

Working Effectively with
Unit Tests

Jay Fields

This book is for sale at http://leanpub.com/wewut

This version was published on 2015-01-26

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader
feedback, pivot until you have the right book and build
traction once you do.

©2014 - 2015 Jay Fields

Tweet This Book!
Please help Jay Fields by spreading the word about this book
on Twitter!

The suggested hashtag for this book is #wewut.

Find out what other people are saying about the book by
clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#wewut

For Dana, the love of my life.

Contents

Foreword . i

Preface . iii

Acknowledgments . vii

Unit Testing, a First Example 1
Thoughts on our Tests 9
The Domain Code 12
Moving Towards Readability 21
Replace Loop with Individual Tests 24
Expect Literals . 31
Inline Setup . 36
Replace ObjectMother with DataBuilder 40
Comparing the Results 49
Final Thoughts on our Tests 60

Motivators . 62

Types of Tests . 75
State Verification 76
Behavior Verification 79
Unit Test . 82
Solitary Unit Test 83
Sociable Unit Test 85

CONTENTS

Continuing with Examples From Chapter 1 86
Final Thoughts, Again 106

Improving Assertions 128
One Assertion Per Test 129
Implementation Overspecification 144
Assert Last . 167
Expect Literals . 178
Negative Testing . 188
Hamcrest . 195

Improving Test Cases 196
Too Much Magic 198
Inline Setup . 203
Test Names . 224

Improving Test Suites 228
Separating The Solitary From The Sociable 229
Questionable Tests 276
Custom Assertions 280
Global Definition 306

Closing Thoughts . 326
Broad Stack Tests 327
Test Pyramid . 330
Final Thoughts On ROI 331
More… . 333

Foreword
It’s taken quite a while but we finally have consensus around
the idea that unit testing is a necessity for most of today’s
projects. Occasionally, I see a voice in the wilderness chal-
lenge the idea - but just as quickly people who’ve been doing
unit testing reflect back on their experience and notice the
benefits that they’ve received. The idea of going without unit
tests on a large project is just unthinkable for many people.

To me, this is success of the best kind - people are able to get
more work done with less stress and fewer headaches. But
that doesn’t mean that it’s all easy. Even though unit testing
has been a strongly recommended practice since at least the
early 2000s, people still struggle. They struggle because it is
easy to get lost in the design decisions that you have to make
when you are writing tests.

Tests are just as important as production code, but they
are different. Through trial and error we are learning better
practices but much of that knowledge is not yet widespread.

Foreword ii

This is why I am very excited by Jay Fields’ book. I’ve known
Jay for close to a decade and over that time I’ve seen him
approach problems in software with conscientiousness and
deep curiosity - trying things out, discussing them and not
being satisfied with answers that don’t quite ring true. The
book you’re about to read is a culmination of that inquiry.
Reading it, you’ll learn a lot about unit testing. But, more than
that, if you read between the lines you’ll learn a lot about how
to see and think about software.

– Michael Feathers, Director, R7K Research & Conveyance

Preface
Over a dozen years ago I read Refactoring¹ for the first time; it
immediately became my bible. While Refactoring isn’t about
testing, it explicitly states: if youwant to refactor, the essential
precondition is having solid tests. At that time, if Refactoring
deemed it necessary, I unquestionably complied. That was the
beginning of my quest to create productive unit tests.

Throughout the 12+ years that followed my first reading of
Refactoring I made many mistakes, learned countless lessons,
and developed a set of guidelines that I believe make unit
testing a productive use of programmer time. This book
provides a single place to examine those mistakes, share the
lessons learned, and provide direction in a way that I’ve found
to be the most effective.

Why Test?

The answer was easy for me: Refactoring told me to. Un-
fortunately, doing something strictly because someone or
something told you to is possibly the worst approach you
could take. The more time I’ve invested in testing, the more
I’ve foundmyself returning to the question:Why am I writing
this test?

¹http://martinfowler.com/books/refactoring.html

Preface iv

There are many motivators for creating a test or several tests:

• validate the system
– immediate feedback that things work as expected
– prevent future regressions

• increase code-coverage
• enable refactoring
• document the behavior of the system
• your manager told you to
• Test Driven Development

– improved design
– breaking a problem up into smaller pieces
– defining the “simplest thing that could possibly
work”

• customer acceptance
• ping pong pair-programming

Some of the above motivators are healthy in the right context,
others are indicators of larger problems. Before writing any
test, I would recommend deciding which of the above are
motivating your testing. If you first understand why you’re
writing a test, you’ll have a much better chance of writing a
test that is maintainable and will make you more productive
in the long run.

Once you start looking at tests while considering the motiva-
tor, you may find you have tests that aren’t actually making
you more productive. For example, you may have a test that
increases code-coverage, but satisfies no other motivator. If
your team requires 100% code-coverage, then the test provides
value. However, if your team has abandoned the (in my
opinion harmful) goal of 100% code-coverage, then you’re in
a position to perform my favorite refactoring: delete.

Preface v

Who Should Read This Book

This book is aimed at a professional programmer, someone
whowrites software for a living. The examples and discussion
include a lot of code to read and to understand.

Although this book is focused on testing, testable code can
have a large impact on the design of a system. It is vital for
senior designers and architects to understand the principles
recommended and to use them in their projects. The prin-
ciples within this book are best introduced to a team by a
respected and experienced developer. Such a developer can
best understand the principles and adapt them to their specific
context. In addition, familiarity with this book’s content will
allow experienced developers to provide it as a reference for
the less experienced members of their team.

Despite my opinion on who should introduce these concepts,
I’ve attempted to write this book for both people experienced
with and those brand-new to unit testing. Ideally, a respected
programmer will look to implement the ideas within this
book, and begin by passing this book on to those on the team
that would likely share interest in this approach. If you’re
already writing tests I believe this book will provide concepts
and suggestions that will prove useful for years to come. If
you aren’t already writing tests you’ll likely want to pick up
an intro to unit testing book as well. The concepts in this book
should be understandable to developers of all levels; however,
we will not cover concepts such as framework selection,
framework configuration, or writing your first test.

Preface vi

Building on the Foundations Laid by
Others

While this book does contain an Acknowledgments section, it
wouldn’t be practical to thank everyone that has contributed
to creating the practices that this book details. I can say with
full confidence that I wouldn’t be in the position to write this
book without at least the following groups:

• creators and maintainers of both NUnit and JUnit
• creators and maintainers of NMock, (James Mead’s)
Mocha, Mockito, JMock, and RSpec

• each teammember from each ofmy projects at Thought-
Works & DRW Trading

• every conference speaker or attendee who’s provided
feedback on my (sometimes radical) ideas

• every personwho left a comment on blog.jayfields.com²

Thank you all, I deeply appreciate the feedback you’ve given
throughout the years.

²http://blog.jayfields.com

Acknowledgments
After writing Refactoring: Ruby Edition, I swore I’d never
write another book. Book writing is unquestionably a labor
of love, and I wouldn’t be able to do it without the support of
my many friends in the industry.

• Martin Fowler: Thank you for allowing me to reference
and reuse content from Refactoring. It’s still my favorite
technical book of all time.

• Obie Fernandez: Thank you for the nudge to use lean-
pub; it was crucial for making this project happen.

• Michael Feathers: Honestly, I just liked the way Work-
ing Effectively with Unit Tests sounded. I never consid-
ered that anyone would associate this book with a book
as universally loved asWorking Effectively with Legacy
Code. Nonetheless, I’ll do my best to deliver a book
that is worthy of being on the same shelf as Working
Effectively with Legacy Code. Thank you very much for
your blessing.

• Original Reviewers: There’s no question this book is
significantly better due to the feedback I got from those
who originally volunteered to provide feedback. Thank
you Graham Nash, John Hume, Pat Farley, & Steve
McLarnon.

Acknowledgments viii

Additionally, I’ve been happily surprised by the support I’ve
gotten from people who purchased the early edition on lean-
pub and promptly provided feedback. Many thanks - Allan
Clarke, Corey Haines, Derek Reeve, J. B. Rainsberger, Jake
McCrary, Josh Graham, Kent Spillner, Pablo Guardiola &
Steve Vinoski.

I’m sure there are others who I’ve forgotten; I apologize and
offer my thanks.

Unit Testing, a First
Example
I’d like to begin this book with an example, and I believe
Martin’s description of why is as clear as it can be written:

Traditionally technical books start with a gen-
eral introduction that outlines things like history
and broad principles. When someone does that
at a conference, I get slightly sleepy. My mind
starts wandering with a low-priority background
process that polls the speaker until he or she
gives an example. The examples wake me up
because it is with examples that I can see what
is going on. With principles it is too easy to
make generalizations, too hard to figure out how
to apply things. An example helps make things
clear. –Martin Fowler, Refactoring: Ruby Edition

Note: If the following domain looks familiar to you, that’s
because I’ve borrowed it from Refactoring.

Without further ado, I present a test failure.

Unit Testing, a First Example 2

JUnit version 4.11

.E.E..

There were 2 failures:

1) statement(CustomerTest)

org.junit.ComparisonFailure: expected:<...or John

Godfather 4[]9.0

Amount owed is 9...> but was:<...or John

Godfather 4[]9.0

Amount owed is 9...>

2) htmlStatement(CustomerTest)

org.junit.ComparisonFailure: expected:<...</h1>

<p>Godfather 4[]9.0</p>

<p>Amount ow...> but was:<...</h1>

<p>Godfather 4[]9.0</p>

<p>Amount ow...>

FAILURES!!!

Tests run: 4, Failures: 2

The above output is what JUnit will report (sans stacktrace
noise) for the (soon to follow) CustomerTest class.

Unless you work alone and on greenfield projects exclusively,
you’ll often find your first introduction to a test will be when
it fails. If that’s a common case you’ll encounter at work then
it feels like a great way to start the book as well.

Below you’ll find the cause of the failure, the CustomerTest

class.

Unit Testing, a First Example 3

public class CustomerTest {

Customer john, steve, pat, david;

String johnName = "John",

steveName = "Steve",

patName = "Pat",

davidName = "David";

Customer[] customers;

@Before

public void setup() {

david = ObjectMother

.customerWithNoRentals(

davidName);

john = ObjectMother

.customerWithOneNewRelease(

johnName);

pat = ObjectMother

.customerWithOneOfEachRentalType(

patName);

steve = ObjectMother

.customerWithOneNewReleaseAndOneRegular(

steveName);

customers =

new Customer[]

{ david, john, steve, pat};

}

Unit Testing, a First Example 4

@Test

public void getName() {

assertEquals(

davidName, david.getName());

assertEquals(

johnName, john.getName());

assertEquals(

steveName, steve.getName());

assertEquals(

patName, pat.getName());

}

@Test

public void statement() {

for (int i=0; i<customers.length; i++) {

assertEquals(

expStatement(

"Rental record for %s\n" +

"%sAmount owed is %s\n" +

"You earned %s frequent " +

"renter points",

customers[i],

rentalInfo(

"\t", "",

customers[i].getRentals())),

customers[i].statement());

}

}

Unit Testing, a First Example 5

@Test

public void htmlStatement() {

for (int i=0; i<customers.length; i++) {

assertEquals(

expStatement(

"<h1>Rental record for " +

"%s</h1>\n%s" +

"<p>Amount owed is %s" +

"</p>\n<p>You earned %s" +

" frequent renter points</p>",

customers[i],

rentalInfo(

"<p>", "</p>",

customers[i].getRentals())),

customers[i].htmlStatement());

}

}

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

ObjectMother

.customerWithNoRentals("Bob")

.addRental(

new Rental(

new Movie("Crazy, Stupid, Love.",

Movie.Type.UNKNOWN),

4));

}

Unit Testing, a First Example 6

public static String rentalInfo(

String startsWith,

String endsWith,

List<Rental> rentals) {

String result = "";

for (Rental rental : rentals)

result += String.format(

"%s%s\t%s%s\n",

startsWith,

rental.getMovie().getTitle(),

rental.getCharge(),

endsWith);

return result;

}

public static String expStatement(

String formatStr,

Customer customer,

String rentalInfo) {

return String.format(

formatStr,

customer.getName(),

rentalInfo,

customer.getTotalCharge(),

customer.getTotalPoints());

}

}

The CustomerTest class completely covers our Customer do-
main object and has very little duplication; many would
consider this a well written set of tests.

Unit Testing, a First Example 7

As you can see, we’re using an ObjectMother to create our
domain objects. The following code represents the full defini-
tion of our ObjectMother class.

public class ObjectMother {

public static Customer

customerWithOneOfEachRentalType(

String name) {

Customer result =

customerWithOneNewReleaseAndOneRegular(

name);

result.addRental(

new Rental(

new Movie("Lion King", CHILDREN), 3));

return result;

}

public static Customer

customerWithOneNewReleaseAndOneRegular(

String n) {

Customer result =

customerWithOneNewRelease(n);

result.addRental(

new Rental(

new Movie("Scarface", REGULAR), 3));

return result;

}

Unit Testing, a First Example 8

public static Customer

customerWithOneNewRelease(

String name) {

Customer result =

customerWithNoRentals(name);

result.addRental(

new Rental(

new Movie(

"Godfather 4", NEW_RELEASE), 3));

return result;

}

public static Customer

customerWithNoRentals(String name) {

return new Customer(name);

}

}

Unit Testing, a First Example 9

Thoughts on our Tests

Our CustomerTest class is written in a way that follows many
common patterns. It doesn’t take much searching on the Web
to find articles giving examples of “improving” your code by
using a Setup (now @Before in JUnit). ObjectMother lives
under many names, and each name comes with several arti-
cles explaining how it’s either successful or the programmer
didn’t understand how to correctly apply the pattern. Our
tests follow the common advice that above all, code must be
DRY³.

DRY is an acronym for Don’t Repeat Yourself,
and is defined as: Every piece of knowledge must
have a single, unambiguous, authoritative repre-
sentation within a system.

Both of those pieces of advice are contextually valuable. I
can easily think of situations where applying each of those
patterns would be the right choice. However, in the context
of “I would like to quickly understand this test I’ve never seen
before”, those patterns come up short. While working on code
written by a teammate or supporting an inherited system, I
find myself in the latter context far more often than not.

I suspect most people will have skimmed the above tests -
that’s what I would have done. Other people may have taken
the time to try to understand the test and how it relates to the
failure output. If you’re in the second group, I suspect your
thought process might have looked something like this.

³http://en.wikipedia.org/wiki/Don’t_repeat_yourself

Unit Testing, a First Example 10

1. find the statement test
2. find the definition of the customers array that we’re

iterating
3. find the assignment to customers

4. digest the assignment of each Customer and their asso-
ciated name

5. look to ObjectMother to determine how the Customer

instances are created
6. digest each of the different Customer instance creation

methods within the ObjectMother
• you now understand the first line of the test

7. digest that the expected value is being created by calling
a method with a String, a Customer, and the result
of calling rentalInfo with 2 String instances and a
customer’s rentals.

8. find the rentalInfomethod and determine what value
it’s returning to expStatement

9. digest that rentalInfo is creating a string by iterating
and formatting Rental data

10. now that you’vementally resolved the args to expStatement,
you find that method and digest it.

• at this point it’s taken 10 steps to simply under-
stand the expected value in your test

11. recognize that the actual value is a call to the domain
object, who’s source I haven’t supplied (yet).

That’s quite a bit you needed to digest, and all of it test code.
Not one character of what you’ve digested will actually run
in production.

Were you actually trying to fix this test, the next logical
question would be: which is incorrect, the expected value

Unit Testing, a First Example 11

or the actual value? Unfortunately, before you could even
begin to tackle that question you’d need to find out what the
expected and actual values actually are. We can see the text
differs around the word “Godfather”, but that only narrows
our list down to the customers john, steve, and pat. It’s
practically impossible to fix this test without writing some
code and/or using the debugger for runtime inspection to help
you identify the issue.

Unit Testing, a First Example 12

The Domain Code

Below youwill find the domain code from Refactoring rewrit-
ten for Java 7. It’s not necessary to digest the domain code
now to complete this chapter. I would recommend skimming
or completely skipping to the end of the section, and coming
back to use this as a reference only if you want to verify your
understanding of the code under test.

Unit Testing, a First Example 13

public class Customer {

private String name;

private List<Rental> rentals =

new ArrayList<Rental>();

public Customer(String name) {

this.name = name;

}

public String getName() {

return name;

}

public List<Rental> getRentals() {

return rentals;

}

public void addRental(Rental rental) {

rentals.add(rental);

}

Unit Testing, a First Example 14

public String statement() {

String result =

"Rental record for " + getName() + "\n";

for (Rental rental : rentals)

result +=

"\t" + rental.getLineItem() + "\n";

result +=

"Amount owed is " + getTotalCharge() +

"\n" + "You earned " +

getTotalPoints() +

" frequent renter points";

return result;

}

public String htmlStatement() {

String result =

"<h1>Rental record for " +

getName() + "</h1>\n";

for (Rental rental : rentals)

result += "<p>" + rental.getLineItem() +

"</p>\n";

result +=

"<p>Amount owed is " +

getTotalCharge() + "</p>\n" +

"<p>You earned " +

getTotalPoints() +

" frequent renter points</p>";

return result;

}

Unit Testing, a First Example 15

public double getTotalCharge() {

double total = 0;

for (Rental rental : rentals)

total += rental.getCharge();

return total;

}

public int getTotalPoints() {

int total = 0;

for (Rental rental : rentals)

total += rental.getPoints();

return total;

}

}

Unit Testing, a First Example 16

public class Rental {

Movie movie;

private int daysRented;

public Rental(Movie movie, int daysRented) {

this.movie = movie;

this.daysRented = daysRented;

}

public Movie getMovie() {

return movie;

}

public int getDaysRented() {

return daysRented;

}

public double getCharge() {

return movie.getCharge(daysRented);

}

public int getPoints() {

return movie.getPoints(daysRented);

}

public String getLineItem() {

return

movie.getTitle() + " " + getCharge();

}

}

Unit Testing, a First Example 17

public class Movie {

public enum Type {

REGULAR, NEW_RELEASE, CHILDREN, UNKNOWN;

}

private String title;

Price price;

public Movie(

String title, Movie.Type priceCode) {

this.title = title;

setPriceCode(priceCode);

}

public String getTitle() {

return title;

}

Unit Testing, a First Example 18

private void setPriceCode(

Movie.Type priceCode) {

switch (priceCode) {

case CHILDREN:

price = new ChildrensPrice();

break;

case NEW_RELEASE:

price = new NewReleasePrice();

break;

case REGULAR:

price = new RegularPrice();

break;

default:

throw new IllegalArgumentException(

"invalid price code");

}

}

public double getCharge(int daysRented) {

return price.getCharge(daysRented);

}

public int getPoints(int daysRented) {

return price.getPoints(daysRented);

}

}

Unit Testing, a First Example 19

public abstract class Price {

abstract double getCharge(int daysRented);

int getPoints(int daysRented) {

return 1;

}

}

public class ChildrensPrice extends Price {

@Override

double getCharge(int daysRented) {

double amount = 1.5;

if (daysRented > 3)

amount += (daysRented - 3) * 1.5;

return amount;

}

}

Unit Testing, a First Example 20

public class RegularPrice extends Price {

@Override

public double getCharge(int daysRented) {

double amount = 2;

if (daysRented > 2)

amount += (daysRented - 2) * 1.5;

return amount;

}

}

public class NewReleasePrice extends Price {

@Override

public double getCharge(int daysRented) {

return daysRented * 3;

}

@Override

int getPoints(int daysRented) {

if (daysRented > 1)

return 2;

return 1;

}

}

Unit Testing, a First Example 21

Moving Towards Readability

When asked “Why do you test?”, industry veteran Josh Gra-
ham gave the following answer:

To create a tiny universe where the software
exists to do one thing and do it well.

The example tests could have been written for many reasons,
let’s assume the motivators that matter to us are: enable
refactoring, immediate feedback, and breaking a problem
up into smaller pieces. The tests fit well for our first two
motivators, but fail to do a good job of breaking a problem
up into smaller pieces. When writing these tests it’s obvious
and clear where “duplication” lies and how “common” pieces
can be pulled into helper methods. Unfortunately, each time
we extract a method we risk complicating our tiny universes.
The right abstractions can reduce complexity; however, it’s
often unclear which abstraction within a test will provide the
most value to the team.

DRY has been applied to the tests as it would be to production
code. At first glance this may seem like a reasonable approach;
however, test code and production code is written, main-
tained, and reviewed in drastically different ways. Production
code collaborates to provide a single running application, and
it’s generally wise to avoid duplicating concepts within that
application. Tests do not, or at least should not collaborate;
it’s universally accepted that inter-test dependency is an anti-
pattern. If we think of tests as tiny, independent universes,
then code that appears in one test should not necessarily be
considered inadvisable duplication if it appears in another test
as well.

Unit Testing, a First Example 22

Still, I recognize that pragmatic removal of duplication can
add to maintainability. The examples that follow will address
issues such asWe’ve grouped david, john, pat, & steve despite
the fact that none of them interact with each other in any
way whatsoever not by duplicating every character, but by
introducing local and global patterns that I find superior.

When I think about the current state of the tests, I remember
my colleague Pat Farley describing some tests as having been
made DRY with a blowtorch.

Rather than viewing our tests as a single interconnected
program, we can shift our focus to viewing each test as
a tiny universe; each test can be an individual procedural
program that has a single responsibility. If we want to keep
our individual procedural programs as tiny universes, we’ll
likely make many decisions differently.

• We won’t test diverse customers at the same time.
• We won’t create diverse customers that have nothing
to do with each other.

• We won’t extract methods for a single string return
value.

• We’ll create data where we need it, not as part of a
special framework method.

In general, I find applying DRY to a subset of tests to be
an anti-pattern. Within a single test, DRY can often apply.
Likewise, globally appropriate DRY application is often a
good choice. However, once you start applying DRY at a
test group level you often increase the complexity of your
individual procedures where a local or global solution would
have been superior.

Unit Testing, a First Example 23

For those that enjoy acronyms, when writing tests you should
prefer DAMP (Descriptive And Maintainable Procedures) to
DRY.

The remainder of the chapter will demonstrate the individual
steps we can take to create tests so small they become trivial
to immediately understand.

Unit Testing, a First Example 24

Replace Loop with Individual
Tests

The first step in moving to more readable tests is breaking the
iteration into individual tests. The following code provides
the same regression protection and immediate feedback as
the original, while also explicitly giving us more information:
passing and failing assertions that may give additional clues
as to where the problem exists.

Unit Testing, a First Example 25

public class CustomerTest {

Customer john, steve, pat, david;

String johnName = "John",

steveName = "Steve",

patName = "Pat",

davidName = "David";

Customer[] customers;

@Before

public void setup() {

david = ObjectMother

.customerWithNoRentals(davidName);

john = ObjectMother

.customerWithOneNewRelease(johnName);

pat = ObjectMother

.customerWithOneOfEachRentalType(

patName);

steve = ObjectMother

.customerWithOneNewReleaseAndOneRegular(

steveName);

customers = new Customer[] {

david, john, steve, pat };

}

Unit Testing, a First Example 26

@Test

public void davidStatement() {

assertEquals(

expStatement(

"Rental record for %s\n%sAmount " +

"owed is %s\nYou earned %s " +

"frequent renter points",

david,

rentalInfo(

"\t", "", david.getRentals())),

david.statement());

}

@Test

public void johnStatement() {

assertEquals(

expStatement(

"Rental record for %s\n%sAmount " +

"owed is %s\nYou earned %s " +

"frequent renter points",

john,

rentalInfo(

"\t", "", john.getRentals())),

john.statement());

}

Unit Testing, a First Example 27

@Test

public void patStatement() {

assertEquals(

expStatement(

"Rental record for %s\n%sAmount " +

"owed is %s\nYou earned %s " +

"frequent renter points",

pat,

rentalInfo(

"\t", "", pat.getRentals())),

pat.statement());

}

@Test

public void steveStatement() {

assertEquals(

expStatement(

"Rental record for %s\n%s" +

"Amount owed is %s\nYou earned %s " +

"frequent renter points",

steve,

rentalInfo(

"\t", "", steve.getRentals())),

steve.statement());

}

Unit Testing, a First Example 28

public static String rentalInfo(

String startsWith,

String endsWith,

List<Rental> rentals) {

String result = "";

for (Rental rental : rentals)

result += String.format(

"%s%s\t%s%s\n",

startsWith,

rental.getMovie().getTitle(),

rental.getCharge(),

endsWith);

return result;

}

public static String expStatement(

String formatStr,

Customer customer,

String rentalInfo) {

return String.format(

formatStr,

customer.getName(),

rentalInfo,

customer.getTotalCharge(),

customer.getTotalPoints());

}

}

The following output is the result of running the above test.

Unit Testing, a First Example 29

JUnit version 4.11

.E.E..E

There were 3 failures:

1) johnStatement(CustomerTest)

org.junit.ComparisonFailure: expected:<...or John

Godfather 4[]9.0

Amount owed is 9...> but was:<...or John

Godfather 4[]9.0

Amount owed is 9...>

2) steveStatement(CustomerTest)

org.junit.ComparisonFailure: expected:<...r Steve

Godfather 4[9.0

Scarface]3.5

Amount owed is 1...> but was:<...r Steve

Godfather 4[9.0

Scarface]3.5

Amount owed is 1...>

3) patStatement(CustomerTest)

org.junit.ComparisonFailure: expected:<...for Pat

Godfather 4[9.0

Scarface 3.5

Lion King]1.5

Amount owed is 1...> but was:<...for Pat

Godfather 4[9.0

Scarface 3.5

Lion King]1.5

Amount owed is 1...>

FAILURES!!!

Tests run: 4, Failures: 3

At this point we have more clues about which tests are failing
and where; specifically, we know that davidStatement is

Unit Testing, a First Example 30

passing, so the issue must exist in the printing of rental infor-
mation. Unfortunately, we don’t currently have any strings to
quickly look at to determine whether the error exists in our
expected or actual values.

Unit Testing, a First Example 31

Expect Literals

The next step in increasing readability is expecting literal val-
ues. If you know where the problem exists, having DRY tests
can help ensure you type the fewest number of characters.
That said…

“Programming is not about typing… it’s about
thinking.” –Rich Hickey

At this point, our tests have become much smaller universes,
so small that I find myself wondering why I call a parame-
terized method, once, that does nothing more than return a
String. Within my tiny universe it would be much easier to
simply use a String literal.

A few printlns and copy-pastes later, my tests are much more
explicit, and my universes have gotten even smaller.

Unit Testing, a First Example 32

public class CustomerTest {

Customer john, steve, pat, david;

String johnName = "John",

steveName = "Steve",

patName = "Pat",

davidName = "David";

Customer[] customers;

@Before

public void setup() {

david = ObjectMother

.customerWithNoRentals(davidName);

john = ObjectMother

.customerWithOneNewRelease(johnName);

pat = ObjectMother

.customerWithOneOfEachRentalType(

patName);

steve = ObjectMother

.customerWithOneNewReleaseAndOneRegular(

steveName);

customers = new Customer[] {

david, john, steve, pat };

}

@Test

public void davidStatement() {

assertEquals(

"Rental record for David\nAmount " +

"owed is 0.0\n" +

"You earned 0 frequent renter points",

david.statement());

}

Unit Testing, a First Example 33

@Test

public void johnStatement() {

assertEquals(

"Rental record for John\n\t" +

"Godfather 4\t9.0\n" +

"Amount owed is 9.0\n" +

"You earned 2 frequent renter points",

john.statement());

}

@Test

public void patStatement() {

assertEquals(

"Rental record for Pat\n\t" +

"Godfather 4\t9.0\n" +

"\tScarface\t3.5\n" +

"\tLion King\t1.5\n" +

"Amount owed is 14.0\n" +

"You earned 4 frequent renter points",

pat.statement());

}

Unit Testing, a First Example 34

@Test

public void steveStatement() {

assertEquals(

"Rental record for Steve\n\t" +

"Godfather 4\t9.0\n" +

"\tScarface\t3.5\n" +

"Amount owed is 12.5\n" +

"You earned 3 frequent renter points",

steve.statement());

}

}

The failure output is exactly the same, but I’m now able to
look at the expected value as a simple constant, and reduce
my first question to: is my expected value correct? For those
coding along: we’ll assume the “fix” for the failure is to
change the expected value to match the implementation in
Rental.getLineItem (space delimited). The expected values
moving forward will reflect this fix.

note: Some reviewerswere offended by the getRentals
public method (though others were not). If a
method such as getRentals is something you’d
look to remove from your domain model, then
the Expect Literals refactoring provides you with
at least two benefits: the one you’ve already seen,
and the ability to delete the getRentals method
entirely. These types of improvements (deleting
code while also improving expressiveness is al-
ways an improvement, regardless of your pre-
ferred OO style) are not uncommon; improving
tests often allows you to improve your domain
model as well.

Unit Testing, a First Example 35

There’s an entire section dedicated to Expect Literals in
Improving Assertions

If this were more than a book example, my next step would
likely be adding fine grained tests that verify individual
methods of each of the classes that are collaborating with
Customer. Unfortunately, moving in that direction will first
require discussion on the benefits of fine grained tests and
the trade-offs of using mocks and stubs.

If you’re interested in jumping straight to this discussion it
can be found in the Types of Tests chapter.

Unit Testing, a First Example 36

Inline Setup

At this point it should be easy to find the source of the failing
test; however, our universes aren’t quite DAMP just yet.

Have you ever stopped to ask yourself why we use a design
pattern (Template Method) in our tests, when an explicit
method call is probably the appropriate choice 99% of the
time?

Creating instances of david, john, pat, & steve in Setup
moves characters out of the individual test methods, but
doesn’t provide us any other advantage. It also comes with
the conceptual overhead of each Customer being created,
whether or not it’s used. By adding a level of indirectionwe’ve
removed characters from tests, but we’ve forced ourselves to
remember who has what rentals. Removing a setup method
almost always reveals an opportunity for a local or global
improvement within a universe.

In this case, by removing Setup we’re able to further limit the
number of variables that require inspection when you first
encounter a test. With Setup removed you no longer need
to look for a Setup method, and you no longer need to care
about the Customer instances that are irrelevant to your tiny
universe.

Unit Testing, a First Example 37

public class CustomerTest {

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for David\nAmount " +

"owed is 0.0\n" +

"You earned 0 frequent renter points",

ObjectMother

.customerWithNoRentals(

"David").statement());

}

@Test

public void oneNewReleaseStatement() {

assertEquals(

"Rental record for John\n\t" +

"Godfather 4 9.0\n" +

"Amount owed is 9.0\n" +

"You earned 2 frequent renter points",

ObjectMother

.customerWithOneNewRelease(

"John").statement());

}

Unit Testing, a First Example 38

@Test

public void allRentalTypesStatement() {

assertEquals(

"Rental record for Pat\n\t" +

"Godfather 4 9.0\n" +

"\tScarface 3.5\n\tLion King 1.5\n" +

"Amount owed is 14.0\n" +

"You earned 4 frequent renter points",

ObjectMother

.customerWithOneOfEachRentalType(

"Pat").statement());

}

@Test

public void

newReleaseAndRegularStatement() {

assertEquals(

"Rental record for Steve\n\t" +

"Godfather 4 9.0\n" +

"\tScarface 3.5\n" +

"Amount owed is 12.5\n" +

"You earned 3 frequent renter points",

ObjectMother

.customerWithOneNewReleaseAndOneRegular(

"Steve").statement());

}

}

By Inlining Setup we get to delete both the Setup method and
the Customer fields. Our tests are looking nice and slim, and
they require almost no navigation to completely understand.
I went ahead and renamed the tests, deleted the unused
customers field, and inlined the single usage fields.

Unit Testing, a First Example 39

It’s confession time: I don’t like test names. Technically they’re
method names, but they’re never called explicitly. That alone
should make you somewhat suspicious. I consider method
names found within tests to be glorified comments that
come with all the standard warnings: they often grow out of
date, and are often a Code Smell⁴ emanating from bad code.
Unfortunately, most testing frameworks make test names
mandatory, and you should spend the time to create helpful
test names. While we refactored away from the looping test I
lazily named my tests based on the customer; however, I was
forced to create a more appropriate name as a side effect of
performing Inline Setup.

I believe this is another example of how well written tests
have side effects that improve associated code. I’ve personally
written testing frameworks that make test names optional,
that’s how little I care about test names. Still, once I performed
Inline Setup, the only reasonable choice was to create a
somewhat helpful test name.

Our tests are looking better and better, and I’m feeling mo-
tivated to continue the evolution. There’s still one additional
step I would take.

⁴http://en.wikipedia.org/wiki/Code_smell

Unit Testing, a First Example 40

Replace ObjectMother with
DataBuilder

ObjectMother is an effective tool when the scenarios are
limited and constant, but there’s no clear way to handle the
situation when you need a slightly different scenario. For
example, if you wanted to create a test for the statement

method on a Customer with two New Releases, would you
add another ObjectMother method or would you call the
addRental method on an instance returned?

Further complicating the issue: it’s often hard to know if
you’re dealing with objects that you can manipulate or if the
objects returned from an ObjectMother are reused. For exam-
ple, if you called ObjectMother.customerWithTwoNewReleases,
can you change the name on one of theNewRelease instances,
or was the same Movie supplied to addRental twice? You can’t
know without looking at the implementation.

At this point it would be natural to delete the ObjectMother
and simply create your domain model instances using new.
If the number of calls to new within your tests will be lim-
ited, that’s the pragmatic path. However, as the number
of calls to new grows so does the risk of needing to do a
cascading update. Say you have less than a dozen calls to
new Customer(...) in your tests and you need to add a
constructor argument, updating those dozen or less calls will
not severely impact your effectiveness. Conversely, if you
have one hundred calls to new Customer(...) and you add a
constructor argument, you’re now forced to update the code
in one hundred different places.

A DataBuilder is an alternative to a scenario based ObjectMother
that also addresses the cascading update risk. The following a

Unit Testing, a First Example 41

class is a DataBuilder that will allow us to build our domain
objects that aren’t tied to any particular scenario.

(I recommend skimming the following builder, we’ll revisit
Test Data Builders in detail in the TestDataBuilder section of
Chapter 6)

public class a {

public static CustomerBuilder customer =

new CustomerBuilder();

public static RentalBuilder rental =

new RentalBuilder();

public static MovieBuilder movie =

new MovieBuilder();

public static class CustomerBuilder {

Rental[] rentals;

String name;

CustomerBuilder() {

this("Jim", new Rental[0]);

}

CustomerBuilder(

String name, Rental[] rentals) {

this.name = name;

this.rentals = rentals;

}

public CustomerBuilder w(

RentalBuilder... builders) {

Rental[] rentals =

new Rental[builders.length];

Unit Testing, a First Example 42

for (int i=0; i<builders.length; i++) {

rentals[i] = builders[i].build();

}

return

new CustomerBuilder(name, rentals);

}

public CustomerBuilder w(String name) {

return

new CustomerBuilder(name, rentals);

}

public Customer build() {

Customer result = new Customer(name);

for (Rental rental : rentals) {

result.addRental(rental);

}

return result;

}

}

Unit Testing, a First Example 43

public static class RentalBuilder {

final Movie movie;

final int days;

RentalBuilder() {

this(new MovieBuilder().build(), 3);

}

RentalBuilder(Movie movie, int days) {

this.movie = movie;

this.days = days;

}

public RentalBuilder w(

MovieBuilder movie) {

return

new RentalBuilder(

movie.build(), days);

}

public Rental build() {

return new Rental(movie, days);

}

}

Unit Testing, a First Example 44

public static class MovieBuilder {

final String name;

final Movie.Type type;

MovieBuilder() {

this("Godfather 4",

Movie.Type.NEW_RELEASE);

}

MovieBuilder(

String name, Movie.Type type) {

this.name = name;

this.type = type;

}

public MovieBuilder w(Movie.Type type) {

return new MovieBuilder(name, type);

}

public MovieBuilder w(String name) {

return new MovieBuilder(name, type);

}

public Movie build() {

return new Movie(name, type);

}

}

}

The a class is undeniably longer than an ObjectMother;
however it’s not only more general it also puts the decision in
your hands to share or not share an object. Let’s look at what
our test could look like when utilizing a Test Data Builder.

Unit Testing, a First Example 45

note: w() is an abbreviation for with().

public class CustomerTest {

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for David\nAmount " +

"owed is 0.0\nYou earned 0 frequent " +

"renter points",

a.customer.w(

"David").build().statement());

}

@Test

public void oneNewReleaseStatement() {

assertEquals(

"Rental record for John\n\t" +

"Godfather 4 9.0\nAmount owed is " +

"9.0\nYou earned 2 frequent renter " +

"points",

a.customer.w("John").w(

a.rental.w(

a.movie.w(NEW_RELEASE))).build()

.statement());

}

Unit Testing, a First Example 46

@Test

public void allRentalTypesStatement() {

assertEquals(

"Rental record for Pat\n\t" +

"Godfather 4 9.0\n\tScarface 3.5\n" +

"\tLion King 1.5\nAmount owed is " +

"14.0\nYou earned 4 frequent renter " +

"points",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(a.movie.w("Scarface").w(

REGULAR)),

a.rental.w(a.movie.w("Lion King").w(

CHILDREN))).build()

.statement());

}

Unit Testing, a First Example 47

@Test

public void

newReleaseAndRegularStatement() {

assertEquals(

"Rental record for Steve\n\t" +

"Godfather 4 9.0\n\tScarface 3.5\n" +

"Amount owed is 12.5\nYou earned 3 " +

"frequent renter points",

a.customer.w("Steve").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w(

"Scarface").w(REGULAR))).build()

.statement());

}

}

The above test is functionally equivalent to all the previous
test methods used to verify statement. This version does
require us to understand the abstract concept and concrete
implementation of a Test Data Builder ; however, there’s
no guarantee that you would need to visit the a class to
understand this test - even the first time you encounter the
test. The a class is a class used globally to create all domain
objects for all tests. With that kind of scope, unless this is your
first day on a project, it’s not really possible that you wouldn’t
have encountered the a class in the past.

To be more clear, the lone responsibility of a Test Data Builder
is to create domain objects with default values. Thus, even
if you’ve never seen this test before, without navigating to
a you’ll already know that you’re creating a customer with
sensible defaults. This is a rare example of an abstraction that,

Unit Testing, a First Example 48

despite adding indirection, also makes the test easier to digest.

With a Test Data Builder in place it becomes trivial to add an
additional test that verifies the case of 2 New Releases, or any
other rental combination that you find to be important.

As I previously mentioned, the choice to use a Test Data
Builder will likely depend on the number of calls to new and
your tolerance for cascading update risk. I introduce them
here due to their frequent usage throughout the book. In
practice I like to use new while there are half a dozen or fewer
calls to a constructor.

More information on Test Data Builders can be found in Nat
Pryce’s article on Test Data Builders⁵ and by skipping directly
to the TestDataBuilder section of Chapter 6.

⁵http://www.natpryce.com/articles/000714.html

Unit Testing, a First Example 49

Comparing the Results

Any fool can write code that a computer can
understand. Good programmers write code that
humans can understand. –Martin Fowler, Refac-
toring.

Applied to Unit Testing: Any fool can write a test
that helps them today. Good programmers write
tests that help the entire team in the future.

Below you can find both the before and after examples,
allowing a quick comparison.

Unit Testing, a First Example 50

Original

public class CustomerTest {

Customer john, steve, pat, david;

String johnName = "John",

steveName = "Steve",

patName = "Pat",

davidName = "David";

Customer[] customers;

@Before

public void setup() {

david = ObjectMother

.customerWithNoRentals(

davidName);

john = ObjectMother

.customerWithOneNewRelease(

johnName);

pat = ObjectMother

.customerWithOneOfEachRentalType(

patName);

steve = ObjectMother

.customerWithOneNewReleaseAndOneRegular(

steveName);

customers =

new Customer[]

{ david, john, steve, pat};

}

Unit Testing, a First Example 51

@Test

public void getName() {

assertEquals(

davidName, david.getName());

assertEquals(

johnName, john.getName());

assertEquals(

steveName, steve.getName());

assertEquals(

patName, pat.getName());

}

@Test

public void statement() {

for (int i=0; i<customers.length; i++) {

assertEquals(

expStatement(

"Rental record for %s\n" +

"%sAmount owed is %s\n" +

"You earned %s frequent " +

"renter points",

customers[i],

rentalInfo(

"\t", "",

customers[i].getRentals())),

customers[i].statement());

}

}

Unit Testing, a First Example 52

@Test

public void htmlStatement() {

for (int i=0; i<customers.length; i++) {

assertEquals(

expStatement(

"<h1>Rental record for " +

"%s</h1>\n%s" +

"<p>Amount owed is %s" +

"</p>\n<p>You earned %s" +

" frequent renter points</p>",

customers[i],

rentalInfo(

"<p>", "</p>",

customers[i].getRentals())),

customers[i].htmlStatement());

}

}

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

ObjectMother

.customerWithNoRentals("Bob")

.addRental(

new Rental(

new Movie("Crazy, Stupid, Love.",

Movie.Type.UNKNOWN),

4));

}

Unit Testing, a First Example 53

public static String rentalInfo(

String startsWith,

String endsWith,

List<Rental> rentals) {

String result = "";

for (Rental rental : rentals)

result += String.format(

"%s%s\t%s%s\n",

startsWith,

rental.getMovie().getTitle(),

rental.getCharge(),

endsWith);

return result;

}

public static String expStatement(

String formatStr,

Customer customer,

String rentalInfo) {

return String.format(

formatStr,

customer.getName(),

rentalInfo,

customer.getTotalCharge(),

customer.getTotalPoints());

}

}

Unit Testing, a First Example 54

Final

public class CustomerTest {

@Test

public void getName() {

assertEquals(

"John",

a.customer.w(

"John").build().getName());

}

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for David\nAmount " +

"owed is 0.0\nYou earned 0 frequent " +

"renter points",

a.customer.w(

"David").build().statement());

}

Unit Testing, a First Example 55

@Test

public void oneNewReleaseStatement() {

assertEquals(

"Rental record for John\n" +

"\tGodfather 4 9.0\n" +

"Amount owed is 9.0\n" +

"You earned 2 frequent renter points",

a.customer.w("John").w(

a.rental.w(

a.movie.w(

NEW_RELEASE))).build()

.statement());

}

@Test

public void allRentalTypesStatement() {

assertEquals(

"Rental record for Pat\n" +

"\tGodfather 4 9.0\n" +

"\tScarface 3.5\n" +

"\tLion King 1.5\n" +

"Amount owed is 14.0\n" +

"You earned 4 frequent renter points",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(REGULAR)),

a.rental.w(

a.movie.w("Lion King").w(

CHILDREN))).build().statement());

}

Unit Testing, a First Example 56

@Test

public void

newReleaseAndRegularStatement() {

assertEquals(

"Rental record for Steve\n" +

"\tGodfather 4 9.0\n" +

"\tScarface 3.5\n" +

"Amount owed is 12.5\n" +

"You earned 3 frequent renter points",

a.customer.w("Steve").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(

REGULAR))).build().statement());

}

@Test

public void noRentalsHtmlStatement() {

assertEquals(

"<h1>Rental record for David" +

"</h1>\n<p>Amount owed is " +

"0.0</p>\n<p>You earned 0 " +

"frequent renter points</p>",

a.customer.w(

"David").build().htmlStatement());

}

Unit Testing, a First Example 57

@Test

public void oneNewReleaseHtmlStatement() {

assertEquals(

"<h1>Rental record for John" +

"</h1>\n<p>Godfather 4 9.0</p>\n" +

"<p>Amount owed is 9.0</p>" +

"\n<p>You earned 2 frequent " +

"renter points</p>",

a.customer.w("John").w(

a.rental.w(

a.movie.w(

NEW_RELEASE))).build()

.htmlStatement());

}

Unit Testing, a First Example 58

@Test

public void allRentalTypesHtmlStatement() {

assertEquals(

"<h1>Rental record for Pat" +

"</h1>\n<p>Godfather 4 9.0</p>\n" +

"<p>Scarface 3.5</p>\n<p>Lion King" +

" 1.5</p>\n<p>Amount owed is " +

"14.0</p>\n<p>You earned " +

"4 frequent renter points</p>",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(REGULAR)),

a.rental.w(

a.movie.w("Lion King").w(

CHILDREN))).build()

.htmlStatement());

}

Unit Testing, a First Example 59

@Test

public void

newReleaseAndRegularHtmlStatement() {

assertEquals(

"<h1>Rental record for Steve" +

"</h1>\n<p>Godfather 4 9.0</p>" +

"\n<p>Scarface 3.5</p>\n<p>Amount " +

"owed is 12.5</p>\n<p>" +

"You earned 3 frequent renter " +

"points</p>",

a.customer.w("Steve").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(

REGULAR))).build()

.htmlStatement());

}

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

a.customer.w(

a.rental.w(

a.movie.w(UNKNOWN))).build();

}

}

Unit Testing, a First Example 60

Final Thoughts on our Tests

The tests in this chapter are fairly simple, and yet they still
providemore than enough content to create discussion among
most software engineers.

Whether you prefer the original or final versions of CustomerTest,
it’s undeniable that the final version creates far tinier uni-
verses to work within. At this point you should have a fairly
deep understanding of this simple example. That hard won
deep understanding can be misleading when assessing the
relativemerits of the two testing approaches. If youwrite tests
assuming the same level of understanding, you force future
maintainers to gain that understanding. Conversely, the tests
from the final example put all of the test data either directly
in the test or in what should be a globally understood class.

The decision to write DRY or DAMP tests often
comes down to whether or not you want to force
future maintainers to deeply understand code
written strictly for testing purposes.

An interesting side note: despite replacing DRY tests with
DAMP tests, the overall number of lines in the CustomerTest
class barely changed.

Unit Testing, a First Example 61

The ‘Final’ version of CustomerTest improved in a few subtle
ways that weren’t previously emphasized.

• A test that contains more than one assertion (or one
assertion that lives in a loop) will terminate on the first
failure. By breaking the iteration into individual tests
we were able to see all of the failures generated by our
domain code change.

• The invalidTitle test uses the same instance creation
code that all of the other Customer tests use. Now
that all Customer, Rental, and Movie instances are
created by a DataBuilder you can make constructor
argument changes and the only consequence will be
making a change to the buildmethod for the associated
*Builder class.

If you’re with me this far, it should be relatively clear what a
DAMP test is, and that I believe them to be far more valuable
than DRY tests. From here we’ll drop a bit into theory, then
straight into deeper examples of how to evolve your tests
towards a DAMP style, and finally we’ll finish with test suite
level improvements and what to avoid once you venture on
to Broad Stack Tests.

Motivators
There are many ways to succeed while writing tests; however,
let’s start with an example of the more common path.

Let’s imagine you read Unit Testing Tips: Write Maintainable
Unit Tests That Will Save You Time And Tears⁶ and decide
that Roy Osherove has shown you the light. You’re going to
write all your tests with Roy’s suggestions in mind. You get
the entire team to read Roy’s article and everyone adopts the
patterns.

Things are going well until you start accidentally breaking
tests that someone else wrote and you can’t figure out why.
It turns out that some object created in the Setup method
is causing unexpected failures due to a side-effect of your
‘minor’ change. You’re frustrated, having been burned by
Setup, and you remember the blog entry by Jim Newkirk
where he discussed Why you should not use SetUp and
TearDown in NUnit⁷. Now you’re stuck with a Setup heavy
test suite, and a growing suspicion that you’ve gone down the
wrong path.

You do more research on Setup and stumble upon Inline
Setup. You can entirely relate and go on amission to switch all
the tests to xUnit.net; xUnit.net removes the concept of Setup
entirely.

Everything looks good initially, but then a few constructors
start needing more dependencies. Every test creates an in-

⁶http://msdn.microsoft.com/en-us/magazine/cc163665.aspx
⁷http://jamesnewkirk.typepad.com/posts/2007/09/why-you-should-.html

Motivators 63

stance of an object; you moved the object creation out of the
Setup and into each individual test. So now every test that
creates that object needs to be updated. It becomes painful
every time you add an argument to a constructor. You’re once
again left feeling like you’ve been burnt by following “expert”
advice.

The root problem: you never asked yourself ‘why?’. Why
are you writing tests in the first place? Each testing practice
you’ve chosen, what motivated you to adopt it?

You won’t write better software by blindly following advice.
This is especially true given that much of the advice around
testing is inconsistent or outright conflicting. While I’m writ-
ing this chapter there’s currently a twitter discussion with
Martin Fowler, Michael Feathers, Bob Martin, Prag Dave, and
David Heinemeier Hansson (all well respected and successful
software engineers) where there are drastically conflicting
opinions on how to effectively test. If there’s a universally
right way, we haven’t found it yet.

It’s worth noting that the articles from Roy and
Jim are quite old. Roy has since changed his
mind on Setup (his current opinions can be found
at artofunittesting.com), and I’m sure Jim has
updated his opinions as well. The point of the
example is to show how it’s easy to blindly follow
advice that sounds good, not to tie a good or bad
idea with an individual.

Back to our painful journey above: your intentions were good.
You want to write better software, so you followed some
reasonable advice. Unfortunately, the advice you’ve chosen

Motivators 64

to follow left you with more pain than happiness. Your tests
aren’t providing enough value to justify their effort and if
you keep going down this path you’ll inevitably conclude that
testing is stupid and it should be abandoned.

If you’ve traveled the path above or if you aren’t regularly
writing unit tests, you may find yourself wondering why
other developers find them so essential. Ultimately I believe
the answer boils down to selecting testing patterns based on
what’s motivating you to test.

The remainder of this chapter will focus on defining testing
motivators. The list that follows is presented unordered, and
includes both helpful and harmful motivators. Neither inclu-
sion nor list index reflect the value of a motivator.

Validate the System

Common motivators that would be a subset of
Validate the System

• Immediate Feedback That Things Work as Expected
• Prevent Future Regressions

Static languages like Java provide a compiler that protects you
from a certain class of errors; however, unit tests often prove
their value when you need to verify not the type of a result,
but the value of the result. For example, if your shopping cart
cannot correctly calculate the total of each contained item, it
won’t really matter that the result is an Integer.

For this reason, every codebase would benefit from, if nothing
else, wrapping a few unit tests around the features of the

Motivators 65

system that if broken would cause the system to become
unusable.

Theoretically, you could write a test to validate every feature
of your system; however, I believe youwould quickly find this
task to be substantial and not necessarily worth your time -
certain features of your system will likely be more important
than others.

There’s a common term in finance: ROI

Return on investment (ROI) is the concept of an
investment of some resource yielding a benefit to
the investor. A high ROI means the investment
gains compare favorably to investment cost.

When I’m motivated to write a test to validate the system, I
like to look at the test from an ROI point of view. My favorite
example for demonstrating how I choose based on ROI is the
following:

Given a systemwhere customers are looked up exclusively by
Social Security Number

• I would unit test that a Social Security Number is valid
at account creation time

• I would not unit test that a user’s name is alpha-
numeric.

Losing a new account based on an invalid Social Security
Number could be rather harmful to a business; however,
storing an incorrect name for a limited amount of time should
have no impact on successful use of the system.

Motivators 66

As long as everyone on the team understands the ROI of the
various features, you could trust everyone to make the right
call on when and when not to test based on ROI. If your team
cannot reasonably grant that responsibility and power to each
team member then it will likely make sense to either pair
program or err on the side of over testing and evaluating the
ROI of each test during a code review.

Tests written to validate the system are often used both to
verify that the system currently works as expected as well as
to prevent future regression.

Code Coverage

Automated code coverage metrics can be a wonderful thing
when used correctly. Upon joining a project I often use code
coverage to get a feel for the level of quality that I can expect
from the application code. A low coverage percentage can
show probable lack of quality - though I would consider it
more of a hint than a guarantee. A high coverage percentage
would make me feel better about the likelihood of finding a
well designed codebase, but that’s also more of a hint than a
guarantee.

I expect a high level of coverage. Sometimesman-
agers require one. There’s a subtle difference. –
Brian Marick

I tend to agree with Martin Fowler’s view on the subject:
If you are testing thoughtfully and well, I would expect a
coverage percentage in the upper 80s or 90s. I would be
suspicious of anything like 100% - it would smell of someone

Motivators 67

writing tests to make the coverage numbers happy, but not
thinking about what they are doing.

Once upon a time a consultancy went as far as putting “100%
code coverage” in their contracts. It was a noble goal; unfortu-
nately, a few years later the same consultancy was presenting
on the topic of: How to fail with 100% test coverage. There are
various problems with pushing towards 100%:

• You’ll have to test language features.
• You’ll have to test framework features.
• You’ll have to maintain a lot of tests with negative ROI.
• etcetera

I find that code coverage metrics over time may
signal an interesting change that you may have
otherwise missed, but as an absolute number, it’s
not very useful. –John Hume

My favorite “100% code coverage” story involves
a team that added a bunch of tests to get to 100%…
but didn’t add any assertions. Code coverage
and verification are not the same thing. –Kent
Spillner

I suspect most projects will suffer from the opposite, not
enough coverage. The good news is it’s quite simple to run
a coverage tool and determine which pieces of code are
untested.

I’ve had success using EMMA and Clover, and John Hume
recently pointed me to Cobertura. Code coverage tools are

Motivators 68

easy to work with; there’s no reason you couldn’t try a few
and decide which you prefer.

Again, code coverage tools are great. I personally strive for
around 80% coverage. If you’re looking to get above 80%, it
would not surprise me to find tests that have code-coverage
as their lone motivator.

Enable Refactoring

Getting test coverage on an untested codebase is always
painful; however, it’s also essential if you’re planning to make
any changes within the codebase. With the proper tests in
place, you should be able to rewrite the internals of a codebase
without breaking any of the existing contracts.

In addition to helping you prevent regression, creating tests
can also give you direction on where the application can be
logically broken up. While writing tests for a codebase you
should keep track of dependencies that need to be instan-
tiated, mocked or stubbed but have nothing to do with the
current functionality you are focusing on. In general, these
are the pieces that should be broken into components that are
easily stubbed (ideally in 1 or 0 lines).

Document the Behavior of the System

When encountering a codebase for the first time, some devel-
opers go straight to the tests. These developers read the tests,
test names as well as method bodies, to determine the how
and why the system works as it does. These same developers
enjoy the benefits of automated tests, but they value the
documentation of tests almost as much or more than the
functional aspect of the tests.

Motivators 69

It’s absolutely true that the code doesn’t lie, and both correct
and incorrect comments (including test names) can often give
a view into what a developer was thinking when the test was
written. If developers use tests as documentation, it’s only
natural that they create many tests, some of which would
likely be unnecessary if they didn’t exist solely to document
the system.

Before you go deleting what appear to be superfluous tests,
make sure you don’t have someone on the team that sees your
worthless test as essential documentation.

Your Manager Told You To

If this were your only motivator for writing a test, I think
you’d be in a very paradoxical position. If you write worthless
tests you’re sure to anger your manager. Given that you’re
forced to write “meaningful” tests, I believe you’d want to
write the most maintainable tests possible despite your lack
of additional motivators. I imagine that you’ll want to spend
as little time as possible reading and writing tests, and the
only way I see accomplishing that is by focusing on main-
tainability.

Thus, even if you don’t particularly value testing, it will likely
benefit you to seek out the most maintainable way to write
tests in your context.

Test Driven Development

Common motivators that would be a subset of
TDD

• Breaking a Problem up into Smaller Pieces

Motivators 70

• Defining the “Simplest Thing that Could PossiblyWork”
• Improved Design

Unit Testing and TDD are often incorrectly conflated and
referred to by either name. Unit testing is an umbrella name
for testing at a certain level of abstraction. TDD has a very
specific definition:

Test-driven development (TDD) is a software
development process that relies on the repetition
of a very short development cycle: first the devel-
oper writes an (initially failing) automated test
case that defines a desired improvement or new
function, then produces the minimum amount of
code to pass that test, and finally refactors the
new code to acceptable standards. –Wikipedia

It’s not necessary towrite unit tests to TDD, nor is it necessary
to TDD to write unit tests.

That said, there’s a reason that the terms are often conflated:
If you’re practicing TDD, then you’re very likely also writing
a substantial amount of unit tests. A codebase written by
developers dogmatically following TDD would theoretically
contain no code that wasn’t written as a result of a failing
test. Proponents of TDD often claim that the results of TDD
give the existing team and future maintainers a greater level
of confidence.

TDD’s development cycle is also very appealing to developers
who can find a large problem overwhelming, but are able
to quickly break a large problem down into many smaller
tests that, when combined, solve the larger problem. Rather

Motivators 71

than focusing on the single large problem and trying to write
code that solves for every known problem, the developers
will focus on writing tests for each individual variable and
growing the code in a way where each test keeps passing and
each variable is dealt with individually.

Incredibly large and complicated problems don’t seem nearly
as daunting when programmers are able to focus exclusively
on the task at hand: make the individual test pass. In addi-
tion, all of the previously written tests provide a safety net,
thus allowing you to (harmlessly) ignore all prior constraints.

Proponents of TDD generally believe it promotes superior
design as well. Two reasons are the most often used when
describing the design benefits of TDD:

• By focusing on the test cases first, a developer is forced
to imagine how the functionalitywill be used by clients.

• TDD leads to more modularized, flexible, and extensi-
ble code by requiring that the developers think of the
software in terms of small units that can be written and
tested independently and integrated together later.

In my opinion every developer should practice TDD at some
point in their career. Utilizing TDD at the right moment will
unquestionably make you more productive. That said, the
frequency of those moments often depends greatly on the
individual. Only through experience can a developer know
how to judge whether the current moment would benefit or
suffer from switching to a TDD cycle.

An anonymous comment once appeared on my blog:

The developers that know how to write tests
correctly are very rare, and only those developers

Motivators 72

can really do TDD. The rest end up with a nest
of poorly written brittle tests that don’t fully test
the code.

It’s my hope that this book will help increase the number
of developers that are productively unit testing. Still, it’s
perfectly reasonable to delete a test that provided value as
part of a TDD cycle, but no longer has positive ROI.

Customer Acceptance

Unit Testing to achieve customer acceptance would be an
interesting choice. Rarely would a domain expert be willing
to sift through all of the unit tests to determine whether or
not they’re willing to sign off on the system. Thus, I imagine
you’d need to devise some type of filtering that allowed the
domain expert to drill down to what they believed to be
important.

My default choice is to enable the domain expert to write and
maintain tests in a tool designed for high level tests; removing
developers and unit tests almost entirely from the acceptance
process. However, if the developers must be responsible for
writing the tests used for customer acceptance, I would devise
a plan to annotate the appropriate unit tests and provide awell
formatted report based on the automated results.

In my experience, developers are willing to support customer
acceptance low level tests that can quickly be debugged when
they fail. Conversely, I’ve never seen a developer that was
happy to maintain tests that are both strictly for the customer
and high level (thus hard to debug).

Motivators 73

Ping Pong Pair-Programming

From the c2.com Wiki

here’s howPair Programmingworks onmy team.

1. A writes a new test and sees that it fails.
2. B implements the code needed to pass the

test.
3. B writes the next test and sees that it fails.
4. A implements the code needed to pass the

test.

And so on.

While the most popular definition obviously describes a TDD
approach, there’s no reason you couldn’t ping-pong writing
the test after. If you’re already pair programming, the rhythm
created by practicing ping-pong may be the only motivator
you need for writing a test. I’ve seen this approach utilized
very successfully.

Once a feature is complete it’s often worth your time to
examine the associated tests. Many of the recently created
tests will be valuable as is. Other tests may provide negative
ROI as written, but with small tweaks can be made to produce
positive ROI. Finally, any tests that were motivated solely by
the development process should be considered for deletion.

What Motivates You (or Your Team)

The primary driver for this chapter is to recognize that tests
can be written for many different reasons, and assuming that

Motivators 74

a test is necessary simply because it exists is not always the
right decision. It’s valuable to recognize which motivators are
responsible for a test that you’re creating or updating. If you
come across a test with no motivators, do everyone a favor
and delete the test.

I often write speculative tests that help me get to feature
completion, but are unnecessary in the long term. Those are
the tests that I look to delete once a feature is complete.
They’re valuable to me for brainstorming purposes, but aren’t
well designed for documentation, regression detection, or any
other motivator. Once they’ve served their purpose, I happily
kill them off.

Deleting tests that no longer provide value is an important
activity; however, deleting tests is an activity that shouldn’t
be taken lightly. Each test deletion likely requires at least a
little collaboration to ensure that (as I previously mentioned)
your valueless test isn’t someone else’s documentation.

Types of Tests
Before we get back to concrete examples there are a few terms
we’ll want to define: State Verification, Behavior Verification,
Solitary Unit Test, and Sociable Unit Test.

Strongly Recommended Reference
Material

In the next few sections I’ll put some basic definitions around
state and behavior verification. If you’re looking for addi-
tional material on this subject, I would highly recommend
reading Mocks Aren’t Stubs⁸ for a well written, in-depth
explanation of mocks, stubs, and their impact on testing.

⁸http://www.martinfowler.com/articles/mocksArentStubs.html

Types of Tests 76

State Verification

State Verification describes a style of testing where you ex-
ercise one or many methods of an object and then assert
the expected state of the object (and/or collaborators). In
Mocks Aren’t Stubs Martin Fowler identifies developers who
generally rely on state verification as Classicists. The primary
argument for a Classicists’ style might be stated as: State
verification tests specify the least possible implementation
detail, thus they will continue to pass even if the internals
of the methods being tested are changed.

As long as the external interface remains unchanged, the
following state verification tests should continue to pass re-
gardless of modification to the internals of Rental and Store.

note: The following RentalBuilder and StoreBuilder
instances use a (previously undocumented) wmethod
that takes a Movie instance. When using the
DataBuilder pattern it’s very common to have an
overloaded wmethod that takes either the builder
or an instance of the class.

Types of Tests 77

public class RentalTest {

@Test

public void rentalIsStartedIfInStore() {

Movie movie = a.movie.build();

Rental rental =

a.rental.w(movie).build();

Store store = a.store.w(movie).build();

rental.start(store);

assertTrue(rental.isStarted());

assertEquals(

0, store.getAvailability(movie));

}

@Test

public void

rentalDoesNotStartIfNotAvailable() {

Movie movie = a.movie.build();

Rental rental = a.rental.build();

Store store = a.store.build();

rental.start(store);

assertFalse(rental.isStarted());

assertEquals(

0, store.getAvailability(movie));

}

}

In the test above we’re verifying the started state of Rental;
however, it’s not possible to test a Rental without a Store

as well. The Rental would be considered the Subject Under
Test (SUT) as defined inMartin’s previously referencedMocks
Aren’t Stubs; however, I prefer the term Class Under Test (for
reasons later described). In the RentalTest the Store instance
is merely a collaborator.

Types of Tests 78

State verification tests generally rely on assertions to verify
the state of our objects; in our example we assert the state of
rental.isStarted() and store.getAvailability(movie).

note: The Classicist/Mockist dichotomy is about
more than testing, but the additional details are
outside the scope of this book. More information
can be found in the previously linked Mocks
Aren’t Stubs article.

Types of Tests 79

Behavior Verification

Behavior Verification describes a style of testing where the
execution of a method is expected to generate specific inter-
actions between objects. InMocks Aren’t StubsMartin Fowler
describes developers who generally rely on behavior verifi-
cation as Mockists. Behavior verification is about specifying
how the system should behave as it operates rather than
specifying the expected end state of the system after it has
completed an operation.

One common criticism of the behavior verification approach
is that implementation changes that preserve macro behavior
can lead to difficult to understand and largely valueless test
failures. Unsurprisingly, Mockists have developed a style of
test development that helps avoid this fragility.

Behavior verification tests with minimal collaborators can
effectively verify interactions without sacrificing maintain-
ability. As a result, a team that relies on Behavior verification
will likely produce a codebase with few Law of Demeter⁹
violations and a focus on Tell, Don’t Ask¹⁰.

For those unfamiliar with Law of Demeter and
Tell, Don’t Ask, the Law of Demeter can be de-
fined as Only talk to your immediate friends and
Tell, Don’t Ask can be defined as Rather than
asking an object for data and acting on that data,
we should instead tell an object what to do.

The following test verifies the interaction between a Rental

and a Store.

⁹http://en.wikipedia.org/wiki/Law_of_Demeter
¹⁰http://martinfowler.com/bliki/TellDontAsk.html

Types of Tests 80

public class RentalTest {

@Test

public void rentalIsStartedIfInStore() {

Movie movie = a.movie.build();

Rental rental =

a.rental.w(movie).build();

Store store = mock(Store.class);

when(store.getAvailability(movie))

.thenReturn(1);

rental.start(store);

assertTrue(rental.isStarted());

verify(store).remove(movie);

}

@Test

public void

rentalDoesNotStartIfNotAvailable() {

Rental rental = a.rental.build();

Store store = mock(Store.class);

rental.start(store);

assertFalse(rental.isStarted());

verify(

store, never()).remove(

any(Movie.class));

}

}

In the test above we’re verifying the Rental using state
verification; however, we’ve switched to behavior verification
for the Store collaborator. In our examples we’re using the
Mockito mocking framework to handle verification. Mockito
mocks follow the pattern of create, (optionally) stub, verify. In
our tests we create our mocks using the static method mock. In

Types of Tests 81

the first test we stub the result of store.getAvailability, in
the second test no stubbing is necessary. Finally, both tests use
the static method verify to assert the interactions the Store
instance received during test execution.

The use of mock verification to ensure a system behaves as
expected is a hallmark of the behavior verification approach
to testing.

My examples have focused on behavior verification imple-
mented with mocks, as that’s how I tend to do behavior veri-
fication. While I don’t use them in practice, for completeness
I’ll mention that spies¹¹ are another popular implementation
of behavior verification.

Picking a Side

In Mocks Aren’t Stubs Martin Fowler asks and answers the
following:

So should I be a classicist or a mockist? I find this
a difficult question to answer with confidence.

If you’ve done much unit testing, it’s likely that you already
have a preference. If you haven’t, you may find yourself
leaning more toward one approach than the other. Personally,
I’ve never been satisfied with the results from following the
advice from either camp. As the book continues we’ll explore
my favorite approach, which is more of a hybrid, but for now
the definitions above will suffice.

¹¹http://xunitpatterns.com/Test%20Spy.html

Types of Tests 82

Unit Test

The definition of Unit Test is quite general:

In computer programming, unit testing is amethod
by which individual units of source code, sets of
one or more computer programmodules together
with associated control data, usage procedures,
and operating procedures are tested to determine
if they are fit for use. […] A unit could be an
entire module, but it is more commonly an in-
dividual function or procedure. –Wikipedia

The above definition states that a unit can be an individual
Java method, but it can also be something much larger that
likely includes many collaborating classes. I find value in
splitting my unit tests into two distinct categories - Solitary
Unit Tests and Sociable Unit Tests.

Types of Tests 83

Solitary Unit Test

In Java it’s common to unit test at the class level. The Foo class
will have an associated FooTests class. Solitary Unit Tests
follow two additional constraints:

1. Never cross boundaries
2. The Class Under Test should be the only concrete class

found in a test.

Never cross boundaries is a fairly simple, yet controversial
piece of advice. In 2004, Bill Caputo wrote about this ad-
vice, and defined a boundary as: ”…a database, a queue,
another system…“. The advice to avoid crossing these types of
boundaries is grounded in performance concerns: accessing a
database, network, or file system significantly increases the
time it takes to run a test. When the aggregate execution
time impacts a developer’s decision to run the test suite, the
effectiveness of the entire team is at risk. A test suite that isn’t
run regularly doesn’t have many opportunities to provide
positive ROI.

In the same entry, Bill also defines a boundary as: ”… or
even an ordinary class if that class is ‘outside’ the area
your [sic] trying to work with or are responsible for”. Bill’s
recommendation is a good one, but I find it a bit vague and
prefer concrete advice on where to draw the line. My second
constraint is a concrete (and admittedly restrictive) version of
Bill’s recommendation.

The concept of constraining a unit test such that ‘the Class
Under Test should be the only concrete class found in a test’
sounds extreme, but it’s actually not that drastic if you assume
a few things.

Types of Tests 84

• You’re using a framework such as Mockito that allows
you to easily stub most concrete classes

• This constraint does not apply to any primitive or Java
class that has a literal (e.g. int, Integer, String, etc)

• You’re using some type of automated refactoring tool.

There are pros and cons to this approach, both of which we’ll
discuss later in the book. For now we will limit our focus to
achieving a clear understanding of what a Solitary Unit Test
is.

I define Solitary Unit Test as:

Solitary Unit Testing is an activity by which
methods of a class or functions of a namespace
are tested to determine if they are fit for use. The
tests used to determine if a class or namespace is
functional should isolate the class or namespace
under test by stubbing all collaboration with
additional classes and namespaces.

Types of Tests 85

Sociable Unit Test

The definition of Sociable Unit Test is simple: Any Unit Test
that cannot be classified as a Solitary Unit Test is a Sociable
Unit Test.

Types of Tests 86

Continuing with Examples From
Chapter 1

If you find yourself thinking, “Given those definitions, we
haven’t seen a single Solitary Unit Test in this book”, you’re
absolutely right. The very last (Behavior Verification) test we
saw came close; however, it relies on a RentalBuilder, which
creates a default instance of Movie.

It would have been possible to convert the tests in the first
chapter to Solitary Unit Tests, but that would have required
hand-rolling our own stubs or introducing a mocking frame-
work. Hand-rolling your own stubs isn’t something I gener-
ally recommend. Introducing a mocking framework would
have been possible, but I didn’t want the first chapter to
overwhelm and drag-on endlessly. Instead, we ended Chapter
1 with vastly improved, yet still Sociable Unit Tests.

However, I do believe a goodmix of Solitary and Sociable Unit
Tests tests is a superior solution, and now feels like a good
time to create some concrete examples of Solitary Unit Tests.

Let’s revisit the last CustomerTest we saw in Chapter 1.

Types of Tests 87

public class CustomerTest {

@Test

public void getName() {

assertEquals(

"John",

a.customer.w(

"John").build().getName());

}

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for David\nAmount" +

" owed is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.w(

"David").build().statement());

}

@Test

public void oneNewReleaseStatement() {

assertEquals(

"Rental record for John\n" +

"\tGodfather 4 9.0\n" +

"Amount owed is 9.0\n" +

"You earned 2 frequent renter points",

a.customer.w("John").w(

a.rental.w(

a.movie.w(

NEW_RELEASE))).build()

.statement());

}

Types of Tests 88

@Test

public void allRentalTypesStatement() {

assertEquals(

"Rental record for Pat\n" +

"\tGodfather 4 9.0\n" +

"\tScarface 3.5\n" +

"\tLion King 1.5\n" +

"Amount owed is 14.0\n" +

"You earned 4 frequent renter points",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(REGULAR)),

a.rental.w(

a.movie.w(

"Lion King").w(

CHILDREN))).build()

.statement());

}

Types of Tests 89

@Test

public void

newReleaseAndRegularStatement() {

assertEquals(

"Rental record for Steve\n" +

"\tGodfather 4 9.0\n" +

"\tScarface 3.5\n" +

"Amount owed is 12.5\n" +

"You earned 3 frequent renter points",

a.customer.w("Steve").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(

a.movie.w("Scarface").w(

REGULAR))).build()

.statement());

}

@Test

public void noRentalsHtmlStatement() {

assertEquals(

"<h1>Rental record for David" +

"</h1>\n<p>Amount owed is " +

"0.0</p>\n<p>" +

"You earned 0 frequent renter " +

"points</p>",

a.customer.w(

"David").build().htmlStatement());

}

Types of Tests 90

@Test

public void oneNewReleaseHtmlStatement() {

assertEquals(

"<h1>Rental record for John" +

"</h1>\n<p>Godfather 4 9.0</p>\n" +

"<p>Amount owed is 9.0</p>" +

"\n<p>You earned 2 frequent " +

"renter points</p>",

a.customer.w("John").w(

a.rental.w(

a.movie.w(NEW_RELEASE))).build()

.htmlStatement());

}

@Test

public void allRentalTypesHtmlStatement() {

assertEquals(

"<h1>Rental record for Pat" +

"</h1>\n<p>Godfather 4 9.0</p>\n<p>" +

"Scarface 3.5</p>\n<p>Lion King 1.5" +

"</p>\n<p>Amount owed is 14.0" +

"</p>\n<p>You earned 4 " +

"frequent renter points</p>",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(a.movie.w("Scarface").w(

REGULAR)),

a.rental.w(a.movie.w("Lion King").w(

CHILDREN))).build()

.htmlStatement());

}

Types of Tests 91

@Test

public void

newReleaseAndRegularHtmlStatement() {

assertEquals(

"<h1>Rental record for Steve" +

"</h1>\n<p>Godfather 4 9.0</p>" +

"\n<p>Scarface 3.5</p>\n<p>Amount " +

"owed is 12.5</p>\n<p>You " +

"earned 3 frequent renter points" +

"</p>",

a.customer.w("Steve").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(a.movie.w("Scarface").w(

REGULAR))).build()

.htmlStatement());

}

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

a.customer.w(

a.rental.w(

a.movie.w(UNKNOWN))).build();

}

}

CustomerTest is entirely too long and too fragile. These tests
are somewhat tiny universes with literal expected values, but
those values are often too long to easily digest and many of
these universes include several different concrete classes.

As I previously mentioned, were this my codebase, the first
thing I would look to do is create more fine-grained tests.

Types of Tests 92

The invalidTitle() test is an obvious candidate. There’s no
reason to test this exception in CustomerTest.

public class MovieTest {

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

a.movie.w(UNKNOWN).build();

}

}

The newly introduced MovieTest is our first true Solitary Unit
Test, and it’s a good one. The invalidTitle tiny universe
crosses no boundaries, so it’s incredibly fast; it also requires
no collaborators, thus only changes to Movie will cause this
test to fail.

Back in the CustomerTest it’s time to address something
that’s been bothering me for almost 40 pages: our statement
and htmlStatement tests are conflating verification of sum-
ming, string building, Movie points, and Movie charges. It’s
time to break those into individual tests.

When it comes to string building I’m all for testing a customer
with 0, 1, & 2 rentals, and one way to concisely test those
scenarios is to switch to using stubs.

Types of Tests 93

public class CustomerTest {

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for Jim\nAmount owed" +

" is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.build().statement());

}

@Test

public void oneRentalStatement() {

assertEquals(

"Rental record for Jim\n\tnull\n" +

"Amount owed is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.w(

mock(Rental.class)).build()

.statement());

}

Types of Tests 94

@Test

public void twoRentalsStatement() {

assertEquals(

"Rental record for Jim\n\t" +

"null\n\tnull\n" +

"Amount owed is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.w(

mock(Rental.class),

mock(Rental.class)).build()

.statement());

}

}

The switch to stub collaborators leaves the tests above much
more concise, but they do leave a bit to be desired. The first
time you encounter null values within an expected value
youmaywonder if you’ve discovered amistake. Additionally,
we’ve lost the verification of point and charge summing.

The Rental stubs could be altered to return non-null values
to concatenate. Personally, I find adding code to change the
String “null” to some other magic String is a negative
ROI activity. I prefer to accept null as the default String
return value, and avoid any need for method stubbing. The
expected values become easy to digest once you internalize
and embrace null as a default return value.

You might have also noticed that I switched each name to
“Jim”. You could argue that I should specify the name in the
test if I’m going to use it in my expected string. In theory I
agree this is a good guideline. In practice, the defaults should
never change. With that in mind, I generally prefer to opt for
relying on a default and writing shorter tests.

Types of Tests 95

The (now required) point and charge summing tests can be
seen below.

public class CustomerTest {

@Test

public void noRentalsCharge() {

assertEquals(

0.0,

a.customer.build().getTotalCharge(),

0);

}

@Test

public void twoRentalsCharge() {

Rental rental = mock(Rental.class);

when(rental.getCharge()).thenReturn(2.0);

assertEquals(

4.0,

a.customer.w(

rental,

rental).build().getTotalCharge(),

0);

}

Types of Tests 96

@Test

public void threeRentalsCharge() {

Rental rental = mock(Rental.class);

when(rental.getCharge()).thenReturn(2.0);

assertEquals(

6.0,

a.customer.w(

rental,

rental,

rental).build().getTotalCharge(),

0);

}

@Test

public void noRentalsPoints() {

assertEquals(

0,

a.customer.build().getTotalPoints());

}

@Test

public void twoRentalsPoints() {

Rental rental = mock(Rental.class);

when(rental.getPoints()).thenReturn(2);

assertEquals(

4,

a.customer.w(

rental,

rental).build().getTotalPoints());

}

Types of Tests 97

@Test

public void threeRentalsPoints() {

Rental rental = mock(Rental.class);

when(rental.getPoints()).thenReturn(2);

assertEquals(

6,

a.customer.w(

rental,

rental,

rental).build().getTotalPoints());

}

}

With those tests in place it’s time to add point and charge
verification to our MovieTest class.

Types of Tests 98

public class MovieTest {

@Test

public void getChargeForChildrens() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(1),

0);

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(2),

0);

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(3),

0);

assertEquals(

3.0,

a.movie.w(

CHILDREN).build().getCharge(4),

0);

assertEquals(

4.5,

a.movie.w(

CHILDREN).build().getCharge(5),

0);

}

Types of Tests 99

@Test

public void getChargeForNewRelease() {

assertEquals(

3.0,

a.movie.w(

NEW_RELEASE).build().getCharge(1),

0);

assertEquals(

6.0,

a.movie.w(

NEW_RELEASE).build().getCharge(2),

0);

assertEquals(

9.0,

a.movie.w(

NEW_RELEASE).build().getCharge(3),

0);

}

Types of Tests 100

@Test

public void getChargeForRegular() {

assertEquals(

2.0,

a.movie.w(

REGULAR).build().getCharge(1),

0);

assertEquals(

2.0,

a.movie.w(

REGULAR).build().getCharge(2),

0);

assertEquals(

3.5,

a.movie.w(

REGULAR).build().getCharge(3),

0);

assertEquals(

5.0,

a.movie.w(

REGULAR).build().getCharge(4),

0);

}

Types of Tests 101

@Test

public void getPointsForChildrens() {

assertEquals(

1,

a.movie.w(

CHILDREN).build().getPoints(1));

assertEquals(

1,

a.movie.w(

CHILDREN).build().getPoints(2));

}

@Test

public void getPointsForNewRelease() {

assertEquals(

1,

a.movie.w(

NEW_RELEASE).build().getPoints(1));

assertEquals(

2,

a.movie.w(

NEW_RELEASE).build().getPoints(2));

assertEquals(

2,

a.movie.w(

NEW_RELEASE).build().getPoints(3));

}

Types of Tests 102

@Test

public void getPointsForRegular() {

assertEquals(

1,

a.movie.w(

REGULAR).build().getPoints(1));

assertEquals(

1,

a.movie.w(

REGULAR).build().getPoints(2));

}

}

These new fine-grained CustomerTest and MovieTest Soli-
tary Unit Tests give me confidence in the system, and I also
feel comfortable that changes to a given class will only create
failures in the tests for the Class Under Test. For example, I
do not believe that changes to Movie will cause a failure in
CustomerTest.

Despite my happiness with these Solitary Unit Tests, there’s
still one more test I would write. Similar to my belief that
a hybrid of State Verification and Behavior Verification is
superior, I believe a combination of Solitary and Sociable
Unit Tests will provide a greater ROI than selecting one
exclusively.

The Final Thoughts CustomerTest from Chapter 1 contains
fairly well written Sociable Unit Tests, my only real complaint
is that it tries to cover code-paths that are more effectively
covered with Solitary Unit Tests (as we’ve done above). Still,
the following slimmed down version of CustomerTest serves
as a very helpful Sociable Unit Test.

Types of Tests 103

public class CustomerTest {

@Test

public void allRentalTypesStatement() {

assertEquals(

"Rental record for Pat\n" +

"\tGodfather 4 9.0\n" +

"\tScarface 3.5\n" +

"\tLion King 1.5\n" +

"Amount owed is 14.0\n" +

"You earned 4 frequent renter points",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(a.movie.w("Scarface").w(

REGULAR)),

a.rental.w(a.movie.w("Lion King").w(

CHILDREN)))

.build().statement());

}

Types of Tests 104

@Test

public void allRentalTypesHtmlStatement() {

assertEquals(

"<h1>Rental record for " +

"Pat</h1>\n" +

"<p>Godfather 4 9.0</p>\n" +

"<p>Scarface 3.5</p>\n" +

"<p>Lion King 1.5</p>\n" +

"<p>Amount owed is " +

"14.0</p>\n<p>" +

"You earned 4 frequent " +

"renter points</p>",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(a.movie.w("Scarface").w(

REGULAR)),

a.rental.w(a.movie.w("Lion King").w(

CHILDREN)))

.build().htmlStatement());

}

}

The tests from the previous example provide positive ROI
based on their verification of Customer, Rental, and Movie

integrating successfully.

Despite their overall positive ROI, these tests have 2 potential
issues:

• They run the risk of failing due to an implementation
change in a collaborator.

• When they fail it can be hard to determine if the issue
is coming from the Class Under Test, a collaborator, or
somewhere else completely.

Types of Tests 105

In practice I find you can keep the ROI positive if you mitigate
the above issues with the following suggestions.

• Verify as much as you can with 1 happy path test per
method. When things do go wrong, you want as little
noise as possible. Limiting the number of Sociable Unit
Tests can go a long way to helping the situation when
things go wrong.

• If you stick to fixing the Solitary Unit Tests before the
Sociable Unit Tests, by the time you get to a failing
Sociable Unit test you should have a very good idea
where to find the root of the problem.

Types of Tests 106

Final Thoughts, Again

The Solitary and Sociable Unit Tests (up to this point) are
provided below. It’s not necessary that you read every line,
but I think it’s worth considering the tests in their entirety.
We started with very complicated tests that were tough to
rapidly digest. Making matters worse, we were stuck with a
failing test and no simple path for finding the cause. The result
we’ve refactored to is not only easier to quickly understand,
but the same failure would be isolated to a significantly more
focused test; thus, making it easier to diagnose and fix.

As I said, you don’t need to read every line. Instead, I think it’s
valuable to try something similar to the exercise I provided in
Chapter 1. Below you’ll find the output from a failing test. If
you’re up for it, see if you can spot the issue in the code. Once
you find the failure and the origin, consider that experience
compared to the one you had in Chapter 1.

The Failure

JUnit version 4.11

..........E...

There was 1 failure:

1) twoRentalsCharge(solitary.CustomerTest)

java.lang.AssertionError: expected:<6.0> but was:\

<4.0>

FAILURES!!!

Tests run: 13, Failures: 1

Types of Tests 107

solitary.CustomerTest

public class CustomerTest {

@Test

public void getName() {

assertEquals(

"John",

a.customer.w(

"John").build().getName());

}

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for Jim\nAmount owed" +

" is 0.0\nYou earned 0 frequent " +

"renter points",

a.customer.build().statement());

}

@Test

public void oneRentalStatement() {

assertEquals(

"Rental record for Jim\n\tnull\n" +

"Amount owed is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.w(

mock(Rental.class)).build()

.statement());

}

Types of Tests 108

@Test

public void twoRentalsStatement() {

assertEquals(

"Rental record for Jim\n\tnull\n" +

"\tnull\nAmount owed is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.w(

mock(Rental.class),

mock(Rental.class)).build()

.statement());

}

@Test

public void noRentalsHtmlStatement() {

assertEquals(

"<h1>Rental record for Jim" +

"</h1>\n<p>Amount owed is 0.0" +

"</p>\n<p>You earned 0 " +

"frequent renter points</p>",

a.customer.build().htmlStatement());

}

Types of Tests 109

@Test

public void oneRentalHtmlStatement() {

Rental rental = mock(Rental.class);

assertEquals(

"<h1>Rental record for Jim" +

"</h1>\n<p>null</p>\n<p>Amount owed " +

"is 0.0</p>\n<p>You earned " +

"0 frequent renter points" +

"</p>",

a.customer.w(

mock(Rental.class)).build()

.htmlStatement());

}

@Test

public void twoRentalsHtmlStatement() {

assertEquals(

"<h1>Rental record for Jim" +

"</h1>\n<p>null</p>\n<p>null</p>\n" +

"<p>Amount owed is 0.0</p>" +

"\n<p>You earned 0 frequent" +

" renter points</p>",

a.customer.w(

mock(Rental.class),

mock(Rental.class)).build()

.htmlStatement());

}

Types of Tests 110

@Test

public void noRentalsCharge() {

assertEquals(

0.0,

a.customer.build().getTotalCharge(),

0);

}

@Test

public void twoRentalsCharge() {

Rental rental = mock(Rental.class);

when(rental.getCharge()).thenReturn(2.0);

assertEquals(

6.0,

a.customer.w(

rental,

rental).build().getTotalCharge(),

0);

}

@Test

public void threeRentalsCharge() {

Rental rental = mock(Rental.class);

when(rental.getCharge()).thenReturn(2.0);

assertEquals(

6.0,

a.customer.w(

rental,

rental,

rental).build().getTotalCharge(),

0);

}

Types of Tests 111

@Test

public void noRentalsPoints() {

assertEquals(

0,

a.customer.build().getTotalPoints());

}

@Test

public void twoRentalsPoints() {

Rental rental = mock(Rental.class);

when(rental.getPoints()).thenReturn(2);

assertEquals(

4,

a.customer.w(

rental,

rental).build().getTotalPoints());

}

@Test

public void threeRentalsPoints() {

Rental rental = mock(Rental.class);

when(rental.getPoints()).thenReturn(2);

assertEquals(

6,

a.customer.w(

rental,

rental,

rental).build().getTotalPoints());

}

}

Types of Tests 112

sociable.CustomerTest

public class CustomerTest {

@Test

public void allRentalTypesStatement() {

assertEquals(

"Rental record for Pat\n" +

"\tGodfather 4 9.0\n" +

"\tScarface 3.5\n" +

"\tLion King 1.5\n" +

"Amount owed is 14.0\n" +

"You earned 4 frequent renter points",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(a.movie.w("Scarface").w(

REGULAR)),

a.rental.w(a.movie.w("Lion King").w(

CHILDREN)))

.build().statement());

}

Types of Tests 113

@Test

public void allRentalTypesHtmlStatement() {

assertEquals(

"<h1>Rental record for Pat" +

"</h1>\n" +

"<p>Godfather 4 9.0</p>\n" +

"<p>Scarface 3.5</p>\n" +

"<p>Lion King 1.5</p>\n" +

"<p>Amount owed is " +

"14.0</p>\n<p>" +

"You earned 4 " +

"frequent renter points</p>",

a.customer.w("Pat").w(

a.rental.w(a.movie.w(NEW_RELEASE)),

a.rental.w(a.movie.w("Scarface").w(

REGULAR)),

a.rental.w(a.movie.w("Lion King").w(

CHILDREN)))

.build().htmlStatement());

}

}

Types of Tests 114

Customer

public class Customer {

private String name;

private List<Rental> rentals

= new ArrayList<Rental>();

public Customer(String name) {

this.name = name;

}

public String getName() {

return name;

}

public void addRental(Rental rental) {

rentals.add(rental);

}

public String statement() {

String result =

"Rental record for " +

getName() + "\n";

for (Rental rental : rentals)

result +=

"\t" + rental.getLineItem() + "\n";

result += "Amount owed is " +

getTotalCharge() + "\n" +

"You earned " + getTotalPoints() +

" frequent renter points";

return result;

}

Types of Tests 115

public String htmlStatement() {

String result =

"<h1>Rental record for " +

getName() + "</h1>\n";

for (Rental rental : rentals)

result +=

"<p>" + rental.getLineItem() +

"</p>\n";

result +=

"<p>Amount owed is " +

getTotalCharge() + "</p>\n" +

"<p>You earned " +

getTotalPoints() +

" frequent renter points</p>";

return result;

}

public double getTotalCharge() {

double total = 0;

for (Rental rental : rentals)

total += rental.getCharge();

return total;

}

public int getTotalPoints() {

int total = 0;

for (Rental rental : rentals)

total += rental.getPoints();

return total;

}

}

Types of Tests 116

solitary.MovieTest

public class MovieTest {

@Test

public void getChargeForChildrens() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(1),

0);

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(2),

0);

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(3),

0);

assertEquals(

3.0,

a.movie.w(

CHILDREN).build().getCharge(4),

0);

assertEquals(

4.5,

a.movie.w(

CHILDREN).build().getCharge(5),

0);

}

Types of Tests 117

@Test

public void getChargeForNewRelease() {

assertEquals(

3.0,

a.movie.w(

NEW_RELEASE).build().getCharge(1),

0);

assertEquals(

6.0,

a.movie.w(

NEW_RELEASE).build().getCharge(2),

0);

assertEquals(

9.0,

a.movie.w(

NEW_RELEASE).build().getCharge(3),

0);

}

Types of Tests 118

@Test

public void getChargeForRegular() {

assertEquals(

2.0,

a.movie.w(

REGULAR).build().getCharge(1),

0);

assertEquals(

2.0,

a.movie.w(

REGULAR).build().getCharge(2),

0);

assertEquals(

3.5,

a.movie.w(

REGULAR).build().getCharge(3),

0);

assertEquals(

5.0,

a.movie.w(

REGULAR).build().getCharge(4),

0);

}

Types of Tests 119

@Test

public void getPointsForChildrens() {

assertEquals(

1,

a.movie.w(

CHILDREN).build().getPoints(1));

assertEquals(

1,

a.movie.w(

CHILDREN).build().getPoints(2));

}

@Test

public void getPointsForNewRelease() {

assertEquals(

1,

a.movie.w(

NEW_RELEASE).build().getPoints(1));

assertEquals(

2,

a.movie.w(

NEW_RELEASE).build().getPoints(2));

assertEquals(

2,

a.movie.w(

NEW_RELEASE).build().getPoints(3));

}

Types of Tests 120

@Test

public void getPointsForRegular() {

assertEquals(

1,

a.movie.w(

REGULAR).build().getPoints(1));

assertEquals(

1,

a.movie.w(

REGULAR).build().getPoints(2));

}

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

a.movie.w(UNKNOWN).build();

}

}

Types of Tests 121

Movie

public class Movie {

public enum Type {

REGULAR, NEW_RELEASE, CHILDREN, UNKNOWN;

}

private String title;

Price price;

public Movie(

String title, Movie.Type priceCode) {

this.title = title;

setPriceCode(priceCode);

}

public String getTitle() {

return title;

}

Types of Tests 122

private void setPriceCode(

Movie.Type priceCode) {

switch (priceCode) {

case CHILDREN:

price = new ChildrensPrice();

break;

case NEW_RELEASE:

price = new NewReleasePrice();

break;

case REGULAR:

price = new RegularPrice();

break;

default:

throw new IllegalArgumentException(

"invalid price code");

}

}

public double getCharge(int daysRented) {

return price.getCharge(daysRented);

}

public int getPoints(int daysRented) {

return price.getPoints(daysRented);

}

}

Types of Tests 123

sociable.RentalTest

public class RentalTest {

@Test

public void

isStartedIfInStoreStateBased() {

Movie movie = a.movie.build();

Rental rental =

a.rental.w(movie).build();

Store store = a.store.w(movie).build();

rental.start(store);

assertTrue(rental.isStarted());

assertEquals(

0, store.getAvailability(movie));

}

@Test

public void

doesNotStartIfNotAvailableStateBased() {

Movie movie = a.movie.build();

Rental rental = a.rental.build();

Store store = a.store.build();

rental.start(store);

assertFalse(rental.isStarted());

assertEquals(

0, store.getAvailability(movie));

}

Types of Tests 124

@Test

public void

isStartedIfInStoreInteractionBased() {

Movie movie = a.movie.build();

Rental rental =

a.rental.w(movie).build();

Store store = mock(Store.class);

when(store.getAvailability(movie))

.thenReturn(1);

rental.start(store);

assertTrue(rental.isStarted());

verify(store).remove(movie);

}

@Test

public void

notStartedIfUnavailableInteractionBased() {

Rental rental = a.rental.build();

Store store = mock(Store.class);

rental.start(store);

assertFalse(rental.isStarted());

verify(

store, never()).remove(

any(Movie.class));

}

}

Types of Tests 125

Rental

public class Rental {

Movie movie;

private int daysRented;

private boolean started;

public Rental(

Movie movie, int daysRented) {

this.movie = movie;

this.daysRented = daysRented;

}

public Movie getMovie() {

return movie;

}

public int getDaysRented() {

return daysRented;

}

public double getCharge() {

return movie.getCharge(daysRented);

}

public int getPoints() {

return movie.getPoints(daysRented);

}

Types of Tests 126

public String getLineItem() {

return

movie.getTitle() + " " + getCharge();

}

public boolean isStarted() {

return started;

}

public void start(Store store) {

if (store.getAvailability(movie) > 0) {

store.remove(movie);

this.started = true;

}

}

}

Types of Tests 127

Store

public class Store {

private Map<Movie, Integer> movies;

public Store(Map<Movie, Integer> movies) {

this.movies = movies;

}

public int getAvailability(Movie movie) {

if (null == movies.get(movie))

return 0;

return movies.get(movie);

}

public boolean getAvailability(

Movie movie, int quantity) {

if (null == movies.get(movie))

return false;

return movies.get(movie) >= quantity;

}

public void remove(Movie movie) {

if (null == movies.get(movie))

return;

Integer count = movies.get(movie);

movies.put(movie, --count);

}

}

Improving Assertions
This chapter continues to build on the ideas previously pre-
sented, while offering new guidelines with a focus on asser-
tions. The guidelines complement each other, and in many
cases following one will put you in a better position to follow
others as well.

While some of these ideas may seem unconventional, rest
assured that these are pragmatic techniques I’ve used success-
fully in various contexts for several years.

While these ideas are not recipes that should be blindly fol-
lowed in perpetuity, I would recommend trying each of them
and deciding which are most effective given your context and
motivators.

Improving Assertions 129

One Assertion Per Test

Limiting your tests to using one assertion is an especially
controversial topic. I originally stumbled upon the idea on
Dave Astels’ blog¹². I liked the style of development that
Dave described and decided to give it a try, that was over
9 years ago. Since then I’ve worked on teams ranging from 2-
16 developers, with codebases in Ruby, C#, Clojure, and Java.
Regardless of the context, the guideline has always remained
valuable.

I genuinely believe sticking to one assertion per test will
increase maintainability of your tests. Tests with a tight focus
on one behavior of the system are almost always easier to
write today, and easier to read tomorrow.

Let’s look at some code that backs up these promises. The
following example was taken from the previously shown
MovieTest. As you can see, this test uses multiple assertions
to verify the charges for a childrens movie.

¹²http://www.artima.com/weblogs/viewpost.jsp?thread=35578

Improving Assertions 130

public class MovieTest {

@Test

public void getChargeForChildrens() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(1),

0);

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(2),

0);

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(3),

0);

assertEquals(

3.0,

a.movie.w(

CHILDREN).build().getCharge(4),

0);

assertEquals(

4.5,

a.movie.w(

CHILDREN).build().getCharge(5),

0);

}

}

Improving Assertions 131

Failure

The above test is passing, but a small change to ChildrensPrice
will generate a failure. Below you’ll find the JUnit output
when the test above is failing.

JUnit version 4.11

.E

There was 1 failure:

1) getChargeForChildrens(solitary.MovieTest)

java.lang.AssertionError: expected:<1.5> but was:\

<3.0>

FAILURES!!!

Tests run: 1, Failures: 1

The example above demonstrates the first reason I dislike
multiple asserts in one test. The first failure occurred when
calling getCharge with 3. We’re able to find that data by
looking at the (unincluded) stacktrace. It’s a bit annoying to
have to look at the stacktrace to know what’s failing, but that
alone wouldn’t drive me to break this test into multiple tests.
My largest complaint with this test is that I now know of one
failure, but have no (automatically generated) information
about the remaining tests.

Given a test with multiple assertions, when they’re all passing
they all provide value; however, when an assertion fails it
removes any value that would have been provided by all
subsequent assertions.

Below you can find the simple change that caused the tests to
begin failing.

Improving Assertions 132

public class ChildrensPrice extends Price {

@Override

public double getCharge(int daysRented) {

double amount = 1.5;

if (daysRented > 2) // *was 3*

amount += (daysRented - 2) * 1.5;

return amount;

}

}

At this point you may wonder if the collabora-
tion between Movie and ChildrensPrice forces
MovieTest to be classified as a Sociable Unit Test.
That’s definitely an interesting question, and one
that we’ll explore later in the book.

When faced with a failing test with multiple assertions you’re
forced to select from two inferior choices while (unneces-
sarily) working with limited information. You must either
read the domain code and test code to determine if any of
the additional assertions would fail, or you’ll have to loop
between running the tests and fixing any new failures. Both
approaches are inferior to running the tests once and being
presented with all of the pass/fail information.

Test Naming

I’ve already confessed that I don’t find much value in test
names. However, I also pointed out that they’re required by
most frameworks, and I think it’s in everyone’s best interest
if we spend the time to create helpful names. The currently

Improving Assertions 133

failing test has the name getChargeForChildrens, which
points me at a Movie.getCharge and provides the value of one
of the parameters, but it doesn’t tell me anything about the
only argument that’s actually passed to getCharge. I can’t see
any reason why the MovieType (CHILDREN) is more important
than the number of days the movie was rented. We could
have written the MovieTestmethods grouped by daysRented

instead, though the names would be just as limited and the
groupings just as unhelpful.

The Solution

You already know how these tests are going to look, but I’d
like to look at something else before I confirm your suspicions.
Below you’ll find the results of testing the same domain code
using one assertion per test.

JUnit version 4.11

...E.E.E

There were 3 failures:

1) getChargeForChildrens3Day(solitary.MovieTest)

java.lang.AssertionError: expected:<1.5> but was:\

<3.0>

2) getChargeForChildrens4Day(solitary.MovieTest)

java.lang.AssertionError: expected:<3.0> but was:\

<4.5>

3) getChargeForChildrens5Day(solitary.MovieTest)

java.lang.AssertionError: expected:<4.5> but was:\

<6.0>

FAILURES!!!

Tests run: 5, Failures: 3

Improving Assertions 134

It’s hard to express how much I prefer these failures to
the last presented failure. The test names give me a good
description of what’s failing. The expected and return values
give me valuable information per test, and the sum of the
expected and return values gives me additional information.
Specifically, It’s very easy to spot the pattern: anything above
2 days is failing, and each failure is off by 1.5. Anytime
you put multiple asserts in a test you’re suppressing valuable
pattern information that could help you (or more importantly
a teammate) find the source of a failure.

Below you’ll find the updated MovieTest with one assertion
per test.

Improving Assertions 135

public class MovieTest {

@Test

public void getChargeForChildrens1Day() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(1),

0);

}

@Test

public void getChargeForChildrens2Day() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(2),

0);

}

@Test

public void getChargeForChildrens3Day() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(3),

0);

}

Improving Assertions 136

@Test

public void getChargeForChildrens4Day() {

assertEquals(

3.0,

a.movie.w(

CHILDREN).build().getCharge(4),

0);

}

@Test

public void getChargeForChildrens5Day() {

assertEquals(

4.5,

a.movie.w(

CHILDREN).build().getCharge(5),

0);

}

}

Applying One Assertion Per Test To
Behavior Verification Tests

The previous example focused exclusively on State Verifica-
tion tests; however, I believe it’s important to apply the guide-
line to Behavior Verification tests as well. To be completely
clear: verifying a mock is asserting something, and I strongly
suggest you have one and only one assertion per test.

As usual we’ll start with an example. The following test is the
first interaction test we introduced in Chapter 3, refactored to
use a mock for the movie (thus making it a Solitary Unit Test).

Improving Assertions 137

public class RentalTest {

@Test

public void rentalIsStartedIfInStore() {

Movie movie = mock(Movie.class);

Rental rental =

a.rental.w(movie).build();

Store store = mock(Store.class);

when(store.getAvailability(movie))

.thenReturn(1);

rental.start(store);

assertTrue(rental.isStarted());

verify(store).remove(movie);

}

}

My concerns with this test are very similar to my concerns in
the previous test: the test name doesn’t convey any intent for
Store, and the first assertion to fail strips all additional value
from the assertions that follow the failure.

The test name could be altered to include Store, e.g. rentalIs-
StartedAndMovieIsRemovedFromStoreIfMovieCurrentlyInStore

Some would argue the long test name is fine; in my expe-
rience the longer the name the faster it tends to degrade.
Additionally, many believe the word “and” in a test name
is an indicator that your test needs to be split into at least 2
smaller tests. While I can’t claim to have invented the advice,
I definitely agree with it.

The following failure output and test demonstrate the second
issue.

Improving Assertions 138

JUnit version 4.11

.E

There was 1 failure:

1) rentalIsStartedIfInStore(solitary.RentalTest)

java.lang.AssertionError

FAILURES!!!

Tests run: 1, Failures: 1

Improving Assertions 139

public class RentalTest {

@Test

public void rentalIsStartedIfInStore() {

Movie movie = mock(Movie.class);

Rental rental =

a.rental.w(movie).build();

Store store = mock(Store.class);

when(store.getAvailability(movie, 1))

.thenReturn(true);

rental.start(store);

assertTrue(rental.isStarted());

verify(store).remove(movie);

}

}

In the above example I switched the stubbing of the store

getAvailability(Movie) to getAvailability(Movie, int).
A common real-life scenario is a switch of the domain code
from one method to another, and a stubbing that’s now out
of date. The result would look exactly like the failure above.
Unfortunately, the failure provides no answer to the question
Was remove called on the Store mock?

The solution is straightforward, test the Rental state in RentalTest
and test the Store behavior in the StoreTest.

After moving the Store verification to StoreTest there are
several small improvements we can make to the
rentalIsStartedIfInStore test.

Improving Assertions 140

public class RentalTest {

@Test

public void rentalIsStartedIfInStore() {

Rental rental = a.rental.build();

Store store = mock(Store.class);

when(store

.getAvailability(any(Movie.class)))

.thenReturn(1);

rental.start(store);

assertTrue(rental.isStarted());

}

}

The example above is the simplified RentalTest. The latest
version makes no attempt to verify interactions with the
store mock, thus removing the need to create a local Movie
variable. The RentalBuilder creates its own Movie (stub),
and the store.getAvailability method stubbing can be
switched to return 1 for any instance of Movie. The resulting
test is easier to read (less code to digest), and also more
robust (generalization of stub arguments make this test more
resilient to changes in the collaborator).

With the RentalTest improved, we can turn our attention
to creating a StoreTest. The Store domain object contains
fairly simple state; state that has no explicit dependency on
Rental. The following tests demonstrate how the Store class
can be easily verified using a Solitary Unit Test.

Improving Assertions 141

public class StoreTest {

@Test

public void storeWithNoAvailability() {

Store store = a.store.build();

assertEquals(

0,

store.getAvailability(

mock(Movie.class)));

}

@Test

public void storeWithAvailability() {

Movie movie = mock(Movie.class);

Store store =

a.store.w(movie, movie).build();

assertEquals(

2, store.getAvailability(movie));

}

@Test

public void

storeWithRemovedAvailability() {

Movie movie = mock(Movie.class);

Store store =

a.store.w(movie, movie).build();

store.remove(movie);

assertEquals(

1, store.getAvailability(movie));

}

}

The three simple State Verification tests above are so straight-
forward I can’t see much about them worth mentioning.

Improving Assertions 142

Those are the types of tests that I prefer to maintain - self
explanatory tests.

The RentalTest and StoreTest Solitary Unit Testswould give
me plenty of confidence in the system; however, this also feels
like a great place for a Sociable Unit Test.

public class RentalTest {

@Test

public void

storeAvailabilityIsModifiedOnRental() {

Movie movie = a.movie.build();

Rental rental =

a.rental.w(movie).build();

Store store =

a.store.w(movie, movie).build();

rental.start(store);

a.rental.build().start(store);

assertEquals(

1, store.getAvailability(movie));

}

}

The Sociable Unit Test above verifies that starting a Rental

will correctly remove a movie from inventory.

Thoughts On The Result

Tests with one assertion or mock verification clearly express
their purpose. In general, I believe code should not only
express how it works, but also why it’s been written in a
particular way. The new tests not only execute, but convey

Improving Assertions 143

their intent as well. Our new tests take more lines of code
than the original, but are also more maintainable. You could
change the internal implementation of Store in various ways
without impacting the RentalTest Solitary Unit Tests. When
the implementation does inevitably change these tests com-
municate the original author’s intent.

Writing tests in this way is easy, but does require discipline.

• If your test has an assertion, do not add any mock
verifications.

• If your test verifies a mock, do not add any assertions.
• At most, 1 assertion per test.
• At most, 1 mock verification per test.
• When stubbing method return values, use the most
generic argumentmatcher possible.Which segues nicely
to…

Improving Assertions 144

Implementation
Overspecification

The following Customer class contains a newmethod: recentRentals

Improving Assertions 145

public class Customer {

private String name;

private List<Rental> rentals =

new ArrayList<Rental>();

public Customer(String name) {

this.name = name;

}

public void addRental(Rental rental) {

rentals.add(rental);

}

public String recentRentals() {

String result = "Recent rentals:";

for (int i=0;

i < rentals.size() && i < 3;

i++) {

result += "\n" +

rentals.get(i).getMovie(

true).getTitle(

"%s starring %s %s", 2);

}

return result;

}

}

The recentRentalsmethod returns a string that contains the
titles of up to 3 recent rentals - thus it makes sense to create
tests for Customer instances with 2, 3, and 4 rentals.

Improving Assertions 146

You may have also noticed that both Movie.getTitle and
Rental.getMovie now require arguments. The arguments
being passed to getTitle are a format string and the number
of actors to include - and that’s all you really need to know
about getTitle. Calling getTitle will be important for this
section, but the actual implementation is irrelevant. Similarly,
the boolean passed to getMovie indicates whether the Movie
returned will be a copy or the original Rental constructor
argument, but the implementation isn’t relevant for the fol-
lowing examples.

Below you’ll findmultiple tests for the recentRentalsmethod.
If you’ve ever used a mocking framework, it’s likely that
you’ve written unit tests that look like the following exam-
ples.

Improving Assertions 147

public class CustomerTest {

@Test

public void recentRentalsWith2Rentals() {

Movie godfather = mock(Movie.class);

when(godfather

.getTitle("%s starring %s %s", 2))

.thenReturn("Godfather 4");

Rental godfatherRental =

mock(Rental.class);

when(godfatherRental.getMovie(true))

.thenReturn(godfather);

Movie lionKing = mock(Movie.class);

when(lionKing

.getTitle("%s starring %s %s", 2))

.thenReturn("Lion King");

Rental lionKingRental =

mock(Rental.class);

when(lionKingRental.getMovie(true))

.thenReturn(lionKing);

assertEquals(

"Recent rentals:\nGodfather 4\n" +

"Lion King",

a.customer.w(

godfatherRental, lionKingRental)

.build().recentRentals());

}

Improving Assertions 148

@Test

public void recentRentalsWith3Rentals() {

// same structure as above, with

// 8 more lines of mocking code,

// 25% longer expected value, and

// 2 lines of adding rentals to customer

}

@Test

public void recentRentalsWith4Rentals() {

// same structure as above, with

// 16 more lines of mocking code,

// 25% longer expected value, and

// 2 lines of adding rentals to customer

}

}

The point of this section would really be emphasized by
writing out all 3 tests, but I couldn’t bring myself to do that to
people reading on mobile devices. Hopefully it’s not too hard
to imagine how brutal and unnecessary it would be to see the
above example repeated and increased by 50 to 100 percent.

These tests are painful to read, but the greater issue is how
brittle they become as the business logic changes. Few things
kill productivity and motivation more than cascading test
failures, and implementation overspecification is a common
cause of cascading failures.

• A change to the Movie.getTitle definition could cause
this test to fail, e.g. this test would fail if a Title

class were introduced and became the return value of
getTitle.

Improving Assertions 149

• Any change to the Rental.getMovie definition could
cause this test to fail similarly to the above example.

• Any change to the arguments passed to getTitle or
getMovie would cascade through the above and the 2
(unwritten) tests.

• As implementations change it’s not uncommon for
method calls to become superfluous, causing any stub-
bing of the unused methods to become superfluous as
well. Since stubbing amethod causes no failure it’s very
common to find stubbing that is no longer relevant to
an otherwise valuable test.

It’s very common to add arguments, rename, overload, and
replace methods. The more specification your tests contain
the more likely you are to create a brittle test suite.

Flexible Argument Matchers

The first simple change you can make to reduce cascad-
ing failures is to introduce a flexible argument matcher.
The method we’re interested in testing returns a String. It
shouldn’t matter to the test what String, int, & boolean

arguments are used to accomplish this task.

The following unit tests make use of Mockito’s anyString,
anyInt, and anyBoolean matchers.

Improving Assertions 150

public class CustomerTest {

@Test

public void recentRentalsWith2Rentals() {

Movie godfather = mock(Movie.class);

when(

godfather.getTitle(

anyString(), anyInt()))

.thenReturn("Godfather 4");

Rental godfatherRental =

mock(Rental.class);

when(

godfatherRental.getMovie(anyBoolean()))

.thenReturn(godfather);

Movie lionKing = mock(Movie.class);

when(

lionKing.getTitle(

anyString(), anyInt()))

.thenReturn("Lion King");

Rental lionKingRental =

mock(Rental.class);

when(

lionKingRental.getMovie(anyBoolean()))

.thenReturn(lionKing);

assertEquals(

"Recent rentals:\nGodfather 4\n" +

"Lion King",

a.customer.w(

godfatherRental, lionKingRental)

.build().recentRentals());

}

}

Improving Assertions 151

This simple change completely removes any cascading fail-
ures that would occur from changing any of the argument
values passed to getTitle and getMovie. The resulting tests
are free to focus less on the implementation and more on the
assertion’s expected value.

Default Return Values

We’re specifying return values for both the getMovie and
getTitle methods. The return value for getMovie is neces-
sary to avoid a NullPointerException; however, do we really
need a return value for getTitle?

Improving Assertions 152

public class CustomerTest {

@Test

public void recentRentalsWith2Rentals() {

Movie godfather = mock(Movie.class);

Rental godfatherRental =

mock(Rental.class);

when(

godfatherRental.getMovie(anyBoolean()))

.thenReturn(godfather);

Movie lionKing = mock(Movie.class);

Rental lionKingRental =

mock(Rental.class);

when(

lionKingRental.getMovie(anyBoolean()))

.thenReturn(lionKing);

assertEquals(

"Recent rentals:\nnull\nnull",

a.customer.w(

godfatherRental, lionKingRental)

.build().recentRentals());

}

}

The above test removes the return value specification for
getTitle. A nice side-effect of removing the return value is
the ability to remove themethod stubbing completely; flexible
matchers are great, but specifying nothing will always be
superior. Increasing test durability and removing code (thus
conceptual overhead) are always preferable, but at what cost?
I would argue that testing for the String "null" is no better or
worse than testing for the String "Godfather 4". However,
I’m happy to concede that without specifying the return

Improving Assertions 153

values we have lost any assertion on ordering. We’ll come
back to that.

You may have noticed that our assertion now makes no
differentiation between the two rentals; thus there’s really no
need for two Movie and Rental instances.

public class CustomerTest {

@Test

public void recentRentalsWith2Rentals() {

Movie movie = mock(Movie.class);

Rental rental = mock(Rental.class);

when(rental.getMovie(anyBoolean()))

.thenReturn(movie);

assertEquals(

"Recent rentals:\nnull\nnull",

a.customer.w(rental, rental).build()

.recentRentals());

}

}

Law of Demeter

At this point we’ve simplified our tests to the level that adding
the previously unwritten tests would be as easy as copying
what we have and adding rental as many times as necessary.
However, before we pursue that path it’s worth mentioning
another possible improvement.

As I previously mentioned in Behavior Verification, people
who tend to use mocks also tend not to violate the Law of
Demeter.

Law of Demeter¹³ can be succinctly summarized in one of the

¹³http://en.wikipedia.org/wiki/Law_of_Demeter

Improving Assertions 154

following ways:

• Each unit should have only limited knowledge about
other units: only units “closely” related to the current
unit.

• Each unit should only talk to its friends; don’t talk to
strangers.

• Only talk to your immediate friends.

As I previously mentioned, the #isTDDDead debate has been
a hot topic lately. In response, Gary Bernhardt wrote¹⁴ the
following.

[E]xperienced users of mocks rarely nest them
deeply. Avoiding numerous or deeply nestedmocks
is the principal design activity of isolated TDD.

I believe Gary’s opinion is absolutely correct. I would actually
argue that the advice has little to do with TDD and should be
more broadly applied. I would restate it as the following:

Experienced users of mocks rarely nest them
deeply. Avoiding numerous or deeply nestedmocks
is a principal design activity for people who
effectively use mocks.

Indeed, the impact of applying the Law of Demeter can be
seen by looking at the resulting test.

¹⁴https://www.destroyallsoftware.com/blog/2014/test-isolation-is-about-avoiding-
mocks

Improving Assertions 155

public class CustomerTest {

@Test

public void recentRentalsWith2Rentals() {

Rental rental = mock(Rental.class);

assertEquals(

"Recent rentals:\nnull\nnull",

a.customer.w(rental, rental).build()

.recentRentals());

}

}

A change must obviously be made to Rental to enable the
test above. Below you can find the updated Customer domain
class, which relies on the getTitle method of Rental.

note: In our Customer implementationwe pass no
arguments to getTitle.Whether or not getTitle
can use defaults or should take arguments will
depend on your domain and is outside the scope
of our discussion; our test would look the same
regardless of the arguments taken by getTitle.

Improving Assertions 156

public class Customer {

private String name;

private List<Rental> rentals =

new ArrayList<Rental>();

public Customer(String name) {

this.name = name;

}

public void addRental(Rental rental) {

rentals.add(rental);

}

public String recentRentals() {

String result = "Recent rentals:";

for (int i=0;

i < rentals.size() && i < 3;

i++) {

result +=

"\n" + rentals.get(i).getTitle();

}

return result;

}

}

Martin Fowler points out (in Mocks aren’t Stubs) this type of
change can lead to middle men objects bloated with forward-
ing methods. Whether or not to make this final change will
often rest with the test maintainer and their opinion on the
impact to the domain model. I would tend to err on the side
of following the Law of Demeter, as it allows me to enjoy the
benefits of many tests while ensuring that they are succinct

Improving Assertions 157

enough to maintain. For example, I would prefer to test the
recentRentals method using customers with 0, 1, 2, 3, and 4
rentals. Below, you can find exactly those tests.

Improving Assertions 158

public class CustomerTest {

@Test

public void recentRentals0Rentals() {

assertEquals(

"Recent rentals:",

a.customer.build().recentRentals());

}

@Test

public void recentRentals1Rental() {

assertEquals(

"Recent rentals:\nnull",

a.customer.w(

mock(Rental.class)).build()

.recentRentals());

}

@Test

public void recentRentals2Rental() {

assertEquals(

"Recent rentals:\nnull\nnull",

a.customer.w(

mock(Rental.class),

mock(Rental.class)).build()

.recentRentals());

}

Improving Assertions 159

@Test

public void recentRentals3Rental() {

assertEquals(

"Recent rentals:\nnull\nnull\nnull",

a.customer.w(

mock(Rental.class),

mock(Rental.class),

mock(Rental.class)).build()

.recentRentals());

}

@Test

public void recentRentals4Rental() {

assertEquals(

"Recent rentals:\nnull\nnull\nnull",

a.customer.w(

mock(Rental.class),

mock(Rental.class),

mock(Rental.class),

mock(Rental.class)).build()

.recentRentals());

}

}

I believe it’s worth noting that increasing the quality of the
tests put me in a position to easily increase test coverage as
well.

Get Sociable

Our Solitary Unit Tests succinctly cover most of the function-
ality of recentRentals. If you find yourself concerned about

Improving Assertions 160

changes to Rental or Movie not being detected by our current
tests, I would point out that this is by design. I wouldn’t
want changes in either of those classes to affect Customer
tests unless it were unavoidable. Tests ensuring changes to
Rental or Movie do not produce production bugs should live
in RentalTest and MovieTest respectively.

While the Solitary Unit Tests do provide valuable coverage,
we still need to test that the actual domain classes compose
correctly and in the expected order (the coverage I previously
noted the loss of).

Below you can find a Sociable Unit Test that covers those
concerns.

public class CustomerTest {

@Test

public void

recentRentalsWith3OrderedRentals() {

assertEquals(

"Recent rentals:"+

"\nGodfather 4\nLion King\nScarface",

a.customer.w(

a.rental.w(a.movie.w("Godfather 4")),

a.rental.w(a.movie.w("Lion King")),

a.rental.w(a.movie.w("Scarface")),

a.rental.w(a.movie.w("Notebook")))

.build().recentRentals());

}

}

By combining a single Sociable Unit Test with several Soli-
tary Unit Tests utilizing sparsely specified mocks we’re able

Improving Assertions 161

to cover all functionality while avoiding cascading failures,
accidental coupling, and overly verbose tests.

Comparison

I couldn’t bring myself to end this chapter without providing
a few examples for comparison. I think it’s worth noting that
all of the Solitary Unit Tests combined are less lines of code
than the original individual test with 4 rentals.

Improving Assertions 162

The (Previously Unwritten) Original Test with
Four Rentals

public class CustomerTest {

@Test

public void recentRentalsWith4Rentals() {

Movie godfather = mock(Movie.class);

when(godfather

.getTitle("%s starring %s %s", 2))

.thenReturn("Godfather 4");

Rental godfatherRental =

mock(Rental.class);

when(godfatherRental.getMovie(true))

.thenReturn(godfather);

Movie lionKing = mock(Movie.class);

when(lionKing

.getTitle("%s starring %s %s", 2))

.thenReturn("Lion King");

Rental lionKingRental =

mock(Rental.class);

when(lionKingRental.getMovie(true))

.thenReturn(lionKing);

Movie scarface = mock(Movie.class);

when(scarface

.getTitle("%s starring %s %s", 2))

.thenReturn("Scarface");

Rental scarfaceRental =

mock(Rental.class);

when(scarfaceRental.getMovie(true))

.thenReturn(scarface);

Movie notebook = mock(Movie.class);

when(notebook

.getTitle("%s starring %s %s", 2))

Improving Assertions 163

.thenReturn("Notebook");

Rental notebookRental =

mock(Rental.class);

when(notebookRental.getMovie(true))

.thenReturn(notebook);

assertEquals(

"Recent rentals:"+

"\nGodfather 4\nLion King" +

"\nScarface",

a.customer.w(

godfatherRental, lionKingRental,

scarfaceRental, notebookRental)

.build().recentRentals());

}

}

Improving Assertions 164

The Sociable Unit Test and The Sparsely
Specified Solitary Unit Tests

Sociable CustomerTest

public class CustomerTest {

@Test

public void

recentRentalsWith3OrderedRentals() {

assertEquals(

"Recent rentals:"+

"\nGodfather 4\nLion King\nScarface",

a.customer.w(

a.rental.w(a.movie.w("Godfather 4")),

a.rental.w(a.movie.w("Lion King")),

a.rental.w(a.movie.w("Scarface")),

a.rental.w(a.movie.w("Notebook")))

.build().recentRentals());

}

}

Improving Assertions 165

Solitary CustomerTest

public class CustomerTest {

@Test

public void recentRentals0Rentals() {

assertEquals(

"Recent rentals:",

a.customer.build().recentRentals());

}

@Test

public void recentRentals1Rental() {

assertEquals(

"Recent rentals:\nnull",

a.customer.w(

mock(Rental.class)).build()

.recentRentals());

}

@Test

public void recentRentals2Rental() {

assertEquals(

"Recent rentals:\nnull\nnull",

a.customer.w(

mock(Rental.class),

mock(Rental.class)).build()

.recentRentals());

}

Improving Assertions 166

@Test

public void recentRentals3Rental() {

assertEquals(

"Recent rentals:\nnull\nnull\nnull",

a.customer.w(

mock(Rental.class),

mock(Rental.class),

mock(Rental.class)).build()

.recentRentals());

}

@Test

public void recentRentals4Rental() {

assertEquals(

"Recent rentals:\nnull\nnull\nnull",

a.customer.w(

mock(Rental.class),

mock(Rental.class),

mock(Rental.class),

mock(Rental.class)).build()

.recentRentals());

}

}

There’s vast power in creating a domain model that can be
succinctly tested.

Improving Assertions 167

Assert Last

The longer a test takes to digest, the more likely I am to be
unhappy with it. This process usually begins by trying to find
the actual ‘assertion’. Rather than starting with examples of
tests I find inferior, I’ll begin by defining what I call the Assert
Last principle: The assertion should be the last piece of code
found within a test.

You may have run into a similar idea in the past. There are a
few AAA definitions that can be found on the web:

Assemble Activate Assert seems to be used pri-
marily in the Ruby Language community. The
Arrange Act Assert term seems to be more pop-
ular in the Java Language community.

“Arrange-Act-Assert” is a pattern for arranging
and formatting code in Unit Test methods. Each
method should group the following, separated
by blank lines: Arrange all necessary precondi-
tions and inputs. Act on the object or method
under test. Assert that the expected results have
occurred. c2 wiki¹⁵

Assert Last is a subset of AAA, and it’s the A that I’ve
found to have the most value. Your tests will become more
maintainable if you can convince your team to go full AAA.
However, if you’re not ready to go fullAAA, I believe you can
still get 80% of the benefit simply by adopting the Assert Last
guideline.

¹⁵http://c2.com/cgi/wiki?AssembleActivateAssert

Improving Assertions 168

Many of the problematic tests you’ve seen up to this point
violate this principle.

• Tests with multiple assertions often end with an as-
sertion, but also contain interleaved assertions as well.
As we previously noted, multiple assertions force the
maintainer to determinewhich assertion actually failed.
Boo.

• Tests with assertions in loops somewhat structurally
appear to end with a single assertion, but we’ve already
seen how incorrect it would be to claim those tests
follow the principle.

• Testing an expected exception via an Annotation clearly
violates this principle.

We’ve already seen two of the three solutions: One Assertion
Per Test & Replace Loop with Individual Test respectively.

Unfortunately testing exceptions while following this princi-
ple is a bit less friendly on the eyes.

Expect Exceptions via Try/Catch

The starting point for this section will be the invalidTitle

test that was last seen in the Final Thoughts section of Chapter
3.

Improving Assertions 169

public class MovieTest {

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

a.movie.w(UNKNOWN).build();

}

}

In Chapter 3 I called this test a “good” test; however, perhaps
I was a bit too generous. That test is a good example of a
Solitary Unit Test ; however, it’s not what I would consider
a good test. Despite being very simple, I still dislike this test
based solely on its violation of the Assert Last principle. It
feels unnecessary to say this, and yet I can’t bring myself
to be less than explicit: there’s a cost to breaking patterns,
and putting your assertion in an Annotation simply to avoid
the characters necessary to write a try / catch is very
shortsighted.

Improving Assertions 170

public class MovieTest {

@Test

public void invalidTitle() {

try {

a.movie.w(UNKNOWN).build();

fail();

} catch (Exception ex) {

assertEquals(

IllegalArgumentException.class,

ex.getClass());

}

}

}

The above test is usually what you find when someone
doesn’t know about or disapproves of the expected exception
Annotation. While it does the trick, it also violates the Assert
Last principle. When the first line of the try block fails to
throw an exception, Assert.fail is invoked. I consider fail
to be an assertion not found last within the test. However,
even if I didn’t consider fail an assertion, this test structure
has another large problem: If the fail is forgotten at the time
of test creation the test will pass, but at some point (if the
exception stops being thrown) the test will begin reporting
false positives due to the catch no longer being executed.

The following test is even more verbose, but provides no
opportunities for false positives.

Improving Assertions 171

public class MovieTest {

@Test

public void invalidTitle() {

Exception e = null;

try {

a.movie.w(UNKNOWN).build();

} catch (Exception ex) {

e = ex;

}

assertEquals(

IllegalArgumentException.class,

e.getClass());

}

}

Assert Throws

Although the above test structure suffices it isn’t exactly
elegant. Perhaps it’s worth taking a step back. We’ve all been
told that exceptions shouldn’t be used for flow control, and
I’m violating that advice in this example. Sometimes it is
worth taking a step back to ask if an ugly test is giving an
indication of a poor domain choices. Is it possible to change
the domain code to make it follow best practices (no flow
control exceptions) and be more testable?

Still, I’m sure there are codebases where a large number of
exceptions are raised for valid reasons. In that case, I suspect
you may want to create some infrastructure to remove the
test noise. Below you’ll find an example of a test that uses a
user defined assertThrows method

Improving Assertions 172

public class MovieTest {

@Test

public void invalidTitle() {

Runnable runnable = new Runnable() {

public void run() {

a.movie.w(UNKNOWN).build();

}

};

assertThrows(

IllegalArgumentException.class,

runnable);

}

public void assertThrows(

Class ex, Runnable runnable) {

Exception exThrown = null;

try {

runnable.run();

} catch (Exception exThrownActual) {

exThrown = exThrownActual;

}

if (null == exThrown)

fail("No exception thrown");

else

assertEquals(ex, exThrown.getClass());

}

}

I’m not crazy enough to call the above solution ‘elegant’ in
its current form. However, if you’re already using IntelliJ the
anonymous Runnable class will collapse to something much
more palatable. Additionally, Java 8’s lambda syntax could

Improving Assertions 173

be used to create a pleasant, yet concise solution (and will be,
later).

Mock Verification

Thus far, all Behavior Verification examples found in this
book have used the Mockito mock framework. Mockito’s
mocks allow interaction without specification; verification of
mocks is always done following the interaction via the verify
method. Mockito’s interaction style allows for seamless con-
formance to the Assert Last principle. The same cannot be
said of many competing frameworks.

Many of the competing frameworks have loyal users and
advocates. I strongly believe that people should use the tools
that make them the most effective, thus I would never go so
far as to recommend everyone switch toMockito andmy style
of testing. That said, if you’ve never attempted to write your
tests with the Assert Last principle in mind, I believe you
should give it a try at some point. There’s something truly
satisfying and productive about workingwith tests where you
know, before even looking at the test, that whatever is being
verified can be found at the end of the test.

Improving Assertions 174

Comparison

I like to end these sections with examples that are easy to
compare. My hope is that these comparison subsections give
you the opportunity to decide if the advice applies to you or
not.

note: a setPrice method was added to Movie
strictly to enable a Behavior Verification test
example. Were this more than a book example, I
would likely use a State Verification test to verify
getCharge (as has been previously shown) and I
would have no need for the setPrice method.

Improving Assertions 175

Inconsistent Assert Location

public class MovieTest {

Mockery context = new Mockery();

@Test

public void getPointsForDays() {

Movie movie = a.movie.build();

assertEquals(1, movie.getPoints(2));

assertEquals(1, movie.getPoints(3));

}

@Test

(expected=IllegalArgumentException.class)

public void invalidTitle() {

a.movie.w(UNKNOWN).build();

}

@Test

public void getPriceFromPriceInstance() {

final Price price =

context.mock(Price.class);

Movie movie = a.movie.build();

movie.setPrice(price);

context.checking(new Expectations() {{

oneOf(price).getCharge(3);

}});

movie.getCharge(3);

context.assertIsSatisfied();

}

}

Improving Assertions 176

Although the word ‘assert’ is used on the last
line of the JMock test, the actual expectations are
found much higher in the test.

Assert Last Conformance

public class MovieTest {

@Test

public void getPoints2Days() {

assertEquals(

2, a.movie.build().getPoints(2));

}

@Test

public void getPoints3Days() {

assertEquals(

2, a.movie.build().getPoints(3));

}

@Test

public void invalidTitle() {

Runnable runnable = new Runnable() {

public void run() {

a.movie.w(UNKNOWN).build();

}

};

assertThrows(

IllegalArgumentException.class,

runnable);

}

Improving Assertions 177

@Test

public void getPriceFromPriceInstance() {

Price price = mock(Price.class);

Movie movie = a.movie.build();

movie.setPrice(price);

movie.getCharge(3);

verify(price).getCharge(3);

}

}

I find the Assert Last principle to have a sum value that’s
greater than the parts (i.e. the value is in consistent application
of the principle across an entire codebase, not in an individual
test).

Improving Assertions 178

Expect Literals

Whenwriting a State Verification test youmust specify an ex-
pected and actual value. Though there are several static meth-
ods on Assert that can be used for verification, assertEquals
is by far the most commonly used assertion. When using
assertEquals your State Verification test takes the shape
assertEquals(expected, actual).

Expected values can be any object; however, using literals
(String, int, char) for expected values is advantageous for
readability and traceability. To be clear, the expected value
should be the literal itself, not a variable holding a value that
was previously created by a literal.

Tests that use literal expected values are easier to read; when
an expected value is simply a literal you’re able to focus
almost exclusively on the actual value. The following 3 tests
verify the same thing, but only the third example uses a literal
expected value. In the third example it’s easy to see what’s
expected, less so in the first two.

note: the following example asserts equality on
doubles, thus the generic format is assertEquals(expected,
actual, delta)

Improving Assertions 179

public class RegularPriceTest {

@Test

public void chargeWithStaticVal() {

assertEquals(

basePrice,

a.regularPrice.build().getCharge(2),

0);

}

@Test

public void chargeWithLocalVal() {

int daysRented = 4;

double charge =

basePrice + (

daysRented - 2) * multiplier;

assertEquals(

charge,

a.regularPrice.build().getCharge(

daysRented),

0);

}

@Test

public void chargeWithLiteral() {

assertEquals(

5.0,

a.regularPrice.build().getCharge(4),

0);

}

}

The above tests are fairly clean by design. Even with simpli-
fied tests the second example shows how things can escalate

Improving Assertions 180

quickly when an expected value is more than a literal. The
value of expecting literals becomes even greater as the tests
become more complex. As we noted in Chapter 1, if neither
your expected nor actual values are literals you’re forced to
determine the value of both when a test fails. Conversely, if
your expected value is a literal, only the actual valuewill need
to be traced when a test is failing.

In the above example, if the final test fails it’s due to the
calculation changing in some way - there’s no other possible
cause. When the calculation changes, it’s valuable to get
feedback that it changed (by way of a failing test). The second
test doesn’t use a literal expected value, and it will not fail
if the value of multiplier is changed. Some people might
consider this valuable or perhaps even more maintainable, I’d
consider it a bug waiting to happen.

Despite who’s writing the code, it’s not likely that the pro-
grammer is actually responsible for determining the correct
multiplier based on business needs. Most businesses would
have a subject matter expert that would provide themultiplier
and express (via requirements) the formula for calculating a
charge.

It seems safe to assume the requirements will give examples
such as:

• a 2 day rental = charge of 2.0
• a 3 day rental = charge of 3.5
• a 4 day rental = charge of 5.0

If literal numbers are used as expected values the tests will
directly reflect some or all of the examples from the business,
giving us confidence that the calculation has been written as

Improving Assertions 181

the business desires. In the future, when the requirements
change, new literals can be added to the tests before the
calculation is updated.

Given this work-flow, it shouldn’t be possible to accidentally
break the calculation; by decoupling the expected value from
the domain, we’ve increased the value of our tests.

Value Objects vs Expect Literals

There are times when the language doesn’t provide a lit-
eral for the actual value. For example, when you need to
assert equality on a value object such as a Money, Date or
Time. In that situation I do my best to use literal expected
values and convert the value object to a literal that ap-
proximates the value as closely as possible. In the case of
a Money object I would likely do something along the lines
of assertEquals(10.0, tenDollars.toDouble(), 0). The
following example demonstrates the solution I would choose
for dealing with a Movie.releaseDate.

Improving Assertions 182

public class MovieTest {

@Test

public void compareDates() {

Movie godfather =

a.movie.w(

new Date(70261200000L)).build();

assertEquals(

"1972-03-24",

new SimpleDateFormat(

"yyyy-MM-dd").format(

godfather.releaseDate()));

}

}

It’s not always possible to use literals for expected values, but
if you strive to use literals whenever possible your tests will
be more readable and traceable.

Comparison

As I previously mentioned, the tests within this section were
kept quite simple by design. Hopefully the concise (yet con-
trived) tests effectively convey the point. If so, you can skim
or skip the next examples; however, if you find yourself
unconvinced, here’s a quick comparison using examples from
Chapter 1.

Improving Assertions 183

Expecting Variables

public class CustomerTest {

@Test

public void statementFor1Rental() {

Rental rental = mock(Rental.class);

Customer customer =

a.customer.w(rental).build();

assertEquals(

expStatement(

"Rental record for %s\n%sAmount " +

"owed is %s\n" +

"You earned %s frequent " +

"renter points",

customer,

rentalInfo(

"\t", "", new Rental[] {rental})),

customer.statement());

}

Improving Assertions 184

@Test

public void statementFor2Rentals() {

Rental godfather = mock(Rental.class);

Rental scarface = mock(Rental.class);

Customer customer =

a.customer.w(

godfather, scarface).build();

assertEquals(

expStatement(

"Rental record for %s\n%sAmount " +

"owed is %s\n" +

"You earned %s frequent " +

"renter points",

customer,

rentalInfo(

"\t", "", new Rental[] {

godfather, scarface})),

customer.statement());

}

Improving Assertions 185

public static String rentalInfo(

String startsWith,

String endsWith,

Rental[] rentals) {

String result = "";

for (Rental rental : rentals)

result += String.format(

"%s%s%s\n",

startsWith,

rental.getLineItem(),

endsWith);

return result;

}

public static String expStatement(

String formatStr,

Customer customer,

String rentalInfo) {

return String.format(

formatStr,

customer.getName(),

rentalInfo,

customer.getTotalCharge(),

customer.getTotalPoints());

}

}

Improving Assertions 186

Expecting Literals

public class CustomerTest {

@Test

public void statementFor1Rental() {

Customer customer =

a.customer.w(

mock(Rental.class)).build();

assertEquals(

"Rental record for Jim\n" +

"\tnull\n" +

"Amount owed is 0.0\n" +

"You earned 0 frequent renter points",

customer.statement());

}

@Test

public void statementFor2Rentals() {

Customer customer =

a.customer.w(

mock(Rental.class),

mock(Rental.class)).build();

assertEquals(

"Rental record for Jim\n"+

"\tnull\n" +

"\tnull\n" +

"Amount owed is 0.0\n" +

"You earned 0 frequent renter points",

customer.statement());

}

}

Improving Assertions 187

Which of the previous CustomerTest classes would you prefer
to maintain?

Improving Assertions 188

Negative Testing

It seems that every test suite eventually contains some num-
ber of what I call Negative Tests: tests that assert something
did not happen. These tests can live in various forms, both
State Verification and Behavior Verification. The following
tests represent some of the most common patterns.

Improving Assertions 189

public class RentalTest {

@Test

public void

storeMockNeverReceivesRemove() {

Movie movie = mock(Movie.class);

Rental rental =

a.rental.w(movie).build();

Store store = mock(Store.class);

when(

store.getAvailability(

any(Movie.class)))

.thenReturn(0);

rental.start(store);

verify(store, never()).remove(movie);

}

@Test

public void failOnStoreRemove() {

Movie movie = mock(Movie.class);

Rental rental =

a.rental.w(movie).build();

Store store = new Store(

new HashMap<Movie,Integer>()) {

public void remove(Movie movie) {

fail();

}

};

rental.start(store);

}

Improving Assertions 190

@Test

public void storeShouldNeverRemove() {

final boolean[] removeCalled = { false };

Movie movie = mock(Movie.class);

Rental rental =

a.rental.w(movie).build();

Store store = new Store(

new HashMap<Movie,Integer>()) {

public void remove(Movie movie) {

removeCalled[0] = true;

}

};

rental.start(store);

assertFalse(removeCalled[0]);

}

}

Where to begin? The first example is probably the most
reasonable of the group; though, it has some major flaws.
We’ll come back to that. The second example is not a Solitary
Unit Test (uses 2 concrete classes), and violates the Assert Last
principle. The third example is also a Sociable Unit Test, but
at least it follows Assert Last. Still, no one actually believes
the final + Array trick is the best solution, do they?

The largest flaw is shared by all 3 tests: if the implementation
of Rental.start changes, e.g. by calling an overloaded ver-
sion of remove that also takes a quantity, none of these three
tests will fail. This is always the largest problemwith negative
testing: they guarantee that something didn’t happen, but
they make no guarantee that the system is integrating as
desired.

Improving Assertions 191

I’m not sure there’s ever much value in these dubious tests;
however, if you must write something similar there are ways
to get more value than the above examples provide.

Strict Mocking

In general I believe Strict Mocking creates brittle tests and
should be avoided. Nonetheless, if you find yourself in need
of a negative test, your best bet may be to verify exactly
what did and did not happen during execution. The following
test ensures that getAvailability was called with a specific
movie, and no other interactions occurred with store.

public class RentalTest {

@Test

public void verifyStoreInteractions() {

Movie movie = mock(Movie.class);

Rental rental =

a.rental.w(movie).build();

Store store = mock(Store.class);

rental.start(store);

verify(store).getAvailability(movie);

verifyNoMoreInteractions(store);

}

}

Just Be Sociable

The test above is currently passing, and ensures that any
interactions with store in the future will cause a failing
test. The test violates One Assertion Per Test, but that’s not

Improving Assertions 192

actually what bothers me the most. I find myself asking: what
value is this test actually providing me?

What if the implementation of Rental.start changes and the
only interaction with store is the call to getAvailability?
We’ll have code that simultaneously provides no value and
provides no indication that it should be deleted. What if the
implementation of Store changes in a way where a call to
remove would be perfectly reasonable?

The entire point of this test is to verify reasonable integration
between Store and Rental. Why not simply test what’s
important in a Sociable Unit Test? In fact, we’re already
testing the integration of Store and Rental in a previously
seen Rental Sociable Unit Test. Below is the updated version,
which contains the test you’ve previously seen, and a new
test that ensures store.getAvailability continues to work
as expected for the case where a movie has no availability.

Improving Assertions 193

public class RentalTest {

@Test

public void

storeAvailabilityIsModifiedOnRental() {

Movie movie = a.movie.build();

Rental rental =

a.rental.w(movie).build();

Store store =

a.store.w(movie, movie).build();

rental.start(store);

a.rental.build().start(store);

assertEquals(

1, store.getAvailability(movie));

}

@Test

public void

storeAvailabilityIsUnmodified() {

Movie movie = a.movie.build();

Rental rental =

a.rental.w(movie).build();

Store store = a.store.build();

rental.start(store);

assertEquals(

0, store.getAvailability(movie));

}

}

The above Sociable Unit Test removes the need for any of the
previously written negative tests. This is yet another example
of the value of asking ourselves ‘why?’.

I began by asking ‘why is it hard to get positive ROI out of this

Improving Assertions 194

test?’, which led me to ‘why am I testing this interaction in
the first place?’. Answering that question led me to a test that
both covers the desired functionality and is easier to maintain
in the long term.

Improving Assertions 195

Hamcrest

You may find Hamcrest¹⁶ to be conspicuously absent from
this chapter. In theory I like many things about Hamcrest
matchers, in practice I never seem to use them within my test
suites. My theory and practice are a bit at odds, thus I neither
advocate for nor discourage the use of Hamcrest.

¹⁶http://hamcrest.org/

Improving Test Cases
In order to have an effective test suite you must have main-
tainable test cases; unfortunately, seldom does a team agree
on which patterns will produce maintainable test cases.

Many talented engineers believe maintainable test cases con-
tain no duplication and follow common object oriented ab-
stractions. Others, such as myself, contend that applying
DRY and OO patterns to independently executing procedural
programs (tests) decreases readability.

Tests are procedural by nature. Allowing developers to read
tests in a procedural manner would be the natural choice, yet
it’s rarely possible.

The original xUnit frameworks were written using (early
versions of) Java, thus classes and methods were the only
reasonable choices for creating test cases and individual tests.
Still, I find it interesting that writing procedural code using
an OO language is considered terrible design, and no one
gives a second thought to writing procedural tests using OO
constructs.

Within domain code:

• The primary motivation for naming a method is the
ability to call it.

• Instance methods collaborate to produce a running
application.

• Instance methods share instance variables.

Improving Test Cases 197

Within test code:

• The primary motivation for naming a test method is
documentation; calling a test method explicitly is an
anti-pattern.

• Instance method collaboration is considered an anti-
pattern.

• Each instance method is magically given its own set of
instance variables.

Every programmer new to testing must learn that traditional
OO concepts may directly conflict with how they must now
read and write tests.

JUnit remains tied to the classic testing pattern of classes for
test cases andmethods for individual tests. Despite this design
choice, it’s valuable to remember the following.

• Tests are procedural.
• Each test method should encapsulate the entire lifecycle
and verification, independent of other test methods.

• Tests methods should have very specific goals which
can be easily identified by maintainers.

While we are forced to use an OO language for our procedural
tests, no one forces us to follow OO patterns.

When it comes to test cases, I define maintainability as: when
a test breaks, what can it contain that will simplify finding
the fix? The rest of this chapter details what tools I use to be
maximally effective.

Improving Test Cases 198

Too Much Magic

Almost every test suite contains a failed experiment that
ought to be deleted. The following subsections are examples
of failed experiments that need to be replaced.

Self-shunt

I hate to pick on a paper¹⁷ written by Michael Feathers after
he was kind enough to write the foreword and bless the
title of this book. That said, I can’t get behind the use of
Self-shunt (and I suspect Michael would likely agree at this
point). The basic idea of Self-shunt is to pass the Test Case
instance as a collaborator to collect data that you’ll later use
for verification.

An example is worth a thousand words. Below is an example
of using a Self-shunt to verify the interaction between Store

and Rental.

¹⁷http://www.objectmentor.com/resources/articles/SelfShunPtrn.pdf

Improving Test Cases 199

public class RentalTest extends Store {

public static Movie movie =

mock(Movie.class);

private boolean removeCalled;

public RentalTest() {

super(new HashMap<Movie, Integer>() {{

this.put(movie, 2);

}});

}

@Test

public void removeIsCalled() {

Rental rental =

a.rental.w(movie).build();

rental.start(this);

assertEquals(true, removeCalled);

}

public void remove(Movie movie) {

super.remove(movie);

removeCalled = true;

}

}

That’s quite a test. Like Michael, I’m guilty of trying this
pattern¹⁸ out at one point as well. In theory it seemed like
a clever idea. You want to test collaboration, why not use a
class instance that’s immediately relevant? Hopefully the test
above demonstrates exactly why not.

¹⁸http://blog.jayfields.com/2005/04/tasc-unit-testing-pattern.html

Improving Test Cases 200

Much of the code required for this clever implementation does
not easily convey its purpose.

• The constructor is complicated for no immediately ob-
vious reason. Test cases rarely have constructors, much
less constructors calling super with domain objects.

• The remove method is obviously a helper method, but
it’s neither explicitly called nor otherwise explained.

• Passing a test case to a domain method would surely be
jarring to someone unfamiliar with this pattern.

• The removeCalled boolean lives divorced from the
assertions where it’s relevant.

• Were this not a book example, other tests would live in
here as well, all of which wouldn’t care about the crazy
constructor, the static Moviemock, or the removeCalled
boolean.

To put it mildly, there’s too much magic here; this implemen-
tation is so clever it forces the reader to deeply understand
an individual test, the entire test case, and how the testing
framework is implemented.

I applaud people who experiment in this way; however, surely
a mock would be a better choice in this instance. If you find
clever code like the above example, do not hesitate to replace
the magic with something more explicit.

Exceptional Success

There’s another example of too much magic that I want to
briefly mention: using an exception to indicate success.

Improving Test Cases 201

Let’s say you’re looking to test the same remove method as
the previous example. You want to write a test that ensures
the removemethod is called, but you don’t want to introduce a
capturing array such as the onewe previously saw inNegative
Testing.

The following test fulfills your requirements.

Improving Test Cases 202

public class RentalTest {

@Test(expected=RuntimeException.class)

public void removeIsCalled() {

final Movie movie = mock(Movie.class);

Rental rental =

a.rental.w(movie).build();

HashMap<Movie, Integer> movieMap =

new HashMap<Movie, Integer>() {{

this.put(movie, 2);

}};

Store store =

new Store(movieMap) {

public void remove(Movie movie) {

throw new

RuntimeException("success");

}

};

rental.start(store);

}

}

If you laughed when you read that test, you’re not alone.
Those are the kinds of tests that I appreciate as someone
who likes to bend languages to my will. That said, there’s
unquestionably too much magic in that test. If you find a test
similar to that within your test suite, do the team a favor and
refactor to verifying a mock interaction.

I could probably write an entire book on tests with too much
magic, but hopefully these 2 examples get the point across.
Clever tests are fun to write and enjoyable from a language
geek perspective; however, they have no place in a test suite
maintained by a team looking to deliver effectively.

Improving Test Cases 203

Inline Setup

Setup is a special method within a test case that runs before
each test. Setup was traditionally implemented using the
Template Method pattern; however, the latest versions of
JUnit allow you to define a Setup method using the @Before
annotation. The current JUnit documentation states the fol-
lowing:

When writing tests, it is common to find that
several tests need similar objects created before
they can run.

I’ll freely admit that Setup can reduce character duplication;
unfortunately, it’s often at the expense of readability.

If you aspire to create tiny universes with minimal conceptual
overhead, rarely will you find the opportunity to use Setup.
To begin with, if you were to pretend that the universe you’re
currently working with was the first and only, it would be
hard to justify creating a setup method that divorced creation
from verification. Even when you view your test case as a
whole, Setup becomes hard to justify once it contains any data
that is used in a subset of the tests.

The cost (in terms of understanding) of a Setup method is
the sum of understanding each object created and action
performed. The value of a Setup method, viewed from the
test level, would be each instantiation or action that no longer
needs to exist in the test itself. The waste could then be
defined as the sum of each unnecessary instantiation, each
unnecessary action, and the cost of indirection. To be clear,
I’m unconcerned with the computing resources wasted; I

Improving Test Cases 204

believe Setup is a negative ROI pattern based on the wasted
programmer time.

Below you’ll find a test that demonstrates pushing all creation
logic into Setup. A real CustomerTest should also include tests
for zero and one rental Customer instances as well, I left them
out for the sake of brevity.

public class CustomerTest {

Rental godfatherRental;

Rental lionKingRental;

Rental scarfaceRental;

Rental notebookRental;

Customer twoRentals;

Customer fourRentals;

@Before

public void init() {

godfatherRental = mock(Rental.class);

when(godfatherRental.getTitle())

.thenReturn("Godfather 4");

when(godfatherRental.getCharge())

.thenReturn(3.0);

when(godfatherRental.getPoints())

.thenReturn(2);

lionKingRental = mock(Rental.class);

when(lionKingRental.getTitle())

.thenReturn("Lion King");

when(lionKingRental.getCharge())

.thenReturn(2.0);

when(lionKingRental.getPoints())

.thenReturn(1);

scarfaceRental = mock(Rental.class);

Improving Test Cases 205

when(scarfaceRental.getTitle())

.thenReturn("Scarface");

when(scarfaceRental.getCharge())

.thenReturn(1.0);

when(scarfaceRental.getPoints())

.thenReturn(1);

notebookRental = mock(Rental.class);

when(notebookRental.getTitle())

.thenReturn("Notebook");

when(notebookRental.getCharge())

.thenReturn(6.0);

when(notebookRental.getPoints())

.thenReturn(1);

twoRentals =

a.customer.w(

godfatherRental, lionKingRental)

.build();

fourRentals =

a.customer.w(

godfatherRental, lionKingRental,

scarfaceRental, notebookRental)

.build();

}

Improving Test Cases 206

@Test

public void recentRentalsWith2Rentals() {

assertEquals(

"Recent rentals:"+

"\nGodfather 4\nLion King",

twoRentals.recentRentals());

}

@Test

public void recentRentalsWith4Rentals() {

assertEquals(

"Recent rentals:"+

"\nGodfather 4\nLion King\nScarface",

fourRentals.recentRentals());

}

@Test

public void totalChargeWith2Rentals() {

assertEquals(

5.0,

twoRentals.getTotalCharge(),

0);

}

@Test

public void totalChargeWith4Rentals() {

assertEquals(

12.0,

fourRentals.getTotalCharge(),

0);

}

Improving Test Cases 207

@Test

public void totalPointsWith2Rentals() {

assertEquals(

3,

twoRentals.getTotalPoints());

}

@Test

public void totalPointsWith4Rentals() {

assertEquals(

5,

fourRentals.getTotalPoints());

}

@Test

public void getName() {

assertEquals(

"Jim", twoRentals.getName());

}

}

Improving Test Cases 208

Here’s the cost of Setup from the previous example:

• godfatherRental is a mock Rental

– that returns the “Godfather 4” from getTitle

– that returns 3.0 from getCharge

– that returns 2 from getPoints

• lionKingRental is a mock Rental

– that returns the “Lion King” from getTitle

– that returns 2.0 from getCharge

– that returns 1 from getPoints

• scarfaceRental is a mock Rental

– that returns the “Scarface” from getTitle

– that returns 1.0 from getCharge

– that returns 1 from getPoints

• notebookRental is a mock Rental

– that returns the “Notebook” from getTitle

– that returns 6.0 from getCharge

– that returns 1 from getPoints

• twoRentals is a Customer with godfatherRental and
lionKingRental

• fourRentals is a Customer with godfatherRental,
lionKingRental, scarfaceRental, and notebookRental

The value per test varies based on the assertion, but it’s safe
to say no test contains zero waste. It would be unreasonable
to discuss the value and waste from every test, but I would
like to look briefly at one or two of them.

Improving Test Cases 209

The following is the cost breakdown for Setup for the
totalChargeWith2Rentals test.

Value

• godfatherRental is a mock Rental

– that returns 3.0 from getCharge

• lionKingRental is a mock Rental

– that returns 2.0 from getCharge

• twoRentals is a Customer with godfatherRental and
lionKingRental

Waste

• godfatherRental
– that returns the “Godfather 4” from getTitle

– that returns 2 from getPoints

• lionKingRental
– that returns the “Lion King” from getTitle

– that returns 1 from getPoints

• scarfaceRental is a mock Rental

– that returns the “Scarface” from getTitle

– that returns 1.0 from getCharge

– that returns 1 from getPoints

• notebookRental is a mock Rental

– that returns the “Notebook” from getTitle

– that returns 6.0 from getCharge

– that returns 1 from getPoints

• fourRentals is a Customer with godfatherRental,
lionKingRental, scarfaceRental, and notebookRental

Improving Test Cases 210

Imagine the same list for getName.

Advocates of Setup argue that you need only pay the under-
standing cost once. I contend it’s much more likely that you’ll
pay it once per encounter with CustomerTest. It’s likely that
you’ll have flushed the understanding between interactions
with the CustomerTest class. Even if you remember the
details the Setupwill surely change at some point, forcing you
to reacquaint yourself with the logic.

I would also contend that the most common interaction with
these tests will be dealing with a failing test or two. In that
situation you’ll be forced to understand all of Setup, with the
actual value derived from Setup likely being very small for
the failing tests that you’re looking to fix.

Similar Creation and Action

A primary argument for Setup is reducing creation duplica-
tion. As I’ve shown throughout this book, I prefer to reduce
creation duplication by introducing globally used builders.
The domain objects I’ve been building are admittedly straight-
forward. Faced with the Setup vs Builder decision some use
the excuse that their domain objects cannot be easily built.
When I hear this argument I like to repeat the following quote.

Where there’s smoke, pour gasoline –Scott Con-
ley

Duplicate code is a smell. Setup and Teardown are deodorant,
but they don’t fix the underlying issue. Using a Setup method
is basically like hiding your junk in the closet. Refactoring to
a domain that allows easy use of Builders is a solution.

Improving Test Cases 211

Obviousness

Another reason I like to avoid Setup is the complete lack
of transparency. If you look at all of the tests from the last
example, in none of them can you find code that says go look
at Setup to get a better idea of what’s going on here. If you
open the code to a failing test and the Setup is off screen,
there are zero clues indicating the existence of a Setup.

At best, this is inconvenient; things go downhill quickly from
there. I once opened a test case that had several tests which
were dependent on a Setup method. Additionally, the test
case contained another group of tests that used a private
method for initialization. The logic in the private method was
almost a perfect duplicate of the logic in the Setup. Clearly
one author didn’t notice the existing creation solution and, in
their attempt to be DRY, duplicated exactly what was already
available.

Setup As An Optimization

Many developers justify using Setup as a solution to their
speed problems. For example, it’s unquestionably true that
creating a database connection per Sociable Unit Test would
be slower than creating one in each test within a single Test
Case. That said, why are we creating more than one database
connection at all? Why not create one global connection and
run each test in a transaction that’s automatically rolled back
after each Sociable Unit Test?

The above example is a specific case of using Setup to hide
a problem that could be unhidden and solved by spending
the time to find a global solution. I’ve run into this type of
problem for as long as I’ve been applying Inline Setup to

Improving Test Cases 212

Sociable Unit Tests. Deleting numerous files with Java is slow:
True. Shelling out and deleting the parent directory is fast:
True. Loading a large data set through a Java SQL lib is slow:
True. Bulk loading a database using command line tools is
fast: True.

When I find that execution of my Sociable Unit Tests is
growing too slow, I take the time to answer the following
questions:

• Are all the Sociable Unit Tests still necessary?
• Are the interactions with the File System, Database,
and/or Messaging System still necessary?

• Is there a faster way to accomplish any of the tasks
setting the File System, Database and/or Messaging
System back to a known state?

Using a Setup is the easy answer, but it’s also the selfish
answer. When faced with the choice to force complexity
on a teammate in the future or optimize the Sociable tests
for everyone now, good teammates choose the latter (and
admittedly harder) path.

Comparison

Immediately below you’ll find the version of CustomerTest
that we saw earlier in this section. Below that is the same test
case written with Setup inlined. If you’re willing to indulge
me, pretend you don’t know what’s going on in the Setup

method and you’re looking intowhy totalChargeWith2Rentals
is failing. Read totalChargeWith2Rentals and the Setup

immediately below first, then look at the same method in the

Improving Test Cases 213

2nd CustomerTest and decide which you’d rather encounter
during your work day.

(do the same for the getName test if you’d like extra emphasis)

With Setup

public class CustomerTest {

Rental godfatherRental;

Rental lionKingRental;

Rental scarfaceRental;

Rental notebookRental;

Customer twoRentals;

Customer fourRentals;

@Before

public void init() {

godfatherRental = mock(Rental.class);

when(godfatherRental.getTitle())

.thenReturn("Godfather 4");

when(godfatherRental.getCharge())

.thenReturn(3.0);

when(godfatherRental.getPoints())

.thenReturn(2);

lionKingRental = mock(Rental.class);

when(lionKingRental.getTitle())

.thenReturn("Lion King");

when(lionKingRental.getCharge())

.thenReturn(2.0);

when(lionKingRental.getPoints())

.thenReturn(1);

scarfaceRental = mock(Rental.class);

when(scarfaceRental.getTitle())

Improving Test Cases 214

.thenReturn("Scarface");

when(scarfaceRental.getCharge())

.thenReturn(1.0);

when(scarfaceRental.getPoints())

.thenReturn(1);

notebookRental = mock(Rental.class);

when(notebookRental.getTitle())

.thenReturn("Notebook");

when(notebookRental.getCharge())

.thenReturn(6.0);

when(notebookRental.getPoints())

.thenReturn(1);

twoRentals =

a.customer.w(

godfatherRental, lionKingRental)

.build();

fourRentals =

a.customer.w(

godfatherRental, lionKingRental,

scarfaceRental, notebookRental)

.build();

}

Improving Test Cases 215

@Test

public void recentRentalsWith2Rentals() {

assertEquals(

"Recent rentals:"+

"\nGodfather 4\nLion King",

twoRentals.recentRentals());

}

@Test

public void recentRentalsWith4Rentals() {

assertEquals(

"Recent rentals:"+

"\nGodfather 4\nLion King\nScarface",

fourRentals.recentRentals());

}

@Test

public void totalChargeWith2Rentals() {

assertEquals(

5.0,

twoRentals.getTotalCharge(),

0);

}

@Test

public void totalChargeWith4Rentals() {

assertEquals(

12.0,

fourRentals.getTotalCharge(),

0);

}

Improving Test Cases 216

@Test

public void totalPointsWith2Rentals() {

assertEquals(

3,

twoRentals.getTotalPoints());

}

@Test

public void totalPointsWith4Rentals() {

assertEquals(

5,

fourRentals.getTotalPoints());

}

@Test

public void getName() {

assertEquals(

"Jim", twoRentals.getName());

}

}

Improving Test Cases 217

Without Setup

public class CustomerTest {

@Test

public void recentRentalsWith2Rentals() {

Rental godfatherRental =

mock(Rental.class);

when(godfatherRental.getTitle())

.thenReturn("Godfather 4");

Rental lionKingRental =

mock(Rental.class);

when(lionKingRental.getTitle())

.thenReturn("Lion King");

assertEquals(

"Recent rentals:"+

"\nGodfather 4\nLion King",

a.customer.w(

godfatherRental, lionKingRental)

.build().recentRentals());

}

Improving Test Cases 218

@Test

public void recentRentalsWith4Rentals() {

Rental godfatherRental =

mock(Rental.class);

when(godfatherRental.getTitle())

.thenReturn("Godfather 4");

Rental lionKingRental =

mock(Rental.class);

when(lionKingRental.getTitle())

.thenReturn("Lion King");

Rental scarfaceRental =

mock(Rental.class);

when(scarfaceRental.getTitle())

.thenReturn("Scarface");

Rental notebookRental =

mock(Rental.class);

when(notebookRental.getTitle())

.thenReturn("Notebook");

assertEquals(

"Recent rentals:"+

"\nGodfather 4\nLion King\nScarface",

a.customer.w(

godfatherRental, lionKingRental,

scarfaceRental, notebookRental)

.build().recentRentals());

}

Improving Test Cases 219

@Test

public void totalChargeWith2Rentals() {

Rental godfatherRental =

mock(Rental.class);

when(godfatherRental.getCharge())

.thenReturn(3.0);

Rental lionKingRental =

mock(Rental.class);

when(lionKingRental.getCharge())

.thenReturn(2.0);

assertEquals(

5.0,

a.customer.w(

godfatherRental, lionKingRental)

.build().getTotalCharge(),

0);

}

Improving Test Cases 220

@Test

public void totalChargeWith4Rentals() {

Rental godfatherRental =

mock(Rental.class);

when(godfatherRental.getCharge())

.thenReturn(3.0);

Rental lionKingRental =

mock(Rental.class);

when(lionKingRental.getCharge())

.thenReturn(2.0);

Rental scarfaceRental =

mock(Rental.class);

when(scarfaceRental.getCharge())

.thenReturn(1.0);

Rental notebookRental =

mock(Rental.class);

when(notebookRental.getCharge())

.thenReturn(6.0);

assertEquals(

12.0,

a.customer.w(

godfatherRental, lionKingRental,

scarfaceRental, notebookRental)

.build().getTotalCharge(),

0);

}

Improving Test Cases 221

@Test

public void totalPointsWith2Rentals() {

Rental godfatherRental =

mock(Rental.class);

when(godfatherRental.getPoints())

.thenReturn(2);

Rental lionKingRental =

mock(Rental.class);

when(lionKingRental.getPoints())

.thenReturn(1);

assertEquals(

3,

a.customer.w(

godfatherRental, lionKingRental)

.build().getTotalPoints());

}

Improving Test Cases 222

@Test

public void totalPointsWith4Rentals() {

Rental godfatherRental =

mock(Rental.class);

when(godfatherRental.getPoints())

.thenReturn(2);

Rental lionKingRental =

mock(Rental.class);

when(lionKingRental.getPoints())

.thenReturn(1);

Rental scarfaceRental =

mock(Rental.class);

when(scarfaceRental.getPoints())

.thenReturn(1);

Rental notebookRental =

mock(Rental.class);

when(notebookRental.getPoints())

.thenReturn(1);

assertEquals(

5,

a.customer.w(

godfatherRental, lionKingRental,

scarfaceRental, notebookRental)

.build().getTotalPoints());

}

Improving Test Cases 223

@Test

public void getName() {

assertEquals(

"Jim",

a.customer.build().getName());

}

}

Improving Test Cases 224

Test Names

Two previous statements that remain true:

• JUnit tests are implemented as methods, thus a method
name is required.

• I’m not a fan of test names.

Another truth: Test names are glorified comments

A method selector is always necessary to refer
to the method from other places. Not necessarily
a name, but some kind of selector is needed.
That’s not true for test names, and to a degree it’s
interesting that the default of having test names
comes from the implementation artifact of tests
usually being represented as methods. Would we
still have test names in all cases if we didn’t
start designing a test framework based around a
language that cripples usage of abstractions other
than methods for executable code? –Ola Bini

People rarely think about test names in that way, but at the
end of the day they’re merely (at best) a description of what
the test is verifying. A required description.

I tend to agree with the following discussion of comments.

Don’t worry, we aren’t saying that people shouldn’t
write comments. In our olfactory analogy, com-
ments aren’t a bad smell; indeed they are a sweet

Improving Test Cases 225

smell. The reason we mention comments here is
that comments often are used as a deodorant.
It’s surprising how often you look at thickly
commented code and notice that the comments
are there because the code is bad. –Fowler &
Beck, Refactoring

Once I recognized that test names were comments I began to
look at them differently. I wondered if all of the concerns with
comments could also be applied to test names.

Refactoring goes on to say the following about comments:

Comments lead us to bad code that has all the
rotten whiffs we’ve discussed in [Chapter 3 of
Refactoring]. Our first action is to remove the bad
smells by refactoring. When we’re finished, we
often find that the comments are superfluous.

While it may not be possible to delete test names entirely, I
believe it’s absolutely worth making them superfluous. I’ve
found that refactoring the domain in a way that encourages
tests that would be self-explanatory without a name benefits
both other tests and the domain code itself.

Refactoring also provides guidance on how to change the
domain model.

If you need a comment to explain what a block
of code does, try Extract Method. If the method is
already extracted but you still need a comment to
explain what it does, use Rename Method. If you
need to state some rules about the required state
of the system, use Introduce Assertion.

Improving Test Cases 226

To be clear, I don’t think you should be extracting or renam-
ing methods in your tests, I think test names can indicate
that those things are needed in the code you are testing.
Conversely, Introduce Assertion could apply directly to your
test. Instead of stating your assumptions in the test name,
introduce an assertion that verifies an assumption. Or better
yet, break the larger test up into several smaller tests that
abide by One Assertion Per Test.

While reviewing this book Graham Nash posed the following
question.

When a test or tests break, do you not find the list
of broken names that JUnit outputs to be useful?
What would be there instead if you could have
anonymous methods?

I do not. To quote Ron Jeffries “Code never lies, comments
sometimes do”. When a test is broken I’m rarely interested in
what the test should be doing, I want to know what the test is
actually doing. My only use for the JUnit failure output was
to navigate to the test.

Were I able to create anonymous tests, failure output would
include the test definition file name and line number rather
than a test name. I’ve used this pattern extensively in both
Ruby and Clojure (where anonymous tests are possible) and
never run into trouble finding or sharing a pointer to a specific
test.

It’s also important to note that using a test framework that
promotes anonymous tests does not prohibit you from adding
a description as a comment. Well written test names often
tell you why a test exists, and it’s valuable to continue to

Improving Test Cases 227

capture that data as a comment associated with the test. On
the other hand, test names that describe how are often perfect
candidates for anonymous tests with no associated comment.

I’ve clearly digressed from the main point: There’s no rea-
sonable way (that I’m aware of) to write anonymous tests
in JUnit; still, it’s always worth taking at least one look at
your test and asking yourself If this test had no name, would
it convey my intent?

Improving Test Suites
In the Motivators chapter I repeatedly recommend deleting
tests that no longer provide positive ROI. While I believe
this to be an essential activity, I also believe an attempt to
create positive ROI from an existing test is an equally essential
prerequisite.

Improving Test Suites 229

Separating The Solitary From The
Sociable

Chapter 3 defines Solitary and Sociable Unit Tests, and pro-
vides the first examples of converting Sociable Unit Tests to
Solitary. Chapter 4 provides additional guidance on how to
create Solitary Unit Tests. Now that you know how to create
Solitary Unit Tests you might be wondering “why?”.

There are two primary reasons for writing Solitary Unit Tests:

1. Sociable Unit Tests can be slow and nondeterministic
2. Sociable Unit Tests are more susceptible to cascading

failures

Increasing Consistency And Speed With
Solitary Unit Tests

Impurity is the nemesis of test repeatability. Crossing bound-
aries is the nemesis of test speed. If every method you wrote
were pure, you’d have a hard time creating flaky tests or slow
tests. Unfortunately, that’s not the world that most of us live
in. The following bullets are the three most common ways to
increase the fragility and execution time of your test suite.

• interacting with a database
• interacting with the filesystem
• interacting with time

Improving Test Suites 230

Database and Filesystem Interaction

Inmost languages it’s common to use either a standard library
or a commonly used library for database and filesystem
access. The APIs of these libraries are often defined for ease
of use within your object model; however, the ability to write
Solitary Unit Tests is not often supported. For that reason, I
always recommend wrapping the commonly used libraries
with a gateway that provides the following capabilities:

• the ability to disallow access within Solitary Unit Tests
• the ability to reset to a base state before each Sociable
Unit Test.

The guidelines above are simple enough; however, I think an
example might make clear exactly what I’m looking for. Let’s
assume I have the following class that I’d like to test.

Improving Test Suites 231

public class PidWriter {

public static void writePid(

String filename,

RuntimeMXBean bean) {

try {

writePidtoFile(filename, bean);

} catch (IOException e) {

throw new RuntimeException(e);

}

}

private static void writePidtoFile(

String filename,

RuntimeMXBean bean) throws IOException {

FileWriter writer =

new FileWriter(filename);

try {

String runtimeName = bean.getName();

writer.write(

runtimeName.substring(

0, runtimeName.indexOf('@')));

}

finally {

writer.close();

}

}

}

The following test does the trick, but it’s not what I would
consider to be well written.

Improving Test Suites 232

public class PidWriterTest {

@Test

public void writePid() throws Exception {

RuntimeMXBean bean =

mock(RuntimeMXBean.class);

when(bean.getName()).thenReturn("12@X");

PidWriter.writePid(

"/tmp/sample.pid", bean);

assertEquals(

"12",

Files.readAllLines(

Paths.get("/tmp/sample.pid"),

Charset.defaultCharset()).get(0));

}

}

Any number of issues could cause false negatives or positives,
e.g. If the PidWriter contains a bug and a previously saved
sample.pid file exists, the assertion will continue to pass.
Likewise, if the sample.pid file is overwritten by some other
process mid-test, the test will fail despite PidWriter working
as expected.

The Solitary Unit Test

The first change I would make would be to refactor towards a
PidWriter Solitary Unit Test. As I said above, when working
with classes like FileWriter I like to create my own gateway
that can disallow access within the Solitary Unit Tests.

Improving Test Suites 233

public class FileWriterGateway

extends FileWriter {

public static boolean disallowAccess =

false;

public FileWriterGateway(

String filename) throws IOException {

super(filename);

if (disallowAccess) {

throw new RuntimeException(

"access disallowed");

}

}

}

Below you can see the switch in PidWriter to use FileWriterGateway.

Improving Test Suites 234

public class PidWriter {

public static void writePid(

String filename,

RuntimeMXBean bean) {

try {

writePidtoFile(filename, bean);

} catch (IOException e) {

throw new RuntimeException(e);

}

}

private static void writePidtoFile(

String filename,

RuntimeMXBean bean) throws IOException {

FileWriterGateway writer =

new FileWriterGateway(filename);

try {

String runtimeName = bean.getName();

writer.write(

runtimeName.substring(

0, runtimeName.indexOf('@')));

}

finally {

writer.close();

}

}

}

Finally, running the PidWriterTest below will result in the
immediately following failure.

Improving Test Suites 235

public class PidWriterTest extends Solitary {

@Test

public void writePid() throws Exception {

RuntimeMXBean bean =

mock(RuntimeMXBean.class);

when(bean.getName()).thenReturn("12@X");

PidWriter.writePid(

"/tmp/sample.pid", bean);

assertEquals(

"12",

Files.readAllLines(

Paths.get("/tmp/sample.pid"),

Charset.defaultCharset()).get(0));

}

}

JUnit version 4.11

.E

There was 1 failure:

1) writePid(PidWriterTest)

java.lang.RuntimeException: access disallowed

FAILURES!!!

Tests run: 1, Failures: 1

If you looked closely at the PidWriterTest you likely noticed
that the only change between the last two versions is the
addition of extends Solitary in the latter.

You shouldn’t have any desire to remember to repeat a
call to disallowAccess where necessary; however, a simple

Improving Test Suites 236

rule such as all tests in a solitary package should extend
Solitary is both easy to remember and automatically verify.

The implementation of Solitary might surprise you.

public class Solitary {

@Before

public void setup() {

FileWriterGateway.disallowAccess = true;

}

}

It may appear hypocritical that I would spend an entire
section (and some) denouncing setup, only to recommend it in
a later chapter. However, I believe this example demonstrates
exactly the type of refactoring that I’ve previously recom-
mended: solve problems locally and globally, exclusively.

While the PidWriterTest is the first usage you’ve seen of
Solitary, in an actual codebase I would enforce extend

Solitary within each Solitary Unit Test. This strict confor-
mance would give me a single place to put all disallowing
code as well as give me globally applicable understanding
and confidence, i.e. all Solitary Unit Tests disallow the same
things, and I’m confident that all disallowed things are being
prevented in each Solitary Unit Test.

Now that Solitary and FileWriterGateway are collaborating
to ensure proper Solitary Unit Testing, it’s time to change the
PidWriterTest and get it passing.

There’s no easyway towrite a Solitary Unit Test for PidWriter
as it stands; however, an overload of the existing public
method allows us to write the following.

Improving Test Suites 237

public class PidWriterTest extends Solitary {

@Test

public void writePid() throws Exception {

RuntimeMXBean bean =

mock(RuntimeMXBean.class);

when(bean.getName()).thenReturn("12@X");

FileWriterGateway facade =

mock(FileWriterGateway.class);

PidWriter.writePid(facade, bean);

verify(facade).write("12");

}

}

The new PidWriter (that includes the overloaded method
we’re testing) can be found below.

Improving Test Suites 238

public class PidWriter {

public static void writePid(

String filename,

RuntimeMXBean bean) {

try {

FileWriterGateway writer =

new FileWriterGateway(filename);

writePid(writer, bean);

} catch (IOException e) {

throw new RuntimeException(e);

}

}

public static void writePid(

FileWriterGateway facade,

RuntimeMXBean bean) {

try {

writePidtoFile(facade, bean);

} catch (IOException e) {

throw new RuntimeException(e);

}

}

Improving Test Suites 239

private static void writePidtoFile(

FileWriterGateway facade,

RuntimeMXBean bean) throws IOException {

try {

String runtimeName = bean.getName();

facade.write(

runtimeName.substring(

0, runtimeName.indexOf('@')));

} catch (IOException e) {

throw new RuntimeException(e);

}

finally {

facade.close();

}

}

}

While reviewing this book Jake McCrary posed the following
question.

Why overload the public method rather than
exposing the private method?

When I’m introducing a method strictly to allow Solitary Unit
Testing I like to take the following steps.

1. Copy the original method.
2. Call the copied method from the original method.
3. Move anything hampering Solitary Unit Testing back

to the original method.

Improving Test Suites 240

By following those steps I ensure that my Solitary Unit
Test is able to verify as much behavior as possible. In most
cases the copied method will contain enough behavior to
justify its existence, in the previous example it’s debatable.
As written, our tests can ignore the IOException thrown by
writePidToFile; however, I also think it would be perfectly
reasonable to instead expose the private method and handle
the IOException within the test. In practice I would follow
the above steps to see the result, then decide which imple-
mentation I found more maintainable.

The final Solitary PidWriterTest providesme confidence that
PidWriter is delegating to FileWriterGateway as desired.
In most cases, this will be the only positive ROI test for
PidWriter.

The Sociable Unit Test

Sociable Unit Testswith side effects (writing to a file, database,
messaging system) are often orders of magnitude slower and
orders of magnitude more fragile; these factors must be taken
into account when determining ROI. Still, there will be times
when the functionality is important enough that a Sociable
Unit Test will be justified.

Were the PidWriter important enough to warrant Sociable
Unit Tests, I wouldwrite a test along the lines of the following.

Improving Test Suites 241

public class PidWriterTest extends Sociable {

@Test

public void writePid() throws Exception {

RuntimeMXBean bean =

mock(RuntimeMXBean.class);

when(bean.getName()).thenReturn("12@X");

PidWriter.writePid(

"/tmp/wewut/sample.pid", bean);

assertEquals(

"12",

Files.readAllLines(

Paths.get("/tmp/wewut/sample.pid"),

Charset.defaultCharset()).get(0));

}

}

The above Sociable PidWriterTest uses the writePid(String,
RuntimeMxBean) overload, thus reclaiming some test coverage
that was lost with in the Solitary Unit Test. I suspect it
also looks familiar, it’s roughly the same as the first test
from this (the Database and Filesystem Interaction) section.
The only notable difference between this and the original
test is the extends Sociable directly above. The reasoning
for Sociable is largely the same as what was discussed for
Solitary; we’re more effective if we always inherit from one
base class that applies consistent constraints to the tests.

In this specific case, my Sociable class is clearing a well
known tmp dir that’s used within Sociable Unit Tests.

Improving Test Suites 242

public class Sociable {

@Before

public void setup()

throws Exception {

Process p;

p = Runtime.getRuntime().exec(

"rm -rf /tmp/wewut");

p.waitFor();

p = Runtime.getRuntime().exec(

"mkdir -p /tmp/wewut");

p.waitFor();

}

}

note: I chose to shell out for example brevity.
You’ll likely want to use Java classes to manage
the delete and create if platform independence is
important to you.

The Sociable class does a good job of cleaning up our
filesystem before each test run. This cleanup obviously comes
at a cost; however, it also provides the benefits of concise tests
and consistent understanding of the state prior to execution -
major advantages.

Improving Test Suites 243

Revisiting Concerns

I previously expressed concerns about the original test from
this section, specifically:

• If the PidWriter contains a bug and a previously saved
sample.pid file exists, the assertion will continue to
pass.

• If the sample.pid file is overwritten by some other
process mid-test, the test will fail despite PidWriter

working as expected.

The first concern is completely mitigated by the delete that
occurs in the Sociable setup. The second concern can never
be completely mitigated; however, the passing Solitary Unit
Test gives us strong confidence that the code works as ex-
pected and the next run of the Sociable Unit Tests will likely
succeed.

Time Interaction

In theory you could apply the advice from the last subsection
to time classes as well, though I suspect most people would
consider that overkill. If your time library supports freezing
at a specific moment, there’s an alternative that I consider a
pragmatic compromise.

The following Rental class is similar to what we’ve previ-
ously seen, and I’ve added the concept of creationDateTime.
A Rental can be created eitherwith orwithout a creationDateTime.
Rental instances created without a DateTime instance will
construct their own creationDateTime within the construc-
tor.

Improving Test Suites 244

public class Rental {

Movie movie;

private int daysRented;

private boolean started;

private DateTime creationDateTime;

public Rental(

Movie movie,

int daysRented,

DateTime creationDateTime) {

this.movie = movie;

this.daysRented = daysRented;

this.creationDateTime = creationDateTime;

}

public Rental(Movie movie, int daysRented) {

this(movie, daysRented, new DateTime());

}

public DateTime getCreationDateTime() {

return creationDateTime;

}

}

The tests for these constructors are fairly straightforward:

Improving Test Suites 245

public class RentalTest {

@Test

public void creationDateTimeNow() {

DateTimeUtils.setCurrentMillisFixed(1000);

Rental rental = a.rental.build();

assertEquals(

1000,

rental.getCreationDateTime()

.getMillis());

}

@Test

public void creationDateTimeSet() {

Rental rental =

a.rental.w(

new DateTime(199)).build();

assertEquals(

199,

rental.getCreationDateTime()

.getMillis());

}

}

Does the usage of DateTime make this a Sociable
Unit Test? In the Types of Tests chapter I state:
This constraint does not apply to any primitive
or Java class that has a literal (e.g. int, Integer,
String, etc). I would also extend this exception for
value objects. In this type of situation I prefer to
take the most straightforward path: simply use
the value object.

While these tests do pass, they provide an opportunity for

Improving Test Suites 246

great frustration in the future.

The first test in RentalTest sets the current millis to a fixed
point, and never resets to the system clock. Forgetting to
reset global state is a common and often costly mistake. Most
testing frameworks do not guarantee consistent ordering of
test execution, thus it’s possible for other tests to pass today
and fail in the future due to execution order. Test execution
order can often depend on something surprising such as a
hashcode. As a result, tests will often begin failing at times
when you’re working in a completely different portion of the
codebase, and for what feels like a completely random reason.

The obvious solution is to always reset the global state, and
the test below demonstrates exactly that.

Improving Test Suites 247

public class RentalTest {

@Test

public void creationDateTimeNow() {

DateTimeUtils.setCurrentMillisFixed(1000);

Rental rental = a.rental.build();

assertEquals(

1000,

rental.getCreationDateTime()

.getMillis());

DateTimeUtils.setCurrentMillisSystem();

}

@Test

public void creationDateTimeSet() {

Rental rental =

a.rental.w(

new DateTime(199)).build();

assertEquals(

199,

rental.getCreationDateTime()

.getMillis());

}

}

The tests above are all passing, and global state is correctly
reset; however, when I see tests like the one above, I can’t
help but grow uncomfortable.

The tests above predictably cause me to complain about the
violation of the Assert Last principle - though, that’s hardly
the biggest issue. The largest issue is the opportunity for
things to go very wrong before developers are provided any
automated feedback.

Improving Test Suites 248

If the setCurrentMillisSystem call is removed, the test con-
tinues passing. Depending on ordering, other tests may con-
tinue passing as well… until they don’t. At that point you’re
likely to be far removed from the context that would help
determine the cause of the failures.

Unsurprisingly, I prefer a solution that solves this issue on
a global scale. The following Solitary class is the same as
what was found in the previous subsection, with the addition
of setting the current millis to 1000.

public class Solitary {

@Before

public void setup() {

FileWriterGateway.disallowAccess = true;

DateTimeUtils.setCurrentMillisFixed(1000);

}

}

There are many strategies I could have gone with to ad-
dress my above concern, e.g. @Before or @After each test,
call setCurrentMillisSystem. While those solutions would
address my concern, I prefer calling setCurrentMillisFixed
and providing a constant value that can also be used within
the test. As you can see from the following test, providing
a constant current millis completely removes the need for
DateTimeUtils within RentalTest.

Improving Test Suites 249

public class RentalTest extends Solitary {

@Test

public void creationDateTimeNow() {

Rental rental = a.rental.build();

assertEquals(

1000,

rental.getCreationDateTime()

.getMillis());

}

@Test

public void creationDateTimeSet() {

Rental rental =

a.rental.w(

new DateTime(199)).build();

assertEquals(

199,

rental.getCreationDateTime()

.getMillis());

}

}

Complete coverage, concise code, dependence on global con-
stants - those are the kinds of tests I prefer to maintain.

Using Speed To Your Advantage

A test suite improves every time you convert a Sociable Unit
Tests that cross boundaries to a Solitary Unit Tests providing
approximately the same ROI. Faster feedback of equal quality
is always desired. With that in mind, there’s another test suite
improvement that I recommend: always run all of the Solitary
Unit Tests first, and run the Sociable Unit Tests if and only

Improving Test Suites 250

if all of the Solitary Unit Tests pass. This approach can be
abbreviated to sociable if solitary.

The Solitary Unit Tests will be faster by design, and the
short circuiting aspect of sociable if solitary allows you to
immediately fix broken tests rather than wait for slower test
execution to complete.

In Chapter 3 I recommended fixing broken Solitary Unit Tests
before fixing Sociable Unit Tests. Solitary Unit Tests generally
provide greater defect localization, thus it’s logical to start
there when looking for the origin of a failure. In addition
to the speed benefits, prioritizing Solitary Unit Test failures
happens naturally when you follow sociable if solitary.

Improving Test Suites 251

Avoiding Cascading Failures With
Solitary Unit Tests

I previously stated:

1. Sociable Unit Tests are more susceptible to cascading
failures

2. Few things kill productivity and motivation faster than
cascading test failures.

I stand by those statements, and the following examples will
show the evolution of a test suite from brittle to robust. When
writing State Verification tests you’ll have a Class Under Test
and 0 or more collaborators. If collaborators are required,
you’ll be forced to select one of the following.

• use an instance of a concrete class
• use an instance of a hand-rolled stub
• use an instance created by a mocking framework

Using an instance of a concrete class is by far the most
common choice, and the starting point for the examples in
this section.

The following 11 tests have concrete class collaborators, and
are what I would classify as Sociable Unit Tests.

Improving Test Suites 252

public class CustomerTest {

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for Jim\nAmount owed " +

"is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.build().statement());

}

@Test

public void oneRentalStatement() {

assertEquals(

"Rental record for Jim\n" +

"\tGodfather 4 9.0\n" +

"Amount owed is 9.0\n" +

"You earned 2 frequent renter points",

a.customer.w(

a.rental).build().statement());

}

Improving Test Suites 253

@Test

public void twoRentalsStatement() {

assertEquals(

"Rental record for Jim\n" +

"\tGodfather 4 9.0\n" +

"\tGodfather 4 9.0\n" +

"Amount owed is 18.0\n" +

"You earned 4 frequent renter points",

a.customer.w(

a.rental, a.rental).build()

.statement());

}

@Test

public void noRentalsGetTotalPoints() {

assertEquals(

0,

a.customer.build().getTotalPoints());

}

@Test

public void oneRentalGetTotalPoints() {

assertEquals(

2,

a.customer.w(

a.rental).build().getTotalPoints());

}

Improving Test Suites 254

@Test

public void twoRentalsGetTotalPoints() {

assertEquals(

4,

a.customer.w(a.rental, a.rental)

.build()

.getTotalPoints());

}

// 3 tests for htmlStatement()

// left to the imagination

}

public class RentalTest {

@Test

public void getPointsFromMovie() {

assertEquals(

2, a.rental.build().getPoints());

}

}

public class MovieTest {

@Test

public void getPoints() {

assertEquals(

2, a.movie.build().getPoints(2));

}

}

I believe these tests are about as well written as possible - for
tests that use concrete collaborators. The CustomerTest class

Improving Test Suites 255

focuses exclusively on String building and point summing
functionality. The delegation of points per movie is tested in
RentalTest. The actual point value is tested in MovieTest.
The functionality of the system is well tested, and the tests
are focused on testing only the functionality within the Class
Under Test.

Unfortunately, all it takes is one character to make you
question the value of all of the above tests. The failures you
see below were created by a one character change requested
by the business.

JUnit version 4.11

...E.E.E.E

There were 4 failures:

1) twoRentalsStatement(sociable.CustomerTest)

org.junit.ComparisonFailure: expected:<... is 18.0

You earned [4] frequent renter poi...> but was:<.\

.. is 18.0

You earned [6] frequent renter poi...>

2) oneRentalGetTotalPoints(sociable.CustomerTest)

java.lang.AssertionError: expected:<2> but was:<3>

3) oneRentalStatement(sociable.CustomerTest)

org.junit.ComparisonFailure: expected:<...d is 9.0

You earned [2] frequent renter poi...> but was:<.\

..d is 9.0

You earned [3] frequent renter poi...>

4) twoRentalsGetTotalPoints(sociable.CustomerTest)

java.lang.AssertionError: expected:<4> but was:<6>

FAILURES!!!

Tests run: 6, Failures: 4

Improving Test Suites 256

note: had I added the 3 htmlStatement tests, 2 of those would
be failing as well.

JUnit version 4.11

.E

There was 1 failure:

1) getPointsFromMovie(sociable.RentalTest)

java.lang.AssertionError: expected:<2> but was:<3>

FAILURES!!!

Tests run: 1, Failures: 1

JUnit version 4.11

.E

There was 1 failure:

1) getPoints(sociable.MovieTest)

java.lang.AssertionError: expected:<2> but was:<3>

FAILURES!!!

Tests run: 1, Failures: 1

The change that would cause 8 of 11 tests to fail can be found
below.

Improving Test Suites 257

public class NewReleasePrice extends Price {

@Override

public double getCharge(int daysRented) {

return daysRented * 3;

}

@Override

public int getPoints(int daysRented) {

if (daysRented > 1)

return 3; // was 2

return 1;

}

}

The change the business requested, New Releases rented for
more than 1 day should result in 3 points, resulted in a
failure for every test that was intentionally or unintentionally
coupled to the implementation of the NewReleasePrice class.

If your collaborators are instances of concrete classes, you’re
bound to encounter cascading failures like the example above.
I find these failures to be momentum killers. You (correctly)
made a simple change requested by the business and your
tests immediately transformed from valuable regression pro-
tectors to noisy pedants. Within all the failure feedback there
is some signal; approximately 3 lines out of 300 are helpful
(the actual output contains long stacktraces). It’s hard to work
effectively when dealing with a 1:100 signal to noise ratio.

Improving Test Suites 258

I only know of 2 solutions for reducing cascading failures of
this type.

• make the tests more intelligent
• make the tests more ignorant

These cascading failures are often avoided by creating com-
plicated tests with intimate knowledge of the collaborators.
The original example from Chapter 1 is a great example of
tests that will not fail in the way shown above. The original
CustomerTest class relies on its knowledge of the methods of
both Rental and Movie to avoid cascading failures.

If you’re willing to force your teammates to digest the (test
helper) code necessary for intelligent tests, youmay never feel
the pain of cascading failures. However, if you prefer tests that
expect literals and follow other patterns I’ve detailed thus far,
you’ll need to find a way to dumb the tests down a bit.

Improving Test Suites 259

Class Under Test

The obvious answer is to replace all collaborators with mocks;
therefore converting all of our tests to Solitary Unit Tests.
Cascading failures are the primary reason I prefer to use the
term Class Under Test when I’m defining Solitary Unit Tests.
Class Under Test reminds you to think in terms of testing the
class, and only the class, that’s under test.

note: I never verify any of the following mocks,
thus I (in theory) consider them to be stubs,
not mocks. However, since I’m calling the mock

method, I believe it’s less confusing if I refer to
the collaborators as mocks. In practice I often
define my own stub method (shown later) that
does little but delegate and more clearly express
my intent.

The following tests are the result of taking the tests above and
replacing the collaborators with mocks.

Improving Test Suites 260

public class CustomerTest {

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for Jim\nAmount owed " +

"is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.build().statement());

}

@Test

public void oneRentalStatement() {

Rental rental = mock(Rental.class);

when(rental.getLineItem())

.thenReturn("Godfather 4 9.0");

when(rental.getCharge())

.thenReturn(9.0);

when(rental.getPoints())

.thenReturn(2);

assertEquals(

"Rental record for Jim\n" +

"\tGodfather 4 9.0\n" +

"Amount owed is 9.0\n" +

"You earned 2 frequent renter points",

a.customer.w(rental).build()

.statement());

}

Improving Test Suites 261

@Test

public void twoRentalsStatement() {

Rental one = mock(Rental.class);

when(one.getLineItem())

.thenReturn("Godfather 4 9.0");

when(one.getCharge())

.thenReturn(9.0);

when(one.getPoints())

.thenReturn(2);

Rental two = mock(Rental.class);

when(two.getLineItem())

.thenReturn("Godfather 4 9.0");

when(two.getCharge())

.thenReturn(9.0);

when(two.getPoints())

.thenReturn(2);

assertEquals(

"Rental record for Jim\n" +

"\tGodfather 4 9.0\n" +

"\tGodfather 4 9.0\n" +

"Amount owed is 18.0\n" +

"You earned 4 frequent renter points",

a.customer.w(one, two).build()

.statement());

}

@Test

public void noRentalsGetTotalPoints() {

assertEquals(

0,

a.customer.build().getTotalPoints());

}

Improving Test Suites 262

@Test

public void oneRentalGetTotalPoints() {

Rental rental = mock(Rental.class);

when(rental.getPoints())

.thenReturn(2);

assertEquals(

2,

a.customer.w(

rental).build().getTotalPoints());

}

@Test

public void twoRentalsGetTotalPoints() {

Rental one = mock(Rental.class);

when(one.getPoints())

.thenReturn(2);

Rental two = mock(Rental.class);

when(two.getPoints())

.thenReturn(3);

assertEquals(

5,

a.customer.w(

one, two).build().getTotalPoints());

}

}

Improving Test Suites 263

public class RentalTest {

@Test

public void getPointsFromMovie() {

Movie movie = mock(Movie.class);

when(movie.getPoints(2))

.thenReturn(2);

assertEquals(

2,

a.rental.w(

2).w(movie).build().getPoints());

}

}

When run, the previous examples demonstrate why I be-
lieve it’s worth the effort to create Solitary Unit Tests. The
new CustomerTest and RentalTest classes are no longer
susceptible to cascading failures due to internal changes to
collaborators. Removing the possibility of cascading failures
is always a good thing.

Time to celebrate, praise mocks, and move on, right? Not so
fast.

The business decided to introduce the idea of a VIP customer.
The existing Rental.getPoints method needs to be kept
around for other purposes; however, Customer.getTotalPoints
now uses a newly introduced Rental.getPoints(boolean

vipFlag) overload. The new behavior is added to Movie and
Rental and all is well.

Improving Test Suites 264

public class Rental {

Movie movie;

private int daysRented;

private boolean started;

public Rental(

Movie movie, int daysRented) {

this.movie = movie;

this.daysRented = daysRented;

}

public double getCharge() {

return movie.getCharge(daysRented);

}

public int getPoints() {

return

movie.getPoints(daysRented, false);

}

public int getPoints(boolean vipFlag) {

return

movie.getPoints(daysRented, vipFlag);

}

public String getLineItem() {

return

movie.getTitle() + " " + getCharge();

}

}

Improving Test Suites 265

You can nowmake the final changes to Customer.getTotalPoints
and run the tests. The output below is what you’ll find.

JUnit version 4.11

...E.E.E.E

There were 4 failures:

1) twoRentalsStatement(solitary.CustomerTest)

org.junit.ComparisonFailure: expected:<... is 18.0

You earned [4] frequent renter poi...> but was:<.\

.. is 18.0

You earned [0] frequent renter poi...>

2) oneRentalGetTotalPoints(solitary.CustomerTest)

java.lang.AssertionError: expected:<2> but was:<0>

3) oneRentalStatement(solitary.CustomerTest)

org.junit.ComparisonFailure: expected:<...d is 9.0

You earned [2] frequent renter poi...> but was:<.\

..d is 9.0

You earned [0] frequent renter poi...>

4) twoRentalsGetTotalPoints(solitary.CustomerTest)

java.lang.AssertionError: expected:<5> but was:<0>

FAILURES!!!

Tests run: 6, Failures: 4

(Well, getting that output might actually be pre-
ferred. You’ll actually get that output and 200
stacktrace lines.)

The root cause of these cascading failures is different, but the
result is the same: time wasted updating very loosely related
tests, motivation evaporating, and perhaps a bit of faith lost
in testing.

Improving Test Suites 266

Luckily things don’t have to be that way. When converting
from concrete classes to mocks we were able to keep the
expected literals unchanged by specifying return values, but
there’s no reason the tests need to remain so pedantic.

The tests below show how the statement method can be
verified using the default values returned by the Rental

mocks. As I said in the Implementation Overspecification
section, I see no ROI on providing non-default return values
when the goal of my test is to verify String building.

With that in mind, I removed the Implementation Overspeci-
fication in CustomerTest. The result can be seen below.

Improving Test Suites 267

public class CustomerTest {

@Test

public void noRentalsStatement() {

assertEquals(

"Rental record for Jim\nAmount owed " +

"is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.build().statement());

}

@Test

public void oneRentalStatement() {

Rental rental = mock(Rental.class);

assertEquals(

"Rental record for Jim\n\tnull\n" +

"Amount owed is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.w(

rental).build().statement());

}

@Test

public void twoRentalsStatement() {

Rental rental = mock(Rental.class);

assertEquals(

"Rental record for Jim\n\tnull\n" +

"\tnull\nAmount owed is 0.0\n" +

"You earned 0 frequent renter points",

a.customer.w(

rental, rental).build().statement());

}

Improving Test Suites 268

@Test

public void noRentalsGetTotalPoints() {

assertEquals(

0,

a.customer.build().getTotalPoints());

}

@Test

public void oneRentalGetTotalPoints() {

Rental rental = mock(Rental.class);

when(rental.getPoints())

.thenReturn(2);

assertEquals(

2,

a.customer.w(

rental).build().getTotalPoints());

}

@Test

public void twoRentalsGetTotalPoints() {

Rental one = mock(Rental.class);

when(one.getPoints())

.thenReturn(2);

Rental two = mock(Rental.class);

when(two.getPoints())

.thenReturn(3);

assertEquals(

5,

a.customer.w(

one, two).build().getTotalPoints());

}

}

Improving Test Suites 269

When Customer.getTotalPoints is updated to call
.getPoints(vipFlag) of rental the tests will fail with the
following output.

JUnit version 4.11

....E..E

There were 2 failures:

1) oneRentalGetTotalPoints(solitary.CustomerTest)

java.lang.AssertionError: expected:<2> but was:<0>

2) twoRentalsGetTotalPoints(solitary.CustomerTest)

java.lang.AssertionError: expected:<5> but was:<0>

FAILURES!!!

Tests run: 6, Failures: 2

That’s the kind of failure that I appreciate. A changewasmade
to getTotalPoints and only the tests for getTotalPoints are
failing.

We’ve made our tests even more resilient to cascading fail-
ures, and (as I said before) that is always a good thing.

If you didn’t see the value in writing Solitary Unit Testswhile
reading chapter 3, I hope the discussion of Class Under Test
and the example code make clear why I’ve chosen such strict
guidelines. Likewise, I hope the examples immediately above
clarify why I find it so important to avoid Implementation
Overspecification.

Improving Test Suites 270

Revisiting the Definition of Solitary Unit Test

In the One Assertion Per Test section of Improving Assertions
I made the following statement:

At this point you may wonder if the collabora-
tion between Movie and ChildrensPrice forces
MovieTest to be classified as a Sociable Unit Test.

The code in question can be found below.

Improving Test Suites 271

public class MovieTest {

@Test

public void getChargeForChildrens() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(1),

0);

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(2),

0);

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(3),

0);

assertEquals(

3.0,

a.movie.w(

CHILDREN).build().getCharge(4),

0);

assertEquals(

4.5,

a.movie.w(

CHILDREN).build().getCharge(5),

0);

}

}

Improving Test Suites 272

public class Movie {

public enum Type {

REGULAR, NEW_RELEASE, CHILDREN, UNKNOWN;

}

private String title;

Price price;

public Movie(

String title, Movie.Type priceCode) {

this.title = title;

setPriceCode(priceCode);

}

public String getTitle() {

return title;

}

Improving Test Suites 273

private void setPriceCode(

Movie.Type priceCode) {

switch (priceCode) {

case CHILDREN:

price = new ChildrensPrice();

break;

case NEW_RELEASE:

price = new NewReleasePrice();

break;

case REGULAR:

price = new RegularPrice();

break;

default:

throw new IllegalArgumentException(

"invalid price code");

}

}

public double getCharge(int daysRented) {

return price.getCharge(daysRented);

}

public int getPoints(int daysRented) {

return price.getPoints(daysRented);

}

}

Improving Test Suites 274

public class ChildrensPrice extends Price {

@Override

public double getCharge(int daysRented) {

double amount = 1.5;

if (daysRented > 2) // *was 3*

amount += (daysRented - 2) * 1.5;

return amount;

}

}

Technically the constraint is:

The Class Under Test should be the only concrete
class found in a test.

Since ChildrensPrice isn’t found within the test, the con-
straint has been satisfied, technically. Honestly though, the
point of the constraints are to make your life easier, not to
provide you with dogma to blindly follow.

Every piece of advice that I’ve given should be taken as: You
should do X, unless it hurts. Blindly following advice will only
get you into trouble, and turn a positive ROI activity into a
potentially negative ROI burden.

In the above example the Movie instances will collaborate
with instances of ChildrensPrice. ChildrensPrice is a very
straightforward class that’s easy to collaboratewith. It doesn’t
hurt, so the pragmatic thing to do is leave the domain code as
is and deal with the concrete collaboration.

Conversely, if the collaboration with ChildrensPrice were
causing pain (such as cascading failures) you could inject

Improving Test Suites 275

a PriceFactory that was responsible for creating the Price

subclasses. The addition of a PriceFactory would allow you
to create stub Price instances in the MovieTest. This entire
pattern is tried and true; however, it’s not free. I wouldn’t
hesitate to introduce it if it cleaned up some painful tests.
Likewise, I wouldn’t dare introduce it unless it cleaned up
some painful tests. All code must be maintained; there’s no
point in adding more unless it improves the situation.

As Imentioned at the beginning of the book, blindly following
constraints isn’t a good idea. However, understanding and
doing everything you can to follow proven advice while
balancing the needs of your context will always be the right
choice.

Improving Test Suites 276

Questionable Tests

There are several types of tests that I simply don’t write. I find
the following test types to provide negative ROI more often
than not. This is not to say that they cannot provide positive
ROI. I’m merely suggesting that it’s often worth your time to
closely evaluate the ROI of tests of the following types.

Testing Language Features or Standard
Library Classes

Every now and then I run into someone testing a language
feature or a class from the standard library of whatever
language they’re using. The vast majority of the time, I
can’t think of a logical reason to do such a thing and I
recommend deleting the test. Below you’ll find examples of
what I traditionally find to be negative ROI tests.

Improving Test Suites 277

public class JavaTest {

@Test

public void arrayListGet() {

ArrayList<Integer> list =

new ArrayList<Integer>();

list.add(1);

assertEquals(

Integer.valueOf(1), list.get(0));

}

@Test

public void hashMapGet() {

HashMap<Integer, String> map =

new HashMap<Integer, String>();

map.put(1, "a str");

assertEquals("a str", map.get(1));

}

@Test

public void throwCatch() {

Exception ex = null;

try {

throw new RuntimeException("ex");

} catch (Exception eCaught) {

ex = eCaught;

}

assertEquals("ex", ex.getMessage());

}

}

Whether or not these tests provide ROI comes down to
whether or not you trust your language and/or standard
library.

Improving Test Suites 278

In the spirit of full disclosure, I once worked on a team that
wanted to run on bleeding edge versions of their language.
That team used these tests to give them confidence that an
upgrade would not break their application. As usual, consider
your context when determining ROI.

Testing Framework Features or Classes

Take all of the above commentary and apply it to framework
features and classes as well. Below is a reasonable test for
Joda, but is it really necessary?

public class JodaTest {

@Test

public void parseStr() {

assertEquals(

286347600000L,

DateTime.parse(

"1979-01-28").getMillis());

}

}

Similarly to what was said in the previous subsection: These
tests might make sense if you’re often upgrading a framework
and don’t trust it. If you’re not upgrading or you do trust the
framework, it’s worth looking at the ROI of these tests and
likely deleting them.

Testing Private Methods

The question of whether or not to test private methods has
been around as long as people have been testing. I wouldn’t

Improving Test Suites 279

claim that the answer is absolutely not, but I’ve rarely seen
it as a positive ROI activity. If a private method is important
enough to test, you likely have a tested public method that
relies on that private method. If you’re already testing the
public method that’s coupled to the private method, there’s
often little value in providing the additional test for the
private method.

At times you may find a private method complicated enough
that it feels like a test might be in order. In that situation
I like to take a step back and determine if the tests are
pushing me towards a better object model. In the examples
we’ve previously seen, the entire Price class could probably
have been managed via private methods in Movie; however, I
would argue the current object model is both easier to test as
well as maintain.

Improving Test Suites 280

Custom Assertions

Another option that often improves a test suite is the creation
of custom assertions. Custom assertions can take assert struc-
tural duplication and replace it with a concise, globally useful
single assertion.

Structural Duplication: The overall pattern of the
code is the same, but the details differ.

We’ve already touched on custom assertions previously in
the Assert Last section. The following Assert class contains
the assertThrows method we previously used to verify an
exception was thrown.

Improving Test Suites 281

public class Assert {

public static void assertThrows(

Class ex, Runnable runnable) {

Exception exThrown = null;

try {

runnable.run();

} catch (Exception exThrownActual) {

exThrown = exThrownActual;

}

if (null == exThrown)

fail("No exception thrown");

else

assertEquals(ex, exThrown.getClass());

}

}

Custom assertions provide at least two advantages to struc-
tural duplication.

• A higher level concept can be consistently tested.
• Custom assertions can be tested, removing mistakes
that are common with copy/paste of structural dupli-
cation.

Below you’ll find two versions of the same test - creating a
Movie of an UNKNOWN type should throw an IllegalArgumentException.

Improving Test Suites 282

public class MovieTest {

@Test

public void invalidTitleCustomAssertion() {

assertThrows(

IllegalArgumentException.class,

() -> a.movie.w(UNKNOWN).build());

}

@Test

public void invalidTitleWithoutCA() {

Exception e = null;

try {

a.movie.w(UNKNOWN).build();

} catch (Exception ex) {

e = ex;

}

assertEquals(

IllegalArgumentException.class,

e.getClass());

}

}

Improving Test Suites 283

I couldn’t resist using a lambda to emphasize the superiority
of solving this problem with a custom assertion. The lambda
version is beautifully concise, and it also ensures developers
aren’t bitten by the try/missing-fail/catch bug I described in
the Assert Last section.

In addition, we canwrite tests for assertThrows. If assertThrows
is well tested and invalidTitleCustomAssertion fails, you’ll
feel confident that the problem is very likely in your do-
main code. Conversely, If invalidTitleWithoutCA fails, who
knows if the problem is in the domain code or an issue with
the test itself.

With that in mind, I’d create the following tests to ensure
assertThrows works as expected.

Improving Test Suites 284

public class AssertTest {

@Test

public void failIfNoThrow() {

AssertionError e = null;

try {

assertThrows(

IllegalArgumentException.class,

mock(Runnable.class));

} catch (AssertionError ex) {

e = ex;

}

assertEquals(

AssertionError.class,

e.getClass());

}

@Test

public void failWithMessageIfNoThrow() {

AssertionError e = null;

try {

assertThrows(

IllegalArgumentException.class,

mock(Runnable.class));

} catch (AssertionError ex) {

e = ex;

}

assertEquals(

"No exception thrown",

e.getMessage());

}

Improving Test Suites 285

@Test

public void failIfClassMismatch() {

AssertionError e = null;

try {

assertThrows(

IllegalArgumentException.class,

() -> {

throw new RuntimeException("");});

} catch (AssertionError ex) {

e = ex;

}

assertEquals(

AssertionError.class,

e.getClass());

}

Improving Test Suites 286

@Test

public void failWithMessageIfClassWrong() {

AssertionError e = null;

try {

assertThrows(

IllegalArgumentException.class,

() -> {

throw new RuntimeException("");});

} catch (AssertionError ex) {

e = ex;

}

assertEquals(

"expected:<class java.lang."+

"IllegalArgumentException> "+

"but was:<class java.lang."+

"RuntimeException>",

e.getMessage());

}

Improving Test Suites 287

@Test

public void passWithCorrectException() {

AssertionError e = null;

try {

assertThrows(

RuntimeException.class,

() -> {

throw new RuntimeException("");});

} catch (AssertionError ex) {

e = ex;

}

assertEquals(null, e);

}

}

Not the prettiest tests you’ve ever seen; however, they surely
give you the confidence you need to use assertThrows to
create beautiful tests everywhere else an expected exception
test is required.

Improving Test Suites 288

Custom Assertions on Value Objects

In the Expect Literals section of Chapter 4 I created the
following example test.

public class MovieTest {

@Test

public void compareDates() {

Movie godfather =

a.movie.w(

new Date(70261200000L)).build();

assertEquals(

"1972-03-24",

new SimpleDateFormat(

"yyyy-MM-dd").format(

godfather.releaseDate()));

}

}

That test is what I would consider fine. It’s not great, but it’s
not ugly enough that I’d bother doing anything else - if it
were the only test in the codebase of that shape. That said, if
there were several assertions that focused on the date, I would
probably create the following custom assertion.

Improving Test Suites 289

public class Assert {

public static void assertDateWithFormat(

String expected,

String format,

Date dt) {

assertEquals(

expected,

new SimpleDateFormat(

format).format(dt));

}

}

The assertDateWithFormat method is very simple, and it
allows me to create the simplified version of MovieTest

shown below.

public class MovieTest {

@Test

public void compareDates() {

Movie godfather =

a.movie.w(

new Date(70261200000L)).build();

assertDateWithFormat(

"1972-03-24",

"yyyy-MM-dd",

godfather.releaseDate());

}

}

The difference between the previous individual test and the
version from Expect Literals isn’t drastic; however, the more
assertDateWithFormat is used the more you’ll appreciate its
existence.

Improving Test Suites 290

Custom Assertions for Money

It wouldn’t take very long for our current object model to give
us floating point rounding errors, forcing us to add a Money

value object to the system. Since this book is about testing,
not designing the best Money class ever, I’m going to use the
following contrived implementation (it’s little more than a
wrapper on BigDecimal).

Improving Test Suites 291

public class Money {

private BigDecimal val;

public Money(double val) {

this(BigDecimal.valueOf(val));

}

public Money(BigDecimal val) {

this.val = val;

}

public Money add(double d) {

return new Money(

val.add(BigDecimal.valueOf(d)));

}

public Money add(Money m) {

return new Money(val.add(m.val));

}

public double toDouble() {

return val

.setScale(2, BigDecimal.ROUND_HALF_UP)

.doubleValue();

}

}

The above Money class is easily tested, as shown below.

Improving Test Suites 292

public class MoneyTest {

@Test

public void doubleAddition() {

assertEquals(

11.0,

a.money.w(1.0).build().add(

10.0).toDouble(),

0);

}

@Test

public void moneyAddition() {

assertEquals(

11.0,

a.money.w(1.0).build().add(

a.money.w(10.0).build()).toDouble(),

0);

}

@Test

public void oneDecimalToDouble() {

assertEquals(

1.0,

a.money.w(1.0).build().toDouble(),

0);

}

Improving Test Suites 293

@Test

public void twoDecimalToDouble() {

assertEquals(

1.12,

a.money.w(1.12).build().toDouble(),

0);

}

@Test

public void thrDecimalDownToDouble() {

assertEquals(

1.12,

a.money.w(1.123).build().toDouble(),

0);

}

@Test

public void thrDecimalUpToDouble() {

assertEquals(

1.13,

a.money.w(1.125).build().toDouble(),

0);

}

}

The introduction of Money will be fairly pervasive in our
object model. Below you can find the updated Movie class,
which now returns a Money from getCharge.

Improving Test Suites 294

public class Movie {

public enum Type {

REGULAR, NEW_RELEASE, CHILDREN;

}

private String title;

Price price;

public Movie(

String title, Movie.Type priceCode) {

this.title = title;

setPriceCode(priceCode);

}

private void setPriceCode(

Movie.Type priceCode) {

switch (priceCode) {

case CHILDREN:

price = new ChildrensPrice();

break;

case NEW_RELEASE:

price = new NewReleasePrice();

break;

case REGULAR:

price = new RegularPrice();

break;

}

}

Improving Test Suites 295

public Money getCharge(int daysRented) {

return price.getCharge(daysRented);

}

}

The MovieTest class below is similar to what we previously
saw in One Assertion Per Test, modified to call toDouble on
the Money instance returned from getCharge.

Improving Test Suites 296

public class MovieTest {

@Test

public void getChargeForChildrens1Day() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(

1).toDouble(),

0);

}

@Test

public void getChargeForChildrens2Day() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(

2).toDouble(),

0);

}

@Test

public void getChargeForChildrens3Day() {

assertEquals(

1.5,

a.movie.w(

CHILDREN).build().getCharge(

3).toDouble(),

0);

}

Improving Test Suites 297

@Test

public void getChargeForChildrens4Day() {

assertEquals(

3.0,

a.movie.w(

CHILDREN).build().getCharge(

4).toDouble(),

0);

}

@Test

public void getChargeForChildrens5Day() {

assertEquals(

4.5,

a.movie.w(

CHILDREN).build().getCharge(

5).toDouble(),

0);

}

}

All of the tests shown thus far in this subsection are fine (as
previously defined). That said, the duplication that’s begin-
ning to appear is pointing me towards a custom assertion.

Several of the tests we’ve seen for Money and Movie contain
the following structural duplication.

assertEquals(

doubleLiteral,

getSomeMoney().toDouble(),

0)

Improving Test Suites 298

Structural duplication within a single test case doesn’t war-
rant creating a custom assertion - the duplication isn’t global
enough to justify a global solution. However, now that we’ve
seen structural duplication in Money and Movie it’s probably
time to create an assertMoney. The fact that we know we’re
going to see the same duplication in Rental and Customer

makes a custom assertion an obvious choice.

The following assertMoney method can both be used to
clean up our existing tests as well as be independently tested
similarly to (the previously shown) assertThrows.

public class Assert {

public static void assertMoney(

double d, Money m) {

assertEquals(d, m.toDouble(), 0);

}

}

note: If you prefer a more descriptive name such
as assertMoneyToDouble, go for it. The descrip-
tiveness of the name has no effect on whether or
not to use a custom assertion.

With assertMoney available, the MoneyTest class cleans up
nicely.

Improving Test Suites 299

public class MoneyTest {

@Test

public void doubleAddition() {

assertMoney(

11.0, a.money.w(1.0).build().add(10.0));

}

@Test

public void moneyAddition() {

assertMoney(

11.0,

a.money.w(1.0).build().add(

a.money.w(10.0).build()));

}

@Test

public void oneDecimalToDouble() {

assertMoney(

1.0, a.money.w(1.0).build());

}

@Test

public void twoDecimalToDouble() {

assertMoney(

1.12, a.money.w(1.12).build());

}

@Test

public void thrDecimalDownToDouble() {

assertMoney(

1.12, a.money.w(1.123).build());

}

Improving Test Suites 300

@Test

public void thrDecimalUpToDouble() {

assertMoney(

1.13, a.money.w(1.125).build());

}

}

Likewise, the MovieTest structural duplication can be easily
removed, resulting in concise and maintainable tests.

Improving Test Suites 301

public class MovieTest {

@Test

public void getChargeForChildrens1Day() {

assertMoney(

1.5,

a.movie.w(

CHILDREN).build().getCharge(1));

}

@Test

public void getChargeForChildrens2Day() {

assertMoney(

1.5,

a.movie.w(

CHILDREN).build().getCharge(2));

}

@Test

public void getChargeForChildrens3Day() {

assertMoney(

1.5,

a.movie.w(

CHILDREN).build().getCharge(3));

}

@Test

public void getChargeForChildrens4Day() {

assertMoney(

3.0,

a.movie.w(

CHILDREN).build().getCharge(4));

}

Improving Test Suites 302

@Test

public void getChargeForChildrens5Day() {

assertMoney(

4.5,

a.movie.w(

CHILDREN).build().getCharge(5));

}

}

The change to Rental and RentalTest is obvious, and easier
to implement with assertMoney in place.

public class Rental {

Movie movie;

private int daysRented;

public Rental(

Movie movie, int daysRented) {

this.movie = movie;

this.daysRented = daysRented;

}

public Money getCharge() {

return movie.getCharge(daysRented);

}

}

Improving Test Suites 303

public class RentalTest {

@Test

public void getChargeFromMovie() {

Movie movie = mock(Movie.class);

when(movie.getCharge(any(Integer.class)))

.thenReturn(a.money.w(1.5).build());

assertMoney(

1.5,

a.rental.w(movie).build().getCharge());

}

}

A final change to the Customer and CustomerTest classes
complete the addition of Money to our object model, and
further demonstrate the value of our custom assertion.

public class Customer {

private List<Rental> rentals =

new ArrayList<Rental>();

public void addRental(Rental rental) {

rentals.add(rental);

}

public Money getTotalCharge() {

Money total = new Money(0.0);

for (Rental rental : rentals)

total = total.add(rental.getCharge());

return total;

}

}

Improving Test Suites 304

public class CustomerTest {

@Test

public void chargeForNoRentals() {

assertMoney(

0.0,

a.customer.build().getTotalCharge());

}

@Test

public void chargeForOneRental() {

Rental rental = mock(Rental.class);

when(rental.getCharge())

.thenReturn(a.money.w(2.0).build());

assertMoney(

2.0,

a.customer.w(

rental).build().getTotalCharge());

}

Improving Test Suites 305

@Test

public void chargeForTwoRentals() {

Rental rental1 = mock(Rental.class);

when(rental1.getCharge())

.thenReturn(a.money.w(2.2).build());

Rental rental2 = mock(Rental.class);

when(rental2.getCharge())

.thenReturn(a.money.w(3.5).build());

assertMoney(

5.7,

a.customer.w(

rental1,

rental2).build().getTotalCharge());

}

}

Improving Test Suites 306

Global Definition

Custom Assertions can improve a test suite, and they aren’t
the only example of globally useful code. This section shows
how to effectively and concisely create both domain objects
and simple stubs. While the examples are concrete, the idea is
more abstract: If you find yourself repeating the same idea in
multiple test cases, look for a higher level concept that can
be extracted and reused.

The abstract idea in this chapter can be valuable; however,
remember not to DRY your code with a blowtorch. Dupli-
cation, structural or character, within a single test case does
not warrant extraction. Instead, look to address duplication
within a single test case in the object model itself. Extracting
duplication of any type from an individual test case and
creating a “global” solution is highly likely to create negative
ROI.

Creating Domain Objects Within Tests

Sociable Unit Tests consist of a Class Under Test (CUT), and
may also involve collaborators. The CUT and collaborators
need to be created somewhere. At this point, developers still
cannot seem to agree on whether instances should be created
using new (vanilla construction), Test Data Builders, Object
Mother, or a competing solution.

The examples within this book leave no question as to which
solution I prefer; however, I suspect it’s worth spending a few
paragraphs discussing my preference.

Improving Test Suites 307

New Is The New New

There’s been a recent movement away from containers and
towards simply creating your objects with new. This move-
ment has a simple catch-phrase:

New is the new new.

I first heard the phrase from JoeWalnes; though I’ve seen Dan
North credited as well. Themerits of abandoning containers is
outside the scope of this book; however, I will quicklymention
that I do agree with this movement in general - when we’re
talking about creating objects within our domain model. My
support of new does not extend to tests.

I become deeply disappointed whenever it takes X minutes
to implement a feature, and more than 2X minutes to update
the test suite. Tests are supposed to make us more effective;
how could we ever claim to be effective if we spend more
than 66% of our time working on code that will never run in
production?

A change that creates cascading failures will likely lead us to
the disappointing time ratio described above, thus the previ-
ous subsection on how to avoid cascading failures. Unfortu-
nately, using new can quickly put us in the same unenviable
position.

Most codebases will instantiate significantly more objects in
tests than within a domain model. As an example, in the
Custom Assertions for Money sample code we created a Money
instance four times within the object model and twelve times
within the tests.

If we need to add a constructor argument to Money and we
create the instances used within the tests using new, we likely

Improving Test Suites 308

spend three times as much time updating the tests as we do
updating the object model. Disappointing.

Object Mother

When you write tests in a reasonably sized sys-
tem, you find you have to create a lot of example
data. If I want to test a sick pay calculation on an
employee, I need an employee. But this isn’t just
a simple object - I’ll need the employee’s marital
status, number of dependents, some employment
and payroll history. Potentially this can be a lot
of objects to create. This set data is generally
referred to as the test fixture.

The first move is to create fixture in the setup
method of an xunit test - that way it can be reused
in multiple tests. But the trouble with this is often
you need similar data in multiple test classes.
At this point it makes sense to have a factory
object that can return standard fixtures. –Martin
Fowler, ObjectMother¹⁹

In the same write-up Martin is very clear about the potential
issues with Object Mother.

By now I suspect it’s crystal clear how I feel about code
written with a specific subset of tests in mind. In practice
I find, as the project progresses, the coupling between the
tests and the mothers eventually results in immutable tests.
At some point you’ll find yourself in need of an instance

¹⁹http://martinfowler.com/bliki/ObjectMother.html

Improving Test Suites 309

similar to what’s already available; unfortunately, you’ll be
unable to use it without a “small” change - a change that
causes “unrelated” tests to fail as well. At that point you begin
digging deeply into the fixture code, and quickly end up in the
same disappointing time spent ratio as above.

If you couple your tests, even coupling at the data level,
eventually the tests will likely transition from positive to
negative ROI.

Test Data Builders

I find Test Data Builders to be a superior option. The guide-
lines for creating a Test Data Builder are found below.

For each class you want to use in a test, create a
Builder for that class that:

• Has an instance variable for each construc-
tor parameter

• Initializes its instance variables to commonly
used or safe values

• Has a build method that creates a new ob-
ject using the values in its instance variables

• Has “chainable” public methods for over-
riding the values in its instance variables.

–Nat Pryce, Test Data Builders²⁰

Creating a test fixture can be both tedious and error prone.

²⁰http://www.natpryce.com/articles/000714.html

Improving Test Suites 310

The concerns in New Is The New New describe my largest
issue with using new to create a test fixture. In stark contrast,
if you add a constructor argument to Money and the tests are
written as they are in Custom Assertions for Money, the same
four calls to new in the object model must be updated and the
single call to new in the Test Data Builder must be updated.

Using the Test Data Builder patternwe’ve changed the test:object-
model maintenance ratio from 3:1 (using new) to 1:4. While
I would classify spending 75% of our time within the tests
as disappointing, I would gladly classify spending 20% of our
time as working effectively.

Object Mother is a competing solution that addresses test
fixture creation pain; however, it (as Nat points out) does
not cope well with variation in the test data. Any non-trivial
Object Mother is likely to become bloated with duplication
and offer no obvious improvement path.

Data Builders provide you the benefits of creating an object
with sensible defaults, and provide methods for adding your
test specific data - thus keeping your tests decoupled.

Test Data Builder Syntax

An example found on Nat’s blog shows the following:

anOrder().from(

aCustomer().with(...)).build();

The Test Data Builders found within this book would have
the following syntax for the same domain objects.

Improving Test Suites 311

a.order.w(a.customer.w(...)).build();

There’s at least one other alternative that I could justify using
based on context:

build(

order.w(

customer.w(...)));

Nat explains his choice on his blog: de-emphasize the builders
further by instantiating them in clearly named factory meth-
ods²¹

My choice to use a.domainObject is based on the desire to
use IntelliSense without having to static import the factory
methods. The cost of this choice is maintaining the a class.

Finally, it would be trivial to create a TestDataBuilder inter-
face that defines build, thus enabling the last shown example.
The advantage of this solution is the ability to indent the code
as shown above.

All three of the above solutions have minor positive and
negative aspects. I wouldn’t spend too much time worrying
about conflicting syntax in Test Data Builder examples. The
Test Data Builder pattern is what’s truly valuable; the syntax
is an implementation detail that doesn’t significantly impact
ROI.

It’s not necessary to pick the perfect syntax on your first
attempt at introducing Test Data Builders. Switching from
one syntax to another is a bit tedious, but it’s not very error
prone. You may even find that there’s an alternative solution

²¹http://www.natpryce.com/articles/000727.html

Improving Test Suites 312

that’s more suited to your context. My advice is to pick one
that seems most appealing to your team and incrementally
improve where necessary.

Test Data Builder Guidelines Revisited

There’s no explicit guideline that states that a builder shouldn’t
contain an instance variable for non-constructor values; how-
ever, I often find that a complex builder is only necessary
when working with an overly complicated object model.
Furthermore, creating complex builders can quickly lead us
to pain similar to what we find when we’re using an Object
Mother.

As an example, the CustomerBuilder currently contains rentals
that are added after a Customer instance has been constructed.
Thus far this hasn’t been a problem, but there’s really no
reason to start introducing potentially problematic behavior.

Below you’ll find the a class that contains the CustomerBuilder
(among other things) and one of the CustomerTest methods
that was found in the Custom Assertions for Money section.

Improving Test Suites 313

public class a {

public static CustomerBuilder customer =

new CustomerBuilder();

public static MoneyBuilder money =

new MoneyBuilder();

public static class CustomerBuilder {

Rental[] rentals;

CustomerBuilder() {

this(new Rental[0]);

}

CustomerBuilder(Rental[] rentals) {

this.rentals = rentals;

}

public CustomerBuilder w(

Rental... rentals) {

return new CustomerBuilder(rentals);

}

public Customer build() {

Customer result = new Customer();

for (Rental rental : rentals) {

result.addRental(rental);

}

return result;

}

}

Improving Test Suites 314

public static class MoneyBuilder {

final double val;

MoneyBuilder() {

this(1.0);

}

MoneyBuilder(double val) {

this.val = val;

}

public MoneyBuilder w(double val) {

return new MoneyBuilder(val);

}

public Money build() {

return new Money(val);

}

}

}

Improving Test Suites 315

public class CustomerTest {

@Test

public void chargeForTwoRentals() {

Rental rental1 = mock(Rental.class);

when(rental1.getCharge())

.thenReturn(a.money.w(2.2).build());

Rental rental2 = mock(Rental.class);

when(rental2.getCharge())

.thenReturn(a.money.w(3.5).build());

assertMoney(

5.7,

a.customer.w(

rental1,

rental2).build().getTotalCharge());

}

}

Based on my opinion above, we’ll need to remove all refer-
ences to rentals within the CustomerBuilder inner class.

Following this change, the CustomerTestwill need to become
to what you see below.

Improving Test Suites 316

public class CustomerTest {

@Test

public void chargeForTwoRentals() {

Rental rental1 = mock(Rental.class);

when(rental1.getCharge())

.thenReturn(a.money.w(2.2).build());

Rental rental2 = mock(Rental.class);

when(rental2.getCharge())

.thenReturn(a.money.w(3.5).build());

Customer customer = a.customer.build();

customer.addRental(rental1);

customer.addRental(rental2);

assertMoney(

5.7, customer.getTotalCharge());

}

}

This test could be fine as is; however, we originally wrote
the w(Rental... rentals)method to reduce duplication, and
that desire still exists.

Throughout this book I’vemade claims that duplicationwithin
an individual test case can often be removed by making a
change to the object model. The code evolution within this
subsection serves as a concrete example of that advice put in
action.

Specifically, I can improve the tests by applying the following
two quick changes to the domain model.

The current Customer class can be found below.

Improving Test Suites 317

public class Customer {

private List<Rental> rentals =

new ArrayList<Rental>();

public void addRental(Rental rental) {

rentals.add(rental);

}

public Money getTotalCharge() {

Money total = new Money(0.0);

for (Rental rental : rentals)

total = total.add(rental.getCharge());

return total;

}

}

If we change addRental to addRentals and change it to return
this, the Customer class would look like the following.

Improving Test Suites 318

public class Customer {

private ArrayList<Rental> rentals =

new ArrayList<Rental>();

public Customer addRentals(

Rental... newRentals) {

rentals.addAll(Arrays.asList(newRentals));

return this;

}

public Money getTotalCharge() {

Money total = new Money(0.0);

for (Rental rental : rentals)

total = total.add(rental.getCharge());

return total;

}

}

With those changes in place the samemethod of CustomerTest
can be written as what’s shown below.

Improving Test Suites 319

public class CustomerTest {

@Test

public void chargeForTwoRentals() {

Rental rental1 = mock(Rental.class);

when(rental1.getCharge())

.thenReturn(a.money.w(2.2).build());

Rental rental2 = mock(Rental.class);

when(rental2.getCharge())

.thenReturn(a.money.w(3.5).build());

assertMoney(

5.7,

a.customer.build().addRentals(

rental1, rental2).getTotalCharge());

}

}

The above test could also be written to declare a Customer

local; however, I prefer to eliminate locals whenever possible.
This preference is based on the conceptual overhead intro-
duced by locals. Conversely, when an instance is used strictly
as an argument, you never need to scan the rest of the test
looking for additional usages.

Improving Test Suites 320

Creating Stubs

It’s very common to find collaborators within unit tests, thus
it makes sense to evaluate eliminating structural or character
duplication specific to stubbing.

Create, Stub, Return

The usage pattern of the stubs from the last CustomerTest
shown is common enough that I prefer to encapsulate it
within a higher level concept. Specifically, I like to capture
the following steps with a few methods that can be combined
to produce the same result.

1. Create a stub.
2. Stub the result of a single method call.
3. Pass the stub to another method.

As I mentioned at the end of the Test Data Builders subsec-
tion, I prefer to eliminate locals when possible. The methods
provided by Mockito offer no way to create a stub, mock a
single method call, and return the mock; however, it’s not
very complicated to write those methods ourselves.

Improving Test Suites 321

public class MockitoExtensions {

@SuppressWarnings("unchecked")

public static <T> T create(

Object methodCall) {

when(methodCall)

.thenReturn(

StubBuilder.current.returnValue);

return (T)

StubBuilder.current.mockInstance;

}

public static <T> StubBuilder<T> stub(

Class<T> klass) {

return new StubBuilder<T>(mock(klass));

}

public static class StubBuilder<T> {

public static StubBuilder current;

public final T mockInstance;

private Object returnValue;

public StubBuilder(T mockInstance) {

current = this;

this.mockInstance = mockInstance;

}

public T from() {

return mockInstance;

}

public StubBuilder<T> returning(

Object returnValue) {

this.returnValue = returnValue;

return this;

}

}

}

Improving Test Suites 322

Okay, perhaps it’s mildly complicated. Still, with the methods
above in place, we’re able to remove all the local variables
from the last shown CustomerTest class.

public class CustomerTest {

@Test

public void chargeForTwoRentals() {

assertMoney(

5.7,

a.customer.build().addRentals(

create(

stub(Rental.class)

.returning(a.money.w(2.2).build())

.from().getCharge()),

create(

stub(Rental.class)

.returning(a.money.w(3.5).build())

.from().getCharge()))

.getTotalCharge());

}

}

I believe tests such as the above CustomerTest are some of the
most effective tests you could possibly write.

Assume the test is currently failing and you’re unfamiliar
with Customer and CustomerTest.

• The assertion follows the Assert Last principle, thus you
know where to look for the origin of the failure.

• There are no locals, thus there’s no need to scan the test
for usages.

Improving Test Suites 323

• The assertion is globally used, thus it’s unlikely that
navigation will be a prerequisite to understanding.

• The expected value is a literal, thus no navigation is
required for understanding.

• The domain object is built using a builder, thus it’s
unlikely that navigation will be a prerequisite to un-
derstanding.

• The domain method addRentals is called, which will
require navigation prior to understanding

– This is your first true investment in understand-
ing this test.

• The collaborators are created using general stubbing
methods, thus it’s unlikely that navigation will be a
prerequisite to understanding.

• The return value of the stubbedmethod is created using
a builder, thus it’s unlikely that navigation will be a
prerequisite to understanding.

• All collaborators are stubs, thus the problem cannot
exist in their implementation, more navigation avoided.

• The domain method getTotalCharge creates actual
value; navigation will be required.

– This is the second and final investment you’ll be
required to make to understand this test.

It’s likely that no test specific code will need to be read to fully
understand the test;

In summary, the entire test can largely be understood without
any navigation, and as written it’s easy to pick out which
domain methods will need to be examined to find the source
of the failure.

Improving Test Suites 324

Create, Lambda, Return

The previous MockitoExtensions class uses static state. I sus-
pect some of you were offended by that choice. I created this
section as an offer of amends. The following MockitoExtensions
implementation allows you to easily create a stub with de-
clared behavior and no local.

public class MockitoExtensions {

public static <T> T stub(

Class<T> klass,

Function<T,Object> f,

Object returnVal) {

try {

T result = mock(klass);

when(f.apply(result))

.thenReturn(returnVal);

return result;

} catch (Exception e) {

throw new RuntimeException(e);

}

}

}

Armed with that implementation of stub the CustomerTest

class can be written as follows.

Improving Test Suites 325

public class CustomerTest {

@Test

public void chargeForTwoRentals() {

assertMoney(

5.7,

a.customer.build().addRentals(

stub(Rental.class,

s -> s.getCharge(),

a.money.w(2.2).build()),

stub(Rental.class,

s -> s.getCharge(),

a.money.w(3.5).build()))

.getTotalCharge());

}

}

More Than Creation

With Test Data Builders and the above Mockito Extensions
in place, you should be able to concisely create any instances
required in your unit tests. Defining globally useful functions
for creation is a great start, but there’s no need to stop there.

remember: If you find yourself repeating any
idea in multiple test cases, (then and only then)
look for a higher level concept that can be ex-
tracted and reused.

Closing Thoughts

Closing Thoughts 327

Broad Stack Tests

I previously defined Solitary Unit Test strictly and Sociable
Unit Test as everything else. These definitions work for
describing unit tests, but it’s unlikely that you’ll want to
work with unit tests exclusively. In practice there’s often
another, higher level type of test: Broad Stack Test²². Most
teams have Broad Stack Tests in what they call Functional
Tests, Integration Tests, End-to-End Tests, Smoke Tests, or
something similar. These tests are designed to exercise as
much of the application as possible, often using an automated
tool to drive a UI or deliver out of process messages.

I’m a fan of Broad Stack Tests; however, back in 2009 I decided
on what I considered to be a good guideline for Broad Stack
Testing:

Never write more than a dozen Broad Stack Tests.

Broad Stack Tests are almost always complicated and ex-
tremely fragile. It’s not uncommon for a single change to
break an entire suite of Broad Stack Tests. Truthfully, any-
thing related to Broad Stack Testing always comes with an
implicit “here be dragons”.

I’ve been responsible for my fair share of Broad Stack Test cre-
ation. Despite my best efforts, I’ve never found a way to write
Broad Stack Tests that weren’t dominated by complex and
implicit logic. Unfortunately, tests with those characteristics
often equal heartbreak for teammates that are less familiar
with the Broad Stack Tests. Broad Stack Test issues often arise

²²http://martinfowler.com/bliki/BroadStackTest.html

Closing Thoughts 328

from concurrency, stubbing external resources, configuration
properties, internal state exposure and manipulation, 3rd
party components, and everything else that is required to test
your application under production-like circumstances.

To make things worse, these tests are often your last line of
defense. Most issues that these tests would catch are caught
by a unit test that is better designed to pinpoint where the
issue originates. Finally, and worst of all, nine out of ten times
the tests report failure it’s due to the test infrastructure (not
an actual flaw in the application) and it takes a significant
amount of time to figure out how to fix the infrastructure
(with no actual benefit to the domain model).

I’ve thrown away my fair share of Broad Stack Test suites.
Prior to deletion they’d become unmaintainable and con-
stantly reported false negatives. ROI had become unquestion-
ably negative. On the other hand I’ve found plenty of success
using Broad Stack Tests I’ve written. For awhile I thought my
success with Broad Stack Tests came from a combination of
my dedication to making them as easy as possible to work
with and that I never allowed more than a dozen of them.

I was wrong. I eventually figured out the trick to Broad Stack
Tests: To be successful with Broad Stack Tests you have to
be the person who wrote them. The complexity of Broad
Stack Test infrastructure almost ensures that the original
author will be the expert. Making changes to Broad Stack Test
infrastructure is often as simple as moving a few variables.
However, knowing which variables is a completely different
problem. It’s basically impossible to know what tiny changes
to make unless you’re the original author, or what I call the
Broad Stack Test Whisperer (BSTW).

The fact that the Broad Stack Tests cannot be maintained

Closing Thoughts 329

without the BSTW only solidifies my opinion that you should
never have more than a dozen Broad Stack Tests. If the BSTW
leaves, your best bet is to ditch the existing Broad Stack Tests
and have the next BSTW write a version they’re happy to
own. Obviously you don’t want this task to take a significant
amount of time, thus limiting the number of Broad Stack Tests
is in everyone’s best interest.

Closing Thoughts 330

Test Pyramid

The test pyramid is a concept developed by Mike
Cohn, described in his book Succeeding with
Agile. Its essential point is that you should have
many more low-level unit tests than high level
end-to-end tests running through a GUI. –Martin
Fowler, TestPyramid²³

The Test Pyramid concept fits very well with the style I’m
suggesting. In practice around 80%-90% of my tests are Soli-
tary Unit Tests, 10%-20% are Sociable Unit Tests, and I have
between one and twelve Broad Stack Tests.

²³http://martinfowler.com/bliki/TestPyramid.html

Closing Thoughts 331

Final Thoughts On ROI

When making implementation changes it’s easy to see the
value of unit tests. You can tweak the internals to your heart’s
content and the tests continue to provide feedback without
requiring any coding attention. Conversely, making changes
to the public API often results in spending as much or more
time working with the test code. If you don’t follow the
patterns I’ve detailed in this book, I wouldn’t be surprised to
see you spending up to 80% of your time fixing tests during a
public API change.

When the effort is split that drastically, it’s natural to ask
questions. Eventually, someone is going to ask: Should we
even bother writing Unit Tests?

Many talented developers have proposed using exclusively
Broad Stack Tests in the past. While this approach has its
appeal, there are two hurdles that have thus far kept this
proposal from gaining any traction. The main selling point
is quite tempting: You’re able to make large architectural
refactorings without changing any tests. Unfortunately, the
drawbacks are equally noteworthy: Long Running Tests (on
the order of minutes and hours) and Poor Defect Localization
(when things fail it can often take minutes or hours to find
the root cause).

Despite these limitations, people continue to advance this
approach. Still, I think it’s safe to say unit tests will be around
for the foreseeable future. I also believe that such a drastic ap-
proach is solving the problem in the wrongway.We shouldn’t
test everything with Unit or Broad Stack Tests. We should use
all of the approaches, each where most appropriate, and most
importantly:

Closing Thoughts 332

The key is to test the areas that you are most
worried about going wrong. That way you get
the most benefit for your testing effort. –Martin
Fowler, Refactoring

Closing Thoughts 333

More…

review on goodreads: http://review.wewut.com²⁴

join the discussion group: http://group.wewut.com²⁵

²⁴http://review.wewut.com
²⁵http://group.wewut.com

	Table of Contents
	Foreword
	Preface
	Acknowledgments
	Unit Testing, a First Example
	Thoughts on our Tests
	The Domain Code
	Moving Towards Readability
	Replace Loop with Individual Tests
	Expect Literals
	Inline Setup
	Replace ObjectMother with DataBuilder
	Comparing the Results
	Final Thoughts on our Tests

	Motivators
	Types of Tests
	State Verification
	Behavior Verification
	Unit Test
	Solitary Unit Test
	Sociable Unit Test
	Continuing with Examples From Chapter 1
	Final Thoughts, Again

	Improving Assertions
	One Assertion Per Test
	Implementation Overspecification
	Assert Last
	Expect Literals
	Negative Testing
	Hamcrest

	Improving Test Cases
	Too Much Magic
	Inline Setup
	Test Names

	Improving Test Suites
	Separating The Solitary From The Sociable
	Questionable Tests
	Custom Assertions
	Global Definition

	Closing Thoughts
	Broad Stack Tests
	Test Pyramid
	Final Thoughts On ROI
	More…

