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Abstract 

Impaired consciousness occurs suddenly and unpredictably in people with epilepsy, markedly 

worsening quality of life and increasing risk of mortality.  Focal seizures with impaired 

consciousness are the most common form of epilepsy, and are refractory to all current medical 

and surgical therapies in about one sixth of cases.  Restoring consciousness during and 

following seizures would be potentially transformative for these individuals.  Here, we 

investigate deep brain stimulation to improve level of conscious arousal in a rat model of focal 

limbic seizures.  We found that dual-site stimulation of the thalamic intralaminar central lateral 

nucleus (CL) and pontine nucleus oralis (PnO) bilaterally during focal limbic seizures restored 

normal-appearing cortical electrophysiology and markedly improved behavioral arousal.  In 

contrast, single-site bilateral stimulation of CL or PnO alone was insufficient to achieve the 

same result. These findings support the ‘network inhibition hypothesis’ that focal limbic 

seizures impair consciousness through widespread inhibition of subcortical arousal.  Driving 

subcortical arousal function would be a novel therapeutic approach to some forms of refractory 

epilepsy and may be compatible with devices already in use for responsive neurostimulation.  

Multi-site deep brain stimulation of subcortical arousal structures may benefit not only patients 

with epilepsy, but also other disorders of consciousness.  
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Statement of purpose 

We aimed to demonstrate a proof-of-principle improvement in electrophysiological and 

behavioral measures of consciousness during seizures with contemporaneous stimulation of 

multiple arousal nuclei.  We hypothesized that electrically stimulating some combination of one 

or more known arousal nuclei would lead to mitigation or complete reversal of the loss of 

consciousness associated with focal limbic seizures.   

 

Introduction 

Impaired consciousness associated with refractory seizures severely impacts the productivity, 

safety, and quality of life of patients suffering from epilepsy (1-3).  In addition, impaired 

consciousness during seizures is associated with a crippling social stigma that is only mitigated 

by complete seizure control, something that is out of reach for nearly a quarter of all patients 

with epilepsy.  Neurostimulation has grown in recent years as a treatment for refractory 

epilepsy, but still leaves many patients without complete seizure freedom (4-6).  For these 

patients, a strategy aimed at improving quality of life, morbidity, and mortality despite ongoing 

seizures could be highly beneficial. 

 

Consciousness depends on several functions including: 1. specific sensorimotor and other 

systems constituting the content of consciousness; and 2. systems regulating the overall level of 

consciousness manifested as awareness, attention, and basic conscious arousal(3, 7-11).  

Importantly conscious arousal, which distinguishes coma or deep sleep from the alert state, can 

be assessed by relatively simple behavioral and physiological observations and forms the crucial 
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necessary first step enabling other higher-order aspects of consciousness to occur(9).  The 

mechanism by which consciousness is lost during and after temporal lobe, focal limbic seizures 

has been explored and consolidated in the “network inhibition hypothesis”(3, 12) (Fig. 1 A).  

Recent animal studies (13-17) and human data (18-21) point to functional de-afferentation of 

the cortex as central to the loss of consciousness (10, 22).  Inhibition of subcortical arousal 

structures including the upper brainstem reticular formation and one of its direct targets, the 

intralaminar thalamus during seizures, may result in cortical states resembling deep sleep or 

coma (3) (Fig. 1 A).  The effect on subcortical arousal structures themselves are characterized by 

decreased ictal firing rate and decreased cholinergic release from intralaminar thalamic 

neurons, decreased fMRI BOLD signal from the intralaminar thalamic region, and decreased 

ictal firing rate of serotonergic medullary raphe neurons, among others(14, 23).  Thus, 

therapeutic activation of these subcortical arousal structures could attenuate the loss of 

consciousness experienced in focal limbic seizures (Fig. 1 B).  

 

Previous studies investigating the intralaminar thalamus and pontine reticular formation 

provide a basis for further exploration.  The general role of intralaminar thalamus in attention, 

arousal, and consciousness, has been repeatedly described over many years (24-28).  More 

recently, electrical stimulation of this region in animal models and humans has yielded 

promising results regarding its capacity to improve arousal during pathologic states of 

decreased consciousness (13, 29).  Likewise, early stimulation studies in the upper brainstem 

reticular formation also showed electrophysiological wake-like cortical activity in animals under 

anesthesia (30, 31).  However, the use of electrical stimulation of these subcortical arousal 



  Kundishora 

  

8 

regions to maintain or improve consciousness during a seizure has not previously been 

described.  

 

Relative to more common applications of therapeutic neurostimulation for movement 

disorders or aborting/preventing seizures, targets and methods for promoting consciousness 

are poorly developed (32).  Therefore, we propose a new strategy for addressing the loss of 

consciousness in focal limbic seizures based on the current proof-of-principle pre-clinical study.  

We electrically stimulated both the central lateral nucleus of the intralaminar thalamus (CL) and 

the pontine nucleus oralis (PnO, a member of the pontine reticular formation) in anesthetized 

and awake behaving animals during focal limbic seizures.  By assessing electrophysiological and 

behavioral metrics of consciousness, we provide evidence that deep brain stimulation can 

reduce cortical slow-wave activity, increase multi-unit cortical activity, and increase behavioral 

arousal during seizures.  

 

Methods 

Animals 

The Yale University Institutional Animal Care and Use Committee approved all procedures.  

Adult female Sprague-Dawley rats weighing 200-280 grams (Charles River Laboratories) were 

used.  

 

Surgery and electrode implantation 
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The animal model of focal limbic seizures was prepared as described previously (15) with the 

modifications described below.  Animals were deeply anesthetized with an intramuscular 

injection of 80-90 mg/kg ketamine (Henry Schein Animal Health, Ashburn, VA, U.S.A.) and 15 

mg/kg xylazine (AnaSed; Lloyd Laboratories, Quezon City, Philippines).  Craniotomies were 

placed stereotactically over sites of planned electrode placement, as well as for 4-5 stainless 

steel anchoring screws (0-80 x 3/32; PlasticsOne, Roanoke, VA, U.S.A.) and a ground screw 

(E363-20; PlasticsOne) (Supp. 1 A).  

 

To monitor changes in cortical physiology with focal limbic seizures and deep brain stimulation 

we chose to record from lateral orbital frontal cortex (LOFC).  This region demonstrates typical 

ictal and postictal slow wave activity as well as changes in functional neuroimaging, which are 

also present in other widespread cortical regions in both animal models and human studies(13-

16, 18, 19). 

 

All coordinates are reported as final electrode tip locations in reference to bregma(33).  For 

‘acute preparations’, a single tungsten monopolar micro-electrode (UEWMGGSEDNNM; FHC, 

Bowdoin, ME, U.S.A.) with an impedance of 2-4 MΩ was implanted at an approach angle of 20 

degrees from vertical to record local field potentials in the right lateral orbitofrontal cortex 

(LOFC); anterior-posterior (AP) +4.2 mm, medial-lateral (ML) -2.2 mm, superior-inferior (SI) -4.2 

mm (33).  In order to overcome the stimulation artifact that obscures multi-unit data, a second 

differential recording electrode was custom modified by affixing two tungsten monopolar 

electrodes (UEWMGGSEDNNM; FHC) with impedances of 3-4 MΩ together with bonding 



  Kundishora 

  

10 

cement (Krazy glue, Elmer’s Products, Inc. Westerville, OH) such that their tips were separated 

by less than 0.5 mm and it was implanted at an approach angle of 20 degrees from vertical in 

the left lateral orbitofrontal cortex; AP +4.2, ML +2.2, SI -4.2 mm.  This unique configuration of 

two high impedance electrodes in close proximity had the effect of subtracting out the large 

shared noise signal while preserving the independent neuronal signals close to each electrode 

tip.  For ‘chronic preparations’, a stainless-steel twisted-pair bipolar electrode (E363-2-2TW; 

PlasticsOne) cut to 20 mm and with electrode tips separated by 1 mm in the coronal plane was 

implanted at an angle of 20 degrees into the right lateral orbitofrontal cortex (AP +4.2, ML -2.2, 

SI -4.2 mm).  Hippocampal electrodes were bilaterally implanted for acute preparations in order 

to mitigate hippocampal fatigue whereas in chronic preparations a unilateral electrode was 

placed, secondary to space limitations.  Twisted pair bipolar electrodes with tips separated by 1 

mm, insulation shaved to 0.5 mm, and electrode tips in the coronal plane were implanted into 

the dorsal hippocampus (HC) (AP -3.8, ML ± 3.4, SI -3.6 mm).  For acute and chronic 

preparations involving the central lateral intralaminar thalamus (CL), two twisted-pair bipolar 

electrodes with electrode tips in the sagittal plane were implanted in bilateral CL (AP -2.8; ML ± 

1.4; SI -5.2 mm).  For acute and chronic preparations involving the pontine nucleus oralis (PnO), 

two twisted-pair bipolar electrodes with electrode tips in the sagittal plane were implanted at 

an approach angle of 20 degrees in bilateral PnO (AP -8.0; ML ± 1.4; SI -8.0 mm).  

 

In chronic experiments, electrodes were firmly cemented to nearby anchoring screws with 

dental cement (Lang Dental Manufacturing, Wheeling, IL, U.S.A.).  All electrode pins except for 

the ground pin were carefully bent and placed into two, 6-pin pedestals (MS363; PlasticsOne). 
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The ground pin was bonded to the outside of the caudal-most pedestal (Krazy glue, Elmer’s 

Products, Inc.) and the whole assembly was sealed with silicon sealant for insulation (Kwik-cast, 

World Precision Instruments, Inc. Sarasota, FL, U.S.A.).  Skin was reapproximated with 

interrupted silk sutures (Surgical Specialties Corp., Vancouver, BC, Canada) around each 

pedestal.  Chronic recordings began at least 48 hours postoperatively.  

 

In a set of different animals, additional implantations in the central medial (CM), ventromedial 

(Vm), and deep mesencephalic (DpMe) nuclei were performed during an exploratory phase in 

which multiple known arousal nuclei were tested for effect of stimulation under anesthesia and 

seizure (see Appendix B).    

 

Electrophysiology and video recording procedures  

We performed electrophysiological recordings under the following conditions: (1) Acute 

experiments under deep anesthesia were performed with ketamine/xylazine 80-90/15 mg/kg 

anesthesia, injected intramuscularly, resulting in the presence of continuous cortical slow 

waves during which no seizures were triggered; (2) acute experiments under light anesthesia 

were done after animals had recovered from deep anesthesia to a state whereby slow waves 

occurred at approximately <3 waves per 10 s of recordings as described previously (15); (3) 

experiments in chronically implanted, behaving animals were performed in the awake state, 

under deep anesthesia, under anesthesia-induced sleep with a low dose of intramuscular-

injected ketamine/xylazine 15/3 mg/kg, or during naturally occurring sleep.  
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Stimulations of CL and/or PnO were generated by independent isolated pulse stimulators 

(Model 2100, A-M systems, Sequim, WA, U.S.A.).  For all experiments, CL and PnO stimulus 

parameters were titrated per animal in the acute setting under deep anesthesia, unilaterally on 

each side to determine effective stimulus parameters to produce physiologic cortical arousal.  

Stimulations in acute animals under deep anesthesia and in chronically implanted animals 

under anesthesia or during sleep were 20 s duration.  Stimulations during focal limbic seizures 

were 120 s.  This duration was chosen to include the majority of the seizure in most cases 

(mean seizure duration = 57.9 ± 8.4 s) and often included part of the postictal period.  Stimulus 

frequencies were chosen based on prior work (13) and pilot experiments (not shown) 

demonstrating that a frequency of approximately 100 Hz was most effective in CL and 

approximately 50 Hz in PnO to produce cortical physiological arousal.  Stimulus current 

amplitudes were then titrated individually per animal.  CL was initially stimulated with a square 

biphasic pulse (0.5 ms/phase) at 100 Hz (13) in a range from 150 – 400 µA per side during 

titration.  The eventual acute experimental amplitudes of stimulation fell between 150 – 400 µA 

split bilaterally (approximately 75 – 200 µA per side); the higher amperages during titration 

were tested to ensure a lack of afterdischarges or seizure induction from the stimulation.  PnO 

was stimulated in acute experiments with a square biphasic pulse (0.5 ms/phase) at 50 Hz and 

titration was in the same fashion as CL (range 35 – 200 µA unilaterally, or 70 – 400 µA split 

bilaterally).  Sham stimulation of CL and PnO was performed with 0.2 µA split bilaterally. 

 

For chronic experiments, a secondary titration was performed at least 48 hr post-operatively to 

account for any change in electrode impedance secondary to gliosis at the intraparenchymal 
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electrode tip.  Stimulus titration was again performed under deep anesthesia without seizures.  

Final ranges of stimulation delivered bilaterally in all experiments were as follows: acute PnO 

only 70 – 400 µA; acute CL only 400 µA; chronic PnO only 70 – 400 µA; dual site CL: 150 – 350 

µA, PnO 50 – 300 µA.  For these stimuli delivered bilaterally the current reaching each side was 

approximately 50 % of the total. 

 

Focal limbic seizures in acute and chronic experiments were induced with a two-second 

biphasic square pulse at 60 Hz in the unilateral hippocampus (1 ms/phase) generated by a WPI 

linear stimulus isolator (Model A395, World Precision Instruments, Inc.) with current ranging 

from 100 µA to 1.5 mA, adjusted to obtain focal hippocampal seizures of at least 15 s duration, 

without generalization of poly-spike discharges to LOFC.  Stimulations were manually triggered 

by keyboard input via custom Spike2 (version 5.2, CED, Cambridge, U.K.) scripts running 

through a digital-to-analogue converter (Power 1401; CED). Seizures in acute experiments were 

induced from a state of light anesthesia as described previously (14, 15).  Seizures in chronically 

implanted animals were induced in the awake state.  In one animal seizures were induced 15 

minutes after administration of 0.9 mg/kg diazepam IM to prevent seizure generalization as 

described previously (16). 

 

CL and PnO stimulations done under low-dose anesthesia without seizures in chronically 

implanted animals were performed after intramuscular injection of approximately 15 mg/kg 

ketamine and 3 mg/kg xylazine.  This dose was selected to attain sufficient anesthetic depth to 

produce a state of slow-wave activity and behavioral arrest without deepening anesthesia to 
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surgical depth.  CL only, PnO only, and dual-site stimulation were also performed during periods 

of naturally occurring sleep.  In all cases sham stimulations (0.2 µA split bilaterally) of CL and 

PnO were alternated with true stimulations.   

Recordings of cortical, HC, CL, and PnO signals were done on separate channels of 

microelectrode amplifiers (A-M systems Model 1800). In acute recordings from LOFC where 

high impedance FHC electrodes were used, local field potentials (LFP) were recorded via the 

monopolar electrode and multi-unit activity (MUA) was recorded via the custom-assembled 

differential recording electrode described above. MUA was recorded with 1000X amplifier gain 

and then high pass filtered at 400 – 10,000 Hz with an additional 2.0 dB gain using a digital filter 

(Model 3364; Krohn-Hite, Brocton, MA, U.S.A.). LFP signals for acute recordings were recorded 

with 1000X amplifier gain and filtered at 1 to 500 Hz.  Cortical LFP were further low pass filtered 

at 100 Hz with an additional 1.5 dB gain using a digital filter (Model 3364; Krohn-Hite). 

 

In chronically implanted animals, in which only bipolar LFP electrodes were used for recording 

and stimulation, two 6-pin connector wires (PlasticsOne) were connected to a single 12 pin 

commutator (PlasticOne).  The commutator was then connected to the head stages of the A-M 

Systems amplifiers using 2 customized 6-pin connectors (363SL-6; PlasticsOne). The ground 

wire was connected separately to a common ground inside the Faraday cage, which in turn was 

connected to the building ground.  HC, CL, PnO, and cortical signals were filtered at 1-500 Hz on 

the recording amplifiers with 1000X gain.  Cortical LFP activity was then further filtered with a 

50 Hz lowpass filter with an additional 1.5 dB gain via a digital filter (Model 3364; Krohn-Hite).   
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All signals in both acute and chronic experiments were digitized with an analog-to-digital 

converter (Power 1401; CED) using Spike2 (Version 5.2; CED). Cortical and HC LFP were sampled 

at 1000 Hz; cortical MUA was sampled at 20,000 Hz.  For chronic recordings, electrophysiology-

synchronized video was captured with a digital camera (Hercules, La Gacilly, France) and 

recorded with Spike2 Video Recorder (CED).  

 

After completing all electrophysiological recordings, animals were sacrificed with a 0.5 mL 

intraperitoneal injection of pentobarbital sodium and phenytoin sodium solution (Euthasol; 

Virbac, Fort Worth, TX, U.S.A.) for histologic localization of electrodes.  

 

Histology 

Animals were perfused transcardially with 0.1 % heparinized phosphate-buffered saline (PBS) 

(APP Pharmaceuticals, Lake Zurich, IL, U.S.A.) followed by 4 % paraformaldehyde (JT Baker, 

Center Valley, PA, U.S.A.) in PBS.  The brain was then removed and post-fixed for at least 48 

hours in 4 % paraformaldehyde (PFA) in PBS at 4o C.  Brains were washed three times in PBS in 

preparation for slicing, placed in 2 % agarose gel (American Bioanalytical, Natick, MA, U.S.A.) 

and cut at 100 µm on a Vibratome (Leica Microsystems, Wetzlar, Germany).  Slices were 

mounted on polarized slides (ThermoScientific, Waltham, MA, U.S.A.) and dried for at least 72 

hours.  Slides were stained with cresyl violet using a manufacturer-recommended protocol for 

reagents (FD NeuroTechnologies, Columbia, MD, U.S.A.) in order to confirm electrode location.  

Slides were then cover-slipped with Permount (Fisher Chemicals, Pittsburg, PA, U.S.A.). Images 

of slices were taken at 40X magnification on a compound light microscope (Carl Zeiss, 
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Oberkochen, Germany), imaged with a digital camera (Motic, Hong Kong), and digitally stitched 

together (Microsoft Image Composite Editor, Redmond, WA, U.S.A.).  Electrode locations for 

PnO were confirmed when they fell ventral to the superior cerebellar peduncle, lateral to the 

paramedian raphe nucleus, medial to the ventral nucleus of the lateral lemniscus, and dorsal to 

both the ventrolateral tegmental area and the reticulotegmental nucleus of the pons (Supp. 1 

B).  Electrode locations for CL were confirmed when they fell no more than 1.5 mm ventral to 

the hippocampus, in the dorsal thalamus, and were just lateral to the stria medullaris/lateral 

habenula complex or the mediodorsal thalamic nucleus (Supp. 1 C).    

 

 

Data analysis and statistics  

Data were analyzed in Spike2 (CED) and Microsoft Excel (Microsoft, Redmond, WA, U.S.A.).   

Analysis epochs were defined as follows:  During experiments under deep anesthesia, the Pre-

DBS epoch was defined as the 20 s immediately prior to stimulation; intra-DBS was defined as 

the whole 20 s stimulation; post-DBS was defined as the 20 s immediately following 

stimulation.  For timecourse analysis following DBS we also used 10 s epochs extending from 0 

to 60 s after DBS.  During all other experiments, the baseline epoch was defined as the 30 s 

immediately preceding hippocampal stimulation; ictal pre-DBS was defined as the time 

immediately following hippocampal stimulation to the time immediately preceding PnO or CL 

stimulation; ictal DBS was defined as the time during which DBS and seizure were occurring 

simultaneously; postictal DBS was defined as the time immediately following seizure, during 

DBS; postictal post-DBS was defined as the 30 s immediately following the termination of DBS.   
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Any seizures exhibiting secondary generalization based on poly-spike discharges in the frontal 

cortical LFP during the analysis epochs were excluded (34).  For each epoch, cortical LFP power 

was determined by fast Fourier transform (bin size 1/1.024 Hz, non-windowed). In all trials, 

power was then normalized to the maximum power in the baseline epoch. Multi-unit data were 

first spike sorted in Spike2 (CED) using the template-matching method to identify up to 3 units 

per recording session.  To distinguish periodic unit firing versus more continuous tonic firing, 

autocorrelograms were generated in Spike2 (see Fig. 4 B for examples) and further analyzed in 

Excel. Periodicity was quantified from the autocorrelograms by taking the average amplitudes 

(absolute value) of the first minimum (greatest anti-correlation) and first maximum (greatest 

correlation) moving away from time zero.  During epochs where there was no periodic firing 

(typically the baseline and ictal DBS epochs, see Fig. 4 B), the maximum and minimum times of 

the ictal pre-DBS epoch from the same trial were applied to the other epochs for purposes of 

direct comparison. Average spike rate within each epoch was calculated using Spike2 (CED).  

 

During trials in chronically implanted animals, behavioral level of arousal was measured using a 

modified version of a scale previously developed and used in this animal model (13, 16).  A 

score of 0 – 4 was assigned for each epoch: 0 for no exploratory behavior with the animal lying 

on its side or lying asleep; 1 for being upright/lying awake with its ventral surface on the floor of 

the cage (righting reflex intact); 2 for forepaw exploratory movements on the floor of the cage 

or actively sniffing the floor of the cage; 3 for forepaws used to explore the sides of the cage; 4 

for locomotion requiring movement of both forelimbs and hind limbs.  The highest behavioral 
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score achieved in an epoch was assigned as the score for that epoch. Scoring of all epochs was 

performed by each of two observers, one of whom was blinded to epoch identity and 

stimulation (sham or true) conditions.  Discrepancies of one point between observations were 

averaged.  No discrepancies of more than one point were assigned during the scoring for any 

epoch, suggesting relatively good inter-observer reliability.   

 

Between 2 and 9 focal limbic seizures or stimulations were obtained during experiments in each 

animal.  In all analyses, intra-animal data were averaged before performing group analysis so 

that the sample size equaled the number of animals.  This approach provides a more 

conservative estimate of sample size; however, similar results were obtained in all cases if 

group analyses were instead performed by total numbers of seizures or stimulations (data not 

shown).  Data are reported as group mean ± standard error of mean. Statistical significance was 

assessed by two-tailed Student’s t-test with threshold p = 0.05 corrected for multiple 

comparisons using the Bonferroni-Holm method.  

 

Statement of labor 

All acute PnO, CM, Vm, and DpMe implantations were performed by Adam Kundishora. 3 acute 

implantations of CL only were performed by a fellow medical student. All chronic implantations 

of PnO and PnO + CL were performed by Adam Kundishora. All acute histology was performed 

by Adam Kundishora. 6 chronically implanted animals were histologically prepared by an 

undergraduate student, then analyzed photographically by Adam Kundishora. All data analysis, 

statistics, and figure generation was done by Adam Kundishora.  
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Results 

Cortical physiological arousal with PnO stimulation under deep anesthesia 

We electrically stimulated bilateral pontine nucleus oralis (PnO) in animals under deep 

anesthesia to determine stimulus parameters (see Methods) effective in producing 

physiological cortical arousal as measured by increased cortical desynchronization and 

increased cortical tonic spiking rates.   

 

The large-amplitude 1-3 Hz slow waves that are prominent and continuous in the cortical LFP 

during deep anesthesia were eliminated during and after PnO DBS (Supp. 2).  Persistent cortical 

desynchronization during and after the stimulus was associated with a sustained increase in 

neuronal activity as measured by cortical MUA (Supp. 2 B middle and right trace).  No 

afterdischarges or seizure-like activity were measured in the PnO or hippocampal electrodes 

during or after stimulation with the current ranges used in our experiments.   

 

To quantify loss of low-frequency cortical activity, LFP power (normalized to the maximum pre-

stimulus power within animal) was measured in epochs immediately prior to, during, and after 

DBS.  We observed decreases in low-frequency power during and after DBS, especially in the 

delta-band frequencies (Supp. 2 C; n= 7 animals; 4 animals excluded due to inaccurate 

electrode placement).  This decrease persisted for over 60 s after stimulation (Supp. 2 D), and 

was not present with PnO sham DBS (Supp. 2 D; n= 7) or in animals in which the electrodes fell 



  Kundishora 

  

20 

outside the target area (data not shown; n= 4).  Average delta-band power (0-4 Hz) was 

significantly decreased (-73.5 ± 5.1 %) during DBS compared to pre-DBS (Supp. 2 E; n= 7; p< 

0.0001, Bonferroni-Holm corrected).  No significant change in delta-band power was measured 

with PnO sham DBS compared to the pre-DBS epoch (Supp. 2 E; n= 7; p= 0.58).  

 

Cortical physiological arousal with PnO stimulation during focal limbic seizures   

Animals that were initially anesthetized to surgical depth were allowed to recover to a level of 

light anesthesia indicated by a predominance of cortical fast activity on LFP as described 

previously (15, 16).  Focal limbic seizures were then induced with a 2 s hippocampal 

stimulation.  Approximately 10 s after seizure onset, during which time it was determined that 

there was no secondary generalization of the seizure, bilateral PnO were again stimulated at an 

amplitude between 70 and 400 µA, titrated per animal or 0.2 µA sham stimulation.  During 

seizures, prior to PnO DBS, we observed cortical slow waves (Fig. 2 A, B), previously known to 

occur during and after focal limbic seizures (15, 16, 19).  PnO DBS during the ictal and postictal 

states abolished cortical slow waves both during and after stimulation (Fig. 2 A, B).  PnO DBS 

was also associated with persistently increased cortical activity during and after stimulation as 

indicated by sustained MUA increases and persistently desynchronized cortical activity as 

indicated by a shift from phasic to tonic firing states (Fig. 2 A, B).  

 

Group analysis of cortical LFP showed decreases in low-frequency power during and after PnO 

stimulation both ictally and postictally (Fig. 3 A, B; n= 9; 9 animals excluded due to inaccurate 

electrode placement).  These changes appeared very similar to those seen under deep 
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anesthesia without seizures (Supp. 2 C).  Delta-band power during the ictal DBS epoch was 

significantly decreased as compared to the ictal pre-DBS epoch (-64.1 ± 5.0 %) (n= 9; p< 0.001, 

Bonferroni-Holm corrected) (Fig. 3 B, C). This was in contrast to the lack of a decrease seen with 

sham DBS (n= 7; p< 0.17).  Cortical delta band power during and after PnO DBS remained 

similar to baseline delta power, and significantly lower than sham stimulation delta-band power 

throughout all DBS and post-DBS time epochs (Fig. 3 B; n= 9 for DBS; n=7 for sham controls; 

ictal DBS p< 0.01; postictal DBS p< 0.02; postictal post-DBS p< 0.006, Bonferroni-Holm 

corrected).   In contrast, sham-DBS controls showed elevated cortical delta power throughout 

the ictal and postictal periods (Fig. 3 B) which appeared electrographically identical to the ictal 

pre-DBS epochs (Fig. 2). Although DBS significantly reduced cortical delta power, seizure 

duration, as defined by the hippocampal recording, was not significantly changed, lasting 72.2 ± 

15.4 s with DBS and 83.6 ± 16.9 s for sham controls (n= 9, 7 respectively; p= 0.64). 

 

In acute experiments under light anesthesia, we also investigated the effects of PnO stimulation 

on cortical neuronal firing to confirm that the observed LFP changes during focal limbic seizures 

indeed represented increased cortical arousal.  During seizures, prior to PnO DBS, the ictal slow 

waves were accompanied by alternating UP and DOWN states of neuronal firing (Fig. 2), similar 

to those seen under deep anesthesia and sleep (35).  During and after PnO DBS, tonic, 

desynchronized MUA was seen (Fig. 2, Fig. 4 A), similar to activity described previously for 

lightly anesthetized or awake states (15). Autocorrelograms for the baseline epoch exhibited 

desynchronous characteristics (Fig. 4 B left) whereas autocorrelograms for the ictal pre-DBS 

epoch showed periodic firing (Fig. 4 B middle).  PnO DBS was associated with a reversion of the 
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autocorrelogram to a desynchronous state (Fig. 4 B right).  Group analysis revealed that mean 

peak correlation values for the first period (see Methods) were significantly higher for the ictal 

pre-DBS epoch compared to both the baseline (n= 8; 1 excluded due to poor MUA signal; p< 

0.0001) and the ictal DBS (n= 8; p< 0.0001) epochs (p values Bonferroni-Holm corrected; Fig. 4 

C).  PnO DBS effectively decreased the degree of correlation to baseline levels such that there 

was no statistically significant difference between those two epochs (n= 8; p= 0.83).  

 

Mean spiking rate was also decreased during the transition from tonic firing at baseline to 

phasic firing during focal limbic seizures (Fig. 4 D, Ictal Pre-DBS).  PnO DBS restored the cortical 

spiking rate to near baseline levels in the ictal and postictal periods, with significantly higher 

spiking rates than sham in the ictal and postictal DBS epochs (n= 8; p= 0.005, p= 0.03 

respectively, Bonferroni-Holm corrected; Fig. 4 D), and a non-significant trend to persistent 

increased firing in the postictal post-DBS epoch as well (Fig. 4 D). 

 

Cortical physiological arousal with PnO stimulation during focal limbic seizures in awake 

animals led to minimal improvement in behavior 

We next aimed to determine if PnO DBS in the ictal and post ictal states would translate to 

behavioral signs of arousal.  In awake-behaving animals we again used 2 s, 60 Hz hippocampal 

stimulation to induce focal limbic seizures, accompanied by cortical slow waves as well as 

behavioral arrest (Supp. 3 A, B).  These slow waves were similar to those observed in the LOFC 

as the animal was naturally sleeping or under deep ketamine/xylazine anesthesia.  At least 5 

seconds after seizure onset, during which time it was determined that there was no secondary 
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generalization of the seizure, we stimulated bilateral PnO (current titrated individually per 

animal; range 70 – 400 µA) or delivered a 0.2 µA sham stimulus.  The decreases in low-

frequency power during PnO DBS in the awake chronically implanted animals (Supp. Fig 3 A, B) 

resembled the effect of stimulation in the acute preparation.  Group analysis demonstrated 

decreased low-frequency power during and after PnO stimulation (Supp. 3 C), which remained 

significantly lower than sham controls during the ictal DBS, postictal DBS, and postictal post-

DBS epoch (n= 8; Supp. 3 D).  While we observed that stimulation abolished ictal slow waves in 

the cortical LFP during and after DBS, the degree of behavioral recovery, as measured by 

spontaneous exploratory behavior, was not significant ( n= 8, p= 0.17).  We noted that 

application of similar PnO DBS stimulus amplitudes (up to 400 µA) to awake animals without 

seizures was capable of interrupting motor activity (data not shown).  Therefore we sought an 

approach to augment the cortical physiological arousal produced by PnO DBS, while using lower 

PnO stimulus amplitudes in the hopes of also providing behavioral benefit.   

 

Dual-site CL and PnO stimulation improves cortical physiological arousal during focal limbic 

seizures 

Because prior work had suggested an important role for the central lateral intralaminar 

thalamic nucleus (CL) in modulating arousal following focal limbic and secondarily generalized 

seizures  (13, 14), we decided to stimulate this region.  CL stimulation alone at 400 µA did not 

significantly decrease cortical slowing during the ictal period (Supp. 4).  However, combined CL 

and PnO stimulation enabled us to reduce the PnO stimulation current by 47% (mean PnO 
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current = 150 ± 25 µA in PnO alone versus 79 ± 9 µA in dual-site stimulation; p= 0.01) while 

robustly abolishing slow waves during the ictal and postictal periods (Fig. 5). 

 

In group analyses, dual-site CL and PnO DBS resembled the effects of stimulating PnO alone by 

markedly reducing both ictal and postictal cortical slow waves in awake behaving animals (Fig. 6 

A, B).  Delta-band power in the ictal DBS epoch was significantly decreased compared to the 

ictal pre-DBS epoch (-87.59 ± 0.87%; n= 6; p< 0.0001, Bonferroni-Holm corrected) as well as 

compared to sham DBS (Fig. 6 B, C).  Postictal cortical slowing remained elevated in sham 

controls but was significantly reduced with dual-site DBS, restoring cortical activity to near 

baseline levels (Fig. 6 B, D).  Notably, seizure duration remained unchanged between DBS (52.6 

± 13.5 s; n=6) and sham controls (44.8 ± 8.9 s; n= 7; p= 0.63). 

 

We noted comparable decreases in cortical slow waves with dual-site stimulation without 

seizures, under anesthesia and from naturally occurring sleep (data not shown).  

 

Dual-site CL and PnO stimulation markedly improves behavioral arousal during focal limbic 

seizures  

Focal limbic seizures were characterized by behavioral arrest with appearance of minor 

automatisms as previously described (15).  However, with dual-site bilateral DBS in awake 

animals during focal limbic seizures, we observed a marked improvement in normal exploratory 

behaviors (Fig. 7 A; see also Supp. Video 1).  Ratings were performed by two observers with 

high interobserver reliability (κ = 0.97).  Dual-site CL + PnO DBS restored normal cortical 
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function and enabled animals to exhibit normal awake behaviors including relaxed forepaw and 

hindpaw ambulation and exploration of the sides of the cage despite ongoing hippocampal 

seizure activity (Supp. Video 1).  Normal exploratory behaviors were significantly increased 

during ictal compared to sham DBS (n= 6; p< 0.0001, Bonferroni-Holm corrected; Fig. 7 A) and 

were not significantly different from pre-seizure baseline.  Of note, the dual site DBS did not 

interfere with normal exploratory behaviors in the post-ictal period (Fig. 7A) and also did not 

interfere with normal behavior during non-seizure periods (data not shown). 

 

In addition to behavioral arrest during seizures, we often also observed postictal ‘wet-dog-

shakes’ which have been previously described in focal rodent limbic seizures (36) accompanied 

by transient poly-spike discharges on EEG.   Postictal wet-dog shakes were also significantly 

decreased in frequency with dual-site CL + PnO DBS, occurring in only 11.7 % of trials as 

compared to 91.7 % of sham DBS control trials (n= 6 animals, p < 0.0001) (see Supp. Video 1). 

 

For comparison we also studied effects of dual-site CL + PnO DBS on other states of cortical 

slow waves and hypoarousal aside from focal limbic seizures, including anesthesia-induced 

sleep and naturally occurring sleep.  We found that dual-site DBS significantly increased 

exploratory activity ratings as compared to sham DBS during anesthesia (n= 6; intra-DBS p< .01; 

post-DBS p< 0.0001, Bonferroni-Holm corrected; Fig. 7 B) and naturally occurring sleep (n= 6; 

intra-DBS p< 0.01; post-DBS p< 0.0001, Bonferroni-Holm corrected; Fig. 7 C).  Animals also 

showed a significant reduction of slow wave activity in response to the DBS, demonstrating a 
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physiological transition to an awake state during their exploratory behaviors, before eventually 

returning to sleep or falling back under anesthesia (data not shown). 

 

 

Discussion  

We have found that dual-site stimulation of subcortical arousal in the thalamus and rostral pons 

can reverse the adverse effects of focal limbic seizures on conscious arousal, increasing cortical 

physiological arousal and behavioral responsiveness in the ictal and postictal periods. 

Stimulation of PnO alone restored an awake-like cortical state during and after DBS under deep 

anesthesia, as well as ictally and postictally.  This same PnO stimulation in awake-behaving 

animals yielded similar electrophysiological results, however there was no evidence of 

behavioral improvement.  Stimulation of thalamic CL alone produced cortical physiological 

arousal under deep anesthesia and postictally (13) but was ineffective in preventing cortical 

slow waves during seizures.  By combining these two targets through dual-site CL + PnO 

stimulation, we achieved both electrophysiological and behavioral improvement during focal 

limbic seizures.  To our knowledge, these results are the first preclinical data of deep brain 

stimulation improving ictal level of conscious arousal.   

 

The findings reported here support a model in which serial and/or parallel subcortical arousal 

systems are depressed during focal limbic seizures (Fig. 1A).  The arousal function of these 

systems can be restored by multi-site stimulation, providing a more potent synergistic effect on 

cortical circuits than stimulation at a single node of the network (Fig. 1B).  This strategy for 
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multi-site stimulation of subcortical arousal may benefit not only epilepsy, but other disorders 

of consciousness including traumatic brain injury, stroke, or other states of chronically 

depressed level of consciousness. 

 

The specific sites stimulated in this study are integral nodes in subcortical arousal, however 

additional targets could be considered in future investigations (32).  The pontine reticular 

formation and in particular PnO has been implicated in the modulation of spontaneous activity, 

REM sleep, and wakefulness with sometimes disparate conclusions as to its role.  Early studies 

concluded that the pontine reticular formation had no role in spontaneous activity (37), while 

some recent evidence suggests that it definitively contributes to behavioral state and cortical 

slow-wave regulation (38).  Multiple drug infusion studies have solidified its role as a sleep 

regulatory region (39-42).  More recently, stimulation of the PnO has been shown to induce 

cortical desynchronization in lightly anesthetized rats as well as increase functional connectivity 

to basal forebrain-paralimbic structures such as the nucleus basalis of Meynert (43).  

 

Likewise, the intralaminar thalamus has also been implicated in the modulation of sleep-wake 

state, anesthesia, level of awareness, and attention (25, 35, 44-46).  Thalamic CL stimulation in 

an exemplary patient suffering chronic posttraumatic encephalopathy with minimally conscious 

state yielded stimulation-depended arousal and improved functional outcomes including 

arousal (29).  Stimulation of CL has been previously shown by our group to induce cortical 

desynchronization under anesthesia and to improve arousal in freely-behaving animals in the 

postictal period (13).   Here we demonstrate its insufficiency at producing cortical 
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desynchronization during seizure when stimulated alone, and feel that this reflects a more 

widespread, multi-pathway inhibition of subcortical arousal ictally than is present postictally.  

Further evidence of the multi-pathway subcortical arousal network can be seen when 

contrasting the effects of single-site with dual-site stimulation; cortical desynchronization was 

more robust and required lower amplitudes in both loci with dual stimulation as compared to 

single site stimulation.  With stimulation of either locus alone being insufficient, but stimulation 

of both being necessary to produce the electrophysiological and behavioral correlates of 

restored consciousness, this supports the idea of multiple, complexly overlapping arousal 

pathways that have differential effects on consciousness depending on the combination of 

active nodes and the states during which they become active.  In the context of previous 

studies and rapidly improving responsive neurostimulation and DBS technology, our results 

offer a feasible new strategy for addressing the loss of consciousness in medically refractory 

focal epilepsy, with clear implications for other disorders of consciousness.  

 

Further studies are needed to explore optimal stimulation paradigms and parameters.  For 

example, future investigation may include stimulation concurrent with, or even before, seizure 

onset, which was not done during the present studies to allow for assessment of secondary 

generalization prior to therapeutic stimulus delivery.  The present study specifically investigated 

focal limbic seizures without generalization although in previous work we found a beneficial 

effect on arousal by stimulating CL in the postictal period after secondarily generalized seizures 

(13).  In focal seizures without generalization we also found a beneficial effect on cortical 

physiological arousal in the postictal period, although we did not observe significant postictal 
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deficits.  Thus behavioral benefits could not be observed in the postictal period.  Further studies 

using more detailed behavioral testing with stimulus/response paradigms may enable a more 

nuanced understanding of any cognitive improvements provided by DBS in the ictal and 

postictal periods.  Other stimulation parameters such as frequency, pulse-width, amplitude, 

duration, and stimulation pattern (e.g. intermittent vs. continuous), also require further 

investigation.  Furthermore, although gamma band activity was partly obscured by the stimulus 

frequency ranges used in the present study  it could be of interest to investigate changes in high 

frequency gamma band cortical activity as an additional marker of cortical activation in future 

investigations. Of particular interest is recent data showing that optogenetic activation of 

brainstem cholinergic neurons in the pedunculopontine tegmental nucleus of rats during focal 

limbic seizures is capable of improving cortical physiological arousal (47).  In addition, 

optogenetic stimulation of GABAergic and glycinergic axon fibers from the pontine reticular 

formation has been shown to cause intralaminar thalamic inhibition, leading to behavioral 

arrest and interruption of awake-like cortical activity in freely moving mice (38) further 

solidifying a role for subcortical interactions in modulation of arousal.  Whereas optogenetic’s 

mechanism-of-action provides an elegant dissection of specific neuronal contributions to 

network function, the complex and potentially non-specific mechanisms of electrical 

stimulation prohibits us from fully identifying which neuronal populations are being activated 

or deactivated.  Furthermore, en passant fibers, perhaps from other subcortical arousal systems 

like the deep mesencephalic or pedunculopontine nuclei are surely affected in an unknown, 

possibly contributory way.  On the other hand, the relatively broad and potentially robust 

effects of electrical stimulation, a mode of neuromodulation already in wide clinical use, clearly 



  Kundishora 

  

30 

allow rapid practical clinical translation especially when coupled with current responsive 

neurostimulation paradigms (48-52).   

 

With regard to alternative targets, other subcortical arousal structures have been investigated 

within the context of sleep, anesthesia, Parkinson’s and other disorders, and have shown 

varying effects on level of arousal (32).  While therapeutic electrodes have been implanted in 

infratentorial targets very near PnO in humans, such as the pedunculopontine nucleus (53, 54), 

a supratentorial target may offer a decreased surgical risk profile.  Of note, the nucleus basalis 

is supratentorial, is in the ascending projection pathway of PnO, and has widespread cholinergic 

and non-cholinergic arousal connections with the neocortex (14, 16, 34, 43) making it a 

promising potential future target for stimulation.  

 

Impairment from loss of consciousness during seizures is a major contributor to the morbidity 

and mortality associated with the epilepsies (1, 2, 55, 56).  The mechanisms of subcortical 

impairment causing loss of consciousness during seizures are also implicated in the 

cardiorespiratory dysfunction leading to sudden unexpected death in epilepsy (SUDEP) (57, 58).  

Furthermore the decreased productivity, decreased quality of life and social stigma associated 

with loss of consciousness highlight it as a clinical attribute worthy of being addressed.  

Continuous DBS of the anterior nucleus of the thalamus as well as NeuroPace-based responsive 

neuromodulation of epileptogenic foci have thus far been focused solely on decreasing seizure 

frequency (5, 59). For patients lacking complete seizure control i.e. patients with medically and 

surgically refractory epilepsy, epileptic foci in eloquent areas, or health conditions which 
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contraindicate a large resective surgery, improving their level of consciousness during seizures 

with DBS could have a dramatic impact on their quality of life as well as their overall mortality 

risk.  Current stereotactic surgery on brain areas in the same or very close proximity to those 

discussed here have been proven safe and effective in other neurological disorders (29, 53, 54, 

60).  We expect the present results to set the stage for rapid translation of this preclinical data 

into a new therapeutic strategy to improve quality of life for people with epilepsy.  
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Figures 

 

Figure 1. The Network Inhibition Hypothesis and Proposed Therapeutic Intervention. (A)  

Schematized representation of focal hippocampal seizure causing cortical slow waves and loss 

of consciousness.  Seizure activity propagates via excitatory projections to the hypothalamus 

(Hypothal) and lateral septum (LS).  This activates neurons with inhibitory projections to 

numerous subcortical arousal structures including the midbrain and pontine reticular formation 

in the upper brainstem and the intralaminar thalamus (Thal). Inactivating these arousal 
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structures has the effect of decreasing excitatory input to the cortex (Frontal cortex, as well as 

other cortical areas), thus allowing it to fall into a sleep-like state.  This is electrophysiologically 

characterized by large amplitude, low frequency ‘slow-waves.’ (B) Dual-site deep brain 

stimulation (DBS) in the inhibited brainstem arousal structures and thalamus during focal 

hippocampal seizures restores excitatory input to the cortex, restoring awake-like cortical fast 

activity and improving conscious arousal.    
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Figure 2. Cortical physiological arousal with PnO DBS in a focal limbic seizure. (A)  Pontine 

nucleus oralis DBS during focal limbic seizure in a lightly anesthetized animal decreases slowing 

in lateral orbital frontal cortex.  Seizure was induced by 2 s, 60 Hz stimulation of hippocampus 

(HC).  Break in recording of 51 s, during which seizure and DBS continue, enables display of the 

post-DBS time period.  Total DBS duration was 120 s. (B)  5-second-long magnified insets of 

marked baseline, ictal pre-DBS, ictal DBS, ictal post-DBS, and postictal post-DBS epochs 

exemplify desynchronized lateral orbital frontal cortical local field potentials (Ctx LFP) intra- and 

post-DBS.  Lateral orbital frontal cortical multi-unit activity (MUA) transitions from phasic firing 

in the ictal pre-DBS period to tonic firing in response to DBS.  After PnO stimulation, cortex 

remains in desynchronized state and no postictal state ensues.  
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Figure 3. Group local field potential data for PnO DBS during focal limbic seizures under light 

anesthesia. (A)  Ictal pre-DBS low frequency power is increased.  PnO DBS decreases this low-

frequency power during ictal DBS, postictal DBS, and postictal post-DBS epochs.  Black arrow 

indicates onset and white arrow end of PnO DBS. (B)  Time course of delta-band (0-4 Hz) power 

during each epoch compared to sham stimulation.  There is a significant difference between 

DBS and sham conditions during the ictal DBS, postictal DBS, and postictal post-DBS epochs.  

Black arrowhead indicates onset and white arrowhead end of PnO stimulation. (C)  Ictal DBS 

delta-band power relative to the ictal pre-DBS delta-band power is significantly decreased 

compared to sham controls. (D)  Postictal DBS and postictal post-DBS delta-band power relative 

to baseline delta power remains elevated in sham conditions but are returned to near-baseline 

levels in the DBS conditions.  n= 9 (DBS), n= 7 (Sham) animals. All results are mean ± SEM. *p< 

0.05, **p< 0.01, ***p< 0.001 Bonferroni-Holm corrected. 
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Figure 4. Transition of cortical multi-unit activity from phasic to tonic firing with DBS during 

focal limbic seizures. (A) Example of PnO stimulation during focal limbic seizure induced by 2 s, 

60 Hz stimulation of the hippocampus (HC) under light anesthesia.  DBS reverts the phasic UP 

and DOWN states seen in lateral orbital frontal cortical multiunit activity (Ctx MUA) during the 

ictal pre-DBS epoch back to tonic desynchronized firing.  The bottom-most trace (Ctx Spikes) 

represents spike-sorted Ctx MUA data. (B)  Autocorrelograms of the marked epochs 

demonstrated desynchronized firing in the baseline and ictal DBS epochs and highly phasic 

firing in the ictal pre-DBS epoch. (C)  Group average peak correlation for the first period (see 

Methods) revealed a significant difference between Ictal Pre-DBS and both the Baseline or Ictal 

DBS epochs. (D)  Group average spikes per second data demonstrate a large drop in spike rate 

during focal limbic seizures that is reversed in the DBS case but not in the sham case.  There is a 

significant difference between DBS and sham condition change in spike rate during the ictal DBS 

and postictal DBS epochs. For C, and D all results are mean ± SEM; n= 8 animals. Same animals 

as Figure 3 except for one animal that did not have usable MUA data.  *p< 0.05, **p< 0.01, 

***p< 0.001, Bonferroni-Holm corrected. 
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Figure 5. Dual-site stimulation of CL + PnO produces cortical physiological arousal during focal 

limbic seizure in an awake behaving animal. (A)  Combined central lateral thalamic and 

pontine nucleus oralis DBS during focal limbic seizure in an awake behaving animal decreases 

slowing in lateral orbital frontal cortical local field potentials (Ctx LFP).  Seizure was induced by 

2 s, 60 Hz stimulation of hippocampus (HC).  Break in recording of 90 s, during which seizure 

and DBS continue, enables display of the post-DBS time period. Total DBS duration was 120 s. 

(B)  5-second-long magnified insets of marked baseline, ictal pre-DBS, ictal DBS, ictal post-DBS, 

and postictal post-DBS epochs exemplify desynchronized Ctx LFP intrastimulus.  Slowing returns 

after stimulation ceases while the seizure continues (total seizure duration in this example was 

longer than the DBS).  Postictally, Ctx LFP returns to desynchronized state.   
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Figure 6. Group data for dual-site CL and PnO stimulation during focal limbic seizures in 

awake behaving animals. (A)  Dual-site CL + PnO DBS decreases low-frequency power during 

and following focal limbic seizures induced in the awake state.  Black arrow indicates onset and 

white arrow termination of PnO DBS. (B)  Time course of delta-band (0-4 Hz) power during each 

time epoch as compared to sham stimulation.  There is a significant difference between the DBS 

and sham conditions during the ictal DBS and postictal DBS epochs.  Black arrowhead indicates 

onset and white arrowhead end of PnO DBS. (C)  Ictal DBS delta-band power relative to the ictal 

pre-DBS delta power is significantly decreased compared to sham stimulation. (D)  Postictal DBS 

delta band power relative to baseline delta power remains elevated in the sham case and is 

returned to near-baseline levels in the simulation case.  All results are mean ± SEM; n= 6 

animals. *p< 0.05, **p< 0.01, Bonferroni-Holm corrected.  
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Figure 7. Behavioral arousal with dual-site CL+ PnO DBS during focal limbic seizures, 

anesthesia-induced sleep, and natural sleep. (A)  CL + PnO DBS significantly increased 

spontaneous exploratory behavior during focal limbic seizures as compared to sham 

stimulation. n= 6 animals. (B)  CL + PnO DBS significantly increased spontaneous exploratory 

behavior during the intra- and post-DBS epochs under low-dose anesthesia-induced sleep. n= 6 

animals. (C)  CL + PnO stimulation significantly increased spontaneous exploratory behavior 

during the intra- and post-stimulation epochs during physiological sleep. n= 6 animals (same 

animals as in Figure 6).  All data (A-C) are shown as mean ± SEM.  ** p<0.01, *** p<0.001, 

Bonferroni-Holm corrected.   
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Supplementary Figure 1. Summary of electrode placements (A)  Schematic of the dorsal aspect 

of a rat skull depicting sites of craniotomies (black circles), screw burr holes (gray circles), and 

ground screw burr hole (gnd). Bilateral or unilateral craniotomies were used depending on the 

experimental series as explained in the Methods. (B)  Summary of electrode tip locations in PnO 

at AP -8.0 mm.  (•’s represent acute and x’s chronic electrode tip locations) from all 

experiments included in the present analysis (n= 20 animals). (C)  Summary of electrode tip 

locations in CL at AP -2.8 mm from all experiments included in the present analysis (n= 9 

animals).  Note that although 29 total electrode positions are shown these are from 23 animals 

total used in all experiments, because 6 animals were used for dual PNO + CL experiments.   

  The animals used and excluded in different experiments based on histology can be 

summarized as follows:  For acute PnO deep anesthesia DBS n= 7 (Supp Fig 2); for acute PnO 

seizure DBS n= 9 (Fig 3).  Note that total animals used for PnO anesthesia experiments was 12 

because 4 animals were used for both deep anesthesia and seizure experiments.  Total animals 

excluded from PnO anesthesia experiments due to inaccurate electrode placements were 9.  

For acute CL seizure DBS n= 3 (Supp Fig 4).  No animals were excluded so total animals used for 

CL anesthesia experiments was 3.  For chronic PnO seizure DBS n= 8 (Supp Fig 3).  For chronic 

PnO + CL seizure DBS n= 6 (Figs 6, 7).  Note that total animals used for chronic experiments was 
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8 because 8 animals were used in both PnO as well as in PnO + CL experiments.  Total animals 

excluded from chronic experiments due to inaccurate electrode placements were 6. 

  CA1, cornus ammonis 1; CA2, cornus ammonis 2; CA3, cornus ammonis 3; CL, central 

lateral intralaminar thalamic nucleus; CM, central medial intralaminar thalamic nucleus; gnd, 

ground; HC, hippocampus; LO, lateral orbitofrontal cortex; MDC, mediodorsal thalamic nucleus, 

central part; MDL, mediodorsal thalamic nucleus, lateral part; MDM, mediodorsal thalamic 

nucleus, medial part; PMnR, paramedian raphe nucleus; PnO, pontine reticular nucleus, oral 

part; RtTg, reticulotegmental nucleus of the pons; scp, superior cerebellar peduncle; VLL, 

ventral nucleus of the lateral lemniscus.  Base images for A – C reproduced with permission 

from Paxinos and Watson, 1998.  
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Supplementary Figure 2. Example of stimulation and group data for PnO stimulation in 

animals under deep anesthesia. (A)  PnO DBS under deep anesthesia eliminates cortical 

slowing. (B)  10-second-long magnified insets of marked pre-DBS, intra-DBS, and post-DBS 

epochs exemplify desynchronized lateral orbital frontal cortical local field potential (Ctx LFP) 

with increased tonic firing in multi-unit activity (MUA) intra- and post-stimulus.  (C)  Group 

averaged data in 20 s epochs showing that PnO DBS decreases low-frequency power during and 

after stimulation.  Black arrow indicates onset and white arrow end of PnO DBS. (D)  Time 

course of delta-band (0 – 4 Hz) power before, during, and after stimulation.  Pre-DBS and intra-

DBS epochs are 20 s.  Timecourse following DBS is shown with 10 s epochs.  There is a 

significant difference between the DBS and sham conditions in all intra- and post-DBS epochs.  

Black arrowhead indicates onset and white arrowhead end of PnO DBS.  (E) Change in delta 

power from pre-DBS baseline during stimulation (Stim) is significantly greater than sham 

controls (20 s epochs).  n= 7 animals for C – E.  Same animals as Figure 3 except for 2 animals 

that did not have stimulation under deep anesthesia.  All results are mean ± SEM. **p< 0.01, 

***p< 0.001, Bonferroni-Holm corrected.   
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Supplementary Figure 3. Cortical physiological arousal with PnO DBS in focal limbic seizures in 

awake animals.  (A)  PnO DBS during focal limbic seizure in an awake behaving animal 

decreases cortical slowing.  Seizure was induced by 2 s, 60 Hz stimulation of hippocampus (HC).  

Break in recording of 90 s, during which seizure eventually ceases and DBS continues, enables 

display of the post-DBS time period. Total DBS duration was 120 s.  (B)  3-second-long 

magnified insets of marked baseline, ictal pre-DBS, ictal DBS, postictal DBS, and postictal post-

DBS epochs exemplify desynchronized lateral orbital frontal cortical local field potentials (Ctx 

LFP) with DBS.  (C)  PnO DBS decreases low-frequency power during ictal DBS, postictal DBS, 
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and postictal post-DBS epochs.  Black arrow indicates onset and white arrow end of PnO DBS. 

(D)  Time course of delta-band (0 – 4 Hz) power during each epoch compared to sham 

stimulation.  There is a significant difference between the DBS and sham conditions during the 

ictal DBS, postictal DBS, and postictal post-DBS epochs.  Black arrowhead indicates onset and 

white arrowhead end of PnO DBS. (E)  Ictal DBS delta-band power relative to the ictal pre-DBS 

delta power is significantly decreased compared to sham stimulation. (F)  Postictal DBS and 

postictal post-DBS delta band power relative to baseline delta power remains elevated in the 

sham case and is returned to near-baseline levels in the simulation case.  All results are mean ± 

SEM.  N=8 animals for C - F. *p< 0.05, Bonferroni-Holm corrected.   
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Supplementary Figure 4. CL stimulation alone does not produce physiological arousal during 

focal limbic seizures.  Seizures were induced by 60 Hz, 2 s hippocampal stimulation under light 

anesthesia. CL DBS was performed 10 s after seizure onset using 20 s stimulus train duration. 

(A)  CL DBS does not effectively decrease low-frequency power in lateral orbital frontal cortical 

local field potential recordings during ictal DBS or postictal post-DBS epochs.  Black arrow 

indicates onset and white arrow end of CL DBS.  (B)  Time course of cortical delta-band (0 – 4 

Hz) power during each epoch compared to sham stimulation.  There were no significant 

differences between DBS and sham conditions during all epochs. Black arrowhead indicates 

onset and white arrowhead end of CL stimulation. (C)  Ictal stimulus delta-band power relative 

to ictal pre-DBS delta-band power is not significantly decreased compared to sham stimulation. 

(D)  Postictal post-DBS delta-band power relative to baseline delta-band power remains 

elevated in sham and DBS conditions.  N= 3 animals. All results are mean ± SEM.  
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Supplementary Video. 

Dual-site CL + PnO deep brain stimulation restores normal exploratory behavior during focal 

limbic seizure.  Prior to seizure induction both the sham control (left) and DBS (right) rats 

exhibit normal exploratory movements in the cage.  Following onset of focal limbic seizure 

induced by 2s, 60 Hz hippocampal stimulation behavioral both animals exhibit behavioral 

arrest.  With initiation of dual-site CL + PnO DBS (100 Hz, 300 µA, 120 s in CL; 50 Hz, 150 µA, 120 

s in PnO for DBS animal on right;  same parameters but 0.2 µA stimuli for sham control on left) 

the DBS animal (right) immediately resumes normal exploratory behaviors including forepaw 

and hindpaw ambulation, sniffing/whisking and touching sides of the cage with forepaws, while 

the sham control animal (left) remains frozen in position.  Simultaneous EEG (LFP) recordings in 

both animals exhibited hippocampal seizure activity throughout, accompanied by lateral orbital 

frontal cortical 1-2 Hz slow wave activity which continued in the sham control animal but 

transitioned to a normal awake-appearing desynchronized pattern in the DBS animal (not 

shown, but similar to recordings in Fig. 5).  At the end of the seizure both animals explore the 

cage normally however the sham control (left) exhibits wet-dog-shakes and epileptiform 

polyspike discharges (not shown) in the postictal period which are not present in the DBS 

animal (right).  Normal exploratory behaviors continue throughout the DBS period for the 

animal on the right and no change in these behaviors occurs after DBS termination.  Video may 

downloaded at https://files.yale.edu/public_download?shareId=28e6d9f8ad2a013e1bd945f143bd7b14 until 

2/15/2016 or requested by emailing adam.kundishora@yale.edu.  

 

  

https://connect.yale.edu/owa/redir.aspx?SURL=fJIoYBFIYhTQAqF6CMkOlLXoFg1KTVf45rFrvjKM3hZHnZaUdi7TCGgAdAB0AHAAcwA6AC8ALwBmAGkAbABlAHMALgB5AGEAbABlAC4AZQBkAHUALwBwAHUAYgBsAGkAYwBfAGQAbwB3AG4AbABvAGEAZAA_AHMAaABhAHIAZQBJAGQAPQAyADgAZQA2AGQAOQBmADgAYQBkADIAYQAwADEAMwBlADEAYgBkADkANAA1AGYAMQA0ADMAYgBkADcAYgAxADQA&URL=https%3a%2f%2ffiles.yale.edu%2fpublic_download%3fshareId%3d28e6d9f8ad2a013e1bd945f143bd7b14
mailto:adam.kundishora@yale.edu
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Appendix A: Additional information on stimulus parameters 

In the initial phases of experimentation, during which multiple arousal nuclei were being 

explored, a wide range of stimulation parameters were explored.  This was secondary to the 

assumption that each nuclei, with its unique composition of interneurons, differently sized cell 

bodies, en passant fibers, and tonic firing rate might respond differently to the same set of 

stimulation parameters.  The only parameters which were ubiquitously applied to all 

stimulations were the waveform, which was chosen to be a biphasic square wave, and the 

number of stimulation poles, which was chosen to be bipolar as opposed to unipolar.  With 

regard to the waveform, biphasic square wave stimulation reflects the current norm of 

electrical stimulation in both experimental animal models and clinically in humans.  Bipolar 

stimulation as opposed to unipolar stimulation was chosen because of our available stimulation 

equipment and background knowledge from previous experiments.  

 

The parameters that were varied included: stimulation amplitude (amps), pulse width/phase 

width (s), frequency (Hz), and pattern (continuous vs. intermittent vs. interleaved) (Appendix 

Fig. 1 A, B).  These parameters were systematically and independently varied in each nuclei 

while the animal was under deep anesthesia.  The measure of efficacy was the presence of 

cortical desynchronization during the stimulation and the duration of persistent 

desynchronization following the stimulation.  Once optimized, the parameters were then 

applied to ictal periods while the animal was under light anesthesia, as described in the 

methods section.  All reported stimulation parameters throughout this paper represent the 

optimized set determined in the aforementioned fashion.  
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Appendix B: Additional information on other arousal nuclei 

An initial exploratory phase was undertaken to identify known arousal nuclei that might be 

candidates for stimulation during seizure.  The following represent nuclei which were 

stimulated and found to have a desynchronizing effect on the cortex while the animal was 

under deep anesthesia.  Each nuclei was then tested during an ictal period, demonstrating 

varying efficacy at abolishing slow waves.  

  

Cortical physiological arousal with central medial thalamic stimulation under deep anesthesia 

and during limbic seizure 

The central medial thalamic nucleus (CM), like CL, is a member of the intralaminar thalamus 

which is known to have widespread cortical and subcortical projections to areas involved in 

arousal and attention (33, 61).  Optimum stimulation parameters were determined to be: 200 – 

400 µA split bilaterally, 500 µs phase width, at 100 Hz, continuously.  An example of an 

interleaved stimulation is given to demonstrate the on-off effect of 100 Hz vs. 600 Hz 

stimulation (Appendix Fig. 2 A).  During ictal periods, CM stimulation was insufficient at 

desynchronizing the cortex (Appendix Fig. 2 B).  In total, 4 animals were tested with bilateral 

CM stimulation.  
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Cortical physiological arousal with ventromedial thalamic stimulation under deep anesthesia 

and during limbic seizure 

The ventromedial thalamic nucleus (Vm) is characterized by extremely wide spread neocortical 

projections.  It lies deep to the intralaminar thalamus and is a place of convergence for many 

pathways, including the deep cerebellar nuclei, reticular thalamus, and the mesencephalic 

reticular formation.  Optimum stimulation parameters were determined to be: 300 – 500 µA 

split bilaterally, 500 µs phase width, at 100 Hz, continuously.  When stimulated under deep 

anesthesia, cortical desynchronization was robust.  Like CL and CM, Vm also proved insufficient 

to desynchronize the cortex during seizure, under light anesthesia (see methods). However, 

unlike the other thalamic nuclei tested, stimulating Vm did sometimes have an effect late in the 

seizure evolution (Appendix Fig. 3 A, B).  This effect was inconsistent across trials within the 

same animal, but was noted in more than one animal, perhaps implying that unknown variables 

about the seizure itself influence the efficacy of stimulation.  It was this inconsistency that drew 

us away from choosing Vm as a partner to PnO in dual stimulation experiments.  In total, 4 

animals were tested with bilateral Vm stimulation.  

 

Cortical physiological arousal with deep mesencephalic stimulation under deep anesthesia 

and during limbic seizure 

The deep mesencephalic nucleus (DpMe) describes a group of cells, dorsal to the PnO, 

extending rostrally into the midbrain, constituting part of the midbrain reticular formation (33). 

With rich projections to the thalamus and cortex, this brain area is known to play a role in 

sleep, arousal, and consciousness.  Optimum stimulation parameters were determined to be: 
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30 – 100 µA split bilaterally, 500 µs phase width, at 50 Hz, continuously.  DpMe stimulation 

under deep anesthesia, like PnO stimulation, was robustly effective (Appendix Fig. 4 A).  Ictally, 

under light anesthesia, DpMe stimulation also showed promise at abolishing slow waves 

(Appendix Fig. 4 B).  When directly compared to PnO stimulation, albeit with a low sample size, 

PnO proved to have a greater reduction of slow waves than DpMe stimulation. In our opinion 

however, DpMe remains a target to be explored further both in the lightly anesthetized ictal 

state and the awake ictal state. In total 4 animals were tested with bilateral DpMe stimulation.  
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Appendix Figures 

 

Appendix Figure 1. Stimulation parameters and pattern.  (A)  Diagram representing the 4 

characteristics of a waveform that were varied during experimental determination of optimum 

stimulation parameters. (B)  Schematic representation of the three types of stimulation 

patterns tested in each arousal nuclei. 
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Appendix Figure 2. Stimulation in central medial thalamic nucleus.  (A)  Interleaved 

stimulation demonstrates as response (cortical desynchronization) to 100 Hz and no response 

to 600 Hz. (B)  Stimulation continuously at 100 Hz during limbic seizure is insufficient to 

desynchronize the cortex. Ctx LFP: cortex local field potential; Ctx MUA: cortex multiunit 

activity; HC: hippocampus. 
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Appendix Figure 3. Stimulation in ventromedial thalamic nucleus.  (A) Stimulation of Vm was 

ineffective at desynchronizing the cortex during approximately the first minute of the seizure, 

as is evidenced by persistent cortical slow waves through the first two simulations.  The third 

stimulation, occurring 1 minute and 45 seconds into the seizure does show effective 

desynchronization.  At this point, the amplitude of the hippocampal discharges are significantly 

lower than at seizure onset. (B)  A second example showing a similar pattern of ineffective 
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stimulation early in the seizure transitioning to effective stimulation late in the seizure.  Ctx LFP: 

cortex local field potential; Ctx MUA: cortex multiunit activity; HC: hippocampus; 

  



  Kundishora 

  

61 

 

 

Appendix Figure 4. Stimulation in deep mesencephalic nucleus. (A)  There is robust removal of 

slow waves and full cortical desynchronization during stimulation under deep anesthesia. (B)  

Stimulation during limbic seizure shows a partial desynchronization with occasional ‘break 

through’ slow waves.  
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