

Mastering Unit Testing Using
Mockito and JUnit

An advanced guide to mastering unit testing using
Mockito and JUnit

Sujoy Acharya

BIRMINGHAM - MUMBAI

Mastering Unit Testing Using Mockito and JUnit

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1080714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-250-9

www.packtpub.com

Credits

Author
Sujoy Acharya

Reviewers
Jose Muanis Castro

Alexey Grigorev

Daniel Pacak

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Meeta Rajani

Content Development Editor
Balaji Naidu

Technical Editors
Neha Mankare

Edwin Moses

Copy Editor
Mradula Hegde

Project Coordinator
Leena Purkait

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

Cover Image
Disha Haria

About the Author

Sujoy Acharya works as a software architect with Siemens Technology and
Services Pvt Ltd. (STS). He grew up in a joint family and pursued his graduation in
Computer Science and Engineering. His hobbies are watching movies and sitcoms,
playing outdoor sports, and reading books.

He likes to research upcoming technologies. His major contributions are in the fields
of Java, J2EE, SOA, Ajax, GWT, and the Spring framework.

He has authored Test-Driven Development with Mockito, Packt Publishing. He designs
and develops healthcare software products. He has over 10 years of industrial
experience and has architected and implemented large-scale enterprise solutions.

I would like to thank my wife, Sunanda, for her patience and endless
support in spending many hours reviewing my draft and providing
valuable inputs.
I would also like to thank my mother and late father for their
support, blessings, and encouragement.
To my one-year-old kid, Abhigyan, I am sorry I couldn't be around
with you as much as we all wanted, and often, I had to get you away
from the laptop. I love you very much.

About the Reviewers

Jose Muanis Castro holds an Information Systems degree. Originally from Rio de
Janeiro, he now lives in Brooklyn with his wife and kids. He is a software engineer
at The New York Times, where he works with recommendation systems on the
personalization team. Previously, he worked on the CMS and publishing platforms
at Globo.com, the biggest media portal of Brazil.

He is a seasoned engineer with a history of hands-on experience in several
languages. He's passionate about continuous improvement in Agile and Lean
processes. With years of experience in automation, right from testing to deploying,
he constantly switches hats between development and operations. When he's not
coding, he enjoys riding his bike around. His Twitter handle is @muanis.

I'm thankful to my wife Márcia and my kids, Vitoria and Rafael, for
understanding that I couldn't be there at times with them while I
was helping to review this book.

Alexey Grigorev is an experienced software developer with several years of
professional Java programming. From the beginning, he successfully adopted the
best practices in Extreme Programming (XP), one of which is testing, and drove his
teammates to use it. In many cases, he witnessed testing save projects when under
constantly developing requirements his team managed to quickly deliver
the changes.

Right now, he is a freelancer who specializes in machine learning and data mining,
and he also successfully adopts TDD and testing in these fields to ensure the
reliability of his applications.

For any questions, you can contact him via alexey.s.grigoriev@gmail.com.

Daniel Pacak is a self-made software engineer who fell in love with coding
during his studies of Nuclear Physics at Warsaw University of Technology.
This was back in 2006 when no one cared about unit testing at all. He acquired
his professional experience by working on several business-critical projects, mainly
web applications, for clients in financial services, telecommunications, e-commerce,
and the travel industry.

When he's not coding, he enjoys lifting weights in the gym close to his office.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: JUnit 4 – a Total Recall 9

Defining unit testing 9
Working with JUnit 4 10

Setting up Eclipse 11
Running the first unit test 12

Exploring annotations 12
Verifying test conditions with Assertion 16

Working with exception handling 19
Exploring the @RunWith annotation 20

Working with JUnit 4++ 20
Ignoring a test 20
Executing tests in order 21
Learning assumptions 23
Exploring the test suite 24
Asserting with assertThat 25

Comparing matchers – equalTo, is, and not 26
Working with compound value matchers – either, both, anyOf, allOf, and not 27
Working with collection matchers – hasItem and hasItems 29
Exploring string matchers – startsWith, endsWith, and containsString 29
Exploring built-in matchers 30
Building a custom matcher 30

Creating parameterized tests 34
Working with parameterized constructors 34
Working with parameterized methods 38
Giving a name 39

Working with timeouts 39
Exploring JUnit theories 40

Externalizing data using @ParametersSuppliedBy and ParameterSupplier 44
Dealing with JUnit rules 47

Playing with the timeout rule 47

Table of Contents

[ii]

Working with the ExpectedException rule 48
Unfolding the TemporaryFolder rule 49
Exploring the ErrorCollector rule 49
Working with the Verifier rule 50
Learning the TestWatcher rule 51
Working with the TestName rule 53
Handling external resources 53

Exploring JUnit categories 55
Summary 56

Chapter 2: Automating JUnit Tests 57
Continuous Integration 57

Benefits of CI 58
Gradle automation 59

Getting started 60
Gradling 60
Gradle plugins 64

Maven project management 75
Installation 75
The Archetype plugin 76
The Project Object Model (POM) file 78
Project dependency 79
The build life cycle 80
The clean life cycle 81
The site life cycle 81

Another neat tool (Ant) 82
Jenkins 85

The Gradle project 87
The Maven project 92
Building the Ant project 93

Summary 95
Chapter 3: Test Doubles 97

Dummy 98
Stub 98
Fake 99
Mock 100
Spy 101
Summary 102

Chapter 4: Progressive Mockito 103
Working with Mockito 103

Why should you use Mockito? 103
Qualities of unit testing 104

Drinking Mockito 105
Configuring Mockito 105

Table of Contents

[iii]

Mocking in action 106
Mocking objects 108
Stubbing methods 111
Verifying the method invocation 114
Using argument matcher 117
Throwing exceptions 120
Stubbing consecutive calls 121
Stubbing with an Answer 122
Spying objects 124
Stubbing void methods 125
Capturing arguments with ArgumentCaptor 128
Verifying the invocation order 130
Changing the default settings 132
Resetting mock objects 133
Exploring Mockito annotations 134
Working with inline stubbing 134
Determining mocking details 134

Behavior-driven development with Mockito 135
Writing tests in BDD style 136
The BDD syntax 137

Summary 138
Chapter 5: Exploring Code Coverage 139

Understanding code coverage 139
Learning the inner details of code instrumentation 140

Configuring the Eclipse plugin 142
Uncovering the Clover plugin 143
Working with the EclEmma plugin 145
Examining the eCobertura plugin 147

Measuring coverage using Gradle 148
Working with the Maven Cobertura plugin 150
Running the Cobertura Ant task 152
Summary 154

Chapter 6: Revealing Code Quality 155
Understanding the static code analysis 156
Working with the Checkstyle plugin 158
Exploring the FindBugs plugin 162
Working with the PMD plugin 165
Monitoring code quality with SonarQube 166

Running SonarQube 167
Analyzing code with the SonarQube runner 168
Improving quality with the Sonar Eclipse plugin 172
Monitoring quality with Gradle and SonarQube 174
Monitoring quality with Maven and SonarQube 176

Table of Contents

[iv]

Monitoring quality with Ant and SonarQube 177
Getting familiar with false positives 179
Summary 179

Chapter 7: Unit Testing the Web Tier 181
Unit testing servlets 181

Building and unit testing a J2EE web application 182
Playing with Spring MVC 186
Summary 191

Chapter 8: Playing with Data 193
Separating concerns 194
Unit testing the persistence logic 195
Simplifying persistence with Spring 204
Verifying the system integrity 207
Writing integration tests with Spring 209
Summary 213

Chapter 9: Solving Test Puzzles 215
Working with the legacy code 216

Working with testing impediments 216
Designing for testability 225

Identifying constructor issues 226
Realizing initialization issues 229
Working with private methods 230
Working with final methods 232
Exploring static method issues 234
Working with final classes 236
Learning the new operator 238
Exploring static variables and blocks 240

Working with greenfield code 241
Summary 251

Chapter 10: Best Practices 253
Writing meaningful tests 253

Improving readability 254
Breaking everything that could possibly break 255
Ignoring simple test cases 255
Verifying invalid parameters 255
Relying on direct testing 257
Staying away from debugging 258
Avoiding generic matchers 258
Keeping away from @ignore 260
Eluding debug messages 260

Table of Contents

[v]

Automating JUnit tests 261
Configuring tests 261

Running in-memory tests 262
Staying away from Thread.sleep 262
Keeping unit tests away from the production code 262
Avoiding static variables 263
Assuming the test execution order 265
Loading data from files 266
Invoking super.setUp() and super.tearDown() 266
Staying away from side effects 268
Working with locales 268
Working with dates 270

Working with assertions 271
Using the correct assertion 271
Maintaining the assertEquals parameter order 272
Striving for one assertion per test 273

Handling exceptions 274
Working with test smells 278

Refactoring duplicates 278
Refactoring the test control logic 280
Removing the test logic from the production code 281
Refactoring over engineered tests 283

Summary 285
Index 287

Preface
If you've been a software developer for a long time, you have certainly participated
in software conferences or developer forums and experienced many interesting
conversations. They start out well with one of the developers describing a cool
development process that he/she follows, and then another developer strikes with
a cutting-edge technology or tool or a mind-boggling enterprise integration pattern
that he/she works with. Each speaker attempts to outdo the last speaker. Old timers
speak about ancient machines that had to be programmed with punch cards or
switches, where they had only few bytes of RAM, or they start describing COBOL as
a dynamic language that follows the Model View Presenter pattern. Ask them three
questions: "How do you unit test your program?", "Can you alleviate high blood
pressure by monitoring your pressure more often?", and "Have you ever maintained
your own code?"

I asked the first question to more than 200 developers. Believe me, 80 percent of
developers replied, "We pay our testers or we have skilled testers." Five percent said,
"Our customers test the software." Now the remaining 15 percent do unit testing and
use print statements or write JUnit tests.

It is insane to keep doing things the same way and expect them to improve.
Any program is only as good as it is useful; so, before applying complex tools,
patterns, or APIs, we should verify whether our software functions or not. We
should configure our development environment to provide us quick feedback of
what is being developed. Automated JUnit tests help us verify our assumptions
continuously. Side effects are detected quickly and this saves time.

As Martin Fowler states Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.

We can write obfuscated code to impress our peers, but writing readable code
is an art. Readability is a code quality.

Preface

[2]

Can you treat high blood pressure by monitoring your blood pressure more often?
No, you need medication. Similarly, we should analyze our code to improve our
code quality. Static code analysis tools suggest corrective actions, which means we
should continuously monitor our code quality.

Always code as though the guy who ends up maintaining your code will be a violent
psychopath who knows where you live. We work in brand new greenfield projects
and also in existing brownfield projects. Greenfield projects always follow test-
driven development to deliver maintainable and testable code.

Test-driven development is an evolutionary development approach. It offers test-first
development where the production code is written only to satisfy a test. The simple
idea of writing a test first reduces the extra effort of writing unit tests after coding.
In test-driven development, test doubles and mock objects are extensively used
to mock out external dependencies. Mockito is an open source mock unit testing
framework for Java. It allows mock object creation, verification, and stubbing.

As Winston Churchill states We make a living by what we get, but we make a life by what
we give.

We inherit the legacy code from someone else—it may come from a very old existing
project, from other teams who cannot maintain the code, or may be acquired from
another company. However, it is our duty to improve the quality.

This book is an advanced-level guide that will help software developers to get
complete expertise in unit testing in the JUnit framework using Mockito as the
mocking framework. The focus of the book is to provide readers with comprehensive
details on how effectively JUnit tests can be written. Build scripts can be customized
to automate unit tests, code quality can be monitored using static code analysis tools
and code quality dashboards, and tests can be written for the Web and database
components. Legacy code can be refactored. Test-driven development and Mockito
can be used for software development; JUnit best practices can be followed.

Armed with the knowledge of advanced JUnit concepts, test automation, build
scripting tools, the mocking framework, code coverage tools, static code analysis
tools, web tier unit testing, database tier unit testing, test-driven development, and
refactoring legacy code, you will be pleasantly surprised as how quickly and easily
you can write high-quality clean, readable, testable, maintainable, and extensible
code. With these kinds of skills in your next software conference, you can impress
the participants.

Preface

[3]

What this book covers
Chapter 1, JUnit 4 – a Total Recall, covers the unit testing concept, the JUnit 4
framework, the Eclipse setup, and advance features of JUnit 4. It covers the JUnit
4 framework briefly to get you up and running. We will discuss the concept
surrounding JUnit essentials, annotations, assertion, the @RunWith annotation, and
exception handling so that you have an adequate background on how JUnit 4 works.
Advanced readers can skip to the next section. JUnit 4++ explores the advanced
topics of JUnit 4 and deep dives into the following topics: parameterized test,
matchers and assertThat, assumption, theory, timeout, categories, rules, test suites,
and test order.

Chapter 2, Automating JUnit Tests, focuses on getting the reader quickly started with
the Extreme Programming (XP) concept, Continuous Integration (CI), benefits of
CI, and JUnit test automation using various tools such as Gradle, Maven, Ant, and
Jenkins. By the end of this chapter, the reader will be able to write build scripts
using Gradle, Maven, and Ant and configure Jenkins to execute the build scripts.

Chapter 3, Test Doubles, illustrates the concept of test doubles and explains various
test double types, such as mock, fake, dummy, stub, and spy.

Chapter 4, Progressive Mockito, distills the Mockito framework to its main core and
provides technical examples. No previous knowledge of mocking is necessary.
By the end of this chapter, the reader will be able to use advanced features of the
Mockito framework; start behavior-driven development using Mockito; and write
readable, maintainable, and clean JUnit tests using Mockito.

Chapter 5, Exploring Code Coverage, unfolds the code coverage concept, code coverage
tools, and provides step-by-step guidance to generate coverage reports using various
build scripts. The following topics are covered: code coverage; branch and line
coverage; coverage tools—Clover, Cobertura, EclEmma, and JaCoCo; measuring
coverage using Eclipse plugins; and using Ant, Maven, and Gradle to generate
reports. By the end of this chapter, the reader will be able to configure Eclipse
plugins and build scripts to measure code coverage.

Chapter 6, Revealing Code Quality, explores the static code analysis and code quality
improvement. By the end of this chapter, the reader will be able to configure the
SONAR dashboard, set up Eclipse plugins, configure Sonar runner, and build scripts
to analyze code quality using PMD, FindBugs, and Checkstyle.

Chapter 7, Unit Testing the Web Tier, deals with unit testing the web tier or
presentation layer. It covers unit testing servlets, playing with Spring MVC,
and working with the Model View Presenter pattern. By the end of this chapter,
the reader will be able to unit test the web tier components and isolate the view
components from the presentation logic.

Preface

[4]

Chapter 8, Playing with Data, covers the unit testing of the database layer. Topics such
as separating concerns, unit testing the persistence logic, simplifying persistence
with Spring, verifying the system integrity, and writing integration tests with Spring
are explained. By the end of this chapter, the reader will be able to unit test the data
access layer components in isolation from the database, write neat JDBC code using
Spring, and write integration tests using the Spring API.

Chapter 9, Solving Test Puzzles, explains the importance of unit testing in greenfield and
brownfield projects. Topics such as working with testing impediments, identifying
constructor issues, realizing initialization issues, working with private methods,
working with final methods, exploring static method issues, working with final
classes, learning new concerns, exploring static variables and blocks, and test-driven
development are covered. By the end of this chapter, the reader will be able to write
unit tests for the legacy code; refactor the legacy code to improve the design of existing
code; start writing simple, clean, and maintainable code following test-first and
test-driven developments; and refactor code to improve code quality.

Chapter 10, Best Practices, focuses on JUnit guidelines and best practices for writing
clean, readable, and maintainable JUnit test cases. It covers working with assertions,
handling exceptions, and working with test smells. By the end of this chapter, the
reader will be able to write clean and maintainable test cases.

What you need for this book
You will need the following software to be installed before you run the examples:

• Java 6 or higher: JDK 1.6 or higher can be downloaded from the following
Oracle website:
http://www.oracle.com/technetwork/java/javase/downloads/index.
html

• Eclipse editor: The latest version of Eclipse is Kepler (4.3). Kepler can be
downloaded from the following website:
http://www.eclipse.org/downloads/

• Mockito is required for creation, verification of mock objects, and stubbing.
It can be downloaded from the following website:
https://code.google.com/p/mockito/downloads/list

Preface

[5]

Who this book is for
This book is for advanced to novice level software testers or developers who use
Mockito in the JUnit framework. Reasonable knowledge and understanding of
unit testing elements and applications is required.

This book is ideal for developers who have some experience in Java application
development as well as some basic knowledge of JUnit testing, but it covers the
basic fundamentals of JUnit testing, test automation, static code analysis, legacy
code refactoring, and test-driven development to get you acquainted with these
concepts before using them.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The afterClass and beforeClass methods are executed only once."

A block of code is set as follows:
 @Test
 public void currencyRoundsOff() throws Exception {
 assertNotNull(CurrencyFormatter.format(100.999));
 assertTrue(CurrencyFormatter.format(100.999).
 contains("$"));
 assertEquals("$101.00",
 CurrencyFormatter.format(100.999));
 }

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

public class LocaleTest {
 private Locale defaultLocale;
 @Before
 public void setUp() {
 defaultLocale = Locale.getDefault();
 Locale.setDefault(Locale.GERMANY);
 }
 @After
 public void restore() {
 Locale.setDefault(defaultLocale);

Preface

[6]

 }
 @Test
 public void currencyRoundsOff() throws Exception {
 assertEquals("$101.00",
 CurrencyFormatter.format(100.999));
 }
}

Any command-line input or output is written as follows:

green(com.packtpub.junit.recap.rule.TestWatcherTest) success!

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Click on Java build path on the left-hand side and open the Libraries tab."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[7]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

JUnit 4 – a Total Recall
This chapter covers the unit testing concept, the JUnit 4 framework, the Eclipse
setup, and the advanced features of JUnit 4. In JUnit 4, you will be introduced to
the JUnit framework briefly to get you up and running. We will discuss the concept
surrounding JUnit essentials, annotations, assertion, the @RunWith annotation, and
exception handling so that you have an adequate background on how JUnit 4 works.
Advanced readers can skip to the next section.

In JUnit 4++, we will explore the advanced topics of JUnit 4 and deep dive into
parameterized tests, Hamcrest matchers and assertThat, the assumption, theory,
timeout, categories, rules, test suites, and tests order.

Defining unit testing
A test is an assessment of our knowledge, a proof of concept, or an examination of
data. A class test is an examination of our knowledge to ascertain whether we can
go to the next level. For software, it is the validation of functional and nonfunctional
requirements before it is shipped to a customer.

Unit testing code means validation or performing the sanity check of code. Sanity
check is a basic test to quickly evaluate whether the result of a calculation can possibly
be true. It is a simple check to see whether the produced material is coherent.

It's a common practice to unit test the code using print statements in the main method
or by executing the application. Neither of them is the correct approach. Mixing up
production code with tests is not a good practice. Testing logic in the production code
is a code smell, though it doesn't break the code under the test. However, this increases
the complexity of the code and can create severe maintenance problem or cause system
failure if anything gets misconfigured. Print statements or logging statements are
executed in the production system and print unnecessary information. They increase
execution time and reduce code readability. Also, junk logging information can hide
a real problem, for instance, you may overlook a critical deadlock or a hung thread
warning because of excessive logging of junk.

JUnit 4 – a Total Recall

[10]

Unit testing is a common practice in test-driven development (TDD). TDD is an
evolutionary development approach. It offers test-first development where the
production code is written only to satisfy a test, and the code is refactored to improve
its quality. In TDD, unit tests drive the design. You write code to satisfy a failing
test, so it limits the code you write to only what is needed. The tests provide a fast,
automated regression for refactoring and new enhancements.

Kent Beck is the originator of Extreme Programming and TDD. He has authored
many books and papers.

Generally, all tests are included in the same project but under a different directory/
folder. Thus, a org.packt.Bar.java class will have a org.packt.BarTest.java
test. These will be in the same package (org.packt) but will be organized in the:
src/org/foo/Bar.java and test/org/foo/BarTest.java directories, respectively.

Our customers do not execute the unit tests, so we don't deliver the test source folder
to them. Having the code and test in the same package allows the test to access
protected and default methods/properties. This is particularly useful while working
with the legacy code.

Java code can be unit tested using a code-driven unit testing framework.
The following are a few of the available code-driven unit testing frameworks
for Java:

• SpryTest
• Jtest
• JUnit
• TestNG

JUnit is the most popular and widely used unit testing framework for Java.
We will explore JUnit 4 in the next section.

Working with JUnit 4
JUnit is a unit testing framework for Java. It allows developers to unit test the code
elegantly. Apparently, TestNG is cleaner than JUnit, but JUnit is far more popular
than TestNG. JUnit has a better mocking framework support such as Mockito, which
offers a custom JUnit 4 runner.

The latest version of JUnit (4.11) can be downloaded from https://github.com/
junit-team/junit/wiki/Download-and-Install.

Chapter 1

[11]

JUnit 4 is an annotation-based, flexible framework. Its predecessor has many
downsides. The following are the advantages of JUnit 4 over its predecessor:

• Instead of inheriting from junit.framework.Testcase, any class can be a
test class

• The setUp and tearDown methods are replaced by the @before and
@after annotations

• Any public method annotated as @test can be a test method

In this chapter, we will use Eclipse to execute the JUnit tests; in the following
chapters, we will be using Ant, Maven, and Gradle to execute tools. Eclipse is an
integrated development environment, and can be used to develop applications in
Java. It can be downloaded from http://www.eclipse.org/downloads/. As of
today, the latest IDE version is KEPLER (4.3).

Since 2006, Eclipse releases a project annually. It started with the name
Callisto (starts with a C). Lexicographically, Eclipse project names go
like C, E, G, H, I, J, K, and L.
In 2014, they will release the Luna (which starts with L) version.
Between 2006 and now, they released Europa (E), Ganymede (G),
Galileo (G), Helios (H), Indigo (I), Juno (J), and Kepler (K).

In the following section, we will set up Eclipse and execute our first JUnit test.

Setting up Eclipse
You can skip this section if you know how to install Eclipse and add JUnit JAR to the
classpath project. The following are the steps to set up Eclipse:

1. Visit http://www.eclipse.org/downloads/. From the dropdown, select
the operating system—Windows, Mac, or Linux—and then click on the
hardware architecture hyperlink, that is, 32 Bit or 64 Bit, and download the
binary, as shown in the following screenshot:

JUnit 4 – a Total Recall

[12]

2. Extract the binary and launch Eclipse, for example, click on Eclipse.exe in
Windows to launch Eclipse.

3. Create a new workspace (for example, in Windows, enter C:\dev\junit
or in Linux or Mac enter /user/local/junit; Eclipse will create the
directories). Once the workspace is open, press Ctrl + N or navigate to File
| New; it will open a wizard. Select Java Project and click on Next. Enter
JUnitTests as the project name and click on Finish. This will create a Java
project named JUnitTests.

4. Download the junit.jar and hamcrest-core.jar packages from
https://github.com/junit-team/junit/wiki/Download-and-Install
and copy the jars to the JUnitTests project folder.

5. You can add the JAR to the classpath project in two ways; either
right-click on both JAR, select Build Path, and then click on Add to build
path. Or, right-click on the project and select the Properties menu item.
Click on Java build path on the left-hand side and open the Libraries tab.
Then, click on the Add JARs... button, and it will open a pop-up window.
Expand the JUnitTests project from the pop up, select the two JAR
(junit.jar and hamcrest-core.jar), and add them to Libraries.
We are now ready with the Eclipse setup.

Running the first unit test
JUnit 4 is an annotation-based framework. It doesn't force you to extend the
TestCase class. Any Java class can act as a test. In this section, we will uncover
the JUnit 4 annotations, assertions, and exceptions.

We will examine the annotations before writing our first test.

Exploring annotations
The @Test annotation represents a test. Any public method can be annotated with
the@Test annotation with @Test to make it a test method. There's no need to start the
method name with test.

We need data to verify a piece of code. For example, if a method takes a list of
students and sorts them based on the marks obtained, then we have to build a list
of students to test the method. This is called data setup. To perform the data setup,
JUnit 3 defines a setUp()method in the TestCase class. A test class can override the
setUp() method. The method signature is as follows:

protected void setUp() throws Exception

Chapter 1

[13]

JUnit 4 provides a @Before annotation. If we annotate any public void method of
any name with @Before, then that method gets executed before every test execution.

Similarly, any method annotated with @After gets executed after each test method
execution. JUnit 3 has a tearDown() method for this purpose.

JUnit 4 provides two more annotations: @BeforeClass and @AfterClass. They are
executed only once per test class. The @BeforeClass and @AfterClass annotations
can be used with any public static void methods. The @BeforeClass annotation is
executed before the first test and the @AfterClass annotation is executed after the
last test. The following example explains the annotation usage and the execution
sequence of the annotated methods.

Let's write our first test by performing the following steps:

1. We will create a test class under a test source package. Create a Source folder
named test and create a SanityTest.java Java class under package com.
packtpub.junit.recap.

It is a good practice to create test classes with a Test suffix. So, a MyClass
class will have a MyClassTest test class. Some code coverage tools ignore
tests if they don't end with a Test suffix.

JUnit 4 – a Total Recall

[14]

2. Add the following code to the SanityTest class:
import org.junit.After;
import org.junit.AfterClass;
import org.junit.Before;
import org.junit.BeforeClass;
import org.junit.Test;

public class SanityTest {

 @BeforeClass
 public static void beforeClass() {
 System.out.println("***Before Class is invoked");
 }

 @Before
 public void before() {
 System.out.println("____________________");
 System.out.println("\t Before is invoked");
 }
 @After
 public void after() {
 System.out.println("\t After is invoked");
 System.out.println("=================");
 }

 @Test
 public void someTest() {
 System.out.println("\t\t someTest is invoked");
 }

 @Test
 public void someTest2() {
 System.out.println("\t\t someTest2 is invoked");
 }

 @AfterClass
 public static void afterClass() {
 System.out.println("***After Class is invoked");
 }
}

Chapter 1

[15]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In the preceding class, we created six methods. Two test methods are
annotated with @Test. Note that two methods (beforeClass and
afterClass) are static and the other four are nonstatic. A static method
annotated with @BeforeClass is invoked only once, that is, before the test
class is instantiated, and @AfterClass is invoked after the class is done with
all the execution.

3. Run the test. Press Alt + Shift + X and T or navigate to Run | Run As | JUnit
Test. You will see the following console (System.out.println) output:

Check whether the before and after methods are executed before and after
every test run. However, the order of the test method execution may vary.
In some runs, someTest may be executed before someTest2 or vice versa.
The afterClass and beforeClass methods are executed only once.

JUnit 4 – a Total Recall

[16]

Congratulations! We successfully ran our first JUnit 4 test.

@Before and @After can be applied to any public void methods.
@AfterClass and @BeforeClass can be applied to only public
static void methods.

Verifying test conditions with Assertion
Assertion is a tool (a predicate) used to verify a programming assumption
(expectation) with an actual outcome of a program implementation; for example,
a programmer can expect that the addition of two positive numbers will result in
a positive number. So, he or she can write a program to add two numbers and assert
the expected result with the actual result.

The org.junit.Assert package provides static overloaded methods to assert
expected and actual values for all primitive types, objects, and arrays.

The following are the useful assert methods:

• assertTrue(condition) or assertTrue(failure message, condition):
If the condition becomes false, the assertion fails and AssertionError is
thrown. When a failure message is passed, the failure message is thrown.

• assertFalse(condition) or assertFalse(failure message,
condition): If the condition becomes true, the assertion fails and
AssertionError is thrown.

• assertNull: This checks whether the object is null, otherwise throws
AssertionError if the argument is not null.

• assertNotNull: This checks whether the argument is not null; otherwise,
it throws AssertionError.

• assertEquals(string message, object expected, object
actual), or assertEquals(object expected, object actual), or
assertEquals(primitive expected, primitive actual): This method
exhibits an interesting behavior if primitive values are passed and then the
values are compared. If objects are passed, then the equals() method is
invoked. Moreover, if the actual value doesn't match the expected value,
AssertionError is thrown.

• assertSame(object expected, object actual): This supports only
objects and checks the object reference using the == operator. If two different
objects are passed, then AssertionError is thrown.

• assertNotSame: This is just the opposite of assertSame. It fails when the
two argument references are the same.

Chapter 1

[17]

Sometimes double can lead to surprising results due to the
representation that Java uses to store doubles. Any operation on a
double value can lead to an unexpected result. Assert doesn't rely
on double comparison; so, assertEquals(double expected,
double actual) is deprecated.
Declare a double variable sum = .999+ .98. The sum variable
should add the values and store 1.98, but when you print the value in
your machine, you will get 1.9889999999999999 as the output. So, if
you assert sum with a double value 1.98, the test will fail.
The assert method provides an overloaded method for the double
value assertion, that is, assertEquals(double expected,
double actual, double delta). During comparison, if the
difference between the expected and the actual value is less than the
delta value, the result is considered passed.
For monetary calculations, it is recommended to use BigDecimal
instead of doubles.

We will use the assert methods in the test as follows:

1. Create a AssertTest test class under com.packtpub.junit.recap. Add the
following lines to the class:
package com.packtpub.junit.recap;

import org.junit.Assert;
import org.junit.Test;

public class AssertTest {

 @Test
 public void assertTrueAndFalseTest() throws Exception {
 Assert.assertTrue(true);
 Assert.assertFalse(false);
 }

 @Test
 public void assertNullAndNotNullTest() throws Exception {
 Object myObject = null;
 Assert.assertNull(myObject);

 myObject = new String("Some value");
 Assert.assertNotNull(myObject);
 }
}

JUnit 4 – a Total Recall

[18]

In the preceding code, assertTrueAndFalseTest sends true to assertTrue
and false to assertFalse. So, the test should not fail.
In assertNullAndNotNullTest, we are passing null to assertNull and a
non-null String to assertNotNull; so, this test should not fail.
Run the tests. They should be green.

2. We will examine assertEquals and add the following test and static import
the assertEquals method:
 import static org.junit.Assert.assertEquals;

 @Test
 public void assertEqualsTest() throws Exception {
 Integer i = new Integer("5");
 Integer j = new Integer("5");;
 assertEquals(i,j);
 }

In the preceding code, we defined two Integer objects, i and j, and they
are initialized with 5. Now, when we pass them to assertEquals, the test
passes, as the assertEquals method calls i.equals(j) and not i == j.
Hence, only the values are compared, not the references.
The assertEquals method works on all primitive types and objects. To
verify a double value, either use the overloaded assertEquals(actual,
expected, delta) method or just use BigDecimal instead of using Double.

3. Add a test to verify the assertNotSame behavior and static import the
assertNotSame method:
 import static org.junit.Assert.assertNotSame;
 @Test
 public void assertNotSameTest() throws Exception {
 Integer i = new Integer("5");
 Integer j = new Integer("5");;
 assertNotSame(i , j);
 }

The assertNotSame method fails only when the expected object and the
actual object refers to the same memory location. Here, i and j hold the same
value but the memory references are different.

Chapter 1

[19]

4. Add a test to verify the assertSame behavior and static import the
assertSame method:
 import static org.junit.Assert.assertSame;
 @Test
 public void assertSameTest() throws Exception {
 Integer i = new Integer("5");
 Integer j = i;
 assertSame(i,j);
 }

The assertSame method passes only when the expected object and the actual
object refer to the same memory location. Here, i and j hold the same value
and refer to the same location.

Working with exception handling
To test an error condition, exception handling feature is important. For example,
an API needs three objects; if any argument is null, then the API should throw an
exception. This can be easily tested. If the API doesn't throw an exception, the test
will fail.

The @Test annotation takes the expected=<<Exception class name>>.class
argument.

If the expected exception class doesn't match the exception thrown from the code,
the test fails. Consider the following code:

 @Test(expected=RuntimeException.class)
 public void exception() {
 throw new RuntimeException();
 }

This is only one solution. There are several other methods that are generally considered
to be better solutions. Utilizing @Rule in JUnit 4.8+ and assigning ExpectedException
is a stronger solution because you can inspect the message as well as the type. We have
covered @Rule in the Working with JUnit 4++ section of this chapter.

JUnit 4 – a Total Recall

[20]

Exploring the @RunWith annotation
Test runners execute the JUnit tests. Eclipse has a built-in native graphical runner.
JUnit 4 provides tools to define the suite to be run and to display its results.

When a class is annotated with @RunWith or the class extends a class annotated with
@RunWith, JUnit will invoke the class that it references to run the tests on that class,
instead of using the built-in runner. The @RunWith annotation is used to change the
nature of the test class. It can be used to run a test as a parameterized test or even
a Spring test, or it can be a Mockito runner to initialize the mock objects annotated
with a @Mock annotation.

The @RunWith annotation takes an argument. The argument must be a class extended
from org.junit.runner.Runner.

JUnit4.class is an example of a runner. This class aliases the current default JUnit 4
class runner.

Suite is a standard runner that allows us to build a suite that contains tests from
many packages. The following is an example of @RunWith:

@RunWith(Suite.class)
public class Assumption {

}

Working with JUnit 4++
This section explores the advanced features of the JUnit 4 framework and includes
the following topics: parameterized test, Hamcrest matchers and assertThat,
assumption, theory, timeout, categories, rules, test suites, and tests order.

Ignoring a test
Suppose a failing test blocks you to check-in a mission critical code, and you come to
know that the owner of the code is on a vacation. What do you do? You try to fix the
test or just comment out or delete the test to proceed with your check-in (committing
files to a source control such as SVN), or you wait until the test is fixed.

Sometimes we comment out tests because the feature is not developed. JUnit came
up with a solution for this. Instead of commenting a test, we can just ignore it by
annotating the test method with @Ignore. Commenting out a test or code is bad as
it does nothing but increases the code size and reduces its readability. Also, when
you comment out a test, then the test report doesn't tell you anything about the

Chapter 1

[21]

commented-out test; however, if you ignore a test, then the test report will tell you
that something needs to be fixed as some tests are ignored. So, you can keep track of
the ignored test.

Use @Ignore("Reason: why do you want to ignore?"). Giving a proper
description explains the intention behind ignoring the test. The following is an
example of, where a test method is ignored because the holiday calculation is
not working:

@Test
@Ignore("John's holiday stuff failing")
public void when_today_is_holiday_then_stop_alarm() {
}

The following is a screenshot from Eclipse:

You can place the @Ignore annotation on a test class, effectively ignoring all the
contained tests.

Executing tests in order
JUnit was designed to allow execution in a random order, but typically they are
executed in a linear fashion and the order is not guaranteed. The JUnit runner depends
on reflection to execute the tests. Usually, the test execution order doesn't vary from
run to run; actually, the randomness is environment-specific and varies from JVM to
JVM. So, it's better that you never assume they'll be executed in the same order and
depend on other tests, but sometimes we need to depend on the order.

For example, when you want to write slow tests to insert a row into a database, then
first update the row and finally delete the row. Here, unless the insert function is
executed, delete or update functions cannot run.

JUnit 4.11 provides us with an @FixMethodOrder annotation to specify the execution
order. It takes enum MethodSorters.

JUnit 4 – a Total Recall

[22]

To change the execution order, annotate your test class using @FixMethodOrder and
specify one of the following available enum MethodSorters constant:

• MethodSorters.JVM: This leaves the test methods in the order returned by
the JVM. This order may vary from run to run.

• MethodSorters.NAME_ASCENDING: This sorts the test methods by the method
name in the lexicographic order.

• MethodSorters.DEFAULT: This is the default value that doesn't guarantee the
execution order.

We will write a few tests to verify this behavior.

Add a TestExecutionOrder test and create tests, as shown in the following
code snippet:

public class TestExecutionOrder {
 @Test public void edit() throws Exception {
 System.out.println("edit executed");
 }
 @Test public void create() throws Exception {
 System.out.println("create executed");
 }
 @Test public void remove() throws Exception {
 System.out.println("remove executed");
 }
}

Run the tests. The execution order may vary, but if we annotate the class
with @FixMethodOrder(MethodSorters.NAME_ASCENDING), the tests will be
executed in the ascending order as follows:

@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class TestExecutionOrder { … }

The following Eclipse screenshot displays the test execution in the ascending order:

Chapter 1

[23]

Learning assumptions
In multisite projects, sporadically, a date or time zone tests fail in a local CI server
but run fine in other servers in a different time zone. We can choose to not run those
automatic tests in our local server.

Sometimes our tests fail due to a bug in a third-party code or external software, but
we know that after some specific build or version, the bug will be fixed. Should we
comment out the code and wait until the build is available?

In many projects, Jenkins (for test automation) and SONAR (for code-quality
metrics) run in a server. It has been observed that due to low resources, the
automatic tests run forever when SONAR is processing and the tests run
simultaneously.

JUnit has the answer to all these issues. It recommends using an org.junit.
Assume class.

Like Assert, Assume offers many static methods, such as assumeTrue(condition),
assumeFalse(condition), assumeNotNull(condition), and
assumeThat(condition). Before executing a test, we can check our assumption
using the assumeXXX methods. If our assumption fails, then the assumeXXX methods
throw AssumptionViolatedException, and the JUnit runner ignores the tests with
failing assumptions.

So, basically, if our assumption is not true, the tests are just ignored. We can assume
that the tests are run in the EST time zone; if the tests are run somewhere else, they
will be ignored automatically. Similarly, we can assume that the third-party code
version is higher than the build/version 123; if the build version is lower, the tests
will be ignored.

Let's write the code to validate our assumption about Assume.

Here, we will try to solve the SONAR server issue. We will assume that SONAR is
not running. If SONAR runs during the test execution, the assumption will fail and
the tests will be ignored.

Create an Assumption test class. The following is the body of the class:

public class Assumption {

 boolean isSonarRunning = false;
 @Test
 public void very_critical_test() throws Exception {
 isSonarRunning = true;
 Assume.assumeFalse(isSonarRunning);

JUnit 4 – a Total Recall

[24]

 assertTrue(true);
 }

}

Here, for simplicity, we added a isSonarRunning variable to replicate a SONAR
server facade. In the actual code, we can call an API to get the value. We will set
the variable to false. Then, in the test, we will reset the value to true. This means
SONAR is running. So, our assumption that SONAR is not running is false; hence,
the test will be ignored.

The following screenshot shows that the test is ignored. We didn't annotate the test
using @Ignore:

When we change the value of the isSonarRunning variable to false, as given in the
following code snippet, the test will be executed:

public void very_critical_test() throws Exception {
 isSonarRunning = false;
 Assume.assumeFalse(isSonarRunning);
 assertTrue(true);
}

Continuous integration tools such as Jenkins can run multiple tools such as
Sonar to acquire code-quality metrics. It's always a good practice to have a build
pipeline where the code quality is only checked after the tests pass. This prevents
the CPU-intensive tasks from occurring at the same time.

Assumption is also used in the @Before methods, but be careful not to overuse it.
Assumption is good for use with TDD where one writes pretests ahead of time.

Exploring the test suite
To run multiple test cases, JUnit 4 provides Suite.class and the @Suite.
SuiteClasses annotation. This annotation takes an array (comma separated)
of test classes.

Chapter 1

[25]

Create a TestSuite class and annotate the class with @RunWith(Suite.class).
This annotation will force Eclipse to use the suite runner.

Next, annotate the class with @Suite.SuiteClasses({ AssertTest.class,
TestExecutionOrder.class, Assumption.class }) and pass comma-separated
test class names.

The following is the code snippet:

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({ AssertTest.class, TestExecutionOrder.class,
 Assumption.class })
public class TestSuite {

}

During execution, the suite will execute all the tests. The following is a screenshot
of the suite run. Check whether it runs seven tests out of the three test fixtures:
AssertTest, TestExecutionOrder, and Assumption.

A test suite is created for group-related tests such as a group of data access,
API usage tests, or a group of input validation logic tests.

Asserting with assertThat
Joe Walnes created the assertThat(Object actual, Matcher matcher)
method. General consensus is that assertThat is readable and more useful
than assertEquals. The syntax of the assertThat method is as follows:

 public static void assertThat(Object actual, Matcher matcher

JUnit 4 – a Total Recall

[26]

Here, Object is the actual value received and Matcher is an implementation of the
org.hamcrest.Matcher interface. This interface comes from a separate library called
hamcrest.jar.

A matcher enables a partial or an exact match for an expectation, whereas
assertEquals uses an exact match. Matcher provides utility methods such as is,
either, or, not , and hasItem. The Matcher methods use the builder pattern so that
we can combine one or more matchers to build a composite matcher chain. Just like
StringBuilder, it builds a string in multiple steps.

The following are a few examples of matchers and assertThat:

• assertThat(calculatedTax, is(not(thirtyPercent)));

• assertThat(phdStudentList, hasItem(DrJohn));

• assertThat(manchesterUnitedClub, both(is(EPL_Champion)).
and(is(UEFA_Champions_League_Champion)));

The preceding examples are more English than a JUnit test code. So, anyone can
understand the intent of the code and test, and a matcher improves readability.

Hamcrest provides a utility matcher class called org.hamcrest.CoreMatchers.

A few utility methods of CoreMatchers are allOf, anyOf, both, either,
describedAs, everyItem, is, isA, anything, hasItem, hasItems, equalTo,
any, instanceOf, not, nullValue, notNullValue, sameInstance, theInstance
,startsWith, endsWith, and containsString. All these methods return a matcher.

We worked with assertEquals; so, let's start with equalTo. The equalTo method is
equivalent to assertEquals.

Comparing matchers – equalTo, is, and not
Create a AssertThatTest.java JUnit test and static import org.hamcrest.
CoreMatchers.*; as follows:

import static org.hamcrest.CoreMatchers.not;
import static org.hamcrest.CoreMatchers.is;
import static org.junit.Assert.assertThat;

import org.junit.Test;

public class AssertThatTest {

 @Test
 public void verify_Matcher() throws Exception {

Chapter 1

[27]

 int age = 30;
 assertThat(age, equalTo(30));
 assertThat(age, is(30));

 assertThat(age, not(equalTo(33)));
 assertThat(age, is(not(33)));
 }
}

Set the age variable to 30 and then likewise for assertEquals and call equalTo, which
here is Matcher. The equalTo method takes a value. If the Matcher value doesn't
match the actual value, then assertThat throws an AssertionError exception.

Set the age variable value to 29 and rerun the test. The following error will occur:

The is(a) attribute takes a value and returns a Boolean and behaves similar to
equalTo(a). The is(a) attribute is the same as is(equalTo(a)).

The not attribute takes a value or a matcher. In the preceding code, we used
assertThat(age, is(not(33)));. This expression is nothing but age is not 33
and is more readable than the assert methods.

Working with compound value matchers – either,
both, anyOf, allOf, and not
In this section, we will use either, both, anyOf, allOf, and not. Add the following
test to the AssertThatTest.java file:

@Test
 public void verify_multiple_values() throws Exception {

 double marks = 100.00;
 assertThat(marks, either(is(100.00)).or(is(90.9)));

 assertThat(marks, both(not(99.99)).and(not(60.00)));

 assertThat(marks, anyOf(is(100.00),is(1.00),is(55.00),
 is(88.00),is(67.8)));

JUnit 4 – a Total Recall

[28]

 assertThat(marks, not(anyOf(is(0.00),is(200.00))));

 assertThat(marks, not(allOf(is(1.00),is(100.00), is(30.00))));
 }

In the preceding example, a marks double variable is initialized with a value of
100.00. This variable value is asserted with an either matcher.

Basically, using either, we can compare two values against an actual or calculated
value. If any of them match, then the assertion is passed. If none of them match, then
AssertionError is thrown.

The either(Matcher) method takes a matcher and returns a
CombinableEitherMatcher class. The CombinableEitherMatcher class has
a or(Matcher other) method so that either and or can be combined.

The or(Matcher other) method is translated to return (new
CombinableMatcher(first)).or(other); and finally to new
CombinableMatcher(new AnyOf(templatedListWith(other)));.

Using both, we can compare two values against an actual or calculated value. If any
of them don't match, then the AssertionError exception is thrown. If both of them
match, then the assertion is passed.

A numeric value such as a math score cannot be equal to both 60 and 80. However,
we can negate the expression. If the math score is 80, then using the both matcher
we can write the expression as assertThat (mathScore , both (not(60)).
and(not (90))).

The anyOf matcher is more like either with multiple values. Using anyOf, we
can compare multiple values against an actual or calculated value. If any of them
match, then the assertion is passed. If none of them match, then the AssertionError
exception is thrown.

The allOf matcher is more like both with multiple values. Using allOf, we can
compare multiple values against an actual or calculated value. If any of them don't
match, then the AssertionError exception is thrown. Similar to both, we can use
allOf along with not to check whether a value does or doesn't belong to a set.

In the preceding example, using allOf and not, we checked whether the marks
attribute is not 1, 100, or 30.

Chapter 1

[29]

Working with collection matchers – hasItem
and hasItems
In the previous section, we asserted a value against multiple values. In this section,
we will assert a collection of values against a value or numerous values.

Consider the following example. A salary list is populated with three values: 50.00,
200.00, and 500.00. Use hasItem to check whether a value exists in a collection, and
use hasItems to check whether multiple values exist in a collection, as shown in the
following code:

 @Test
 public void verify_collection_values() throws Exception {

 List<Double> salary =Arrays.asList(50.0, 200.0, 500.0);

 assertThat(salary, hasItem(50.00));
 assertThat(salary, hasItems(50.00, 200.00));
 assertThat(salary, not(hasItem(1.00)));
 }

The hasItem matcher has two versions: one takes a value and the other takes a
matcher. So, we can check a value in a collection using hasItem, or check whether
a value doesn't exist in a collection using not and hasItem. The hasItems matcher
operates on a set of values.

Exploring string matchers – startsWith, endsWith,
and containsString
In this section, we will explore the string matchers. CoreMatchers has three
built-in string matcher methods. In the following example, a String variable
name is assigned a value and then we assert that the name starts with a specific
value, contains a value, and ends with a value:

@Test
 public void verify_Strings() throws Exception {
 String name = "John Jr Dale";
 assertThat(name, startsWith("John"));
 assertThat(name, endsWith("Dale"));
 assertThat(name, containsString("Jr"));
 }

JUnit 4 – a Total Recall

[30]

The startsWith matcher operates on string only. It checks whether the string starts
with the given string. The endsWith matcher checks whether the string ends with
the given string. The containsString matcher checks whether the string contains
another string.

Sometimes, a method calls to return a JSON response. Using containsString,
a specific value can be asserted.

Note that startsWith, endsWith, and containsStrings are
not the only string matchers. Other built-in matchers such as both,
either, anyOf, and so on, can be applied to a String object.

Exploring built-in matchers
JUnitMatchers has built-in matcher methods, but all of these methods are
deprecated. Use Hamcrest matchers instead of using JUnitMatchers.

Building a custom matcher
We can build our own matchers to use in assertThat. How about building a matcher
that will compare two values and return true only if the actual object is less than or
equal to the expected value?

Call it a lessThanOrEqual matcher. It should be allowed to use with any object that
can be compared so that we can use an Integer or Double or String type or any
custom class that implements the Comparable interface.

For example, assertThat(100, lessThanOrEqual(200)) should
pass, but assertThat(100, lessThanOrEqual(50)) should fail and
assertThat("john123", lessThanOrEqual("john123")) should pass,
but assertThat("john123", lessThanOrEqual("john12")) should fail.

Follow the ensuing steps to build the lessThanOrEqual matcher:

1. Create a LessThanOrEqual class under the com.packtpub.junit.recap
package.

2. To build a custom matcher, a class should implement the Matcher interface.
However, Hamcrest recommends extending org.hamcrest.BaseMatcher
rather than implementing the Matcher interface. So, we will extend
BaseMatcher. The BaseMatcher class is an abstract class, and it
doesn't implement describeTo(Description description) and
matches(Object t).

Chapter 1

[31]

The public boolean matches(Object obj) method is invoked by
assertThat. If this method returns false, then an AssertionError
exception is thrown.
The public void describeTo(Description description) method is
invoked when matches(Object obj) returns false. This method builds
the description of an expectation.
The following code snippet explains how assertThat works:
 if(!matcher.matches(actual)){
 Description description =
 new StringDescription();
 description.appendText(reason).
 appendText("\nExpected:).
 appendDescriptionOf(matcher).
 appendText("\n but: ");

 matcher.describeMismatch(actual, description);
 throw new AssertionError(description.toString());
 }

Note that when matcher.matches() returns false, the description is
built from the actual value and the matcher. The appendDescriptionOf()
method calls the describeTo() method of the matcher to build the
error message.
Finally, matcher.describeMismatch(actual, description) appends the
string but: was <<actual>>.

3. The lessThanOrEqual class needs to compare two objects, so the Matcher
class should be operated on the Comparable objects. Create a generic class
that operates with any type that implements the Comparable interface,
as follows:
public class LessThanOrEqual<T extends Comparable<T>> extends
BaseMatcher<Comparable<T>> {

}

JUnit 4 – a Total Recall

[32]

4. Now we need to implement the describeTo and matches methods.
The assertThat method will pass the actual value to the matcher's
matches(Object o) method, and lessThanOrEqual will accept a value
to compare with the actual. So, in the matches method, we need two
comparable objects: one passed as a parameter and the other passed to a
matcher object. The expected value is passed during the matcher object
instantiation as follows:
assertThat (actual, matcher(expectedValue)).

We will store the expectedValue during the Matcher object creation and
use it in the matches() method to compare the expectedValue with the
actual as follows:
public class LessThanOrEqual<T extends Comparable<T>>
 extends BaseMatcher<Comparable<T>> {
 private final Comparable<T> expectedValue;

 public LessThanOrEqual(T expectedValue) {
 this.expectedValue = expectedValue;
 }

 @Override
 public void describeTo(Description description) {
 description.appendText(" less than or equal(<=)
 "+expectedValue);
 }

 @Override
 public boolean matches(Object t) {
 int compareTo = expectedValue.compareTo((T)t);
 return compareTo > -1;
 }
}

The preceding LessThanOrEqual class should return true only if
expectedValue.compareTo(actual) >= 0 and then the describeTo()
method appends the string "less than or equals (<=) "+ expectedValue
text to the description, so that if the assertion fails, then the "less than or
equals (<=) "+ expectedValue message will be shown.

Chapter 1

[33]

5. The assertThat method takes a matcher but new
LessThanOrEqual(expectedValue) doesn't look good. We will create a
static method in the LessThanOrEqual class to create a new object of
LessThanOrEqual. Call this method from the assertThat method as follows:
 @Factory
 public static<T extends Comparable<T>> Matcher<T>
 lessThanOrEqual(T t) {
 return new LessThanOrEqual(t);
 }

The @Factory annotation isn't necessary but needed for a Hamcrest tool.
When we create many custom matchers, then it becomes annoying to import
them all individually. Hamcrest ships with a org.hamcrest.generator.
config.XmlConfigurator command-line tool that picks up predicates
annotated with the @Factory annotation and collects them in a Matcher class
for easy importing.

6. Static import the LessThanOrEqual class and add a test to AssertThatTest.
java to validate the custom matcher, as shown in the following code:
 @Test
 public void lessthanOrEquals_custom_matcher() throws
 Exception
 {
 int actualGoalScored = 2;
 assertThat(actualGoalScored, lessThanOrEqual(4));
 assertThat(actualGoalScored, lessThanOrEqual(2));

 double originalPI = 3.14;
 assertThat(originalPI, lessThanOrEqual(9.00));

 String authorName = "Sujoy";
 assertThat(authorName, lessThanOrEqual("Zachary"));
 }

This test should pass.

7. How about testing the code with a greater value? In Java, Integer.MAX_
VALUE holds the maximum integer value and Integer.MIN_VALUE holds the
minimum integer value. If we expect that the maximum value will be greater
than or equal to the minimum value, then the assertion should fail. Consider
the following code snippet:

 int maxInt = Integer.MAX_VALUE;
 assertThat(maxInt, lessThanOrEqual(Integer.MIN_VALUE));

JUnit 4 – a Total Recall

[34]

This will throw the following error:

Creating parameterized tests
Parameterized tests are used for multiple iterations over a single input to stress the
object in test. The primary reason is to reduce the amount of test code.

In TDD, the code is written to satisfy a failing test. The production code logic is built
from a set of test cases and different input values. For example, if we need to build a
class that will return the factorial of a number, then we will pass different sets of data
and verify that our implementation passes the validation.

We know that the factorial of 0 is 1, the factorial of 1 is 1, the factorial of 2 is 2, the
factorial of 3 is 6, the factorial of 4 is 24, and so on.

So, if we write tests such as factorial_of_1_is_1 and factorial_of_4_is_24,
then the test class will be polluted very easily. How many methods will we write?

We can create two arrays: one with the expected values and the other with the
original numbers. Then, we can loop through the arrays and assert the result. We
don't have to do this because the JUnit 4 framework provides us with a similar
solution. It gives us a Parameterized runner.

We read about the @RunWith annotation in the preceding section. Parameterized is
a special type of runner and can be used with the @RunWith annotation.

Parameterized comes with two flavors: constructor and method.

Working with parameterized constructors
Perform the following steps to build a parameterized test with a constructor:

1. Create a source folder src and add a Factorial.java class under src/
com.packtpub.junit.recap.

Chapter 1

[35]

2. Implement the factorial algorithm. Add the following code to the
Factorial.java class:
package com.packtpub.junit.recap;

public class Factorial {

 public long factorial(long number) {
 if(number == 0) {
 return 1;
 }

 return number*factorial(number-1);
 }
}

3. Add a ParameterizedFactorialTest.java test under test/
com.packtpub.junit.recap and annotate the class with @
RunWith(Parameterized.class) as follows:
import org.junit.runner.RunWith;
import org.junit.runners.Parameterized;

@RunWith(Parameterized.class)
public class ParameterizedFactorialTest {

}

4. Add a method to create a dataset for factorial algorithm. The method should
return Collection of the Object[] method. We need a collection of two
dimensional arrays to hold the numbers and factorial values. To define the
data parameters, annotate the method with @Parameters.
The following code snippet defines a @parameters method
factorialData():
 @Parameters
 public static Collection<Object[]> factorialData() {
 return Arrays.asList(new Object[][] {

 { 0, 1 }, { 1, 1 }, { 2, 2 }, { 3, 6 },
 { 4, 24 }, { 5, 120 },{ 6, 720 }
 });
 }

Check whether the arrays hold the number and the expected factorial result
(0's factorial is 1, 5's factorial is 120, and so on).

JUnit 4 – a Total Recall

[36]

5. The Parameterized runner needs a constructor to pass the collection of data.
For each row in the collection, the 0th array element will be passed as the 1st
constructor argument, the next index will be passed as 2nd argument, and so
on, as follows:
 private int number;
 private int expectedResult;

 public ParameterizedFactorialTest(int input,
 int expected) {
 number= input;
 expectedResult= expected;
 }

In the test class, we added two members to hold the number and the expected
factorial value. In the constructor, set these values. The Parameterized
runner will loop through the data collection (annotated with a @Parameters
annotation) and pass the values to the constructor.
For example, it will pass 0 as input and 1 as expected, then 1 as input and 1
as expected, and so on.

6. Now, we need to add a test method to assert the number and the factorial
as follows:
 @Test
 public void factorial() throws Exception {
 Factorial fact = new Factorial();
 assertEquals(fact.factorial(number),expectedResult);
 }

We created a Factorial object and passed the number to get the actual result
and then asserted the actual value with expectedResult. Here, the runner will
create seven instances of the test class and execute the test method.

Chapter 1

[37]

The following screenshot shows the result of the test run taken from Eclipse:

Note that the seven tests run and the tests names are [0] factorial[0], [1]
factorial[1], and so on till [6].

If the dataset returns an empty collection, the test doesn't fail; actually,
nothing happens.
If the number of parameters in the object array and the
constructor argument don't match, then a java.lang.
IllegalArgumentException: wrong number of arguments
exception is thrown. For example, { 0, 1, 3 } will throw an exception as 3
arguments are passed, but constructor can accept only 2.
If the constructor is not defined but the data set contains a value, then
the java.lang.IllegalArgumentException: wrong number
of arguments exception is thrown.

JUnit 4 – a Total Recall

[38]

Working with parameterized methods
We learned about the parameterized constructor; now we will run the parameterized
test excluding the constructor. Follow the ensuing steps to run the test using the @
Parameter annotation:

1. Add a ParameterizeParamFactorialTest.java test class.
2. Copy the content from the constructor test and delete the constructor.

Change the class members to public, as follows:
@RunWith(Parameterized.class)
public class ParameterizeParamFactorialTest {

 @Parameters
 public static Collection<Object[]> factorialData() {
 return Arrays.asList(new Object[][] {

 { 0, 1 }, { 1, 1 }, { 2, 2 }, { 3, 6 },
 { 4, 24 }, { 5, 120 },{ 6, 720 }
 });
 }

 public int number;
 public int expectedResult;

 @Test
 public void factorial() throws Exception {
 Factorial fact = new Factorial();
 assertEquals(fact.factorial(number),expectedResult);
 }
}

3. If we run the test, it will fail as the reflection process won't find the matching
constructor. JUnit provides an annotation to loop through the dataset and set
the values to the class members. @Parameter(value=index) takes a value.
The value is the array index of the data collection object array. Make sure that
the number and expectedResult variables are public; otherwise, the security
exception will be thrown. Annotate them with the following parameters:
 @Parameter(value=0)
 public int number;
 @Parameter(value=1)
 public int expectedResult;

Chapter 1

[39]

Here, for each row in the data collection, the number variable will hold the 0th
index of the array and the expectedResult variable will hold the 1st index.

4. Run the test; seven tests will be executed.

Giving a name
In the constructor example, we found that the test names are assigned with indexes
such as [0], [1], and so on. So, if a test fails, then it is not easy to identify the data.
To identify an individual test case in a parameterized test, a name is required.
The @Parameters annotation allows placeholders that are replaced at runtime,
and we can use them. The following are the placeholders:

• {index}: This represents the current parameter index
• {0}, {1},…: This represents the first, second, and so on, parameter values

The following code snippet annotates the dataset with the name placeholders:

 @Parameters(name = "{index}: factorial({0})={1}")
 public static Collection<Object[]> factorialData() {
 return Arrays.asList(new Object[][] {

 { 0, 1 }, { 1, 1 }, { 2, 2 }, { 3, 6 },
 { 4, 24 }, { 5, 120 },{ 6, 720 }
 });
 }

Eclipse has a bug that chops off the name.

Working with timeouts
JUnit tests are automated to get quick feedback after a change in the code. If a test
runs for a long time, it violates the quick feedback principle. JUnit provides a timeout
value (in milliseconds) in the @Test annotation to make sure that if a test runs longer
than the specified value, the test fails.

The following is an example of a timeout:

 @Test(timeout=10)
 public void forEver() throws Exception {
 Thread.sleep(100000);
 }

JUnit 4 – a Total Recall

[40]

Here, the test will fail automatically after 10 milliseconds. The following is an Eclipse
screenshot that shows the error:

Exploring JUnit theories
A theory is a kind of a JUnit test but different from the typical example-based JUnit
tests, where we assert a specific data set and expect a specific outcome. JUnit theories
are an alternative to JUnit's parameterized tests. A JUnit theory encapsulates the
tester's understanding of an object's universal behavior. This means whatever a
theory asserts is expected to be true for all data sets. Theories are useful for finding
bugs in boundary-value cases.

Parameterized tests allow us to write flexible data-driven tests and separate data
from the test methods. Theories are similar to parameterized tests—both allow us
to specify the test data outside of the test case.

Parameterized tests are good but they have the following drawbacks:

• Parameters are declared as member variables. They pollute the test class and
unnecessarily make the system complex.

• Parameters need to be passed to the single constructor or variables need to be
annotated, simply making the class incomprehensible.

• Test data cannot be externalized.

Theory comes up with many annotations and a runner class. Let's examine the
important annotations and classes in theory, as follows:

• @Theory: Like @Test, this annotation identifies a theory test to run.
The @Test annotation doesn't work with a theory runner.

• @DataPoint: This annotation identifies a single set of test data
(similar to @Parameters), that is, either a static variable or a method.

Chapter 1

[41]

• @DataPoints: This annotation identifies multiple sets of test data, generally
an array.

• @ParametersSuppliedBy: This annotation provides the parameters to the
test cases.

• Theories: This annotation is a JUnit runner for the theory-based test cases
and extends org.junit.runners.BlockJUnit4ClassRunner.

• ParameterSupplier: This is an abstract class that gives us the handle on the
parameters that we can supply to the test case.

We will start with a simple theory and then explore more. Perform the following steps:

1. Create a MyTheoryTest.java class and annotate the class with @
RunWith(Theories.class). To run a theory, this special runner is required.
Consider the following code:
@RunWith(Theories.class)
public class MyTheoryTest {

}

2. Now run the test. It will fail with the java.lang.Exception: No runnable
methods error because no theory is defined yet. Like the @Test annotation,
we will define a method and annotate it with @Theory as follows:
@RunWith(Theories.class)
public class MyTheoryTest {

 @Theory
 public void sanity() {
 System.out.println("Sanity check");
 }
}

Run the theory, and it will be executed with no error. So, our theory setup
is ready.

3. Define a public static String with a name variable and annotate this
variable with @DataPoint. Now execute the test, nothing special happens. If
a theory method (annotated with @Theory) takes an argument and a variable
annotated with @DataPoint matches the type, then the variable is passed to
the theory during execution. So, change the sanity method and add a String
argument to pass @DataPoint to the sanity() method, as follows:
@RunWith(Theories.class)
public class MyTheoryTest {
 @DataPoint public static String name ="Jack";

JUnit 4 – a Total Recall

[42]

 @Theory
 public void sanity(String aName) {
 System.out.println("Sanity check "+aName);
 }
}

Now run the theory. It will pass the @DataPoint name to the sanity(String
aName) method during execution and the name will be printed to the console.

4. Now, add another static @DataPoint, call it mike, and rename the name
variable to jack, as follows:
@RunWith(Theories.class)
public class MyTheoryTest {
 @DataPoint public static String jack ="Jack";
 @DataPoint public static String mike ="Mike";

 @Theory
 public void sanity(String aName) {
 System.out.println("Sanity check "+aName);
 }
}

During theory execution, both the @DataPoint variables will be passed to the
sanity(String aName) method. The output will be as follows:

5. Now, slightly modify the sanity() method—rename the aName argument
to firstName and add a second String argument, lastName. So now the
sanity method takes the String arguments, fistName and lastName. Print
these variables using the following code:
@RunWith(Theories.class)
public class MyTheoryTest {
 @DataPoint public static String jack ="Jack";
 @DataPoint public static String mike ="Mike";

 @Theory
 public void sanity(String firstName, String lastName) {
 System.out.println("Sanity check "+firstName+",
 "+lastName);
 }
}

Chapter 1

[43]

When executed, the output will be as follows:

So, 2 x 2 = 4 combinations are used. When the multiple @DataPoint
annotations are defined in a test, the theories apply to all possible
well-typed combinations of data points for the test arguments.

6. So far we have only examined single-dimension variables. The @DataPoints
annotation is used to provide a set of data. Add a static char array to hold
the character variables and add a Theory method to accept two characters.
It will execute the theory with 9 (3 ^ 2) possible combinations as follows:

 @DataPoints public static char[] chars =
 new char[] {'A', 'B', 'C'};
 @Theory
 public void build(char c, char d) {
 System.out.println(c+" "+d);
 }

The following is the output:

JUnit 4 – a Total Recall

[44]

Externalizing data using @ParametersSuppliedBy
and ParameterSupplier
So far, we have covered how to set up test data using @DataPoint and
@DataPoints. Now, we will use external classes to supply data in our tests
using @ParametersSuppliedBy and ParameterSupplier. To do this, perform
the following steps:

1. Create an Adder.java class. This class will have two overloaded add()
methods to add numbers and strings. We will unit test the methods
using theory.
The following is the Adder class:

 public class Adder {

 public Object add(Number a, Number b) {
 return a.doubleValue()+b.doubleValue();
 }

 public Object add(String a, String b) {
 return a+b;
 }
 }

2. Create an ExternalTheoryTest.java theory as follows:
@RunWith(Theories.class)
public class ExternalTheoryTest {

}

3. We will not use @DataPoints to create data. Instead, we will create a
separate class to supply numbers to validate the add operation. JUnit
provides a ParameterSupplier class for this purpose. ParameterSupplier
is an abstract class, and it forces you to define a method as follows:
public abstract List<PotentialAssignment>
 getValueSources(ParameterSignature parametersignature);

PotentialAssignment is an abstract class that JUnit theories use to provide
test data to test methods in a consistent manner. It has a static forValue
method that you can use to get an instance of PotentialAssignment.
Create a NumberSupplier class to supply different types of numbers: float,
int, double, long, and so on. Extend the ParameterSupplier class as follows:
 import
 org.junit.experimental.theories.ParameterSignature;

Chapter 1

[45]

 import org.junit.experimental.theories.ParameterSupplier;
 import
 org.junit.experimental.theories.PotentialAssignment;

 public class NumberSupplier extends ParameterSupplier {
 @Override
 public List<PotentialAssignment>
 getValueSources(ParameterSignature sig) {
 List<PotentialAssignment> list = new
 ArrayList<PotentialAssignment>();
 list.add(PotentialAssignment.forValue("long",
 2L));
 list.add(PotentialAssignment.forValue("float",
 5.00f));
 list.add(PotentialAssignment.forValue("double",
 89d));
 return list;
 }

};

Check whether the overridden method creates a list of
PotentialAssignment values of different numbers.

4. Now, modify the theory to add two numbers. Add a theory method
as follows:
import org.junit.experimental.theories.ParametersSuppliedBy;
import org.junit.experimental.theories.Theories;
import org.junit.experimental.theories.Theory;
import org.junit.runner.RunWith;

@RunWith(Theories.class)
public class ExternalTheoryTest {

 @Theory
 public void adds_numbers(
 @ParametersSuppliedBy(NumberSupplier.class) Number num1,
 @ParametersSuppliedBy(NumberSupplier.class) Number num2)
 {
 System.out.println(num1 + " and " + num2);
 }

}

JUnit 4 – a Total Recall

[46]

Check the adds_numbers method; two Number arguments num1 and num2 are
annotated with @ParametersSuppliedBy(NumberSupplier.class).
When this theory is executed, the NumberSupplier class will pass a list.

5. Execute the theory; it will print the following result:

6. Now, we can check our Adder functionality. Modify the theory to assert
the result.
Create an instance of the Adder class and call the add method by passing
num1 and num2. Add the two numbers and assert the value with the results
of Adder.
The assertEquals(double, double) method is deprecated as the double
value calculation results in an unpredictable result. So, the assert class adds
another version of assertEquals for doubles; it takes three arguments: actual,
expected, and a delta. If the difference between the actual and the expected
value is greater than or equal to delta, then the assertion passes as follows:

@RunWith(Theories.class)
public class ExternalTheoryTest {

 @Theory
 public void adds_numbers(
 @ParametersSuppliedBy(NumberSupplier.class) Number num1,
 @ParametersSuppliedBy(NumberSupplier.class) Number num2) {
 Adder anAdder = new Adder();
 double expectedSum =
 num1.doubleValue()+num2.doubleValue();
 double actualResult = (Double)anAdder.add(num1, num2);
 assertEquals(actualResult, expectedSum, 0.01);
 }

}

Chapter 1

[47]

The Adder class has an add method for String. Create a StringSupplier
class to supply String values to our theory and modify the theory class to
verify the add (String, String) method behavior. You can assert the
Strings as follows:

 ° String expected = str1+str2;

 ° assertEquals(expected, actual);

Here, str1 and str2 are the two method arguments of the theory.

Dealing with JUnit rules
Rules allow very flexible addition or redefinition of the behavior of each test method
in a test class. Rules are like Aspect Oriented Programming (AOP); we can do useful
things before and/or after the actual test execution. You can find more information
about AOP at http://en.wikipedia.org/wiki/Aspect-oriented_programming.

We can use the inbuilt rules or define our custom rule.

In this section, we will look at the inbuilt rules and create our custom Verifier and
WatchMan rule.

Playing with the timeout rule
The timeout rule applies the same timeout to all the test methods in a class.
Earlier, we used the timeout in the @Test annotation as follows:

@Test(timeout=10)

The following is the syntax of the timeout rule:

import org.junit.Rule;
import org.junit.Test;
import org.junit.rules.Timeout;

public class TimeoutTest {

 @Rule
 public Timeout globalTimeout = new Timeout(20);

 @Test
 public void testInfiniteLoop1() throws InterruptedException{
 Thread.sleep(30);
 }

JUnit 4 – a Total Recall

[48]

 @Test
 public void testInfiniteLoop2() throws InterruptedException{
 Thread.sleep(30);
 }

}

When we run this test, it times out after 20 milliseconds. Note that the timeout is
applied globally to all methods.

Working with the ExpectedException rule
The ExpectedException rule is an important rule for handling exceptions. It allows
you to assert the expected exception type and the exception message, for example,
your code may throw a generic exception (such as IllegalStateException) for
all failure conditions, but you can assert the generic exception message to verify the
exact cause.

Earlier, we used @Test(expected=Exception class) to test the error conditions.

The ExpectedException rule allows in-test specification of expected exception types
and messages.

The following code snippet explains how an exception rule can be used to verify the
exception class and the exception message:

public class ExpectedExceptionRuleTest {

 @Rule
 public ExpectedException thrown= ExpectedException.none();

 @Test
 public void throwsNothing() {

 }

 @Test
 public void throwsNullPointerException() {
 thrown.expect(NullPointerException.class);
 throw new NullPointerException();
 }

 @Test
 public void throwsIllegalStateExceptionWithMessage() {
 thrown.expect(IllegalStateException.class);

Chapter 1

[49]

 thrown.expectMessage("Is this a legal state?");

 throw new IllegalStateException("Is this a legal state?");
 }
}

The expect object sets the expected exception class and expectMessage sets the
expected message in the exception. If the message or exception class doesn't match
the rule's expectation, the test fails. The ExpectedException object thrown is reset
on each test.

Unfolding the TemporaryFolder rule
The TemporaryFolder rule allows the creation of files and folders that are
guaranteed to be deleted when the test method finishes (whether it passes or fails).
Consider the following code:

@Rule
 public TemporaryFolder folder = new TemporaryFolder();

 @Test
 public void testUsingTempFolder() throws IOException {
 File createdFile = folder.newFile("myfile.txt");
 File createdFolder = folder.newFolder("mysubfolder");

 }

Exploring the ErrorCollector rule
The ErrorCollector rule allows the execution of a test to continue after the first
problem is found (for example, to collect all the incorrect rows in a table and report
them all at once) as follows:

import org.junit.rules.ErrorCollector;
import static org.hamcrest.CoreMatchers.equalTo;

public class ErrorCollectorTest {

 @Rule
 public ErrorCollector collector = new ErrorCollector();

 @Test
 public void fails_after_execution() {
 collector.checkThat("a", equalTo("b"));
 collector.checkThat(1, equalTo(2));

JUnit 4 – a Total Recall

[50]

 collector.checkThat("ae", equalTo("g"));
 }
}

In this example, none of the verification passes but the test still finishes its execution,
and at the end, notifies all errors.

The following is the log—the arrows indicate the errors—and also note that only one
test method is being executed but Eclipse indicates three failures:

Working with the Verifier rule
Verifier is a base class of ErrorCollector, which can otherwise turn passing tests
into failing tests if a verification check fails. The following example demonstrates
the Verifier rule:

public class VerifierRuleTest {
 private String errorMsg = null;

 @Rule

Chapter 1

[51]

 public TestRule rule = new Verifier() {
 protected void verify() {
 assertNull("ErrorMsg should be null after each test
 execution",errorMsg);
 }
 };

 @Test
 public void testName() throws Exception {
 errorMsg = "Giving a value";
 }
}

Verifier's verify method is executed after each test execution. If the verify method
defines any assertions, and that assertion fails, then the test is marked as failed.

In the preceding example, the test should not fail as the test method doesn't perform
any comparison; however, it still fails. It fails because the Verifier rule checks that
after every test execution, the errorMsg string should be set as null, but the test
method sets the value to Giving a value; hence, the verification fails.

Learning the TestWatcher rule
TestWatcher (and the deprecated TestWatchman) are base classes for rules that take
note of the testing action, without modifying it. Consider the following code:

@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class TestWatcherTest {

 private static String dog = "";

 @Rule
 public TestWatcher watchman = new TestWatcher() {
 @Override
 public Statement apply(Statement base,
 Description description) {
 return super.apply(base, description);
 }

 @Override
 protected void succeeded(Description description) {
 dog += description.getDisplayName() + " " + "success!\n";
 }

JUnit 4 – a Total Recall

[52]

 @Override
 protected void failed(Throwable e, Description description) {
 dog += description.getDisplayName() + " " +
 e.getClass().getSimpleName() + "\n";
 }

 @Override
 protected void starting(Description description) {
 super.starting(description);
 }

 @Override
 protected void finished(Description description) {
 super.finished(description);
 }
 };

 @Test
 public void red_test() {
 fail();
 }

 @Test
 public void green() {
 }

 @AfterClass
 public static void afterClass() {
 System.out.println(dog);
 }
}

We created a TestWatcher class to listen to every test execution, collected the failure,
and success instances, and at the end, printed the result in the afterClass() method.

The following is the error shown on the console:

green(com.packtpub.junit.recap.rule.TestWatcherTest) success!

red_test(com.packtpub.junit.recap.rule.TestWatcherTest) AssertionError

Chapter 1

[53]

Working with the TestName rule
The TestName rule makes the current test name available inside test methods.
The TestName rule can be used in conjunction with the TestWatcher rule to make
a unit testing framework compile a unit testing report.

The following test snippet shows that the test name is asserted inside the test:

public class TestNameRuleTest {

 @Rule
 public TestName name = new TestName();

 @Test
 public void testA() {
 assertEquals("testA", name.getMethodName());
 }

 @Test
 public void testB() {
 assertEquals("testB", name.getMethodName());
 }
}

The following section uses the TestName rule to get the method name before
test execution.

Handling external resources
Sometimes JUnit tests need to communicate with external resources such as files or
databases or server sockets. Dealing with external resources is always messy because
you need to set up state and tear it down later. The ExternalResource rule provides
a mechanism that makes resource handling a bit more convenient.

Previously, when you had to create files in a test case or work with server sockets,
you had to set up a temporary directory, or open a socket in a @Before method and
later delete the file or close the server in an @After method. But now, JUnit provides
a simple AOP-like mechanism called the ExternalResource rule that makes this
setup and cleanup work the responsibility of the resource.

JUnit 4 – a Total Recall

[54]

The following example demonstrates the ExternalResource capabilities. The
Resource class represents an external resource and prints the output in the console:

class Resource{
 public void open() {
 System.out.println("Opened");
 }

 public void close() {
 System.out.println("Closed");
 }

 public double get() {
 return Math.random();
 }
}

The following test class creates ExternalResource and handles the resource lifecycle:

public class ExternalResourceTest {
 Resource resource;
 public @Rule TestName name = new TestName();

 public @Rule ExternalResource rule = new ExternalResource() {
 @Override protected void before() throws Throwable {
 resource = new Resource();
 resource.open();
 System.out.println(name.getMethodName());
 }

 @Override protected void after() {
 resource.close();
 System.out.println("\n");
 }
 };

 @Test
 public void someTest() throws Exception {
 System.out.println(resource.get());
 }

 @Test
 public void someTest2() throws Exception {
 System.out.println(resource.get());
 }
}

Chapter 1

[55]

The anonymous ExternalResource class overrides the before and after methods
of the ExternalResource class. In the before method, it starts the resource and
prints the test method name using the TestName rule. In the after method, it just
closes the resource.

The following is the test run output:

Opened

someTest2

0.5872875884671511

Closed

Opened

someTest

0.395586457988541

Closed

Note that the resource is opened before test execution and closed after the test.
The test name is printed using the TestName rule.

Exploring JUnit categories
The Categories runner runs only the classes and methods that are annotated
with either the category given with the @IncludeCategory annotation or a subtype
of that category. Either classes or interfaces can be used as categories. Subtyping
works, so if you use @IncludeCategory(SuperClass.class), a test marked @
Category({SubClass.class}) will be run.

We can exclude categories by using the @ExcludeCategory annotation.

We can define two interfaces using the following code:

public interface SmartTests { /* category marker */ }
public interface CrazyTests { /* category marker */ }

public class SomeTest {
 @Test
 public void a() {
 fail();
 }

 @Category(CrazyTests.class)
 @Test
 public void b() {
 }

JUnit 4 – a Total Recall

[56]

}

@Category({CrazyTests.class, SmartTests.class})
public class OtherTest {
 @Test
 public void c() {

 }
}

@RunWith(Categories.class)
@IncludeCategory(CrazyTests.class)
@SuiteClasses({ SomeTest.class, OtherTest.class }) // Note that
Categories is a kind of Suite
public class CrazyTestSuite {
 // Will run SomeTest.b and OtherTest.c, but not SomeTest.a
}

@RunWith(Categories.class)
@IncludeCategory(CrazyTests.class)
@ExcludeCategory(SmartTests.class)
@SuiteClasses({ SomeTest.class, OtherTest.class })
public class CrazyTestSuite {
 // Will run SomeTest.b, but not SomeTest.a or OtherTest.c
}

Summary
This JUnit refresher chapter covers both the basic and advanced usage of JUnit.

The basic section covers the annotation based on JUnit 4 testing, assertion,
the @RunWith annotation, exception handling, and the Eclipse setup for
running the JUnit tests.

The advanced section covers parameterized tests, matchers and assertThat,
a custom lessThanOrEqual() matcher, assumption, theory, a custom
NumberSupplier class, timeout, categories, TestName, ExpectedException,
TemporaryFolder, ErrorCollector, Verifier and TestWatcher rules, test suites,
and executing tests in order.

By now, you will be able to write and execute JUnit 4 tests and be familiar with the
advanced concepts of JUnit 4.

Chapter 2, Automating JUnit Tests, focuses on getting you quickly started with
project-building tools and test automation. It provides an overview of continuous
integration, explores the incremental Gradle build and Maven build lifecycle, Ant
scripting, and Jenkins automation using Gradle, Maven, and Ant scripts.

Automating JUnit Tests
In this chapter, you will be introduced to the concept of Extreme Programming (XP),
Continuous Integration (CI), the benefits of CI, and JUnit test automation using
various tools.

The following topics will be covered in this chapter:

• CI
• Gradle automation
• Maven project management
• Ant
• Jenkins

Continuous Integration
In college, I was working on a critical steganography (image watermarking) project
and simultaneously developing a module on my home computer, where I integrated
my changes with other changes on the college server. Most of my time was wasted in
integration. After manual integration, I would find everything broken; so, integration
was terrifying.

When CI is not available, development teams or developers make changes to code
and then all the code changes are brought together and merged. Sometimes, this
merge is not very simple; it involves the integration of lots of conflicting changes.
Often, after integration, weird bugs crop up and a working module may start to fail,
as it involves a complete rework of numerous modules. Nothing goes as planned
and the delivery is delayed. As a result, the predictability, cost, and customer service
are affected.

Automating JUnit Tests

[58]

CI is an XP concept. It was introduced to prevent integration issues. In CI, developers
commit the code periodically, and every commit is built. Automated tests verify the
system integrity. It helps in the incremental development and periodic delivery of
the working software.

Benefits of CI
CI is meant to make sure that we're not breaking something unconsciously in our
hurry. We want to run the tests continuously, and we need to be warned if they fail.

In a good software development team, we'd find test-driven development (TDD)
as well as CI.

CI requires a listener tool to keep an eye on the version control system for changes.
Whenever a change is committed, this tool automatically compiles and tests the
application (sometimes it creates a WAR file, deploys the WAR/EAR file, and so on).

If compilation fails, or a test fails, or deployment fails, or something goes wrong, the
CI tool immediately notifies the concerned team so that they can fix the issue.

CI is a concept; to adhere to CI, tools such as Sonar and FindBugs can be added
to the build process to track the code quality, and they automatically monitor the
code quality and code coverage metrics. Good quality code gives us confidence that
a team is following the right path. Technical debts can be identified very quickly,
and the team can start reducing the debts. Often, CI tools have the ability to present
dashboards pertaining to quality metrics.

In a nutshell, CI tools enforce code quality, predictability, and provide quick
feedback, which reduces the potential risk. CI helps to increase the confidence in the
build. A team can still write very poor quality code, even test poor quality code, and
the CI will not care.

Numerous CI tools are available on the market, such as Go, Bamboo, TeamCity,
CruiseControl, and Jenkins. However, CruiseControl and Jenkins are the widely
used ones.

Jenkins supports various build scripting tools. It integrates almost all sorts of projects
and is easy to configure. In this chapter, we will work with Jenkins.

CI is just a generic conduit to run the commands; often, build tools are used to
execute the commands, and then the CI tool collects the metrics produced by the
commands or build tools. Jenkins needs build scripts to execute tests, compile the
source code, or even deploy deliverables. Jenkins supports different build tools to
execute the commands—Gradle, Maven, and Ant are the widely used ones. We will
explore the build tools and then work with Jenkins.

Chapter 2

[59]

You can download the code for this chapter. Extract the ZIP file.
It contains a folder named Packt. This folder has two subfolders:
gradle and chapter02. The gradle folder contains the basic
Gradle examples and the chapter02 folder contains the Java projects
and Ant, Gradle, and Maven build scripts.

Gradle automation
Gradle is a build automation tool. Gradle has many benefits such as loose structure,
ability to write scripts to build, simple two-pass project resolution, dependency
management, remote plugins, and so on.

The best feature of Gradle is the ability to create a domain-specific language (DSL) for
the build. An example would be generate-web-service-stubs or run-all-tests-in-parallel.

A DSL is a programming language specialized for a domain and
focuses on a particular aspect of a system. HTML is an example of
DSL. We cannot build an entire system with a DSL, but DSLs are
used to solve problems in a particular domain. The following are the
examples of DSLs:

• A DSL for building Java projects
• A DSL for drawing graph

It's one of the unique selling point (USP) is an incremental build. It can be
configured to build a project only if any resource has changed in the project.
As a result, the overall build execution time decreases.

Gradle comes up with numerous preloaded plugins for different projects types.
We can either use them or override.

Unlike Maven or Ant, Gradle is not XML based; it is based on a dynamic language
called Groovy. Groovy is a developer-friendly Java Virtual Machine (JVM)
language. Its syntax makes it easier to express the code intent and provides ways to
effectively use expressions, collections, closures, and so on. Groovy programs run on
JVM; so, if we write Java code in a Groovy file, it will run. Groovy supports DSL to
make your code readable and maintainable.

Groovy's home page is http://groovy.codehaus.org/.

We can use Ant or Maven in a Gradle script. Gradle supports the
Groovy syntax. Gradle provides support for Java, Web, Hibernate,
GWT, Groovy, Scala, OSGi, and many other projects.

Automating JUnit Tests

[60]

Big companies such as LinkedIn and Siemens use Gradle. Many open source
projects, such as Spring, Hibernate, and Grails use Gradle.

Getting started
Java (jdk 1.5 +) needs to be installed before executing a Gradle script. The steps to do
this are as follows:

1. Go to the command prompt and run java –version; if Java is not installed
or the version is older than 1.5, install the latest version from the Oracle site.

2. Gradle is available at http://www.gradle.org/downloads. Once the
download is complete, extract the media. You will find that it includes a bin
directory. Open the command prompt and go to the bin directory. You can
extract the media to any directory you want. For example, if you extract the
Gradle media under D:\Software\gradle-1.10, then open the command
prompt and go to D:\Software\gradle-1.10\bin.

3. Now, check the Gradle version using the gradle –v command. It will show
you the version and other configuration. To run the Gradle from anywhere in
your computer, create a GRADLE_HOME environment variable and set the value
to the location where you extracted the Gradle media.

4. Add %GRADLE_HOME%\bin (in Windows) to the PATH variable (export GRADLE_
HOME and PATH to bash_login in Linux and bashrc in Mac).

5. Open a new command prompt, go to any folder, and run the same command
gradle –v again to check whether the PATH variable is set correctly.

The other option is to use the Gradle wrapper (gradlew) and allow the batch file
(or shell script) to download the version of Gradle specific to each project. This is an
industry standard for working with Gradle, which ensures that there's consistency
among Gradle versions. The Gradle wrapper is also checked into the source code
control along with the build artifacts.

Gradling
In the programming world, "Hello World" is the starting point. In this section, we
will write our first "Hello World" Gradle script. A Gradle script can build one or
more projects. Each project can have one or more tasks. A task can be anything like
compiling Java files or building a WAR file.

To execute a task, we will create a build.gradle file and execute
the gradle command to run a build. Gradle will look for a file named
build.gradle in the current directory. To execute a build file other
than build.gradle, use the –b <file name> option.

Chapter 2

[61]

We will create a task to print "Hello World" on the console. Perform the
following steps:

1. Open a text editor and enter the following:
task firstTask << {
 println 'Hello world.'
}

Save the file as build.gradle.

2. Open the command prompt and browse to the folder where you saved the
build.gradle file. Run the gradle firstTask command, or if you saved
the file under D:\Packt\gradle, simply open the command prompt and run
gradle –b D:\Packt\gradle\build.gradle firstTask.
The following information will be printed on the command prompt:
:firstTask

Hello world.

BUILD SUCCESSFUL

Here, task defines a Gradle task and << defines a task called firstTask with a
single closure to execute. The println command is Groovy's equivalent to Java's
System.out.println.

When we executed the task using its name, the output shows the task name and then
printed the Hello world message.

Using the–q option, we can turn off the Gradle messages. If we run
gradle –q –b build.gradle firstTask, then it will print
only Hello world.

Ordering subtasks using doFirst and doLast
A task can contain many subtasks. Subtasks can be defined and ordered using the
doFirst and doLast keywords. The following code snippet describes the Java
method style task definition and subtask ordering:

task aTask(){
 doLast{
 println 'Executing last.'
 }

 doFirst {
 println 'Running 1st'
 }
}

Automating JUnit Tests

[62]

Here, we defined a task named aTask using the Java method style. The task aTask
contains two closure keywords: doLast and doFirst.

The doFirst closure is executed once the task is invoked, and the doLast closure is
executed at the end.

When we run gradle aTask, it prints the following messages:

:aTask

Running 1st

Executing last.

BUILD SUCCESSFUL

Default tasks
In Ant, we can define a default target; similarly, Gradle provides options for default
tasks using the keyword defaultTasks 'taskName1', …'taskNameN'.

The defaultTasks 'aTask' keyword defines aTask as a default task. So now if we
only execute gradle with no task name, then it will invoke the default task.

The task dependency
In Ant, a target depends on another target, for example, a Java code compile task
may depend on cleaning of the output folder; similarly, in Gradle, a task may
depend on another task. The dependency is defined using the dependsOn keyword.
The following syntax is used to define a task dependency:

secondTask.dependsOn 'firstTask'

Here, secondTask depends on firstTask.

Another way of defining task dependency is passing the dependency in a
method-like style. The following code snippet shows the method argument style:

task secondTask (dependsOn: 'firstTask') {

 doLast {
 println 'Running last'
 }

 doFirst {
 println 'Running first'
 }

}

Chapter 2

[63]

Execute gradle secondTask; it will first execute the dependent task firstTask and
then execute the task secondTask as follows:

:firstTask

Hello world.

:secondTask

Running first

Running last

Another way of defining intertask dependency is using secondTask.dependsOn =
['firstTask'] or secondTask.dependsOn 'firstTask'.

We can abbreviate each word of a task name in a camel case to
execute a task. For example, the task name secondTask can be
abbreviated to sT.

Daemon
Each time the gradle command is invoked, a new process is started, the Gradle
classes and libraries are loaded, and the build is executed. Loading classes and
libraries take time. Execution time can be reduced if a JVM, Gradle classes, and
libraries, are not loaded each time. The --daemon command-line option starts a
new Java process and preloads the Gradle classes and libraries; so, the first execution
takes time. The next execution with the --daemon option takes almost no time
because only the build gets executed—the JVM, with the required Gradle classes
and libraries is already loaded. The configuration for daemon is often put into
a GRADLE_OPTS environment variable; so, the flag is not needed on all calls. The
following screenshot shows the execution of daemon:

Automating JUnit Tests

[64]

Note that the first build took 31 seconds, whereas the second build tool took
only 2 seconds.

To stop a daemon process, use gradle –stop the command-line option.

Gradle plugins
Build scripts are monotonous, for example, in a Java build script, we define the
source file location, third-party JAR location, clean output folder, compile Java files,
run tests, create JAR file, and so on. Almost all Java project build scripts look similar.

This is something similar to duplicate codes. We resolve the duplicates by refactoring
and moving duplicates to a common place and share the common code. Gradle
plugins solve this repetitive build task problem by moving the duplicate tasks to
a common place so that all projects share and inherit the common tasks instead of
redefining them.

A plugin is a Gradle configuration extension. It comes with some preconfigured tasks
that, together, do something useful. Gradle ships with a number of plugins and helps
us write neat and clean scripts.

In this chapter, we will explore the Java and Eclipse plugins.

The Eclipse plugin
The Eclipse plugin generates the project files necessary to import a project in Eclipse.

Any Eclipse project has two important files: a .project file and a .classpath file.
The .project file contains the project information such as the project name and
project nature. The .classpath file contains the classpath entries for the project.

Let's create a simple Gradle build with the Eclipse plugin using the following steps:

1. Create a folder named eclipse, then a file named build.gradle, and add
the following script:
apply plugin: 'eclipse'

To inherit a plugin nature, Gradle uses the apply plugin: '<plug-in
name>' syntax.

2. Open the command prompt and check all the available tasks using the
gradle tasks –-all command. This will list the available Eclipse plugin
tasks for you.

Chapter 2

[65]

3. Now run the gradle eclipse command. It will generate only the .project
file, as the command doesn't know what type of project needs to be built. You
will see the following output on the command prompt:
:eclipseProject

:eclipse

BUILD SUCCESSFUL

4. To create a Java project, add apply plugin: 'java' to the build.gradle
file and rerun the command. This time it will execute four tasks as follows:
:eclipseClasspath

:eclipseJdt

:eclipseProject

:eclipse

5. Open the Eclipse folder (the location where you put the build.gradle file).
You will find the .project and .classpath files and a .settings folder. For
a Java project, a Java Development Tools (JDT) configuration file is required.
The .settings folder contains the org.eclipse.jdt.core.prefs file.

Now, we can launch Eclipse and import the project. We can edit the .project file
and change the project name.

Normally, a Java project depends on third-party JARs, such as the JUnit JAR and
Apache utility JARs. In the next section, we will learn how a classpath can be
generated with JAR dependencies.

The Java plugin
The Java plugin provides some default tasks for your project that will compile and
unit test your Java source code and bundle it into a JAR file.

The Java plugin defines the default values for many aspects of the project, such as
the source files' location and Maven repository. We can follow the conventions or
customize them if necessary; generally, if we follow the conventional defaults, then
we don't need to do much in our build script.

Let's create a simple Gradle build script with the Java plugin and observe what the
plugin offers. Perform the following steps:

1. Create a java.gradle build file and add the apply plugin: 'java' line.
2. Open the command prompt and type in gradle -b java.gradle tasks

–-all. This will list the Java plugin tasks for you.

Automating JUnit Tests

[66]

3. To build a project, we can use the build task; the build depends on many
tasks. Execute the gradle -b java.gradle build command. The following
screenshot shows the output:

Since no source code was available, the build script didn't build anything. However,
we can see the list of available tasks—build tasks are dependent on compile, JAR
creation, test execution, and so on.

Java plugins come with a convention that the build source files will be under src/
main/java, relative to the project directory. Non-Java resource files such as the XML
and properties files will be under src/main/resources. Tests will be under src/
test/java, and the test resources under the src/test/resources.

To change the default Gradle project source file directory settings, use the
sourceSets keyword. The sourceSets keyword allows us to change the default
source file's location.

A Gradle script must know the location of the lib directory to compile files.
The Gradle convention for library locations is repositories. Gradle supports the
local lib folder, external dependencies, and remote repositories.

Gradle also supports the following repositories:

• Maven repository: Maven can be configured on our local machine, on a
network machine, or even the preconfigured central repository.

 ° Maven central repository: Maven's central repository is located at
http://repo1.maven.org/maven2. The mavenCentral() groovy
method can be used to load dependencies from the centralized
Maven repository. The following is an example of accessing the
central repository:

repositories {
 mavenCentral()
}

Chapter 2

[67]

 ° Maven local repository: If we have a local Maven repository, we can
use the mavenLocal()method to resolve dependencies as follows:

repositories {
 mavenLocal()
}

The maven() method can be used to access repositories configured on
the intranet. The following is an example of accessing an intranet URL:

repositories {
 maven {
 name = 'Our Maven repository name'
 url = '<intranet URL>'
 }
}

The mavenRepo() method can be used with the following code:
repositories {
 mavenRepo(name: '<name of the repository>',
 url: '<URL>')
}

A secured Maven repository needs user credentials. Gradle provides the
credentials keyword to pass user credentials. The following is an
example of accessing a secured Maven repository:

repositories {
 maven(name: repository name') {
 credentials {
 username = 'username'
 password = 'password'
 }
 url = '<URL>'
 }
}

Automating JUnit Tests

[68]

• Ivy repository: This is a remote or local ivy repository. Gradle supports the
same Maven methods for ivy. The following is an example of accessing an
ivy repository and a secured ivy repository:
repositories {
 ivy(url: '<URL>', name: '<Name>')
 ivy {
 credentials
 {
 username = 'user name'
 password = 'password'
 }
 url = '<URL>'
 }
}

• Flat directory repository: This is a local or network directory. The following
is an example of accessing a local directory:
repositories {
 flatDir(dir: '../thirdPartyFolder',
 name: '3rd party library')
 flatDir {
 dirs '../springLib', '../lib/apacheLib',
 '../lib/junit'
 name = ' Configured libraries for spring,
 apache and JUnit'
 }
}

Gradle uses flatDir() to locate a local or network-shared library folder.
Here, dir is used to locate a single directory and dirs with directory
locations separated by commas are used to locate distributed folders.

In this section, we will create a Java project, write a test, execute the test, compile
source or test files, and finally build a JAR file. Perform the following steps:

1. Create a build.gradle build script file under packt\chapter02\java.
2. Add Eclipse and Java plugin support using the following lines of code:

apply plugin: 'eclipse'
apply plugin: 'java'

3. We will write a JUnit test, so our project will be dependent on JUnit JARs.
Create a lib directory under packt\chapter02 and copy the hamcrest-
core-1.3.jar and junit-4.11.jar JARs (we downloaded these JARs in
Chapter 1, JUnit 4 – a Total Recall).

Chapter 2

[69]

4. In this example, we will use the flat directory repository. We created a lib
directory for JUnit JARs. Add the following lines to the build.gradle file to
configure our repository:
repositories {
 flatDir(dir: '../lib', name: 'JUnit Library')
}

We have a single lib folder; so, we will use flatDir and dir conventions.

A repository can have numerous library files, but we may need only some of
them. For example, source file compilation doesn't require the JUnit JARs but
test files and test execution need them.
Gradle comes with dependency management. The dependencies keyword is
used to define dependencies.
The closure dependencies support the following default types:

 ° Compile: These are the dependencies required to compile the source
of the project.

 ° Runtime: These dependencies are required by the production
classes at runtime. By default, these also include the compile
time dependencies.

 ° testCompile: These dependencies are required to compile the test
source of the project. By default, they also include the compiled
production classes and the compile-time dependencies.

 ° testRuntime: These dependencies are required to run the tests.
By default, they also include the compile, runtime, and testCompile
dependencies.

Each dependency type needs a coordinate: a group, name, and version
of a dependent JAR.
Some websites, such as mvnrepository.com, can help us to come up with
a ready-to-copy-paste dependency string, such as http://mvnrepository.
com/artifact/org.springframework/spring-aop/3.1.1.RELEASE.

Suppose we need to include the org.springframework.
aop-3.1.1.RELEASE.jar file in our classpath (here org.
springframework is the group, aop is the name, and
3.1.1.RELEASE is the version). We can simply write org.spring
framework:aop:3.1.1.RELEASE to identify aop.jar.

Automating JUnit Tests

[70]

5. Tests need JUnit JAR support. Add the following lines to our build.gradle
file to add the JUnit dependency:
dependencies {
 testCompile group: 'junit', name: 'junit',
 version: '4.11'
 testCompile group: '', name: 'hamcrest-core',
 version: '1.3'
}

Or simply add the following lines to the file:

dependencies {
 testCompile 'junit:junit:4.11', ':hamcrest-core:1.3'
}

6. Generate an Eclipse project using the Eclipse plugin and issue the gradle
eclipse command. The eclipse command will execute three tasks:
eclipseClasspath, eclipseJdt, and eclipseProject.
Go to the \chapter02\java folder, and you will find a .classpath and
a .project file. Open the .classpath file and check whether junit-4.11
and hamcrest-core-1.3.jar have been added as classpathentry.
The following screenshot shows the gradle eclipse command output:

The following screenshot shows the content of the generated .classpath file:

Chapter 2

[71]

7. Launch Eclipse and import the project by navigating to File | Import
| Existing Projects into Workspace. Now browse to the D:\Packt\
chapter02\java folder and import the project. Eclipse will open the java
project—the Java community's best practice is to keep the test and source
code files under the same package but in a different source folder. Java code
files are stored under src/main/java, and test files are stored under src/
test/java. Source resources are stored under src/main/resources.
We need to create the src/main/java, src/main/resources, and src/
test/java folders directly under the Java project.
The following screenshot displays the folder structure:

8. Right-click on the leaf folders (the java and resources folders under src/
main and src/test, respectively); a pop-up menu will open. Now, go to
Build Path | Use as Source Folder.
The following screenshot shows the action:

Automating JUnit Tests

[72]

9. We will create a Java class and unit test the behavior; the Java class will
read from a properties file and return an enum type depending on the
value provided in the properties file. Reading a file from the test is not
recommended as I/O operations are unpredictable and slow; your test may
fail to read the file and take time to slow down the test execution. We can
use mock objects to stub the file read, but for simplicity, we will add two
methods in the service class—one will take a String argument and return
an enum type, and the other one will read from a properties file and call the
first method with the value. From the test, we will call the first method with a
string. The following are the steps to configure the project:

1. Add an environment.properties properties file under /java/src/
main/resources and add env = DEV in that file.

2. Create an enum file in the com.packt.gradle package under the
/java/src/main/java source package:

public enum EnvironmentType {
 DEV, PROD, TEST
}

3. Create a Java class to read the properties file as follows:
package com.packt.gradle;

import java.util.ResourceBundle;

public class Environment {
 public String getName() {
 ResourceBundle resourceBundle =
 ResourceBundle.getBundle("environment");
 return resourceBundle.getString("env");
 }
}

4. Create a EnvironmentService class to return an enum type
depending on the environment setup as follows:

package com.packt.gradle;
public class EnvironmentService {

 public EnvironmentType getEnvironmentType() {
 return getEnvironmentType(new
 Environment().getName());
 }
 public EnvironmentType getEnvironmentType(String name) {
 if("dev".equals(name)) {
 return EnvironmentType.DEV;

Chapter 2

[73]

 }else if("prod".equals(name)) {
 return EnvironmentType.PROD;
 }
 return null;
 }
}

The getEnvironmentType() method calls the Environment
class to read the properties file value and then calls the
getEnvironmentType(String name) method with the read value to
return an enum type.

5. Add a test class under /src/test/java in the com.packt.gradle
package. The following is the code:

package com.packt.gradle;
import static org.junit.Assert.*;
import static org.hamcrest.CoreMatchers.*;
import org.junit.Test;

public class EnvironmentServiceTest {
EnvironmentService service = new EnvironmentService();
@Test
public void returns_NULL_when_environment_not_configured()
{
 assertNull(service.getEnvironmentType("xyz")); }

@Test
public void production_environment_configured(){
 EnvironmentType environmentType =
 service.getEnvironmentType("prod");
 assertThat(environmentType,
 is(EnvironmentType.PROD));
 }
}

Here, the returns_NULL_when_environment_not_configured()
test passes xyz to the getEnvironmentType method and expects
that the service will return null, assuming that there won't be any
xyz environment. In another test, it passes the prod value to the
getEnvironmentType method and expects that a type will be returned.

Automating JUnit Tests

[74]

10. Now open the command prompt and run gradle build; it will compile
the source and test files, execute the test, and finally create a JAR file.
To execute only the tests, run gradle test.
Open the \chapter02\java\build folder, and you will find three
important folders:

 ° libs: This folder contains the build output JARs—Java.jar

 ° reports: This folder contains the HTML test results
 ° test-results: This folder contains the XML format test execution

result and the time taken to execute each test

The following screenshot shows the test execution result in the HTML format:

Gradle is an intelligent build tool, and it supports incremental build. Rerun the
gradle build command. It will just skip the tasks and say UP-TO-DATE. The
following is a screenshot of the incremental build:

If we make a change to the test class, only test tasks will be executed. The following
are the test tasks: compileTestJava, testClasses, test, check, and build.

Chapter 2

[75]

In next chapters, we will explore more on Gradle. Do you want to dive deep now?
If so, you can visit http://www.gradle.org/docs/current/userguide/
userguide.html.

Maven project management
Maven is a project build tool. Using Maven, we can build a visible, reusable,
and maintainable project infrastructure.

Maven provides plugins for visibility: the code quality/best practices is visible
through the PMD/checkstyle plugin, the XDOC plugin generates project content
information, the JUnit report plugin makes the failure/success story visible to the
team, the project activity tracking plugins make the daily activity visible, the change
log plugin generates the list of changes, and so on.

As a result, a developer knows what APIs or modules are available for use;
so, he or she doesn't invent the wheel (rather, he or she reuses the existing
APIs or modules). This reduces the duplication and allows a maintainable
system to be created.

In this section, we will explore the Maven architecture and rebuild our Gradle project
using Maven.

Installation
A prerequisite for Maven is the Java Development Kit (JDK). Make sure you have
JDK installed on your computer.

The following are the steps to set up Maven:

1. Download the Maven media. Go to http://maven.apache.org/download.
html to get the latest version of Maven.

2. After downloading Maven, extract the archive to a folder; for example, I
extracted it to D:\Software\apache-maven-3.1.1.

3. For Windows OS, create an environment variable named M2_HOME and point
it to the Maven installation folder. Modify the PATH variable and append
%M2_HOME%\bin.

4. For Linux, we need to export the PATH and M2_HOME environment variables to
the .bashrc file. Open the .bashrc file and edit it with the following text:
export M2_HOME=/home/<location of Maven installation>
export PATH=${PATH}:${M2_HOME}/bin

Automating JUnit Tests

[76]

5. For Mac, the .bash_login file needs to be modified with following text:
export M2_HOME=/usr/local/<maven folder>
export PATH=${PATH}:${M2_HOME}/bin

6. Check the installation and execute the mvn –version command. This should
print the Maven version. The following is a screenshot of the output:

Maven is installed so we can start exploring Maven. Eclipse users with the
m2eclipse plugin installed already have Maven, which they can directly
use from Eclipse and they don't have to install Maven.

The Archetype plugin
In Maven, Archetype is a project-template generation plugin.

Maven allows us to create a project infrastructure from scratch from a list of
predefined project types. The Maven command mvn archetype:generate
generates a new project skeleton.

The archetype:generate command loads a catalog of available project types.
It tries to connect to the central Maven repository at http://repo1.maven.org/
maven2, and downloads the archetype catalog.

To get the latest catalog, you should be connected to the Internet.

Follow the ensuing steps to generate a Java project skeleton:

1. Create a folder hierarchy /Packt/chapter02/maven, open the command
prompt, and browse to the /Packt/chapter02/maven folder.

2. Issue a mvn archetype:generate command; you will see a large list
of archetypes being downloaded, each with a number, a name, and a
short description.
It will prompt you to enter an archetype number. Type in the default
maven-archetype-quickstart archetype. In my case, the number is 343.

Chapter 2

[77]

The following screenshot shows you that the number 343 is default:

To get the entire catalog on Windows OS, enter the mvn
archetype:generate > archetype.txt command.
This will populate the text file with the project type list.

3. Enter 343 or just hit Enter to select the default. Next, it will prompt you to
select a version. Hit Enter to select the default.

4. Now it will ask you to provide a groupId. A groupId is the root package for
multiple projects, and org.springframework is the groupId for all Spring
projects. Enter org.packt as groupId.

5. Next, it will ask for artifactId. This is the project name and aop is the
artifactId for org.springframework.aop-3.1.1.RELEASE. Enter Demo
for the artifactId.

6. Maven will ask for the version and the default is 1.0-SNAPSHOT. The version
is your project's version, and here 3.1.1.RELEASE is the version for the org.
springframework.aop-3.1.1.RELEASE project. We will accept the default.
Hit Enter to accept the default.

7. Now you will be prompted to enter the package name. Enter com.packt.edu
as package's name.

8. Finally, it will show you what you entered. Review it and accept it as shown
in the following screenshot:

Automating JUnit Tests

[78]

Open the /Packt/chapter02/maven folder; you will see the Demo project
folder is created with the following file structure:

The Maven convention for the source Java file is src/main/java and the test source
file is src/test/java.

Maven will automatically create a Java file App.java under src/main/java/com/
packt/edu and a test file AppTest under src/test/java/com/packt/edu.

Also, it will create an XML file pom.xml directly under Demo. This file will be used for
building the project. In the next section, we will read about the POM file.

The Project Object Model (POM) file
Every Maven project contains a pom.xml file, which is a project metadata file.

A POM file can contain the following sections:

• Project coordinates such as <groupId/>, <artifactId/>, <version/>,
<dependency>, and inheritance through <modules/> and <parent/>
Open the pom.xml file in the Demo folder; it contains the following
coordinate details:
 <groupId>org.packt</groupId>
 <artifactId>Demo</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

• The build details in <build> and <reporting>

Chapter 2

[79]

• Project visibility details such as <name>, <organization>, <developers>,
<url>, and <contributors>
Our generated pom.xml contains the following details:

 <name>Demo</name>
 <url>http://maven.apache.org</url>

• Project environment details such as <scm>, <repository>, and
<mailingList>

Project dependency
In a multimodule project, a project can depend on many other projects.
For example, say we depend on JUnit. Maven automatically discovers the
required artifact dependencies. This is very useful as we depend on many open
source projects. It's always useful, be it an open source or a close source project.

Do you remember the Gradle dependency closure? It has four default types
for Compile, Runtime, testCompile, and testRuntime.

Similarly, Maven has the following dependency scopes:

• Compile: Code compile time classpath dependency; this is the default scope.
If not, it is explicitly defined and then the compile time scope is set.

• Runtime: This is required at runtime.
• Test: This dependency is required for test code compilation and test execution.
• Provided: The JDK or environment dependency at runtime.

A parent project defines dependencies using the following code snippet:

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 </dependencies

All child projects inherit the dependency by just adding the <dependency> tag
as follows:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
</dependency>

Automating JUnit Tests

[80]

The build life cycle
The build life cycle clearly defines the process of building and distributing
a particular project artifact.

Maven has the following three built-in build life cycles:

• Default: This life cycle handles the compile, test, packaging, deployment,
and many more functions

• Clean: This life cycle generally cleans the build artifacts generated by the
previous build(s)

• Site: This life cycle takes care of generation and deployment of the project's
site documentation

Now, we will compile and test our Demo project.

In this section, we will work with compile, test, and package targets of the default
life cycle.

Compiling the project
Perform the following steps to compile the project:

1. Open the command prompt and browse to \Packt\chapter02\maven\Demo.
Maven needs a pom.xml file to compile a project.

2. Type in mvn compile; it will compile the project and create class files
under \Demo\target\classes. The following screenshot shows the output:

Chapter 2

[81]

Testing the project
To execute the tests in Demo, open the command prompt and type in mvn test;
it will download JUnit JARs and surefire JARs for test compilation and test report
generation respectively and then execute the test. The following screenshot shows
the output:

Packaging the project
The mvn package command compiles source code, compiles tests, executes tests,
and finally builds a JAR. It will generate Demo-1.0-SNAPSHOT.jar in \Packt\
chapter02\maven\Demo\target.

The clean life cycle
The mvn clean command removes the target folder and deletes all the content.
Run the command and check that the target folder has been deleted from \Packt\
chapter02\maven\Demo\.

The site life cycle
The mvn site command generates a detailed project report in the HTML format
under the target or site. It includes About, Plugin Management, Distribution
Management, Dependency Information, Source Repository, Mailing Lists, Issue
Tracking, Continuous Integration, Project Plugins, Project License, Project Team,
Project Summary, and Dependencies.

Refer to http://maven.apache.org/guides/index.html to explore more
on Maven.

The next section covers the Apache Ant.

Automating JUnit Tests

[82]

Another neat tool (Ant)
Ant is a Java-based build tool from the Apache Software Foundation. Ant's build files
are written in XML. You need Java to execute an Ant task.

Download Apache Ant from http://ant.apache.org/, extract the media, and
create an ANT_HOME variable and set the value to the extracted location. Edit PATH
and append %ANT_HOME%\bin in Windows. For Mac or Linux OS, you need to
export ANT_HOME and PATH as described in the Installation section of Maven project
management earlier in this chapter.

Ant needs a build.xml file to execute tasks. Ant supports the –f option to specify
a build script; so the ant –f myBuildFile.xml command will work.

We will create a build script and execute the Maven project (\Packt\chapter02\
maven\Demo) using Ant. Follow the ensuing steps:

1. Create an XML file build.xml in \Packt\chapter02\maven\Demo.
2. Add the following lines in the build.xml file:

<?xml version="1.0"?>
<project name="Demo" basedir=".">
 <property name="src.dir" location="src/main/java" />
 <property name="build.dir" location="bin" />
 <property name="dist.dir" location="ant_output" />
</project>

The <project> tag is a defined tag in Ant. You can name your project, and
Demo is the name of the project. Next, we will set properties; a property can
have a name and value or location. Here, src.dir is a property name, and
this property can be accessed from any task using the ${src.dir} syntax.
The location attribute refers to a relative location from the build.xml file.
Since src/main/java contains the source file, we set the location value to src/
main/java. The other two properties, build.dir and dist.dir, will be used
by the Java compiling task to compile class files and generate the JAR file.

3. Do you remember the clean task in Maven? Ant doesn't provide default
targets. We have to define a clean target to remove old build outputs, and
we will call Ant's <delete> command to delete directories. Then, using the
<mkdir> command, we will recreate the directories:
 <target name="clean">
 <delete dir="${build.dir}" />
 <delete dir="${dist.dir}" />
 </target>
 <target name="makedir">

Chapter 2

[83]

 <mkdir dir="${build.dir}" />
 <mkdir dir="${dist.dir}" />
 </target>

Note that we added two targets using the <target> tag. Each target is
identified using a name. We will call the clean target to delete build.dir
(generated .class files) and dist.dir (build output JARs).

4. Compile task is inbuilt in Gradle/Maven, but Ant doesn't have any inbuilt
compile targets; so, we will create a target to compile Java files as follows:
 <target name="compile" depends="clean, makedir">
 <javac srcdir="${src.dir}" destdir="${build.dir}">
 </javac>
 </target>

Use the <javac> command to compile Java files. The <javac> command
accepts srcdir and destdir. Compiler reads Java files from srcdir and
generates class files to destdir.
A target may depend on another, and depends allows us to pass
comma-separated target names. Here, compile target depends on
clean and makedir.

5. The compilation is done. Now, we will create jar from the class files using
the <jar> command as follows:
<target name="jar" depends="compile">
 <jar destfile="${dist.dir}\${ant.project.name}.jar"
 basedir="${build.dir}">
 </jar>
 </target>

The jar target needs to know the class file's location and destination. The
destfile attribute refers to the destination JAR file name and location and
basedir refers to the class file location. Check whether we used ${dist.
dir}\${ant.project.name}.jar to represent the destination JAR file name
and folder. Here, ${dist.dir} refers to the destination folder, and ${ant.
project.name}.jar represents the JAR name. ${ant.project.name} is the
name (Demo) we mentioned in the <project> tag.

6. The Ant script is ready to compile and create a JAR. Open the command
prompt, go to \Packt\chapter02\maven\Demo and issue an ant jar
command. Here, jar depends on compile and compile depends on clean
and makedir. So, the jar command will create two directories, bin and
ant_output, compile the Java file and generate the.class file in the bin
folder, and finally create a Demo.jar JAR in the ant_output folder.

Automating JUnit Tests

[84]

7. The compilation is done; now, it's time to execute the tests. Tests need JUnit
JARs and generated source class files to compile and execute. We have
created the lib directory for Gradle in \Packt\chapter02\lib and kept
the JUnit 4 JARs in it. We will use this lib. Add three properties for the test
source file directory, library directory, and test report as follows:
 <property name="test.dir" location="src/test/java" />
 <property name="lib.dir" location="../../lib" />
 <property name="report.dir" location="${dist.dir}/report" />

Check whether the lib.dir location is relative to the build.xml location.
The test.dir attribute points to src/test/main and test reports will be
generated inside ant_output/report.

8. Path allows us to refer to a directory or to a file path. We will define a
jclass.path path to refer to all JAR files under the lib directory and
generated .class files as follows:
 <path id="jclass.path">
 <fileset dir="${lib.dir}/">
 <include name="**/*" />
 </fileset>
 <pathelement location="${build.dir}" />
 </path>

The <fileset> tag takes a directory location and <include> takes a file
name or regular expression. The **/* value means all the directories
and files are in ${lib.dir}. The pathelement attribute refers to the bin
directory where the compiled class files are put.

9. Now, we need to compile test files. Add a testcompile target and use the
javac command. Pass test.dir as srcdir for compilation. Add <classpath>
to refer the jclass.path value. This will compile the test files. Consider the
following code snippet:
 <target name="testcompile" depends="compile">
 <javac srcdir="${test.dir}" destdir="${build.dir}">
 <classpath refid="jclass.path" />
 </javac>
 </target>

Chapter 2

[85]

10. Add another target to execute the JUnit test. Ant has a junit command to
run tests. Pass jclass.path to point the lib directory and generated files
as follows:
 <target name="test" depends="testcompile">
 <junit printsummary="on" fork="true" haltonfailure="yes">
 <classpath refid="jclass.path" />
 <formatter type="xml" />
 <batchtest todir="${report.dir}">
 <fileset dir="${test.dir}">
 <include name="**/*Test*.java" />
 </fileset>
 </batchtest>
 </junit>
 </target>

Issue the ant test command. This command compiles and executes
the tests.
We can set a default task in the build.xml file in the <project> tag. The
syntax is <project name="Demo" default="task name" basedir=".">.
Now, we don't have to specify a target name.

Our Ant script is ready for compiling Java files, executing tests, and generating
reports. In the next section, we will set up Jenkins and use the build scripts.

To explore more on how to compile web archives and learn advanced topics,
go to http://ant.apache.org/.

Jenkins
Jenkins is an open source CI tool written in Java. It runs on any web container
compliant with Servlet Specification 2.4. The new Apache Tomcat server is an example
of a web container with which Jenkins can be integrated as a Windows service.

Jenkins supports various source control platforms, such as CVS, SVN, Git, Mercurial,
and ClearCase through the use of plugins.

It can execute automated builds on Ant and Maven projects. Jenkins is free (MIT
license) and runs on many operating systems. Jenkins doesn't allow you to create a
Gradle project, but you can create a free-style project and build Gradle projects.

To install Jenkins on your local machine, follow the instructions at https://wiki.
jenkins-ci.org/display/JENKINS/Installing+Jenkins.

Automating JUnit Tests

[86]

Once Jenkins is installed, we will perform the following steps to configure Jenkins:

1. Launch the Jenkins URL; from the home page go to Manage Jenkins |
Configure system.

2. Now you need to set up the JDK. Go to the JDK section, click on JDK
installations and then click on Add JDK. Uncheck the Install automatically
checkbox, and enter a Name and JAVA_HOME path. You can add as many
JDKs as you want. Name and JAVA_HOME location uniquely identify the
version of JDK. In your project, you can refer to the JDK you want to use.
The following screenshot shows the installation of JDK:

3. Now, set up Maven. Go to the Maven section and click on Maven
installations. Now, click on Add Maven, uncheck the Install automatically
checkbox, enter a Name, and set it to MAVEN_HOME.
In general, if the checkbox Install automatically is checked, then Jenkins
will ask you to select a version of the tool and download the version. You
can install or add multiple versions of the software and just give a unique
name. For example, you can add a name, Maven3, to refer to Maven Version
3.1.1 and add Maven2 to refer to Version 2.2.1. In your build job, Jenkins will
show you the list and select the appropriate version you need. The following
screenshot shows the installation of Maven:

Chapter 2

[87]

4. Go to the Ant section and click on Ant installations. Then, click on Add
Ant, uncheck the Install automatically checkbox, enter a Name, and set
it to ANT_HOME.

Our basic configuration is complete. Next, we will start building a Java project
using Gradle.

The Gradle project
Jenkins doesn't come with Gradle. You need to install a plugin as follows:

1. Launch the Jenkins URL; from the home page, go to Manage Jenkins |
Manage Plugins. Go to the Available tab; in the Filter textbox (located at the
right top corner of the page), enter gradle. It will bring you Gradle Plugin.
Check the checkbox associated with Gradle Plugin and click on Install
without restart.
This will install the Gradle plugin. Jenkins will show you the progress of
installation. Once the installation is over, you need to configure Gradle,
like we did for Ant and Maven. Refer to the following screenshot to install
Gradle plugin:

Automating JUnit Tests

[88]

2. From the home page, go to Manage Jenkins | Configure System. Scroll
down to the Gradle section and click on Gradle installation. Then, click on
Add Gradle, uncheck the Install automatically checkbox, enter a Name, and
set GRADLE_HOME.

3. Go back to the home page. The Jenkins convention for project building is job.
A job runs continuously, invokes scripts, and gives feedback. To set up an
automated build process, the user has to configure a job. Click on the create
new jobs hyperlink to add a new project type. Jenkins supports several types
of build jobs. Two most commonly used jobs are the free-style builds and the
Maven 2/3 builds. The free-style projects allow you to configure any sort of
build job; this job type is highly flexible and configurable. However, you can
install plugins for other types.
The following screenshot displays how to create a gradleProject
free-style job:

4. The free-style project has several settings. In Advance Project Options,
you can set Quiet period (time to wait after a build), Retry Count (number
of attempts to checkout from the repository), and so on. In Source Code
Management, you can choose a version control tool type. Version control is
one of the most important things in CI. It keeps track of software versions,
we can revert our changes at any point in time, look at file history, and much
more. By default, Jenkins comes with the source code management tool
plugins, CVS and SVN, but we can install plugins to support other types,
such as Git and Rational ClearCase. We didn't configure any version control
tool yet; so, choose None, as shown in the following screenshot:

Chapter 2

[89]

5. Next is the Build Trigger event, and the build trigger knows when to start
a job. There are several types:

 ° Build after other projects are built: This implies that the job will be
invoked after another job

 ° Build periodically: This signifies the periodic schedule for cron
expressions, that is, every 5 minutes or every 30 minutes and so on

 ° Poll SCM: This implies polling the version control location after a
specific time set in the Schedule option

We don't have other jobs or a version control tool, so choose Build
periodically and set Schedule to H/5**** to execute the build every 5
minutes, as shown in the following screenshot:

Automating JUnit Tests

[90]

6. The next section is Build. You can add several steps to a build. Click on Add
build step. It will show you a step; choose Invoke Gradle script to call our
Gradle project, as shown in the following screenshot:

7. Now click on the Invoke Gradle radio button and choose the Gradle version
we added. In the Tasks field, enter build to invoke the build task; you can
add multiple tasks here. In the Build File field, enter the full path of your
Gradle build file \Packt\chapter02\java\build.gradle, as shown in the
following screenshot:

8. Now click on Save. Jenkins will take you to the project's home page. Click on
the Build Now hyperlink. It will start building our first project. It will show
you a build history table with a build number, such as #1 Feb 4. 2014 09:18:45
PM. Click on the build# hyperlink and then click on Console Output. It will
show you the build log. The following screenshot shows our Gradle build log:

Chapter 2

[91]

9. Now go back to the home page; it shows you the list of all builds and their
status. It has a weather column—when all builds are failing, the weather
shows a cloudy image, and when all builds are passing, the weather becomes
sunny. You can invoke a build by clicking on the wheel symbol to the right of
each build row. Refer to the following screenshot:

Our Gradle build configuration is complete. Automatically, after every five minutes,
the build will be kicked off. We can configure a post build action to send an e-mail
after each build. That way, if a build fails, then immediately a mail will be sent, and
the concerned person can take care of the issue. So, the feedback cycle is faster.

In the next section, we will configure a Maven job.

Automating JUnit Tests

[92]

The Maven project
In this section, we will configure Jenkins to execute a Maven build job. Please
perform the following steps:

1. Click on the New Job hyperlink to add a new project type. Select Build a
maven2/3 project and enter a job name, as shown in the following screenshot:

2. On the details page, choose Source Code Management as None, Build
Triggers as Build periodically, and set H/5**** to execute the build in every
5 minutes.

3. Next, go to the Build section and set the Root POM value; set the full file
path location of your pom.xml file in the Demo project. You can leave the
Goals and options section blank. Gradle will issue the default mvn install
command. Refer to the following screenshot:

4. Now click on Save. Jenkins will take you to the project's home page. Click
on the Build Now hyperlink and it will start building our first project. It
will show you a build history table with a build number such as #1 Feb 4.
2014 09:18:45 PM. Click on the build# hyperlink and then click on Console
Output. It will show you the following build log:
Executing Maven: -B -f D:\Packt\chapter02\maven\Demo\pom.xml
install

[INFO] Scanning for projects...

[INFO] Building Demo 1.0-SNAPSHOT

Chapter 2

[93]

 [INFO] Downloading: http://repo.maven.apache.org/maven2/org/
apache/maven/plugin

(226 KB at 33.4 KB/sec)

[INFO] BUILD SUCCESS

 [INFO] Total time: 2:28.150s

[

 [JENKINS] Archiving D:\Packt\chapter02\maven\Demo\pom.xml to org.
packt/Demo/1.0-SNAPSHOT/Demo-1.0-SNAPSHOT.pom

[JENKINS] Archiving D:\Packt\chapter02\maven\Demo\target\Demo-1.0-
SNAPSHOT.jar to org.packt/Demo/1.0-SNAPSHOT/Demo-1.0-SNAPSHOT.jar

channel stopped

Finished: SUCCESS

5. Check whether Jenkins issued the mvn install command, created the JAR,
and installed the artifacts in the .m2 repository.

Building the Ant project
We will set up a free-style software project to build using Ant. The following are
the steps:

1. Open the Jenkins URL, click on New Job, and select Build a free-style
software project. Enter the name, ant, and then click on Ok.

2. We don't have source code management, so skip this section. Go to Build
Triggers and set the H/5 * * * * value to kick off build automatically in every
5 minutes.

3. Go to the Build section and add a Invoke Ant build step, as shown in the
following screenshot:

Automating JUnit Tests

[94]

4. Select an Ant version from the dropdown, set jar as Targets; jar will invoke
test and compile. In Build File, browse to our build.xml file location and set
the value, as shown in the following screenshot:

5. Save the setting and the new job will be saved. Click on Build Now.
It will start building the Demo project we created earlier in this chapter.
The following is a screenshot of Console Output:

You can read about securing Jenkins, the post-build action, broken build claim
plugins, and the CI game from the Jenkins wiki at http://jenkins-ci.org/.

Chapter 2

[95]

Summary
This chapter covered the concept of CI, explored the build automation tools, and
configured Jenkins to accomplish the CI.

The Gradle section covered the environment setup, Gradle tasks, daemons,
dependency management, repository setup, Eclipse/Java plugins, and gradually
explored the Gradle features. The Maven part demonstrated how to set up Maven,
described the POM file, project dependency, and explored the default, clean, and
site life cycles. The Ant section described how to write the Ant script to compile and
execute JUnit tests. Jenkins covered the build automation setup as well as automated
build using Gradle, Maven, and Ant.

By now, the reader will be able to write build scripts using Gradle, Maven, and Ant
and configure Jenkins to execute the build scripts.

The next chapter provides an overview of test doubles and different test double
types with examples, and includes topics such as dummy, stub, mock, spy, and fake.

Test Doubles
This chapter covers the concept of test doubles and explains various test double
types, such as mock, fake, dummy, stub, and spy. Sometimes, it is not possible to
unit test a piece of code because of unavailability of collaborator objects or the cost
of instantiation for the collaborator. Test doubles alleviate the need for a collaborator.

We know about stunt doubles—a trained replacement used for dangerous action
sequences in movies, such as jumping out of the Empire State building, a fight
sequence on top of a burning train, jumping from an airplane, or similar actions.
Stunt doubles are used to protect the real actors or chip in when the actor is
not available.

While testing a class that communicates with an API, you don't want to hit the API
for every single test; for example, when a piece of code is dependent on database
access, it is not possible to unit test the code unless the database is accessible.
Similarly, while testing a class that communicates with a payment gateway,
you can't submit payments to a real payment gateway to run tests.

Test doubles act as stunt doubles. They are skilled replacements for collaborator
objects. Gerard Meszaros coined the term test doubles and explained test doubles
in his book xUnit Test Patterns, Pearson Education.

Test doubles are categorized into five types. The following diagram shows these types:

Doubles

Dummy Stub Mock Fake Spy

Test Doubles

[98]

Dummy
An example of a dummy would be a movie scene where the double doesn't perform
anything but is only present on the screen. They are used when the actual actor is not
present, but their presence is needed for a scene, such as watching the tennis finale of
a US Open match.

Similarly, dummy objects are passed to avoid NullPointerException for
mandatory parameter objects as follows:

Book javaBook = new Book("Java 101", "123456");
Member dummyMember = new DummyMember());
javaBook.issueTo(dummyMember);
assertEquals(javaBook.numberOfTimesIssued(),1);

In the preceding code snippet, a dummy member was created and passed to a book
object to test whether a book can report the number of times it was issued. Here, a
member object is not used anywhere but it's needed to issue a book.

Stub
A stub delivers indirect inputs to the caller when the stub's methods are called. Stubs
are programmed only for the test scope. Stubs may record other information such as
the number of times the methods were invoked and so on.

Account transactions should be rolled back if the ATM's money dispenser fails to
dispense money. How can we test this when we don't have the ATM machine, or
how can we simulate a scenario where the dispenser fails? We can do this using the
following code:

public interface Dispenser {
 void dispense(BigDecimal amount) throws DispenserFailed;
}
public class AlwaysFailingDispenserStub implements Dispenser{
 public void dispense(BigDecimal amount) throws DispenserFailed{
 throw new DispenserFailed (ErrorType.HARDWARE,
 "not responding");
 }
}
class ATMTest...
 @Test
 public void transaction_is_rolledback_when_hardware_fails() {
 Account myAccount = new Account("John", 2000.00);
 TransactionManager txMgr =
 TransactionManager.forAccount(myAccount);

Chapter 3

[99]

 txMgr.registerMoneyDispenser(new
 AlwaysFailingDispenserStub());
 WithdrawalResponse response = txMgr.withdraw(500.00);
 assertEquals(false, response.wasSuccess());
 assertEquals(2000.00, myAccount.remainingAmount());
 }

In the preceding code, AlwaysFailingDispenserStub raises an error whenever the
dispense() method is invoked. It allows us to test the transactional behavior when
the hardware is not present.

Mockito allows us to mock interfaces and concrete classes. Using Mockito, you can
stub the dispense() method to throw an exception.

Fake
Fake objects are working implementations; mostly, the fake class extends the
original class, but it usually hacks the performance, which makes it unsuitable
for production. The following example demonstrates the fake object:

public class AddressDao extends SimpleJdbcDaoSupport{

 public void batchInsertOrUpdate(List<AddressDTO> addressList,
 User user){
 List<AddressDTO> insertList =
 buildListWhereLastChangeTimeMissing(addressList);

 List<AddressDTO> updateList =
 buildListWhereLastChangeTimeValued(addressList);
 int rowCount = 0;

 if (!insertList.isEmpty()) {
 rowCount = getSimpleJdbcTemplate().
 batchUpdate(INSERT_SQL,…);
 }

 if (!updateList.isEmpty()){
 rowCount += getSimpleJdbcTemplate().
 batchUpdate(UPDATE_SQL,…);
 }

 if (addressList.size() != rowCount){
 raiseErrorForDataInconsistency(…);
 }
}

Test Doubles

[100]

AddressDAO extends from a Spring framework class and provides an API for mass
update. The same method is used to create a new address and update an existing
one; if the count doesn't match, then an error is raised. This class cannot be tested
directly, and it needs getSimpleJdbcTemplate(). So, to test this class, we need to
bypass the JDBC collaborator; we can do this by extending the original DAO class
but by overriding the collaborator method. The following FakeAddressDao class
is a fake implementation of AddressDao:

public class FakeAddressDao extends AddressDao{
 @Override
 public SimpleJdbcTemplate getSimpleJdbcTemplate() {
 return jdbcTemplate;
 }
}

FakeAddressDao extends AddressDao but only overrides getSimpleJdbcTemplate()
and returns a JDBC template stub. We can use Mockito to create a mock version of
the JdbcTemplate and return it from the fake implementation. This class cannot be
used in production as it uses a mock JdbcTemplate; however, the fake class inherits
all functionalities of the DAO, so this can be used for testing. The fake classes are very
useful for legacy code.

Mock
Mock objects have expectations; a test expects a value from a mock object, and
during execution, a mock object returns the expected result. Also, mock objects can
keep track of the invocation count, that is, the number of times a method on a mock
object is invoked.

The following example is a continuation of the ATM example with a mock version. In
the previous example, we stubbed the dispense method of the Dispenser interface to
throw an exception; here, we'll use a mock object to replicate the same behavior. We'll
explain the syntax in Chapter 4, Progressive Mockito.

public class ATMTest {
 @Mock Dispenser failingDispenser;

 @Before public void setUp() throws Exception {
 MockitoAnnotations.initMocks(this);
 }

 @Test public void transaction_is_rolledback_when_
 hardware_fails() throws DispenserFailed {
 Account myAccount = new Account(2000.00, "John");

Chapter 3

[101]

 TransactionManager txMgr =
 TransactionManager.forAccount(myAccount);
 txMgr.registerMoneyDispenser(failingDispenser);

 doThrow(new DispenserFailed()).when(failingDispenser).
 dispense(isA(BigDecimal.class));

 txMgr.withdraw(500);
 assertEquals(2000.00, myAccount.getRemainingBalance());

 verify(failingDispenser, new Times(1)).
 dispense(isA(BigDecimal.class));
}
}

The preceding code is the mock (Mockito) version of the ATM test. The same object
can be used in different tests; just the expectation needs to be set. Here, doThrow()
raises an error whenever the mock object is called with any BigDecimal value.

Spy
Spy is a variation of a mock/stub, but instead of only setting expectations, spy records
the calls made to the collaborator. The following example explains this concept:

class ResourceAdapter{
 void print(String userId, String document, Object settings) {
 if(securityService.canAccess("lanPrinter1", userId)) {
 printer.print(document, settings);
 }
 }
}

To test the print behavior of the ResourceAdapter class, we need to know
whether the printer.print() method gets invoked when a user has permissions.
Here, the printer collaborator doesn't do anything; it is just used to verify the
ResourceAdapter behavior.

Now, consider the following code:

class SpyPrinter implements Printer{
 private int noOfTimescalled = 0;
 @Override
 public void print(Object document, Object settings) {
 noOfTimescalled++;
 }

Test Doubles

[102]

 public int getInvocationCount() {
 return noOfTimescalled;
 }
}

SpyPrinter implements the Printer.print() call, increments a noOfTimescalled
counter, and getInvocationCount returns the count. Create a fake implementation
of the SecurityService class to return true from the canAccess(String
printerName, String userId) method. The following is the fake implementation
of the SecurityService class:

class FakeSecurityService implements SecurityService{
 public boolean canAccess(String printerName, String userId){
 return true;
 }
}

The following code snippet verifies the print behavior of the ResourceAdapter class:

@Test public void verify() throws Exception {
 SpyPrinter spyPrinter = new SpyPrinter();
 adapter = new ResourceAdapter(
 new FakeSecurityService(), spyPrinter);
 adapter.print("john", "helloWorld.txt", "all pages");
 assertEquals(1, spyPrinter.getInvocationCount());
}

Fake SecurityService and a SpyPrinter objects are created and passed to the
ResourceAdapter class and then adapter.print is called. In turn, it is expected that
the securityService object will return true and the printer will be accessed, and
spyPrinter.print(…) will increment the noOfTimescalled counter. Finally, in the
preceding code, we verified that the count is 1.

Summary
This chapter provided an overview of test doubles with examples. The following
topics covered dummy, stub, mock, fake, and spy. This chapter is a prerequisite
for Mockito.

The next chapter will cover the Mockito framework and its advanced uses. Mockito is
a mocking framework for Java. It provides the API for mock, spy, and stub creation.

Progressive Mockito
This chapter distills the Mockito framework to its main core and provides technical
examples. No previous knowledge of mocking is necessary.

The following topics are covered in this chapter:

• Overview of Mockito
• Exploring Mockito APIs
• Advanced Mockito examples
• Behavior-driven development (BDD) with Mockito

Working with Mockito
Mockito is an open source mock unit testing framework for Java. In the previous
chapter, we read about test doubles and mock objects. Mockito allows mock object
creation, verification, and stubbing.

To find out more about Mockito, visit the following link:

http://code.google.com/p/mockito/

Why should you use Mockito?
Automated tests are safety nets. They run and notify the user if the system is broken
so that the offending code can be fixed very quickly.

If a test suite runs for an hour, the purpose of quick feedback is compromised. Unit
tests should act as a safety net and provide quick feedback; this is the main principle
of TDD.

Progressive Mockito

[104]

I worked with an environment where when a piece of code is checked-in, the
automated tests would run and would take hours to complete. So, a developer had
to wait for an hour to check-in the new code unless the previous build/test run
was complete. A developer can check-in the code in the middle of a build, but the
best practice is to monitor the status before signing off; otherwise, the new code can
break the next build and cause problem for the other developers. So, the developer
has to wait for an additional hour to monitor the next build. This kind of slow build
environment blocks the progress of development.

A test may take time to execute due to the following reasons:

• Sometimes a test acquires a connection from the database that
fetches/updates data

• It connects to the Internet and downloads files
• It interacts with an SMTP server to send e-mails
• It performs I/O operations

Now the question is do we really need to acquire a database connection or download
files to unit test code?

The answer is yes. If it doesn't connect to a database or download the latest stock
price, few parts of the system remain untested. So, DB interaction or network
connection is mandatory for a few parts of the system, and these are integration tests.
To unit test these parts, the external dependencies need to be mocked out.

Mockito plays a key role in mocking out external dependencies. It mocks out the
database connection or any external I/O behavior so that the actual logic can be
unit tested.

Unit tests should adhere to a number of principles for flexibility and maintainability.
The next section will elucidate the principles that we will follow throughout
this journey.

Qualities of unit testing
Unit tests should adhere to the following principles:

• Order independent and isolated: The ATest.java test class should not be
dependent on the output of the BTest.java test class, or a when_an_user_
is_deleted_the_associated_id_gets_deleted() test should not depend
on the execution of another when_a_new_user_is_created_an_id_is_
returned() test. The tests shouldn't fail if BTest.java is executed after
ATest.java, or the when_a_new_user_is_created_an_id_is_returned()
test is executed after when_an_user_is_deleted_the_associated_id_
gets_deleted().

Chapter 4

[105]

• Trouble-free setup and run: Unit tests should not require a DB connection
or an Internet connection or a clean-up temp directory.

• Effortless execution: Unit tests should run fine on all computers, not just on
a specific computer.

• Formula 1 execution: A test should not take more than a second to finish
the execution.

Mockito provides APIs to mock out the external dependencies and achieve the
qualities mentioned here.

Drinking Mockito
Download the latest Mockito binary from the following link and add it to the
project dependency:

http://code.google.com/p/mockito/downloads/list

As of February 2014, the latest Mockito version is 1.9.5.

Configuring Mockito
To add Mockito JAR files to the project dependency, perform the following steps:

1. Extract the JAR files into a folder.
2. Launch Eclipse.
3. Create an Eclipse project named Chapter04.
4. Go to the Libraries tab in the project build path.
5. Click on the Add External JARs... button and browse to the Mockito

JAR folder.
6. Select all JAR files and click on OK.

We worked with Gradle and Maven and built a project with the JUnit dependency.
In this section, we will add Mockito dependencies to our existing projects.

The following code snippet will add a Mockito dependency to a Maven project and
download the JAR file from the central Maven repository (http://mvnrepository.
com/artifact/org.mockito/mockito-core):

<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>1.9.5</version>

Progressive Mockito

[106]

 <scope>test</scope>
</dependency>

The following Gradle script snippet will add a Mockito dependency to
a Gradle project:

 testCompile 'org.mockito:mockito-core:1.9.5'

Mocking in action
This section demonstrates the mock objects with a stock quote example. In the real
world, people invest money on the stock market—they buy and sell stocks. A stock
symbol is an abbreviation used to uniquely identify shares of a particular stock on a
particular market, such as stocks of Facebook are registered on NASDAQ as FB and
stocks of Apple as AAPL.

We will build a stock broker simulation program. The program will watch the
market statistics, and depending on the current market data, you can perform any
of the following actions:

• Buy stocks
• Sell stocks
• Hold stocks

The domain classes that will be used in the program are Stock, MarketWatcher,
Portfolio, and StockBroker.

Stock represents a real-world stock. It has a symbol, company name, and price.

MarketWatcher looks up the stock market and returns the quote for the stock.
A real implementation of a market watcher can be implemented from http://www.
wikijava.org/wiki/Downloading_stock_market_quotes_from_Yahoo!_finance.
Note that the real implementation will connect to the Internet and download the
stock quote from a provider.

Portfolio represents a user's stock data such as the number of stocks and price
details. Portfolio exposes APIs for getting the average stock price and buying and
selling stocks. Suppose on day one someone buys a share at a price of $10.00, and
on day two, the customer buys the same share at a price of $8.00. So, on day two the
person has two shares and the average price of the share is $9.00.

The following screenshot represents the Eclipse project structure. You can download
the project from the Packt Publishing website and work with the files:

Chapter 4

[107]

The following code snippet represents the StockBroker class. StockBroker
collaborates with the MarketWatcher and Portfolio classes. The perform()
method of StockBroker accepts a portfolio and a Stock object:

public class StockBroker {
 private final static BigDecimal LIMIT = new BigDecimal("0.10");

 private final MarketWatcher market;

 public StockBroker(MarketWatcher market) {
 this.market = market;
 }

 public void perform(Portfolio portfolio,Stock stock) {
 Stock liveStock = market.getQuote(stock.getSymbol());
 BigDecimal avgPrice = portfolio.getAvgPrice(stock);
 BigDecimal priceGained =
 liveStock.getPrice().subtract(avgPrice);
 BigDecimal percentGain = priceGained.divide(avgPrice);
 if(percentGain.compareTo(LIMIT) > 0) {
 portfolio.sell(stock, 10);
 }else if(percentGain.compareTo(LIMIT) < 0){
 portfolio.buy(stock);
 }
 }
}

Progressive Mockito

[108]

Look at the perform method. It takes a portfolio object and a stock object, calls the
getQuote method of MarketWatcher, and passes a stock symbol. Then, it gets the
average stock price from portfolio and compares the current market price with the
average stock price. If the current stock price is 10 percent greater than the average
price, then the StockBroker program sells 10 stocks from Portfolio; however, if the
current stock price goes down by 10 percent, then the program buys shares from the
market to average out the loss.

Why do we sell 10 stocks? This is just an example and 10 is just a number; this could
be anything you want.

StockBroker depends on Portfolio and MarketWatcher; a real implementation of
Portfolio should interact with a database, and MarketWatcher needs to connect
to the Internet. So, if we write a unit test for the broker, we need to execute the test
with a database and an Internet connection. A database connection will take time
and Internet connectivity depends on the Internet provider. So, the test execution
will depend on external entities and will take a while to finish. This will violate the
quick test execution principle. Also, the database state might not be the same across
all test runs. This is also applicable for the Internet connection service. Each time the
database might return different values, and therefore asserting a specific value in
your unit test is very difficult.

We'll use Mockito to mock the external dependencies and execute the test in
isolation. So, the test will no longer be dependent on real external service, and
therefore it will be executed quickly.

Mocking objects
A mock can be created with the help of a static mock() method as follows:

import org.mockito.Mockito;

public class StockBrokerTest {
 MarketWatcher marketWatcher =
 Mockito.mock(MarketWatcher.class);
 Portfolio portfolio = Mockito.mock(Portfolio.class);

}

Otherwise, you can use Java's static import feature and static import the mock
method of the org.mockito.Mockito class as follows:

import static org.mockito.Mockito.mock;

public class StockBrokerTest {

Chapter 4

[109]

 MarketWatcher marketWatcher = mock(MarketWatcher.class);
 Portfolio portfolio = mock(Portfolio.class);
}

There's another alternative; you can use the @Mock annotation as follows:

import org.mockito.Mock;

public class StockBrokerTest {
 @Mock
 MarketWatcher marketWatcher;
 @Mock
 Portfolio portfolio;
}

However, to work with the @Mock annotation, you are required to call
MockitoAnnotations.initMocks(this) before using the mocks,
or use MockitoJUnitRunner as a JUnit runner.

The following code snippet uses MockitoAnnotations to create mocks:

import static org.junit.Assert.assertEquals;
import org.mockito.MockitoAnnotations;

public class StockBrokerTest {

 @Mock
 MarketWatcher marketWatcher;

 @Mock
 Portfolio portfolio;

 @Before
 public void setUp() {
 MockitoAnnotations.initMocks(this);
 }

 @Test
 public void sanity() throws Exception {
 assertNotNull(marketWatcher);
 assertNotNull(portfolio);
 }
}

Progressive Mockito

[110]

The following code snippet uses the MockitoJUnitRunner JUnit runner:
import org.mockito.runners.MockitoJUnitRunner;

@RunWith(MockitoJUnitRunner.class)
public class StockBrokerTest {

 @Mock
 MarketWatcher marketWatcher;
 @Mock
 Portfolio portfolio;

 @Test
 public void sanity() throws Exception {
 assertNotNull(marketWatcher);
 assertNotNull(portfolio);
 }
}

Before we deep dive into the Mockito world, there are a few things to
remember. Mockito cannot mock or spy the following functions: final classes,
final methods, enums, static methods, private methods, the hashCode()
and equals() methods, anonymous classes, and primitive types.
PowerMock (an extension of EasyMock) and PowerMockito (an extension
of the Mockito framework) allows you to mock static and private methods;
even PowerMockito allows you to set expectations on new invocations
for private member classes, inner classes, and local or anonymous classes.
However, as per the design, you should not opt for mocking private/static
properties—it violates the encapsulation. Instead, you should refactor the
offending code to make it testable. Chapter 9, Solving Test Puzzles, explains
the design for the testability concept.

Change the Portfolio class, create the final class, and rerun the test; the test will
fail as the Portfolio class is final, and Mockito cannot mock a final class.

Chapter 4

[111]

The following screenshot shows the JUnit output:

Stubbing methods
We read about stubs in Chapter 3, Test Doubles. The stubbing process defines the
behavior of a mock method such as the value to be returned or the exception to be
thrown when the method is invoked.

The Mockito framework supports stubbing and allows us to return a given value
when a specific method is called. This can be done using Mockito.when() along
with thenReturn ().

The following is the syntax of importing when:
import static org.mockito.Mockito.when;

The following code snippet stubs the getQuote(String symbol) method of
MarcketWatcher and returns a specific Stock object:

import static org.mockito.Matchers.anyString;
import static org.mockito.Mockito.when;

@RunWith(MockitoJUnitRunner.class)
public class StockBrokerTest {

Progressive Mockito

[112]

 @Mock MarketWatcher marketWatcher;
 @Mock Portfolio portfolio;

 @Test
 public void marketWatcher_Returns_current_stock_status() {
 Stock uvsityCorp = new Stock("UV", "Uvsity Corporation",
 new BigDecimal("100.00"));

 when(marketWatcher.getQuote(anyString())).
 thenReturn(uvsityCorp);

 assertNotNull(marketWatcher.getQuote("UV"));
 }

}

A uvsityCorp stock object is created with a stock price of $100.00 and the getQuote
method is stubbed to return uvsityCorp whenever the getQuote method is called.
Note that anyString() is passed to the getQuote method, which means whenever
the getQuote method will be called with any String value, the uvsityCorp object
will be returned.

The when() method represents the trigger, that is, when to stub.

The following methods are used to represent what to do when the trigger is triggered:

• thenReturn(x): This returns the x value.
• thenThrow(x): This throws an x exception.
• thenAnswer(Answer answer): Unlike returning a hardcoded value,

a dynamic user-defined logic is executed. It's more like for fake test doubles,
Answer is an interface.

• thenCallRealMethod(): This method calls the real method on the
mock object.

The following code snippet stubs the external dependencies and creates a test for the
StockBroker class:

import com.packt.trading.dto.Stock;
import static org.junit.Assert.assertNotNull;
import static org.mockito.Matchers.anyString;
import static org.mockito.Matchers.isA;
import static org.mockito.Mockito.verify;
import static org.mockito.Mockito.when;

@RunWith(MockitoJUnitRunner.class)

Chapter 4

[113]

public class StockBrokerTest {
 @Mock MarketWatcher marketWatcher;
 @Mock Portfolio portfolio;
 StockBroker broker;

 @Before public void setUp() {
 broker = new StockBroker(marketWatcher);
 }

 @Test
 public void when_ten_percent_gain_then_the_stock_is_sold() {
 //Portfolio's getAvgPrice is stubbed to return $10.00
 when(portfolio.getAvgPrice(isA(Stock.class))).
 thenReturn(new BigDecimal("10.00"));
 //A stock object is created with current price $11.20
 Stock aCorp = new Stock("A", "A Corp", new
 BigDecimal("11.20"));
 //getQuote method is stubbed to return the stock
 when(marketWatcher.getQuote(anyString())).thenReturn(aCorp);
 //perform method is called, as the stock price increases
 // by 12% the broker should sell the stocks
 broker.perform(portfolio, aCorp);

 //verifying that the broker sold the stocks
 verify(portfolio).sell(aCorp,10);
 }

}

The test method name is when_ten_percent_gain_then_the_
stock_is_sold; a test name should explain the intention of the
test. We use underscores to make the test name readable. We will
use the when_<<something happens>>_then_<<the action is
taken>> convention for the tests.

In the preceding test example, the getAvgPrice() method of portfolio is stubbed
to return $10.00, then the getQuote method is stubbed to return a hardcoded stock
object with a current stock price of $11.20. The broker logic should sell the stock as
the stock price goes up by 12 percent.

The portfolio object is a mock object. So, unless we stub a method, by default, all
the methods of portfolio are autostubbed to return a default value, and for the void
methods, no action is performed. The sell method is a void method; so, instead of
connecting to a database to update the stock count, the autostub will do nothing.

Progressive Mockito

[114]

However, how will we test whether the sell method was invoked? We use
Mockito.verify.

The verify() method is a static method, which is used to verify the method
invocation. If the method is not invoked, or the argument doesn't match, then
the verify method will raise an error to indicate that the code logic has issues.

Verifying the method invocation
To verify a redundant method invocation, or to verify whether a stubbed method
was not called but was important from the test perspective, we should manually
verify the invocation; for this, we need to use the static verify method.

Why do we use verify?
Mock objects are used to stub external dependencies. We set an expectation, and a
mock object returns an expected value. In some conditions, a behavior or method of a
mock object should not be invoked, or sometimes, we may need to call the method N
(a number) times. The verify method verifies the invocation of mock objects.

Mockito does not automatically verify all stubbed calls.

If a stubbed behavior should not be called but the method is called due to a bug
in the code, verify flags the error though we have to verify that manually. The
void methods don't return values, so you cannot assert the returned values. Hence,
verify is very handy to test the void methods.

Verifying in depth
The verify() method has an overloaded version that takes Times as an argument.
Times is a Mockito framework class of the org.mockito.internal.verification
package, and it takes wantedNumberOfInvocations as an integer argument.

If 0 is passed to Times, it infers that the method will not be invoked in the testing
path. We can pass 0 to Times(0) to make sure that the sell or buy methods are not
invoked. If a negative number is passed to the Times constructor, Mockito throws
MockitoException - org.mockito.exceptions.base.MockitoException, and
this shows the Negative value is not allowed here error.

The following methods are used in conjunction with verify:

• times(int wantedNumberOfInvocations): This method is invoked exactly
n times; if the method is not invoked wantedNumberOfInvocations times,
then the test fails.

Chapter 4

[115]

• never(): This method signifies that the stubbed method is never called or
you can use times(0) to represent the same scenario. If the stubbed method
is invoked at least once, then the test fails.

• atLeastOnce(): This method is invoked at least once, and it works fine if
it is invoked multiple times. However, the operation fails if the method is
not invoked.

• atLeast(int minNumberOfInvocations): This method is called at
least n times, and it works fine if the method is invoked more than the
minNumberOfInvocations times. However, the operation fails if the method
is not called minNumberOfInvocations times.

• atMost(int maxNumberOfInvocations): This method is called at the most
n times. However, the operation fails if the method is called more than
minNumberOfInvocations times.

• only(): The only method called on a mock fails if any other method is called
on the mock object. In our example, if we use verify(portfolio, only()).
sell(aCorp,10);, the test will fail with the following output:

The test fails in line 15 as portfolio.getAvgPrice(stock) is called.

• timeout(int millis): This method is interacted in a specified time range.

Progressive Mockito

[116]

Verifying zero and no more interactions
The verifyZeroInteractions(Object... mocks) method verifies whether no
interactions happened on the given mocks.

The following test code directly calls verifyZeroInteractions and passes the two
mock objects. Since no methods are invoked on the mock objects, the test passes:

 @Test public void verify_zero_interaction() {
 verifyZeroInteractions(marketWatcher,portfolio);
 }

The verifyNoMoreInteractions(Object... mocks) method checks whether any
of the given mocks has any unverified interaction. We can use this method after
verifying a mock method to make sure that nothing else was invoked on the mock.

The following test code demonstrates verifyNoMoreInteractions:

 @Test public void verify_no_more_interaction() {
 Stock noStock = null;
 portfolio.getAvgPrice(noStock);
 portfolio.sell(null, 0);
 verify(portfolio).getAvgPrice(eq(noStock));
 //this will fail as the sell method was invoked
 verifyNoMoreInteractions(portfolio);
 }

The following is the JUnit output:

The following are the rationales and examples of argument matchers.

Chapter 4

[117]

Using argument matcher
ArgumentMatcher is a Hamcrest matcher with a predefined describeTo() method.
ArgumentMatcher extends the org.hamcrest.BaseMatcher package. It verifies the
indirect inputs into a mocked dependency.

The Matchers.argThat(Matcher) method is used in conjunction with the verify
method to verify whether a method is invoked with a specific argument value.

ArgumentMatcher plays a key role in mocking. The following section describes the
context of ArgumentMatcher.

Mock objects return expected values, but when they need to return different values
for different arguments, argument matcher comes into play. Suppose we have a
method that takes a player name as input and returns the total number of runs (a run
is a point scored in a cricket match) scored as output. We want to stub it and return
100 for Sachin and 10 for xyz. We have to use argument matcher to stub this.

Mockito returns expected values when a method is stubbed. If the method takes
arguments, the argument must match during the execution; for example, the
getValue(int someValue) method is stubbed in the following way:

when(mockObject.getValue(1)).thenReturn(expected value);

Here, the getValue method is called with mockObject.getValue(100). Then, the
parameter doesn't match (it is expected that the method will be called with 1, but
at runtime, it encounters 100), so the mock object fails to return the expected value.
It will return the default value of the return type—if the return type is Boolean, it'll
return false; if the return type is object, then null, and so on.

Mockito verifies argument values in natural Java style by using an equals()
method. Sometimes, we use argument matchers when extra flexibility is required.

Mockito provides built-in matchers such as anyInt(), anyDouble(), anyString(),
anyList(), and anyCollection().

More built-in matchers and examples of custom argument matchers or Hamcrest
matchers can be found at the following link:

http://docs.mockito.googlecode.com/hg/latest/org/mockito/Matchers.
html

Examples of other matchers are isA(java.lang.Class<T> clazz),
any(java.lang.Class<T> clazz), and eq(T) or eq(primitive
value).

Progressive Mockito

[118]

The isA argument checks whether the passed object is an instance of the class type
passed in the isA argument. The any(T) argument also works in the same way.

Why do we need wildcard matchers?
Wildcard matchers are used to verify the indirect inputs to the mocked
dependencies. The following example describes the context.

In the following code snippet, an object is passed to a method and then a request
object is created and passed to service. Now, from a test, if we call the someMethod
method and service is a mocked object, then from test, we cannot stub callMethod
with a specific request as the request object is local to the someMethod:

public void someMethod(Object obj){
 Request req = new Request();
 req.setValue(obj);
 Response resp = service.callMethod(req);
}

If we are using argument matchers, all arguments have to be provided by
matchers.
We're passing three arguments and all of them are passed using
matchers:

verify(mock).someMethod(anyInt(), anyString(),
eq("third argument"));

The following example will fail because the first and the third arguments
are not passed using matcher:

verify(mock).someMethod(1, anyString(), "third
argument");

The ArgumentMatcher class
The ArgumentMatcher class allows the creation of customized argument
matchers. ArgumentMatcher is a Hamcrest matcher with the predefined
describeTo() method.

Use the Matchers.argThat(org.hamcrest.Matcher) method and pass an instance
of the Hamcrest matcher.

Consider the MarketWatcher class; it takes a stock symbol and then gets the quote
from the market.

We will create a mock for the MarketWatcher.getQuote method that takes a String
object. We wish to make this method conditional. If a blue chip stock symbol is passed
to the method, then the method will return $1000.00; otherwise, it will return $5.00.

Chapter 4

[119]

How will we identify a blue chip share? A blue chip share is a common stock of a
well-known company whose value and dividends are reliable and usually safe for
investment. For example, if the stock symbol is FB or AAPL, we will consider the
stock as a blue chip stock.

Let us create a custom matcher to identify blue chip stocks. The following code
shows a custom argument matcher:

 class BlueChipStockMatcher extends ArgumentMatcher<String>{
 @Override
 public boolean matches(Object symbol) {
 return "FB".equals(symbol) ||
 "AAPL".equals(symbol);
 }
 }

The following class extends BlueChipStockMatcher and then negates the result
to indicate that the stock is not a blue chip stock:

 class OtherStockMatcher extends BlueChipStockMatcher{
 @Override
 public boolean matches(Object symbol) {
 return !super.matches(symbol);
 }
 }

The following test uses the custom matchers to sell the shares:

@Test
public void argument_matcher() {
 when(portfolio.getAvgPrice(isA(Stock.class))).
 thenReturn(new BigDecimal("10.00"));

 Stock blueChipStock = new Stock("FB", "FB Corp", new
 BigDecimal(1000.00));
 Stock otherStock = new Stock("XY", "XY Corp", new
 BigDecimal(5.00));

 when(marketWatcher.getQuote(argThat(new
 BlueChipStockMatcher()))).thenReturn(blueChipStock);
 when(marketWatcher.getQuote(argThat(new
 OtherStockMatcher()))).thenReturn(otherStock);

 broker.perform(portfolio, blueChipStock);
 verify(portfolio).sell(blueChipStock,10);

Progressive Mockito

[120]

 broker.perform(portfolio, otherStock);
 verify(portfolio, never()).sell(otherStock,10);
 }

In the preceding code, marketWatcher is stubbed to return a blue chip share when
the stock symbol is FB or AAPL; otherwise, it returns a normal stock.

Throwing exceptions
Unit tests are not meant for only happy path testing. We should test our code for
the failure conditions too. Mockito provides an API to raise an error during testing.
Suppose we are testing a flow where we compute a value and then print it to
a printer. If the printer is not configured, or a network error happens, or a page is
not loaded, the system throws an exception. We can test this using Mockito's
exception APIs.

How do we test exceptional conditions such as database access failure?

Mockito provides a method called thenThrow(Throwable); this method throws
an exception when the stubbed method is invoked.

We will stub the getAvgPrice method to throw an exception when the method is
called, as follows:

 @Test(expected = IllegalStateException.class)
 public void throwsException() throws Exception {
 when(portfolio.getAvgPrice(isA(Stock.class))).thenThrow(
 new IllegalStateException("Database down"));

 portfolio.getAvgPrice(new Stock(null, null, null));
 }

We are stubbing portfolio to throw an exception when getAvgPrice() is invoked.
The following is the syntax to throw an exception from a method that returns void:

doThrow(exception).when(mock).voidmethod(arguments);

The buy method in Portfolio is a void method; we will stub the buy method to
throw an exception. The following test code throws IllegalStateException when
the buy method is invoked on the portfolio object. Note that doThrow().when()
will be used to raise the error from the buy method:

 @Test(expected = IllegalStateException.class)
 public void throwsException_void_methods() throws Exception {
 doThrow(new IllegalStateException()).
 when(portfolio).buy(isA(Stock.class));
 portfolio.buy(new Stock(null, null, null));
 }

Chapter 4

[121]

Stubbing consecutive calls
Stubbing a method for consecutive calls is required in the following situations:

• Calling a stubbed method in a loop when you need different results for
different calls

• When you need one invocation to throw an exception and other invocations
to return a value

We need to test a condition where the first call will return a value, the next call
should not find any value, and then again it should return a value.

The varargs version of thenReturn(objects...) takes comma-separated return
values and returns the arguments in order such that if we pass two arguments to the
thenReturn method, then the first call to the stubbed method will return the first
argument. Thereafter, all other calls will return the second argument, as shown in the
following code:

 @Test
 public void consecutive_calls() throws Exception {
 Stock stock = new Stock(null, null, null);
 when(portfolio.getAvgPrice(stock)).thenReturn(
 BigDecimal.TEN, BigDecimal.ZERO);
 assertEquals(BigDecimal.TEN, portfolio.getAvgPrice(stock));
 assertEquals(BigDecimal.ZERO, portfolio.getAvgPrice(stock));
 assertEquals(BigDecimal.ZERO, portfolio.getAvgPrice(stock));
 }

Note that thenReturn takes two values: BigDecimal.TEN and BigDecimal.ZERO.
The first call to getAvgPrice will return BigDecimal.TEN, and then each call will
return BigDecimal.ZERO.

This can be done in another way—Mockito methods return stub objects and follow
a builder pattern to allow a chain of calls.

In the following example, thenReturn and thenThrow are combined to build
a chain of response. After the second call, each getAvgPrice invocation will throw
an exception:

when(portfolio.getAvgPrice(stock)).thenReturn(BigDecimal.TEN).
 thenReturn(BigDecimal.TEN).thenThrow(new
 IllegalStateException())

Progressive Mockito

[122]

Stubbing with an Answer
Stubbed methods return a hardcoded value but cannot return an on the fly result.
The Mockito framework provides the callbacks to compute the on the fly results.

Mockito allows stubbing with the generic Answer interface. This is a callback; when
a stubbed method on a mock object is invoked, the answer(InvocationOnMock
invocation) method of the Answer object is called. This Answer object's answer()
method returns the actual object.

The syntax of Answer is when(mock.someMethod()).thenAnswer(new Answer()
{…}); or when(mock.someMethod()).then(answer);, which is similar to
thenReturn() and thenThrow().

The Answer interface is defined as follows:

public interface Answer<T> {
 T answer(InvocationOnMock invocation) throws Throwable;
}

The InvocationOnMock argument is an important part of callback. It can return
the arguments passed to the method and also return the mock object as follows:

Object[] args = invocation.getArguments();
Object mock = invocation.getMock();

Add a new method to the Portfolio class to return the total stock value. We are
using a mock Portfolio instance, so we cannot return the total stock value. We can
fix this using Answer and make the test totally configurable.

When a new stock is bought, we will store the stock in HashMap, and when the
getCurrentValue method will be invoked, we will compute the value dynamically
from HashMap. So, we need two Answer objects, one to store stocks and the other to
compute the total.

The following code snippet creates two Answer classes. Add HashMap to the
test class:

Map<String, List<Stock>> stockMap = new HashMap<String,
 List<Stock>>();

Chapter 4

[123]

One can buy 10 stocks of Facebook or 10 different stocks. The stockMap object stores
a key-value pair. The key is the Stock symbol and the value is a list of stocks. 10
Facebook stocks will add a single key, FB, and a list of 10 Facebook stocks. An Apple
stock will add another entry to the map with an AAPL key and value and a list with a
single Apple stock.

The following Answer implementation is called when the buy method is invoked.
The invocationOnMock object returns the arguments, and the buy method accepts
only one argument, that is, a Stock object. So, type casted the 0th argument to Stock.
Then, insert Stock to the stockMap object:

class BuyAnswer implements Answer<Object>{
 @Override
 public Object answer(InvocationOnMock invocation) throws
 Throwable
 {
 Stock newStock = (Stock)invocation.getArguments()[0];
 List<Stock> stocks = stockMap.get(newStock.getSymbol());
 if(stocks != null) {
 stocks.add(newStock);
 }else {
 stocks = new ArrayList<Stock>();
 stocks.add(newStock);
 stockMap.put(newStock.getSymbol(), stocks);
 }
 return null;
 }
}

The following answer object implements the total price computation logic:

class TotalPriceAnswer implements Answer<BigDecimal>{
 @Override
 public BigDecimal answer(InvocationOnMock invocation)
 throws Throwable {
 BigDecimal totalPrice = BigDecimal.ZERO;

 for(String stockId: stockMap.keySet()) {
 for(Stock stock:stockMap.get(stockId)) {
 totalPrice = totalPrice.add(stock.getPrice());
 }
 }
 return totalPrice;
 }
}

Progressive Mockito

[124]

The getCurrentValue() method will be stubbed to return the preceding
answer implementation.

The following JUnit test code uses the TotalPriceAnswer method:

@Test
 public void answering() throws Exception {
 stockMap.clear();
 doAnswer(new BuyAnswer()).when(portfolio).
 buy(isA(Stock.class));

 when(portfolio.getCurrentValue()).
 then(new TotalPriceAnswer());

 portfolio.buy(new Stock("A", "A", BigDecimal.TEN));
 portfolio.buy(new Stock("B", "B", BigDecimal.ONE));

 assertEquals(new BigDecimal("11"),
 portfolio.getCurrentValue());
 }

Check that the stockMap object is cleared to remove existing data. Then, the void
buy method is stubbed to add stocks to stockMap using the doAnswer method, and
then the getCurrentValue method is stubbed to the TotalPriceAnswer answer.

Spying objects
A Mockito spy object allows us to use real objects instead of mocks by replacing
some of the methods with the stubbed ones. This behavior allows us to test the
legacy code; one cannot mock a class that needs to be tested. Legacy code comes with
methods that cannot be tested, but other methods use them; so, these methods need
to be stubbed to work with the other methods. A spy object can stub the nontestable
methods so that other methods can be tested easily.

Once an expectation is set for a method on a spy object, then spy no longer returns
the original value. It starts returning the stubbed value, but still it exhibits the
original behavior for the other methods that are not stubbed.

Mockito can create a spy of a real object. Unlike stubbing, when we use spy, the real
methods are called (unless a method was stubbed).

Spy is also known as partial mock; one example of the use of spy in the real world is
dealing with legacy code.

Chapter 4

[125]

Declaration of spy is done using the following code:

SomeClass realObject = new RealImplemenation();
SomeClass spyObject = spy(realObject);

The following is a self-explanatory example of spy:

@Test public void spying() throws Exception {
 Stock realStock = new Stock("A",
 "Company A", BigDecimal.ONE);
 Stock spyStock = spy(realStock);
 //call real method from spy
 assertEquals("A", spyStock.getSymbol());

 //Changing value using spy
 spyStock.updatePrice(BigDecimal.ZERO);

 //verify spy has the changed value
 assertEquals(BigDecimal.ZERO, spyStock.getPrice());

 //Stubbing method
 when(spyStock.getPrice()).thenReturn(BigDecimal.TEN);

 //Changing value using spy
 spyStock.updatePrice(new BigDecimal("7"));

 //Stubbed method value 10.00 is returned NOT 7
 assertNotEquals(new BigDecimal("7"),
 spyStock.getPrice());
 //Stubbed method value 10.00
 assertEquals(BigDecimal.TEN, spyStock.getPrice());

}

Stubbing void methods
In the Throwing exceptions section of this chapter, we learned that doThrow is used for
throwing exceptions for the void methods. The Stubbing with an Answer section of
this chapter showed you how to use doAnswer for the void methods.

In this section, we will explore the other void methods: doNothing, doReturn,
doThrow, and doCallRealMethod.

Progressive Mockito

[126]

The doNothing() API does nothing. By default, all the void methods do nothing.
However, if you need consecutive calls on a void method, the first call is to throw
an error, the next call is to do nothing, and then the next call to perform some logic
using doAnswer() and then follow this syntax:

 doThrow(new RuntimeException()).
 doNothing().
 doAnswer(someAnswer).
 when(mock).someVoidMethod();

 //this call throws exception
 mock.someVoidMethod();
 // this call does nothing
 mock.someVoidMethod();

The doCallRealMethod() API is used when you want to call the real
implementation of a method on a mock or a spy object as follows:

doCallRealMethod().when(mock).someVoidMethod();

The doReturn() method is similar to stubbing a method and returning an expected
value. However, this is used only when when(mock).thenReturn(return) cannot
be used.

The when-thenReturn method is more readable than doReturn(); also, doReturn()
is not a safe type. The thenReturn method checks the method return types and
raises a compilation error if an unsafe type is passed.

Here is the syntax for using the doReturn() test:

doReturn(value).when(mock).method(argument);

The following code snippet provides an example of unsafe usage of doReturn:

@Test public void doReturn_is_not_type_safe() throws Exception {
 //then return is type safe- It has to return a BigDecimal
 when(portfolio.getCurrentValue()).thenReturn(BigDecimal.ONE);
 //method call works fine
 portfolio.getCurrentValue();

 //returning a String instead of BigDecimal
 doReturn("See returning a String").
 when(portfolio.getCurrentValue());
 //this call will fail with an error
 portfolio.getCurrentValue();
}

Chapter 4

[127]

The following screenshot shows how the test fails:

Spying real objects and calling real methods on a spy has side effects; to counter this
side effect, use doReturn() instead of thenReturn().

The following code describes the side effect of spying and calling thenReturn():

@Test
 public void doReturn_usage() throws Exception {
 List<String> list = new ArrayList<String>();
 List<String> spy = spy(list);
 //impossible the real list.get(0) is called and fails
 //with IndexOutofBoundsException, as the list is empty
 when(spy.get(0)).thenReturn("not reachable");
 }

In the preceding code, the spy object calls a real method while trying to stub
get(index), and unlike the mock objects, the real method was called and it failed
with an ArrayIndexOutOfBounds error.

Progressive Mockito

[128]

The following screenshot displays the failure message:

This can be protected using doReturn() as shown in the following code, but note
that typically we don't mock lists or domain objects; this is just an example:

@Test public void doReturn_usage() throws Exception {
 List<String> list = new ArrayList<String>();
 List<String> spy = spy(list);

 //doReturn fixed the issue
 doReturn("now reachable").when(spy).get(0);
 assertEquals("now reachable", spy.get(0));
}

Capturing arguments with ArgumentCaptor
ArgumentCaptor is used to verify the arguments passed to a stubbed method.
Sometimes, we compute a value, then create another object using the computed
value, and then call a mock object using that new object. This computed value is
not returned from the original method, but it is used for some other computation.

ArgumentCaptor provides an API to access objects that are instantiated within the
method under the test.

The following code snippet explains the problem behind the inaccessibility of the
method arguments:

public void buildPerson(String firstName, String lastName,
 String middleName, int age){
 Person person = new Person();
 person.setFirstName(firstName);
 person.setMiddleName(middleName);
 person.setLastName(lastName);
 person.setAge(age);
 this,personService.save(person);
}

Chapter 4

[129]

We are passing a first name, middle name, last name, and an age to the buildPerson
method. This method creates a Person object and sets the name and age to it. Finally,
it invokes the personService class and saves the person object to a database.

Here, we cannot stub the save behavior of personService from a JUnit test with a
specific value since the Person object is created inside the method. We can mock save
using a generic matcher object such as isA(Person.class) and then verify whether
the Person object contains the correct name and age using the argument captor.

Mockito verifies argument values in natural Java style by using an equals()
method. This is also the recommended way of matching arguments because it makes
tests clean and simple. In some situations though, it is necessary to assert on certain
arguments after the actual verification.

The following code uses two ArgumentCaptors and verifies whether it uses a specific
stock symbol, A, and not any other value while calling the method:

@Test
public void argument_captor() throws Exception {
 when(portfolio.getAvgPrice(isA(Stock.class))).thenReturn(
 new BigDecimal("10.00"));
 Stock aCorp = new Stock("A", "A Corp", new
 BigDecimal(11.20));
 when(marketWatcher.getQuote(anyString())).thenReturn(aCorp);
 broker.perform(portfolio, aCorp);

 ArgumentCaptor<String> stockIdCaptor =
 ArgumentCaptor.forClass(String.class);

 verify(marketWatcher).getQuote(stockIdCaptor.capture());
 assertEquals("A", stockIdCaptor.getValue());

 //Two arguments captured
 ArgumentCaptor<Stock> stockCaptor =
 ArgumentCaptor.forClass(Stock.class);
 ArgumentCaptor<Integer> stockSellCountCaptor =
 ArgumentCaptor.forClass(Integer.class);

 verify(portfolio).sell(stockCaptor.capture(),
 stockSellCountCaptor.capture());
 assertEquals("A", stockCaptor.getValue().getSymbol());
 assertEquals(10, stockSellCountCaptor.getValue().intValue());
}

Progressive Mockito

[130]

Check that ArgumentCaptor takes a Class type in the forClass method
and then the captor is passed to the verify method to collect the argument
details. The sell method takes two arguments, Stock and Integer. So, two
ArgumentCaptors are created. The stockCaptor object captures the Stock argument
and stockSellCountCaptor captures the stock quantity. Finally, the values are
compared to verify whether the correct values were passed to the sell method.

Verifying the invocation order
Mockito facilitates verifying if interactions with a mock were performed in a given
order using the InOrder API. It allows us to create InOrder of mocks and verify the
call order of all calls of all mocks.

The following test sequentially invokes the getAvgPrice, getCurrentValue,
getQuote, and buy methods, but verifies whether the buy() method is invoked
before the getAvgPrice() method. So, the verification order is wrong and hence
the test fails:

@Test public void inorder() throws Exception {
 Stock aCorp = new Stock("A", "A Corp",
 new BigDecimal(11.20));
 portfolio.getAvgPrice(aCorp);
 portfolio.getCurrentValue();
 marketWatcher.getQuote("X");
 portfolio.buy(aCorp);
 InOrder inOrder=inOrder(portfolio,marketWatcher);
 inOrder.verify(portfolio).buy(isA(Stock.class));
 inOrder.verify(portfolio).getAvgPrice(isA(Stock.class));
}

The following screenshot shows the error message output:

Chapter 4

[131]

Reordering the verification sequence, we fixed the test as follows:

@Test public void inorder() throws Exception {
 Stock aCorp = new Stock("A", "A Corp", new
 BigDecimal(11.20));
 portfolio.getAvgPrice(aCorp);
 portfolio.getCurrentValue();
 marketWatcher.getQuote("X");
 portfolio.buy(aCorp);

 InOrder inOrder=inOrder(portfolio,marketWatcher);
 inOrder.verify(portfolio).getAvgPrice(isA(Stock.class));
 inOrder.verify(portfolio).getCurrentValue();
 inOrder.verify(marketWatcher).getQuote(anyString());
 inOrder.verify(portfolio).buy(isA(Stock.class));
}

Progressive Mockito

[132]

Changing the default settings
We learned that nonstubbed methods of a mock object return default values such as
null for an object and false for a Boolean. However, Mockito allows us to change the
default settings.

The following are the allowed settings:

• RETURNS_DEFAULTS: This is the default setting. It returns null for object,
false for Boolean, and so on.

• RETURNS_SMART_NULLS: This returns spy of a given type.
• RETURNS_MOCKS: This returns mocks for objects and the default value

for primitives.
• RETURNS_DEEP_STUBS: This returns a deep stub.
• CALLS_REAL_METHODS: This calls a real method.

The following example overrides the default Mockito settings and uses different
return types:

@Test
 public void changing_default() throws Exception {
 Stock aCorp = new Stock("A", "A Corp", new
 BigDecimal(11.20));
 Portfolio pf = Mockito.mock(Portfolio.class);
 //default null is returned
 assertNull(pf.getAvgPrice(aCorp));
 Portfolio pf1 = Mockito.mock(Portfolio.class,
 Mockito.RETURNS_SMART_NULLS);
 //a smart null is returned
 System.out.println("#1 "+pf1.getAvgPrice(aCorp));
 assertNotNull(pf1.getAvgPrice(aCorp));

 Portfolio pf2 = Mockito.mock(Portfolio.class,
 Mockito.RETURNS_MOCKS);
 //a mock is returned
 System.out.println("#2 "+pf2.getAvgPrice(aCorp));
 assertNotNull(pf2.getAvgPrice(aCorp));

 Portfolio pf3 = Mockito.mock(Portfolio.class,
 Mockito.RETURNS_DEEP_STUBS);
 //a deep stubbed mock is returned
 System.out.println("#3 "+pf3.getAvgPrice(aCorp));
 assertNotNull(pf3.getAvgPrice(aCorp));
 }

Chapter 4

[133]

The following screenshot shows the console output:

Resetting mock objects
A static method reset(T…) enables resetting mock objects. The reset method
should be handled with special care; if you need to reset a mock, you will most likely
need another test.

A reset method clears the stubs.

The following code snippet stubs the getAvgPrice method to return a value,
but reset clears the stub; after reset, the getAvgPrice method returns NULL:

@Test
public void resetMock() throws Exception {
 Stock aCorp = new Stock("A", "A Corp", new BigDecimal(11.20));

 Portfolio portfolio = Mockito.mock(Portfolio.class);
 when(portfolio.getAvgPrice(eq(aCorp))).
 thenReturn(BigDecimal.ONE);
 assertNotNull(portfolio.getAvgPrice(aCorp));

 Mockito.reset(portfolio);
 //Resets the stub, so getAvgPrice returns NULL
 assertNull(portfolio.getAvgPrice(aCorp));
}

Progressive Mockito

[134]

Exploring Mockito annotations
We learned that Mockito supports the @Mock annotation for mocking. Just like @Mock,
Mockito supports the following three useful annotations:

• @Captor: This simplifies the creation of ArgumentCaptor, which is
useful when the argument to capture is a super generic class, such as
List<Map<String,Set<String>>.

• @Spy: This creates a spy of a given object. Use it instead of spy (object).
• @InjectMocks: This injects mock or spy fields into the tested object

automatically using a constructor injection, setter injection, or field injection.

Working with inline stubbing
Mockito allows us to create mocks while stubbing it. Basically, it allows creating
a stub in one line of code. This can be helpful to keep the test code clean.

For example, some stubs can be created and stubbed at field initialization in a test.
We use the Stock objects in almost all tests. We can create a global mock Stock and
stub it at definition, as shown in the following code snippet:

Stock globalStock = when(Mockito.mock(Stock.class).getPrice()).
 thenReturn(BigDecimal.ONE).getMock();

 @Test
 public void access_global_mock() throws Exception {
 assertEquals(BigDecimal.ONE, globalStock.getPrice());
 }

Determining mocking details
Mockito.mockingDetails identifies whether a particular object is a mock or a spy,
as follows:

@Test
public void mocking_details() throws Exception {
 Portfolio pf1 = Mockito.mock(Portfolio.class,
 Mockito.RETURNS_MOCKS);

 BigDecimal result = pf1.getAvgPrice(globalStock);
 assertNotNull(result);
 assertTrue(Mockito.mockingDetails(pf1).isMock());

Chapter 4

[135]

 Stock myStock = new Stock(null, null, null);
 Stock spy = spy(myStock);
 assertTrue(Mockito.mockingDetails(spy).isSpy());

}

Behavior-driven development with Mockito
BDD is a software engineering process based on TDD. BDD combines the best
practices of TDD, domain-driven development (DDD), and object-oriented
programming (OOP).

In an agile team, scoping a feature is a mammoth task. The business stakeholders talk
about business interests, and the development team talks about technical challenges.
BDD provides a universal language that allows useful communication and feedback
between the stakeholders.

Dan North developed BDD, created the JBehave framework for BDD, and proposed
the following best practices:

• Unit test names should start with the word should and should be written in the
order of the business value

• Acceptance tests (AT) should be written in a user story manner, such as "As
a (role) I want (feature) so that (benefit)"

• Acceptance criteria should be written in terms of scenarios and implemented
as "Given (initial context), when (event occurs), then (ensure some outcomes)"

Let's write a user story for our stock broker simulation:

Story: A stock is sold
In order to maximize profit
As a Stock broker
I want to sell a stock when the price goes up by 10 percent

The following is a scenario example:

Scenario: 10 percent increase in stock price should sell the stock in the market
Given a customer previously bought FB stocks at $10.00 per share
And he currently has 10 shares left in his portfolio
When the FB stock price becomes $11.00

Progressive Mockito

[136]

Then I should sell all the FB stocks and the portfolio should have zero
FB stocks

Mockito supports the BDD style of writing tests using the given-when-then syntax.

Writing tests in BDD style
In BDD, given represents the initial context and when represents the event or
condition. However, Mockito already has a when style of (initial context definition)
method stubbing; therefore, when doesn't go well with BDD. Thus, the BDDMockito
class introduces an alias so that we can stub method calls with the given(
object) method.

The following JUnit test is implemented in BDD style:

@RunWith(MockitoJUnitRunner.class)
public class StockBrokerBDDTest {
 @Mock MarketWatcher marketWatcher;
 @Mock Portfolio portfolio;

 StockBroker broker;

 @Before public void setUp() {
 broker = new StockBroker(marketWatcher);
 }

 @Test
 public void
 should_sell_a_stock_when_price_increases_by_ten_percent(){
 Stock aCorp = new Stock("FB", "FaceBook", new
 BigDecimal(11.20));
 //Given a customer previously bought 10 'FB' stocks at
 //$10.00/per share
 given(portfolio.getAvgPrice(isA(Stock.class))).
 willReturn(new BigDecimal("10.00"));

 given(marketWatcher.getQuote(eq("FB"))).
 willReturn(aCorp);

 //when the 'FB' stock price becomes $11.00
 broker.perform(portfolio, aCorp);

 //then the 'FB' stocks are sold
 verify(portfolio).sell(aCorp,10);
 }
}

Chapter 4

[137]

Note that the test name starts with a should statement. The given syntax of Mockito
is used to set the initial context that the portfolio already has FB stocks bought at
$10.00 per share and the current FB stock price is $11.00 per share.

The following screenshot shows the test execution output:

The BDD syntax
The following methods are used in conjunction with given:

• willReturn(a value to be returned): This returns a given value
• willThrow(a throwable to be thrown): This throws a given exception
• will(Answer answer) and willAnswer(Answer answer): This is similar

to then(answer) and thenAnswer(answer)
• willCallRealMethod(): This calls the real method on the mock object or spy

The jMock and EasyMock frameworks are the other two Java-based
unit testing frameworks that support mocking for automated unit tests.
The jMock and EasyMock frameworks provide mocking capabilities,
but the syntax is not as simple as Mockito. You can visit the following
URLs to explore the frameworks:

• http://jmock.org/

• http://easymock.org/

To learn more about BDD and JBehave, visit http://jbehave.org/.

Progressive Mockito

[138]

Summary
In this chapter, Mockito is described in detail and technical examples are provided to
demonstrate the capability of Mockito.

By the end of this chapter, you will be able to use advanced features of the Mockito
framework, and start BDD with Mockito.

The next chapter will explain the importance of code coverage, line and branch
coverage, how to measure code coverage, Eclipse plugins, setting up Cobertura,
and generating coverage report using Ant, Gradle, and Maven.

Exploring Code Coverage
This chapter explains the code coverage, coverage tools, and provides step-by-step
guidance to generate a coverage report.

The following topics are covered in this chapter:

• Code, branch, and line coverage
• Coverage tools such as Clover, Cobertura, EclEmma, and JaCoCo
• Measuring coverage using Eclipse plugins
• Using Ant, Maven, and Gradle to generate reports

Understanding code coverage
Code coverage is a measurement of percentage of instructions of code being
executed while the automated tests are running.

A piece of code with high code coverage implies that the code has been thoroughly
unit tested and has a lower chance of containing bugs than code with a low code
coverage. You should concentrate on writing meaningful (business logic) unit tests
and not on having 100 percent coverage because it's easy to cheat and have 100
percent coverage with completely useless tests.

Numerous metrics can be used to measure the code coverage. The following are the
ones that are widely used:

• Statement or line coverage: This measures the statements or lines
being covered

• Branch coverage: This measures the percentage of each branch of each
control structure, such as the if else and switch case statements

• Function or method coverage: This measures the function execution

Exploring Code Coverage

[140]

The following Java code will elucidate the metrics.

An absSum method takes two integer arguments and then returns the absolute sum
of the two arguments. An Integer type can hold a NULL value, so the method checks
for NULL. If both arguments are NULL, then the method returns 0 as given in the
following code:

public class Metrics {
 public int absSum(Integer op1, Integer op2) {
 if (op1 == null && op2 == null) {
 return 0;
 }
 if (op1 == null && op2 != null) {
 return Math.abs(op2);
 }
 if (op2 == null) {
 return Math.abs(op1);
 }
 return Math.abs(op1)+Math.abs(op2);
 }
}

This example has 10 branches: the first if(op1 == null && op2 == null)
statement has four branches: op1 == null, op1!= null, op2 == null, and op2 !=
null. Similarly, the second if statement has four branches and the last if (op2 ==
null) statement has two branches, op2== null and op2 != null.

If a test passes two non-null integers to the absSum method, then it covers four
lines, that is, three if statements and the final return statement, but the first three
return statements remain uncovered. It covers three out of ten branches; the first
if statement covers one out of four branches, that is, op1 == null. Similarly,
the second if statement covers one branch out of four branches, and the last if
statement covers one branch out of two branches op2 != null. So, the branch
coverage becomes 30 percent.

To cover all instructions and all branches, the following four input pairs need to
be passed to the method: [null, null], [null, value], [value, null], and
[value, value].

Learning the inner details of code
instrumentation
Coverage is measured by the ratio of basic code branches or instructions that were
exercised by some tests to the total number of instructions or branches available in
the system under test.

Chapter 5

[141]

The ratio is measured in a series of steps. First, in a copy of source code, each block
of statement is instrumented with an accumulator flag. Then, the tests run on the
instrumented code and update the flags. Finally, a program collects the accumulator
flags and measures the ratio of the flags turned on versus the total number of flags.
Bytecode can be changed on the fly or during compilation. This is actually what test
coverage frameworks do under the covers.

Two code instrumentation options are available: source code instrumentation and
object code instrumentation. Object code instrumentation modifies the generated
bytecode, so it is hard to implement.

The preceding code coverage example has seven lines, but if we expand the branches
into lines, then it will result in 14 lines. If a coverage tool needs to instrument the
code, then it will modify the source code and initialize an array of length 14 with 0
and set 1 when a line is executed while a test is being run. The following example
demonstrates the source code instrumentation:

 int[] visitedLines = new int[14];
 public int absSumModified(Integer op1 , Integer op2) {
 visitedLines[0] = 1;
 if(op1 == null) {
 visitedLines[1] = 1;
 if(op2 == null) {
 visitedLines[2] = 1;
 return 0;
 }else {
 visitedLines[3] = 1;
 }
 }else {
 visitedLines[4] = 1;
 }

 visitedLines[5] = 1;
 if(op1 == null) {
 visitedLines[6] = 1;
 if(op2 != null) {
 visitedLines[7] = 1;
 return Math.abs(op2);
 }else {
 visitedLines[8] = 1;
 }
 }else {
 visitedLines[9] = 1;
 }

Exploring Code Coverage

[142]

 visitedLines[10] = 1;
 if(op2 == null) {
 visitedLines[11] = 1;
 return Math.abs(op1);
 }else {
 visitedLines[12] = 1;
 }
 visitedLines[13] = 1;
 return Math.abs(op1)+Math.abs(op2);
 }}

After test execution, the coverage tool checks the visitedLines array and computes
the ratio of all lines that have visitedLines[index] equal to 1 versus the total
number of lines. If we test the method with the input sets [null, null] and [value,
value], then the five lines (lines 4, 7, 8, 9, and 12) remain uncovered. To cover 100
percent, we need to test the method with four possible combinations of null and
non-null integers.

Configuring the Eclipse plugin
We learned that the coverage tools can either instrument the object code or source
code. Java code coverage tools can be categorized into two sections: tools that
instrument the source code and tools that instrument the bytecode.

Source code instrumentation is easier but requires source code recompilation.
Bytecode instrumentation is complex but doesn't require source code recompilation.

The following are the available Java code coverage tools:

• Cobertura: This tool instruments the bytecode offline and is a widely used
coverage tool. Cobertura is an open source project (GNU GPL) and is very
easy to configure with Eclipse and build tools. Version 1.9, which was
released in March 2010, is the latest stable version.

• EMMA: This tool instruments the bytecode offline or on the fly and
is distributed under the Common Public License (CPL). Version 2.1,
released in June 2005, is the latest version. Google CodePro AnalytiX
is based on EMMA.

• Clover: This tool instruments the source code and comes with
a proprietary Atlassian license, and the latest stable version, 3.2,
was released in February 2014.

Chapter 5

[143]

• JaCoCo: This tool is distributed under Eclipse Public License (EPL). JaCoCo
instruments the bytecode on the fly while running the code. The latest stable
version, 0.6.4, was released in December 2013. JaCoCo was a replacement of
EMMA. EclEmma is a JaCoCo-based Eclipse plugin.

The following section will explore the Eclipse plugins based on the preceding
Java-based coverage tools.

Uncovering the Clover plugin
A trial version of the Clover plugin can be installed for a month. You can refer to
the installation instruction at https://confluence.atlassian.com/display/
CLOVER/. The Clover Eclipse plugin supports the site update and manual
download installation.

The following are the steps to install and execute the Clover plugin:

1. During installation, Clover shows a list of installable elements. Expand the
Clover blind and select Clover 3 and Clover 3 Ant Support. The following
screenshot displays the details:

2. Open the Show View menu and select all Clover views. The following
screenshot displays the Clover views:

Exploring Code Coverage

[144]

3. Create a new Java project named Chapter05 and add the Metrics.java and
MetricsTest.java Java files as designed in the preceding section. Open
Clover's Coverage Explorer and click on the Enable or disable Clover on one
or more project button. The following screenshot shows the button details:

4. Select the Chapter05 project. Clover will enable the source code
instrumentation on this project. Right-click on the MetricsTest file
and go to Run With Clover As | JUnit Test. The following screenshot
shows the pop-up menu:

5. Open Coverage Explorer and it will show the following coverage output:

6. Open Clover Dashboard. The dashboard will show you the coverage
details, test results, complexity, and the least-tested methods. The following
screenshot shows the dashboard details:

Chapter 5

[145]

7. Open the source code. The clover plugin decorates the source code;
the uncovered lines become red and the covered lines become green.
It also shows the execution count against each line. The following is
the instrumented source code output:

Working with the EclEmma plugin
EclEmma Version 2.0 is based on the JaCoCo code coverage library. Follow the
instructions at http://www.eclemma.org/index.html to install the EclEmma Eclipse
plugin. Like Clover, EclEmma supports site update and its manual download.

Exploring Code Coverage

[146]

Once EclEmma is installed, follow the steps to configure and execute tests
using EclEmma:

1. Right-click on the test class and go to Coverage As | 1 JUnit Test. This will
instrument the bytecode on the fly and bring up the coverage report.

2. After EclEmma installation, a new menu button appears under the main menu
panel. When you expand this menu, it shows the JUnit tests that have been
executed recently. Click on the menu button to generate the coverage report.
The following screenshot shows the EclEmma code coverage menu button:

3. When you open the Coverage tab, it shows the coverage details.
The following screenshot shows the output:

4. The branch coverage report is more prominent in EclEmma. The following
screenshot shows the coverage details:

Chapter 5

[147]

A green diamond signifies that the branch is 100 percent covered, a red
diamond signifies the branch is not covered, and a yellow diamond signifies
that the branch is partially covered.

Examining the eCobertura plugin
eCobertura is a Cobertura-based Eclipse plugin. eCobertura shows the
branch coverage in a tabular format. To install the eCobertura plugin, go to
https://marketplace.eclipse.org/content/ecobertura#.UxYBmoVh85w
and drag the Install button to your Eclipse workspace that is running. Eclipse
will automatically install the plugin for you. The following screenshot shows the
Marketplace Install button:

After installation, a new menu button appears under the menu panel for Cobertura,
as shown in the following screenshot:

The following are the steps to measure code coverage using eCobertura:

1. Go to Show View | Other, and select the Coverage Session View option
under eCobertura.

2. Execute the test and then click on the Cobertura menu button, or from
the dropdown, select the test you want to measure.

Exploring Code Coverage

[148]

3. Open the Coverage Session View tab. This will show you the
following output:

Note that the branch coverage is 60 percent. In the preceding section, we measured
10 branches. Using our custom coverage program, we measured that 4 out of 10
branches were covered. It proves that our custom code coverage program works fine.

Measuring coverage using Gradle
Gradle can be configured to generate coverage reports using JaCoCo. This section
will explain how to configure the Gradle JaCoCo plugin in your project.

The following are the steps to configure the Gradle plugin:

1. Create a base folder named Chapter05 under any directory, such as
D:/Packt; then, add a lib folder under Chapter05 and copy the JUnit4
and hamcrest JARs to the lib folder. Add another folder named Chapter05
under the base folder Chapter05 for the Java project. As per Gradle
conventions, source files are kept under src/main/java and test files are
kept under src/test/java. Create the directories under Chapter05\
Chapter05.

This Chapter05 naming strategy is used for you to easily track the
project and download the code from the Packt Publishing website, but
your code should express the intent of the code. The name Chapter05
doesn't make any sense, maybe you can name it something like
SimpleGradleProject or GradleCoverageProject.

Chapter 5

[149]

2. Copy the content of the Eclipse project and the Metrics and MetricsTest
Java files that we created in the Uncovering the Clover plugin section to the
new directory. Copy the content of the src folder to src/main/java and the
test folder to src/test/java (as per Gradle conventions).

3. Create a build.gradle file directly under Chapter05\Chapter05, and add
the following code snippet to the file to enable the JaCoCo coverage:
apply plugin: 'java'
apply plugin: "jacoco"
repositories {
 flatDir(dir: '../lib', name: 'JUnit Library')
 mavenCentral()
}
dependencies {
 testCompile'junit:junit:4.11', ':hamcrest-core:1.3'}
 jacocoTestReport {
 reports {
 xml.enabled false
 csv.enabled false
 html.destination "${buildDir}/jacocoHtml"
 }
}

4. The jaCoCo plugin adds a new task, jacocoTestReport. To execute the
jacocoTestReport task, a mavenCentral() repository dependency needs
to be added to the repositories closure. Gradle downloads the required
jaCoCo JARs from the mavenCentral repository.

5. Open the command prompt, go to the Chapter05\Chapter05 directory, and
run the gradle jacocoTestReport command. This will download the JAR
files and generate the coverage report. The following screenshot shows the
console output:

Exploring Code Coverage

[150]

6. Open Chapter05\Chapter05\build\jacocoHtml and launch the index.
html file. The following is the JaCoCo coverage report output:

Working with the Maven Cobertura plugin
Maven has a Cobertura plugin to measure code coverage; this section will explain
how to configure the Cobertura Maven plugin in your project.

Cobertura uses asm to instrument the bytecode. The asm framework
is a Java bytecode manipulation and analysis framework. Visit
http://asm.ow2.org/ for asm details. Cobertura modifies
the .class file, imports net.sourceforge.cobertura.
coveragedata.*, implements the HasBeenInstrumented
interface, and adds code to capture coverage, such as ProjectData.
getGlobalProjectData().getOrCreateClassData("com.
packt.coverage.Metrics").touch(21);.
After instrumenting the bytecode, Cobertura creates a .ser file and
updates the file during test execution. This .ser file contains the test
coverage details. The instrumented bytecode can be slightly slower
than normal without it.

Follow the ensuing steps to configure Maven to generate a Cobertura report:

1. Create a pom.xml file and place it under /Chapter05/Chapter05.
2. Modify the pom.xml file to add the project details as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.packt</groupId>
 <artifactId>Chapter05</artifactId>

Chapter 5

[151]

 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>Chapter05</name>
 <url>http://maven.apache.org</url>

3. Add the Cobertura plugin details as follows:
<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
 <version>2.2</version>
 <configuration>
 <formats>
 <format>html</format>
 <format>xml</format>
 </formats>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>cobertura</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

4. Open the command prompt, change the directory to /Chapter05/Chapter05,
and issue the mvn cobertura:cobertura command. This will start
downloading Cobertura plugin files and start instrumenting the .class files.
The following screenshot portrays the Maven console output:

Exploring Code Coverage

[152]

5. Open /Chapter05/Chapter05/target. The target folder contains the
following important subfolders:

 ° cobertura: This contains the cobertura.ser file
 ° generated-classes: This contains the instrumented bytecode or the

.class files
 ° site: This contains the coverage report in XML and HTML formats
 ° surefire-reports: This contains the test execution report

The following screenshot shows the coverage report generated in the HTML format
in the site folder:

Running the Cobertura Ant task
This section will explain how to configure the Cobertura Ant task in your project.

The following are the steps for configuration:

1. Gradle and Maven can download the coverage tool JARs while running the
build, but Ant needs the Cobertura JAR files to the classpath. Download the
Cobertura ZIP file from http://cobertura.github.io/cobertura/.

2. Extract the ZIP file and copy all JAR files in the downloaded ZIP to
Chapter05\lib. Include all JARs from the lib folder and cobertura.jar
from the root folder.

3. Create a build.properties file under Chapter05\Chapter05 and enter the
following information:
src.dir=src/main/java
test.dir=src/test/java
The path to cobertura.jar
cobertura.dir=../lib
classes.dir=classes

Chapter 5

[153]

instrumented.dir=instrumented
reports.dir=reports
Unit test reports from JUnit are deposited into this
 directory
reports.xml.dir=${reports.dir}/junit-xml
reports.html.dir=${reports.dir}/junit-html
coverage.xml.dir=${reports.dir}/cobertura-xml
coverage.summaryxml.dir=${reports.dir}/cobertura-summary-xml
coverage.html.dir=${reports.dir}/cobertura-html

The src.dir attribute represents the source folder location and test.
dir represents the test file location. The cobertura.dir attribute refers
to the Cobertura library or JAR files. The coverage tool needs to access the
Cobertura library files. The other entries are required for report generation
and bytecode instrumentation.

4. Create a build.xml file under Chapter05\Chapter05, and add targets
for Cobertura instrumentation and JUnit test to update the .ser file and
generate the report. Download the build.xml file from the Packt Publishing
website (the Chapter05 code). The important targets are init, compile,
testcompile, instrument, test, coverage-report, summary-coverage-
report, alternate-coverage-report, and clean.

5. Open the command prompt, change the directory to Chapter05\Chapter05,
and issue the ant command. This will generate the report. The following is
the console output of the command:

Cobertura generates the report in Chapter05\Chapter05\reports.
The reports folder contains various reports in XML and HTML formats.

Code coverage is not a silver bullet that can deliver zero-defect
software! The most important thing is writing effective tests and unit
testing the logic. Writing tests for getters and setters or constructor
doesn't add value.

Exploring Code Coverage

[154]

Summary
In this chapter, code coverage is described in depth and examples are provided to
measure code coverage using Eclipse plugins and various coverage tools, such as
Clover, JaCoCo, EclEmma, and Cobertura. We have also configured Ant, Maven,
and Gradle to generate code coverage reports using coverage tools.

By the end of this chapter, you should be able configure Eclipse plugins and build
scripts to measure code coverage.

The next chapter covers the static code analysis, code metrics, and various open
source tools. It configures and uses PMD, Checkstyle, and FindBugs to analyze
code quality and explores the Sonar code quality dashboard.

Revealing Code Quality
"Testing by itself does not improve software quality. Test results are an indicator
of quality, but in and of themselves, they don't improve it. Trying to improve
software quality by increasing the amount of testing is like trying to lose weight
by weighing yourself more often. What you eat before you step onto the scale
determines how much you will weigh, and the software development techniques
you use determine how many errors testing will find. If you want to lose weight,
don't buy a new scale; change your diet. If you want to improve your software,
don't test more; develop better."

—Steve McConnell

A poorly developed system generates more bugs than a well-designed system.
Manual testing can identify software bugs but cannot improve the quality of the
system; however, TDD and JUnit tests are considered as automated unit testing
frameworks, and they indeed help in improving the quality of the system. Static
code quality analysis exposes quality issues in the code and provides suggestions
for improvement, and continuous health monitoring keeps the system healthy.

The following topics will be covered in this chapter:

• Code quality metrics
• Static code analysis using PMD, Checkstyle, and FindBugs
• The SonarQube dashboard
• The SonarQube runner
• Code quality analysis using Ant, Maven, and Gradle

Revealing Code Quality

[156]

Understanding the static code analysis
Static code analysis is the process of analyzing code without executing it. Code
review is also a sort of static code analysis but is performed with humans or team
members. Generally, static code analysis is performed by an automated tool.

Usually, a static analysis includes the following metrics:

• Violation of coding best practices such as long method body, long parameter
list, large classes, and variable names.

• Cohesion represents responsibility of a single module (class). If a module
or class possesses too many responsibilities, such as tax calculation,
sending e-mails, and formatting user inputs, the class or module is less
cohesive. Performing multiple dissimilar tasks introduces complexity and
maintainability issues. High cohesion means performing only a particular
type of task.
Suppose a person is assigned to handle customer tickets, code new features,
design the architecture, organize the annual office party, and so on; this
person will be over occupied and is bound to make mistakes. It will be very
difficult for him or her to manage all the responsibilities.
In refactoring terms, if a class performs too many tasks, the class is called
a GOD object or class.

• Coupling measures the dependency on other modules or code. Low
dependency enforces high cohesion. If module C depends on two other
modules, A and B, any change in the APIs of A or B will force C to change.
Event-driven architecture is an example of loose coupling. In an event-driven
system when something changes, an event is published to a destination
without any knowledge of who will process the event; the event consumers
consume the event and take action(s). This decouples the event publisher
from the event consumers. So, any change in the consumer doesn't force the
publisher to change.

• Cyclomatic complexity measures the complexity of a program. In 1976,
Thomas J. McCabe, Sr. developed cyclomatic complexity. It measures the
number of linearly independent paths in a program. This is not restricted
to a program-level complexity, but it can also be applied to individual
functions, modules, methods, or classes within a program.

Chapter 6

[157]

Cyclomatic complexity of a program is defined with a control flow graph
of the program. Complexity is represented as M = E-N+2P, where M is
complexity, E is the number of edges of the graph, N is the number of nodes
of the graph, and P is the number of connected components. Any method
with a complexity greater than 10 has a serious problem.
A method that has no conditional statements has a cyclomatic complexity
of 1. The following diagram represents the directed graph and complexity:

E=1, N=2, P=1

M=1-2+2*1=1-2+2=1

A method with a single condition (an IF) or a single loop (a FOR) has
a complexity of 2. The following diagram explains the calculation:

Single IF Loop

E=5, N=5, P=1

M = E-N+2P
= 5.5+2*1
= 2

The following is the corresponding code:

public void trim(String input){
 if(input != null){
 return input.trim();
 }
 return null;
}

Various automated tools are available for static code analysis. In addition,
the built-in Eclipse compiler can already perform a lot of static code analysis.
The following are the widely used ones:

• Checkstyle: This tool performs static code analysis, and it can also be
used to show violations of a configured coding standard. It comes under
a GNU General Public License. You can check it out at the following link:
http://checkstyle.sourceforge.net.

Revealing Code Quality

[158]

• FindBugs: This is an open source static bytecode analyzer for potential
Java errors. Plugins are available for Eclipse, NetBeans, and IntelliJ IDEA.
It comes under a GNU General Public License. FindBugs can be configured
with Jenkins. The following is the link for the FindBugs website:
http://findbugs.sourceforge.net.

• PMD: This is a static ruleset based on the Java source code analyzer that
identifies potential problems. PMD has an Eclipse plugin that shows an error
icon in the editor, but PMD errors are not true errors; rather, they're the
result of inefficient code.

In the next section, we will examine the static analysis tools.

Working with the Checkstyle plugin
This section covers the Checkstyle static analysis tool and how to configure Eclipse
with Checkstyle. Checkstyle verifies the following rules:

• Missing Javadoc comments
• The use of magic numbers
• Naming conventions of variables and methods
• Method's argument length and line lengths
• The use of imports
• The spaces between some characters
• The good practices of class construction
• Duplicated code

The Checkstyle plugin can be downloaded from http://sourceforge.net/
projects/eclipse-cs/, or you can install it through Eclipse Marketplace.
Just search for Checkstyle.

Perform the following steps to configure the Checkstyle Eclipse plugin:

1. Click on the Install New Software menu; Eclipse will open a new wizard.
2. Click on the Add button and a new Add Repository pop up will appear.
3. Click on the Archive... button and browse to the downloaded ZIP

file's location.
4. Select defaults, finish installation, and restart Eclipse.

Chapter 6

[159]

The following screenshot shows the Checkstyle components to be installed:

Now that installation has finished, it's time to examine the Checkstyle capabilities.
Create a Java project named CodeQualityChapter06 (create a chapter06 folder
under a directory named packt and save the project in \Packt\chapter06), add
a Java class named Calculator.java, and add the following code snippet to
Calculator.java:

package com.packt.code.quality;
public class Calculator<T extends Number> {
 public String add(T... numbers) {
 T result = null;
 int x =0;
 for(T t:numbers) { x++;
 if(result == null) {
 if(t instanceof Integer) {
 result = (T) new Integer("0");
 }else if(t instanceof Short) {
 result = (T) new Short("0");
 }else if(t instanceof Long) {
 result = (T) new Long("0");
 }else if(t instanceof Float) {
 result = (T) new Float("0.0");
 }else if(t instanceof Double) {
 result = (T) new Double("0.0");
 }
 }
 if(t instanceof Integer) {
 Integer val = ((Integer)result + (Integer)t);
 result =(T)val;
 }else if(t instanceof Short) {
 Short val = (short) ((Short)result + (Short)t);
 result =(T)val;
 }else if(t instanceof Long) {
 Long val = ((Long)result + (Long)t);
 result =(T)val;
 }else if(t instanceof Float) {
 Float val = ((Float)result + (Float)t);

Revealing Code Quality

[160]

 result =(T)val;
 }else if(t instanceof Double) {
 Double val = ((Double)result + (Double)t);
 result =(T)val;
 }
 if(x == 1045) {
 System.out.println("warning !!!");
 }
 }
 return result.toString();
 } }

This class, Calculator.java, calculates the sum of a list of numbers. It's a generic
class; we can calculate the sum of integers or doubles or any number.

Right-click on CodeQualityChapter06 and enable Checkstyle. The following
screenshot displays the Checkstyle pop-up menu:

This action will trigger the Checkstyle validation. It will open the Checks tab (if the
Checks tab is not opened automatically, then open the view from the show views
menu) and show a graphical view of violations. The following screenshot displays
the graphical violation pie chart:

Chapter 6

[161]

Another view shows the violations in a tabular format. The following screenshot
displays the violations in a tabular format:

Revealing Code Quality

[162]

Exploring the FindBugs plugin
This section describes the configuration and usage of the FindBugs plugin.

FindBugs works with three types of errors. You can visit http://findbugs.
sourceforge.net/bugDescriptions.html for the FindBugs error details.
The following are the FindBugs-supported error categories and errors:

• Correctness bug: This is an apparent coding mistake that results in code
that was probably not what the developer intended; for example, a method
ignores the return value of a self-assigned field. The following are a few
examples of a correctness bug:

 ° The class defines tostring() but it should be toString()
 ° A value is checked here to see whether it is null, but this value can't

be null because it was previously dereferenced, and if it were null, a
null pointer exception would have occurred at the earlier dereference

 ° The method in the subclass doesn't override a similar method in a
superclass because the type of a parameter doesn't exactly match the
type of the corresponding parameter in the superclass

 ° Class defines equal(Object) but it should be equals(Object)

• Bad practice: This includes violations of recommended best practices and
essential coding practice. The following are the examples of bad practices:

 ° Hash code and equals problems:
 ° Class defines hashCode() but it should be equals()

and hashCode()
 ° Class defines equals() but it should be hashCode()
 ° Class defines hashCode() and uses Object.equals()
 ° Class defines equals() and uses Object.hashCode()

 ° Cloneable idiom:
 ° Class defines clone() but doesn't implement Cloneable

 ° Serializable problems:
 ° Class is Serializable, but doesn't define serialVersionUID
 ° Comparator doesn't implement Serializable
 ° Non serializable class has a serializable inner class

Chapter 6

[163]

 ° Dropped exceptions: Here, an exception is created and dropped
rather than thrown, such as the following example, where the
exception was created but not thrown:

if (x < 0)
 new IllegalArgumentException("x must be nonnegative");

 ° Misuse of finalize:
 ° Explicit invocation of finalize
 ° Finalizer does not call the superclass finalizer

• Dodgy errors: This kind of code is confusing, anomalous, or written in a way
that leads to errors. Examples include the following:

 ° Dead store of class literal: An instruction assigns a class literal to a
variable and then never uses it.

 ° Switch fall through: A value stored in the previous switch case is
overwritten here due to a switch fall through. It is likely that you
forgot to put a break or return at the end of the previous case.

 ° Unconfirmed type casts and redundant null check: This error occurs
when a value is null, for example, consider the following code:

Object x = null;
Car myCar = (Car)x;
if(myCar != null){
 //...
}

The following is the update site URL for the FindBugs Eclipse plugin:
http://findbugs.cs.umd.edu/eclipse.

You can also install it through Eclipse Marketplace.

Install FindBugs and then add the following code to the CodeQualityChapter06
project for verification:

public class Buggy implements Cloneable {
 private Integer magicNumber;
 public Buggy(Integer magicNumber) {
 this.magicNumber = magicNumber;
 }
 public boolean isBuggy(String x) {
 return "Buggy" == x;
 }
 public boolean equals(Object o) {
 if (o instanceof Buggy) {

Revealing Code Quality

[164]

 return ((Buggy) o).magicNumber == magicNumber;
 }
 if (o instanceof Integer) {
 return magicNumber == ((Integer) o);
 }
 return false;
 }
 Buggy() { }
 static class MoreBuggy extends Buggy {
 static MoreBuggy singleton = new MoreBuggy();
 }
 static MoreBuggy foo = MoreBuggy.singleton;
}

Right-click on the project and click on the Find Bugs menu. The following is the
pop-up menu displayed:

Open the source file; it shows the bug icons. The following screenshot displays
the bugs:

Chapter 6

[165]

The following screenshot displays the bugs in a tabular format with the
error categories:

Working with the PMD plugin
PMD can find duplicate code, dead code, empty if/while statements, empty
try/catch blocks, complicated expressions, cyclomatic complexity, and so on.

The following is the update site URL for Eclipse: http://sourceforge.net/
projects/pmd/files/pmd-eclipse/update-site/. You can also install it through
Eclipse Marketplace.

After installation, right-click on the CodeQualityChapter06 project and select
the Toggle PMD Nature menu item. It will enable the project for PMD analysis.
The following screenshot demonstrates the PMD pop-up menu options:

Revealing Code Quality

[166]

PMD shows the errors in the Problems tab. The following screenshot shows the
PMD violations in the Problems tab:

The next section will describe the SonarQube dashboard and analyze projects using
the SonarQube runner, Ant, Gradle, and Maven.

Monitoring code quality with SonarQube
SonarQube is a web-based open source continuous quality assessment dashboard.
It comes with a GNU General Public License and supports cross-platform, so it can
be installed on many popular operating systems. SonarQube is developed in Java.
As of March 2014, the latest version is 4.1.2.

SonarQube exhibits the following features:

• It is a web-based code quality dashboard that can be accessed from anywhere.
• It supports numerous languages. The languages and coding platforms

supported in Version 4.1.2 are ABAP, Android, C/C++, C#, COBOL, Erlang,
Flex/ActionScript, Groovy, Java, JavaScript, Natural, PHP, PL/I, PL/SQL,
Python, VB.NET, Visual Basic 6, Web (analysis of HTML included in pages
on HTML, JSP, JSF, Ruby, PHP, and so on), and XML.

• It offers the following metrics:
 ° Bugs and potential bugs
 ° Breach in coding standards
 ° Duplications
 ° Lack of unit tests

Chapter 6

[167]

 ° Bad distribution of complexities
 ° Spaghetti design
 ° Not enough or too many comments

• It records history in a database and provides chronological graphs
of quality metrics.

• It can be expanded using numerous plugins.
• It supports continuous automated inspection using Ant/Maven/Gradle

and CI tools such as Jenkins, CruiseControl, and Bamboo.
• It integrates with Eclipse.

The following section covers the SonarQube installation and usage.

Running SonarQube
The following are the SonarQube configuration steps:

1. Download SonarQube from http://www.sonarqube.org/downloads/.
2. Uncompress the downloaded file into the directory of your choice. We'll refer

to it as <sonar_install_directory> or SONAR_HOME in the next steps.
3. Open the <sonar_install_directory>/bin directory. The bin directory

lists the SonarQube-supported operating systems. Go to a specific OS
directory such as open windows-x86-64 for a Windows 64-bit machine.

4. Run a shell script or batch file to start Sonar. The following screenshot
shows the command prompt output of a Windows 64-bit machine. Note
that the server logs the Web server is started information when the web
server is started:

Revealing Code Quality

[168]

5. Open Internet Explorer and type in http://localhost:9000. This will
launch the SonarQube dashboard. Initially, the dashboard shows an empty
project list. First, we need to analyze the projects to get them displayed in the
dashboard. The following is the SonarQube dashboard on display:

Installation is complete. Next, we need to analyze a project using SonarQube.

Analyzing code with the SonarQube runner
This section configures the SonarQube runner and analyzes a project. SonarQube
supports numerous project analysis options, and the SonarQube runner is the
prescribed one. The following are the steps to analyze a project using the
SonarQube runner:

1. Download the runner from http://repo1.maven.org/maven2/org/
codehaus/sonar/runner/sonar-runner-dist/2.3/sonar-runner-dist-
2.3.zip.

2. Unzip the downloaded file into the directory of your choice. We'll refer to it
as <runner_install_directory> in the next steps.

3. Open sonar.properties from the <sonar_install_directory>/conf/
sonar.properties installation directory. Sonar stores data in a database;
if not specified, then by default, it stores data in an embedded H2 database.
The following jdbc.url command should be present in the properties file:
sonar.jdbc.url=jdbc:h2:tcp://localhost:9092/sonar.

4. Open <runner_install_directory>/conf/sonar-runner.properties
and change the sonar.host.url property to http://localhost:9000,
and copy sonar.jdbc.url from the <sonar_install_directory>/conf/
sonar.properties file.

Chapter 6

[169]

The following is the code snippet taken from the sonar-runner.properties
file. Check whether sonar.host.url and sonar.jdbc.url are enabled:

5. Create a new SONAR_RUNNER_HOME environment variable, which is set
to <runner_install_directory>.

6. Add the <runner_install_directory>/bin directory to your
Path variable.

7. Open command prompt and check whether the runner is installed. Issue
the sonar-runner –h command, and you will get the following output:

8. Go to the CodeQualityChapter06 project folder, create a properties file
named sonar-project.properties, and add the following lines to the file:
Required metadata
sonar.projectKey=packt:CodeQualityChapter06
sonar.projectName=CodeQualityChapter06
sonar.projectVersion=1.0
#source file location
sonar.sources=src/main/java
The value of the property must be the key of the
 language.
sonar.language=java
Encoding of the source code
sonar.sourceEncoding=UTF-8

Revealing Code Quality

[170]

9. Open the command prompt, change the directory to CodeQualityChapter06,
and issue the sonar-runner command; this will start the project analysis.
Sonar will download JAR files and store the analysis data into an H2 database.
Once the analysis is over, open http://localhost:9000; this will launch the
SonarQube dashboard.
The metrics displayed in the dashboard are technical debt, code details,
documentation, code duplication, complexity, and coverage.
The following screenshot shows the Technical Debt metric:

The following screenshot shows the code details metric:

The following screenshot shows the Documentation metric:

Chapter 6

[171]

The following screenshot shows the cyclomatic Complexity metric:

10. Click on the Issues 12 hyperlink in the Technical Debt metric; this will open
an issue's details with a severity legend. The following is the Severity legend:

The following screenshot shows the issue details:

Revealing Code Quality

[172]

11. Click on any of the three complexity hyperlinks. Sonar will open the files
and show the complexity details.

The following is an example of the complexity of Buggy.java:

The Hotspot view displays the pain areas of the project, such as hotspots
by duplicate lines, major violations, most violated rules, and the most
violated resources.
The Time Machine view displays the chronological view of the project,
such as a graphical day- or month-wise comparison of code complexity
or code coverage.

Improving quality with the Sonar Eclipse
plugin
Sonar provides an Eclipse plugin for accessing and fixing the Sonar-reported
code issues in the Eclipse editor. The plugin can be downloaded from
http://www.sonarsource.com/products/plugins/developer-tools/eclipse/.

Once the plugin is installed, right-click on the project, open the Configure menu,
and click on the Associate with Sonar... menu item. The following screenshot shows
the Configure menu details:

Chapter 6

[173]

In the sonar-project.properties file, we stored the sonar.projectKey=packt:C
odeQualityChapter06 project key.

In the Sonar wizard, enter GroupId=packt and ArtifactId=
CodeQualityChapter06. Click on Find on server and then click on Finish. This will
connect to the local Sonar server and bring the issue details into the Problems tab.

The following is the Sonar wizard's screenshot:

The following are the violations from the Sonar repository:

Revealing Code Quality

[174]

Click on any problem, and it will take you to the source code's line and show
a tooltip of the problem. The following screenshot shows the blocker violation
that the hashCode() method is not implemented:

Add a hashCode method, rerun the Sonar runner, and launch the Sonar Eclipse
wizard; it will remove the blocking issue.

Monitoring quality with Gradle and
SonarQube
This section covers the Gradle integration with Sonar. Gradle has an inbuilt
Sonar plugin. Create a build.gradle file under /Packt/Chapter06/
CodeQualityChapter06. Add the following lines to the build.gradle file
and the Sonar lines are highlighted:

apply plugin: 'java'
apply plugin: 'sonar-runner'
apply plugin: "jacoco"

repositories {
 flatDir(dir: '../lib', name: 'JUnit Library')
 mavenCentral()
}

dependencies {
 testCompile'junit:junit:4.11', ':hamcrest-core:1.3'
}

Chapter 6

[175]

jacocoTestReport {
 reports {
 xml.enabled false
 csv.enabled false
 html.destination "${buildDir}/jacocoHtml"
 }
}
sonarRunner {
 sonarProperties {
 property "sonar.projectName", "CodeQualityChapter06"
 property "sonar.projectKey", "packt:CodeQualityChapter06"
 property "sonar.jacoco.reportPath",
 "${project.buildDir}/jacoco/test.exec"
 }
}

Note that sonar.projectKey refers to packt:CodeQualityChapter06. Open the
command prompt and issue the gradle sonarRunner command. This will start
building the project. The following is the console output:

Revealing Code Quality

[176]

Open the Sonar URL, and it will show the coverage computed by the JaCoCo
plugin. The following is the code coverage and the technical debt output. Note that
the +8 new issues are added to the project. Technical debt is increased from 0.4 days
to 1.2 days:

Monitoring quality with Maven and SonarQube
This section describes how to integrate Maven with SonarQube. We will use the
CodeQualityChapter06 Eclipse project for the analysis. Maven has a plugin for
Sonar. Create a pom.xml file under /Packt/Chapter06/CodeQualityChapter06.
Add the following lines to the pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>packt</groupId>
 <artifactId>Chapter06</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>Chapter06</name>
 <url>http://maven.apache.org</url>
 <properties>
 <project.build.sourceEncoding>UTF-8
 </project.build.sourceEncoding>
 <sonar.language>java</sonar.language>
 </properties>

Chapter 6

[177]

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

Open the command prompt, go to the project base folder, and issue the mvn
sonar:sonar command. This command will download the SonarQube version of
JAR files from the repository and start analyzing the project. Note the highlighted
section <sonar.language>java<…> in the preceding script. This <sonar.language>
tag signifies that the Maven will analyze a java project.

In the Gradle script or Sonar runner, we didn't mention a project version; here in
Maven, as per the Maven project convention, we have to specify a <version>1.0-
SNAPSHOT</version> version in the POM.xml file.

SonarQube uniquely identifies a project using a key (GroupId or ArtifactId) and a
version. So, Maven analysis will create a new project statistics in the Sonar server as
the version number is supplied in Maven, but not in Gradle and Sonar runner.

The following screenshot displays the Projects section on the Sonar dashboard.
Note that the Maven analysis created Version 1.0-SNAPSHOT, whereas the
Gradle and Sonar runner both updated an unspecified version of the project:

Monitoring quality with Ant and SonarQube
This section describes how to configure Ant to integrate with Sonar. An Ant target
needs a task to perform a build step. SonarQube provides an Ant task for project
analysis. The Ant task JAR needs to be downloaded from http://repository.
codehaus.org/org/codehaus/sonar-plugins/sonar-ant-task/2.1/sonar-ant-
task-2.1.jar.

Revealing Code Quality

[178]

We will analyze the CodeQualityChapter06 project with Ant. Copy the downloaded
JAR file in \Packt\chapter06\lib and create a build.xml file directly under
CodeQualityChapter06. You can copy the existing build.xml file that we used in
Chapter 5, Code Coverage, or download the code for this chapter.

XML namespaces act like Java packages and provide a qualified name for
an XML element or attribute and avoid name collision. The namespace
is defined by the xmlns attribute at the start tag of an element. The
namespace declaration has the xmlns:prefix="URI" syntax.

To access a Sonar task, we will refer to a namespace sonar defined in the
antlib:org.sonar.ant URI. We will define the URI in taskdef.

Modify the build.xml file and add the sonar namespace and the following
snippet (excluding the common tasks, compilation task, and test tasks for the
space economy):

<project name="chapter06" default="coverage" basedir="."
 xmlns:sonar="antlib:org.sonar.ant">
 <property name="sonar.projectKey" value="packt:chapter06_ant" />
 <property name="sonar.projectName" value="Chapter06" />
 <property name="sonar.projectVersion" value="2.0" />
 <property name="sonar.language" value="java" />
 <property name="sonar.sources" value="src/main/java" />
 <property name="sonar.binaries" value="target" />
 <property name="sonar.sourceEncoding" value="UTF-8" />
 <target name="sonar" depends="compile">
 <taskdef uri="antlib:org.sonar.ant"
 resource="org/sonar/ant/antlib.xml">
 <classpath path="${lib.dir}/sonar-ant-task-2.1.jar" />
 </taskdef>
 <sonar:sonar />
 </target>

Note that the sonar.projectKey, sonar.projectName, sonar.projectVersion,
and sonar.language properties are defined in the preceding XML code. The Sonar
task uses these attributes to uniquely identify a project and project language. Also
note that a taskdef URI, uri="antlib:org.sonar.ant", is defined to locate an
org/sonar/ant/antlib.xml XML resource in the ${lib.dir}/sonar-ant-task-
2.1.jar classpath. The sonar-ant-task JAR contains the XML file.

Open the command prompt, change the directory to CodeQualityChapter06, and
issue the ant sonar command. This will execute the Sonar task and start analyzing
the project.

Chapter 6

[179]

The following is the SonarQube dashboard output. The second row with Version 2.0
and key packt:chapter06_ant is the Ant analysis result:

Getting familiar with false positives
This section deals with the false positives. In general, a static code analysis tool
analyzes a source code against a set of rules and reports a violation when it finds
a violation pattern in the source code. However, when we review the pattern and
find that the violation is not correct in the context, then the reported violation is a
false positive.

Static analysis tools report violations, but we have to filter out correct rule sets
and remove the false positive rules. The SonarQube manual code review feature
enables you to review code, add comments, and flag violations as false positives.
The following Sonar URL describes how to review violations and flag violations
as false positives: http://www.sonarqube.org/sonar-2-8-in-screenshots/.

Summary
This chapter explained the static code analysis and code quality attributes in depth.
It covered the SonarQube code quality dashboard, static code analysis using Eclipse
plugins, the Sonar runner and build scripts such as Ant, Maven, and Gradle, and
code quality tools such as PMD, Checkstyle, and FindBugs.

By now, the reader will be able to configure the Sonar dashboard, set up Eclipse
plugins, and configure Sonar runner and build scripts to analyze code quality using
PMD, FindBugs, and Checkstyle.

The next chapter will cover the unit testing web tier code with mock objects.

Unit Testing the Web Tier
"If you don't like unit testing your product, most likely your customers won't like
to test it either."

—Anonymous

Enterprise applications follow the N-tier architecture model to handle numerous
nonfunctional concerns such as upgradability, scalability, and maintainability. The
best design approach is to decouple the tiers from each other; this allows scaling out
a tier without affecting another tier, or refactoring code in one tier without affecting
the other tiers. Usually, any web application contains three tiers: presentation,
business logic, and a database tier. This chapter deals with unit testing the web tier
or presentation layer. The next chapters cover the application and database layers.

The following topics will be covered in this chapter:

• Unit testing a servlet controller in MVC
• Understanding what to test in the presentation layer

Unit testing servlets
Model View Controller (MVC) is a widely used web development pattern.
MVC pattern defines three interconnected components: model, view,
and controller.

The model represents the application data, logic, or business rules.

A view is a representation of information or model. A model can have multiple
views; for example, the marks of a student can be represented in a tabular format
or on a graphical chart.

The controller accepts the client request and initiates commands to either update
the model or change the view.

Unit Testing the Web Tier

[182]

The controller controls the flow of the application. In JEE applications, a controller
is usually implemented as a servlet. A controller servlet intercepts requests and then
maps each request to an appropriate handler resource. In this section, we will build
a classic MVC front controller servlet to redirect requests to views.

Requests with only a context path, such as http://localhost:8080/context/,
are routed to the login.jsp page, all home page requests (with URL /home.do) are
routed to the home.jsp page, and all other requests are routed to the error.jsp page.

Building and unit testing a J2EE web
application
Follow the ensuing steps to build a web application and test the controller logic:

1. Create a dynamic web project named DemoServletTest in Eclipse.
2. Create a controller servlet named com.packt.servlet.DemoController,

and add the following lines to the doGet method:
protected void doGet(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException {
 String urlContext = req.getServletPath();
 if(urlContext.equals("/")) {
 req.getRequestDispatcher("login.jsp").forward(req, res);
 }else if(urlContext.equals("/home.do")) {
 req.getRequestDispatcher("home.jsp").forward(req, res);
 }else {
 req.setAttribute("error",
 "Invalid request path '"+urlContext+"'");
 req.getRequestDispatcher("error.jsp").forward(req, res);
 }
}

This method gets the servlet path from the request and matches the path
with / tokens. When no match is found, then the doGet method sets an error
attribute to the request.

3. Create three JSP files: login.jsp, home.jsp, and error.jsp. Modify the
error.jsp file, and add the following scriptlet to display the error message:
<body>
 <%=request.getAttribute("error") %>
</body>

Chapter 7

[183]

4. Modify the web.xml file to map all requests to DemoController. Add the
following lines of code to the web.xml file:
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-
 app_2_5.xsd" xsi:schemaLocation="http://java.sun.com/xml/
 ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 id="WebApp_ID" version="3.0">
 <display-name>DemoServletTest</display-name>
 <servlet>
 <servlet-name>demo</servlet-name>
 <servlet-class>com.packt.servlet.DemoController
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>demo</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
</web-app>

The demo servlet maps the url-pattern tag.

The application is ready, but how do we unit test the controller logic?

We cannot instantiate the HttpServletRequest or HttpServletResponse objects. We
can mock the HttpServletRequest or HttpServletResponse objects using Mockito.

Create a test class named DemoControllerTest and add the following code snippet:

@RunWith(MockitoJUnitRunner.class)
public class DemoControllerTest {
 @Mock HttpServletRequest req;
 @Mock HttpServletResponse res;
 @Mock RequestDispatcher dispatcher;
 DemoController controllerServlet;

 @Before
 public void setup() {
 controllerServlet = new DemoController();
 when(req.getRequestDispatcher(anyString())).
 thenReturn(dispatcher);
 }

 @Test
 public void when_servlet_path_is_empty_then_opens_login_page(){

Unit Testing the Web Tier

[184]

 when(req.getServletPath()).thenReturn("/");
 controllerServlet.doGet(req, res);
 ArgumentCaptor<String> dispatcherArgument =
 ArgumentCaptor.forClass(String.class);
 verify(req).getRequestDispatcher(
 dispatcherArgument.capture());
 assertEquals("login.jsp", dispatcherArgument.getValue());
 }

 @Test
 public void when_home_page_request_then_opens_home_page(){
 when(req.getServletPath()).thenReturn("/home.do");
 controllerServlet.doGet(req, res);

 ArgumentCaptor<String> dispatcherArgument =
 ArgumentCaptor.forClass(String.class);
 verify(req).getRequestDispatcher(
 dispatcherArgument.capture());
 assertEquals("home.jsp", dispatcherArgument.getValue());
 }

 @Test
 public void when_invalid_request_then_opens_error_page(){
 when(req.getServletPath()).thenReturn("/xyz.do");
 controllerServlet.doGet(req, res);
 ArgumentCaptor<String> dispatcherArgument =
 ArgumentCaptor.forClass(String.class);
 verify(req).getRequestDispatcher(
 dispatcherArgument.capture());
 assertEquals("error.jsp", dispatcherArgument.getValue());
 }
}

Note that the request and response objects are mocked using mockito and then
expectations are set to get ServletPath, and verify is used to check the view name
returned by the controller. We added three tests to verify the controller logic: one to
check the default context path, one to check the home.do URL, and the other to verify
the error condition.

Create a Tomcat server instance from the server view (right-click on the server
view and create a new server; from the server wizard choose Tomcat and set the
runtime configuration) and run the application. Open the browser and go to
http://localhost:8080/DemoServletTest/, and check that the application
opens the Login page. The following is the browser output:

Chapter 7

[185]

Go to http://localhost:8080/DemoServletTest/home.do; it will open the Home
page. The following is the browser output:

Go to any other URL, such as http://localhost:8080/DemoServletTest/abc.
It will open an error page and display an error message. The following is the
error output:

The results of the preceding browser verify that our JUnit tests work fine.

DemoServletTest acts as a front controller. A front controller is a design pattern
where a single servlet handles all web requests and routes them to other controllers
or handlers for actual processing. All dynamic web applications written in the Java
or Servlet API need a front controller servlet to handle HTTP requests, so all projects
write logically duplicate code to handle requests through the front controller servlets.

Spring MVC was built to provide a flexible framework for web application
developers. Spring's DispatcherServlet acts as the front controller; similar to the
DemoServletTest test, it receives all incoming requests and delegates the processing
of the requests to handlers. It allows developers to concentrate on business logic
rather than work on the boilerplate of a custom front controller. The next section
describes the Spring MVC architecture and how web applications can be unit tested
using Spring MVC.

Unit Testing the Web Tier

[186]

Playing with Spring MVC
In Spring MVC, the following is a pattern of a simplified request handling mechanism:

1. DispatcherServlet receives a request and confers the request with handler
mappings to find out which controller can handle the request, and then
passes the request to that controller.

2. The controller performs the business logic (can delegate the request to a
service or business logic processor) and returns some information back to
DispatcherServlet for user display or response. Instead of sending the
information (model) directly to the user, the controller returns a view name
that can render the model.

3. DispatcherServlet then resolves the physical view from the view name
and passes the model object to the view. This way, DispatcherServlet is
decoupled from the view implementation.

4. The view renders the model. A view could be a JSP page, a servlet, a PDF file,
an excel report, or any presentable component.

The following sequence diagram represents the flow and interaction of Spring
MVC components:

We will build a Spring web application and unit test the code using JUnit.
The following are the steps to be performed:

1. Launch Eclipse and create a dynamic web project named SpringMvcTest.

Chapter 7

[187]

2. Open web.xml and enter the following lines:
<display-name>SpringMVCTest</display-name>
<servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>dispatcher</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/dispatcher-servlet.xml
 </param-value>
 </context-param>
</web-app>

The dispatcher is named DispatcherServlet, and it maps all requests.
Note the contextConfigLocation parameter. This indicates that the Spring
beans are defined in /WEB-INF/dispatcher-servlet.xml.

3. Create an XML file named dispatcher-servlet.xml in WEB-INF and add
the following lines:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context=
 "http://www.springframework.org/schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
 beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/
 spring-context-3.0.xsd">
 <context:component-scan base-package="com.packt" />
 <bean class= "org.springframework.web.servlet.view.
 InternalResourceViewResolver">
 <property name="prefix">
 <value>/WEB-INF/pages/</value>

Unit Testing the Web Tier

[188]

 </property>
 <property name="suffix">
 <value>.jsp</value>
 </property>
 </bean>
</beans>

This XML defines a Spring view resolver. Any view will be found under the
/WEB-INF/pages location with the .jsp suffix, and all beans are configured
under the com.packt package with Spring annotations.

4. Create a class named LoginInfo in the com.packt.model package. This class
represents the login information. Add two private String fields, userId and
password, and generate the getters and setters.

5. Create a JSP page named login.jsp under /WEB-INF/view, and add the
following lines to create a form using the Spring tag library. Modify the form
and add normal HTML input for username and password:
<%@ taglib prefix="sf" uri="http://www.springframework.org/tags/
form"%>
<sf:form method="POST" modelAttribute=
 "loginInfo" action="/onLogin">

</sf:form>

6. Create a controller class named com.packt.controller.LoginController
to handle login requests. Add the following lines:
@Controller
@Scope("session")
public class LoginController implements Serializable {
 @RequestMapping({ "/", "/login" })
 public String onStartUp(ModelMap model) {
 model.addAttribute("loginInfo", new LoginInfo());
 return "login";
 }
}

The @Controller annotation indicates that the class is a Spring MVC
controller class. In smapl-servlet.xml, we defined <context:component-
scan base-package="com.packt" />, so Spring will scan this @Controller
annotation and create a bean. The @RequestMapping annotation maps any
request with the default path /SpringMvcTest/ or /SpringMvcTest/login
to the onStartUp method. This method returns a logical view name login.
The view resolver defined in the XML file will map the login request to the
physical view login.jsp page under /WEB-INF/pages.

Chapter 7

[189]

7. Create another method in the Login class to handle the login and submit
requests, as follows:
@RequestMapping({ "/onLogin" })
public String onLogin(@ModelAttribute("loginInfo")
 LoginInfo loginInfo, ModelMap model) {
 if(!"junit".equals(loginInfo.getUserId())) {
 model.addAttribute("error", "invalid login name");
 return "login";
 }
 if(!"password".equals(loginInfo.getPassword())) {
 model.addAttribute("error", "invalid password");
 return "login";
 }
 model.addAttribute("name", "junit reader!");
 return "greetings";
}

The onLogin method is mapped with /onLogin. The @
ModelAttribute("loginInfo") method is the model submitted
from the login.jsp form. This method checks whether the username
is junit and password is password. If the user ID or password does not
match, then an error message is shown on the login page, otherwise, the
greetings view is opened.

8. Change the content of the login.jsp file to submit the form to /
SpringMvcTest/onLogin and the modelattribute name to loginInfo,
as follows:
<sf:form method="POST" modelAttribute="loginInfo" action=
 "/SpringMvcTest/onLogin">

Also, add the <h1>${error}</h1> JSTL expression to display the
error message.

9. Create a JSP file named greetings.jsp and add the following lines:
<h1>Hello :${name}</h1>

Unit Testing the Web Tier

[190]

10. In the browser, enter http://localhost:8080/SpringMvcTest/; this will
open the login page. On the login page, do not enter any value and just click on
Submit. It will show the invalid login name error message. Now, enter junit
in the User Id field and password in the Password field and hit Enter. The
application will greet you with the message shown in the following screenshot:

We can unit test the controller class. The following are the steps:

1. Create a LoginControllerTest.java class in com.packt.controller.
2. Using the following code, add a test to check that when the user ID is null,

the error message is thrown:
public class LoginControllerTest {
 LoginController controller = new LoginController();
 @Test
 public void when_no_name_entered_shows_error_message(){
 ModelMap model = new ModelMap();
 String viewName = controller.onLogin(
 new LoginInfo(), model);
 assertEquals("login", viewName);
 assertEquals("invalid login name", model.get("error"));
 }
}

3. Add another test to check invalid passwords, as follows:
@Test
public void when_invalid_password_entered_shows_
 error_message() {
 ModelMap model = new ModelMap();
 LoginInfo loginInfo = new LoginInfo();
 loginInfo.setUserId("junit");
 String viewName =controller.onLogin(loginInfo, model);
 assertEquals("login", viewName);
 assertEquals("invalid password", model.get("error"));
}

Chapter 7

[191]

4. Add a happyPath test, as follows:
@Test public void happyPath(){
 loginInfo.setUserId("junit");
 loginInfo.setPassword("password");
 String viewName =controller.onLogin(loginInfo, model);
 assertEquals("greetings", viewName);
}

This is just an example of Spring MVC, so we checked the username and password
with the hardcoded constants. In the real world, a service looks up the database for
the user and returns an error message; the service can be autowired to the controller.
This way, we can unit test the controller and the service layer.

Summary
This chapter explained the unit testing strategy for the presentation layer and
provided examples on front controller servlets and Spring MVC.

By now, you should be able to unit test the web tier components and isolate
the view components from the presentation logic.

The next chapter will cover the unit testing of the database layer.

Playing with Data
"Any program is only as good as it is useful."

—Linus Torvalds

Enterprise applications store, retrieve, transmit, manipulate, and analyze data.
Storing, processing, and analyzing data is very critical to any business. The Business
Intelligence (BI) process transforms data into meaningful information for business.
BI analyzes statistical data and helps with decision making and predictions for
businesses, such as risk assessment, planning and forecasting, and analyzing buying
trends. Information can be stored in a file or to a database. Querying and accessing
data from a relational database is easier than the file system. This chapter covers the
unit testing of the database layer. The following topics are covered in depth:

• Separation of concerns
• Unit testing the persistence layer
• Writing clean data access code using Spring JDBC
• Integration testing of JDBC code
• Integration testing of Spring JDBC

Playing with Data

[194]

Separating concerns
This section elaborates on the separation of concerns. Enterprise application
information can be represented using the following building blocks:

• What: This represents the information to store. We cannot store everything;
so, categorization of the data to be stored is very important.

• Who: This represents the actors. Information is a sensitive thing and it's
important to control access across users; for example, an employee should
not be able to access the salary information of another employee, but a
manager or member of HR staff can access salary data of the staff.

• Data store: This represents information and its accessibility.
• Process: This represents the processing of data. Any information doesn't

make any sense unless some action is performed on it.

The following diagram describes the key information blocks of an
enterprise application:

Process

What

Who StoreEnterprise
Application

This section covers the Store block and unit testing the data access layer.

The following diagram represents the components of a loosely coupled application:

Controller Logic Component

View Component

Persistence Logic Component

Database

Business Logic Component

Chapter 8

[195]

The view component represents the JSPs, taglibs, widgets, and so on. Writing
automated JUnit tests for the view components is not easy and requires manual
effort. We'll skip the view components in this chapter.

We unit tested the controller logic component in Chapter 7, Unit Testing the Web Tier.

Controller logic component accesses the business logic component. The business logic
component performs the business logic and delegates data access to the persistence
logic component. We'll cover the unit testing of business logic in the forthcoming
chapters. Mock objects are used to mimic the persistence or data access layer.

The persistence logic layer or database client layer is responsible for managing
the database connection, retrieving data from a database, and storing data back in
the database. Unit testing the data access layer is very important; if anything goes
wrong in this layer, the application will fail. We can unit test the data access logic in
isolation from the database, and perform the integration test to verify the application
and database integrity.

You can have 100 percent test coverage of your database access code. However, if
this code is misused by the controllers and/or the view layer, the whole application
is useless. You need integration tests to verify the wiring, which will be covered later.

Databases represent a data store or a relational database.

Separating the data access layer from the business logic layer helps us to make
changes to the database without affecting the business logic layer, and it allows us
to unit test the business logic layer in isolation from the database. Suppose you are
using the MySQL database and you want to migrate to SQL server. Then, in that
case, you don't have to touch the business logic layer.

Unit testing the persistence logic
In this section, we'll build a Phonebook application and store phone numbers.
We'll use the Apache Derby database for persistence. Derby can be downloaded
from http://db.apache.org/derby/.

You can use better built-in databases such as H2. It has more features and is less
restrictive than Derby; however, we're using Derby for simplicity.

The following are the steps to run Derby:

1. Download the binary media file and extract the media to a preferred location.
We'll refer to it as DERBY_HOME in the next steps.

2. On a Windows machine, go to DERBY_HOME\bin and execute the
startNetworkServer.bat file.

Playing with Data

[196]

3. It will launch a command prompt and print a message to the console that the
database server has started, such as started and ready to accept connections
on port 1527.

We will create a Java project to test the Phonebook application. Follow the ensuing
steps to build the application:

1. Launch Eclipse and create a Java project named DatabaseAccess.
2. Add a PhoneEntry class to store phone details. The following are the

class details:
package com.packt.database.model;

public class PhoneEntry implements Serializable {

 private static final long serialVersionUID = 1L;

 private String phoneNumber;
 private String firstName;
 private String lastName;

 // getters and setters
}

3. Create a data access interface for Phonebook. The following are the
API details:
package com.packt.database.dao;

import java.util.List;
import com.packt.database.model.PhoneEntry;

public interface PhoneBookDao {
 boolean create(PhoneEntry entry);

 boolean update(PhoneEntry entryToUpdate);

 List<PhoneEntry> searchByNumber(String number);

 List<PhoneEntry> searchByFirstName(String firstName);

 List<PhoneEntry> searchByLastName(String lastName);

 boolean delete(String number);
}

Chapter 8

[197]

4. Create a database access interface implementation to communicate with the
database. The following are the data access object details:
public class PhoneBookDerbyDao implements PhoneBookDao {

 private String driver =
 "org.apache.derby.jdbc.EmbeddedDriver";
 private String protocol = "jdbc:derby:";
 private String userId = "dbo";
 private String dbName = "phoneBook";

 public PhoneBookDerbyDao() {
 loadDriver();
 }

 protected void loadDriver() {
 try {
 Class.forName(driver).newInstance();
 } catch (ClassNotFoundException cnfe) {
 cnfe.printStackTrace(System.err);
 } catch (InstantiationException ie) {
 ie.printStackTrace(System.err);
 } catch (IllegalAccessException iae) {
 iae.printStackTrace(System.err);
 }
 }

 protected Connection getConnection() throws SQLException {
 Connection conn = null;
 Properties props = new Properties();
 props.put("user", userId);
 conn = DriverManager.getConnection(protocol +
 dbName + ";create=true",props);
 conn.setAutoCommit(false);
 return conn;
 }
}

Note that the PhoneBookDerbyDao class is a Derby implementation of
the dao. It has configuration attributes such as driver, protocol, and
dbName, and getters or setters. The loadDriver() method loads the
database driver and gets invoked from the PhoneBookDerbyDao constructor.
The getConnection() method connects to a Derby database and establishes
a connection.

Playing with Data

[198]

5. Implement the create behavior, as follows:
 @Override
 public boolean create(PhoneEntry entry) {
 PreparedStatement preparedStmt = null;
 Connection conn = null;
 try {
 conn = getConnection();
 preparedStmt = conn
 .prepareStatement("insert into PhoneBook values
 (?,?,?)");

 preparedStmt.setString(1, entry.getPhoneNumber());
 preparedStmt.setString(2, entry.getFirstName());
 preparedStmt.setString(3, entry.getLastName());
 preparedStmt.executeUpdate();
 // Note that it can cause problems on some dbs if
 //autocommit mode is on
 conn.commit();
 return true;
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {

 if (preparedStmt != null) {
 try {
 preparedStmt.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 }

 return false;
 }

Chapter 8

[199]

The create method first acquires a database connection and creates a
prepared statement from connection. Then, it populates the prepared
statement with the PhoneEntry values, executes the prepared statement,
and then commits the connection. The finally block closes the resources.
Then, the prepared statement is closed and the connection is closed.

6. We need to unit test the JDBC API call since we didn't configure the
database yet. We'll unit test the create() behavior in isolation from the
database. Create a PhoneBookDerbyDaoTest JUnit test under the test\
com.packt.database.dao package. To run the test in isolation from the
database, we need to bypass the loadDriver and getConnection methods.
So, we need a fake object to test the class and need mock objects to mock
out the JDBC configuration classes, such as Connection, ResultSet, and
PreparedStatement.
TestablePhoneBookDerbyDao is the fake object implementation of the dao.
We created a mock Connection object and returned from the fake object's
getConnection method. The following is the JUnit test for the dao class:

@RunWith(MockitoJUnitRunner.class)
public class PhoneBookDerbyDaoTest {
 @Mock
 Connection connection;

 class TestablePhoneBookDerbyDao extends
 PhoneBookDerbyDao{
 protected void loadDriver() {
 }

 protected Connection getConnection() throws
 SQLException {
 return connection;
 }
 }
}

7. PhoneBookDerbyDao needs PreparedStatement to pass the PhoneEntry
details to the database. Create the mock PreparedStatement and
connection methods. Update the test class and add the following lines:
 @Mock
 Connection connection;
 @Mock
 PreparedStatement statement;

Playing with Data

[200]

 PhoneBookDerbyDao dao;

 @Before
 public void setUp(){
 dao = new TestablePhoneBookDerbyDao();
 }

Invoke the create method with PhoneEntry and verify whether the
PhoneEntry detail was passed to the statement object. Finally, verify
whether connection was committed, and statement and connection
were closed, as follows:
 @Test
 public void creates_phone_entry() throws Exception {
 //Setting up sample object
 PhoneEntry johnDoe= new PhoneEntry();
 johnDoe.setFirstName("John");
 johnDoe.setLastName("Doe");
 johnDoe.setPhoneNumber("123");

 //Stubbing the connection obj to return the mocked
 statement
 when(connection.prepareStatement(anyString())).
 thenReturn(statement;

 //Calling the actual method
 boolean succeed = dao.create(johnDoe);
 assertTrue(succeed);

 //Creating argument captors
 ArgumentCaptor<String> stringArgCaptor =
 ArgumentCaptor.forClass(String.class);
 ArgumentCaptor<Integer> intArgCaptor =
 ArgumentCaptor.forClass(Integer.class);

 //verifying that the mocked statement's setString is
 //invoked 3 times for firstName, lastName and
 //phoneNumber
 verify(statement, new Times(3)).setString(intArgCaptor.
 capture(), stringArgCaptor.capture());

 //Verify the arguments passed to the statement object
 assertEquals("123",
 stringArgCaptor.getAllValues().get(0));
 assertEquals("John",

Chapter 8

[201]

 stringArgCaptor.getAllValues().get(1));
 assertEquals("Doe",
 stringArgCaptor.getAllValues().get(2));

 verify(connection).prepareStatement
 (stringArgCaptor.capture());
 assertEquals(PhoneBookDerbyDao.INSERT_INTO_PHONE_
 BOOK_VALUES stringArgCaptor.getValue());

 //verify that the mock resources were used and closed
 verify(statement).executeUpdate();
 verify(connection).commit();
 verify(statement).close();
 verify(connection).close();

}

Overuse of argument captors can lead to fragile tests because
your system under test is no longer a black box.

8. We'll verify the data retrieval logic and enhance the searchByNumber()
method to retrieve PhoneEntry by number. The following is the logic:
 @Override
 public List<PhoneEntry> searchByNumber(String number) {
 PreparedStatement preparedStmt = null;
 Connection conn = null;
 ResultSet resultSet = null;
 List<PhoneEntry> entries = new ArrayList<PhoneEntry>();
 try {
 conn = getConnection();
 preparedStmt = conn
 .prepareStatement("SELECT * FROM
 PhoneBook where num=?");

 preparedStmt.setString(1, number);
 resultSet = preparedStmt.executeQuery();
 while (resultSet.next()) {
 PhoneEntry entry = new PhoneEntry();
 entry.setFirstName
 (resultSet.getString("fname"));
 entry.setLastName
 (resultSet.getString("lname"));
 entry.setPhoneNumber
 (resultSet.getString("num"));

Playing with Data

[202]

 entries.add(entry);
 }
 return entries;
 } catch (SQLException e) {
 e.printStackTrace();
 } finally {

 try {
 if (resultSet != null) {
 resultSet.close();
 resultSet = null;
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }

 if (preparedStmt != null) {
 try {
 preparedStmt.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 if (conn != null) {
 try {
 conn.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 }
 return null;
 }

In the preceding code, the following statements are executed in sequence:

1. A database Connection is acquired. Then, PreparedStatement is
created from the Connection object.

2. After this, PreparedStatement is populated.
3. Now, PreparedStatement is executed and ResultSet is returned.
4. ResultSet is iterated and the PhoneEntry objects are populated

from ResultSet.

Chapter 8

[203]

5. Finally, the JDBC resources are closed.

9. To unit test this logic, we need mock ResultSet, PreparedStatement,
and Connection objects. The ResultSet object will be stubbed to return a
PhoneEntry object, the PreparedStatement object will be stubbed to return
the mock ResultSet object, and the Connection object will be stubbed to
return the mock PreparedStatement object.

In a persistence logic unit test, the following things are verified:
• The JDBC API call sequence, such as connection, was committed
• Resources were closed or cleaned up
• Mapping ResultSet to model object (POJO)

The following is the test code to verify the logic:
 @Test
 public void retrieves_phone_entry() throws Exception {

 //Stub JDBC resources to return mock objects
 when(mockConn.prepareStatement(anyString())).
 thenReturn(mockPrepStmt);
 when(mockPrepStmt.executeQuery()).
 thenReturn(mockResultSet);
 when(mockResultSet.next()).thenReturn(true).
 thenReturn(false);

 //Stub the resultSet to return value
 when(mockResultSet.getString("fname")).
 thenReturn("John");
 when(mockResultSet.getString("lname")).
 thenReturn("Doe");
 when(mockResultSet.getString("num")).
 thenReturn("123");

 //Execute
 List<PhoneEntry> phoneEntries =
 dao.searchByNumber("123");

 assertEquals(1, phoneEntries.size());
 PhoneEntry johnDoe = phoneEntries.get(0);

 //verify mapping
 assertEquals("John", johnDoe.getFirstName());
 assertEquals("Doe", johnDoe.getLastName());

Playing with Data

[204]

 assertEquals("123", johnDoe.getPhoneNumber());

 //Verify Resource Clean up
 verify(mockResultSet).close();
 verify(mockPrepStmt).close();
 verify(mockConn).close();
 }

We should write a unit test for update, delete, and serachByXXX behaviors.

Simplifying persistence with Spring
Look at the PhoneBookDerbyDao class. It has 398 lines to support create, read,
update, and delete (CRUD) operations. Every method performs almost similar tasks.
The following tasks are invoked from the CRUD methods:

• Passing connection parameters
• Opening a connection
• Creating a statement
• Preparing the statement
• Executing the statement
• Iterating through the results (only in the read method)
• Populating the model objects (only in the read method)
• Processing any exception
• Handling transactions
• Closing the ResultSet (only in the read method)
• Closing the statement
• Closing the connection

The Spring framework provides APIs to reduce JDBC code duplication. Spring
JDBC hides the low-level details and allows us to concentrate on business logic.
We'll implement PhoneBookDao using Spring JDBC.

Download the latest version of JDBC JAR and its dependencies from http://maven.
springframework.org/release/org/springframework/spring/.

Chapter 8

[205]

Follow the ensuing steps to implement Spring JDBC and simplify the code:

1. Launch Eclipse, open the DatabaseAccess project, and edit .classpath
to add the following Spring dependencies shown in the screenshot:

2. Create a PhoneBookDerbySpringDao class that implements the
PhoneBookDao interface. The following is the Spring implementation
of the create method:
 public class PhoneBookDerbySpringDao implements
 PhoneBookDao {

 private final JdbcTemplate jdbcTemplate;

 public PhoneBookDerbySpringDao(JdbcTemplate
 jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 @Override
 public boolean create(PhoneEntry entry) {
 int rowCount = jdbcTemplate.update("insert into
 PhoneBook values (?,?,?)",
 new Object[]{entry.getPhoneNumber(),
 entry.getFirstName(),
 entry.getLastName()
 });
 return rowCount == 1;
 }
 }

Playing with Data

[206]

JdbcTemplate simplifies the use of JDBC; it handles the resources and helps
to avoid common errors such as not closing the connection. It creates and
populates the statement object, iterates through the ResultSet object,
which leaves the application code to provide SQL, and extracts results.
PhoneBookDerbySpringDao contains a JdbcTemplate instance and delegates
the database tasks to the jdbcTemplate.
JdbcTemplate has an update method for insert and update operations.
It takes a SQL query and parameters. The new Spring version of the
create() method invokes the update() method on jdbcTemplate and
passes PhoneEntry details. Now the create method looks simple, just two
lines of code. The Spring framework handles the resource life cycle.

3. Create a JUnit class named PhoneBookDerbySpringDaoTest for unit testing.
We'll create a jdbcTemplate mock and pass it to dao. The following is the
JUnit implementation:

@RunWith(MockitoJUnitRunner.class)
public class PhoneBookDerbySpringDaoTest {

 @Mock
 JdbcTemplate mockJdbcTemplate;

 PhoneBookDerbySpringDao springDao;

 @Before
 public void init() {
 springDao = new
 PhoneBookDerbySpringDao(mockJdbcTemplate);
 }

 @Test
 public void creates_PhoneEntry() throws Exception {
 //create PhoneEntry
 String charlsPhoneNumber = "1234567";
 String charlsFirstName = "Charles";
 String charlsLastName = "Doe";

 PhoneEntry charles = new PhoneEntry();
 charles.setFirstName(charlsFirstName);
 charles.setLastName(charlsLastName);
 charles.setPhoneNumber(charlsPhoneNumber);

 //Stub jdbcTemplate's update to return 1
 when(mockJdbcTemplate.update(anyString(),

Chapter 8

[207]

 anyObject(), anyObject(), anyObject())).thenReturn(1);

 //Execute
 assertTrue(springDao.create(charles));

 //Create argument capture
 ArgumentCaptor<Object> varArgs =
 ArgumentCaptor.forClass(Object.class);

 ArgumentCaptor<String> strArg =
 ArgumentCaptor.forClass(String.class);

 //Verify update method was called and capture args
 verify(mockJdbcTemplate).update(strArg.capture(),
 varArgs.capture(),varArgs.capture(),
 varArgs.capture());

 //Verify 1st dynamic argument was the phone number
 assertEquals(charlsPhoneNumber,
 varArgs.getAllValues().get(0));
 //Verify the name arguments
 assertEquals(charlsFirstName,
 varArgs.getAllValues().get(1));
 assertEquals(charlsLastName,
 varArgs.getAllValues().get(2));
 }
}

Look at the new Spring dao; it is only 54 lines long. The class looks neat,
simple, and readable. It doesn't handle resources, it rather concentrates
on data access.

Verifying the system integrity
Integration tests let us find bugs that unit testing couldn't catch. We have unit
tested the JDBC API usages in isolation from the database, but we need to test the
integration of data and data access API, such as the JDBC driver, connection, and
rollback. In this section, we'll test the data access layer with a database.

Playing with Data

[208]

We need to create the database table before we start writing tests. Download the
code from the Packt Publishing website and import the project DatabaseAccess in
your Eclipse workspace, go to the com.packt.database.util package and run the
DatabaseManager class. It will create the table. The following is the fairly simple
table creation code:

 conn = DriverManager.getConnection(url, props);
 conn.setAutoCommit(false);
 statement = conn.createStatement();
 statement.execute("create table PhoneBook
 (num varchar(50), fname varchar(40),lname varchar(40))");
 conn.commit();

The following are the steps to test the JDBC code:

1. Create a source folder named integration for the database centric tests,
such as src or test.

2. Create a new JUnit test named PhoneBookDerbyJdbcDaoIntegrationTest
and add the following lines to test the create, search, update, and
delete functionalities:
public class PhoneBookDerbyJdbcDaoIntegrationTest {
 PhoneBookDerbyDao jdbcDao;

 @Before
 public void init() {
 jdbcDao = new PhoneBookDerbyDao();
 }

 @Test
 public void integration() throws Exception {
 PhoneEntry entry = new PhoneEntry();
 entry.setFirstName("john");
 entry.setLastName("smith");
 entry.setPhoneNumber("12345");

 assertTrue(jdbcDao.create(entry));
 List<PhoneEntry> phoneEntries =
 jdbcDao.searchByFirstName("john");

 //verify create
 assertFalse(phoneEntries.isEmpty());

 //modify last name

Chapter 8

[209]

 entry.setLastName("doe");

 //update
 assertTrue(jdbcDao.update(entry));

 //retrieve
 phoneEntries = jdbcDao.searchByFirstName("john");

 //verify update
 assertFalse(phoneEntries.isEmpty());
 assertEquals("doe", phoneEntries.get(0).getLastName());

 //delete
 jdbcDao.delete(entry.getPhoneNumber());

 //retrieve
 phoneEntries = jdbcDao.searchByFirstName("john");

 //verify delete
 assertTrue(phoneEntries.isEmpty());
 }

}

The integration test creates a PhoneBookDerbyJdbcDao instance and calls the
PhoneBookDerbyJdbcDao method to assert results.

Writing integration tests with Spring
Spring provides the module or utility library for integration tests. The following
are the steps to write JUnit tests using the Spring transaction management API
and SpringJUnit4ClassRunner:

1. Spring supports XML-based configuration and wiring beans. Create an
XML file named integration.xml in the integration source package.
Modify the XML file and define the dataSource, transactionManager,
and JdbcTemplate Spring beans. The following is the XML body:
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
 beans-3.0.xsd">

Playing with Data

[210]

 <bean id="dataSource" class=
 "org.springframework.jdbc.datasource.
 DriverManagerDataSource">
 <property name="driverClassName"
 value="org.apache.derby.jdbc.EmbeddedDriver"/>
 <property name="url" value=
 "jdbc:derby:derbyDB;create=true"/>
 <property name="username" value="dbo"/>
 </bean>

 <bean id="transactionManager" class=
 "org.springframework.jdbc.datasource.
 DataSourceTransactionManager">
 <constructor-arg ref="dataSource"/>
 </bean>

 <bean id="jdbcTemplate" class=
 "org.springframework.jdbc.core.JdbcTemplate">
 <property name="dataSource" ref="dataSource"/>
 </bean>
</beans>

To find out more about Spring beans, visit http://docs.spring.
io/spring/docs/1.2.9/reference/beans.html.

A dataSource bean is defined with driverClassName, url, and
username. The dataSource reference is passed to the jdbcTemplate
and transactionManager beans.

2. Spring supports automatic transaction rollback after test execution. It helps
us to shield the development database against getting corrupted. The test
runner needs to have a reference to a transaction manager bean before test
execution. SpringJUnit4ClassRunner handles the integration tests. Add
a PhoneBookDerbySpringDaoIntegrationTest JUnit test and add the
following lines to it:
@ContextConfiguration({ "classpath:integration.xml" })
@TransactionConfiguration(transactionManager =
 "transactionManager", defaultRollback = true)
@Transactional
@RunWith(SpringJUnit4ClassRunner.class)
public class PhoneBookDerbySpringDaoIntegrationTest {

 @Autowired
 JdbcTemplate jdbcTemplate;

Chapter 8

[211]

 PhoneBookDerbySpringDao springDao;

 @Before
 public void init() {
 springDao = new PhoneBookDerbySpringDao(jdbcTemplate);
 }

 @Test
 public void integration() throws Exception {
 PhoneEntry entry = newEntry("12345", "John", "Smith");

 //create
 assertTrue(springDao.create(entry));

 //retrieve
 List<PhoneEntry> phoneEntries =
 springDao.searchByFirstName("John");

 //verify create
 assertFalse(phoneEntries.isEmpty());

 //modify last name
 entry.setLastName("Kallis");

 //update
 assertTrue(springDao.update(entry));

 //retrieve
 phoneEntries = springDao.searchByFirstName("John");

 //verify update
 assertFalse(phoneEntries.isEmpty());
 assertEquals("Kallis",
 phoneEntries.get(0).getLastName());

 //delete
 springDao.delete(entry.getPhoneNumber());

 //retrieve
 phoneEntries = springDao.searchByFirstName("John");

 //verify delete
 assertTrue(phoneEntries.isEmpty());
 }
}

Playing with Data

[212]

The @ContextConfiguration({ "classpath:integration.xml" }) annotation
instructs the JUnit runner to load Spring beans from a classpath location. It will load
three beans from the integration.xml file.

The class level @Transactional annotation makes all methods transactional.

The @TransactionConfiguration(transactionManager =
"transactionManager", defaultRollback = true) annotation defines the
transaction manager, and the defaultRollback attribute tells the transaction
manager to roll back all transactions after the end of a given test.

The following things happen when the JUnit test is run:

• Spring beans are loaded from the integration.xml file.
• A transaction manager is configured to roll back all transactions.
• The jdbcTemplate bean is automatically wired to the test class member

jdbcTemplate.
• The init method creates a new instance of the dao class and passes the

jdbcTemplate bean to the dao.
• The test first executes and then creates, updates, and deletes PhoneEntry.
• After test execution, the transaction manager rolls back the transaction.

No data is created or modified or deleted from or to the PhoneBook table.

When the JUnit test runs, the following Spring console log is shown:

INFO: Began transaction (1): transaction manager [org.springframework.
jdbc.datasource.DataSourceTransactionManager@569c60]; rollback [true]

Apr 11, 2014 10:02:25 PM org.springframework.test.context.transaction.
TransactionalTestExecutionListener endTransaction

INFO: Rolled back transaction after test execution for test context
[[TestContext@134eb84 testClass = PhoneBookDerbySpringDaoIntegrationTest,
testInstance = com.packt.database.dao.PhoneBookDerbySpri
ngDaoIntegrationTest@1522de2, testMethod = integration@
PhoneBookDerbySpringDaoIntegrationTest, testException = [null],
mergedContextConfiguration = [MergedContextConfiguration@425743
testClass = PhoneBookDerbySpringDaoIntegrationTest, locations =
'{classpath:integration.xml}', classes = '{}', activeProfiles =
'{}', contextLoader = 'org.springframework.test.context.support.
DelegatingSmartContextLoader']]]

The log shows that a transaction has begun, and finally the transaction is rolled back.
However, the transaction was not rolled back due to any exception, rather it got rolled
back due to the transactional setting [defaultRollback = true]. The log shows that
testException is equal to null, which implies that no exception was thrown.

Chapter 8

[213]

Summary
This chapter explained the unit testing strategy for the database layer; it provided
an example of unit testing in isolation from the database, writing clean JDBC code
with Spring, and writing integration tests with database. We also learned about the
configured automatic transaction rollback in Spring JDBC integration tests.

You should now be able to unit test the data access layer components in isolation
from the database, write neat JDBC code using Spring, and write integration tests
using Spring API.

The next chapter covers the service layer and testing legacy code testing.

Solving Test Puzzles
"We make a living by what we get, but we make a life by what we give."

—Winston Churchill

You may have worked in greenfield development projects that were written
using test-driven development (TDD) and also in brownfield development or
maintenance projects that were not written with TDD. You must have noticed that
the test-first code written with TDD is easier to extend than the code with no unit test
or unit tests written after coding.

A greenfield project starts building from scratch and doesn't consider
any prior work.
A brownfield project is an extension of prior work or rebuilding a
project from an existing project.

This chapter covers the importance of unit testing in greenfield and brownfield
projects. The following topics are covered in depth:

• Working with legacy code
• Designing for testability
• Working with greenfield code

The Working with legacy code section covers the legacy code and explains how to unit
test and refactor the legacy code. The Designing for testability section explains how to
design for testability. The Working with greenfield code section elaborates on TDD, the
TDD life cycle, refactoring, and concludes with an example of TDD.

Solving Test Puzzles

[216]

Working with the legacy code
The term legacy is frequently used, as slang, to describe complex code, which
is difficult to understand, is rigid and fragile in nature, and is almost impossible
to enhance.

However, the fact is that any code with no automated unit tests is legacy code.
A piece of code can be well written. It can also follow coding guidelines, might be
easy to understand, can be clean, loosely coupled, and very easy to extend. However,
if it doesn't have automated unit tests, then it is legacy code.

Statistically, fixing bugs or adding new features to a legacy project is quite difficult
than doing the same to a greenfield project. In legacy code, either automated unit
tests do not exist or very few tests are written; the code is not designed for testability.

We inherit legacy code from some other source, maybe from a very old project, from
another team that cannot maintain the code, or we acquire it from another company,
but it is our duty to improve the quality.

Unit tests give us some level of assurance that our code is doing what the code
is expected to do, and they allow us to change the code quickly and verify the
change faster.

In general, legacy code is not testable and requires changes to the code structure
(refactoring) to make it testable. However, the dilemma, most of the time, is that
the legacy system is so crucial to the business that no one dares to touch the code.
It makes no sense to modify an existing crucial module unless something is seriously
wrong. Stalemate! You cannot refactor the code unless you have the automated test
suite, and you cannot write tests as the code needs refactoring.

Sometimes it feels as though the legacy code, even with unit tests, are hard to
understand, maintain, and enhance; hence, we need to be careful to make our tests
readable and to avoid close coupling with the actual implementation details.

Working with testing impediments
This section explains the nature or quality of code that makes unit testing difficult.
Automated tests help us develop software quickly even when we have a large code
base to work on. However, automated tests should be executed very fast so that
tests can give us quick feedback. We cannot unit test code when it exhibits any
of the following features:

• It performs long running operations
• It connects to a database and modifies database records

Chapter 9

[217]

• It performs remote computing
• It looks up JNDI resources or web/app server objects
• It accesses the filesystem
• It works with native objects or graphical widgets (UI components, alert, Java

Swing components, and so on)
• It accesses network resources such as the LAN printer and downloads data

from the Internet

Unit tests should not wait for a long running process to complete; it will defeat the
purpose of quick feedback.

Unit tests should be reliable, and they should fail if and only if the production code is
broken. However, if your unit test verifies an I/O operation, such as connecting to a
LAN printer, which is slow, error prone, and unpredictable, then your unit test may
fail due to some network issue, but it will incorrectly signal that the code is broken.
So, unit testing a network operation defeats the test reliability principle.

Unit tests run automatically, so it doesn't make any sense to open a modal dialog or
show an alert message during test execution because the test will wait, unless the UI
dialog or the alert is closed.

So, the preceding features in the production code are barriers during unit testing.
The following example shows how to avoid test impediments:

public class MovieTicketPro {

 public void book(Movie movie, ShowTime time, int noOfTickets) {
 MovieDao dao = new MovieDao();
 MovieHall hall = dao.findMovie(movie, time);
 if (hall != null) {
 List<String> seats = dao.getAvilableSeats(movie,
 time);
 if (seats.size() < noOfTickets) {
 BookingErrorController.
 createAndShowTicketNotAvailableError();
 return;
 }
 int booked = 0;
 String bookedSeats = "";
 for (String aSeat : seats) {
 try {
 dao.book(hall, time, aSeat);
 bookedSeats += " " + aSeat;
 booked++;

Solving Test Puzzles

[218]

 if (booked == noOfTickets) {
 BookingErrorController.
 createAndShowBookedMsg(bookedSeats);
 break;
 }
 } catch (BookingException e) {
 if (e.getType().equals(ErrorType.SeatAlreadyBooked))
 {
 BookingErrorController.
 createAndShowTicketNotAvailableError();
 if (BookingErrorController.
 createAndShowAdjacentSeatsNotAvaialble())
 {
 continue;
 }
 break;
 }
 } catch (Exception e) {
 BookingErrorController.
 createAndShowDatabaseSaveError();
 break;
 }
 }
 }else{
 BookingErrorController.
 createAndShowMovieOrShowTimeNotAvailableError();
 }
}

The book() method in the preceding example takes a movie, a show time, and the
number of tickets to book, and it books the tickets or shows an error message. If an
invalid movie or show time is passed to the book method, it shows an error message
that states the movie or show time is not available. The following is the ticket
booking logic:

1. First, the book method finds a movie hall for the movie and the movie's
show time, for example, the movie The HOBBIT, with show time Evening is
being screened in SCREEN 2. If the movie is not being played, an error
message is shown.

2. It then retrieves the available seats, for example, 40 seats are available in
SCREEN 2 in the evening.

3. If the requested numbers of seats are greater than the available number of
seats, an error message is shown, for example, request for 10 tickets but only
two seats available.

Chapter 9

[219]

4. If the seats requested are available, then it loops through the seats
and books them.

5. If any error occurs during seat booking, such as someone concurrently
books the seat or some runtime error occurs, the relevant error message
is displayed.

The BookingErrorController class is responsible for displaying error messages.
The following is the BookingErrorController class:

public class BookingErrorController {
 public static void createAndShowTicketNotAvailableError() {
 JOptionPane.showMessageDialog(null,
 "Ticket is not available","Booking message",
 JOptionPane.WARNING_MESSAGE);
 }

 public static void createAndShowDatabaseSaveError() {
 JOptionPane.showMessageDialog(null,
 "Could not book ticket", "Booking Error",
 JOptionPane.ERROR_MESSAGE);
 }

 public static void createAndShowBookedMsg(String seats) {
 JOptionPane.showMessageDialog(null,
 "Following tickets" + seats+ " Booked",
 "Booking Info", JOptionPane.ERROR_MESSAGE);
 }
 //other methods are ignored for brevity
}

Each method calls JOptionPane to display messages. JOptionPane shows the modal
dialog box, and the user has to click on the close button or the Yes/No button to
close the dialog. If the user doesn't close the dialog box, the program keeps waiting
for the user action.

So, you cannot unit test the movie ticket booking logic unless you separate the error
message display from the code logic.

The second thing to note is the MovieDao creation constructor:

MovieDao dao = new MovieDao();

Solving Test Puzzles

[220]

The book() method instantiates a database access object and invokes methods on it.
We should separate the direct database access object creation from code so that we
can pass a mock data access object and stub out the database calls; otherwise, the
book() method will instantiate the real MovieDao object and the test will take time
to execute. For now, we'll unit test the code with the real data access logic and later
refactor the code to separate the MovieDao object instantiation.

Create a MovieTicketProTest test class and add a sanity check method to call the
book method with null objects. The following is the code snippet:

public class MovieTicketProTest {
 MovieTicketPro movieTicketPro= new MovieTicketPro();

 @Test
 public void sanity() throws Exception {
 movieTicketPro.book(null, null, 1);
 }

}

When we execute the test in Eclipse, it shows an error message pop up, and the test
waits for user action. The following is the Eclipse output, and you can see that the
test is waiting for the pop up:

If we include the test on our automation suite, the automation suite will run forever
and wait for user intervention. We can localize the problem; extract the protected
methods for each BookingErrorController method call. This change will allow
us to create a MovieTicketPro fake object and replace the protected methods with
empty implementations. However, the problem is how do we verify the error

Chapter 9

[221]

conditions? We can extract an error message interface, create a generic error message
method, and pass and refactor the BookingErrorController class to implement the
interface. The following are the interface details:

package com.packt.legacy;

public interface ErrorMessageDisplayer {
 void showMessage(String title, String message,
 int messageType);
 boolean showConfirmMessage(String title, String message);
}

Modify the BookingErrorController class to implement the interface.
The following is the implementation:

public class BookingErrorController implements
 ErrorMessageDisplayer{

 @Override
 public void showMessage(String title, String message,
 int messageType) {
 JOptionPane.showMessageDialog(null, message, title,
 messageType);
 }

 @Override
 public boolean showConfirmMessage(String title,
 String message) {
 int output = JOptionPane.showConfirmDialog(null,
 message, title, JOptionPane.YES_NO_OPTION);
 return output == JOptionPane.YES_OPTION;
 }
 //other methods are ignored for brevity
}

Modify the MovieTicketPro class and, inline, all the BookingErrorController
calls. The following is an example of such a change:

} catch (Exception e) {
 JOptionPane.showMessageDialog(null, "Could not book ticket",
 "Booking Error", JOptionPane.ERROR_MESSAGE);
 break;
 }
 }
}else {
 JOptionPane.showMessageDialog(null,
 "Movie or showtime not available",
 "Booking message", JOptionPane.WARNING_MESSAGE);
}

Solving Test Puzzles

[222]

Note that the BookingErrorController.createAndShowDatabaseSaveError() and
BookingErrorController.createAndShowMovieOrShowTimeNotAvailableError()
methods are replaced by the original method content.

Now remove the static error message methods from the BookingErrorController
class. You should not get any compilation errors.

Create a getter method in MovieTicketPro to return an implementation of
ErrorMessageDisplayer. The following is the method body:

 protected ErrorMessageDisplayer getErrorMessageDisplayer() {
 return new BookingErrorController();
 }

Replace all contents of the JOptionPane.showMessageDialog code with
getErrorMessageDisplayer(). The following is the modified code:

public class MovieTicketPro {
 public void book(Movie movie, ShowTime time, int noOfTickets) {
 MovieDao dao = new MovieDao();
 MovieHall hall = dao.findMovie(movie, time);
 if (hall != null) {
 List<String> seats = dao.getAvilableSeats(movie,
 time);
 if (seats.size() < noOfTickets) {
 getErrorMessageDisplayer().showMessage("Booking message",
 "Ticket is not available", JOptionPane.WARNING_MESSAGE);
 return;
 }
 int booked = 0;
 String bookedSeats = "";
 for (String aSeat : seats) {
 try {
 dao.book(hall, time, aSeat);
 bookedSeats += " " + aSeat;
 booked++;
 if (booked == noOfTickets) {
 getErrorMessageDisplayer().showMessage("Booking Info",
 "Following tickets" + bookedSeats + " Booked",
 JOptionPane.ERROR_MESSAGE);

 break;

 }

 } catch (BookingException e) {

 if (e.getType().equals(ErrorType.SeatAlreadyBooked)) {

Chapter 9

[223]

 getErrorMessageDisplayer().showMessage(
 "Booking message", "Ticket is not available",
 JOptionPane.WARNING_MESSAGE);

 boolean yes = getErrorMessageDisplayer().
 showConfirmMessage("Booking message",
 "Adjacent seats not available.
 Can I book any other seat?");

 if (yes) {
 getErrorMessageDisplayer().showMessage(
 "Booking information","Going to auto allocate
 seats.", JOptionPane.INFORMATION_MESSAGE);
 break;
 }

 }
 } catch (Exception e) {
 getErrorMessageDisplayer().showMessage
 ("Booking Error","Could not book ticket",
 JOptionPane.ERROR_MESSAGE);
 break;
 }
 }
 } else {
 getErrorMessageDisplayer().showMessage("Booking message",
 "Movie or showtime not available",
 JOptionPane.WARNING_MESSAGE);
 }
 }

 protected ErrorMessageDisplayer getErrorMessageDisplayer() {
 return new BookingErrorController();
 }
}

We can unit test the code as shown in the following code snippet. Create a
fake object and override the getErrorMessageDisplayer() method to return
a ErrorMessageDisplayer mock. We can verify the error messages indirectly
from the mock object arguments:

@RunWith(MockitoJUnitRunner.class)
public class MovieTicketProTest {
 @Mock ErrorMessageDisplayer messageDisplayer;

 MovieTicketPro movieTicketPro = new MovieTicketPro() {

Solving Test Puzzles

[224]

 protected ErrorMessageDisplayer
 getErrorMessageDisplayer() {
 return messageDisplayer;
 }
 };
 @Test public void when_invalid_movie_shows_error_message(){
 movieTicketPro.book(null, null, 1);
 ArgumentCaptor<String> stringArgCaptor = ArgumentCaptor.
 forClass(String.class);
 ArgumentCaptor<Integer> intArgCaptor = ArgumentCaptor.
 forClass(Integer.class);

 verify(messageDisplayer).showMessage(stringArgCaptor.capture(),
 stringArgCaptor.capture(), intArgCaptor.capture());
 assertEquals("Movie or showtime not available",
 stringArgCaptor.getAllValues().get(1));
 }
}

We need to separate the database access, create a getter method to return the
MovieDao object, and call the getter method from the book method. From test,
we can create a fake object and override the getMovieDao() method to return
a mock data access object.

The following are the changes in the code:

 protected MovieDao getMovieDao() {
 return new MovieDao();
 }
 public void book(Movie movie, ShowTime time, int noOfTickets) {
 MovieDao dao = getMovieDao();
 //code ignored for brevity
 }

The following is the modified test:

@RunWith(MockitoJUnitRunner.class)
public class MovieTicketProTest {
 @Mock ErrorMessageDisplayer messageDisplayer;
 @Mock MovieDao movieDao;

 MovieTicketPro movieTicketPro = new MovieTicketPro() {
 protected ErrorMessageDisplayer
 getErrorMessageDisplayer() {
 return messageDisplayer;
 }

Chapter 9

[225]

 protected MovieDao getMovieDao() {
 return movieDao;
 }
 };
}

After this change, the test execution finishes very quickly. The following is the test
execution output:

The next section covers designing for testability.

Designing for testability
We learned about testing impediments and how to refactor them. We cannot unit
test code when testing impediments are present; we refactor the code and move the
impediments out (to another class or methods), and during testing, the impediments
are replaced with mock objects.

However, sometimes we cannot mock out the external dependencies because of
testing an unfriendly design. This section covers the design for testability, or rather
matters to avoid in code. The following Java constructs go up against mocking the
testing impediments:

• Constructors initialize testing impediments
• Class-level variable declaration and initialization
• The private methods
• The final methods
• The static methods
• The final classes
• Use of new

Solving Test Puzzles

[226]

• Static variable declaration and initialization
• Static initialization blocks

You cannot unit test the legacy code because either it is tightly coupled or testing
unfavorable language constructs hide the testing impediments. The following section
explains the testing unfavorable constructs.

To show a testing impediment, we'll throw a special runtime
exception TestingImpedimentException. If your test fails with
a TestingImpedimentException, then that means you cannot
automate the test as your code has unfavorable features for testing.

Identifying constructor issues
To build a test, we need to instantiate the class in the test harness, but the problem
with legacy code is that it is difficult to break dependency and instantiate a class
in a test harness. One such example is in a constructor, where the class instantiates
many objects, reads from the properties file, or even creates a database connection.
There can be many callers of the class, so you cannot change the constructor to pass
dependencies; otherwise, it will cause a series of compilation errors.

We will take a look at a sample legacy code and try to write a test for the class.

Suppose we have a TestingUnfavorableConstructor class with two
external dependencies DatabaseDependency and FileReadDependency.
Both the dependencies are slow in nature and are testing impediments.
TestingUnfavorableConstructor creates dependencies in the constructor.
Ideally, the dependencies represent the database access and the file reads
from the TestingUnfavorableConstructor constructor. The following is the
TestingUnfavorableConstructor class:

public class TestingUnfavorableConstructor {
 private DatabaseDependency dependency1;
 private FileReadDependency dependency2;

 public TestingUnfavorableConstructor() {
 this.dependency1 = new DatabaseDependency();
 this.dependency2 = new FileReadDependency();
 }

Chapter 9

[227]

 public Object testMe(Object arg) {
 return arg;
 }

}

If we want to unit test the testMe() behavior of the class, then we need to create
an object of the TestingUnfavorableConstructor class. However, when we try
to create an instance in a unit test, the class fails to indicate that the class cannot be
instantiated from an automated test suite. The following is the output:

To overcome this, you should inject the dependencies through a constructor instead
of creating them in a constructor.

We cannot modify the default constructor because the class is invoked from many
other clients. We cannot break the clients. The other two options are as follows:

• Keep the default constructor as it is. Create another constructor and
inject dependencies through this new constructor; from test, we can
call this new constructor.

• Create a protected method, move the dependency instantiation to that
method, create two setter methods, and initialize the dependencies through
the setter injection. In the test, create a fake object of the main class and
override the protected method to do nothing, and pass the dependencies
through the setter methods.

The first option is relatively straight forward. We'll apply the second approach.

Solving Test Puzzles

[228]

The following is the modified code:

public class TestingUnfavorableConstructor {
 private DatabaseDependency dependency1;
 private FileReadDependency dependency2;

 public TestingUnfavorableConstructor() {
 createDependencies();
 }

 protected void createDependencies() {
 this.dependency1 = new DatabaseDependency();
 this.dependency2 = new FileReadDependency();
 }

 public void setDependency1(DatabaseDependency dependency1) {
 this.dependency1 = dependency1;
 }

 public void setDependency2(FileReadDependency dependency2) {
 this.dependency2 = dependency2;
 }

 public Object testMe(Object arg) {
 return arg;
 }
}

The following unit test overrides the TestingUnfavorableConstructor and
provides an empty implementation of the createDependencies() method,
creates mock dependencies, and calls setter methods to set the mock dependencies:

@RunWith(MockitoJUnitRunner.class)
public class TestingUnfavorableConstructorTest {
 @Mock DatabaseDependency dep1;
 @Mock FileReadDependency dep2;
 TestingUnfavorableConstructor unfavorableConstructor;
 @Before public void setUp() {
 unfavorableConstructor= new TestingUnfavorableConstructor() {
 protected void createDependencies() {
 }
 };

 unfavorableConstructor.setDependency1(dep1);
 unfavorableConstructor.setDependency2(dep2);

Chapter 9

[229]

 }

 @Test public void sanity() throws Exception {
 }
}

Do not instantiate dependencies in the constructor; the dependencies
may exhibit testing impediments and make the class nontestable.
Instead of instantiating the dependencies in the constructor, you can
pass the real implementations (real dependencies) to the constructor
or the setter method of the code under the test.

Realizing initialization issues
Class-level variable declaration and object instantiation at the same time creates
problems. You don't get the chance to mock out the variable. The following example
explains the problem:

The VariableInitialization class has a database dependency, and the
dependency is instantiated where it is declared, as follows:

Public class VariableInitialization {
 DatabaseDependency dependency1 = new DatabaseDependency();
 public void testMe(Object obj) {

 }
}

When you instantiate the VariableInitialization class in test, the test fails.
The following is the output:

Solving Test Puzzles

[230]

The following is the test class:

public class VariableInitializationTest {
 VariableInitialization initialization;

 @Before public void setUp() throws Exception {
 initialization = new VariableInitialization();
 }
 @Test public void sanity() throws Exception {
 }
}

To overcome the class-level variable initialization, you can try out the
following options:

• Add a default constructor and move the dependency instantiation to the
default constructor. Create another constructor and inject the dependencies
through this new constructor; from test, we can call this the new constructor.

• Add a default constructor, and move the dependency instantiation to a
protected method and call the method from the default constructor. Create a
setter method and initialize the dependency through a setter injection. In the
test, create a fake object of the main class and override the protected method
to do nothing, and pass the dependencies through the setter methods.

Do not instantiate variables at the class level.

Working with private methods
The private methods are useful for hiding the internal state and encapsulation,
but they can also hide the testing impediments. The following example explains
the details:

The PrivateMethod class has a private method named showError(). This private
method hides a test impediment. When we unit test the validate() method with a
null object, the validate() method calls the showError message, as follows:

public class PrivateMethod {
 public Object validate(Object arg) {
 if(arg == null) {
 showError("Null input");
 }
 return arg;

Chapter 9

[231]

 }

 private void showError(String msg) {
 GraphicalInterface.showMessage(msg);
 }
}

The following is the test output:

You can extract the testing impediments to a protected method, or you can separate
the concern. Create a new class, move the testing impediment to that class, and inject
the new class as a dependency.

Do not hide testing impediments in private methods.

The following code refactors the testing impediments and makes the class
unit testable:

public class PrivateMethodRefactored {
 public Object validate(Object arg) {
 if(arg == null) {
 showError("Null input");
 }

 return arg;
 }

 protected void showError(String msg) {
 GraphicalInterface.showMessage(msg);
 }
}

Solving Test Puzzles

[232]

The showError method's access specifier is changed to protected.

The following test code extends the class with an anonymous implementation,
and it overrides the protected method with an empty implementation. The test
code invokes the validate() method on the new anonymous implementation of
the PrivateMethodRefactored class. In turn, the polymorphic behavior will call the
empty implementation. Hence, the test will always bypass the testing impediments
by calling the overridden empty implementation of the testing impediment, but the
real production code will always invoke the protected method:

public class PrivateMethodRefactoredTest {

 PrivateMethodRefactored privateMethod;

 @Before
 public void setUp() {
 privateMethod = new PrivateMethodRefactored() {
 protected void showError(String msg) {

 }
 };
 }

 @Test
 public void validate() throws Exception {
 privateMethod.validate(null);
 }
}

This approach of bypassing the testing impediments with overridden
versions of the testing impediments is known as faking or fake object.
If the code under test contains many testing impediments, then it is not
possible to override all of them in an anonymous class. Instead, we can
create an inner class, and extend the code under test and override all
the testing unfriendly methods.

Working with final methods
When a method is final, you cannot override it. If the final method hides any testing
impediment, you cannot unit test the class. The following example explains the issue:

Chapter 9

[233]

The FinalDependency class has a final method named doSomething. This method
hides a testing unfriendly feature. The following is the class definition:

public class FinalDependency {

 public final void doSomething() {
 throw new TestingImpedimentException(
 "Final methods cannot be overriden");
 }
}

The FinalMethodDependency class has a dependency on FinalDependency,
and in the testMe method, it calls the doSomething method as follows:

public class FinalMethodDependency {

 private final FinalDependency dependency;

 public FinalMethodDependency(FinalDependency dependency) {
 this.dependency = dependency;
 }
 public void testMe() {
 dependency.doSomething();
 }
}

In the test, we'll mock the dependency and unit test the code as follows:

@RunWith(MockitoJUnitRunner.class)
public class FinalMethodDependencyTest {
 @Mock
 FinalDependency finalDependency;
 FinalMethodDependency methodDependency;

 @Before
 public void setUp() {
 methodDependency = new
 FinalMethodDependency(finalDependency);
 }

 @Test
 public void testSomething() throws Exception {
 methodDependency.testMe();
 }
}

Solving Test Puzzles

[234]

When we run the test, the test still accesses the testing impediment, as the mock
object cannot stub a final method. When we try to stub the method, we get an error.
The following test stubs the final method call:

 @Test
 public void testSomething() throws Exception {
 doNothing().when(finalDependency).doSomething();
 methodDependency.testMe();
 }

When we run the test, we get the following error message thrown by the
Mockito framework:

Do not hide the testing impediments in final methods.
You cannot override or stub a final method.

The only possible way to overcome this is extracting the content of the final method
to a protected method; call the protected method from the final method, and
override the protected method in test. Otherwise, you can use the PowerMock or
PowerMockito framework if you cannot touch the class at all; for example, when you
only have a JAR file.

Exploring static method issues
The static methods are good for utility classes, but unnecessary use of static can
hide the testing impediments and create problems in unit testing. The following
example sheds light on the issue:

Chapter 9

[235]

The SingletonDependency class is an implementation of the Gang of Four (GoF)
singleton design pattern. It has a private constructor and a static getInstance()
method to create only a single instance of the class. The static callMe() method
hides a testing impediment. Note that the GoF singleton pattern doesn't define
methods as static, but in this example, we are defining the callMe() method
as static to display a drawback of the static methods. The following is the
singleton implementation:

public class SingletonDependency {
 private static SingletonDependency singletonDependency;

 private SingletonDependency() {
 }

 public synchronized static SingletonDependency getInstance() {
 if (singletonDependency == null) {
 singletonDependency = new SingletonDependency();
 }

 return singletonDependency;
 }

 Public static void callMe() {
 throw new TestingImpedimentException("we dont
 need singleton");
 }
}

The VictimOfAPatternLover class has a dependency on SingletonDependency.
The following are the class details:

public class VictimOfAPatternLover {
 private final SingletonDependency dependency;

 public VictimOfAPatternLover(SingletonDependency dependency) {
 this.dependency = dependency;
 }

 public void testMe() {
 dependency.callMe();
 }
}

Solving Test Puzzles

[236]

Mockito cannot stub a static method. When we try to stub the static callMe()
method, it still calls the original method and fails for the testing impediment.
You cannot stub a static method.

Do not hide testing impediments in static methods.
You cannot stub static methods.

The only way to overcome this issue is to create a protected method and wrap the
static call. From the code, call the wrapped method and from the test, override the
protected method.

Add a static wrapper method in the dependency class and call the static method
from it, as shown in the following code:

 public static void callMe() {
 throw new TestingImpedimentException("Common we dont
 need singleton");
 }

 protected void wrapper() {
 callMe();
 }

In the code, call the wrapper method as follows:

 public void testMe() {
 dependency.wrapper();
 }

Stub the wrapper method in the test as follows:

@Test
 public void testMe() throws Exception {
 Mockito.doNothing().when(dependency).wrapper();
 aPatternLover.testMe();
 }

Working with final classes
You cannot override a final class, so you can hide testing unfavorable features
in a final class. The following example explains the problem:

Chapter 9

[237]

The final class hides a testing impediment as follows:

public final class FinalDepencyClass {

 public void poison() {
 throw new TestingImpedimentException("Finals cannot
 be mocked");
 }
}

The code under test has a dependency on the final class as follows:

public class FinalClassDependency {
 private final FinalDepencyClass finalDepencyClass;

 public FinalClassDependency(FinalDepencyClass
 finalDepencyClass) {
 this.finalDepencyClass = finalDepencyClass;
 }

 public void testMe() {
 finalDepencyClass.poison();
 }
}

In test, we'll try to stub the poison method as follows:

@RunWith(MockitoJUnitRunner.class)
public class FinalClassDependencyTest {
 @Mock
 FinalDepencyClass finalDependency;

 FinalClassDependency test;

 @Before
 public void setUp() {
 test = new FinalClassDependency(finalDependency);
 }
 @Test
 public void testMe() throws Exception {
 Mockito.doNothing().when(finalDependency).poison();
 test.testMe();
 }
}

Solving Test Puzzles

[238]

The test fails with a MockitoException as Mockito cannot mock a final class.
The following is the JUnit output:

Do not hide testing impediments in final classes.
You cannot mock a final class.

Final classes are important for framework or architecture design so that no one can
hack the behavior, but it can create a serious problem for unit testing. Consider it
before you choose to make a class final.

Learning the new attribute
Java instantiates classes using the new operator, but a new operator can create
problems for unit testing.

The following example explains the issue. The PoisonIvy constructor has a testing
impediment such as calls fetch data from a database table or reads from a filesystem;
we represented the testing impediment with the TestingImpedimentException:

public class PoisonIvy {

 public PoisonIvy() {
 throw new TestingImpedimentException(
 "Do not instantiate concrete class,
 use interfaces");
 }

Chapter 9

[239]

 public void poison() {

 }
}

The following is the code that calls the PoisonIvy constructor:

public class NewExpressionDependency {

 public void testMe() {
 PoisonIvy ivy = new PoisonIvy();
 ivy.poison();
 }
}

When we unit test the testMe() code, it fails. The testMe() method directly creates
an instance of dependency and calls the poison() method. You cannot override
this new expression. If we want to unit test the testMe() method, first we need to
move the new operator outside of testMe() as we cannot instantiate the PoisonIvy
class. The constructor of PoisonIvy throws an exception. Hence, we cannot unit
test the testMe behavior unless we move the object creation out of testMe. Instead
of creating a new instance of PoisonIvy inside testMe(), we can pass an instance
of PoisonIvy as a method argument, or create a class-level dependency and pass
PoisonIvy as the constructor or setter dependency argument.

Program to an interface, not to an implementation. Rather than
hardcoding the instantiation of the subtype into the code, assign
the concrete implementation object at runtime.

What is "program to an interface, not to an implementation"?

This means program to a supertype rather than a subtype. You can interchange the
implementation at runtime. In the collection framework, we have the List interface
and its many implantations. In your class, always define a variable of the List type
and not ArrayList; at runtime, you can assign any implementation you want.

In this example, you can pass PoisonIvy as a constructor or setter dependency,
and at runtime (during testing), you can pass a mock or a fake implementation to
suppress the testing impediments.

Solving Test Puzzles

[240]

Exploring static variables and blocks
Static initializations and static blocks are executed during class loading. You
cannot override them. If you initialize a testing impediment in a static block,
then you cannot unit test the class. The following example explains the issue:

The StaticBlockOwner class has a static variable named StaticBlockDependency,
and it initializes the variable in a static block. The following is the class:

public class StaticBlockOwner {
 private static StaticBlockDependency blockDependency;
 static {
 blockDependency = new StaticBlockDependency();
 blockDependency.loadTime = new Date();
 }
 public void testMe() {
 }
}

When we unit test the class, it fails. The following is the unit test:

public class StaticBlockOwnerTest {
 StaticBlockOwner owner;
 @Before public void setUp() {
 owner = new StaticBlockOwner();
 }
 @Test public void clean() throws Exception {
 owner.testMe();
 }
}

The test fails with a java.lang.ExceptionInInitializationError, as it
tries to instantiate the dependency in a static block and the dependency
throws an exception.

Do not instantiate dependencies in the static block.
You cannot override the testing impediments.

The book Working Effectively with Legacy Code, Pearson Education, by Michael Feathers
explains the legacy code and how effectively you can refactor the legacy code. You
can read the e-book at http://www.amazon.com/Working-Effectively-Legacy-
Michael-Feathers/dp/0131177052.

Chapter 9

[241]

Working with greenfield code
This section illustrates the three-step rhythm of writing a failing test, coding enough
to make it work, and then refactoring it. This is implied greenfield coding as opposed
to working with an existing legacy code.

TDD is an evolutionary development approach. It offers test-first development
where the production code is written only to satisfy a test, and the code is refactored
to improve the code quality. In TDD, unit tests drive the design. You write the code
to satisfy a failing test, so it limits the code you write to only what is needed. The
tests provide fast automated regression for refactoring and new enhancements.

Kent Beck is the originator of Extreme Programming and TDD. He has authored many
books and papers. Visit http://en.wikipedia.org/wiki/Kent_Beck for details.

The following diagram represents the TDD life cycle:

Fail

Pass
Refactor

Refactor code
to improve quality

Write a failing
test

Add code only
to satisfy the test

First, we write a failing test, then add code to satisfy the failing test, and then refactor
the code and again start with another test.

The following section provides an example of TDD. We'll build a program to conduct
an election survey and forecast the result. The program will compile the survey
result and display the opinion poll.

Solving Test Puzzles

[242]

The result should present the zone-wise (geographically) poll opinion and overall
opinion, such as if there are two zones, east and west, then the result will be
presented in the following format:

Let's look at the following steps:

1. Create a test class named SurveyResultCompilerTest and add a
when_one_opinion_then_result_forecasts_the_opinion()test to
compile the overall survey result.

We'll follow this convention for the test method names, for example,
when_some_condition_then_this_happens. We will use the
underscore symbol as a separator.

2. In this new test method, type in SurveyResultCompiler(). The compiler
will complain that the SurveyResultCompiler class doesn't exist. Hover
the mouse over SurveyResultCompiler; Eclipse will suggest a quick fix for
you. Choose Create class 'SurveyResultCompiler', and create the class in the
com.packt.tdd.survey package under the src source folder, as shown in
the following screenshot:

Chapter 9

[243]

3. SurveyResultCompiler is ready. We need to pass an opinion to
SurveyResultCompiler so that it can compile a result. Modify the test to
call willVoteFor and pass an opinion. The compiler will complain that
the method doesn't exist. Add the method to SurveyResultCompiler by
following the quick fix options. The following is the test method:
 @Test
 public void when_one_opinion_then_result_forecasts_the_opinion()
{
 new SurveyResultCompiler().willVoteFor("Party A");
 }

4. We need a compiled result after the survey. The result should give us the
party name and winning percentage. We can think of a Map data type.
Modify the test again to obtain the result. The following is the modified test:
 @Test
 public void when_one_opinion_then_result_forecasts_the_opinion()
{
 SurveyResultCompiler surveyResultCompiler = new
 SurveyResultCompiler();
 surveyResultCompiler.willVoteFor("Party A");
 Map<String, BigDecimal> result
 =surveyResultCompiler.forecastResult();
 }

5. Add the forecastResult method to the SurveyResultCompiler class.
The following is the SurveyResultCompiler class:
public class SurveyResultCompiler {
 public void willVoteFor(String opinion) {
 }
 public Map<String, BigDecimal> forecastResult() {
 return null;
 }
}

Solving Test Puzzles

[244]

6. Verify that when only one person participates in a survey, then the survey
result should return a 100 percent winning chance for the political party
that the person votes for. The following assertion verifies our assumption:
@Test
public void
 when_one_opinion_then_result_forecasts_the_opinion() {
 SurveyResultCompiler surveyResultCompiler = new
 SurveyResultCompiler();
 String opinion = "Party A";
 surveyResultCompiler.willVoteFor(opinion);

 Map<String, BigDecimal> result
 =surveyResultCompiler.forecastResult();

 assertEquals(new BigDecimal("100"),
 result.get(opinion));
}

7. When we run the test, it fails with a NullPointerException. We need to
modify the code as follows to return a result:
 public Map<String, BigDecimal> forecastResult() {
 Map<String, BigDecimal> result = new HashMap<String,
 BigDecimal>();
 return result;
 }

8. Rerun the test. It fails for an AssertionError. The following is the output:

Chapter 9

[245]

9. We need to modify the code to return 100 percent for Party A. The following
is the modified code:
 public Map<String, BigDecimal> forecastResult() {
 Map<String, BigDecimal> result = new HashMap<String,
 BigDecimal>();
 result.put("Party A", new BigDecimal("100"));
 return result;
 }

10. Rerun the test. It will show you a green bar. The following is the output:

11. Now we need to add another test to verify that when two persons participate
in a poll, and they vote for two different political parties, then the result
should portray 50 percent chance for each party. Add a when_different_
opinions_then_forecasts_50_percent_chance_for_each_party test,
and add the following lines to verify the assumption:
 @Test public void
 when_different_opinions_then_forecasts_50_percent_
 chance_for_each_party() {
 SurveyResultCompiler surveyResultCompiler = new
 SurveyResultCompiler();
 String opinionA = "Party A";
 surveyResultCompiler.willVoteFor(opinionA);
 String opinionB = "Party B";
 surveyResultCompiler.willVoteFor(opinionB);
 Map<String, BigDecimal> result =
 surveyResultCompiler.forecastResult();
 assertEquals(new BigDecimal("50"),
 result.get(opinionA));
 assertEquals(new BigDecimal("50"),
 result.get(opinionB));
 }

Solving Test Puzzles

[246]

12. When we run the test, it fails. It expects 50 percent but gets 100 percent,
as shown in the following screenshot:

13. We need to modify the code to return 50 percent for Party A and 50 percent
for Party B. The following is the modified code:
 public Map<String, BigDecimal> forecastResult() {
 Map<String, BigDecimal> result = new HashMap<String,
 BigDecimal>();
 result.put("Party A", new BigDecimal("50"));
 result.put("Party B", new BigDecimal("50"));
 return result;
 }

14. Rerun the test. The second test passes but the first test fails, as shown in the
following screenshot:

Chapter 9

[247]

15. We broke the first test. Now we need to revert the changes, but then the
second test will fail. We need an algorithm to calculate the percentage. First,
we need to store the opinions. Add a List to the SurveyResultCompiler
class and store each opinion. The following is the code:
public class SurveyResultCompiler {
 List<String> opinions = new ArrayList<String>();

 public void willVoteFor(String opinion) {
 opinions.add(opinion);
 }
 //the result method is ignored for brevity
}

16. Now we need to modify the forecastResult method to calculate the
percentage. First, loop through the opinions to get the party-wise vote
count, such as 10 voters for Party A and 20 voters for Party B. Then,
we can compute the percentage as vote count * 100 / total votes. The following
is the code:
public Map<String, BigDecimal> forecastResult() {

 Map<String, BigDecimal> result = new HashMap<String,
 BigDecimal>();
 Map<String, Integer> countMap = new HashMap<String,
 Integer>();
 for(String party:opinions) {
 Integer count = countMap.get(party);
 if(count == null) {
 count = 1;
 }else {
 count++;
 }
 countMap.put(party, count);
 }

 for(String party:countMap.keySet()) {
 Integer voteCount = countMap.get(party);
 int totalVotes = opinions.size();
 BigDecimal percentage = new
 BigDecimal((voteCount*100)/totalVotes);
 result.put(party, percentage);
 }

 return result;
}

Solving Test Puzzles

[248]

17. Rerun the test. You will get a green bar, as shown in the following screenshot:

18. Now add a test for three participants. The following is the test:
 @Test
 public void
 when_three_different_opinions_then_forecasts_33_
 percent_chance_for_each_party() {
 SurveyResultCompiler surveyResultCompiler = new
 SurveyResultCompiler();
 String opinionA = "Party A";
 surveyResultCompiler.willVoteFor(opinionA);
 String opinionB = "Party B";
 surveyResultCompiler.willVoteFor(opinionB);
 String opinionC = "Party C";
 surveyResultCompiler.willVoteFor(opinionC);
 Map<String, BigDecimal> result =
 surveyResultCompiler.forecastResult();
 assertEquals(new BigDecimal("33"),
 result.get(opinionA));
 assertEquals(new BigDecimal("33"),
 result.get(opinionB));
 assertEquals(new BigDecimal("33"),
 result.get(opinionC));
 }

19. Look at the test class, and you will find the duplicate code in each test
method; clean them. Move the SurveyResultCompiler object instantiation to
a setUp method instead of instantiating the class in each test method. Inline
are the opinion variables, such as opinionA. The following is the refactored
test class:
public class SurveyResultCompilerTest {

 SurveyResultCompiler surveyResultCompiler;

 @Before
 public void setUp() {

Chapter 9

[249]

 surveyResultCompiler = new SurveyResultCompiler();
 }

 @Test public void
 when_one_opinion_then_result_forecasts_the_opinion() {

 surveyResultCompiler.willVoteFor("Party A");
 Map<String, BigDecimal> result =
 surveyResultCompiler.forecastResult();
 assertEquals(new BigDecimal("100"),
 result.get("Party A"));
 }

 @Test public void
 when_two_different_opinions_then_forecasts_50_
 percent_chance_for_each_party() {

 surveyResultCompiler.willVoteFor("Party A");
 surveyResultCompiler.willVoteFor("Party B");

 Map<String, BigDecimal> result =
 surveyResultCompiler.forecastResult();

 assertEquals(new BigDecimal("50"),
 result.get("Party A"));
 assertEquals(new BigDecimal("50"),
 result.get("Party B"));
 }

 @Test public void
 when_three_different_opinions_then_forecasts_
 33_percent_chance_for_each_party() {

 surveyResultCompiler.willVoteFor("Party A");
 surveyResultCompiler.willVoteFor("Party B");
 surveyResultCompiler.willVoteFor("Party C");

 Map<String, BigDecimal> result =
 surveyResultCompiler.forecastResult();

 assertEquals(new BigDecimal("33"),
 result.get("Party A"));
 assertEquals(new BigDecimal("33"),
 result.get("Party B"));
 assertEquals(new BigDecimal("33"),
 result.get("Party C"));
 }
}

Solving Test Puzzles

[250]

20. The test class looks clean now. Rerun the test to make sure nothing is broken.
The following is the test output:

21. Revisit the SurveyResultCompiler class. It works with a List and two
Map attributes. Do we really need to keep the List attribute? Instead of
calculating the votes from List, we can directly store the opinions in Map
and keep the opinion count up to date. The following is the refactored code:
public class SurveyResultCompiler {
 private Map<String, Integer> opinions =
 new HashMap<String, Integer>();
 private long participationCount = 0;
 public void willVoteFor(String opinion) {
 Integer sameOpinionCount = opinions.get(opinion);
 if (sameOpinionCount == null) {
 sameOpinionCount = 1;
 } else {
 sameOpinionCount++;
 }
 opinions.put(opinion, sameOpinionCount);
 participationCount++;
 }

 public Map<String, BigDecimal> forecastResult() {
 Map<String, BigDecimal> result = new HashMap<String,
 BigDecimal>();

 for (String opinion : opinions.keySet()) {
 Integer sameOpinionCount =
 opinions.get(opinion);
 BigDecimal opinionPercentage = new BigDecimal(
 (sameOpinionCount * 100) / participationCount);
 result.put(opinion, opinionPercentage);
 }
 return result;
 }
}

Chapter 9

[251]

22. Rerun the test to make sure nothing is broken. If anything breaks, then
immediately revert the changes. The tests should run fine, so we are good
to go.

23. One feature is complete. Now we need to develop a new feature—zone-wise
calculation. The existing test cases will safeguard our code. If you break any
existing test, immediately revisit your change.

What we just completed is TDD. It has the following benefits:

• TDD gives us clean, testable, and maintainable code.
• We document and update the code, but we forget to update the

documentation; this creates confusion. You can document your code
and keep it updated, or write your code and unit tests in such a way that
anybody can understand the intent. In TDD, tests are written to provide
enough documentation of code. So, the test is our documentation, but we
need to clean the tests too to keep them readable and maintainable.

• We can write many tests with boundary value conditions, null, zero, negative
numbers, and so on, and verify our code. And by passing these boundary
values, you're trying to break your own code. No need to package the
whole application and ship it to Quality Assurance (QA) or the customer
to discover issues.

• You also avoid over engineering the classes you write. Just write what's
needed to make all tests green.

• Another benefit to incrementally build your code is that your API is easier
to work with because the code is written and used at the same time.

Summary
This chapter explained the unit testing strategy for the legacy code and new
development. It covered the legacy code issues, refactored the legacy code,
illustrated design for testability, described the TDD concepts and TDD life cycle,
demonstrated TDD examples, and refactoring.

Now the reader should be able to write unit tests for legacy code, refactor the legacy
code to improve the design of the existing code, and start writing simple, clean, and
maintainable code that follows TDD, and refactor the code to improve its quality.

The next chapter covers the best practices of unit testing.

Best Practices
"It is insanity to keep doing things the same way and expect things to improve."

—Anonymous

Writing clean, readable, and maintainable JUnit test cases, just like writing clean
code, is an art. A well-written unit test can prevent maintenance nightmare and
acts as a system documentation; however, if not used carefully, it can produce
meaningless boilerplate test cases. Mistakes are part of the learning process as long
as you aren't making them repeatedly. JUnit is not rocket science, so we can practice,
follow guidelines, and learn from others to make it perfect.

This chapter covers JUnit guidelines and best practices. The following categories are
covered in depth:

• Writing meaningful tests
• Test automation
• Test configuration
• Assertion convention
• Exception handling
• Test smells and refactoring test smells

Writing meaningful tests
The common understanding of unit testing is testing the smallest possible part of
software, specifically a method. In reality, we do not test methods; rather, we test
a logical unit or the behavior of the system.

Best Practices

[254]

Logical units can extent to a single method, to an entire class, or a collaboration
of multiple classes. For example, a standard calculator program can have an add
method for adding two numbers. We can verify the add behavior by invoking the
add method, or we can design the calculator program to have a simple calculate
API that can take two numbers and an operation (add, subtract, divide, and so on),
and depending on the operand type (integer, double, and so on), the calculator
may delegate the calculation to a collaborator class, such as a double calculator or a
long calculator. We can still unit test the add behavior, but now multiple classes are
involved. We can call this new test an integration test.

A unit test verifies an assumption about the behavior of the system. In addition
to this, if a test tests the entire system, it can't be a unit test—we call these tests
confederation tests because they set up the entire ecosystem, including setting
up the necessary components.

The following section elaborates on writing meaningful tests.

Improving readability
Martin Fowler said Any fool can write code that a computer can understand. Good
programmers write code that humans can understand. Writing obscure code can be
fashionable for old timers but it's not a standard Java practice. We should write
readable and maintainable code such that anybody can understand the purpose
of the code and enhance or maintain the code in future.

JUnit tests are written to test logical units. A test method name should portray the
intention of the test so that a reader can understand what is being tested, such as the
condition and the expectation or action.

Suppose you are writing a test for a role-based system and the system denies
unauthorized access. You can use the following patterns, but if you choose to
follow one pattern, it's best to stick to it:

• testDenialOfUnauthorizedAccess()

• when_unauthorized_user_then_denies_the_access()

• should_deny_access_for_unauthorized_users()

I prefer the underscore (_) pattern as it's more readable.

For boundary value conditions, you can follow these patterns:

• testRegisteringNullUser()

• should_not_register_a_null_user()

Chapter 10

[255]

• should_throw_exception_when_a_null_user_is_registered()

• when_null_user_then_registrar_throws_exception()

Likewise, a test class should portray the intention of the tests. Usually, we follow
two conventions, Test<class name> or <class name>Test. Suppose you are
testing the UserRegistration behavior. You can use UserRegistrationTest or
TestUserRegistration. Several test coverage tools fail to recognize classes without
the Test suffix. So, UserRegistrationTest is a safe choice.

Breaking everything that could possibly break
An Extreme Programming concept is test everything that could possibly break. This means
trying all different combinations of inputs to make sure we don't miss any combination
that can cause the class to generate an error. However, this is an impossible thing to
do in practice. We can test boundary value conditions. We can even cover all branches
and lines, but we cannot test all input combinations. Suppose a method adds two
integers. We can pass NULL, 0, Integer.MAX_VALUE, negative numbers, and so on, but
we literally cannot test the method with all possible integer values.

Ignoring simple test cases
Writing trivial JUnits (such that for getter and setter) is mostly a waste of time and
money. We don't have the luxury to write infinite tests as it can eat our development
time, application build time, and reduce test maintainability. If we start writing
tests for getter/setters, we may miss more useful test cases. Usually, unit tests
are automated and run during a build process. A build is required to finish early
providing feedback, but the process will be delayed if we keep adding trivial tests.
Unit tests are system documentation, so they portray the system behavior; however,
if we keep adding tests for trivial things, then it defeats the purpose. Write tests that
will pay you back with information.

Verifying invalid parameters
Test invalid parameters to every method. Your code needs to recognize and handle
invalid data. The tests that pass using incorrect data and boundary value conditions
provide comprehensive API documentation.

Suppose you are writing a test for an add method. It takes two integers and returns
an integer. The following is the Adder class:

public class Adder {
 public Integer add(Integer first, Integer second) {
 if (first == null || second == null) {

Best Practices

[256]

 throw new IllegalArgumentException("Invalid inputs
 first=[" + first+ "], second=[" + second + "]");
 }

 return first + second;
 }
}

The boundary values that can be tested are null, zero, negative numbers, and overflow
conditions, as follows:

public class AdderTest {
 Adder adder = new Adder();

 @Test(expected=IllegalArgumentException.class)
 public void should_throw_exception_when_encounters_a_NULL_input(){
 adder.add(null, 1);
 }

 @Test(expected=IllegalArgumentException.class)
 public void should_throw_exception_when_second_input_is_NULL(){
 adder.add(2, null);
 }

 @Test
 public void should_return_zero_when_both_inputs_are_zero(){
 int actual =adder.add(0, 0);
 assertEquals(0, actual);
 }

 @Test
 public void
 should_return_first_input_when_second_input_is_zero() {
 int actual =adder.add(1, 0);
 assertEquals(1, actual);
 }

 @Test
 public void
 should_return_second_input_when_first_input_is_zero() {
 int actual =adder.add(0, 2);
 assertEquals(2, actual);
 }

 @Test

Chapter 10

[257]

 public void should_return_zero_when_summation_is_zero(){
 int actual =adder.add(5, -5);
 assertEquals(0, actual);
 }

 @Test public void
 should_return_a_negative_when_both_inputs_are_negative() {
 int actual =adder.add(-8, -5);
 assertTrue(actual < 0);
 }

 @Test
 public void
 should_overflow_when_summation_exceeds_integer_limit() {
 int actual =adder.add(Integer.MAX_VALUE, 1);
 assertTrue(actual< 0);
 }
}

Your class may have a public API that accepts user input and delegates input
formatting to a dependent class or method. You should verify the user input in
the public API only, not on all methods or dependent classes.

Suppose the class A has a doSomething(String input) method. A calls B
to format the input. If clients can call only class A, then you should not worry
about validating the null input in class B. However, if both A and B are exposed,
then B definitely should check for the NULL values. Checking NULL everywhere is
defensive programming.

Relying on direct testing
Suppose you have a facade class that depends on a utility class. Testing the facade
class can cover the utility class. This is an example of indirect testing. The following
Facade class depends on a StringService class for formatting; when we test the
Facade class with a String value, then the StringService class is also tested:

public class Facade {
 private final StringService stringService;
 public Facade(StringService utility) {
 this.stringService= utility;
 }

 public Object doSomething(Object o) {
 if (o instanceof String) {

Best Practices

[258]

 return stringService.format((String) o);
 }

 if (o instanceof Integer) {
 return Integer.MIN_VALUE;
 }

 return null;
 }
}

We should test StringService directly, even though its methods are also invoked
by the tests of the Facade class. We should have two test classes: FacadeTest and
StringServiceTest.

It's not a good idea to rely on indirect testing because if we change the implementation
of the Facade class, then the dependent class may be uncovered. Suppose we
change the implementation of the Facade class, so that it no longer depends on
StringService. The tests in StringServiceTest will no longer invoke the methods
of StringService, so we will lose code coverage.

Staying away from debugging
A common practice when we find a bug is to start debugging an application—stop
doing this. Rather, add more tests to break the code; this will enrich your test suite
and improve the system documentation. Similarly, don't put a catch block to print
stacktrace. Rather, assert the exception message using the ExpectedException rule
(explained in the Handling exceptions section). Sometimes, it's not possible to avoid
debugging entirely. So anyway, before starting to debug, create a (integration) test that
reproduces the issue and then debug it. This will narrow down the problem, create a
unit test for the lowest possible unit, and keep both the tests for future reference.

Avoiding generic matchers
We tend to use wildcard matchers to stub mock object methods; in the same way,
verify the method invocations with generic matchers. This is a bad practice; you
should go for an exact parameter match when possible. The following example
demonstrates the wildcard argument matching.

Chapter 10

[259]

The StringDecorator class decorates the input with an exclamation symbol:

public class StringDecorator {
 public String decorate(String object) {
 return object+"!";
 }
}

The PrinterService interface connects to a LAN printer and prints the input text
as follows:

public interface PrinterService {
 void print(String text);
}

The Facade class accepts an input, decorates the input, and sends it to
PrinterService for printing. To unit test this behavior, we need to mock
out PrinterService with a mock object using the following code:

public class Facade {
 private final Decorator decorator;
 private final PrinterService printerService;

 public Facade(Decorator decorator, PrinterService
 printerService) {
 this.decorator = decorator;
 this.printerService = printerService;
 }

 public void process(String object) {
 printerService.print(decorator.decorate(object));
 }

}

Generally, PrintService is stubbed with an anyString()generic matcher, and the
PrintService call is verified using verify(mockService).print(anyString());,
as follows:

@RunWith(MockitoJUnitRunner.class)
public class FacadeTest {

 @Mock PrinterService mockService;
 Facade facade;

 @Before

Best Practices

[260]

 public void setUp() throws Exception {
 facade = new Facade(new StringDecorator(), mockService);
 }

 @Test
 public void test() {
 String input = "hello";
 doNothing().when(mockService).print(anyString());
 facade.process(input);
 verify(mockService).print(anyString());
 }

}

We can use eq("hello!") instead of anyString(), as we know the StringDecorator
method appends an exclamation to the String input; the test will fail if the
StringDecorator method doesn't append the exclamation symbol. So, the side
effects of StringDecorator can be identified immediately.

Keeping away from @ignore
Do not skip unit tests using the @ignore or @exclude annotations. As we know dead
code removal is a refactoring technique, dead codes are never used. However, they
create confusion. Similarly, when we ignore tests using the @ignore annotations, the
tests are skipped, but the code remains in the file as dead code and creates confusion.
Unit tests that are skipped provide no benefit. Instead of skipping unit tests, remove
them from source control. If you need the test, you can get it from the source control
history. Sometimes people create tests to easily understand some sort of APIs, but
they don't want the tests to be executed when the test suite runs, or it may not be
possible to run some tests on all platforms. With Maven (and Gradle), you can have
different profiles with different test suites. For utility tests, it's always helpful to
create a specific module for this.

Eluding debug messages
In early days, we used print (System.out or System.err) messages to console for
debugging or unit testing code. Unit tests are system documentation, and a print
statement does not fit in there. If you need to print something, just write a test and
assert the expected value. Also, you can add a logging utility such as Log4J and log
the debug messages. If a problem occurs in production, you just turn on these logs
and see what's going on there to be able to reproduce the issue with tests better. So,
tests and logs should rather complement each other.

Chapter 10

[261]

Automating JUnit tests
Chapter 2, Automating JUnit Tests, covered the importance of test automation, CI, and
test automation with Gradle, Maven, and Ant. This section reiterates the benefits of
test automation.

The following are the benefits of test automation:

• Assumptions are continually verified. We refactor the code (change the
internal structure of the code without affecting the output of the system) to
improve code quality such as maintainability, readability, or extensibility.
We can refactor the code with confidence if automated unit tests are running
and providing feedback.

• Side effects are detected immediately. This is useful for fragile, tightly
coupled systems when a change in one module breaks another module.

• Test automation saves time and there is no need of immediate regression
testing. Suppose you are adding a scientific computation behavior to an
existing calculator program and modifying the code. After every piece of
change, you perform regression testing to verify the integrity of the system.
Regression testing is tedious and time consuming, but if you have an
automated unit test suite, then you can delay the regression testing until the
functionality is done. This is because the automated suite will inform you at
every stage if you disrupt an existing feature.

Always integrate your JUnits with build script and configure CI.

Configuring tests
This section deals with the test configuration. Unit tests are not testing the system.
In TDD, unit tests are written to obtain the following benefits:

• They drive your design. You write a test, add code to fix the test, refactor
code with confidence, and apply the design. This results in a simple, clean,
maintainable, loosely coupled, and cohesive design. You write code to satisfy
a failing test, so it limits the code you write to only what is needed.

• The tests provide fast, automated regression for refactoring and enhancing
the code.

Best Practices

[262]

You should configure your tests to follow the following principles:

• Unit tests should be executed extremely fast so that they can provide quick
feedback. Would you withdraw money from an ATM that takes 10 minutes
to dispense money?

• Tests should be reliable. Tests should fail if the production code is broken.
Your tests will be considered unreliable in situations where you break the
production logic but the tests pass, or you don't touch the production code
but still your tests fail.

The following section covers the test configuration.

Running in-memory tests
Do not write unit tests that make HTTP requests, look up JNDI resources, access a
database, call SOAP-based web services, or read from the filesystem. These actions
are slow and unreliable, so they should not be considered as unit tests; rather, they
are integration tests. You can mock out such external dependencies using Mockito.
Chapter 4, Progressive Mockito, explains the mocking external dependencies.

Staying away from Thread.sleep
Thread.sleep is used in the production code to halt the current execution for some
time so that the current execution can sync up with the system, such that the current
thread waits for a resource used by another thread. Why do we need Thread.sleep
in a unit test? Unit tests are meant to get executed faster.

Thread.sleep can be used to wait for a long running process (this is usually used
to test concurrency), but what if the process takes time in a slow machine? The test
will fail though the code is not broken, and this defeats the test reliability principle.
Avoid using Thread.sleep in unit tests; rather, simulate the long running process
using a mock object.

Keeping unit tests away from the production
code
Don't deliver unit tests to customers; they are not going to execute the tests. The test
code should be separated from the production code. Keep them in their respective
source directory tree with the same package naming structure. This will keep them
separate during a build.

Chapter 10

[263]

The following Eclipse screenshot shows the separate source folder structure. Source
files are located under the src folder, and the tests are placed under the test source
folder. Note that the Adder.java and AdderTest.java files are placed in the same
package named com.packt.bestpractices.invalidinput:

Avoiding static variables
Static variables hold state. When you use a static variable in your test, it signifies that
you want to save the state of something. So, you are creating inter-test dependency.
If the execution order changes, the test will fail though the code is not broken, and
this defeats the test reliability principle. Do not use static variables in unit tests to
store global state.

Don't initialize the class to be tested as static and use the setUp method
(annotated with @Before) to initialize objects. These will protect you from
accidental modification problems. The following example demonstrates the
accidental modification side effects.

The Employee class stores employee names:

public class Employee {
 private String lastName;
 private String name;

 public Employee(String lastName , String name) {
 this.lastName = lastName;
 this.name = name;
 }

Best Practices

[264]

 public String getLastName() {
 return lastName;
 }

 public String getName() {
 return name;
 }

}

The HRService class has a generateUniqueIdFor(Employee emp) method.
It returns a unique employee ID based on the surname. Two employees with the
surname Smith will have the IDs smith01 and smith02, respectively. Consider the
following code:

public class HRService {

 private Hashtable<String, Integer> employeeCountMap =
 new Hashtable<String, Integer>();

 public String generateUniqueIdFor(Employee emp) {
 Integer count = employeeCountMap.get(emp.getLastName());
 if (count == null) {
 count = 1;
 } else {
 count++;
 }
 employeeCountMap.put(emp.getLastName(), count);
 return emp.getLastName()+(count < 9 ? "0"+count:
 ""+count);
 }
}

The unit test class initializes the service as static. The service stores the input of the
first test and fails the second test, as follows:

public class HRServiceTest {
 String familyName = "Smith";
 static HRService service = new HRService();

 @Test
 public void when_one_employee_RETURNS_familyName01()
 throws Exception {
 Employee johnSmith = new Employee(familyName, "John");
 String id = service.generateUniqueIdFor(johnSmith);

Chapter 10

[265]

 assertEquals(familyName + "01", id);
 }

 //This test will fail, to fix this problem remove the static
 modifier
 @Test
 public void when_many_employees_RETURNS_familyName_and_count() {
 Employee johnSmith = new Employee(familyName, "John");
 Employee bobSmith = new Employee(familyName, "Bob");

 String id = service.generateUniqueIdFor(johnSmith);
 id = service.generateUniqueIdFor(bobSmith);
 assertEquals(familyName + "02", id);
 }

}

The following JUnit output shows the error details:

Assuming the test execution order
JUnit was designed to execute the tests in random order. It depends on the Java
reflection API to execute the tests. So, the execution of one test should not depend
on another. Suppose you are testing the database integration of EmployeeService,
where the createEmployee() test creates a new Employee, updateEmployee()
method and updates the new employee created in createEmployee(), and
deleteEmployee() deletes the employee. So, we are dependent on the test
execution order; if deleteEmployee() or updateEmployee() is executed before
createEmployee(), the test will fail as the employee is not created yet.

Best Practices

[266]

To fix this problem, just merge the tests into a single test named
verifyEmployeePersistence().

So, don't believe in the test execution order; if you have to change one test case,
then you need to make changes in multiple test cases unnecessarily.

Loading data from files
The JUnit Theory framework offers an abstract class ParameterSupplier for
supplying test data for test cases. The ParameterSupplier implementation can read
from a filesystem, such as a CSV or an Excel file. However, it is not recommended
that you read from the filesystem. This is because reading a file is an I/O (input/
output) process, and it is unpredictable and slow. We don't want our tests to create
a delay. Also, reading from a hardcoded file path may fail in different machines.
Instead of reading from a file, create a test data supplier class and return the
hardcoded data.

Invoking super.setUp() and super.tearDown()
Sometimes the data setup for unit testing is monotonous and ugly. Often, we create a
base test class, set up the data, and create subclasses to use the data. From subclasses,
always invoke the setup of the super classes and teardown methods. The following
example shows the fault of not invoking the super class.

We have EmployeeService and EmployeeServiceImpl to perform some
business logic:

public interface EmployeeService {
 public void doSomething(Employee emp);
}

The BaseEmployeeTest class is an abstract class, and it sets up the data for
subclasses, as follows:

public abstract class BaseEmployeeTest {

 protected HashMap<String, Employee> employee ;

 @Before
 public void setUp() {
 employee = new HashMap<String, Employee>();
 employee.put("1", new Employee("English", "Will"));
 employee.put("2", new Employee("Cushing", "Robert"));
 }
}

Chapter 10

[267]

The EmployeeServiceTest class extends the BaseEmployeeTest class and uses the
employee map, as follows:

public class EmployeeServiceTest extends BaseEmployeeTest {

 EmployeeService service;
 @Before
 public void setUp() {
 service = new EmployeeServiceImpl();
 }
 @Test
 public void someTest() throws Exception {
 for(Employee emp:employee.values()) {
 service.doSomething(emp);
 }
 }
}

The test execution fails with a NullPointerException. The following is the
JUnit output:

To fix this, call super.setUp() from the setUp() method. The following is the
modified setUp() method in EmployeeServiceTest:

 @Before
 public void setUp() {
 super.setUp();
 service = new EmployeeServiceImpl();
 }

Best Practices

[268]

Staying away from side effects
Do not write test cases that affect the data of other test cases, for example, you are
examining the JDBC API call using an in-memory HashMap and a test case clears the
map, or you are testing the database integration and a test case deletes the data from
the database. It may affect the other test cases or external systems. When a test case
removes data from a database, any application using the data can fail. It's important
to roll back the changes in the final block and not just at the end of the test.

Working with locales
Be aware of internationalization while working with NumberFormat, DateFormat,
DecimalFormat, and TimeZones. Unit tests can fail if they are run on a machine with
a different locale.

The following example demonstrates the internationalization context.

Suppose you have a class that formats money. When you pass 100.99, it rounds up
the amount to 101.00. The following formatter class uses NumberFormat to add a
currency symbol and format the amount:

class CurrencyFormatter{

 public static String format(double amount) {
 NumberFormat format =
 NumberFormat.getCurrencyInstance();
 return format.format(amount);
 }
}

The following JUnit test verifies the formatting:

public class LocaleTest {

 @Test
 public void currencyRoundsOff() throws Exception {
 assertEquals("$101.00",
 CurrencyFormatter.format(100.999));
 }
}

If you run this test in a different locale, the test will fail. We can simulate this by
changing the locale and restoring back to the default locale, as follows:

public class LocaleTest {
 private Locale defaultLocale;

Chapter 10

[269]

 @Before
 public void setUp() {
 defaultLocale = Locale.getDefault();
 Locale.setDefault(Locale.GERMANY);
 }
 @After
 public void restore() {
 Locale.setDefault(defaultLocale);
 }
 @Test
 public void currencyRoundsOff() throws Exception {
 assertEquals("$101.00",
 CurrencyFormatter.format(100.999));
 }
}

Before test execution, the default locale value is stored to defaultLocale, the default
locale is changed to GERMANY, and after test execution, the default locale is restored.
The following is the JUnit execution failure output. In GERMANY, the currency will be
formatted to 101,00 € but our test expects $101.00:

You can change your code to always return the USD format, or you can change
your test to run in the US locale by changing the default locale to US, and after test
execution, restore it back to the default one. Similarly, be careful while working with
date and decimal formatters.

Best Practices

[270]

Working with dates
If not used carefully, dates may act bizarrely in tests. Be careful when using
hardcoded dates in unit tests. You are working with dates and checking business
logic with a future date. On January 1, 2014, you set a future date as April 10, 2014.
The test works fine till April 9 and starts failing thereafter.

Do not use hardcoded dates. Instead use Calendar to get the current date and time
and add MONTH, DATE, YEAR, HOUR, MINUTE, or SECOND to it to get a future date time.
The following self explanatory code snippet demonstrates how to create a dynamic
future date:

Calendar cal = Calendar.getInstance ();
Date now = cal.getTime();

//Next month
cal.add(Calendar.MONTH,1);
Date futureMonth = cal.getTime();

//Adding two days
cal.add(Calendar.DATE,2);
Date futureDate = cal.getTime();

//Adding a year
cal.add(Calendar.YEAR,1);
Date futureYear = cal.getTime();

//Adding 6 hours
cal.add(Calendar.HOUR,6);
Date futureHour = cal.getTime();

//Adding 10 minutes
cal.add(Calendar.MINUTE,10);
Date futureMinutes = cal.getTime();

//Adding 19 minutes
cal.add(Calendar.SECOND,19);
Date futureSec = cal.getTime();

Chapter 10

[271]

The following are the future dates when the program was run on April 16, 2014:

Working with assertions
An assertion is a predicate used to verify a programmer assumption (expectation)
with an actual outcome of a program implementation. For example, a programmer
can expect that the addition of two positive numbers will result in a positive number.
So, the programmer can write a program to add two numbers and assert the expected
result with the actual result.

The org.junit.Assert package provides static overloaded methods for asserting
expected and actual values for all primitive types, objects, and arrays.

This section covers the proper usage of the Assertion APIs. The following are the
best practices.

Using the correct assertion
Use the correct assertion method. JUnit supports many assertion options, such
as assertEquals, assertTrue, assertFalse, assertNull, assertNotNull,
assertSame, and assertThat. Use the most appropriate one. The following
are the examples:

• Use assertTrue(yourClass.someMethod()) instead of using
assertEquals(true, yourClass.someMethod())

• Use assertFalse(yourClass.someMethod()) instead of calling
assertTrue(!yourClass.someMethod())

• Use assertNull(yourClass.someMethod()) rather than
assertEquals(null, yourClass.someMethod())

• Use assertEquals(expected, yourClass.someMethod()) instead of using
assertTrue(expected.equals(yourClass.someMethod()))

• The assertThat(age, is(30)) method is more readable than
assertEquals(30, age)

• Similarly, assertThat(age, is(not(33))) is more readable than
assertTrue(age != 33)

Best Practices

[272]

Maintaining the assertEquals parameter order
The assertEquals method is a very useful method to verify the expectation.
The assertEquals method has the assertEquals(Object expected, Object
actual) signature.

Maintain the parameter order: first the expected value and then the actual result.
The following JUnit snippet reverses the order, passes the actual value first, and
then the expected result:

@Test
public void currencyRoundsOff() throws Exception {
 assertEquals(CurrencyFormatter.format(100.999),
 "$101.00");
}

When the test fails, the error message says that the expected value is 101,00 € but
actually the expected value is $101.00.

So, assertEquals shows misleading error messages when the parameter
order changes.

The following screenshot shows the error message. It says the test expects euros (€)
but receives dollars ($):

Optionally, you can pass a meaningful message to assertEquals to describe the
cause. The assertEquals(String message, Object expected, Object actual)
signature takes a String message to display a meaningful error message when the
actual value doesn't match the expected value.

The following JUnit snippet passes a meaningful error message:

@Test
public void currencyRoundsOff() throws Exception {
 assertEquals("Currency formatting failed",
 $101.00", CurrencyFormatter.format(100.999));
}

Chapter 10

[273]

The following is the Assertion failure output with an informative message:

Striving for one assertion per test
Strive for one assertion per test method. When you check one assertion per test and a
unit test fails, it is much easier to determine what went wrong. When a unit test has
more than one assertion, and one assertion fails, extra effort is required to determine
which one failed; for one assertion per test, no extra effort is required.

When a unit test performs more than one assertion, and a runtime exception is
thrown, the assertions after the exception do not get verified; the JUnit framework
marks the unit test as erroneous and proceeds to the next test method.

The following JUnit test asserts three conditions—the formatted amount is not null,
the formatted amount contains a $ symbol, and the exact formatting:

@Test
public void currencyRoundsOff() throws Exception {
 assertNotNull(CurrencyFormatter.format(100.999));
 assertTrue(CurrencyFormatter.format(100.999).
 contains("$"));
 assertEquals("$101.00",
 CurrencyFormatter.format(100.999));
}

When any assertion fails, the output doesn't tell you what is wrong (you get the
line number in the source code file, though, it is not very convenient to work with).
The following is the JUnit output:

Best Practices

[274]

Instead of using three assertions, you can create three tests, or you can pass
meaningful error messages to the assertion methods. The following JUnit test
is modified to pass error messages:

@Test
public void currencyRoundsOff() throws Exception {
 assertNotNull("Currency is NULL",
 CurrencyFormatter.format(100.999));
 assertTrue("Currency is not USD($)",
 CurrencyFormatter.format(100.999).contains("$"));
 assertEquals("Wrong formatting",
 "$101.00", CurrencyFormatter.format(100.999));
}

Now, the failing test gives you additional information about the failure.
The following is the test output. It reads Currency is not USD($), which
means the second assertion failed:

Handling exceptions
Exception handling is an important part of Java coding. The Java community follows
a set of best practices about exception handling. The following are the exception
handling best practices for unit testing:

• Do not write catch blocks to pass a unit test. Consider the following example
where a Calculator program has a divide method. It takes two integers,
divides, and returns a result. When divide encounters a divide by zero, the
program should throw an exception. The following is the code:
public class Calculator {

 public int divide(int op1, int op2) {

Chapter 10

[275]

 return op1/op2;
 }
}

The following is the test:
@Test
public void divideByZero_throws_exception() throws
 Exception {
 try {
 calc.divide(1, 0);
 fail("Should not reach here");
 } catch (ArithmeticException e) {

 }
}

Instead of catching ArithmeticException, we can apply the JUnit 4 pattern
as follows:
 @Test(expected = ArithmeticException.class)
 public void divideByZero_throws_exception() throws
 Exception {
 calc.divide(1, 0);
 }

A more elegant way is to check the ExpectedException rule. The following
is the modified test with ExpectedException:
public class CalculatorTest {

 @Rule
 public ExpectedException expectedException=
 ExpectedException.none();

 Calculator calc = new Calculator();

 @Test
 public void divideByZero_throws_exception(){
 expectedException.expect(ArithmeticException.class);
 expectedException.expectMessage("/ by zero");
 calc.divide(1, 0);
 }
}

ExpectedException expects an exception and an error message. If the
exception is not thrown, or the message doesn't match, the test fails.

Best Practices

[276]

• Do not write catch blocks to fail a test; the JUnit framework takes care
of runtime exceptions. The following is an example of an unnecessary
catch block:
 @Test
 public void fails_when_an_exception_is_thrown() {
 try {
 calc.divide(1, 0);
 }catch(Exception ex) {
 fail("Should not throw an exception");
 }
 }

Instead, just write the following lines. The test will fail automatically if any
exception is thrown:

 @Test
 public void fails_when_an_exception_is_thrown() {
 calc.divide(1, 0);
 }

• Do not catch an exception and assert the failure to pass a test. The following
test code catches ArithmeticException and sets a Boolean flag, and finally
asserts the flag. If no exception is thrown, the flag remains false and the
test fails:
 @Test
 public void fails_when_an_exception_is_thrown() {
 boolean isFailed = false;
 try {
 calc.divide(1, 0);
 }catch(Exception ex) {
 isFailed = true;
 }

 assertTrue(isFailed);
 }

Use the JUnit 4 patterns explained in the preceding example.

• Do not add catch blocks to test a method that throws checked exceptions. The
following example explains the problem. The sum(int… arg) method throws
a NumberOverflowException checked exception when the integer overflows:
public int sum(int... args) throws NumberOverflowException{
 int sum = 0;
 for(int val:args) {

Chapter 10

[277]

 if(Integer.MAX_VALUE - sum < val) {
 throw new NumberOverflowException("Number overflow");
 }
 sum+=val;
 }

 return sum;

}

A catch block is used to catch a checked exception and compile the test,
as follows:
 @Test
 public void fails_when_an_exception_is_thrown() {
 try {
 int sum = calc.sum(1,2,3);
 assertEquals(6, sum);
 } catch (NumberOverflowException e) {

 }
 }

Do not follow this pattern; instead, use throws Exception. The following
JUnit test uses the throws Exception clause:

 @Test
 public void fails_when_an_exception_is_thrown() throws
 Exception {
 int sum = calc.sum(1,2,3);
 assertEquals(6, sum);
 }

• Do not throw specific Exceptions from your tests. Instead, use the generic
throws Exception.
The following example throws a specific NumberOverflowException
exception:
public void fails_when_an_exception_is_thrown() throws
 NumberOverflowException{

}

Suppose the code is changed such that it could throw either
NumberOverflowException or a ParseException. In that case, we have
to change the test method to throw both the exceptions to compile the test.
If we use the generic throws Exception clause, then this problem won't arise.

Best Practices

[278]

Working with test smells
Code smell is a technical debt or symptom that indicates a deeper problem. Smells
are not bugs, or they don't fail tests. Instead, they indicate a problem in design or
code such that a rigid code cannot be enhanced or can create a maintenance issue.
This section covers the test smells that should be refactored for maintenance and
readability. The following topics are covered:

• Test code duplication
• Conditions in test code
• Test logic in the production code
• Over engineering

Refactoring duplicates
Code duplication is the simplest code smell. It creates maintainability problems.
The same code is written in many places; if any bug is found, then you need to
modify all other places. This subsection elaborates on the duplicate code in test cases.

Suppose you are designing a hospital management system and writing a test for
checking a patient in. The following objects are needed for the patient check-in
process: a person, a guarantor, reason for hospitalization, the attending physician,
and the check-in date. A person should have an address. A guarantor can be a person
or an organization, such as a jail authority, a government authority, or a corporate
sponsor. A guarantor should have an address.

The following test snippet creates two Person objects for check in, a patient
johnPeterson, and his guarantor johnsDad:

Person johnsDad = new Person();
 Address newYorkBayArea = new Address();
 newYorkBayArea.setAddressType(AddressType.Residential);
 newYorkBayArea.setCountry("US");
 newYorkBayArea.setState("NY");
 newYorkBayArea.setZip("49355");
 newYorkBayArea.setStreet("12/e xyz Avenue");
 johnsDad.addAddress(newYorkBayArea);
 johnsDad.setEmail("dontDisturb@my.org");
 johnsDad.setFirstName("Freddy");
 johnsDad.setLastName("Peterson");
 daddy.setPerson(johnsDad);

 Person johnPeterson = new Person();

Chapter 10

[279]

 Address mavernPhilly = new Address();
 mavernPhilly.setAddressType(AddressType.Residential);
 mavernPhilly.setCountry("US");
 mavernPhilly.setState("PA");
 mavernPhilly.setZip("19355");
 mavernPhilly.setStreet("123 Frazer");
 johnPeterson.addAddress(mavernPhilly);
 johnPeterson.setEmail("johnYou12345@gmail.com");
 johnPeterson.setFirstName("John");
 johnPeterson.setLastName("Peterson");

Two Person objects and two Address objects are created and initialized. They
are logically duplicate statements. Many other tests can write similar duplicate
statements. Extract the method to refactor the duplicate smell. Extract the builder
methods for the Person and Address objects as follows:

protected Person newPerson(Address newYorkBayArea, String
 lastName, String email, String firstName) {
 Person person = new Person();
 person.addAddress(newYorkBayArea);
 person.setEmail(email);
 person.setFirstName(firstName);
 person.setLastName(lastName);
 return person;
}

protected Address newAddress(String street, String country,
 String state, String zip, AddressType residential) {
 Address address = new Address();
 address.setAddressType(residential);
 address.setCountry(country);
 address.setState(state);
 address.setZip(zip);
 address.setStreet(street);
 return address;
}

From the test code, just pass the required values and call the build methods
as follows:

Address newYorkBayArea = newAddress("12/e xyz Avenue", "US",
 "NY","49355", AddressType.Residential);

Person johnsDad = newPerson(newYorkBayArea, "Peterson",
 "dontDisturb@my.org", "Freddy");

Best Practices

[280]

Address mavernPhilly = newAddress("123 Frazer", "US", "PA",
 "19355", AddressType.Residential);

Person johnPeterson = newPerson(mavernPhilly, "Peterson",
 "johnYou12345@gmail.com", "John");

We can refactor the duplicate code in many test classes by moving the common code
to a base test class or a helper class.

Refactoring the test control logic
Unit test code verifies the behavior of the code under test, and usually, no conditional
logic is written to verify the code. However, when a test contains code that is executed
based on some condition, it gets complicated for the reader. The test executes fine but
creates a maintainability problem.

When we post JMS messages to a destination (such as the TIBCO Enterprise
Messaging Service), internally, the JMS provider posts administrative messages such
as message received, message sent, and message acknowledged. However, each
message contains the same JMS message ID. If we create a message logger program
to listen to the JMS events (including administrative events), and log all events to a
database for an audit trail, then the logger will save many messages with the same
JMS message ID.

The following is an example of the test control logic. The message is defined
as follows:

public class Message {
 private String jmsMessageID;
 private String header;
 private Object payload;
 private int eventType;
}

The eventType variable indicates the administrative message type (received is 1,
sent is 2, and acknowledged is 3).

The MessagingService interface is defined as follows:

public interface MessagingService {
 String publish(Object message);
 List<Message> retrieveByMessageId(String jmsMessageId);
}

Chapter 10

[281]

We'll verify the logging capability as follows:

@RunWith(MockitoJUnitRunner.class)
public class MessagingServiceTest {
 MessagingService service = new MessagingServiceImpl();

 @Test
 public void logs_messages() throws Exception {
 String msgId = service.publish(new String("hello world"));
 for(Message msg:service.retrieveByMessageId(msgId)) {
 if(msg.getEventType() == 2) {
 assertEquals("hello world", msg.getPayload());
 break;
 }
 }
 }
}

The Test method loops through the messages, finds a message, and then
verifies the payload. The test contains logic. Do we need another test for this
test? This is confusing.

To refactor our test, you can move the logic to the code under test. The API should
have a method to return a specific type of message. That way, we can check the
message object directly instead of looping and checking.

Removing the test logic from the
production code
Writing code for testability is a quality. Often, we put testing logic into the
production code for unit testing, such as a new constructor or new method. To make
the code testable, the tests require extra logic in production code to gain access to the
code's internal state for testing configuration or result verification. Testing logic in
production code is a smell, though it doesn't break the code under test but increases
the complexity of the code, and this can create severe maintainability problems or
system failure if anything gets misconfigured.

The testing logic is inserted into the production code under the following conditions:

• Adding conditional logic to return a hardcoded value during testing. The
code under test acts as a dynamic stub as shown in the following example:
public final class EncounterManager {
 public boolean isHack = false;

 public boolean save(Map data) {

Best Practices

[282]

 if(isHack) {
 return true;
 }
 Encounter enc = new EncounterServiceImpl().
 checkIn(buildCheckinRqst(data));
 return enc != null;
 }
}

EncounterManager cannot be overridden as the class is declared as final;
so, you cannot create a mock or fake object of this class. If your code under
test needs to stub the save() behavior, then somehow you need to bypass
the database call made in the EncounterServiceImpl method to persist
the check-in data into a database. So, the save() method has an isHack
conditional logic. This Boolean variable is added for testing purposes. From
test, the Boolean variable isHack is set to true. If accidentally this variable is
set to true, then encounters will not be created in production.

• Additional code is written only for test execution, or private variables are
exposed as public. The following is an example:
public final class EncounterManager {
 private List<Encounter> retrieveEncounters() {
 if (encounters == null) {
 Patient patient = new Patient();
 patient.setPatientId(patientId);
 new EncounterServiceImpl().
 retreiveBy(patient);
 }
 return encounters;
 }

 public List<Encounter> encounters;
 public void setEncounters(List<Encounter> encounters) {
 this.encounters = encounters;
 }
}

The retrieveEncounters() method is a private method used for lazy
instantiation of encounters List. However, for testing purposes,
encounters List is exposed as public and a public setter method is
used. From test, either the setter method is called with a hardcoded List or
directly the encounters List is set. If encounters List is accidentally set
in production, users will see the wrong data in the UI.

Chapter 10

[283]

• Mockito doesn't allow stubbing the equals() and hashcode() methods,
as they should not be overridden unless the logic is comprehensible. Yet,
often for testing, we override the equals() and hashcode() methods and
perform testing logic or return the hardcoded value. This is very dangerous.
In production, if we need to put the objects in a collection or need to perform
an equality check, then the system behaves in a bizarre fashion. The following
code snippet overrides the hashcode() and equals() methods:
@Override
public int hashCode() {
 return isHack ? HACKED_NUMBER : 0;
}

@Override
public boolean equals(Object obj) {
 if (obj instanceof EncounterManager) {
 return isHack && ((EncounterManager) obj).isHack;
 }
 return false;
}

The equals() method returns false in the production code and hashcode()
returns 0. The EncounterManager class cannot be used in conjunction with the
Java collection framework.

To refactor the production code, remove the final keyword, override the class in
the test context, and return the hardcoded values. However, never ever touch the
equals() and hashcode() methods for testing.

Refactoring over engineered tests
Tests are system documentation. They should tell the reader what is being executed.
Often, we put too much documentation and make it more complex for the reader
to understand the intention. Sometimes, we refactor the test and extract clean,
meaningful methods, pass variables to the extracted methods, and from test just
invoke the methods. Now the reader fails to understand the utility of the test case,
and everything is carried out elsewhere.

The following test example demonstrates Test with less or no information:

@Test
public void checks_in_patient() throws Exception {
 createCheckInRequestForAPatientWithAGuarantor();
 checkInaPatient();
 assertResult();
}

Best Practices

[284]

The unit test calls three methods:
createCheckInRequestForAPatientWithAGuarantor, checkInaPatient, and
assertResult. From the test body, it is not possible to understand what is being
tested, what data is created, and what is asserted. A test should configure data,
call the actual method, and assert results.

The following is an example of a test with overly verbose documentation:

public void checks_in_patient() throws Exception {
 CheckInRequest request = new CheckInRequest();
 request.setCheckInDate(new Date());
 request.setDisease("Vomiting");
 request.setDoctor("Dr. Mike Hussey");

 String country = "US";
 String johnsStreetAddress = "123 Frazer";
 String johnsState = "PA";
 String johnsZipCode = "19355";
 Address johnsAddressMavernPhilly =
 buildAddress(johnsStreetAddress, country, johnsState,
 johnsZipCode, AddressType.Residential);

 String johnsEmailId = "johnYou12345@gmail.com";
 String johnsFirstName = "John";
 String familyName = "Peterson";

 Person johnPeterson =
 buildPerson(johnsAddressMavernPhilly, familyName,
 johnsEmailId, johnsFirstName);

 request.setPerson(johnPeterson);

 Guarantor daddy = new Guarantor();
 daddy.setGuarantorType(GuarantorType.Person);
 String dadsStreetAddress = "12/e xyz Avenue";
 String dadsState = "NY";
 String dadsZipCode = "49355";
 Address dadsAddressNYBayArea =
 buildAddress(dadsStreetAddress, country, dadsState,
 dadsZipCode, AddressType.Residential);
 String dadsEmail = "dontDisturb@my.org";
 String dadsFirstName = "Freddy";
 Person johnsDad = buildPerson(dadsAddressNYBayArea,
 familyName, dadsEmail, dadsFirstName);
 daddy.setPerson(johnsDad);
 request.setGuarantor(daddy);
}

Chapter 10

[285]

The test builds two Person objects and two Address objects. Two builder methods
are extracted for code reuse. For better documentation, variables are created and
the hardcoded values are set and passed to the builder methods. These hardcoded
variables make it tough to understand what is going on.

Instead of creating a custom builder method in test class, you can modify the main
data class to follow the builder pattern and build the object in multiple steps. That
way, we don't have to create hardcoded variables such as johnsStreetAddress,
we can directly call the methods we need.

The Person class is modified; the setter methods return an instance of this
as follows:

public Person setFirstName(String firstName) {
 this.firstName = firstName;
 return this;
}

public Person setLastName(String lastName) {
 this.lastName = lastName;
 return this;
}

From test, we can build the object easily. The following test example needs
only an e-mail ID, first name, and phone number for testing, so it should not
populate other values.

We can build the object in three steps, and we no longer need the hardcoded strings
to document the behavior:

Person mark = new Person().setEmail("mark@gmail.com").
 setFirstName("Mark").setPhoneNumber1("444-999-0090");

Summary
This chapter covered the JUnit best practices and explained the underlying
principles. The best practices are writing meaningful tests, automating unit tests,
test configuration, working with assertions, exception handling in test cases,
identifying test smells, and refactoring test smells.

Now you will be able to write clean and maintainable test cases.

Index
Symbols
@AfterClass annotation 13
@BeforeClass annotation 13
@DataPoint annotation 40
@DataPoints annotation 41
@ignore annotations 260
@Mock annotation

using 109
@ParametersSuppliedBy annotation

about 41
using 44, 45

@RunWith annotation 20
@Theory annotation 40

A
Acceptance tests (AT) 135
allOf matcher 28
Ant (Another neat tool)

about 82
download, URL 82
quality, monitoring with SonarQube 177
using, for Maven project execution 82-85

Apache Derby
phone book application, building 196-202
running 195
URL 195

appendDescriptionOf() method 31
Archetype plugin

about 76-78
Java project skeleton, generating 76, 77

ArgumentCaptor
used, for argument capturing 128-130

argument matcher
ArgumentMatcher class 118
using 117
wildcard matchers, need for 118

ArgumentMatcher class 118-120
Aspect Oriented Programming (AOP) 47
assertEquals method

about 272
importing 18

assertion
about 16, 271
best practices 271-273

assert methods
assertEquals(object expected, object actual)

method 16
assertEquals(primitive expected, primitive

actual) method 16
assertEquals(string message, object

expected, object actual) method 16
assertFalse(condition) method 16
assertFalse(failure message, condition)

method 16
assertNotNull method 16
assertNotSame method 16
assertNull method 16
assertSame(object expected, object actual)

method 16
assertTrue(condition) method 16
assertTrue(failure message, condition)

method 16
using, in test 17

assertNotSame method
importing 18

assertThat method
and matcher examples 26

[288]

atLeast(int minNumberOfInvocations)
method 115

atLeastOnce() method 115
atMost(int maxNumberOfInvocations)

method 115
automated tests 216
automated tools, static code analysis

Checkstyle 157
FindBugs 158
PMD 158

B
bad practice examples,

FindBugs-supported error
Cloneable idiom 162
examples 162
Hash code and equals problems 162
Misuse of finalize 163
serializable problems 163

BDD 135
BDD style

JUnit test, implementing in 136
tests, writing 136

BDD syntax
tests, writing in 137

Behavior-driven development. See BDD
benefits, CI 58
best practices, assertion

assertEquals parameter order,
maintaining 272

correct assertion, using 271
one assertion per test, striving for 273

best practices, exception handling 274-277
best practices, test writing

@ignore annotation, avoiding 260
application debugging 258
debug messages, eluding 260
direct testing 257, 258
generic matchers, avoiding 258-260
input combinations, trying 255
invalid parameters, verifying 255-257
readability, improving 254
trivial test cases, ignoring 255

BI 193
blue chip share 119
BookingErrorController class 219

book() method 218
brownfield project 215
builder pattern 26
building blocks

data store 194
process 194
what 194
who 194

build life cycle, Maven
clean 80
default 80
project, compiling 80
project, testing 81
site 80

built-in matchers
exploring 30

Business Intelligence. See BI

C
CALLS_REAL_METHODS setting 132
checked exceptions 276
Checkstyle plugin

configuring 158-160
downloading, URL 158
rules, verifying 158

Checkstyle tool
URL 157

CI
about 57
Ant 82
benefits 58
Gradle 59
Maven project management 75
tools 58

class test 9
clean life cycle, Maven 81
Clover plugin

executing 143, 144
installing 143, 144

Clover tool 142
Cobertura Ant task

configuring 152, 153
Cobertura tool 142
code

analyzing, SonarQube runner used 168-172
unit testing, impediments 216, 217

[289]

code coverage
about 139, 140
code instrumentation 141, 142
measuring 140
measuring, with eCobertura plugin 147
metrics 139

code coverage, metrics
branch coverage 139
function or method coverage 139
statement or Line coverage 139

code instrumentation
object code instrumentation 141
source code instrumentation 141

code quality. See quality
code smells 278
collection matchers

hasItem matcher 29
hasItems matcher 29

Common Public License (CPL) 142
compile dependencies 69
compound value matchers

allOf matcher 28
anyOf matcher 28
either(Matcher) method 28

confederation 254
configuration

Checkstyle plugin 158-160
Cobertura Ant task 152
Eclipse plugin 142

consecutive calls
method, stubbing for 121

containsString matcher 30
Continuous Integration. See CI
correctness bug, FindBugs-supported error

example 162
CRUD methods

tasks, invoking from 204
custom matcher

building 30-33

D
data access layer

testing, with database 208, 209
data store, building blocks 194

default setting
CALLS_REAL_METHODS 132
RETURNS_DEEP_STUBS 132
RETURNS_DEFAULTS 132
RETURNS_MOCKS 132
RETURNS_SMART_NULLS 132

Derby. See Apache Derby
doCallRealMethod() API 126
Dodgy errors examples

dead store of class literal 163
redundant null check 163
switch fall through 163
unconfirmed type casts 163

domain-driven development (DDD) 135
domain-specific language (DSL) 59
doReturn() method 126
dummy 98

E
EasyMock framework

URL 137
EclEmma plugin

about 145
used, for test configuration 146

Eclipse
about 11
setting up 11, 12
update site URL 165
using 11

eclipse command 70
Eclipse plugin

about 64, 65
Clover plugin, uncovering 143
configuring 142
EclEmma plugin, working with 146, 147
eCobertura plugin, examining 147
used, for creating Gradle build 64, 65

Eclipse Public License (EPL) 143
eCobertura plugin

about 147
URL 147
used, for measuring code coverage 147

endsWith matcher 30
enterprise application

building blocks, data store 194
building blocks, process 194

[290]

building blocks, what 194
building blocks, who 194
controller logic component 195
persistence logic layer 195
view component 195

error categories, FindBugs plugin
bad practice 162
correctness bug 162
dodgy errors 163

ErrorCollector rule
exploring 49, 50

Europa 11
exception handling

best practices 274-277
working with 19

ExpectedException rule
working with 48, 49

F
fake objects 99, 100
false positives

about 179
Sonar URL 179

final class
working with 237, 238

FindBugs
URL 158

FindBugs Eclipse plugin
update site URL 163

FindBugs plugin
error categories 162-165

first unit test
running 12
test condition verification, assertion

used 16-18
writing 13-16

flat directory repository 68
front controller 185

G
Galileo 11
Gang of Four (GoF) 235
Ganymede 11
generic matchers

avoiding 258
getConnection() method 197

getEnvironmentType() method 73
getInstance() method 235
Google CodePro AnalytiX 142
Gradle

about 59
automating 60
flat directory repository 68
ivy repository 68
Maven repository 66
quality, monitoring with

SonarQube 174-176
URL 60

Gradle plugin (Gradle JaCoCo plugin)
about 64
configuring 148-150
Eclipse plugin 64, 65
Java plugin 65-74

greenfield code
working with 241-251

greenfield project 215
Groovy 59

H
hasItem, collection matchers 29
hasItems, collection matchers 29
Helios 11
Hotspot view 172

I
Indigo 11
indirect testing

examples 257
inline stubbing

working with 134
installation

Maven 75
integration tests

writing, with Spring 209-212
invocation order

verifying 130, 131
ivy repository 68

J
J2EE web application

building 182-185

[291]

unit testing 182-185
jaCoCo plugin 149
JaCoCo tool 143
Java code coverage tools

Clover 142
Cobertura 142
EMMA 142
JaCoCo 143

Java Development Kit (JDK) 75
Java Development Tools (JDT) 65
Java plugin

about 65-74
used, for creating Gradle build script 65-72

Java Virtual Machine (JVM) 59
JBehave

URL 137
JBehave framework 135
JDBC code

testing 208, 209
JDBC JAR

URL 204
Jenkins

about 23, 85
Ant project, building 93, 94
configuring, for Maven build job

execution 92, 93
Gradle plugin, installing in 87-91
installation, URL 85, 87
wiki, URL 94

jMock framework
URL 137

JUnit 10
JUnit 4

@AfterClass annotation 13
@Before annotation 13
@RunWith annotation 20
@Test annotation 12
advantages 11
Eclipse, setting up 11, 12
exception handling, working with 19

JUnit 4++
assumption, using 23, 24
test, executing in order 21, 22
test, ignoring 20, 21
test suite, exploring 25

JUnit (4.11)
URL 10

JUnit categories
exploring 55

JUnit rules
about 47
ErrorCollector rule 49, 50
ExpectedException rule 48, 49
external resources, handling 53-55
TemporaryFolder rule 49
TestName rule 53
TestWatcher rule 51, 52
timeout rule 47, 48
Verifier rule 50

JUnit test automation
benefits 261

JUnit theory
@DataPoint annotation 40
@DataPoints annotation 41
@ParametersSuppliedBy annotation 41
@Theory annotation 40
about 40
data externalization, @Parameters

SuppliedBy used 44-47
exploring 41, 42
ParameterSupplier annotation 41
Theories annotation 41

Juno 11

K
KEPLER (4.3) 11

L
legacy code (legacy)

working with 216
loadDriver() method 197
Luna 11

M
matchers

equalTo method 27
not attribute 27

Matchers.argThat(Matcher) method 117
Maven

about 75
build life cycle 80
clean life cycle 81

[292]

Cobertura plugin 150
configuring, for Cobertura report

generation 150, 151
dependency scopes, compile 79
dependency scopes, provided 79
dependency scopes, runtime 79
dependency scopes, test 79
installation setup 75
quality, monitoring with

SonarQube 176, 177
site life cycle 81

Maven central repository 66
Maven Cobertura plugin

working with 150-152
Maven local repository 67
maven() method 67
Maven repository

about 66
Maven central repository 66
Maven local repository 67

method invocation
verifying 114
verifying, methods 114, 115
verifyNoMoreInteractions(Object... mocks)

method 116
verifyZeroInteractions(Object... mocks)

method 116
MethodSorters.DEFAULT constant 22
MethodSorters.JVM constant 22
MethodSorters.NAME_ASCENDING

constant 22
mock

creating 108
mocking details

determining 134
Mockito

BDD 135
configuring 105
consecutive calls, stubbing 121
default setting, changing 132
exceptional conditions, testing 120
features 104
in action 106-108
objects, mocking 108-110
object, spying 124
stubbing methods 111-113
stubbing, with Answer 124

stubbing, with Answer interface 122, 123
test execution delay, reasons 104
unit testing 104
URL 103
working with 103

Mockito annotations
@Captor 134
@InjectMocks 134
@Spy 134
exploring 134

mock objects
about 100, 101
resetting 133

Model View Controller (MVC)
controller 181
model 181
servlets, unit testing 181, 182
view 181

N
never() method 115
new operator 238
N-tier architecture model 181

O
object-oriented programming (OOP) 135
only() method 115

P
parameterized constructors

used, for building tests 34-37
parameterized tests

building, with constructor 34-37
constructor 34-37
creating 34
drawbacks 40
methods 38
naming 39
running, @Parameter annotation used 38
timeouts, working with 39

partial mock 124
persistence logic

unit testing 195-203
PhoneBookDerbyDao class 204

[293]

PMD plugin
URL 165
working with 165

PMD tool 158
POM file 78
PotentialAssignment class 44
PowerMock 110
PowerMockito 110
private methods

working with 230-232
process, building blocks 194
Project Object Model. See POM file

Q
quality

improving, with Sonar Eclipse
plugin 172-174

monitoring, with Ant and SonarQube 178
monitoring, with Gradle and

SonarQube 174-177
monitoring, with SonarQube and Ant 178

Quality Assurance (QA) 251

R
reset method 133
retrieveEncounters() method 282
RETURNS_DEFAULTS setting 132
RETURNS_MOCKS setting 132
RETURNS_SMART_NULLS setting 132
runtime dependencies 69

S
sanity check 9
selling point (USP) 59
SingletonDependency class 235
site life cycle, Maven 81
SONAR 23
Sonar Eclipse plugin

download, URL 172
used, for quality improvement 172-174

SonarQube
about 166
and Ant, used for quality monitoring 178
configuring, steps 167
features 166

quality, monitoring with Ant 177-179
quality, monitoring with Gradle 174-176
quality, monitoring with Maven 176, 177
URL 167

SonarQube runner
used, for code analyzing 168-172

sonar:sonar command 177
Spring

used, for integration test writing 209-212
Spring JDBC

implementing, steps 205-207
Spring MVC

about 186-188
request handling mechanism 186
Spring web application, building 186-191

spy 101, 102
spy object 124
StaticBlockOwner class 240
static code analysis

about 156
automated tools 157
metrics 156, 157

static methods 234
string matchers

containsString matcher 30
endsWith matcher 30
startsWith matcher 30

stub 99
subtask

ordering, doFirst closure used 61, 62
ordering, doLast closure used 61, 62
super.setUp() method 266, 267
super.tearDown() method 266, 267

SurveyResultCompiler class 243

T
target folder

cobertura 152
generated-classes 152
site 152
surefire-reports 152

task
--daemon option 63, 64
about 60
creating 61
daemon process 63

[294]

default tasks 62
dependency 62, 63
executing 60
subtasks 61

TDD
about 10, 215
benefits 251
life cycle 241

TemporaryFolder rule
unfolding 49

test
about 9
executing, in order 21, 22
ignoring 20, 21

testability design
class-level variable initialization,

overcoming options 230
constructor issues, identifying 226-228
final classes, working with 236-238
final methods, working with 232-234
initialization issues, realizing 229
new operator 238, 239
private methods, working with 230-232
static block 240
static method issues 234-236
static variables 240

testCompile dependencies 69
test configuration

data, loading from files 266
dates, working with 270, 271
in-memory tests, running 262
locales, working with 268, 269
principles 262
side effects, avoiding 268
static variables, avoiding 263, 264
super.setUp() method, invoking 266, 267
super.tearDown() method,

invoking 266, 267
test execution order, assuming 265, 284
Thread.sleep, using 262
unit tests, benefits 261
unit tests, separating from production

code 262
test control logic

refactoring 280, 281

test doubles
about 97
categories 97

test doubles, category
dummy 98
fake 99, 100
mock 100, 101
spy 101, 102
stub 98, 99

test-driven development. See TDD
testing impediment

displaying 226
testing logic

inserting, into production code 281-283
testMe() method 239
Test method 281
TestName rule

working with 53
testRuntime dependencies 69
tests

writing, best practices 254-260
test smells

duplicates, refactoring 278, 279
engineered tests, refactoring 283-285
test control logic, refactoring 280, 281
test logic, removing from

production code 281-283
test suite

exploring 24, 25
TestWatcher rule 51, 52
thenAnswer(Answer answer) method 112
thenCallRealMethod() method 112
thenReturn method 126
thenReturn(x) method 112
thenThrow(x) method 112
Theories annotation 41
ticket booking logic 218
Time Machine view 172
timeout rule

playing with 47
timeouts

working with 39
times(int wantedNumberOfInvocations)

method 114

[295]

U
unit testing

about 9, 10, 253
code-driven unit frameworks, for Java 10
code, impediments 216-224

unit test, principles
effortless execution 105
Formula 1 execution 105
Order independent and isolated 104
trouble-free setup and run 105

unit tests 217

V
Verifier rule

working with 50
verify() method 114
verifyNoMoreInteractions(Object... mocks)

method 116

verifyZeroInteractions(Object... mocks)
method 116

void methods
stubbing 126-128

W
what, building blocks 194
when_ten_percent_gain_then_the_stock_is_

sold method 113
who, building blocks 194
wildcard matchers 118
willAnswer method 137
willCallRealMethod() method 137
will method 137
willReturn method 137
willThrow method 137

X
XML namespaces 178

Thank you for buying
Mastering Unit Testing Using Mockito

and JUnit

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Test-Driven Development
with Mockito
ISBN: 978-1-78328-329-3 Paperback: 172 pages

Learn how to apply Test-Driven Development and
the Mockito framework in real life projects, using
realistic, hands-on examples

1. Start writing clean, high quality code to apply
Design Patterns and principles.

2. Add new features to your project by applying
Test-first development—JUnit 4.0 and Mockito
framework.

3. Make legacy code testable and clean up
technical debts.

Instant Eclipse Application Testing
How-to
ISBN: 978-1-78216-324-4 Paperback: 62 pages

An easy-to-use guide on how to test Java applications
of any scope using Eclipse IDE

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Learn how to install Eclipse and Java for
any platform.

3. Get to grips with how to efficiently navigate in
the Eclipse environment using shortcuts.

Please check www.PacktPub.com for information on our titles

Instant Mockito
ISBN: 978-1-78216-797-6 Paperback: 66 pages

Learn how to create stubs, mocks, and spies and verify
their behavior using Mockito

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Stub methods with callbacks.

3. Verify the behavior of test mocks.

Instant Mock Testing with
PowerMock
ISBN: 978-1-78328-995-0 Paperback: 82 pages

Discover unit testing using PowerMock

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Understand how to test unit code using
PowerMock, through hands-on-examples.

3. Learn how to avoid unwanted behavior of code
using PowerMock for testing.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: JUnit 4 – A Total Recall
	Defining unit testing
	Working with JUnit 4
	Setting up Eclipse
	Running the first unit test
	Exploring annotations
	Verifying test conditions with Assertion

	Working with exception handling
	Exploring the @RunWith annotation

	Working with JUnit 4++
	Ignoring a test
	Executing tests in order
	Learning assumptions
	Exploring test suite
	Asserting with assertThat
	Comparing matchers – equalTo, is, and not
	Working with compound value matchers – either, both, anyOf, allOf, and not
	Working with collection matchers – hasItem, and hasItems
	Exploring string matchers – startsWith, endsWith, and containsString
	Exploring built-in matchers
	Building a custom matcher

	Creating parameterized tests
	Working with parameterized constructors
	Working with parameterized methods
	Giving a name

	Working with timeouts
	Exploring JUnit theories
	Externalizing data using @ParametersSuppliedBy and ParameterSupplier

	Dealing with JUnit rules
	Playing with the timeout rule
	Working with the ExpectedException rule
	Unfolding the TemporaryFolder rule
	Exploring the ErrorCollector rule
	Working with the Verifier rule
	Learning the TestWatcher rule
	Working with the TestName rule
	Handling external resources

	Exploring JUnit categories

	Summary

	Chapter 2: Automating JUnit Tests
	Continuous Integration
	Benefits of CI
	Gradle automation
	Getting started
	Gradling
	Gradle plugins

	Maven project management
	Installation
	The Archetype plugin
	The Project Object Model (POM) file
	Project dependency
	The build life cycle
	The clean life cycle
	The site life cycle

	Another Neat Tool (ANT)

	Jenkins
	The Gradle project
	The Maven project
	Building the Ant project

	Summary

	Chapter 3: Test Doubles
	Dummy
	Stub
	Fake
	Mock
	Spy
	Summary

	Chapter 4: Progressive Mockito
	Working with Mockito
	Why should you use Mockito?
	Qualities of unit testing

	Drinking Mockito
	Configuring Mockito
	Mocking in action
	Mocking objects
	Stubbing methods
	Verifying the method invocation
	Using argument matcher
	Throwing exceptions
	Stubbing consecutive calls
	Stubbing with an Answer
	Spying objects
	Stubbing void methods
	Capturing arguments with ArgumentCaptor
	Verifying the invocation order
	Changing the default setting
	Resetting mock objects
	Exploring Mockito annotations
	Working with inline stubbing
	Determining mocking details

	Behavior-driven development with Mockito
	Writing tests in BDD style
	The BDD syntax

	Summary

	Chapter 5: Exploring Code Coverage
	Understanding code coverage
	Learning the inner details of code instrumentation

	Configuring the Eclipse plugin
	Uncovering the Clover plugin
	Working with the EclEmma plugin
	Examining the eCobertura plugin

	Measuring coverage using Gradle
	Working with the Maven Cobertura plugin
	Running the Cobertura Ant task
	Summary

	Chapter 6: Revealing Code Quality
	Understanding the static code analysis
	Working with the Checkstyle plugin
	Exploring the FindBugs plugin
	Working with the PMD plugin
	Monitoring code quality with SonarQube
	Running SonarQube
	Analyzing code with the SonarQube runner
	Improving quality with the Sonar Eclipse plugin
	Monitoring quality with Gradle and SonarQube
	Monitoring quality with Maven and SonarQube
	Monitoring quality with Ant and SonarQube

	Getting familiar with false positives
	Summary

	Chapter 7: Unit Testing the Web Tier
	Unit testing servlets
	Building and unit testing a J2EE web application

	Playing with Spring MVC
	Summary

	Chapter 8: Playing with Data
	Separating concerns
	Unit testing the persistence logic
	Simplifying persistence with Spring
	Verifying the system integrity
	Writing integration tests with Spring
	Summary

	Chapter 9: Solving Test Puzzles
	Working with the legacy code
	Working with testing impediments

	Designing for testability
	Identifying constructor issues
	Realizing initialization issues
	Working with private methods
	Working with final methods
	Exploring static method issues
	Working with final classes
	Learning the "new" concern
	Exploring static variables and blocks

	Working with greenfield code
	Summary

	Chapter 10: Best Practices
	Writing meaningful tests
	Improving readability
	Breaking everything that could possibly break
	Ignoring trivial test cases
	Verifying invalid parameters
	Relying on direct testing
	Staying away from debugging
	Avoiding generic matchers
	Keeping away from @ignore
	Eluding debug messages

	Automating JUnit tests
	Configuring tests
	Running in-memory tests
	Staying away from Thread.sleep
	Keeping unit tests away from the production code
	Avoiding static variables
	Assuming the test execution order
	Loading data from files
	Invoking super.setUp() and super.tearDown()
	Staying away from side effects
	Working with locales
	Working with dates

	Working with assertions
	Using the correct assertion
	Maintaining the assertEquals parameter order
	Striving for one assertion per test

	Handling exceptions
	Working with test smells
	Refactoring duplicates
	Refactoring the test control logic
	Removing test logic from production code
	Refactoring over engineered tests

	Summary

	Index

