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C H A P T E R  O N E

Why Performance Test?
Faster than a speeding bullet . . .

Superman, Action Comics

WELCOME! BEFORE DIVING INTO THE BASICS OF PERFORMANCE TESTING, I WANT
to use this first chapter to talk a little about what we mean by good and bad perfor-

mance and why performance testing is such a vital part of the software development

life cycle (SDLC). Non-performant (i.e., badly performing) applications generally don’t

deliver their intended benefit to an organization; they create a net cost of time and

money, and a loss of kudos from the application users, and therefore can’t be consid-

ered reliable assets. If a software application is not delivering its intended service in a

performant and highly available manner, regardless of causation, this reflects badly on

the architects, designers, coders, and testers (hopefully there were some!) involved in

its gestation.

Performance testing continues to be the poor, neglected cousin of functional and

operational acceptance testing (OAT), which are well understood and have a high

maturity level in most business organizations. It is strange that companies continue to

overlook the importance of performance testing, frequently deploying applications

with little or no understanding of their performance, only to be beset with perfor-

mance and scalability problems soon after the release. This mindset has changed little

over the past 15 years, despite the best efforts of consultants like myself and the

widely publicized failure of many high-profile software applications. (Need we men-

tion HealthCare.gov?)

What Is Performance? The End-User Perspective
So when is an application considered to be performing well? My many years of work-

ing with customers and performance teams suggest that the answer is ultimately one

of perception. A well-performing application is one that lets the end user carry out a

given task without undue perceived delay or irritation. Performance really is in the eye

of the beholder. With a performant application, users are never greeted with a blank
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screen during login and can achieve what they set out to accomplish without their

attention wandering. Casual visitors browsing a website can find what they are look-

ing for and purchase it without experiencing too much frustration, and the call-center

manager is not being harassed by the operators with complaints of poor performance.

It sounds simple enough, and you may have your own thoughts on what constitutes

good performance. But no matter how you define it, many applications struggle to

deliver even an acceptable level of performance when it most counts (i.e., under con-

ditions of peak loading). Of course, when I talk about application performance, I’m

actually referring to the sum of the parts, since an application is made up of many

components. At a high level we can define these as the client, the application software,

and the hosting infrastructure. The latter includes the servers required to run the soft-

ware as well as the network infrastructure that allows all the application components

to communicate. Increasingly this includes the performance of third-party service pro-

viders as an integral part of modern, highly distributed application architectures. The

bottom line is that if any of these areas has problems, application performance is likely

to suffer. You might think that all we need do to ensure good application performance

is observe the behavior of each of these areas under load and stress and correct any

problems that occur. The reality is very different because this approach is often “too

little, too late,” so you end up dealing with the symptoms of performance problems

rather than the cause.

Performance Measurement
So how do we go about measuring performance? We’ve discussed end-user percep-

tion, but in order to accurately measure performance, we must take into account cer-

tain key performance indicators (KPIs). These KPIs are part of the nonfunctional require-

ments discussed further in Chapter 3, but for now we can divide them into two types:

service-oriented and efficiency-oriented.

Service-oriented indicators are availability and response time; they measure how well (or

not) an application is providing a service to the end users. Efficiency-oriented indicators

are throughput and capacity; they measure how well (or not) an application makes

use of the hosting infrastructure. We can further define these terms briefly as follows:

Availability
The amount of time an application is available to the end user. Lack of availability

is significant because many applications will have a substantial business cost for

even a small outage. In performance terms, this would mean the complete inabil-

ity of an end user to make effective use of the application either because the appli-

cation is simply not responding or response time has degraded to an unacceptable

degree.
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Response time
The amount of time it takes for the application to respond to a user request. In

performance testing terms you normally measure system response time, which is

the time between the end user requesting a response from the application and a

complete reply arriving at the user’s workstation. In the current frame of refer-

ence a response can be synchronous (blocking) or increasingly asynchronous,

where it does not necessarily require end users to wait for a reply before they can

resume interaction with the application. More on this in later chapters.

Throughput
The rate at which application-oriented events occur. A good example would be

the number of hits on a web page within a given period of time.

Utilization
The percentage of the theoretical capacity of a resource that is being used. Exam-

ples include how much network bandwidth is being consumed by application traf-

fic or the amount of memory used on a web server farm when 1,000 visitors are

active.

Taken together, these KPIs can provide us with an accurate idea of an application’s

performance and its impact on the hosting infrastructure.

Performance Standards
By the way, if you were hoping I could point you to a generic industry standard for

good and bad performance, you’re (still) out of luck because no such guide exists.

There continue to be various informal attempts to define a standard, particularly for

browser-based applications. For instance, you may have heard the term minimum page

refresh time. I can remember a figure of 20 seconds being bandied about, which rapidly

became 8 seconds and in current terms is now 2 seconds or better. Of course, the

application user (and the business) wants “instant response” (in the words of the

Eagles, “Everything all the time”), but this sort of consistent performance is likely to

remain elusive.

The following list summarizes research conducted in the late 1980s (Martin et al.,

1988) that attempted to map end-user productivity to response time. The original

research was based largely on green-screen text applications, but its conclusions are

still very relevant.

Greater than 15 seconds
This rules out conversational interaction. For certain types of applications, certain

types of end users may be content to sit at a terminal for more than 15 seconds

waiting for the answer to a single simple inquiry. However, to the busy call-center

operator or futures trader, delays of more than 15 seconds may seem intolerable.
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If such delays could occur, the system should be designed so that the end user can

turn to other activities and request the response at some later time.

Greater than 4 seconds
These delays are generally too long for a conversation, requiring the end user to

retain information in short-term memory (the end user’s memory, not the com-

puter’s!). Such delays would inhibit problem-solving activity and frustrate data

entry. However, after the completion of a transaction, delays of 4 to 15 seconds

can be tolerated.

2 to 4 seconds
A delay longer than 2 seconds can be inhibiting to operations that demand a high

level of concentration. A wait of 2 to 4 seconds can seem surprisingly long when

the end user is absorbed and emotionally committed to completing the task at

hand. Again, a delay in this range may be acceptable after a minor closure. It may

be acceptable to make purchasers wait 2 to 4 seconds after typing in their address

and credit card number, but not at an earlier stage when they may be comparing

various product features.

Less than 2 seconds
When the application user has to remember information throughout several

responses, the response time must be short. The more detailed the information to

be remembered, the greater the need for responses of less than 2 seconds. Thus,

for complex activities, such as browsing products that vary along multiple dimen-

sions, 2 seconds represents an important response-time limit.

Subsecond response time
Certain types of thought-intensive work (such as writing a book), especially with

applications rich in graphics, require very short response times to maintain end

users’ interest and attention for long periods of time. An artist dragging an image

to another location must be able to act instantly on his next creative thought.

Decisecond response time
A response to pressing a key (e.g., seeing the character displayed on the screen) or

to clicking a screen object with a mouse must be almost instantaneous: less than

0.1 second after the action. Many computer games require extremely fast interac-

tion.

As you can see, the critical response-time barrier seems to be 2 seconds, which, inter-

estingly, is where expected application web page response time now sits. Response

times greater than 2 seconds have a definite impact on productivity for the average

end user, so our nominal page refresh time of 8 seconds for web applications is cer-

tainly less than ideal.
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The World Wide Web and Ecommerce
The explosive growth of the World Wide Web has contributed in no small way to the

need for applications to perform at warp speed. Many (or is that all?) ecommerce busi-

nesses now rely on cyberspace for the lion’s share of their revenue in what is the most

competitive environment imaginable. If an end user perceives bad performance from

your website, her next click will likely be on your-competition.com.

Ecommerce applications are also highly vulnerable to sudden spikes in demand, as

more than a few high-profile retail companies have discovered at peak shopping times

of the year.

Bad Performance: Why It’s So Common
OK, I’ve tried to provide a basic definition of good and bad performance. It seems

obvious, so why do many applications fail to achieve this noble aspiration? Let’s look

at some common reasons.

The IT Business Value Curve
Performance problems have a nasty habit of turning up late in the application life

cycle, and the later you discover them, the greater the cost and effort to resolve.

Figure 1-1 illustrates this point.

Figure 1-1. The IT business value curve
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The solid line (planned) indicates the expected outcome when the carefully factored

process of developing an application comes to fruition at the planned moment (black

diamond). The application is deployed successfully on schedule and immediately starts

to provide benefit to the business with little or no performance problems after deploy-

ment.

The broken line (actual) demonstrates the all-too-frequent reality when development

and deployment targets slip (striped diamond) and significant time and cost is involved

in trying to fix performance issues in production. This is bad news for the business

because the application fails to deliver the expected benefit.

This sort of failure is becoming increasingly visible at the board level as companies seek

to implement information technology service management (ITSM) and information

technology portfolio management (ITPM) strategies on the way to the holy grail of

Information Technology Infrastructure Library (ITIL) compliance. The current frame of

reference considers IT as just another (important) business unit that must operate and

deliver within budgetary constraints. No longer is IT a law unto itself that can con-

sume as much money and resources as it likes without challenge.

Performance Testing Maturity: What the Analysts Think
But don’t just take my word for it. Figure 1-2 is based on data collected by Forrester

Research in 2006 looking at the number of performance defects that have to be fixed

in production for a typical application deployment. For the revised edition I was con-

sidering replacing this example with something more recent, but on reflection (and

rather disappointingly) not much has really changed since 2009!

Figure 1-2. Forrester Research on resolution of performance defects

As you can see, three levels of performance testing maturity were identified. The first

one, firefighting, occurs when little or no performance testing was carried out prior to

application deployment, so effectively all performance defects must be resolved in the

CHAPTER ONE: WHY PERFORMANCE TEST?6



live environment. This is the least desirable approach but, surprisingly, is still relatively

common. Companies in this mode are exposing themselves to serious risk.

The second level, performance validation (or verification) covers companies that set aside

time for performance testing but not until late in the application life cycle; hence, a

significant number of performance defects are still found in production (30%). This is

where most organizations currently operate.

The final level, performance driven, is where performance considerations have been

taken into account at every stage of the application life cycle. As a result, only a small

number of performance defects are discovered after deployment (5%). This is what

companies should aim to adopt as their performance testing model.

Lack of Performance Considerations in Application Design
Returning to our discussion of common reasons for failure: if you don’t take perfor-

mance considerations into account during application design, you are asking for trou-

ble. A “performance by design” mindset lends itself to good performance, or at least

the agility to change or reconfigure an application to cope with unexpected perfor-

mance challenges. Design-related performance problems that remain undetected until

late in the life cycle can be difficult to overcome completely, and doing so is sometimes

impossible without significant (and costly) application reworking.

Most applications are built from software components that can be tested individually

and may perform well in isolation, but it is equally important to consider the applica-

tion as a whole. These components must interact in an efficient and scalable manner

in order to achieve good performance.

Performance Testing Is Left to the Last Minute
As mentioned, many companies operate in performance validation/verification mode.

Here performance testing is done just before deployment, with little consideration

given to the amount of time required or to the ramifications of failure. Although better

than firefighting, this mode still carries a significant risk that you won’t identify serious

performance defects—only for them to appear in production—or you won’t allow

enough time to correct problems identified before deployment.

One typical result of this mode is a delay in the application rollout while the problems

are resolved. An application that is deployed with significant performance issues will

require costly, time-consuming remedial work after deployment. Even worse, the

application might have to be withdrawn from circulation entirely until it’s battered

into shape.
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All of these outcomes have an extremely negative effect on the business and on the

confidence of those expected to use the application. You need to test for performance

issues as early as you can, rather than leave it to the last minute.

Scalability
Often, not enough thought is given to capacity requirements or an application’s ability

to scale. The design of the application and the anticipated deployment model may

overlook the size and geography of the end-user community. Many applications are

developed and subsequently tested without more than a passing thought for the fol-

lowing considerations:

• How many end users will actually use the application?

• Where are these end users located?

• How many of these end users will use it concurrently?

• How will the end users connect to the application?

• How many additional end users will require access to the application over time?

• What will the final application landscape look like in terms of the number and

location of the servers?

• What effect will the application have on network capacity?

Neglect of these issues manifests itself in unrealistic expectations for the number of

concurrent end users that the application is expected to support. Furthermore, there is

often little thought given to end users who may be at the end of low-bandwidth, high-

latency WAN links. I will cover connectivity issues in more detail in Chapter 2.

Underestimating Your Popularity
This might sound a little strange, but many companies underestimate the popularity of

their new web applications. This is partly because they deploy them without taking

into account the novelty factor. When something’s shiny and new, people generally

find it interesting and so they turn up in droves, particularly where an application

launch is accompanied by press and media promotion. Therefore, the 10,000 hits you

had carefully estimated for the first day of deployment suddenly become 1,000,000

hits, and your application infrastructure goes into meltdown!

Putting it another way, you need to plan for the peaks rather than the troughs.
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Spectacular Failure: A Real-World Example

Some years ago, the UK government decided to make available the results of the 1901
census on the Internet. This involved a great deal of effort converting old documents
into a modern digital format and creating an application to provide public access.

I was personally looking forward to the launch, since I was tracing my family history at
the time and this promised to be a great source of information. The site was launched
and I duly logged in. Although I found things a little slow, I was able to carry out my
initial searches without too much issue. However, when I returned to the site 24 hours
later, I was greeted with an apologetic message saying that the site was unavailable. It
remained unavailable for many weeks until finally being relaunched.

This is a classic example of underestimating your popularity. The amount of interest in
the site was far greater than anticipated, so it couldn’t deal with the volume of hits. This
doesn’t mean that no performance testing was carried out prior to launch. But it does
suggest that the performance and importantly capacity expectations for the site were
too conservative.

You have to allow for those peaks in demand.

Performance Testing Is Still an Informal Discipline
As mentioned previously, performance testing is still very much an informal exercise.

The reason for this is hard to fathom, because functional testing has been well estab-

lished as a discipline for many years. There is a great deal of literature and expert opin-

ion available in that field, and many established companies specialize in test consult-

ing.

Back in 2009 the converse was true, at least in terms of reference material. One of the

reasons that I was prompted to put (virtual) pen to paper was the abject lack of any-

thing in the way of written material that focused on (static) software performance test-

ing. There were and still are myriad publications that explain how to tune and opti-

mize an application, but little about how to carry out effective performance testing in

the first place.

In 2014 I am pleased to say that the situation has somewhat improved and any Google

search for performance testing will now bring up a range of companies offering perfor-

mance testing services and tooling, together with a certain amount of training,

although this remains very tooling-centric.

Not Using Automated Testing Tools
You can’t carry out effective performance testing without using automated test tools.

Getting 100 (disgruntled) staff members in on a weekend (even if you buy them all

lunch) and strategically deploying people with stopwatches just won’t work. Why?
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You’ll never be able to repeat the same test twice. Furthermore, making employees

work for 24 hours if you find problems is probably a breach of human rights.

Also, how do you possibly correlate response times from 100 separate individuals, not

to mention what’s happening on the network and the servers? It simply doesn’t work

unless your application has fewer than 5 users, in which case you probably don’t need

this book.

A number of vendors make great automated performance testing tools, and the choice

continues to grow and expand. Costs will vary greatly depending on the scale of the

testing you need to execute, but it’s a competitive market and biggest is not always

best. So you need to do your homework and prepare a report for those who control

your IT budget. Appendix C contains a list of the leading vendors. Chapter 2 talks

more on how to choose the right performance tool for your requirements.

Application Technology Impact
Certain technologies that were commonly used in creating applications didn’t work

well with the first and even second generation of automated test tools. This has

become a considerably weaker excuse for not doing any performance testing, since the

vast majority of applications are now web-enabled to some degree. Web technology is

generally well supported by the current crop of automated test solutions.

The tech-stack choices for web software development have crystallized by now into a

(relatively) few core technologies. Accordingly, most automated tool vendors have fol-

lowed suit with the support that their products provide. I will look at current (and

some legacy) application technologies and their impact on performance testing in

Chapter 9.

Summary
This chapter has served as a brief discussion about application performance, both good

and bad. I’ve touched on some of the common reasons why failure to do effective per-

formance testing leads to applications that do not perform well. You could summarize

the majority of these reasons with a single statement:

Designing and testing for performance is (still) not given the importance it

deserves as part of the software development life cycle.

In the next chapter we move on to a discussion of why automation is so important to

effective performance testing and how to choose the most appropriate automation sol-

ution for your requirements.
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