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LONGITUDINAL ASSESSMENT OF BLOOD BRAIN BARRIER DISRUPTION IN 
PRIMARY HIV INFECTION. Elham Rahimy, Fang-Yong Li, Lars Hagberg, Dietmar 
Fuchs, Kevin Robertson, Dieter J. Meyerhoff, Henrik Zetterberg, Richard W. Price, 
Magnus Gisslén, and Serena Spudich. Department of Neurology, Yale University, New 
Haven, CT, USA. 
 
Abnormal blood brain barrier (BBB) permeability has been implicated in the 

neuropathogenesis of chronic HIV infection. As neurocognitive impairment can persist 

despite effective combination antiretroviral therapy (cART), it is possible that irreversible 

central nervous system (CNS) processes are initiated in early infection, before cART is 

typically initiated. We analyzed the natural history of BBB permeability in primary HIV 

infection (PHI), and the effects of cART initiated during this period. CSF:Serum albumin 

quotient (QAlb), a marker of BBB permeability, was measured in longitudinal 

observational studies of PHI. We analyzed trajectories of QAlb pre- and post-cART using 

mixed-effects models, and associations between QAlb and CSF neurofilament light chain 

(NFL), NAA:Cr, a magnetic resonance spectroscopy N-acetylaspartate:creatinine (

biomarker for neuronal integrity), and neuropsychological testing. Age-adjusted QAlb was 

elevated in PHI vs. controls at baseline (n=106, median 91 days post infection, dpi; n=64; 

p=0.02). Before cART, QAlb increased over time in 84 participants with normal baseline 

QAlb (p=0.006), and decreased in 22 with high baseline QAlb (p=0.011). QAlb correlated at 

baseline and longitudinally with NFL (r=0.497, p<0.001; r=0.555, p<0.001) and NAA:Cr 

in parietal grey matter (r=-0.352, p=0.015, r=-0.387, p=0.008), but not 

neuropsychological performance. QAlb did not change after a median 398 days of cART 

initiated at 225 dpi (p=0.174). QAlb rises during early HIV, associates with neuronal 

injury, and does not significantly improve over a year of treatment. HIV BBB-associated 

neuropathogenesis may be initiated in early infection. 
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INTRODUCTION 
 
As of 2016, the CDC reports more than 1.2 million individuals are living with human 

immunodeficiency virus (HIV) in the United States, with as many as 1 in 8 unaware of 

their diagnosis1,2. HIV has significant genetic diversity, exhibiting different strains, 

subtypes, and even sub-subtypes, internationally. HIV-1 is the most predominant form 

worldwide, apart from western Africa3, and will be the focus of this thesis. Herein, 'HIV' 

refers to HIV-1.  

 

Neurocognitive dysfunction in HIV 

I. HIV-associated neurocognitive disorder (HAND) 

HIV infection can have significant systemic ramifications, and the central nervous system 

(CNS) is no exception. Chronic exposure to HIV can frequently lead to devastating 

neurological complications, with approximately one third of untreated patients 

developing HIV associated dementia (HAD) 4. HAD is characterized by severe cognitive, 

motor, and behavioral disturbances associated with global cerebral atrophy, with 

subcortical areas exhibiting particular susceptibility 5. Given the morbidity of the illness 

in the absence of treatment, HAD is considered an AIDS-defining illness, with disease 

severity correlating with the degree of CD4+ suppression6,7. With the introduction of 

highly active antiretroviral therapy (HAART)/combination antiretroviral therapy (cART) 

in 1995, and thus restoration of CD4+ counts and effective viral load suppression, the 

incidence of HAD has significantly decreased to as low as 5%8,9. However, a milder 

spectrum of neurocognitive deficits persists despite successful cART treatment, effecting 

up to 50% of chronically infected patients8-10. HIV-associated neurocognitive disorders 

(HAND) is an umbrella term for this observed spectrum of neurocognitive complications, 
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comprised of three categories: asymptomatic neurocognitive impairment (ANI), mild 

neurocognitive disorder (MND), and HAD, in increasing severity4,11.  

 As indicated above, HAND predominantly involves the subcortical region and 

frontostriatal circuits, often manifesting as cortical atrophy and white matter signal 

hyperintensities detectable on magnetic resonance imaging (MRI)12, although these 

findings are neither specific nor sensitive13,14. Corresponding to the imaging findings, the 

cognitive domains most commonly affected include motor, psychological (agitation, 

apathy, depression), executive, speed of processing information, and attention, with very 

limited involvement of language, judgment, and reasoning12,15. Like any form of 

dementia, HAND is a clinical diagnosis, and the above domains may be assessed 

clinically with a battery of neuropsychological testing (ie, trail making, grooved 

pegboard), which allows for classification in one of the HAND categories. All categories 

of HAND require impairment in at least 2 tested domains, while the degree of 

impairment in functional performance determines the category: no impairment qualifies 

as ANI, mild impairment qualifies as MND, and moderate-to-severe impairment qualifies 

as HAD16. Undoubtedly, these neurocognitive deficits, even when mild, can have a 

severe impact on the patient's quality of life, and may even compromise cART adherence, 

resulting in viral resistance and disease progression17. Thus, the continued foothold of 

HAND in post-cART era is an issue necessitating better understanding and further 

investigation.  

II. Neuropathogenesis in HAND  

Since the mid-1980s, numerous autopsy studies have characterized the histological 

hallmarks of HAD with relative consensus: If HAD is the clinical manifestation of severe 
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neurocognitive deficits, HIV-encephalitis (HIVE) is the pathologic correlate. Apart from 

gross evidence of diffuse brain atrophy--indicative of neuronal loss--and correspondingly 

enlarged ventricles, tissue specimens in classic HAD demonstrate wide-spread 

inflammation. This characteristic inflammation, termed HIVE, is defined by the presence 

of activated resident macrophages (ie, microglia) and infiltrating peripheral macrophages, 

with specific findings as follows: multinucleated giant cells expressing viral antigens like 

p24 (likely representing viral fusion of macrophages), activated microglial nodules, 

perivascular 'cuffs' (leukocyte aggregation in the perivascular space), marked astrocytosis 

(astrocyte activation and dysfunction)18, white matter gliosis and demyelination, synapto-

dendritic injury, and the presence of detectable virus production19-23.  

 Even in the post-cART era, post-mortem analysis of patients with mild forms of 

HAND surprisingly still shows marked neuroinflammation24. Although pathologically 

similar to HIVE, productive HIV infection is not detectable, and the structural sites of 

inflammation are different, now primarily involving the hippocampus and surrounding 

peri-entorhinal cortex with less involvement of the basal ganglia6. While some argue that 

the milder forms of HAND in the post-cART era may represent a different pathological 

process from pre-cART HAD, it is clear that neuroinflammation likely contributes to 

pathogenesis in both. In fact, the degree of histologic neuroinflammation correlates 

strongly with clinical progression of HAND6; in 1995, Glass et al showed a strong 

correlation between neurologic disease progression and macrophage staining, whereas 

HIV-1 staining (ie, gp41 expression) demonstrated a weak correlation at best25. These 

findings by Glass, and similar pathologic and experimental findings by other researchers 
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in years to come, implicated inflammation as a key player in HIV-mediated 

neurodegeneration, more so than viral load.  

 Neuronal toxicity is thought to be primarily due to indirect mechanisms, such as 

inflammation, as repeated histological and in vitro studies have shown HIV to have very 

limited, if any, infection of neurons.  Few post-mortem PCR studies have shown that HIV 

has the capability to invade neurons26,27, although the infected proportion is small (as 

neurons do not express required HIV receptors) and the infection is likely nonproductive 

(as neurons cannot regenerate)28. Although this putative neuronal infection is thought to 

have an inconsequential role in neuropathogenesis, replication-derived viral proteins can 

exert neurotoxic effects either directly via apoptotic activation or indirectly via induction 

of inflammatory cytokines: Tat (transcriptional transactivator), gp120 (envelope 

glycoprotein), and VPR (viral protein R) have been most strongly implicated in HIV-

mediated neurodegeneration, stimulating apoptosis through activation of caspase-3 or -8, 

and up-regulating microglial synthesis of IL-1β and TNF-α6,19,20,28,29. Thus, HIV is 

thought to cause neuronal injury via induction of a pro-inflammatory state, but also via 

secretion of neurotoxic viral proteins, with a strong interplay and synergistic effect 

between these two mechanisms. Notably, excito-toxicity is thought to be the common 

endpoint of both pathways, as inflammatory cytokines and HIV-encoded proteins have 

been shown to increase extracellular glutamate concentration in the CNS, resulting in 

excess activation of the N-methyl-d-aspartate (NMDA) receptor, and subsequent 

apoptosis20,30,31. (For a discussion on how HIV breaches the BBB and induces 

neuroinflammation, see section titled "Role of the blood brain barrier" below.) 
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III. Theories underlying persistence of HAND despite successful cART  

As indicated in the above sections, even in the context of successful cART therapy (ie, 

undetectable viral load on ultrasensitive tests), HAND persists in milder forms. Several 

explanations have been offered, although the answer is still unclear. A few theories will 

be discussed briefly below.  

 One possibility is the presence of continued low-grade neuroinflammation even 

with complete viral suppression, as suggested by the autopsy studies of Tavazzi et al 

demonstrating marked neuroinflammation without histologic signs of viral replication 

(referenced above in "Neuropathogenesis of HAND"). It is speculated that resolution of 

inflammation in the CNS is slower than the periphery32, and may remain unchecked for 

years, with persistently abnormal inflammatory biomarkers9.  

 A second possibility is continued low-grade viral replication in the CNS. As an 

immune privileged site, the brain may serve as a perfect viral sanctuary for HIV to escape 

exposure to cART circulating in the periphery33. cART penetration into the CNS is 

limited, even in regimens with a high 'CNS Penetration Effectiveness' (see "cART therapy 

overview" below), thus allowing for continued CNS replication even with viral 

eradication in the periphery9. Persistence of HIV in the CNS may also allow for evolution 

of drug-resistant strains, as the presence of genetically distinct populations in the CSF 

versus the plasma has been well documented in chronic infection19,34. 

 A third possibility is the confounding effect of comorbidities prevalent in HIV+ 

patients35; although the resulting neurocognitive diseases are histologically distinct from 

HAND, they may be difficult to distinguish clinically. Such confounders include medical 

comorbidities (ie, cardiovascular disease, co-infection with hepatitis)36-41, psychological 

disease (ie, depression)42-44, drug abuse (ie, crack/cocaine)41,45, medication-related side 
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effects, and increased susceptibility to age-related neurodegenerative processes (ie, 

acceleration of amyloid-driven diseases such as Alzheimer's and Parkinson's)6,46-51. In 

regards to medication-related side effects, ART therapy is known to cause neurotoxicity, 

the severity of which may correlate with CNS Penetration Effectiveness6,44,52.  

 Perhaps most relevant to the purpose of this thesis, the fourth possibility is that 

this persisting neurocognitive impairment may represent irreversible neuronal damage 

accrued prior to the initiation of cART, even in early infection53. Thus, investigative 

efforts have been drawn towards elucidating and characterizing the earliest stages of HIV 

neuroinvasion and associated neuronal injury, as will be explored further below.  

 
Initiation of neuropathogenesis in early HIV infection  
 
Primary HIV infection (PHI) refers to the earliest stage of systemic infection, from time 

of transmission up to 12 months post-transmission, encompassing the time of 

seroconversion and establishment of virus load set point54. An acute retroviral syndrome 

(ARS) develops in over half of PHI patients, and is thought to represent either a direct 

cytotoxic effect or immunologic response to the high load viremia typical of the acute 

phase of infection. Clinical symptoms of ARS tend to be nonspecific, classically a 

mononucleosis- or influenza-like syndrome which can last several days to weeks; 

however, neurological symptoms, such as aseptic meningitis, encephalitis, or 

radiculopathy, develop in up to 17% during seroconversion, and may be associated with a 

more rapid progression of neurocognitive deficits55,56. Several studies have demonstrated 

HIV infiltration of the CNS during PHI57-59, as indicated by the presence of HIV RNA in 

the CSF compartment, as early as eight days post-infection, even preceding the 

manifestation of neurological symptoms 4,59-62. CNS immune activation accompanies this 
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viral invasion as reflected by elevations of CSF white blood count, the soluble CSF 

biomarkers neopterin (reflecting macrophage activation) and CXCL-10/IP-10 (a 

lymphocyte chemokine), and T lymphocyte activation in CSF4,63-66. Furthermore, markers 

of immune activation may reflect degree of viral load and neurocognitive impairment67.  

 Accumulating evidence suggests that this pro-inflammatory state coincides with 

neuronal damage during PHI. Neurofilament light chain (NFL) is one of three subunits 

which comprises the cytoskeletal protein neurofilament, an intermediate filament 

essential for axonal support of myelinated neurons. It is an established CSF biomarker of 

axonal damage in a variety of neurological processes, with growing prominence in HIV-

related neurodegeneration. The reason for this trend is that, unlike other CSF biomarkers 

which are reflective of viral load or immune activation, NFL directly reflects the severity 

of active neuronal damage32. Elevations in NFL have also been demonstrated in PHI, 

even in neuroasymptomatic patients, indicative of subclinical injury50,68.  

 Another useful method of detecting neuronal damage and CNS inflammation 

utilizes magnetic resonance spectroscopy (MRS), a noninvasive quantitative MR 

technique which measures alterations in cerebral metabolite levels. Previous MRS studies 

have shown elevation of inflammatory cerebral metabolites in acute HIV (prior to 

antibody seroconversion) which increases longitudinally over time in PHI prior to 

cART4,69,70, as well as elevation in neuronal injury metabolites responsive to ART 69. The 

cerebral metabolite N-acetylaspartate (NAA) is a marker of neuronal viability and 

number, and is often expressed as a value normalized to creatinine (NAA:Cr). We have 

previously shown a strong correlation between high NFL and low NAA:Cr in the parietal 

grey matter of neurosymptomatic PHI subjects 68. Thus, crucial processes during the 



  8   

 

primary phase of viral infection may underlie the initiation of HIV associated CNS 

injury. 

 Whether clinically overt signs of neurocognitive impairment begin in PHI is not 

clear, as studies have been limited.  A meta-analysis has previously concluded that 

cognitive deficits in early HIV infection are rare and mild15, although several primary 

studies have been published since then, either noting deficits in a large subgroup71,72, or 

finding no deficits73,74. Notably, these studies varied in the timing of their analysis 

relative to date of transmission, a relevant point if the earlier phases of infection are 

dominated by sub-clinical neuronal injury.  

 

Role of the blood brain barrier 

I. Anatomy of the blood brain barrier  

The highly restrictive blood brain barrier (BBB) defines almost the entirety of the brain's 

capillary endothelium, bestowing the CNS with a specialized microenvironment distinct 

from systemic circulation75. These endothelial cells are tightly opposed via junctional 

protein complexes, called zonulae occludentes, which prevents any paracellular 

passage76. Other components of the neurovascular unit (NVU) include peri-endothelial 

cells, specifically pericytes and astrocytes; the NVU also interacts with the resident CNS 

immune cells, called microglia77,78(Figure 1). The ratio of albumin in the cerebrospinal 

fluid to albumin in the serum (CSF:serum albumin concentration quotient, or QAlb) is a 

specific marker for BBB permeability79. Albumin is synthesized exclusively in the liver 

and is largely excluded from the CSF. Upon deregulation of the neurovascular unit and 

sequential loss of tight junctions, BBB permeability to albumin increases, resulting in an 
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increased QAlb. Some researchers caution against using QAlb as a blood-brain barrier 

marker and state that it actually reflects the permeability of the blood-CSF barrier at the 

choroid plexus80, since the choroid vasculature is more prone to inflammation and 

'leakiness' compared to the intraparenchymal vasculature. But in cases of stroke, which 

leaves the choroid plexus intact and injures the cerebrovascular endothelial cells, QAlb  is 

increased81, suggesting that QAlb is a marker of both barriers.  

 
Figure 1. Key players of the blood brain barrier are shown. Endothelial cells are conjoined by tight 
junctional proteins, the expression of which are affected by ligand-receptor interactions. Pericytes closely 
encircle the endothelial cells within the basal lamina, while astrocyte endfeet provide support just outside 
of the basal lamina. The resident central nervous system macrophages, microglia, interact with the 
neurovascular unit within the perivascular space. Adapted with permission from Abbott NJ et al. (2006) 
Astrocyte–endothelial interactions at the blood–brain barrier, Nature Reviews Neuroscience. 7: 41–53.  

 Expression of the endothelial junctional proteins, such as occludin-1 and ZO-1, 

and the viability of endothelial cells are highly influenced by environmental factors, 

including expression of pro-inflammatory cytokines such as TNF-α and IL-1β 48,82,83, 

direct infection by various neurotropic viruses39,84, or exposure to cytotoxic molecules in 
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the serum85. All three of these factors are thought to be involved in the pathogenesis of 

HAND (See "Neuropathogenesis in HAND" above). Is it possible that the BBB, the 

guardian of the CNS so susceptible to environmental factors, is implicated in the neuro-

pathogenesis of HAND?   

II. Dysregulation of the blood brain barrier in HIV  

In order to exert its neurological effects, HIV and/or its viral products must first traverse 

the BBB. Although the mechanisms have not yet been fully clarified, several models 

have been proposed. The aptly named "Trojan horse theory" is perhaps the most widely 

accepted, suggesting the HIV virus crosses the BBB primarily via infection of peripheral 

monocytes destined to take up residence in the CNS as macrophages 20. Although this 

model indicates that HIV is able to traverse the largely intact BBB, increased 

permeability of the BBB has been strongly implicated in the progression of HIV 

neurological dysfunction68,86-89. Since the early 1990s, studies have shown that QAlb is 

increased in infected individuals90,91 and is strongly associated with the presence of 

neurological signs/symptoms92. Around this time, post-mortem studies of chronically 

infected AIDS patients provided tissue evidence of the correlation between BBB 

dysregulation and neurological impairment, as serum protein deposition in subcortical 

white matter was greater in those with neurological symptoms89. Peluso and colleagues 

reported a significant correlation between the axonal injury marker NFL and QAlb, further 

suggesting a possible relationship between a dysregulated BBB and neurological 

dysfunction68. In line with this observation, several studies have shown that the neuronal 

injury accrued upon CNS infiltration is not a direct result of cytolytic infection61,88. On 

the contrary, within the CNS, HIV infection is restricted to macrophages, microglia, and, 
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to a lesser extent, endothelial and peri-endothelial cells of the neurovascular unit (ie, 

astrocytes and pericytes) which compromise the BBB85,93. As will be discussed below, it 

is the downstream effects of HIV infection in these cells that will culminate in neuronal 

injury through a compromised BBB.  

 It is speculated that increased BBB permeability is a critical contributor to HIV 

neuropathogenesis as disruption of this regulatory interface facilitates CNS infiltration of 

potentially harmful substances from the periphery, resulting in compounding viral entry 

and susceptibility to the inflammatory assault of immune cells88. Gisslén and colleagues 

demonstrated a significant relationship between QAlb, CSF HIV-1 RNA, and the 

macrophage activation marker neopterin, thus suggesting a strong association between 

immune activation as an important factor in BBB permeability in HIV infection87. In line 

with this theory, monocyte infiltration has previously been found to correlate with loss of 

tight junction immunoreactivity in brain tissue of HAD patients94. Similar to the 

speculated mechanisms of neuropathogenesis outlined previously (See 

"Neuropathogenesis in HAND" above), growing evidence suggests BBB permeability is 

the result of a multifactorial process involving immune-mediated mechanisms, as well as 

viral mechanisms. For example, the HIV-1 derived proteins Tat and gp120 exhibit direct 

neurotoxic effects, but also severely compromise the integrity of the BBB, permitting the 

entry of peripheral cytokines and additional infected monocytes and free virions 20. 

Furthermore, infection of pericytes, which encircle and stabilize endothelial cells of the 

BBB, has been shown to diminish tight junction integrity and increase permeability in 

vitro93. Even in the presence of low HIV infection, astrocytes undergo altered end feet 

signaling, accelerating endothelial apoptosis95. The inflammatory cascade that results 
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from entry of peripheral cytokines and immune cells, further exacerbated by activation of 

residential CNS macrophages and microglial cells, results in a storm of reactive oxygen 

species, nitric oxide, glutamate, cytokines, and other neurotoxins that ultimately lead to 

neuronal damage and death20. Interestingly, it should be noted that albumin itself 

produces concentration-dependent neurotoxic effects in rat brain parenchyma in vivo96, 

and induces expression of the pro-inflammmatory cytokines IL-1β and TNF-α possibly 

via MAP-K activation in astrocytes and microglial cells97-99. Thus, it may be these 

resident immune cells rather than infiltrating macrophages are the cause of neuro-

inflammation and neuro-toxicity once the BBB is compromised.  

 Although BBB dysregulation is thought to be secondary to viral and immune-

mediated processes directly related to HIV-infection, one must not discount the influence 

of HIV-related comorbidities. Concurrent infections may significantly alter BBB, either 

via direct NVU infection or induction of cytokines which indirectly cause BBB hyper-

permeability. Most notably, up to one third of HIV-infected patients are concurrently 

infected with Hepatitis C, which directly infects NVU endothelial cells and may cause 

neurocognitive dysfunction37. Drug abuse is highly prevalent in HIV+ populations, with 

cocaine and methamphetamine implicated in BBB dysruption38. Cardiovascular disease is 

also commonly accelerated in HIV+ patients due to chronic systemic inflammation and 

metabolic side effects of cART therapy (ie, protease inhibitors)35,100,101. Given the 

presence of cardiovascular disease and its risk factors (hypertension, 

hypercholesterolemia) have been associated with neurocognitive decline in HIV36, it 

likely contributes to BBB hyper-permeability.  
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III. Blood brain barrier status in early HIV infection 

As indicated above, dysregulation of the BBB is a well-established event in chronic HIV 

infection and correlates with neurological injury and neuro-inflammation. However there 

is very limited data assessing blood brain barrier integrity during the primary phase of 

infection. Moderate elevations of albumin ratio in PHI have previously been shown in 

cross-sectional studies 50,60, and there exists a strong association between matrix 

metalloproteinases--enzymatic surrogate markers of BBB permeability--and 

neurocognitive status in early HIV102. Although studies assessing BBB status in PHI 

patients are limited, several studies have analyzed albumin ratio in neuro-asymptomatic 

patients (recruited regardless of chronicity/transmission date), often with mixed results, 

either demonstrating increased QAlb compared to uninfected controls60,87 or no significant 

difference32,103.  

 

Role of cART therapy  

I. cART therapy overview  

Since clinical trials with azidothymidine (AZT) in 1987, it has been known that 

antiretroviral therapy can significantly reverse HAD, as assessed by clinical 

neuropsychological testing and positron emission tomography104. This improvement is 

clearly enhanced with highly antiretroviral therapy (HAART)/combination ART 

(cART)10,105, the standard of treatment for HIV. There are 24 FDA-approved ARTs 

currently available with varying molecular actions: (1) nucleoside-analog reverse 

transcriptase inhibitors (NRTIs), (2) non-nucleoside reverse transcriptase inhibitors 

(NNRTIs), (3) protease inhibitors (PI), (4) integrase inhibitors, (5) fusion inhibitors, and 

(6) co-receptor antagonists. Drugs from at least two different molecular classes are 
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combined in a cART regimen (consisting of three or more drugs), with the underlying 

purpose of preventing drug resistance106. Most commonly, regimens consist of two 

NRTIs with one PI or one NNRTI. Nevertheless, cART regimens are highly 

heterogeneous and may require complex, specific regimens necessitating as many as 30 

pills a day17, though many patients are able to take single pill regimens in the modern era.  

 While certain regimens have a higher 'CNS Penetration Effectiveness' (CPE)107, 

and thus better ability to cross the BBB and control CSF viral load, studies regarding the 

clinical impact of CPE have been mixed52, primarily demonstrating unchanged or 

worsened neuropsychological performance associated with these regimens108,109. Apart 

from inherent bias involved in these study designs (ie, patients with more severe HAD 

are prescribed a higher CPE regimen)34, there are other possible explanations. Not only 

are high CPE drugs intuitively more likely to be neurotoxic, but some researchers argue 

that the pathology of HAND is inflammation-mediated and not viral load-dependent (see 

above sections), as the viral load may simply reflect plasma spillover from a leaky 

BBB110. As cART medications directly target viral load and not the activated 

inflammatory cascade, neuropsychological damage may persist with the continued low-

grade inflammation. Thus, as no specific cART regimen is considered superior for the 

treatment of HAND16, individual regimens are based on the consideration of several 

factors (ie, regimen complexity and compliance, CPE, drug-resistance testing). 

II. Effects of cART therapy on neuropathogenesis in early infection  

Given the remarkable and indisputable effect of cART on HAD, more recent studies have 

aimed to assess cognitive benefits from earlier initiation of cART. In a longitudinal 

observational study of PHI patients, cART therapy was shown to attenuate, although not 
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fully reverse, abnormalities in MRS metabolite markers69. Although it was speculated 

that normalization may occur beyond the limited follow-up period (median of 6.0 

months), persistent neuroinflammation is known to occur despite successful cART (see 

"Theories underlying persistence of HAND despite successful cART" above). Of note, 

MRS markers of excitotoxicity exhibited greater attenuation than markers of 

inflammation, perhaps suggesting persistent low-grade inflammation without significant 

neurotoxicity. A similarly designed study assessed MRS abnormalities, but this time in 

acute HIV infection (recruited within one month of transmission versus one year in PHI), 

and found normalization with cART therapy70; thus, it may be that reversibility is 

achieved with earlier cART initiation. Effects of cART on neuropsychological 

performance in early infection have also been examined, although limited to two 

studies71,72. The PHI study identified mild deficits with at least a partial response to 

cART therapy; the second study, this time in acute HIV infection, demonstrated no 

measurable neurocognitive deficits in the majority of patients, although a subgroup with 

severe deficits showed very limited response to cART.  The above studies suggest that 

neuropathogenesis may have varied response to cART, as dictated by a combination of 

factors, including timing of cART initiation and the severity of neurologic disease.   

III. Effect of cART therapy on the blood brain barrier  

Surprisingly, the effect of cART therapy on BBB permeability has not been intensely 

evaluated. In an unpublished study, Crozier and colleagues reported the gradual 

diminishment of albumin ratio from a median baseline of 6.48 to a median endpoint value 

of 6.09 in 16 neuroasymptomatic patients with chronic HIV infection after 200 days of 

cART therapy111; thus, although BBB integrity improved over time with cART therapy, a 
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return to premorbid or near premorbid function may take years. In contrast, Abdulle and 

colleagues observed no significant reduction in BBB permeability after 2 years of cART 

treatment in 38 neuroasymptomatic patients32. Importantly, the median baseline albumin 

ratio of patients in the Crozier study was higher (6.48, range: 4.79-10.29,) than that of 

patients in the Abdulle study (4.45, range: 1.77-9.84), potentially contributing to the 

discrepancy in cohort response to cART. No studies have investigated the effect of cART 

therapy on BBB permeability in early stages of infection. 

 

 STATEMENT OF PURPOSE 
 
In this study, we aimed to elucidate the natural history of BBB permeability during PHI, 

and to determine whether these changes, if any, were associated with biomarkers of 

neuropathogenesis. Additionally, we sought to determine whether BBB permeability was 

responsive to cART treatment initiated during early HIV infection. Our specific study 

questions and accompanying aims are delineated below:  

I. What is the natural history of blood brain barrier permeability during primary 

HIV infection? 

• Aim: To determine the longitudinal trajectory of blood brain barrier 

permeability, as measured by QAlb, in primary HIV infection, in the 

absence of cART treatment.  

II. Is blood brain barrier status associated with neuropathogenesis during primary 

infection?  
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• Aim: To determine whether QAlb correlates with markers of neuronal 

injury (NFL), neuronal health (NAA:Cr), and neuropsychological testing 

(NPZ).  

III. Does early combination antiretroviral treatment (cART) influence QAlb?   

• Aim: To determine whether cART initiation effects the slope of the 

QAlb trajectory established in Aim I, and associated markers of 

neuropathogenesis in Aim II.  

 We hypothesized that a) QAlb will increase over time for cART-naive patients, and 

b) QAlb will correlate positively with markers for neuronal injury (NFL), and inversely 

with neuropsychological test performance (NPZ) and neuronal health (NAA:Cr). 

Furthermore, c) following initiation of effective cART regimen, as indicated by reduced 

CSF HIV-1 RNA, we expect QAlb to gradually diminish with improvement in 

aforementioned markers of early CNS injury/inflammation.   

These results will provide novel understanding of the changes to the brain 

microenvironment that begin during initial HIV infection, and the persistence of these 

alterations in the setting of early, virologically suppressive cART. 

 

METHODS 

Study design 
 
Individuals with PHI were recruited into prospective longitudinal studies of CNS HIV in 

Gothenburg, Sweden, and San Francisco, USA, between 1986 and 2014, as previously 

described 60 and outlined below. Participants were within the first year of HIV 

transmission as confirmed by the standard serologic testing algorithm for recent HIV 

seroconversion (STAHRS) 112, and all but three were ART-naive. A subset began cART 
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at variable times during follow up for reasons outside of the study. None of the 

participants had a prior neurological disease history. A history of substance abuse was not 

an exclusion criterion, but no participants reported same-day substance abuse, which 

would have led to censoring of data.  Date of HIV transmission was approximated as 14 

days prior to the onset of seroconversion symptoms, when present 113; otherwise, it was 

approximated as midway between the dates of the last negative and first positive EIA 

test114.  HIV-uninfected volunteers were recruited from the San Francisco community, 

and had no history of neurological conditions nor active systemic diseases. 

 

Ethics 
 
The study protocol was approved by the institutional review board of each institution 

involved. All study participants gave written consent.  

 

Data collection and laboratory analysis 
 
Paired CSF and blood/plasma samples were obtained and neuropsychological testing and 

MRS were performed at each visit as described in detail below42,68.  Study intervals were 

scheduled at baseline (t=0), six weeks, and every six months thereafter, although there 

was participant variation in timing and duration of follow up.  

 

Following phlebotomy and lumbar puncture, CSF total WBC, lymphocyte counts, total 

protein, albumin, and blood/plasma albumin were measured from fresh samples. Frozen 

samples were prepared for assays of HIV RNA, neopterin, and NFL: Fresh samples were 

maintained on ice, and, after low-speed centrifugation, cell-free CSF and paired blood 
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plasma aliquots were stored within 2 hours of collection in −70°C to −80°C freezers. 

Previous studies have demonstrated neopterin and NFL to tolerate repeated freeze-thaw 

cycles and long-term storage with minimal compromise in integrity115,116, although both 

conditions were minimized as much as possible throughout the course of this study.  

 

CSF NFL was measured with the NF-light® ELISA kit (UmanDiagnostics AB, Umeå, 

Sweden), a sensitive immunoassay with a lower limit of detection of 50 ng/L 86, and 

reference values for upper limit of normal of 380 ng/L (18–29 years), 560 (30–39years), 

890 (40–59 years), and 1850 (>59 years)86.  CSF NFL assays were singularly performed 

in the Laboratory of Neurochemistry at the University of Gothenburg on previously 

frozen samples.  

 

CSF and plasma albumin were measured by nephelometry (Behring Nephelometer 

Analyzer, Behringwerke AG, Marburg, Germany). QAlb was calculated as the 

CSF/plasma albumin ratio: CSF albumin (mg/l)/plasma albumin (g/l) 87. Upper limits of 

normal were based on previously established values of <6.8 for age <45 years, and <10.2 

for age >45 years 117.  CSF and plasma albumin were measured in local clinical 

laboratories. Given the inherent advantage of being a ratio, QAlb is laboratory- and 

method-independent.  

 

CSF and plasma neopterin was measured in the laboratory of Dr. Fuchs by commercial 

immunoassays (BRAHMS, Berlin, Germany) on previously frozen samples. CSF white 

blood cells, lymphocytes, total protein, and HIV RNA were measured in local 
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laboratories as previously described60 and outlined below. CD4+ and CD8+ lymphocytes 

and white blood cells were measured in fresh, paired CSF and blood/plasma samples 

using flow cytometry. HIV RNA (viral load) was quantified in previously frozen, paired 

cell-free CSF and plasma samples at local laboratories using either the ultrasensitive 

Amplicor HIV Monitor PCR (version 1.5; Roche Molecular Diagnostic Systems, 

Branchburg, NJ), Cobas TaqMan RealTime HIV-1 PCR (version 1 or 2; Hoffmann-La 

Roche, Basel, Switzerland), or the Abbott RealTime HIV-1 PCR assay (Abbot 

Laboratories, Abbot Park, IL, USA). Viral loads below 50 copies/mL were assigned a 

value of 49 copies/mL (1.69 on log10 scale).  

 

Neuropsychological performance was determined through the appraisal of gross and fine 

motor skills, processing speed, executive function, learning, and verbal memory through 

a battery of 11 tests. Performance was summarized as an aggregate total Z score and a 

brief NPZ-4 score (including grooved pegboard, digit symbol, finger tapping, and timed 

gait).  

 

A trained neuro-radiologist interpreted MRI data for exclusion of non-HIV associated 

pathologies and assignment of atrophy and white matter hyperintensity ratings. Brain 

MRI/MRS was obtained at the San Francisco site only. MRS data were processed and 

analyzed with the spectral fitting software SITools, which uses a parametric model of 

known (metabolites) and modeled spectral components (macromolecules) to fit all 

resonances and nonparametric parameters to the baseline. Metabolite disturbances can 

indicate neuropathology, including inflammation and injury. The ratio of the peak area 
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under the curve for the metabolite N-acetylaspartate to the peak area under the curve for 

creatine-containing metabolites (NAA:Cr) is a putative marker of neuronal viability and 

number. We focused spectral acquisition on the parietal grey matter, as we have 

 68,69.   previously identified metabolite abnormalities in this region during PHI

 

Statistical analysis 
 
Baseline characteristics were summarized as frequencies for categorical variables and 

median and IQR for continuous variables. Non-parametric, Chi-square, and Fisher's exact 

test were used for group comparisons. Specifically, comparison between independent 

groups was performed with the nonparametric method of Mann Whitney U-test for 

continuous variables, unpaired t-test for normal distribution, and the chi2 test or Fisher's 

exact test for categorical variables; comparison between dependent samples (repeated 

measures of participants pre- and post-cART) was performed with Wilcoxon signed-rank 

test. Analysis of covariance (ANCOVA) was performed to compare QAlb between PHI 

and controls while adjusting for the potential confounders of age and sex.  

  

The mixed-effects model was used to analyze longitudinal change of QAlb post-

transmission, both pre- and post-cART. This model includes both fixed and random 

effects in the same analysis, allowing for variation in the number and time interval of 

participant follow-up visits. Because albumin ratio increases with normal aging, the 

equation was adjusted for baseline age by including it as a fixed-effect covariate in the 

model. To account for a possible non-linear trajectory of QAlb over time, a quadratic term 

(t2) was also included as a fixed-effect covariate along with days post-transmission (t). 
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The model included a personal intercept for each subject as a random effect, allowing 

baseline QAlb to vary for each participant. An interaction term was initially added to 

assess whether the trajectory of QAlb over time depended on the baseline QAlb, but was 

found to be insignificant and thus excluded from the final model. QAlb values were log-

transformed for normal distribution before longitudinal analysis. As transformed results 

were comparable to non-log-transformed analysis, the latter results are reported for 

familiarity of QAlb values. For the equations generated, the final y-intercept was 

calculated as follows: [(parameter estimate of baseline age)*(median age of 

subgroup)]+parameter estimate of subgroup intercept. 

  

Partial correlation coefficients were calculated to determine potential relationships 

between QAlb and other measured parameters, as indicated, while adjusting for effects of 

age. Correlations were computed as a cross-sectional analysis using each participant's 

baseline values, as well as a longitudinal analysis using the intra- and inter-subject 

method of Bland and Altman118,119. Specifically, the intra-subject, or 'within subject', 

method determines the correlation of QAlb and a second variable within a subject over the 

course of the study, thus assessing the longitudinal relationship between the two variables 

while removing variation due to subjects. In other words, it assesses whether an increase 

in the QAlb of an individual subject is associated with a change in the second variable. For 

the inter-subject, or 'between subject', method, each subject's repeated measures over the 

course of the study are averaged for QAlb and the second variable, and a simple regression 

is performed with the weighted means. In other words, this approach assesses whether 
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individuals with elevated QAlb throughout the study also tended to have 

elevated/depressed values of the second variable.  

 

 Statistical analyses employed SPSS 23.0 statistical package (IBM Corp., Armonk, NY). 

Significance level was set as p<0.05, two-sided.  

 

Author contributions 
 
Patient recruitment, data collection, and laboratory analysis were performed previously 

by the research groups of Drs. Serena Spudich, Magnus Gisslén, and Richard W. Price in 

their cohort studies evaluating the CNS effects of HIV in PHI. This study of blood brain 

permeability in the context of the data available from these cohorts was designed by 

Elham Rahimy and Serena Spudich.  Statistical analyses were performed by Elham 

Rahimy and confirmed by Fang-Yong Li. Additionally, Fang-Yong Li provided 

invaluable teaching on the more complex statistical analyses such as the mixed-effects 

model. Elham Rahimy also created figures, tables, and drafted the manuscript. All the 

authors assisted in revising the manuscript and approved the final version.  

  

RESULTS 

Study participant characteristics 
 
106 PHI participants fulfilled the inclusion criteria and had available QAlb values. Nine 

participants experienced clinically overt neurological disorders during seroconversion:  

meningitis (n=2), headache with photophobia (n=5), brachial neuritis (n=2), Guillain-

Barre syndrome, facial palsy, and encephalitis.  Total visits ranged from 1 to 13 with a 
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median of 2, and follow-up ranged up to 3572 days with a median of 50 days. The 

majority of participants were infected with subtype B virus 60.  

 

The baseline characteristics of PHI and uninfected control participants are presented in 

Table 1. The median duration of HIV infection in PHI participants was 91 days; plasma 

viral load in PHI was 1.8 log10 greater relative to that in the CSF compartment. As 

compared to the HIV-uninfected participants, the PHI cohort had a higher percentage of 

males, and was younger. As expected, PHI participants had a lower CD4 count, elevated 

CD8 count, and decreased CD4/CD8 ratio. As previously reported, CSF white blood cells 

were elevated in the PHI group, as well as CSF neopterin, a marker of macrophage 

activation. Despite the younger age, PHI participants had elevated NFL and equivalent 

CSF total protein compared to the uninfected group, two parameters that increase with 

normal aging 86,120,121.   

 

Information regarding drug and alcohol use was available for participants from the San 

Francisco site (n=82) only: 33.0% reported recent alcohol abuse, and 49.1% reported 

recent drug use. The most frequently reported drug use were methamphetamine, 

marijuana, and cocaine, in descending order. 
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Table 1. Baseline demographic and clinical characteristics of study participants  

 
Values are expressed as median and IQR (Q1, Q3). 
ARS, acute retroviral syndrome; CSF, cerebrospinal fluid; GOT, Gothenburg, Sweden; NFL, neurofilament 
light chain; SF, San Francisco, USA; WBC, white blood cell count. 
 

Blood brain barrier permeability at baseline 
 
At baseline, age adjusted QAlb was elevated in the PHI cohort compared to controls 

(means 5.9, 95% CI 5.5 to 6.3 in PHI; and 5.0, 95% CI 4.4 to 5.6 in controls; p=0.02). 

Using previously published reference values117, baseline QAlb was above the age-specific 

upper limit of normal (ULN) in 22 PHI participants (21%), referred to as the "high 

baseline QAlb subgroup." The remaining 84 PHI participants with baseline QAlb values 

Primary HIV infection  
(n=106) 

HIV uninfected 
(n=64) p value 

Sex (% male) 94! 82! 0.001!

Age (y) 36 (29, 46)! 43 (34, 50)! 0.003!

Site SF!(n=82)!!
GOT!(n=24)! SF!

Days post-HIV transmission 91 (53, 149)! ---! ---!

CD4+ count (cells/µl) 567 (402, 709) 808 (678, 1009) <0.001 

CD8+ count (cells/µl) 954 (714, 1358) 487 (343, 733) <0.001 

CD4/CD8 0.528 (0.391, 0.791) 1.76 (1.32, 2.18) <0.001 

Plasma HIV RNA (log10copies/ml) 4.69  (4.08, 5.34) --- --- 

CSF HIV RNA (log10copies/ml) 2.83  (2.14, 3.51) --- --- 

Plasma:CSF HIV RNA ratio 
(log10copies/ml) 1.81 (1.33, 2.28) -- -- 

CSF WBC count (cells/mm3) 6 (2, 11) 2 (0, 3) <0.001 

CSF total protein (mg/dl) 41 (31, 51) 41 (31, 54) 0.611 

NFL (pg/ml) 518  (391, 819) 411  (320, 550) <0.001 

CSF neopterin 9.6 (6.8, 20.4) 5.0 (4.1, 6.8) <0.001 

% neurosymptomatic ARS 8.5% (n=9) -- -- 

Total number of visits 2 (1, 3) --- --- 

Duration of follow up (days) 50 (0, 450) --- --- 

(nmol/l) 
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below the ULN are referred to as the "normal baseline QAlb subgroup."  The baseline 

clinical characteristics of these two subgroups are summarized in Table 2.  4/17, or 24%, 

in the high baseline QAlb subgroup had neurosymptomatic seroconversion versus 8/64, or 

13%, in the normal baseline QAlb subgroup, although statistically insignificant. Elevated 

NFL, CSF total protein, CSF neopterin (but not blood neopterin), CD8+ T cell count, and 

a decreased plasma:CSF HIV RNA ratio were found in the high baseline QAlb as 

compared to normal baseline QAlb group.  

 
Table 2: Baseline clinical characteristics of high and normal QAlb subgroups 

 
Values are expressed as median and IQR (Q1, Q3). 
ARS, acute retroviral syndrome; CSF, cerebrospinal fluid; NFL, neurofilament light chain; WBC, white 
blood cell count. 

Subgroup with  
High Baseline QAlb 

(n=22) 

Subgroup with 
Normal Baseline QAlb 

(n=84) 
p value 

Age (y) 36 (29, 45)! 37 (28, 46)! 0.797!

Days post-HIV transmission 85 (60, 125)! 92 (51, 150)! 0.785!

CD4+ count (cells/µl) 596 (484, 681) 550 (389, 730) 0.469 

CD8+ count (cells/µl) 1294 (792, 1620) 915 (706, 1200) 0.023 

CD4/CD8 0.463 (0.321, 0.791) 0.530 (0.391, 0.803) 0.376 

Plasma HIV RNA (log10copies/ml) 4.60 (3.91, 5.39) 4.69 (4.09, 5.32) 0.629 

CSF HIV RNA (log10copies/ml) 3.23 (1.77, 3.87) 2.73 (2.14, 3.43) 0.340 

Plasma:CSF HIV RNA ratio 
(log10copies/ml) 1.27 (0.464, 2.16) 1.84 (1.50, 2.29) 0.020 

CSF WBC count (cells/mm3) 7 (4, 13) 5 (2, 11) 0.087 

CSF total protein (mg/dl) 59 (52, 74) 37 (28, 42) <0.001 

NFL (pg/ml) 857 (468, 1474) 498 (360, 729) 0.008 

Blood neopterin 18.0 (10.8, 28.9) 14 (9.4, 21.3) 0.183 

CSF neopterin 14.3 (8.4, 32.0) 9.0 (6.5, 17.4) 0.035 

Baseline QAlb  9.18 (7.5, 11.3) 4.66 (3.57, 5.75) <0.001 

% neurosymptomatic ARS 18% (n=4) 6.0% (n=5) --- 

Total number of visits 2 (1, 3) 2 (1,3)  0.617 

Duration of follow up (days) 48 (0, 398) 51 (0, 455) 0.715 

(nmol/l) 

(nmol/l) 
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Statistically significant parameters are bolded.  
 

Longitudinal blood brain barrier permeability in PHI prior to cART 
 
The individual trajectories of each PHI participant's QAlb over the duration of the study 

prior to cART initiation are plotted in Figure 2. A mixed model analysis to evaluate the 

natural history of blood brain barrier integrity in the overall PHI group prior to cART did 

not reveal a significant change in QAlb over time (-0.000436/day, p=0.092).  Figure 3 

compares the trajectories of the high and normal baseline QAlb groups. The high baseline 

group showed a declining trend (-0.00305/day, p=0.011) while the normal baseline group 

initially increased (0.00144/day, p= 0.006) and reached a plateau quickly (quadratic time 

effect p= 0.004). These results indicated the heterogeneous time effect in two subgroups.  

 

Figure 2: Natural history of blood brain barrier integrity pre-cART in total cohort. 
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Figure 3: Natural history of blood brain barrier integrity pre-cART upon cohort stratification. Graphs 
demonstrate individual participant and overall trajectory of QAlb in cART-naive participants upon 
stratification into high and low baseline QAlb subgroups. Dashed gray lines simply indicate upper limit of 
normal for participants aged <45 years (at QAlb=6.5) and those aged >45 years (at QAlb=10.2).  
 

Correlation of blood brain barrier integrity with markers of neuropathogenesis 
 
To further evaluate the implications of elevated QAlb, correlations between QAlb and 

markers of neuronal health were evaluated in pre-cART study intervals (Figure 4). 

Partial correlation coefficients were calculated to correct for the confounding effects of 

age, as QAlb and NFL both directly correlate with age. QAlb demonstrated a strong positive 

correlation with NFL, a marker of active neuronal injury, upon cross-sectional analysis at 

baseline (r=0.497, p<0.001), and longitudinally with both between-participant (r=0.555, 

p<0.001) and within-participant analysis (r=0.523, p=0.001). QAlb inversely correlated 

with NAA:Cr, a cerebral metabolite biomarker of neuronal health, upon cross-sectional 

analysis at baseline (r=-0.352, p=0.015), and longitudinally with between-participant 
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analysis (r=-0.387, p=0.008) but not within-participant analysis (r=0.218, p=0.125). MRS 

was performed at a median 114 days post infection (dpi). QAlb did not correlate with 

composite z-scores (total Z or NPZ4) of neuropsychological testing at baseline nor in 

longitudinal analysis (data not shown).   

 

Figure 4: Correlation of blood brain barrier permeability with clinical and laboratory indicators of 
neuropathogenesis. 
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Characteristics of cART-treated study participants  
 
Fifty-eight PHI participants initiated a cART regimen during study follow-up, although 

one participant was excluded for virologic failure (two consecutive plasma samples with 

HIV RNA >50 copies/mL after 6 months of ART). Treatment regimens were 

heterogeneous, consisting of 10 integrase-based, 25 protease-based, and 22 NNRTI-based 

(15 of which were efavirenz-based), with 19 distinct combinations. cART was initiated at 

a median 225 dpi, with 402 days median on-cART follow-up. Table 3 compares the 

cross-sectional laboratory parameters before (last visit before treatment) and after cART 

treatment (last visit of study) in those who initiated cART. There was improvement in 

most parameters after approximately a year of cART: suppression of plasma and CSF 

HIV RNA to the lower limit of PCR detection (p<0.001), increased CD4+ counts 

(p<0.001), decreased WBC count (p<0.001), and decreased blood and CSF neopterin 

(p<0.001). In this comparison, NFL and albumin ratio did not significantly change with 

cART treatment (640 vs 670, p=0.911; 5.18 vs 5.09, p=0.851). 
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Table 3: Pre- and post-treatment characteristics of participants initiating cART 

 
Values are expressed as median and IQR (Q1, Q3). Group comparisons were performed using non-
parametric analysis for related samples.  
CSF, cerebrospinal fluid; NFL, neurofilament light chain; WBC, white blood cell count.  
An=21 paired; Bn=42 paired. 
Statistically significant parameters are bolded.  
 
 

Longitudinal history of blood brain barrier integrity following cART initiation 
 
A mixed model analysis was performed to assess the longitudinal trajectory of QAlb over 

13 months of cART (Figure 5). Three participants were recruited into the cohort already 

on cART (for 29, 27, and 19 days) and thus were included in the linear mixed model 

(n=60) but excluded from Table 3. As cART was initiated at a median of 225 dpi (t=0 on 

Figure 5), this time-point corresponded with the linear portion of Figure 3, where the 

quadratic changes of the normal baseline subgroup are resolving and reaching a set-point. 

Thus, initial analysis was performed with the total cART-treated group rather than 

separating into subgroups of high and normal baseline QAlb. There was no significant 

 ! Last pre-cART visit (n=57)! cART-treated endpoint! p value!
Age (y) 41 (29, 46) --- --- 

Days post-HIV transmission 225 (96, 760) --- --- 

Days prior to ART initiation 19 (3, 85) --- --- 

# follow-up visits --- 2 (1, 6) --- 

Days on cART --- 402 (192, 1060) --- 

CD4+ count (cells/µl) 431 (282, 588) 643 (483, 787) <0.001 

Plasma HIV RNA (log10copies/ml) 4.9 (4.4, 5.3) 1.69 (1.69, 1.69) <0.001 

CSF HIV RNA (log10copies/ml) 3.4 (2.6, 4.0) 1.69 (1.69, 1.69) <0.001 
Plasma:CSF HIV RNA ratio 
(log10copies/ml) 1.49 (0.71, 2.08) 0.00 (0.00, 0.20) <0.001 

CSF WBC count (cells/mm3) 4 (6, 14) 2 (1, 3) <0.001 

CSF total proteinA 40 (33, 50) 35 (29, 42)  0.001 

NFL (pg/ml)B 640 (515, 965) 670 (453, 1072) 0.911 

QAlb 5.18 (3.92, 6.40) 5.09 (3.87, 6.21) 0.832 

Blood neopterin 18.4 (8.4, 24.9) 7.6 (5.2, 12.9) <0.001 

CSF neopterin 13.9 (7.8, 21.6) 5.2 (4.7, 7.7) <0.001 

(nmol/l) 

(nmol/l) 
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change detected in QAlb over the median >1 year duration of cART treatment (slope=-

0.00369/month, p=0.174). With group stratification, the high baseline subgroup (n=7) 

demonstrated no significant change in QAlb over time (p=0.783). The low baseline 

subgroup (n=53) demonstrated a slope of effectively zero (slope=0.00008/month, 

p=0.004), similar to the pre-cART plateau. 

 

Figure 5: Effects of cART on trajectory of blood brain barrier permeability. Scatterplot shows individual 
participant and overall trajectory of QAlb pre- and post- cART initiation (indicated by dashed red line at 
t=0). Linear mixed model analysis generated the equations shown. Blue line shows trajectory of QAlb pre-
cART initation and red line shows trajectory of QAlb post-cART initiation. Months pre-cART are negative 
values. 
 

DISCUSSION 
 
In this study, we analyzed the natural history of BBB permeability during primary HIV 

infection, and the influence of early cART. We showed that the albumin ratio is mildly 

elevated in PHI participants compared to uninfected controls when correcting for age. 

This correction is relevant given that BBB permeability increases with normal aging122, 



  33   

 

and may explain why previous studies have not reported abnormalities in BBB 

permeability during PHI when compared to controls, given that most early HIV studies 

enroll young patients. That being said, we have previously identified moderate elevation 

of albumin ratio in PHI 50,60, and in chronic HIV participants who are cART-naive and 

neuroasymptomatic60. Similarly, Li et al have reported a strong association between 

matrix metalloproteinases--enzymatic surrogate markers of BBB permeability--and 

neurocognitive status in early HIV102.  

 The novelty of this study is our finding that BBB permeability is undergoing 

dynamic changes early in the course of HIV infection, even within days of transmission. 

Two distinct trajectories were noted for the PHI cohort when stratified by baseline 

albumin ratio. Those with a normal baseline albumin ratio (below the ULN) showed a 

mild initial increase that plateaued within the first 1000 days of infection. Despite the 

initial rise, the QAlb remains well below the ULN. As will be discussed below, it may be 

that there is an element of sub-clinical injury associated with this mild rise.  The 

subgroup with high baseline albumin ratios demonstrated a marked decline in albumin 

ratio within the first 1000 days of infection. Presumably an early rise in albumin ratio 

occurred immediately following infection before participant recruitment, and is resolving 

during the follow up. Notably, the subgroup with higher baseline albumin ratio was 

characterized by a higher percentage of neurosymptomatic seroconversion, elevations in 

CSF markers of axonal injury and immune activation, and a higher CSF-to-plasma HIV 

RNA ratio. These findings suggest that a subgroup of PHI participants is susceptible to 

marked BBB disruption, which persists even beyond 1000 days post infection, and is 
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associated with signs of increased CNS involvement. Factors which predispose 

individuals to one trajectory versus the other warrant further investigation.  

 Previous studies have expounded on the association of albumin ratio with 

biomarkers of CNS inflammation and injury123. We confirm that in PHI albumin ratio 

correlates strongly with the axonal injury marker NFL68, and newly demonstrate that it 

inversely correlates with the metabolic marker of neuronal health, NAA:Cr. NFL is a 

sensitive marker of active neuronal damage, and its levels correlate with the severity of 

this damage 51,124,125. We have previously shown NFL to be the most sensitive neuronal 

biomarker for assessing HIV neurodegeneration, as it can detect subclinical injury in 

neuroasymptomatic individuals, even in the early phase of infection 50,126. As disease 

progresses, it is also associated with overt clinical neurological disease, thus not only 

reflecting structural but functional changes124. Although NFL is not specific for HIV 

neurodegeneration50,51, comorbid neurological conditions were excluded from the study 

onset. Similar to QAlb, NFL was elevated in PHI although below the ULN (<560), 

possibly indicating subclinical damage, which may explain the lack of correlation with 

NPZ-4 testing. In line with this conclusion, we have previously shown a lack of 

correlation between NFL and NPZ-4 during PHI, despite showing moderate elevations 

when compared to uninfected controls 50,68. Similar to the utility of NFL as a biomarker 

of early subclinical injury, MRS has been shown to detect early HIV neuropathogenesis 

prior to conventional MRI changes127.  In a recent study, chronically infected HIV 

subjects with cognitive defects were shown to have reduced glutamate and NAA in 

several brain regions, most pronounced in the parietal grey matter128. Here, we extend 

that finding to the early stage of infection.  
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 Once we demonstrated that BBB permeability was altered in PHI, and associated 

with markers of neuronal pathology, we assessed whether early cART treatment could 

remediate these changes. Surprisingly, the effect of cART on BBB permeability has not 

been intensely evaluated. In an unpublished study, Crozier and colleagues observed the 

gradual diminishment of albumin ratio (median 6.48 to 6.09) in 16 neuroasymptomatic 

participants with chronic HIV infection after 200 days of cART therapy111; thus, although 

BBB integrity improved over time with cART therapy, a return to baseline or near 

baseline function may take years. In contrast, Abdulle and colleagues reported no 

significant reduction in BBB permeability after 2 years of cART treatment in 38 

neuroasymptomatic participants32. Importantly, the median baseline albumin ratio of 

participants in the Crozier study was greater than that of participants in the Abdulle study 

(6.48 vs 4.45), potentially contributing to the discrepancy in cohort response to cART.   

 In our study, cART treatment, initiated at a median of 225 days post infection, 

was effective in suppressing CSF and plasma HIV RNA, suggesting medication 

compliance and effectiveness. Notably, the inflammatory marker neopterin improved to 

below the upper level of normal limits both in the plasma and CSF. Despite this systemic 

(including CNS) suppression of viral replication and inflammation, NFL and albumin 

ratio were unchanged. The pre-cART measurement of albumin ratio is comparable to the 

age-matched uninfected controls, and thus may indicate that the acute changes of albumin 

ratio in the high baseline QAlb subgroup had largely resolved and reached near-baseline 

once cART was initiated at 225 days post infection.  On the other hand, although NFL is 

below the age-specific ULN (<840), it is elevated compared to uninfected controls and 

the baseline PHI cohort, given only a marginal age difference. There is a gradual 
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normalization of NFL following axonal injury which is unlikely to persist for over a 

year129. Thus, this persistently elevated level of NFL may reflect continued subclinical 

injury despite cART treatment and what appears to be a largely normal albumin ratio.  

 Notably, we have previously shown a reduction in NFL in response to cART124. 

However, there are important distinctions between the two studies. Although both cohorts 

demonstrate approximately equal proportion of patients with elevated age-specific NFL 

values (38% in the current study, 40% in the previous), the elevations are much less 

marked in the current study: the patients in the current study demonstrate a lower baseline 

NFL upon cART initiation (640 pg/mL [IQR 515, 965] vs 780 ng/L [IQR 480, 7300]) for 

a slightly older cohort (median 41 vs 38 years). Additionally, the previous study had a 

large proportion of neurologically symptomatic patients (ie, with ADC), whom were 

noted to have the more marked elevations in NFL. Furthermore, the current study uses a 

more sensitive NFL assay, possibly more accurately detecting subtle elevations in NFL 

that remain persistently elevated after cART. Our findings in the current study are 

consistent with a more recent study from the Gisslén/Zetterberg group using the same 

highly sensitive assay86 that demonstrated that the subgroup of HIV-infected individuals 

with normal CSF NFL at baseline exhibited no significant reduction in CSF NFL after 

treatment initiation, and also that in the overall group studied, NFL levels did not 

completely normalize in the setting of long-term cART.  Finally, the current study is 

assessing early stage primary HIV infection, while the previous study was assessing 

chronic HIV infection/AIDS, thus there may be inherent differences between the two 

disease stages (although beyond the scope of this study).  
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 We hypothesize that perhaps (1) the initially altered BBB permeability has 

initiated CNS injury which persists despite resolution of BBB integrity, (2) the 

mechanism of injury is independent of BBB integrity, or (3) BBB permeability is mildly 

elevated and has not fully returned to baseline resulting in persisting neuronal injury. 

Alternatively, it is possible that despite the large sample size, we still have insufficient 

power to detect a significant change in NFL and QAlb after cART. Further studies are 

necessary to elucidate the possible explanation. Notably, a previous study showed 

normalization of the CD4/CD8 ratio during PHI only when cART was initiated within 6 

months of transmission130.  Furthermore, in a cohort of individuals started on treatment 

during acute HIV, CSF NFL was not elevated at baseline nor after 6 and 24 months of 

cART131. The effects of earlier cART intervention on albumin ratio normalization should 

be investigated.  

Limitations 
 
In light of the genetic diversity of HIV, the findings of this study are most representative 

of infection with HIV-1 subtype B, the predominant form in Europe, Australia, and the 

Americas132 and the subject of most in vitro experiments and antiretroviral drug 

experiments133.  

 QAlb is affected by many factors not accounted for in this study, including body 

weight and smoking 122. Comorbidities which are highly prevalent in HIV+ individuals, 

such as cardiovascular disease and diabetes mellitus, are known to influence the integrity 

of the BBB. In this study, cholesterol and other cardiovascular risk factors were not 

routinely screened for, although none of the participants had a known history of clinically 

apparent cardiovascular disease such as coronary artery disease, peripheral vascular 
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disease, or stroke. One participant, in the low baseline group, had a known diagnosis of 

diabetes mellitus type 2. Abuse of substances such as cocaine has been shown to at least 

transiently increase BBB permeability45. As indicated in the results, drug use was highly 

prevalent in this cohort, thus, misreporting of ongoing drug use or long-term effects of 

previous drug use cannot be discounted as confounding factors.  

 Furthermore, given the observational nature of this study, cART regimens were 

heterogeneous which may result in distinct effects on the BBB. The influence of distinct 

regimens is further complicated by the fact that several participants changed cART 

regimens throughout the course of the follow-up period for different reasons (ie, drug 

reactions). Therefore, the sample size we have is too small to support a meaningful 

comparison by therapy.  

 In light of the limitations delineated above, the ideal confirmatory study would 

recruit healthy subjects without confounding factors of BBB status--HBV/HCV negative, 

no previous history of drug or alcohol use, no history of cardiovascular disease or 

cardiovascular risk factors, including hypertension, diabetes, or even obesity. Participants 

would be recruited nationwide via different universities/institutions, and would include a 

greater female population (large enough for further analysis upon sex stratification) and 

larger age distribution (again, large enough for further analysis upon stratification). 

Follow-up would begin from day 1 of HIV transmission and follow-up time would be 

homogeneous for all participants (ie, at baseline, six weeks, and every six months 

thereafter until the last day without any loss to follow-up). Participants would have 

excellent access to health care throughout the observational study, so as to minimize 

interference of confounding health conditions on the different measured CSF and blood 
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parameters.  A large portion of participants would then start an antiretroviral therapy 

regimen within the PHI phase and remain compliant with successful viral suppression. 

With an earlier cART initiation, we may thus be able to better assess the effect of cART 

on the BBB permeability trajectory compared to the cART-naive population. 

Additionally, if cART regimens were more homogeneous among participants, we may be 

able to stratify based on regimen characteristics (ie, CPE) to determine if unique 

regimens exhibit different effects on BBB permeability.  

 

Conclusions 
 
Blood brain barrier permeability undergoes a dynamic process early in HIV infection, 

demonstrating acute changes within days. We identified two subgroups of PHI 

participants with different albumin ratio trajectories: one with a presumed acute increase 

and gradual improvement over the course of infection, and a second with a mild initial 

increase. BBB permeability correlated with markers of neuropathogenesis. Initiation of 

cART in the first year of infection did not significantly alter BBB permeability in our 

study. Further investigations should test the effects of earlier cART initiation, especially 

in individuals with signs of early BBB disruption.  
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