go
We’ll need to change the signature of our convert and Evaluate
methods when there is a missing exchange rate. We are currently
returning only one return value from these methods. To indicate an error 
— the inability to find an exchange rate — we need a second return value.

TIP
In Go, the idiomatic way to indicate failure is to return an error as the last return value
from a function or method so the caller can check for it.

Here is the pseudocode for how Evaluate and convert should
collaboratively work using Go’s idioms:

Evaluate:

1

https://golang.org/doc/tutorial/handle-errors

 For each Money struct:

 Try to convert Money to target currency and add it to the

total amount

 If convert returns an error:

 Capture the "from" and "to" currencies in

"failures"

 If there are no failures:

 Return a Money struct with the total amount and target

currency;

 return nil for error

 Otherwise:

 Return an empty Money struct; return an error message

 including all the failures

With this pseudocode sketched out, let’s write a failing test in
money_test.go. This test will be slightly different from the existing tests:
it expects an error to be returned and compares the error message with an
expected message.

func TestAdditionWithMultipleMissingExchangeRates(t *testing.T) {

 var portfolio s.Portfolio

 oneDollar := s.NewMoney(1, "USD")

 oneEuro := s.NewMoney(1, "EUR")

 oneWon := s.NewMoney(1, "KRW")

 portfolio = portfolio.Add(oneDollar)

 portfolio = portfolio.Add(oneEuro)

 portfolio = portfolio.Add(oneWon)

 expectedErrorMessage :=

 "Missing exchange rate(s):[USD->Kalganid,EUR->Kalganid,KRW-

>Kalganid,]"

 _, actualError := portfolio.Evaluate("Kalganid")

 if expectedErrorMessage != actualError.Error() {

 t.Errorf("Expected [%s] Got: [%s]",

 expectedErrorMessage, actualError.Error())

 }

}

Expected error message should list each missing exchange rate; note the
terminating comma

We don’t care about the first return value, so we assign it to the blank
identifier

TIP
Go’s implicit semicolon rule requires a trailing comma in composite literals. The trailing
comma after the last exchange rate in our error message reflects this syntactic preference
of Go.

This test is similar to the two existing test for addition. We expect an error
with the detailed message as the second return value from Evaluate
method. We ignore the first return value by assigning it to the blank
identifier.

We compare the expected and actual error messages directly in our test. We
cannot use our assertEqual function as it currently exists because it can
only compare Money s. We should improve this assertEqual function;
we’ll defer it until the REFACTOR phase.

TIP
In Go, we can assign any return value from a function to an underscore (_). This is the
“blank identifier” — it effectively means “we don’t care about this value”.

This code doesn’t compile. If we try to run it, we’ll get an error in
money_test.go:

... assignment mismatch: 2 variables but portfolio.Evaluate returns

1 values

To get this test to pass, we first have to change the signature of the
Evaluate method to return two values, the second one being an error.
How would Evaluate know when to return an error? It would know if
one (or more) of the calls to convert failed, because convert is where

https://golang.org/ref/spec#Composite_literals
https://golang.org/ref/spec#Blank_identifier

any missing exchange rates would be detected. This means that we have to
change the signature of convert method, too.

Let’s redesign the convert method first, so that it returns a boolean to
indicate whether the rate was found or not:

func convert(money Money, currency string) (float64, bool) {

 exchangeRates := map[string]float64{

 "EUR->USD": 1.2,

 "USD->KRW": 1100,

 }

 if money.currency == currency {

 return money.amount, true

 }

 key := money.currency + "->" + currency

 rate, ok := exchangeRates[key]

 return money.amount * rate, ok

}

Method signature changed to return two values

We modify the signature of convert to add a second return type: a bool.
If the “from” and “to” currencies are the same, the conversion is trivial as
before: we return the money.amount unchanged and a true as the second
return value to indicate success. If the “from” and “to” currencies are
different, we look up the exchange rate in our map. We use the success or
failure of this lookup, captured in the ok variable, as the second return value
of convert method.

TIP
In Go, when we look for a key in a map, the second return value is true if the key was
found, false otherwise. Conventionally, the second return value is assigned to a variable
named ok — hence the name of this idiom: “comma, ok”.

We have modified convert’s signature; we need to redesign Evaluate
too.

https://golang.org/doc/effective_go#maps

import "errors"

...

func (p Portfolio) Evaluate(currency string) (Money, error) {

 total := 0.0

 failedConversions := make([]string, 0)

 for _, m := range p {

 if convertedAmount, ok := convert(m, currency); ok {

 total = total + convertedAmount

 } else {

 failedConversions = append(failedConversions,

 m.currency+"->"+currency)

 }

 }

 if len(failedConversions) == 0 {

 return NewMoney(total, currency), nil

 }

 failures := "["

 for _, f := range failedConversions {

 failures = failures + f + ","

 }

 failures = failures + "]"

 return NewMoney(0, ""),

 errors.New("Missing exchange rate(s):" + failures)

}

The errors package is needed to create errors

If there are no failed conversions, a nil error is returned as the second
value
If there are failed conversions, an error listing all the failed conversions is
returned as the second value

There are several new lines of code; however, they are a faithful
representation of the pseudocode we sketched out earlier. Manufacturing the
error message string from the failedConversions slice requires a
second for loop, but is conceptually straightforward.

With these changes, we get compilation failures in the the three other tests we
have for addition. We get this error message, in triplicate:

... assignment mismatch: 1 variable but portfolio.Evaluate returns

2 values

Because we have changed the signature of Evaluate to return two values,
we must also change the existing calls to this method to receive the second
value, albeit with a “talk to the hand” blank identifier! One example is shown
below:

 actualValue, _ := portfolio.Evaluate("USD")

Assigning the second return value to the blank identifier indicates we
don’t care about errors here

With these changes, all the tests now pass.

Time to refactor: let’s address the assertion if block in our newest test. We’d
like to call the assertEqual method, but its signature currently requires
two Money objects, whereas we want to compare two `string`s. The body of
the method is fine as it is: it compares the two things it’s given and prints a
formatted error message if they’re unequal.

Is there a way we could declare the two parameters to assertEqual in a
more generic fashion?

Yes, there is. In Go, `struct`s can implement one or more `interface`s. The
mechanism of this implementation is rather sublime: if a struct happens to be
the receiver for all the methods defined in an interface, then it automatically
implements that interface. There is no declaration in code explicitly saying
“Hear ye! This struct hereby implements that interface.” (There isn’t a
programmatic version of this town crier announcement, either.) Go’s
interfaces are an interesting blend of static typechecking and dynamic
dispatch.

IMPORTANT
An interface in Go is implemented by anything — user-defined struct or built-in type — 
that implements all the methods in the interface.

https://golang.org/doc/effective_go.html#interfaces_and_types

Of particular interest is the empty interface, which defines exactly zero
methods. Because the empty interface has no methods, it is implemented by
every type.

TIP
In Go, the empty interface{} is implemented by every type.

Since the empty interface is implemented by every type, we can change the
signature of the assertEqual method to accept an expected value and
an actual value, both of which are of the type interface{}. We can
then happily pass in two string`s or two `Money s, as we need:

func assertEqual(t *testing.T, expected interface{}, actual

interface{}) {

 if expected != actual {

 t.Errorf("Expected [%+v] Got: [%+v]", expected, actual)

 }

}

The signature of this method is changed to accept two interface{} s,
instead of two Money s

We can now replace the if block in
TestAdditionWithMultipleMissingExchangeRates with a call
to this modified assertEqual method:

func TestAdditionWithMultipleMissingExchangeRates(t *testing.T) {

...

 assertEqual(t, expectedErrorMessage, actualError.Error())

}

Call to the modified assertEqual method. Note that the last parameter
is now actualError.Error(), to ensure type consistency with the
second parameter

2

Neat! The tests are still green, and we have fewer lines of code. We have
accomplished the three items listed in Table 10-1.

There is still duplication in the code: the bits where we create the key in both
convert and Evaluate. We need to simplify our code. We’ll add it to our
feature list.

JavaScript
We’d like to throw an Error from evaluate with a detailed message
when one or more exchange rates are not found. Let’s write a test in
test_money.js to describe the specific message this exception should
have.

testAdditionWithMultipleMissingExchangeRates() {

 let oneDollar = new Money(1, "USD");

 let oneEuro = new Money(1, "EUR");

 let oneWon = new Money(1, "KRW");

 let portfolio = new Portfolio();

 portfolio.add(oneDollar, oneEuro, oneWon);

 let expectedError = new Error(

 "Missing exchange rate(s):[USD->Kalganid,EUR->Kalganid,KRW-

>Kalganid]");

 assert.throws(function() {portfolio.evaluate("Kalganid")},

expectedError);

}

Expected error message should list each missing exchange rate

This test is similar to the existing tests for addition, with the notable
difference that we are trying to evaluate the Portfolio in “Kalganid”. The
assert.throws takes a reference to an anonymous function that calls the
evaluate function as the first parameter, and the expected error as the
second parameter.

IMPORTANT
In JavaScript, we don’t call the method-under-test as part of the assert.throws when

we expect an exception to be thrown; otherwise the assert statement would itself fail to
execute successfully. Instead, we pass an anonymous function object as the first parameter
which calls the method-under-test.

This test fails because our evaluate method currently doesn’t throw the
expected exception:

AssertionError [ERR_ASSERTION]: Missing expected exception (Error).

...

 code: 'ERR_ASSERTION',

 actual: undefined,

 expected: Error:

 Missing exchange rate(s):[USD->Kalganid,EUR->Kalganid,KRW-

>Kalganid]

We could write a trivial (“silly”) conditional statement at the top of the
evaluate method to get the test to pass. We could then write yet another
test to force us towards the non-trivial (“better”) implementation:

evaluate(currency) {

 //////////////////////////////////////

 // We *could* do this; but let's not!

 //////////////////////////////////////

 if (currency == "Kalganid") {

 throw new Error(

 "Missing exchange rate(s):[USD->Kalganid,EUR-

>Kalganid,KRW->Kalganid]");

 }

...

}

Let’s see if we can speed things up by aiming for the non-trivial
implementation right away.

In Chapter 9, we saw that when we query a Map in JavaScript with a key that
doesn’t exist, we get an undefined return value. We could implement
convert in a similar way: return the converted amount when the rate is
found, undefined otherwise.

 convert(money, currency) {

 let exchangeRates = new Map();

 exchangeRates.set("EUR->USD", 1.2);

 exchangeRates.set("USD->KRW", 1100);

 if (money.currency === currency) {

 return money.amount;

 }

 let key = money.currency + "->" + currency;

 let rate = exchangeRates.get(key);

 if (rate == undefined) {

 return undefined;

 }

 return money.amount * rate;

 }

When “converting” Money from a currency to the same currency, simply
return the amount as the result

When no exchange rate is found, return undefined as the result

When an exchange rate exists, use it to compute the converted amount

In evaluate, we can check each call to convert while reduce`ing
the `moneys array. If any conversions result in an undefined value,
we note down the missing conversion key (i.e the “from” and “to” currencies)
in an array. At the end, we either return a new Money object as before if
every conversion worked, or throw an error whose message contains the
missing conversion keys if there were failures.

 evaluate(currency) {

 let failures = [];

 let total = this.moneys.reduce((sum, money) => {

 let convertedAmount = this.convert(money, currency);

 if (convertedAmount == undefined) {

 failures.push(money.currency + "->" + currency);

 return sum;

 }

 return sum + convertedAmount;

 }, 0);

 if (failures.length == 0) {

 return new Money(total, currency);

 }

 throw new Error("Missing exchange rate(s):[" +

failures.join() + "]");

 }

If there are no failures, a new Money object with the correct amount and
currency is returned
If there are conversions failures, an error listing all the failed conversions
is returned

The tests are all green and we’ve accomplished the items in Table 10-1.

There is a subtle unpleasant odor in our code, however. The duplication
where we create the conversion key in both convert and evaluate is
the source of this odor. We’ll add this clean-up item to our feature list.

Python
We’d like to raise an Exception when evaluate fails due to missing
exchange rates. In its message, the exception should describe all the
missing exchange rate keys (ie. the “from” and “to” currencies). Let’s
start with a test that validates this behavior.

IMPORTANT
Python has a refined class hierarchy for exceptions, errors, and warnings. All user-defined
exceptions should extend Exception.

 def testAdditionWithMultipleMissingExchangeRates(self):

 oneDollar = Money(1, "USD")

 oneEuro = Money(1, "EUR")

 oneWon = Money(1, "KRW")

 portfolio = Portfolio()

 portfolio.add(oneDollar, oneEuro, oneWon)

 with self.assertRaisesRegex(

 Exception,

 "Missing exchange rate\(s\):\[USD\->Kalganid,EUR-

>Kalganid,KRW->Kalganid]",

):

 portfolio.evaluate("Kalganid")

https://docs.python.org/3/library/exceptions.html

This test is similar to the existing tests for addition, with a couple of
differences. First: we are attempting to evaluate a Portfolio in
“Kalganid”, for which no exchange rates exist. Second: we expect the
evaluate method to throw an exception with a specific error message that
we verify in the assertRaisesRegex statement.

IMPORTANT
assertRaisesRegex is one of the many useful assertion methods defined in Python’s
TestCase class. Since our exception string has several characters that have special
meaning in regular expressions, we escape them using the backslash character.

The test fails with two exceptions. First, there’s the KeyError which we
expect: there is no exchange rate key involving the “Kalganid” currency. The
second error is the assertion failure we sought to cause:

FAIL: testAdditionWithMultipleMissingExchangeRates

(__main__.TestMoney)

KeyError: 'USD->Kalganid'

During handling of the above exception, another exception occurred:

...

AssertionError:

 "Missing exchange rate\(s\):\[USD\->Kalganid,EUR->Kalganid,KRW-

>Kalganid]"

 does not match "'USD->Kalganid'"

This reveals that our test is throwing an Exception, however, the message in
the Exception does not match what our test demands. Notice that the message
in the Exception that is thrown is “USD→Kalganid" — which is at least one
part of our desired error message. We have a head start!

The “USD→Kalganid” message is in the KeyError Exception that’s raised
when we look for a missing key in the dictionary of exchangeRates.
Could we capture all such messages in evaluate and raise an Exception

https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.python.org/3/howto/regex.html

with the manicured message?

We need to modify our evaluate method to respond to Exceptions arising
from its calls to __convert. Let’s unroll the lambda expression into a
loop and add a try ... except block to capture any failures. If there are
no failures, we return a new Money object as before. If there are failures, we
raise an Exception whose message is a comma-separated list of the stringified
KeyError exceptions that are caught:

 def evaluate(self, currency):

 total = 0.0

 failures = []

 for m in self.moneys:

 try:

 total += self.__convert(m, currency)

 except KeyError as ke:

 failures.append(ke)

 if len(failures) == 0:

 return Money(total, currency)

 failureMessage = ",".join(str(f) for f in failures)

 raise Exception("Missing exchange rate(s):[" +

failureMessage + "]")

If there are no failures, a new Money object with the correct amount and
currency is returned
If there are conversions failures, an Exception listing all the failed
conversions is returned

When we run our test now, we get an AssertionError:

AssertionError:

 "Missing exchange rate\(s\):\[USD->Kalganid,EUR->Kalganid,KRW-

>Kalganid\]"

 does not match

 "Missing exchange rate(s):['USD->Kalganid','EUR->Kalganid','KRW-

>Kalganid']"

Actual and expected values differ by the presence/absence of the '

single-quote character

Ah! The difference is that the stringified KeyError contains single-quotes
that are missing from our desired message.

So close and yet so far! We are tempted to change our test to add the single-
quotes around each missing exchange-rate key. Should we do that?

On occasion, there may be valid reasons to change our requirements to match
our result — if the change isn’t that overwhelming, or the feature isn’t that
critical. We could mount both those arguments against further changes to the
evaluate method in this case.

However, there is something icky about moving the goalposts after the game
has started. And we are so close! A quick examination of the documentation
of KeyError reveals that, like all subclasses of BaseException, it has
an args property which contains a list of string arguments provided when
the exception object is created. The first message in this list — at index 0 — 
is the message we seek. A simple change to the way we assemble our
failureMessage can fix our problem:

 failureMessage = ",".join(f.args[0] for f in failures)

Using f.args[0] instead of str(f) removes the single-quote
characters

All the tests are now green and we’ve accomplished what we set out to do:
the items in Table 10-1. However, that icky feeling that things aren’t great — 
that we don’t have the simplest code that works — is still with us. For one
thing: we unrolled our compact lambda expression into a verbose loop. For
another: we reached into the depths of a built-in exception class to craft our
error message.

We’ll add an item to our list to refactor the part of our code dealing with
exchange rates.

3

CODE SMELL
“Smell" — and the derivative adjective “smelly" — are words used by
Kent Beck in TDD By Example to indicate a noticeable, although perhaps
imprecise, indicator of an underlying problem with code. Code smells are
symptoms, they may or may not lead you to an underlying problem. For
example: code-duplication is a smell. Often, it leads us to refactor code in
a way to remove the duplication. However, sometimes, it may be
permissible to have duplication for a specific reason. Consider these two
styles of pseudo-code for testing a factorial function.

assert_that factorial(5) == 5*4*3*2

...

assert_that factorial(5) == 5 * factorial(4)

Verifying factorial by duplicating the logic in the test
Verifying factorial by using the factorial function itself

The first line of code duplicates the way factorial is calculated, i.e. 5!, in
the test. The second test has no such duplication: it uses the mathematical
principle that n! = n . (n - 1)!. In many cases, it may be preferable to have
the duplication inherent in the first line of code; because the second line
of code will not find certain kinds of bugs in the factorial function.

Code smells are often easy to spot: duplication, unused code, long names,
obscure names, a profusion of inline comments, variables that “shadow”
(i.e. hide) other variables in an outer scope, long methods — these are
some smells that are worth paying attention to.

Committing our changes
The error handling we added to our code merits a commit to our local Git
repository. Let’s do this:

4

git add .

git commit -m "feat: improved error handling for missing exchange

rates"

Where We Are
We have added error handling to the way we evaluate Portfolios. The
resilience this brings to our code is no mean feat.

In doing so, however, we’ve gradually become aware of the clumsy way in
which we’ve modeled exchange rates thus far. By keeping the
implementation not just within Portfolio but within the evaluation of a
Portfolio, we’ve strayed away from the elegance of simplicity.

Let’s add a feature to our list to improve our implementation of exchange
rates.

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

Separate test code from production code

Remove redundant tests

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW#

Determine exchange rate based on the currencies involved (from → to)

Improve error handling when exchange rates are unspecified

Improve the implementation of exchange rates

Allow exchange rates to be modified

1 “Kalganid” is a fictitious currency in Isaac Asimov’s “Foundation” series.

2 To test empty Go interfaces, try this useful example in your browser:
https://tour.golang.org/methods/14

3 There is no trivial way to catch exceptions within a Python lambda. There was an enhancement
proposal to Python — PEP 463 — that was about this very feature. However, that proposal was
rejected in 2014. See https://www.python.org/dev/peps/pep-0463/

4 As with many other software terms, Martin Fowler’s website has a useful page on the topic of
“CodeSmell” https://www.martinfowler.com/bliki/CodeSmell.html

https://tour.golang.org/methods/14
https://www.python.org/dev/peps/pep-0463/
https://www.martinfowler.com/bliki/CodeSmell.html

Chapter 11. Banking on
Redesign

On the whole it’s worth evolving your design as your needs grow…
—Martin Fowler, Patterns of Enterprise Application

Architecture

We introduced the Portfolio entity back in Chapter 3. It represents a key
concept from our domain, so we’re justified in giving it some responsibility.
Now, our Portfolio does too much work and it shows. Its primary job is
to be a repository of Money s. However, it has taken on the added
responsibility of converting between currencies. To do this, it has to hold on
to an exchange rate table and the logic to do the conversion. This doesn’t
look like the responsibility of a Portfolio. Monetary conversion has as
much business being in a portfolio as peanut butter has being on top of a
pizza.

Our software program has grown along with our needs. It is worth improving
our design and looking for a better abstraction than the shoved-in way
conversion between currencies is currently implemented.

A principle of Domain-Driven Design is continuous learning. When we learn
something new about our domain, we let our design reflect our acquired
knowledge. The resulting design and software should reflect our improved
understanding of our domain.

TIP
“Domain-Driven Design" — or DDD — is a discipline that’s ably supported by TDD. Eric
Evans’ book of the same title is the seminal work on the subject.

By implementing currency conversion over the last few chapters, we have

1

https://www.oreilly.com/library/view/domain-driven-design-tackling/0321125215/

gained fresh insight into our program. It’s missing a key entity. What is the
name of the real world institution that helps us exchange money? A bank. Or
a Currency Exchange. Often, a domain will have multiple similar entities that
are indistinguishable from the perspective of our model. Learning which
differences are salient and which are insignificant is vital to effective domain
modeling.

We’ll select the name Bank to represent this missing entity. What should be
the responsibilities of the Bank? It should hold exchange rates, for one thing.
And it should be able to convert moneys between currencies based on the
exchange rate from one currency to another. The Bank should allow
asymmetric exchange rates, because that is true in the real world. Finally, the
bank should clearly inform us when it cannot exchange money in one
currency into a another currency because of a missing exchange rate. (Refer
to the “Mixing moneys” section in Chapter 8 which lists ground rules for
currency conversions.)

By being the entity that holds exchange rates, Bank will also deodorize our
code. An odious smell is that the creation of keys for storing exchange rates 
— e.g. USD->EUR — is peppered throughout the Portfolio. This smell is
a reliable indicator that we have a leaky abstraction. By keeping the exchange
rate representation — keys and values — inside the Bank, we’ll simplify the
way Portfolio performs evaluation.

TIP
When responsibilities spill over from one entity into another where they don’t belong, it’s
called a leaky abstraction. In Joel Spolsky’s words: “All non-trivial abstractions, to some
degree, are leaky.” However, gaping leaks should be plugged through refactoring.

Dependency Injection
Having identified the need for this new entity, the next question is: how
should the dependencies between Bank and the other two existing entities 
— Money and Portfolio — look?

https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/

Clearly, Bank needs Money to operate. Portfolio would need both
Money and Bank; the former association is one of aggregation and the latter
is an interface dependency: Portfolio uses the convert method in
Bank.

Figure 11-1 shows the three main entities in our program, their
responsibilities, and their interdependencies.

Figure 11-1. The three main entities in our program

The dependency of Portfolio to Bank is kept to a minimum: it is
provided as a parameter to the Evaluate method. This type of dependency
injection is called “Method Injection”, because we are “injecting” the
dependency directly into the method that needs it.

TIP
Dependency Injection — the principle and practice of separating the initialization from the
usage of a dependent entity — allows us to write loosely coupled code. There are several
ways to inject a dependency, such as Constructor Injection, Property Injection, and
Method Injection.

Putting it all together

https://medium.com/better-programming/the-3-types-of-dependency-injection-141b40d2cebc

We’re about to do some major surgery to our code — how will we ensure the
health and well-being of our patient?

One key benefit of test-driven development is that long after the original code
has been written, the tests provide anesthetic safety during later refactoring
and redesign.

The approach we’ll take will be a combination of writing new unit tests — 
which is the heart of TDD and what we’ve done thus far — and refactoring
existing unit tests. We know that the existing tests provide a valuable
safeguard: they verify that the features we’ve built, all the crossed-out lines
on our list, work as expected. We’ll continue to run these tests, modifying
their implementation as needed while keeping their purpose intact. This two-
pronged approach of writing new tests and refactoring existing ones will give
us the assurance we need as we heal our code of its ills.

IMPORTANT
Tests, especially unit tests, are a bulwark against regression failures during redesign.

With the theory and design out of the way, it’s time to write some code.

Go
Let’s write a test in money_test.go to convert one Money struct into
another, using a yet-to-be-created Bank :

func TestConversion(t *testing.T) {

 bank := s.NewBank()

 bank.AddExchangeRate("EUR", "USD", 1.2)

 tenEuros := s.NewMoney(10, "EUR")

 actualConvertedMoney, err := bank.Convert(tenEuros, "USD")

 assertNil(t, err)

 assertEqual(t, s.NewMoney(12, "USD"), actualConvertedMoney)

}

func assertNil(t *testing.T, err error) {

 if err != nil {

 t.Errorf("Expected error to be nil, found: [%s]", err)

 }

}

Verifying that there is no error
New helper function that does the verification

Inspired by how NewMoney works, we create a Bank struct (DNEY: does
not exist yet) by calling a NewBank function (DNEY). We call an
AddExchangeRate function (DNEY) to add a particular exchange rate to
the Bank. We then create a Money struct, and call Convert method
(DNEY) to obtain another Money struct in a different currency. Finally, we
assert that there is no error during the conversion and that the converted
Money matches our expectation based on the exchange rate. We wrote the
assertion as a new assertNil helper function after the pattern established
by the existing assertEqual function.

If there are too many concepts (structs and methods) that do not exist yet, it’s
because we choose to go faster. We could always slow down and write
smaller tests as we did early on in our journey, if we wanted.

TIP
Using test-driven development, we can write tests that introduce several new concepts — 
and thereby go faster.

We wrote our test with the assumption that the Convert method (DNEY) in
Bank will have two return types: a Money and an error. Why did we
change the signature of this Convert method from the convert method
that already exists in Portfolio and returns a float64 and a bool?
Because conceptually, the Bank converts money in one currency to money in
another currency. The first return value, therefore, is Money and not just a
float64 expressing an amount. The second return value is an error so
that we can use it to indicate the exchange rate for the failed conversion,

which cannot be done with a mere bool.

We are doing just-enough design based on what we know now. We’re neither
speculating (over-designing) nor dumbing things down (under-designing).

To make this test green, we need to craft all the things that DNEY — do not
exist yet. Let’s create a new source file in the stocks package named
bank.go:

package stocks

import "errors"

type Bank struct {

 exchangeRates map[string]float64

}

func (b Bank) AddExchangeRate(currencyFrom string, currencyTo

string,

 rate float64) {

 key := currencyFrom + "->" + currencyTo

 b.exchangeRates[key] = rate

}

func (b Bank) Convert(money Money, currencyTo string)

(convertedMoney Money,

 err error) {

 if money.currency == currencyTo {

 return NewMoney(money.amount, money.currency), nil

 }

 key := money.currency + "->" + currencyTo

 rate, ok := b.exchangeRates[key]

 if ok {

 return NewMoney(money.amount*rate, currencyTo), nil

 }

 return NewMoney(0, ""), errors.New("Failed")

}

func NewBank() Bank {

 return Bank{exchangeRates: make(map[string]float64)}

}

When conversion is successful, a Money and a nil (no error) are
returned

When conversion fails, a placeholder Money and an error are returned

We introduce the missing concepts:

1. A type named Bank.

2. The Bank struct containing a map to store exchangeRates.

3. A function NewBank to create structs of type Bank.

4. A method named AddExchangeRate that stores exchange rates
needed to convert Money s.

5. A method named Convert that is largely similar to the existing
convert method in Portfolio. The return values are a Money
and an error. If the conversion is successful, a Money is returned
and the error is nil. If the conversion fails due to a missing
exchange rate, a placeholder Money object and an error are
returned.

With these changes carefully done, our new test passes.

We know that the existing behavior of Evaluate — which we need to
retain — returns an error with all the missing exchange rates. Where will
these missing exchange rates emanate from? The Convert method, when
we use it in Evaluate shortly. This means that the error returned from
Convert must include the missing exchange rate. We have it readily
available in the Convert method: it’s in the variable named key. Even
though replacing the hard-coded error message "Failed" with the variable
key is a small change, let’s test-drive it. Why? It would also allow us to
address the snotty little smell of returning the placeholder Money struct when
there is an error. It’s better to have the two return values be symmetrical:
convertedMoney should hold the result of conversion when err is nil
and when the latter describes a conversion error, the former is nil.

TIP

Go’s standard libraries have functions and methods (e.g. os.Open(),
http.PostForm(), and parse.Parse()) that return a pointer for the first return
value and an error for the second. While this is not a strictly enforced language rule, it is
the link:https://blog.golang.org/go1.13-errors#TOC_5.[style described
in the Go blog].

Let’s write a second test to drill the proper error message and this symmetry
into our Convert method.

func TestConversionWithMissingExchangeRate(t *testing.T) {

 bank := s.NewBank()

 tenEuros := s.NewMoney(10, "EUR")

 actualConvertedMoney, err := bank.Convert(tenEuros, "Kalganid")

 if actualConvertedMoney != nil {

 t.Errorf("Expected money to be nil, found: [%+v]",

actualConvertedMoney)

 }

 assertEqual(t, "EUR->Kalganid", err.Error())

}

Converting Money in EUR to Kalganid

Asserting that a nil Money pointer is returned

Asserting that returned error contains the missing exchange rate

This test, TestConversionWithMissingExchangeRate, attempts to
convert Euros to Kalganid — a currency for which no exchange rate has been
defined in the Bank. We expect the two return values from Convert to be a
Money pointer that’s nil and an error that contains the missing exchange
rate.

This test fails to compile because of mismatched types:

... invalid operation: actualConvertedMoney != nil

 (mismatched types stocks.Money and nil)

This counts as a failing test. To allow nil values to be returned from

https://blog.golang.org/go1.13-errors#TOC_5

Convert, we change the type of the first return value to be a pointer.

func (b Bank) Convert(money Money, currencyTo string)

(convertedMoney *Money,

 err error) {

 var result Money

 if money.currency == currencyTo {

 result = NewMoney(money.amount, money.currency)

 return &result, nil

 }

 key := money.currency + "->" + currencyTo

 rate, ok := b.exchangeRates[key]

 if ok {

 result = NewMoney(money.amount*rate, currencyTo)

 return &result, nil

 }

 return nil, errors.New("Failed")

}

First return type is now a Money pointer

When conversion is successful, a valid pointer to Money and a nil
error are returned

When conversion fails, a nil Money pointer and an error with missing
exchange rate are returned

Running this test now gives us a failure message in an older test,
TestConversion, reminding us about dereferencing pointers:

=== RUN TestConversion

 ... Expected [{amount:12 currency:USD}]

 Got: [&{amount:12 currency:USD}]

Expected a Money, got a Money pointer

That little ampersand & makes a world of difference! The
actualConvertedMoney variable in TestConversion is now a
pointer to a Money and needs to be dereferenced:

 assertEqual(t, stocks.NewMoney(12, "USD"),

*actualConvertedMoney)

The * dereferences the actualConvertedMoney pointer back into
the struct it points to

With these changes, we get the assertion failure we are chasing:

=== RUN TestConversionWithMissingExchangeRate

 ... Expected [EUR->Kalganid] Got: [Failed]

Replacing the string "Failed" with key in the Convert method gets the
test to pass.

 return nil, errors.New(key)

Last line of Convert method

We’re in the REFACTOR phase. One thing we can improve is our
assertNil method. It’s only good for verifying if an error is nil; if it
could take any type (like assertEqual already does) we could use it to
assert that the Money pointer is nil, too.

Let’s try an implementation for assertNil following the lead of
assertEqual:

func TestConversionWithMissingExchangeRate(t *testing.T) {

...

 assertNil(t, actualConvertedMoney)

...

}

func assertNil(t *testing.T, actual interface{}) {

 if actual != nil {

 t.Errorf("Expected to be nil, found: [%+v]", actual)

 }

}

Using the modified assertNil to verify a nil pointer

Using empty interface to represent (almost) anything
Using the %+v verb to print non-nil values

With this implementation in use, we get an rather strange failure when we run
our tests.

=== RUN TestConversionWithMissingExchangeRate

 money_test.go:108: Expected to be nil, found: [<nil>]

That’s puzzling! If nil was expected and <nil> was found, what’s the
problem?

Those little angle-brackets give us a clue. In Go, interfaces are implemented
as two elements: a type T and a value V. The way Go stores a nil inside an
interface means that only V is nil whereas T is a pointer to whatever type
the interface represents (a *Money in our case). Since the type T is not nil,
the interface itself is also not nil.

To use an analogy: an interface is like a wrapping paper and the box
surrounding a gift. You have to rip it open to see what the gift is. It is
possible that there is nothing inside the box — the ultimate gag gift — but
you can’t find that out until you unwrap and unbox the gift first.

IMPORTANT
A Go interface will be non-nil even when the pointer value inside it is nil.

The way to unwrap an interface and examine the value inside is to to use the
reflect package. The ValueOf function in that package returns the value
V, which can then be checked by calling the IsNil function, also defined in
the the reflect package. To avoid panic errors from inspecting nil
interfaces, we must first check if the given interface{} is nil, too.

Here’s what the corrected assertNil function looks like.

https://golang.org/doc/faq#nil_error

import (

 s "tdd/stocks"

 "testing"

 "reflect"

)

...

func assertNil(t *testing.T,actual interface{}) {

 if actual != nil && !reflect.ValueOf(actual).IsNil() {

 t.Errorf("Expected to be nil, found: [%+v]", actual)

 }

}

We need the reflect package to examine the interface

The assertion error is raised if neither the interface{} itself is nil
nor is the wrapped value

Excellent! Our tests all pass and we have the symmetric Convert method
we set out to write. We’re ready to introduce Bank as a dependency of the
Evaluate method in Portfolio.

Since we have a battery of tests for the Evaluate method, we’ll sally forth
and redesign that method now. Any test failures we get — and we do expect
to get many — will keep us on the RGR track.

We change the signature of the Evaluate method in Portfolio to have
a Bank as the first parameter. We also change the type of its first return
value to be a Money pointer. As for the body of the method, the changes are
few and specific. We call Bank’s Convert method instead of the soon-to-
be-retired local function convert. Whenever a call to Convert returns an
error, we save the error message. Instead of returning a Money struct, we
return a pointer to it. And when there are errors, we return a nil as the first
value and the error as the second.

func (p Portfolio) Evaluate(bank Bank, currency string) (*Money,

error) {

 total := 0.0

 failedConversions := make([]string, 0)

 for _, m := range p {

 if convertedCurrency, err := bank.Convert(m, currency); err

== nil {

 total = total + convertedCurrency.amount

 } else {

 failedConversions = append(failedConversions,

err.Error())

 }

 }

 if len(failedConversions) == 0 {

 totalMoney := NewMoney(total, currency)

 return &totalMoney, nil

 }

 failures := "["

 for _, f := range failedConversions {

 failures = failures + f + ","

 }

 failures = failures + "]"

 return nil, errors.New("Missing exchange rate(s):" + failures)

}

A Money pointer and an error are returned

When the Money pointer is not nil, a nil error is returned

When there is an error, the a nil Money pointer is returned

With its signature changed, every call to Evaluate in our test fails to
compile. We need to create a Bank and pass it to Evaluate. Could we do
it once in money_test.go, and not within each individual test method?

Absolutely! Let’s declare a Bank variable outside all tests in
money_test.go and use an init function to initialize this Bank with all
necessary exchange rates:

var bank s.Bank

func init() {

 bank = s.NewBank()

 bank.AddExchangeRate("EUR", "USD", 1.2)

 bank.AddExchangeRate("USD", "KRW", 1100)

}

In money_test.go, outside any test method

New init function

TIP
There are multiple ways to set up shared state in Go. Each test file can have one or more
init() functions, which are executed in order. All init functions must have identical
signature. Alternatively, we can override the MainStart function in a test file and call
one (or more) setup/teardown methods, which may have arbitrary signature.

Now we can use this bank in each call to Evaluate in our tests, e.g.:
portfolio.Evaluate(bank, "Kalganid").

Since Evaluate now returns a Money pointer and an error, we have to
change how we assign these return values to variables and how we assert for
them.

Here’s how our TestAddition looks after making the necessary changes:

func TestAddition(t *testing.T) {

 var portfolio s.Portfolio

 fiveDollars := s.NewMoney(5, "USD")

 tenDollars := s.NewMoney(10, "USD")

 fifteenDollars := s.NewMoney(15, "USD")

 portfolio = portfolio.Add(fiveDollars)

 portfolio = portfolio.Add(tenDollars)

 portfolioInDollars, err := portfolio.Evaluate(bank, "USD")

 assertNil(t, err)

 assertEqual(t, fifteenDollars, *portfolioInDollars)

}

Injecting the bank dependency into the Evaluate method

Asserting that there is no error
Dereferencing pointer to Money before using it as the last parameter in
assertEqual function

https://golang.org/doc/effective_go.html#init
https://golang.org/pkg/testing/#MainStart

After fixing the other tests similarly — using bank as the first parameter to
Evaluate and dereferencing the pointer to get a reference to Money — we
get all tests to pass. We’re now ready to remove the unused convert
function in Portfolio. Deleting unused code is such a gratifying feeling!

Since we have a general-purpose and robust assertNil function available
to our tests, we replace all blank identifiers _ with actual variables and verify
that they’re nil. For example, in
TestAdditionWithMultipleMissingExchangeRates, we can
verify that the Money pointer is nil:

func TestAdditionWithMultipleMissingExchangeRates(t *testing.T) {

...

 expectedErrorMessage :=

 "Missing exchange rate(s):[USD->Kalganid,EUR->Kalganid,KRW-

>Kalganid,]"

 value, actualError := portfolio.Evaluate(bank, "Kalganid")

 assertNil(t, value)

 assertEqual(t, expectedErrorMessage, actualError.Error())

}

Receive the first return value, a Money pointer, in a named parameter
instead of a blank identifier
Verify that a nil Money pointer is returned

We now have a much better code organization: Bank, Portfolio, and
Money have specific responsibilities. We have robust tests that validate the
behavior of all these types. A good indicator of our improved code is that
each file in the stocks package is of comparable size: a few dozen lines of
code. (If we write Godoc comments — which is a great thing — the files
would be longer.)

JavaScript
Let’s write a new test in test_money.js to convert one Money object
into another, using the Bank class that we intend to create:

const Bank = require('./bank');

...

 testConversion() {

 let bank = new Bank();

 bank.addExchangeRate("EUR", "USD", 1.2);

 let tenEuros = new Money(10, "EUR");

 assert.deepStrictEqual(

 bank.convert(tenEuros, "USD"), new Money(12, "USD"));

 }

Import statement for bank module (Does Not Exist Yet)

Call to Bank constructor (DNEY)

Call to addExchangeRate (DNEY)

Call to convert (DNEY)

Notice that the module being imported, the class Bank, and its methods
addExchangeRate and convert do not exist yet (DNEY).

Anticipating (or observing) the test failures, let’s create a new file named
bank.js containing the requisite behavior of the Bank class.

const Money = require("./money");

class Bank {

 constructor() {

 this.exchangeRates = new Map();

 }

 addExchangeRate(currencyFrom, currencyTo, rate) {

 let key = currencyFrom + "->" + currencyTo;

 this.exchangeRates.set(key, rate);

 }

 convert(money, currency) {

 if (money.currency === currency) {

 return new Money(money.amount, money.currency);

 }

 let key = money.currency + "->" + currency;

 let rate = this.exchangeRates.get(key);

 if (rate == undefined) {

 throw new Error("Failed");

 }

 return new Money(money.amount * rate, currency);

 }

}

module.exports = Bank;

The Bank class requires the Money class

Create an empty Map in constructor for use later

Forming a key to store the exchange rate
This convert method resembles the convert method in Portfolio
class
Creating a new Money object when currencies are the same

When exchange rate is undefined, throw an Error with the string
“Failed”
Exporting Bank class for use outside this module

The addExchangeRate creates a key using the “from” and “to” currencies
and stores the rate using this key.

Most of the behavior of convert method is heavily influenced by the
existing code in Portfolio class. The one difference is that
Bank.convert returns a Money object when successful (instead of only
the amount) and throws an Error upon failure (instead of returning
undefined). Additionally, the Bank.convert method always creates a
new Money object, even when the “from” and “to” currencies are identical.
This prevents accidental side-effects by always returning a new Money
object, never the one that’s the first parameter to the method.

IMPORTANT
Javascript objects (and arrays) are passed by reference. If we need to simulate pass-by-
value semantics — important to reduce side-effects — we must create new objects
explicitly.

https://www.w3docs.com/snippets/javascript/is-javascript-a-pass-by-reference-or-pass-by-value-language.html

The tests are all green.

We need to retain the existing behavior of evaluate, which returns an
Error with all the missing exchange rates. The evaluate method will
need this new convert method to provide all those missing exchange rates.
Therefore, the Error thrown from convert must include the missing
exchange rate. We have this value already available in the key variable of
the Bank.convert method. Even though this is a small change, let’s test-
drive it.

We add a new test in test_money.js to verify the behavior we need.

 testConversionWithMissingExchangeRate() {

 let bank = new Bank();

 let tenEuros = new Money(10, "EUR");

 let expectedError = new Error("EUR->Kalganid");

 assert.throws(function () { bank.convert(tenEuros, "Kalganid")

},

 expectedError);

 }

New Bank with no exchange rates defined

Expected error include the missing exchange rate
Using anonymous function with assert.throws to verify the error
message

We use the same assert.throws idiom, using an anonymous function,
that we did in Chapter 10 while writing
testAdditionWithMultipleMissingExchangeRates.

This test fails with the expected assertion failure:

Running: testConversionWithMissingExchangeRate()

AssertionError [ERR_ASSERTION]: Expected values to be strictly

deep-equal:

+ actual - expected

 Comparison {

+ message: 'Failed',

- message: 'EUR->Kalganid',

 name: 'Error'

 }

Getting this test to pass is simple: we use key when throwing Error from
convert :

 convert(money, currency) {

...

 if (rate == undefined) {

 throw new Error(key);

 }

...

 }

Using key ensures the Error includes the missing exchange rate

With these changes to the Bank class, all our tests passes. We’re ready to
change the Portfolio class. Because we have a suite of tests for
Portfolio, we’ll jump into the redesign. We trust our tests — and their
anticipated failures — to ensure that we do the redesign correctly.

The evaluate function should accept a Bank object as a dependency.
We’ll put this as the first parameter to the evaluate method. The rest of
the method is modified to work with the Error that Bank.convert
throws. The error message wraps the missing exchange rate, so we can keep a
record of any missing exchange rates and throw one Error with the
aggregated error message from evaluate, when necessary.

 evaluate(bank, currency) {

 let failures = [];

 let total = this.moneys.reduce((sum, money) => {

 try {

 let convertedMoney = bank.convert(money, currency);

 }

 catch (error) {

 failures.push(error.message);

 return sum;

 }

 return sum + convertedMoney.amount;

 }, 0);

 if (failures.length == 0) {

 return new Money(total, currency);

 }

 throw new Error("Missing exchange rate(s):[" +

failures.join() + "]");

 }

Calling Bank’s convert method

TIP
JavaScript has the throw keyword to signal an exception; and try ... catch and
try ... catch ... finally constructs to respond to exceptions.

Since we have changed the signature of evaluate, we have no justifiable
hope that any of our addition tests will pass. Just for giggles, we run the test
suite as it is. When we run it, we get a strange-looking error:

Running: testAddition()

...

Error: Missing exchange rate(s):[bank.convert is not a function,

 bank.convert is not a function]

That looks odd: whatever shortcomings it may have, bank.convert is
surely a function since we just wrote it! The reason for this error message is
that our test calls evaluate with only one parameter, and JavaScript’s rules
allow this. The currency string is assigned to the first parameter, and the
second parameter is set to undefined, as shown in Figure 11-2:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements

Figure 11-2. In JavaScript, any missing parameters in a method call are left as undefined

IMPORTANT
JavaScript does not enforce any rules on the number or types of parameters that are passed
to a function, regardless of what the function definition states.

Even though it’s assigned to the parameter named bank, the first parameter’s
value is a mere string. The Node.js runtime is justified in saying that it
doesn’t have a convert method.

https://www.w3schools.com/js/js_function_parameters.asp

Let’s create a Bank object and pass it as the first parameter to the
evaluate method. This is sufficient for testAddition, which uses the
same currency throughout (i.e. no exchange rates required).

 testAddition() {

 let fiveDollars = new Money(5, "USD");

 let tenDollars = new Money(10, "USD");

 let fifteenDollars = new Money(15, "USD");

 let portfolio = new Portfolio();

 portfolio.add(fiveDollars, tenDollars);

 assert.deepStrictEqual(portfolio.evaluate(new Bank(), "USD"),

 fifteenDollars);

 }

No exchange rates needed in this test, just a Bank object

The testAddition passes. The failure message progresses to the next test
in our test suite.

We need to fix the other tests similarly, albeit with exchange rates defined.
Since we’re going to need a Bank object and exchange rates in multiple
tests, it’d be nice to only define the Bank once with all the exchange rates
needed for our tests. We can define bank as a member variable and initialize
it in a MoneyTest constructor:

 constructor() {

 this.bank = new Bank();

 this.bank.addExchangeRate("EUR", "USD", 1.2);

 this.bank.addExchangeRate("USD", "KRW", 1100);

 }

In most of the addition tests, we can use this.bank directly, without
having to create a method-local bank. For example:

 testAdditionOfDollarsAndEuros() {

...

 assert.deepStrictEqual(portfolio.evaluate(this.bank, "USD"),

 expectedValue);

 }

[.small]#The bank object created in the constructor is accessible as
this.bank #

The one exception to using this.bank is
testAdditionWithMultipleMissingExchangeRates, where we
deliberately seek to cause an error. Because the parameter to the assert
statement in this test is an anonymous function object, the reference to
this.bank will fail … because this has changed!

Let’s untangle the previous paragraph. When we create an object, say: ABC
in JavaScript, any code within ABC can use this to refer to ABC. Any
objects outside ABC cannot be accessed using this.

IMPORTANT
In JavaScript, this refers to the nearest enclosing object, including anonymous objects,
and not any other objects surrounding it.

We need to get a local reference to the bank and use it in the assertion inside
testAdditionWithMultipleMissingExchangeRates:

 let bank = this.bank;

 assert.throws(function() {portfolio.evaluate(bank,

"Kalganid")},

 expectedError);

Saving the reference to this.bank in a local variable

[.small]#Using local variable bank because this means something
different inside the anonymous function #

Yay: green tests! We’re now ready to remove the unused convert function
in Portfolio. Deleting unused code is pure exhilaration!

We now have well organized code: Bank, Portfolio, and Money have
specific responsibilities. A good indicator is that each file is now of

comparable size.

Python
Our first goal is to write a test to convert one Money object into another,
using the as-yet-undefined Bank abstraction:

from bank import Bank

...

 def testConversion(self):

 bank = Bank()

 bank.addExchangeRate("EUR", "USD", 1.2)

 tenEuros = Money(10, "EUR")

 self.assertEqual(bank.convert(tenEuros, "USD"), Money(12,

"USD"))

Import statement for bank module (Does Not Exist Yet)

Create a new Bank` (DNEY)
Call to addExchangeRate (DNEY)

Call to convert (DNEY)

We are using several things that do not exist yet (DNEY): the bank module,
the Bank class, and the addExchangeRate and convert methods in the
Bank class.

Anticipating (or observing) the test errors we get — such as
ModuleNotFoundError: No module named 'bank' — let’s
create a new file named bank.py which defines the Bank class with the
minimal necessary behavior.

from money import Money

class Bank:

 def __init__(self):

 self.exchangeRates = {}

 def addExchangeRate(self, currencyFrom, currencyTo, rate):

 key = currencyFrom + "->" + currencyTo

 self.exchangeRates[key] = rate

 def convert(self, aMoney, aCurrency):

 if aMoney.currency == aCurrency:

 return Money(aMoney.amount, aCurrency)

 key = aMoney.currency + "->" + aCurrency

 if key in self.exchangeRates:

 return Money(aMoney.amount * self.exchangeRates[key],

aCurrency)

 raise Exception("Failed")

The Bank requires Money as a dependency

Initializing empty dictionary in __init__ method

Forming a key to store the exchange rate
This convert method resembles the __convert method in the
Portfolio class

Creating a new Money object when currencies are the same

raising an Exception when conversion fails

The Bank class — especially its convert method — borrows generously
from the existing code in Portfolio. The two key differences are in the
signature of Bank.convert. It returns a Money object when successful
(instead of merely an amount) and raises a general Exception when the
conversion fails (instead of a KeyError).

With this new Bank class, our test passes.

We need to keep the existing behavior of evaluate, which returns an
Exception with all the missing exchange rates. The evaluate method
will need the convert method to provide the missing exchange rates. The
Exception raised from convert must include the missing exchange rate 
— the value is in the key variable in convert. Let’s test-drive this change,
small though it is.

We write a new test that expects an Exception with a specific message

from the convert method:

 def testConversionWithMissingExchangeRate(self):

 bank = Bank()

 tenEuros = Money(10, "EUR")

 with self.assertRaisesRegex(Exception, "EUR->Kalganid"):

 bank.convert(tenEuros, "Kalganid")

New Bank with no exchange rates defined

Expected Exception with specific message

Call to convert with "Kalganid" as the currency

This test fails as expected:

FAIL: testConversionWithMissingExchangeRate (__main__.TestMoney)

...

Exception: Failed

...

AssertionError: "EUR->Kalganid" does not match "Failed"

To fix this, we use key to create the Exception that’s raised from
convert:

 def convert(self, aMoney, aCurrency):

...

 raise Exception(key)

Using key ensures the Exception includes the missing exchange rate

All tests are green. With the new Bank class in place, we’re ready to change
the evaluate method in Portfolio to accept a Bank object as a
dependency. We have no fewer than four tests for addition of Money s which
exercise the evaluate method. We fully expect these tests to fail, thereby
keeping us firmly on the RGR track.

We’ll place bank as the second method parameter to evaluate, after the
obligatory self. The rest of the method is modified to work with the

Exception that Bank.convert throws when there’s a missing exchange
rate.

 def evaluate(self, bank, currency):

 total = 0.0

 failures = []

 for m in self.moneys:

 try:

 total += bank.convert(m, currency).amount

 except Exception as ex:

 failures.append(ex)

 if len(failures) == 0:

 return Money(total, currency)

 failureMessage = ",".join(f.args[0] for f in failures)

 raise Exception("Missing exchange rate(s):[" +

failureMessage + "]")

Delegate to bank.convert method

As soon as we we make these changes to evaluate, several of our tests fail
with a rather strange error:

TypeError: evaluate() missing 1 required positional argument:

'currency'

That’s strange: the only “positional argument” we’re passing in is the
currency; what’s missing is the bank! The reason for this rather
phantasmagoric error message is that Python is a dynamically typed
language. It assumes that the first (and only) argument we’re passing
corresponds to the first positional argument in the evaluate method
declaration. Since it doesn’t find a second argument matching currency — 
it complains about it.

Figure 11-3 shows how actual parameters are associated with the formal
parameters in a Python method call.

Figure 11-3. In Python, parameters are assigned left-to-right based on position, regardless of their
type

We need a Bank with a couple of exchange rates to satisfy the needs of all
our addition-related tests.

It’d be nice if we could declare this initialization code once, rather than in
each test. There is a way to do this. Our test class, by virtue of subclassing
from unittest.TestCase, inherits its behavior. One aspect of this
inherited behavior is that if there is a setUp method in the class, it’ll be
called before each test. We can define our Bank object in this setUp
method:

 def setUp(self):

 self.bank = Bank()

 self.bank.addExchangeRate("EUR", "USD", 1.2)

 self.bank.addExchangeRate("USD", "KRW", 1100)

Overridden setUp method from TestCase superclass

New Bank object needed by tests

Exchange rates needed by tests

In the test methods, we can simply use self.bank as the first argument to
each call to evaluate, for example:

 def testAddition(self):

...

 self.assertEqual(fifteenDollars,

portfolio.evaluate(self.bank, "USD"))

Using self.bank declared in the setUp method

After fixing all calls to evaluate in this way, the tests are pristine green.
The scene is set for us to ceremoniously delete the old __convert method
in Portfolio. Deleting code is a sweet feeling: savor it!

Committing our changes
This has been a sizeable modification to our code: the introduction of
Bank and the resultant refactoring. Let’s commit our code to our local
Git repository, with a message that reflects what we did:

git add .

git commit -m "refactor: added Bank; refactored Portfolio to use

Bank"

Where We Are

We changed the internal organization of our code in a significant way,
extracting the Bank entity from the obscurity of being embedded in
Portfolio into a first-class citizen of our domain. And we used a
combination of new tests and our existing suite of tests to ensure that no
features were harmed during this writing of the new and improved code. We
also cleaned up our tests by declaring a Bank variable once before the tests
run and then using this instance in the relevant tests.

We have one more item on our list: the ability to modify existing exchange
rates. Before we get to that, let’s add the satisfaction of crossing one more
item off our list to the sumptuous pleasure that redesigning and deleting code
has provided for us.

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

Separate test code from production code

Remove redundant tests

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW#

Determine exchange rate based on the currencies involved (from → to)

Improve error handling when exchange rates are unspecified

Improve the implementation of exchange rates

Allow exchange rates to be modified

1 Stated in the context of Object-Relational Metadata Mapping. However, it’s good advice in
general.

Part IV. Finishing Up

Chapter 12. A Living Document

Tests are more than just making sure your code works, they also provide
documentation.

—John Reese et al., Unit testing best practices with .NET
Core and .NET Standard

In Chapter 11, we undertook a relatively significant design change by
introducing the Bank entity. Both the new test we wrote and the existing
tests helped us in accomplishing this goal.

One feature of new Bank entity is its ability to accept and store an exchange
rate between any pair of currencies. The way we designed (and tested) it — 
the exchange rates are stored in a hashmap and in the keys are formed from
the two currencies — gives us reason to believe that we already have the next
feature on our list. That feature is to allow exchange rates to be modified.

One way to gain confidence that this feature works is (no prizes for guessing)
to write a test to prove it. Why should we write a test when the feature is
likely already there? In other words, what could a new test possibly drive, if
the _development has already been done?

Two answers can be provided to this question:

1. To repeat: a new test would increase our confidence in this feature,
even if no new production code is necessary.

2. The new test would serve as executable documentation of this
feature.

Tests are an effective way to document our code. Because we can (and
should) use meaningful names for our tests, and because they lay out in detail
what a feature does (as opposed to how it works); tests are an excellent way
for newcomers to learn about our code. They can even help us reorient
ourselves with our own code when we forget subtle yet significant details

about its behavior.

Enlightened by this justification to write tests, let’s turn our focus on this
possibly-implemented-but-not-tested feature on our list:

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

Separate test code from production code

Remove redundant tests

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW#

Determine exchange rate based on the currencies involved (from → to)

Improve error handling when exchange rates are unspecified

Improve the implementation of exchange rates

Allow exchange rates to be modified

Changing exchange rates
We’ll start by modifying our existing test for conversion. We already know
that conversion with a rate between two currencies (e.g. EUR→USD) works.
We’ll add to the test by adding a different rate for the same pair of currencies.
We’ll validate that subsequent conversions utilize this new exchange rate.

If our test works out of the box, we’d have blitzed through the GREEN
phase. We’ll address any necessary refactoring in the last phase.

Go

Let’s add a few more lines to the end of TestConversion. We’ll
modify the exchange rate to 1.3 and validate that it takes effect. We’ll
also rename the test to reflect its intent. Here is the entire test:

func TestConversion(t *testing.T) {

 tenEuros := s.NewMoney(10, "EUR")

 actualConvertedMoney, err := bank.Convert(tenEuros, "USD")

 assertNil(t, err)

 assertEqual(t, s.NewMoney(12, "USD"), *actualConvertedMoney)

 bank.AddExchangeRate("EUR", "USD", 1.3)

 actualConvertedMoney, err = bank.Convert(tenEuros, "USD")

 assertNil(t, err)

 assertEqual(t, s.NewMoney(13, "USD"), *actualConvertedMoney)

}

This was the last line in the test before
Updated exchange rate between the same two currencies
Reusing the same variables with = instead of := operator

Verifying that the conversion takes the updated rate into account

Voila! The test passes at first attempt.

By way of refactoring, we change the name of the test to better reflect its new
intent:
TestConversionWithDifferentRatesBetweenTwoCurrencies

Out of curiosity: does the exchange rate between EUR and USD stay at 1.3
for tests that run after this test? That’s easy to verify. Let’s write a new test
beneath
TestConversionWithDifferentRatesBetweenTwoCurrencies

in the money_test.go file. (Tests are run in the order they’re specified in
the source file.)

func TestWhatIsTheConversionRateFromEURToUSD(t *testing.T) {

 tenEuros := s.NewMoney(10, "EUR")

 actualConvertedMoney, err := bank.Convert(tenEuros, "USD")

 assertNil(t, err)

 assertEqual(t, s.NewMoney(12, "USD"), *actualConvertedMoney)

}

Test name reflects its exploratory nature
Body of test is borrowed from the first half of the
TestConversionWithDifferentRatesBetweenTwoCurrencies

test

And the test fails with the unlucky number thirteen!

=== RUN TestWhatIsTheConversionRateFromEURToUSD

 ... Expected [{amount:12 currency:USD}] Got: [{amount:13

currency:USD}]

We needn’t be superstitious: it turns out that the init() method runs once
during the test run, not before each test method. Any shared state modified by
one test is visible to tests that run later. That is how we get thirteen dollars.

IMPORTANT
Each init() method in a Go test file runs once, in the order in which it’s specified

Knowing this, we should update the
TestConversionWithDifferentRatesBetweenTwoCurrencies

test to use a new exchange rate that’s not set in the init method. Test
independence is an important trait; it would be a bad idea to let one test
subtly change shared data that affects other tests.

func TestConversionWithDifferentRatesBetweenTwoCurrencies(t

*testing.T) {

 bank.AddExchangeRate("EUR", "KRW", 1300)

 tenEuros := s.NewMoney(10, "EUR")

 actualConvertedMoney, err := bank.Convert(tenEuros, "KRW")

 assertNil(t, err)

 assertEqual(t, s.NewMoney(13000, "KRW"), *actualConvertedMoney)

 bank.AddExchangeRate("EUR", "KRW", 1344)

 actualConvertedMoney, err = bank.Convert(tenEuros, "KRW")

 assertNil(t, err)

 assertEqual(t, s.NewMoney(13440, "KRW"), *actualConvertedMoney)

}

New exchange rate from EUR to KRW
First conversion from EUR to KRW
Verification that exchange rate is used for conversion
Updated exchange rate from EUR to KRW
Second conversion from EUR to KRW
Verification that updated exchange rate is used for conversion

All tests pass. We can now delete the exploratory
TestWhatIsTheConversionRateFromEURToUSD — it has served its
purpose.

There is still a subtle side-effect of this updated
TestConversionWithDifferentRatesBetweenTwoCurrencies

there was no rate defined from EUR to KRW before the test; and there is one
after the test runs. However, since we do not have any way to remove an
exchange rate, this is the best we could do. If we test-drive a remove
exchange rate feature, we could (and should) use it at the end of this test to
clean up the shared bank.

JavaScript
We’ll add a few more lines ot the end of testConversion. We’ll
modify the exchange rate between EUR and USD to 1.3 and verify that
this change takes effect. Here’s the updated test method:

 testConversion() {

 let tenEuros = new Money(10, "EUR");

 assert.deepStrictEqual(this.bank.convert(tenEuros, "USD"),

 new Money(12, "USD"));

 this.bank.addExchangeRate("EUR", "USD", 1.3);

 assert.deepStrictEqual(this.bank.convert(tenEuros, "USD"),

 new Money(13, "USD"));

 }

This is the test we had before
Updated exchange rate between the same two currencies
Verifying that the conversion takes the updated rate into account

And lo! The test passes as written.

We refactor the name of the test to better indicate its purpose:
testConversionWithDifferentRatesBetweenTwoCurrencies

There is a subtle side-effect of our test, though. Because bank is a shared
object amongst all the tests, the fact that we have changed the exchange rate
is visible to all tests that run subsequently. We can verify this by writing a
test after
testConversionWithDifferentRatesBetweenTwoCurrencies

(Our test are discovered, and therefore run, in the order they’re declared in
the source file.)

 testWhatIsTheConversionRateFromEURToUSD() {

 let tenEuros = new Money(10, "EUR");

 assert.deepStrictEqual(this.bank.convert(tenEuros, "USD"),

 new Money(12, "USD"));

 }

Test name reflects its exploratory nature
Body of test is borrowed from the first half of the
testConversionWithDifferentRatesBetweenTwoCurrencies

test

And the test duly fails with an assertion error:

Running: testWhatIsTheConversionRateFromEURToUSD()

AssertionError [ERR_ASSERTION]: Expected values to be strictly

deep-equal:

+ actual - expected

 Money {

+ amount: 13,

- amount: 12,

 currency: 'USD'

 }

There are several ways to eliminate this undesirable side-effect of one test on
another. We could do any of the following:

1. Restore the EUR→USD exchange rate to the value set in the
constructor at the end of the
testConversionWithDifferentRatesBetweenTwoCurrencies

2. Test-Drive a new Bank feature: removeExchangeRate and then
use it at the end of
testConversionWithDifferentRatesBetweenTwoCurrencies

3. Use a new Bank object local to
testConversionWithDifferentRatesBetweenTwoCurrencies

so there are no side-effects

4. Test-drive a “setUp / tearDown” feature in our test harness that
allows us to create a new Bank before each test

5. Use a different exchange rate in
testConversionWithDifferentRatesBetweenTwoCurrencies

that is not used by any other test

We’ll go with the last option, even though it only minimizes the impact of the
side-effect; it doesn’t eliminate it.

 testConversionWithDifferentRatesBetweenTwoCurrencies() {

 this.bank.addExchangeRate("EUR", "KRW", 1300);

 let tenEuros = new Money(10, "EUR");

 assert.deepStrictEqual(this.bank.convert(tenEuros, "KRW"),

 new Money(13000, "KRW"));

 this.bank.addExchangeRate("EUR", "KRW", 1344);

 assert.deepStrictEqual(this.bank.convert(tenEuros, "KRW"),

 new Money(13440, "KRW"));

 }

New exchange rate from EUR to KRW
First conversion from EUR to KRW with verification
Updated exchange rate from EUR to KRW
Second conversion from EUR to KRW with verification that updated
exchange rate is used

The test passes. We can now delete the
exploratory`testWhatIsTheConversionRateFromEURToUSD` — it has
served its purpose. All the tests are now green.

Python
We start by adding a few lines to the end of testConversion. We’ll
vary the exchange rate between EUR and USD to 1.3 and assert that this
new rate is used for a second conversion between the two currencies.
Here’s the test method in its entirety:

 def testConversion(self):

 tenEuros = Money(10, "EUR")

 self.assertEqual(self.bank.convert(tenEuros, "USD"),

Money(12, "USD"))

 self.bank.addExchangeRate("EUR", "USD", 1.3)

 self.assertEqual(self.bank.convert(tenEuros, "USD"),

Money(13, "USD"))

This is the test we had before
Updated exchange rate between the same two currencies
Verifying that the conversion takes the updated rate into account

And voila! The test passes at first attempt.

We rename the test to

testConversionWithDifferentRatesBetweenTwoCurrencies

This captures the new intent of the test more fully.

Out of curiosity: is the updated EUR→USD exchange rate in
testConversionWithDifferentRatesBetweenTwoCurrencies

visible to other tests? To verify this, we can write a test whose name causes it
to run after all other tests. (Pytest runs tests in alphabetical order by name.)

IMPORTANT
By default, tests in Python are run in the order of their alphabetically sorted test method
names.

 def testWhatIsTheConversionRateFromEURToUSD(self):

 tenEuros = Money(10, "EUR")

 self.assertEqual(self.bank.convert(tenEuros, "USD"),

Money(12, "USD"))

Test name reflects its exploratory nature
Body of this test is borrowed from the first half of
testConversionWithDifferentRatesBetweenTwoCurrencies

test

And this test also passes. Excellent! Python’s test framework ensures that
there are no side-effects from one test to another, because the setUp method
is run before each test.

IMPORTANT
Using Python’s unittest package, subclassing the TestCase class, and overriding
the setUp method promotes test isolation. The setUp method runs before each test,
ensuring common objects are created afresh.

With our curiosity about test-independence quelled, we delete

https://docs.python.org/3/library/unittest.html#organizing-test-code

testWhatIsTheConversionRateFromEURToUSD — it has served its
short-lived purpose.

With this fast lap around the RGR cycle, we’re done with this feature.

Committing our changes
We added a test to showcase an existing feature. Let’s highlight this in
our Git commit message:

git add .

git commit -m "test: added test for modifying an existing exchange

rate"

Where We Are
In this chapter, we added tests to document an existing feature and learned
about test independence.

IMPORTANT
Tests — especially unit tests — should be independent of each other. One test should not
rely on the success, failure, or even side-effects caused by another test.

We’re done with all the features on our list.

There remains one significant aspect that our code would benefit from. Not a
feature that would be present in production code, such as we’ve added in
several preceding chapters. Not even a test that would give us more
confidence, as we did in this chapter. But something that would add value by
continuously validating our code.

Chapter 13. Continuous
Integration

The principle of continuous integration applies as well to testing, which
should also be a continuous activity during the development process.

—Grady Booch et. al., Object-Oriented Analysis and
Design with Applications

With continuous integration, your software is proven to work (assuming a
sufficiently comprehensive set of automated tests) with every new change 
— and you know the moment it breaks and can fix it immediately.

—Jez Humble and David Farley, Continuous Delivery

Software entropy, like its counterpart in thermodynamics, is the principle that
the degree of disorder in a system tends to increase over time. There may be
no way out of entropy in physics — the second law of thermodynamics
forbids it. Is there a way to stem entropy in software?

Our best current defense against the ruinous effects of code chaos is
Continuous Delivery. The term comes from the first principle behind the
Agile Manifesto, which places customer satisfaction through the “early and
continuous delivery of valuable software” as the highest priority. A related
term that precedes the Agile Manifesto by about a decade is Continuous
Integration, coined by Grady Booch, and refined by Kent Beck, Martin
Fowler, Jez Humble, David Farley, and others. In a team with more than one
developer, the frequent integration of code is even more vital, and therefore
should be done frequently.

For continuous integration to exist, there must be automated tests. How else
would we know that new changes have been “integrated” with existing code;
for no amount of manual effort can “continuously” test software as it grows.
This point is vital enough to be emphatically restated.

1

https://agilemanifesto.org/principles.html

IMPORTANT
There is no continuous integration without automated tests.

To get even more value out of the unit tests we’ve written thus far, we can
run them as part of a continuous integration build process. This can be done
using a wide variety of tools. In this penultimate chapter, we’ll set up a
Continuous Integration server using GitHub actions.

Core Concepts
Continuous Integration is the first phase in a software maturity continuum
which evolves to Continuous Deployment and culminates in Continuous
Delivery. CI is the first evolutionary step towards Continuous Delivery.

Figure 13-1 shows the general overview of Continuous Integration,
Deployment, and Delivery.

Figure 13-1. Continuous Integration and Continuous Deployment are evolutionary precursors to
Continuous Delivery

Version Control
Continuous Integration requires that all code that’s needed to build the
software be stored in a Version Control system.

A version control system must provide, at minimum, the following features:

1. Store current (latest) revisions of files and folders in any arbitrary
structure and depth.

2. Storing these files and folders under a unified “repository” and not
merely as disparate elements.

3. Store old (historic) revisions of files and folders — including those
that have been subsequently deleted, renamed, moved, or otherwise
modified.

4. Discrete and chronological versioning of all revisions — up to an
including the current revision — of all these files and folders, so that
it’s easy and unambiguous to track the history of any one file over
time.

5. Ability to push (commit) changes to the code repository in a
deterministic manner. (That is: a push should be accepted or rejected
based on clear rules.)

6. Ability to query the code repository to detect any fresh changes.

7. Provide a command-line-interface (CLI) for the “push code”, “pull
code”, and “query changes” features.

In addition, the following features are highly desirable:

8. Store multiple independent branches in the code repository, where
branches can be created (forked), deleted, and rejoined (merged)
with other branches.

9. Ability to resolve conflicts (which happen when two or more
incompatible changes are made to the same file/folder).

10. Provide all these features in the CLI, without the need to resort to a
graphical user interface (GUI). This facilitates automation.

11. Support or provide a GUI for users who need/prefer it. This
facilitates widespread adoption.

In common practice, each member of a development team regularly commits
their code to one (or more) shared code repositories. Each person may
commit code several times during a typical workday, leading to dozens (or
even scores) of CI builds running daily.

A version control system like Git provides all the features listed above and
many others. Git can be used as a distributed version control system with no
centralized repository — individual developers sharing code with each other
in a peer-to-peer fashion. Git’s “patch” feature can be used to share changes
with other team members using any existing, out-of-band mechanism, e.g.
shared network folders, or even e-mail.

For the purpose of enabling CI, it’s much more common to have a
centralized Git server to which all developers connect. This centralized Git
server contains the definitive and canonical code repositories. All other team
mambers are expected to push code to and pull code from this centralized Git
server.

With a centralized Git server, it’s fairly common (bordering on universal) to
use a PAAS provider instead of installing and maintaining a Git server of
one’s own. With the ready availability of PAAS Git providers, including
several that offer a generous “zero-price” tier — such as GitHub, GitLab, and
Bitbucket — makes this an irresistible option.

In this book, we’ll use Github as our version control system.

Build Server and Agent
To automatically run the build, we need a computer to run the build. In

2

https://git-scm.com/
https://github.com
https://gitlab.com
https://bitbucket.org

reality, there are multiple processes that need to run:

1. A Build Server process to regularly monitor the version control
system and detect any changes

2. A Build Agent process to run a build whenever there are changes

a. There may be multiple Build Agent processes to either run
builds concurrently, or to run them on different operating
systems, or to build them with different sets of
dependencies

Typically, the Build Server conscripts one Build Agent for each build that
needs to run. The Build Agents are independent of (and therefore, unaware of
the existence of) other Build Agents.

In this book, we’ll use the Build Server and Build Agents provided by
GitHub Actions. We will use declarative programming to indicate which
Build Agents we need and what should be installed on it. This declarative
style is common in CI/CD systems — like GitHub Actions — which provide
cloud-based Build Agents.

If the Build Agents are independent of each other, how do they share
artifacts? This is where an Artifact Repository comes in.

Artifact Repository
To share build artifacts between Build Agents, an Artifact Repository is
used. In principle, an Artifact Repository is a shared file system that each
Build Agent can access. Advanced features provided by an Artifact
Repository may include versioning of each build artifact, seamless back-up of
artifacts for recoverability, and fine-grained read/write privileges (i.e.
allowing specific Build Agents or other processes read-only or read-write
access, as needed).

The Artifact Repository is similar to the Version Control system insomuch as
both are used to store and version files and folders. They two could even
share the same underlying implementation. The key difference is in what they

are used to store. The Version Control system is used to store source files that
are authored and managed directly by the developers crafting the software.
The Artifact Repository, in contrast, stores files generated by the act of
building the software. Many of these files are binaries — executable
programs, libraries, and data files. However, other generated files are not
binary: API and code documentation, test results, and even source files
generated during the build process. Regardless of whether the files are binary
(i.e. not meant for human eyes) or human-readable, storing them in the
Artifact Repository ensures they are kept separate from the source files — the
fountainhead of the software system.

TIP
Transpilers are one kind of program that generate new source files, often in a different
language, from given source files. The generated source code may be stylized for
readability (e.g. JavaScript generated from CoffeeScript) or minimized for size or other
considerations (e.g. minification of CSS or JavaScript files before loading in a web
browser). https://martinfowler.com/bliki/TransparentCompilation.html

We do not need an Artifact Repository in this chapter, because we do not
have any artifacts to share between different builds. However, GitHub does
provide a mechanism to store build artifacts using the same code repository
that stores the source code.

Deployment Environment
After a successful CI build has run in a Build Agent, the build artifacts thus
generated need to be deployed into a Deployment Environment. This allows
these artifacts to be tested (mostly automated tests but also people) and
released to end users (mostly people but also automated systems).

The deployment of build artifacts to one or more Deployment Environment is
a key step in achieving Continuous Deployment and Continuous Delivery.

In this chapter, we’ll focus on the first phase: Continuous Integration.
Continuous Deployment and Continuous Delivery — deploying the packaged

https://martinfowler.com/bliki/TransparentCompilation.html
https://docs.github.com/en/actions/guides/storing-workflow-data-as-artifacts

software in an environment and ensuring that it is delivered to the end users 
— are out of scope of this book.

Putting it all together
We’ll use Github Actions to add continuous integration to our project. This
requires us to set up and verify a Github account, and possibly change some
configuration information (e.g. 2-factor authentication and/or SSH keys).
These steps aren’t directly relevant to the act of setting up a CI pipeline and
more properly belong in a book on Github. The remainder of this chapter
focuses on the steps to get our code working in a continuous integration
pipeline.

Here are the steps to build a CI pipeline for our code.

1. Create and/or verify our Github account

2. Create a new project in Github

3. Push our code repository to Github

4. Prepare the source code for CI build scripts

5. Create a CI build script for each language (Go, Javascript, and
Python)

6. Push the build scripts to Github

Create Github account
To create a CI pipeline using Github actions, we need a Github account. If
you already have a Github account, great! You may skip this section.

If you don’t have a Github account, create one by visiting https://github.com.
You do not need to pay anything for a free account, which is enough for our
needs. (A free Github account is sufficient for many individual developers, as
it allows unlimited public and private repositories and 2000 Github actions
minutes per month.

https://github.com

TIP
Every minute (or fraction thereof) of activity using Github Actions counts towards your
monthly quota, which is 2000 minutes for the free Github plan.]

All you need to create a Github account is a valid e-mail address. It’s strongly
recommended that you set up two-factor authentication, which can be done in
a variety of ways. See Github’s documentation for more details.

Verify Github account
Make sure you can log into your Github account. If you decide to use the
SSH protocol to interact with Github, you’ll need to generate and add an SSH
key. If you have other projects on Github and you regularly push and pull
code to them, you probably don’t need to do much by way of verifying your
Github account.

TIP
Using SSH allows you to designate specific devices — such as your development
computer — as trusted by Github. This means you can forgo specifying your username and
personal access token at each visit.

If you haven’t used your Github account in a while, you may want to fork a
repo to verify your account is in pristine working condition. Go to
https://github.com/saleem/tdd-book-code and use the “Fork” option to fork
the repo. See Figure 13-2.

https://docs.github.com/en/github/authenticating-to-github/about-two-factor-authentication
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh
https://github.com/saleem/tdd-book-code

Figure 13-2. Fork a repository, like the one containing the code for this book, to verify that your
Github account is working as expected.

Of course, you’ll use your hand-written (and highly cherished) code for the
rest of this chapter — not the pre-fabricated and intellectually unsatisfying
code you forked from this book’s Github site! The purpose of forking is to
verify that your Github account is working correctly.

Push code repository to Github
Up until the end of the preceding chapter, we regularly committed our code
to our local Git repository. Now is the time when wen push our code
repository to Github. The conceptual difference between these two actions is
shown in Figure 13-3.

Figure 13-3. Difference between committing code to a local repository and pushing code to a remote
repository.

We first create a project in Github which will house all the code in our local
code repo. To do this, we click the “New Repo” button. This starts a short
(two screen long) workflow to create a new repository.

Figure 13-4 shows the first screen. This is where we enter the repository
name. We use tdd-book-code for the name, which is the same name as our
TDD Project Root folder. This makes things easier for us to remember. We
also have the choice to make the repository private, which means non one
else can see it; or leave it public, which means we can collaborate on it with
others. Do not select any of the options under the “Initialize this repository
with” heading. We already have a repository with several files in it.

Figure 13-4. First step of creating a new repository on Github.

The second screen shows the quick setup guide. We will use the instructions
under the section …or push an existing repository from the command
line, as shown in Figure 13-5.

Figure 13-5. Second step of creating a new repository on Github.

The command-line instructions in this section are already configured for your
Github user name — you can simply copy and paste the three lines of code
verbatim. Leave the browser screen as it’s shown in Figure 13-5 and use the
commands in a shell window to push your code to Github.

Figure 13-6 shows the results of the three commands for my Github repo.
Notice that the first two commands silently succeed. The third command 
— git push -u origin main — produces some output on the screen.

Figure 13-6. Pushing code from our local git repository to the Github repository.

After you’ve successfully pushed your code to Github, simply refresh the
browser window that previously showed the commands (shown in Figure 13-
5). The contents of that browser page should change, showing you the code
you just pushed, as seen in Figure 13-7.

Figure 13-7. Code after it’s been pushed to the Github repository.

Voila: our code is ready to be spruced up with the awesomeness that’s
continuous integration!

Prepare for CI build scripts
Our code has different folders with source code for the three languages.
Here’s the complete folder structure under the TDD PROJECT ROOT folder.

tdd-book-code

├── go

│ ├── go.mod

│ ├── money_test.go

│ └── stocks

│ ├── bank.go

│ ├── money.go

│ └── portfolio.go

├── js

│ ├── bank.js

│ ├── money.js

│ ├── portfolio.js

│ └── test_money.js

└── py

 ├── bank.py

 ├── money.py

 ├── portfolio.py

 └── test_money.py

Our CI build scripts will be in a new folder, actually, a new subfolder in a
new folder. It needs to be named .github/workflows. Pay attention to
the . in the front! It’s imperative that this folder be created exactly as named.

IMPORTANT
The continuous integration scripts using Github workflows must be in a folder named
.github/workflows under the TDD PROJECT ROOT.

To create this folder all at once, type the following command in the shell,
from the TDD PROJECT ROOT

mkdir -p .github/workflows

This will create both the .github folder and the workflows folder
underneath it, all at once.

Our CI scripts will be in YAML format. Our YAML scripts for Go,
Javascript, and Python will follow a similar structure, which is shown in the
following code fragment.

name: Name of script

on:

 push:

 branches: [main]

jobs:

 build:

 name: Build

 strategy:

 matrix:

...

 platform: [ubuntu-latest, macos-latest, windows-latest]

 runs-on: ${{ matrix.platform }}

 steps:

 - name: Set up language-specific environment

...

 - name: Check out code

 uses: actions/checkout@v2

 - name: Test

 run:...

 shell: bash

A meaningful name for the entire script
The script runs on each push to the main branch

There is only one job in each script, named “Build”

Uses a matrix build strategy, allowing us to build on multiple OSes
and language versions
We signal our intent to use the “latest” versions of Ubuntu, macOS, and
Windows OSes in the matrix.platform variable

The previously defined matrix.platform variable is used here to run
the build
There will be exactly three steps in our Build job for each CI script
First step: language-specific environment configuration will be done here
Second step: this is how we’ll check out code, regardless of language
Third step: language-specific commands will run the tests here

We specify that the bash shell should be used for the preceding
commands in the third step

IMPORTANT

YAML — a recursive and defiant acronym for “YAML Ain’t Markup Language" — is a
data serialization standard widely used for configuration files like our continuous
integration scripts. Its official website is https://yaml.org

The script structure is dense but packs a lot of punch! Let’s analyze its
various components.

The first line is the name of the script. The property name is used in many
places in this script. Names can be anything we want; therefore, it’s best to
name it something that will describe the purpose of the script well. We’ll
name each script after the language for which it is intended.

Next we describe when the script should run. The on: {push:
{branches: [main]}} section dictates that the script should run on
every push to the main branch.

Next we define our jobs section. There is exactly one job in each script:
build. We chose “Build” as the name of this job. We choose a “matrix
strategy” for our builds. A matrix strategy is a powerful feature provided by
GitHub actions: it allows us to run the same build on multiple operating
systems, language compilers, etc. This is immensely helpful to ensure that
our code builds and runs on a variety of environments, not just the one we are
currently using. If you have ever heard any rendition of the “it works on my
machine” joke, you know how important this feature is!

Our matrix comprises two dimensions: operating systems and language
compilers. We’ll choose the three popular families of operating systems for
each language, viz Ubuntu, macOS, and Windows. The compiler dimension
will vary for each language. The runs-on property ensures that our build
will run on each of these three operating systems.

Figure 13-8 shows the general formulation of the matrix.

3

https://yaml.org

Figure 13-8. General Build Strategy Matrix.

The last section lists the steps in our Build process. Each CI script will
have three steps, the first and last of which are language specific.

1. The first step will set up the build environment needed by that
language.

2. The second step, checking out the code from the GitHub repository,
is identical for all three build scripts. This step uses the checkout
action provided by GitHub Actions.

3. The last step runs the tests for the specific language. This step will
look familiar to us: it will include commands to run the tests for each
language that we have used throughout this book.

IMPORTANT
There are many readily available GitHub Actions written by an active community of
developers. We’ll use several of these actions in our CI build scripts. See
https://github.com/actions for details.

With this overview of the structure of CI build script and YAML behind us,
let’s get to the business of writing the specific build scripts for each of our
three languages.

Go
For Go, we will choose to support versions 1.15 and 1.16 of the language.
Even though we have consistently used Go 1.16 to build the code in this
book, it’s valuable to support two versions of the language. Go’s release
history states that the two most recent major releases are supported.

For the first build step, we’ll use the setup-go action published by GitHub
Actions to set up our Go environment.

For the third build step, we’ll do four different tasks:

https://github.com/actions
https://golang.org/doc/devel/release.html

1. Set the GO111MODULE environment variable to on

2. Set the GOPATH environment variable to an empty string

3. Switch to the go directory under TDD_PROJECT_ROOT

4. Run our tests with the tried and tested go test -v ./...
command

All these tasks are familiar to us. We encountered the first two back in
Chapter 0 - Introduction & Setup. The other two we’ve used throughout our
work.

With these special considerations for Go understood, we create a file named
go.yml in the .github/workflows folder. Here are the full contents of
that file.

name: Go CI

on:

 push:

 branches: [main]

jobs:

 build:

 name: Build

 strategy:

 matrix:

 go-version: [1.15.x, 1.16.x]

 platform: [ubuntu-latest, macos-latest, windows-latest]

 runs-on: ${{ matrix.platform }}

 steps:

 - name: Set up Go ${{matrix.go-version}}

 uses: actions/setup-go@v2

 with:

 go-version: ${{matrix.go-version}}

 - name: Check out code

 uses: actions/checkout@v2

 - name: Test

 run: |

 export GO111MODULE="on"

 export GOPATH=""

 cd go

 go test -v ./...

 shell: bash

4

Name of the Go CI script
The two versions of Go we support
We use version v2 of the pre-fabricated setup-go action

This refers to the go-version property defined above

The run tasks are run in succession using the pipe | operator

Setting GO111MODULE to “on”

Clearing out GOPATH by setting it to an empty string

Switching to the go folder

Running all our Go tests

That’s it: our CI build script for Go is ready.

JavaScript
We have targeted our JavaScript code for Node.js versions 14 and 16.
We’ll use the latest minor releases of these versions in our matrix.

For the first build step, we’ll use the setup-node action published by
GitHub Actions to set up our Node.js environment.

For the third build step, we’ll use our familiar node js/test_money.js
command to run all the JavaScript tests.

We create a file named js.yml in the .github/workflows folder
incorporating the aforementioned configuration details. Here are the full
contents of that file.

name: JavaScript CI

on:

 push:

 branches: [main]

jobs:

 build:

 name: Build

 strategy:

 matrix:

 node-version: [14.x, 16.x]

 platform: [ubuntu-latest, macos-latest, windows-latest]

 runs-on: ${{ matrix.platform }}

 steps:

 - name: Set up Node.js ${{ matrix.node-version }}

 uses: actions/setup-node@v2

 with:

 node-version: ${{ matrix.node-version }}

 - name: Check out code

 uses: actions/checkout@v2

 - name: Test

 run: node js/test_money.js

 shell: bash

Name of the JavaScript CI script
The two versions of Node.js we support
We use version v2 of the pre-fabricated setup-node action

This refers to the node-version property defined above

Running all our JavaScript tests

With this configuration changes saved, our CI build script for JavaScript
using Node.js is ready to be used.

Python
The two most recent release of Python are 3.8 and 3.9. We’ll target the
latest minor release number for both of these, i.e. 3.8.x and 3.9.x.

For the first build step, we’ll use the setup-python action published
by GitHub Actions to set up our Python environment.

For the third build step, we’ll use the by-now familiar python
py/test_money.py -v command to run all the Python tests.

Let’s create a file named py.yml in the .github/workflows folder
with these configuration details. Here’s how that file looks in its entirety.

name: Python CI

on:

https://devguide.python.org/#status-of-python-branches

 push:

 branches: [main]

jobs:

 build:

 name: Build

 strategy:

 matrix:

 python-version: [3.8.x, 3.9.x]

 platform: [ubuntu-latest, macos-latest, windows-latest]

 runs-on: ${{matrix.platform}}

 steps:

 - name: Set up Python ${{ matrix.node-version }}

 uses: actions/setup-python@v2

 with:

 python-version: ${{ matrix.python-version }}

 - name: Checkout code

 uses: actions/checkout@v2

 - name: Test

 run: python py/test_money.py -v

 shell: bash

Name of the Python CI script
The two versions of Python we support
We use version v2 of the pre-fabricated setup-python action

This refers to the python-version property defined in <2> above

Running all our Python tests

Our CI script for Python is now ready to be put to use.

Committing our changes
With the continuous integration scripts written and saved in the
.github/workflows folder, we can now commit them en masse to
GitHub and watch them run.

git add .

git commit -m "feature: continuous integration scripts using GitHub

Actions"

git push -u origin main

Add all the new files in the .github/actions folder

Committing our changes
Push our changes to GitHub

This is where the magic happens!

Open up a web browser and go to your project on GitHub. Navigate to the
“Actions” tab of your project.

TIP
You can bookmark the “Actions” tab of your project, if you like: it ends in “/actions”. For
the GitHub repository accompanying this book , the Actions tab is directly accessible at
https://github.com/saleem/tdd-book-code/actions.

You should see something similar to what’s shown in Figure 13-9.

https://github.com/saleem/tdd-book-code/actions

Figure 13-9. All Builds on the Actions tab in our GitHub project.

Voila! Through GitHub Actions, we have run the CI scripts for each
language, and unless we made any typos in our YAML files, things should be
all green. We can navigate to different builds and examine the details — the
layout is self-explanatory. For example, Figure 13-10 shows what we see
when we click on “Go CI” on the left and then click on the first (and
currently, the only) entry in the list of commits.

Figure 13-10. Go Builds for our GitHub project.

Notice that there are six jobs that ran from this one commit. This is because
of our strategy matrix. We have tested our Go code for each version of Go
(1.15 and 1.16) on each operating system (Ubuntu, Windows, and macOS).

The JavaScript builds are shown in Figure 13-11. Again, we have six
different jobs, corresponding to the two versions of Node.js (14 and 16) and
the three operating systems.

Figure 13-11. JavaScript Builds for our GitHub project.

The Python builds are similar, as shown in Figure 13-12. Yet again, we have
six different jobs, corresponding to the two versions of Python (3.9 and 3.8)
and the three operating systems.

Figure 13-12. Python Builds for our GitHub project.

Pretty comprehensive, isn’t it!

We can also drill down into the details of any of these eighteen builds to see
exactly what happened at each step of any one build. That’s a lot of
information. To illustrate a sample, Figure 13-13 shows some details emitted
by the build that ran our Go tests using Go version 1.16 on the Windows
operating system.

Figure 13-13. Details of the the Go v1.16 build on Windows OS.

What’s more: not only have we successfully built and tested all our code
once, we’ve also ensured that it will be built and tested every time we push a
change to the main branch of our GitHub repository. That’s continuous
integration in a nutshell — and our code is better for it.

Where We Are
We’re at end of our journey of writing code to solve the “Money” problem.
Chairete, nikomen!

We have covered a lot of ground. We have written code, written tests, deleted
and refined both, and added continuous integration. We deserve a collective
pat on the back!

There’s something more we deserve and need: a look behind on our journey.
That’s what we’ll do in Chapter 14, the final chapter.

1 Martin Fowler defines Continuous Integration as “a software development practice where
members of a team integrate their work frequently, usually each person integrates at least daily -
leading to multiple integrations per day.”
https://martinfowler.com/articles/continuousIntegration.html

2 PAAS stands for “Platform As A Service”; this is a good primer:
https://azure.microsoft.com/en-us/overview/what-is-paas/

3 The single-line representation of a YAML dictionary requires curly braces. Alternately, we can
use multiple lines with indentation, as we’ll do in the actual YAML files. For a basic tutorial on
YAML, see https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html.

4 Recall that the three dots in go test -v ./... are to be typed in literally; they do not
represent any omitted code!

5 “Rejoice, we win!" — words made famous by Philippides after the battle of Marathon.

5

https://martinfowler.com/articles/continuousIntegration.html
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

Chapter 14. Retrospective

Retrospectives can be a powerful catalyst for change. A major
transformation can start from a single retrospective.

—Esther Derby and Diana Larsen, Agile Retrospectives --
Making Good Teams Great

We have finished all the features on our list. Here’s the cumulative list,
lightly edited for clarity.

5 USD x 2 = 10 USD

10 EUR x 2 = 20 EUR

4002 KRW / 4 = 1000.5 KRW

5 USD + 10 USD = 15 USD

5 USD + 10 EUR = 17 USD

1 USD + 1100 KRW = 2200 KRW

Remove redundant tests

Separate test code from production code

Improve the organization of our tests

Determine exchange rate based on the currencies involved

Improve error handling when exchange rates are unspecified

Improve the implementation of exchange rates

Allow exchange rates to be modified

Continuously integrate our code

Does the act of crossing out every line in the list mean we’re done? Probably

not. For one thing: change is the only constant in software. Even if we decide
to not touch anything in our code because it’s fit for purpose, the things
surrounding our code are bound to change over time. During the time it took
to write this book, the following things changed in the ecosystem:

1. Go v 1.16 was released.

2. Node.js v 16 was released.

3. Python v 3.9.5 was released.

4. New versions of the GitHub actions setup-node and setup-python
were released.

5. Most significantly, vaccines for COVID-19 were released and
approved; changing yet again how we structure our lives, do our
work, and conduct our social interactions — of which writing
software is one aspect.

It is almost certain that by the time you read these words, other significant
changes have happened in the myriad things that exist in the ecosystem in
which our code lives.

Beyond the great unknown of the future, are there things about our code in
the here-and-now that we could potentially improve.

Let’s take some time to recap what we did and reflect upon how we did it.
We’ll frame our retrospective along these dimensions.

1. Profile, i.e. the shape of the code.

2. Purpose. This includes what the code does and — more importantly 
— does not do.

3. Process. How we got to where we are, what other ways might have
been possible, and the implications of taking a specific path.

Profile

https://golang.org/doc/devel/release.html#go1.16
https://nodejs.org/en/download/releases/
https://www.python.org/downloads/release/python-395/
https://github.com/actions/setup-node/tags
https://github.com/actions/setup-python/tags
https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/covid-19-vaccines

I use the term “Profile” to include both subjective aspects such as readability
and obviousness, and their objective manifestations, namely complexity,
coupling, and succinctness. In other disciplines, the word “form” is also used
to describe analogous aspects.

In the Preface of this book, we defined simplicity as a key term in the
definition of Test-Driven Development. We can measure the simplicity of our
code now using some metrics.

Cyclomatic complexity
Cyclomatic complexity is a measure of the degree of branching and looping
in code, which contributes to the difficulty in understanding it. This measure
was defined by Thomas McCabe in a paper published in 1976. Later,
McCabe and Arthur Watson developed this concept specifically in the
context of a testing methodology. McCabe’s defintion of cyclomatic
complexity’s — independent of the syntactical differences between languages
and rooted in the organization of source code as a control-flow graph — is an
approach that’s relevant to us as we analyze things from the vantage point of
TDD.

In simplest terms: the cyclomatic complexity of a block of code is the number
of loops and branches in the code plus one.

TIP
The Cyclomatic Complexity of a block of code with “p” binary decision predicates is “p +
1”. A “binary decision predicate” is any point in code where one of two paths can be
taken, i.e. an branch or a loop on one boolean condition.

A block of code with no branches or loops — that is, one where control flows
linearly from one statement to the next — has a cyclomatic complexity of
one.

McCabe’s original paper recommended that developers should “limit their
software modules by cyclomatic complexity instead of physical size”.

http://literateprogramming.com/mccabe.pdf
http://mccabe.com/pdf/mccabe-nist235r.pdf

McCabe provided an upper limit of 10 and pragmatically called this “a
reasonable, but not magical, upper limit”.

Coupling
Coupling is a measure of interdependency of a block of code (e.g. a class or
method) on other blocks of code. The two kinds of coupling are Afferent and
Efferent coupling

Afferent Coupling

This is the number of other components that depend on a given
component.

Efferent Coupling

This is the number of other components that a given component depends
on.

Figure 14-1 shows a class diagram with various dependencies. For
“ClassUnderDiscussion”, the afferent coupling is one and the efferent
coupling is two.

Figure 14-1. Afferent and efferent coupling

TIP
Useful mnemonic: afferent coupling is indicated by the number of dependency arrows that
arrive at a given component. Efferent coupling reflects the number of errors that exit from
a given component.

A measure of stability of the code is the balance between afferent and
efferent coupling. The instability of a component can be defined by the
following formula:
Instability = (efferent)/(efferent + afferent)

That is: the instability of a component is a fraction between zero and one.
Zero indicates a completely stable component that does not depend on
anything else. This is virtually impossible for any component written in a
general purpose language, since any such component would at minimum
depend on components provided by the language (i.e. primitives or system
classes). A value of one indicates maximum instability: such a component
depends on other components and nothing depends on it.

For the “ClassUnderDiscussion” in Figure 14-1, the instability is 2/3.

Succinctness
Lines of code is a dangerous metric — especially across different languages.
The expressive power of languages vary widely. An obvious reason for this is
the presence or absence of certain linguistic features — key words, idioms,
libraries, and patterns — in a particular language. Even something as trivial
as formatting conventions can artificially increase or decrease the line count
across languages. Consider the following two behaviorally identical “Hello
World” programs, one in Go and one in C#

namespace HelloWorld

{

 class Hello

 {

 static void Main(string[] args)

 {

 System.Console.WriteLine("Hello World!");

 }

 }

}

Declare namespace for program
Define a class to contain the method
Define the method that does the work
The line of code that prints “Hello World”, with a dependency on
System.Console.WriteLine method

package main

import "fmt"

func main() {

 fmt.Println("Hello World!")

}

Declare package for program
Include fmt package as a dependency

Define the method that does the work
The line of code that prints “Hello World” using the Println method
from the fmt package

It’s clear that it takes 10 lines of C# code to do that same work as 7 lines of
Go code. Is this a fair or even meaningful comparison? No! Despite the
structural similarities between the two languages — both require
dependencies to be declared, a namespace to be defined, a “main” method
that does the work, and a single line of code to print “Hello World" — there
are sufficient differences to make a comparison of LOC silly. For another
thing: C# requires a class within which the Main method must be defined,
there is no such need for the Go main function. For another difference: Go
requires that opening braces be put at the end of the lines where the method
(or any other block, like an if of for statement) is defined. Contrastingly,

C#’s conventions require that the opening brace be put by itself on a new
line. This latter difference itself contributes to three extra lines of code in the
C# program.

A better metric is to compare the lines of test code to the lines of production
code in the same language. This normalizes for any language-specific quirks
and conventions — especially as the code size increases and the line-count
take on a statistical (as opposed to anecdotal) significance.

Purpose
Aesthetics are important, however, all code is written to meet some need. The
extent to which it meets that need and the manner in which it does so are
what I call “purpose”. In other disciplines, the word “function" — especially
in contrast to “form" — is used. I’ve avoided using this term because of the
risk of confusing an aspect of code with the software meaning of the word
“function”.

The extent to which a piece of code meets its purpose can be looked at from
two perspectives: does it do everything it’s intended to do? And does it do
only what it should do? The latter is termed Cohesion, and the former
Completeness.

Cohesion
Cohesion is a measure of “relatedness” of the code in a module. High
cohesion reflects that the code in a module — method, class, or package — is
closely related to each other.

Cohesion is a subjective measure. However, cohesion is of different types,
some of which are more preferable than others. The most desirable form of
cohesion is functional cohesion, which is when all parts of a module
contributed to a single, well-defined task. At the other end of the spectrum is
coincidental cohesion, which is when the parts of a module are grouped
arbitrarily with no discernable singularity of purpose.

1

Completeness
Does our code do everything it should? Functionally, we finished all the
items on our checklist — we crossed everything off. That’s one indicator of
completeness.

How complete are our tests, though? Could we gain more confidence by
writing additional tests? Consider these cases:

1. Overflow. This is the condition that results from storing a number
that’s too large to be stored in a particular data type. Adding Money
s or multiplying a Money with another number can cause overflow.

2. Underflow. This is the condition that results from storing a number
that’s too small (i.e. very close to zero). There aren’t enough
significant digits to represent the number correctly. Dividing a
Money by a large number can cause underflow, as can the presence
of a very small exchange rate.

3. Division by zero. The result of dividing a nonzero number by zero is
infinity. The result of dividing zero by zero is undefined.

None of these scenarios are currently tested and therefore the code is unable
to deal with them. It’s compelling evidence that the code is incomplete.
However, we know how to build these features: by driving them via tests.

Process
Both Profile and Purpose measure the code on various attributes of quality.
The judge the result of the journey. In contrast, it is equally important to
assess the Process of how we got to our code, including the various
intermediate stages that may not have survived till the end. This is a
judgment of the path we took along our journey.

What if we had started building our features in a different order than what
was on our checklist? It’s quite possible, perhaps likely, that we would end
up with a different implementation. For example: our Money entity has

methods for multiplication and division, but not for addition. If we had
implemented the feature “5 USD + 10 USD = 15 USD” in Chapter 1 instead
of Chapter 3, we may have had and addition method in the Money entity.

There was a logical progression in the way we arranged our features: simple
ones first. However, had we started by, say, building the addition feature with
different currencies “5 USD + 10 EUR = 17 USD”, would have had to
introduce exchange rates quite early. Where would we have put them?
Probably in Money, since that’s still a reasonable first abstraction. Would we
have recognized and extracted the Portfolio and Bank entities? It’s
difficult to speculate, but I’m tempted to say it would have required more
effort to identify multiple abstract concepts while building one feature.

Putting it all together
We have seen the three dimensions — Profile, Purpose, and Process — which
we can use to analyze our code. Let’s project our code onto the the three
dimensions and see what reflections we see.

Go

Profile
We can measure the cyclomatic complexity of our code by using a tool
like gocyclo. This tool, itself written in Go, can be installed as an executable
and then used to analyze the cyclomatic complexity of any Go code. If we
run gocyclo . in our go folder, here are the most complex methods.
Every other method has the minimal possible cyclomatic complexity of 1.

5 stocks (Portfolio).Evaluate stocks/portfolio.go:12:1

3 main assertNil money_test.go:129:1

3 stocks (Bank).Convert stocks/bank.go:14:1

2 main assertEqual money_test.go:135:1

We see that the most complicated method — Portfolio.Evaluate — 
has a cyclomatic complexity of 5. Even though this is well below the

https://github.com/fzipp/gocyclo

heuristic threshold of 10, it’s illustrative to see that this complexity could be
reduced by using the extract method refactoring one or more times. For
example: the creation of a failure messages could be extracted into a new
method, which is then called from within Portfolio.Evaluate

func (p Portfolio) Evaluate(bank Bank, currency string) (*Money,

error) {

 ...

 failures := createFailureMessage(failedConversions)

 return nil, errors.New("Missing exchange rate(s):" + failures)

}

func createFailureMessage(failedConversions []string) string {

 failures := "["

 for _, f := range failedConversions {

 failures = failures + f + ","

 }

 failures = failures + "]"

 return failures

}

Unchanged code in Evaluate, omitted for brevity

Call a private function to create failure message
Function createFailureMessage extracted from within the
Evaluate method

Is this better? It depends on your perspective. The cyclomatic complexity of
Evaluate is lower (4), but the combined cyclomatic complexity of the two
methods is now higher (6).

The Coupling between our code is low. Portfolio depends on Money and
Bank. Bank depends on Money. The Test class — unavoidably — depends on
all three. The only reasonable reduction in coupling we can do is to separate
the tests into classes: TestMoney, TestPortfolio, and TestBank.

In terms of succinctness, Go provides a tool to check for suspicious code. It is
the vet command, and it’s instructive to run the go vet ./... (the
ellipses are to be typed literally) and notice the output. For our program, there
are no warnings, which is how we should endeavor to keep all our programs.

https://golang.org/cmd/vet/

The vet command not only looks for superfluous code — useless
assignments, unreachable code, for example — it also warns against common
errors in Go constructs.

Purpose
Our Go code has good cohesion: three named types with well-defined
responsibilities. The one criticism that can be laid at our doorstep is that,
because there is no Add method in Money, the addition of amount s
happens within Portfolio.Evaluate and not in Money.

What if we had a Money.Add method? We could simplify our
Portfolio.Evaluate a bit, like shown here.

func (p Portfolio) Evaluate(bank Bank, currency string) (*Money,

error) {

 totalMoney := NewMoney(0, currency)

 failedConversions := make([]string, 0)

 for _, m := range p {

 if convertedMoney, err := bank.Convert(m, currency); err == nil

{

 totalMoney = total.Add(convertedMoney)

 } else {

 failedConversions = append(failedConversions, err.Error())

 }

 }

 if len(failedConversions) == 0 {

 return &totalMoney, nil

 }

 ...

}

Total is stored in a Money, not in a float64 type

Using the new Money.Add method, assuming it has only one return
value
Returning a Money pointer, as before

Rest of the method is identical, omitted for brevity

How would we test-drive the Money.Add method? We may find it

propitious to adhere to this design:

1. The method should accept a single other Money argument

2. Its first return value should be Money type, representing the sum of
this Money and other Money

3. It should add the other Money only if the currencies of other
and this Money match

4. When the currencies of the two Money s differ, it should indicate
the failure to add them, either through a second error return value
or by panic ing — mildly justifiable in this case because it’s only
ever called from Portfolio.Evaluate when currencies match
after conversion

Process
We started by putting the Money and Portfolio code in a single source
file and then separating them into two files in the stocks package. We then
created Bank in this package later. Could we have identified this separation
earlier, perhaps right at the beginning? Or conversely, could we have coded
all of it in one giant file and separated them at the end? What if we didn’t
separate code into discrete files at all?

The process we followed minutely affected the shape of our Go code. As a
general rule, a process should be judged by the results it produces. In TDD,
we have a significant lever to control the process: the pace as which we
proceed. Our single-file production code had acquired two distinct
abstractions — Money and Portfolio — by the end of Chapter 3. That’s
why we modularized at that juncture. Now that you’ve finished the features,
what do you think? Would you make a similar choice if you redo the code,
perhaps to teach someone else?

JavaScript

Profile

To gather complexity metrics for our JavaScript code, we can use a tool
like JSHint. JSHint comes in many guises, the home page provides an
online editor in which you can paste JavaScript code and measure its
complexity. For our purposes, the NodeJS package is more appropriate.
JSHint can be installed globally by running npm install -g jshint at
a command line.

To use jshint, we need to specify a couple of configuration parameters. The
simplest way to do this is to create a file named .jshintrc in the js
folder.

{

 "esversion" : 6,

 "maxcomplexity" : 1

}

Specifying the version of EcmaScript to use
Setting the maximum cyclomatic complexity to the lowest possible value

Note that we have set the maxcomplexity to 1 — the lowest possible
cyclomatic complexity for any method. This goal isn’t to meet this threshold:
as mentioned earlier, 10 is a more typical value. The reason we set it to 1
here is to force jshint to ptint every method with a higher cyclomatic
complexity as an error.

With this short .jshintrc file in place, we can simply run jshint from
the command line in the js folder to examine which methods have a
cyclomatic complexity that exceeds 1.

bank.js: line 13, col 12, This function's cyclomatic complexity is

too high. (3)

portfolio.js: line 13, col 42, This function's cyclomatic

complexity is too high. (2)

portfolio.js: line 11, col 13, This function's cyclomatic

complexity is too high. (2)

test_money.js: line 81, col 44, This function's cyclomatic

complexity is too high. (2)

https://jshint.com/

test_money.js: line 89, col 30, This function's cyclomatic

complexity is too high. (3)

We see that there a couple of methods with a cyclomatic complexity of three,
and a few more with a complexity metric of two.

This validates a key claim of Test-Driven Development. The incremental and
evolutionary style of coding that TDD encourages results in code with a more
uniform complexity profile. Instead of one or two “superman” methods or
classes, we get a better distribution of responsibility across our modules.

The coupling between our code is low. Both Portfolio and Bank depend
on Money, which is a natural consequence of our domain. There is also a
more subtle dependency from Bank to Portfolio. It’s subtle, because
unlike Money, the Portfolio does not require an object of type Bank.
The evaluate method in Portfolio requires a “bank like object" — that
is, an object that implements a convert method. This is a dependency on
an interface and not a specific implementation. This is different from how
Portfolio depends on Money: there is an explicit call to new Money()
in the evaluate method.

IMPORTANT
When class A creates a new instance of class B, it is difficult to use Dependency
Injection. However, if A only uses methods defined by B — i.e. A has an interface
dependency on B — it is easier to use Dependency Injection.

We encountered Dependency Injection in Chapter 4 and Chapter 11. We can
inject any object that implements a convert method to test
Portfolio.evaluate — it doesn’t have to be an actual Bank object.
Consider this strangely written but valid — and passing — test.

testAdditionWithTestDouble() {

 const moneyCount = 10;

 let moneys = []

 for (let i = 0; i < moneyCount; i++) {

 moneys.push(new Money(Math.random(Number.MAX_SAFE_INTEGER),

"Does Not Matter"));

 }

 let bank = {

 convert: function() {

 return new Money(Math.PI, "Kalganid");

 }

 };

 let arbitraryResult = new Money(moneyCount * Math.PI,

"Kalganid");

 let portfolio = new Portfolio();

 portfolio.add(...moneys);

 assert.deepStrictEqual(portfolio.evaluate(bank, "Kalganid"),

arbitraryResult);

}

Number of Money objects in our test

Each Money object has a random amount and its currency is also
made up
A Bank test double

Overriden convert method

Always return “π Kalganid”
The result is expected to be “π times moneyCount" Kalganid

Assertion, which passes

We have created a silly implementation of a bank in our test. Silly from a
business standpoint, yet completely valid from an interface perspective. This
bank always returns “π Kalganid” from its convert method, regardless of
any arguments it’s given. This means that for each call to this convert
method from Portfolio.evaluate, the Portfolio accumulates “π
Kalganid”. Thus the final result is π times the number of Money objects, in
Kalganid.

Even though the test is peculiar, it illustrates the key concepts of “Test
Doubles” and Interface Dependency.

2

https://www.martinfowler.com/bliki/TestDouble.html

TIP
A “Test Double” is a replacement for “real world” (i.e. production) code — method, class,
or module — that’s substituted in a test so that the System Under Test uses this
replacement code instead of the real code as a dependency.

It’s obvious that we could follow the pattern shown in the preceding test and
rewrite all our tests for Portfolio.convert to use test doubles instead
of the “real” Bank. The real question is: should we?

The answer is not obvious. As a general rule: use the path of least resistance.
If the effort to introduce a test double is greater than using the real code, then
use the real code. Otherwise, use a test double.

There is also a risk of using a test double: if there are non-obvious side
effects between the system under test and the the dependency, a test double
may inadvertently mask these side effects. Or the test double may introduce
new side effects that are not present in the real code. Either way, there is a
risk that testing with the test double may not be a faithful replica of testing
with the “real” dependency in place.

Is there a way out of this? Using stateless code with a well-defined interface
is a start. A method that is stateless — that is, one whose behavior depends
completely on its parameters — is much easier to replace with a test double
than a method which relies heavily on mutable state of surrounding objects
that are not passed as parameters.

Purpose
The three classes in our JavaScript display singularity of purpose: a class for
each key concept.

Is there something worth improving? There is a bit of a leaky abstraction in
the try block in the Portfolio.evaluate method.

 try {

 let convertedMoney = bank.convert(money, currency);

 return sum + convertedMoney.amount;

3

 }

Did you spot it? The conversion of money into a new currency yields a
compact, self-contained object: convertedMoney. We then pry open this
object to look at its amount and add it to a total … only for us to later put
Humpty Dumpty back again when we return new Money(total,
currency) at the end of the method!

How would our code look if the Money class had an add method?
Specifically, how might we drive it through tests, and what would the
refactored Portfolio.evaluate look like?

We can think of a few tests we may use to drive out the behavior of
Money.add. Adding two Money objects in the same currency should work
in a straightforward way, obeying the commutative law of addition of
numbers. Adding two Money objects with different currencies should fail
with an appropriate exception. We can justify this exceptional behavior on
the grounds that adding multiple currencies requires us to maintain a
Portfolio — which already carries the responsibility of conversion.

testAddTwoMoneysInSameCurrency() {

 let fiveKalganid = new Money(5, "Kalganid");

 let tenKalganid = new Money(10, "Kalganid");

 let fifteenKalganid = new Money(15, "Kalganid");

 assert.deepStrictEqual(fiveKalganid.add(tenKalganid),

fifteenKalganid;

 assert.deepStrictEqual(tenKalganid.add(fiveKalganid),

fifteenKalganid;

}

testAddTwoMoneysInDifferentCurrencies() {

 let euro = new Money(1, "EUR");

 let dollar = new Money(1, "USD");

 assert.throws(function() {euro.add(dollar);},

 new Error("Cannot add USD to EUR"));

 assert.throws(function() {dollar.add(euro);},

 new Error("Cannot add EUR to USD"));

}

Test to verify directly adding two Money objects in same currency

Test to verify exception when attempting to add two Money objects with
different currencies

After we write a Money.add method that fulfils the above tests, we can
use it to reduce the leaky abstraction in Portfolio.evaluate.

evaluate(bank, currency) {

 let failures = [];

 let total = this.moneys.reduce((sum, money) => {

 try {

 let convertedMoney = bank.convert(money, currency);

 return sum.add(convertedMoney);

 }

 catch (error) {

 failures.push(error.message);

 return sum;

 }

 }, new Money(0, currency));

 if (failures.length == 0) {

 return total;

 }

 throw new Error("Missing exchange rate(s):[" + failures.join()

+ "]");

}

Using the Money.add method

The initial value is a Money object, not a number

The total can be returned directly: it’s a Money object

Is the cost of removing the leaky abstraction worth the extra method in
Money class and the tests for it?

There isn’t a cut-and-dried answer for it. We could reason that the add
method is a worthy companion to the times and divide methods already
in Money and that preventing the Portfolio.evaluate method from
prying into Money is a good thing. On the other hand, we could reason that
Bank.convert already pries into both the currency and amount of the
Money object it’s given; and that there’s no obvious way to remove that

4

leaky abstraction without adding substantially more behavior to Money — at
the expense of Bank, probably.

The contrasting answers are reflective of the element of subjectivity inherent
in the notion of “fit for purpose”. It’s reasonable to have different opinions on
the question of “what is the purpose of this class?” The code that results from
the different opinions will also be different — invariably and unavoidably.

Process
In the beginning, all our source code was in one file. We introduced
separation of concerns in Chapter 4 and used it to partition our code into
modules in Chapter 6. The Bank class was introduced in Chapter 11. It’s
likely that our code would have turned out differently had we followed
another path. Could it have been better?

If we were to solve the problem again, we may separate the tests from the
production code earlier — perhaps as soon as we have one green test. Early
separation of concerns can have benefits: it forces us to make our
dependencies explicit and think critically about what each module exports.
This can lead to better encapsulation (i.e. information hiding).

Can you think of shortcomings in our JavaScript code? Which steps during
the incremental growth of our code caused them? And were there any stages
where we could have corrected them?

Python

Profile
The Python ecosystem provides a choice of tools and libraries to measure
the complexity of code. Flake8 is one such tool. Flake8 combines the static
analysis capabilities of several other tools. That’s why it provides a lot of
features, including testing for cyclomatic complexity using the mccabe
module.

Flake8 can be installed using the Python package manager. The command
python3 -m pip install flake8 is all that’s needed. Once

https://flake8.pycqa.org/en/latest/
https://pypi.org/project/mccabe/

installed, running flake8 in a folder with Python source files, such as the
py folder in our TDD_PROJECT_ROOT, will scan the code for all
violations and warnings. To limit the output to warnings of a specific kind,
we can use the well-defined Flake8 error codes. For example, the command
flake8 --select=C will display only cyclomatic complexity violations
as detected by the mccabe module. Since the default complexity threshold is
10, we will not see any warnings if we run the above command. To get any
output, we have to set a lower complexity threshold.

Let’s try flake8 --max-complexity=1 --select=C on our Python
code and see what comes up.

./bank.py:12:5: C901 'Bank.convert' is too complex (3)

./portfolio.py:12:5: C901 'Portfolio.evaluate' is too complex (5)

./test_money.py:75:1: C901 'If 75' is too complex (2)

We see that Portfolio.evaluate and Bank.convert are the two
methods with the highest complexity. However, both are well within the
heuristic limit of 10 recommended by McCabe. This is a vindication of one
of the claims of Test-Driven Development: that it yields code with lower
complexity.

Could we improve the readability of the code in some tangible way?
Consider the Portfolio.evaluate method and how we test for the
presence of failures:

def evaluate(self, bank, currency):

...

 if len(failures) == 0:

 return Money(total, currency)

...

Checking if failures is empty to determine whether a Money object
should be returned

We’re checking for the presence of failures by seeing if its length is zero.
Is there a simple way we could use?

https://flake8.pycqa.org/en/latest/user/error-codes.html

It turns out that there is. In Python, empty strings evaluate to false, so we can
simplify the two checks.

...

 if not failures:

 return Money(total, currency)

...

An empty string evaluates to false, allowing us to use not
failures in both lines of code

TIP
In Python, any object can be tested for its truth value, and empty sequences or collections
are treated as false.

Using language idioms is another way to simplify code, even if it doesn’t
reduce the cyclomatic complexity metric. Keeping things consistent with
linguistic norms ensures that our code subscribes to the principle of least
surprise.

PRINCIPLE OF LEAST SURPRISE
Described by Jerome H. Saltzer and M. Frans Kaashoek in their book
“Principles of Computer System Design — an Introduction”, the principle
of least surprise (or astonishment) aims to create software systems that
align with the user’s anticipations. To quote the authors:

People are part of the system. The design should match the user’s
experience, expectations, and mental models.

This dictum is meant not just for the people typically thought of as end
users of the system. It’s equally applicable when the “users” are other
developers who maintain our code. A “user” could even be a future
version of ourselves who has to read our own code months down the
road. We should strive to be empathic to our future selves.

https://docs.python.org/3/library/stdtypes.html#truth-value-testing

Purpose
Our Python code shows fidelity to its purpose: each of the three main classes
does one thing and does it reasonably well.

There is a leaky abstraction in Portfolio.evaluate that sticks out like
a sore thumb. This method is too nosey about the internals of the Money
class. Specifically: it probes into each Money object returned by
Bank.convert and keeps track of the amount attribute. Then, at the end
of the method, it creates a new Money object with this cumulative total.

Could we make Money a shier object that doesn’t need to be examined so
intimately by the Portfolio.evaluate method? We could, if we could
add Money objects directly and not just their amount fields.

We can do that by overriding a hidden method whose signature is
__add__(self, other).

TIP
In Python, to override the + operator for a particular class, we must implement the
__add__(self, other) method for that class.

We can test-drive the behavior of the __add__ method through this test.

def testAddMoneysDirectly(self):

 self.assertEqual(Money(15, "USD"), Money(5, "USD") + Money(10,

"USD"))

 self.assertEqual(Money(15, "USD"), Money(10, "USD") + Money(5,

"USD"))

 self.assertEqual(None, Money(5, "USD") + Money(10, "EUR"))

 self.assertEqual(None, Money(5, "USD") + None)

We want to be able to add two Money objects as long as they have the same
currency. Otherwise, we want to return None. To ensure that the
commutative property of addition holds, we verify that adding two Money

objects in either order yields the same result.

The following implementation of Money.__add__ fits the bill.

def __add__(self, a):

 if a is not None and self.currency == a.currency:

 return Money(self.amount + a.amount, self.currency)

 else:

 return None

To further streamline our code, we can redesign Bank.convert so that
two values: a Money and a key for any missing exchange rate. . If the
exchange rate is found, a valid Money object is returned. The second return
value is None . If the exchange rate is undefined, the first return value is
None. The second return value is the missing exchange rate key.

Here are the refactored tests that we can use for this redesign.

def testConversionWithDifferentRatesBetweenTwoCurrencies(self):

 tenEuros = Money(10, "EUR")

 result, missingKey = self.bank.convert(tenEuros, "USD")

 self.assertEqual(result, Money(12, "USD"))

 self.assertIsNone(missingKey)

 self.bank.addExchangeRate("EUR", "USD", 1.3)

 result, missingKey = self.bank.convert(tenEuros, "USD")

 self.assertEqual(result, Money(13, "USD"))

 self.assertIsNone(missingKey)

def testConversionWithMissingExchangeRate(self):

 bank = Bank()

 tenEuros = Money(10, "EUR")

 result, missingKey = self.bank.convert(tenEuros, "Kalganid")

 self.assertIsNone(result)

 self.assertEqual(missingKey, "EUR->Kalganid")

When conversion works the first return value is a valid Money object,

and None is the second return value

When the exchange rate is undefined, None is the first return value,

and the second return value is the missing exchange rate key

The modified Bank.convert method — not shown here — no longer
throws any exception.

With this implementation in place, we can refactor the
Portfolio.evaluate method.

def evaluate(self, bank, currency):

 total = Money(0, currency)

 failures = ""

 for m in self.moneys:

 c, k = bank.convert(m, currency)

 if k is None:

 total += c

 else:

 failures += k if not failures else "," + k

 if not failures:

 return total

Not only is the resultant Portfolio.evaluate method shorter and more
elegant, it also has a lower cyclomatic complexity. Run flake8 --max-
complexity=1 --select=C and verify for yourself!

Process
We wrote our first tests and the first bits of production code all in one file. By
the time we got to separating code in modules in Chapter 7, we had three
classes: two corresponding to the domain concepts of Money and
Portfolio and one class for our tests. Later, we introduced the third
domain class of Bank in Chapter 11. How did the order in which we
developed the features influence the resultant code?

One significant effect of the direction we took was the introduction (in
Chapter 3) and subsequent removal (in Chapter 10) of the lambda expression
in Portfolio.evaluate method. Could we reintroduce the brevity and
refinement of the lambda expression? It would require reimagining our code,
but it could be done. Recall the structure of the lambda function from
Chapter 8, slightly changed here to use Bank.convert method (instead of
the self.__convert that existed in Chapter 8):

5

total = functools.reduce(operator.add,map(lambda m: bank.convert(m,

currency), self.moneys), 0)

The limitation of lambdas is that we cannot write conditional code in how
they’re applied. However, what if we we accumulated, through the add
operator, both the converted Money objects and any missing exchange rates
returned by the multiple calls to the Bank.convert method?

It is doable — it requires changes to the signature of Bank.convert and an
overriden __add__ method than can add a (Money, string) tuple. Is it
advisable to do so?

There isn’t a right or a wrong answer to this question. Software is meant to be
read much more often than it’s written. Would the resultant code be easier to
read? We can and should write it first before forming too strong an opinion.
However, even after writing it, we shouldn’t expect a definitive answer on
which style — with or without the lambda — is “better”. The element of
subjectivity remains even after we sift our code through the measurable
metrics of complexity, cohesion, and coupling.

Where We Are
We are at the end of our TDD journey in this book. However, this isn’t the
end.

You’re encouraged to look at updated source code in the accompanying
repository for updates and things not covered in depth in this text.

You also have the opportunity to engage with other readers on alternate ways
to solve the problem and on how to extend it.

As for your longer journey in forming a habit so that you test-drive most if
not all your code, this is just a beginning.

1 The reason Go requires that the open brace be on the same line is more than merely aesthetics;
it’s rooted in how the language’s compiler figures out where one statement ends and another
begins. https://golang.org/doc/faq#semicolons

https://golang.org/doc/faq#semicolons

2 Notice that the convert method here doesn’t even define any arguments, since it’s going to
ignore them, anyway. Recall from Chapter 6 that JavaScript does not enforce any rules on the
number or types of parameters that are passed to a function, regardless of the function definition.

3 The methods most difficult to replace with test doubles are those that rely on global state — 
another reason why globals are to be avoided like zombies during the apocalypse!

4 The Money.add function is “left as an exercise for the reader" — a phrase no workbook
should be without. There is an implementation in the github repository, for the curious (or
irritated) subset!

5 The source code for the modified Bank.convert method, along with all other changes, is
available in the online repository.

Appendix A. Development
Environment Setup

Setting up your development environment is a prerequisite to writing any
code. Fortunately, setting up a reliable “dev env” is easier today than it used
to be. And it keeps getting easier.

By the time you read this book, there are possibly (perhaps likely) better
alternatives to what I suggest below. If there is an easier mechanism to set up
your dev env, do it. Also, share it with other readers of this book. (You may
send an email to bookquestions@oreilly.com.)

This appendix is not an exhaustive list of all the ways you can set up a dev
env. Nor does it offer step by step instructions on how to install each
language, Integrated Development Environment, plugin, extension, or
manage multiple versions of any of these. Such details would be both
tediously verbose and hopelessly susceptible to obsolescence: almost all of
these tools are updated regularly (every few months or even weeks). Instead
of providing detailed instructions that will become stale faster than a loaf of
bread, I’ve opted to provide a general overview of how to set up your dev
env. There are references with hyperlinks should guide you to more details,
when you need them.

Online REPLs
REPL stands for “Read-Eval-Print Loop”. It is an interactive top level shell
that allows you to short programs directly and easily. Any code you write in a
REPL is read, then evaluated (i.e. parsed, then compiled and/or interpreted,
depending on the language, and then executed), its results are printed. The
whole thing runs in a loop so you can keep editing your program and running
it for as long as you wish. The interactive nature of a REPL, coupled with its
quick and detailed feedback, makes it an ideal environment in which to learn

mailto:bookquestions@oreilly.com

a new programming language.

As if that wasn’t good enough, there are now several online REPLs for a
variety of languages, and many of these REPLs are free to use. All you need
is a computer with a web browser and a steady (not necessarily blazing fast)
Internet connection.

With all these benefits, there are caveats to using an online REPL to write
substantial amounts of code, including the code examples in this book. In
particular, here are some challenges you may face if you write a lot of code in
an online REPL.

1. Difficulty in organizing your code as you want. You may find it
difficult (or impossible) to organize your source files in folders (e.g.
LeetCode free edition). You may find it difficult to name your files
as you want (e.g. when writing Go in Repl.it, you can neither delete
nor rename the file called main.go).

2. Difficulty in importing external packages. LeetCode, for example,
allows you to import Go packages in the standard library, but it is
non-trivial (perhaps impossible) to import external packages.

3. Limitation on the amount of code you can write. Online REPLs 
— especially in their free versions — often limit the amount of code
you can write and store online. If you write a lot of code — which I
encourage you to do! — it’s likely you’ll soon run into these limits.

4. Limitation on keeping your code private. Remember that any code
you write using an online REPL is stored somewhere on their web
servers (“in the cloud”). Oftentimes, you are compelled to make
these code repositories public, especially in the free versions of
online REPLs. Privacy of code is possibly unimportant to you if
you’re learning to write code, and perhaps even undesirable if you
are actively looking to collaborate with other. However, as your
programs grow in size and especially if you start writing proprietary
code; you may want or need to control access to your code
repositories. Online REPLs may make this more difficult to achieve.

5. Risk of losing code because of browsers crashes, etc. Have you
ever typed a bunch of text in a browser text field and then witnessed 
— in mild horror — your browser crash and lose all the text you
typed? It’s bad enough when you’re typing a wall of text in a natural
language (e.g. responding to a post on a social media website). It’s
downright distressing if the “text” you just lost was code that you
had painstakingly written, tested, and refactored. With online
REPLs, code loss is always possible. (Of course, you could always
spill coffee on your computer and lose code that way; however, I’m
assuming that like most developers, you experience browser crashes
more frequently than coffee spills!)

In summary, it’s ok to start writing the code in this book in an online REPL,
however, I would not recommend that you write all of it in this manner.
Sooner rather than later, you’ll feel the need to set up a proper dev env on
your computer.

Here are some online REPLs that can help you get started with minimal
prerequisites.

Repl.it
Repl.it is the online REPL I use most frequently, especially when I am trying
out a new language or feature and don’t want to spend time and effort in
setting up my local dev environment. It supports dozens of languages — 
including all three used in this book. The free version is feature rich, so you
can try things out before you decide if you need a paid subscription.

To run Go code in Repl.it, you need to do a few tricks: . You cannot delete
the file named main.go. Leave this file empty: simply ignore it. . Create
your test files following the Go naming convention, e.g. money_test.go.
. If you want to run tests, do not click on the Run button with the green
arrow. Instead, switch to the Shell tab on the right side, type go test -v
<name_of_test_file>.go, and hit enter.

Figure A-1 shows a Repl.it window with Go code from Chapter 1.

https://repl.it
https://repl.it/languages

Figure A-1. Repl.it with with Go code from Chapter 1

Figure A-2 shows a Repl.it window with the JavaScript code we wrote in
Chapter 1. Recall that there is no output on successful tests in the code we
wrote at that point; that’s why the code in figure A-2 is modified with a
deliberately failing test to illustrate how failures show up in Repl.it. To run
the file, we switch to the Shell tab on the right and type node
<name_of_test_file>.js and hit enter.

Figure A-2. Repl.it with with JavaScript code from Chapter 1

Figure A-3 shows Python code from Chapter 1 in a Repl.it window. To run
the file, we switch to the Shell tab on the right and type python
<name_of_test_file>.py and hit enter.

Figure A-3. Repl.it with with Python code from Chapter 1

LeetCode
LeetCode encourages social interaction with other developers with coding

https://leetcode.com

contests, challenges, and discussions. The “Playground” feature allows you to
write code in several languages, including Go, JavaScript, and Python.
However, there are some limitations. With Go, it is not trivial to import
packages outside the standard library or to run tests via go test. With
Python, it’s not obvious how to run tests using the unittest package.

The free version restricts the number of Playgrounds (currently 10); the paid
subscription removes this restriction and offers a host of other features, such
as debugging and autocompletion.

Figure A-4 shows a LeetCode window with JavaScript code from Chapter 1.
The test in the code has been deliberately broken test to illustrate how test
failures appear in LeetCode.

https://golang.org/pkg/#stdlib

Figure A-4. LeetCode with JavaScript code from Chapter 1

CoderPad
CoderPad is good for real-time collaboration on code — such as pair or mob
programming. This can be particularly useful if you are learning a new
language as part of a group or cohort. For this reason, CoderPad is often used
during technical interviews — so becoming familiar with it may also be good
for your career!

CoderPad supports a variety of languages, including the three used in this
book. However, like LeetCode, it is not trivial to import Go packages outside
the standard library.

Figure A-5 shows CoderPad with the JavaScript code from Chapter 1. Again,
the code is purposefully shown with a broken test to illustrate how assertion
failures appear in CoderPad.

https://coderpad.io
https://golang.org/pkg/#stdlib

Figure A-5. CoderPad with JavaScript code from Chapter 1

Figure A-6 shows CoderPad with the Python code from Chapter 1.

Figure A-6. CoderPad with Python code from Chapter 1

The Go Playground
The Go Playground provides a REPL tailored for the Go programming
language. This is particularly useful given the limitations of some other
online REPLs for Go, as described in the previous sections.

Under Go Playground’s minimalist user interface lies a powerful REPL

https://play.golang.org/

engine. One useful feature is the ability to create a permalink for any code
snippet you write. This makes sharing code easy. Best of all, the Go
Playground is completely free.

You can write unit tests and production code and run tests directly from the
Go Playground. You can even organize your code in multiple files. This can
help you get started quickly in Go, if you so decide.

With Go Playground, you can import packages from publicly available
repositories (e.g. GitHub.com) in the same way you’d do in an IDE. Figure
A-6 shows code from Chapter 2 with an external package imported from
github.com/stretchr/testify/assert.

Figure A-7. Go Playground with code similar to what we developed in Chapter 2, with an external
assertion library

The comprehensive list of online REPLs
Joël Franusic maintains a list of online REPLs. I haven’t tried all of them:
there are just too many! However, if you find something you like, use it and
share your experience with others.

Integrated Development Environments (IDEs)
Online REPLs are good to get started. However, you’ll find that to do any
amount of serious coding, you need a proper development environment on
your computer.

IDEs are a reliable way to set up a dev env. Here are a few choices. While
you may want to set up more than one, I’d recommend starting with one and
getting familiar with it before you try another one. Being adept at using one
IDE — including its keyboard shortcuts so you can minimize the use of a
mouse or pointing device — is better than superficially knowing several
IDEs.

Note that even if you use an IDE, you’ll still have to install the runtime
environment (RTE) for each language you use. You can then configure your
IDE so that you can easily use each of these languages.

Visual Studio Code
Visual Studio Code is the IDE I used to develop the examples in this book. It
has plugins that allow you to configure multiple languages simultaneously
(including all three used in this book). It is available on Windows, MacOS,
and Unix operating systems. Microsoft has released Visual Studio Code as an
open source product under the MIT License. This has proliferated the number
of extensions that developers like you have written and shared publicly.
These reasons make a compelling case to choose Visual Studio Code as your
“go to” IDE.

https://joel.franusic.com/online-reps-and-repls
https://code.visualstudio.com
https://marketplace.visualstudio.com/VSCode

According to some surveys, Visual Studio Code is the most popular IDEs
amongst developers. As they say: there’s wisdom in crowds!

IntelliJ IDEA
IntelliJ IDEA is one amongst a family of IDEs developed by the Czech
software company JetBrains. The Ultimate Edition — for which you must
purchase a license — supports Go, JavaScript, and Python (either natively or
through plugins that you can install). The free Community Edition supports
several languages, too. However, it does not support Go or JavaScript out of
the box.

JetBrains offer a Community Editions of another product that support
Python: PyCharm for Python. However, for Go development, there is only a
commercial edition of their IDE at the time this writing (mid 2021): GoLand.

Eclipse
Eclipse is a free and open source IDE from the Eclipse Foundation, Eclipse
runs on a JDK (Java Development Kit) and supports many languages. There
are plugins for the languages used in this book: GoClipse for Go, Enide for
JavaScript and PyDev for Python.

Installing Language Tools
If you’re using one of the IDEs described earlier in this chapter, you will
need to install the language compile and runtime tools. The IDEs cannot
function without these tools. After you install the language tools, you can
configure the IDE to use these tools (to compile, run, test, and debug your
code, for example).

Go
Go is an open source programming language from Google. Binary
distributions for it are available for Windows, MacOS, and Unix

https://insights.stackoverflow.com/survey/2019#development-environments-and-tools
https://www.jetbrains.com/idea
https://www.jetbrains.com/idea/features/editions_comparison_matrix.html
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/go/
https://www.eclipse.org/eclipseide
https://marketplace.eclipse.org/category/free-tagging/golang
https://marketplace.eclipse.org/content/enide-studio-2015-nodejs-javascript-java-and-web-tools
https://marketplace.eclipse.org/content/pydev-python-ide-eclipse
https://golang.org

operating systems. This book uses version 1.16 of Go.

You’ll need to install Go if you want to use an IDE like Visual Studio Code
or GoLand.

JavaScript / ES6
Of the three languages used in this book, JavaScript is unique in that you
don’t need to install a specific compiler, interpreter, or runtime
environment for it. If you’re interested in the minutiae of why this is the
case, see the sidebar.

Example A-1.

The reason you don’t have to install JavaScript tools to write simple
JavaScript programs is that JavaScript is supported by all modern web
browsers. So a browser is, in effect, a runtime environment for JavaScript.
That is: you can write JavaScript code directly in a web browser and run it
locally. This is different from running it using an online REPL, as described
earlier, because the “JavaScript engine” runs within your browser.

However, you do need a runtime “JavaScript engine” for this to work.
Popular JS engines include “V8” (used by Chrome browser and Node.js),
WebKit (used by Safari browser) and Gecko (used by Firefox browser). Early
on in its history, different JS engines had significant variations in their
support for JavaScript. If you had the good fortune of building JavaScript-
enhanced web applications in the early part of this millennium, you probably
remember how you had to write browser-specific code. (Or perhaps you’ve
chosen to forget that stage of your career — I do not blame you at all!)
Fortunately, with the standardization of JavaScript as ECMAScript, the
different JS engines are much more aligned (and demonstrably so) in their
support of named EcmaScript versions. The most recent version of
ECMAScript is ES 2020. The V8 JS engine, included in Node.js, has an
excellent track record of supporting the latest ECMAScript specification by
issuing an almost constant stream of updates. Any information I provide in
print here is guaranteed to become obsolete before the book reaches your
hands! I recommend you check the online documentation for an up-to-date

https://nodejs.org
https://kangax.github.io/compat-table/es2016plus/

reference.

The simplest way to install a JavaScript engine — the thing that compiles and
runs JS code — is to install Node.js. When you install Node (including Node
Package Manager, or NPM) and add its location to the PATH variable, your
IDE (such as VS Code or IntelliJ IDEA) should be able to find and use it.

For more advanced configuration options for JavaScript, consult your IDE’s
documentation (e.g. for VS Code and IntelliJ IDEA).

Python
Python is an interpreted programming language created by Guido von
Rossum. It is distributed under its own (i.e. Python Software
Foundation’s) open source license. It is available for Windows, MacOS,
Unix and other operating systems. Look at the Python website for
instructions on how to install the language and its tools for your particular
OS.

The code in this book requires Python 3. The older version, Python 2, was
sunsetted on New Year’s day, 2020. You can probably still find software the
uses Python 2. The differences between Python 2 and Python 3 are several
and significant.

1 On several versions of macOS, including BigSur, the python command is aliased to a Python
2 installation. You must explicitly type python3 on the shell if you want to use Python 3.

2 This article by Sebastian Raschka enumerates several differences between Python 2 and 3, with
examples. https://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

1

2

https://code.visualstudio.com/Docs/languages/javascript
https://www.jetbrains.com/help/idea/javascript-specific-guidelines.html
https://www.python.org
https://www.python.org/doc/sunset-python-2/
https://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

Appendix B. A brief history of
the 3 languages

Go
The Go language was designed at Google and officially released in 2009. It
was created to improve upon the shortcomings of C/C++. Its guiding
principles include simplicity, safety, readability, and minimalism. Of the
three languages in this book, it’s the youngest.

Go’s design principle of simplicity means that many features present in other
languages (including languages which inspired it) are absent in it, viz:

1. Generics

2. Different ways to write a loop

3. Classes (in the C++/Java sense)

4. Inheritance

5. Implicit conversion between types

6. Pointer arithmetic

However, many useful features are part of the core language that aren’t in
other languages, such as:

1. Concurrency

2. Package management

3. Formatting (go fmt)

4. Static code analysis (go vet)

5. Most significantly for this book: unit testing!

1

https://blog.golang.org/11years
https://talks.golang.org/2015/gophercon-goevolution.slide#6
https://golang.org/doc/faq

A major source of confusion (and some rancor) is what is the proper name
of the language? The official name of the language is simply “Go”,
although — probably because this is ironically a difficult thing to Google and
because the official website of the language is https://golang.org  — it’s also
referred to as “Golang”. I have gone with the official name and called this
language Go in this book, with the “G” always capitalized. I hope this
doesn’t irk you too much. Look at it this way: if this is the biggest source of
our disagreement, we’ve much to be grateful for!

This book uses version 1.16 of Go.

JavaScript
This book uses the flavor of JavaScript that’s provided by Node.js,
specifically version 14 or 16 of Node.js. This flavor of JavaScript is mostly
compliant with ECMAScript. ECMAScript is a language standard published
by Ecma International (formerly ECMA - European Computer Manufacturers
Association). The ECMAScript standard evolves relatively fast (compared to
say, Java). In fact, the latest version of the standard is officially referred to as
“ES.Next”. You have to applaud the energy, enthusiasm, commitment, and
focus of a technical committee that incorporates a variable in its standard’s
name!

NODE.JS VERSIONS
Node.js version numbering follows a particular convention. Even-
numbered releases like 14 and 16 are targeted for long-term support,
typically 30 months. Odd-numbered releases like 15 and 17 are supported
for only six months. This gives rise to interesting scenarios. Node.js
version 12 will be supported for almost as long as version 17. And
version 14 will outlast both versions 15 and 17!

It’s important to note that ECMAScript is a standard as well as a language.
This is no different from many other languages, such as C++, Java, or
Fortran. As of this writing, the most recent updates to the ECMAScript

2

3

https://golang.org
https://golang.org/dl/
https://nodejs.org/en/
https://nodejs.org/en/download/current/
https://isocpp.org/
https://docs.oracle.com/javase/specs/
https://wg5-fortran.org/f2018.html

standard are part of what’s called ECMA-262 — “the twelfth edition of the
ECMAScript Language Specification”.

JavaScript can be thought of as a dialect of the ECMAScript standard. There
are other dialects, too; such as Adobe’s ActionScript and Microsoft’s JScript.
However, it’s no exaggeration to say that JavaScript is the most popular and
oft-used implementation of ECMAScript, perhaps bordering on a monopoly.
Part of this popularity is historical: JavaScript was created in the mid 1990’s
by Netscape to provide a way to create dynamic web content by allowing
code to run right inside Netscape’s Communicator web browser. JavaScript
was the first scripting language to make it to user’s desktop browsers — the
first one to go live. (Its original name — LiveScript — pays homage to that
bit of history.) In a sense, JavaScript jostled onto the field and got adopted
before there was any standard for a web-scripting language. If you excuse a
labored sports analogy: JavaScript scored the first goal and got the first
applause from spectators before the referee blew the whistle to officially start
the game!

By late 1996, when Ecma got to standardizing “a cross-platform scripting
technology for creating applications on the Internet and Intranets”, JavaScript
was already running inside hundreds of thousands of users’ browsers. In fact,
the meeting happened in part because Netscape submitted JavaScript to Ecma
for consideration as an industry standard.

In other words: ECMAScript evolved as a standard out of the reality of
JavaScript. There is no chicken-and-egg conundrum here: the history is clear
on which came first.

History may be boring, but naming things conveniently so we can talk about
them is important. Strictly speaking, I should have used “Node.js
implementation of ECMAScript” in this book instead of “JavaScript”.
However, that would be confusing and way too pedantic. The facts are that:

Modern JavaScript supports the ECMAScript standard

The name “JavaScript” retains a clear meaning in the minds of many
(perhaps most) developers — they know what language is being

https://tc39.es/ecma262/
https://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
https://docs.microsoft.com/en-us/previous-versions/hbxc2t98(v=vs.85)
https://web.archive.org/web/19981203070212/http://cgi.netscape.com/newsref/pr/newsrelease289.html

spoken of when they hear it

The Node.js implementation has a very high degree of compliance to
the ECMAScript standard

For these reasons, I’ve chosen to use “JavaScript” to refer to the thing which
in reality is “the Node.js implementation of the ECMAScript 262 standard”. I
hope you appreciate and approve of the brevity!

A few features used in this book are particular to Node.js.

The assert module
There are many good testing libraries and frameworks for JavaScript. In
alphabetic order: AVA, Jasmine, Jest, Mocha, tape, teenytest, and Unit.js are
a few testing frameworks that could have been used to demonstrate TDD in
this book. Many of them are very popular — indeed, it may be asked why one
or the other of them wasn’t chosen?

Here are my reasons for not choosing any of them.

Syntactical differences
The frameworks, while all capable of providing the support, have quite
different syntaxes (stemming from varying design philosophies). Compare
the following two tests, for example, each of which compares two strings.
Notice the different flavors of the syntactical sugar.

// filename: tape_test.js

// to run test: node tape tape_test.js

let test = require('tape');

test('hello world', function (t) {

 t.plan(1);

 t.equal('hello', 'world');

});

The tape library exports a function named Test, which is assigned to a
variable named test here

4

https://github.com/avajs/ava
https://jasmine.github.io/
https://jestjs.io
https://mochajs.org
https://github.com/substack/tape
https://github.com/testdouble/teenytest
https://unitjs.com

Each test is implemented as a call to test with two parameters, a
human-readable name and an anonymous function with one parameter
Number of assertions to run, in this case 1
The thing to assert, a failing comparison in this case

// filename: __test__/jest_test.js

// to run test: jest

test('hello world', () => {

 expect('hello').toBe('world');

});

Default location where Jest looks for test files
Each test is implemented as a call to test with two parameters, a
human-readable name and an anonymous function with no parameters
The thing to assert, a failing expectation in this case

Simplicity
The Node.js system already includes an assert module which, even though
it’s not a full-fledged testing framework, is sufficient to demonstrate the
principle of unit testing.

As we saw in several chapters, particularly Chapter 6, using our own test
harness kept us close to the code and allowed us to build parts of the test
harness using test-driven development.

Openness
By adopting none of the testing frameworks, the JavaScript code in this book
leaves the option open to you: you are free to refactor to any of the
frameworks, now that you know the tests inside out.

By keeping the syntax of the tests simple, by staying away from the
intricacies of individual frameworks, and by building the (small) test harness
ourselves, we know exactly what we need from any testing framework.
Therefore, the adoption of any of the aforementioned frameworks (or even
other others not mentioned here) becomes conceptually easier.

5

https://nodejs.org/dist/latest-v14.x/docs/api/assert.html

The module mechanism
The JavaScript module mechanism is discussed in detail in Chapter 6. For
historical reasons, support for modules came late to the ECMAScript
standard. By the time the ESModules feature was standardized in ES5, there
were already many competing standards in existence that defined modules.
As is the case for using the assert that’s part of Node.js, this books uses
the CommonJS module standard that is also a the default in Node.js.

Chapter 6 describes the other module mechanisms in some detail, including
source code for UMD and ESModules.

Python
Python was created by Guido van Rossum at the research institute he was
working at, Centrum voor Wiskunde en Informatica (CWI) in Amsterdam. It
evolved from an earlier language named ABC. Like many other languages,
simplicity was the fulcrum around which the language’s design evolved. In
the case of Python, simplicity meant incorporating these features:

1. Scripting language. The need for automating tasks necessitated a
language geared towards writing scripts.

2. Indentation. In marked contrasts with many other languages, Python
uses whitespace instead of visible symbols (such as braces {}) to
group blocks of code.

3. “Duck” typing. Variable types aren’t explicitly declared; they’re
inferred from the values the variables hold.

4. Obvious operators. Operators like *, +, -, / work naturally across
data types. Some data types don’t support some operators, e.g.
strings do not support -.

5. Extensibility. Programmers can write their own modules and extend
the behavior of the language.

6

6. Interoperability. Python can import and use modules written in
other languages like C.

The “duck” typing and obvious operators allow us to do nifty tricks in
Python, as shown in the following code snippet. You may run this using the
python REPL directly in your shell: type python3 and hit enter to get the
interactive REPL.

>>> arr = ["hello", True, 2.56, 100, 2.5+3.6j, ('Tuple', True)]

>>> for v in arr:

... print(v * 2)

...

hellohello

2

5.12

200

(5+7.2j)

('Tuple', True, 'Tuple', True)

. An array of elements with different types: string, boolean, floating-point
number, integer, complex number, and tuple
. Iterating over each element of the array and multiplying it by 2
. String multiplication yields a repeated string
. Boolean True is treated like the number 1 when being multiplied

. Numeric types, including complex numbers, are multiplied according to
rules of arithmetic
. A tuple is also multiplied according to arithmetic rules: repeating its
elements in order

The traditional implementation of Python, available at its website, is called
“CPython”. There are other active implementations as well, viz: . Jython - a
Java implementation of Python, intended to run on a JVM. . IronPython - an
implementation that runs on the .NET platform. . PyPy - a fast compliant
implementation of Python using a Just-in-time (JIT) compiler.

These implementations build on the interoperability feature of Python,

https://www.jython.org/
https://ironpython.net/
https://www.pypy.org/

allowing Python code to be used alongside code in another language.

One of the biggest change in Python’s history came about in 2008 with the
release of Python 3, which is incompatible in significant ways with the
preceding Python 2. Python 2 was sunsetted on January 1, 2020: no more
updates or patches are planned for Python 2.

This book uses the most recent stable version of Python, 3.9.

1 Support for Generics in Go is a fast evolving feature: https://blog.golang.org/generics-next-step

2 “@secretgeek” tweeted this updated version of the late Phil Karlton quote, which does double
duty as dev humor: “there are two hard problems in computer science: cache invalidation,
naming things, and off-by-one errors!” https://twitter.com/secretGeek/status/7269997868

3 You could say C++ has a variable in its name too; and one whose value is literally being
modified as you read it!

4 Node’s latest versions have a 98% support score for the ECMAScript standard:
https://kangax.github.io/compat-table/es6/

5 This practice — of using the very thing you’re making — is often called “eating your own dog
food”. It’s a healthy habit, even though it may not sound palatable!
https://www.computer.org/csdl/magazine/so/2006/03/s3005/13rRUygBwg0

6 This 2003 interview of Guido von Rossum mentions his motivation to seek simplicity in
Python’s design. https://www.artima.com/articles/the-making-of-python

https://www.python.org/downloads/
https://blog.golang.org/generics-next-step
https://twitter.com/secretGeek/status/7269997868
https://kangax.github.io/compat-table/es6/
https://www.computer.org/csdl/magazine/so/2006/03/s3005/13rRUygBwg0
https://www.artima.com/articles/the-making-of-python

Appendix C. Acknowledgments

Writing a book is a strange endeavor. The wordsmith, ancient or modern,
toils alone — whether quill in hand or keyboard at hand. The gossamer-like
ideas often resist being ensnared in coherent sentences and the turns of phrase
seldom come perfectly formed. When the prose works, the code doesn’t; and
when the prose doesn’t yield … well, the code still doesn’t!

However, the strangest aspect of the endeavor is not this lonesome toil. It’s
because behind every hermitic author is a veritable legion of supporters
without whose tireless efforts, the ideas would never find a reified life in a
published book.

Firstly: my fervor for writing software and for driving it from tests could not
have been kindled without the impassioned and dedicated people who
pioneered programming. Foremost amongst them are the “ENIAC Women”
who invented programming — Kathleen Antonelli, Jean Bartik, Betty
Holberton, Marlyn Meltzer, Frances Spence, and Ruth Teitelbaum. Kent
Beck rediscovered Test-Driven Development and wrote the endearing and
lasting book on the subject. I am indebted to all of them for paving the way.

I’m grateful to the people at O’Reilly for making me a better author. The
world of publishing has changed drastically since my first book almost two
decades ago. Kristen Brown, Michele Cronin, Melissa Duffield, Suzanne
Huston and others ensured that my second foray into publishing was
seamless despite the long hiatus.

Dr. Konstantin Läufer, my comp-sci teacher at Loyola University Chicago,
instilled in me both curiosity and wonderment — traits that have had a lasting
influence on me.

Neal Ford has been a friend and a mentor to me throughout my career.
Without his encouragement and feedback, I would not have finished this
book.

https://ieeexplore.ieee.org/document/511940

Hermann Vocke and Edward Wong reviewed this book and provided
suggestions which made it better. Any remaining flaws are entirely my own.

I have benefitted from the wise counsel and support of many people in my
professional life. Karen Davis, Hany Elemary, Marilyn Lloyd, Jennifer
Mounce, Paula Paul, Justin Rodenbostel, Bill Schofield, and Jen Stille
have spurred me on with their words and actions — often in ways that I
suspect they undervalued yet I could not have done without.

And lastly, to my dear family: my gratitude to you is inexpressible only
because of my poverty as a writer, not because of any lack of sincerity nor
emotion. Dr. Janelle Scharon is a thought-partner par excellence. Dr.
Salma Siddiqui, Dr. Shakeel Siddiqui, Dr. Nadeem Siddiqui, and Dr.
Rashid Qayyum — my familial panel of doctoral wisdom — enrich and
refine my thoughts. Safa Siddiqui and Sumbul Siddiqui are my pillars of
strength. They have paid for this book by excusing my absences. The
evenings and weekends where they did without my company (such as it is!)
were far too frequent. Thank you for all you have given me.

About the Author
Saleem Siddiqui is a software developer, trainer, speaker, and author.
Through a career spanning a few tech boom and bust cycles, he’s delivered
software for healthcare, retail, government, finance, and pharmaceutical
sectors as parts of teams large and small. He has made enough unorthodox,
unrepeated, and mostly unrepentant mistakes in software that he is eager to
share the lessons thus learned with others.

Saleem enjoys that his work takes him the world over. He often writes about
his experiences (occasionally in third person).

Colophon
The animal on the cover of Learning Test-Driven Development is the desert
finch (Rhodopechys obsoleta).

The desert finch was thought to be an evolutionary modern species. However,
in the early part of this century, studies of its mitochondrial DNA revealed
that the desert finch is a relatively ancient species: about 6 million years old.
It’s the ancestor of other finch species. This fact makes the desert finch a
particularly suitable animal to feature on the cover of this book. Test-Driven
Development is also an historically old practice, even though it is often
thought of as something newfangled and kitschy!

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on a black and white
engraving from FILL IN CREDITS. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

1. Preface

a. What is Test-Driven Development

i. A technique

ii. Designing and structuring code

iii. Enhanced simplicity

iv. Increased confidence

b. Who is this book for

c. What are the prerequisites for reading this book

d. How to read this book

i. Follow the book one language at a time

ii. Follow the book in two languages first and then in
the third language

e. Follow the book in all three languages simultaneously

f. Conventions used in this book

i. Typographical conventions

ii. Lexical conventions

g. Using Code Examples

h. The Apologies

i. Why does this book use Go, JavaScript, and
Python?

ii. Why not this other language?

iii. Why does this book have a “Chapter 0”?

2. Chapter 0 - Introduction & Setup

a. Setting up your development environment

i. Common Setup

ii. Go

iii. JavaScript

iv. Python

b. Where We Are

3. I. Getting Started

4. 1. The Money Problem

a. Red-Green-Refactor — The Building Blocks of TDD

b. What’s the problem?

c. Our first failing test

i. Go

ii. JavaScript

iii. Python

d. Going for green

i. Go

ii. JavaScript

iii. Python

e. Cleaning up

i. Go

ii. JavaScript

iii. Python

f. Committing our changes

g. Where We Are

i. Go

ii. JavaScript

iii. Python

5. 2. Multi-currency Money

a. Enter the Euro

i. Go

ii. JavaScript

iii. Python

b. Keeping code DRY

i. Go

ii. JavaScript

iii. Python

c. Didn’t we just say “Don’t Repeat Yourself”?!

d. Divide and Conquer

i. Go

ii. JavaScript

iii. Python

e. Cleaning Up

i. Go

ii. JavaScript

iii. Python

f. Committing Our Changes

g. Where We Are

i. Go

ii. JavaScript

iii. Python

6. 3. Portfolio

a. Designing our next test

i. Go

ii. JavaScript

iii. Python

b. Committing our changes

c. Where We Are

7. II. Modularization

8. 4. Separation of Concerns

a. Test and Production Code

i. Unidirectional Dependency

ii. Dependency Injection

iii. Packaging and Deployment

b. Modularization

c. Removing Redundancy

d. Where We Are

9. 5. Packages and Modules in Go

a. Separating our code into Packages

b. Go Modules

c. Creating a package

d. Encapsulation

e. Removing Redundancy in Tests

f. Committing Our Changes

g. Where We Are

10. 6. Modules in JavaScript

a. Separating our code into Modules

b. A segue into JavaScript Modules

i. CommonJS

ii. Asynchronous Module Definition (AMD)

iii. Universal Module Definition (UMD)

iv. ESModules

c. Improving Our Tests

i. Removing redundancy in tests

ii. Adding a test class and test methods

iii. Discovering and running tests automatically

iv. Produce output when tests run successfully

v. Run all tests even when an earlier test assertion
fails

d. Committing Our Changes

e. Where We Are

11. 7. Modules in Python

a. Separating Our Code into Modules

b. Removing redundancy in tests

c. Committing Our Changes

d. Where We Are

12. III. Features and Redesign

13. 8. Evaluating a Portfolio

a. Mixing money

i. Go

ii. JavaScript

iii. Python

b. Committing our changes

c. Where We Are

14. 9. Currencies, Currencies, Everywhere

a. Making a Hash(map) of Things

i. Go

ii. JavaScript

iii. Python

b. Committing our changes

c. Where We Are

15. 10. Error Handling

a. Error wish list

i. Go

ii. JavaScript

iii. Python

b. Committing our changes

c. Where We Are

16. 11. Banking on Redesign

a. Dependency Injection

b. Putting it all together

i. Go

ii. JavaScript

iii. Python

c. Committing our changes

d. Where We Are

17. IV. Finishing Up

18. 12. A Living Document

a. Changing exchange rates

i. Go

ii. JavaScript

iii. Python

b. Committing our changes

c. Where We Are

19. 13. Continuous Integration

a. Core Concepts

i. Version Control

ii. Build Server and Agent

iii. Artifact Repository

iv. Deployment Environment

b. Putting it all together

i. Create Github account

ii. Verify Github account

iii. Push code repository to Github

iv. Prepare for CI build scripts

v. Go

vi. JavaScript

vii. Python

c. Committing our changes

d. Where We Are

20. 14. Retrospective

a. Profile

i. Cyclomatic complexity

ii. Coupling

iii. Succinctness

b. Purpose

i. Cohesion

ii. Completeness

c. Process

d. Putting it all together

i. Go

ii. JavaScript

iii. Python

e. Where We Are

21. A. Development Environment Setup

a. Online REPLs

i. Repl.it

ii. LeetCode

iii. CoderPad

iv. The Go Playground

v. The comprehensive list of online REPLs

b. Integrated Development Environments (IDEs)

i. Visual Studio Code

ii. IntelliJ IDEA

iii. Eclipse

c. Installing Language Tools

i. Go

ii. JavaScript / ES6

iii. Python

22. B. A brief history of the 3 languages

a. Go

b. JavaScript

i. The assert module

ii. The module mechanism

c. Python

23. C. Acknowledgments

	Preface
	What is Test-Driven Development
	A technique
	Designing and structuring code
	Enhanced simplicity
	Increased confidence

	Who is this book for
	What are the prerequisites for reading this book
	How to read this book
	Follow the book one language at a time
	Follow the book in two languages first and then in the third language

	Follow the book in all three languages simultaneously
	Conventions used in this book
	Typographical conventions
	Lexical conventions

	Using Code Examples
	The Apologies
	Why does this book use Go, JavaScript, and Python?
	Why not this other language?
	Why does this book have a “Chapter 0”?

	Chapter 0 - Introduction & Setup
	Setting up your development environment
	Common Setup
	Go
	JavaScript
	Python

	Where We Are

	I. Getting Started
	1. The Money Problem
	Red-Green-Refactor — The Building Blocks of TDD
	What’s the problem?
	Our first failing test
	Go
	JavaScript
	Python

	Going for green
	Go
	JavaScript
	Python

	Cleaning up
	Go
	JavaScript
	Python

	Committing our changes
	Where We Are
	Go
	JavaScript
	Python

	2. Multi-currency Money
	Enter the Euro
	Go
	JavaScript
	Python

	Keeping code DRY
	Go
	JavaScript
	Python

	Didn’t we just say “Don’t Repeat Yourself”?!
	Divide and Conquer
	Go
	JavaScript
	Python

	Cleaning Up
	Go
	JavaScript
	Python

	Committing Our Changes
	Where We Are
	Go
	JavaScript
	Python

	3. Portfolio
	Designing our next test
	Go
	JavaScript
	Python

	Committing our changes
	Where We Are

	II. Modularization
	4. Separation of Concerns
	Test and Production Code
	Unidirectional Dependency
	Dependency Injection
	Packaging and Deployment

	Modularization
	Removing Redundancy
	Where We Are

	5. Packages and Modules in Go
	Separating our code into Packages
	Go Modules
	Creating a package
	Encapsulation
	Removing Redundancy in Tests
	Committing Our Changes
	Where We Are

	6. Modules in JavaScript
	Separating our code into Modules
	A segue into JavaScript Modules
	CommonJS
	Asynchronous Module Definition (AMD)
	Universal Module Definition (UMD)
	ESModules

	Improving Our Tests
	Removing redundancy in tests
	Adding a test class and test methods
	Discovering and running tests automatically
	Produce output when tests run successfully
	Run all tests even when an earlier test assertion fails

	Committing Our Changes
	Where We Are

	7. Modules in Python
	Separating Our Code into Modules
	Removing redundancy in tests
	Committing Our Changes
	Where We Are

	III. Features and Redesign
	8. Evaluating a Portfolio
	Mixing money
	Go
	JavaScript
	Python

	Committing our changes
	Where We Are

	9. Currencies, Currencies, Everywhere
	Making a Hash(map) of Things
	Go
	JavaScript
	Python

	Committing our changes
	Where We Are

	10. Error Handling
	Error wish list
	Go
	JavaScript
	Python

	Committing our changes
	Where We Are

	11. Banking on Redesign
	Dependency Injection
	Putting it all together
	Go
	JavaScript
	Python

	Committing our changes
	Where We Are

	IV. Finishing Up
	12. A Living Document
	Changing exchange rates
	Go
	JavaScript
	Python

	Committing our changes
	Where We Are

	13. Continuous Integration
	Core Concepts
	Version Control
	Build Server and Agent
	Artifact Repository
	Deployment Environment

	Putting it all together
	Create Github account
	Verify Github account
	Push code repository to Github
	Prepare for CI build scripts
	Go
	JavaScript
	Python

	Committing our changes
	Where We Are

	14. Retrospective
	Profile
	Cyclomatic complexity
	Coupling
	Succinctness

	Purpose
	Cohesion
	Completeness

	Process
	Putting it all together
	Go
	JavaScript
	Python

	Where We Are

	A. Development Environment Setup
	Online REPLs
	Repl.it
	LeetCode
	CoderPad
	The Go Playground
	The comprehensive list of online REPLs

	Integrated Development Environments (IDEs)
	Visual Studio Code
	IntelliJ IDEA
	Eclipse

	Installing Language Tools
	Go
	JavaScript / ES6
	Python

	B. A brief history of the 3 languages
	Go
	JavaScript
	The assert module
	The module mechanism

	Python

	C. Acknowledgments

