
/ theory / in / prac t ice

From Strategy to Tools

Ian Molyneaux

The Art of Application
Performance Testing

2nd
Edition

/ theory / in / prac t ice

The Art of Application Performance Testing

T
he A

rt of A
pplication Perform

ance Testing
M

olyneau
x

Because performance is paramount today, this thoroughly updated guide shows you how
to test mission-critical applications for scalability and performance before you deploy them—
whether it’s to the cloud or a mobile device. You’ll learn the complete testing process lifecycle
step-by-step, along with best practices to plan, coordinate, and conduct performance tests
on your applications.

Written by a consultant with over 15 years’ experience with performance testing, The Art of
Application Performance Testing thoroughly explains the pitfalls of an inadequate testing strategy
and offers a robust, structured approach for ensuring that your applications perform well and
scale effectively when the need arises.

Ian Molyneaux, EMEA SME (Subject Matter Expert), is Head of Performance at Intechnica, a
software consultancy based in Manchester, UK. He specializes in performance assurance for
the enterprise with a strong focus on people, process, and tooling.

■ Set realistic performance testing goals

■ Implement an effective application performance testing strategy

■ Interpret performance test results

■ Cope with different application technologies and architectures

■ Understand the importance of End User Monitoring (EUM)

■ Use automated performance testing tools

■ Test traditional local applications, web applications, and web services

■ Recognize and resolves issues often overlooked in performance tests

Software Testing

ISBN: 978-1-491-90054-3
US $44.99 CAN $47.99

Twitter: @oreillymedia
facebook.com/oreilly
oreilly.com

/ theory / in / prac t ice

From Strategy to Tools

Ian Molyneaux

The Art of Application
Performance Testing

2nd
Edition

/ theory / in / prac t ice

The Art of Application Performance Testing

T
he A

rt of A
pplication Perform

ance Testing
M

olyneau
x

Because performance is paramount today, this thoroughly updated guide shows you how
to test mission-critical applications for scalability and performance before you deploy them—
whether it’s to the cloud or a mobile device. You’ll learn the complete testing process lifecycle
step-by-step, along with best practices to plan, coordinate, and conduct performance tests
on your applications.

Written by a consultant with over 15 years’ experience with performance testing, The Art of
Application Performance Testing thoroughly explains the pitfalls of an inadequate testing strategy
and offers a robust, structured approach for ensuring that your applications perform well and
scale effectively when the need arises.

Ian Molyneaux, EMEA SME (Subject Matter Expert), is Head of Performance at Intechnica, a
software consultancy based in Manchester, UK. He specializes in performance assurance for
the enterprise with a strong focus on people, process, and tooling.

■ Set realistic performance testing goals

■ Implement an effective application performance testing strategy

■ Interpret performance test results

■ Cope with different application technologies and architectures

■ Understand the importance of End User Monitoring (EUM)

■ Use automated performance testing tools

■ Test traditional local applications, web applications, and web services

■ Recognize and resolves issues often overlooked in performance tests

Software Testing

ISBN: 978-1-491-90054-3
US $44.99 CAN $47.99

Twitter: @oreillymedia
facebook.com/oreilly
oreilly.com

When you buy an ebook through oreilly.com you get lifetime access to the book, and
whenever possible we provide it to you in five, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, Android .apk, and DAISY—that you can use on the devices of
your choice. Our ebook files are fully searchable, and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

O’Reilly Ebooks—Your bookshelf on your devices!

Learn more at ebooks.oreilly.com

You can also purchase O’Reilly ebooks through the
Android Marketplace, and Amazon.com.

oreilly.comSpreading the knowledge of innovators

iBookstore, the

978-1-491-90054-3

[LSI]

The Art of Application Performance Testing
by Ian Molyneaux

Copyright © 2015 Ian Molyneaux. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online

editions are also available for most titles (http://safaribooksonline.com). For more information,

contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Brian Anderson
Production Editor: Melanie Yarbrough
Copyeditor: Rachel Monaghan
Proofreader: Sharon Wilkey

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Ellie Volkhausen
Illustrator: Rebecca Demarest

December 2014: Second Edition

Revision History for the Second Edition
2014-12-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491900543 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Art of Application Perfor-

mance Testing, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information

and instructions contained in this work are accurate, the publisher and the author disclaim all

responsibility for errors or omissions, including without limitation responsibility for damages

resulting from the use of or reliance on this work. Use of the information and instructions con-

tained in this work is at your own risk. If any code samples or other technology this work con-

tains or describes is subject to open source licenses or the intellectual property rights of others,

it is your responsibility to ensure that your use thereof complies with such licenses and/or

rights.

T A B L E O F C O N T E N T S

Preface. xi

1 Why Performance Test?. 1
What Is Performance? The End-User Perspective 1

Performance Measurement 2

Performance Standards 3

The World Wide Web and Ecommerce 5

Bad Performance: Why It’s So Common 5

The IT Business Value Curve 5

Performance Testing Maturity: What the Analysts Think 6

Lack of Performance Considerations in Application Design 7

Performance Testing Is Left to the Last Minute 7

Scalability 8

Underestimating Your Popularity 8

Performance Testing Is Still an Informal Discipline 9

Not Using Automated Testing Tools 9

Application Technology Impact 10

Summary 10

2 Choosing an Appropriate Performance Testing Tool. 11
Performance Testing Tool Architecture 12

Choosing a Performance Testing Tool 13

Performance Testing Toolset: Proof of Concept 16

Proof of Concept Checklist 17

Summary 19

3 The Fundamentals of Effective Application Performance Testing. 21
Making Sure Your Application Is Ready 23

Allocating Enough Time to Performance Test 24

Obtaining a Code Freeze 25

Designing a Performance Test Environment 26

Virtualization 27

iii

Cloud Computing 29

Load Injection Capacity 31

Addressing Different Network Deployment Models 32

Environment Checklist 34

Software Installation Constraints 35

Setting Realistic Performance Targets 35

Consensus 35

Performance Target Definition 37

Network Utilization 41

Server Utilization 42

Identifying and Scripting the Business-Critical Use Cases 43

Use-Case Checklist 44

Use-Case Replay Validation 45

What to Measure 46

To Log In or Not to Log In 46

Peaceful Coexistence 47

Providing Test Data 47

Input Data 47

Target Data 48

Session Data 49

Data Security 49

Ensuring Accurate Performance-Test Design 49

Principal Types of Performance Test 50

The Load Model 51

Think Time 54

Pacing 54

Identifying the KPIs 59

Server KPIs 59

Network KPIs 62

Application Server KPIs 64

Summary 64

4 The Process of Performance Testing. 65
Activity Duration Guidelines 65

Performance Testing Approach 66

Step 1: Nonfunctional Requirements Capture 67

Step 2: Performance Test Environment Build 70

Step 3: Use-Case Scripting 71

CONTENTSiv

Step 4: Performance Test Scenario Build 72

Step 5: Performance Test Execution 74

Step 6: Post-Test Analysis and Reporting 75

Case Study 1: Online Banking 75

Application Landscape 76

Application Users 76

Step 1: Pre-Engagement NFR Capture 77

Step 2: Test Environment Build 78

Step 3: Use-Case Scripting 79

Step 4: Performance Test Build 80

Step 5: Performance Test Execution 81

Online Banking Case Study Review 81

Case Study 2: Call Center 83

Application Landscape 83

Application Users 85

Step 1: Pre-Engagement NFR Capture 85

Step 2: Test Environment Build 86

Step 3: Use-Case Scripting 86

Step 4: Performance Test Scenario Build 87

Step 5: Performance Test Execution 87

Call Center Case Study Review 88

Summary 89

5 Interpreting Results: Effective Root-Cause Analysis. 91
The Analysis Process 92

Real-Time Analysis 92

Post-Test Analysis 93

Types of Output from a Performance Test 93

Statistics Primer 93

Response-Time Measurement 96

Throughput and Capacity 99

Monitoring Key Performance Indicators 100

Server KPI Performance 102

Network KPI Performance 103

Load Injector Performance 104

Root-Cause Analysis 105

Scalability and Response Time 105

Digging Deeper 107

vCONTENTS

Inside the Application Server 108

Looking for the Knee 109

Dealing with Errors 110

Baseline Data 111

Analysis Checklist 111

Pre-Test Tasks 111

Tasks During Test Execution 112

Post-Test Tasks 114

Summary 115

6 Performance Testing and the Mobile Client. 117
What’s Different About a Mobile Client? 117

Mobile Testing Automation 118

Mobile Design Considerations 119

Mobile Testing Considerations 120

Mobile Test Design 120

On-Device Performance Not in Scope 121

On-Device Performance Testing Is in Scope 122

Summary 123

7 End-User Experience Monitoring and Performance. 125
What Is External Monitoring? 126

Why Monitor Externally? 127

External Monitoring Categories 130

Active Monitoring 130

Output Metrics 132

ISP Testing Best Practices 133

Synthetic End-User Testing Best Practices 135

Passive Monitoring 136

How Passive Monitoring Works 138

Pros and Cons of Active Versus Passive Monitoring 140

Active Pros 140

Active Cons 141

Passive Pros 141

Passive Cons 141

Tooling for External Monitoring of Internet Applications 141

Tool Selection Criteria 142

Active Monitoring Tooling 144

CONTENTSvi

Passive Monitoring Tooling 145

Creating an External Monitoring Testing Framework 147

Building Blocks of an Effective Testing Framework 148

Specific Design Aspects of Active Monitoring 149

Specific Design Aspects of Passive Monitoring 151

Isolating and Characterizing Issues Using External Monitoring 152

Monitoring Native Mobile Applications 154

Essential Considerations for CDN Monitoring 157

Performance Results Interpretation 161

Key Performance Indicators for Web-Based Ecommerce Applications 162

Setting KPI Values 164

The Application Performance Index (APDEX) 166

Management Information 167

Data Preparation 168

Statistical Considerations 168

Correlation 172

Effective Reporting 174

Competitive Understanding 175

Alerting 179

Gotchas! 181

Summary 183

8 Integrating External Monitoring and Performance Testing. 185
Tooling Choices 187

Active and Passive Integration with Static Performance Testing 188

Passive and Performance Testing 189

RUM and APM 191

Integration of Active Test Traffic with APM Tooling 191

Active External Monitoring and Performance Testing 192

Test Approach 192

Test Scheduling 193

Performance Testing of Multimedia Content 195

End-User Understanding in Non-Internet Application Performance
Tests 196

Useful Source Materials 199

Summary 200

9 Application Technology and Its Impact on Performance Testing. 201

viiCONTENTS

Asynchronous Java and XML (AJAX) 201

Push Versus Pull 202

Citrix 202

Citrix Checklist 203

Citrix Scripting Advice 204

Virtual Desktop Infrastructure 205

HTTP Protocol 205

Web Services 205

.NET Remoting 206

Browser Caching 207

Secure Sockets Layer 207

Java 208

Oracle 209

Oracle Two-Tier 209

Oracle Forms Server 209

Oracle Checklist 209

SAP 210

SAP Checklist 210

Service-Oriented Architecture 211

Web 2.0 212

Windows Communication Foundation and Windows Presentation
Foundation 213

Oddball Application Technologies: Help, My Load Testing Tool Won’t
Record It! 213

Before Giving Up in Despair . . . 213

Alternatives to Capture at the Middleware Level 215

Manual Scripting 215

Summary 216

10 Conclusion. 217

A Use-Case Definition Example. 219

B Proof of Concept and Performance Test Quick Reference 223

C Performance and Testing Tool Vendors. 235

D Sample Monitoring Templates: Infrastructure Key Performance Indicator
Metrics. 239

CONTENTSviii

E Sample Project Plan. 243

Index. 245

ixCONTENTS

C H A P T E R O N E

Why Performance Test?
Faster than a speeding bullet . . .

Superman, Action Comics

WELCOME! BEFORE DIVING INTO THE BASICS OF PERFORMANCE TESTING, I WANT
to use this first chapter to talk a little about what we mean by good and bad perfor-

mance and why performance testing is such a vital part of the software development

life cycle (SDLC). Non-performant (i.e., badly performing) applications generally don’t

deliver their intended benefit to an organization; they create a net cost of time and

money, and a loss of kudos from the application users, and therefore can’t be consid-

ered reliable assets. If a software application is not delivering its intended service in a

performant and highly available manner, regardless of causation, this reflects badly on

the architects, designers, coders, and testers (hopefully there were some!) involved in

its gestation.

Performance testing continues to be the poor, neglected cousin of functional and

operational acceptance testing (OAT), which are well understood and have a high

maturity level in most business organizations. It is strange that companies continue to

overlook the importance of performance testing, frequently deploying applications

with little or no understanding of their performance, only to be beset with perfor-

mance and scalability problems soon after the release. This mindset has changed little

over the past 15 years, despite the best efforts of consultants like myself and the

widely publicized failure of many high-profile software applications. (Need we men-

tion HealthCare.gov?)

What Is Performance? The End-User Perspective
So when is an application considered to be performing well? My many years of work-

ing with customers and performance teams suggest that the answer is ultimately one

of perception. A well-performing application is one that lets the end user carry out a

given task without undue perceived delay or irritation. Performance really is in the eye

of the beholder. With a performant application, users are never greeted with a blank

1

screen during login and can achieve what they set out to accomplish without their

attention wandering. Casual visitors browsing a website can find what they are look-

ing for and purchase it without experiencing too much frustration, and the call-center

manager is not being harassed by the operators with complaints of poor performance.

It sounds simple enough, and you may have your own thoughts on what constitutes

good performance. But no matter how you define it, many applications struggle to

deliver even an acceptable level of performance when it most counts (i.e., under con-

ditions of peak loading). Of course, when I talk about application performance, I’m

actually referring to the sum of the parts, since an application is made up of many

components. At a high level we can define these as the client, the application software,

and the hosting infrastructure. The latter includes the servers required to run the soft-

ware as well as the network infrastructure that allows all the application components

to communicate. Increasingly this includes the performance of third-party service pro-

viders as an integral part of modern, highly distributed application architectures. The

bottom line is that if any of these areas has problems, application performance is likely

to suffer. You might think that all we need do to ensure good application performance

is observe the behavior of each of these areas under load and stress and correct any

problems that occur. The reality is very different because this approach is often “too

little, too late,” so you end up dealing with the symptoms of performance problems

rather than the cause.

Performance Measurement
So how do we go about measuring performance? We’ve discussed end-user percep-

tion, but in order to accurately measure performance, we must take into account cer-

tain key performance indicators (KPIs). These KPIs are part of the nonfunctional require-

ments discussed further in Chapter 3, but for now we can divide them into two types:

service-oriented and efficiency-oriented.

Service-oriented indicators are availability and response time; they measure how well (or

not) an application is providing a service to the end users. Efficiency-oriented indicators

are throughput and capacity; they measure how well (or not) an application makes

use of the hosting infrastructure. We can further define these terms briefly as follows:

Availability
The amount of time an application is available to the end user. Lack of availability

is significant because many applications will have a substantial business cost for

even a small outage. In performance terms, this would mean the complete inabil-

ity of an end user to make effective use of the application either because the appli-

cation is simply not responding or response time has degraded to an unacceptable

degree.

CHAPTER ONE: WHY PERFORMANCE TEST?2

Response time
The amount of time it takes for the application to respond to a user request. In

performance testing terms you normally measure system response time, which is

the time between the end user requesting a response from the application and a

complete reply arriving at the user’s workstation. In the current frame of refer-

ence a response can be synchronous (blocking) or increasingly asynchronous,

where it does not necessarily require end users to wait for a reply before they can

resume interaction with the application. More on this in later chapters.

Throughput
The rate at which application-oriented events occur. A good example would be

the number of hits on a web page within a given period of time.

Utilization
The percentage of the theoretical capacity of a resource that is being used. Exam-

ples include how much network bandwidth is being consumed by application traf-

fic or the amount of memory used on a web server farm when 1,000 visitors are

active.

Taken together, these KPIs can provide us with an accurate idea of an application’s

performance and its impact on the hosting infrastructure.

Performance Standards
By the way, if you were hoping I could point you to a generic industry standard for

good and bad performance, you’re (still) out of luck because no such guide exists.

There continue to be various informal attempts to define a standard, particularly for

browser-based applications. For instance, you may have heard the term minimum page

refresh time. I can remember a figure of 20 seconds being bandied about, which rapidly

became 8 seconds and in current terms is now 2 seconds or better. Of course, the

application user (and the business) wants “instant response” (in the words of the

Eagles, “Everything all the time”), but this sort of consistent performance is likely to

remain elusive.

The following list summarizes research conducted in the late 1980s (Martin et al.,

1988) that attempted to map end-user productivity to response time. The original

research was based largely on green-screen text applications, but its conclusions are

still very relevant.

Greater than 15 seconds
This rules out conversational interaction. For certain types of applications, certain

types of end users may be content to sit at a terminal for more than 15 seconds

waiting for the answer to a single simple inquiry. However, to the busy call-center

operator or futures trader, delays of more than 15 seconds may seem intolerable.

WHAT IS PERFORMANCE? THE END-USER PERSPECTIVE 3

If such delays could occur, the system should be designed so that the end user can

turn to other activities and request the response at some later time.

Greater than 4 seconds
These delays are generally too long for a conversation, requiring the end user to

retain information in short-term memory (the end user’s memory, not the com-

puter’s!). Such delays would inhibit problem-solving activity and frustrate data

entry. However, after the completion of a transaction, delays of 4 to 15 seconds

can be tolerated.

2 to 4 seconds
A delay longer than 2 seconds can be inhibiting to operations that demand a high

level of concentration. A wait of 2 to 4 seconds can seem surprisingly long when

the end user is absorbed and emotionally committed to completing the task at

hand. Again, a delay in this range may be acceptable after a minor closure. It may

be acceptable to make purchasers wait 2 to 4 seconds after typing in their address

and credit card number, but not at an earlier stage when they may be comparing

various product features.

Less than 2 seconds
When the application user has to remember information throughout several

responses, the response time must be short. The more detailed the information to

be remembered, the greater the need for responses of less than 2 seconds. Thus,

for complex activities, such as browsing products that vary along multiple dimen-

sions, 2 seconds represents an important response-time limit.

Subsecond response time
Certain types of thought-intensive work (such as writing a book), especially with

applications rich in graphics, require very short response times to maintain end

users’ interest and attention for long periods of time. An artist dragging an image

to another location must be able to act instantly on his next creative thought.

Decisecond response time
A response to pressing a key (e.g., seeing the character displayed on the screen) or

to clicking a screen object with a mouse must be almost instantaneous: less than

0.1 second after the action. Many computer games require extremely fast interac-

tion.

As you can see, the critical response-time barrier seems to be 2 seconds, which, inter-

estingly, is where expected application web page response time now sits. Response

times greater than 2 seconds have a definite impact on productivity for the average

end user, so our nominal page refresh time of 8 seconds for web applications is cer-

tainly less than ideal.

CHAPTER ONE: WHY PERFORMANCE TEST?4

The World Wide Web and Ecommerce
The explosive growth of the World Wide Web has contributed in no small way to the

need for applications to perform at warp speed. Many (or is that all?) ecommerce busi-

nesses now rely on cyberspace for the lion’s share of their revenue in what is the most

competitive environment imaginable. If an end user perceives bad performance from

your website, her next click will likely be on your-competition.com.

Ecommerce applications are also highly vulnerable to sudden spikes in demand, as

more than a few high-profile retail companies have discovered at peak shopping times

of the year.

Bad Performance: Why It’s So Common
OK, I’ve tried to provide a basic definition of good and bad performance. It seems

obvious, so why do many applications fail to achieve this noble aspiration? Let’s look

at some common reasons.

The IT Business Value Curve
Performance problems have a nasty habit of turning up late in the application life

cycle, and the later you discover them, the greater the cost and effort to resolve.

Figure 1-1 illustrates this point.

Figure 1-1. The IT business value curve

BAD PERFORMANCE: WHY IT’S SO COMMON 5

The solid line (planned) indicates the expected outcome when the carefully factored

process of developing an application comes to fruition at the planned moment (black

diamond). The application is deployed successfully on schedule and immediately starts

to provide benefit to the business with little or no performance problems after deploy-

ment.

The broken line (actual) demonstrates the all-too-frequent reality when development

and deployment targets slip (striped diamond) and significant time and cost is involved

in trying to fix performance issues in production. This is bad news for the business

because the application fails to deliver the expected benefit.

This sort of failure is becoming increasingly visible at the board level as companies seek

to implement information technology service management (ITSM) and information

technology portfolio management (ITPM) strategies on the way to the holy grail of

Information Technology Infrastructure Library (ITIL) compliance. The current frame of

reference considers IT as just another (important) business unit that must operate and

deliver within budgetary constraints. No longer is IT a law unto itself that can con-

sume as much money and resources as it likes without challenge.

Performance Testing Maturity: What the Analysts Think
But don’t just take my word for it. Figure 1-2 is based on data collected by Forrester

Research in 2006 looking at the number of performance defects that have to be fixed

in production for a typical application deployment. For the revised edition I was con-

sidering replacing this example with something more recent, but on reflection (and

rather disappointingly) not much has really changed since 2009!

Figure 1-2. Forrester Research on resolution of performance defects

As you can see, three levels of performance testing maturity were identified. The first

one, firefighting, occurs when little or no performance testing was carried out prior to

application deployment, so effectively all performance defects must be resolved in the

CHAPTER ONE: WHY PERFORMANCE TEST?6

live environment. This is the least desirable approach but, surprisingly, is still relatively

common. Companies in this mode are exposing themselves to serious risk.

The second level, performance validation (or verification) covers companies that set aside

time for performance testing but not until late in the application life cycle; hence, a

significant number of performance defects are still found in production (30%). This is

where most organizations currently operate.

The final level, performance driven, is where performance considerations have been

taken into account at every stage of the application life cycle. As a result, only a small

number of performance defects are discovered after deployment (5%). This is what

companies should aim to adopt as their performance testing model.

Lack of Performance Considerations in Application Design
Returning to our discussion of common reasons for failure: if you don’t take perfor-

mance considerations into account during application design, you are asking for trou-

ble. A “performance by design” mindset lends itself to good performance, or at least

the agility to change or reconfigure an application to cope with unexpected perfor-

mance challenges. Design-related performance problems that remain undetected until

late in the life cycle can be difficult to overcome completely, and doing so is sometimes

impossible without significant (and costly) application reworking.

Most applications are built from software components that can be tested individually

and may perform well in isolation, but it is equally important to consider the applica-

tion as a whole. These components must interact in an efficient and scalable manner

in order to achieve good performance.

Performance Testing Is Left to the Last Minute
As mentioned, many companies operate in performance validation/verification mode.

Here performance testing is done just before deployment, with little consideration

given to the amount of time required or to the ramifications of failure. Although better

than firefighting, this mode still carries a significant risk that you won’t identify serious

performance defects—only for them to appear in production—or you won’t allow

enough time to correct problems identified before deployment.

One typical result of this mode is a delay in the application rollout while the problems

are resolved. An application that is deployed with significant performance issues will

require costly, time-consuming remedial work after deployment. Even worse, the

application might have to be withdrawn from circulation entirely until it’s battered

into shape.

BAD PERFORMANCE: WHY IT’S SO COMMON 7

All of these outcomes have an extremely negative effect on the business and on the

confidence of those expected to use the application. You need to test for performance

issues as early as you can, rather than leave it to the last minute.

Scalability
Often, not enough thought is given to capacity requirements or an application’s ability

to scale. The design of the application and the anticipated deployment model may

overlook the size and geography of the end-user community. Many applications are

developed and subsequently tested without more than a passing thought for the fol-

lowing considerations:

• How many end users will actually use the application?

• Where are these end users located?

• How many of these end users will use it concurrently?

• How will the end users connect to the application?

• How many additional end users will require access to the application over time?

• What will the final application landscape look like in terms of the number and

location of the servers?

• What effect will the application have on network capacity?

Neglect of these issues manifests itself in unrealistic expectations for the number of

concurrent end users that the application is expected to support. Furthermore, there is

often little thought given to end users who may be at the end of low-bandwidth, high-

latency WAN links. I will cover connectivity issues in more detail in Chapter 2.

Underestimating Your Popularity
This might sound a little strange, but many companies underestimate the popularity of

their new web applications. This is partly because they deploy them without taking

into account the novelty factor. When something’s shiny and new, people generally

find it interesting and so they turn up in droves, particularly where an application

launch is accompanied by press and media promotion. Therefore, the 10,000 hits you

had carefully estimated for the first day of deployment suddenly become 1,000,000

hits, and your application infrastructure goes into meltdown!

Putting it another way, you need to plan for the peaks rather than the troughs.

CHAPTER ONE: WHY PERFORMANCE TEST?8

Spectacular Failure: A Real-World Example

Some years ago, the UK government decided to make available the results of the 1901
census on the Internet. This involved a great deal of effort converting old documents
into a modern digital format and creating an application to provide public access.

I was personally looking forward to the launch, since I was tracing my family history at
the time and this promised to be a great source of information. The site was launched
and I duly logged in. Although I found things a little slow, I was able to carry out my
initial searches without too much issue. However, when I returned to the site 24 hours
later, I was greeted with an apologetic message saying that the site was unavailable. It
remained unavailable for many weeks until finally being relaunched.

This is a classic example of underestimating your popularity. The amount of interest in
the site was far greater than anticipated, so it couldn’t deal with the volume of hits. This
doesn’t mean that no performance testing was carried out prior to launch. But it does
suggest that the performance and importantly capacity expectations for the site were
too conservative.

You have to allow for those peaks in demand.

Performance Testing Is Still an Informal Discipline
As mentioned previously, performance testing is still very much an informal exercise.

The reason for this is hard to fathom, because functional testing has been well estab-

lished as a discipline for many years. There is a great deal of literature and expert opin-

ion available in that field, and many established companies specialize in test consult-

ing.

Back in 2009 the converse was true, at least in terms of reference material. One of the

reasons that I was prompted to put (virtual) pen to paper was the abject lack of any-

thing in the way of written material that focused on (static) software performance test-

ing. There were and still are myriad publications that explain how to tune and opti-

mize an application, but little about how to carry out effective performance testing in

the first place.

In 2014 I am pleased to say that the situation has somewhat improved and any Google

search for performance testing will now bring up a range of companies offering perfor-

mance testing services and tooling, together with a certain amount of training,

although this remains very tooling-centric.

Not Using Automated Testing Tools
You can’t carry out effective performance testing without using automated test tools.

Getting 100 (disgruntled) staff members in on a weekend (even if you buy them all

lunch) and strategically deploying people with stopwatches just won’t work. Why?

BAD PERFORMANCE: WHY IT’S SO COMMON 9

You’ll never be able to repeat the same test twice. Furthermore, making employees

work for 24 hours if you find problems is probably a breach of human rights.

Also, how do you possibly correlate response times from 100 separate individuals, not

to mention what’s happening on the network and the servers? It simply doesn’t work

unless your application has fewer than 5 users, in which case you probably don’t need

this book.

A number of vendors make great automated performance testing tools, and the choice

continues to grow and expand. Costs will vary greatly depending on the scale of the

testing you need to execute, but it’s a competitive market and biggest is not always

best. So you need to do your homework and prepare a report for those who control

your IT budget. Appendix C contains a list of the leading vendors. Chapter 2 talks

more on how to choose the right performance tool for your requirements.

Application Technology Impact
Certain technologies that were commonly used in creating applications didn’t work

well with the first and even second generation of automated test tools. This has

become a considerably weaker excuse for not doing any performance testing, since the

vast majority of applications are now web-enabled to some degree. Web technology is

generally well supported by the current crop of automated test solutions.

The tech-stack choices for web software development have crystallized by now into a

(relatively) few core technologies. Accordingly, most automated tool vendors have fol-

lowed suit with the support that their products provide. I will look at current (and

some legacy) application technologies and their impact on performance testing in

Chapter 9.

Summary
This chapter has served as a brief discussion about application performance, both good

and bad. I’ve touched on some of the common reasons why failure to do effective per-

formance testing leads to applications that do not perform well. You could summarize

the majority of these reasons with a single statement:

Designing and testing for performance is (still) not given the importance it

deserves as part of the software development life cycle.

In the next chapter we move on to a discussion of why automation is so important to

effective performance testing and how to choose the most appropriate automation sol-

ution for your requirements.

CHAPTER ONE: WHY PERFORMANCE TEST?10

oreilly.comSpreading the knowledge of innovators

Want to read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

	Table of Contents
	Preface
	Audience
	About This Book
	Conventions Used in This Book
	Glossary
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1: Why Performance Test?
	What Is Performance? The End-User Perspective
	Performance Measurement
	Performance Standards
	The World Wide Web and Ecommerce

	Bad Performance: Why It’s So Common
	The IT Business Value Curve
	Performance Testing Maturity: What the Analysts Think
	Lack of Performance Considerations in Application Design
	Performance Testing Is Left to the Last Minute
	Scalability
	Underestimating Your Popularity
	Performance Testing Is Still an Informal Discipline
	Not Using Automated Testing Tools
	Application Technology Impact

	Summary

	Chapter 2: Choosing an Appropriate Performance Testing Tool
	Performance Testing Tool Architecture
	Choosing a Performance Testing Tool
	Performance Testing Toolset: Proof of Concept
	Proof of Concept Checklist

	Summary

	Chapter 3: The Fundamentals of Effective Application Performance Testing
	Making Sure Your Application Is Ready
	Allocating Enough Time to Performance Test
	Obtaining a Code Freeze
	Designing a Performance Test Environment
	Virtualization
	Cloud Computing
	Load Injection Capacity
	Addressing Different Network Deployment Models
	Environment Checklist
	Software Installation Constraints

	Setting Realistic Performance Targets
	Consensus
	Performance Target Definition
	Network Utilization
	Server Utilization

	Identifying and Scripting the Business-Critical Use Cases
	Use-Case Checklist
	Use-Case Replay Validation
	What to Measure
	To Log In or Not to Log In
	Peaceful Coexistence

	Providing Test Data
	Input Data
	Target Data
	Session Data
	Data Security

	Ensuring Accurate Performance-Test Design
	Principal Types of Performance Test
	The Load Model
	Think Time
	Pacing

	Identifying the KPIs
	Server KPIs
	Network KPIs
	Application Server KPIs

	Summary

	Chapter 4: The Process of Performance Testing
	Activity Duration Guidelines
	Performance Testing Approach
	Step 1: Nonfunctional Requirements Capture
	Step 2: Performance Test Environment Build
	Step 3: Use-Case Scripting
	Step 4: Performance Test Scenario Build
	Step 5: Performance Test Execution
	Step 6: Post-Test Analysis and Reporting

	Case Study 1: Online Banking
	Application Landscape
	Application Users
	Step 1: Pre-Engagement NFR Capture
	Step 2: Test Environment Build
	Step 3: Use-Case Scripting
	Step 4: Performance Test Build
	Step 5: Performance Test Execution
	Online Banking Case Study Review

	Case Study 2: Call Center
	Application Landscape
	Application Users
	Step 1: Pre-Engagement NFR Capture
	Step 2: Test Environment Build
	Step 3: Use-Case Scripting
	Step 4: Performance Test Scenario Build
	Step 5: Performance Test Execution
	Call Center Case Study Review

	Summary

	Chapter 5: Interpreting Results: Effective Root-Cause Analysis
	The Analysis Process
	Real-Time Analysis
	Post-Test Analysis

	Types of Output from a Performance Test
	Statistics Primer
	Response-Time Measurement
	Throughput and Capacity
	Monitoring Key Performance Indicators
	Server KPI Performance
	Network KPI Performance
	Load Injector Performance

	Root-Cause Analysis
	Scalability and Response Time
	Digging Deeper
	Inside the Application Server
	Looking for the Knee
	Dealing with Errors
	Baseline Data

	Analysis Checklist
	Pre-Test Tasks
	Tasks During Test Execution
	Post-Test Tasks

	Summary

	Chapter 6: Performance Testing and the Mobile Client
	What’s Different About a Mobile Client?
	Mobile Testing Automation
	Mobile Design Considerations
	Mobile Testing Considerations
	Mobile Test Design
	On-Device Performance Not in Scope
	On-Device Performance Testing Is in Scope

	Summary

	Chapter 7: End-User Experience Monitoring and Performance
	What Is External Monitoring?
	Why Monitor Externally?
	External Monitoring Categories
	Active Monitoring
	Output Metrics
	ISP Testing Best Practices
	Synthetic End-User Testing Best Practices

	Passive Monitoring
	How Passive Monitoring Works

	Pros and Cons of Active Versus Passive Monitoring
	Active Pros
	Active Cons
	Passive Pros
	Passive Cons

	Tooling for External Monitoring of Internet Applications
	Tool Selection Criteria
	Active Monitoring Tooling
	Passive Monitoring Tooling

	Creating an External Monitoring Testing Framework
	Building Blocks of an Effective Testing Framework
	Specific Design Aspects of Active Monitoring
	Specific Design Aspects of Passive Monitoring

	Isolating and Characterizing Issues Using External Monitoring
	Monitoring Native Mobile Applications
	Essential Considerations for CDN Monitoring
	Performance Results Interpretation
	Key Performance Indicators for Web-Based Ecommerce Applications
	Setting KPI Values

	The Application Performance Index (APDEX)
	Management Information
	Data Preparation
	Statistical Considerations
	Correlation

	Effective Reporting
	Competitive Understanding
	Alerting
	Gotchas!

	Summary

	Chapter 8: Integrating External Monitoring and Performance Testing
	Tooling Choices
	Active and Passive Integration with Static Performance Testing
	Passive and Performance Testing
	RUM and APM
	Integration of Active Test Traffic with APM Tooling
	Active External Monitoring and Performance Testing

	Test Approach
	Test Scheduling
	Performance Testing of Multimedia Content
	End-User Understanding in Non-Internet Application Performance Tests

	Useful Source Materials
	Summary

	Chapter 9: Application Technology and Its Impact on Performance Testing
	Asynchronous Java and XML (AJAX)
	Push Versus Pull

	Citrix
	Citrix Checklist
	Citrix Scripting Advice

	Virtual Desktop Infrastructure
	HTTP Protocol
	Web Services
	.NET Remoting
	Browser Caching
	Secure Sockets Layer

	Java
	Oracle
	Oracle Two-Tier
	Oracle Forms Server
	Oracle Checklist

	SAP
	SAP Checklist

	Service-Oriented Architecture
	Web 2.0
	Windows Communication Foundation and Windows Presentation Foundation

	Oddball Application Technologies: Help, My Load Testing Tool Won’t Record It!
	Before Giving Up in Despair . . .
	Alternatives to Capture at the Middleware Level
	Manual Scripting

	Summary

	Chapter 10: Conclusion
	Appendix A: Use-Case Definition Example
	Appendix B: Proof of Concept and Performance Test Quick Reference
	The Proof of Concept
	POC Checklist

	Performance Test Execution Checklist
	Activity Duration Guidelines
	Step 1: Pre-Engagement NFR Capture
	Step 2: Test Environment Build
	Step 3: Scripting
	Step 4: Performance Test Build
	Step 5: Performance Test Execution
	Step 6 (Post-Test Phase): Analyze Results, Report, Retest If Required

	Analysis Checklist
	Pre-Test Analysis Tasks
	Tasks During Test Execution
	Post-Test Tasks

	Appendix C: Performance and Testing Tool Vendors
	Application Performance Management
	End-User Experience and Website Monitoring
	Functional Testing
	Performance Testing
	Open Source

	SaaS Performance Testing
	Requirements Management
	Open Source

	Appendix D: Sample Monitoring Templates: Infrastructure Key Performance Indicator Metrics
	Generic KPI Templates
	Windows OS : Generic KPI Template
	Linux/Unix: Generic KPI Template

	Application-Specific KPI Templates
	Windows OS: MS SQL Server KPI Template

	Appendix E: Sample Project Plan
	Index

