

Crafting Test-Driven Software
with Python

Write test suites that scale with your applications' needs and
complexity using Python and PyTest

Alessandro Molina

BIRMINGHAM - MUMBAI

Crafting Test-Driven Software with Python
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Group Product Manager: Ashwin Nair
Publishing Product Manager: Ashitosh Gupta
Content Development Editor: Divya Vijayan
Senior Editor: Hayden Edwards
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Prashant Ghare

First published: February 2021

Production reference: 1170221

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-265-5

www.packt.com

http://www.packt.com

To my family, Stefania, Stefano, and Cecilia, for dealing with me when I was working on this
book during the evenings and weekends. To all open source contributors, for maintaining the

libraries and frameworks that make our lives easier by providing us with the foundations for our
daily projects.

– Alessandro Molina

Contributors

About the author
Alessandro Molina has been a Python developer since 2001, and has always been
interested in Python as a web development platform. He has worked as a CTO and a team
leader of Python teams for the past 10 years and is currently the core developer of the
TurboGears2 web framework and the maintainer of the Beaker caching/session framework.
He authored the DEPOT file storage framework and the DukPy JavaScript interpreter for
Python and has collaborated on various Python projects related to web development, such
as FormEncode, ToscaWidgets, and the Ming MongoDB ORM.

About the reviewer
Michael Burrows has worked for 20 years across a number of programming languages,
market verticals, and software delivery roles. His main focus for the last 10 years or so has
been using Python to make teams more efficient and effective.

Table of Contents
Preface 1

Section 1: Software Testing and Test-Driven
Development
Chapter 1: Getting Started with Software Testing 6

Technical requirements 7
Introducing software testing and quality control 7

Test plans 8
Introducing automatic tests and test suites 9

Multiple test cases 11
Organizing tests 13

Introducing test-driven development and unit tests 15
Test-driven development 16
Test units 19

Understanding integration and functional tests 21
Integration tests 22
Functional tests 25

Understanding the testing pyramid and trophy 26
The testing pyramid 27
The testing trophy 28
Testing distribution and coverage 29

Summary 30

Chapter 2: Test Doubles with a Chat Application 31
Technical requirements 32
Introducing test doubles 32
Starting our chat application with TDD 33
Using dummy objects 38
Replacing components with stubs 40
Checking behaviors with spies 44
Using mocks 49
Replacing dependencies with fakes 51
Understanding acceptance tests and doubles 56
Managing dependencies with dependency injection 60

Using dependency injection frameworks 63
Summary 66

Chapter 3: Test-Driven Development while Creating a TODO List 67
Technical requirements 68

Table of Contents

[ii]

Starting projects with TDD 68
Building applications the TDD way 83
Preventing regressions 105
Summary 113

Chapter 4: Scaling the Test Suite 114
Technical requirements 114
Scaling tests 115

Moving from e2e to functional 122
Working with multiple suites 125

Compile suite 125
Commit tests 126
Smoke tests 127

Carrying out performance testing 128
Enabling continuous integration 131

Performance testing in the cloud 136
Summary 136

Section 2: PyTest for Python Testing
Chapter 5: Introduction to PyTest 138

Technical requirements 138
Running tests with PyTest 139
Writing PyTest fixtures 142

Using fixtures for dependency injection 146
Managing temporary data with tmp_path 148
Testing I/O with capsys 149
Running subsets of the testsuite 150
Summary 151

Chapter 6: Dynamic and Parametric Tests and Fixtures 152
Technical requirements 152
Configuring the test suite 153
Generating fixtures 156
Generating tests with parametric tests 160
Summary 162

Chapter 7: Fitness Function with a Contact Book Application 164
Technical requirements 165
Writing acceptance tests 165

Writing the first test 166
Getting feedback from the product team 167
Making the test pass 169

Using behavior-driven development 172
Defining a feature file 173

Table of Contents

[iii]

Declaring the scenario 174
Running the scenario test 175
Further setup with the And step 175
Performing actions with the When step 176
Assessing conditions with the Then step 177
Making the scenario pass 178

Embracing specifications by example 180
Summary 187

Chapter 8: PyTest Essential Plugins 188
Technical requirements 189
Using pytest-cov for coverage reporting 189

Coverage as a service 194
Using pytest-benchmark for benchmarking 196

Comparing benchmark runs 198
Using flaky to rerun unstable tests 199
Using pytest-testmon to rerun tests on code changes 202
Running tests in parallel with pytest-xdist 204
Summary 206

Chapter 9: Managing Test Environments with Tox 207
Technical requirements 207
Introducing Tox 208
Testing multiple Python versions with Tox 211

Using environments for more than Python versions 213
Using Tox with Travis 215
Summary 219

Chapter 10: Testing Documentation and Property-Based Testing 220
Technical requirements 220
Testing documentation 221

Adding a code-based reference 223
Writing a verified user guide 226

Property-based testing 231
Generating tests for common properties 237

Summary 240

Section 3: Testing for the Web
Chapter 11: Testing for the Web: WSGI versus HTTP 242

Technical requirements 243
Testing HTTP 243

Testing HTTP clients 247
Testing WSGI with WebTest 252
Using WebTest with web frameworks 261
Writing Django tests with Django's test client 271

Table of Contents

[iv]

Testing Django projects with pytest 274
Testing Django projects with Django's test client 277

Summary 280

Chapter 12: End-to-End Testing with the Robot Framework 281
Technical requirements 282
Introducing the Robot Framework 282
Testing with web browsers 286

Recording the execution of tests 291
Testing with headless browsers 295
Testing multiple browsers 297

Extending the Robot Framework 300
Adding custom keywords 301
Extending Robot from Python 302

Summary 305
306

Other Books You May Enjoy 307

Index 310

About Packt

Preface
This book covers testing and test-driven development practices, introducing you to the
most widespread tools and concepts that are common in the software testing
community, using both the Python native unittest module and the pytest framework.

Who this book is for
This book is aimed at any Python developers that want to learn how they can test their
applications and integrate testing into their development model, as well as for developers
who know how to test software in other languages but are just turning to Python and thus
don't yet know which tools are available to them.

What this book covers
Chapter 1, Getting Started with Software Testing, provides an introduction to the core
concepts of automated testing and to the unittest Python module.

Chapter 2, Test Doubles with a Chat Application, presents the most common kinds of test
doubles while building a real-time chat application.

Chapter 3, Test-Driven Development while Creating a TODO List, covers writing a todo list
application adhering to the test-driven development best practices.

Chapter 4, Scaling the Test Suite, explores the complexities of maintaining a test suite as the
software and the suite grow in size and complexity.

Chapter 5, Introduction to PyTest, presents the pytest framework and explores how it
differs from the unittest module.

Chapter 6, Dynamic and Parametric Tests and Fixtures, dives into more advanced features
of pytest, such as parametric tests and dynamic fixtures.

Chapter 7, Fitness Function with a Contact Book Application, dives into more advanced
concepts related to acceptance tests and Acceptance Test Driven Development (ATDD)
building a real application.

Chapter 8, PyTest Essential Plugins, showcases the most widespread pytest plugins that
can be helpful in most projects.

Preface

[2]

Chapter 9, Managing Test Environments with Tox, presents how to manage test suites
across different Python environments.

Chapter 10, Test Documentation and Property-Based Testing, introduces the concept of testing
documentation and auto-generating tests based on the properties of the system under test.

Chapter 11, Testing for the Web: WSGI versus HTTP, covers how to test client-server
applications based on the HTTP and WSGI protocols.

Chapter 12, End-to-End Testing with the Robot Framework, covers how to write tests that
drive a real browser acting on a web application.

To get the most out of this book
You will need a recent version of Python 3 and pip (the package installer for Python).

All code examples in this book have been tested using Python 3.7, 3.8, and 3.9 on Linux.
However, they should work on other systems too. PyTest 6.0.2 was used by the examples
that rely on PyTest.

Software/hardware covered in the book OS requirements
Python 3.7, 3.8, or 3.9 Windows, MacOSX, or Linux (any)
pip 18+
PyTest 6.0.2+

Additional packages and libraries will be installed from the Python Package Index (PyPI)
using pip over the course of the chapters.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub
at https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-
Python. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[3]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The test prepares a dbpath object for the sole purpose of checking
that dbmanager is asked to load that specific path."

A block of code is set as follows:

 def test_load(self):
 dbpath = Path(tempfile.gettempdir(), "something")
 dbmanager = Mock(
 load=Mock(return_value=["buy milk", "buy water"])
)
 app = TODOApp(io=(Mock(return_value="quit"), Mock()),
 dbpath=dbpath, dbmanager=dbmanager)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 def run(self):
 self._quit = False
 while not self._quit:
 self._out(self.prompt(self.items_list()))
 command = self._in()
 self._dispatch(command)
 self._out("bye!\n")

 def items_list(self):
 enumerated_items = enumerate(self._entries, start=1)
 return "\n".join(
 "{}. {}".format(idx, entry) for idx, entry in enumerated_items
)

Any command-line input or output is written as follows:

$ pip install pytest pytest-bdd

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Preface

[4]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Software Testing and

Test-Driven Development
In this section, we will introduce software testing principles, automated quality control, and
the distinction between quality control and quality assurance, and learn how these concepts
are applied in the Python world using the pytest framework.

This section comprises the following chapters:

Chapter 1, Getting Started with Software Testing
Chapter 2, Test Doubles with a Chat Application
Chapter 3, Test-Driven Development while Creating a TODO List
Chapter 4, Scaling the Test Suite

1
Getting Started with Software

Testing
Many think that the big step from "coding" to "software engineering" is made by having
elegant architectures, well-defined execution plans, and software that moves big
companies' processes. This mostly comes from our vision of the classic industrial product
development world, where planning mostly mattered more than execution, because the
execution was moved forward by an assembly line and software was an expensive internal
utility that only big companies could afford

As software development science moved forward and matured, it became clear that classic
industrial best practices weren't always a great fit for it. The reason being that every
software product was very different, due to the technologies involved, the speed at which
those technologies evolve, and in the end the fact that different software had to do totally
different things. Thus the idea developed that software development was more similar to
craftsmanship than to industry.

If you embrace that it's very hard, and not very effective, to try to eliminate uncertainty and
issues with tons of preparation work due to the very nature of software itself, it becomes
evident that the most important part of software development is detecting defects and
ensuring it achieves the expected goals. Those two things are usually mostly done by
having tests and a fitness function that can verify the software does what we really mean it
to – founding pieces of the whole Software Quality Control discipline, which is what this
chapter will introduce and, in practice, what this book is all about.

In this chapter, we will go through testing software products and the best practices in
quality control. We will also introduce automatic tests and how they are superseding
manual testing. We will take a look at what Test-Driven Development (TDD) is and how
to apply it in Python, giving some guidance on how to distinguish between the various
categories of tests, how to implement them, and how to get the right balance between test
efficacy and test cost.

Getting Started with Software Testing Chapter 1

[7]

In this chapter, we will cover the following:

Introducing software testing and quality control
Introducing automatic tests and test suites
Introducing test-driven development and unit tests
Understanding integration and functional tests
Understanding the testing pyramid and trophy

Technical requirements
A working Python interpreter is all that's needed.

The examples have been written in Python 3.7 but should work in most modern Python
versions.

You can find the code files present in this chapter on GitHub at https:/ /github. com/
PacktPublishing/Crafting- Test- Driven- Software- with- Python/ tree/ main/ Chapter01.

Introducing software testing and quality
control
From the early days, it was clear that like any other machine, software needed a way to
verify it was working properly and was built with no defects.

Software development processes have been heavily inspired by manufacturing industry
standards, and early on, testing and quality control were introduced into the product
development life cycle. So software companies frequently have a quality assurance team
that focuses on setting up processes to guarantee robust software and track results.

Those processes usually include a quality control process where the quality of the built
artifact is assessed before it can be considered ready for users.

The quality control process usually achieves such confidence through the execution of a test
plan. This is usually a checklist that a dedicated team goes through during the various
phases of production to ensure the software behaves as expected.

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter01

Getting Started with Software Testing Chapter 1

[8]

Test plans
A test plan is composed of multiple test cases, each specifying the following:

Preconditions: What's necessary to be able to verify the case
Steps: Actions that have to succeed when executed in the specified order
Postconditions: In which state the system is expected to be at the end of the steps

A sample test case of software where logging in with a username and password is
involved, and we might want to allow the user to reset those, might look like the following
table:

Test Case: 2.2 - Change User Password
Preconditions:
• A user, user1 exists
• The user is logged in as user1
• The user is at the main menu

Action Expected Response Success /
Fail

1 Click the change password button. The system shows a dialog to insert a new password.
2 Enter newpass. The dialog shows 7 asterisks in the password field.
3 Click the OK button. The system shows a dialog with a success message.
4 Wait 2 seconds. The success dialog goes away.

Postconditions:
• The user1 password is now newpass

These test cases are divided into cases, are manually verified by a dedicated team, and a
sample of them is usually selected to be executed during development, but most of them
are checked when the development team declared the work done.

This meant that once the team finishes its work, it takes days/weeks for the release to
happen, as the whole software has to be verified by humans clicking buttons, with all the
unpredictable results that involves, as humans can get distracted, pressing the wrong
button or receiving phone calls in the middle of a test case.

As software usage became more widespread, and business-to-consumer products became
the norm, consumers started to appreciate faster release cycles. Companies that updated
their products with new features frequently were those that ended up dominating the
market in the long term.

Getting Started with Software Testing Chapter 1

[9]

If you think about modern release cycles, we are now used to getting a new version of our
favorite mobile application weekly. Such applications are probably so complex that they
involve thousands of test cases. If all those cases had to be performed by a human, there
would be no way for the company to provide you with frequent releases.

The worst thing you can do, by the way, is to release a broken product. Your users will lose
confidence and will switch to other more reliable competitors if they can't get their job done
due to crashes or bugs. So how can we deliver such frequent releases without reducing our
test coverage and thus incurring more bugs?

The solution came from automating the test process. So while we learned how to detect
defects by writing and executing test plans, it's only by making them automatic that we can
scale them to the number of cases that will ensure robust software in the long term.

Instead of having humans test software, have some other software test it. What a person
does in seconds can happen in milliseconds with software and you can run thousands of
tests in a few minutes.

Introducing automatic tests and test suites
Automated testing is, in practice, the art of writing another piece of software to test an
original piece of software.

As testing a whole piece of software has to take millions of variables and possible code
paths into account, a single program trying to test another one would be very complex and
hard to maintain. For this reason, it's usually convenient to split that program into smaller
isolated programs, each being a test case.

Each test case contains all the instructions that are required to set up the target software in a
state where the parts that are the test case areas of interest can be tested, the tests can be
done, and all the conditions can be verified and reset back to the state of the target software
so a subsequent test case can find a known state from which to start.

When using the unittest module that comes with the Python Standard Library, each test
case is declared by subclassing from the unittest.TestCase class and adding a method
whose name starts with test, which will contain the test itself:

import unittest

class MyTestCase(unittest.TestCase):
 def test_one(self):
 pass

Getting Started with Software Testing Chapter 1

[10]

Trying to run our previous test will do nothing by the way:

$ python 01_automatictests.py
$

We declared our test case, but we have nothing that runs it.

As for manually executed tests, the automatic tests need someone in charge of gathering all
test cases and running them all. That's the role of a test runner.

Test runners usually involve a discovery phase (during which they detect all test cases) and
a run phase (during which they run the discovered tests).

The unittest module provides all the components necessary to build a test runner that does
both the discovery and execution of tests. For convenience, it even provides the
unittest.main() method, which configures a test runner that, by default, will run the
tests in the current module:

import unittest

class MyTestCase(unittest.TestCase):
 def test_one(self):
 pass

if __name__ == '__main__':
 unittest.main()

By adding a call to unittest.main() at the end of our tests, Python will automatically
execute our tests when the module is invoked:

$ python 01_automatictests.py
.
--
Ran 1 test in 0.000s

OK

We can confirm that the test we cared about was executed by using the -v option to print a
more verbose output:

$ python 01_automatictests.py -v
test_one (__main__.MyTestCase) ... ok

--
Ran 1 test in 0.000s

OK

Getting Started with Software Testing Chapter 1

[11]

During the discovery phase, unittest.main will look for all classes that inherit from
unittest.TestCase within the module that is recognized as the main Python module
(sys.modules['__main__']), and all those subclasses will be registered as test cases for
the runner.

Individual tests are then defined by having methods with names starting with test in the
test case classes. This means that if we add more methods with names that don't start with
test, they won't be treated as tests:

class MyTestCase(unittest.TestCase):
 def test_one(self):
 pass

 def notatest(self):
 pass

Trying to start the test runner again will continue to run only the test_one test:

$ python 01_automatictests.py -v
test_one (__main__.MyTestCase) ... ok

--
Ran 1 test in 0.000s

OK

In the previous example, only the test_one method was executed as a test, while
notatest was recognized as not being a test but instead as a method that we are going to
use ourselves in tests.

Being able to distinguish between tests (methods whose names start with test_) and other
methods allows us to create helpers and utility methods within our test cases that the
individual tests can reuse.

Given that a test suite is a collection of multiple test cases, to grow our test suite, we need to
be able to actually write more than one single TestCase subclass and run its tests.

Multiple test cases
We already know that unittest.main is the function in charge of executing our test suite,
but how can we make it execute more than one TestCase?

Getting Started with Software Testing Chapter 1

[12]

The discovery phase of unittest.main (the phase during which unittest.main decides
which tests to run) looks for all subclasses or unittest.TestCase.

The same way we had MyTestCase tests executed, adding more test cases is as simple as
declaring more classes:

import unittest

class MyTestCase(unittest.TestCase):
 def test_one(self):
 pass

 def notatest(self):
 pass

class MySecondTestCase(unittest.TestCase):
 def test_two(self):
 pass

if __name__ == '__main__':
 unittest.main()

Running the 01_automatictests.py module again will lead to both test cases being
verified:

$ python 01_automatictests.py -v
test_two (__main__.MySecondTestCase) ... ok
test_one (__main__.MyTestCase) ... ok

--
Ran 2 tests in 0.000s

OK

If a test case is particularly complex, it can even be divided into multiple individual tests,
each checking a specific subpart of it:

class MySecondTestCase(unittest.TestCase):
 def test_two(self):
 pass

 def test_two_part2(self):
 pass

Getting Started with Software Testing Chapter 1

[13]

This allows us to divide the test cases into smaller pieces and eventually share setup and
teardown code between the individual tests. The individual tests will be executed by the
test runner in alphabetical order, so in this case, test_two will be executed before
test_two_part2:

$ python 01_automatictests.py -v
test_two (__main__.MySecondTestCase) ... ok
test_two_part2 (__main__.MySecondTestCase) ... ok
test_one (__main__.MyTestCase) ... ok

In that run of the tests, we can see that MySecondTestCase was actually executed before
MyTestCase because "MyS" is less than "MyT".

In any case, generally, it's a good idea to consider your tests as being executed in a random
order and to not rely on any specific sequence of execution, because other developers might
add more test cases, add more individual tests to a case, or rename classes, and you want to
allow those changes with no additional issues. Especially since relying on a specific known
execution order of your tests might limit your ability to parallelize your test suite and run
test cases concurrently, which will be required as the size of your test suite grows.

Once more tests are added, adding them all into the same class or file quickly gets
confusing, so it's usually a good idea to start organizing tests.

Organizing tests
If you have more than a few tests, it's generally a good idea to group your test cases into
multiple modules and create a tests directory where you can gather the whole test plan:

├── 02_tests
│ ├── tests_div.py
│ └── tests_sum.py

Getting Started with Software Testing Chapter 1

[14]

Those tests can be executed through the unittest discover mode, which will look for all
modules with names matching test*.py within a target directory and will run all the
contained test cases:

$ python -m unittest discover 02_tests -v
test_div0 (tests_div.TestDiv) ... ok
test_div1 (tests_div.TestDiv) ... ok
test_sum0 (tests_sum.TestSum) ... ok
test_sum1 (tests_sum.TestSum) ... ok

--
Ran 4 tests in 0.000s

OK

You can even pick which tests to run by filtering them with a substring with the -k
parameter; for example, -k sum will only run tests that contain "sum" in their names:

$ python -m unittest discover 02_tests -k sum -v
test_sum0 (tests_sum.TestSum) ... ok
test_sum1 (tests_sum.TestSum) ... ok

--
Ran 2 tests in 0.000s

OK

And yes, you can nest tests further as long as you use Python packages:

├── 02_tests
│ ├── tests_div
│ │ ├── __init__.py
│ │ └── tests_div.py
│ └── tests_sum.py

Running tests structured like the previous directory tree will properly navigate into the
subfolders and spot the nested tests.

So running unittest in discovery mode over that direction will properly find the
TestDiv and TestSum classes declared inside the files even when they are nested in
subdirectories:

$ python -m unittest discover 02_tests -v
test_div0 (tests_div.tests_div.TestDiv) ... ok
test_div1 (tests_div.tests_div.TestDiv) ... ok
test_sum0 (tests_sum.TestSum) ... ok
test_sum1 (tests_sum.TestSum) ... ok

Getting Started with Software Testing Chapter 1

[15]

--
Ran 4 tests in 0.000s

OK

Now that we know how to write tests, run them, and organize multiple tests in a test suite.
We can start introducing the concept of TDD and how unit tests allow us to achieve it.

Introducing test-driven development and
unit tests
Our tests in the previous section were all empty. The purpose was to showcase how a test
suite can be made, executed, and organized in test cases and individual tests, but in the
end, our tests did not test much.

Most individual tests are written following the "Arrange, Act, Assert" pattern:

First, prepare any state you will need to perform the action you want to try.
Then perform that action.
Finally, verify the consequences of the action are those that you expected.

Generally speaking, in most cases, the action you are going to test is "calling a function,"
and for code that doesn't depend on any shared state, the state is usually all contained
within the function arguments, so the Arrange phase might be omitted. Finally, the Assert
phase will verify that the called function did what you expected, which usually means
verifying the returned value and any effect at a distance that function might have:

import unittest

class SomeTestCase(unittest.TestCase):
 def test_something(self):
 # Arrange phase, nothing to prepare here.

 # Act phase, call do_something
 result = do_something()

 # Assert phase, verify do_something did what we expect.
 assert result == "did something"

The test_something test is structured as a typical test with those three phases explicitly
exposed, with the do_something call representing the Act phase and the final assert
statement representing the Assertion phase.

Getting Started with Software Testing Chapter 1

[16]

Now that we know how to structure tests properly, we can see how they are helpful in
implementing TDD and how unit tests are usually expressed.

Test-driven development
Tests can do more than just validating our code is doing what we expect. The TDD process
argues that tests are essential in designing code itself.

Writing tests before implementing the code itself forces us to reason about our
requirements. We must explicitly express requirements in a strict, well-defined way –
clearly enough that a computer itself (computers are known for not being very flexible in
understanding things) can understand them and state whether the code you will be writing
next satisfies those requirements.

First, you write a test for your primary scenario—in this case, testing that doing 3+2 does
return 5 as the result:

import unittest

class AdditionTestCase(unittest.TestCase):
 def test_main(self):
 result = addition(3, 2)
 assert result == 5

Then you make sure it fails, which proves you are really testing something:

$ python 03_tdd.py
E
==
ERROR: test_main (__main__.AdditionTestCase)
--
Traceback (most recent call last):
 File "03_tdd.py", line 5, in test_main
 result = addition(3, 2)
NameError: name 'addition' is not defined

--
Ran 1 test in 0.000s

FAILED (errors=1)

Finally, you write the real code that is expected to make the test pass:

def addition(arg1, arg2):
 return arg1 + arg2

Getting Started with Software Testing Chapter 1

[17]

And confirm it makes your test pass:

$ python 03_tdd.py
.
--
Ran 1 test in 0.000s

OK

Once the test is done and it passes, we can revise our implementation and refactor the code.
If the test still passes, it means we haven't changed the behavior and we are still doing what
we wanted.

For example, we can change our addition function to unpack arguments instead of having
to specify the two arguments it can receive:

def addition(*args):
 a1, a2 = args
 return a1 + a2

If our test still passes, it means we haven't changed the behavior, and it's still as good as
before from that point of view:

$ python 03_tdd.py
.
--
Ran 1 test in 0.000s

OK

Test-driven development is silent about when you reach a robust code base that satisfies all
your needs. Obviously, you should at least make sure there are enough tests to cover all
your requirements.

But as testing guides us in the process of development, development should guide us in the
process of testing.

Looking at the code helps us come up with more white-box tests; tests that we can think of
because we know how the code works internally. And while those tests might not
guarantee that we are satisfying more requirements, they help us guarantee that our code
is robust in most conditions, including corner cases.

Getting Started with Software Testing Chapter 1

[18]

While historically, test-first and test-driven were synonyms, today that's considered the one
major difference with the test-first approach. In TDD we don't have the expectation to be
able to write all tests first. Nor is it generally a good idea in the context of extreme
programming practices, because you still don't know what the resulting interface that you
want to test will be. What you want to test evolves as the code evolves, and we know that
the code will evolve after every passing test, as a passing test gives us a chance for
refactoring.

In our prior example, as we changed our addition function to accept a variable number of
arguments, a reasonable question would be, "But what happens if I pass three arguments? Or
none?" And our requirements, expressed by the tests, as a consequence, have to grow to
support a variable number of arguments:

 def test_threeargs(self):
 result = addition(3, 2, 1)
 assert result == 6

 def test_noargs(self):
 result = addition()
 assert result == 0

So, writing code helped us come up with more tests to verify the conditions that came to
mind when looking at the code like a white box:

$ python 03_tdd.py
.EE
==
ERROR: test_noargs (__main__.AdditionTestCase)
--
Traceback (most recent call last):
 File "03_tdd.py", line 13, in test_noargs
 result = addition()
 File "03_tdd.py", line 18, in addition
 a1, a2 = args
ValueError: not enough values to unpack (expected 2, got 0)

==
ERROR: test_threeargs (__main__.AdditionTestCase)
--
Traceback (most recent call last):
 File "03_tdd.py", line 9, in test_threeargs
 result = addition(3, 2, 1)
 File "03_tdd.py", line 18, in addition
 a1, a2 = args
ValueError: too many values to unpack (expected 2)

Getting Started with Software Testing Chapter 1

[19]

--
Ran 3 tests in 0.001s

FAILED (errors=2)

And adding those failing tests helps us come up with more, and better, code that now
properly handles the cases where any number of arguments is passed to our addition
function:

def addition(*args):
 total = 0
 for a in args:
 total += a
 return total

Our addition function will now just iterate over the provided arguments, adding them to
the total. Thus if no argument is provided, it will just return 0 because nothing was added
to it.

If we run our test suite again, we will be able to confirm that both our new tests now pass,
and thus we achieved what we wanted to:

$ python 03_tdd.py
...
--
Ran 3 test in 0.001s

OK

Writing tests and writing code should interleave continuously. If you find yourself
spending all your time on one or the other, you are probably moving away from the
benefits that TDD can give you, as the two phases are meant to support each other.

There are many kinds of tests you are going to write in your test suite during your
development practice, but the most common one is probably going to be test units.

Test units
The immediate question once we know how to arrange our tests, is usually "what should I
test?". The answer to that is usually "it depends."

Getting Started with Software Testing Chapter 1

[20]

You usually want tests that assert that the feature you are providing to your users does
what you expect. But do tests do nothing to guarantee that, internally, the components that
collaborate with that feature behave correctly? The exposed feature might be working as a
very lucky side effect of 200 different bugs in the underlying components.

So it's generally a good idea to test those units individually and verify that they all work as
expected.

What are those units? Well, the answer is "it depends" again.

In most cases, you could discuss that in procedural programming, the units are the
individual functions, while in object-oriented programming, it might be defined as a single
class. But classes, while we usually do our best to try to isolate them to a single
responsibility, might cover multiple different behaviors based on which method you call.
So they actually act as multiple components in our system, and in such cases, they should
be considered as separate units.

In practice, a unit is the smallest testable entity that participates in your software.

If we have a piece of software that does "multiplication," we might implement it as a main
function that fetches the two provided arguments and calls a multiply function to do the
real job:

def main():
 import sys
 num1, num2 = sys.argv[1:]
 num1, num2 = int(num1), int(num2)
 print(multiply(num1, num2))

def multiply(num1, num2):
 total = 0
 for _ in range(num2):
 total = addition(total, num1)
 return total

def addition(*args):
 total = 0
 for a in args:
 total += a
 return total

In such a case, both addition and multiply are units of our software.

Getting Started with Software Testing Chapter 1

[21]

While addition can be tested in isolation, multiply must use addition to work.
multiply is thus defined as a sociable unit, while addition is a solitary unit.

Sociable unit tests are frequently also referred to as component tests. Your architecture
mostly defines the distinction between a sociable unit test and a component test and it's
hard to state exactly when one name should be preferred over the other.

While sociable units usually lead to more complete testing, they are slower, require more
effort during the Arrange phase, and are less isolated. This means that a change in
addition can make a test of multiply fail, which tells us that there is a problem, but also
makes it harder to guess where the problem lies exactly.

In the subsequent chapters, we will see how sociable units can be converted into solitary
units by using test doubles. If you have complete testing coverage for the underlying units,
solitary unit tests can reach a level of guarantee that is similar to that of sociable units with
must less effort and a faster test suite.

Test units are usually great at testing software from a white-box perspective, but that's not
the sole point of view we should account for in our testing strategy. Test units guarantee
that the code does what the developer meant it to, but do little to guarantee that the code
does what the user needs. Integration and functional tests are usually more effective in
terms of testing at that level of abstraction.

Understanding integration and functional
tests
Testing all our software with solitary units can't guarantee that it's really working as
expected. Unit testing confirms that the single components are working as expected, but
doesn't give us any confidence about their effectiveness when paired together.

It's like testing an engine by itself, testing the wheels by themselves, testing the gears, and
then expecting the car to work. We wouldn't be accounting for any issues introduced in the
assembly process.

So we have a need to verify that those modules do work as expected when paired together.

Getting Started with Software Testing Chapter 1

[22]

That's exactly what integration tests are expected to do. They take the modules we tested
individually and test them together.

Integration tests
The scope of integration tests is blurry. They might integrate two modules, or they might
integrate tens of them. While they are more effective when integrating fewer modules, it's
also more expensive to move forward as an approach and most developers argue that the
effort of testing all possible combinations of modules in isolation isn't usually worth the
benefit.

The boundary between unit tests made of sociable units and integration tests is not easy to
explain. It usually depends on the architecture of the software itself. We could consider
sociable units tests those tests that test units together that are inside the same architectural
components, while we could consider integration tests those tests that test different
architectural components together.

In an application, two separate services will be involved: Authorization and
Authentication. Authentication takes care of letting the user in and identifying them,
while Authorization tells us what the user can do once it is authenticated. We can see
this in the following code block:

class Authentication:
 USERS = [{"username": "user1",
 "password": "pwd1"}]

 def login(self, username, password):
 u = self.fetch_user(username)
 if not u or u["password"] != password:
 return None
 return u

 def fetch_user(self, username):
 for u in self.USERS:
 if u["username"] == username:
 return u
 else:
 return None

class Authorization:
 PERMISSIONS = [{"user": "user1",
 "permissions": {"create", "edit", "delete"}}]

Getting Started with Software Testing Chapter 1

[23]

 def can(self, user, action):
 for u in self.PERMISSIONS:
 if u["user"] == user["username"]:
 return action in u["permissions"]
 else:
 return False

Our classes are composed of two primary methods: Authentication.login and
Authorization.can. The first is in charge of authenticating the user with a username and
password and returning the authenticated user, while the second is in charge of verifying
that a user can do a specific action. Tests for those methods can be considered unit tests.

So TestAuthentication.test_login will be a unit test that verifies the behavior of the
Authentication.login unit, while TestAuthorization.test_can will be a unit test
that verifies the behavior of the Authorization.can unit:

class TestAuthentication(unittest.TestCase):
 def test_login(self):
 auth = Authentication()
 auth.USERS = [{"username": "testuser", "password": "testpass"}]

 resp = auth.login("testuser", "testpass")

 assert resp == {"username": "testuser", "password": "testpass"}

class TestAuthorization(unittest.TestCase):
 def test_can(self):
 authz = Authorization()
 authz.PERMISSIONS = [{"user": "testuser", "permissions":
 {"create"}}]

 resp = authz.can({"username": "testuser"}, "create")

 assert resp is True

Here, we have the notable difference that TestAuthentication.test_login is a sociable
unit test as it depends on Authentication.fetch_user while testing
Authentication.login, and TestAuthorization.test_can is instead a solitary unit
test as it doesn't depend on any other unit.

So where is the integration test?

Getting Started with Software Testing Chapter 1

[24]

The integration test will happen once we join those two components of our architecture
(authorization and authentication) and test them together to confirm that we can actually
have a user log in and verify their permissions:

class TestAuthorizeAuthenticatedUser(unittest.TestCase):
 def test_auth(self):
 auth = Authentication()
 authz = Authorization()
 auth.USERS = [{"username": "testuser", "password": "testpass"}]
 authz.PERMISSIONS = [{"user": "testuser",
 "permissions": {"create"}}]

 u = auth.login("testuser", "testpass")
 resp = authz.can(u, "create")

 assert resp is True

Generally, it's important to be able to run your integration tests independently from your
unit tests, as you will want to be able to run the unit tests continuously during development
on every change:

$ python 05_integration.py TestAuthentication TestAuthorization
........
--
Ran 8 tests in 0.000s

OK

While unit tests are usually verified frequently during the development cycle, it's common
to run your integration tests only when you've reached a stable point where your unit tests
all pass:

$ python 05_integration.py TestAuthorizeAuthenticatedUser
.
--
Ran 1 test in 0.000s

OK

As you know that the units that you wrote or modified do what you expected, running
the TestAuthorizeAuthenticatedUser case only will confirm that those entities work
together as expected.

Integration tests integrate multiple components, but they actually divide themselves into
many different kinds of tests depending on their purpose, with the most common kind
being functional tests.

Getting Started with Software Testing Chapter 1

[25]

Functional tests
Integration tests can be very diverse. As you start integrating more and more components,
you move toward a higher level of abstraction, and in the end, you move so far from the
underlying components that people feel the need to distinguish those kinds of tests as they
offer different benefits, complexities, and execution times.

That's why the naming of functional tests, end-to-end tests, system tests, acceptance tests,
and so on all takes place.

Overall, those are all forms of integration tests; what changes are their goal and purpose:

Functional tests tend to verify that we are exposing to our users the feature we
actually intended. They don't care about intermediate results or side-effects; they
just verify that the end result for the user is the one the specifications described,
thus they are always black-box tests.
End-to-End (E2E) tests are a specific kind of functional test that involves the
vertical integration of components. The most common E2E tests are where
technologies such as Selenium are involved in accessing a real application
instance through a web browser.
System tests are very similar to functional tests themselves, but instead of testing
a single feature, they usually test a whole journey of the user across the system.
So they usually simulate real usage patterns of the user to verify that the system
as a whole behaves as expected.
Acceptance tests are a kind of functional test that is meant to confirm that the
implementation of the feature does behave as expected. They usually express the
primary usage flow of the feature, leaving less common flows for other
integration tests, and are frequently provided by the specifications themselves to
help the developer confirm that they implemented what was expected.

But those are not the only kinds of integration that people refer to; new types are
continuously defined in the effort to distinguish the goals of tests and responsibilities.
Component tests, contract tests, and many others are kinds of tests whose goal is to verify
integration between different pieces of the software at different layers. Overall, you
shouldn't be ashamed of asking your colleagues what they mean exactly when they use
those names, because you will notice each one of them will value different properties of
those tests when classifying them into the different categories.

The general distinction to keep in mind when distinguishing between integration tests and
functional tests is that unit and integration tests aim to test the implementation, while
functional tests aim to test the behavior.

Getting Started with Software Testing Chapter 1

[26]

How you do that can easily involve the same exact technologies and it's just a matter of
different goals. Properly covering the behavior of your software with the right kind of tests
can be the difference between buggy software and reliable software. That's why there has
been a long debate about how to structure test suites, leading to the testing pyramid and
the testing trophy as the most widespread models of test distribution.

Understanding the testing pyramid and
trophy
Given the need to provide different kinds of tests – unit, integration, and E2E as each one of
them has different benefits and costs, the next immediate question is how do we get the
right balance?

Each kind of test comes with a benefit and a cost, so it's a matter of finding where we get
the best return on investment:

E2E tests verify the real experience of what the user faces. They are, in theory, the
most realistic kind of tests and can detect problems such as incompatibilities with
specific platforms (for example, browsers) and exercise our system as a whole.
But when something goes wrong, it is hard to spot where the problem lies. They
are very slow and tend to be flaky (failing for reasons unrelated to our software,
such as network conditions).
Integration tests usually provide a reasonable guarantee that the software is
doing what it is expected to do and are fairly robust to internal implementation
changes, requiring less frequent refactoring when the internals of the software
change. But they can still get very slow if your system involves writes to database
services, the rendering of page templates, routing HTTP requests, and generally
slow parts. And when something goes wrong, we might have to go through tens
of layers before being able to spot where the problem is.
Unit tests can be very fast (especially when talking of solitary units) and provide
very pinpointed information about where problems are. But they can't always
guarantee that the software as a whole does what it's expected to do and can
make changing implementation details expensive because a change to internals
that don't impact the software behavior might require changing tens of unit tests.

Each of them has its own pros and cons, and the development community has long argued
how to get the right balance.

The two primary models that have emerged are the testing pyramid and the testing trophy,
named after their shapes.

Getting Started with Software Testing Chapter 1

[27]

The testing pyramid
The testing pyramid originates from Mike Cohn's Succeeding with Agile book, where the two
rules of thumb are "Write test with different granularities" (so you should have unit,
integration, E2E, and so on...) and "the more you get high level, the less you should test" (so you
should have tons of unit tests, and a few E2E tests).

While different people will argue about which different layers are contained within it, the
testing pyramid can be simplified to look like this:

Figure 1.1 – Testing pyramid

The tip of the pyramid is narrow, thus meaning we have fewer of those tests, while the base
is wider, meaning we should mostly cover code with those kinds of tests. So, as we move
down through the layers, the lower we get, the more tests we should have.

The idea is that as unit tests are fast to run and expose pinpointed issues early on, you
should have a lot of them and shrink the number of tests as they move to higher layers and
thus get slower and vaguer about what's broken.

The testing pyramid is probably the most widespread practice for organizing tests and
usually pairs well with test-driven development as unit tests are the founding tool for the
TDD process.

Getting Started with Software Testing Chapter 1

[28]

The other most widespread model is the testing trophy, which instead emphasizes
integration tests.

The testing trophy
The testing trophy originates from a phrase by Guillermo Rauch, the author of Socket.io
and many other famous JavaScript-based technologies. Guillermo stated that developers
should "Write tests. Not too many. Mostly integration."

Like Mike Cohn, he clearly states that tests are the foundation of any effective software
development practice, but he argues that they have a diminishing return and thus it's
important to find the sweet spot where you get the best return on the time spent writing
tests.

That sweet spot is expected to live in integration tests because you usually need fewer of
them to spot real problems, they are not too bound to implementation details, and they are
still fast enough that you can afford to write a few of them.

So the testing trophy will look like this:

Figure 1.2 – Testing trophy

Getting Started with Software Testing Chapter 1

[29]

As you probably saw, the testing trophy puts a lot of value on static tests too, because the
whole idea of the testing trophy is that what is really of value is the return on investment,
and static checks are fairly cheap, up to the point that most development environments run
them in real time. Linters, type checkers, and more advanced kinds of type analyzers are
cheap enough that it would do no good to ignore them even if they are rarely able to spot
bugs in your business logic.

Unit tests instead can cost developers time with the need to adapt them due to internal
implementation detail changes that don't impact the final behavior of the software in any
way, and thus the effort spent on them should be kept under control.

Those two models are the most common ways to distribute your tests, but more best
practices are involved when thinking of testing distribution and coverage.

Testing distribution and coverage
While the importance of testing is widely recognized, there is also general agreement that
test suites have a diminishing return.

There is little point in wasting hours on testing plain getters and setters or testing
internal/private methods. The sweet spot is said to be around 80% of code coverage, even
though I think that really depends on the language in use – the more expressive your
language is, the less code you have to write to perform complex actions. And all complex
actions should be properly tested, so in the case of Python, the sweet spots probably lies
more in the range of 90%. But there are cases, such as porting projects from Python 2 to
Python 3, where code coverage of 100% is the only way you can confirm that you haven't
changed any behavior at all in the process of porting your code base.

Last but not least, most testing practices related to test-driven development take care of the
testing practice up to the release point. It's important to keep in mind that when the
software is released, the testing process hasn't finished.

Many teams forget to set up proper system tests and don't have a way to identify and
reproduce issues that can only happen in production environments with real concurrent
users and large amounts of data. Having staging environments and a suite to simulate
incidents or real users' behaviors might be the only way to spot bugs that only happen after
days of continuous use of the system. And some companies go as far as testing the
production system with tools that inject real problems continuously for the sole purpose of
verifying that the system is solid.

Getting Started with Software Testing Chapter 1

[30]

Summary
As we saw in the sections about integration tests, functional tests, and the testing
pyramid/trophy models, there are many different visions about what should be tested, with
which goals in mind, and how test suites should be organized. Getting this right can impact
how much you trust your automatic test suite, and thus how much you evolve it because it
provides you with value.

Learning to do proper automated testing is the gateway to major software development
boosts, opening possibilities for practices such as continuous integration and continuous
delivery, which would otherwise be impossible without a proper test suite.

But testing isn't easy; it comes with many side-effects that are not immediately obvious, and
for which the software development industry started to provide tools and best practices
only recently. So in the next chapters, we will look at some of those best practices and tools
that can help you write a good, easily maintained test suite.

2
Test Doubles with a Chat

Application
We have seen how a test suite, to be reasonably reliable, should include various kinds of
tests that cover components at various levels. Usually, tests, in regard to how many
components they involve, are categorized into at least three kinds: unit, integration, and
end-to-end.

Test doubles ease the implementation of tests by breaking dependencies between
components and allowing us to simulate the behaviors we want.

In this chapter, we will look at the most common kinds of test doubles, what their goals are,
and how to use them in real code. By the end of this chapter, we will have covered how to
use all those test doubles and you will be able to leverage them for your own Python
projects.

By adding test doubles to your toolchain, you will be able to write faster tests, decouple the
components you want to test from the rest of the system, simulate behaviors that depend
on other components' state, and in general move your test suite development forward with
fewer blockers.

In this chapter, we will learn how to move forward, in the Test-Driven Development
(TDD) way, the development of an application that depends on other external
dependencies such as a database management system and networking, relying on test
doubles for the development process and replacing them in our inner test layers to ensure
fast and consistent execution of our tests.

In this chapter, we will cover the following topics:

Introducing test doubles
Starting our chat application with TDD
Using dummy objects
Replacing components with stubs

Test Doubles with a Chat Application Chapter 2

[32]

Checking behaviors with spies
Using mocks
Replacing dependencies with fakes
Understanding acceptance tests and doubles
Managing dependencies with dependency injection

Technical requirements
A working Python interpreter should be all that is needed.

The examples have been written on Python 3.7 but should work on most modern Python
versions.

You can find the code files present in this chapter on GitHub at https:/ /github. com/
PacktPublishing/Crafting- Test- Driven- Software- with- Python/ tree/ main/ Chapter02.

Introducing test doubles
In test-driven development, the tests drive the development process and architecture. The
software design evolves as the software changes during the development of new tests, and
the architecture you end up with should be a consequence of the need to satisfy your tests.

Tests are thus the arbiter that decides the future of our software and declares that the
software is doing what it is designed for. There are specific kinds of tests that are explicitly
designed to tell us that the software is doing what it was requested: Acceptance and
Functional tests.

So, while there are two possible approaches to TDD, top-down and bottom-up (one starting
with higher-level tests first, and the other starting with unit tests first), the best way to
avoid going in the wrong direction is to always keep in mind your acceptance rules, and
the most effective way to do so is to write them down as tests.

But how can we write a test that depends on the whole software existing and working if we
haven't yet written the software at all? The key is test doubles: objects that are able to
replace missing, incomplete, or expensive parts of our code just for the purpose of testing.

A test double is an object that takes the place of another object, faking that it is actually able
to do the same things as the other object, while in reality, it does nothing.

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter02

Test Doubles with a Chat Application Chapter 2

[33]

But if we make our tests pass with test doubles, how do we avoid shipping software that is
just a bunch of fake entities? That's why it's important to have various layers of tests – the
more you move up through the layers, the fewer test doubles you should have, all the way
up to end-to-end tests, which should involve no test doubles at all.

Test-driven development also suggests that we should write the minimum amount of code
necessary to make a test pass and it's a very important rule because, otherwise, you could
easily end up writing code whose development has to be driven by other new tests.

That means that to have a fairly high-level test (such as an acceptance test) pass, we are
probably going to involve many test doubles at the beginning (as our software is still
empty). So when are we expected to replace those test doubles with real objects?

That's where Test-Driven Development by Example by Kent Beck suggests relying on a TODO
list. As you write your code, you should write down anything that you think you need to
improve/support/replace. And before moving forward to writing the next acceptance test,
the TODO list should be completed.

In your TODO list, you can record entries to replace the test doubles with real objects. As a
consequence, we are going to write tests that verify the behaviors of those real objects and,
subsequently, their implementation, finally replacing them with the real objects themselves
in our original acceptance test to confirm it still passes.

To showcase how test doubles can help us during TDD, we are going to build a chat
application by relying on the most common kind of test doubles.

Starting our chat application with TDD
When you start the development of a new feature, the first test you might want to write is
the primary acceptance test – the one that helps you define "this is what I want to achieve."
Acceptance tests expose the components we need to create and the behaviors they need to
have, allowing us to move forward by designing the development tests for those
components and thus writing down unit and integration tests.

In the case of the chat application, our acceptance test will probably be a test where one
user can send a message and another user can receive it:

import unittest

class TestChatAcceptance(unittest.TestCase):
 def test_message_exchange(self):
 user1 = ChatClient("John Doe")
 user2 = ChatClient("Harry Potter")

Test Doubles with a Chat Application Chapter 2

[34]

 user1.send_message("Hello World")
 messages = user2.fetch_messages()
 assert messages == ["John Doe: Hello World"]

if __name__ == '__main__':
 unittest.main()

Our test makes clear that we want two ChatClient instances that exchange a message. The
first sends a new message and the second is able to fetch it and see it.

Now, we made our mind up about the fact that we want two chat clients to exist: one that
sends messages and another that can receive them. We will surely evolve this simple vision
of our application in the future, but so far it has helped us set some clear expectations.

The ChatClient class doesn't yet exist, by the way. We vaguely know that we want it to be
able to send messages and fetch messages, but we still lack tons of details about what it
should do and how it should do it. So the next step is to start clarifying what we want those
capabilities to look like.

If we run our acceptance test, by running the 01_chat_acceptance.py file where we
saved the previous test case, it will fail with an error:

$ python 01_chat_acceptance.py TestChatAcceptance
E
==
ERROR: test_message_exchange (__main__.TestChatAcceptance)
--
Traceback (most recent call last):
 File "01_chat_acceptance.py", line 5, in test_message_exchange
 user1 = ChatClient("John Doe")
NameError: global name 'ChatClient' is not defined

--
Ran 1 test in 0.000s

FAILED (errors=1)

By complaining that ChatClient is not defined, it will point out that our next step should
probably be writing a client.

Test Doubles with a Chat Application Chapter 2

[35]

So we know that the first thing we have to start with is creating a ChatClient and, as we
want that client to be able to remember the nickname of the user, we need to ensure that it's
aware of the nickname of the user. So let's start by writing a development test to ensure that
ChatClient will able to do so:

class TestChatClient(unittest.TestCase):
 def test_nickname(self):
 client = ChatClient("User 1")

 assert client.nickname == "User 1"

At this point, we already know that both our acceptance test and our development test will
fail, as we haven't yet written any implementation. But let's confirm our test suite does
what we expect:

$ python 01_chat_acceptance.py TestChatClient
E
==
ERROR: test_nickname (__main__.TestChatClient)
--
Traceback (most recent call last):
 File "01_chat_acceptance.py", line 16, in test_nickname
 client = ChatClient("User 1")
NameError: global name 'ChatClient' is not defined

--
Ran 1 test in 0.000s

FAILED (errors=1)

Obviously, our test is failing with the fact that ChatClient doesn't even exist, so let's
implement the ChatClient class itself and make it aware of the nickname used:

class ChatClient:
 def __init__(self, nickname):
 self.nickname = nickname

Now, rerunning our test unit should be successful, as we created the ChatClient and we
made it able to keep the memory of the user's nickname that is connected to our chat
application:

$ python 01_dummy.py TestChatClient
.
--
Ran 1 test in 0.000s

OK

Test Doubles with a Chat Application Chapter 2

[36]

So our unit test now passes, and we can move forward. What needs to be done next? To
know that, we just have to go back and run our acceptance test again. Does it pass? Does it
need any other unit to be developed?

$ python 01_chat_acceptance.py TestChatAcceptance
E
==
ERROR: test_message_exchange (__main__.TestChatAcceptance)
--
Traceback (most recent call last):
 File "01_chat_acceptance.py", line 8, in test_message_exchange
 user1.send_message("Hello World")
AttributeError: ChatClient instance has no attribute 'send_message'

--
Ran 1 test in 0.000s

FAILED (errors=1)

Running our acceptance test again, it has now complained about the
ChatClient.send_message method, so now we know that we need to work on that unit
next. As is usually expected with a TDD approach, we can start the work with a unit test.

So let's extend our TestChatClient case with one additional test_send_message test:

class TestChatClient(unittest.TestCase):
 def test_nickname(self):
 client = ChatClient("User 1")

 assert client.nickname == "User 1"

 def test_send_message(self):
 client = ChatClient("User 1")
 sent_message = client.send_message("Hello World")
 assert sent_message == "User 1: Hello World"

The new test_send_message test creates a client for User 1 and then sends a message to
the chat from that user, verifying that the outgoing message was actually submitted as a
message sent by that user.

Going back to our shell and rerunning our tests for the ChatClient component will tell us
that we now have to write that method to satisfy the test:

$ python 01_chat_acceptance.py TestChatClient
.E
==
ERROR: test_send_message (__main__.TestChatClient)

Test Doubles with a Chat Application Chapter 2

[37]

--
Traceback (most recent call last):
 File "01_chat_acceptance.py", line 22, in test_send_message
 sent_message = client.send_message("Hello World")
AttributeError: ChatClient instance has no attribute 'send_message'

--
Ran 2 tests in 0.000s

FAILED (errors=1)

So let's move back to development again and add the send_message method to our
component. We already decided that it has to accept the message, prefix it with the sender's
nickname, and probably send it to all the other users:

class ChatClient:
 def __init__(self, nickname):
 self.nickname = nickname

 def send_message(self, message):
 sent_message = "{}: {}".format(self.nickname, message)
 self.connection.broadcast(message)
 return sent_message

Let's rerun our test case for the component to confirm that we now satisfy it:

$ python 01_chat_acceptance.py TestChatClient
.E
==
ERROR: test_send_message (__main__.TestChatClient)
--
Traceback (most recent call last):
 File "01_chat_acceptance.py", line 22, in test_send_message
 sent_message = client.send_message("Hello World")
 File "01_chat_acceptance.py", line 32, in send_message
 self.connection.broadcast(message)
AttributeError: ChatClient instance has no attribute 'connection'

--
Ran 2 tests in 0.000s

FAILED (errors=1)

Test Doubles with a Chat Application Chapter 2

[38]

Our test failed again – it told us that our ChatClient.send_message method is now
there, and the test was able to call it, but it's not yet working.

This is because we actually went a bit further in having the client already send the
messages through the network before the need was exposed by our tests. But we already
knew that's what we actually wanted to do anyway, and it actually serves the purpose of
introducing our first test double: dummy objects.

Using dummy objects
A dummy is an object that does nothing. It just serves the purpose of being passed around
as an argument and not making the code crash because we lack an object. But its
implementation is totally empty; it does nothing.

In our chat application, we need a connection object to be able to send messages from one
client to the other. We have not yet implemented that connection object, and for now, we
are focused on having the ChatClient.send_message test pass, but how can we make it
pass if we don't yet have a working Connection object the client relies on?

That's where dummy objects come in handy. They replace other objects, faking that they
can do their job, but in reality, they do absolutely nothing.

A dummy object for our Connection class would currently look like this:

class _DummyConnection:
 def broadcast(*args, **kwargs):
 pass

In practice, it's an object that provides a broadcast method but does absolutely nothing.
Dummy objects are just fillers for the arguments of properties that another object needs.
They are frequently not even used at all and just provide a pass-through to satisfy some
required argument.

Now we can adapt our previous TestChatClient.test_send_message test to use a
dummy for the connection by setting client.connection to _DummyConnection. That
should make our test pass as we broke the dependency over a real connection:

class TestChatClient(unittest.TestCase):
 ...

 def test_send_message(self):
 client = ChatClient("User 1")
 client.connection = _DummyConnection()

Test Doubles with a Chat Application Chapter 2

[39]

 sent_message = client.send_message("Hello World")

 assert sent_message == "User 1: Hello World"

Another convenient way to implement dummy objects is just to use the Python
unittest.mock module. In the Using mocks section, will see that, while the name is pretty
specific, the unittest.mock.Mock object is in practice able to serve all test doubles cases
introduced in this chapter. It just depends on which features we use and which we ignore.

So in our previous example, we can just replace our _DummyConnection
with unittest.mock.Mock and avoid having to implement a dedicated class at all:

import unittest.mock

class TestChatClient(unittest.TestCase):
 ...

 def test_send_message(self):
 client = ChatClient("User 1")
 client.connection = unittest.mock.Mock()
 sent_message = client.send_message("Hello World")

 assert sent_message == "User 1: Hello World"

If we run our tests again for TestChatClient, we should see that we finally succeeded in
making them pass:

$ python 02_chat_dummy.py TestChatClient
..
--
Ran 2 tests in 0.000s

OK

Does that mean that our work is done? Not yet, because checking our acceptance test
(TestChatAcceptance) again will tell us that we are not yet there:

$ python 02_chat_dummy.py TestChatAcceptance
E
==
ERROR: test_message_exchange (__main__.TestChatAcceptance)
--
Traceback (most recent call last):
 File "02_chat_dummy.py", line 8, in test_message_exchange
 user1.send_message("Hello World")
 File "02_chat_dummy.py", line 39, in send_message
 self.connection.broadcast(message)

Test Doubles with a Chat Application Chapter 2

[40]

AttributeError: ChatClient instance has no attribute 'connection'

--
Ran 1 test in 0.000s

FAILED (errors=1)

We implemented the ChatClient.send_message method and it passes its test, but our
acceptance test is now reminding us that we still have to implement the Connection object
as we just used a double for it in the send_message test.

The connection object is the next thing we are going to implement, but the connection will
need to be able to reach a server that can route the messages to all connected clients, and
making our tests pass a DummyConnection won't be enough anymore. We will have to
actually see the messages and thus using stubs will be necessary.

Replacing components with stubs
Our connection object will be in charge of making our message available to all the other
clients and, probably in the near future, letting us know when there are new messages.

The first step to drive the development of our Connection object is to start building a
TestConnection test case and a test_broadcast test to make our expectations of the
implementation clear:

class TestConnection(unittest.TestCase):
 def test_broadcast(self):
 c = Connection(("localhost", 9090))

 c.broadcast("some message")

 assert c.get_messages()[-1] == "some message"

Our test specifies that once we've sent a message in broadcast, the latest entry in the
messages visible in the chat should be our own message (as it was the last message sent).
Obviously, running our test now will fail because the Connection object doesn't exist at
all, so let's make one.

A possible idea for how to implement cross-client communication is to use a
multiprocessing.managers.SyncManager and store the messages in a list that is
accessible by all the clients that connect to it.

Test Doubles with a Chat Application Chapter 2

[41]

The only thing we will have to do is register a single Connection.get_messages
identifier in the manager. The purpose of that identifier will be to return the list of
messages that are currently in the chat so that ChatClient can read them or append new
messages:

from multiprocessing.managers import SyncManager

class Connection(SyncManager):
 def __init__(self, address):
 self.register("get_messages")
 super().__init__(address=address, authkey=b'mychatsecret')
 self.connect()

Then the Connection.broadcast method will be as simple as just getting the messages
through Connection.get_messages and appending a new message to them:

from multiprocessing.managers import SyncManager

class Connection(SyncManager):
 def __init__(self, address):
 self.register("get_messages")
 super().__init__(address=address, authkey=b'mychatsecret')
 self.connect()

 def broadcast(self, message):
 messages = self.get_messages()
 messages.append(message)

Now our connection object is done and it provides a broadcast method, so we can
verify that it does add a new message to our chat by rerunning our test:

$ python 03_chat_stubs.py TestConnection
E
==
ERROR: test_broadcast (__main__.TestConnection)
--
Traceback (most recent call last):
 File "03_chat_stubs.py", line 33, in test_broadcast
 c = Connection(("localhost", 9090))
 File "03_chat_stubs.py", line 56, in __init__
 self.connect()
 File "/usr/lib/python3.7/multiprocessing/managers.py", line 532, in
connect
 conn = Client(self._address, authkey=self._authkey)
 File "/usr/lib/python3.7/multiprocessing/connection.py", line 492, in
Client
 c = SocketClient(address)

Test Doubles with a Chat Application Chapter 2

[42]

 File "/usr/lib/python3.7/multiprocessing/connection.py", line 619, in
SocketClient
 s.connect(address)
ConnectionRefusedError: [Errno 111] Connection refused

--
Ran 1 test in 0.003s

FAILED (errors=1)

Sadly, our test failed, because we still don't have a server, so the connection couldn't get
created because there is no server it could connect to. Until we have a server, we already
know we can replace our Connection.connect method with a dummy in our test and
retry:

class TestConnection(unittest.TestCase):
 def test_broadcast(self):
 with unittest.mock.patch.object(Connection, "connect"):
 c = Connection(("localhost", 9090))

 c.broadcast("some message")

 assert c.get_messages()[-1] == "some message"

unittest.mock.patch.object is a convenience method that allows us to replace a
method or attribute of an object with a unittest.mock.Mock for the whole duration of the
code block within the context. So in this case, we disabled the Connection.connect
method so that the connection could be created without a server.

Okay, so now we expect our test to finally pass, right? Let's try to run it once more:

$ python 03_chat_stubs.py TestConnection
F
==
FAIL: test_broadcast (__main__.TestConnection)
--
Traceback (most recent call last):
 File "03_chat_stubs.py", line 36, in test_broadcast
 c.broadcast("some message")
 File "03_chat_stubs.py", line 60, in broadcast
 messages = self.get_messages()
 File "/usr/lib/python3.7/multiprocessing/managers.py", line 724, in temp
 token, exp = self._create(typeid, *args, **kwds)
 File "/usr/lib/python3.7/multiprocessing/managers.py", line 606, in
_create
 assert self._state.value == State.STARTED, 'server not yet started'
AssertionError: server not yet started

Test Doubles with a Chat Application Chapter 2

[43]

--
Ran 1 test in 0.001s

FAILED (failures=1)

Not really. The object was successfully created, but once we tried to get the chat messages
to append the new one, it failed, as there was no server we could connect to.

But we do really need the messages, otherwise, the whole test has no way to verify that the
message was added to the existing messages and thus sent. So what can we do?

Here is where stubs come in handy. Stubs provide canned answers, replacing those pieces
of the software with the ready-made state or answer that we could have got if it had run for
real. So we are going to replace Connection.get_messages with a stub that returns an
empty list and see that everything works as we expected:

class TestConnection(unittest.TestCase):
 def test_broadcast(self):
 with unittest.mock.patch.object(Connection, "connect"):
 c = Connection(("localhost", 9090))

 with unittest.mock.patch.object(c, "get_messages",
 return_value=[]):
 c.broadcast("some message")

 assert c.get_messages()[-1] == "some message"

You can now see that, after the first call to unittest.mock.patch.object, where we
replaced the connect method with a dummy one, we now have a second one. In this one,
we replace the get_messages method of the newly made Connection instance with one
that returns a canned response of an empty list, simulating this being the first message that
was sent to the chat.

Finally, running our tests again will confirm that the Connection.broadcast method is
doing what we expected:

$ python 03_chat_stubs.py TestConnection
.
--
Ran 1 test in 0.001s
OK

Okay, so now we have ChatClient and Connection tests passing, so we clearly did our
job, right?

Test Doubles with a Chat Application Chapter 2

[44]

Let's check whether that's true by running our acceptance test:

$ python 03_chat_stubs.py TestChatAcceptance
E
==
ERROR: test_message_exchange (__main__.TestChatAcceptance)
--
Traceback (most recent call last):
 File "03_chat_stubs.py", line 10, in test_message_exchange
 user1.send_message("Hello World")
 File "03_chat_stubs.py", line 49, in send_message
 self.connection.broadcast(message)
AttributeError: 'ChatClient' object has no attribute 'connection'

--
Ran 1 test in 0.000s

FAILED (errors=1)

Not yet... We made the Connection object, but we clearly forgot to bind it to our
ChatClient.

So let's move forward by binding ChatClient with Connection and introducing spies as
a way to verify that the ChatClient is using the Connection the way we actually expect it
to.

Checking behaviors with spies
We know that ChatClient must use a connection to send and receive the messages. So the
next thing we have to do to make sure our test_message_exchange test passes is to make
sure that the connection exists and is used. But we don't want to establish a connection
every time a ChatClient is created, so the idea is to create a connection through a method
that lazily makes them when they're needed the first time.

We will call this method ChatClient._get_connection and we want to make sure that
ChatClient will actually use the connection provided by that method. To verify that
ChatClient uses the provided connection, we are going to set up a test with a spy, a kind
of dummy object that, instead of doing nothing, actually records how it was called (if it
was) and with which arguments.

Test Doubles with a Chat Application Chapter 2

[45]

As we did when setting up the stub, we are going to use unittest.mock.patch to replace
the ChatClient._get_connection method with a stub that, instead of returning the
connection, returns the spy. Then we are going to check through the spy that the
ChatClient.send_message method actually used the connection we returned to send the
message:

 def test_client_connection(self):
 client = ChatClient("User 1")

 connection_spy = unittest.mock.MagicMock()
 with unittest.mock.patch.object(client, "_get_connection",
 return_value=connection_spy):
 client.send_message("Hello World")

 # assert that the spy was called with the
 # expected data to broadcast.
 connection_spy.broadcast.assert_called_with(("User 1:
 Hello World"))

Now if we call our test, it's going to fail because we never made a
ChatClient._get_connection method and thus it can't be replaced with the stub:

$ python 04_chat_spies.py TestChatClient
E..
==
ERROR: test_client_connection (__main__.TestChatClient)
--
Traceback (most recent call last):
 File "04_chat_spies.py", line 35, in test_client_connection
 return_value=connection_spy):
 File "/usr/lib/python3.7/unittest/mock.py", line 1319, in __enter__
 original, local = self.get_original()
 File "/usr/lib/python3.7/unittest/mock.py", line 1293, in get_original
 "%s does not have the attribute %r" % (target, name)
AttributeError: <__main__.ChatClient object at 0x7f962dd8d050> does not
have the attribute '_get_connection'

--
Ran 3 tests in 0.001s

FAILED (errors=1)

Test Doubles with a Chat Application Chapter 2

[46]

So let's go to our ChatClient class and let's add the _get_connection method, which is
going to return a new Connection object against a predefined port where the server will
listen locally (normally, we would make the port and host for a service configurable, but
given that it's just a simple chat application for our own use, we can take for granted that
the server will run on a known port and host):

class ChatClient:
 def __init__(self, nickname):
 self.nickname = nickname

 def send_message(self, message):
 sent_message = "{}: {}".format(self.nickname, message)
 self.connection.broadcast(message)
 return sent_message

 def _get_connection(self):
 return Connection(("localhost", 9090))

Great – so our test should be happy now! The stub can be put in place, so let's see what
happens when running our tests again:

$ python 04_chat_spies.py TestChatClient
E..
==
ERROR: test_client_connection (__main__.TestChatClient)
--
Traceback (most recent call last):
 File "04_chat_spies.py", line 36, in test_client_connection
 client.send_message("Hello World")
 File "04_chat_spies.py", line 83, in send_message
 self.connection.broadcast(message)
AttributeError: 'ChatClient' object has no attribute 'connection'

--
Ran 3 tests in 0.001s

FAILED (errors=1)

Okay, we made the _get_connection but the ChatClient never calls it... So the object is
still missing a connection attribute.

We know we want this attribute to lazily create the connection, so we are going to define a
property that calls _get_connection the first time it's accessed:

class ChatClient:
 def __init__(self, nickname):
 self.nickname = nickname

Test Doubles with a Chat Application Chapter 2

[47]

 self._connection = None

 def send_message(self, message):
 sent_message = "{}: {}".format(self.nickname, message)
 self.connection.broadcast(message)
 return sent_message

 @property
 def connection(self):
 if self._connection is None:
 self._connection = self._get_connection()
 return self._connection

 @connection.setter
 def connection(self, value):
 if self._connection is not None:
 self._connection.close()
 self._connection = value

 def _get_connection(self):
 return Connection(("localhost", 9090))

Now when ChatClient.connection is accessed, as ChatClient._connection will be
None, the ChatClient._get_connection method will be called so that a new connection
can be created.

All the pieces should be in place now! So let's see if our test finally passes:

$ python 04_chat_spies.py TestChatClient
F..
==
FAIL: test_client_connection (__main__.TestChatClient)
--
Traceback (most recent call last):
 File "04_chat_spies.py", line 38, in test_client_connection
 assert connection_spy.broadcast.assert_called_with(("User 1: Hello
World"))
 File "/usr/lib/python3.7/unittest/mock.py", line 873, in
assert_called_with
 raise AssertionError(_error_message()) from cause
AssertionError: Expected call: broadcast('User 1: Hello World')
Actual call: broadcast('Hello World')

--
Ran 3 tests in 0.001s

FAILED (failures=1)

Test Doubles with a Chat Application Chapter 2

[48]

Unexpectedly, our test failed. The good news is that the connection itself worked. The test
was able to put in place the stub, and the spy was used.

The bad news is that our test actually discovered a bug that our previous
TestChatClient.test_send_message test was unable to spot. In the current
implementation of ChatClient.send_message, we build the message with the name of
the user who wrote it, but we broadcast the one without a name. So none of the other users
reading the chat will ever know who wrote that message!

class ChatClient:
 ...

 def send_message(self, message):
 sent_message = "{}: {}".format(self.nickname, message)
 self.connection.broadcast(message)
 return sent_message

What we want to do here is change the send_message method so that the message
broadcast is the one with the name of the author, the sent_message variable, instead of
the message one:

class ChatClient:
 ...

 def send_message(self, message):
 sent_message = "{}: {}".format(self.nickname, message)
 self.connection.broadcast(sent_message)
 return sent_message

Now that we have fixed that bug, our test can finally pass and confirm that our
ChatClient has the connection in place and properly sends messages through it:

$ python 04_chat_spies.py TestChatClient
...
--
Ran 3 tests in 0.001s

OK

The next step, as usual, is to go back to our acceptance test and ask what's left to do:

$ python 04_chat_spies.py TestChatAcceptance
E
==
ERROR: test_message_exchange (__main__.TestChatAcceptance)
--
Traceback (most recent call last):

Test Doubles with a Chat Application Chapter 2

[49]

 File "04_chat_spies.py", line 10, in test_message_exchange
 user1.send_message("Hello World")
 File "04_chat_spies.py", line 58, in send_message
 self.connection.broadcast(sent_message)
 File "04_chat_spies.py", line 64, in connection
 self._connection = self._get_connection()
 File "04_chat_spies.py", line 74, in _get_connection
 return Connection(("localhost", 9090))
 File "04_chat_spies.py", line 82, in __init__
 self.connect()
 File "/usr/lib/python3.7/multiprocessing/managers.py", line 532, in
connect
 conn = Client(self._address, authkey=self._authkey)
 File "/usr/lib/python3.7/multiprocessing/connection.py", line 492, in
Client
 c = SocketClient(address)
 File "/usr/lib/python3.7/multiprocessing/connection.py", line 619, in
SocketClient
 s.connect(address)
ConnectionRefusedError: [Errno 111] Connection refused

--
Ran 1 test in 0.001s

FAILED (errors=1)

Our acceptance test proves that our client is trying to connect to the server as expected,
which is great!

The problem is that, as we already know, there is no such server. So our acceptance test
cannot pass as it can't connect to a server and verify that the client is actually able to send
and receive messages.

But before moving forward and looking at how to implement our server, let's introduce the
concept of mocks, which gather in themselves all the powers of the previously introduced
test doubles.

Using mocks
As you've probably noticed, when we use dummy objects, stubs, or spies, we always end
up working with the unittest.mock module. That's because mock objects could be seen
as dummy objects that provide some stubs mixed with spies.

Test Doubles with a Chat Application Chapter 2

[50]

Mocks are able to be passed around and they usually do nothing, behaving pretty much
like dummy objects.

If we had a read_file function accepting a file object with a read method, we could
provide a Mock instead of a real file; Mock.read will just do nothing:

>>> def read_file(f):
... print("READING ALL FILE")
... return f.read()
...
>>> from unittest.mock import Mock
>>> m = Mock()
>>> read_file(m)
READING ALL FILE

If instead of doing nothing, we want to make it act like a stub, we can provide a canned
response to have Mock.read return a predefined string:

>>> m.read.return_value = "Hello World"
>>> print(read_file(m))
Hello World

If we don't want to just fill in the place of other real objects by replacing them with
dummies and stubs, we can also use mocks to track what happened to them, so they are
able to behave like a spy too:

>>> m.read.call_count
2

But what makes them mocks is that they can test the behavior of software. Stubs, spies, and
dummies are all about state. They provide a state for software consumption when you are
injecting a known state into software or for test consumption when you are using a spy to
keep the state of calls.

Mocks are usually meant to keep track of behaviors. They usually crash when the software
hasn't done what you expected. So they are usually meant to assert that they were used in a
specific expected way, which confirms that the software behaved as we wished.

For example, we can check that the read method on the Mock object was actually called:

>>> m.read.assert_called_with()

Test Doubles with a Chat Application Chapter 2

[51]

If we wanted to verify that read_file was calling f.read() with a specific argument, we
could have asked the mock to verify that it was used. If the method wasn't called, the
assertion would have failed with an AssertionError:

>>> m.read.assert_called_with("some argument")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.7/unittest/mock.py", line 873, in
assert_called_with
 raise AssertionError(_error_message()) from cause
AssertionError: Expected call: read('some argument')
Actual call: read()

If it wasn't called due to a bug or incomplete implementation, the assertion would have
detected that and we could have addressed the behavior of read_file to make it work as
we wanted.

Now that we know about dummies, stubs, spies, and mocks, we know that there are tons of
ways to test our software without having to rely on complete and fully functional
components. And we know that our test suite has to be fast, easy to debug, and must
require minimum dependencies with minimum influence from the external system.

So a real working server would mean having to start a separate server process every time
we want to run our tests and would mean slowing down tests because they have to go
through a real network connection.

For the next step, instead of implementing a real server, we are going to introduce the
concept of fakes and try to get a fake server that makes our acceptance test pass.

Replacing dependencies with fakes
Fakes are replacements for real dependencies that are good enough to fake that they are the
real deal. Fakes are frequently involved in the goal of simplifying test suite dependencies or
improving the performance of a test suite. For example, if your software depends on a
third-party weather forecasting API available in the cloud, it's not very convenient to
perform a real network connection to the remote API server. The best-case scenario is it will
be very slow, and the worst-case scenario is you could get throttled or even banned for
doing too many API requests in too short a time, as your test suite could easily reach
hundreds or thousands of tests.

The most widespread kind of fakes are usually in-memory databases as they simplify the
need to set up and tear down a real database management system for the sole reason of
running your tests.

Test Doubles with a Chat Application Chapter 2

[52]

In our case, we don't want to have the need to start a chat server every time we want to run
the test suite of our chat application, so we are going to provide a fake server and fake
connection that will replace the real networking-based connection.

Now that we have our TestConnection case, which verifies that the connection does what
we want, how can we verify that it actually works when there is a server on the other side?

We can look at how the SyncManager server works and provide a fake replacement simple
enough to understand the basic protocol and provide the answers. Thankfully, the
SyncManager protocol is very simple. It just receives commands with a set of arguments
and responds with a tuple, ("RESPONSE_TYPE", RESPONSE), where RESPONSE_TYPE
states whether the response is the returned value for that command or an error.

So we can make a FakeServer that provides a FakeServer.send method that will trap
the commands that the client is requesting and a FakeServer.recv method that will send
back the response to the client:

class FakeServer:
 def __init__(self):
 self.last_command = None
 self.last_args = None
 self.messages = []

 def __call__(self, *args, **kwargs):
 # Make the SyncManager think that a new connection was created.
 return self

 def send(self, data):
 # Track any command that was sent to the server.
 callid, command, args, kwargs = data
 self.last_command = command
 self.last_args = args

 def recv(self, *args, **kwargs):
 # For now we don't support any command, so just error.
 return "#ERROR", ValueError("%s - %r" % (
 self.last_command,self.last_args)
)

 def close(self):
 pass

The very first basic implementation of our fake server is only going to respond to any
command with an error, so we can track the commands that the client is trying to send to
us.

Test Doubles with a Chat Application Chapter 2

[53]

To test our connection with a server, we are going to add a new
test_exchange_with_server test to the TestConnection test case, which will use the
provided FakeServer to link two connections together:

class TestConnection(unittest.TestCase):
 def test_broadcast(self):
 ...

 def test_exchange_with_server(self):
 with unittest.mock.patch(
 "multiprocessing.managers.listener_client",
 new={"pickle": (None, FakeServer())}
):
 c1 = Connection(("localhost", 9090))
 c2 = Connection(("localhost", 9090))

 c1.broadcast("connected message")
 assert c2.get_messages()[-1] == "connected message"

Our test requires some magic through unittest.mock.patch to replace the standard
implementation of the server/client communication channel in
multiprocessing.managers with our own custom FakeServer. In practice, what we are
doing is replacing the "pickle" based communication channel with our own for the duration
of the test.

Now if we run our test, we should see that our fake server is in place and we should be able
to start tracking which commands are exchanged:

$ python 05_chat_fakes.py TestConnection
.E
==
ERROR: test_exchange_with_server (__main__.TestConnection)
--
Traceback (most recent call last):
 File "05_chat_fakes.py", line 56, in test_exchange_with_server
 c1 = Connection(("localhost", 9090))
 File "05_chat_fakes.py", line 100, in __init__
 self.connect()
 File "/usr/lib/python3.7/multiprocessing/managers.py", line 533, in
connect
 dispatch(conn, None, 'dummy')
 File "/usr/lib/python3.7/multiprocessing/managers.py", line 82, in
dispatch
 raise convert_to_error(kind, result)
ValueError: dummy - ()

--

Test Doubles with a Chat Application Chapter 2

[54]

Ran 2 tests in 0.001s

FAILED (errors=1)

Our test crashed due to an unrecognized 'dummy' command (as we currently recognize no
commands) but it proved that our fake server is in place and being used by our
Connection object.

At this point, we can provide support for the dummy command (which is just used to
establish the connection) and see what happens:

class FakeServer:
 ...

 def recv(self, *args, **kwargs):
 if self.last_command == "dummy":
 return "#RETURN", None
 else:
 return "#ERROR", ValueError("%s - %r" % (
 self.last_command,self.last_args)
)

Running again, the TestConnection test suite will invoke the next command (after the
"dummy" one that we just implemented) and thus will complain about the next missing
command:

$ python 05_chat_fakes.py TestConnection
...
ValueError: create - ('get_messages',)

By rerunning our test over and over until it stops crashing, we can spot all the commands
that our FakeServer has to support in the FakeServe.recv method, and one by one, we
can implement enough commands to have a fairly complete implementation of our
FakeServer:

class FakeServer:
 ...

 def recv(self, *args, **kwargs):
 if self.last_command == "dummy":
 return "#RETURN", None
 elif self.last_command == "create":
 return "#RETURN", ("fakeid", tuple())
 elif self.last_command == "append":
 self.messages.append(self.last_args[0])
 return "#RETURN", None
 elif self.last_command == "__getitem__":

Test Doubles with a Chat Application Chapter 2

[55]

 return "#RETURN", self.messages[self.last_args[0]]
 elif self.last_command in ("incref", "decref",
 "accept_connection"):
 return "#RETURN", None
 else:
 return "#ERROR", ValueError("%s - %r" % (
 self.last_command,self.last_args)
)

At this point, our TestConnection should be able to pass using our fake server to
establish the link between the two Connection objects:

$ python 05_chat_fakes.py TestConnection
..
--
Ran 2 tests in 0.001s

OK

Our FakeServer was able to confirm that the two Connection objects are able to talk to
each other and see the messages that the other one has broadcast. And we were able to do
so without the need to actually start a server instance, listen on the network for the chat
connections, and handle that.

While fakes are usually very convenient, the effort required to implement them is
frequently pretty high. To be usable, a fake must reproduce a major chunk of the
functionalities that the real dependency provided, and as we saw, implementing a fake
might involve having to reverse engineer how the piece of software we are trying to replace
works.

Luckily, for most widespread needs, you will find fake implementations of SQL servers,
MongoDB, S3, and so on, already available as libraries you can install.

While the fake approach worked well, the worst part of our fake usage is probably how we
had to patch the multiprocessing module to put it in place.

This is a problem caused by the fact that our Connection object, being based on
SyncManager, doesn't provide proper support for dependency injection, which would
have allowed us to inject our own communication channel in a proper way instead of
having to patch the "pickle" based one.

But before moving on to see how we can handle the injection of dependencies, let's finish
our chat application and make our acceptance test pass.

Test Doubles with a Chat Application Chapter 2

[56]

Understanding acceptance tests and
doubles
We saw our Connection object works with the FakeServer but does our acceptance test
finally pass now? Not yet. We still have to provide a server there (fake or not) and we still
have to finish the implementation of the client.

Acceptance tests are meant to verify that the software really does what we wanted once it's
in the hands of our users. For this reason, it's usually a good idea to limit the usage of test
doubles in the context of acceptance tests. They should work as much as possible by
reproducing the real usage of the software.

While mocks, stubs, dummies, and so on are rarely seen in acceptance tests, it's pretty
common to see fakes in that context too. As fakes are supposed to mimic the behavior of the
real service they replace, the software should notice no difference. But if you used fakes in
your acceptance tests, it's a good idea to introduce a set of system tests that verify the
software on the real services it depends on (maybe only executed at release time due to
their cost).

In our case, we want our acceptance test to work with a real server, thus we are going to
tweak it a little bit to start the server and connect the clients to the newly started server. As
our server is implemented on top of a SyncManager, like all SyncManagers it can be
started and stopped by using it as a context manager in a with statement.

When we enter the with new_chat_server() context, the server will be started, and once
we exit it, the server will be stopped:

class TestChatAcceptance(unittest.TestCase):
 def test_message_exchange(self):
 with new_chat_server():
 user1 = ChatClient("John Doe")
 user2 = ChatClient("Harry Potter")

 user1.send_message("Hello World")
 messages = user2.fetch_messages()
 assert messages == ["John Doe: Hello World"]

Obviously, running the test will fail because we have not yet made the new_chat_server
function that is supposed to return the server in use by the test.

Test Doubles with a Chat Application Chapter 2

[57]

Our server will be just a SyncManager subclass that provides the list of messages (through
the _srv_get_messages function) so that the clients can access them:

_messages = []
def _srv_get_messages():
 return _messages
class _ChatServerManager(SyncManager):
 pass
_ChatServerManager.register("get_messages",
 callable=_srv_get_messages,
 proxytype=ListProxy)

def new_chat_server():
 return _ChatServerManager(("", 9090), authkey=b'mychatsecret')

Now that we've created our new_chat_server, which can be used to start the server, our
next step is, as usual, to verify that our tests do pass to see what's the next step:

$ python 06_acceptance_tests.py TestChatAcceptance
E
==
ERROR: test_message_exchange (__main__.TestChatAcceptance)
--
Traceback (most recent call last):
 File "06_dependency_injection.py", line 12, in test_message_exchange
 messages = user2.fetch_messages()
AttributeError: 'ChatClient' object has no attribute 'fetch_messages'

--
Ran 1 test in 0.011s

FAILED (errors=1)

In this case, the test doesn't yet pass because we forgot to implement the last piece of our
client: the part related to fetching the messages. So let's add that new fetch_messages
method to our client and see if things work as we want.

As usual, we should start with a test for the ChatClient.send_message unit, so that we
can verify that our implementation does what we expect:

class TestChatClient(unittest.TestCase):
 ...

 def test_client_fetch_messages(self):
 client = ChatClient("User 1")
 client.connection = unittest.mock.Mock()
 client.connection.get_messages.return_value = ["message1",

Test Doubles with a Chat Application Chapter 2

[58]

 "message2"]

 starting_messages = client.fetch_messages()
 client.connection.get_messages().append("message3")
 new_messages = client.fetch_messages()

 assert starting_messages == ["message1", "message2"]
 assert new_messages == ["message3"]

As our ChatClient.fetch_messages method doesn't yet exist, our test unit will
immediately fail:

$ python 06_acceptance_tests.py TestChatClient
.E..
==
ERROR: test_client_fetch_messages (__main__.TestChatClient)
--
Traceback (most recent call last):
 File "06_dependency_injection.py", line 46, in test_client_fetch_messages
 starting_messages = client.fetch_messages()
AttributeError: 'ChatClient' object has no attribute 'fetch_messages'

--
Ran 4 tests in 0.001s

FAILED (errors=1)

So, what we can do is go back to ChatClient and implement the fetch_messages
method in a way that satisfies our test:

class ChatClient:
 def __init__(self, nickname):
 self.nickname = nickname
 self._connection = None
 self._last_msg_idx = 0

 def send_message(self, message):
 sent_message = "{}: {}".format(self.nickname, message)
 self.connection.broadcast(sent_message)
 return sent_message

 def fetch_messages(self):
 messages = list(self.connection.get_messages())
 new_messages = messages[self._last_msg_idx:]
 self._last_msg_idx = len(messages)
 return new_messages

Test Doubles with a Chat Application Chapter 2

[59]

The new ChatClient.fetch_messages method will fetch the messages stored by the
server and will return any new ones since the last time they were checked.

If our implementation is correct, running the test again will make it pass and will confirm
that our method does what we wanted it to do:

$ python 06_acceptance_tests.py TestChatClient
....
--
Ran 4 tests in 0.001s

OK

Also, as this was our last missing piece, the acceptance test should now pass, confirming
that our chat application does work as we wanted:

$ python 06_acceptance_tests.py TestChatAcceptance
.
--
Ran 1 test in 0.016s

OK

Hurray! We can finally declare victory. Our application works with the real client and real
server. They are able to connect and talk to each other, which proves we wrote the software
we wanted to write.

But our ChatClient tests have fairly complex code that has to rely on mock.patch to
replace pieces of it and we even had to implement a property setter for the connection for
the sole purpose of making it possible to replace it with a testing double.

Even though we achieved our goal, there should be a better way to enable test doubles in
code than spreading mock.patch everywhere.

Replacing components of a system on demand is what dependency injection was made
for, so let's see if it can help us to switch between using fakes and real services in our test
suite.

Test Doubles with a Chat Application Chapter 2

[60]

Managing dependencies with dependency
injection
Our ChatClient machinery to connect to a server is rather more complex than necessary.
The ChatClient.get_connection and ChatClient.connection property setters are
there mostly to allow us to easily replace with mocks the connections that our client sets up.

This is because ChatClient has a dependency, a dependency on the Connection object,
and it tries to satisfy that dependency all by itself. It's like when you are hungry... You
depend on food to solve your need, so you go to the fridge, take some ingredients, turn on
the oven, and cook a meal yourself. Then you can eat. Or... you can call a restaurant and
order a meal.

Dependency injection gives you a way to take the restaurant path. If your ChatClient
needs a connection, instead of trying to get a connection itself, it can ask for a connection
and someone else will take care of providing it.

In most dependency injection systems, there is an injector that will take care of getting the
right object and providing it to the client. The client typically doesn't even have to know
about the injector. This usually involves fairly advanced frameworks that provide a services
registry and allow clients to register for those services, but there is a very simple form of
dependency injection that works very well and can be immediately achieved without any
external dependency or framework: construction injection.

Construction injection means that the service your code depends on is provided as a
parameter when building the class that depends on it.

In our case, we could easily refactor the ChatClient to accept a connection_provider
argument, which would allow us to simplify our ChatClient implementation and get rid
of entire parts of it:

class ChatClient:
 def __init__(self, nickname, connection_provider=Connection):
 self.nickname = nickname
 self._connection = None
 self._connection_provider = connection_provider
 self._last_msg_idx = 0

 def send_message(self, message):
 sent_message = "{}: {}".format(self.nickname, message)
 self.connection.broadcast(sent_message)
 return sent_message

Test Doubles with a Chat Application Chapter 2

[61]

 def fetch_messages(self):
 messages = list(self.connection.get_messages())
 new_messages = messages[self._last_msg_idx:]
 self._last_msg_idx = len(messages)
 return new_messages

 @property
 def connection(self):
 if self._connection is None:
 self._connection = self._connection_provider(("localhost",
 9090))
 return self._connection

We got rid of ChatClient.get_connection and we got rid of the connection
@property.setter but we haven't lost a single functionality, nor have we added any
additional complexity. In most cases, the ChatClient can be used exactly like before and it
will take care of using the right Connection by default.

But for the cases where we want to do something different, we can inject other kinds of
connections.

For example, in our TestChatClient.test_client_connection test, we can remove a
fairly hard-to-read mock.patch that was in place to set up a spy:

class TestChatClient(unittest.TestCase):
 def test_client_connection(self):
 client = ChatClient("User 1")

 connection_spy = unittest.mock.MagicMock()
 with unittest.mock.patch.object
 (client, "_get_connection",return_value=connection_spy):
 client.send_message("Hello World")

 connection_spy.broadcast.assert_called_with(("User 1:
 Hello World"))

Test Doubles with a Chat Application Chapter 2

[62]

Instead of having to patch the implementation of ChatClient, we can just provide the spy
to the ChatClient and have it use it:

 def test_client_connection(self):
 connection_spy = unittest.mock.MagicMock()

 client = ChatClient("User 1", connection_provider=lambda *args:
 connection_spy)
 client.send_message("Hello World")

 connection_spy.broadcast.assert_called_with(("User 1:
 Hello World"))

The code is far easier to follow and understand and doesn't rely on magic such as patching
objects at runtime.

In fact, our whole TestChatClient can be made simpler by using dependency injection
instead of patching:

class TestChatClient(unittest.TestCase):
 def test_nickname(self):
 client = ChatClient("User 1")

 assert client.nickname == "User 1"

 def test_send_message(self):
 client = ChatClient("User 1",
 connection_provider=unittest.mock.Mock())

 sent_message = client.send_message("Hello World")
 assert sent_message == "User 1: Hello World"

 def test_client_connection(self):
 connection_spy = unittest.mock.MagicMock()

 client = ChatClient("User 1", connection_provider=lambda *args:
 connection_spy)
 client.send_message("Hello World")

 connection_spy.broadcast.assert_called_with(("User 1: Hello
 World"))

 def test_client_fetch_messages(self):
 connection = unittest.mock.Mock()
 connection.get_messages.return_value = ["message1", "message2"]

 client = ChatClient("User 1", connection_provider=lambda *args:
 connection)

Test Doubles with a Chat Application Chapter 2

[63]

 starting_messages = client.fetch_messages()
 client.connection.get_messages().append("message3")
 new_messages = client.fetch_messages()

 assert starting_messages == ["message1", "message2"]
 assert new_messages == ["message3"]

In all cases where we had fairly hard-to-read uses of mock.patch, we have now replaced
them with an explicitly provided connection_provider when the ChatClient is
created.

So dependency injection can make your life easier when testing, but actually also makes
your implementation far more flexible.

Suppose that we want to have our chat app working on something different than
SyncManagers; now it's a matter of just passing a different kind of
connection_provider to our clients.

Whenever your classes depend on other objects that they are going to build themselves, it's
usually a good idea to question whether that's a place for dependency injection and
whether those services could be injected from outside instead of being built within the class
itself.

Using dependency injection frameworks
In Python, there are many frameworks for dependency injection, and it's an easy enough
technique to implement yourself that you will find various variations of it in many
frameworks. What dependency injection frameworks will do for you is wire the objects
together.

In our previous dependency injection paragraph, we explicitly provided the dependencies
every time we wanted to create a new object (apart from the default dependency, which
was provided for us, being the default argument). A dependency injection framework
would instead automatically detect for us that ChatClient needs a Connection and it
would give the connection to the ChatClient.

One of the easiest-to-use dependency injection frameworks for Python is Pinject from
Google. It comes from the great experience Google teams have with dependency injection
frameworks, which is clear if you look at some of their most famous frameworks, such as
Angular.

Test Doubles with a Chat Application Chapter 2

[64]

Pinject manages dependencies in a very simple and easy to understand way, based on
initializer argument names and class names.

Suppose that, like before, we had our two ChatClient and Connection classes... but in
this case, our ChatClient is just going to print which Connection it's going to use, as our
sole purpose is to showcase how Pinject can handle dependency injection for us:

class ChatClient:
 def __init__(self, connection):
 print(self, "GOT", connection)

class Connection:
 pass

Then we can use pinject to create a graph of the dependencies of our objects:

import pinject
injector = pinject.new_object_graph()

Once pinject is aware of the dependencies of our objects (which by default are built by
scanning all classes in all imported modules; you can also pass your classes explicitly
through a classes= argument), we can ask pinject to give us an instance for any class
it's aware of, resolving all class dependencies for us:

>>> cli = injector.provide(ChatClient)
<ChatClient object at 0x7fad51469610> GOT <Connection object at
0x7fad51469bd0>

What happened is that pinject detected that a Connection class existed and when we
requested a ChatClient, it saw that it depended on a Connection argument. At that
point, pinject automatically made a connection for us and provided it to the client.

What if we wanted to provide a fake Connection object for our tests? Pinject supports
providing custom binding specifications, so telling it explicitly which class solves a specific
dependency.

So if we had a FakeConnection object, we could create a pinject.BindingSpec to tell
pinject that to satisfy the "connection" dependency, it has to use the fake one:

class FakeConnection:
 pass

class FakedBindingSpec(pinject.BindingSpec):
 def provide_connection(self):
 return FakeConnection()

Test Doubles with a Chat Application Chapter 2

[65]

faked_injector = pinject.new_object_graph(binding_specs=[
 FakedBindingSpec()
])

At this point, if we tried to create a ChatClient through the faked_injector, we would
get back a ChatClient that uses a fake connection:

>>> cli = faked_injector.provide(ChatClient)
<ChatClient object at 0x7fad513ce350> GOT <FakeConnection object at
0x7fad513d6f90>

It must be noted that, by default, Pinjector remembers the instances it made, so if we
requested a new ChatClient, it would get the same exact connection object. That is
frequently convenient when you are building a full piece of software and you want to
replace whole components. If you wanted to replace your data abstraction layer to use a
fake database, you would probably want to get the same data abstraction layer from
everywhere so that all components see the same data.

This means that creating a new ChatClient will give us a different ChatClient but with
the same underlying Connection:

>>> cli = faked_injector.provide(ChatClient)
<ChatClient object at 0x7f9878aeb810> GOT <Connection object at
0x7f9878a58f50>
>>> cli2 = faked_injector.provide(ChatClient)
<ChatClient object at 0x7f9878a55fd0> GOT <Connection object at
0x7f9878a58f50>

In the case of our clients, we probably want each of them to have a different connection to
the server. To do so, we can use the BindingSpec and tell pinject that our returned
dependency is a prototype and not a singleton. This way, pinject won't cache the provided
dependency and will always return a new one:

class PrototypeBindingSpec(pinject.BindingSpec):
 @pinject.provides(in_scope=pinject.PROTOTYPE)
 def provide_connection(self):
 return Connection()

proto_injector = pinject.new_object_graph(binding_specs=[
 PrototypeBindingSpec()
])

Test Doubles with a Chat Application Chapter 2

[66]

If we were to make a ChatClient with the proto_inject, we would now see that each
client has its own Connection object:

>>> cli = proto_injector.provide(ChatClient)
<ChatClient object at 0x7fadab060e50> GOT <Connection object at
0x7fadab013910>
>>> cli2 = proto_injector.provide(ChatClient)
<ChatClient object at 0x7fadab060f10> GOT <Connection object at
0x7fadab013850>

So, dependency injection frameworks can solve many needs for you. Whether you need to
use one or not depends mostly on how complex the network of dependencies in your
software is, but having one around can usually give you a quick way to break dependencies
between your components when you need to.

Summary
Dependencies between the components that you have to test can make your life hard as a
developer. To test anything more complex than a simple utility function, you might end up
having to cope with tens of dependencies and their state.

This is why the idea of being able to provide doubles for testing in place of the real
components was quickly born once the idea of automated tests became reality. Being able
to replace the components the unit you are testing depends on with fakes, dummies, stubs,
and mocks can make your life a lot easier and keep your test suite fast and easy to maintain.

The fact that any software is, in reality, a complex network of dependencies is the reason
why many people advocate that integration tests are the most realistic and reliable form of
testing, but managing that complex network can be hard and that's where dependency
injection and dependency injection frameworks can make your life far easier.

Now that we know how to write automatic test suites and we know how to use test
doubles to verify our components in isolation and spy their state and behavior, we have all
the tools that we need to dive into test-driven development in the next chapter and see how
to write software in the TDD way.

3
Test-Driven Development while

Creating a TODO List
No programmer ever releases a software without having tested it – even for the most basic
proof of concept and rough hack, the developer will run it once to see that it at least starts
and resembles what they had in mind.

But to test, as a verb, usually ends up meaning clicking buttons here and there to get a
vague sense of confidence that the software does what we intended. This is different from
test as a noun, which means a set of written-out checks that our software must pass to
confirm it does what we wanted.

Apart from being more reliable, written-out checks force us to think about what the code
must do. They force us to get into the details and think beforehand about what we want to
build. Otherwise, we would just jump to building without thinking about what we are
building. And trying to ensure that what gets built is, in every single detail, the right thing
through a written specification is quickly going to turn into writing the software itself, just
in plain English.

The problem is that the more hurried, stressed, and overwhelmed developers are, the less
they test. Tests are the first thing that get skipped when things go wrong, and by doing so
things suddenly get even worse, as tests are what avoid errors and failures, and more errors
and failures mean more stress and rushing through the code to fix them, making the whole
process a loop that gets worse and worse.

Test-Driven Development (TDD) tries to solve this problem by engendering a set of
practices where tests become a fundamental step of your daily routine. To write more code
you must write tests, and as you get used to TDD and it becomes natural, you will quickly
notice that it gets hard to even think about how to get started if not by writing a test.

That's why in this chapter, we will cover how TDD can fit into the software development
routine and how to leverage it to keep problems under control at times of high stress.

Test-Driven Development while Creating a TODO List Chapter 3

[68]

In this chapter, we will cover the following topics:

Starting projects with TDD
Building applications the TDD way
Preventing regressions

Technical requirements
A working Python interpreter should be all that is needed to work through the exercises in
this chapter.

The examples have been written using Python 3.7, but should work on most modern
Python versions.

You can find the code files used in this chapter on GitHub at https:/ /github. com/
PacktPublishing/Crafting- Test- Driven- Software- with- Python/ tree/ main/ Chapter03

Starting projects with TDD
We already know that tests are meant to verify that our software adheres to the desired
behavior. To do so means that our tests must express what that desired behavior is. They
must explicitly state, "If I do this, I expect that to happen."

For the innermost components, what happens is probably an implementation detail: "If I
commit my unit of work, data is written to the database." But the more we move to the outer
parts of our architecture, those that connect our software to the outside world, the more
these tests become expressions of business needs. The more we move from solitary units, to
sociable units, to integration and acceptance tests, the more the "desired behavior" becomes
the one that has a business value.

If we work with a test-driven approach, our first step before writing implementation code
is obviously to write a test that helps us understand what we want to build (if we are just
starting with our whole project, what we want to build is the software itself). This means
that our very first test is the one that is going to make clear what's valuable. Why are we
even writing the software in the first place?

So let's see how a test-driven approach can benefit us during the software design phase
itself. Suppose we want to start a TODO list kind of product.

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter03

Test-Driven Development while Creating a TODO List Chapter 3

[69]

So let's start writing an acceptance test that will help us express explicitly what we want
our app to do.

Let's create a new todo directory where we are going to put the todo/src subdirectory
with our source code, and the todo/tests directory with our tests:

$ tree
.
├── src
└── tests

At this point, we can start by making a todo/tests/__init__.py file and a
todo/tests/test_acceptance.py module for our overall application acceptance test.
The test_acceptance.py file is going to contain our test itself:

import unittests

class TestTODOAcceptance(unittest.TestCase):
 def test_main(self):
 raise NotImplementedError()

We want our interactive shell application to accept commands and print outputs. So the
first thing we want the app to do is to write the output and receive commands from an
input:

class TestTODOAcceptance(unittest.TestCase):
 def test_main(self):
 app = TODOApp(io=(self.fake_input, self.fake_output))

We don't yet know what our fake_input and fake_output will be, but we will figure
that out as we reduce uncertainty about how the app should behave.

Then we said we want it to be an interactive shell, so it should be sitting there accepting
commands until we tell it to quit. To make that happen we probably want to have the main
loop for our Read-Eval-Print Loop (REPL) and we want the app to be running in the
background during our test so we can send commands to it and fetch the responses:

import unittest
import threading

class TestTODOAcceptance(unittest.TestCase):
 def test_main(self):
 app = TODOApp(io=(self.fake_input, self.fake_output))

Test-Driven Development while Creating a TODO List Chapter 3

[70]

 app_thread = threading.Thread(target=app.run, daemon=True)
 app_thread.start()

But we don't want our app to be stuck there forever until the user kills it abruptly due to
the frustration of being unable to exit it, and we surely don't want our test to be stuck there
forever either. So we want our app to support a quit command and ensure it exits when it
receives it:

import unittest
import threading

class TestTODOAcceptance(unittest.TestCase):
 def test_main(self):
 app = TODOApp(io=(self.fake_input, self.fake_output))

 app_thread = threading.Thread(target=app.run, daemon=True)
 app_thread.start()

 # ...

 self.send_input("quit")
 app_thread.join(timeout=1)
 self.assertEqual(self.get_output(), "bye!\n")

Great, now we know we want our app to sit there, accept commands, and exit on a quit
request. But how are we going to tell the user that we are accepting commands? We likely
want a prompt, so let's verify that by presenting a welcome screen with the list of the
TODO items (none at the beginning) and a "> " prompt:

import unittest
import threading

class TestTODOAcceptance(unittest.TestCase):
 def test_main(self):
 app = TODOApp(io=(self.fake_input, self.fake_output))

 app_thread = threading.Thread(target=app.run, daemon=True)
 app_thread.start()

 welcome = self.get_output()
 self.assertEqual(welcome, (
 "TODOs:\n"
 "\n"
 "\n"
 "> "

Test-Driven Development while Creating a TODO List Chapter 3

[71]

))

 self.send_input("quit")
 app_thread.join(timeout=1)
 self.assertEqual(self.get_output(), "bye!\n")

Very well, we've already provided answers to tons of questions about how our app should
behave. We decided it's driven by commands and those commands can be provided
through a prompt on the same screen that displays the list of our items.

What primary commands do we want to provide? Surely we at least want to be able to add
new items and delete them? So let's test that we can execute those commands:

import unittest
import threading

class TestTODOAcceptance(unittest.TestCase):
 def test_main(self):
 app = TODOApp(io=(self.fake_input, self.fake_output))

 app_thread = threading.Thread(target=app.run, daemon=True)
 app_thread.start()

 welcome = self.get_output()
 self.assertEqual(welcome, (
 "TODOs:\n"
 "\n"
 "\n"
 "> "
))

 self.send_input("add buy milk")
 welcome = self.get_output()
 self.assertEqual(welcome, (
 "TODOs:\n"
 "1. buy milk\n"
 "\n"
 "> "
))

 self.send_input("add buy eggs")
 welcome = self.get_output()
 self.assertEqual(welcome, (
 "TODOs:\n"
 "1. buy milk\n"
 "2. buy eggs\n"
 "\n"

Test-Driven Development while Creating a TODO List Chapter 3

[72]

 "> "
))

 self.send_input("del 1")
 welcome = self.get_output()
 self.assertEqual(welcome, (
 "TODOs:\n"
 "1. buy eggs\n"
 "\n"
 "> "
))

 self.send_input("quit")
 app_thread.join(timeout=1)
 self.assertEqual(self.get_output(), "bye!\n")

OK, we added a block where we add a note to "buy milk", one with a note to "buy eggs",
and a third where we delete the "buy milk" entry. Our acceptance test is now fairly
complete! It adds multiple todos and it removes them. We've defined everything we want
our app to do and we can now move forward to finally trying to satisfy our needs!

The test itself is going to do the next step; we simply have to run it:

$ python -m unittest discover
E
==
ERROR: test_main (tests.test_acceptance.TestTODOAcceptance)
--
Traceback (most recent call last):
 File "/testingbook/03_specifications/01_todo/tests/test_acceptance.py",
line 20, in test_main
 app = TODOApp(io=(self.fake_input, self.fake_output))
NameError: name 'TODOApp' is not defined

--
Ran 1 test in 0.000s

FAILED (errors=1)

Right, we now need to make the app itself as it doesn't even exist yet as a concept.

For the sake of focusing this section on the business value of our application and thus on
the user-facing tests, we are going to diverge a bit from the correct approach and we are
going to have a single test for the whole app.

Test-Driven Development while Creating a TODO List Chapter 3

[73]

So don't be surprised if we jump here from an acceptance test directly to the
implementation of the app itself. It's only for the sake of reducing the cognitive load of the
reader. In the real world, we would be writing unit tests to drive the design of our code, as
designing the app and designing its implementation are two very different things. But here
we wanted to make clear how writing tests forces us to think about the app itself, and thus
we are going to make the code design happen behind the scenes.

In the Building applications the TDD way section, we are going to see how to mix what we
learned here about acceptance tests with the more classical TDD approach regarding the
design of the code itself.

So let's create a new todo Python package inside our src directory. We are going to have a
src/todo/__init__.py file and a src/todo/app.py module for the application
implementation itself:

$ tree
.
├── src
│ ├── todo
│ │ ├── app.py
│ │ ├── __init__.py
└── tests
 ├── __init__.py
 └── test_acceptance.py

Our TODOApp can reside in src/todo/app.py for now, just as an empty class:

class TODOApp:
 pass

Is this enough to be able to use our app from the tests? Not yet, because the todo package is
not available for our tests. So before moving forward, we want to add a src/setup.py file
to make a distribution for our todo package. Our minimal setup.py file is just going to tell
the Python installer that "The application is named todo and it contains a todo package that has to
be installed":

from setuptools import setup

setup(name='todo', packages=['todo'])

Test-Driven Development while Creating a TODO List Chapter 3

[74]

Then the final layout of our project directory should look pretty much like this:

$ tree
.
├── src
│ ├── setup.py
│ ├── todo
│ │ ├── app.py
│ │ ├── __init__.py
└── tests
 ├── __init__.py
 └── test_acceptance.py

At this point, we can install our application in development mode with pip install -e:

$ pip install -e src/
Obtaining file://testingbook/03_specifications/01_todo/src
Installing collected packages: todo
 Running setup.py develop for todo
Successfully installed todo

This allows us to edit our tests/test_acceptance.py file to import the application class
itself and solve the previous NameError error:

import unittest

from todo.app import TODOApp

class TestTODOAcceptance(unittest.TestCase):
 def test_main(self):
 ...

We already know that our TODOApp does nothing, so it surely won't make our test pass, but
let's see what our test suggests for the next required step that involves rerunning our test
suite:

$ python -m unittest discover
==
ERROR: test_main (tests.test_acceptance.TestTODOAcceptance)
...
 app = TODOApp(io=(self.fake_input, self.fake_output))
AttributeError: 'TestTODOAcceptance' object has no attribute 'fake_input'

Given that we've now installed the todo package, the app imports fine, but the test has no
fake_input and fake_output to provide. So those are going to be our next areas of
attention.

Test-Driven Development while Creating a TODO List Chapter 3

[75]

As we want to ship input and outputs back and forth between the test and the app, wait for
the outputs to be available, and use something that works across threads, a well-fitting
solution might be to use a queue. During the application execution, our output function
will probably be the print function and our input will be the Python input function, so
let's set up something that allows us to simulate those.

In our test case setup, we are going to create the Input/Output (I/O) queues and create a
self.fake_input object that simulates the behavior of input and a self.fake_output
object that simulates the behavior of print. Also for convenience, we are going to add the
self.get_output and self.send_input methods so that our test can send and receive
text from the app:

import unittest
import threading
import queue

from todo.app import TODOApp

class TestTODOAcceptance(unittest.TestCase):
 def setUp(self):
 self.inputs = queue.Queue()
 self.outputs = queue.Queue()

 self.fake_output = lambda txt: self.outputs.put(txt)
 self.fake_input = lambda: self.inputs.get()

 self.get_output = lambda: self.outputs.get(timeout=1)
 self.send_input = lambda cmd: self.inputs.put(cmd)

 def test_main(self):
 app = TODOApp(io=(self.fake_input, self.fake_output))
 ...

OK, we should have in place our I/O infrastructure for the tests. Will our test move
forward? Let's see:

$ python -m unittest discover
==
ERROR: test_main (tests.test_acceptance.TestTODOAcceptance)
...
 app = TODOApp(io=(self.fake_input, self.fake_output))
TypeError: TODOApp() takes no arguments

OK, not as much as hoped. It did move forward, but we crashed on the same exact line of
code because our TODOApp doesn't yet have any concept of I/O.

Test-Driven Development while Creating a TODO List Chapter 3

[76]

So let's make our TODOApp aware of its input and output. By default, we are going to
provide the built-in Python input and print commands (without the trailing newline),
but our test will replace those with its own fake_input and fake_output:

import functools

class TODOApp:
 def __init__(self, io=(input, functools.partial(print, end=""))):
 self._in, self._out = io

OK, we now have a TODOApp._in callable we can use to ask for inputs, and a
TODOApp._out callable we can use to write outputs. What's the next step?

$ python -m unittest discover
==
ERROR: test_main (tests.test_acceptance.TestTODOAcceptance)
...
 app_thread = threading.Thread(target=app.run)
AttributeError: 'TODOApp' object has no attribute 'run'

Right, the REPL! Our app needs to leverage those I/O functions to actually show the output
and ask for inputs. So we are going to add a TODOApp.run function that runs our REPL,
providing the prompt and accepting commands until we quit:

import functools

class TODOApp:
 def __init__(self, io=(input, functools.partial(print, end=""))):
 self._in, self._out = io
 self._quit = False

 def run(self):
 self._quit = False
 while not self._quit:
 self._out(self.prompt(""))
 command = self._in()
 self._out("bye!\n")

 def prompt(self, output):
 return """TODOs:
{}

> """.format(output)

For now, our interactive shell doesn't do much – it shows the prompt and does nothing
with the commands we send.

Test-Driven Development while Creating a TODO List Chapter 3

[77]

If we run our acceptance test again, we are going to clearly see that our app did receive the
add command to add the buy milk entry, but it didn't execute it and so the entry isn't
there:

$ python -m unittest discover
==
...
AssertionError: 'TODOs:\n\n\n> ' != 'TODOs:\n1. buy milk\n\n> '
 TODOs:
-
+ 1. buy milk

Our next step is adding the command dispatching and execution functionality so that the
REPL not only receives those commands, but also executes them:

import functools

class TODOApp:
 def __init__(self, io=(input, functools.partial(print, end=""))):
 self._in, self._out = io
 self._quit = False

 def run(self):
 self._quit = False
 while not self._quit:
 self._out(self.prompt(""))
 command = self._in()
 self._dispatch(command)
 self._out("bye!\n")

 def prompt(self, output):
 return """TODOs:
{}

> """.format(output)

 def _dispatch(self, cmd):
 cmd, *args = cmd.split(" ", 1)
 executor = getattr(self, "cmd_{}".format(cmd), None)
 if executor is None:
 self._out("Invalid command: {}\n".format(cmd))
 return
 executor(*args)

Test-Driven Development while Creating a TODO List Chapter 3

[78]

The TODOApp.run method is in charge of calling TODOApp._dispatch to serve commands,
and each command will be served by running a TODOApp.cmd_COMMANDNAME method that
we will implement for each command.

If we rerun our test, we are going to get complaints about invalid commands being sent to
the application:

$ python -m unittest discover
==
FAIL: test_main (tests.test_acceptance.TestTODOAcceptance)
...
AssertionError: 'Invalid command: add\n' != 'TODOs:\n1. buy milk\n\n> '
- Invalid command: add
+ TODOs:
+ 1. buy milk
+
+ >

This is pretty much expected because we have not yet implemented any commands.

So let's provide our add command, which is simply going to get the entry to add and insert
the todo item into the list of our TODO entries:

class TODOApp:
 def __init__(self, io=(input, functools.partial(print, end=""))):
 self._in, self._out = io
 self._quit = False
 self._entries = []

 ...

 def cmd_add(self, what):
 self._entries.append(what)

Test-Driven Development while Creating a TODO List Chapter 3

[79]

Rerunning our acceptance test will confirm that the Invalid command message went
away, and thus we can now handle the command, but we still don't print back the list of
todo items. So even if the todo entry was added to our todo list, it's not displayed back to
us:

$ python -m unittest discover
==
FAIL: test_main (tests.test_acceptance.TestTODOAcceptance)
...
AssertionError: 'TODOs:\n\n\n> ' != 'TODOs:\n1. buy milk\n\n> '
 TODOs:
-
+ 1. buy milk
 >

Instead of showing an empty prompt, like the current self.prompt("") call is doing, we
want to actually show the list of our TODO items. So we are going to add an items_list
method to our TODOApp that returns the content we want to display in the prompt through
self.prompt(self.items_list()) during the REPL loop within TODOApp.run:

class TODOApp:
 def __init__(self, io=(input, functools.partial(print, end=""))):
 self._in, self._out = io
 self._quit = False
 self._entries = []

 def run(self):
 self._quit = False
 while not self._quit:
 self._out(self.prompt(self.items_list()))
 command = self._in()
 self._dispatch(command)
 self._out("bye!\n")

 def items_list(self):
 enumerated_items = enumerate(self._entries, start=1)
 return "\n".join(
 "{}. {}".format(idx, entry) for idx, entry in enumerated_items
)

 ...

Our application will now be able to finally serve its first complete cycle, receiving the add
command and showing us the list of items with the newly added entry.

Test-Driven Development while Creating a TODO List Chapter 3

[80]

If we rerun our test, we no longer get stuck on the same issue of having an empty list of
todo items, but we are going to get complaints about the fact that the del command is not
yet implemented:

$ python -m unittest discover
==
FAIL: test_main (tests.test_acceptance.TestTODOAcceptance)
...
AssertionError: 'Invalid command: del\n' != 'TODOs:\n1. buy eggs\n\n> '
- Invalid command: del
+ TODOs:
+ 1. buy eggs
+
+ >

So let's implement the remaining two commands, del and quit, and check whether our
app is complete:

class TODOApp:
 ...

 def cmd_quit(self, *_):
 self._quit = True

 def cmd_add(self, what):
 self._entries.append(what)

 def cmd_del(self, idx):
 idx = int(idx) - 1
 if idx < 0 or idx >= len(self._entries):
 self._out("Invalid index\n")
 return

 self._entries.pop(idx)
 ...

The cmd_del function just checks whether a valid index to be removed was provided, and
then removes it from the list of todo entries. The cmd_quit command just sets a flag that
will make our REPL exit when it finds it on the next loop cycle.

Now that the functionality to add todo items, remove them, and quit the app has been
implemented, our test will finally succeed and confirm our application matches our
requirements:

$ python -m unittest discover
.
--

Test-Driven Development while Creating a TODO List Chapter 3

[81]

Ran 1 test in 0.001s

OK

So far, we made an entire application without launching it even once. We had the whole
implementation driven by our acceptance test. Will the app really work and do what we
wanted? Did acceptance tests really help us design the application behavior?

To check whether the experience is the one we expected, let's make our application
runnable. This can be done by adding a __main__.py file to our todo package within
src/todo. The updated result of our project layout should thus be as follows:

$ tree
.
├── src
│ ├── setup.py
│ └── todo
│ ├── app.py
│ ├── __init__.py
│ └── __main__.py
└── tests
 ├── __init__.py
 └── test_acceptance.py

3 directories, 6 files

And the content of src/todo/__main__.py will be very simple — it will just create our
TODOApp and will enter the main loop:

from .app import TODOApp

TODOApp().run()

Our app can now be started with the python -m todo command. Let's see whether the
behavior is actually what we imagined and our test-driven design approach really leads to
the app we expected:

$ python -m todo
TODOs:

> add buy some milk
TODOs:
1. buy some milk

> add buy water
TODOs:
1. buy some milk

Test-Driven Development while Creating a TODO List Chapter 3

[82]

2. buy water

> add send happy birthday message
TODOs:
1. buy some milk
2. buy water
3. send happy birthday message

> del 1
TODOs:
1. buy water
2. send happy birthday message

> del 1
TODOs:
1. send happy birthday message

> quit
bye!

Definitely, the app behaves as we expected! We were welcomed by a prompt with an
empty list of todo items and as we added and removed them, our prompt updated with the
new state of our todo list. The app delivered exactly the experience we described in our test
and supports all the features we wanted, working flawlessly on the first run.

This approach of driving the whole software design and development process from
business-oriented acceptance tests usually comes under the umbrella of Acceptance Test-
Driven Development (ATDD).

We saw how tests not only verify the correctness of the software but at the outer layers, can
also explain what the primary software behaviors are and what the software's business
value is.

This means that tests can tell a story – if I read them, I'm going to know exactly how the
software behaves in that context. If the software has a good enough test coverage and I read
all the tests, then I'm going to know how the software works as a whole. Thus tests can be
used to express the software specification itself in a reliable and testable manner, which is a
concept frequently referred to as Specification by Example.

We are going to get into more details about this concept in Chapter 7, Fitness Function with
a Contact Book Application, but for now, let's focus on how to attach this concept of designing
the software through tests to the concept of designing its implementation through tests.

Test-Driven Development while Creating a TODO List Chapter 3

[83]

Building applications the TDD way
In the previous section, we saw how to use tests to design our application itself, exposing
clear goals and forcing us to think about how the application should behave.

Once we start thinking a bit about what a test is actually doing, it slowly becomes clear why
that works well: the tests are going to interact with the system under test. The way they are
going to interact with the system they have to test is usually through the interface that the
system exposes.

This means that the capabilities we are going to expose to any black-box test are the same
capabilities that we are going to expose to any other user of the system under test.

If the system under test is the whole application, as in the case of the previous section, then
it means that to write the test we will be forced to reason about the capabilities and the
interface we are going to expose to our users themselves. In practice, having to write a test
for that layer forces us to make clear the UI and UX of our application.

If the system under test is instead a component of the whole application, the user of that
component will be another software component; another piece of code calling the first one.
This means that to write the test, we will be forced to define the API that our component
has to expose, and thus design the implementation of the component itself.

Thus embracing TDD helps us design code with well-thought-out APIs that the rest of the
system can depend on, but writing tests beforehand is not the sum of all TDD practices.
There are two primary rules that are part of the TDD practice: the first is obviously to write
failing tests before you write the code, but the second is that once your tests pass, you
should refactor to remove duplication.

This means that it not only forces us to think of the public interfaces that our objects and
subsystems are going to expose beforehand, but it also forces us to keep our internals in
shape through continuous refactoring.

The TODO list application we made does everything we wanted, but it lacks a fairly major
feature before it can become a valuable application we can use for real: it doesn't persist our
todo items. If we close the application and restart it, we are going to lose all our items.

We definitely want our TODO app to save and reload our todo items, so we are going to
work on a new feature to enable that behavior.

Test-Driven Development while Creating a TODO List Chapter 3

[84]

As usual, we are going to start with a very high-level acceptance test that shows what we
want the experience for the user to be. Our new test_persistence test is going to start a
new todo app with an empty database, save an item, quit the app, and restart it again on
the same database to check that the items are still there:

...
import tempfile

class TestTODOAcceptance(unittest.TestCase):
 ...

 def test_persistence(self):
 with tempfile.TemporaryDirectory() as tmpdirname:
 app_thread = threading.Thread(
 target=TODOApp(
 io=(self.fake_input, self.fake_output),
 dbpath=tmpdirname
).run,
 daemon=True
)
 app_thread.start()

 welcome = self.get_output()
 self.assertEqual(welcome, (
 "TODOs:\n"
 "\n"
 "\n"
 "> "
))

 self.send_input("add buy milk")
 self.send_input("quit")
 app_thread.join(timeout=1)

 while True:
 try:
 self.get_output()
 except queue.Empty:
 break
 app_thread = threading.Thread(
 target=TODOApp(
 io=(self.fake_input, self.fake_output),
 dbpath=tmpdirname
).run,
 daemon=True
)

Test-Driven Development while Creating a TODO List Chapter 3

[85]

 app_thread.start()

 welcome = self.get_output()
 self.assertEqual(welcome, (
 "TODOs:\n"
 "1. buy milk\n"
 "\n"
 "> "
))

 self.send_input("quit")
 app_thread.join(timeout=1)

First of all, our test makes a new temporary directory called tmpdirname, where we are
going to save our database for the app under test. Then, as in the previous acceptance test,
it starts the application in the background, pointing it to our fake I/O and the temporary
path for the database. Once the app starts, we verify that, on first execution, it starts with an
empty TODO list. Then we add one item to the app and we quit. At this point, we can
restart the application again using the same exact database path, and check that the item we
added is still there after the app restarts. Then we can just quit the app, as it did what we
wanted to test.

Obviously, if we start our test suite, we already know that our new acceptance test is not
going to pass. We haven't implemented the persistence of our todo items at all and our app
doesn't even accept a dbpath argument:

$ python -m unittest discover -v
test_main (tests.test_acceptance.TestTODOAcceptance) ... ok
test_persistence (tests.test_acceptance.TestTODOAcceptance) ... ERROR

==
ERROR: test_persistence (tests.test_acceptance.TestTODOAcceptance)
--
Traceback (most recent call last):
 File "/testingbook/03_tdd/02_codedesign/tests/test_acceptance.py", line
72, in test_persistence
 dbpath=tmpdirname
TypeError: __init__() got an unexpected keyword argument 'dbpath'

--
Ran 2 tests in 0.004s

FAILED (errors=1)

Our next step is to move one layer below and start working on our implementation.

Test-Driven Development while Creating a TODO List Chapter 3

[86]

Thus the tests that we are going to write will get further away from the end user point of
view that we used in the acceptance tests, and move toward describing what we want our
inner implementation to be.

For this reason, we are going to create a separate directory for these tests so that they don't
get confused with the higher-level tests that tell the story from the user's point of view. So
inside our tests directory, we are going to create a subdirectory for unit tests.

Then, inside that directory, we are going to add a test_todoapp.py file to start reasoning
about how we want to change our TODOApp object to support persistence:

└── tests
 ├── __init__.py
 ├── test_acceptance.py
 └── unit
 ├── __init__.py
 └── test_todoapp.py

Our test_todoapp.py file is going to start with a very simple test, one to verify that we
can accept a database path for our TODO app and that if omitted, it should use the current
directory:

import unittest
import tempfile
from pathlib import Path

from todo.app import TODOApp

class TestTODOApp(unittest.TestCase):
 def test_default_dbpath(self):
 app = TODOApp()
 assert Path(".").resolve() == Path(app._dbpath).resolve()

 def test_accepts_dbpath(self):
 expected_path = Path(tempfile.gettempdir(), "something")
 app = TODOApp(dbpath=str(expected_path))
 assert expected_path == Path(app._dbpath)

Now we can forget for a little about our acceptance tests and focus on our unit tests. We are
going to run them in isolation with the -k unit option to confirm that they fail as we
expect, and we can move on to adding support for the dbpath to our object:

$ python -m unittest discover -k unit
EE
==

Test-Driven Development while Creating a TODO List Chapter 3

[87]

ERROR: test_accepts_dbpath (tests.unit.test_todoapp.TestTODOApp)
--
Traceback (most recent call last):
 File "/testingbook/03_tdd/02_codedesign/tests/unit/test_todoapp.py", line
12, in test_accepts_dbpath
 app = TODOApp(dbpath=str(expected_path))
TypeError: __init__() got an unexpected keyword argument 'dbpath'

==
ERROR: test_default_dbpath (tests.unit.test_todoapp.TestTODOApp)
--
Traceback (most recent call last):
 File "/testingbook/03_tdd/02_codedesign/tests/unit/test_todoapp.py", line
9, in test_default_dbpath
 assert Path(".").resolve() == Path(app._dbpath).resolve()
AttributeError: 'TODOApp' object has no attribute '_dbpath'

--
Ran 2 tests in 0.001s

FAILED (errors=2)

The -k option for unit tests only runs the tests that contain the provided substring, so it's
going to identify only our tests inside the unit directory. It would obviously also run any
tests that had unit in the name, but it's generally a convenient way to select some tests to
run without having to remember in which exact directory they exist.

Now the implementation is fairly easy, we just want to make TODOApp able to remember
where it has to save the database and have it always available as TODOApp._dbpath. So we
are going to modify our TODOApp.__init__ to accept the extra argument and put it aside:

...

class TODOApp:
 def __init__(self,
 io=(input, functools.partial(print, end="")),
 dbpath=None):
 self._in, self._out = io
 self._quit = False
 self._entries = []
 self._dbpath = dbpath or "."

 ...

Test-Driven Development while Creating a TODO List Chapter 3

[88]

If we did this correctly, the tests for our implementation should now pass without issue:

$ python -m unittest discover -k unit -v
test_accepts_dbpath (tests.unit.test_todoapp.TestTODOApp) ... ok
test_default_dbpath (tests.unit.test_todoapp.TestTODOApp) ... ok

--
Ran 2 tests in 0.002s

OK

And we can now look back to our acceptance test to find guidance about what to do next:

$ python -m unittest discover
.F..
==
FAIL: test_persistence (tests.test_acceptance.TestTODOAcceptance)
--
Traceback (most recent call last):
 File "/tddbook/03_tdd/02_codedesign/tests/test_acceptance.py", line 108,
in test_persistence
 "TODOs:\n"
AssertionError: 'TODOs:\n\n\n> ' != 'TODOs:\n1. buy milk\n\n> '
 TODOs:
-
+ 1. buy milk
 >

--
Ran 4 tests in 1.006s

FAILED (failures=1)

So, now our TODO application is able to start and accept the temporary database path. But
it's not doing what we need. It's not saving anything into the database, so once restarted,
the TODO list is still empty.

At this point, we need to go back to our unit tests and come up with a set of tests to drive
the implementation of our persistence layer so that the data can be saved and loaded back.

Our first test should probably assess that TODOApp is able to load some save data. When we
start thinking of our TestTODOApp.test_load test, it's easy to imagine the Act phase: it
probably just wants to call a TODOApp.load method to load the data. The Assert phase too
is also pretty obvious: TODOApp._entries should probably contain the same exact entries
that we loaded.

Test-Driven Development while Creating a TODO List Chapter 3

[89]

But what about the Arrange phase? What are we going to store in the database so that we
can load it back? Which database system are we going to use? And after a while we will
probably move to the "should we even care at all?" question.

Does TODOApp have to care about how data is saved into the database?

Probably not... We should probably delegate that whole problem to another entity, and
only make sure that TODOApp properly invokes that entity and does the right thing with the
data provided by that entity:

...
from unittest.mock import Mock

class TestTODOApp(unittest.TestCase):
 ...

 def test_load(self):
 dbpath = Path(tempfile.gettempdir(), "something")
 dbmanager = Mock(
 load=Mock(return_value=["buy milk", "buy water"])
)
 app = TODOApp(io=(Mock(return_value="quit"), Mock()),
 dbpath=dbpath, dbmanager=dbmanager)
 app.run()

 dbmanager.load.assert_called_with(dbpath)
 assert app._entries == ["buy milk", "buy water"]

Our new TestTODOApp.test_load now tests this, provided dbmanager is in charge of
loading/saving data. Our TODOApp is going to use it when it starts, and by virtue of calling
dbmanager, it ends up with the todo entries that dbmanager loaded.

The test prepares a dbpath object for the sole purpose of checking that dbmanager is asked
to load that specific path, then it makes a dbmanager that returns a canned response of two
items when dbmanager.load(dbpath) is invoked. Once those two are in place, it
prepares a TODOApp that has a dummy output and a stubbed input that make the app quit
immediately.

Then, once the app is started through app.run(), we expect it to have called dbmanager
and have loaded the two provided entries.

Test-Driven Development while Creating a TODO List Chapter 3

[90]

Now that we have a clearer understanding of what we want to do, we can go back to our
TODOApp and write an implementation that satisfies our test. We are going to extend
TODOApp to support dbmanager and we are going to modify TODOApp.run to load the
existing data when the app is started:

class TODOApp:
 def __init__(self,
 io=(input, functools.partial(print, end="")),
 dbpath=None, dbmanager=None):
 self._in, self._out = io
 self._quit = False
 self._entries = []
 self._dbpath = dbpath or "."
 self._dbmanager = dbmanager

 def run(self):
 if self._dbmanager is not None:
 self._entries = self._dbmanager.load(self._dbpath)

 self._quit = False
 while not self._quit:
 self._out(self.prompt(self.items_list()))
 command = self._in()
 self._dispatch(command)

 self._out("bye!\n")

Is this enough to make our test pass? Let's find out:

$ python -m unittest discover -k unit -v
test_accepts_dbpath (tests.unit.test_todoapp.TestTODOApp) ... ok
test_default_dbpath (tests.unit.test_todoapp.TestTODOApp) ... ok
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok

--
Ran 3 tests in 0.002s

OK

It seems so, which means we achieved what we wanted. But there is something odd in our
implementation. If TODOApp doesn't care about how data is loaded, why does it care where
it is loaded from? The fact that you even need a path from which to load your data seems a
concern of the loader. Maybe we can load data without a path? Maybe we can load things
from remote resources that need a host and port instead of a path? That's something that
only the loader can know.

Test-Driven Development while Creating a TODO List Chapter 3

[91]

So let's leverage our refactoring phase, as we made the tests pass, and change everything to
just receive dbmanager. Whether that dbmanager needs a path, and whether that path is to
a file, a directory, or a remote resource, is not something our app should care about.

First, we want to update the tests; instead of passing dbpath, we directly provide
dbmanager itself. dbmanager will know the path. Let's also make a test for the case when
no dbmanager is provided so that the app doesn't crash, but just disables persistency:

import unittest
from unittest.mock import Mock

from todo.app import TODOApp

class TestTODOApp(unittest.TestCase):
 def test_noloader(self):
 app = TODOApp(io=(Mock(return_value="quit"), Mock()),
 dbmanager=None)

 app.run()

 assert app._entries == []

 def test_load(self):
 dbmanager = Mock(
 load=Mock(return_value=["buy milk", "buy water"])
)
 app = TODOApp(io=(Mock(return_value="quit"), Mock()),
 dbmanager=dbmanager)

 app.run()

 dbmanager.load.assert_called_with()
 assert app._entries == ["buy milk", "buy water"]

The first test_noloader test verifies that if there is no dbmanager, the app is still able to
start, while test_load verifies that when dbmanager is used, the data that it provides is
properly loaded by TODOApp.

We can now also throw away our test_accepts_dbpath and test_default_dbpath, as
our TODOApp is no longer in charge of opening the database itself.

Do our newly refactored tests pass? Nope, not anymore:

$ python -m unittest discover -k unit -v
test_load (tests.unit.test_todoapp.TestTODOApp) ... FAIL

Test-Driven Development while Creating a TODO List Chapter 3

[92]

test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok

==
FAIL: test_load (tests.unit.test_todoapp.TestTODOApp)
--
Traceback (most recent call last):
 File "/tddbook/03_tdd/02_codedesign/tests/unit/test_todoapp.py", line 29,
in test_load
 dbmanager.load.assert_called_with()
 File "/usr/lib/python3.7/unittest/mock.py", line 873, in
assert_called_with
 raise AssertionError(_error_message()) from cause
AssertionError: Expected call: load()
Actual call: load('.')

--
Ran 2 tests in 0.002s

FAILED (failures=1)

Our mock expectation was violated. We expected load to be called with no argument, as
dbmanager should already know where to load from, but instead, we received ".", which
is the default dbpath.

Let's head back to our TODOApp and remove any reference to dbpath, thus removing the
dbpath argument and the self._dbpath attribute:

class TODOApp:
 def __init__(self,
 io=(input, functools.partial(print, end="")),
 dbmanager=None):
 self._in, self._out = io
 self._quit = False
 self._entries = []
 self._dbmanager = dbmanager

 def run(self):
 if self._dbmanager is not None:
 self._entries = self._dbmanager.load()

 self._quit = False
 while not self._quit:
 self._out(self.prompt(self.items_list()))
 command = self._in()
 self._dispatch(command)

 self._out("bye!\n")

Test-Driven Development while Creating a TODO List Chapter 3

[93]

Do our tests now pass? Yes! They do:

$ python -m unittest discover -k unit -v
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok
test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok

--
Ran 2 tests in 0.001s

OK

Now that we are happy with our implementation, we can go back to look for things to do.

When looking for things to do, guidance comes from our acceptance tests. If we run them
right now they will probably crash because, in the end, we settled for an interface that is
slightly different from the one we originally thought of:

$ python -m unittest discover
.E..
==
ERROR: test_persistence (tests.test_acceptance.TestTODOAcceptance)
--
Traceback (most recent call last):
 File
"/home/amol/wrk/HandsOnTestDrivenDevelopmentPython/03_tdd/02_codedesign/tes
ts/test_acceptance.py", line 74, in test_persistence
 dbpath=tmpdirname,
TypeError: __init__() got an unexpected keyword argument 'dbpath'

--
Ran 4 tests in 0.005s

FAILED (errors=1)

We don't receive dbpath anymore, but we want dbmanager. So let's update our test
accordingly.

For now, we don't want to be too refined about our storage; we are just going to store
things in a very simple storage system. Let's call this BasicDB and provide it to the app in
our acceptance tests. They will load and save data from it:

...
import pathlib

...
from todo.db import BasicDB

Test-Driven Development while Creating a TODO List Chapter 3

[94]

class TestTODOAcceptance(unittest.TestCase):
 ...

 def test_persistence(self):
 with tempfile.TemporaryDirectory() as tmpdirname:
 app_thread = threading.Thread(
 target=TODOApp(
 io=(self.fake_input, self.fake_output),
 dbmanager=BasicDB(pathlib.Path(tmpdirname, "db"))
).run,
 daemon=True
)
 app_thread.start()

 ...

Running our acceptance test now will tell us that the idea might look great, but we still
have to implement BasicDB. So let's create a tests/unit/test_basicdb.py file and
start reasoning how BasicDB should behave.

Our TestBasicDB tests are probably going to be for loading and saving data; for now, let's
start with the loading one as that's what we are concerned about:

import pathlib
import unittest
from unittest import mock

from todo.db import BasicDB

class TestBasicDB(unittest.TestCase):
 def test_load(self):
 mock_file = mock.MagicMock(
 read=mock.Mock(return_value='["first", "second"]')
)
 mock_file.__enter__.return_value = mock_file
 mock_opener = mock.Mock(return_value=mock_file)
 db = BasicDB(pathlib.Path("testdb"), _fileopener=mock_opener)
 loaded = db.load()

 self.assertEqual(loaded, ["first", "second"])
 self.assertEqual(
 mock_opener.call_args[0][0],
 pathlib.Path("testdb")
)
 mock_file.read.assert_called_with()

Test-Driven Development while Creating a TODO List Chapter 3

[95]

We want our BasicDB to read/write data from a file, so we are going to use a mock_file
object that fakes the Python behavior of a file object. When trying to read from it, it's
going to return the content of our BasicDB with two sample entries.

mock_file is going to be what our mock_opener is going to return whenever BasicDB
asks to open a new file. In practice, what we are trying to do is to make sure that with
mock_opener(ANY_PATH) as f: will return our mock_file, so that from the point of
view of BasicDB, there is no difference between using our mock_opener or the Python
open function.

Once our stubbed file opener is available, we are going to create an instance of BasicDB,
providing the stub opener as a replacement for the Python open function. The path we are
going to provide to BasicDB for the storage of its database doesn't really matter at this
point as it will always return mock_file, but we will still be checking that the opener was
called with the expected path.

The real core of our test is the call to db.load(), where we are going to ask BasicDB to
load the data from mock_file. Then we can confirm that the data we expected was loaded
and that it was loaded the way we would expect, by actually opening the file and reading
its content.

In practice, we decided that BasicDB(path).load() will be the way we plan to load the
data in BasicDB.

Now that we've set our expectations clearly and have a better idea of what we want to
build, we can try to work on an implementation that could satisfy the interface we
imagined.

The first step is creating our src/todo/db.py module, as that's where we imagined we
would be importing BasicDB from while writing our test (see the from todo.db import
BasicDB line at the top of our test file).

Then we are going to make a BasicDB class that accepts the file path to save/load data
to/from, and an optional opener so that we can replace the default one with other
alternative implementations. For the goal of making clear that the opener is mostly meant
for testing, we are going to flag it as an internal detail, prefixing its name with an
underscore:

class BasicDB:
 def __init__(self, path, _fileopener=open):
 self._path = path
 self._fileopener = _fileopener

Test-Driven Development while Creating a TODO List Chapter 3

[96]

Will this make our tests pass? I doubt it will – it still does nothing, so let's cycle back to our
tests to see which parts of the BasicDB interface we have to implement:

$ python -m unittest discover -k unit -v
test_load (tests.unit.test_basicdb.TestBasicDB) ... ERROR
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok
test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok

==
ERROR: test_load (tests.unit.test_basicdb.TestBasicDB)
--
Traceback (most recent call last):
 File "/tddbook/03_tdd/02_codedesign/tests/unit/test_basicdb.py", line 18,
in test_load
 loaded = db.load()
AttributeError: 'BasicDB' object has no attribute 'load'

--
Ran 3 tests in 0.002s

FAILED (errors=1)

OK, it seems we now want to move to the implementation of BasicDB.load.

The implementation feels pretty straightforward: we open a file that should contain a list of
strings. Let's just read the file content and parse the list definition:

class BasicDB:
 def __init__(self, path, _fileopener=open):
 self._path = path
 self._fileopener = _fileopener

 def load(self):
 with self._fileopener(self._path, "r", encoding="utf-8") as f:
 txt = f.read()
 return eval(txt)

Test-Driven Development while Creating a TODO List Chapter 3

[97]

Does this make our tests happy? Are we really able to load the items stored in BasicDB?
Let's find out:

$ python -m unittest discover -k unit -v
test_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok
test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok

--
Ran 3 tests in 0.002s

OK

It seems so – our BasicDB test was able to load the content and fetch back the two items.

For anyone wondering about the usage of eval, please bear with the
example for a little while. We are going to replace it pretty soon and make
clear that using it is never a good idea. But it was a convenient way to
simulate the bug we are going to fix in the dedicated Preventing regressions
section.

All our unit tests now pass, so we are a bit at a loss about where we were and what we
wanted to do next. Whenever we are unsure about our next step, the acceptance tests
should guide us on how far we are from the feature we want to provide for our users. So
let's go back to our acceptance test and see what we still have to do:

$ python -m unittest discover -k acceptance
...
FileNotFoundError: [Errno 2] No such file or directory:
'/tmp/tmpcug9zvsw/db'

Uh, we forgot that when we start the application the first time, our BasicDB is empty;
actually, it doesn't exist at all. So there is nothing we can load. Thus we have to go back to
our unit tests and write one to ensure that when the opened file doesn't exist, we do
actually return an empty list of todo items.

Back to our tests/unit/test_basicdb.py file, we are going to add a new
test_missing_load test:

...
class TestBasicDB(unittest.TestCase):
 ...

 def test_missing_load(self):
 mock_opener = mock.Mock(side_effect=FileNotFoundError)

Test-Driven Development while Creating a TODO List Chapter 3

[98]

 db = BasicDB(pathlib.Path("testdb"), _fileopener=mock_opener)
 loaded = db.load()

 self.assertEqual(loaded, [])
 self.assertEqual(
 mock_opener.call_args[0][0],
 pathlib.Path("testdb")
)

This new test is just going to throw FileNotFoundError every time BasicDB tries to read
the data. This simulates the case where we would try to open a nonexistent database.

As expected, our test is going to fail with FileNotFoundError as we haven't handled it
yet:

$ python -m unittest discover -k unit -v
test_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_missing_load (tests.unit.test_basicdb.TestBasicDB) ... ERROR
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok
test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok

==
ERROR: test_missing_load (tests.unit.test_basicdb.TestBasicDB)
--
Traceback (most recent call last):
 File "/tddbook/03_tdd/02_codedesign/tests/unit/test_basicdb.py", line 31,
in test_missing_load
 loaded = db.load()
 File "/tddbook/03_tdd/02_codedesign/src/todo/db.py", line 9, in load
 with self._fileopener(self._path, "r", encoding="utf-8") as f:
 File "/usr/lib/python3.7/unittest/mock.py", line 1011, in __call__
 return _mock_self._mock_call(*args, **kwargs)
 File "/usr/lib/python3.7/unittest/mock.py", line 1071, in _mock_call
 raise effect
FileNotFoundError

--
Ran 4 tests in 0.003s

FAILED (errors=1)

But we can easily modify our BasicDB.load method to handle such a case and return an
empty list of todo items:

class BasicDB:
 def __init__(self, path, _fileopener=open):
 self._path = path
 self._fileopener = _fileopener

Test-Driven Development while Creating a TODO List Chapter 3

[99]

 def load(self):
 try:
 with self._fileopener(self._path, "r",
 encoding="utf-8") as f:
 txt = f.read()
 return eval(txt)
 except FileNotFoundError:
 return []

At this point, if we got it right, our unit tests should all pass:

$ python -m unittest discover -k unit -v
test_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_missing_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok
test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok

--
Ran 4 tests in 0.002s

OK

Given that we were looking for our next step a few minutes ago, we should probably head
back to our acceptance tests and check where we were. Running our acceptance tests again
will show that this time, we were able to start the application correctly (that is, it doesn't
crash anymore on missing files), but that on adding a new item and restarting the app, it
didn't persist the addition:

$ python -m unittest discover -k acceptance
.F
==
FAIL: test_persistence (tests.test_acceptance.TestTODOAcceptance)
--
Traceback (most recent call last):
 File "/tddbook/03_tdd/02_codedesign/tests/test_acceptance.py", line 110,
in test_persistence
 "TODOs:\n"
AssertionError: 'TODOs:\n\n\n> ' != 'TODOs:\n1. buy milk\n\n> '
 TODOs:
-
+ 1. buy milk
 >

--
Ran 2 tests in 1.006s

FAILED (failures=1)

Test-Driven Development while Creating a TODO List Chapter 3

[100]

The buy milk item is not where we expected it to be after reloading the application, which
makes sense, as we never actually implemented any support for saving the current todo
items when we exit the application. So while we are probably able to load back a list of
items, we never save one.

This means we want to extend our TODOApp to save the current list of todo items before
exiting.

So let's add a test_save test to our tests/unit/tests_todoapp.py tests to make clear
what we want to achieve.

We just want the application to start with some entries and make sure that when it quits,
the app asks dbmanager to save them. This means that if there was any change made to our
list of TODOs, it gets recorded:

class TestTODOApp(unittest.TestCase):
 ...

 def test_save(self):
 dbmanager = Mock(
 load=Mock(return_value=["buy milk", "buy water"]),
 save=Mock()
)

 app = TODOApp(io=(Mock(return_value="quit"), Mock()),
 dbmanager=dbmanager)
 app.run()

 dbmanager.save.assert_called_with(["buy milk", "buy water"])

This test will obviously fail because we haven't yet used the dbmanager from TODOApp to
save anything:

$ python -m unittest discover -k unit -v
test_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_missing_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok
test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok
test_save (tests.unit.test_todoapp.TestTODOApp) ... FAIL

==
FAIL: test_save (tests.unit.test_todoapp.TestTODOApp)
--
Traceback (most recent call last):
 File "/tddbook/03_tdd/02_codedesign/tests/unit/test_todoapp.py", line 39,
in test_save
 dbmanager.save.assert_called_with(["buy milk", "buy water"])

Test-Driven Development while Creating a TODO List Chapter 3

[101]

 File "/usr/lib/python3.7/unittest/mock.py", line 864, in
assert_called_with
 raise AssertionError('Expected call: %s\nNot called' % (expected,))
AssertionError: Expected call: save(['buy milk', 'buy water'])
Not called

--
Ran 5 tests in 0.003s

FAILED (failures=1)

So, let's go to our TODOApp.run method and extend it to call dbmanager.save() before
exiting:

class TODOApp:
 ...

 def run(self):
 if self._dbmanager is not None:
 self._entries = self._dbmanager.load()

 self._quit = False
 while not self._quit:
 self._out(self.prompt(self.items_list()))
 command = self._in()
 self._dispatch(command)

 if self._dbmanager is not None:
 self._dbmanager.save(self._entries)
 self._out("bye!\n")

That's all we need to make our test pass. Our TODOApp now takes care of saving the entries
and it's up to the provided dbmanager to do the right thing with them:

$ python -m unittest discover -k unit -v
test_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_missing_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok
test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok
test_save (tests.unit.test_todoapp.TestTODOApp) ... ok

--
Ran 5 tests in 0.002s

OK

Test-Driven Development while Creating a TODO List Chapter 3

[102]

Are we done? Not yet – TODOApp is now doing its job, but a quick run of our acceptance test
will point out that dbmanager doesn't know what we are talking about:

$ python -m unittest discover -k acceptance
.Exception in thread Thread-2:
Traceback (most recent call last):
 File "/usr/lib/python3.7/threading.py", line 926, in _bootstrap_inner
 self.run()
 File "/usr/lib/python3.7/threading.py", line 870, in run
 self._target(*self._args, **self._kwargs)
 File "/tddbook/03_tdd/02_codedesign/src/todo/app.py", line 24, in run
 self._dbmanager.save(self._entries)
AttributeError: 'BasicDB' object has no attribute 'save'

Back to our tests/unit/test_basicdb.py file, we are going to add a test_save test to
confirm that BasicDB does actually want to save the list of provided items:

class TestBasicDB(unittest.TestCase):
 ...

 def test_save(self):
 mock_file = mock.MagicMock(write=mock.Mock())
 mock_file.__enter__.return_value = mock_file
 mock_opener = mock.Mock(return_value=mock_file)
 db = BasicDB(pathlib.Path("testdb"), _fileopener=mock_opener)
 loaded = db.save(["first", "second"])

 self.assertEqual(
 mock_opener.call_args[0][0:2],
 (pathlib.Path("testdb"), "w+")
)
 mock_file.write.assert_called_with('["first", "second"]')

The test just verifies that when BasicDB.save is called, it opens the target file in write
mode and it tries to write into it the list of values.

To satisfy our test, we are going to implement a BasicDB.save method that converts the
list of entries to its string representation, replaces single quotes with double quotes so that
we save them in a format that is compatible with JSON, and saves it back:

class BasicDB:
 ...

 def save(self, values):
 with self._fileopener(self._path, "w+", encoding="utf-8") as f:
 f.write(repr(values).replace("'", '"'))

Test-Driven Development while Creating a TODO List Chapter 3

[103]

If we did everything correctly, our unit tests should now be able to pass:

$ python -m unittest discover -k unit -v
test_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_missing_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_save (tests.unit.test_basicdb.TestBasicDB) ... ok
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok
test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok
test_save (tests.unit.test_todoapp.TestTODOApp) ... ok

--
Ran 6 tests in 0.003s

OK

We implemented everything that we wanted and we provided the last piece that our
acceptance test was complaining about, which can be easily confirmed by going back to our
acceptance tests and verifying that the software is now completed:

$ python -m unittest discover -k acceptance
..
--
Ran 2 tests in 1.006s

OK

Great! Our app is now fully functional.

We just want to tweak our src/todo/_main__.py file so that when we start the app from
the command line, we start it with dbmanager and thus with persistence enabled by
default:

from .app import TODOApp
from .db import BasicDB

TODOApp(dbmanager=BasicDB("todo.data")).run()

Starting the application, adding an entry, and then restarting it will now properly preserve
the entry across the two runs:

$ python -m todo
TODOs:

> add buy milk
TODOs:
1. buy milk

Test-Driven Development while Creating a TODO List Chapter 3

[104]

> quit
bye!

$ python -m todo
TODOs:
1. buy milk

> quit
bye!

Before ending our day with a sense of satisfaction from our newly built application, we
want to make sure we remember to install the new release of our favorite Linux
distribution.

As we just made a great TODO application, let's add an entry to it:

$ python -m todo
TODOs:
1. buy milk

> add install "Focal Fossa"
TODOs:
1. buy milk
2. install "Focal Fossa"

> quit
bye!

Sadly, the morning after, we open our TODO application to look at what we have to do,
and surprise, surprise, we are welcomed by a major crash in our application:

$ python -m todo
Traceback (most recent call last):
 File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
 "__main__", mod_spec)
 File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
 exec(code, run_globals)
 File "/tddbook/03_tdd/02_codedesign/src/todo/__main__.py", line 4, in
<module>
 TODOApp(dbmanager=BasicDB("todo.data")).run()
 File "/tddbook/03_tdd/02_codedesign/src/todo/app.py", line 15, in run
 self._entries = self._dbmanager.load()
 File "/tddbook/03_tdd/02_codedesign/src/todo/db.py", line 12, in load
 return eval(txt)
 File "<string>", line 1
 ["buy milk", "install "Focal Fossa""]
 ^
SyntaxError: invalid syntax

Test-Driven Development while Creating a TODO List Chapter 3

[105]

Our data is unable to load due to an issue in the BasicDB persistence layer, and we will
have to fix our bug if we ever want to be able to use our TODO application. This is actually
great because TDD has a best practice that allows us to tackle these bugs. Let's introduce
regression tests.

Preventing regressions
Tests are not only used to drive our application design and our code design, but also drive
our research and the debugging of the issues that our application faces.

Whenever we face any kind of error, bug, or crash, our fixing process should start with
writing a regression test – a test whose purpose is to reproduce the same exact issue we are
facing.

Having a regression test in place will prevent that bug from happening again in the future,
even if someone refactors some of the code or replaces the implementation. That's not all a
test can do – once we've written a test that reproduces our issue, we will be able to more
easily debug the issue and see what's going on in a fully controlled and isolated
environment such as a test suite.

As our application crashed trying to load our database, we are going to write a test for it
and see what the problem is.

The first step is writing a test that reproduces the same exact steps that the user did to
trigger the condition, so we are going to write a test in tests/test_regressions.py that
is going to reproduce our most recent user sessions in the application.

Our first goal is to be able to reproduce the issue. To do so, we are going to use the setup
that is most similar to that in the real world. So we are going to reuse the setup code from
our acceptance tests and create a TestRegressions class:

import unittest
import threading
import queue
import tempfile
import pathlib

from todo.app import TODOApp
from todo.db import BasicDB

class TestRegressions(unittest.TestCase):
 def setUp(self):

Test-Driven Development while Creating a TODO List Chapter 3

[106]

 self.inputs = queue.Queue()
 self.outputs = queue.Queue()

 self.fake_output = lambda txt: self.outputs.put(txt)
 self.fake_input = lambda: self.inputs.get()

 self.get_output = lambda: self.outputs.get(timeout=1)
 self.send_input = lambda cmd: self.inputs.put(cmd)

This is the same exact setUp code we had in our acceptance tests for fake I/O. We could
inherit from the same base class or use a mixin to provide the setup of our fake I/O, but
here we just copied those same few lines of code.

Then we are going to add a test_os_release method that reproduces exactly what
happened in our real usage session:

 def test_os_release(self):
 with tempfile.TemporaryDirectory() as tmpdirname:
 app_thread = threading.Thread(
 target=TODOApp(
 io=(self.fake_input, self.fake_output),
 dbmanager=BasicDB(pathlib.Path(tmpdirname, "db"))
).run,
 daemon=True
)
 app_thread.start()
 self.get_output()

 self.send_input("add buy milk")
 self.send_input('add "Focal Fossa"')
 self.send_input("quit")
 app_thread.join(timeout=1)

 while True:
 try:
 self.get_output()
 except queue.Empty:
 break
 app_thread = threading.Thread(
 target=TODOApp(
 io=(self.fake_input, self.fake_output),
 dbmanager=BasicDB(pathlib.Path(tmpdirname, "db"))
).run,
 daemon=True
)
 app_thread.start()
 self.get_output()

Test-Driven Development while Creating a TODO List Chapter 3

[107]

First, we start the application, then we add a note to buy milk, install the Focal Fossa
release, and then we quit. Subsequently, we just restart the application.

If we run our test, it should reproduce the same exact steps that happened in our software
and thus trigger the same exact crash:

$ python -m unittest discover -k regression
Exception in thread Thread-2:
Traceback (most recent call last):
 File "/usr/lib/python3.8/threading.py", line 932, in _bootstrap_inner
 self.run()
 File "/usr/lib/python3.8/threading.py", line 870, in run
 self._target(*self._args, **self._kwargs)
 File "/tddbook/03_tdd/03_regression/src/todo/app.py", line 15, in run
 self._entries = self._dbmanager.load()
 File "/tddbook/03_tdd/03_regression/src/todo/db.py", line 12, in load
 return eval(txt)
 File "<string>", line 1
 ["buy milk", "install "Focal Fossa""]
 ^
SyntaxError: invalid syntax

OK, the crash is there and it's the same exact traceback. So we were able to reproduce the
issue! Our next step is to isolate the issue to find what really causes it and which part of our
system is involved in the problem itself.

To do so, we are going to move from a test that really runs the application to a simpler one
that does not involve the whole machinery and I/O support. Let's see whether we can
reproduce the issue by replacing our fairly long and complete TestRegressions class
with one that just starts the application with a stubbed set of inputs and then restarts it:

import unittest
from unittest import mock
import tempfile
import pathlib

from todo.app import TODOApp
from todo.db import BasicDB

class TestRegressions(unittest.TestCase):
 def test_os_release(self):
 with tempfile.TemporaryDirectory() as tmpdirname:
 app = TODOApp(
 io=(mock.Mock(side_effect=[
 "add buy milk",
 'add install "Focal Fossa"',

Test-Driven Development while Creating a TODO List Chapter 3

[108]

 "quit"
]), mock.Mock()),
 dbmanager=BasicDB(pathlib.Path(tmpdirname, "db"))
)
 app.run()

 restarted_app = TODOApp(
 io=(mock.Mock(side_effect="quit"), mock.Mock()),
 dbmanager=BasicDB(pathlib.Path(tmpdirname, "db"))
)
 restarted_app.run()

If we rerun our regression tests, we are luckily going to see that it still fails as before:

$ python -m unittest discover -k regression
E
==
ERROR: test_os_release (tests.test_regressions.TestRegressions)
--
Traceback (most recent call last):
 File "/tddbook/03_tdd/03_regression/tests/test_regressions.py", line 27,
in test_os_release
 restarted_app.run()
 File "/tddbook/03_tdd/03_regression/src/todo/app.py", line 15, in run
 self._entries = self._dbmanager.load()
 File "/tddbook/03_tdd/03_regression/src/todo/db.py", line 12, in load
 return eval(txt)
 File "<string>", line 1
 ["buy milk", "install "Focal Fossa""]
 ^
SyntaxError: invalid syntax

--
Ran 1 test in 0.003s

FAILED (errors=1)

This helped us confirm that the I/O doesn't really matter and that running the application
for real is not involved in causing our bug. We greatly reduced the scope of the involved
entities to just TODOApp and BasicDB objects.

There is still the filesystem involved; does that matter? Is it a problem with the fact that we
are reading and writing files?

Test-Driven Development while Creating a TODO List Chapter 3

[109]

To check that, let's move forward further and get rid of the filesystem too. We can use an
opener that provides an in-memory file instead of a real one so that where we write doesn't
matter anymore:

import unittest
from unittest import mock
import io

from todo.app import TODOApp
from todo.db import BasicDB

class TestRegressions(unittest.TestCase):
 def test_os_release(self):
 fakefile = io.StringIO()
 fakefile.close = mock.Mock()

 app = TODOApp(
 io=(mock.Mock(side_effect=[
 "add buy milk",
 'add install "Focal Fossa"',
 "quit"
]), mock.Mock()),
 dbmanager=BasicDB(None, _fileopener=mock.Mock(
 side_effect=[FileNotFoundError, fakefile]
))
)
 app.run()

 # rollback the file. So that the application, restarting,
 # can read the new data that we wrote.
 fakefile.seek(0)

 restarted_app = TODOApp(
 io=(mock.Mock(return_value="quit"), mock.Mock()),
 dbmanager=BasicDB(None, _fileopener=mock.Mock(
 return_value=fakefile
))
)
 restarted_app.run()

Our test now creates an io.StringIO instance instead of using a real file, so it doesn't
depend anymore on a real disk. We replaced the standard io.StringIO.close() method
with a dummy one, so that the file never gets closed and we can read it again. Otherwise,
after it's used for the first time it will be lost forever.

Test-Driven Development while Creating a TODO List Chapter 3

[110]

Then we started the application with a _fileopener that firstly triggers
FileNotFoundError, causing the application to start with an empty todo list, and
secondly returns the fake file so that the data gets saved to the fake file. The same fake file,
from which the application once restarted, will read the todo items.

Rerunning our regression test will confirm that we are still able to reproduce the same exact
issue, and thus our test is still valid:

$ python -m unittest discover -k regression
E
==
ERROR: test_os_release (tests.test_regressions.TestRegressions)
--
Traceback (most recent call last):
 File "/tddbook/03_tdd/03_regression/tests/test_regressions.py", line 36,
in test_os_release
 restarted_app.run()
 File "/tddbook/03_tdd/03_regression/src/todo/app.py", line 15, in run
 self._entries = self._dbmanager.load()
 File "/tddbook/03_tdd/03_regression/src/todo/db.py", line 12, in load
 return eval(txt)
 File "<string>", line 1
 ["buy milk", "install "Focal Fossa""]
 ^
SyntaxError: invalid syntax

--
Ran 1 test in 0.002s

FAILED (errors=1)

OK, we removed every interaction with the outer world. We know that our problem can be
reproduced solely with TODOApp and BasicDB. What else can we try to remove from the
equation to further reduce the area where our issue might live and identify the minimum
system components necessary to reproduce our issue?

Our issue crashes in BasicDB.load(), so there is a high chance that it's caused by loading
back the data that we saved. So let's get rid of TODOApp and try to directly save and load
back our list of two items.

Our final version of the test is fairly minimal and has isolated BasicDB on its own:

class TestRegressions(unittest.TestCase):
 def test_os_release(self):
 fakefile = io.StringIO()
 fakefile.close = mock.Mock()

Test-Driven Development while Creating a TODO List Chapter 3

[111]

 data = ["buy milk", 'install "Focal Fossa"']

 dbmanager = BasicDB(None, _fileopener=mock.Mock(
 return_value=fakefile
))

 dbmanager.save(data)
 fakefile.seek(0)
 loaded_data = dbmanager.load()
 self.assertEqual(loaded_data, data)

Running our test does indeed fail with the same exact error that we had before:

$ python -m unittest discover -k regression
E
==
ERROR: test_os_release (tests.test_regressions.TestRegressions)
--
Traceback (most recent call last):
 File
"/home/amol/wrk/HandsOnTestDrivenDevelopmentPython/03_tdd/03_regression/tes
ts/test_regressions.py", line 22, in test_os_release
 loaded_data = dbmanager.load()
 File
"/home/amol/wrk/HandsOnTestDrivenDevelopmentPython/03_tdd/03_regression/src
/todo/db.py", line 12, in load
 return eval(txt)
 File "<string>", line 1
 ["buy milk", "install "Focal Fossa""]
 ^
SyntaxError: invalid syntax

--
Ran 1 test in 0.001s

FAILED (errors=1)

So we were able to get a test involving the minimum possible number of entities in isolation
to reproduce our issue. Only BasicDB is in use in our test, so we now know for sure that
that's where our issue lies.

Our issue is due to the fact that we tried to save and load data in JSON format, relying on
the fact that the Python syntax for arrays of strings is nearly the same as JSON. Thus using
repr and eval could work to generate the JSON and load it back.

Sadly, that was a pretty terrible idea that we put in place for the sole purpose of
reproducing this issue. Evaluating user inputs is generally a big security hole.

Test-Driven Development while Creating a TODO List Chapter 3

[112]

If instead of install "Focal Fossa", we wrote "] + [print("hello")] + [" as our
todo item, that would have resulted in our TODOApp executing the Python print function
when loading back todo items (because what we saved was ["buy milk", ""] +
[print("hello")] + [""]) and instead of print, we could have forced the app to do
anything when loading back the todo items.

eval should never be used with input that comes from users, so let's replace our BasicDB
implementation with one that uses the json module:

import json

class BasicDB:
 def __init__(self, path, _fileopener=open):
 self._path = path
 self._fileopener = _fileopener

 def load(self):
 try:
 with self._fileopener(self._path, "r",
 encoding="utf-8") as f:
 return json.load(f)
 except FileNotFoundError:
 return []

 def save(self, values):
 with self._fileopener(self._path, "w+", encoding="utf-8") as f:
 f.write(json.dumps(values))

The only part we changed in BasicDB.load is that instead of using eval, we now use
json.load, and in BasicDB.save, instead of repr we use json.dumps.

This uses the JSON module to save and load our data, removing the risk of malicious code
execution.

If we did everything correctly, our test for the bug should finally pass, while our
application continues to pass all other existing tests as well:

$ python -m unittest discover -v
test_main (tests.test_acceptance.TestTODOAcceptance) ... ok
test_persistence (tests.test_acceptance.TestTODOAcceptance) ... ok
test_os_release (tests.test_regressions.TestRegressions) ... ok
test_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_missing_load (tests.unit.test_basicdb.TestBasicDB) ... ok
test_save (tests.unit.test_basicdb.TestBasicDB) ... ok
test_load (tests.unit.test_todoapp.TestTODOApp) ... ok

Test-Driven Development while Creating a TODO List Chapter 3

[113]

test_noloader (tests.unit.test_todoapp.TestTODOApp) ... ok
test_save (tests.unit.test_todoapp.TestTODOApp) ... ok

--
Ran 9 tests in 1.015s

OK

It seems we succeeded! We identified the bug, fixed it, and now have a test preventing the
same bug from happening again.

I hope the benefit of starting any bug-and-issue resolution by first writing a test that
reproduces the issue itself is clear. Not only does it prevent the issue from happening again
in the future, but it also allows you to isolate the system where the bug is happening,
design a fix, and make sure you actually fix the right bug.

Summary
We saw how acceptance tests can be used to make clear what we want to build and guide
us step by step through what we have to build next, while lower-level tests, such as unit
and integration tests, can be used to tell us how we want to build it and how we want the
various pieces to work together.

In this case, our application was fairly small, so we used the acceptance test to verify the
integration of our pieces. However, in the real world, as we grow the various parts of our
infrastructure, we will have to introduce tests to confirm they are able to work together and
the reason is their intercommunication protocol.

Once we found a bug, we also saw how regression tests can help us design fixes and how
they can prevent the same bug from happening again in the long term.

During any stage of software development, the Design, Implementation, and Maintenance
workflow helps us better understand what we are trying to do and thus get the right
software, code, and bug fixes in place.

So far, we've worked with fairly small test suites, but the average real-world software has
thousands of tests, so particular attention to how we organize will be essential to a test suite
we feel we can rely on. In the next chapter, we are thus going to see how to scale test suites
when the number of tests becomes hard to manage and the time it takes to run the test suite
gets too long to run it all continuously.

4
Scaling the Test Suite

Writing one test is easy; writing thousands of tests, maintaining them, and ensuring they
don’t become a burden for development and the team is hard. Let’s dive into some tools
and best practices that help us define our test suite and keep it in shape.

To support the concepts in this chapter, we are going to use the test suite written for our
Chat application in Chapter 2, Test Doubles with a Chat Application. We are going to see how
to scale it as the application gets bigger and the tests get slower, and how to organize it in a
way that can serve us in the long term.

In this chapter, we will cover the following topics:

Scaling tests
Working with multiple suites
Carrying out performance testing
Enabling continuous integration

Technical requirements
A working Python interpreter and a GitHub.com account are required to work through the
examples in this chapter.

The examples we'll work through have been written using Python 3.7, but should work
with most modern Python versions.

The source code for the examples in this chapter can be found on GitHub
at https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python
/tree/main/Chapter04

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter04
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter04
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter04

Scaling the Test Suite Chapter 4

[115]

Scaling tests
When we started our Chat application in Chapter 2, Test Doubles with a Chat Application, the
whole code base was contained in a single Python module. This module mixed both the
application itself, the test suite, and the fakes that we needed for the test suite.

While that process fits well for the experimentation and hacking phase, it's not convenient
for the long term. As we already saw in Chapter 3, Test-Driven Development while Creating a
TODO List, it's possible to split tests into multiple files and directories and keep them
separated from our application code.

As our project grows, the first step is to split our test suite from our code base. We are going
to use the src directory for the code base and the tests directory for the test suite. The
src directory in this case will contain the chat package, which contains the modules for
the client and server code:

.
├── src
│ ├── chat
│ │ ├── client.py
│ │ ├── __init__.py
│ │ └── server.py
│ └── setup.py

The src/chat/client.py file will contain the previous Connection and ChatClient
classes, while in src/chat/server.py we are going to put the new_chat_server
function.

We also provide a very minimal src/setup.py to allow installation of the chat package:

from setuptools import setup

setup(name='chat', packages=['chat'])

Now that we can install the chat package through pip install -e ./src and then use
any class within it through import chat, our tests can be moved anywhere; they no longer
need to be in the same directory of the files they need to test.

Scaling the Test Suite Chapter 4

[116]

Thus we can create a tests directory and gather all our tests there. As we had three
different test classes (TestChatAcceptance, TestChatClient, and TestConnection),
we are going to split our tests into three dedicated files. This way, while we work, we can
run only tests relevant to the part we are modifying:

└── tests
 ├── __init__.py
 ├── test_chat.py
 ├── test_client.py
 └── test_connection.py

The only required changes to the tests we made in Chapter 2, Test Doubles with a Chat
Application, are to make sure that we add proper imports to get our classes (for
example, from chat.client import ChatClient). Once those are in place, our test
suite should be able to run exactly as it used to:

$ python -m unittest discover -v
test_message_exchange (tests.test_chat.TestChatAcceptance) ... ok
test_client_connection (tests.test_client.TestChatClient) ... ok
test_client_fetch_messages (tests.test_client.TestChatClient) ... ok
test_nickname (tests.test_client.TestChatClient) ... ok
test_send_message (tests.test_client.TestChatClient) ... ok
test_broadcast (tests.test_connection.TestConnection) ... ok

--
Ran 6 tests in 0.607s

OK

In a Test-Driven Development (TDD) approach, the test suite is something we will be able
to run frequently and quickly to verify the work we are doing, but in a real-world
application, test suites tend to become big and slow and can take minutes or hours to run.

For example, we might decide to grow our test suite further. Right now, we only have a test
to verify that two users can exchange a message, but we have not verified that when
multiple users are involved, we still see messages from all of them, and that each connected
user sees the same exact messages.

To do so, we can add a new TestChatMultiUser test case to
our tests/test_chat.py tests to verify that we can see the messages sent by all users
connected to the chat:

class TestChatMultiUser(unittest.TestCase):
 def test_many_users(self):
 with new_chat_server() as srv:
 firstUser = ChatClient("John Doe")

Scaling the Test Suite Chapter 4

[117]

 for uid in range(5):
 moreuser = ChatClient(f"User {uid}")
 moreuser.send_message("Hello!")

 messages = firstUser.fetch_messages()
 assert len(messages) == 5

The test_many_users test connects to the chat as firstUser and then adds five more
users to the chat and sends a new message from each of them. At the end of the
test, firstUser should be able to see all five messages sent by the other users.

To go further, we could also add a test_multiple_readers test that verifies that all users
in the chat see the same exact messages:

 def test_multiple_readers(self):
 with new_chat_server() as srv:
 user1 = ChatClient("John Doe")
 user2 = ChatClient("User 2")
 user3 = ChatClient("User 3")

 user1.send_message("Hi all")
 user2.send_message("Hello World")
 user3.send_message("Hi")

 user1_messages = user1.fetch_messages()
 user2_messages = user2.fetch_messages()
 self.assertEqual(user1_messages, user2_messages)

In this case, we have three users joining the chat, each of them sending a message, and then
we verified that both user1 and user2 see the same exact messages.

Through these two tests, we confirmed that our chat works as expected even when multiple
users are inside the chat. If we receive messages from different users, we will see all
messages, and all users will see the same exact messages. The side effect of the additional
confidence that we now have in our chat is that our test suite has become far slower:

$ python -m unittest discover -v -k e2e -k unit
test_message_exchange (tests.test_chat.TestChatAcceptance) ... ok
test_many_users (tests.test_chat.TestChatMultiUser) ... ok
test_multiple_readers (tests.test_chat.TestChatMultiUser) ... ok
test_client_connection (tests.test_client.TestChatClient) ... ok
test_client_fetch_messages (tests.test_client.TestChatClient) ... ok
test_nickname (tests.test_client.TestChatClient) ... ok
test_send_message (tests.test_client.TestChatClient) ... ok
test_broadcast (tests.test_connection.TestConnection) ... ok

--

Scaling the Test Suite Chapter 4

[118]

Ran 8 tests in 3.589s

OK

From less than a second that it took previously to run our tests, we went to nearly 4
seconds.

As we grow our chat further, we are surely going to add more features, and more features
will require more tests. Our test suite will become too slow and inconvenient to run as it
will quickly reach minutes of time per run. Anything that runs in more than a few seconds
is something that we are going to start running infrequently, thus moving further away
from the benefits of a test-driven approach.

But we might argue that there will be kinds of tests that are always going to take a long
time to run because they are slow by nature due to what they do (for example, performance
tests), so what can we do to improve the situation?

A good first step is to make sure tests are properly spread out in groups that make their
purpose and expected runtime clear.

Our test_client and test_connection modules contain pinpointed tests that aim to
verify a single piece of our system, so we could move them into a unit package to signal
that they are lightweight and can be run frequently. If I'm working on one of those classes,
I'll know I'll be able to constantly run the tests related to it because they will be cheap.

So let's move them into a tests/unit package that we can run on demand:

└── tests
 ├── __init__.py
 ├── test_chat.py
 └── unit
 ├── __init__.py
 ├── test_client.py
 └── test_connection.py

Now we know that when working on specific parts of the system, we will be able to quickly
verify them by running only the associated test unit:

$ python -m unittest discover tests/unit -v -k connection
test_client_connection (test_client.TestChatClient) ... ok
test_broadcast (test_connection.TestConnection) ... ok

--
Ran 2 tests in 0.006s

OK

Scaling the Test Suite Chapter 4

[119]

The speed is such that test units could be run every time we save the file of the class that
the tests aim to verify.

Our test_chat.py instead is very slow, but it verifies the system from client to server, and
in real conditions, starts a real server over a real network. So let's make clear that its
purpose is to verify the system end to end (e2e) by moving it into a tests/e2e package:

└── tests
 ├── __init__.py
 ├── e2e
 │ ├── __init__.py
 │ └── test_chat.py
 └── unit
 ├── __init__.py
 ├── test_client.py
 └── test_connection.py

There we will have the tests that run very slow and as we know this, we will probably want
to run them only before making a new release of the software to confirm things work as
expected on a real infrastructure:

$ python -m unittest discover tests/e2e -v
test_message_exchange (test_chat.TestChatAcceptance) ... ok
test_many_users (test_chat.TestChatMultiUser) ... ok
test_multiple_readers (test_chat.TestChatMultiUser) ... ok

--
Ran 3 tests in 3.568s

OK

OK, now we have tests that we can run when we modify a single component, and tests that
we can run to confirm that the whole app runs correctly before making a new release.

But during development, how are we going to work on modifying existing features and
add more? Trying to find each unit test we need to run to verify a feature is not very
convenient, and also doesn't give us much confidence in the fact that those units will work
well once they are set into the whole system.

Scaling the Test Suite Chapter 4

[120]

On the other side, the e2e tests are too slow to base our development life cycle on them. If
we add too many of them, we will have to wait for tests to run for more time than we
actually spend coding. What we need is a set of tests that sit in the middle ground and
verifies a function completely, but that are still able to run quickly enough that we can run
them constantly during our development routine.

That goal is perfectly served by functional tests, a special set of integration tests that are
expected to test a full feature, but are not required to reproduce the real conditions that the
application will face out there in the wild. For example, the database can be fake, the parts
of the system that are not involved in that feature could be disabled, or the networking
could be replaced by the in-memory exchange of messages.

In our case, the slowness of our chat comes from the client-server communication, and the
fact that in the test_connection.py module, we actually have a
test_exchange_with_server test that tries a connection against a fake server. Thus we
should get rid of the whole networking and server startup overhead like so:

 def test_exchange_with_server(self):
 with unittest.mock.patch
 ("multiprocessing.managers.listener_client",
 new={"pickle": (None, FakeServer())}):
 c1 = Connection(("localhost", 9090))
 c2 = Connection(("localhost", 9090))

 c1.broadcast("connected message")
 assert c2.get_messages()[-1] == "connected message"

In reality, that test doesn't suit the unit directory much, even if we might consider it a form
of sociable unit test. Crossing the client-server boundary is usually a sign of a higher-level
test, such as integration or e2e tests.

We could use that test as a foundation for our functional tests and move it to a
functional/test_chat.py module that tests that our chat is able to send and receive
messages using FakeServer. Instead of using Connection, we could rewrite the same test
to actually use ChatClient (which uses Connection underneath) so that we can test that
the functionality of exchanging messages with a server works as expected:

import unittest
from unittest import mock

from chat.client import ChatClient

from .fakeserver import FakeServer

Scaling the Test Suite Chapter 4

[121]

class TestChatMessageExchange(unittest.TestCase):
 def setUp(self):
 self.srv = mock.patch("multiprocessing.managers.listener_client",
 new={"pickle": (None, FakeServer())})
 self.srv.start()

 def tearDown(self):
 self.srv.stop()
 def test_exchange_with_server(self):
 c1 = ChatClient("User1")
 c2 = ChatClient("User2")

 c1.send_message("connected message")
 assert c2.fetch_messages()[-1] == "User1: connected message"

Because we moved the test_exchange_with_server test out of our unit tests and into
our functional tests, there is no more use for FakeServer in the unit tests, and it probably
never really fit in there. So, we also moved the FakeServer class into
a fakeserver.py module within the functional directory.

Then, our TestChatMessageExchange test case provides setUp and tearDown methods
to enable a new FakeServer for each one of the tests within the case and disables it when
the tests are complete. This allows us to write tests as if we were using a real server,
without having to worry about the usage of a FakeServer.

Our functional tests are able to provide fairly good safety over the correctness of our
features, but are going to run tens of times faster than the e2e tests. This is slower than the
unit tests, but quick enough that we can frequently run them during our development
routine:

$ python -m unittest discover -k functional -v
test_exchange_with_server
(tests.functional.test_chat.TestChatMessageExchange) ... ok

--
Ran 1 test in 0.001s

OK

So we divided our test suite into three blocks: e2e, functional, and unit:

└── tests
 ├── __init__.py
 ├── e2e
 │ ├── __init__.py
 │ └── test_chat.py

Scaling the Test Suite Chapter 4

[122]

 ├── functional
 │ ├── __init__.py
 │ ├── fakeserver.py
 │ └── test_chat.py
 └── unit
 ├── __init__.py
 ├── test_client.py
 └── test_connection.py

As software grows in complexity, you might feel the need to start having more kinds of
integration tests, and as your code grows, you might want to explore introducing narrow
integration tests (tests where you integrate only the few components you care about)
instead of only having functional tests where the whole system is usually started. But this
layout has proved to be a pretty good one for small/medium-sized projects over the years
for me. The key is making sure that writing fast tests is convenient and that e2e tests can be
easily rewritten as functional tests so that our expensive e2e tests remain in a minority.

Moving from e2e to functional
Take a look at our TestChatMessageExchange.test_exchange_with_server
functional test that we wrote in the previous section:

class TestChatMessageExchange(unittest.TestCase):
 ...

 def test_exchange_with_server(self):
 c1 = ChatClient("User1")
 c2 = ChatClient("User2")

 c1.send_message("connected message")
 assert c2.fetch_messages()[-1] == "User1: connected message"

It's probably easy to see that it looks a lot like
our TestChatAcceptance.test_message_exchange e2e test:

class TestChatAcceptance(unittest.TestCase):
 def test_message_exchange(self):
 with new_chat_server() as srv:
 user1 = ChatClient("John Doe")
 user2 = ChatClient("Harry Potter")

 user1.send_message("Hello World")
 messages = user2.fetch_messages()
 assert messages == ["John Doe: Hello World"]

Scaling the Test Suite Chapter 4

[123]

The first one starts a new server, while the second one doesn't. But in the end, they both
connect two users to a server, send a message from one user, and check that the other user
received it.

The interesting difference, however, is that one takes nearly no time to run:

$ python -m unittest discover -k test_exchange_with_server -v
test_exchange_with_server
(tests.functional.test_chat.TestChatMessageExchange) ... ok

--
Ran 1 test in 0.001s

While the other takes nearly a second to run:

$ python -m unittest discover -k test_message_exchange -v
test_message_exchange (tests.e2e.test_chat.TestChatAcceptance) ... ok

--
Ran 1 test in 0.659s

As the two tests look very similar, could we maybe leverage the same approach to make a
faster version of our other e2e tests so that we can still be sure that our chat is able to serve
multiple users concurrently, without having to pay the cost of running slow e2e tests?

Yes, usually functional tests need to be able to exercise the whole system, so e2e tests can
frequently be ported to be functional tests and benefit from their faster runtime. While we
need a set of e2e tests to ensure that over a real network, things do work, we don't want to
test every feature as an e2e test.

Most tests that start as e2e could be rewritten over time as functional tests to make our test
suite able to keep up as our tests grow, but without sacrificing too much of the safety they
provide, and while keeping our test suite fast.

So let's move the tests from the TestChatMultiUser e2e test case into the functional
TestChatMessageExchange test case. The only thing we have to change in them is to
remove the with new_chat_server() as srv: line as we no longer need to start a real
server, but apart from that, they should be able to work as they are.

The TestChatMessageExchange.setUp method will take care of setting up a fake server
for the tests – we just have to use the clients:

class TestChatMessageExchange(unittest.TestCase):
 ...

 def test_many_users(self):

Scaling the Test Suite Chapter 4

[124]

 firstUser = ChatClient("John Doe")

 for uid in range(5):
 moreuser = ChatClient(f"User {uid}")
 moreuser.send_message("Hello!")

 messages = firstUser.fetch_messages()
 assert len(messages) == 5
 def test_multiple_readers(self):
 user1 = ChatClient("John Doe")
 user2 = ChatClient("User 2")
 user3 = ChatClient("User 3")

 user1.send_message("Hi all")
 user2.send_message("Hello World")
 user3.send_message("Hi")

 user1_messages = user1.fetch_messages()
 user2_messages = user2.fetch_messages()
 self.assertEqual(user1_messages, user2_messages)

Now that we have moved those tests to be functional tests, we are able to run a nearly
complete check of our system in a few milliseconds by running the unit and functional
tests:

$ python -m unittest discover -k functional -k unit
........
--
Ran 8 tests in 0.007s

OK

Even running the whole test suite, including the e2e tests, now takes under a second, as we
moved most of the expensive tests into lighter functional tests:

$ python -m unittest discover
.........
--
Ran 9 tests in 0.661s

OK

Scaling the Test Suite Chapter 4

[125]

Organizing the tests into the proper buckets is important to make sure our test suite is still
able to run in a timeframe that can be helpful. If the test suite becomes too slow, we are just
going to stop relying on it as working with it will become a frustrating experience.

That's why it's important to think about how to organize the test suite for your projects and
keep in mind the various kinds of test suites that could exist and their goals.

Working with multiple suites
The separation of tests we did earlier in this chapter helped us realize that there can be
multiple test suites inside our tests directory.

We can then point the unittest module to some specific directories using the -k option to
run test units on every change, and functional tests when we think we have something that
starts looking like a full feature. Thus, we will rely on e2e tests only when making new
releases or merging pull requests to pass the last checkpoint.

There are a few kinds of test suites that are usually convenient to have in all our projects.
The most common kinds of tests suites you will encounter in projects are likely the compile
suite, commit tests, and smoke tests.

Compile suite
The compile suite is a set of tests that must run very fast. Historically, they were performed
every time the code had to be recompiled. As that was a frequent action, the compile suite
had to be very fast. They were usually static code analysis checks, and while Python doesn't
have a proper compilation phase, it's still a good idea to have a compile suite that we can
maybe run every time we modify a file.

A very good tool in the Python environment to implement those kinds of checks is the
prospector project. Once we install prospector with pip install prospector, we will be
able to check our code for any errors simply by running it inside our project directory:

$ prospector

Check Information
=================
 Started: 2020-06-02 15:22:53.756634
 Finished: 2020-06-02 15:22:55.614589
 Time Taken: 1.86 seconds
 Formatter: grouped

Scaling the Test Suite Chapter 4

[126]

 Profiles: default, no_doc_warnings, no_test_warnings, strictness_medium,
strictness_high, strictness_veryhigh, no_member_warnings
 Strictness: None
 Libraries Used:
 Tools Run: dodgy, mccabe, pep8, profile-validator, pyflakes, pylint
 Messages Found: 0

Our project doesn't currently have any errors, but suppose that in
the ChatClient.send_message method in src/chat/client.py, we mistype the
sent_messages variable, prospector would catch the error and notify us that we have a
bug in the code before we can run our full test suite:

$ prospector
Messages
========

src/chat/client.py
 Line: 23
 pylint: Unused variable 'sen_message' (col 8)
 Line: 24
 pylint: Undefined variable 'sent_message' (col 34)
 Line: 25
 pylint: Undefined variable 'sent_message' (col 15)

If your project relies on type hinting, prospector can also integrate mypy to verify the type
correctness of your software before you run the code for real, just to discover it won't work.

Commit tests
As the name suggests, commit tests are tests you run every time you commit a new change.
In our chat example project, the unit and functional tests would be our commit suite.

But as the project grows further and the functional tests start to get too slow, it's not
uncommon to see the functional tests become "push tests" that are only run before sharing
the code base with your colleagues, while the commit suite gets reduced to unit tests and
lighter forms of integration tests.

Scaling the Test Suite Chapter 4

[127]

If you properly divided your test suite, which piece consists of your commit suite is usually
just a matter of passing the proper -k option (one or multiple) to unittest discover:

$ python -m unittest discover -k unit -k functional
........
--
Ran 8 tests in 0.007s

OK

Through the -k option we can select which parts of our test suite to run and thus limit the
execution to only those tests that are fast enough to constitute our commit suite.

Smoke tests
Smoke tests are a set of tests used to identify whether we broke the system in an obvious
way and thus let us know that it doesn't make sense to proceed with further testing.

Historically, it came from a time where test cases were manually verified, so before
investing hours of human effort, a set of checks was performed to ensure that the system
did work and thus it made sense to test it.

Nowadays, tests are far faster and cheaper as they are performed by machines, but it still
makes sense to have a smoke test suite before running the more expensive tests. It's usually
a good idea to select a subset of your e2e tests that constitute the smoke test suite, and run
the complete e2e suite only if it passed the smoke tests.

Sometimes, smoke tests are a dedicated set of tests explicitly written for that purpose, but
an alternative is to select a set of other tests that we know exercise the most meaningful
parts of our system and "tag" them as smoke tests.

For example, if our e2e test suite had an extra test_sending_message test that verified
that our ChatClient is able to connect to the server and send a message, that would be a
fairly good candidate for our smoke test suite, as it doesn't make much sense to proceed
with further e2e tests if we are not even able to send messages:

class TestChatAcceptance(unittest.TestCase):
 def test_message_exchange(self):
 ...

 def test_sending_message(self):
 with new_chat_server() as srv:
 user1 = ChatClient("User1")
 user1.send_message("Hello World")

Scaling the Test Suite Chapter 4

[128]

More advanced testing frameworks frequently support the concept of "tagging" tests, so
that we can run only those tests with a specific set of tags. But with unittest, it's still
possible to build our smoke test suite simply by prefixing test names with the word
smoke so that we can select them.

In this case, we would thus rename test_sending_message as
test_smoke_sending_message to make it part of our smoke tests and we would be able
to run our e2e tests as before, but also benefit from having a smoke test suite to run
beforehand as our e2e tests grow further. So we will first have our smoke test, as follows:

$ python -m unittest discover -k smoke -v
test_smoke_sending_message (e2e.test_chat.TestChatAcceptance) ... ok

--
Ran 1 test in 0.334s

OK

This is then followed by our e2e test:

$ python -m unittest discover -k e2e -v
test_message_exchange (e2e.test_chat.TestChatAcceptance) ... ok
test_smoke_sending_message (e2e.test_chat.TestChatAcceptance) ... ok

--
Ran 2 tests in 0.957s

OK

As for the commit suite, we were able to rely on the -k option to only execute our smoke
tests or all our e2e tests. Thus, we are able to select which kinds of tests we want to run.

Carrying out performance testing
Even though it's not related to verifying the correctness of software, a performance test
suite is part of the testing strategy for many applications. Usually, they are expected to
assess the performance of the software in terms of how fast it can do its job and how many
concurrent users it can handle.

Due to their nature, performance tests are usually very expensive as they have to repeat an
operation multiple times to get a benchmark that is able to provide a fairly stable report
and absorb outliers that could have taken too long to run just because the system was busy
doing something else.

Scaling the Test Suite Chapter 4

[129]

For this reason, the performance test suite is usually only executed after all other suites are
passed (also, it doesn't make much sense to assess how fast it can test the software when we
haven't checked that it actually does the right thing).

For our chat example, we could write a benchmark suite that verifies how many messages
per second we are able to handle:

To begin with, we don't want to put that into the middle of all the other tests, so1.
we are going to put our benchmarks into a benchmarks directory, separate from
the tests directory:

.
├── benchmarks
│ ├── __init__.py
│ └── test_chat.py
├── src
│ ├── chat
│ └── setup.py
└── tests
 ├── __init__.py
 ├── e2e
 ├── functional
 └── unit

test_chat.py can then contain the benchmarks we care about. In this case, we2.
are going to create a benchmark to report how long it takes to send 10 messages:

import unittest
import timeit

from chat.client import ChatClient
from chat.server import new_chat_server

class BenchmarkMixin:
 def bench(self, f, number):
 t = timeit.timeit(f, number=number)
 print(f"\n\ttime: {t:.2f}, iteration: {t/number:.2f}")

class BenchmarkChat(unittest.TestCase, BenchmarkMixin):
 def test_sending_messages(self):
 with new_chat_server() as srv:
 user1 = ChatClient("User1")

 self.bench(lambda: user1.send_message("Hello World"),
 number=10)

Scaling the Test Suite Chapter 4

[130]

BenchmarkMixin is a utility class that is going to provide the self.bench
method we can use to report the execution time of our benchmarks. The real
benchmark is provided by BenchmarkChat.test_sending_message, which is
going to connect a client to a server and then repeat the user.send_message
call 10 times.

Then we can run our benchmarks, pointing unittest to the benchmarks3.
directory:

$ python -m unittest discover benchmarks -v
test_sending_messages (test_chat.BenchmarkChat) ...
 time: 2.31, iteration: 0.23
ok

Ran 1 test in 2.406s

If we want to only run our tests instead, we could point the unittest module to4.
the tests directory:

$ python -m unittest discover tests
..........

Ran 10 tests in 1.013s

Running just python -m unittest discover will run both the benchmarks and tests, so
make sure you point the discover process to the right directory when running your tests.
An alternative is to name your benchmark files with a different prefix (bench_*.py instead
of tests_*.py) and then use the -p option to specify the custom prefix when running
your benchmarks. But in that case, it might not be immediately obvious how to run
benchmarks for a new contributor to your project.

Our chat test suite is now fairly complete: it has e2e tests, functional tests, unit tests, smoke
tests, and benchmarks. But we still have to remember to manually run all tests every time
we do a change. Let's look at how we can tackle this.

Scaling the Test Suite Chapter 4

[131]

Enabling continuous integration
Wouldn't it be convenient if someone else was in charge of running all our tests every time
we made a change to our code base? This would mean that we couldn't forget to run some
specific tests just because they were related to an area of the code that we were not directly
touching.

That's exactly the goal of Continuous Integration (CI) environments. Every time we push
our changes to the code repository, these environments will notice and rerun the tests,
usually merging our changes with the changes from our colleagues to make sure they cope
well together.

If you have a code repository on GitHub, using Travis as your CI is a fairly straightforward
process. Suppose that I made an amol-/travistest GitHub project where I pushed the
code base of our chat application; to enable Travis, the first thing that I have to do is to go
to https://travis- ci. com/ and log in with my GitHub credentials:

Figure 4.1 – Travis CI Sign in page

https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/
https://travis-ci.org/

Scaling the Test Suite Chapter 4

[132]

Once we are in, we must enable the integration with GitHub so that all our GitHub
repositories become visible on Travis. We can do this by clicking on the top-right profile
icon and then on the Settings option. That will show us a green Activate button that will
allow us to enable Travis on our GitHub repositories:

Figure 4.2 – Integrating with GitHub

Scaling the Test Suite Chapter 4

[133]

Once we have enabled the Travis application on GitHub, we can go
to https://travis-
ci.com/github/{YOUR_GITHUB_USER}/{GITHUB_PROJECT} (which in my case
is https://travis- ci. com/ github/ amol- /travistest) to confirm the repository is
activated, but hasn't yet got any build:

Figure 4.3 – Confirming that the repository was activated

Travis will be monitoring your repository for changes. But it won't know how to run tests
for your project. So even if we push changes to the source code, nothing will happen.

To tell Travis how to run our tests, we need to add to the repository a .travis.yml file
with the following configuration:

language: python
os: linux
dist: xenial

python:
 - 3.7
 - &mainstream_python 3.8
 - nightly

install:
 - "pip install -e src"

script:

https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest
https://travis-ci.com/github/amol-/travistest

Scaling the Test Suite Chapter 4

[134]

 - "python -m unittest discover tests -v"

after_success:
 - "python -m unittest discover benchmarks -v"

This configuration is going to run our tests on Python 3.7, 3.8, and the current nightly build
of Python (3.9 at the time of writing).

Before running the tests (the install: section), it will install the chat distribution from
src to make the chat package available to the tests.

Then the tests will be performed as specified in the script: section and if they succeed,
the benchmarks will be executed as stated in the after_success: section.

Once we push into the repository the .travis.yml file, Travis will see it and will start
executing the tests as specified in the configuration file. If everything worked as expected,
by refreshing the Travis project page, we should see a successful run of our tests on the
three versions of Python:

Figure 4.4 – Successful run on the three versions of Python

Scaling the Test Suite Chapter 4

[135]

If you click on any of the jobs, it will show you what happened, confirming that both the
tests and benchmarks were run:

Figure 4.5 – Checking the code base

Every time we make a change to our code base, Travis will rerun all tests, guaranteeing for
us that we haven't broken anything and allowing us to see whether the performances
became worse with the most recent changes.

Travis is not limited to performing a single thing such as running tests for your projects; it
can actually perform multi-state pipelines that can be evolved to create releases of your
packages or deploy them to a staging environment when the tests succeed. Just be aware
that every build that you do will consume credits, and while you do have some available
for free, you will have to switch to a paid plan if your CI needs grow beyond the amount
covered by free credits.

Scaling the Test Suite Chapter 4

[136]

Performance testing in the cloud
While our CI system does most of what we need, it's important to remember that cloud
runners are not designed for benchmarking. So our performance test suite only becomes
reliable when there are major slowdowns and over the course of multiple runs.

The two most common strategies when running performance tests in the cloud are as
follows:

To rerun the test suite multiple times and pick the fastest run, in order to absorb
the temporary contention of resources in the cloud
To record the metrics into a monitoring service such as Prometheus, from which
it becomes possible to see the trend of the metrics over the course of multiple
runs

Whichever direction you choose to go in, make sure you keep in mind that cloud services
such as Travis can have random slowdowns due to the other requests they are serving, and
thus it's usually better to make decisions over the course of multiple runs.

Summary
In this chapter, we saw how we can keep our test suite effective and comfortable as the
complexity of our application and the size of our test suites grow. We saw how tests can be
organized into different categories that could be run at different times, and also saw how
we can have multiple different test suites in a single project, each serving its own purpose.

In general, over the previous four chapters, we learned how to structure our testing
strategy and how testing can help us design robust applications. We also saw how Python
has everything we need built in already through the unittest module.

But as our test suite grows and becomes bigger, there are utilities, patterns, and features
that we would have to implement on our own in the unittest module. That's why, over
the course of many years, many frameworks have been designed for testing by the Python
community. In the next chapter, we are going to introduce pytest, the most widespread
framework for testing Python applications.

2
Section 2: PyTest for Python

Testing
In this section, we will learn how PyTest, the most widespread Python testing framework,
can be applied to the concepts we learned in Section 1, Software Testing and Test-Driven
Development, regarding plain Python. We will also learn how to set up fixtures and which
plugins exist to make our lives easier when we're maintaining a test suite.

This section comprises the following chapters:

Chapter 5, Introduction to PyTest
Chapter 6, Dynamic and Parametric Tests and Fixtures
Chapter 7, Fitness Function with a Contact Book Application
Chapter 8, PyTest Essential Plugins
Chapter 9, Managing Test Environments with Tox
Chapter 10, Testing Documentation and Property-Based Testing

5
Introduction to PyTest

In the previous chapters, we saw how to approach test-driven development, how to create
a test suite with the unittest module, and how to organize it as it grows. While unittest
is a very good tool and is a reliable solution for most projects, it lacks some convenient
features that are available in more advanced testing frameworks.

PyTest is currently the most widespread testing framework in the Python community, and
it's mostly compatible with unittest. So it's easy to migrate from unittest to pytest if
you feel the need for the convenience that pytest provides.

In this chapter, we will cover the following topics:

Running tests with PyTest
Writing PyTest fixtures
Managing temporary data with tmp_path
Testing I/O with capsys
Running subsets of the test suite

Technical requirements
We need a working Python interpreter with the pytest framework installed. Pytest can be
installed with the following:

$ pip install pytest

The examples have been written on Python 3.7 and pytest 5.4.3 but should work on most
modern Python versions. You can find the code files present in this chapter on GitHub
at https://github. com/ PacktPublishing/ Crafting- Test- Driven- Software- with-
Python/tree/main/ Chapter05.

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter05
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python

Introduction to PyTest Chapter 5

[139]

Running tests with PyTest
PyTest is mostly compatible with the unittest module (apart from support for subtests).
Test suites written with unittest can be directly run under pytest with no modification
usually. For example, our chat application test suite can be directly run under pytest by
simply invoking pytest within the project directory:

$ pytest -v
============ test session starts ============
platform linux -- Python 3.7.3, pytest-5.4.3, py-1.8.1, pluggy-0.13.1
cachedir: .pytest_cache
rootdir: /chatapp
collected 11 items

benchmarks/test_chat.py::BenchmarkChat::test_sending_messages PASSED [9%]
tests/e2e/test_chat.py::TestChatAcceptance::test_message_exchange PASSED [
18%]
tests/e2e/test_chat.py::TestChatAcceptance::test_smoke_sending_message
PASSED [27%]
tests/functional/test_chat.py::TestChatMessageExchange::test_exchange_with_
server PASSED [36%]
tests/functional/test_chat.py::TestChatMessageExchange::test_many_users
PASSED [45%]
tests/functional/test_chat.py::TestChatMessageExchange::test_multiple_reade
rs PASSED [54%]
tests/unit/test_client.py::TestChatClient::test_client_connection PASSED [
63%]
tests/unit/test_client.py::TestChatClient::test_client_fetch_messages
PASSED [72%]
tests/unit/test_client.py::TestChatClient::test_nickname PASSED [81%]
tests/unit/test_client.py::TestChatClient::test_send_message PASSED [90%]
tests/unit/test_connection.py::TestConnection::test_broadcast PASSED [100%]

============ 11 passed in 3.63s ============

The main difference is that pytest doesn't look for classes that inherit the
unittest.TestCase class, but instead looks for anything that has test in the name, be it a
module, a class, or a function. Anything named [Tt]est* is a test... but, if needed, it's
possible to change the discovery rules by having pytest.ini inside the project directory.

This means that even a simple function can be a test as long as it's named
test_something, and as it won't inherit from TestCase, there is no need to use the
custom self.assertEqual and the related method to get meaningful information on
failed assertions. Pytest will enhance the assert statement to report as much information
as available on the asserted expression.

Introduction to PyTest Chapter 5

[140]

For example, we could create a very simple test suite that only has a test_simple.py
module containing a test_something function. That would be all we need to start a test
suite:

def test_something():
 a = 5
 b = 10
 assert a + b == 11

Now, if we run pytest inside the same directory, it will properly find and run our test, and
the failed assertion will also give us hints on what went wrong by telling us that a + b is
15 and not 11:

$ pytest -v
======================= test session starts =======================
platform linux -- Python 3.7.3, pytest-5.4.3, py-1.8.1, pluggy-0.13.1
cachedir: .pytest_cache
rootdir: ~/HandsOnTestDrivenDevelopmentPython/05_pytest
collected 1 item

test_simple.py::test_something FAILED [100%]

============================ FAILURES =============================
_________________________ test_something __________________________

 def test_something():
 a = 5
 b = 10
> assert a + b == 11
E assert 15 == 11
E +15
E -11

test_simple.py:4: AssertionError
===================== short test summary info =====================
FAILED test_simple.py::test_something - assert 15 == 11
======================== 1 failed in 0.22s ========================

We can also add more complex tests that are implemented as classes collecting multiple
tests, without having to inherit from the TestCase class as we did for unittest test suites:

class TestMultiple:
 def test_first(self):
 assert 5 == 5

 def test_second(self):
 assert 10 == 10

Introduction to PyTest Chapter 5

[141]

As for the previous case where we only had the test_something test function, if we run
pytest, it will find all three tests and it will run them:

$ pytest -v
...
collected 3 items

test_simple.py::test_something FAILED [33%]
test_simple.py::TestMultiple::test_first PASSED [66%]
test_simple.py::TestMultiple::test_second PASSED [100%]
...

As we know that test_something always fails, we can select which tests to run by using
the -k option, as we used to do for unittest. The option is, by the way, more powerful
than the one provided by unittest.

For example, it is possible to provide the -k option to restrict the tests to a subset of them
like we already used to do:

$ pytest -v -k first
...
collected 3 items / 2 deselected / 1 selected

test_simple.py::TestMultiple::test_first PASSED [100%]
...

It's also possible to use it to exclude some specific tests:

$ pytest -v -k "not something"
...
collected 3 items / 1 deselected / 2 selected

test_simple.py::TestMultiple::test_first PASSED [50%]
test_simple.py::TestMultiple::test_second PASSED [100%]
...

In the first case, we ran the test_first test, but in the second, we ran all tests except
for test_something. So you could view pytest as unittest on steroids. It provides the
same features you were used to with unittest, but frequently, they are enhanced to make
them more powerful, flexible, or convenient.

If one had to choose between the two, it'd probably be a matter of preference. But it's not
uncommon to see unittest used for projects that want to keep a more lightweight test
suite that is kept stable over the course of the years (unittest, like most modules of the
Python Standard Library guarantees very long-term compatibility) and pytest for projects
that have more complex test suites or needs.

Introduction to PyTest Chapter 5

[142]

Writing PyTest fixtures
The primary difference between unittest and PyTest lies in how they handle fixtures.
While unittest like fixtures (setUp, tearDown, setupClass, and so on) are still
supported through the TestCase class when using pytest, pytest tries to provide
further decoupling of tests from fixtures.

In pytest, a fixture can be declared using the pytest.fixture decorator. Any function
decorated with the decorator becomes a fixture:

@pytest.fixture
def greetings():
 print("HELLO!")
 yield
 print("GOODBYE")

The code of the test is executed where we see the yield statement. yield in this context
passes execution to the test itself. So this fixture would print "HELLO" before the test starts
and then "GOODBYE" when the test finishes.

To then bind a fixture to a test, the pytest.mark.usefixtures decorator is used. So, for
example, to use our new fixture with the existing TestMultiple.test_second test, we
would have to decorate that test using the name of our new fixture:

class TestMultiple:
 def test_first(self):
 assert 5 == 5

 @pytest.mark.usefixtures("greetings")
 def test_second(self):
 assert 10 == 10

The name of a fixture is inherited by the name of the function that implements it, so by
passing "greetings" to the usefixtures decorator, we end up using our own fixture:

$ pytest -v -k "usingfixtures and second" -s
...
collected 8 items / 7 deselected / 1 selected

test_usingfixtures.py::TestMultiple::test_second HELLO!
PASSED
GOODBYE
...

Introduction to PyTest Chapter 5

[143]

So, the part of the fixture before the yield statement replaces the TestCase.setUp
method, while the part after yield replaces the TestCase.tearDown method.

If we want to use more than one fixture in a test, the usefixtures decorator allows us to
pass multiple arguments, one for each fixture that we want to use.

If you are wondering about the -s option, that's another difference with unittest. By
default, pytest captures all output that your code prints, while unittest, by default, didn't.
The two work in a reverse way, so in the case of pytest, we need to explicitly disable
output capturing to be able to see our prints.

Otherwise, outputs are only shown if the test fails. This has the benefit of keeping test run
output cleaner, but can leave people puzzled the first time they see it.

Pytest fixtures can be declared in the same module that uses them, or inside a
conftest.py module that will be inherited by all modules and packages in the same
directory (or subdirectories).

Think of conftest.py as being a bit like the __init__.py of test packages; it allows us to
customize tests' behavior for that package and even replace fixtures or plugins.

While the pytest fixtures mechanism is very powerful, it's usually a bad
idea to put fixtures too far away from what uses them.

It will make it hard for tests reader to understand what's going on, so
spreading tens of conftest.py files around the test suite is usually a
good way to make life hard for anyone having to understand our test
suite.

As one of the primary goals of tests is to act as references of the software
behavior, it's usually a good idea to keep them straightforward so that
anyone approaching software for the first time can learn about the
software without first having to spend days trying to understand how the
test suite works and what it does.

Obviously, pytest fixtures are not limited to functions; they can also provide a
replacement for TestCase.setUpClass and TestCase.tearDownClass. To do so, all we
have to do is to declare a fixture that has scope="class" ("function", "module",
"package", and "session" scopes are available too to define the life cycle of a fixture):

@pytest.fixture(scope="class")
def provide_current_time(request):
 import datetime

Introduction to PyTest Chapter 5

[144]

 request.cls.now = datetime.datetime.utcnow()

 print("ENTER CLS")
 yield
 print("EXIT CLS")

In the previous fixture, we provide a self.now attribute in the class where the test lives,
we print "ENTER CLS" before starting the tests for that class, and then we print "EXIT
CLS" once all tests for that class have finished.

If we want to use the fixture, we just have to decorate a class with mark.usefixtures and
declare we want it:

@pytest.mark.usefixtures("provide_current_time")
class TestMultiple:
 def test_first(self):
 print("RUNNING AT", self.now)
 assert 5 == 5

 @pytest.mark.usefixtures("greetings")
 def test_second(self):
 assert 10 == 10

Now, if we run our tests, we will get the messages from both the provide_current_time
fixture and from the greetings one:

$ pytest -v -k "usingfixtures" -s
collected 8 items / 6 deselected / 2 selected

test_usingfixtures.py::TestMultiple::test_first
ENTER CLS
RUNNING AT 2020-06-17 22:28:23.489433
PASSED
test_usingfixtures.py::TestMultiple::test_second
HELLO!
PASSED
GOODBYE
EXIT CLS

You can also see that our test properly printed the self.now attribute, which was injected
into the class by the fixture. The request argument to fixtures represents a request for that
fixture from a test. It provides some convenient attributes, such as the class that requested
the fixture (cls), the instance of that class that is being used to run the test, the module
where the test is contained, the tests run session, and many more, allowing us not only to
know the context of where our fixture is being used but also to modify those entities.

Introduction to PyTest Chapter 5

[145]

Apart from setting up tests, classes, and modules, there is usually a set of operations that
we might want to do for the whole test suite; for example, configuring pieces of our
software that we are going to need in all tests.

For that purpose, we can create a conftest.py file inside our test suite, and drop all those
fixtures there. They just need to be declared with scope="session", and the
autouse=True option can automatically enable them for all our tests:

import pytest

@pytest.fixture(scope="session", autouse=True)
def setupsuite():
 print("STARTING TESTS")
 yield
 print("FINISHED TESTS")

Now, running all our tests will be wrapped by the setupsuite fixture, which can take care
of setting up and tearing down our test suite:

$ pytest -v -s
...
test_usingfixtures.py::TestMultiple::test_first
STARTING TESTS
ENTER CLS
RUNNING AT 2020-06-17 22:29:46.108487
PASSED
test_usingfixtures.py::TestMultiple::test_second
HELLO!
PASSED
GOODBYE
EXIT CLS
FINISHED TESTS
...

We can see from the output of the command that, according to our new fixture, the tests
printed "STARTING TESTS" when they started and printed "FINISHED TESTS" at the end
of the whole suite execution. This means that we can use session-wide fixtures to prepare
and tear down resources or configurations that are necessary for the whole suite to run.

Introduction to PyTest Chapter 5

[146]

Using fixtures for dependency injection
Another good property of pytest fixtures is that they can also provide some kind of
dependency injection management. For example, your software might use a remote
random number generator. Whenever a new random number is needed, an HTTP request
to a remote service is made that will return the number.

 Inside our conftest.py file, we could provide a fixture that builds a fake random number
generator that by default is going to generate random numbers (to test the software still
works when the provided values are random) but without doing any remote calls to ensure
the test suite is able to run quickly:

$ cat conftest.py

import pytest

@pytest.fixture
def random_number_generator():
 import random
 def _number_provider():
 return random.choice(range(10))
 yield _number_provider

Then, we could have any number of tests that use our random number generator (for the
sake of simplicity, we are going to make a test_randomness.py file with a single test
using it):

def test_something(random_number_generator):
 a = random_number_generator()
 b = 10
 assert a + b >= 10

If a test has an argument, pytest will automatically consider that dependency injection
and will invoke the fixture with the same name of the argument to provide the object that
should satisfy that dependency.

So, for our test_something function, the random_number_generator object is the one
returned by our random_number_generator fixture, which returns numbers from 0 to 9.

Introduction to PyTest Chapter 5

[147]

As fixtures can be overridden inside modules or packages, if for some of our tests we
wanted to replace the random number generator with a fairly predictable one (that always
returns 1, all we would have to do is, again, declare a fixture with the same exact name
inside the other module. Let's look at an example:

We would make a test_fixturesinj.py test module where we provide a new1.
random_number_generator that is not random at all and we have a test that
relies on that feature:

def test_something(random_number_generator):
 a = random_number_generator()
 b = 10
 assert a + b == 11

@pytest.fixture
def random_number_generator():
 def _number_provider():
 return 1
 yield _number_provider

If we run our two test_something tests, from the two modules, they will both2.
pass, because one will be using a random number generator that builds random
numbers, while the other will use one that always returns the number 1:

$ pytest -v -k "something and not simple"
...
collected 7 items / 5 deselected / 2 selected
test_fixturesinj.py::test_something PASSED [50%]
test_randomness.py::test_something PASSED [100%]
...

So we saw that pytest fixtures are much more flexible than unittest ones and that due
to that greater decoupling and flexibility, great care has to be put into making sure it's clear
which fixture implementations we end up using in our tests.

Introduction to PyTest Chapter 5

[148]

In the upcoming sections, we are going to look at some of the built-in fixtures that pytest
provides and that are generally useful during the development of a test suite.

Managing temporary data with tmp_path
Many applications need to write data to disk. Surely we don't want data written during
tests to interfere with the data we read/write during the real program execution. Data
fixtures used in tests usually have to be predictable and we certainly don't want to corrupt
real data when we run our tests.

So it's common for a test suite to have its own read/write path where all the data is written.
If we decided the path beforehand, by the way, there would be the risk that different test
runs would read previous data and thus might not spot bugs or might fail without a
reason.

For this reason, one of the fixtures that pytest provides out of the box is tmp_path, which,
when injected into a test, provides a temporary path that is always different on every test
run. Also, it will take care of retaining the most recent temporary directories (for debugging
purposes) while deleting the oldest ones:

def test_tmp(tmp_path):
 f = tmp_path / "file.txt"
 print("FILE: ", f)

 f.write_text("Hello World")

 fread = tmp_path / "file.txt"
 assert fread.read_text() == "Hello World"

The test_tmp test creates a file.txt file in the temporary directory and writes "Hello
World" in it. Once the write is completed, it tries to access the same file again and confirm
that the expected content was written.

The tmp_path argument will be injected by pytest itself and will point to a path made by
pytest for that specific test run.

This can be seen by running our test with the -s option, which will make the "FILE: ..."
string that we printed visible:

$ pytest test_tmppath.py -v -s
===== test session starts =====
...
collected 1 item

Introduction to PyTest Chapter 5

[149]

test_tmppath.py::test_tmp
FILE: /tmp/pytest-of-amol/pytest-3/test_tmp0/file.txt
PASSED

===== 1 passed in 0.03s =====

On every new run, the pytest-3 directory will be increased, so the most recent directory
will be from the most recent run and only the latest three directories will be kept.

Testing I/O with capsys
When we implemented the test suite for the TODO list application, we had to check that the
output provided by the application was the expected one. That meant that we provided a
fake implementation of the standard output, which allowed us to see what the application
was going to write.

Suppose you have a very simple app that prints something when started:

def myapp():
 print("MyApp Started")

If we wanted to test that the app actually prints what we expect when started, we could use
the capsys fixture to access the capture output from sys.stdout and sys.stderr of our
application:

def test_capsys(capsys):
 myapp()

 out, err = capsys.readouterr()
 assert out == "MyApp Started\n"

The test_capsys test just starts the application (running myapp), then through
capsys.readouterr() it retrieves the content of sys.stdout and sys.stderr
snapshotted at that moment.

Once the standard output content is available, it can be compared to the expected one to
confirm that the application actually printed what we wanted. If the application really
printed "MyApp Started" as expected, running the test should pass and confirm that's the
content of the standard output:

$ pytest test_capsys.py -v
===== test session starts =====
...
collected 1 item

Introduction to PyTest Chapter 5

[150]

test_capsys.py::test_capsys PASSED

===== 1 passed in 0.03s =====

The passing test run confirms that the capsys plugin worked correctly and our test was
able to intercept the output sent by the function under test.

Running subsets of the testsuite
In the previous chapters, we saw how to divide our test suite into subsets that we can run
on demand based on their purpose and cost. The way to do so involved dividing the tests
by directory or by name, such that we could point the test runner to a specific directory or
filter for test names with the -k option.

While those strategies are available on pytest too, pytest provides more ways to
organize and divide tests; one of them being markers.

Instead of naming all our smoke tests "test_smoke_something", for example, we could
just name the test "test_something" and mark it as a smoke test. Or, we could mark slow
tests, so that we can avoid running slow ones during the most frequent runs.

Marking a test is as easy as decorating it with @pytest.mark.marker, where marker is
our custom label. For example, we could create two tests and use @pytest.mark.first to
mark the first of the two tests:

import pytest

@pytest.mark.first
def test_one():
 assert True

def test_two():
 assert True

At this point, we could select which tests to run by using pytest -m first or pytest -m
"not first":

$ pytest test_markers.py -v
...
test_markers.py::test_one PASSED [50%]
test_markers.py::test_two PASSED [100%]

Introduction to PyTest Chapter 5

[151]

pytest test_markers.py -m "first" would run only the one marked with our
custom marker:

$ pytest test_markers.py -v -m first
...
test_markers.py::test_one PASSED [100%]

This means that we can mark our tests in any way we want and run selected groups of tests
independently from the directory where they sit or how they are named.

On some versions of pytest, you might get a warning when using custom markers:

Unknown pytest.mark.first - is this a typo? You can register custom marks
to avoid this warning

This means that the marker is unknown to pytest and must be registered in the list of
available markers to make the warning go away. The reason for this is to prevent typos that
would slip by unnoticed if markers didn't have to be registered.

To make a marker available and make the warning disappear, the custom markers can be
set in the pytest.ini configuration file for your test suite:

[pytest]
markers =
 first: mark a test as the first one written.

If the configuration file is properly recognized and we have no typos in the "first"
marker, the previously mentioned warning will go away and we will be able to use the
"first" marker freely.

Summary
In this chapter, we saw how pytest can provide more advanced features on top of the
same functionalities we were already used to with unittest. We also saw how we can run
our existing test suite with pytest and how we can evolve it to leverage some of built-in
pytest features.

We've looked at some of the features that pytest provides out of the box, and in the next
chapter, we will introduce more advanced pytest features, such as parametric tests and
fixture generation.

6
Dynamic and Parametric Tests

and Fixtures
In the previous chapter, we saw how pytest can be used to run our test suites, and how it
provides some more advanced features that are unavailable in unittest by default.
Python has seen multiple frameworks and libraries built on top of unittest to extend it
with various features and utilities, but pytest has surely become the most widespread
testing framework in the Python community. One of the reasons why pytest became so
popular is its flexibility and support for dynamic behaviors. Apart from this, generating
tests and fixtures dynamically or heavily changing test suite behavior are other features
supported by pytest out of the box.

In this chapter, we are going to see how to configure a test suite and generate dynamic
fixtures and dynamic or parametric tests. As your test suite grows, it will be important to be
able to know which options PyTest provides to drive the test suite execution and how we
can generate fixtures and tests dynamically instead of rewriting them over and over.

In this chapter, we will cover the following topics:

Configuring the test suite
Generating fixtures
Generating tests with parametric tests

Technical requirements
We need a working Python interpreter with the pytest framework installed. Pytest can be
installed using the following command:

$ pip install pytest

Dynamic and Parametric Tests and Fixtures Chapter 6

[153]

Though the examples have been written using Python 3.7 and pytest 5.4.3, they should
work on most modern Python versions. You can find the code files used in this chapter on
GitHub at https://github. com/ PacktPublishing/ Crafting- Test- Driven- Software-
with-Python/tree/ main/ Chapter06

Configuring the test suite
In pytest, there are two primary configuration files that can be used to drive the behavior of
our testing environment:

pytest.ini takes care of configuring pytest itself, so the options we set there
are mostly related to tweaking the behavior of the test runner and discovery.
These options are usually available as command-line options too.
conftest.py is aimed at configuring our tests and test suite, so it's the place
where we can declare new fixtures, attach plugins, and change the way our tests
should behave.

While pytest has grown over the years, with other ways being developed to configure the
behavior of pytest itself or of the test suite, the two aforementioned ways are probably the
most widespread.

For example, for a fizzbuzz project, if we have a test suite with the classical basic
distinction between the source code, unit tests, and functional tests, then we could have a
pytest.ini file within the project directory to drive how pytest should run:

.
├── pytest.ini
├── src
│ ├── fizzbuzz
│ │ ├── __init__.py
│ │ └── __main__.py
│ └── setup.py
└── tests
 ├── conftest.py
 ├── __init__.py
 ├── functional
 │ └── test_acceptance.py
 └── unit
 ├── test_checks.py
 └── test_output.py

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter06

Dynamic and Parametric Tests and Fixtures Chapter 6

[154]

The content of pytest.ini could contain any option that is also available via the
command line, plus a bunch of extra options as described in the pytest reference for INI
options.

For example, to run pytest in verbose mode, without capturing the output and by
disabling deprecation warnings, we could create a pytest.ini file that adds the following
related configuration options:

[pytest]
addopts = -v -s
filterwarnings =
 ignore::DeprecationWarning

In the same way, we have a conftest.py file in the tests directory. We already know
from Chapter 5, Introduction to PyTest, that conftest.py is where we can declare our
fixtures to make them available to the directory and all subdirectories. If set with
autouse=True, the fixtures will also automatically apply to all tests in the same directory.

If we want to print every time we enter and exit a test, for example, we could add a fixture
to our conftest.py file as shown here:

import pytest

@pytest.fixture(scope="function", autouse=True)
def enterexit():
 print("ENTER")
 yield
 print("EXIT")

As conftest is the entry point of our tests, the fixture would become available for all our
tests, and as it is with autouse=True, all of them would start using it. Not only can we use
fixtures that are declared in conftest.py itself, but we can also use fixtures that come
from anything that was imported. We just have to declare the module as a plugin that has
to be loaded when the tests start.

For example, we could have a fizzbuzz.testing package in our fizzbuzz project where
fizzbuzz.testing.fixtures provides a set of convenience fixtures for anyone willing
to test our simple app.

Similarly, we could have a fizzbuzz.testing.fixtures.announce fixture that
announces every test being run:

import pytest

@pytest.fixture(scope="function", autouse=True)

Dynamic and Parametric Tests and Fixtures Chapter 6

[155]

def announce(request):
 print("RUNNING", request.function)

To use it, we just have to add our module to pytest_plugins in the conftest.py file as
follows:

pytest_plugins = ["fizzbuzz.testing.fixtures"]

Note that while conftest.py can be provided multiple times and will
only apply to the package that contains it, pytest_plugins instead
should only be declared in the root conftest.py file, as there is no way
to enable/disable plugins on demand – they are always enabled for the
whole test suite.

But adding fixtures is not all conftest.py can do. Pytest also provides a bunch of hooks
that can be exposed from conftest (or from a plugin declared in pytest_plugins) that
can be used to drive the behavior of the test suite.

The most obvious hooks are pytest_runtest_setup, which is called when preparing to
execute a new test; pytest_runtest_call, called when executing a new test; and
pytest_runtest_teardown, called when finalizing a test.

For example, our previous announce fixture can be rewritten using the
pytest_runtest_setup hook as follows:

def pytest_runtest_setup(item):
 print("Hook announce", item)

Tons of additional hooks are available in pytest, such as a hook for parsing command-line
options, a hook for generating test run reports, a hook for starting or finishing a whole test
run, and so on.

For a complete list of available hooks, refer to the pytest API reference at
https:/ /docs. pytest. org/ en/ stable/ reference. html#hooks.

We have seen how to change the behavior of our test suite by using configuration options,
conftest, and hooks, but pytest's flexibility doesn't stop there. Not only we can change the
behavior of the test suite itself, but we can also change the behavior of the fixtures by
generating those fixtures on demand.

https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks
https://docs.pytest.org/en/stable/reference.html#hooks

Dynamic and Parametric Tests and Fixtures Chapter 6

[156]

Generating fixtures
Now that we know that conftest.py allows us to customize how our test suite should
behave, the next step is to notice that pytest allows us to also change how our fixtures
behave as well.

For example, the fizzbuzz program is expected to print "fizz" on every number divisible
by 3, print "buzz" on every number divisible by 5, and print "fizzbuzz" on every
number divisible by both.

To implement this, we could have outfizz and outbuzz functions that print "fizz" or
"buzz" without a newline. This allows us to call each one of them to print fizz or buzz
and to call both functions one after the other to print fizzbuzz.

To test this behavior, we could have a tests/unit/test_output.py module containing
all the tests for our output utilities. For outfizz and outbuzz, we could write the tests as
follows:

from fizzbuzz import outfizz, outbuzz, endnum

def test_outfizz(capsys):
 outfizz()

 out, _ = capsys.readouterr()
 assert out == "fizz"

def test_outbuzz(capsys):
 outbuzz()

 out, _ = capsys.readouterr()
 assert out == "buzz"

These are pretty simple tests that do the same thing, just over a different output. One
invokes the outfizz function and checks whether it prints "fizz" and the other invokes
the outbuzz function and checks whether it prints "buzz".

We could think of having a form of dependency injection oriented toward the test itself,
where the function to test is provided by a fixture. This would allow us to write the test
once and provide two fixtures: one that injects "fizz" and one that injects "buzz".

Dynamic and Parametric Tests and Fixtures Chapter 6

[157]

Going even further, we could even write the fixture only once, and dynamically generate it.
Pytest allows us to parameterize fixtures. This means that out of a list of parameters, the
fixture will run multiple times, once for each parameter. This will allow us to write a single
test with a single fixture that injects the right function and the right expectation testing once
for "fizz" and once for "buzz":

def test_output(expected_output, capsys):
 func, expected = expected_output

 func()

 out, _ = capsys.readouterr()
 assert out == expected

The test_output test relies on the expected_output fixture (which we will define
shortly) and the capsys fixture that is provided by pytest itself.

The expected_output fixture will be expected to provide the function that generates the
output we want to test (func) and the output we expect that function to print (expected).

Our expected_output fixture will get the function that generates the expected output
from the fizzbuzz module through a getattr call that is meant to retrieve the outfizz
and outbuzz functions:

import pytest

import fizzbuzz

@pytest.fixture(params=["fizz", "buzz"])
def expected_output(request):
 yield getattr(fizzbuzz, "out{}".format(request.param)), request.param

Thanks to @pytest.fixture(params=["fizz", "buzz"]), the expected_output
fixture will be invoked by pytest twice, once for "fizz" and once for "buzz", leading to
the test running twice, once for each parameter.

Through request.param the fixtures know which one of the two parameters is running,
and using getattr, pytest retrieves from the fizzbuzz module the outfizz and outbuzz
output generation functions and yields to the test the function to be tested and its
associated expected output.

Dynamic and Parametric Tests and Fixtures Chapter 6

[158]

When the parameters are not strings, you can also use the ids argument
to provide a text description for them. This is so that when the tests runs,
you know which parameter is being used.

We have seen how we can drive fixture generation from parameters and thus generate
fixtures based on them, but pytest can go further and allow you to drive the fixture
generation from command-line options.

For example, imagine that you want to be able to test two possible setups: one where the
app prints lowercase strings, and another where it prints uppercase "FIZZ" and "BUZZ".

To do this, we could add to conftest.py a pytest_addoption hook to inject an extra --
upper option in pytest:

def pytest_addoption(parser):
 parser.addoption(
 "--upper", action="store_true",
 help="test for uppercase behavior"
)

When this option is set, the output functions will be tested for uppercase output.

We need to slightly modify our expected_output fixture to return the right uppercase
string that we need to check against when the --upper option is provided:

@pytest.fixture(params=["fizz", "buzz"])
def expected_output(request):
 text = request.param
 if request.config.getoption("--upper"):
 text = text.upper()
 yield getattr(fizzbuzz, "out{}".format(request.param)), text

Now our tests, by default, will check against the lowercase output when run:

$ pytest -k output
tests/unit/test_output.py::test_output[fizz] PASSED
tests/unit/test_output.py::test_output[buzz] PASSED

But, if we provide --upper, we test against the uppercase output (which obviously makes
our tests fail as the outfizz and outbuzz functions output text in lowercase):

$ pytest --upper -k output
tests/unit/test_output.py::test_output[fizz] FAILED
tests/unit/test_output.py::test_output[buzz] FAILED
========= FAILURES ==========
...

Dynamic and Parametric Tests and Fixtures Chapter 6

[159]

E AssertionError: assert 'fizz' == 'FIZZ'
...
E AssertionError: assert 'buzz' == 'BUZZ'

We have seen how to pass options to fixtures from parameters and the command line, but
what if I want to configure fixtures from the tests themselves? That's possible thanks to
markers. Using pytest.mark, we can add markers to our tests, and obviously, those
markers can be read from the test suite and the fixtures. The most flexible thing about
markers is that markers can have parameters too. So the markers can be used to set
attributes for a specific test that will be visible to the fixture.

For example, we could have the tests be able to force lower/upper case configuration
instead of relying on an external command-line option. The test could add a
pytest.mark.textcase marker to flag whether it wants upper- or lowercase text from
the fixture:

@pytest.mark.textcase("lower")
def test_lowercase_output(expected_output, capsys):
 func, expected = expected_output

 func()

 out, _ = capsys.readouterr()
 assert out == expected

Our test_lowercase_output is a perfect copy of test_output, apart from the added
marker. The marker specifies that the test has to run with lowercase text even when the --
upper option is provided.

To enable such a behavior, we have to modify our expected_output fixture to read the
marker and its arguments. After reading the command-line options, we are going to
retrieve the marker, get its first argument, and lower/upper the text based on it:

@pytest.fixture(params=["fizz", "buzz"])
def expected_output(request):
 text = request.param
 if request.config.getoption("--upper"):
 text = text.upper()
 textcasemarker = request.node.get_closest_marker("textcase")
 if textcasemarker:
 textcase, = textcasemarker.args
 if textcase == "upper":
 text = text.upper()
 elif textcase == "lower":
 text = text.lower()
 else:

Dynamic and Parametric Tests and Fixtures Chapter 6

[160]

 raise ValueError("Invalid Test Marker")
 yield getattr(fizzbuzz, "out{}".format(request.param)), text

Now if we run our test suite, while the test_output function will fail when we provide
the --upper option (because the output functions provide only lowercase output), the
test_lowercase_output test instead will always succeed because the fixture is
configured by the test to only provide lowercase text:

$ pytest --upper -k output
tests/unit/test_output.py::test_output[fizz] FAILED
tests/unit/test_output.py::test_output[buzz] FAILED
tests/unit/test_output.py::test_lowercase_output[fizz] PASSED
tests/unit/test_output.py::test_lowercase_output[buzz] PASSED

We have seen how we can change the behavior of fixtures based on parameters and options
that we provide, and many of those practices work out of the box for changing the behavior
of the tests themselves. Just as fixtures have the params option, tests support the
@pytest.mark.parametrize decorator, which allows generating tests based on
parameters.

Generating tests with parametric tests
Sometimes you find yourself writing the same check over and over for multiple
configurations. Instead, it would be convenient if we could write the test only once and
provide the configurations in a declarative way.

That's exactly what @pytest.mark.parametrize allows us to do: to generate tests based
on a template function and the various configurations that have to be provided.

For example, in our fizzbuzz software, we could have two isbuzz and isfizz checks
that verify whether the provided number should lead us to print the "buzz" or "fizz"
strings. Like always, we want to write a test that drives the implementation of those two
little blocks of our software, and the tests might look like this:

def test_isfizz():
 assert isfizz(1) is False
 assert isfizz(3) is True
 assert isfizz(4) is False
 assert isfizz(6) is True

def test_isbuzz():
 assert isbuzz(1) is False
 assert isbuzz(3) is False

Dynamic and Parametric Tests and Fixtures Chapter 6

[161]

 assert isbuzz(5) is True
 assert isbuzz(6) is False
 assert isbuzz(10) is True

The tests cover a few cases to make us feel confident that our implementation will be
reliable, but it's very inconvenient to write the same check over and over for each possible
number that we want to check.

That's where parameterizing the test comes into the picture. Instead of having the
test_isfizz function be a long list of assertions, we could rewrite it to be a single
assertion that gets rerun by pytest multiple times, once for each parameter it receives. The
parameters could for example be the number to check with isfizz and the expected
outcome, so that we can compare the outcome of invoking isfizz to the expected
outcome:

@pytest.mark.parametrize("n,res", [
 (1, False),
 (3, True),
 (4, False),
 (6, True)
])
def test_isfizz(n, res):
 assert isfizz(n) is res

When we run the test suite, pytest will take care of generating all tests, one for each
parameter, to guarantee we are checking all the conditions as we were doing before:

$ pytest -k checks
tests/unit/test_checks.py::test_isfizz[1-False] PASSED [20%]
tests/unit/test_checks.py::test_isfizz[3-True] PASSED [40%]
tests/unit/test_checks.py::test_isfizz[4-False] PASSED [60%]
tests/unit/test_checks.py::test_isfizz[6-True] PASSED [80%]
...

We can even go further and mix a fixture with a parameterized test and have the fixture
generate one of the parameters. For the isfizz function, we explicitly provided the
expected result; for the isbuzz test, we are going to have the fixture inject whether the
number is divisible by 5 and thus whether it would print buzz or not.

To do so, we are going to provide a divisible_by5 fixture that does no more than to
return whether the number is divisible by 5 or not:

@pytest.fixture(scope="function")
def divisible_by5(n):
 return n % 5 == 0

Dynamic and Parametric Tests and Fixtures Chapter 6

[162]

Then, we can have our parameterized test accept the parameter for the number, but use the
fixture for the expected result, as shown in the following code:

@pytest.mark.parametrize("n", [1, 3, 5, 6, 10])
def test_isbuzz(n, divisible_by5):
 assert isbuzz(n) is divisible_by5

On each one of the generated tests, the number n will be provided to both the test and the
fixture (by virtue of the shared argument name) and our test will be able to confirm that
isbuzz returns True only for numbers divisible by 5:

$ pytest -k checks
...
tests/unit/test_checks.py::test_isbuzz[1] PASSED [55%]
tests/unit/test_checks.py::test_isbuzz[3] PASSED [66%]
tests/unit/test_checks.py::test_isbuzz[5] PASSED [77%]
tests/unit/test_checks.py::test_isbuzz[6] PASSED [88%]
tests/unit/test_checks.py::test_isbuzz[10] PASSED [100%]

It is also possible to provide arguments to the test through a fixture by using the indirect
option of parametrize. In such a case, the parameter is provided to the fixture and then
the fixture can decide what to do with it, whether to pass it to the test or change it. This
allows us to replace test parameters, instead of injecting new ones as we did.

Summary
In this chapter, we saw why pytest is considered a very flexible and powerful framework
for writing test suites. Its capabilities to automatically generate tests and fixtures on the fly
and to change their behaviors through hooks and plugins are very helpful, allowing us to
write smaller test suites that cover more cases.

The problem with those techniques is that they make it less clear what's being tested and
how, so it's always a bad idea to abuse them. It's usually better to ensure that your test is
easy to read and clear about what's going on. That way, it can act as a form of
documentation on the behavior of the software and allow other team members to learn
about a new feature by reading its test suite.

Dynamic and Parametric Tests and Fixtures Chapter 6

[163]

Only once all our test suites are written in a simple and easy-to-understand way can we
focus on reducing the complexity of those suites by virtue of parameterization or
dynamically generated behaviors. When dynamically generated behaviors get in the way of
describing the behavior of software clearly, they can make the test suite unmaintainable
and full of effects at a distance (due to the Actions at a distance anti-pattern) that make it
hard to understand why a test fails or passes.

Now that we have seen how to write tests in the most powerful ways, in the next chapter
we will focus on which tests to write. We are going to focus on getting the right fitness
functions for our software to ensure we are actually testing what we care about.

7
Fitness Function with a Contact

Book Application
We have already seen that in test-driven development, it is common to start development
by designing and writing acceptance tests to define what the software should do and then
dive into the details of how to do it with lower-level tests. That frequently is the foundation
of Acceptance Test-Driven Development (ATDD), but more generally, what we are trying
to do is to define a Fitness Function for our whole software. A fitness function is a function
that, given any kind of solution, tells us how good it is; the better the fitness function, the
closer we get to the result.

Even though fitness functions are typically used in genetic programming to select the
solutions that should be moved forward to the next iteration, we can see our acceptance
tests as a big fitness function that takes the whole software as the input and gives us back a
value of how good the software is.

All acceptance tests passed? This is 100% what it was meant to be, while only 50% of
acceptance tests have been passed? That's half-broken... As far as our fitness function really
describes what we wanted, it can save us from shipping the wrong application.

That's why acceptance tests are one of the most important pieces of our test suite and a test
suite comprised solely of unit tests (or, more generally, technical tests) can't really
guarantee that our software is aligned with what the business really wanted. Yes, it might
do what the developer wanted, but not what the business wanted.

In this chapter, we will cover the following topics:

Writing acceptance tests
Using behavior-driven development
Embracing specifications by example

Fitness Function with a Contact Book Application Chapter 7

[165]

Technical requirements
We need a working Python interpreter with the PyTest framework installed. For the
behavior-driven development part, we are going to need the pytest-bdd plugin.

pytest and pytest-bdd can be installed using the following command:

$ pip install pytest pytest-bdd

The examples have been written on Python 3.7, pytest 6.0.2, and pytest-bdd 4.0.1, but
should work on most modern Python versions. You can find the code files present in this
chapter on GitHub at https:/ /github. com/PacktPublishing/ Crafting- Test- Driven-
Software-with-Python/ tree/ main/ Chapter07.

Writing acceptance tests
Our company has just released a new product; it's a mobile phone for extreme geeks that
will only work through a UNIX shell. All the things our users want to do will be doable via
the command line and we are tasked with writing the contact book application. Where do
we start?

The usual way! First, we prepare our project skeleton. We are going to expose the contact
book application as the contacts package, as shown here, and we are going to provide a
main entry point. For now, we are going to invoke this with python -m contacts, but in
the future, we will wrap this in a more convenient shortcut:

.
├── src
│ ├── contacts
│ │ ├── __init__.py
│ │ └── __main__.py
│ └── setup.py
└── tests
 ├── conftest.py
 ├── functional
 │ └── test_acceptance.py
 ├── __init__.py
 └── unit

For now, all our modules are empty, just placeholders are present, but the first thing we
surely want to have is a location where we can place our acceptance tests. So, the
test_acceptance module is born. Now, how do we populate it?

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter07
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python

Fitness Function with a Contact Book Application Chapter 7

[166]

Our team applies an agile approach, so we have a bunch of user stories like stickers, with
things such as As a user, I want to have a command to add a new entry to my contact book, so that
I can then call it without having to remember the number, or As a user, I want to have a way to
remove contacts that I no longer require from my contact book, so that it doesn't get too hard to spot
the contacts I care about. While they might be enough for us to start imagining what the
application is meant to do, they are far from being something that describes its behavior
well enough to act as a fitness function.

So we pick one story, the one about being able to add new entries to the contact book
application, and we start writing a set of acceptance tests for it that can describe its
behavior in a more detailed way.

Writing the first test
So, we open the tests/functional/test_acceptance.py file and we write our first
acceptance test. It has to run some kind of command line and then check that after a contact
has been added to the list of contacts:

import contacts

class TestAddingEntries:
 def test_basic(self):
 app = contacts.Application()

 app.run("contacts add NAME 3345554433")

 assert app._contacts == [
 ("NAME", "3345554433")
]

We decide that Application.run will be the entry point of our application, so we just
pass what the user wrote on the shell and it gets parsed and executed, and also decide that
we are going to somehow store the contacts in a _contacts list. That's an implementation
detail that we can change later on as we dive into the details of implementation, but for
now it is enough to state that somehow we want to be able to see the contacts that we
stored.

Acceptance tests are meant to exercise the system from the user point of
view and through the interfaces provided to the user. However, it is
generally considered acceptable if the setup and assertion parts of the test
access internals to properly prepare the test or verify its outcome. The
important part is that the system is used from the user point of view.

Fitness Function with a Contact Book Application Chapter 7

[167]

Satisfied with the fact that we are now clear in our mind how we want the software to
behave at a high level, we are eager to jump into the implementation. But remember that
our acceptance tests are only as good because they are a proper fitness function.

Getting feedback from the product team
Our next step is to go back to someone from our product team and share our acceptance
test with one of its members to see how good it is.

Luckily for us, our product team understands Python and they get back with a few points
as feedback:

People usually have a name and a surname and even middle names, so what
happens when NAME contains spaces?
We actually want to be able to store international numbers, so make sure you
accept a "+" at the beginning of the phone numbers, but don't accept any
random text. We don't want people wondering why their contacts don't work
after they did a typo.

These points are all new acceptance criteria. Our software is good only if it's able to satisfy
all these conditions. So, we go back to our editor and tweak our acceptance tests and we
come back with the following:

class TestAddingEntries:
 def test_basic(self):
 app = contacts.Application()

 app.run("contacts add NAME 3345554433")

 assert app._contacts == [
 ("NAME", "3345554433")
]

 def test_surnames(self):
 app = contacts.Application()

 app.run("contacts add Mario Mario 3345554433")
 app.run("contacts add Luigi Mario 3345554434")
 app.run("contacts add Princess Peach Toadstool 3339323323")

 assert app._contacts == [
 ("Mario Mario", "3345554433"),
 ("Luigi Mario", "3345554434"),
 ("Princess Peach Toadstool", "3339323323")

Fitness Function with a Contact Book Application Chapter 7

[168]

]

 def test_international_numbers(self):
 app = contacts.Application()

 app.run("contacts add NAME +393345554433")

 assert app._contacts == [
 ("NAME", "+393345554433")
]

 def test_invalid_strings(self):
 app = contacts.Application()

 app.run("contacts add NAME InvalidString")

 assert app._contacts == []

The test_surnames function now verifies that names with spaces work as expected, and
that we also support multiple spaces for middle names and multiple surnames.

The test_international_numbers function now verifies that we support international
phone numbers, while the test_invalid_strings function confirms that we don't save
invalid numbers.

This should cover a fairly comprehensive description of all the behaviors our product team
mentioned. Before declaring victory, we go back to our product people and review the
acceptance tests with them.

One of the product team members points out that a key feature for them is that contacts
have to be retained between two different runs of the application. As obvious as that might
sound, our acceptance tests don't in any way exercise that condition, and so is an
insufficient fitness function. A sub-optimal solution that lacks a major capability, such as
loading back the contacts when you run the app the second time, would still pass all our
tests and thus get the same grade as the optimal solution.

Back to our chair, we tweak our acceptance tests and add one more test that verifies that
loading back contacts leads to the same exact list of contacts that we had before:

class TestAddingEntries:
 ...

 def test_reload(self):
 app = contacts.Application()

 app.run("contacts add NAME 3345554433")

Fitness Function with a Contact Book Application Chapter 7

[169]

 assert app._contacts == [
 ("NAME", "3345554433")
]

 app._clear()
 app.load()

 assert app._contacts == [
 ("NAME", "3345554433")
]

The test_reload function largely behaves like our test_basic function up to the point
where it clears any list of contacts currently loaded and then loads it again.

Note that we are not testing whether Application._clear does actually
clear the list of contacts. In acceptance tests, we can take it for granted that
the functions we invoke do what they are meant to do, but what we are
interested in is testing the overall behavior and not how the
implementation works.

The functional and units tests will verify for us whether the functions
actually work as expected. From the acceptance tests, we can just use
those functions, taking it for granted that they do work.

Now it is time for one more review with someone who has the goals of the software clear in
mind and we can confirm that the acceptance tests now look good and cover what everyone
wanted. The implementation can now start!

Making the test pass
Running our current test suite obviously fails because we have not yet implemented
anything:

$ pytest -v
...
.../test_acceptance.py::TestAddingEntries::test_basic FAILED [25%]
.../test_acceptance.py::TestAddingEntries::test_surnames FAILED [50%]
.../test_acceptance.py::TestAddingEntries::test_international_numbers
FAILED [75%]
.../test_acceptance.py::TestAddingEntries::test_reload FAILED [100%]
...
 def test_basic(self):
> app = contacts.Application()
E AttributeError: module 'contacts' has no attribute 'Application'

Fitness Function with a Contact Book Application Chapter 7

[170]

The failed tests point us in the direction that we want to start by implementing the
Application itself, so we can create our tests/unit/test_application.py file and
we can start thinking about what the application is and what it should do.

As usual, we start by writing a bunch of functional and unit tests that drive our coding and
testing strategies as we also grow the implementation. We then continue to add more unit
and functional tests and implementation code until all our tests and acceptance tests pass:

$ pytest -v
functional/test_acceptance.py::TestAddingEntries::test_basic PASSED [5%]
functional/test_acceptance.py::TestAddingEntries::test_surnames PASSED [
10%]
functional/test_acceptance.py::TestAddingEntries::test_international_number
s PASSED [15%]
functional/test_acceptance.py::TestAddingEntries::test_invalid_strings
PASSED [20%]
functional/test_acceptance.py::TestAddingEntries::test_reload PASSED [25%]
unit/test_adding.py::TestAddContacts::test_basic PASSED [30%]
unit/test_adding.py::TestAddContacts::test_special PASSED [35%]
unit/test_adding.py::TestAddContacts::test_international PASSED [40%]
unit/test_adding.py::TestAddContacts::test_invalid PASSED [45%]
unit/test_adding.py::TestAddContacts::test_short PASSED [50%]
unit/test_adding.py::TestAddContacts::test_missing PASSED [55%]
unit/test_application.py::test_application PASSED [60%]
unit/test_application.py::test_clear PASSED [65%]
unit/test_application.py::TestRun::test_add PASSED [70%]
unit/test_application.py::TestRun::test_add_surname PASSED [75%]
unit/test_application.py::TestRun::test_empty PASSED [80%]
unit/test_application.py::TestRun::test_nocmd PASSED [85%]
unit/test_application.py::TestRun::test_invalid PASSED [90%]
unit/test_persistence.py::TestLoading::test_load PASSED [95%]
unit/test_persistence.py::TestSaving::test_save PASSED [100%]

For the sake of shortness, I won't report the implementation of all the tests that comprise
our test suite. You can imagine that all unit tests had the purpose of checking the overall
implementation and some specific corner cases.

The implementation of our Application class is fairly minimal. As we are going to evolve
it with more tests in the next sections, we will make the implementation available here,
allowing you to have a better understanding of the next sections:

class Application:
 PHONE_EXPR = re.compile('^[+]?[0-9]{3,}$')

 def __init__(self):
 self._clear()

Fitness Function with a Contact Book Application Chapter 7

[171]

 def _clear(self):
 self._contacts = []

 def run(self, text):
 text = text.strip()
 _, cmd = text.split(maxsplit=1)
 cmd, args = cmd.split(maxsplit=1)

 if cmd == "add":
 name, num = args.rsplit(maxsplit=1)
 try:
 self.add(name, num)
 except ValueError as err:
 print(err)
 return
 else:
 raise ValueError(f"Invalid command: {cmd}")

 def save(self):
 with open("contacts.json", "w+") as f:
 json.dump({"_contacts": self._contacts}, f)

 def load(self):
 with open("contacts.json") as f:
 self._contacts = [
 tuple(t) for t in json.load(f)["_contacts"]
]

 def add(self, name, phonenum):
 if not isinstance(phonenum, str):
 raise ValueError("A valid phone number is required")

 if not self.PHONE_EXPR.match(phonenum):
 raise ValueError(f"Invalid phone number: {phonenum}")

 self._contacts.append((name, phonenum))
 self.save()

The Application.add method is the one that is explicitly in charge of adding new
contacts to the contacts list, and it's what most of our tests rely on when they want to add
new contacts. The Application.save and Application.load methods are now in
charge of adding a persistence layer to the application. For the sake of simplicity, we just
store the contacts in a JSON file (in the real world, you might want to change where the
contacts are saved or make it configurable, but for our example, they will just be saved
locally where the command is invoked from).

Fitness Function with a Contact Book Application Chapter 7

[172]

Finally,Application.run is the user interface to our software. Given any command in the
form "executablename command arguments", it parses it and executes the correct
command. Currently, only add is implemented, but in the following sections, we will
implement the del and ls commands, too.

Now we know that acceptance tests are vital in the feedback cycle in the case of people that
understand the goals of the software well. Next, we need to focus on how to improve that
communication cycle. In this example we were lucky that our counterpart understood
Python, but what if they didn't? It's probably common that the people who understand the
business well don't know a thing about programming, and so we need a better way to set
up our communication than using Python.

Using behavior-driven development
For the first phase of our contact book application, we took it for granted that the people we
had to speak with understood the Python language well enough that we could share with
them our acceptance tests for review and confirm that we were going in the right direction.

While it's getting more and more common that people involved in product definition have
at least an entry-level knowledge of programming, we can't take it for granted that every
stakeholder we need to enter into discussions with knows Python.

So how can we keep the same kind of feedback loop and apply the strategy of reviewing all
our acceptance tests with other stakeholders without involving Python?

That's what Behavior-Driven Development (BDD) tries to solve. BDD takes some concepts
from Test-Driven Development (TDD) and Domain-Driven Design (DDD) to allow all
stakeholders to speak the same language as the technical team.

In the end, BDD tries to mediate between the two worlds. The language becomes English,
instead of Python, but a more structured form of English for which, in the end, a parser can
be written and developers embrace the business glossary (no more classes named User and
PayingUser if the business calls them Lead and Customer) so that the tests that the
developers write make sense for all other stakeholders, too.

This is usually achieved by defining the tests in a language that is commonly named
Gherkin (even though BDD doesn't strictly mandate Gherkin usage) and, luckily for us, the
pytest-bdd plugin allows us to extend our test suite with tests written in a subset of the
Gherkin language that coexists very well with all the other pytest plugins or features we
might be using.

Fitness Function with a Contact Book Application Chapter 7

[173]

Our application is able to add contacts, but it still doesn't allow us to delete or list them, so
it's not very useful. So, the next step is to implement a delete contacts feature, and we decide
to do so by using BDD.

To get started using BDD, we will create a new tests/acceptance directory, where we
are going to put all the acceptance tests for our features. Thus, the final layout of our test
suite will appear as follows:

└── tests
 ├── __init__.py
 ├── conftest.py
 ├── acceptance
 │ └── ...
 ├── functional
 │ └── test_acceptance.py
 └── unit
 └── ...

Then we can create a tests/acceptance/delete_contact.feature file that will
contain all our acceptance scenarios for the deleting contacts feature.

Defining a feature file
We start the file by making it clear that it covers the deletion of contacts:

Feature: Deleting Contacts
 Contacts added to our contact book can be removed.

Now that we have a location where all our testing scenarios can reside, we can try to add
the first one. The basics of the Gherkin language are fairly easy to grasp. In the end, it is
meant to be readable by everyone without having to study a programming language. So,
the core words are the Given, When, Then, and And keywords that start every step in our
scenarios, and to start a new scenario we just use Scenario.

Fitness Function with a Contact Book Application Chapter 7

[174]

Declaring the scenario
After the feature definition, we declare that our first scenario tries to delete a basic contact
and see that things work as expected:

Scenario: Removing a Basic Contact
 Given I have a contact book
 And I have a "John" contact
 When I run the "contacts del John" command
 Then My contacts list is now empty

The scenario is written in fairly plain English so that we can review with other stakeholders
without having to understand software development or programming languages. Once we
agree that it represents correctly what we expect from the software, then we can turn it to
code by using pytest-bdd.

pytest-bdd is based on PyTest itself, so each scenario is exposed as a test function. To
signal that it's also a scenario, we add the @scenario decorator and point it to the feature
file.

In our tests/functional/test_acceptance.py file, we are going to add a test for our
Removing a Basic Contact scenario that we described in the
tests/acceptance/delete_contact.feature file using the Gherkin language:

from pytest_bdd import scenario

@scenario("../acceptance/delete_contact.feature",
 "Removing a Basic Contact")
def test_deleting_contacts():
 pass

Unlike the standard PyTest test, a scenario test is usually an empty function. We can
perform additional testing within the function, but any code that we add will run after the
scenario has been completed.

The test itself is loaded from the feature file looking for a scenario that has the same name
as the one we provided in the decorator (in this case,"Removing a Basic Contact").
Then, the scenario text is parsed and each step defined in it is executed one after the other.

But how does PyTest know what to do in order to perform the steps? Our scenario starts by
ensuring that we have a contact book with one contact inside named "John":

Given I have a contact book
And I have a "John" contact

Fitness Function with a Contact Book Application Chapter 7

[175]

How does pytest-bdd even know what a contact book is and how to add a contact to it?
Well, it doesn't.

Running the scenario test
If we try to run our scenario test at this point, as shown here, PyTest will just report errors
complaining that it doesn't know what to do with the first step that it encounters:

$ pytest -v -k deleting
.../test_acceptance.py::test_deleting_contacts FAILED [100%]
...
StepDefinitionNotFoundError: Step definition is not found: Given "I have a
contact book". Line 5 in scenario "Removing a Basic Contact" in the feature
"/tests/acceptance/delete_contact.feature

We have to tell pytest-bdd what to do when it faces a step. So, in our
test_acceptance.py, we must provide the code that has to be executed when a step is
met and link it to the step using the @given decorator, as shown in the following code
block:

from pytest_bdd import scenario, given

@given("I have a contact book", target_fixture="contactbook")
def contactbook():
 return contacts.Application()

Every time pytest-bdd finds"I have a contact book" as a step in a scenario, it will
invoke our contactbook function. The contactbook function doesn't just tell PyTest how
to run the step, but thanks to the target_fixture="contactbook" argument of @given,
it's also a fixture that provides the contactbook dependency every time it is requested by
another step. Any other step of the scenario that requires a contactbook can just refer to it
and they will get back the Application that was created by the "I have a contact
book" step.

Further setup with the And step
For now, the contact book is totally empty, but we know that the next step is to add a
contact named "John" to it:

And I have a "John" contact

Fitness Function with a Contact Book Application Chapter 7

[176]

In this case, we have to tell pytest-bdd how to add contacts to a contact book and that
John is the name of the contact that we want to add. This can be done by using another
@given decorator (And is an alias for the previous keyword we just used):

from pytest_bdd import parsers

@given(parsers.parse("I have a \"{contactname}\" contact"))
def have_a_contact(contactbook, contactname):
 contactbook.add(contactname, "000")

We are also relying on parsers.parse provided by pytest-bdd to let the step definition
know that "John" is not part of the step itself, but that it's actually a variable. It can be
John, it can be Jane, it can be any name, and they will all go to this same step. The name of
the contact will be extracted from the step and will be passed as an argument to the
function in charge of executing the step.

Our function then only has to take that name and add it to the contact book. But where
does the contact book come from? When we declared the "I have a contact book"
step, we said that steps can also be PyTest fixtures, so when our have_a_contact function
finds the need for a contactbook argument, the PyTest dependency injection will resolve
it for us by providing what the contactbook fixture that was associated with the just
executed "I have a contact book" step returned.

Hence, to the contactbook provided by the fixture, we invoke the add method, passing
the contactname provided by the parser. In this scenario, we don't care for phone
numbers, so the contact is always added with "000" as its phone number.

Performing actions with the When step
Moving forward, our next step in the scenario is a When step. These are no longer steps
associated with preparation for testing; they are intended to perform the actions we want to
perform (remember the Arrange, Act, and Assert pattern? Well, we could consider the
Given, When, and Then steps as the three BDD counterparts to the pattern):

When I run the "contacts del John" command

Just like the previous two steps, we are going to link a function in charge of executing the
code that has to happen when this step is found, in this case using the pytest_bdd.when
decorator:

from pytest_bdd import when

@when(parsers.parse("I run the \"{command}\" command"))

Fitness Function with a Contact Book Application Chapter 7

[177]

def runcommand(contactbook, command):
 contactbook.run(command)

As we did for the have_a_contact function, runcommand needs the contactbook against
which it has to run the command and can rely on parsers.parse to retrieve the command
that has to be executed on the contact book.

It's not uncommon that the Given and When steps can be reused across multiple scenarios.
Making those steps parametric using parsers allows their implementation functions to be
reused more frequently. In this case, we will be able to reuse the same step definition
independently from the command we want to run, thus allowing us to implement scenarios
for other features too, and not just for deleting contacts.

In this case, as our step was I run the "contacts del John"command, the function
will run the contacts del John command as this is the one we have provided in the
step.

Our final step in the scenario is the one meant to verify that the contact was actually deleted
as we expect once the command is performed:

 Then My contacts list is now empty

Then, steps usually translate into the final assertion phase of our tests, so we are going to
verify that the contact book is really empty.

Assessing conditions with the Then step
In this case, there is no need to parse anything, but our function will still need the
contactbook for which it has to verify that it is actually empty:

from pytest_bdd import then

@then("My contacts book is now empty")
def emptylist(contactbook):
 assert contactbook._contacts == []

Now that we have provided the entry point for our scenario and the implementation of all
its steps, we can finally retry running our tests to confirm that the scenario actually gets
executed:

$ pytest -v -k deleting
.../test_acceptance.py::test_deleting_contacts FAILED [100%]
...

Fitness Function with a Contact Book Application Chapter 7

[178]

E ValueError: Invalid command: del
src/contacts/__init__.py:27: ValueError

Our scenario steps were all properly executed, but, as expected, our test has not passed. It
choked on the When I run the "contacts del John"command step because our
contacts application doesn't yet recognize the del command.

Making the scenario pass
So, our next steps will involve diving into the functional and unit tests that we need to
define how the del command has to behave while providing an implementation for it.

As that's a part that we already know from the previous chapters of the book, we are going
to provide the final resulting implementation here directly:

class Application:
 ...

 def run(self, text):
 text = text.strip()
 _, cmd = text.split(maxsplit=1)
 cmd, args = cmd.split(maxsplit=1)

 if cmd == "add":
 name, num = args.rsplit(maxsplit=1)
 try:
 self.add(name, num)
 except ValueError as err:
 print(err)
 return
 elif cmd == "del":
 self.delete(args)
 else:
 raise ValueError(f"Invalid command: {cmd}")

 ...
 def delete(self, name):
 self._contacts = [
 c for c in self._contacts if c[0] != name
]
 self.save()

Fitness Function with a Contact Book Application Chapter 7

[179]

Now that our implementation is in place and the "del" command is dispatched to the
Application.delete function, it will remove anyone matching the provided name from
the list of contacts. We can check that our acceptance test passes and that our contacts book
application is actually doing what we meant it to do:

$ pytest -v -k deleting
.../test_acceptance.py::test_deleting_contacts PASSED [100%]
...

Our scenario was executed and our implementation satisfied it. The steps were executed by
the functions we provided in our test_acceptance.py file:

@scenario("../acceptance/delete_contact.feature",
 "Removing a Basic Contact")
def test_deleting_contacts():
 pass

@given("I have a contact book", target_fixture="contactbook")
def contactbook():
 return contacts.Application()

@given(parsers.parse("I have a \"{contactname}\" contact"))
def have_a_contact(contactbook, contactname):
 contactbook.add(contactname, "000")

@when(parsers.parse("I run the \"{command}\" command"))
def runcommand(contactbook, command):
 contactbook.run(command)

@then("My contacts book is now empty")
def emptylist(contactbook):
 assert contactbook._contacts == []

The problem with this approach is that if we have multiple scenarios, then it can tend to get
confusing. It's already hard to spot out of the box the order of execution of this code, or the
relations between the functions. We would have to constantly jump back and forth to the
.feature file in order to understand what's going on.

This is especially the case if we have multiple different scenarios from unrelated features
that can become hard to navigate, making it difficult to even distinguish between scenarios
that are related to the same feature.

Fitness Function with a Contact Book Application Chapter 7

[180]

For this reason, people tend to split the features into multiple Python modules. Each
Python module will contain the functions implementing the scenarios and steps that are
only related to that, usually leading to a layout that is similar to
tests/acceptance/deleting_contacts.py,
tests/acceptance/adding_contacts.py, and so on.

Now that we know how to write acceptance tests in a more shareable way, we are going to
lower the barrier of how easy they are to understand and verify for a human by introducing
specification by example, a practice that tries to ensure that what the software has to do is
not only expressed and verified, but that it is also expressed in a way that is less subject to
misunderstandings.

With BDD, we might all agree on what's written in the acceptance tests and say that it
expresses perfectly the specifications of our software, but the translation phase from the
Gherkin syntax to code based tests can lead to misunderstandings. Specifications by
example try to solve these kinds of issues by relying on clear examples that should be hard
to misunderstand and by providing multiple examples for each scenario to further reduce
doubts.

Embracing specifications by example
A common problem with acceptance tests is that it takes some effort to understand what's
going on. If you are not already familiar with the domain, it can be easy to misunderstand
them, thus leading to the wrong checks being performed even if everyone that reviewed it
agreed with the original acceptance tests.

For example, if I read an acceptance test such as the following:

Given a first number 2
And a second number 3
When I run the software
Then I get 3 as the output

I might be tempted to understand it as, Oh, ok! The test is meant to verify that given two
numbers, we print the highest one.

But that might not be the requirement; the requirement might actually be, Given two
numbers, print the lowest one plus one. How can I understand which one that test was actually
meant to verify?

The answer is to provide more examples. The more examples we provide for our tests, the
easier it is to understand them.

Fitness Function with a Contact Book Application Chapter 7

[181]

Examples are provided in a table-like format, where columns are meant to show the data
involved in our examples and the resulting outcomes. In general, we can say that the
columns should describe the state of the system for that example:

Number1 | Number2 | Result
 2 | 3 | 3

If, by having only 2 and 3 as numbers and 3 as the result, both understandings of the test
would be acceptable, the moment I expand my examples with one more, it becomes
immediately obvious which one of the two I meant.

So we can add one more row to our examples table to add an example that further reduces
the uncertainty regarding what the expected behavior is:

Number1 | Number2 | Result
 2 | 3 | 3
 5 | 7 | 6

The second example makes it possible to understand that we are not printing the highest of
the two numbers, but that we are actually printing the lowest plus one.

What if I have further doubts? Maybe it's not the lowest plus one; maybe it's the first of the
two numbers plus one!

Number1 | Number2 | Result
 2 | 3 | 3
 5 | 7 | 6
 8 | 4 | 5

With the third example, we made it clear that we actually want the lowest of the two
numbers and not the first one. Just add more examples until the reading of the test becomes
fairly obvious for every reader.

That's the core idea behind specification by example: the behavior of a software can be
described by providing enough examples that make it obvious to see what's going on.

Instead of having to write tens of pages trying to explain what's happening, given enough
examples, which can be automatically verified, the reader can easily see what's going on.

Generally, there are many benefits to this approach, including the following:

We don't have the specification and the test: the specifications are testable by
definition.
Tests that were easy to misunderstand can easily be made more obvious by
adding more examples, which are cheaper to add than more tests.

Fitness Function with a Contact Book Application Chapter 7

[182]

You can't change the behavior of the software without updating the
specifications. The specifications are the examples used to verify the software; if
they don't verify, then the updated tests would not pass.

As the specifications are meant to be human-readable, the Gherkin language is a good
foundation for writing the specifications themselves making sure that they can be verified.
We just need to add a section where we provide a list of all the possible examples for a
scenario.

For example, we might write the final feature of our software: Listing the contacts using this
model. To do so, let's write a scenario with two examples of possible contact lists to print:

Feature: Listing Contacts
 Contacts added to our contact book can be listed back.

Scenario: Listing Added Contacts
 Given I have a contact book
 And I have a first <first> contact
 And I have a second <second> contact
 When I run the "contacts ls" command
 Then the output contains <listed_contacts> contacts

 Examples:
 | first | second | listed_contacts |
 | Mario | Luigi | Mario,Luigi |
 | John | Jane | John,Jane |

Compared to the scenarios we wrote before, the main difference is that we used some
placeholders contained within angular brackets (<first>, <second>, and
<listed_contacts>), and then we have a list of examples at the end of the scenario.

This whole feature description with its examples becomes our specification and sole
document that we discuss with all stakeholders. If we have doubts, we add more examples
and scenarios to the feature until it becomes obvious to everyone how the software should
behave.

We save our feature description as "tests/acceptance/list_contacts.feature" and,
as we did for the previous cases, we start by adding a test for our scenario so that PyTest
knows that we have one more test to run:

@scenario("../acceptance/list_contacts.feature",
 "Listing Added Contacts")
def test_listing_added_contacts(capsys):
 pass

Fitness Function with a Contact Book Application Chapter 7

[183]

As we have to check the output of the command (which will print the contacts), this time,
our test explicitly mentions the capsys fixture, so that output starts to be captured when
the test is run.

The first step of our scenario is "Given I have a contact book", which we had
already implemented for our previous contacts deletion test, so in this case we have
nothing to do. pytest-bdd will reuse the same test implementation as the step is the same.

Going further, we have two steps in charge of adding the two contacts from the examples
into our contact list:

 And I have a first <first> contact
 And I have a second <second> contact

These translate into two new steps, and both of these are in charge of adding one contact to
the contact book, as shown in the following code block:

@given("I have a first <first> contact")
def have_a_first_contact(contactbook, first):
 contactbook.add(first, "000")
 return first
@given("I have a second <second> contact")
def have_a_second_contact(contactbook, second):
 contactbook.add(second, "000")
 return second

As the two tests have the same exact implementation, you might be wondering why we
made two different Given steps instead of a single one with a parser.

The reason is because Given steps, in BDD, are meant to represent data that is needed to
perform the test. They state what you have in a way that should make it possible to look up
any of the given things explicitly. If, in any other step, we want to know what's the name of
the first person that was added to the contact book, that step would only have to refer to the
given test by the name of the function, and the given step would behave as a fixture
providing that specific entity.

To make it easier to understand, if we want to get back the name of the first contact added
to the contact book, we just have to add a have_a_first_contact argument to the
function implementing the step that needs that name. As the have_a_first_contact
function returns a value, that value would be associated with any have_a_first_contact
argument name in any other step.

In the same way, if we want to refer to the second person in our contact book, we just have
to require the have_a_second_contact argument.

Fitness Function with a Contact Book Application Chapter 7

[184]

If, instead of having those two separate Given steps, we had a single have_a_contact
step that used a parser, and we used it twice to add two contacts, which one of the two
would the have_a_contact argument refer to? It would be ambiguous, and that's why
pytest-bdd prevents reuse of the same Given step twice in the same scenario. Each Given
step must be unique so that the data it provides is uniquely identifiable by the step name.

The same doesn't apply to other kinds of steps. For example, it's perfectly
possible to reuse the same When step multiple times in a scenario. That's
because When steps are not meant to represent data and so have no need
to be uniquely identifiable.

Now that we have our Given steps in place, the next step is the When step, which is meant
to run the command that lists our contacts:

When I run the "contacts ls" command

This again is a step that we already implemented in our previous delete contact scenario. In
the scenario, the When step we implemented there accepted a command to run as an
argument, and so it's able to run any command. pytest-bdd will be able to reuse it, and
hence we don't have to implement anything.

The final step is the one meant to verify that the command actually did what we expect, the
Then step:

Then the output contains <listed_contacts> contacts

This step will have to check the output provided by the command and ensure that the
contacts we wrote in our example actually exist in the output:

@then("the output contains <listed_contacts> contacts")
def outputcontains(listed_contacts, capsys):
 expected_list = "".join([
 f"{c} 000\n" for c in listed_contacts.split(",")
])
 out, _ = capsys.readouterr()
 assert expected_list == out

We already know that we need capsys to be able to read the output of a program being
tested. Apart from capsys, our step also requires the list of contacts that it has to check.
Those are coming from the Examples section in the scenario.

Fitness Function with a Contact Book Application Chapter 7

[185]

In the Examples entry, listed_contacts were provided as comma-separated
("Mario,Luigi"), so the first thing we do is to split them by the comma so that we can get
back all the contacts. Then, as our program is going to print them in separate lines with
their phone numbers, we append the phone number at the end of the line (which is
hardcoded at "000" as that's what we had in our two have_a_first_contact and
have_a_second_contact steps). The expected_list variable is meant to contain the list
of contacts, one by line with their phone number. For the "Mario,Luigi" example, the
content would thus be as follows:

Mario 000
Luigi 000

Once we have the expected_list variable containing the properly formatted text, we
only have to compare it to the actual output of the application to confirm that the
application printed the two contacts we expected with their phone numbers.

Now that we have translated our steps to code, we can run our test suite to confirm that the
test is actually verifying our implementation:

$ pytest -v
...
.../test_acceptance.py::test_listing_added_contacts[Mario-Luigi-
Mario,Luigi] FAILED
.../test_acceptance.py::test_listing_added_contacts[John-Jane-John,Jane]
FAILED
...
E ValueError: not enough values to unpack (expected 2, got 1)

As expected, since we haven't yet implemented any support for listing contacts, the
software crashed, but at least we know that pytest-bdd was able to identify the code for
all the steps, translate them, and run the scenario for both our examples (as we have the
same test_listing_added_contacts test performed twice, one for Mario-Luigi-
Mario,Luigi and one for John-Jane-John,Jane).

As usual, we can jump to our functional and unit tests to drive the actual implementation,
and a possible edit to our Application object could be to handle commands that don't
have any args, and then call a printlist function when the command is "ls":

class Application:
 ...

 def run(self, text):
 text = text.strip()
 _, cmd = text.split(maxsplit=1)
 try:

Fitness Function with a Contact Book Application Chapter 7

[186]

 cmd, args = cmd.split(maxsplit=1)
 except ValueError:
 args = None

 if cmd == "add":
 name, num = args.rsplit(maxsplit=1)
 try:
 self.add(name, num)
 except ValueError as err:
 print(err)
 return
 elif cmd == "del":
 self.delete(args)
 elif cmd == "ls":
 self.printlist()
 else:
 raise ValueError(f"Invalid command: {cmd}")
 ...

 def printlist(self):
 for c in self._contacts:
 print(f"{c[0]} {c[1]}")

The printlist function simply iterates over all contacts and prints them with their phone
numbers.

As we have the implementation in place, our acceptance test should pass and confirm that
it behaves like it is meant to:

$ pytest -v
...
.../test_acceptance.py::test_listing_added_contacts[Mario-Luigi-
Mario,Luigi] PASSED
.../test_acceptance.py::test_listing_added_contacts[John-Jane-John,Jane]
PASSED
...

Now that the acceptance tests pass for the examples we provided, we know that the
implementation satisfies what our team wanted so far.

Fitness Function with a Contact Book Application Chapter 7

[187]

Summary
In this chapter, we saw how we can write acceptance tests that can be shared with other
stakeholders to review the behavior of the software and not just be used by developers as a
way to verify that behavior. We saw that it's possible to express the specifications of the
software itself in the form of scenarios and examples, which guarantees that our
specifications are always in sync with what the software actually does and that our
software must always match the specifications as they become the tests themselves.

Now that we know how to move a project forward in a test-driven way using PyTest, in the
next chapter we are going to see more essential PyTest plugins that can help us during our
daily development practice.

8
PyTest Essential Plugins

In the previous chapter, we saw how to work with PyTest and pytest-bdd to create
acceptance tests and verify the requirements of our software.

However, pytest-bdd is not the only useful plugin that PyTest has. In this chapter, we are
going to continue working on the contacts project introduced in Chapter 7, Fitness Function
with a Contact Book Application, showing how some of the most commonly used PyTest
plugins can help during the development of a project.

The plugins we are going to cover in this chapter are going to help us with verifying our
test suite coverage of the application code, checking the performance of our application,
dealing with tests that are flaky or unstable, and optimizing our development process by
running only the impacted tests when we change the code base or by speeding up our
whole test suite execution.

In this chapter, we will cover the following topics:

Using pytest-cov for coverage reporting
Using pytest-benchmark for benchmarking
Using flaky to rerun unstable tests
Using pytest-testmon to rerun tests on code changes
Running tests in parallel with pytest-xdist

PyTest Essential Plugins Chapter 8

[189]

Technical requirements
We need a working Python interpreter with the PyTest framework installed with the
pytest-bdd plugin. PyTest and pytest-bdd can be installed with the following command:

$ pip install pytest pytest-bdd

For each section, you will need to install the plugin discussed in the section itself. You can
install all of them at once:

$ pip install pytest-cov pytest-benchmark flaky pytest-testmon pytest-xdist

The examples have been written on Python 3.7 with PyTest 6.0.2 and pytest-bdd 4.0.1, but
should work on most modern Python versions. The versions of the plugins in use for each
section instead are pytest-cov 2.10, pytest-benchmark 2.3.2, flaky 3.7.0, pytest-testmon 1.0.3,
and pytest-xdist 2.1.0.

You can find the code files present in this chapter on GitHub at https:/ /github. com/
PacktPublishing/Crafting- Test- Driven- Software- with- Python/ tree/ main/ Chapter08.

Using pytest-cov for coverage reporting
We have already seen in Chapter 1, Getting Started with Software Testing, how code
coverage by tests is a good measure for establishing how confident you can be in your test
suite. A test suite that only runs 10% of all our code is probably not going to be very reliable
in finding problems, as most of the code will go unchecked. A test suite that instead verifies
100% of our code is certainly going to exercise every single line of code we wrote and so
should trigger bugs more easily if there are any.

Obviously, coverage cannot verify code that you never wrote, so it's not going to detect that
you have a bug because you forgot to add an if check in your method, but at least it tells
you if you forgot to write a test for that method.

Normally, test coverage in Python is done using the coverage module, which can be
installed from PyPI, but PyTest has a convenient pytest-cov plugin that is going to do
that for us and make our life simpler when we want to check the coverage of our tests. Like
any other Python distribution, we can install pytest-cov through pip:

$ pip install pytest-cov

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter08

PyTest Essential Plugins Chapter 8

[190]

Installing pytest-cov makes the coverage reporting available through the --cov option.
Running PyTest with that option will immediately output the coverage at the end of the
test suite and will save it in a .coverage file to make it available for later consultation.

By default, running just pytest --cov will provide the coverage of every single module
that was imported during the execution of your tests (including all libraries and
frameworks you used in your application), which is not very helpful. As we only care about
the coverage of our own software, it's possible to tell pytest-cov which package to report
coverage for simply by adding it as an argument to the --cov option.

As we care about how much of our contacts application is actually verified by our tests, we
are going to run pytest --cov=contacts so that we get back coverage information only
for the contacts package, which is the one we care about:

$ pytest --cov=contacts
================= test session starts =================
plugins: cov-2.10.1, bdd-4.0.1
collected 23 items

tests/acceptance/test_adding.py .. [8%]
tests/functional/test_basic.py ... [21%]
tests/unit/test_adding.py [47%]
tests/unit/test_application.py [78%]
tests/unit/test_persistence.py .. [86%]
tests/acceptance/test_delete_contact.py . [91%]
tests/acceptance/test_list_contacts.py .. [100%]

----------- coverage: platform linux, python 3.8.2-final-0 -----------
Name Stmts Miss Cover
--
src/contacts/__init__.py 48 1 98%
src/contacts/__main__.py 2 2 0%
--
TOTAL 50 3 94%

Great! Our tests cover nearly all our code. The contacts/__init__.py module, which is
the one where we have all the code that implements our contact book app, is covered at
98%. Out of the 48 lines of code that compose it, there is only one line that isn't covered.

PyTest Essential Plugins Chapter 8

[191]

But how can we know which one it is? pytest-cov obviously knows; we just have to tell it to
print it out. That's what the --cov-report option is made for. If we run pytest with the -
-cov-report=term-missing option, it's going to tell us the lines of code that were not
covered by tests in each Python file:

$ pytest --cov=contacts --cov-report=term-missing
...

----------- coverage: platform linux, python 3.8.2-final-0 -----------
Name Stmts Miss Cover Missing
--
src/contacts/__init__.py 48 1 98% 68
src/contacts/__main__.py 2 2 0% 1-3
--
TOTAL 50 3 94%

Here, for example, we know that lines 1 to 3 in contacts/__main__.py are not tested.
And that's OK, as those just import and invoke contacts.main() for the convenience of
being able to run our contacts program with python -m contacts once installed
(module.__main__ is what Python invokes when you pass a module to the -m option):

from . import main

main()

We can easily tell pytest-cov to ignore that code by simply adding a pragma: no cover
comment near to the lines or code block we want to exclude from coverage:

from . import main # pragma: no cover

main() # pragma: no cover

Now, if we rerun our test suite, we will no longer get complaints about the __main__.py
module:

$ pytest --cov=contacts --cov-report=term-missing
...

----------- coverage: platform linux, python 3.8.2-final-0 -----------
Name Stmts Miss Cover Missing
--
src/contacts/__init__.py 48 1 98% 68
src/contacts/__main__.py 0 0 100%
--
TOTAL 48 1 98%

PyTest Essential Plugins Chapter 8

[192]

Only the code in contacts/__init__.py still reports uncovered code. This is the module
that contains the real code of our application, so the uncovered line probably has to be
tested for real. Once we check what that line refers to, we discover that we have not yet
tested the main function:

67 def main():
68 raise NotImplementedError()

As we haven't tested it, we never noticed that it still has to be implemented. This means
that currently, running our contacts module will simply crash:

$ python -m contacts
Traceback (most recent call last):
 ...
 File "src/contacts/__init__.py", line 68, in main
 raise NotImplementedError()
NotImplementedError

Thanks to coverage pointing, we found out that the main function didn't have a test for it.
We notice that a piece of our application is still lacking and we can now move to provide a
test for it and implement it.

We are going to create a new module in tests/functional/test_main.py where we are
going to write our test for the main function. Our test is going to provide some fake data
pre-loaded (we are not really interested in involving I/O here, so let's replace it with a fake
implementation) and verify that when the user runs the "contacts ls" command from
the command line, the contacts are actually listed back:

import sys
from unittest import mock

import contacts

class TestMain:
 def test_main(self, capsys):
 def _stub_load(self):
 self._contacts = [("name", "number")]

 with mock.patch.object(contacts.Application, "load",
 new=_stub_load):
 with mock.patch.object(sys, "argv", new=["contacts", "ls"]):
 contacts.main()

 out, _ = capsys.readouterr()
 assert out == "name number\n"

PyTest Essential Plugins Chapter 8

[193]

The implementation required to pass our test is actually pretty short. We just have to create
the application, load the stored contacts, and then run the command provided on the
command line:

def main():
 import sys

 a = Application()
 a.load()
 a.run(' '.join(sys.argv))

We can then verify that we finally have 100% coverage of our code from tests and that they
all pass by rerunning the pytest --cov=contacts command:

$ pytest --cov=contacts
collected 24 items

tests/acceptance/test_adding.py .. [8%]
tests/functional/test_basic.py ... [20%]
tests/functional/test_main.py . [25%]
tests/unit/test_adding.py [50%]
tests/unit/test_application.py [79%]
tests/unit/test_persistence.py .. [87%]
tests/acceptance/test_delete_contact.py . [91%]
tests/acceptance/test_list_contacts.py .. [100%]

----------- coverage: platform linux, python 3.8.2-final-0 -----------
Name Stmts Miss Cover
--
src/contacts/__init__.py 51 0 100%
src/contacts/__main__.py 0 0 100%
--
TOTAL 51 0 100%

If we want our coverage to be verified on every test run, we could leverage the addopts
option in pytest.ini and make sure that coverage is performed every time we run
PyTest:

[pytest]
addopts = --cov=contacts --cov-report=term-missing

As we have already seen, using addopts ensures that some options are always provided on
every PyTest execution. Thus, we will add coverage options every time we run PyTest.

PyTest Essential Plugins Chapter 8

[194]

Coverage as a service
Now that all our tests are passing and our code is fully verified, how can we make sure we
don't forget about verifying our coverage when we extend our code base? As we have seen
in Chapter 4, Scaling the Test Suite, there are services that enable us to run our test suite on
every new commit we do. Can we leverage them to also make sure that our coverage didn't
worsen?

Strictly speaking, ensuring that the coverage doesn't decrease requires comparing the
current coverage with the one of the previous successful run, which is something that
services such as Travis CI are not able to do as they don't persist any information after our
tests have run. So, the information pertaining to the previous runs is all lost.

Luckily, there are services such as Coveralls that integrate very well with Travis CI and
allow us to easily get our coverage in the cloud:

Figure 8.1 – Coveralls web page

PyTest Essential Plugins Chapter 8

[195]

As for Travis CI, we can log in with our GitHub account and add any repository that we
had on GitHub:

Figure 8.2 – Adding a repo on Coveralls

Once a repository is enabled, Coveralls is ready to receive coverage data for that repository.
But how can we get the coverage there?

First of all, we have to tell Travis CI to install support for Coveralls, so, in the install section
of our project, .travis.yml, we can add the relevant command:

install:
 - "pip install coveralls"

Then, given that we should already be generating the coverage data by running pytest --
cov, we have to tell Travis CI to send that data to Coveralls when the test run succeeds:

after_success:
 - coveralls

Our final .travis.yml file should look like the following:

install:
 - "pip install coveralls"
 - "pip install -e src"

script:
 - "pytest -v --cov=contacts"

PyTest Essential Plugins Chapter 8

[196]

after_success:
 - coveralls

If we have done everything correctly, we should see in Coveralls the trend of our coverage
reporting and we should be able to get notified when it lowers or goes below a certain
threshold:

Figure 8.3 – Coveralls coverage reporting

Now that we have our coverage reporting in place, we can move on to taking a look at the
other principal plugins that are available for PyTest.

Using pytest-benchmark for benchmarking
Another frequent need when writing applications used by many users is to make sure that
they perform in a reasonable way and, hence, that our users don't have to wait too long for
something to happen. This is usually achieved by benchmarking core paths of our code
base to make sure that slowdowns aren't introduced in those functions and methods. Once
we have a good benchmark suite, all we have to do is rerun it on every code change and
compare the results to previous runs. If nothing got slower, we are good to go.

PyTest Essential Plugins Chapter 8

[197]

PyTest has a pytest-benchmark plugin that makes it easy to create and run benchmarks
as parts of our test suite. Like any other Python distribution, we can install pytest-
benchmark through pip:

$ pip install pytest-benchmark

Once we have it installed, we can start organizing our benchmarks in their own dedicated
directory. This way, they don't mix with tests, as usually we don't want to run benchmarks
on every test run.

For example, if we want to test how fast our app can load 1,000 contacts, we could create a
benchmarks/test_persistence.py module as the home of a test_loading function
meant to benchmark the loading of contacts:

from contacts import Application

def test_loading(benchmark):
 app = Application()
 app._contacts = [(f"Name {n}", "number") for n in range(1000)]
 app.save()

 benchmark(app.load)

The benchmark fixture is provided automatically by pytest-benchmark and should be
used to invoke the function we want to benchmark, in this case, the Application.load
method. What your test does is create a new contacts application, and then populates it
with a list of 1,000 contacts and saves those contacts on this list. This ensures that we have
local contacts to load back.

Then, we can benchmark how long it takes to load back those same contacts, as
benchmark(app.load) is going to invoke app.load(), measuring how long it takes to
run it. To run our benchmarks, we can just run them like any other PyTest suite. Running
pytest benchmarks is enough to get our benchmarks report:

$ pytest -v benchmarks
...
benchmark: 3.2.3 (defaults: timer=time.perf_counter disable_gc=False
min_rounds=1 min_time=0.000005 max_time=1.0 calibration_precision=10
warmup=False warmup_iterations=100000)

benchmarks/test_persistence.py::test_loading PASSED [100%]

-------------------------- benchmark: 1 tests --------------------------
Name (time in us) Min Max Mean ... OPS (Kops/s) Rounds
--

PyTest Essential Plugins Chapter 8

[198]

test_loading 714.7 22,312.3 950.7 ... 1.0518 877
--

==================== 1 passed in 1.96s ====================

Running our benchmarks allows us to know that loading back 1,000 contacts takes a
minimum of 0.7 milliseconds, a maximum of 22 milliseconds, and an average of 0.9
milliseconds. In total, we can load back 1,000 contacts exactly 1,051 times in a second.
pytest-benchmark actually provides much more information about our benchmark run, but
for the sake of readability, some of those metrics were excluded in the previously reported
run.

How did pytest-benchmark know those metrics? Well, it runs our function 877 times. When
dealing with benchmarks, running them only once is usually not enough to get a solid
result. If the function is very fast, operative system context switches might weigh on the
execution time significantly, and so might provide false results where the time we get is
actually heavily influenced by the fact that our system was busy.

pytest-benchmark will decide automatically whether it's necessary to run a benchmark
more than once because it's too fast. This is to guarantee that we can get a fairly stable
benchmark report even when a very fast function is under the benchmark (and so its
execution time can be heavily influenced by system load).

At a minimum, pytest-benchmark will run a function five times before declaring how fast it
is. If we have very slow benchmarks and we want them to run no more than once, we can
provide the --benchmark-min-rounds=1 option.

Comparing benchmark runs
Now that we know how to run benchmarks, we need to be able to understand whether
they got slower compared with previous runs. This can be done by providing --
benchmark-autosave --benchmark-compare options to PyTest.

The --benchmark-autosave option will make sure that every benchmark run we perform
gets saved in a .benchmarks directory. This way, they are all available for future reference,
and then the --benchmark-compare option will tell pytest-benchmark to compare the
current run to the one saved previously.

This is a convenient built-in functionality compared to coverage reporting where, in order
to ensure non-decreasing coverage, we had to rely on an additional service or implement
the check ourselves.

PyTest Essential Plugins Chapter 8

[199]

The result of running with --benchmark-compare is a report where both runs are
provided for comparison:

-------------------------- benchmark: 2 tests --------------------------
Name (time in us) Min Max Mean ...
--
test_loading (0002_371810a) 726.9 (1.0) 23,884 (1.0) 956.7 (1.0) ...
test_loading (NOW) 730.1 (1.00) 24,117 (1.01) 969.6 (1.01) ...
--

For example, in this example, we can see that the previous run (0002_371810a) is as fast as
the current one (NOW), so our code didn't get any slower. If our code base did get slower,
pytest-benchmark doesn't only tell us that the performance worsened. It also allows us to
know what the bottleneck in our code base is by using the --benchmark-
cprofile=tottime option.

For example, running our loading benchmark with --benchmark-cprofile=tottime
will tell us that, as expected, the majority of the time in our Application.load function is
actually spent reading JSON:

test_persistence.py::test_loading (NOW)
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.0004 0.0004 0.0004 0.0004 .../json/decoder.py:343(raw_decode)
1 0.0002 0.0002 0.0002 0.0002 contacts/__init__.py:43(<listcomp>)
1 0.0001 0.0001 0.0009 0.0009 contacts/__init__.py:40(load)

Thanks to the performance tests, we have a good understanding of how quick our
application can load contacts and where the time loading contacts is spent. This should
allow us to evolve it while making sure we don't stray too far from the current
performance.

Using flaky to rerun unstable tests
A problem that developers frequently start encountering with fairly big projects that need
to involve third-party services, networking, and concurrency is that it becomes hard to
ensure that tests that integrate many components behave in a predictable way.

Sometimes, tests might fail just because a component responded later than usual or a
thread moved forward before another one. Those are things our tests should be designed to
prevent and avoid by making sure the test execution is fully predictable, but sometimes it's
not easy to notice that we are testing something that exhibits unstable behavior.

PyTest Essential Plugins Chapter 8

[200]

For example, you might be writing an end-to-end test where you are loading a web page to
click a button, but at the time you try to click the button, the button itself might not have
appeared yet.

Those kinds of tests that sometimes fail randomly are called "flaky" and are usually caused
by a piece of the system that is not under the control of the test itself. When possible, it's
usually best to put that part of the system under control of the test or replace it with a fake
implementation that can be controlled. But when it's not possible, the best we can do is to
retry the test.

The flaky plugin does that for us. It will automatically retry tests that fail until they pass
or up to a maximum number of attempts. An example of such tests is when concurrency is
involved. For example, we might write a function that appends entries to a list using
threading:

def flaky_appender(l, numbers):
 from multiprocessing.pool import ThreadPool

 with ThreadPool(5) as pool:
 pool.map(lambda n: l.append(n), numbers)

The test for such a function would probably just check that all the items provided are
correctly appended to the list:

def test_appender():
 l = []
 flaky_appender(l, range(7000))
 assert l == list(range(7000))

Running the test would probably succeed most of the time:

$ pytest tests/unit/test_flaky.py -q
tests/unit/test_flaky.py::test_appender PASSED

So we might think that our function works OK, but then we start seeing that sometimes, the
test fails for no apparent reason.

At this point, we can install the flaky plugin to handle our flaky test:

$ pip install flaky

PyTest Essential Plugins Chapter 8

[201]

The first thing we can do is to confirm whether our test is actually flaky by running it
multiple times in a row and checking whether it always succeeds. That's something the
flaky plugin can do for us through the --min-passes option:

$ pytest test_flaky.py --force-flaky --min-passes=10 --max-runs=10

test_appender failed; it passed 9 out of the required 10 times.
 <class 'AssertionError'>
 assert [0, 1, 2, 3, 4, 5, ...] == [0, 1, 2, 3, 4, 5, ...]
 At index 5345 diff: 5600 != 5345

As expected, our test succeeded on nine runs, but then failed on the 10th, which confirms
that it's a flaky test.

Every time it fails, our entire release process is blocked and we have to rerun the tests and
wait for them to complete again. If this happens frequently, it can get frustrating. That's
where flaky becomes handy. We can decorate the test with the @flaky decorator to mark
it as a flaky test:

from flaky import flaky

@flaky
def test_appender():
 l = []
 flaky_appender(l, range(7000))
 assert l == list(range(7000))

Now that our test is marked as a flaky one, whenever pytest fails to run it, it will simply
retry it, twice by default, but we can control it with the --max-runs option:

$ pytest tests/unit/test_flaky.py -v
test_appender failed (1 runs remaining out of 2).
...
test_appender passed 1 out of the required 1 times. Success!

In the previous code snippet, our test failed the first run, but flaky noticed that it still had
one more try to go out of the default figure of two and retried. Then, on the second try, the
test succeeded and PyTest continued.

This allows us to quarantine our flaky tests. We can mark them as flaky and have them not
block our release process while we work on providing a more complete solution.

It's usually a good idea to immediately mark as flaky any test that we see unexpectedly fail
even just once (unless it's due to a real bug) and then have some dedicated time at which
we go through all our flaky tests, trying to unflake them by making the tests more
predictable.

PyTest Essential Plugins Chapter 8

[202]

Some people prefer to skip the tests that they quarantine, but (while being more robust than
marking them as flaky) this means that you are willing to live with the risk of introducing
any bugs those tests were meant to catch. So, flaky is usually a safer solution and the
important part is to have some dedicated time to go back to those quarantined tests to fix
them.

Using pytest-testmon to rerun tests on code
changes
In a fairly big project, rerunning the whole test suite can take a while, so it's not always
feasible to rerun all tests on every code change. We might settle for rerunning all tests only
when we commit a stable point of the code and run just a subset of them on every code
change before we decide whether to commit our changes.

This approach is usually naturally moved forward by developers who tend to pick a single
test, a test case, or a subset of tests that can act as canaries for their code changes.

For example, if I'm modifying the persistence layer of our contacts application, I would
probably rerun all tests that involve the save or load keywords:

$ pytest -k save -k load --ignore benchmarks -v
...
tests/functional/test_basic.py::TestStorage::test_reload PASSED [50%]
tests/unit/test_persistence.py::TestLoading::test_load PASSED [100%]

Once those canary tests pass, I would rerun the whole test suite to confirm that I actually
haven't broken anything and I can commit the relevant code. If there are issues, I would
obviously catch them when I run the full test suite, but on a fairly big project that can take
tens of minutes, it's not a convenient way to catch errors, and the earlier I'm able to catch
any errors, the faster I'll be at releasing my code as I don't have to wait for the full test suite
to run on every change.

In our case, would just rerunning the tests that have the load and save keyword in them
be enough to catch all possible issues and thus require us to rerun the whole test suite only
once as we are very confident that it will pass?

Probably not. There are quite a few more tests that invoke the persistence layer and don't
have those keywords in their name. Also, we might not always be so lucky as to have a set
of keywords we can use to pick a set of canary tests for every change we do. That's where
pytest-testmon comes in handy.

PyTest Essential Plugins Chapter 8

[203]

pytest-testmon will build a graph of relationships between all our code functions and
then, on subsequent runs, we can tell testmon to only run the tests that are influenced by
the code we change.

Ensure testmon is installed, as follows:

$ pip install pytest-testmon

We can do the first run of our test suite to build the relationship graph between the code
and tests:

$ pytest --testmon --ignore=benchmarks
================== test session starts ===================
...
testmon: new DB, environment: default
...
collected 25 items
...
================== 25 passed in 2.67s ===================

Then, we can change any function of our persistence layer (for example, let's just add
return None at the end of the Application.save function), as follows:

 def save(self):
 with open("./contacts.json", "w+") as f:
 json.dump({"_contacts": self._contacts}, f)
 return None

And then we can rerun all the tests that are somehow related to saving data by rerunning
testmon again:

$ pytest --testmon --ignore=benchmarks
================== test session starts ===================
...
testmon: new DB, environment: default
...
collected 16 items / 14 deselected / 2 selected

tests/unit/test_persistence.py . [9%]
tests/unit/test_adding.py ... [36%]
tests/acceptance/test_adding.py .. [54%]
tests/functional/test_basic.py .. [72%]
tests/acceptance/test_list_contacts.py . [81%]
tests/acceptance/test_delete_contact.py . [90%]
tests/acceptance/test_list_contacts.py . [100%]

=========== 11 passed, 14 deselected in 1.30s ============

PyTest Essential Plugins Chapter 8

[204]

In this second run, you can see that instead of running all 25 tests that we had, testmon
only picked 11 of them, those that somehow invoked the Application.save method
directly or indirectly, in other words, those that might end up being broken by a change to
the method.

Every time we rerun pytest with the --testmon option, only the tests related to the code
that we have changed will be rerun. If we try to run pytest --testmon again, for
example, no tests would be run as we haven't changed anything from the previous run:

$ pytest --testmon --ignore=benchmarks
================== test session starts ===================
...
testmon: new DB, environment: default
...
collected 0 items / 25 deselected

================= 25 deselected in 0.14s ==================

This is a convenient way to pick only those tests that are related to our recent code changes
and to verify our code on every code change without having to rerun the entire test suite or
guess which tests might need to be checked again.

It should be remembered, by the way, that if the behavior of the code
depends on configuration files or data saved on disk or on a database,
then testmon can't detect that tests have to be rerun to verify the behavior
again when those change. In general, by the way, having your test suite
depend on the state of external components is not a robust approach, so
it's better to make sure that your fixtures take care of setting up a fresh
state on every run.

Running tests in parallel with pytest-xdist
As your test suite gets bigger and bigger, it might start taking too long to run. Even if
strategies to reduce the number of times you need to run the whole test suite are in place,
there will be a time where you want all your tests to run and act as the gatekeeper of your
releases.

Hence, a slow test suite can actually impair the speed at which we are able to develop and
release software.

PyTest Essential Plugins Chapter 8

[205]

While great care must always be taken to ensure that our tests are written in the fastest
possible way (avoid throwing time.sleep calls everywhere, they can be very good at
hiding themselves in the most unexpected places), slow components of the software that
we are testing should be replaced with fake implementations every time so that it is
possible that we can get to a point where there isn't much else we can do and making our
test suite faster would be too complex or expensive.

When we get to that point, if we wrote our tests such that they are properly isolated (the
state of one test doesn't influence or depend on the state of another test), a possible
direction to pursue is to parallelize the execution of our tests.

That's exactly what we can achieve by installing the pytest-xdist plugin:

$ pip install pytest-xdist

Once xdist is available, our tests can be run using multiple concurrent workers with the -
n numprocesses option:

$ pytest -n 2
=========== test session starts ==========
...
gw0 [26] / gw1 [26]
.......................... [100%]
============ 26 passed in 2.71s ==========

With -n 2, two workers were started for our tests (gw0 and gw1) and tests were equally
distributed between the two. Nearly half of the tests should have gone to gw0 and the other
half to gw1 (PyTest doesn't actually divide the tests equally; it depends on how fast they are
to run, but in general, anticipating that tests are equally split is a good approximation).

Note that as benchmarks can't provide reliable results when run
concurrently, pytest-benchmark will disable benchmarking when the -n
option is provided. The benchmarks will run as normal tests, so you
might want to just skip them by explicitly pointing PyTest to the tests
directory only, or by using --ignore benchmarks.

We can see how tests are distributed simply by running pytest in verbose mode with -v.
In verbose mode, near to every test, we will see which worker was in charge of executing
the test:

...
[gw0] [12%] PASSED test_adding.py::TestAddingEntries::test_basic
[gw1] [16%] PASSED test_main.py::TestMain::test_main
...

PyTest Essential Plugins Chapter 8

[206]

If you are unsure about how many workers to start, the -n option also accepts the value
"auto", which will detect how many processes to start based on how many CPUs the
system has.

It is, by the way, important to note that if the test suite is very fast and runs in just a matter
of seconds, running it in parallel might actually just make it slower. Distributing the tests
across different workers and starting them involves some extra work.

Summary
In this chapter, we saw the most frequently used plugins that exist for PyTest, those plugins
that can make your life easier by taking charge of some frequent needs that nearly every
test suite will face.

But there isn't any PyTest plugin that is able to manage the test environment itself. We are
still forced to set up manually all dependencies that the tests have and ensure that the
correct versions of Python are available to run the tests.

It would be great if there was a PyTest plugin able to install everything that we need in
order to run our test suite and just "run tests" on a new environment. Well, the good news
is that it exists; it's not strictly a PyTest plugin, but it's what Tox, which we are going to
introduce in the next chapter, was designed for.

9
Managing Test Environments

with Tox
In the previous chapter, we covered the most frequently used PyTest plugins. Through
them, we are able to manage our test suite within a Python environment. We can configure
how the test suite should work, as well as enable coverage reporting, benchmarking, and
many more features that make it convenient to work with our tests. But what we can't do is
manage the Python environment itself within which the test suite runs.

Tox was invented precisely for that purpose; managing Python versions and the
environment that we need to run our tests. Tox takes care of setting up the libraries and
frameworks we need for our test suite to run and will check our tests on all Python versions
that are available.

In this chapter, we will cover the following topics:

Introducing Tox
Testing multiple Python versions with Tox
Using Tox with Travis

Technical requirements
We need a working Python interpreter along with Tox. Tox can be installed with the
following command:

$ pip install tox

Even though we are going to use the same test suite and contacts app we wrote in Chapter
8, PyTest Essential Plugins, we only need to install Tox 3.20.0. All other dependencies will be
managed by Tox for us.

Managing Test Environments with Tox Chapter 9

[208]

You can find the code files present in this chapter on GitHub at
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tr

ee/main/Chapter09.

Introducing Tox
Tox is a virtual environment manager for Python. It takes care of creating the environments
and installing our project and all its dependencies on multiple Python versions.

It is a convenient tool that can automate the setup of our project environment and abstract
it in a way that we can reuse the same command both locally and in our Continuous
Integration (CI) pipeline to set up our project and run its tests. It also does that on multiple
Python versions at the same time, so that we can check that our project works on all of
them.

Testing multiple Python versions can be very convenient when you need to upgrade from
one version to the next. Before switching all your systems to the new one, you want to
ensure that your code is still able to work on both the old and new versions, so that you can
perform a phased rollout.

If we take our contacts application example from Chapter 8, PyTest Essential Plugins, the
test suite required many dependencies to run. We needed flaky to manage flaky tests,
pytest-benchmark for the benchmarks suite, pytest-bdd for the acceptance
tests, pytest-cov to ensure that the code coverage was verified, and obviously pytest
itself to run the test suite.

If we had to remember to tell all our colleagues working on the same project to install those
packages, it would be easy to forget some of them or end up with incorrect versions
installed. We could document our test dependencies, but even better would be to have
them managed automatically for us.

So, let's create a tox.ini file in our project directory, telling Tox where to find the project
to test, which dependencies are necessary to run the test suite, and how to run it:

[tox]
setupdir = ./src

[testenv]
deps =
 pytest == 6.0.2
 pytest-bdd == 3.4.0
 flaky == 3.7.0
 pytest-benchmark == 3.2.3

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter09
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter09

Managing Test Environments with Tox Chapter 9

[209]

 pytest-cov == 2.10.1
commands =
 pytest --cov=contacts

The [tox] section configures Tox itself. In this case, it can ascertain through the setupdir
= option where to find the project that is under test.

The [testenv] section is instead meant to provide directives for each environment in
which we want to test our project. In this case, through the deps = option, we are listing all
things that need to be installed in that environment so that the project can be tested (the
project itself is always automatically installed by Tox, so no need to list it here), and by
using the commands = options, we are telling Tox how to test the project in the
environments.

Once this file is in place in the root of our project, we can prepare a fully working
environment and test the project by simply invoking the tox command:

$ tox
GLOB sdist-make: ./src/setup.py
python create: ./.tox/python
python installdeps: pytest == 6.0.2, pytest-bdd == 3.4.0, flaky == 3.7.0,
pytest-benchmark == 3.2.3, pytest-cov == 2.10.1
python inst: ./.tox/.tmp/package/1/contacts-0.0.0.zip
python installed: ...
python run-test: commands[0] | pytest --cov=contacts
====================== test session starts ======================
...
collected 26 items

tests/acceptance/test_delete_contact.py . [3%]
tests/acceptance/test_list_contacts.py .. [11%]
benchmarks/test_persistence.py . [15%]
tests/acceptance/test_adding.py .. [23%]
tests/functional/test_basic.py ... [34%]
tests/functional/test_main.py . [38%]
tests/unit/test_adding.py [61%]
tests/unit/test_application.py [88%]
tests/unit/test_flaky.py . [92%]
tests/unit/test_persistence.py .. [100%]

----------- coverage: platform linux, python 3.7.3-final-0 -----------
Name Stmts Miss Cover
--
contacts/__init__.py 51 0 100%
contacts/__main__.py 0 0 100%
--
TOTAL 51 0 100%

Managing Test Environments with Tox Chapter 9

[210]

-------------------------- benchmark: 1 tests --------------------------
Name (time in us) Min Max Mean ... OPS (Kops/s) Rounds
--
test_loading 714.7 22,312.3 950.7 ... 1.0518 877
--

====================== 26 passed in 2.41s ======================

As you can see, Tox created a new Python environment in ./tox /python, installed our
project and all the required dependencies for us, and then started the test suite providing
coverage and benchmarks.

The side effect of this approach is that we lost a bit of flexibility in terms of what we can tell
PyTest. Tox is going to run all our tests and benchmarks. If we only want to run some of
them, there is no way of doing this.

This flexibility can be regained by using the Tox {posargs} variable, which will proxy all
options we provide in the command line from Tox to our test suite. So we can put
{posargs} in our commands option in tox.ini so that any additional option we provide
to Tox gets forwarded to our test command:

commands =
 pytest --cov=contacts {posargs}

Now, if we run Tox with any additional option after --, it will be forwarded to PyTest. For
example, to exclude benchmarks from our run, we can use tox -- ./tests to exclude
benchmarks and only run the tests that are related to loading back our contacts. Instead, we
can use tox -- ./tests -k load:

$ tox -- ./tests -k load
...
============= test session starts =============
collected 25 items / 23 deselected / 2 selected

tests/functional/test_basic.py . [50%]
tests/unit/test_persistence.py . [100%]
...
====== 2 passed, 23 deselected in 0.35s =======

Now that we know how to use Tox to set up the testing environment without losing the
flexibility that was afforded to us earlier when we did things manually, we can move
forward and see how to actually set up multiple testing environments on different versions
of Python.

Managing Test Environments with Tox Chapter 9

[211]

Testing multiple Python versions with Tox
Tox is based on the concept of environments. The goal of Tox is to prepare those
environments where it will run the commands provided. Usually, those environments are
meant for testing (running tests in different conditions) and the most common kind of
environments are those that use different Python versions. But in theory, it is possible to
create a different environment for any other purpose. For example, we frequently create an
environment where project documentation is built.

To add further environments to Tox, it's sufficient to list them inside the envlist = option.
To configure two environments that test our project against both Python 2.7 and Python
3.7, we can set envlist to both py37 and py27:

[tox]
setupdir = ./src
envlist = py27, py37

If we run tox again, we will see that it will now test our project on two different
environments, one made for Python 2.7 and one for Python 3.7:

$ tox
GLOB sdist-make: ./src/setup.py

py27 create: ./.tox/py27
py27 installdeps: pytest == 6.0.2, pytest-bdd == 3.4.0, flaky == 3.7.0,
pytest-benchmark == 3.2.3, pytest-cov == 2.10.1
...
py37 create: ./.tox/py37
py37 installdeps: pytest == 6.0.2, pytest-bdd == 3.4.0, flaky == 3.7.0,
pytest-benchmark == 3.2.3, pytest-cov == 2.10.1

We obviously need to have working executables of those two Python versions on our
system, but as far as they are available and running the python3.7 and python2.7
commands works, Tox will be able to leverage them.

By default, all environments apply the same configuration, the one provided in [testenv],
so in our case, Tox tried to install the same exact dependencies and run the same exact
commands on both Python 2.7 and Python 3.7.

Managing Test Environments with Tox Chapter 9

[212]

On Python 2.7, it failed because PyTest no longer supports Python 2.7 on versions after
4.6.11, so if we want to actually test our project on Python 2.7, we need to provide a custom
configuration for the environment and make it work against a previous PyTest version:

py27 create: ./.tox/py27
py27 installdeps: pytest == 6.0.2, pytest-bdd == 3.4.0, flaky == 3.7.0,
pytest-benchmark == 3.2.3, pytest-cov == 2.10.1
ERROR: Could not find a version that satisfies the requirement
pytest==6.0.2 (from versions: 2.0.0, ..., 4.6.11)
ERROR: No matching distribution found for pytest==6.0.2

To fix this issue, we can simply go back and provide a custom configuration for the Python
2.7 environment where we are going to customize the deps = option, stating explicitly that
on that version of Python, we want to use a previous PyTest version:

[testenv:py27]
deps =
 pytest == 4.6.11
 pytest-bdd == 3.4.0
 flaky == 3.7.0
 pytest-benchmark == 3.2.3
 pytest-cov == 2.10.1

Options can be specialized just by creating a section named [testenv:envname], in this
case, [testenv:py27], as we want to override the options for the py27 environment.

Any option that isn't specified is inherited from the generic [testenv] configuration, so as
we haven't overridden the command = option, the configuration we provided in
[testenv] will be used for testing on Python 2.7, too.

By running Tox with this new configuration, we will finally be able to set up the
environment, install PyTest, and start our tests:

$ tox
GLOB sdist-make: ./09_tox/src/setup.py
py27 create: ./09_tox/.tox/py27
py27 installdeps: pytest == 4.6.11, pytest-bdd == 3.4.0, flaky == 3.7.0,
pytest-benchmark == 3.2.3, pytest-cov == 2.10.1
py27 inst: ./.tox/.tmp/package/1/contacts-0.0.0.zip
py27 installed: contacts @
file://./.tox/.tmp/package/1/contacts-0.0.0.zip,pytest==4.6.11,...
py27 run-test-pre: PYTHONHASHSEED='2140925334'
py27 run-test: commands[0] | pytest --cov=contacts

Managing Test Environments with Tox Chapter 9

[213]

As we could have anticipated, our tests fail on Python 2.7 as our project wasn't written to
support such an old Python version:

platform linux2 -- Python 2.7.16, pytest-4.6.11, py-1.9.0, pluggy-0.13.1
cachedir: .tox/py27/.pytest_cache
rootdir: .
plugins: bdd-3.4.0, flaky-3.7.0, benchmark-3.2.3, cov-2.10.1
collected 5 items / 7 errors

================ ERRORS ===================
 mod = self.fspath.pyimport(ensuresyspath=importmode)
.tox/py27/lib/python2.7/site-packages/py/_path/local.py:704: in pyimport
 __import__(modname)
E File "./benchmarks/test_persistence.py", line 5
E app._contacts = [(f"Name {n}", "number") for n in range(1000)]
E ^
E SyntaxError: invalid syntax
========== 7 error in 1.07 seconds ========

For example, we used f-strings, which were not supported on Python 2.7. Porting projects
to Python 2.7 is beyond the scope of this book, so we are not going to modify our project to
make it work there, but the same concepts that we have seen while using Python 2.7 do
apply to any other environment.

For example, if, instead of Python 2.7, we wanted to test our project against Python 3.8, we
could have just used py38 instead of py27 as the name of the environment. In that case, we
wouldn't even have to customize the deps = option for that environment as PyTest 6
works fine on Python 3.8.

Using environments for more than Python
versions
By default, Tox provides a few predefined environments for various Python versions, but
we can declare any kind of environment that differs for whatever reason.

Another common way to use this capability is to create various environments that differ for
the commands = option, and so do totally different things. You will probably frequently see
that this used to provide a way to build project documentation. It is not uncommon to see a
docs environment in Tox configurations that, instead of running tests, builds the project
documentation.

In our case, we might want to use this feature to disable benchmarks by default and make
them run only when a dedicated environment is used.

Managing Test Environments with Tox Chapter 9

[214]

To do so, we are going to disable benchmarks by default in our [testenv] configuration:

[tox]
setupdir = ./src
envlist = py27, py37

[testenv]
deps =
 pytest == 6.0.2
 pytest-bdd == 3.4.0
 flaky == 3.7.0
 pytest-benchmark == 3.2.3
 pytest-cov == 2.10.1
commands =
 pytest --cov=contacts --benchmark-skip {posargs}

[testenv:py27]
...

Then we are going to add one more [testenv:benchmarks] environment that runs only
the benchmarks:

[testenv:benchmarks]
commands =
 pytest --no-cov ./benchmarks {posargs}

This environment will inherit the configuration from our default environment, and thus
will use the same exact deps, but will provide a custom command where coverage is
disabled and only benchmarks are run.

It is important that we don't list this environment in the envlist option of the [tox]
section. Otherwise, the benchmarks would end up being run every time we invoke Tox,
which is not what we want.

To explicitly run benchmarks on demand, we can run Tox with the -e benchmarks option,
which will run Tox just for that specific environment:

$ tox -e benchmarks
GLOB sdist-make: ./src/setup.py
benchmarks create: ./.tox/benchmarks
benchmarks installdeps: pytest == 6.0.2, pytest-benchmark == 3.2.3, ...
benchmarks inst: ./.tox/.tmp/package/1/contacts-0.0.0.zip
benchmarks run-test-pre: PYTHONHASHSEED='257991845'
benchmarks run-test: commands[0] | pytest --no-cov ./benchmarks
======================= test session starts =======================
platform linux -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
collected 1 item

Managing Test Environments with Tox Chapter 9

[215]

benchmarks/test_persistence.py . [100%]

-------------------------- benchmark: 1 tests --------------------------
Name (time in us) Min Max Mean ... OPS (Kops/s) Rounds
--
test_loading 714.7 22,312.3 950.7 ... 1.0518 877
--

======================= 1 passed in 1.73s =======================

We now have a configuration where running tox by default will run our tests on Python
2.7 and Python 3.7, and then running tox -e benchmarks does run benchmarks.

If we further want to specialize the behavior of our Tox configuration, we can do so by
adding more environments and customizing the options we care about. A complete
reference of all the Tox options is available on the ReadTheDocs page of Tox, so make sure
to take a look if you want to dive further into customizing Tox behavior.

Now that we have Tox working locally, we need to combine it with our CI system to ensure
that different CI processes are started for each Tox environment. As we have used Travis
for all our CI needs so far, let's see how we can integrate Tox with Travis.

Using Tox with Travis
Using Tox with a CI environment is usually fairly simple, but as both Tox and the CI will
probably end up wanting to manage the Python environment, some attention has to be
paid to enable them to exist together. To see how Travis and Tox can work together, we can
pick our chat project that we wrote in Chapter 4, Scaling the Test Suite, which we already
had on Travis-CI, and migrate it to use Tox.

We need to write a tox.ini file, which will take care of running the test suite itself:

[tox]
setupdir = ./src
envlist = py37, py38, py39

[testenv]
usedevelop = true
deps =
 coverage
commands =
 coverage run --source=src -m unittest discover tests -v
 coverage report

Managing Test Environments with Tox Chapter 9

[216]

[testenv:benchmarks]
commands =
 python -m unittest discover benchmarks

The commands you see in tox.ini are the same that we previously had in the
travis.yml file under the script: section. That's because, previously, Travis itself was in
charge of running our tests. Now, Tox will be in charge of doing so.

For the same reason, as the coverage reporting should happen every time we run the test
suite, we have Tox install the coverage dependency and run coverage report after the
test suite.

The main difference with tox.ini seen previously in the chapter is probably the
usedevelop = true option. That tells Tox to install our own project in editable mode
(sometimes called developer mode). Instead of making a distribution package out of our
source directory and then installing the distribution, Tox will install the source directory
itself. This is frequently convenient when coverage reporting is involved as we usually
want the coverage to be against our source code, and not against the installed distribution.

The benefit of using a Tox file is that it should work the same everywhere. So, before
moving it to Travis, we can verify that it actually does what we expect locally on our own
machine:

$ tox
py38 develop-inst-noop: travistest/src
py38 run-test: commands[0] | coverage run --source=src -m unittest discover
tests -v
test_message_exchange (e2e.test_chat.TestChatAcceptance) ... ok
test_smoke_sending_message (e2e.test_chat.TestChatAcceptance) ... ok
test_exchange_with_server (functional.test_chat.TestChatMessageExchange)
... ok
test_many_users (functional.test_chat.TestChatMessageExchange) ... ok
test_multiple_readers (functional.test_chat.TestChatMessageExchange) ... ok
test_client_connection (unit.test_client.TestChatClient) ... ok
test_client_fetch_messages (unit.test_client.TestChatClient) ... ok
test_nickname (unit.test_client.TestChatClient) ... ok
test_send_message (unit.test_client.TestChatClient) ... ok
test_broadcast (unit.test_connection.TestConnection) ... ok

--
Ran 10 tests in 0.058s

OK
py38 run-test: commands[1] | coverage report
Name Stmts Miss Cover
--

Managing Test Environments with Tox Chapter 9

[217]

src/chat/__init__.py 0 0 100%
src/chat/client.py 29 0 100%
src/chat/server.py 7 0 100%
src/setup.py 2 2 0%
--
TOTAL 38 2 95%

As desired, it ran the test suite and then reported the code coverage. We also know, thanks
to [testenv:benchmarks], that if we want, we can run benchmarks with tox -e
benchmarks:

$ tox -e benchmarks
benchmarks develop-inst-noop: travistest/src
benchmarks run-test: commands[0] | python -m unittest discover benchmarks

 time: 0.06, iteration: 0.01
.
--
Ran 1 test in 0.069s

OK

Now, the remaining element is to make Tox run inside Travis.

To do so, mostly we have to replace the script: section in our travis.yml file with a
single tox command. Then, Tox will do everything it has to do in order to make the tests
run as it did on our own PC:

script:
 - "tox"

However, Travis will also need Tox itself to run the commands. Therefore, we want to have
Travis install Tox before running the script. To do so, we are going to use a special package
named tox-travis and we are going to add it to the install: section:

install:
 - "pip install tox-travis"

You might be wondering why we used tox-travis instead of just tox. The reason is that
tox-travis takes care of that little extra work that is necessary to make Tox and Travis
collaborate. By default, Travis wants to install and set up Python, but Tox also wants to do
the same. That means that we would end up installing Python twice.

Managing Test Environments with Tox Chapter 9

[218]

Even worse, as we have envlist = py37, py38, py39 in our tox.ini, Tox would
actually try to run the tests against all three Python versions for each Travis Python
environment. So, suppose that we asked Travis to set up 3.7, 3.8, and 3.9. Then, Tox would
try to use 3.7, 3.8, and 3.9 inside the Travis 3.7 Python environment, and would then try to
use 3.7, 3.8, and 3.9 inside the Travis 3.8 Python environment, and so on, leading to errors
such as the following:

ERROR: py38: InterpreterNotFound: python3.8
ERROR: py39: InterpreterNotFound: python3.9

To avoid this problem, we can use tox-travis. When we use Tox-Travis, the Python
environments come from Travis only and Tox will simply use those already prepared by
Travis without trying to set up a second Python environment. At that point, our Tox
envlist is only helpful locally, and on Travis, the python: section of the travis.yml file
will dictate which Python versions get used.

Apart from making sure that we install tox-travis, the rest of our travis.yml file is
fairly similar to the original one our project had previously. We just replaced the
commands to run tests and benchmarks with those that Tox provides:

language: python

os: linux
dist: xenial

python:
 - 3.7
 - &mainstream_python 3.8
 - 3.9
 - nightly

install:
 - "pip install tox-travis"
 - "pip install coveralls"

script:
 - "tox"

after_success:
 - coveralls
 - "tox -e benchmarks"

Now that both our tox.ini and travis.yml configuration files are in place, we can just
push our repository changes and see that Travis successfully runs our tests using Tox:

Managing Test Environments with Tox Chapter 9

[219]

Figure 9.1 – Tox setup

It should became clear that once we have a working local Tox setup, moving on to Travis
involves very little apart from writing a travis.yml configuration file in charge of
installing tox-travis and then invoking tox.

Summary
In this chapter, we saw how Tox can take care of all the setup necessary to run our tests for
us and how it can do that on multiple target environments so that all we have to do to run
tests is just to invoke Tox itself.

This is a more convenient, but also robust, way to manage our test suite. The primary
benefit is that anyone else willing to contribute to our project won't have to learn how to set
up our projects and how to run tests. If our colleagues or project contributors are familiar
with Tox, seeing that our project includes a tox.ini file tells them all that they will need to
know—that they just have to invoke the tox command to run tests.

Now that we have seen the base plugins and tools to manage and run our test suite, in the
next chapter, we can move on to some more advanced topics that involve how to test our
documentation itself and how to use property-based testing to catch bugs in our code.

10
Testing Documentation and

Property-Based Testing
In the previous chapter, we saw how to manage the environment where the test suite runs
through Tox. We now have a fairly good understanding of how to create a test suite, how to
set up an environment where this can be run, and how to ensure that we are able to
organize it in a way that remains effective as our software and test suite grow. We are now
going to move our attention to confirm that our tests are able to identify and cover corner
cases and make sure that our documentation is as robust and tested as our software itself.

In this chapter, we will cover the following topics:

Testing documentation
Property based-testing

Technical requirements
We need a working Python interpreter with PyTest, Sphinx for documentation testing, and
the Hypothesis framework for property-based testing. All of them can be installed through
pip with the help of the following command:

$ pip install pytest sphinx hypothesis

The examples have been written on Python 3.7, Sphinx 3.3.0, PyTest 6.0.2, and Hypothesis
5.41, but should work on most modern Python versions.

You can find the code files present in this chapter on GitHub at https:/ /github. com/
PacktPublishing/Crafting- Test- Driven- Software- with- Python/ tree/ main/ Chapter10.

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter10
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python

Testing Documentation and Property-Based Testing Chapter 10

[221]

Testing documentation
When documentation is written with the goal of teaching other developers how a system
works, providing examples on how to use its inner layers, and train them on the driving
design principles behind some complex software, it can be a very effective way to onboard
new team members in a project.

In any fairly big and complex project, documentation becomes something that is essential
for navigating the complexity of the system without having to rely on our memory to
remember how to use every single layer or class involved in the system.

But documentation is also hard. Not only is it actually hard to write, because what might
seem obvious and clear to us might sound cryptic to another reader, but also because the
code evolves quickly and documentation easily becomes outdated and inaccurate.

Thankfully, testing is a very effective way to also ensure that our documentation doesn't get
outdated and that it still applies to our system. As much as we test the application code, we
can test the documentation examples. If an example becomes outdated, it will fail and our
documentation tests won't pass.

Given that we have covered every human-readable explanation in our documentation with
a code example, we can make sure that our documentation doesn't get stale and still
describes the current state of the system by verifying those code examples. To show how
documentation can be kept in sync with the code, we are going to take our existing contacts
application we built in previous chapters and we are going to add tested documentation to
it.

Our first step will be to create the documentation itself. In Python, the most common tool
for documentation is Sphinx, which is based on the reStructuredText format.

Sphinx provides the sphinx-quickstart command to create new documentation for a
project. Running sphinx-quickstart docs will ask a few questions about the layout of
our documentation project and will create it inside the docs directory. We will also provide
the --ext-doctest --ext-autodoc options to enable the extensions to make
documentation testable and to autogenerate documentation from existing code:

$ sphinx-quickstart docs --ext-doctest --ext-autodoc
Welcome to the Sphinx 3.3.0 quickstart utility.

...

> Separate source and build directories (y/n) [n]: y
> Project name: Contacts
> Author name(s): Alessandro Molina

https://www.sphinx-doc.org/en/master/

Testing Documentation and Property-Based Testing Chapter 10

[222]

> Project release []:
> Project language [en]:

Creating file docs/source/conf.py.
Creating file docs/source/index.rst.
Creating file docs/Makefile.
Creating file docs/make.bat.

Finished: An initial directory structure has been created.

Once our documentation is available in the docs directory, we can start populating it,
beginning with docs/source/index.rst, which will be the entry point for our
documentation. If we want to add further sections to it, we have to list them under the
toctree section.

In our case, we are going to create a section about how to use the software and a reference
section for the existing classes and methods. Therefore, we are going to add contacts and
reference sections to toctree in the docs/source/index.rst file:

Welcome to Contacts's documentation!
===============================

.. toctree::
 :maxdepth: 2
 :caption: Contents:

 contacts
 reference

Now, we could try to build our documentation to see whether the two new sections are
listed on the home page. But doing so would actually fail because we haven't yet created
the files for those two sections:

$ make html
Running Sphinx v3.3.0
...
docs/source/index.rst:9: WARNING: toctree contains reference to nonexisting
document 'contacts'
docs/source/index.rst:9: WARNING: toctree contains reference to nonexisting
document 'reference'

So, we are going to create docs/source/contacts.rst and
docs/source/reference.rst files to allow Sphinx to find them.

Testing Documentation and Property-Based Testing Chapter 10

[223]

Adding a code-based reference
First, we will add the reference section, as it's the simplest one. The
docs/source/reference.rst file will only contain the title and the directive that will tell
Sphinx to document the contacts.Application class based on the docstring we provide
in the code itself:

==============
Code Reference
==============

.. autoclass:: contacts.Application
 :members:

Recompiling our documentation with make html will now only report the missing
contacts.rst file and successfully generate the code reference section. The result will be
visible in the docs/build/ directory, hence, opening the docs/build/reference.html
file will now show our code reference.

The first time we build it, our reference will be mostly empty:

Figure 10.1 – Code reference

It has a section for the contacts.Application class, but nothing else. This is because the
content is taken directly from the code docstrings, and we haven't written any.

Testing Documentation and Property-Based Testing Chapter 10

[224]

Therefore, we should go back to our contacts/__init__.py file and add a docstring to
our Application class and to the Application.run method:

class Application:
 """Manages a contact book serving the provided commands.

 The contact book data is saved in a contacts.json
 file in the directory the application is
 launched from. Any contacts.json in the directory this
 is launched from will be loaded at init time.

 A contact is composed by any name followed by a valid
 phone number.
 """
 PHONE_EXPR = re.compile('^[+]?[0-9]{3,}$')

 def __init__(self):
 self._clear()

 def _clear(self):
 self._contacts = []

 def run(self, text):
 """Run a provided command.

 :param str text: The string containing the command to run.

 Takes the command to run as a string as it would
 come from the shell, parses it and runs it.

 Each command can support zero or multiple arguments
 separate by an empty space.

 Currently supported commands are:

 - add
 - del
 - ls
 """
 ...

Now that the class and the method are both documented, we can rebuild our
documentation with make html to see whether the reference has been properly generated.

Testing Documentation and Property-Based Testing Chapter 10

[225]

If everything works as expected, we should see in docs/build/reference.html the
documentation we wrote in the code:

Figure 10.2 – Reference generated

Mixing code and documentation in the source files is an effective technique for ensuring
that when the code changes, the documentation is updated too. For example, if we remove
a method, we would surely also remove its docstring too, and so the method would also
disappear from the documentation. Obviously, we still have to pay attention that what we
write in the docstrings makes sense, but at least the structure of our documentation would
always be in sync with the structure of our code.

Testing Documentation and Property-Based Testing Chapter 10

[226]

Writing a verified user guide
While it's effective for references, having a reference is usually far from being enough for
proper documentation. A usage guide and tutorials are frequently necessary to ensure that
the reader understands how the software works.

So, to make our documentation more complete, we are going to add a user guide to the
docs/source/contacts.rst file.

After a brief introduction, the docs/source/contacts.rst file will dive into some real-
world examples regarding how to add new contacts and how to list them:

===============
Manage Contacts
===============

.. contents::

Contacts can be managed through an instance of
:class:`contacts.Application`, use :meth:`contacts.Application.run`
to execute any command like you would in the shell.

Adding Contancts
================

.. code-block::

 app.run("contacts add Name 0123456789")

Listing Contacts
================

.. code-block::

 app.run("contacts ls")

Testing Documentation and Property-Based Testing Chapter 10

[227]

Now, if we rebuild our documentation with make html, we should no longer get any error
and opening docs/build/contacts.html should show the page we just wrote with the
two examples:

Figure 10.3 – Managing contacts

While this shows how we can use the application, it doesn't do anything to ensure that the
documentation is in sync with our code. If, for example, we ever replace the
Application.run method with Application.execute, the two examples on the page
won't even notice and will continue to say that you have to use app.run, which will be
incorrect.

How can we make sure that the examples and tutorials we write are actually always in sync
with how our application works for real? That's exactly what we can do using doctest.
Doctest is a Python module and Sphinx extension that allows us to write snippets of code
that are tested and verified in our documentation. So, we are going to use doctest to make
sure that those two examples actually run and do what we expect.

The first thing we have to do is to set up the application in the documentation file. So we
are going to add a testsetup directive to docs/source/contacts.rst with the code
that is necessary to make sure that the app object exists for real.

Testing Documentation and Property-Based Testing Chapter 10

[228]

For the sake of order, we are going to add this code at the end of the introductory
paragraph, right before the examples themselves:

Manage Contacts
===============

.. contents::

Contacts can be managed through an instance of
:class:`contacts.Application`, use :meth:`contacts.Application.run`
to execute any command like you would in the shell.

.. testsetup::

 from contacts import Application
 app = Application()

Then we are going to replace the two code-block directives with two testcode
directives, which means that the examples will actually be executed and checked to ensure
that they are not crashing:

Adding Contacts
================

.. testcode::

 app.run("contacts add Name 0123456789")

Listing Contacts
================

.. testcode::

 app.run("contacts ls")

code-block directives instruct Sphinx that the content should be formatted as code, but
does nothing to ensure that the content is actually valid code that does not crash. While the
testcode directive formats the code, it also ensures that it is valid code that can run.

Now we are verifying that the two commands can actually run, so if we ever renamed
Application.run to Application.execute, our testcode examples would fail to run
and so Sphinx would complain that we have to update the documentation.

Testing Documentation and Property-Based Testing Chapter 10

[229]

But making sure that they can run is not enough. We also want to ensure that they actually
do what we expect, that once we add a contact and list them back, we do see the new
contact. The doctest module provides us with the testoutput directive to ensure that
the previous testcode block provided the expected output. In this case, we are going to
add a testoutput directive right after the code block that lists our contacts that will
ensure that the contact we just added is listed back:

Listing Contacts
================

.. testcode::

 app.run("contacts ls")

.. testoutput::

 Name 0123456789

If we rerun make html, we are going to see that in the resulting documentation, not much
has changed. There is an extra paragraph with the output after the second example, which
is good, as it gives a hint of what the expected output of the ls command is, but apart from
that, our documentation looks the same as before:

Figure 10.4 – Manage Contacts updated

Testing Documentation and Property-Based Testing Chapter 10

[230]

The real difference happens when we run the make doctest command, which allows us to
verify that the examples in our documentation do work correctly:

$ make doctest
Running Sphinx v3.3.0
...
running tests...

Document: contacts

1 items passed all tests:
 2 tests in default
2 tests in 1 items.
2 passed and 0 failed.
Test passed.

Doctest summary
===============
 2 tests
 0 failures in tests
 0 failures in setup code
 0 failures in cleanup code
build succeeded.

doctest found two tests (the two testcode blocks) within the contacts.rst document
and it confirmed that both of them work correctly.

If, as we mentioned before, we ever rename the Application.run method to
Application.execute, the doctests will immediately point out that both examples are
wrong:

Document: contacts

**
File "contacts.rst", line 41, in default
Failed example:
 app.run("contacts add Name 0123456789")
Exception raised:
 Traceback (most recent call last):
 File "/usr/lib/python3.8/doctest.py", line 1336, in __run
 exec(compile(example.source, filename, "single",
 File "<doctest default[0]>", line 1, in <module>
 app.run("contacts add Name 0123456789")
 AttributeError: 'Application' object has no attribute 'run'
**
File "contacts.rst", line 55, in default
Failed example:

Testing Documentation and Property-Based Testing Chapter 10

[231]

 app.run("contacts ls")
Exception raised:
 Traceback (most recent call last):
 File "/usr/lib/python3.8/doctest.py", line 1336, in __run
 exec(compile(example.source, filename, "single",
 File "<doctest default[0]>", line 1, in <module>
 app.run("contacts ls")
 AttributeError: 'Application' object has no attribute 'run'
**
1 items had failures:
 2 of 2 in default
2 tests in 1 items.
0 passed and 2 failed.
Test Failed 2 failures.

Likewise, if anything goes wrong in our two examples or the contacts listed don't match
those in the testoutput section, the make doctest command would report those failures
and would inform us that our documentation is not in sync with our code.

Adding the make doctest command to our CI pipeline allows us to ensure that with
every change of code that affects the documentation, the documentation is updated too,
thereby guaranteeing that all our examples in the documentation are verified and up to
date with what our code actually does.

Property-based testing
Now that we know how to have working test suites for both our code and our
documentation, the quality of those test suites fully depends on our capability to design
and write good tests.

There is, by the way, one rule in software testing that can help us design good tests, and
this is that errors usually hide in corner cases and limit values. If we have a function that
performs division between two numbers, the bugs are probably going to be brought to the
surface when zero, the maximum integer value, or negative numbers are passed to the
function as arguments. Rarely will we see errors for most common values, such as 2, 3, 4, or
5. That's because developers usually tend to design their code with those common values in
mind. The design that comes more naturally is usually the one that works for the most
obvious cases, and corner cases rarely come to mind in the first instance.

Testing Documentation and Property-Based Testing Chapter 10

[232]

Property-based testing comes in handy when easily generating tests that verify those corner
cases and limit conditions by ensuring that some properties of the functions and methods
we test always hold true. Property-based testing had its origins in the Haskell community,
but libraries and frameworks to implement it are now available in most programming
languages, including Python.

Hypothesis is a library that allows us to implement property-based testing in Python.

An example of the properties of a function could be that "for any provided argument, the
function should never crash." Not crashing is the most frequently verified property, but it's
possible to check any invariant that our method should guarantee. If we have a function
such as concat(a: str, b: str, c: str)-> str, a property could be that the
returned value should always include b for any provided arguments.

Hypothesis helps us define those invariants and then takes care of generating as many tests
as possible that assert that those properties always hold true. Usually, this is done by
generating tests based on the domain of function arguments and ensuring that the
properties hold true for all values. Obviously, testing all possible values would be too
cumbersome, or even not doable at all since, for example, the values of the str domain are
infinite. For this reason, Hypothesis is smart enough to know which values most frequently
cause problems in a domain and will restrict the tests to those, also remembering which
values caused problems to our code in the past, so that our test suite remains fast but also
effective.

The most common usage of the Hypothesis testing library is as a replacement of the
pytest.mark.parametrize decorator to automatically generate tests that run for
different kinds of values based on the types of arguments.

In the case of our contacts book application, we might want to ensure that the contact book
works for any kind of name the contacts have. We don't know whether our users will be
from the USA, Europe, the Middle-East, or Asia, and so might have totally different
concepts of names.

Testing Documentation and Property-Based Testing Chapter 10

[233]

Using pytest.mark.parametrize, we could write a test that does that for some cases that
come to mind:

import pytest
from contacts import Application

@pytest.mark.parametrize("name",
 ["Mario Alberto Rossi", "Étienne de La Boétie", "الزورق"]
)
def test_adding_contacts(name):
 app = Application()

 app.run(f"contacts add {name} 3456789")
 assert app._contacts == [(name, "3456789")]

The test will pass, and will try for some names and cases that come to mind:

$ pytest -v
================= test session starts =================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1 --
...
collected 3 items

tests/test_properties.py::test_adding_contacts[Mario Alberto Rossi] PASSED
[33%]
tests/test_properties.py::test_adding_contacts[\xc3\x89tienne de La
Bo\xc3\xa9tie] PASSED [66%]
tests/test_properties.py::test_adding_contacts[\u0627\u0644\u0632\u0648\u06
31\u0642] PASSED [100%]

================= 3 passed in 0.04s =================

But is this actually a good enough test? Let's see what happens if, instead of picking the
values ourselves, we use Hypothesis to generate those tests. Implementing this change is as
easy as replacing the parametrize decorator with a hypothesis.given decorator:

import hypothesis
import hypothesis.strategies as st

from contacts import Application

@hypothesis.given(st.text())
def test_adding_contacts(name):
 app = Application()

 app.run(f"contacts add {name} 3456789")
 assert app._contacts == [(name, "3456789")]

Testing Documentation and Property-Based Testing Chapter 10

[234]

Now, running the Hypothesis version of the test leads to a much more interesting result
compared to the version based on @parametrize; the Hypothesis-based version of the test
actually fails:

$ pytest -v
================= test session starts =================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1 --
...
collected 1 item

tests/test_properties.py::test_adding_contacts FAILED [100%]

====================== FAILURES ======================
________________ test_adding_contacts ________________

 @given(st.text())
> def test_adding_contacts(name):

tests/test_properties.py:8:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
tests/test_properties.py:11: in test_adding_contacts
 app.run(f"contacts add {name} 3456789")
_ _
self = <contacts.Application object at 0x7f9a71fce850>,
text = 'contacts add 3456789'

 def run(self, text):
 ...

 if cmd == "add":
> name, num = args.rsplit(maxsplit=1)
E ValueError: not enough values to unpack (expected 2, got 1)

src/contacts/__init__.py:48: ValueError
--------------------- Hypothesis ---------------------
Falsifying example: test_adding_contacts(
 name='',
)
================= 1 failed in 0.10s =================

Testing Documentation and Property-Based Testing Chapter 10

[235]

So, Hypothesis actually found a real bug in our software. If we don't provide a name at all,
the software, instead of providing an error message, just crashes. We can see that
Hypothesis tells us that the example that failed is the one where name='' and PyTest
confirms that the string that was executed as a command was text = 'contacts add
3456789'. The line that crashed is the one that splits the name and number out of the add
command arguments, so we have to handle the case where we can't split them apart
because we only have one argument.

To do so, we can go back to the Application.run method and trap the exception that can
come out of args.rsplit:

 if cmd == "add":
 try:
 name, num = args.rsplit(maxsplit=1)
 except ValueError:
 print("A contact must provide a name and phone number")
 return
 try:
 self.add(name, num)
 except ValueError as err:
 print(err)
 return

Now, if we rerun our test, we will get a slightly different kind of failure, a failure in the test
itself:

$ pytest -v
================= test session starts =================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1 --
...
collected 1 item

tests/test_properties.py::test_adding_contacts FAILED [100%]

====================== FAILURES ======================
________________ test_adding_contacts ________________

 @given(st.text())
> def test_adding_contacts(name):

tests/test_properties.py:8:
_ _
tests/test_properties.py:11: in test_adding_contacts
 app.run(f"contacts add {name} 3456789")
_ _
name = ''

Testing Documentation and Property-Based Testing Chapter 10

[236]

 @given(st.text())
 def test_adding_contacts(name):
 app = Application()
 app.run(f"contacts add {name} 3456789")
> assert app._contacts == [(name, "3456789")]
E AssertionError: assert [] == [('', '3456789')]
E Right contains one more item: ('', '3456789')
E Full diff:
E - [('', '3456789')]
E + []

tests/test_properties.py:15: AssertionError
---------------- Captured stdout call ----------------
A contact must provide a name and phone number
--------------------- Hypothesis ---------------------
Falsifying example: test_adding_contacts(
 name='',
)
================= 1 failed in 0.10s =================

From Captured stdout, we can see that the error we emit when no name is provided was
properly reported, but our test failed because the assertion expects that a new contact is
always inserted while, in the case of a missing name, no contact gets added to our contact
book. So, in this case, Hypothesis found that our test itself is actually incomplete.

What we have to do is to change the assertion to ensure that the contact book actually
contains what we really expect in the case where no name is provided. In case there is no
name, the contact book should just be empty:

@given(st.text())
def test_adding_contacts(name):
 app = Application()

 app.run(f"contacts add {name} 3456789")

 name = name.strip()
 if name:
 assert app._contacts == [(name, "3456789")]
 else:
 assert app._contacts == []

At this point, rerunning the test will actually confirm that everything works as expected:

$ pytest -v
================= test session starts =================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1 --
...

Testing Documentation and Property-Based Testing Chapter 10

[237]

collected 1 item

tests/test_properties.py::test_adding_contacts PASSED [100%]

================= 1 passed in 0.42s =================

We have seen how Hypothesis can help us to identify bugs and design tests, but it can
actually do much more. It can even go as far as generating some tests for the most common
properties for us.

Generating tests for common properties
Through the hypothesis write command, we can use Hypothesis to generate tests for
use based on some of the most common properties functions might have. For example, if
we want to ensure that the Python sorted method is idempotent and calling it twice leads
to the exact same result, we can use hypothesis write --idempotent sorted to
generate a test that verifies such a property:

$ hypothesis write --idempotent sorted

from hypothesis import given, strategies as st

@given(
 iterable=st.one_of(st.iterables(st.integers()),
st.iterables(st.text())),
 key=st.none(),
 reverse=st.booleans(),
)
def test_idempotent_sorted(iterable, key, reverse):
 result = sorted(iterable, key=key, reverse=reverse)
 repeat = sorted(result, key=key, reverse=reverse)
 assert result == repeat, (result, repeat)

Or, we could test that a pair of encode/decode functions leads back to the original result
when chained using the hypothesis write --roundtrip generator.

If we want to check that for json.loads and json.dumps, for example, we could use
hypothesis write --roundtrip json.dumps json.loads, which would generate the
following code block:

$ hypothesis write --roundtrip json.dumps json.loads

import json
from hypothesis import given, strategies as st

Testing Documentation and Property-Based Testing Chapter 10

[238]

@given(
 allow_nan=st.booleans(),
 check_circular=st.booleans(),
 cls=st.none(),
 default=st.none(),
 ensure_ascii=st.booleans(),
 indent=st.none(),
 obj=st.nothing(),
 object_hook=st.none(),
 object_pairs_hook=st.none(),
 parse_constant=st.none(),
 parse_float=st.none(),
 parse_int=st.none(),
 separators=st.none(),
 skipkeys=st.booleans(),
 sort_keys=st.booleans(),
)
def test_roundtrip_dumps_loads(
 allow_nan,
 check_circular,
 cls,
 default,
 ensure_ascii,
 indent,
 obj,
 object_hook,
 object_pairs_hook,
 parse_constant,
 parse_float,
 parse_int,
 separators,
 skipkeys,
 sort_keys,
):
 value0 = json.dumps(
 obj=obj,
 skipkeys=skipkeys,
 ensure_ascii=ensure_ascii,
 check_circular=check_circular,
 allow_nan=allow_nan,
 cls=cls,
 indent=indent,
 separators=separators,
 default=default,
 sort_keys=sort_keys,
)
 value1 = json.loads(
 s=value0,

Testing Documentation and Property-Based Testing Chapter 10

[239]

 cls=cls,
 object_hook=object_hook,
 parse_float=parse_float,
 parse_int=parse_int,
 parse_constant=parse_constant,
 object_pairs_hook=object_pairs_hook,
)
 assert obj == value1, (obj, value1)

When refactoring code, implementing performance optimizations, or modifying code to
port it from prior versions of Python, an essential property of the new implementation we
are going to write is that it must retain the exact same behavior of the old implementation.
The hypothesis write --equivalent command is able to do precisely this.

If, for example, we had two helper functions in contacts/utils.py, both meant to sum
two numbers, as follows:

def sum1(a: int, b: int) -> int:
 return a + b

def sum2(a: int, b: int) -> int:
 return sum((a, b))

In that case, hypothesis could generate a test that verifies the fact that both functions lead
to the exact same results:

$ hypothesis write --equivalent contacts.utils.sum1 contacts.utils.sum2
import contacts.utils
from hypothesis import given, strategies as st

@given(a=st.integers(), b=st.integers())
def test_equivalent_sum1_sum2(a, b):
 result_sum1 = contacts.utils.sum1(a=a, b=b)
 result_sum2 = contacts.utils.sum2(a=a, b=b)
 assert result_sum1 == result_sum2, (result_sum1, result_sum2)

While most of those tests could be written manually using hypothesis.given, it can be
convenient having Hypothesis inspect the functions for you and pick the right types.
Especially if you already did the effort of providing type hints for your functions,
Hypothesis will usually be able to do the right thing.

To know all the generators that are available in your version of Hypothesis, you can run
hypothesis write --help.

Testing Documentation and Property-Based Testing Chapter 10

[240]

Summary
In this chapter, we saw how to have tested documentation that can guarantee user guides
in sync with our code, and we saw how to make sure that our tests cover limit and corner
cases we might not have considered through property-based testing.

Hypothesis can take away from you a lot of the effort of providing all possible values to a
parameterized test, thereby making writing effective tests much faster, while doctest can
ensure that the examples we write in our user guides remain effective in the long term,
detecting whether any of them need to be updated when our code changes.

In the next chapter, we are going to shift our attention to the web development world,
where we will see how to test web applications both from the point of view of functional
tests and end-to-end tests.

3
Section 3: Testing for the Web

In this section, we will learn how to test web applications, web services, and APIs with
Python, PyTest, and the most common testing tools available for WSGI frameworks.

This section comprises the following chapters:

Chapter 11, Testing for the Web: WSGI versus HTTP
Chapter 12, End-to-End Testing with the Robot Framework

11
Testing for the Web: WSGI

versus HTTP
In the previous chapter, we saw how to test documentation and implement more advanced
testing techniques in our test suites, such as property-based testing.

One of the primary use cases for Python has become web development. Python has many
very effective and powerful web development frameworks. The most famous one is surely
the Django web framework, but many more of them exist, including the Flask framework,
the Pyramid framework, TurboGears2, and more. Each web framework has its own
peculiarities and unique features that make it easy to build most of the different kinds of
web applications using Python itself, but all of them share the same need of having to
verify that the applications you built work properly and are tested. Thus in this chapter, we
are going to see how we can test HTTP-based applications on both the client and server
side, how we can do that using pytest, and how the techniques presented differ from
framework-specific tests.

In this chapter, we will cover the following topics:

Testing HTTP
Testing WSGI with WebTest
Using WebTest with web frameworks
Writing Django tests with Django's test client

In this chapter, we are going to reverse the approach a bit and we are going to violate the
Test-Driven Development (TDD) principle by implementing the code first and
introducing tests for it after. The reason for this is that by introducing the system under test
first we can illustrate more clearly some details of the tests. If you already know how the
tested software works, it's easier to understand why the tests do the things they do, so for
the purposes of this chapter we will briefly abandon our best practices and focus on the
code first, and the tests after.

Testing for the Web: WSGI versus HTTP Chapter 11

[243]

Technical requirements
We need a working Python interpreter with pytest, but for some sections in this chapter, we
will also have to install other libraries and frameworks. As usual, all of them can be
installed with pip:

$ pip install pytest

For the Testing HTTP section, we are going to need the requests library and the
requests-mock testing library:

$ pip install requests requests-mock

For the Testing WSGI with WebTest section, we are going to need webtest:

$ pip install webtest

And for the paragraphs regarding testing web frameworks, we are going to need the
targeted web frameworks installed, even though you aren't going to use all of them
concurrently in a real project:

$ pip install flask django pyramid turbogears2

The examples have been written on Python 3.7, pytest 6.0.2, Requests 2.24.0, Requests-Mock
1.8.0, WebTest 2.0.35, Django 3.1.4, Flask 1.1.2, Pyramid 1.10.5, and TurboGears 2.4.3, but
should work on most modern Python versions. You can find the code files present in this
chapter on GitHub at https:/ /github. com/PacktPublishing/ Crafting- Test- Driven-
Software-with-Python/ tree/ main/ Chapter11.

Testing HTTP
A frequent need when working with networking based applications is that we have to test
both the server and client. If we are writing a distributed application, we are probably
going to write both the client and the server ourselves, and that means we'll want to test
both of them just as we did with our Chat application in previous chapters.

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter11

Testing for the Web: WSGI versus HTTP Chapter 11

[244]

While we might want to have a limited number of tests that connect to a real running
server, that quickly becomes too expensive if we involve real networking, and could also
result in errors related to the maximum amount of open connections our system can
handle, along with the time it takes to actually shut down those connections.

So we need to be able to test the client side of the application without having to connect to a
real server for the majority of our tests, or our test suite will quickly become
unmaintainable.

Let's suppose we are writing a very simple httpclient command-line application that
will allow us to request any URL that we want with the most common HTTP methods:

$ python -m httpclient GET http://www.amazon.com/
<!DOCTYPE html>
<html class="a-no-js" lang="en-us">
 <head>
 <title dir="ltr">Amazon.com</title>
 ...

To do so, we would first need a class able to perform HTTP requests, which we are going to
call just HTTPClient. Our HTTPClient exposes support for GET, POST, and DELETE (we
could easily expose more, but for the sake of simplicity we will limit our client to those
most common methods), and a follow method that allows us to access nested paths
relative to the current URL.

To implement this object we are going to rely on the requests library for most of the
heavy lifting of HTTP processing, thus we can run import requests and rely on it for
most of our methods' implementations. Let's create a src/httpclient/__init__.py file
where we can place our HTTPClient object:

import urllib.parse
import requests

class HTTPClient:
 def __init__(self, url):
 self._url = url

 def GET(self):
 return requests.get(self._url).text

 def POST(self, **kwargs):
 return requests.post(self._url, data=kwargs).text

 def DELETE(self):
 return requests.delete(self._url).text

Testing for the Web: WSGI versus HTTP Chapter 11

[245]

 def follow(self, path):
 baseurl = self._url
 if not baseurl.endswith("/"):
 baseurl += "/"
 return HTTPClient(urllib.parse.urljoin(baseurl, path))

The only method not directly relying on requests is HTTPClient.follow, which uses the
urllib.parse standard library module to navigate the URL tree.

Given the current URL, which is used as the base, the method is going to return a new
HTTPClient that points to a path nested within the same URL. For example, if we have a
client pointing to "http://www.google.com/", then using HTTPClient.follow("me")
would give us back a new client instance through which we can request
http://www.google.com/me.

Notice that this is a very naïve implementation that takes for granted the
fact that the base URL doesn't have any parameters. A more robust
implementation could be achieved if we actually parsed the URL and
encoded it back into a string, so that we can isolate the path from the rest
of the URL.

Now that we have the client in place, the remaining parts are those involved in exposing it
on the command line, so that we can use the python -m httpclient command to
perform HTTP requests.

The first piece we need to do so is the parse_args function. This function will be in charge
of taking arguments from the command line (thus from sys.argv) and converting them to
the options for HTTPClient:

import sys

def parse_args():
 cmd = sys.argv[0]
 args = sys.argv[1:]
 try:
 method, url, *params = args
 except ValueError:
 raise ValueError("Not enough arguments, "
 "at least METHOD URL must be provided")

 try:
 params = dict((p.split("=", 1) for p in params))
 except ValueError:
 raise ValueError("Invalid request body parameters. "
 "They must be in name=value format, "

Testing for the Web: WSGI versus HTTP Chapter 11

[246]

 f"not {params}")

 return method.upper(), url, params

The first code block is just going to separate the HTTP method, the URL we want to
request, and the various params we want to provide it. The HTTP method accepts any
number of params, so we could have zero or many.

The second code block is meant to parse params from a "name=value" format to a
dictionary we can pass to the HTTPClient.POST method.

Finally, the function returns the HTTPClient method we have to invoke (GET, POST, or
DELETE), the URL for which we have to invoke it, and the params dictionary containing all
parameters.

Those three values are useful to the real main function of our application to properly use
the HTTPClient object. So the next step is to implement this main function so that we can
invoke it from the command line:

def main():
 try:
 method, url, params = parse_args()
 except ValueError as err:
 print(err)
 return

 client = HTTPClient(url)
 print(getattr(client, method)(**params))

main invokes parse_args, creates a client object, and then invokes the method
requested by parse_args on it and prints the returned value.

The remaining pieces we need to handle are, firstly, to create a
src/httpclient/__main__.py file where we invoke the main function:

from httpclient import main

main()

Testing for the Web: WSGI versus HTTP Chapter 11

[247]

And then a src/setup.py file that allows us to install the package and invoke it from the
command line:

from setuptools import setup

setup(name='httpclient', packages=['httpclient'])

If everything worked as expected, installing our package should allow us to invoke it from
the command line to perform HTTP requests:

$ pip install -e ./src
Obtaining file://./src
Installing collected packages: httpclient
...
Successfully installed httpclient

$ python -m httpclient GET http://httpbin.org/get
{
 "args": {},
 "headers": {
 "Accept": "*/*",
 "Accept-Encoding": "gzip, deflate",
 "Host": "httpbin.org",
 "User-Agent": "python-requests/2.24.0",
 },
 "url": "http://httpbin.org/get"
}

Now that all the pieces are in place, we can move on to see how to test the HTTPClient
object.

Testing HTTP clients
If we had to test our HTTPClient, we would have to perform HTTP requests through those
methods to confirm they actually do what we want. To do so, we could use httpbin.org,
which is a service that accepts any kind of request and echoes back what was submitted.
This would allow us to verify that we are submitting what we expected we would send to
the server:

import json
from httpclient import HTTPClient

class TestHTTPClient:
 def test_GET(self):

Testing for the Web: WSGI versus HTTP Chapter 11

[248]

 client = HTTPClient(url="http://httpbin.org/get")
 response = client.GET()

 assert '"Host": "httpbin.org"' in response
 assert '"args": {}' in response

 def test_GET_params(self):
 client = HTTPClient(url="http://httpbin.org/get?alpha=1")
 response = client.GET()
 response = json.loads(response)

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}

 def test_POST(self):
 client = HTTPClient(url="http://httpbin.org/post?alpha=1")
 response = client.POST(beta=2)
 response = json.loads(response)

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}
 assert response["form"] == {"beta": "2"}

 def test_DELETE(self):
 client = HTTPClient(url="http://httpbin.org/anything/27")
 response = client.DELETE()

 assert '"method": "DELETE"' in response
 assert '"url": "http://httpbin.org/anything/27"' in response

 def test_follow(self):
 client = HTTPClient(url="http://httpbin.org/anything")

 assert client._url == "http://httpbin.org/anything"

 client2 = client.follow("me")

 assert client2._url == "http://httpbin.org/anything/me"

Saving those tests as tests/test_httpclient.py will provide us with a running test
suite that confirms that HTTPClient works as expected. The problem is that running the
tests with this approach can take a while. Running just a few simple tests already takes
more than a second to run:

$ pytest -v -s
====================== test session starts ======================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
...

Testing for the Web: WSGI versus HTTP Chapter 11

[249]

collected 5 items

tests/test_httpclient.py::TestHTTPClient::test_GET PASSED
tests/test_httpclient.py::TestHTTPClient::test_GET_params PASSED
tests/test_httpclient.py::TestHTTPClient::test_POST PASSED
tests/test_httpclient.py::TestHTTPClient::test_DELETE PASSED
tests/test_httpclient.py::TestHTTPClient::test_follow PASSED
======================= 5 passed in 1.37s =======================

Also, the tests might randomly fail due to network issues or errors on the remote server, so
they could easily become flaky. Slow and flaky tests are something we must avoid in a test
suite, so this approach of involving real networking is not something we can rely on in our
test suite.

The solution to both those problems is to replace the remote server, and thus the need for
networking, with a fake implementation. In our specific case, as we used the requests
library to perform HTTP requests to the server, we can prepare ready-made answers for
our requests using the requests-mock library, which allows us to mock requests by
replacing them with pre-baked responses.

To replace our real requests with fake ones, we just have to wrap them in a
requests_mock.Mocker() context manager, which comes from the requests_mock
module made available by the requests-mock library. Once we have the mocker object,
we can use it to drive what has to be mocked (which URL, method, and so on) and serve
ready-made answers for all the requests that match those filters.

For example, to mock a GET request, we could create the HTTPClient and before invoking
client.GET we could wrap that method with the Mocker and thus set up a ready-made
answer for any GET request against the same URL as the client one:

client = HTTPClient(url="http://httpbin.org/get")

with requests_mock.Mocker() as m:
 m.get(client._url, text='{"Host": "httpbin.org", "args": {}}')
 response = client.GET()

The text, json, and content arguments of the mocker can be used to provide the
response (as text, JSON, or binary) we want to serve back when the URL is requested with
the specified method. In this case, for example, we provided the response in text format
even though it contains a JSON string. In the following examples, we are going to use the
json argument, so that we can see both of them in action.

Testing for the Web: WSGI versus HTTP Chapter 11

[250]

Now we can adapt all our tests to use requests_mock so that they no longer have to take a
networking roundtrip to pass:

import json
from httpclient import HTTPClient
import requests_mock

class TestHTTPClient:
 def test_GET(self):
 client = HTTPClient(url="http://httpbin.org/get")
 with requests_mock.Mocker() as m:
 m.get(client._url,
 text='{"Host": "httpbin.org", "args": {}}')
 response = client.GET()

 assert '"Host": "httpbin.org"' in response
 assert '"args": {}' in response

 def test_GET_params(self):
 client = HTTPClient(url="http://httpbin.org/get?alpha=1")
 with requests_mock.Mocker() as m:
 m.get(client._url,
 text='''{"headers": {"Host": "httpbin.org"},
 "args": {"alpha": "1"}}''')
 response = client.GET()

 response = json.loads(response)
 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}

 def test_POST(self):
 client = HTTPClient(url="http://httpbin.org/post?alpha=1")
 with requests_mock.Mocker() as m:
 m.post(client._url, json={"headers": {"Host": "httpbin.org"},
 "args": {"alpha": "1"},
 "form": {"beta": "2"}})
 response = client.POST(beta=2)

 response = json.loads(response)
 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}
 assert response["form"] == {"beta": "2"}

 def test_DELETE(self):
 client = HTTPClient(url="http://httpbin.org/anything/27")
 with requests_mock.Mocker() as m:
 m.delete(client._url, json={

Testing for the Web: WSGI versus HTTP Chapter 11

[251]

 "method": "DELETE",
 "url": "http://httpbin.org/anything/27"
 })
 response = client.DELETE()

 assert '"method": "DELETE"' in response
 assert '"url": "http://httpbin.org/anything/27"' in response

 def test_follow(self):
 ...

The test_follow test remains unchanged as it didn't involve any networking, while the
other tests are now wrapped in a requests_mock.Mocker() surrounding the
client.GET, client.POST and client.DELETE calls.

With those changes, the impact on our test suite is immediately visible. Tests that
previously took more than a second to run now take just a few milliseconds:

$ pytest -v -s
====================== test session starts ======================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
...
collected 5 items

tests/test_httpclient.py::TestHTTPClient::test_GET PASSED
tests/test_httpclient.py::TestHTTPClient::test_GET_params PASSED
tests/test_httpclient.py::TestHTTPClient::test_POST PASSED
tests/test_httpclient.py::TestHTTPClient::test_DELETE PASSED
tests/test_httpclient.py::TestHTTPClient::test_follow PASSED
======================= 5 passed in 0.03s =======================

While this approach is fast, robust, and allows us to test that the client is properly able to
process and react to answers, it doesn't really test that the client and the server are able to
work together. Yes, we know that the client behaves like we meant it to behave, but it
doesn't in any way guarantee that once we put it in front of a real server, the two will speak
the same language.

If the server changes its responses in a way that differs from the one we hardcoded in our
tests, we will notice that the client doesn't work anymore with our server.

To address this limitation without having to involve a real networking layer, we are going
to see how we can write integration tests using WebTest and the WSGI protocol.

Testing for the Web: WSGI versus HTTP Chapter 11

[252]

Testing WSGI with WebTest
While we have seen how to test client without connecting to a real server, we can't rely only
on faked messages to confirm that our application works. If we are going to change server
responses, the tests wouldn't even notice and would continue to pass while in reality, the
client has stopped working. How can we detect those kinds of issues without involving real
networking? The WSGI (Web Server Gateway Interface) protocol and WebTest library
come in hand to do exactly that, set up a client-server communication that involves no
networking at all.

When we create web applications in Python, the most frequent way they work is through
an application server. The application server will be the one receiving HTTP requests,
decoding them, and forwarding them to the real web application. Forwarding those
requests to the web application and receiving back responses via the WSGI protocol is
usually the communication channel of choice for Python.

The WSGI protocol is a pure Python protocol, thus relies solely on being able to invoke a
Python function passing some specific arguments. All the communication in WSGI happens
in-memory and involves no dedicated parsing, and thus is very fast and usually suitable for
integration in web applications. A complete description of WSGI is available in PEP 333
(https://www.python. org/ dev/ peps/ pep- 3333/).

The most basic WSGI application is a simple callable (a function, method, or function
object) that accepts two arguments (environ and start_response) and responds with an
iterable containing the output to be sent back to the client after having invoked
start_response to set up the response headers.

So the basic "Hello World" kind of application in WSGI would look as follows:

class Application:
 def __call__(self, environ, start_response):
 start_response(
 '200 OK',
 [('Content-type', 'text/plain; charset=utf-8')]
)
 return ["Hello World".encode("utf-8")]

The environ argument will contain all information about the environment within which
our request is being processed, including information about the request itself, such as
REQUEST_METHOD, HTTP_HOST, PATH_INFO, QUERY_STRING, and many more values.
start_response is a function we can invoke to tell the application server that we are
ready to send back our response and inform it about the response type and the HTTP
headers that have to be sent back.

https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/

Testing for the Web: WSGI versus HTTP Chapter 11

[253]

In our case, for every request, we always send back an HTTP 200 response informing the
client that we are going to send some text encoded in UTF-8 by providing a Content-Type
header.

Then we return the iterable containing the response, which in this case is a list containing
the "Hello World" string encoded as UTF-8 as specified in our Content-Type.

Now that we have our WSGI application, we can save it in the
src/wsgiwebtest/__init__.py file and move forward to see how we can attach it to the
application server.

For the sake of this example, we are going to use a very basic application server provided
by the Python standard library itself in the wsgiref module,
simple_server.WSGIServer. To be able to start our application we are going to create a
src/wsgiwebtest/__main__.py file where we are going to place a main function that
creates the WSGIServer and attaches it to our web application:

from wsgiref.simple_server import make_server
from wsgiwebtest import Application

def main():
 app = Application()
 with make_server('', 8000, app) as httpd:
 print("Serving on port 8000...")
 httpd.serve_forever()

main()

All our main has to do is to create the Application object and pass it to the make_server
function, which will create an application server for that application. Once the server is
available we can start serving requests through the httpd.server_forever method.

The last step before we can actually try our "Hello World application is to create a setup.py
file so that we can install our package. So let's save a basic one as src/setup.py,
containing the following:

from setuptools import setup

setup(name='wsgiwebtest', packages=['wsgiwebtest'])

Now that we have all the pieces in place, we can install our application and start it:

$ pip install -e ./src
Obtaining file://./src
Installing collected packages: wsgiwebtest

Testing for the Web: WSGI versus HTTP Chapter 11

[254]

...
Successfully installed wsgiwebtest

$ python -m wsgiwebtest
Serving on port 8000...

Pointing our browser to http://localhost:8000/ should greet us with a simple Hello
World phrase:

Figure 11.1 – Hello World answer from our WSGI application

Now that we have a working web application, we want to evolve it to make it a bit more
interesting. We are going to turn it into a simple clone of httpbin.org. To do so we are
going to use the same exact tests we wrote for our HTTPClient package, port them to use
WebTest, and use them to drive the development of our WSGI application.

The first step is to take our existing TestHTTPClient.test_GET test and port it to use
webtest to verify our web application, saving it as tests/test_wsgiapp.py:

import webtest

from wsgiwebtest import Application

class TestWSGIApp:
 def test_GET(self):
 client = webtest.TestApp(Application())
 response = client.get("http://httpbin.org/get").text

 assert '"Host": "httpbin.org"' in response
 assert '"args": {}' in response

Testing for the Web: WSGI versus HTTP Chapter 11

[255]

The main difference is that instead of building an HTTPClient instance, we build a
webtest.TestApp for the application we want to test, which in this case is
wsgiwebtest.Application. Then we ask TestApp to perform a GET request against a
specific URL using the TestApp.get method. While we can specify a complete URL
including the domain, it won't matter too much, as TestApp will always direct the request
to the application under test, so even though here we wrote "http://httpbin.org", in
reality the request won't go to "httpbin.org" but to wsgiwebtest.Application. This
allows us to test our application by simulating whatever domain we want to serve it on.

Then the response returned by this request can be decoded as text or JSON as we did for
the requests library, using the .text or .json properties. In this case, we are going to
retain the existing test behavior and decode it as text even though the response is actually
in JSON format.

Running the test will obviously fail because right now our web application only responds
with "Hello World" to every request, but it proves that our test actually reached our web
application and got back the "Hello World" response:

______________________ TestWSGIApp.test_GET ______________________

self = <test_wsgiapp.TestWSGIApp object at 0x7fc6d64feaf0>

 def test_GET(self):
 client = webtest.TestApp(Application())
 response = client.get("http://httpbin.org/get")
> assert '"Host": "httpbin.org"' in response
E assert '"Host": "httpbin.org"' in <200 OK text/plain body=b'Hello World'>

Now that we know that webtest is actually working as expected and is doing the GET
request against our web application, let's start porting all our other tests to use webtest.
The approach is nearly the same for all of them. Instead of building an HTTPClient
instance, we are going to build a webtest.TestApp and use its .get, .post, and .delete
methods to perform the requests:

import webtest

from wsgiwebtest import Application

class TestWSGIApp:
 def test_GET(self):
 client = webtest.TestApp(Application())
 response = client.get("http://httpbin.org/get").text

 assert '"Host": "httpbin.org"' in response

Testing for the Web: WSGI versus HTTP Chapter 11

[256]

 assert '"args": {}' in response

 def test_GET_params(self):
 client = webtest.TestApp(Application())

 response = client.get(url="http://httpbin.org/get?alpha=1").json

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}

 def test_POST(self):
 client = webtest.TestApp(Application())

 response = client.post(url="http://httpbin.org/get?alpha=1",
 params={"beta": "2"}).json

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}
 assert response["form"] == {"beta": "2"}

 def test_DELETE(self):
 client = webtest.TestApp(Application())

 response = client.delete(url="http://httpbin.org/anything/27").text
 assert '"method": "DELETE"' in response
 assert '"url": "http://httpbin.org/anything/27"' in response

The assertion part of the tests remained unmodified from the original tests we copied, the
only part that slightly changed is how we perform the requests.

Like the first test, those new tests will currently all fail because our web application will
always respond with "Hello World" to all of them. So the next step is to change our web
application to make it respond as the tests expect.

We can open our existing src/wsgiwebtest/__init__.py file and tweak the
Application.__call__ method to make it recognize the requested host, URL, and
method while also parsing the received request parameters from both the URL and the
request body:

import urllib.parse

class Application:
 def __call__(self, environ, start_response):
 start_response(
 '200 OK',
 [('Content-type', 'application/json; charset=utf-8')]

Testing for the Web: WSGI versus HTTP Chapter 11

[257]

)

 form_params = {}
 if environ.get('CONTENT_TYPE') ==
 'application/x-www-form-urlencoded':
 req_body = environ["wsgi.input"].read().decode("ascii")
 form_params = {
 k: v for k, v in urllib.parse.parse_qsl(req_body)
 }

 if environ.get("SERVER_PORT") == "80":
 host = environ["SERVER_NAME"]
 else:
 host = environ["HTTP_HOST"]

 return [json.dumps({
 "method": environ["REQUEST_METHOD"],
 "headers": {"Host": host},
 "url": "{e[wsgi.url_scheme]}://{host}{e[PATH_INFO]}".format(
 e=environ,
 host=host
),
 "args": {
 k: v for k, v in
 urllib.parse.parse_qsl(environ["QUERY_STRING"])
 },
 "form": form_params
 }).encode("utf-8")]

The start_response invocation is nearly the same, we just changed the reported
Content-Type to be application/json instead of text/plain as we are going to serve
back a JSON response.

Right after this, form_params is meant to contain all the parameters provided through the
request body. If what we received is a POST request, it's probably going to have a request
body where the majority of the parameters are provided. The request body could provide
those parameters encoded in various ways, but as it's the simplest one (and the one our
tests used), we are going to support only the "application/x-www-form-urlencoded"
encoding. So if the request we received has that content type, we will also parse the request
body (coming from environ["wsgi.input"]) and extract the parameters from there.

Testing for the Web: WSGI versus HTTP Chapter 11

[258]

The subsequent code block that initializes the host variable is instead meant to find the
host and port from which the request came, so that we can send it back into the Host field
of the headers dictionary in our response as the tests expect. The test expects that if the
request is targeted to the standard HTTP port, 80, the port is omitted in the returned host.
So we are going to only report the port when it's not 80 and we are going to limit ourselves
to the SERVER_NAME when the port is 80.

The last block is actually focused on building back the response, so it uses json.dumps to
encode a dictionary with all the data as text. The dictionary is going to contain the fields
our tests care about, meaning method and headers.Host for the HTTP method that was
used to perform the request, and the Host against which the request was targeted (in our
tests, this is httpbin.org). This will also contain the args key for all the parameters
provided in the query string, and thus in the URL itself, while separating the parameters
that were provided in the request body in the form key. Finally, the url key contains the
fully qualified URL that was requested.

This should guarantee a behavior very similar to the one that the real httpbin.org
provides, albeit heavily simplified. Saving back our new code and trying to rerun the tests
should prove that we implemented something that is similar enough to make our tests
pass:

$ pytest -v -s
====================== test session starts ======================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
...
collected 4 items

tests/test_wsgiapp.py::TestHTTPClient::test_GET PASSED [25%]
tests/test_wsgiapp.py::TestHTTPClient::test_GET_params PASSED [50%]
tests/test_wsgiapp.py::TestHTTPClient::test_POST PASSED [75%]
tests/test_wsgiapp.py::TestHTTPClient::test_DELETE PASSED [100%]
======================= 4 passed in 0.08s =======================

Our tests passed, proving that our web application is similar enough to the original one we
meant to copy, and even though there is tons of space for improvement, it demonstrated
how we can implement tests for web applications that don't need any networking at all.
This is made clear by the fact that our tests using WebTest still complete in a matter of
milliseconds, similar to the tests where we used requests-mock, while the tests that
involved real networking took more than a second.

Testing for the Web: WSGI versus HTTP Chapter 11

[259]

If we want to go even further, using a little bit of dependency injection, we could easily
modify our HTTPClient object to work with both the requests module and the
webtest.TestApp object, as they are similar enough that we could write end-to-end tests
that go from HTTPClient down to wsgiwebtest.Application without ever involving
any HTTP parsing or networking.

Going in this direction requires a brief change to our original HTTPClient to allow us to
provide a replacement for the requests module at initialization time. By default, we are
going to keep using the requests module, but anyone could pass a different object to
HTTPClient.__init__ and replace it:

class HTTPClient:
 def __init__(self, url, requests=requests):
 self._url = url
 self._requests = requests

 def follow(self, path):
 baseurl = self._url
 if not baseurl.endswith("/"):
 baseurl += "/"
 return HTTPClient(urllib.parse.urljoin(baseurl, path))

 def GET(self):
 return self._requests.get(self._url).text

 def POST(self, **kwargs):
 return self._requests.post(self._url, kwargs).text

 def DELETE(self):
 return self._requests.delete(self._url).text

Then we have to use self._requests everywhere instead of just requests. The TestApp
and requests interfaces are similar enough that the only change we actually need to the
rest of the code is to omit the name of the argument (data=) from the post method and
invoke it with a positional argument. This is because in requests, the argument is named
data, while in TestApp it is named params. Passing it by position means that we don't
need to worry about what name it has.

Testing for the Web: WSGI versus HTTP Chapter 11

[260]

Now our HTTPClient is ready to accept a replacement for requests and we can take back
the original version of the tests we wrote for HTTPClient (the one that didn't use
requests-mock) and pass an instance of webtest.TestApp(wsgiwebtest.
Application) as the replacement for requests:

import json

import webtest

from wsgiwebtest import Application
from httpclient import HTTPClient

class TestHTTPClientWebTest:
 def test_GET(self):
 client = HTTPClient(url="http://httpbin.org/get",
 requests=webtest.TestApp(Application()))
 response = client.GET()

 assert '"Host": "httpbin.org"' in response
 assert '"args": {}' in response

 def test_GET_params(self):
 client = HTTPClient(url="http://httpbin.org/get?alpha=1",
 requests=webtest.TestApp(Application()))
 response = client.GET()
 response = json.loads(response)

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}

 def test_POST(self):
 client = HTTPClient(url="http://httpbin.org/post?alpha=1",
 requests=webtest.TestApp(Application()))
 response = client.POST(beta=2)
 response = json.loads(response)

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}
 assert response["form"] == {"beta": "2"}

 def test_DELETE(self):
 client = HTTPClient(url="http://httpbin.org/anything/27",
 requests=webtest.TestApp(Application()))
 response = client.DELETE()

Testing for the Web: WSGI versus HTTP Chapter 11

[261]

 assert '"method": "DELETE"' in response
 assert '"url": "http://httpbin.org/anything/27"' in response

If we save those tests as tests/test_client_webtest.py, they will keep working
exactly like before, but they will submit real requests to wsgiwebtest.Application
through the WSGI protocol, thus making sure that both the server and the client are able to
work together:

$ pytest -v -s
====================== test session starts ======================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
...
collected 4 items

tests/test_client_webtest.py::TestHTTPClientWebTest::test_GET PASSED [25%]
tests/test_client_webtest.py::TestHTTPClientWebTest::test_GET_params PASSED
[50%]
tests/test_client_webtest.py::TestHTTPClientWebTest::test_POST PASSED [
75%]
tests/test_client_webtest.py::TestHTTPClientWebTest::test_DELETE PASSED
[100%]
======================= 4 passed in 0.08s =======================

Any change to one of the two that makes it incompatible with the other would immediately
cause the tests to fail, thus verifying that the two work correctly together without any of the
overhead of network-based communication or the flakiness that it involves.

All this is made possible by the fact that we used the WSGI standard to develop our web
application and, as we are going to see in the next section, WSGI is the most widespread
web development standard in Python and is supported by all major web frameworks.

Using WebTest with web frameworks
We have seen how to use WebTest with a plain WSGI application, but thanks to the fact
that WSGI is widely adopted by all major web frameworks, it's possible to use WebTest
with nearly all Python web frameworks.

To showcase how WebTest is able to work with most Python web frameworks, we are
going to replicate our httpbin in four web frameworks: Django, Flask, Pyramid, and
TurboGears2, and for all of them we are going to use the same exact test suite. So we will
share a single test suite between four different frameworks.

Testing for the Web: WSGI versus HTTP Chapter 11

[262]

The first step is to create a test suite that can verify that our web applications are starting
correctly. We are going to do so by adding a test that verifies all four web applications'
answering with a "Hello World" message on the index of the website.

The first step is to create a tests/test_wsgiapp.py file that's going to contain our only
test for now:

import webtest

class TestWSGIApp:
 def test_home(self, wsgiapp):
 client = webtest.TestApp(wsgiapp)
 response = client.get("http://httpbin.org/").text

 assert 'Hello World' in response

The test is fairly simple – it takes a WSGI application and checks that, on the index of the
website, the response contains the "Hello World" string.

The interesting part is how we are going to provide that wsgiapp object, as it has to be
different for each web framework. So we are going to add an option to our test suite to
choose which web framework to use and thus which application to create.

We are going to do so by creating a tests/conftest.py file that is going to contain both
the new option and the fixture to create the wsgiapp. The first thing we want to add is
support for the new option:

import pytest

def pytest_addoption(parser):
 parser.addoption(
 "--framework", action="store",
 help="Choose which framework to use for "
 "the web application: [tg2, django, flask, pyramid]"
)

Testing for the Web: WSGI versus HTTP Chapter 11

[263]

If things work correctly, once we save the tests/conftest.py file, running pytest --
help will properly show the new option in the custom ones:

$ pytest --help
...
custom options:
 --framework=FRAMEWORK
 Choose which framework to use for the
 web application: [tg2, django, flask, pyramid]

Now that we have the option available, we must create the fixture that is going to use the
option, the wsgiapp fixture. As it's a fixture available for all our test suites, we can just add
it to the conftest.py file under the new option:

@pytest.fixture
def wsgiapp(request):
 framework = request.config.getoption("--framework")

 if framework == "tg2":
 from wbtframeworks.tg2 import make_application
 elif framework == "flask":
 from wbtframeworks.flask import make_application
 elif framework == "pyramid":
 from wbtframeworks.pyramid import make_application
 elif framework == "django":
 from wbtframeworks.django import make_application
 else:
 make_application = None

 if make_application is not None:
 return make_application()

 if framework is None:
 raise ValueError("Please pick a framework with --framework option")
 else:
 raise ValueError(f"Invalid framework {framework}")

The first thing that the fixture does is retrieve the selected framework through the option.
Then, depending on which framework was selected, it's going to import the function that
creates a new WSGI application from the module dedicated to that framework.

For convenience, we added all four modules (tg2, flask, pyramid, and django) under the
same wbtframeworks package, which is the one we are going to install.

Testing for the Web: WSGI versus HTTP Chapter 11

[264]

Once a framework is selected and the make_application function is imported, the fixture
will just return the new application built by the factory function. The remaining lines of
code are to handle the case where the user picks an unsupported framework (or no
framework at all).

Running pytest now should lead to it correctly complaining that we have picked no
framework:

$ pytest -v
================ test session starts ================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
collected 1 item

tests/test_wsgiapp.py::TestWSGIApp::test_home ERROR [100%]

======================= ERRORS ======================
______ ERROR at setup of TestWSGIApp.test_home ______

request = <SubRequest 'wsgiapp' for <Function test_home>>

 @pytest.fixture
 def wsgiapp(request):
 ...
 elif framework is None:
> raise ValueError("Please pick a framework with --framework option")
E ValueError: Please pick a framework with --framework option

tests/conftest.py:31: ValueError
=================== short test summary info ===================
ERROR tests/test_wsgiapp.py::TestWSGIApp::test_home -
 ValueError: Please pick a framework with --framework option
======================= 1 error in 0.15s =======================

To confirm that the option is working as expected, we can run pytest with the --
framework=flask option to see what happens:

$ pytest -v --framework=flask
================ test session starts ================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
collected 1 item

tests/test_wsgiapp.py::TestWSGIApp::test_home ERROR [100%]

======================= ERRORS ======================
______ ERROR at setup of TestWSGIApp.test_home ______

request = <SubRequest 'wsgiapp' for <Function test_home>>

Testing for the Web: WSGI versus HTTP Chapter 11

[265]

 @pytest.fixture
 def wsgiapp(request):
 framework = request.config.getoption("--framework")
 if framework == "tg2":
> from wbtframeworks.tg2 import make_application
E ModuleNotFoundError: No module named 'wbtframeworks'

tests/conftest.py:31: ValueError
=================== short test summary info ===================
ERROR tests/test_wsgiapp.py::TestWSGIApp::test_home -
 ModuleNotFoundError: No module named 'wbtframeworks'
======================= 1 error in 0.15s =======================

In this second case, it recognized the option correctly, but it complained that the
wbtframeworks package is not yet installed. That's expected as we haven't yet even
created it.

First, let's create a src/setup.py file to make the wbtframeworks package installable:

from setuptools import setup

setup(name='wbtframeworks', packages=['wbtframeworks'])

Now that the wbtframeworks package is installable, the next step is to create the package
itself, by creating the src/wbtframeworks/__init__.py file and then installing it:

$ pip install -e src
Obtaining file://src
Installing collected packages: wbtframeworks
 Running setup.py develop for wbtframeworks
Successfully installed wbtframeworks

Now that the package is available and installed in editable mode, we have to create the
structure for the four frameworks.

For the sake of keeping things short, as the sole purpose of those web applications is to
showcase how the same test suite can work against the four of them, we are going to use all
four frameworks in minimal mode, constraining the application to a single file.

The first one we are going to add is the src/wbtframeworks/flask/__init__.py file, to
add support for Flask:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():

Testing for the Web: WSGI versus HTTP Chapter 11

[266]

 return 'Hello World'

def make_application():
 return app.wsgi_app

We can confirm this minimal application works as expected by running our tests with
pytest --frameworks=flask:

$ pytest -v --framework=flask
====================== test session starts ======================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
collected 1 item

tests/test_wsgiapp.py::TestWSGIApp::test_home PASSED [100%]

======================= 1 passed in 0.13s =======================

We use the same technique to create a src/wbtframeworks/pyramid/__init__.py file
for the Pyramid application:

from pyramid.config import Configurator
from pyramid.response import Response

def hello_world(request):
 return Response('Hello World!')

def make_application():
 with Configurator() as config:
 config.add_route('hello', '/')
 config.add_view(hello_world, route_name='hello')
 return config.make_wsgi_app()

Likewise, let's create the src/wbtframeworks/tg2/__init__.py for the TurboGears2
application as follows:

from tg import expose, TGController
from tg import MinimalApplicationConfigurator

class RootController(TGController):
 @expose()
 def index(self):
 return 'Hello World'

Testing for the Web: WSGI versus HTTP Chapter 11

[267]

def make_application():
 config = MinimalApplicationConfigurator()
 config.update_blueprint({
 'root_controller': RootController()
 })

 return config.make_wsgi_app()

And finally, create a src/wbtframeworks/django/__init__.py file for the Django
application:

import sys
import os
from django.conf.urls import re_path
from django.conf import settings
from django.http import HttpResponse

settings.configure(
 DEBUG=True,
 ROOT_URLCONF=sys.modules[__name__],
 ALLOWED_HOSTS=["httpbin.org"]
)

def home(request):
 return HttpResponse('Hello World')

urlpatterns = [
 re_path(r'^$', home),
]

def make_application():
 from django.core.wsgi import get_wsgi_application

 os.environ.setdefault('DJANGO_SETTINGS_MODULE',
 'wbtframeworks.django.settings')

 return get_wsgi_application()

Once all of them are available, we can see that our test is able to run against all four of them
without any difference. It can run against TurboGears2:

$ pytest --framework=tg2
====================== test session starts ======================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
collected 1 item

tests/test_wsgiapp.py . [100%]

Testing for the Web: WSGI versus HTTP Chapter 11

[268]

======================= 1 passed in 0.13s =======================

And it can be run against Django without any changes:

$ pytest --framework=django
====================== test session starts ======================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
collected 1 item

tests/test_wsgiapp.py . [100%]

======================= 1 passed in 0.13s =======================

Now that we are sure that our test suite can run against all four frameworks, we will extend
it with the other tests we had for our httpbin.org clone:

import webtest

class TestWSGIApp:
 def test_home(self, wsgiapp):
 client = webtest.TestApp(wsgiapp)
 response = client.get("http://httpbin.org/").text

 assert 'Hello World' in response

 def test_GET(self, wsgiapp):
 client = webtest.TestApp(wsgiapp)
 response = client.get("http://httpbin.org/get").text

 assert '"Host": "httpbin.org"' in response
 assert '"args": {}' in response

 def test_GET_params(self, wsgiapp):
 client = webtest.TestApp(wsgiapp)

 response = client.get(url="http://httpbin.org/get?alpha=1").json

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}

 def test_POST(self, wsgiapp):
 client = webtest.TestApp(wsgiapp)

 response = client.post(url="http://httpbin.org/get?alpha=1",
 params={"beta": "2"}).json

 assert response["headers"]["Host"] == "httpbin.org"

Testing for the Web: WSGI versus HTTP Chapter 11

[269]

 assert response["args"] == {"alpha": "1"}
 assert response["form"] == {"beta": "2"}

 def test_DELETE(self, wsgiapp):
 client = webtest.TestApp(wsgiapp)

 response = client.delete(url="http://httpbin.org/anything/27").text
 assert '"method": "DELETE"' in response
 assert '"url": "http://httpbin.org/anything/27"' in response

Running the tests now against any framework will complain that those URLs lead to a 404
error, as we haven't yet implemented them. For example, running the tests for Pyramid
would lead only to the test_home one succeeding and the others failing:

$ pytest --framework=pyramid
====================== test session starts ======================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
collected 1 item

tests/test_wsgiapp.py .FFFF [100%]

==================== short test summary info ====================
FAILED test_GET - webtest.app.AppError: 404 Not Found (not 200 OK o...
FAILED test_GET_params - webtest.app.AppError: 404 Not Found (not 2...
FAILED test_POST - webtest.app.AppError: 404 Not Found (not 200 OK ...
FAILED test_DELETE - webtest.app.AppError: 404 Not Found (not 200 O...
================== 4 failed, 1 passed in 0.37s ==================

Now that our test suite can run for all four implementations of our application, we only
have to proceed with the actual implementation. Given that it doesn't add much value
having the same web application implemented in four different frameworks (outside of
being a good exercise to learn those frameworks), we are going to provide only the
implementation using Django and will leave to the readers the work of implementing it on
the other three frameworks if they wish.

Thus we are going to open our src/wbtframeworks/django/__init__.py file and edit
it to add the remaining routes with the pieces that are lacking:

import sys, json
from django.conf.urls import re_path
from django.conf import settings
from django.http import HttpResponse

settings.configure(
 DEBUG=True,
 ROOT_URLCONF=sys.modules[__name__],
 ALLOWED_HOSTS=["httpbin.org"]

Testing for the Web: WSGI versus HTTP Chapter 11

[270]

)

def home(request):
 return HttpResponse('Hello World')

def get(request):
 if request.META.get("SERVER_PORT") == "80":
 host_no_default_port = request.META["HTTP_HOST"].replace(":80", "")
 request.META["HTTP_HOST"] = host_no_default_port
 host = request.META["HTTP_HOST"]

 response = HttpResponse(json.dumps({
 "method": request.META["REQUEST_METHOD"],
 "headers": {"Host": host},
 "args": {
 p: v for (p, v) in request.GET.items()
 },
 "form": {
 p: v for (p, v) in request.POST.items()
 },
 "url": request.build_absolute_uri()
 }, sort_keys=True))
 response['Content-Type'] = 'application/json'
 return response

urlpatterns = [
 re_path(r'^get$', get),
 re_path(r"^anything.*$", get),
 re_path(r'^$', home),
]

def make_application():
 import os
 from django.core.wsgi import get_wsgi_application

 os.environ.setdefault('DJANGO_SETTINGS_MODULE',
 'wbtframeworks.django.settings')

 return get_wsgi_application()

Running our tests now would confirm that, at least for Django, they are able to pass and
succeed:

$ pytest --framework=django
====================== test session starts ======================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1
collected 5 items

Testing for the Web: WSGI versus HTTP Chapter 11

[271]

tests/test_wsgiapp.py [100%]

======================= 5 passed in 0.27s =======================

This is a very naïve and basic implementation for the sole purpose of showing that our tests
are able to pass once the application is provided, but it proves that on Django, we are
perfectly able to use WebTest like we would for any other WSGI framework.

But WebTest is not the only way we can test Django applications. Django also provides its
own testing client, so let's see how we would test the same application using Django's test
client instead of WebTest.

Writing Django tests with Django's test
client
While on Python the most widespread testing toolkit is pytest, some web frameworks
provide their own solutions for managing test suites. Django is one such example, even
though it's possible (as we have seen in the previous section), most people tend to run their
tests with the Django test client, which provides the same capabilities as WebTest but is a
solution built explicitly for Django.

In this section, we are going to see how we can create a Django project and then run its tests
using the standard Django testing infrastructure as well as a pytest-based one:

The first step will be to create a new Django project, which we are going to call1.
djapp:

$ django-admin startproject djapp

This will create a djapp directory where we can manage our Django project. In
the project directory, we will find a manage.py file, which allows us to run
various management operations for our project, from setting up the database to
starting the web application itself and running tests the Django way.

The next step is to actually put an application inside our project. As our2.
application will be the httpbin one we already wrote, we will just call the
application httpbin. To create a new application inside a project, we can use the
manage.py startapp command:

$ python manage.py startapp httpbin

Testing for the Web: WSGI versus HTTP Chapter 11

[272]

Now that the httpbin application is available, we have to copy the content of3.
the wbtframeworks/django/__init__.py file we just wrote in the previous
section. The first things we have to copy are the two home and get views, which
have to be copied inside the djapp/httpbin/views.py file:

import json

from django.http import HttpResponse

def home(request):
 return HttpResponse('Hello World')

def get(request):
 if request.META.get("SERVER_PORT") == "80":
 http_host = request.META.get("HTTP_HOST", "httpbin.org")
 host_no_default_port = http_host.replace(":80", "")
 request.META["HTTP_HOST"] = host_no_default_port
 host = request.META["HTTP_HOST"]

 response = HttpResponse(json.dumps({
 "method": request.META["REQUEST_METHOD"],
 "headers": {"Host": host},
 "args": {
 p: v for (p, v) in request.GET.items()
 },
 "form": {
 p: v for (p, v) in request.POST.items()
 },
 "url": request.build_absolute_uri()
 }, sort_keys=True))
 response['Content-Type'] = 'application/json'
 return response

Then, once the views are available, we must actually expose them; that is, make4.
them accessible through some kind of URL. To do so, we have to add the three
URL paths to the djapp/httpbin/urls.py file:

from django.urls import re_path

from . import views

urlpatterns = [
 re_path(r'^get$', views.get),
 re_path(r"^anything.*$", views.get),
 re_path(r'^$', views.home)
]

Testing for the Web: WSGI versus HTTP Chapter 11

[273]

Our application is now fully functional. But if we try to start it now it won't work.
That's because we haven't yet attached the application to the project. So the djapp
project doesn't yet know that it has to serve the httpbin application.

To do this, we can open the djapp/djapp/urls.py file and make sure that all5.
the URLs from the httpbin project are correctly included in it:

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path("", include("httpbin.urls"))
]

The last step is to make sure that our website is accessible on all the hosts that we6.
plan to use, so we should set the ALLOWED_HOSTS variable in
djapp/djapp/settings.py:

ALLOWED_HOSTS = ["httpbin.org", "127.0.0.1"]

If we did everything correctly, running manage.py runserver should now run
our website and make it visible on http://127.0.0.1:8000/:

$ python manage.py runserver
...
Django version 3.1.4, using settings 'djapp.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Pointing our web browser to http://127.0.0.1:8000/ should greet us with a
Hello World message as specified by the httpbin.views.home function:

Figure 11.2 – Hello World response from our Django application

Now that we confirmed the application is being correctly served, we have to make sure we
are able to run the tests against it.

Testing for the Web: WSGI versus HTTP Chapter 11

[274]

Testing Django projects with pytest
The first thing we are going to do is to take our test suite as-is, based on WebTest and
pytest, and make it work against the new Django project we just wrote. This mostly
guarantees that the behavior we have is the same exact behavior we previously had, as the
tests are the same tests we had previously. Also shows how we can use pytest and WebTest
even with a full-fledged Django project.

To do so, we are going to create a pytest-tests directory inside the djapp project. Here
we are going to place the djapp/pytest-tests/test_djapp.py module, which is
mostly a copy of the test module we had in the previous section. The only difference will be
where the wsgiapp object comes from:

import sys
import webtest

sys.path.append(".")
from djapp.wsgi import application as wsgiapp

class TestWSGIApp:
 def test_home(self):
 client = webtest.TestApp(wsgiapp)
 response = client.get("http://httpbin.org/").text

 assert 'Hello World' in response

 def test_GET(self):
 client = webtest.TestApp(wsgiapp)
 response = client.get("http://httpbin.org/get").text

 assert '"Host": "httpbin.org"' in response
 assert '"args": {}' in response

 def test_GET_params(self):
 client = webtest.TestApp(wsgiapp)

 response = client.get(url="http://httpbin.org/get?alpha=1").json

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}

 def test_POST(self):
 client = webtest.TestApp(wsgiapp)

 response = client.post(url="http://httpbin.org/get?alpha=1",

Testing for the Web: WSGI versus HTTP Chapter 11

[275]

 params={"beta": "2"}).json

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}
 assert response["form"] == {"beta": "2"}

 def test_DELETE(self):
 client = webtest.TestApp(wsgiapp)

 response = client.delete(url="http://httpbin.org/anything/27").text
 assert '"method": "DELETE"' in response
 assert '"url": "http://httpbin.org/anything/27"' in response

The two main changes compared to the prior test module are that we removed all the
wsgiapp arguments from the test functions, as the wsgiapp object won't come anymore
from a fixture injecting the dependency, and that we imported it at the top of the file from
the djapp.wsgi module. Different to most web frameworks, in Django the projects are not
Python distributions, and thus can't be installed with pip. This means that we can't directly
import the project from anywhere and refer to its content.

To surpass this limitation we are going to use sys.path.append(".") to make the
current path available to Python. This allows us to import the djapp package inside the
djapp project as if it were a normal Python installed package, thus making accessible the
djapp.wsgi module. Inside that module, Django makes the WSGI application available as
the application object.

To confirm things worked as expected, we are going to run pytest and point it to the
pytest-tests directory. This should run the same exact tests we had before, just against
the new Django project:

$ pytest pytest-tests -v
======================== test session starts =========================
platform linux -- Python 3.8.6, pytest-6.0.2, py-1.9.0, pluggy-0.13.1 --
collected 5 items

pytest-tests/test_djapp.py::TestWSGIApp::test_home PASSED [20%]
pytest-tests/test_djapp.py::TestWSGIApp::test_GET PASSED [40%]
pytest-tests/test_djapp.py::TestWSGIApp::test_GET_params PASSED [60%]
pytest-tests/test_djapp.py::TestWSGIApp::test_POST FAILED [80%]
pytest-tests/test_djapp.py::TestWSGIApp::test_DELETE FAILED [100%]

============================== FAILURES ==============================
...
------------------------ Captured stderr call ------------------------
Forbidden (CSRF cookie not set.): /anything/27
------------------------- Captured log call --------------------------

Testing for the Web: WSGI versus HTTP Chapter 11

[276]

WARNING django.security.csrf:log.py:224 Forbidden (CSRF cookie not set.):
/anything/27
====================== short test summary info =======================
FAILED pytest-tests/test_djapp.py::TestWSGIApp::test_POST - webtest...
FAILED pytest-tests/test_djapp.py::TestWSGIApp::test_DELETE - webte...
==================== 2 failed, 3 passed in 0.40s =====================

Surprisingly, there were two tests that failed compared to before: test_POST and
test_DELETE.

Both of them failed with a CSRF cookie not set error. This is because Django sets up
support for CSRF attack protection by default in all new projects. The protection works by
using a token provided automatically by forms when they get submitted to other
endpoints. The problem is that in our project, we don't have any forms at all, so the DELETE
and POST requests are not submitting any tokens, thus failing the protection check.

For our kind of application, this kind of protection doesn't make much sense, as we aren't
going to have any forms present. Thus we can edit the djapp/djapp/settings.py file
and remove the django.middleware.csrf.CsrfViewMiddleware line from the
MIDDLEWARES variable:

MIDDLEWARE = [
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 # 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
]

Now that we have disabled the CSRF protection, rerunning the tests should succeed as
expected:

$ pytest pytest-tests -v
======================== test session starts =========================
collected 5 items

pytest-tests/test_djapp.py::TestWSGIApp::test_home PASSED [20%]
pytest-tests/test_djapp.py::TestWSGIApp::test_GET PASSED [40%]
pytest-tests/test_djapp.py::TestWSGIApp::test_GET_params PASSED [60%]
pytest-tests/test_djapp.py::TestWSGIApp::test_POST PASSED [80%]
pytest-tests/test_djapp.py::TestWSGIApp::test_DELETE PASSED [100%]

========================= 5 passed in 0.21s ==========================

Testing for the Web: WSGI versus HTTP Chapter 11

[277]

Testing Django projects with Django's test client
We have seen that the application behaves like we expected as the same tests we wrote for
WebTest worked correctly. But running tests using pytest and WebTest is a non-standard
way to test Django projects. Most people would expect to be able to test a Django project
simply using the manage.py test command. But for now, this command runs no tests at
all:

$ python manage.py test
System check identified no issues (0 silenced).

--
Ran 0 tests in 0.000s

OK

This is because for manage.py test itself, we have not yet written any test. manage.py
test is mostly based on the unittest framework we saw at the beginning of the book,
and thus is not compatible with pytest. Also, the tests here are meant to be written slightly
differently without using WebTest.

To migrate our tests to the Django way, we have to create a djapp/httpbin/tests.py file
in which we will put all our tests. For now, in this file, we are going to provide a single test
for the index page of the website, just to make sure that the test suite is able to find our test
and that the web application is correctly starting up:

from django.test import TestCase

class HttpbinTests(TestCase):
 def test_home(self):
 response = self.client.get("/")
 self.assertContains(response, "Hello World")

Django tests will usually inherit from django.test.TestCase, which serves two different
purposes:

First, to make sure that the methods inside the subclass are correctly identified as
tests, and thus run when we start the test suite.
The second purpose is to provide the self.client object, which helps to
perform requests to the web application much like WebTest did.

In this case, the primary difference is that the web application is not explicitly provided to
the client, but is detected based on the project where we are running the tests.

Testing for the Web: WSGI versus HTTP Chapter 11

[278]

Now that we have a test in place, running the manage.py test command again should
finally find and run the test:

$ python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 1 test in 0.004s

OK
Destroying test database for alias 'default'...

The next steps will be to also port the test_GET, test_GET_params, test_POST, and
test_DELETE tests to the Django standard so that our full test suite is available when
running manage.py test.

The main differences when working with Django's test client is that for the responses, it's
going to provide a Django HttpResponse object, thus the content of the response will be
available in binary form in the HttpResponse.content attribute and we will have to
decode it ourselves, while WebTest provided the .text and .json properties, which
handled much of that for us. Apart from these minor differences, the tests mostly look the
same as before:

import json

from django.test import TestCase

class HttpbinTests(TestCase):
 def test_home(self):
 response = self.client.get("/")
 self.assertContains(response, "Hello World")

 def test_GET(self):
 response = self.client.get("/get").content.decode("utf-8")

 assert '"Host": "httpbin.org"' in response
 assert '"args": {}' in response

 def test_GET_params(self):
 response = json.loads(self.client.get("/get?alpha=1").content)

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}

Testing for the Web: WSGI versus HTTP Chapter 11

[279]

 def test_POST(self):
 response = json.loads(self.client.post(
 "/get?alpha=1", {"beta": "2"}
).content)

 assert response["headers"]["Host"] == "httpbin.org"
 assert response["args"] == {"alpha": "1"}
 assert response["form"] == {"beta": "2"}

 def test_DELETE(self):
 response = self.client.delete(
 "/anything/27"
).content.decode("utf-8")
 assert '"method": "DELETE"' in response
 assert '"url": "http://httpbin.org/anything/27"' in response

Now that we have in place the same tests we had before, but now in the new Django test
client format, we can verify that all five of them pass as expected by rerunning the
manage.py test command:

$ python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.....
--
Ran 5 tests in 0.010s

OK
Destroying test database for alias 'default'...

This confirms that our tests for the application succeed also in the Django test client
version.

Which format to use (WebTest or Django's test client) can be considered mostly a matter of
preference for skilled Django users, but for most developers out there, using Django's test
client will probably lead to finding more answers to your questions and doubts, as it's the
documented and suggested way that Django developers expect will be used when writing
Django applications.

For people interested in using pytest with Django, a pytest-django package also exists
that tries to fill the gap while hiding most of the machinery necessary to make Django tests
run with pytest.

Testing for the Web: WSGI versus HTTP Chapter 11

[280]

Summary
In this chapter, we saw how we can test HTTP-based applications and how we can verify
the behavior of HTTP clients, HTTP servers, and even the two of them together. This is all
thanks to the WSGI protocol that powers the Python web ecosystem. We have also seen
how testing works in the Django world when Django's test client is used, thus we are fairly
capable of writing effective test suites for whatever web framework we are going to use.

Our testing isn't fully complete by the way. We are verifying the endpoints, checking that
the web pages contain the responses we expect, but we have no way to check that, once
those responses are read by a web browser, they actually behave as we expected. Even
worse, if there is JavaScript involved, we don't have any way to verify that the JavaScript in
those web pages is actually doing what we want.

So in the next chapter, we are going to see how we can test our web applications with a real
browser while also verifying the JavaScript that our web pages contain, thus completing the
list of skills we might need to develop a fully tested web application.

12
End-to-End Testing with the

Robot Framework
In the previous chapter, we saw how to test web applications and, in general, applications
that rely on the HTTP protocol, both client and server side, but we were unable to test how
they perform in a real browser. With their complex layouts, the fact that CSS and JavaScript
are heavily involved in testing your application with WebTest or a similar solution might
not be sufficient to guarantee users that they are actually able to work with it. What if a
button is created by JavaScript or it's disabled by CSS? Those conditions are hard to test
using WebTest and we might easily end up with a test that clicks that button even though
the button wasn't actually usable by users.

To guarantee that our applications behave properly, it is a good idea to have a few tests that
verify at least the more important areas of the application using a real browser. As those
kinds of tests tend to be very slow and fragile, you still want to have the majority of your
tests written using solutions such as WebTest or even unit tests, which don't involve the
whole application life cycle, but having the most important parts of the web application
verified using real browsers will guarantee that at least the critical path of your web
application works on all major browsers.

The Robot framework is one of the most solid solutions for writing the end-to-end tests that
drive web browsers and mobile applications in the Python world. It was originally
developed by Nokia and evolved under the open source community, and is a long-standing
and solid solution with tons of documentation and plugins. It is therefore battle tested and
ready for your daily projects.

In this chapter, we will cover the following topics:

Introducing the Robot framework
Testing with web browsers
Extending the Robot framework

End-to-End Testing with the Robot Framework Chapter 12

[282]

Technical requirements
We need a working Python interpreter with the Robot Framework installed. To run tests
with real browsers, we are also going to use the robotframework-seleniumlibrary and
the webdrivermanager utilities. To record videos of our tests, we are going to need
the robotframework-screencaplibrary library. robotframework, robotframework-
seleniumlibrary, robotframework-screencaplibrary, and webdrivermanager can
be installed with pip, in the same way as all other Python dependencies:

$ pip install robotframework robotframework-seleniumlibrary
webdrivermanager robotframework-screencaplibrary

The examples have been written on Python 3.7, robotframework 3.2.2, robotframework-
seleniumlibrary 4.5.0, robotframework-screencaplibrary 1.5.0, and webdrivermanager 0.9.0,
but should work on most modern Python versions.

You can find the code present in this chapter on GitHub at https:/ /github. com/
PacktPublishing/Crafting- Test- Driven- Software- with- Python/ tree/ main/ Chapter12.

Introducing the Robot Framework
The Robot Framework is an automation framework mostly used to create acceptance tests
in the Acceptance Test Driven Development (ATDD) and Behavior Driven
Development (BDD) styles. Tests are written in a custom, natural English-like language
that can be easily extended in Python, so Robot can, in theory, be used to write any kind of
acceptance tests in a format that can be shared with other stakeholders, pretty much like
what we have seen we can do with pytest-bdd in previous chapters.

The primary difference is that Robot is not based on PyTest, it is a replacement for PyTest,
and is widely used to create end-to-end tests for mobile and web applications. For mobile
applications, the Appium library allows us to write Robot Framework tests that control
mobile applications on a real device, while the Selenium library provides a complete
integration with web browsers, which means that the Robot Framework allows us to write
tests that drive a real web browser and verify the results.

Robot Framework tests are written inside .robot files, which are then divided into
multiple sections by the section headers. The most frequently used section headers are the
following:

*** Settings ***: This contains options to configure Robot itself.
*** Variables ***: This contains variables to reuse across multiple tests.

https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12
https://github.com/PacktPublishing/Crafting-Test-Driven-Software-with-Python/tree/main/Chapter12

End-to-End Testing with the Robot Framework Chapter 12

[283]

*** Test Cases ***: This contains our tests.
*** Keywords ***: This contains our own custom commands.

So, the minimum content of a .robot file is usually a Test Cases section with a test
inside. Each test is then a collection of commands for the Robot Framework that are
provided by keywords made available by libraries for the Robot Framework itself.

The only library automatically available by default in the Robot Framework is the
Builtin one (Builtin library reference: https:/ /robotframework. org/ robotframework/
latest/libraries/ BuiltIn. html), which provides some generally helpful commands such
as Should Contain to check the content of a variable, or Expression to run any Python
expression and assign the result to a variable.

Further libraries can be imported explicitly with the Library command in the Settings
section. Without involving explicit libraries that add more commands, Robot itself can't do
much.

For example, if we want to create a very basic test where we save the "Hello World"
string into a file and verify its content, we would have to involve the OperatingSystem
library (OperatingSystem library reference: https:/ /robotframework. org/
robotframework/latest/ libraries/ OperatingSystem. html), which makes available
commands to interact with files, directories, and the system shell.

To create such a test, we would make a hellotest.robot file, where we can declare the
instruction for the Robot Framework. At the beginning of the file, we would declare a
Settings section, where we use the Library command to make the OperatingSystem
library available:

*** Settings ***
Library OperatingSystem

In Robot, multiple spaces perform separate commands from their
arguments.

Through the OperatingSystem library, we will get the Run and Get File commands,
which we need to write our actual test.

Subsequently, we will declare the Test Cases section, where we can put all our tests. In
this case, we are going to place only one test, entitled Hello World.

https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/BuiltIn.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html
https://robotframework.org/robotframework/latest/libraries/OperatingSystem.html

End-to-End Testing with the Robot Framework Chapter 12

[284]

The test itself will create a new file with the "Hello World" string inside, and will then
read it back and check that the content contains the string "Hello":

*** Test Cases ***
Hello World
 Run echo "Hello World" > hello.txt
 ${filecontent} = Get File hello.txt
 Should Contain ${filecontent} Hello

The first line of our test uses the Run keyword to invoke the echo command in a shell (if
you are on a *nix system, such as Linux or macOS X), and the echo command is invoked
with the Hello World argument and redirection is effected to the hello.txt file so that
the output of the command actually goes into that file.

Once that file is created, on the second line we use the Get File keyword to read the
content of the hello.txt file and assign what we read to the ${filecontent} variable.

Finally, we check through the Should Contain keyword that the variable contains the
string Hello.

Once we have saved all this as hellotest.robot, we should be able to run it by invoking
the robot command and see that our test is executed and passes:

$ robot hellotest.robot
===
Hellotest
===
Hello World | PASS |

Hellotest | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
===

If we wanted to see what happens when our tests fail, we could change the Should
Contain line to a different string, for example, Should Contain ${filecontent}
 Bye and see what happens when we rerun our test:

$ robot hellotest.robot
===
Hellotest
===
Hello World | FAIL |
'Hello World' does not contain 'Bye'

Hellotest | FAIL |

End-to-End Testing with the Robot Framework Chapter 12

[285]

1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
===

Details about what precisely went wrong are then made available in the log.html file,
where each command that Robot performed is recorded with debugging information.
Opening such a file in a browser will indicate explicitly that the command that failed is
Builtin.Should Contain and that it failed with the 'Hello World' does not
contain 'Bye' error:

Figure 12.1 – Detailed log of our test execution from log.html

End-to-End Testing with the Robot Framework Chapter 12

[286]

Now that we know how the Robot Framework works, we can move on to the next steps
and see how we can use it to test web applications with a real browser.

Testing with web browsers
We have seen how, using libraries, we can extend Robot with additional commands that
allow us to write most different kinds of tests. One of the most frequent use cases for Robot
is actually web development as it has a very convenient SeleniumLibrary library that
provides many commands to control a real web browser and perform tests that can involve
JavaScript (Selenium library reference: https:/ /robotframework. org/ SeleniumLibrary/
SeleniumLibrary.html).

Once we have installed the robotframework and robotframework-
seleniumlibrary Python distributions, in order to be able to write tests that involve a real
browser, we will need to enable the web drivers for the browsers we want to use. So, we
will need those browsers to be available and then, through the webdrivermanager utility
that we installed previously, we can enable the drivers for all the browsers we have
available:

$ webdrivermanager firefox chrome
Downloading WebDriver for browser: "firefox"
2588kb [00:01, 1978.35kb/s]
Driver binary downloaded to:
"./venv/WebDriverManager/gecko/v0.28.0/geckodriver-v0.28.0-
linux64/geckodriver"
Symlink created: ./venv/bin/geckodriver

Downloading WebDriver for browser: "chrome"
5979kb [00:01, 3615.18kb/s]
Driver binary downloaded to:
"./venv/WebDriverManager/chrome/87.0.4280.88/chromedriver_linux64/chromedri
ver"
Symlink created: ./venv/bin/chromedriver

Notice that the examples take for granted the fact that everything is
happening inside a Python virtual environment, so keep in mind that
when using a virtual environment, the drivers are only available inside
that environment, and if you create a new one you will need to enable the
drivers again.

Once we have the drivers available, Robot will be able to control the browsers for which we
provided the drivers (in this case, Chrome and Firefox), so we can go back to our editor and
create a new test to establish how Robot works.

https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html
https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html

End-to-End Testing with the Robot Framework Chapter 12

[287]

In this case, we are going to create a test where we search on Google for a famous person
and verify that Wikipedia is included in the results returned. To do so, let's create a
searchgoogle.robot file were we are going to enable the SeleniumLibrary library so
that browser-related commands become available:

*** Settings ***
Library SeleniumLibrary

The next step is then to write the test itself to open Google with Chrome, accept the privacy
policy, perform the search, and then check that Wikipedia is included in the results:

*** Test Cases ***
Search On Google
 Open Browser http://www.google.com Chrome
 Wait Until Page Contains Element cnsw
 Select Frame //iframe
 Submit Form //form
 Input Text name=q Stephen\ Hawking
 Press Keys name=q ENTER
 Page Should Contain Wikipedia
 Close Window

If we run our test, a Chrome window will pop up, perform the search, and then close again,
with our test regarded as having passed if everything went right:

$ robot searchgoogle.robot
===
Searchgoogle
===
Search On Google | PASS |

Searchgoogle | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
===

Our test might look a bit complex, and that's because the Google website requires us to
accept a privacy policy before we can start searching. So, the first commands are related to
opening Google itself using Chrome and then waiting for the privacy policy (with id=cnsw
in HTML) to appear:

 Open Browser http://www.google.com Chrome
 Wait Until Page Contains Element cnsw

End-to-End Testing with the Robot Framework Chapter 12

[288]

Once the browser opens the Google website, we should be greeted by the privacy policy
acceptance box:

Figure 12.2 – Google website with the policy acceptance request

In case you don't see the privacy policy when opening the Google website,
don't worry. Google decides if to show the privacy policy or not based on
the country and browser you are connecting from. If you country doesn't
have any privacy policy requirement, Google might not show the policy.
In such case you can omit the three "Wait Until Page Contains Element",
"Select Frame" and "Submit Form" commands related to managing the
privacy policy or just read further until we tackle headless browser later
in the chapter and run the examples using Google Chrome browser in
headless mode.

Once the privacy policy is visible, we are going to pick the iframe within which it gets
displayed and submit the first form that exists within it:

 Select Frame //iframe
 Submit Form //form

End-to-End Testing with the Robot Framework Chapter 12

[289]

Submitting the form will make the privacy policy alert disappear and will finally reveal the
search box:

Figure 12.3 – Google website once the privacy policy has been accepted

At this point, we just have to write the name of the person we want to search for in the
search box (which has name=q in HTML) and submit it by pressing the ENTER key:

 Input Text name=q Stephen\ Hawking
 Press Keys name=q ENTER

Notice that we had to escape the space between the first name and
surname of Stephen Hawking, and that's because spaces are used to
separate arguments of commands in Robot, so we wanted the name and
surname to figure together as a single argument of the Input Text
command instead of them being treated as separate arguments.

End-to-End Testing with the Robot Framework Chapter 12

[290]

At this point, if everything worked correctly, we should see the search results showing
Wikipedia as one of them, if not the first:

Figure 12.4 – Google search results for "Stephen Hawking"

End-to-End Testing with the Robot Framework Chapter 12

[291]

As we are writing a test, the subsequent line is meant to assert the condition for our test, so
it's going to check that Wikipedia is one of the results:

Page Should Contain Wikipedia

Once we have verified that everything worked as expected, as we have nothing else to do,
we can submit the last command to close the browser window and move forward:

Close Window

Recording the execution of tests
As we have seen, while tests are running, the browser window is on screen and every
action we perform is visible. As we obviously don't want to stare at our tests while they
run, it would be convenient to have recordings of them available, so that we can see what
happened during those tests in case of a failure.

Luckily for us, the Robot Framework has a ScreenCapLibrary library that allows
screenshots and video recordings of our tests to be made. Once the robotframework-
screencaplibrary Python distribution is installed with pip, we will be able to use its
commands by adding it to our test's *** Settings *** section:

*** Settings ***
Library SeleniumLibrary
Library ScreenCapLibrary

To record the execution of a test, we just have to begin it with a Start Video Recording
command and then end it with a Stop Video Recording one:

*** Test Cases ***
Search On Google
 Start Video Recording
 Open Browser http://www.google.com Chrome
 Wait Until Page Contains Element cnsw
 Select Frame //iframe
 Submit Form //form
 Input Text name=q Stephen\ Hawking
 Press Keys name=q ENTER
 Stop Video Recording
 Page Should Contain Wikipedia
 Close Window

End-to-End Testing with the Robot Framework Chapter 12

[292]

Screenshots and videos taken with the test are embedded within the log.html document,
so we can see the result of our recording by looking at the log file:

Figure 12.5 – Test execution log with video recording embedded

ScreenCapLibrary recordings will be available only if the step that saves them succeeds.
Therefore, we need to pay attention when writing our tests to ensure that recordings are
saved (which means stopping the recording before any assertion). In our short test, for
example, we placed the Stop Video Recording command before the Page Should
Contain Wikipedia one. This ensures that even if Wikipedia is not included in the
results, the recording will still be visible:

End-to-End Testing with the Robot Framework Chapter 12

[293]

Figure 12.6 – Test execution log with the recording even if the test assertion failed

End-to-End Testing with the Robot Framework Chapter 12

[294]

At the other end, in the event of any failure, the SeleniumLibrary library will make a
screenshot of the web browser. So, even if our video doesn't get recorded, we will always
have available screenshots of the state of the browser at the time the command failed.

A more robust approach for handling recording is to rely on the Test Setup and Test
Teardown phases of Robot so that we can start and stop the recording on every test
automatically and even in case of failures. So if, for example, we move our Start Video
Recording and Stop Video Recording commands into those two phases within the
Settings section, we will have a reliable recording even in the event of failures:

*** Settings ***
Library SeleniumLibrary
Library ScreenCapLibrary

Test Setup Start Video Recording
Test Teardown Stop Video Recording

*** Test Cases ***
Search On Google
 Open Browser http://www.google.com Chrome
 Wait Until Page Contains Element cnsw
 Select Frame //iframe
 Submit Form //form
 Input Text name=q Stephen\ Hawking
 Press Keys name=q ENTER
 Page Should Contain Wikipedia
 Close Window

Now, our recording will be started automatically on all tests and stopped when they end,
even if they fail.

It's generally a good idea to make sure that your test suite has a Suite
Teardown step with a Close All Browsers command in the ***
Settings *** section. This will ensure that all browser processes and
windows are properly destroyed when the test suite finishes running.
Some browsers tend to leave behind running processes after the tests have
run, and so might slow down your system if you run the test suite
multiple times.

End-to-End Testing with the Robot Framework Chapter 12

[295]

Testing with headless browsers
Even if it's convenient to be able to see what's going on during tests, during our daily
development cycle, we don't want to have browser windows popping up in the middle of
our screen and preventing us from doing anything else apart from looking at our tests
running.

For this reason, it's frequently convenient to be able to run tests without real browser
windows opening. This can be done by using a headless browser, in other words, a
browser without a UI.

With Chrome, for example, this can be done in the Open Browser command by
choosing the headlesschrome browser instead of Chrome. Using headlesschrome will
prevent browser windows from popping up, but will still retain the majority of the
features:

*** Test Cases ***
Search On Google
 Open Browser http://www.google.com headlesschrome
 Wait Until Page Contains Element cnsw
 Select Frame //iframe
 Submit Form //form
 Input Text name=q Stephen\ Hawking
 Press Keys name=q ENTER
 Page Should Contain Wikipedia
 Close Window

Unfortunately, while Robot will retain the same behaviors when running with a headless
browser, the websites themselves might not. So, for example, in our case, the test will fail
because Google won't show up the privacy policy acceptance dialog when running with a
headless browser:

$ robot searchgoogle.robot
===
Searchgoogle
===
Search On Google | FAIL |
Element 'cnsw' did not appear in 5 seconds.

Searchgoogle | FAIL |
1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
===

End-to-End Testing with the Robot Framework Chapter 12

[296]

To address this issue, we can make the commands related to the privacy policy conditional
and only run them when a normal browser is in use. To do so, the first step is to refactor the
selected browser into a variable so that we can more easily change which browser we are
going to use:

*** Variables ***
${BROWSER} chrome

*** Test Cases ***
Search On Google
 Open Browser http://www.google.com ${BROWSER}
 ...

Now that we can easily change which browser we use just by changing the ${BROWSER}
variable, we can check whether that variable contains "headlesschrome" to skip the
privacy policy part in the case of the Chrome browser in headless mode.

To make an instruction conditional, we can use the Run Keyword If command. Tweaking
our test that way will make sure that it succeeds both when using a real browser or a
headless one:

*** Settings ***
Library SeleniumLibrary
Library ScreenCapLibrary
Test Setup Start Video Recording
Test Teardown Stop Video Recording

*** Variables ***
${BROWSER} headlesschrome
${NOTHEADLESS}= "headlesschrome" not in "${BROWSER}"

*** Test Cases ***
Search On Google
 Open Browser http://www.google.com ${BROWSER}
 Run Keyword If ${NOTHEADLESS} Wait Until Page Contains Element
 cnsw
 Run Keyword If ${NOTHEADLESS} Select Frame //iframe
 Run Keyword If ${NOTHEADLESS} Submit Form //form
 Input Text name=q Stephen\ Hawking
 Press Keys name=q ENTER
 Page Should Contain Wikipedia
 Close Window

To avoid repeating the condition over and over, we also refactored the "headlesschrome"
not in "${BROWSER}" expression into a variable so that we can just check for that
variable.

End-to-End Testing with the Robot Framework Chapter 12

[297]

Now that we have conditional execution of the instructions that caused problems when
using a headless browser, we can rerun our test:

$ robot searchgoogle.robot
===
Searchgoogle
===
Search On Google | PASS |

Searchgoogle | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
===

Now, our tests finally passed using a headless browser and we learned how to use
variables and conditional execution in Robot tests.

Testing multiple browsers
Now that we know how to run tests in Chrome, headless or not, it might be reasonable to
feel the need to verify that our web application actually works on other browsers, too. So
the question might be how we can also verify it on Firefox or Edge.

Luckily for us, we just refactored the browser in use to be a variable, so we can just change
that variable and have all our tests run on one browser or the other.

But if we want to make this part of our CI, it's not very convenient to change the tests file in
the middle of our CI runs. For this reason, Robot allows the provision of variable values
through the command line using the --variable option. For example, to use Firefox, we
could pass --variables browser:firefox:

$ robot --variable browser:firefox searchgoogle.robot
===
Searchgoogle
===
Search On Google | FAIL |
Element with locator 'name=q' not found.

Searchgoogle | FAIL |
1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
===

End-to-End Testing with the Robot Framework Chapter 12

[298]

Surprisingly, when run with Firefox, our test failed. This is not only because websites might
behave differently when using different browsers, but also because the browsers
themselves might behave differently.

For example, Firefox didn't select back the primary page after we accepted the privacy
policy, so it's still trying to act inside the iframe that contained the privacy policy. This
makes it impossible for the browser to find the input with name=q, where it's meant to
write the query string, and so the test is failing.

To fix this, we can modify our test slightly to Unselect Frame after we have finished with
it:

*** Test Cases ***
Search On Google
 Open Browser http://www.google.com ${BROWSER}
 Run Keyword If ${NOTHEADLESS} Wait Until Page Contains Element
 cnsw
 Run Keyword If ${NOTHEADLESS} Select Frame //iframe
 Run Keyword If ${NOTHEADLESS} Submit Form //form
 Unselect Frame
 Input Text name=q Stephen\ Hawking
 Press Keys name=q ENTER
 Page Should Contain Wikipedia
 Close Window

This will make sure that the test is able to accept the privacy policy and go back to the
search field in both Chrome and Firefox, thus solving our problem. Now that we are able to
perform the search, let's go back to our tests and see what happens when rerunning them:

$ robot --variable browser:firefox searchgoogle.robot
===
Searchgoogle
===
Search On Google | FAIL |
Page should have contained text 'Wikipedia' but did not.

Searchgoogle | FAIL |
1 critical test, 0 passed, 1 failed
1 test total, 0 passed, 1 failed
===

Another apparent failure is that even though the search happened correctly, the browser
was unable to find Wikipedia in the results.

End-to-End Testing with the Robot Framework Chapter 12

[299]

In this case, the log.html output can immediately help us understand what's going wrong.
If we look at it, we will see that the problem is that by the time our test checks for
"Wikipedia", the web page has not yet loaded the results themselves. The search box is
still visible in the screenshot that the log file contains:

Figure 12.7 – The log for our test that failed because Firefox was slower than the test itself

End-to-End Testing with the Robot Framework Chapter 12

[300]

We can fix this by waiting for the search results to appear before performing the assertion,
so let's tweak our search test a bit more to include an explicit wait for the results:

*** Test Cases ***
Search On Google
 Open Browser http://www.google.com ${BROWSER}
 Run Keyword If ${NOTHEADLESS} Wait Until Page Contains Element
 cnsw
 Run Keyword If ${NOTHEADLESS} Select Frame //iframe
 Run Keyword If ${NOTHEADLESS} Submit Form //form
 Unselect Frame
 Input Text name=q Stephen\ Hawking
 Press Keys name=q SPACE
 Press Keys name=q ENTER
 Wait Until Page Contains Element id=res
 Page Should Contain Wikipedia
 Close Window

This last version of our test is finally able to pass in connection with all the browsers we
were concerned with, Firefox and Chrome, with both of them in headless mode too:

$ robot --variable browser:headlessfirefox searchgoogle.robot
===
Searchgoogle
===
Search On Google | PASS |

Searchgoogle | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
===

At this point, we know how to write tests in Robot and how to write them so that we can
verify them using multiple different browsers.

Extending the Robot Framework
As we have seen, Robot can be expanded with libraries that can add more keywords. That
can be a convenient feature also for us when writing tests. If we have a set of instructions
that we are going to repeat frequently in our tests, it would be convenient to factor them
into a single keyword that we can reuse. Furthermore, Robot can be expanded with new
custom commands that we can implement in Python.

End-to-End Testing with the Robot Framework Chapter 12

[301]

Adding custom keywords
To see how extending Robot with custom keywords works, we are going to create a very
simple customkeywords.robot test file, where we are going to write a basic script that
only greets us:

*** Test Cases ***
Use Custom Keywords
 Echo Hello

Running the script will fail as we have not yet implemented the Echo Hello keyword, so
how can we provide it? For this purpose, Robot supports a *** Keywords *** section,
where we can declare all our custom keywords, so let's declare our keyword there:

*** Keywords ***
Echo Hello
 Log Hello!

*** Test Cases ***
Use Custom Keywords
 Echo Hello

The Echo Hello keyword is just going to invoke the built-in Log keyword, passing a
hardcoded greeting string, so it's not very helpful, but we could actually list any kind or
amount of commands within a custom keyword, so we could make it do whatever we
needed.

Now that we have provided a declaration for the Echo Hello command, rerunning the
tests will succeed:

$ robot customkeywords.robot
===
Customkeywords
===
Use Custom Keywords | PASS |

Customkeywords | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
===

The output of our logging is not visible on the shell from which we started the Robot
command, but if we open the log.html file, we will see that the string was correctly
logged in that document.

End-to-End Testing with the Robot Framework Chapter 12

[302]

Extending Robot from Python
Going further, we can expand Robot with new libraries that we can implement in Python.
To do so, we have to create a Python package with the name of the library and install it. All
the non-internal functions we declare in the installed library will become available in our
Robot scripts once we enable the library itself with the usual Library command.

So, let's replicate what we just did using Python. The first step is to create the distribution
for the library so that it can be installed. Therefore, we are going to create a hellolibrary
directory where we are going to put our hellolibrary/setup.py file:

from setuptools import setup

setup(name='robotframework-hellolibrary', packages=['HelloLibrary'])

Within this directory, we need to create a HelloLibrary package. This will be what gets
installed and what gets loaded using the Library command in Robot. So let's create
a hellolibrary/HelloLibrary/__init__.py file so that the nested directory gets
recognized as a package by Python.

Inside the __init__.py file, we are going to declare the HelloLibrary class with a
say_hello method. The say_hello method, as a public method, will be automatically
exposed in Robot as the Say Hello keyword of the library:

class HelloLibrary:

 def say_hello(self):
 print("Hello from Python!")

Now that all the pieces are in place, we can install our library so that it becomes available to
Robot for installation using pip, as we would for any other Python distribution:

$ pip install -e hellolibrary/
Obtaining file://hellolibrary
Installing collected packages: robotframework-hellolibrary
 Running setup.py develop for robotframework-hellolibrary
Successfully installed robotframework-hellolibrary

End-to-End Testing with the Robot Framework Chapter 12

[303]

Once our library is installed, we can use it as we would for any other Robot library. Adding
a Library HelloLibrary instruction to our Settings section will make the Say Hello
keyword available for our own use:

*** Settings ***
Library HelloLibrary

*** Keywords ***
Echo Hello
 Log Hello!

*** Test Cases ***
Use Custom Keywords
 Echo Hello
 Say Hello

We can confirm that everything worked as expected by rerunning Robot. If we didn't make
any error and the library was installed correctly, our tests should succeed again:

$ robot customkeywords.robot
===
Customkeywords
===
Use Custom Keywords | PASS |

Customkeywords | PASS |
1 critical test, 1 passed, 0 failed
1 test total, 1 passed, 0 failed
===

End-to-End Testing with the Robot Framework Chapter 12

[304]

Like we did for the Echo Hello keyword, we can verify that our Say Hello keyword
worked properly and logged the "Hello from Python!" message by looking at the
log.html file:

Figure 12.8 – Log of the test using our custom commands

End-to-End Testing with the Robot Framework Chapter 12

[305]

By default, a new library object is created for every test, so a new instance of our
HelloLibrary class would be made on every test. In case we needed to share a single
object across all tests, we could set the HelloLibrary.ROBOT_LIBRARY_SCOPE =
"SUITE" class attribute, which would signal to Robot to create only once instance and share
it across all tests of the same suite. Furthermore, we could set that attribute
to ROBOT_LIBRARY_SCOPE = "GLOBAL" and make the instance unique for the whole test
run. This allows us to share the internal state of our library object across multiple tests in
case we need to preserve any information.

Summary
In this chapter, we saw how we can go further and not only test the responses that our web
applications provide, but also that those responses work for real once they are handled by a
web browser.

Now that we have covered Robot, we have all the tools we need to test our web
applications across all stack levels. We know how to use PyTest for building block unit
tests, WebTest for functional and integration tests, and Robot for end-to-end tests involving
real browsers. So we are now able to write fully tested web applications, paired with the
best practices for TDD and ATDD, which we learned in earlier chapters, and we should be
able to build a solid development routine that allows us to create robust web applications
that are also safe to evolve and refactor over time.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals
Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month
Fully searchable for easy access to vital information
Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Django 3 By Example - Third Edition
Antonio Melé

ISBN: 978-1-83898-195-2

Build real-world web applications
Learn Django essentials, including models, views, ORM, templates, URLs, forms,
and authentication
Implement advanced features such as custom model fields, custom template tags,
cache, middleware, localization, and more
Create complex functionalities, such as AJAX interactions, social authentication, a
full-text search engine, a payment system, a CMS, a RESTful API, and more
Integrate other technologies, including Redis, Celery, RabbitMQ, PostgreSQL,
and Channels, into your projects
Deploy Django projects in production using NGINX, uWSGI, and Daphne

https://www.packtpub.com/product/django-3-by-example-third-edition/9781838981952

Other Books You May Enjoy

[308]

40 Algorithms Every Programmer Should Know
Imran Ahmad

ISBN: 978-1-78980-121-7

Explore existing data structures and algorithms found in Python libraries
Implement graph algorithms for fraud detection using network analysis
Work with machine learning algorithms to cluster similar tweets and process
Twitter data in real time
Predict the weather using supervised learning algorithms
Use neural networks for object detection
Create a recommendation engine that suggests relevant movies to subscribers
Implement foolproof security using symmetric and asymmetric encryption on
Google Cloud Platform (GCP)

https://www.packtpub.com/product/40-algorithms-every-programmer-should-know/9781789801217

Other Books You May Enjoy

[309]

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com

Index

A
Acceptance Test-Driven Development (ATDD) 82
acceptance tests
 about 25
 passing 169, 170, 172
 writing 165, 166
Act phase 15
And step
 used, for creating setup 175
Arrange phase 15
Arrange, Act, Assert pattern 15
Assert phase 15
authentication 22
authorization 22
automatic tests 9, 11

B
Behavior-Driven Development (BDD)
 about 172
 actions, performing with When step 176
 conditions, assessing with Then step 177
 feature file, defining 173
 scenario test, running 175
 scenario, declaring 174
 scenario, making to pass 178, 180
 setup, creating with And step 176
 using 172
behaviors
 checking, with spies 44, 45, 46, 47, 48, 49
benchmark runs
 comparing 198
black-box tests 25

C
capsys
 IO, testing with 149

chat application
 acceptance tests 56, 57, 59
 doubles 56, 57, 59
 working, with TDD 33, 35, 36, 37, 38
code-based reference
 adding 223, 225
commit tests 126
compile suite 125
component tests 21, 25
components
 replacing, with stubs 40, 41, 42, 43, 44
construction injection 60
continuous integration (CI)
 about 131
 enabling 131, 132, 133, 134, 135
 performance tests, running in cloud 136
contract tests 25
coverage reporting
 pytest-cov, using for 189, 192, 193
coverage
 testing 29
 using, as service 194, 195

D
dependencies
 managing, with dependency injection 60, 63
 replacing, with fakes 51, 52, 53, 54, 55
dependency injection frameworks
 using 63, 65, 66
dependency injection
 dependencies, managing with 60, 63
distribution
 testing 29
Django projects
 testing, with Django's test client 277, 279
 testing, with pytest 274, 276
Django tests

[311]

 writing, with Django's test client 271, 272, 273
Django's test client
 Django tests, writing with 271, 272, 273
 used, for testing Django projects 277, 279
documentation
 code-based reference, adding 223, 225
 testing 221, 222
 verified user guide, writing 226, 229, 231
dummy objects
 using 38, 39, 40

E
End-to-End tests
 about 25, 26
 moving, to functional tests 122, 123, 124
environments
 about 211
 using, for multiple Python versions 213, 215

F
fakes
 dependencies, replacing with 51, 52, 53, 54, 55
fixtures
 generating 156, 157, 158, 159, 160
flaky
 using, to rerun unstable tests 199, 202
functional tests
 about 21, 25, 120
 End-to-End tests, moving to 122, 123, 124

G
Gherkin 172

H
HTTP clients
 testing 247, 251
HTTP
 testing 243, 246
hypothesis 232

I
injector 60
Input/Output (I/O) queues 75
integration tests 22, 24, 26

IO
 testing, with capsys 149

M
mocks
 using 49, 50, 51
multiple test cases
 writing 11, 13
multiple test suite
 working with 125

N
narrow integration tests 122

P
parametric tests
 tests, generating with 160, 161, 162
PEP 333
 reference link 252
performance testing
 about 128, 129, 130
 in cloud 136
 strategies 136
product team
 feedback, obtaining 167, 168
property-based testing 231, 235, 237
PyTest 6 213
PyTest fixtures
 using, for dependency injection 146, 147
 writing 142, 143, 144, 145
pytest-benchmark
 used, for benchmarking 196, 198
pytest-cov
 used, for coverage reporting 189, 192, 193
pytest-testmon
 using, to rerun tests on code changes 202, 204
pytest-xdist
 used, for running tests in parallel 204
PyTest
 unittest, running with 139, 140, 141
 used, for testing Django projects 274, 276
Python 2.7 211
Python 3.7 211
Python 3.8 213
Python versions

[312]

 testing, with Tox 211, 213

Q
quality control 7

R
Read-Eval-Print Loop (REPL) 69
regression test 105
regression
 preventing 105, 106, 107, 108, 110, 111, 112
reStructuredText format 221
Robot framework
 about 282, 283, 284, 285, 286
 custom keywords, adding 301
 extending 300
 extending, from Python 302, 303, 304, 305
 section headers 282

S
Selenium library
 reference link 286
smoke tests 127, 128
sociable unit 21
software testing 7
solitary unit 21
specifications
 embracing, by example 180, 185, 186
spies
 behaviors, checking with 44, 45, 46, 47, 48, 49
stubs
 components, replacing with 40, 41, 42, 43, 44
subsets of test suite
 running 150, 151
system tests 25

T
test case 9
test cases, test plans
 postconditions 8
 preconditions 8
 steps 8
test doubles 32, 33
test plans 8, 9
test runner 10

test suite, types
 commit tests 126
 compile suite 125
 smoke tests 127, 128
test suite
 about 9, 11
 configuring 153, 154, 155
 End-to-End tests, moving to functional tests 122,

123, 124
 scaling 115, 116, 117, 118, 119, 120, 121, 122
test units 19, 21
Test-Driven Development (TDD)
 about 68, 69, 70, 72, 73, 74, 75, 77, 78, 79,

80, 82, 116
 application, building 3, 83, 84, 85, 86, 87, 88,

89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101,
102, 103, 104

 chat application, working with 33, 35, 36, 37, 38
test-driven development
 about 15
 implementing 16, 18, 19
test-first approach 18
testing pyramid 27, 28
testing trophy 28, 29
tests
 generating, for common properties 237, 239
 generating, with parametric tests 160, 161, 162
 organizing 13, 15
Then step
 used, for assessing conditions 177
tmp_path
 temporary data, managing with 148
Tox
 about 208, 210
 used, for testing multiple Python versions 211,

213

 using, with Travis 215, 218, 219
Travis application
 reference link 133
Travis
 Tox, using with 215, 217, 219

U
unit tests 15, 26
unittest discovery mode 14

unittest module
 about 10
 running, with PyTest 139, 140, 141
unstable tests
 rerunning, with flaky 199, 202

V
verified user guide
 writing 226, 229, 231

W

web browsers
 testing 297, 298, 299, 300
 testing with 286, 287, 288, 290, 291
 testing, with headless browsers 295, 296
 tests execution, recording 291, 292, 294
Web Server Gateway Interface (WSGI)
 testing, with WebTest 252, 255, 260
WebTest
 using, with web frameworks 261, 262, 265, 269
 WSGI, testing with 252, 255, 259, 261
When step
 used, for performing actions 176

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Section 1: Software Testing and Test-Driven Development
	Chapter 1: Getting Started with Software Testing
	Technical requirements
	Introducing software testing and quality control
	Test plans

	Introducing automatic tests and test suites
	Multiple test cases
	Organizing tests

	Introducing test-driven development and unit tests
	Test-driven development
	Test units

	Understanding integration and functional tests
	Integration tests
	Functional tests

	Understanding the testing pyramid and trophy
	The testing pyramid
	The testing trophy
	Testing distribution and coverage

	Summary

	Chapter 2: Test Doubles with a Chat Application
	Technical requirements
	Introducing test doubles
	Starting our chat application with TDD
	Using dummy objects
	Replacing components with stubs
	Checking behaviors with spies
	Using mocks
	Replacing dependencies with fakes
	Understanding acceptance tests and doubles
	Managing dependencies with dependency injection
	Using dependency injection frameworks

	Summary

	Chapter 3: Test-Driven Development while Creating a TODO List
	Technical requirements
	Starting projects with TDD
	Building applications the TDD way
	Preventing regressions
	Summary

	Chapter 4: Scaling the Test Suite
	Technical requirements
	Scaling tests
	Moving from e2e to functional

	Working with multiple suites
	Compile suite
	Commit tests
	Smoke tests

	Carrying out performance testing
	Enabling continuous integration
	Performance testing in the cloud

	Summary

	Section 2: PyTest for Python Testing
	Chapter 5: Introduction to PyTest
	Technical requirements
	Running tests with PyTest
	Writing PyTest fixtures
	Using fixtures for dependency injection

	Managing temporary data with tmp_path
	Testing I/O with capsys
	Running subsets of the testsuite
	Summary

	Chapter 6: Dynamic and Parametric Tests and Fixtures
	Technical requirements
	Configuring the test suite
	Generating fixtures
	Generating tests with parametric tests
	Summary

	Chapter 7: Fitness Function with a Contact Book Application
	Technical requirements
	Writing acceptance tests
	Writing the first test
	Getting feedback from the product team
	Making the test pass

	Using behavior-driven development
	Defining a feature file
	Declaring the scenario
	Running the scenario test
	Further setup with the And step
	Performing actions with the When step
	Assessing conditions with the Then step
	Making the scenario pass

	Embracing specifications by example
	Summary

	Chapter 8: PyTest Essential Plugins
	Technical requirements
	Using pytest-cov for coverage reporting
	Coverage as a service

	Using pytest-benchmark for benchmarking
	Comparing benchmark runs

	Using flaky to rerun unstable tests
	Using pytest-testmon to rerun tests on code changes
	Running tests in parallel with pytest-xdist
	Summary

	Chapter 9: Managing Test Environments with Tox
	Technical requirements
	Introducing Tox
	Testing multiple Python versions with Tox
	Using environments for more than Python versions

	Using Tox with Travis
	Summary

	Chapter 10: Testing Documentation and Property-Based Testing
	Technical requirements
	Testing documentation
	Adding a code-based reference
	Writing a verified user guide

	Property-based testing
	Generating tests for common properties

	Summary

	Section 3: Testing for the Web
	Chapter 11: Testing for the Web: WSGI versus HTTP
	Technical requirements
	Testing HTTP
	Testing HTTP clients

	Testing WSGI with WebTest
	Using WebTest with web frameworks
	Writing Django tests with Django's test client
	Testing Django projects with pytest
	Testing Django projects with Django's test client

	Summary

	Chapter 12: End-to-End Testing with the Robot Framework
	Technical requirements
	Introducing the Robot Framework
	Testing with web browsers
	Recording the execution of tests
	Testing with headless browsers
	Testing multiple browsers

	Extending the Robot Framework
	Adding custom keywords
	Extending Robot from Python

	Summary

	About Packt
	Other Books You May Enjoy
	Index

