
Performance
Testing

An ISTQB Certified Tester Foundation
Level Specialist Certification Review
—
Keith Yorkston
Foreword by Dr. David Rigler

Performance Testing
An ISTQB Certified Tester Foundation
Level Specialist Certification Review

Keith Yorkston
Foreword by Dr. David Rigler

Performance Testing: An ISTQB Certified Tester Foundation Level Specialist
Certification Review

ISBN-13 (pbk): 978-1-4842-7254-1 ISBN-13 (electronic): 978-1-4842-7255-8
https://doi.org/10.1007/978-1-4842-7255-8

Copyright © 2021 by Keith Yorkston

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978- 1- 4842- 7254- 1. For more
detailed information, please visit http://www.apress.com/source- code.

Printed on acid-free paper

Keith Yorkston
Ware, UK

https://doi.org/10.1007/978-1-4842-7255-8

To Jacqui, Jared, and Kaitlin, love always.
And to my brother Dean, In Memoriam D. J. Y.

v

Table of Contents

Chapter 1: The Basic Concepts of Performance Testing ��� 1

ISTQB Keywords �� 1

Other Keywords��� 2

1�1 Principles of Performance Testing �� 3

Time Behavior �� 9

1�2 Types of Performance Testing ��� 18

Performance Testing �� 19

Load Testing �� 20

Stress Testing �� 22

Scalability Testing �� 24

Spike Testing ��� 26

Endurance Testing ��� 28

Concurrency Testing �� 28

Capacity Testing �� 30

1�3 Testing Activities in Performance Testing ��� 31

Static Testing ��� 31

Dynamic Testing �� 40

About the Author ��� xi

About the Technical Reviewer ��� xiii

Acknowledgments ���xv

Foreword ���xvii

Introduction ��xix

vi

1�4 The Concept of Load Generation ��� 44

Load Generation via the User Interface ��� 46

Load Generation Using Crowds ��� 48

Load Generation via the Application Programming Interface (API) �� 49

Load Generation Using Captured Communication Protocols ��� 51

1�5 Common Performance Efficiency Failure Modes and Their Causes �������������������������������������� 52

Slow Response Under Moderate-to-Heavy Load Levels �� 55

Inadequate or Graceless Error Handling Under Heavy or Overlimit Load ������������������������������ 58

Chapter 1 Questions �� 64

Chapter 2: Performance Measurement Fundamentals ��� 69

ISTQB Keywords �� 69

Other Keywords��� 69

2�1 Typical Measurements Collected in Performance Testing ��� 70

Why Performance Metrics Are Needed �� 70

Collecting Performance Measurements and Metrics �� 72

Selecting Performance Metrics ��� 88

2�2 Aggregating Results from Performance Testing �� 91

2�3 Key Sources of Performance Metrics�� 94

Performance Test Tools�� 95

Performance Monitoring Tools ��� 97

Log Analysis Tools�� 99

2�4 Typical Results of a Performance Test �� 100

Chapter 2 Questions �� 104

Chapter 3: Performance Testing in the Software Lifecycle ����������������������������������� 107

ISTQB Keywords �� 107

3�1 Principal Performance Testing Activities ��� 107

Test Planning ��� 110

Test Monitoring and Control �� 113

Test Analysis �� 114

Test Design �� 121

Table of ConTenTs

vii

Test Implementation �� 123

Test Execution ��� 136

Test Completion ��� 141

3�2 Categories of Performance Risks for Different Architectures ��� 143

Single Computer Systems ��� 144

Multi-tier Systems ��� 147

Distributed Systems �� 148

Virtualized Systems ��� 149

Dynamic/Cloud-Based Systems �� 151

Client-Server Systems ��� 152

Mobile Applications ��� 154

Embedded Real-Time Systems �� 156

Mainframe Applications ��� 157

3�3 Performance Risks Across the Software Development Lifecycle�� 162

3�4 Performance Testing Activities �� 181

Sequential Development Models ��� 181

Iterative and Incremental Development Models �� 182

Commercial Off-the-Shelf (COTS) and Other Supplier/Acquirer Models ������������������������������ 188

Chapter 3 Questions �� 190

Chapter 4: Performance Testing Tasks ��� 195

ISTQB Keywords �� 195

4�1 Planning �� 196

4�1�1 Deriving Performance Test Objectives �� 196

4�1�2 The Performance Test Plan ��� 200

4�1�3 Communicating About Performance Testing �� 215

4�2 Analysis, Design, and Implementation �� 226

4�2�1 Typical Communication Protocols ��� 226

4�2�2 Transactions ��� 235

4�2�3 Identifying Operational Profiles �� 239

4�2�4 Creating Load Profiles �� 253

4�2�5 Analyzing Throughput and Concurrency ��� 260

Table of ConTenTs

viii

4�2�6 Basic Structure of a Performance Test Script ��� 270

4�2�7 Implementing Performance Test Scripts �� 278

4�2�8 Preparing for Performance Test Execution ��� 288

4�3 Execution �� 298

4�4 Analyzing Results and Reporting �� 310

Analysis Techniques �� 323

Reporting ��� 330

Chapter 4 Questions �� 335

Chapter 5: Tools �� 355

ISTQB Keywords �� 355

5�1 Tool Support �� 355

Load Generators (2) ��� 357

Load Management Console (1) �� 358

Monitoring Tool (5) ��� 358

5�2 Tool Suitability ��� 360

Compatibility �� 361

Scalability �� 362

Understandability �� 363

Monitoring ��� 364

Chapter 5 Questions �� 364

Chapter 6: Final Thoughts ��� 367

Need an Exam? ��� 368

 Appendix A: References �� 369

 Standards �� 369

 ISTQB Documents ��� 369

 Books �� 370

 Papers and Articles ��� 371

Table of ConTenTs

ix

 Appendix B: Question Answers ��� 373

 Chapter 1 �� 373

 Chapter 2 �� 374

 Chapter 3 �� 375

 Chapter 4 �� 376

 Chapter 5 �� 381

 Index ��� 383

Table of ConTenTs

xi

About the Author

After a circuitous route into IT, Keith Yorkston has spent the last 20 years involved with

software quality and risk. Cutting his teeth early in performance testing before good

books were written on the subject, Keith went on to work as a consultant and trainer

across the world. He currently works as an independent consultant specializing in

performance and security.

xiii

About the Technical Reviewer

Steve Dennis has more than 25 years of experience in

delivering mission-critical IT change. His interest in software

testing began as a junior developer with British Airways,

learning testing before ever being allowed near code! This

focus on early testing has continued throughout his career at

Cresta and their subsequent acquisition by SQS (now Expleo)

where he fulfilled several client-facing roles leading critical

performance projects, end-to-end test engagements, and

implementing the company’s first graduate academy.

Skills development and bringing new people into our industry has always been a

driving force, and Steve is proud to have led SQS’s global training division, ensuring they

maintained excellence in their delivery of ISTQB, technical tools, and skills training for

both SQS staff and their customers. He both developed and delivered SQS’s performance

test training and Micro Focus’s LoadRunner training; he still even has his Mercury

Certified Instructor polo shirt!

Steve currently heads up Spike95, the UK’s leading consultancy for major global

retailers implementing transformative technology programs to enhance their business

and their end customer’s experience.

xv

Acknowledgments

I would like to thank Steve Dennis and Dave Rigler for their input, reviews, and help with

this book and for being great leaders and good mates. Gentlemen, the beers are on me.

I’d also like to thank all those from whom I learned this trade – my old instructor

Mark Tomlinson (a legend in performance testing), Alan Gordon (the quiet man who has

forgotten more than most will learn), Michael Blatt (in between rugby conversations and

that one run where we did a few extra miles), and to my past and my current colleagues

and students who put up with my bad jokes, cricket talk, and stories.

Importantly, I’d like to thank the first and best performance tester I worked

with – Darryl Cording. Thanks for helping a once young guy become a nerd.

xvii

Foreword

Modern information technology is amazing, and the rate of change in the digital world

is phenomenal. The benefits from humankind’s technology-based ingenuity have the

ability to improve life for all the residents of Earth and drive further exploration of our

solar system. However, the lack of quality still blights the use of our digital inventions

and often results in technology not behaving the way we want it to.

The quality challenges associated with making technology better require improved

approaches to moving quality earlier and throughout the development and operations

lifecycle. Some elements of early quality feedback, such as functional testing, are well

understood and readily addressable by in-house and vendor-supplied teams. However,

other aspects of quality are harder to address, and one of the biggest quality challenges

that remains is ensuring the performance of technology is sufficient to meet our needs.

This book focuses on the thorny challenge of performance testing. It is based on a

review of the standards that underpin best practice performance testing and combines

it with Keith’s extensive experience in practicing and teaching performance testing.

This combination of theory, practice, and making performance testing understandable

makes this book an important addition to the corpus of IT quality and testing literature.

Keith has provided some great real-world examples, just the right number of jokes, and

uses the recurring theme of Sherlock Holmes to emphasize the investigative nature of

performance testing.

I met Keith for the first time in February 2006 as part of a two-week induction

training course for a specialist testing consultancy called Cresta. The course was based

in Durban, South Africa, and on day one, I found myself in a cramped, hot, and slightly

fusty room with about a dozen nervous but expectant strangers waiting to see what we

had signed up for. Any concerns about the challenges to be faced were soon dispelled,

when Keith was introduced as one of the main trainers. It was obvious from the outset

that Keith excels at three things: in-depth technical expertise, exceptional training

capabilities, and livening up a room. By the end of the course, everyone had learned a

lot, gelled as a team, and found a new friend called Keith.

xviii

Keith has trained thousands of people in a wide variety of subjects, but his real

passion is for performance testing. He understands both the art and the science of

performance testing and has enabled me, and many others, to build a performance

testing career on the solid foundations he has provided. This book represents a lasting

legacy that will enable others to benefit from Keith’s ability to inform and entertain.

I was part of the review team for this book and I found, as always, that Keith has

managed to bring performance testing to life and yet still hold true to the real detail that

is required to understand this nuanced subject. I recommend that you read the whole

book and then keep it nearby as a source of inspiration to help you solve your next

performance testing challenge.

—Dr. David Rigler, UK, March 2021

Managing Director, Shift Left Group

foreword

xix

Introduction

“This is indeed a mystery”, I remarked. “What do you imagine that it
means?”
“I have no data yet. It is a capital mistake to theorize before one has
data. Insensibly one begins to twist facts to suit theories instead of
theories to suit facts…”

—Conan Doyle, 1892

Performance testing has often been considered a black art. In many organizations,

perhaps an individual or a small group of technical staff or contractors are given the

task of “load testing” an extended system, network, or application. They may be given a

set of goals to achieve in terms of a system, application, or transaction response time or

a given number of users successfully using the system. It is expected that these single-

minded experts in the technical field of information technology (a.k.a. nerds) will

eventually create a stack of graphs and tables of figures. From this morass of numbers,

an eventual answer will appear, accompanied by a description relating to “reducing the

hard drive IOPS to increase throughput,” “reducing the execution overhead of SQL SPs,”

or “replacing the rubbish G4 machines with a 3GHz quad core CPU, 32GB of RAM, and

mirrored 500GB SSD drives.”

Performance testing is like any other form of testing. It requires a defined test process

very similar to other test types. It requires a disciplined approach to the definition

of requirements and user stories, the creation of test conditions, test cases, and test

procedures. It requires measurable goals against which the success or failure of the

testing can be judged. It also requires (and this cannot be stressed highly enough) a

definition and recognition of performance test failures.

But performance testing is also not like other test types. Performance testing is based

in great part around psychology, forensic science, and scientific method. Performance

testing requires much more input from the individuals conducting performing testing

in not only the creation and execution of tests but also the interpretation of results and

investigation of failures and associated defects.

xx

Ultimately, as any tester would recognize, the goal of performance testing is to provide

stakeholders with information on which they can base the success (or lack thereof) of the

achievement of project goals. Key questions relate back to that simple point:

How much information is needed by the stakeholders?

Is the information they receive what is needed to make an informed decision?

The book has been designed to accompany the ISTQB Certified Tester Foundation

Level – Performance Tester syllabus (2018), covering all its learning objectives, with

additional references material to extend beyond the syllabus. It covers an overall

methodology for managing and conducting performance testing, looking at:

• The importance of defining performance test goals/objectives/

requirements/user stories

• The vital task of performance test planning

• The various test types that make up performance testing

• The definition of “load”

• The declaration and identification of performance defects

• The management of performance test assets – the performance test

requirements and/or user stories (test conditions), the volume and

quality of performance test data (test cases), and the performance

test scripts (test procedures)

• The collection and analysis of performance test results

• The recognition of “what we think” vs. “what we know”

We also look at the characteristics of a performance engineer (a person with

business, technical, and performance testing knowledge). Performance engineers are

required to be good communicators, problem solvers, and have the ability, to paraphrase

Holmes, “to observe rather than see.” Performance engineers need to not only discover

performance failures but, unlike many other test types, have the ability to investigate

the associated defects to identify the root cause – and possibly advise how these can

be repaired. They will need to possess knowledge of the technology and the business

processes, even knowledge of the users of the system under test. They will need to have

the ability to recognize patterns and discern the cause-effect relationships between the

components that make up the system, be they hardware, software, data, infrastructure,

and network, or even the behavior of the users themselves.

InTroduCTIon

xxi

Importantly, they need curiosity:

My mind rebels at stagnation. Give me problems, give me work, give
me the most abstruse cryptogram, or the most intricate analysis, and
I am in my own proper atmosphere. I can dispense with artificial
stimulants. But I abhor the dull routine of existence. I crave for mental
exaltation.

—Conan Doyle, 1890

Performance testing isn’t about writing and running the same manual steps against

an application, recording little green ticks against steps. It isn’t about identifying “a defect,”

sending it to someone, and waiting for a fix to be implemented to rerun the same steps.

Irrelevant of experience, performance testing continues to challenge those involved.

This will be a “warts and all” look at performance testing.

Sherlock Holmes would make a great performance engineer. And, like Mr. Holmes,

he also needs a Dr. Watson to keep a record of the tests – an area where previous

performance engineers have been somewhat poor.

In the manner of Sir Arthur Conan Doyle (of which I confess a partiality), the book

proposes many questions and, as any Holmes adventure should, answers all (it is hoped)

by the conclusion.

The game is afoot…

—Shakespeare’s King Henry IV, Part I, 1597

and

Conan Doyle, 1905

 A Note on the Structure
This book refers to the ISTQB® Certified Tester Foundation Level – Performance Tester

syllabus version 2018 and the relevant ISTQB® Glossary relating to this syllabus. Both

the syllabus and the glossary can be found at www.istqb.org/. Note: Small spelling and

grammatical corrections were made to the syllabus entries. Reference material such

as the International Software Testing Qualifications Board (hereinafter called ISTQB®)

syllabi or other reference material are copyright of the original author or organization.

InTroduCTIon

https://www.istqb.org/

xxii

The book chapters follow the structure of the syllabus – section headings and

numbering follow the syllabus, with the learning objectives and syllabus sections

included in the book highlighted as follows:

PTFL-1.1.1 (K2) Understand the principles of performance

The learning objectives correspond to the syllabus sections and outline the learning

level needed for the exam. Each chapter has key learning objectives you should be

familiar with to complete the exam successfully. The syllabus sections are shown as

follows:

Accurate measurements and the metrics which are derived from those mea-
surements are essential for defining the goals of performance testing and for
evaluating the results of performance testing. Performance testing should
not be undertaken without first understanding which measurements and
metrics are needed.

—ISTQB_CTFL_PT

Key terms from the syllabus are listed at the beginning of each chapter, and relevant

definitions appear throughout the book as follows:

 Performance Testing
Testing to determine the performance efficiency of a component or system.

—ISTQB Glossary

The key points from the syllabus are summarized at the end of each section in the

following way:

Summary Performance is a component of a user’s good experience and is part
of an acceptable quality level.

If you’re cramming for the exam, look for these!

InTroduCTIon

1
© Keith Yorkston 2021
K. Yorkston, Performance Testing, https://doi.org/10.1007/978-1-4842-7255-8_1

CHAPTER 1

The Basic Concepts
of Performance Testing

 ISTQB Keywords
capacity testing

Degree to which the maximum limits of a product or system parameter meet

requirements [from ISO-25010].

concurrency testing
Testing to evaluate if a component or system involving concurrency behaves as

specified.

efficiency
Resources expended in relation to the extent with which users achieve specific goals.

endurance testing
The type of performance testing conducted to evaluate the stability of the system over a

timeframe specific to the system’s operational context.

load generation
The process of simulating a defined set of activities at a specific load to be submitted to

a component or system.

load testing
A type of performance testing conducted to evaluate the behavior of a component or

system under varying loads, usually between anticipated conditions of low, typical, and

peak usage.

performance testing
Testing to determine the performance of a software product.

scalability testing
Testing to determine the scalability of a software product.

https://doi.org/10.1007/978-1-4842-7255-8_1#DOI

2

spike testing
A type of performance testing conducted to evaluate the ability of a system to recover

from sudden bursts of peak loads and return afterward to a steady state.

stress testing
A type of performance testing conducted to evaluate a system or component at or

beyond the limits of its anticipated or specified workloads or with reduced availability of

resources such as access to memory or servers.

 Other Keywords
driver

A temporary component or tool that replaces another component and controls or calls

a test item in isolation.

harness
A test environment comprised of stubs and drivers needed to execute a test suite.

service virtualization
A technique to enable virtual delivery of services which are deployed, accessed, and

managed remotely.

stub
A skeletal or special-purpose implementation of a software component used to

develop or test a component that calls or is otherwise dependent on it. It replaces a called

component.

test case
A set of preconditions, inputs, actions (where applicable), expected results, and

postconditions, developed based on test conditions.

test condition
A testable aspect of a component or system identified as a basis for testing.

test procedure
A sequence of test cases in execution order and any associated actions that may be

required to set up the initial preconditions and any wrap-up activities post execution.

validation
Confirmation by examination and through provision of objective evidence that the

requirements for a specific intended use or application have been fulfilled.

verification
Confirmation by examination and through provision of objective evidence that

specified requirements have been fulfilled.

Chapter 1 the BasiC ConCepts of performanCe testing

3

 1.1 Principles of Performance Testing
PTFL-1.1.1 (K2) Understand the principles of performance

Performance efficiency (or simply “performance”) is an essential part of
providing a “good experience” for users when they use their applications on
a variety of fixed and mobile platforms. Performance testing plays a critical
role in establishing acceptable quality levels for the end user and is often
closely integrated with other disciplines such as usability engineering and
performance engineering.

—ISTQB_CTFL_PT

At this point, we already strike a problem. The issue in the preceding statement

is derived from the use of the term “performance.” When the syllabus speaks of a

“good experience,” it does so in terms of said performance. We could surmise a good

experience would in part be dictated by good performance. Of course, a good experience

will also relate to other functional (“what the system does”) and non-functional

characteristics of the product (“how the system does it” – in this case, usability and

reliability – more on this shortly).

Putting those aside, let’s focus on the key part in the syllabus section – performance

testing plays a critical role in establishing acceptable quality levels for the end user. As

a user, it can be sure you expect “good performance” as an important component of

an acceptable level of quality. Hence, if you ask for good performance, there should

be some definition of what you and other users would consider “bad performance.”

Unfortunately, performance isn’t black and white. Performance is more closely related to

a spectrum of gray rather than binary black or white outcomes.

The problem with performance is where the cut-off between “good” and “bad”

performance exists. The often (mis)quoted US Supreme Court Justice Potter Stewart’s

statement is certainly applicable:

We will know it when we see it…1

1 Jacobellis v. Ohio, 378 U.S. 184 (1964), a US Supreme Court decision whether the state of Ohio could ban a film which
the state had deemed to be obscene. This quote relates to Mr. Justice Stewart declining to define “hard-core pornography”
when excluding it from the protection of the 1st and 14th Amendment. He wrote in his opinion, “I shall not today attempt
further to define the kinds of material I understand to be embraced within that shorthand description; and perhaps I could
never succeed in intelligibly doing so. But I know it when I see it, and the motion picture involved in this case is not
that.”

Chapter 1 the BasiC ConCepts of performanCe testing

4

Unless performance engineers can define how performance quality will be

quantified, it is difficult to provide a system with good performance. Consider the

example – a user is standing at a busy train station attempting to use social media after

being connected to the free station Wi-Fi. Yet they cannot initially connect immediately

to the site, and when they eventually do, it is “very slow.” It’s usually accompanied by the

statement, “You would think that [insert social media platform here] would have better

performance than this….”

It might be the social media platform that is the problem. It could be that they are

affected by some external event (be it an important global event such as the death of

a celebrity or a national event such as a reserve bank interest rate change). It could

be a technical issue within the social media platform infrastructure. It could be the

telecommunications provider with an issue getting the user’s request and response

from the device to the social media platform. It could be the user’s device, automatically

downloading an update now they are connected to Wi-Fi. Or, it could be the 3000 other

smart phone users connected to the same free Wi-Fi, complaining about the train delay

due to “leaves on the track.” Rest assured, if you’ve never traveled on the train in the UK,

trains are occasionally delayed by fallen leaves!2

It becomes the job of a performance engineer to not only discern what the actual

“performance issues” might be but also to help the project with:

• Educating the stakeholders and users on the nature of performance

testing

• Defining (in conjunction with the stakeholders) how performance is

to be quantified and measured

• Creating (and/or reviewing) measurable non-functional

requirements, user stories, and/or completion criteria

Summary performance is a component of a user’s “good experience” and forms
part of an acceptable quality level.

2 When a train passes over fallen leaves, the heat and weight of the train bakes a thin
lubricating film onto the track, becoming the railway’s “black ice.” This reduces acceleration
and increases braking distance, hence slower running of trains (www.networkrail.co.uk/
running-the-railway/looking-after-the-railway/delays-explained/leaves/).

Chapter 1 the BasiC ConCepts of performanCe testing

https://www.networkrail.co.uk/running-the-railway/looking-after-the-railway/delays-explained/leaves/
https://www.networkrail.co.uk/running-the-railway/looking-after-the-railway/delays-explained/leaves/

5

Additionally, evaluation of functional suitability, usability and other qual-
ity characteristics under conditions of load, such as during execution of a
performance test, may reveal load-specific issues which impact those
characteristics.

—ISTQB_CTFL_PT

As mentioned, quality isn’t focused on a single test type. In an ideal world,

performance is a single criterion in a criteria list both users and stakeholders focus upon

when considering the overall objective of the system/application under test to be “good

enough.” Performance engineers need to not only understand what they can and cannot

measure with performance testing but also consider the impact performance may have

on other test types. Of note is usability – if the performance is “bad,” usability could be

“bad.” But it can also extend to reliability, security, and even functionality.

Summary poor performance can affect other quality characteristics/test types.

Performance testing is not limited to the web-based domain where the end
user is the focus. It is also relevant to different application domains with a
variety of system architectures, such as classic client-server, distributed and
embedded. Technically, performance efficiency is categorized in the ISO
25010 [ISO25000] Product Quality Model as a non-functional quality char-
acteristic with the three sub characteristics described below. Proper focus
and prioritization depends on the risks assessed and the needs of the vari-
ous stakeholders. Test results analysis may identify other areas of risk that
need to be addressed.

—ISTQB_CTFL_PT

The syllabus briefly dips into the definition of quality risk, a vast subject that gets

to the very heart of software testing. To explain the genesis of ISO 25010, we need to

consider the earlier ISO 9126, upon which the original test types and classifications were

derived (see Figure 1-1).

Chapter 1 the BasiC ConCepts of performanCe testing

6

ISO 9126 was originally released in 1991. When we consider today how the

information technology industry has changed, problems with this standard become

evident. In 1991, for example, security was a functional characteristic as it dealt with

a predominantly client/server infrastructure with almost no reference to what we

would refer to today as “the Internet.” Although ISO 9126 was subsequently updated,

the decision was made to replace this standard. SQuaRE (Software product Quality

Requirements and Evaluation) was developed, and in 2011, ISO 25010 was released

(Figure 1-2).

Figure 1-1. The external and internal quality model from ISO 9126

Chapter 1 the BasiC ConCepts of performanCe testing

7

It is recommended that anyone involved with testing know this model. It allows a

common approach to the categorization of quality attributes against the applications

and systems measured. Of note to performance engineers is the reference to efficiency in

both models. In ISO 9126, efficiency was defined as:

Figure 1-2. The product quality model based on ISO 25010

Chapter 1 the BasiC ConCepts of performanCe testing

8

The capability of the software product to provide appropriate performance,
relative to the amount of resources used, under stated conditions.

NOTE 1 Resources may include other software products, the software and
hardware configuration of the system, and materials (e.g. print paper,
diskettes).

NOTE 2 For a system which is operated by a user, the combination of func-
tionality, reliability, usability and efficiency can be measured externally by
quality in use.

—ISO 9126

ISO 25010 has a similar definition – performance efficiency:

…represents the performance relative to the amount of resources used under
stated conditions.

—ISO 25010

These definitions are fascinating, in that the very nature of efficiency itself is

dependent on the constituent parts that make up the system/application under test.

In effect, we are looking at code executing in a defined environment that is creating,

reading, updating, or deleting data as a basic definition. This forms the basis on

which the ISO 9126 definition was created. Moving forward from the 1990s to modern

times, those operations could be on a local machine, on a server on a local or wide

area network, or a cloud instance. The processing of that data could be centralized or

distributed. The users could be accessing the system using a variety of client interfaces,

including terminal emulation, remote desktops, or via a range of web-based services

or applications. The server may be virtualized. It could be a single-tier or multi-tiered

system which may include embedded devices and/or IoT devices and/or peripherals.

The end result is both the code and the environment have become much more

complex. The efficiency of any system is the combination of the efficiency of the

code and the environments that make up that system. And yes, today we have faster

processors, more bandwidth, and SSD storage. But notice where the focus is –

people today are tempted to point at an increase in the environment capability. The

environment can always be bigger/faster/more capable. But what about the code? What

about the structure of the data, or how that data is used by the code?

Chapter 1 the BasiC ConCepts of performanCe testing

9

Within the ISO 25010 performance efficiency category are the three subcomponents,

on which we will speak shortly:

 1. Time behavior

 2. Resource utilization

 3. Capacity

Yet, there hasn’t been a mention of performance risk. This subject is covered in

much more detail later. The basic risk definition defined by ISTQB relates to “any factor

that could result in future negative consequences.” Simply put – bad things can happen.

What makes a bad thing we would hope can be defined based on the stakeholder

requirements.

Summary performance relates to code running on an environment.

 Time Behavior
Generally, the evaluation of time behavior is the most common perfor-
mance testing objective. This aspect of performance testing examines the
ability of a component or system to respond to user or system inputs within
a specified time and under specified conditions. Measurements of time
behavior may vary from the “end-to-end” time taken by the system to
responding to user input, to the number of CPU cycles required by a soft-
ware component to execute a particular task.

—ISTQB_CTFL_PT

Unfortunately, the metric most stakeholders identify with is time behavior. Although

it can be a useful characteristic, in almost every case the stakeholders do not understand

the implication of time behavior in terms of the environment and code.

time behavior

Degree to which the response and processing times and throughput rates of
a product or system, when performing its functions, meet requirements.

—ISO 25010

Chapter 1 the BasiC ConCepts of performanCe testing

10

Because time behavior is an easily quantified metric that anyone can relate to,

it becomes the metric of choice for performance testing. For example, a common

requirement any performance engineer would recognize is

The system should respond in two seconds.
On face value, the requirement looks defined, with a success criterion to be met.

One thing that must be remembered about requirements and user stories is they are

often written to communicate information to other people who write user stories and

requirements, not to the people who use them. Irrelevant of any previous role you have

had in IT or business – if you have worked in any IT project, it can be almost guaranteed

that your project “had bad requirements.” This is magnified when performance is added

to the mix.

A huge number of questions can be raised from the preceding requirement. The first

relates to the response time itself as a defined goal. If the response time after testing is

exactly 2 seconds, does this constitute a failure? What about 2.01 seconds?

To which time measurement is the two seconds referring? Time can be measured

differently – an average of two seconds is very different from a maximum of two seconds.

It should become the standard practice of a performance engineer when stakeholders

refer to ANY TIME MEASUREMENT, ask the following questions:

 1. Is this time the maximum response time?

 2. Is this time the average response time?

 3. Is this time a percentile (and if so, which percentile)?

Increasingly, the percentile measure is being used. It can be more useful to know that

95% of the users responded within two seconds than defining an arbitrary maximum

response time.

Another consideration would be, “Why two seconds?” What would be the impact if

the system under test took longer to respond? Would the organization lose customers,

or would the users wait longer? Could that longer wait time affect the user’s productivity?

What does “respond” mean? Does this mean the timed transaction has completed

the entire operation? Or that a connection to the target server has been completed?

What is “the system”? Is this transaction time measuring from the end user’s

machine through the application stack and back to the end user? Or is it measured from

the point the web request passes the organization firewall through the application stack

and back to the firewall?

Chapter 1 the BasiC ConCepts of performanCe testing

11

And, most importantly, under what user behavior is the two-second response

time required? Is a single user logging in, then logging out of the system? Five users? A

thousand? Or are users logging in and completing a complex set of business transactions

simultaneously? The total number of transactions needing to be completed (the

throughput) can affect the time behavior. A single transaction being processed might

complete quite quickly, whereas a thousand transactions being processed together (a

much higher throughput rate) could take significantly longer.

Perhaps that requirement needs a little work.

Summary time behavior measures processing times and throughput rates.

 Resource Utilization
If the availability of system resources is identified as a risk, the utilization of
those resources (e.g., the allocation of limited RAM) may be investigated by
conducting specific performance tests.

—ISTQB_CTFL_PT

resource utilization

Degree to which the amounts and types of resources used by a product or
system, when performing its functions meets requirements.

—ISO 25010

Resource utilization is linked closely to the amount of load applied to the system

under test. It relates very closely to the efficiency characteristic – the amount of resources

used under stated conditions. As we saw earlier, the problem quite often lies in that

specific statement of conditions. How we define the requirements associated with the

environment and the code under test can dramatically affect the performance test itself.

A simple checklist against which resource utilization can be considered in almost

any performance test consists of the following:

Chapter 1 the BasiC ConCepts of performanCe testing

12

CPU Utilization

What is the CPU being asked to do? Note there may be multiple CPU cores across

multiple machines within the system under test. Also, consider that the CPU utilization

average might be capped at a measure (75% or 80%) as set by administrators – is this

enough or too high?

Memory Utilization

How much available memory is consumed? What TYPE of memory – is it cached L1 or

L2 memory on the motherboard, RAM, or HD/SSD memory?

Disk Input/Output

Reading and writing to a traditional disk platter in terms of performance is incredibly

slow (this aspect will be considered later). Is the disk local to the machine, part of a RAID

array, or was the storage cloud-based (AWS, Azure, OneDrive, or Dropbox)? Is the disk a

traditional magnetic platter or a much faster (and more expensive) solid-state disk?

Bandwidth Consumption

When considering bandwidth, do not just think of the ethernet cable connected to the

back of the machine. Bandwidth issues can exist internally in a machine as well as any

networks used.

Queueing

Let’s face it, no one likes a queue, especially a long one. Queueing is a sign that

something has reached a point of saturation and could be the beginning of a

performance issue.

More will be covered on these points later.

Summary resource utilization measures the effect of load on a system.

Chapter 1 the BasiC ConCepts of performanCe testing

13

 Capacity
If issues of system behavior at the required capacity limits of the system (e.g.,
numbers of users or volumes of data) are identified as a risk, performance
tests may be conducted to evaluate the suitability of the system
architecture.

—ISTQB_CTFL_PT

capacity

Degree to which the maximum limits of a product or system parameter
meets requirements.

—ISO 25010

Before looking at capacity, it’s important to clarify the terms operational profile

and load profile. Within the performance engineering community, the terms are used

interchangeably. The ISTQB syllabus clarifies the separation between them in the

following way:

operational profile

An actual or predicted pattern of use of the component or system.

load profile

Documentation defining a designated number of virtual users who process
a defined set of transactions in a specified time period that a component or
system being tested may experience in production.

—ISTQB Glossary

Simply put, an operational profile describes what a user does in the system. A load

profile defines how a performance engineer tests a system with a number of virtual users

performing operational profiles.

Chapter 1 the BasiC ConCepts of performanCe testing

14

Capacity relates to the basic definition of “how much” the system can support. This

can be done in two general ways:

 1. Establish a capacity goal and test to determine an operational

profile on the system under test to meet the capacity goal – in

effect answering the question of how much load will the system

under test support

 2. Establish an operational profile (an expected amount of load the

system should support) to then build a load profile (and from this

derive a performance test) and measure the system under test

supporting the load

This raises a fundamental question. When considering performance, we are looking

at how the system responds when subjected to “load.” The fundamental question is

What is load?
It’s worth noticing that the ISTQB syllabus speaks of load in relation to users

performing actions in the system or volumes of data being processed. Unfortunately, this

is not load. That is how we DEFINE load. Users performing tasks within the system have

a cause-effect relationship with the system itself. The user performing the task is a cause,

leading to an effect. What could the effect be?

At this point, we need to think about the systems and applications undergoing

performance testing. Some would say that users performing tasks consume bandwidth

or CPU cycles or memory. And that is true, in a manner of speaking. But it is not the true

effect. CPU or memory consumption is a by-product of the effect of that user’s actions.

The true effect of a user performing an action in a system is the execution of code. From

that, we derive CPU/bandwidth/memory consumption and so on.

Unfortunately, we cannot define load based on the hundreds, thousands, or even

millions of lines of code executing per second in an environment.

We DEFINE LOAD by numbers of users performing tasks in a system.

ACTUAL LOAD is code executing in an environment linked to those previous

actions.

Even a single user using a system generates load as code executes to support the

user’s actions.

Summary Capacity measures the limits of a system.

Chapter 1 the BasiC ConCepts of performanCe testing

15

On this basis, capacity brings these two elements together. Capacity considers the

system’s ability to support a defined load by a performance test subjecting the system

to actual load based on the defined operational/load profile and measuring the time

behavior and resource utilization.

Performance testing often takes the form of experimentation, which enables
measurement and analysis of specific system parameters to take place.
These may be conducted iteratively in support of system analysis, design
and implementation to enable architectural decisions to be made and to
help shape stakeholder expectations.

—ISTQB_CTFL_PT

This performance testing experimentation can be likened to a trip to the optometrist

for new glasses. The performance engineer plays the role of the optometrist, flipping the

little lens back and forth, asking

“Is it better or worse?”

Performance engineers spend a lot of time tuning a system in conjunction with

various technical stakeholders and rerunning the tests, asking that question.

Summary performance testing is an iterative experiment gathering information
for stakeholders.

The following performance testing principles are particularly relevant:

 1. Tests must be aligned to the defined expectations of different
stakeholder groups, in particular users, system designers and
operations staff.

 2. The tests must be reproducible. Statistically identical results
(within a specified tolerance) must be obtained by repeating
the tests on an unchanged system.

 3. The tests must yield results that are both understandable and
can be readily compared to stakeholder expectations.

Chapter 1 the BasiC ConCepts of performanCe testing

16

 4. The tests can be conducted, where resources allow, either on
complete or partial systems or test environments that are
representative of the production system.

 5. The tests must be practically affordable and executable within
the timeframe set by the project.

—ISTQB_CTFL_PT

These principles are true for all types of testing, whether functional or non-

functional. Specifically, in terms of performance testing:

 1. In any project, a diverse set of stakeholder groups will exist.

A good (albeit coarse) example is the technical stakeholders

(consisting of various administrators and/or developers) vs.

nontechnical stakeholders (business users or management). In

each case, the stakeholder groups may have different objectives,

goals, and key metrics they require. Performance engineers

should be mindful of common project requirements and goals,

specific requirements/user stories and goals for each stakeholder

group, and the relevant performance tests to prove these have

been achieved.

 2. One of the difficulties with performance testing is the variability

of the system under test, the environment and infrastructure on

which it runs, the tests performance engineers create, and even

the data the system and performance tests use. This highlights

a key point to performance testing vs. performance reality.

Performance tests must be reproducible in that we would hope

each test execution would yield the same results. But this creates

an unrealistic real-world condition. The question of performance

test randomness is always an important issue. In the real world,

no load is consistent. There will always be slight variations in the

way the load is applied to a system. The danger with performance

testing is that unrealistic business scenarios are created, relying on

fixed load profiles and user behavior with minimum randomness

or variation. Although it is the ideal for repeatable performance

tests, it does not match reality. Performance engineers must

Chapter 1 the BasiC ConCepts of performanCe testing

17

consider this point when planning both the creation and

execution of individual tests and the test scenarios in which they

run. Often, it can be beneficial to create two sets of tests – a set

that removes any randomness to create reproducible results and a

second set that closer mimics the real-world random behavior of

users.

 3. In accordance with (1), the results must correspond with the

performance requirements/user stories and key metrics. These

results should be meaningful to all stakeholders, which may

require some interpretation and translation by performance

engineers to be meaningful.

 4. Traditionally (and some would say ideally), performance

testing should be conducted in a production environment with

production-like volumes and types of data. Unfortunately, it is rare

to meet that ideal. Much will be spoken of this in later sections,

but suffice to say that the tests, the environment, and the data

should be as lifelike as can be possible. It can be difficult to model

the behavior of a production system when the system under

test does not match the production expectations. This of course

does not mean that performance testing cannot be conducted

on a less than production-like environment – it means a skilled

performance engineer will identify and assess the associated

performance risks and be sure to present these to stakeholders. A

change that has been underway in recent years is the “shift-left”

effect of moving performance testing earlier in the development

lifecycle. Running component-level performance tests as part of

a DevOps sprint, for example, is today becoming normal practice.

It could not be said this environment is “production-like,” but it

might be possible to test the component with a production-like

load.

 5. Performance testing must always remember that return on

investment (ROI) exists. The very nature of performance

testing could mean that we continue to execute tests for small

improvements in performance that cannot be justified against

Chapter 1 the BasiC ConCepts of performanCe testing

18

the cost of performance testing. In the same token, performance

testing can sometimes be rejected by an organization as “too

costly.” This returns to performance risk, in that the time and cost

required to conduct performance testing should be balanced by

the performance risk the testing is attempting to mitigate.

Summary tests must align to stakeholder expectations; tests must be
reproducible; test results must be meaningful; tests should be run in environments
that are representative of the production system; tests must return good value for
money and time.

Books by [Molyneaux09] and [Microsoft07] provide a solid background to
the principles and practical aspects of performance testing.

—ISTQB_CTFL_PT

Both books mentioned earlier are excellent examples of an end-to-end view

of performance testing. They are also two of a very small number in this genre.

Unfortunately, like many IT books, they have become somewhat dated.

Another useful addition to a performance test library is George W. Anderson’s

mySAP Tool Bag for Performance Tuning and Stress Testing. Although technology specific

(and a little old), it gives a good set of practices and principles for performance testing.

All three of the above quality sub-characteristics will impact the ability of
the system under test (SUT) to scale.

—ISTQB_CTFL_PT

 1.2 Types of Performance Testing
PTFL-1.2.1 (K2) Understand the different types of performance testing

Different types of performance testing can be defined. Each of these may be
applicable to a given project depending on the objectives of the test.

—ISTQB_CTFL_PT

Chapter 1 the BasiC ConCepts of performanCe testing

19

The types are influenced by the overall performance goals, objectives, user stories,

and/or requirements. These create the framework for the business processes to be tested

and their corresponding operational profiles. These are then combined into a load

profile.

 Performance Testing
Performance testing is an umbrella term including any kind of testing
focused on performance (responsiveness) of the system or component under
different volumes of load.

—ISTQB_CTFL_PT

performance testing

Testing to determine the performance of a software product.

—ISTQB Glossary

Performance testing is the overall type into which the performance test subtypes fit.

The following diagram contains the types recognized by the ISTQB syllabus (Figure 1-3).

You may recognize some of these or know these types by other names. There are also

other types not included in this list that will be covered later.

Summary performance testing is the top classification.

Figure 1-3. Performance test types

Chapter 1 the BasiC ConCepts of performanCe testing

20

 Load Testing
Load testing focuses on the ability of a system to handle increasing levels of
anticipated realistic loads resulting from transaction requests generated by
controlled numbers of concurrent users or processes.

—ISTQB_CTFL_PT

load testing

A type of performance testing conducted to evaluate the behavior of a com-
ponent or system under varying loads, usually between anticipated condi-
tions of low, typical and peak usage.

—ISTQB Glossary

Load testing is almost always based on some real-world organization conditions.

Load testing becomes an integral part of all performance tests as it is the basis from

which the other performance test types are derived. The bases for load tests (the

operational and eventual load profiles) are commonly known as volumetrics and are

determined with the following questions:

 Who

Who are the users? Do different user groups access the component or system for this

load test? These could be different user groups performing different tasks or with

different access privileges.

 What

What business processes are being performed by the users? It is useful at this point

to consider the way a business process (Figure 1-4) can be represented as part of a

performance test.

Chapter 1 the BasiC ConCepts of performanCe testing

21

Consider the example of an online retail website. The business process represents

some end-to-end action a user wants to perform (e.g., buying a book on performance

testing). This end-to-end process can then be broken down into a series of reusable tasks

(log in, search for a book, add to basket, purchase, and log out) which could represent

a service or component within the system. Each reusable task can then be decomposed

into a series of steps the user will perform (open the browser, navigate to the retailer’s

website, enter username and password, and click the login button).

Each of these business processes represents the definition of the load, or part of

the load, that will execute the code within the environment to create the actual load.

Part of the artistry of performance testing is to look at the “what” and understand how

that business process operates across the system under test. For example, there was a

performance test plan that looked at creating 80 separate reports to test the business

intelligence reporting of an ERP system. But when it was looked at from the back-end

servers, databases, and services, it was found that the 80 scripts could be cut down

to seven, with each report variation managed with input data (and thus saving the

performance engineer a mountain of work).

 Where

Where are the users located? Are the users accessing the system from a concentrated

location (such as an organization’s office) or distributed (such as users working from

home)? Another consideration is the use of geolocation3 – load being redirected to

different servers, services, components, or business processes based on the location

from which the load originates.

3 The process or technique of identifying the geographical location of a person or device by means
of digital information processed via the Internet.

Business
Process

Task

Task

Task Steps

Figure 1-4. Business process breakdown

Chapter 1 the BasiC ConCepts of performanCe testing

22

 When

At what time of day does the load test represent? This could have a major impact on the

amount of load the system could be subject to. Consider the example of entering weekly

timesheets – it would be safe to bet that last thing on Friday afternoon might be busier

in terms of organization staff entering time rather than Wednesday morning (and hence

generating more load at that time)!

 How

How are the users performing the business process steps? The example of a new user

compared with an experienced user could mean the business process is completed

differently by each. A new user may take more time or use a different path to the

experienced user.

Consider a load test against a global online retailer. The user might be purchasing,

checking order status, or browsing (different business processes). The users are

generating a distributed load and hence are a non-concentrated load source.

Geolocation may redirect users from the .com site to a more relevant regional site (.co.uk

or .com.au). The load test might represent the load after 18:00 EST in the United States

to represent the Christmas load on a weekday in December. This could also mean users

are buying multiple items in one transaction to avoid the Christmas crowds, tinsel, and

slightly tinny speakers playing Christmas carols in the local mall.

This scenario would go on to form an operational profile (and eventual load profile

with the addition of virtual user numbers and so on) for the proposed load test.

Summary Load testing tests how the system responds to real-world load
conditions.

 Stress Testing
Stress testing focuses on the ability of a system or component to handle peak
loads that are at or beyond the limits of its anticipated or specified work-
loads. Stress testing is also used to evaluate a system’s ability to handle
reduced availability of resources such as accessible computing capacity,
available bandwidth, and memory.

—ISTQB_CTFL_PT

Chapter 1 the BasiC ConCepts of performanCe testing

23

stress testing

A type of performance testing conducted to evaluate a system or component
at or beyond the limits of its anticipated or specified workloads, or with
reduced availability of resources such as access to memory or servers.

—ISTQB Glossary

Many people think of performance testing in terms of stress testing. In their eyes,

performance engineers are trying to “break the system” with excessive load. Stress

testing is a useful type in that it helps identify:

• The maximum capacity of the system under test

• Which part of the component or system fails first

Stress tests are usually a derivative of a load test that extends the load beyond the

limits imposed by the operational profile (Figure 1-5).

For example, a load test may run a system or service at peak load for a time to

represent a defined business condition (the dot-dash line). A stress test (the solid line)

would extend the load beyond this defined peak to identify the “breaking point” and the

thing that breaks.

Maximum capacity

Peak Load

Load

Execu�on Time

Figure 1-5. The load profile comparison between a load test and stress test

Chapter 1 the BasiC ConCepts of performanCe testing

24

A point to note on stress testing is that it could continue indefinitely. Once the

maximum capacity has been established and reported, alternatives exist:

• Stress testing can be used simply to inform stakeholders on the

maximum capacity from a load definition point of view (users

performing business processes linked to time behavior). No further

action might be needed – we know that at a load of X, the system will

become unstable.

• Stress testing informs developers and/or administrators as to the

component that will fail if the load hits the maximum capacity

(resource utilization). So, if the load hits X, the thing that breaks is Y.

• Further steps could then be undertaken to repair the component that

initially failed to possibly increase the maximum capacity. And if the

time and money are available, testing could then continue to the new

failure point, as there will always be another component that will fail

under load.

Summary stress testing tests the system beyond peak loads to identify the
system’s maximum capacity.

 Scalability Testing
Scalability testing focuses on the ability of a system to meet future efficiency
requirements which may be beyond those currently required. The objective
of these tests is to determine the system’s ability to grow (e.g., with more
users, larger amounts of data stored) without violating the currently speci-
fied performance requirements or failing. Once the limits of scalability are
known, threshold values can be set and monitored in production to provide
a warning of problems which may be about to arise. In addition, the pro-
duction environment may be adjusted with appropriate amounts of
hardware.

—ISTQB_CTFL_PT

Chapter 1 the BasiC ConCepts of performanCe testing

25

scalability

The degree to which a component or system can be adjusted for changing
capacity.

scalability testing

Testing to determine the scalability of the software product.

—ISTQB Glossary

A commonly asked question is, “Is the system scalable?”

Remember, the answer is always yes! We can always increase the load on the system,

service, or component and improve the ability to handle load.

Earlier we asked, “By how much does load affect the scalability of the system/

service/code in terms of time behavior, resource utilization, and capacity?”

With scalability testing, we now answer a different question. Rather than ask “Is the

system/service scalable?”, a more accurate question would be

“How is the system/service scalable?”

There are two general types of scalability testing – horizontal and vertical (Figure 1- 6).

Figure 1-6. Horizontal and vertical scalability

Chapter 1 the BasiC ConCepts of performanCe testing

26

Horizontal scalability adds more machines/pods/virtual machines of the same

specification to the system, while vertical scalability replaces an existing machine/pod/

virtual machine with a larger, more capable machine or more CPU and/or memory

allocated to the VM/pod. Both methods have advantages and disadvantages.

In both cases, at first it’s typical to gather time behavior, resource utilization, and

capacity on a single server. A decision can then be made as to whether horizontal

scalability (adding additional servers/pods/virtual machines) or vertical scalability

(increasing the resources of a single server) will be measured to improve the overall

ability of the system/service to handle a higher capacity load.

It should always be clear that there will always be an upper limit to scalability.

A system or service might be scalable, but it could be too expensive to expand the

necessary hardware/software licenses/infrastructure to the required level. It could be

that the system or service becomes unstable or that adding more capacity may not have

any benefit to the overall performance.

Summary scalability testing tests the system’s efficiency to grow to handle
larger loads.

 Spike Testing
Spike testing focuses on the ability of a system to respond correctly to
sudden bursts of peak loads and return afterwards to a steady state.

—ISTQB_CTFL_PT

spike testing

Testing to determine the ability of a system to recover from sudden bursts of
peak loads and return to a steady state.

—ISTQB Glossary

Chapter 1 the BasiC ConCepts of performanCe testing

27

Spike testing has become popular for looking at the system’s performance if the load

bounces above a defined peak for a short time (Figure 1-7). These peaks might be:

• A single event

• A series of regular spikes

• A series of random, unequal events

Examples might be online in-play betting – betting might increase:

• During halftime in a football match (a single event)

• At the end of an over in cricket or the end of a tennis game (a regular

series)

• The first/next goal scorer in a football match (a series of unequal

random events)

Spike testing’s popularity has grown in cases of “what would happen if….” It allows

performance engineers to measure the system’s ability to recover after the load spike and

any subsequent impact the spike may have on the system’s continuing operations.

Summary spike testing tests the system’s ability to recover from a load spike.

Figure 1-7. Spike testing

Chapter 1 the BasiC ConCepts of performanCe testing

28

 Endurance Testing
Endurance testing focuses on the stability of the system over a time frame
specific to the system’s operational context. This type of testing verifies that
there are no resource capacity problems (e.g., memory leaks, database con-
nections, thread pools) that may eventually degrade performance and/or
cause failures at breaking points.

—ISTQB_CTFL_PT

endurance testing

Testing to determine the stability of a system under a significant load over a
significant period of time within the system's operational context.

—ISTQB Glossary

Endurance testing is also referred to as soak testing. The difference between a load

test and an endurance test is predominantly the length of time the test executes. Both

are designed with a similar load profile. The difference lies where a load test may only

execute for one hour; it’s not unusual for endurance tests to run many hours, days, or

even in extreme cases weeks in length. The challenge with endurance testing is obtaining

enough test data to execute for an extended time and having enough storage space to

capture the results. Endurance testing has become more critical, as the online

24 hours-a-day, seven-days-a-week nature of many organizations means there is little

time for downtime or “rebooting the servers.”

Summary endurance testing tests the system’s stability over an extended time.

 Concurrency Testing
Concurrency testing focuses on the impact of situations where specific
actions occur simultaneously (e.g., when large numbers of users log in at
the same time). Concurrency issues are notoriously difficult to find and
reproduce, particularly when the problem occurs in an environment where
testing has little or no control, such as production.

—ISTQB_CTFL_PT

Chapter 1 the BasiC ConCepts of performanCe testing

29

concurrency

The simultaneous execution of multiple independent threads by a compo-
nent or system.

—ISTQB Glossary

The concept of concurrency is a fundamental cornerstone of performance testing.

Even though a single user or transaction generates load, that load may not be enough to

truly exercise the system under test. By using concurrency, performance engineers can

define how many business processes, tasks, or even steps are occurring simultaneously.

Three general types of concurrency can be considered. For example, if the system

under test is an online retail site, many users might be performing a range of functions

within the site at the same time. At a component level, it might be important to test the

login component with a number of simultaneous login attempts. To break this down:

Application concurrency: There could be many users using the site to perform

different business processes (searching, purchasing, checking order status, creating user

accounts, etc.).

Business process concurrency: A smaller number of users may be performing a

single business process simultaneously (searching the site).

Transaction concurrency: There may be a subset of the users performing a single

business process (searching) that all click the search button simultaneously.

It could also be unexpected situations that could arise that fall more into the purvey

of failover and disaster recovery, but still require performance testing. Concurrency

testing might look at batch processing running concurrently with peak load, or a

scheduled backup starts at a busy time.

Summary Concurrency testing tests the ability to handle simultaneous business
processes and transactions.

Chapter 1 the BasiC ConCepts of performanCe testing

30

 Capacity Testing
Capacity testing determines how many users and/or transactions a given
system will support and still meet the stated performance objectives. These
objectives may also be stated with regard to the data volumes resulting
from the transactions.

—ISTQB_CTFL_PT

capacity

The degree to which the maximum limits of a component or system param-
eter meet requirements.

capacity testing

Testing to evaluate the capacity of a system.

—ISTQB Glossary

Capacity testing is like other already identified test types (stress and spike testing).

The difference between capacity and stress testing is stress extends to a predetermined

point of failure (e.g., a limit in throughput or resource utilization or a processing

time being exceeded). Capacity testing may still extend beyond the peak load but is

performed to achieve a performance test goal (e.g., how many users will the system

support) rather than identify the cause of failure. Capacity testing focuses on achieving

a defined level of performance rather than attempting to cause a failure (stress) or to

“see what happens” (spike). Often, capacity testing has an underlying growth in load/

performance relating to an organizational need. For example, the organization may have

a global growth rate defined as 4% new customer growth per annum. Capacity testing

could help answer the question regarding the system’s ability to support this year-on-

year growth.

Summary Capacity testing tests the limit to which the system can grow while
achieving its performance objectives.

Chapter 1 the BasiC ConCepts of performanCe testing

31

 1.3 Testing Activities in Performance Testing
PTFL-1.3.1 (K1) Recall testing types in performance testing

The principal testing types used in performance testing include static test-
ing and dynamic testing.

—ISTQB_CTFL_PT

static testing

The process of evaluating a component or system without executing it,
based on its form, structure, content, or documentation.

dynamic testing

Testing that involves the execution of the test item.

—ISTQB Glossary

 Static Testing
Static testing activities are often more important for performance testing
than for functional suitability testing. This is because so many critical per-
formance defects are introduced in the architecture and design of the sys-
tem. These defects can be introduced by misunderstandings or a lack of
knowledge by the designers and architects. These defects can also be intro-
duced because the requirements did not adequately capture the response
time, throughput, or resource utilization targets, the expected load and
usage of the system, or the constraints. Static testing activities for perfor-
mance can include:

• Reviews of requirements with focus on performance aspects
and risks

• Reviews of database schemas, entity-relationship diagrams,
metadata, stored procedures and queries

• Reviews of the system and network architecture

• Reviews of critical segments of the system code (e.g., complex
algorithms)

—ISTQB_CTFL_PT

Chapter 1 the BasiC ConCepts of performanCe testing

32

Static testing is an area that performance testing traditionally has not been directly

linked. Because performance testing was always linked to the execution of the system

(dynamic testing) and performed later in the test cycle, it was assumed that static testing

was not relevant. This could not be further from the truth. We briefly mentioned earlier

the trouble most experienced performance engineers uncover when they join a project.

That is, either no performance test requirements/user stories have been written or those

that do exist are not quantifiably and measurably adequate to conduct performance

testing.

Actual static testing should not be dismissed. It could discover performance issues

such as memory issues (the static analysis of the processor/main memory vs. processor/

cached memory/main memory relationship, especially in embedded systems), thread

locking (stopping a thread from executing for a myriad of reasons, but, when carelessly

used, threads become deadlocked and cease processing), or even simple things such

as the exponential multiplication of nested loops having an influence on performance.

Static analysis, if a performance engineer is given the opportunity, can be valuable in

reducing performance issues.

It’s worth delving into each syllabus bullet point in more detail. In this, reference is

made to another excellent book to add to a performance test library – André B. Bondi’s

Foundations of Software and System Performance Engineering: Process, Performance

Modeling, Requirements, Testing, Scalability, and Practice (Bondi likes a long title). Bondi

directly addresses the link between the quality of performance requirements and the

impact they have on project success. From this point, when referring to the following

requirements, both traditional requirements and user stories apply.

 Reviews of Requirements with a Focus on Performance Aspects
and Risks

The importance of the relationship between good performance requirements and good

performance testing cannot be highlighted enough. Performance requirements are often

derived from performance-related questions that organization stakeholders or users

might ask. For example, from a business meeting the organization CEO has agreed with

the board that the organization will adopt a new sales strategy to grow the organization’s

business at a rate of 5% per annum for the next four years. The CTO has subsequently

asked the question:

“Will our business systems support a 5% revenue growth rate year on year for the

next four years?”

Chapter 1 the BasiC ConCepts of performanCe testing

33

And here lies the beginning of a performance test project. Of course, we cannot yet

performance test against this requirement.

André Bondi lists the following points regarding performance requirements (point

numbers have been added to the quote for reference):

Early and concise specifications of performance requirements are necessary
because:

1. Performance requirements are potential drivers of the system architec-
ture and the choice of technologies to be used in the system’s implementa-
tion. Moreover, many performance failures have their roots in poor
architectural choices. Modification of the architecture before a system is
implemented is cheaper than rebuilding a slow system from scratch.

—Bondi, 2014

Traditionally, in many projects, performance testing is considered later in the

software development lifecycle. And, if a performance defect is discovered, it can be

extremely costly to rectify and bypass the advantage Bondi is suggesting. Similarly,

it is becoming rarer today for an organization to write their own complete software

systems. Much of the time development work consists of integrating various disparate

products with various ages, technologies, and functionality together. It is important to

note that in all the preceding instances performance engineers can have an impact on

the overall performance of the end system. This might consist of performance testing

existing systems to identify bottlenecks before an integration project starts, reviewing

architecture diagrams to identify potential bottlenecks, and eventually reviewing

(and possibly even writing from scratch) performance requirements to meet the

organization’s goals.

2. Performance requirements are closely related to the contractual expecta-
tions of system performance negotiated between buyer and seller, as well
as to any relevant regulatory requirements such as those for fire alarm
systems.

—Bondi, 2014

Chapter 1 the BasiC ConCepts of performanCe testing

34

Performance engineers must always be conscious of service-level agreements

(SLAs). These SLAs can be directly related to regulatory requirements (such as the EU

PSD24 and related UK PSRs 20175) or a customer contract. Indirectly, various business

goals could also relate to performance around customer service, usability of systems for

both staff and customers, and hence the perceived “quality” of the system.

3. The performance requirements will be reflected in the performance test
plan.

—Bondi, 2014

The performance test plan and performance requirements are inexorably linked.

From the performance requirements, we will derive:

• The performance test types needed to meet the requirements

• The environment needs to achieve a production-like test

environment with the necessary test data quality and volume

• The business processes to meet the performance requirements

• The quantifiable metrics identified to show the performance

requirements have either been met or by how much the system needs

to improve to meet them.

4. Drafting and reviewing performance requirements force the consider-
ation of trade-offs between execution speed and system cost, as well as
between execution speed and simplicity of both the architecture and the
implementation. For instance, it is more difficult to design and correctly
code a system that uses multithreading to achieve parallelism in execu-
tion than to build a single-threaded implementation.

—Bondi, 2014

4 The revised Payment Services Directive (PSD2), implemented in 2018, is the EU legislation
which sets regulatory requirements for firms that provide payment services. The original Payment
Services Directive (PSD) was introduced in 2007.
5 PSRs 2017 – The Payment Services Regulations 2017 is the updated version for PSD2 which
became a UK law through the Payment Services Regulations 2009 (www.legislation.gov.uk/
uksi/2017/752/contents/made).

Chapter 1 the BasiC ConCepts of performanCe testing

http://www.legislation.gov.uk/uksi/2017/752/contents/made
http://www.legislation.gov.uk/uksi/2017/752/contents/made

35

At this point, a brief explanation is required. Traditionally, people have always

considered the “project triangle” as shown in Figure 1-8.

There is always an appropriate catchphrase to go with this – “You

can have any two you want….”

Performance testing fits into this as to be expected. The preceding

point considers system response time (or time behavior) as a

function of quality. To achieve a reduction in system response

time, more money could be spent to upgrade bandwidth or

hardware (more on this in point 5). But the preceding diagram

leaves out some important characteristics of any project. In using

this diagram, we tend to focus more on one or two of these “sides”

at the expense of the third. It does however show that all three are

very closely linked.

But if we expand the diagram to include “the missing bits,” a

different picture starts to appear. Ultimately, any project has the

objective of achieving its goals – that of project success. Another

thing missing from the preceding diagram is a simple reference to

how much work is required to achieve the time/cost/quality the

stakeholders desire.

The final point considers quality itself. Quite often, the “quality”

side is replaced with some expedient term to fit whomever creates

the diagram. A common replacement is risk. Often, people

consider quality and risk as opposites. But it could also be argued

Figure 1-8. The quality triangle

Chapter 1 the BasiC ConCepts of performanCe testing

36

that a system is “a high-quality system” that could also be risky (a

point considered later – think of a system that is beautifully built

and looks great that doesn’t do the job as quickly as users expect).

Because both could be considered separately, both deserve

separate recognition in the preceding diagram.

We now have a more complete view of an IT project (Figure 1-9).

The overall project goal as mentioned before is the success of

the project. Each of the five project characteristics could have

an influence on that success. If we imagine the success goal as a

balloon, each of the five project characteristics can push either

separately or together on that balloon to squeeze it out of shape

(or even pop the balloon!). Importantly, if one characteristic has

an adverse effect pushing on the balloon, the other four must

change to keep the balloon intact. The time, cost, and quality

are still there. Additionally, there is scope (how much we need

to do to achieve the success) and risk (as an adjunct rather than

opposite of quality).

5. Development and/or hardware costs can be reduced if perfor-
mance requirements that are found to be too stringent are relaxed
early in the software lifecycle. For example, while a 1-second aver-
age response time requirement may be desirable, a 2-second
requirement may be sufficient for business or engineering needs.

Figure 1-9. The project success definition diagram

Chapter 1 the BasiC ConCepts of performanCe testing

37

Poorly specified performance requirements can lead to confusion
among stakeholders and the delivery of a poor- quality product
with slow response times and inadequate capacity.

—Bondi, 2014

Sometimes, these individual project attributes can be influenced by decisions made

without reflecting on the impact these decisions will have on the other attributes. For

example, the one-second vs. two-second average response time mentioned by Bondi is a

classic performance engineer’s quandary. Quite often, people will insist on a particular

response time. Remember the three questions:

• Is the stated time the average response time?

• Is the stated time the maximum response time?

• Is the stated time a percentile (and if it is, what percentile)?

Once established as to which of the preceding three the stakeholder is referring

to, the next very important question to ask is, “Why?” Why does the system need to

respond within that maximum/average/percentile time? What is the impact if it doesn’t?

Was this time derived from any statistical data (such as looking at response times from

a competitor’s website), or was it derived using the process of inductive reasoning?6

Where is this time being measured – is this from your uncle’s old Pentium computer via

an ADSL connection? From when the request hits the organization’s firewall? But most

importantly, if the “required response time” is needed, do the stakeholders understand

the implications regarding quality, cost, time, risk, and scope to achieve that response

time? Finally, can this be quantified into a requirement that contains all that is required

for this to be tested?

6. If a performance issue that cannot be mapped to explicit performance
requirements emerges during testing or production, stakeholders might
not feel obliged to correct it.

—Bondi, 2014

6 Inductive reasoning is a principle where an individual’s experience and observation (including
the learned experience and observations from others) is used as the basis to develop a general
truth. It is also commonly known as a guess!

Chapter 1 the BasiC ConCepts of performanCe testing

38

The very nature of performance testing systems of systems today is performance

engineers quite often uncover undiscovered performance issues that could affect

the system under test’s overall performance. Unfortunately, performance engineers

can also discover performance issues that are out of scope. Herein lies an important

point – all such discoveries MUST BE REPORTED! It then becomes an issue for the

stakeholders to decide upon. Performance engineers must always understand that, often,

the stakeholders will look for advice on performance issues. That does not mean the

performance engineer assumes the risk of the decision the stakeholder makes. It cannot

be stressed highly enough the performance engineers must report what they find. It may

be the discovery is beyond the scope of the project. But that does not mean that another

stakeholder outside the project won’t care about that discovery or that it’s now “in scope.”

Ultimately, static testing can allow performance engineers to ask relevant questions

against the non-executable components of the project. These questions are too

numerous to list, but the important point is to ask them. They can generally be grouped

into the following areas:

 Capacity

• Can the system support the defined peak load?

• Can the system cope with a sudden spike in load?

• What is the maximum capacity of the system?

• Does the system need to support an ongoing increase in capacity?

• Can functionality be added to the system without adversely affecting

the system’s performance?

 Time Behavior

• Will the system respond within the defined time constraints? (Of

course, this would include the load profile under which the desired

time is required, with the desired load executing upon a defined,

production-like environment, and include the start and end points

between which the time will be measured.)

• Have all time constraints been specified in terms of average/

maximum/percentile response times?

• Have these response times been validated against real-world examples?

Chapter 1 the BasiC ConCepts of performanCe testing

39

• Have these response times been evaluated by a range of

stakeholders?

• Has the impact of aggressive time behaviors (i.e., very low response

times) been assessed against the other project characteristics (cost,

scope, quality, and risk)?

 Resource Utilization

• Can the system running in the planned environment support the

defined peak load?

• If they exist, can the system bottlenecks be identified?

• At maximum capacity, which system attribute causes the failure?

• Can the system be configured and/or tuned to meet a stakeholder

requirement?

• Can changes to the system be measured both directly and indirectly

against the resource utilization of the system?

• Can unpredictable behavior be diagnosed against resource utilization

characteristics?

Finally, this section predominantly deals with the design of the systems under

test. Whatever the form of this design – be it well-defined requirements, architectural

diagrams, cause-effect graphs, state transition diagrams, function maps, database

schema diagrams, or even pseudocode – all can (and should) be considered for static

testing by performance engineers.

It is my business to know what other people do not know.

—Conan Doyle, 1892bc

Summary static testing allows performance engineers to remove defects
early in the software development lifecycle before code execution by reviewing
requirements, designs, and code.

Chapter 1 the BasiC ConCepts of performanCe testing

40

 Dynamic Testing
As the system is built, dynamic performance testing should start as soon as
possible. Opportunities for dynamic performance testing include:

• During unit testing, including using profiling information
to determine potential bottlenecks and dynamic analysis to
evaluate resource utilization

• During component integration testing, across key use cases and
workflows, especially when integrating different use case features
or integrating with the “backbone” structure of a workflow

• During system testing of overall end-to-end behaviors under
various load conditions

• During system integration testing, especially for data flows and
workflows across key inter-system interfaces. In system integration
testing is not uncommon for the “user” to be another system or
machine (e.g. inputs from sensor inputs and other systems)

• During acceptance testing, to build user, customer, and operator
confidence in the proper performance of the system and to fine
tune the system under real world conditions (but generally not to
find performance defects in the system)

—ISTQB_CTFL_PT

These preceding points from the syllabus basically define the role of performance

testing against the various test levels. As a quick refresher to put these in context

component testing (module testing, unit testing)

A test level that focuses on individual hardware or software components.

—ISTQB Glossary

Component testing begins testing “a piece” of the system in isolation. It’s important

that at the beginning of any project a component is defined. It could be an object or

method, a function, or some other defined module of code. This can be tested to ensure

performance requirements established for that component have been met. Importantly,

Chapter 1 the BasiC ConCepts of performanCe testing

41

this level of testing might require mock objects, service virtualization, harnesses, stubs,

and drivers to allow component testing to occur. Typically, it’s performed within the

integrated development environment (IDE) by people who can understand the code.

Although ISTQB have replaced the term unit testing with component testing, it is useful

to distinguish between software and hardware components. Many performance engineers

today anecdotally refer to unit testing when referring to code, and component testing when

referring to a tier in the infrastructure (e.g., a web server in a three-tier system).

component integration testing

Testing in which the test items are interfaces and interactions between inte-
grated components.

—ISTQB Glossary

Component integration takes the individual components tested in the previous

level to now test them working together. It focuses on the interactions and interfaces

between the previously tested single components. Once again, mock objects, service

virtualization, harnesses, stubs, and drivers are needed to allow testing to occur – but

this time the additional parts relate more to the component integrating into a larger

collection of components rather than an individual component in isolation.

system testing

A test level that focuses on verifying that a system as a whole meets specified
requirements.

—ISTQB Glossary

System testing now considers the system from an end-to-end business process point

of view within that system. Traditionally, in sequential development methodologies,

testing at this point consists of executing end-to-end business processes rather than

individual tasks, with no access to the underlying code. This has changed in recent

history with the introduction of agile-based iterative and incremental methodologies.

But the premise remains the same – executing the end-to-end processes. It’s important

to note that system testing, like component testing, considers the system in isolation.

Chapter 1 the BasiC ConCepts of performanCe testing

42

system integration testing

A test level that focuses on interactions between systems.

—ISTQB Glossary

As with component integration testing, system integration testing looks at a

collection of systems working together – the interactions and interfaces between the

previously system-tested systems. But not only systems – the addition of cloud-based

microservices as an example might also need to be added to the environment. This

can become quite complex, as the environment into which a system might fit could be

closely integrated with many other systems. Some of these might be managed or owned

by a third party – further complicating the issue!

acceptance testing

A test level that focuses on determining whether to accept the system.

—ISTQB Glossary

Acceptance testing can be broken down into a group of sublevels as defined in the

ISTQB Foundation syllabus and glossary:

User acceptance testing (UAT)

A type of acceptance testing performed to determine if intended users accept
the system.

Operational acceptance testing (OAT)

A type of acceptance testing performed to determine if operations and/or
systems administration staff can accept a system.

Contractual acceptance testing (not called CAT)

A type of acceptance testing performed to verify whether a system satisfies
its contractual requirements.

Regulatory acceptance testing (definitely not called RAT!)

A type of acceptance testing performed to verify whether a system conforms
to relevant laws, policies and regulations.

—ISTQB Glossary

Chapter 1 the BasiC ConCepts of performanCe testing

43

Before you look at the list and say, “Wait a minute, there’s something missing…”,

alpha and beta testing were excluded from the list as these relate to the environment

in which the test is executed. Alpha testing is acceptance testing run within the

development environment; beta testing is acceptance testing conducted within the end

user’s environment.

Performance engineers could focus on any of these acceptance subtypes, and there

is a role for performance testing within each. Special focus however will be on OAT as it

is acceptance testing performed by the administrators of the system. Much of the time,

OAT becomes a final check to ensure the likes of performance, security, reliability, and

maintainability testing have been considered in earlier levels of testing to an adequate

level and that existing system performance has been considered (i.e., regression testing

the new/changed system against the existing systems). Similar to UAT being for users,

OAT is for administrators to check the operational readiness of the system.

Summary performance testing plays a role in component, integration, system,
and acceptance testing.

In higher test levels such as system testing and system integration testing,
the use of realistic environments, data, and loads are critical for accurate
results (see Chapter 4). In Agile and other iterative-incremental lifecycles,
teams should incorporate static and dynamic performance testing into
early iterations rather than waiting for final iterations to address perfor-
mance risks.

—ISTQB_CTFL_PT

For iterative and incremental methodologies, performance testing can be broken

down into two general sets of performance tests. The first are short directed performance

tests embedded within the sprints to execute performance tests within each build – likely

to be component or component integration level (multithreaded tests, queries, and

simple load tests used as success criteria for user stories/definitions of done).

The second set are larger separate performance tests run outside the sprints

developed by a performance team which may not be part of the sprint teams. These

performance tests are more what are recognized as “traditional” performance tests

(endurance tests, multiple load test scenarios on large environments). These are

normally performed on a change-controlled environment, with the results fed back into

the sprint teams to make changes as required.

Chapter 1 the BasiC ConCepts of performanCe testing

44

Summary in system and acceptance testing, performance testing should (in
effect) replicate production environments. in agile projects, performance testing
can begin earlier than sequential projects.

If custom or new hardware is part of the system, early dynamic performance
tests can be performed using simulators. However, it is good practice to start
testing on the actual hardware as soon as possible, as simulators often do
not adequately capture resource constraints and performance- related
behaviors.

—ISTQB_CTFL_PT

simulator

A device, computer program or system used during testing, which behaves
or operates like a given system when provided with a set of controlled
inputs.

—ISTQB Glossary

Summary When required, simulators can replace components or systems not
yet available for testing.

 1.4 The Concept of Load Generation
PTFL-1.4.1 (K2) Understand the concept of load generation

In order to carry out the various types of performance testing described in
Section 1.2, representative system loads must be modelled, generated and
submitted to the system under test. Loads are comparable to the data inputs
used for functional test cases, but differ in the following principal ways:

Chapter 1 the BasiC ConCepts of performanCe testing

45

• A performance test load must represent many user inputs, not
just one

• A performance test load may require dedicated hardware and
tools for generation

• Generation of a performance test load is dependent on the
absence of any functional defects in the system under test which
may impact test execution

The efficient and reliable generation of a specified load is a key success fac-
tor when conducting performance tests. There are different options for load
generation.

—ISTQB_CTFL_PT

Before moving on – a point on the “absence of any functional defects” in the

preceding syllabus. The ISTQB Foundation syllabus refers to the seven testing principles,

namely, Principle 1 – testing shows the presence of defects, not the absence. The syllabus

isn’t claiming the system be free of functional defects, which cannot be achieved

because of Principle 2 – exhaustive testing is impossible. The point being made would be

better to be thought of as any defects identified in functional testing should be repaired

before performance test scripting begins.

Figure 1-10. View of the tool components of a performance test

Chapter 1 the BasiC ConCepts of performanCe testing

46

The load generator(s) (Figure 1-10 – 2) is/are the machine/machines on which the

actual load applied to the system under test is generated. It enables performance tests to

move beyond the scale of a single machine:

 1. The performance test controller executes the performance test

scenario and gathers the results from both the test execution and

monitoring. The controller passes the performance test scripts to

the load generator to execute.

 2. The load generator runs the scripts – sending the requests to the

system under test and capturing the responses.

 3. The scripts act as “virtual users” – each script executing represents

the actions of a single real user creating the individual business

processes running against the system under test.

 4. The system under test reacts to the load, generating metrics

representing the system under test’s response (response time and

resource utilization). These metrics can be captured at different

places within the performance test (e.g., transactional responses

are sent back to the load generator/resource measurements are

sent to the controller).

 5. The response time and resource utilization are captured as a

part of the performance test to enable root cause analysis to be

performed on any defects or issues discovered.

This standard model has been adopted by many performance testing tools.

Summary performance testing needs large volumes of data, specific hardware,
and tools to allow the load to be generated.

 Load Generation via the User Interface
This may be an adequate approach if only a small number of users are to be
represented and if the required numbers of software clients are available
from which to enter required inputs. This approach may also be used in
conjunction with functional test execution tools but may rapidly become
impractical as the numbers of users to be simulated increases. The stability

Chapter 1 the BasiC ConCepts of performanCe testing

47

of the user interface (UI) also represents a critical dependency. Frequent
changes can impact the repeatability of performance tests and may signifi-
cantly affect the maintenance costs. Testing through the UI may be the most
representative approach for end-to-end tests.

—ISTQB_CTFL_PT

UI performance testing is limited in scope, but it does address a major issue with

many performance test tools. Most performance test tools work in the following way

(Figure 1-11).

Many tools use protocol-based recording. When recording, the protocol request/

response is captured via a performance test tool proxy (PTT proxy above). The tool

does this by diverting the requests and responses from a defined communications port

using a performance tool proxy and captures them. From this recording log through the

performance tool recording proxy, the script is generated. On replay, the script replicates

this request/response stream to simulate real user actions from the load generator to the

system under test. But the performance test script does not capture any local client-side

processing or rendering of the displayed information. Hence, these client-side actions

are excluded from the transaction time. Accordingly, if the system under test uses client-

side processes as part of the overall performance test, the performance engineer must

specifically take actions to capture the client-side times.

UI performance tests are created similarly to functional automation scripts, in that

they record by capturing the manipulation of the UI by the user and replay against the UI

on replay.

Figure 1-11. A problem with some performance tests

Chapter 1 the BasiC ConCepts of performanCe testing

48

Unfortunately, many fewer UI scripts can be run compared with a protocol-based

script due to the limitation in running multiple end clients on a load generator.

UI performance testing can avoid the problem of proxy recording missing client-

side processing by using “normal” proxy-based performance test scripts to generate a

background load. A small number of UI virtual users can then be added to capture the

client-side processing times from the end-user perspective.

Summary performance tests can be created by recording the Ui but are
dependent on the stability of the Ui and can be limited to low user numbers.

 Load Generation Using Crowds
This approach depends on the availability of a large number of testers who
will represent real users. In crowd testing, the testers are organized such
that the desired load can be generated. This may be a suitable method for
testing applications that are reachable from anywhere in the world (e.g.,
web-based), and may involve the users generating a load from a wide range
of different device types and configurations. Although this approach may
enable very large numbers of users to be utilized, the load generated will
not be as reproducible and precise as other options and is more complex to
organize.

—ISTQB_CTFL_PT

A good performance test is repeatable. Three issues exist with crowd-based

performance testing (also known as manual performance testing):

 1. Controlling the “virtual users” – In this case, the virtual

users are in fact real users who can all be streaming media/

answering email/posting to social media/getting coffee while

the performance test is running. Controlling these virtual users

can be difficult as any performance engineer involved in manual

performance testing will lack the fine degree of control they would

have using performance scripts.

Chapter 1 the BasiC ConCepts of performanCe testing

49

 2. Capturing performance information – While the performance test

is running, metric data can come from multiple sources. Keeping

track of all the data sources without the use of tools can be almost

impossible.

 3. Correlating the performance metrics with the user actions –

Because we cannot directly control the users, it becomes difficult

to equate their actions with the performance metric data captured

during the test.

Summary Crowd performance tests use real people as crowd tester but can be
difficult to control and reproduce.

 Load Generation via the Application Programming
Interface (API)

This approach is similar to using the UI for data entry but uses the applica-
tion’s API instead of the UI to simulate user interaction with the system
under test. The approach is therefore less sensitive to changes (e.g., delays)
in the UI and allows the transactions to be processed in the same way as
they would if entered directly by a user via the UI. Dedicated scripts may be
created which repeatedly call specific API routines and enable more users to
be simulated compared to using UI inputs.

—ISTQB_CTFL_PT

Using API is a good method for the earlier levels of performance testing (component/

component integration testing) and can continue to be used in later levels of testing. It

has become popular in organizations using iterative and incremental methodologies for

testing within the sprint. Performance engineers must be mindful of the limitations of

conducting performance testing with API. In many cases, API will only represent single

operations within a larger business process. For example, if we run API that performs a

lookup in a database, it will return the result for that single API function being run. This

can cause issues however (Figure 1-12).

Chapter 1 the BasiC ConCepts of performanCe testing

50

If the system is a three-tier system as shown earlier, and we run API to interrogate the

database, we can exclude parts of the infrastructure and/or tiers in the load test. This can

be a good thing for component and component integration testing, but as can be seen we

are now avoiding the web and the app server by running the API. Hence, if we perform

API testing in later levels of testing, we may be running the system in a nonproduction-

like manner. But it shouldn’t be dismissed – it can be a way of introducing stress as part

of a stress test. For example, if the environment in Figure 1- 13 is a test environment, and

production will have two web servers and two databases, if we stress the web/app servers

above 100%, the database will only be stressed above 50%. But, we could use API tests

against the database server (i.e., running more queries against the database); it could

increase the stress against the database to simulate another web/app server pair.

In many organizations using DevOps, teams develop and maintain one or a small

number of related APIs building microservice architecture. API testing thus becomes a

vital tool in component (directly testing the component itself) and component integration

performance testing (testing the “neighbor” APIs) in these environments. This can even

allow production-like loads to be applied, as the use of the microservice architecture allows

containerized code to be applied in a “production-like” pod. A warning needs to be placed

here – some of the components developed might be used by other systems without the

knowledge of designers at creation. This “performance scope creep” can subsequently

affect the performance of any system or service using that component, possibly causing it to

fail under conditions never considered within the initial performance testing scope.

Figure 1-12. An issue with API testing

Chapter 1 the BasiC ConCepts of performanCe testing

51

Summary performance tests via api avoid the Ui and use the same api a user
would use. they allow greater user numbers to be tested than Ui load generation.

 Load Generation Using Captured Communication
Protocols

This approach involves capturing user interaction with the system under
test at the communications protocol level and then replaying these scripts
to simulate potentially very large numbers of users in a repeatable and
reliable manner. This tool-based approach is described in Sections 4.2.6
and 4.2.7.

—ISTQB_CTFL_PT

This recording method was mentioned earlier (“Load Generation via the User

Interface”). The tool records the script based on the protocol calls through a nominated

port or set of ports. The preceding example shows an HTTP web recording capturing

the traffic via port 80. The tool captures the port once recording starts, and any request/

response sent through port 80 is captured by the performance test proxy. These captured

request/response calls are then used as the basis for the script. On playback, this

script then regenerates the calls, and as far as the system under test is concerned, it’s

being contacted by real users. This method is used by almost all tools when creating

performance tests.

Summary Communication protocol capture allows many virtual users to be replayed.

Figure 1-13. The protocol recording mechanism

Chapter 1 the BasiC ConCepts of performanCe testing

52

 1.5 Common Performance Efficiency Failure Modes
and Their Causes
PTFL-1.5.1 (K2) Give examples of common failure modes of performance testing and their

causes

While there certainly are many different performance failure modes that
can be found during dynamic testing, the following are some examples of
common failures (including system crashes), along with typical causes:

Slow response under all load levels

In some cases, response is unacceptable regardless of load. This may be
caused by underlying performance issues, including, but not limited to, bad
database design or implementation, network latency, and other back-
ground loads. Such issues can be identified during functional and usability
testing, not just performance testing, so test analysts should keep an eye
open for them and report them.

—ISTQB_CTFL_PT

Bad database design/implementation – A database can become a key performance

bottleneck to any system, affecting the overall performance of the entire system. Factors

to consider:

• Tables can contain too much data (“wide rows”), which can lead to

data redundancy, or too little data, requiring more tables and more

joins to retrieve data. As well as width, tables can be too tall – too

many records without proper indexing and/or horizontal partitioning

can slow the entire database.

• Normalization of data within tables can help eliminate redundant

data and ensure relevant data dependencies. A set of rules exist for

normalization – the first three are usually enough, but others exist

beyond this set:

• First normal form – Eliminate duplicate columns and repeating

values in columns.

Chapter 1 the BasiC ConCepts of performanCe testing

53

• Second normal form – Remove redundant data that apply to

multiple columns.

• Third normal form – Each column of a table should be dependent

on the primary identifier.

• Indexing compares with searching for a name in an old-fashioned

phone book – it would be a lot harder to find the number you were

looking for if all the people within this were listed by address rather

than their last name. Poor indexing means the DB spends more time

looking for the requested data.

• Queries and stored procedures are another (and some might

subjectively say bigger) area of concern:

• The first consideration is data volume. A simple query or stored

procedure might return an unnecessary large volume of data. Is

all the return data needed? SELECT * is a bad option.

• A lot of concurrent queries can substantially degrade database

performance. These queries will queue – and the shorter the

queue waiting to be processed, the better the response time.

• Even simple naming conventions can affect performance – for

example, if stored procedures are prefixed with sp_, they are

mixed with system-stored procedures, taking longer to find.

Another tip is to add the schema name to the object name to

reduce the possibility of searching multiple schemas.

• Database caching can also have a big effect on performance. Caching

allows frequently used records to be stored in RAM, allowing faster

access. Configuring DB caching can be an art – do we create a large

cache at the expense of overall system memory, or do we reduce the

cache, meaning users requesting information spend longer “spinning

the disks…”?

Chapter 1 the BasiC ConCepts of performanCe testing

54

• Database location – Remember latency? The further away the

database is and the quality of the network between the database and

the requestor can both affect the overall database performance.

• Database synchronization/harmonization can affect the overall

performance based on such things as the update frequency and

overall database size.

Network latency – Latency refers to the time it takes for data to complete a journey

across the network. The best analogy for latency is pizza delivery (also having the

advantage of including bandwidth). The first important characteristic is time. You can

order pizza from two different pizza parlors – one that is 2 km from your house, the other

10 km away. If both the delivery drivers left at the same time, you would expect the closer

to arrive first. It’s the same with latency; the shorter the distance traveled, the faster the

packets arrive at their destination.

But it’s not as simple as that. Both bandwidth and congestion can also have an effect.

Traveling 10 km on a multilane motorway (higher bandwidth) can be faster than 2 km

in a narrow built-up city street (lower bandwidth). Traffic (congestion) can also have an

effect – more traffic could mean a slower journey. Any of these can delay network packets,

causing queueing (that line of traffic at the off-ramp) or the packets are dropped (the road

to the pizza parlor is blocked – let’s get a burger instead), leading to packets needing to be

sent again or even active sessions being dropped and/or new sessions not starting.

To think of this in terms of a network, a TCP/IP connection between the client

and server is about to commence. The TCP handshake is a means of commencing the

transfer – initiated by the client. The client sends a SYN (synchronization) packet, the

server then responds with a SYN-ACK (synchronization acknowledgment), and the client

finally completes the handshake with the final ACK (acknowledgment) packet. The time

taken to complete the handshake with a high latency (600 milliseconds) vs. a low latency

(100 milliseconds) is stark:

High Latency Low Latency

sYn 600ms sYn 100ms

sYn-aCK 600ms sYn-aCK 100ms

aCK 600ms aCK 100ms

TOTAL 1800ms TOTAL 300ms

Chapter 1 the BasiC ConCepts of performanCe testing

55

Background load – Background load could be linked to a resource becoming

overloaded (similar to network congestion). A good example is a virtual machine server

running several VMs. If one VM begins a resource-intensive process, and the server is set

for dynamic resource allocation, other virtual machines could slow down as a result of

a lack of resources now available to them. This issue is prevalent within some aspects of

cloud computing (although less noticeable), as well as local VMs.

Background load may not be an issue during performance testing, as the

system under test may be tested in isolation. As mentioned later, it’s typical to run

performance tests at night to reduce the effect of other traffic on the network affecting

the performance test results. It must be stated however the system will run in that

production environment, and some testing should be done to measure the effect of the

system under test on the network during operational hours.

Summary slow response times at all load levels can be caused by bad database
design or implementation, network latency, and other background loads.

 Slow Response Under Moderate-to-Heavy Load Levels
In some cases, response degrades unacceptably with moderate-to-heavy
load, even when such loads are entirely within normal, expected, allowed
ranges. Underlying defects include saturation of one or more resources and
varying background loads.

—ISTQB_CTFL_PT

An interesting conundrum that occurs is the link between resource saturation and

load balancing. Of course, any resource saturation (CPU, memory, disk IO, bandwidth,

and queueing) can degrade performance. But load balancing is a special case, in that

quite often load balancing is included in the production system but is excluded in the

test system due to cost.

Summary slow response times under moderate load can be caused by
saturation of one or more resources and varying background loads.

Chapter 1 the BasiC ConCepts of performanCe testing

56

 Degraded Response over Time
In some cases, response degrades gradually or severely over time. Underlying
causes include memory leaks, disk fragmentation, increasing network load
over time, growth of the file repository, and unexpected database growth.

—ISTQB_CTFL_PT

Memory leak – Traditionally, memory leaks were a common problem for two

reasons:

• Early computers didn’t have a lot of memory.

• Developers wrote code in languages requiring them to manage

memory.

memory leak

A memory access failure due to a defect in a program's dynamic store alloca-
tion logic that causes it to fail to release memory after it has finished using it.

—ISTQB Glossary

To demonstrate this in C:

void ml_function()

{

 int *pointer = malloc(10 * sizeof (int));

 /* Do stuff */

 return; /* Returns without freeing pointer memory*/

}

The preceding code creates a pointer variable (pointer) which will store the address

allocated by the malloc function – malloc allocates a block of memory ten times the size

of an integer (which can vary in size if the machine is 32-bit (4 bytes) or 64-bit (8 bytes)).

But when the return statement returns control back to the code calling ml_function, the

memory is still allocated. If this function is run again, another block of memory will be

allocated. Herein lies the issue – a developer may forget the free statement. Adding in a

free(pointer); just before the return statement would fix this problem.

Chapter 1 the BasiC ConCepts of performanCe testing

57

Of course, this is a simple example. The trick is to find the offending process causing

the memory leak.

If available memory begins to run low (for whatever reason), paging begins. A page

is a block of memory managed by the operating system – when memory starts to run

low, these pages, rather than be stored in RAM, are moved to the hard drive. If a program

tries to access a page not stored in RAM, a page fault occurs (page faults are thus a useful

thing to monitor – more on this later). The OS then must:

• Find the location of the page on the hard drive

• Find an empty page frame in RAM (which could mean moving

another page out of RAM onto the hard drive) to use as a container

for the required page

• Load the required page into the now available page frame

• Update the page table to refer to the new page frame

• Return control to the process and retry the instruction that caused

the initial page fault

Compared to accessing the page in RAM, this process is incredibly slow and has a

profound impact on performance. Accessing pages from disk is at least 100,000 times

slower than RAM and over 2 million times slower than the CPU cache.

Disk fragmentation – Disk fragmentation occurs when a file is stored on disk. The

storage process breaks up the file into blocks to store on the hard disk. These blocks

may not always match the block size on the disk (e.g., a file block of 22 bytes will fit

into a standard 32-byte disk block, but some memory will be wasted). As the disk fills

up, less contiguous space is available, and the blocks are stored in any available space.

Also, because files are constantly being created, deleted, and edited (getting bigger or

smaller), fragmentation continues to occur. If a file is broken into many blocks over

different locations, it takes substantially longer to read and write.

In terms of performance, the hard disk (both the traditional platter disk and to a

lesser extent solid-state disk) is the primary bottleneck. File fragmentation adversely

affects the read/write speeds of the disk. This can have a dramatic effect on database

servers (which are always changing and rely on read/write speed for performance) or

any server relying on disk access. Another effect is something called disk thrashing –

constant writing and reading can add to the disk read/write queues and speed up

eventual disk failure.

Chapter 1 the BasiC ConCepts of performanCe testing

58

Increased network load – As mentioned previously, the more traffic on the road, the

slower the pizza delivery…

File/database growth – File growth leads to disk fragmentation and the associated

issues. Once again, looking at a database as an example, running a SELECT statement

on a SQL Server table containing addresses with one million records and using the

STATISTICS TIME counter:

SET STATISTICS TIME ON

SELECT [CustomerID], [AddressLine1], [AddressLine2], [City], [PostCode],

[MembershipStatus]

FROM [Customer].[Address]

SET STATISTICS TIME OFF

The results show:

SQL Server Execution Times:

CPU time = 1016 ms, elapsed time = 13645 ms.

And, if the table size is doubled to two million records:

SQL Server Execution Times:

CPU time = 2198 ms, elapsed time = 27015 ms.

The bigger the dataset, the longer any linear SELECT (or even worse a more complex

INNER JOIN) or related search operation will take.

Summary Degraded response over time can be caused by memory leaks, disk
fragmentation, increasing network load over time, growth of the file repository, and
unexpected database growth.

 Inadequate or Graceless Error Handling Under Heavy or
Overlimit Load

In some cases, response time is acceptable, but error handling degrades at
high and beyond-limit load levels. Underlying defects include insufficient
resource pools, undersized queues and stacks, and too rapid time- out
settings.

—ISTQB_CTFL_PT

Chapter 1 the BasiC ConCepts of performanCe testing

59

Insufficient resource pool – The term resource pool can be somewhat vague.

Typically, resource pools referred to CPU, disk space, or memory resources for virtual

machines. But it could also include the database and web application connection pools,

thread pools, or queue pools as well.

Resource pools relate to the resources available to allocate to a cluster of VMs. It

could be that a single VM doesn’t have enough resource, or the entire cluster. In either

case, it may be enough to allocate more resources to the VM/cluster.

The connection pool is slightly different. It’s a cached collection of predefined

connections users can draw from. This can speed up user transactions for both direct

database users and dynamic database-driven websites and applications. Any user that

can draw from the pool will connect and complete the transaction much faster than a

user who must create a connection before completing the transaction. If the connection

pool is too small, users without an available connection will slow down as they establish

a fresh connection for each transaction. If the connection pool is too large, resources

are used maintaining the connection pool. Tuning the connection pool can improve

performance (setting minimum/maximum connections, maximum connection reuse,

abandoned connection timeout).

Undersized queues/stacks – A queue is a buffer that allows a computer to handle

varying load conditions. Queueing can occur in multiple places on a computer

(processor, disk, and network (including messaging) are the main suspects). It works

the same as the queue at the supermarket – the longer the queue and/or the more in

the shopping trolley of people in front, the longer it will take. But on the other hand, if

the supermarket analogy is continued, no queues could mean that the supermarket is

paying for cashiers waiting with nothing to do. In the performance case, it shows the

system may be overspecified (and hence more money was spent than needed).

The queueing theory is an interesting area (more on this later) – but basically in

performance terms, a short queue is a good queue.

The stack is an area of memory that stores temporary function variables – when the

function declares variables, it does so LIFO (last in, first out). Once the function returns,

it frees the memory of the local function’s variables. The stack size itself is limited by the

operating system. Stack memory is faster than heap memory, but there are advantages

and disadvantages to both.

If the stack is undersized, it can cause stack overflow, causing wild pointers (pointers

aimed at addresses that don’t store the required data) and overwritten variables.

Chapter 1 the BasiC ConCepts of performanCe testing

60

Timeout settings – As a user logs in to a system/website, a session is created. It

might be maintained by a session ID/token (stateless) or create a constant connection

(stateful). These can be compared to making a phone call (stateful) – the call is

connected and remains open until terminated by either user (or the train goes into a

tunnel!). The stateless example would be a postcard – each one sent must be addressed

to the recipient.

Timeout relates to idle sessions and unfulfilled requests. Session timeout determines

the time a server maintains an idle session. Setting a high value for session timeout

can impact performance by causing the server to maintain many sessions. Setting a

low value can cause the server to terminate sessions too quickly, causing a usability

issue. Waiting for requests is best seen with browser timeouts – the time the browser

will wait for the next response. Once again, browser timeouts can be changed to wait

longer (which just means a user waits longer without the browser timing out) or shorter

(meaning if the response is delayed beyond the browser timeout, the user gets ERR_

CONNECTION_TIMED_OUT7).

 It has long been an axiom of mine that the little things are infinitely
the most important.

—Conan Doyle, 1894

Summary inadequate error handling under heavy or overlimit load can be
caused by insufficient resource pools, undersized queues and stacks, and too rapid
timeout settings.

7 Other timeout messages are also available.

Chapter 1 the BasiC ConCepts of performanCe testing

61

Specific examples of the general types of failures listed above include:

A web-based application that provides information about a company’s ser-
vices does not respond to user requests within seven seconds (a general
industry rule of thumb). The performance efficiency of the system cannot be
achieved under specific load conditions.

—ISTQB_CTFL_PT

Firstly, the “seven-second rule” relates to the time it takes to create a “good

impression” and varies between:

• Meeting someone for the first time

• How long a piece of toast can sit on the floor before it becomes

contaminated (although the “five-second rule” has been tested to

show that bacterial transfer is dependent on time, the food type, and

the surface onto which it falls8)

• The amount of time a website has to capture a user’s attention with

the user’s first visit to the site

Although no scholarly articles exist on the origins of the last statement, and little

evidence on the validity of the rule exists, it continues to persist as a biased truth. If

a situation arises where an individual insists on the truth of this statement (usually

beginning with the statement, “Studies have shown…”), ask to see the studies!

The only clue here is that it’s a web-based system that doesn’t perform. This is a

point to start thinking of what questions to ask the stakeholders about the system:

• At what user number is performance unacceptable? This could be an

instance where the overall architecture could be an issue (poor DB

performance).

• Is performance bad for certain user groups/transaction types (poor

design/inefficient DB queries)?

• Is performance bad for users from a certain area (network latency)?

8 Robyn C. Miranda, Donald W. Schaffner; “Longer Contact Times Increase Cross-Contamination
of Enterobacter aerogenes from Surfaces to Food”; Applied and Environmental Microbiology;
https://aem.asm.org/content/82/21/6490?ijkey=FLERGaGuAW0EM&keytype=ref&siteid=asmj
ournals

Chapter 1 the BasiC ConCepts of performanCe testing

https://aem.asm.org/content/82/21/6490?ijkey=FLERGaGuAW0EM&keytype=ref&siteid=asmjournals
https://aem.asm.org/content/82/21/6490?ijkey=FLERGaGuAW0EM&keytype=ref&siteid=asmjournals

62

This type needs a plain, old-fashioned load test to begin investigating these issues.

A system crashes or is unable to respond to user inputs when subjected to a
sudden large number of user requests (e.g., ticket sales for a major sporting
event). The capacity of the system to handle this number of users is
inadequate.

—ISTQB_CTFL_PT

A sudden increase in load can put demands on the entire system infrastructure – the

network with a sudden increase in traffic causing congestion, perhaps queueing at the

network card, resource exhaustion with CPU/memory consumed (and perhaps paging

starting). This type of condition can be anticipated as part of the operational profile and

tested with a spike test.

System response is significantly degraded when users submit requests for
large amounts of data (e.g., a large and important report is posted on a web
site for download). The capacity of the system to handle the generated data
volumes is insufficient.

—ISTQB_CTFL_PT

Once again, this could be one or a combination of several issues:

• Is the report generated with an inefficient query? (DB issue – running

the query drains resources from other users.)

• Does the report contain unnecessary data from the query that needs

to be modified by the web server? (Inefficient queries or an issue with

the design – the user cannot preemptively filter the volume of data

being returned.)

• Does the report change in size? Is there a point at which the report

size links with both an acceptable and unacceptable response? (This

could link to network bandwidth performance or DB performance.)

• Does the report need to be dynamically generated each run, or could

it be cached within the DB cache or generated as a static page or .pdf

and cached on the web server?

Chapter 1 the BasiC ConCepts of performanCe testing

63

This is a prime candidate for a load test which increases the transaction. An example

would be an online retail website being load tested with each order having 20 items

ordered rather than a single item ordered. This would increase the system’s processing to

deal with the 20 items rather than one.

Batch processing is unable to complete before online processing is needed.
The execution time of the batch processes is insufficient for the time period
allowed.

—ISTQB_CTFL_PT

This example is a classic case of a part of the system becoming the bottleneck – the

poor batch process performance slowing the entire system. Once again, questions to

consider:

• Does this process vary with the size of the batch process? Does

performance degrade upon a certain batch job size?

• Is the batch process itself inefficient?

• What response time is required – could the batch data be needed

too quickly? This could come down to the cost to rectify vs. the

organizational risk relating to slow response.

This could be a combination of load profiles built into load tests, based on the

preceding answers.

A real-time system runs out of RAM when parallel processes generate large
demands for dynamic memory which cannot be released in time. The RAM
is not dimensioned adequately, or requests for RAM are not adequately
prioritized.

—ISTQB_CTFL_PT

As mentioned earlier, low available RAM means the system will begin generating

page faults as it starts to read/write to disk to free up memory. The syllabus answered

the question itself in this case. For this example, scalability testing would be an option –

determine the performance with the initial state system to determine the load required,

then duplicate the load to test the new memory amount/memory prioritization.

Chapter 1 the BasiC ConCepts of performanCe testing

64

A real-time system component A which supplies inputs to real-time system
component B is unable to calculate updates at the required rate. The overall
system fails to respond in time and may fail. Code modules in component A
must be evaluated and modified (“performance profiling”) to ensure that
the required update rates can be achieved.

—ISTQB_CTFL_PT

This is interesting – it returns to the earlier question, “What is load?”

The efficiency of the code could be improved, and/or the environment could be

changed to have more resources to execute. It will depend on the organizational risk

associated with this issue. The event described here is a race condition – a sequence of

events, threads, or processes that must occur in a defined order for the operation to be

successful. A possible solution to this is semaphoring (discussed later), which could stop

the system failure, but56 would not improve performance. Load testing component A

could help diagnose and possibly help improve the performance inefficiency.

 Chapter 1 Questions

 1. Which of the following is NOT a performance efficiency attribute?

 A. Time behavior

 B. Scalability

 C. Capacity

 D. Resource utilization

 2. During performance testing, which other quality characteristics

apart from performance efficiency could be evaluated?

 A. Component and integration

 B. Capacity and resource utilization

 C. Usability and functional stability

 D. Usability and efficiency

Chapter 1 the BasiC ConCepts of performanCe testing

65

 3. Which of the following is a performance testing principle?

 A. The tests must build the defined expectations of different

stakeholder groups, in particular users, system designers, and

operations staff into the system.

 B. The tests must be executable within the timeframe set by the

project but could be high in cost.

 C. The tests must yield results that are understandable and can

be readily compared to stakeholder expectations when writing

performance test user stories.

 D. The tests can be conducted, where resources allow, either

on complete or partial systems or test environments that are

representative of the production system.

 4. Which of the following groups contains executable performance

test types?

1. availability testing 5. efficiency testing

2. spike testing 6. scalability testing

3. Concurrency testing 7. Capacity testing

4. endurance testing 8. stress testing

 A. 2,3,4,6,7,8

 B. 1,3,4,5,7,8

 C. 1,2,4,5,6,8

 D. 1,2,3,5,6,7

 5. Which of the following is the best description of endurance

testing?

 A. Testing to determine the stability of a system under a significant

load over a significant time period within the system’s operational

context

 B. Testing to determine the endurance of the software product

Chapter 1 the BasiC ConCepts of performanCe testing

66

 C. Testing to determine the ability of a system to recover from

extended bursts of peak loads and return to a steady state

 D. Testing conducted to evaluate a system or component at or

beyond the limits of its anticipated or specified workloads

 6. Which of the following performance testing activities should occur

during integration testing?

 A. Testing to evaluate resource utilization and potential bottlenecks

 B. Testing end-to-end behavior under various load conditions

 C. Testing dataflows and workflows across interfaces

 D. Testing key use cases and workflows using a top-down approach

 7. Which of the following is a disadvantage of load generation using

crowds?

 A. Dedicated load generation scripts may be created which

repeatedly call specific routines and enable more users to be

simulated. (API)

 B. Load generated will not be as reproducible and precise as other

options and is more complex to organize.

 C. Encryption of the generated communication protocol can impact

the effectiveness of the performance scripts and slow down script

creation.

 D. Frequent changes can impact the repeatability of load generation

and may significantly affect the maintenance costs. (UI)

 8. A colleague is analyzing performance test results and suspects the

system under test has slow response under moderate-to-heavy

loads. Which of the following causes would relate to this failure?

 A. Bad database design or implementation

 B. Disk fragmentation

 C. Too rapid timeout settings

 D. Saturation of one or more resources

Chapter 1 the BasiC ConCepts of performanCe testing

67

 9. A second colleague suspects the system under test’s performance

is degrading over time. Which of the following causes would relate

to this failure?

 A. Bad database design or implementation

 B. Disk fragmentation

 C. Too rapid timeout settings

 D. Saturation of one or more resources

Chapter 1 the BasiC ConCepts of performanCe testing

69
© Keith Yorkston 2021
K. Yorkston, Performance Testing, https://doi.org/10.1007/978-1-4842-7255-8_2

CHAPTER 2

Performance Measurement
Fundamentals

 ISTQB Keywords
measurement

The process of assigning a number or category to an entity to describe an attribute of

that entity.

metrics
A measurement scale and the method used for measurement.

 Other Keywords
driver

A temporary component or tool that replaces another component and controls or calls

a test item in isolation.

test monitoring
The activity that checks the status of testing activities, identifies any variances from

planned or expected, and reports status to stakeholders.

https://doi.org/10.1007/978-1-4842-7255-8_2#DOI

70

 2.1 Typical Measurements Collected in Performance
Testing
PTFL-2.1.1 (K2) Understand the typical measurements collected in performance testing

Before this chapter begins, a quick note to understand the nomenclature of

monitoring:

• Performance engineers perform monitoring.

• Through monitoring, performance engineers gather metrics.

• Performance engineers define metrics with measurements.

To put that into context, a performance engineer is monitoring during a

performance test, collecting CPU utilization (a metric). CPU utilization is the sum of

work done (as opposed to not working) by a CPU, expressed as a percentage utilization

(measurement) of the CPU. Hence, a 2GHz processor (capable of performing roughly

two billion calculations per second) is doing a billion calculations per second; it’s at 50%

utilization. Of course, CPU utilization is more complex today – with GPUs and multicore

processors – but the important point is to understand as a performance engineer:

• We do monitoring.

• We gather metrics.

• We report measurements.

 Why Performance Metrics Are Needed
Accurate measurements and the metrics which are derived from those mea-
surements are essential for defining the goals of performance testing and for
evaluating the results of performance testing. Performance testing should
not be undertaken without first understanding which measurements and
metrics are needed. The following project risks apply if this advice is ignored:

• It is unknown if the levels of performance are acceptable to meet
operational objectives

• The performance requirements are not defined in measurable terms

• It may not be possible to identify trends that may predict lower levels of

performance

Chapter 2 performanCe measurement fundamentals

71

• The actual results of a performance test cannot be evaluated by
comparing them to a baseline set of performance measures that
define acceptable and/or unacceptable performance

• Performance test results are evaluated based on the subjective
opinion of one or more people

• The results provided by a performance test tool are not understood

—ISTQB_CTFL_PT

As mentioned in the previous chapter, non-functional requirements/user stories are

often not quantified. Stakeholders lacking in performance test experience unfortunately

do not recognize these requirements/user stories cannot be successfully achieved from

a quantitative perspective. By defining a set of standard metrics for performance testing,

performance engineers can achieve two quick wins:

 1. Performance engineers can automate the collection of the

standard metrics to make the job easier.

 2. Stakeholders can be educated as to the meaning of the standard

metrics.

A temptation for many performance engineers is to gather as much metric

information as possible and supply mountains of numbers to stakeholders. As

mentioned previously, the stakeholders may not understand the implication of the

metric information against the system under test. Performance engineers must develop

an understanding of the Golden Rules of Monitoring:

 1. Keep it simple!

 2. When in doubt, refer to rule one!

Another consideration is the audience to which these metrics will be presented.

Each stakeholder group will have different technical or business knowledge as well as

performance test knowledge. A common language between these must be developed.

Having a common set of metrics can help mitigate this.

Finally, there’s the stakeholders who want “that extra bit of special data.”

Performance engineers should never dismiss these requests out of hand, as it’s always

worth validating why that data may be needed as well as the effort required to produce

it. The gathered data may well be essential to prove a test objective or regulatory

Chapter 2 performanCe measurement fundamentals

72

requirement. But it can also be demoralizing when effort is expended by performance

engineers to report metrics to have stakeholders not turning past the executive summary

on a performance test report.

Summary performance engineers perform monitoring, gather metrics, and
report on the measurements of the metrics. performance test goals are defined
and achieved by the result metrics gathered during the test.

 Collecting Performance Measurements and Metrics
As with any form of measurement, it is possible to obtain and express met-
rics in precise ways. Therefore, any of the metrics and measurements
described in this section can and should be defined to be meaningful in a
particular context. This is a matter of performing initial tests and learning
which metrics need to be further refined and which need to be added.

For example, the metric of response time likely will be in any set of perfor-
mance metrics. However, to be meaningful and actionable, the response
time metric will need to be further defined in terms of time of day, number
of concurrent users, the amount of data being processed and so forth.

—ISTQB_CTFL_PT

It should be noted a difference exists between accuracy and precision that causes

confusion. Consider the following table:

• Accuracy – How close the measurement is to the real value

• Precision – How exact the measurement is

Accuracy Precision

π = 3 Yes (to one digit) no

π = 3.4268 Yes (to one digit) Yes

π = 3.14159 Yes Yes

It is important to note that measurements can be precise without being accurate.

Measurements can also be accurate without being precise.

Chapter 2 performanCe measurement fundamentals

73

Consider train timetables as an example of how monitoring can become a nightmare

for stakeholders in terms of accuracy vs. precision. In the UK, the government publishes

a Passenger Rail Performance Report1 that reports on train punctuality. Train punctuality

is important if:

• You live in the UK.

• You catch the train to and from work.

Consider the following taken from the report:

So, 64.8% of trains were “on time” in the preceding time period. But what’s the other

figure? From further into the report:

Using the Public Performance Measure (PPM), 86.2% of trains were
punctual (early or less than 5/10 minutes after the scheduled arrival time)
at their destination in 2019-20.

But wait, there’s more…

Train punctuality at recorded station stops: On Time, Time to 3 and
Time to 15 measure the punctuality of trains at each recorded station stop.
These measures are different from the Public Performance Measure (PPM),
which measures the punctuality of trains at their final destination only. The
new punctuality measures also exclude station stops where the train fails to
call. For PPM, all cancelled trains are included in the measure and counted
as ‘non-punctual’ trains.

1 Passenger Rail Performance 2019-20 Q4 Statistical Release (Publication date: 21 May 2020)
https://dataportal.orr.gov.uk/media/1737/passenger-performance- 2019-20-q4.pdf

Chapter 2 performanCe measurement fundamentals

https://dataportal.orr.gov.uk/media/1737/passenger-performance-2019-20-q4.pdf

74

Time to 3 and Time to 15 measures the percentage of recorded stations
stops arrived at early or less than three and 15 minutes respectively after the
scheduled time.

The percentages are cumulative, so for example, the Time to 15 measure
will include the punctual (train) recorded station stops including the Time
to 3 measure.

In the UK, train timetables are precise to the minute. But according to this, only

64.8% of the time are they accurate. Unless we adjust the requirement/definition of

done – that is, the train is on time if it’s within 15 minutes of the published time. And, hey

presto, 98.4% of the trains are running on time! At least, so says the press release…

If we now think like a performance project stakeholder, the information required

looks at the punctuality of the 07:41 train to London Liverpool Street. Will it be running

on time for the stakeholder meeting at the office? Will the stakeholder care if 98.4% of the

time, the trains are within 15 minutes of being on time of recorded stops? The key is not

to provide a mass of information, but to answer the question that the stakeholder needs

answered.

Performance engineers must ensure the definition within any requirements/user

stories:

• The level of accuracy required – As shown earlier, is the train arriving

within 15 minutes of the timetable “good enough”?

• The level of precision required – Do the stakeholders care that the

precision is to a tenth of a percent?

In performance test terms, if a requirement is specified for a two-second response

time, we should consider the level of precision required. Will a stakeholder care if a

Chapter 2 performanCe measurement fundamentals

75

performance engineer gives a response time measured to the thousandth of a second?

How accurately will this response time be measured – by a tool command within the

performance test code or a user with a stopwatch?

Summary metrics and measurements should be defined to be meaningful in the
context of the requirements/user stories. measurements should be accurate and
captured with a level of precision defined by the context.

The metrics collected in a specific performance test will vary based on the:

• business context (business processes, customer and user
behavior, and stakeholder expectations),

• operational context (technology and how it is used),

• test objectives.

For example, the metrics chosen for the performance testing of an interna-
tional ecommerce website will differ from those chosen for the performance
testing of an embedded system used to control medical device
functionality.

—ISTQB_CTFL_PT

Earlier, we covered five generic resource utilization metrics that can be monitored on

any machine involved in a performance test. To consider these metrics in more detail:

 CPU Utilization

CPU metrics include:

• % idle time – The percentage of elapsed time the processor

spends idle

• % processor time – The percentage of elapsed time the processor

spends executing non-idle threads (i.e., actually doing something!)

Chapter 2 performanCe measurement fundamentals

76

 Memory Utilization

Memory metrics include:

• Available Mbytes – The amount of physical memory, immediately

available for allocation to a process or for system use.

• Cache bytes – The size of the portion of the system file cache which is

currently resident and active in physical memory.

• % committed bytes in use – The ratio of memory/committed bytes to

the memory/commit limit.

• Committed bytes – The physical memory which has space reserved

on the disk paging file(s).

• Page faults/second – The average number of pages faulted per

second. It is measured in numbers of pages faulted per second

because only one page is faulted in each fault operation; hence, this

is also equal to the number of page fault operations.

• Page reads/second – The rate at which the disk was read to resolve

hard page faults.

• Page writes/second – The rate at which pages are written to disk to

free up space in physical memory.

 Disk Input/Output (Physical Disk)

Disk IO metrics include:

• % disk read time – The percentage of elapsed time that the selected

disk drive was busy servicing read requests

• % disk write time – The percentage of elapsed time that the selected

disk drive was busy servicing write requests

• Disk read bytes/second – The number of bytes transferred from the

disk during read operations per second

• Disk write bytes/second – The number of bytes transferred from the

disk during write operations per second

Chapter 2 performanCe measurement fundamentals

77

 Bandwidth Consumption

Bandwidth is interesting, as it exists externally on the physical/wireless network, along

with each machine moving information internally between memory, the CPU, and

storage (hard drive/SSD). Bandwidth metrics include:

• Bytes received/second – The rate at which bytes are received over

each network adapter, including framing characters.

• Bytes sent/second – The rate at which bytes are sent over each

network adapter, including framing characters.

• Split IO/second – The rate at which inputs/outputs to the disk were split

into multiple IOs (a split IO may result from requesting data of a size that

is too large to fit into a single IO you or that the disk is fragmented).

• IO data bytes/second – The rate at which the process is reading and

writing bytes in IO operations. This counter counts all IO activity

generated by the process to include file, network, and device IO.

• IO data operations/second – The rate at which the process is issuing

read and write IO operations. This counter counts all IO activity

generated by the process to include file, network, and device IO.

 Queueing

Just like at the train station, queueing is a sign that the established system (in the train

example, the station staff selling tickets) may be struggling to handle the subjected load

(the Monday morning rush for tickets). Queues abound in systems, whether they be in

disk storage, CPUs, printing and network devices. The queueing list could be quite long,

but the following are typically used:

• Average disk queue length – The average number of read and write

requests queued for the selected disk during the sample interval

• Average disk read queue length – The average number of read

requests queued for the selected disk during the sample interval

• Average disk write queue length – The average number of write

requests queued for the selected disk during the sample interval

• Output queue length – The length of the output packet queue (in

packets) to the network adapter

Chapter 2 performanCe measurement fundamentals

78

Summary metrics vary based on the business context, operational context, and
test objectives.

A common way to categorize performance measurements and metrics is to
consider the technical environment, business environment, or opera-
tional environment in which the assessment of performance is needed.

—ISTQB_CTFL_PT

Categorizing performance metrics is extremely useful when analyzing potential

performance issues. Determining the root cause of a possible performance issue relies

on understanding the cause-effect relationship between various parts of the system.

Categorizing the metrics allows the cause-effect relationships to be established much

easier. The categories suggested by the syllabus are very high level and would need to be

broken down further based on:

• The type of technical environment upon which performance testing

is being conducted.

• The nature of the business processes in the performance test

operational profile.

• The interaction between the business processes and the

environment – For example, a business process that involves searches

of a warehouse stock inventory will be affected by the performance of

the search algorithm, the structure of the database, and the hardware

on which the database resides.

Summary metrics can be categorized by technical, business, and operational
environments.

The categories of measurements and metrics included below are the ones
commonly obtained from performance testing.

—ISTQB_CTFL_PT

Chapter 2 performanCe measurement fundamentals

79

 Technical Environment
Performance metrics will vary by the type of the technical environment, as
shown in the following list:

• Web-based

• Mobile

• Internet-of-Things (IoT)

• Desktop client devices

• Server-side processing

• Mainframe

• Databases

• Networks

• The nature of software running in the environment (e.g., embedded)

—ISTQB_CTFL_PT

Each of the preceding environments has similarities (CPU, memory, and

bandwidth). There are also vast differences between these (architecture, communication

protocols, operating systems, and more).

The overall system performance is affected by its interaction with the environment

and the efficiency of the code. Older hardware, operating systems, and limitations

associated with each (such as memory limits on 32-bit machines) can severely impact

the performance of the system overall.

Another important consideration is the complexity of the production environment.

Organizations run projects dealing with “digital transformation” – an amorphous

definition against which many senior executives apply their own meaning. From a

performance point of view, digital transformation could mean integrating multiple

disparate systems together. A system under test could consist of more than one of the

technical environments listed earlier. An example could be a handheld stock control

scanner (IoT), integrating with warehouse management software (desktop client/server-

side processing), and sharing this data with the organization’s ERP finance solution

(which could be web or client/server with a database in the mix an absolute certainty).

Chapter 2 performanCe measurement fundamentals

80

All the “quirks” of each technical environment must be taken into consideration when

considering overall system performance. A bottleneck in any part of the preceding

environment has an impact on the overall performance of the end-to-end system.

In the following section, the syllabus draws a broad brush in selecting a set of generic

metrics, much the same as was done earlier.

The metrics include the following:

• Response time (e.g., per transaction, per concurrent user, page
load times)

—ISTQB_CTFL_PT

Consider the points from which these times are being taken – do the start and end

points for this monitoring include the client/external network/firewall/internal network

and infrastructure/system under test? Another consideration is the load under which

these response times will be monitored. Response time was also mentioned earlier – are

these times the maximum/average/percentile?

• Resource utilization (e.g., CPU, memory, network bandwidth,
network latency, available disk space, IO rate, idle and busy
threads)

—ISTQB_CTFL_PT

This list corresponds with the five generic metrics mentioned earlier – although we

should never forget queueing as a measure of resource utilization.

• Throughput rate of key transaction (i.e., the number of
transactions that can be processed in a given period of time)

—ISTQB_CTFL_PT

Throughput rate is an interesting area and key to any performance test. Throughput

will vary depending on the rate at which transactions occur and the nature of the

transactions conducted – for example, the transaction concurrency of users of

Chapter 2 performanCe measurement fundamentals

81

the system logging on or off simultaneously. Another consideration is the type of

transactions (database reads vs. writes) and how that transaction type may interact with

the environment on which it executes.

• Batch processing time (e.g., wait times, throughput times, data
base response times, completion times)

—ISTQB_CTFL_PT

Similar to response time, the start and end points of any batch process must be

defined. Unlike response times monitoring business processes however, batch processes

do not require continuous input from virtual users. In almost all cases, they are started,

they run, and once the process completes, the processing time can be captured. Like

response times, batch processes are dependent on a similar set of variables that can

affect the batch processing time (capacity/resource utilization).

• Numbers of errors impacting performance

—ISTQB_CTFL_PT

The number and type of errors can be a good indicator of the location of a problem –

a single issue may cause a cascade of error types or a linked chain of errors. Bear in mind

the error is the effect – it’s the job of a performance engineer to determine the cause of

the error.

• Completion time (e.g., for creating, reading, updating, and
deleting data)

—ISTQB_CTFL_PT

Although completion time seems obvious, predetermining completion points for

transactions is an important step in planning a performance test. The measurement of

time once again relates to the first point – determining the start and end points for the

capture of response/batch processing/completion time. A subtle point is also made

here – the categorization of operations can help not only with capturing time behavior of

like processes but also with diagnosing errors later.

Chapter 2 performanCe measurement fundamentals

82

• Background load on shared resources (especially in virtualized
environments)

—ISTQB_CTFL_PT

The strange duality of background load can be both a hindrance and a necessity

in performance testing. For example, the environmental conditions for a load test to

match the operational profile may require simulated traffic over a network segment.

For virtualized environments, if the system under test is virtualized, characteristics

such as the number of virtual machines on each server and the activity (and hence

resource utilization) on these other virtual machines should be considered. It should

be remembered that any virtual machine is sharing resources with the base operating

system, as well as any other virtual machines on that server.

• Software metrics (e.g., code complexity)

—ISTQB_CTFL_PT

Software metrics have taken advantage of the push in software testing to “shift left.”

Traditionally, performance testing was generally conducted in the later levels of testing

(system, system integration, and acceptance testing). These levels of testing typically

don’t have access to the code, as it’s already been developed and compiled. Earlier

testing during component and component integration testing allow access directly to

the code. With the widespread use of Agile-based methodologies, interaction between

developers and testers increased, and testing moves much closer to development.

Code complexity can be useful from a static testing point of view but has

limited use for dynamic testing. Code complexity is normally used as a measure

of the maintainability of the code. But high complexity can be an indicator of poor

performance. In any performance testing, resource utilization and time behavior are key

areas for monitoring.

Chapter 2 performanCe measurement fundamentals

83

Summary metrics vary depending on the type of the technical environment.
some common metrics exist across environments:

response time resource utilization throughput rate Batch processing time

numbers of errors Completion time Background load software metrics

 Business Environment
From the business or functional perspective, performance metrics may
include the following:

• Business process efficiency (e.g., the speed of performing an
overall business process including normal, alternate and
exceptional use case flows)

—ISTQB_CTFL_PT

Performance engineers must always be considerate of the needs of users, continually

asking the question “Is this what a real user would do?” Once again, performance

engineers monitor using time behavior and resource utilization to capture information

about the performance characteristics of the system under test. These results can then

be used to inform stakeholders on the relative efficiency of business processes. From

this, decisions can be made on the optimal processes to use and the processes that can

be improved by configuration changes.

• Throughput of data, transactions, and other units of work
performed (e.g., orders processed per hour, data rows added per
minute)

—ISTQB_CTFL_PT

The very nature of performance testing means controlling the throughput as part

of creating the operational profile. Occasionally, throughput forms the goal for the

performance test – will the system support X users doing Y things (capacity testing) or

how many transactions will the system support (stress testing)?

Chapter 2 performanCe measurement fundamentals

84

• Service Level Agreement (SLA) compliance or violation rates
(e.g., SLA violations per unit of time)

—ISTQB_CTFL_PT

The key characteristic of an SLA is that it is quantifiable and realistic. Sometimes,

it’s up to performance engineers to test the system meets the SLA. It can also be the

performance engineers’ job to establish the SLA in the first place. For example, the

business might require an overall average response time under load of a business

process of three seconds. A performance engineer might then need to break this end-to-

end three-second time down into a group of sub-second goals for components within

the business process.

• Scope of usage (e.g., percentage of global or national users
conducting tasks at a given time)

—ISTQB_CTFL_PT

The scope of usage definition is somewhat simplified. The preceding point speaks of

a percentage of global or national users, which could be broken down further into user

groups based on:

• Physical location – The point or points from which the load is

generated

• User groups – The role/access rights of each of the users

• Business processes – The process path each user follows

• Concurrency of usage (e.g., the number of users concurrently
performing a task)

—ISTQB_CTFL_PT

Chapter 2 performanCe measurement fundamentals

85

Earlier, concurrency was broken down into application/business process/

transaction concurrency:

• Application – The total number of users concurrently using the

system. Note that in a stateful environment, an idle user consuming

a connection but not actively using the system might need to be

included in the performance test. An example might be the number

of users on a shopping website.

• Business process – The subset of the total users actively engaged in a

defined business process. Note the users could be at any step within

that business process. The example might be the number of users

currently within the “create new account” business process.

• Transaction – The sub-subset of users that are at the same point in

a business process at that point in time. For example, the number of

users simultaneously clicking the “create account” button.

As mentioned previously, decomposing a whole into its constituent parts is an

absolute necessity for performance testing, whether it’s an environment or an end-to-

end business process. As Holmes would say

Never trust to general impressions, … but concentrate yourself upon
details.

—Conan Doyle, 1892ci

• Timing of usage (e.g., the number of orders processed during
peak load times)

—ISTQB_CTFL_PT

Timing of usage in this case does not refer to time behavior. It relates to the rate at

which the load is applied to the system. To define the load profile, the performance test

will consist of a set of user groups (each of which has a defined number of users). Each

of those users will be performing one or more tasks (as mentioned earlier, a task being

a defined part of a business process). It needs to be emphasized that the task rate and

the number of users are two distinctly different parts of the load profile. It’s easy if, in the

performance test, a single user performs one task. But it is never as simple as that.

Chapter 2 performanCe measurement fundamentals

86

Let’s say we are testing an online shopping platform. The goal of the performance

test is to measure the search task resource utilization with a total transaction rate of

400,000 searches per hour.

We need to consider the following:

• The number of users performing the task (300 users)

• The number of tasks to be completed during the performance test

(400,000 searches)

• The time it takes the user to complete the task (each search task takes

a user 30 seconds)

• The total time of the performance test to achieve the desired outcome

(one hour)

This information will be required to calculate the load profile. But where did these

figures come from? It is worth considering how these numbers will relate to real users

accessing the system. For example, does this shopping site allow anonymous searches

(in that the user is not a registered user and logged in), or does it allow only logged in

users to search? Another consideration would be when will the users be performing

these searches:

• Where the search task fits within the end-to-end business process

• The search count done by each user (e.g., an individual who knows

the exact item they require will do one search, another might be

looking for gift ideas for a child’s 12th birthday and could perform

multiple searches)

• The time of day the search is performed (in many time zones, the

Internet becomes busy between 19:00 and 23:00 on weekdays2)

All the preceding information falls under the timing of usage. The output of this will

be the operational and load profiles which will be covered later in Chapter 4.

2 Known as the “Internet rush hour.”

Chapter 2 performanCe measurement fundamentals

87

Summary Business performance metrics include

Business process efficiency throughput of data, transactions sla compliance

scope of usage Concurrency of usage timing of usage

 Operational Environment
The operational aspect of performance testing focuses on tasks that are gen-
erally not considered to be user-facing in nature. These include the
following:

• Operational processes (e.g., the time required for environment
start- up, backups, shutdown and resumption times)

—ISTQB_CTFL_PT

These operational processes could form part of the background load in a

performance test and thus become part of the performance test itself. An interesting

consideration here is user timeout periods. It could be a few user session IDs could still

be active after a performance test. If another test is started directly after the end of the

previous performance test, these sessions will still be running. Those redundant sessions

could, in fact, affect the performance of the system under test in the next performance

test. These operational processes could also form part of maintainability or reliability

testing performed in conjunction with performance testing.

• System restoration (e.g., the time required to restore data from a
backup)

—ISTQB_CTFL_PT

System restoration is an important consideration during the execution of

performance tests, especially if the system data needs to be restored before each

performance test execution.

A real-world example was a very large city council testing a system managing local

council tax for each household. Performance testing was using the entire city council

Chapter 2 performanCe measurement fundamentals

88

address database, which although was production-like became a problem. It took 27

hours to roll the test data back to an initial state once a performance test had been

completed, and it needed to be done at the end of every performance test.

Once again, it could also be that the data restoration could be part of a reliability or

maintainability test being conducted in conjunction with performance testing.

• Alerts and warnings (e.g., the time needed for the system to issue
an alert or warning)

—ISTQB_CTFL_PT

Although alerts and warnings may not be a direct part of the performance test,

these may fall within the scope, once again, of reliability and maintainability testing.

The ability to capture these though may form an important part of the performance test

being a reflection on the capacity of the system under test.

Summary operational performance metrics (non-user facing) include

operational processes system restoration alerts and warnings

 Selecting Performance Metrics
It should be noted that collecting more metrics than required is not neces-
sarily a good thing. Each metric chosen requires a means for consistent col-
lection and reporting. It is important to define an obtainable set of metrics
that support the performance test objectives.

—ISTQB_CTFL_PT

From earlier, remember the Golden Rules of Monitoring (keep it simple). Performance

engineers should always use metrics to answer the questions posed by the performance

goals/objectives/requirements. A generic set of metrics as mentioned previously can

always be presented to allow stakeholders to understand this general dataset. Further

metrics sets should also be specific for the stakeholders to which they will be presented –

business stakeholders will require different metrics from technical stakeholders.

Chapter 2 performanCe measurement fundamentals

89

Summary only collect the metrics necessary to prove/disprove the objectives/
goals/requirements/user stories.

For example, the Goal-Question-Metric (GQM) approach is a helpful way
to align metrics with performance goals. The idea is to first establish the
goals, then ask questions to know when the goals have been achieved.
Metrics are associated with each question to ensure the answer to the ques-
tion is measurable. (See Section 4.3 of the Expert Level Syllabus – Improving
the Testing Process [ISTQB_ELTM_ITP_SYL] for a more complete descrip-
tion of the GQM approach.) It should be noted that the GQM approach
doesn’t always fit the performance testing process. For example, some met-
rics represent a system’s health and are not directly linked to goals.

—ISTQB_CTFL_PT

Summarized from the ISTQB Expert Level Improving the Test Process syllabus, GQM

defines a method of categorizing the metrics sets required. It uses three levels:

 1. Conceptual level relating to the GOALS for the organization

regarding the quality of products, processes, and resources

including the people, officers, hardware, and software

 2. Operational level relating to the QUESTIONS characterizing the

products, processes, and resources with respect to their quality

 3. Quantitative level relating to the METRICS which may be objective

(quantitative, factual) or subjective (qualitative, viewpoints)

A good general way to refer to these is to think of conceptual metrics relating to

high-level organization stakeholders, operational-level metrics relating to key user

stakeholders, and quantitative metrics relating to technical stakeholders. Of course,

there will always be exceptions to these associations, but as a rough rule it’s a good

reference point.

Chapter 2 performanCe measurement fundamentals

90

Summary Goal-question-metric aligns the goals, questions relating to the goals,
and metrics answering the questions. GQm isn’t always appropriate for every
performance project.

It is important to realize that after the definition and capture of initial mea-
surements further measurements and metrics may be needed to understand
true performance levels and to determine where corrective actions may be
needed.

—ISTQB_CTFL_PT

This point will be covered much further in Analyzing Results and Reporting, but

suffice to say that the Golden Rule of Monitoring still applies. Each of the stakeholder

groups will require specific information in addition to the generic metrics set. If testing

discovers a performance issue, there are two general approaches that can be considered.

The deductive approach conducts multiple iterations of end-to-end performance

testing business processes with changes to single items for each iteration. As part of the

results analysis, the effect of those single changes is observed. For example, an online

shopping system might have problems with the search task. The deductive approach

would vary the test data used as an input and observe the results of this data variation.

It might be found, for example, that searches for a certain item or groups of items might

take much longer. The deductive approach would then drill down on this as a possible

problem – does it relate to the search algorithm or the database indexing?

The diagnostic approach looks at the problem slightly differently. It involves

gathering more information earlier with more intensive monitoring performed initially.

If a problem is discovered, the results data is analyzed by tracking from the beginning/

end of a business process through the results dataset to discover the issue. To continue

the preceding example, if a problem exists with the search task, these transactions would

be tracked through the dataset to ascertain where the problem might lie. The diagnostic

approach potentially skips the additional iterations of performance testing, as the wider

results dataset might contain the causal factor of the issue.

Both approaches have their advantages and disadvantages. Every performance

engineer will use both without question. And, every performance engineer will have a

preference. No approach is right or wrong or best practice. But every performance engineer,

irrelevant of preference, must get better at whichever approach is not their preference!

Chapter 2 performanCe measurement fundamentals

91

Summary after initial metrics are captured, further metrics might be needed to
diagnose issues.

 2.2 Aggregating Results from Performance Testing
PTFL-2.2.1 (K2) Explain why results from performance testing are aggregated

The purpose of aggregating performance metrics is to be able to understand
and express them in a way that accurately conveys the total picture of sys-
tem performance. When performance metrics are viewed at only the
detailed level, drawing the right conclusion may be difficult—especially for
business stakeholders.

—ISTQB_CTFL_PT

A key to this area is having a comparison framework from which to work. For

example, to include the time when errors occurred with CPU activity on a particular

server in the performance test environment, a common reference point is important for

results to be correlated. Much will depend on how information is gathered, but the most

common reference frame is the absolute time against which the performance test is

executed (the actual time events occurred according to a centralized time reference) or

elapsed time (the time since the start of the performance test).

If monitoring is being performed within a single performance test tool capturing

the results, elapsed time (starting at 00:00:00 when the performance test starts) may be

enough.

Although elapsed time can be convenient for a single tool, as soon as other information

from outside the tool is required, absolute time is a much better reference point. Absolute

time allows other tools, logs, and result sets to be brought into the performance test results

for direct comparison. It also facilitates a more natural conversation – “Hey Julie – did

anything unusual happen on the network between 01:00 and 02:00?”

If any doubt exists, performance tests should use absolute time.

Summary aggregating performance metrics can help explain system
performance to stakeholders.

Chapter 2 performanCe measurement fundamentals

92

For many stakeholders, the main concern is that the response time of a sys-
tem, web site, or other test object is within acceptable limits.

—ISTQB_CTFL_PT

Once again, as mentioned earlier, many stakeholders relate to response time because

of two reasons:

 1. The stakeholder personally relates to the response time due to

it relating to a business process they are either performing or a

process their team is performing

 2. The stakeholder automatically relates response time to

performance testing for the simple reason being that’s the first

thing they think about when performance testing is mentioned

An interesting phenomenon that occurs when establishing performance test goals/

objectives/requirements/user stories is the origin from which they stem. Although

performance requirements are derived from other higher-level requirements or

organization risks, quite often they start with a question. These questions could relate to

capacity (“How many more users will the system support?”), resource utilization (“Can

we fit another virtual machine on the server?”), or time behavior (“How long will the

batch run take?”). This can be taken one step further in that questions being asked can

help determine the types of performance testing needed:

• “How long does it take to enter a timesheet on Friday afternoon?”

(load)

• “What happens to the website when the sale starts?” (spike/stress)

Performance engineers should never accept the first answer from the stakeholders.

In fact, the role of a performance test teacher is often a secondary job for many

performance engineers. An important job in any project involving performance testing is

educating the stakeholders to move beyond measuring response time.

Summary response time is a key stakeholder metric.

Chapter 2 performanCe measurement fundamentals

93

Once deeper understanding of the performance metrics has been achieved,
the metrics can be aggregated so that:

• Business and project stakeholders can see the “big picture” status
of system performance

• Performance trends can be identified

• Performance metrics can be reported in an understandable way

—ISTQB_CTFL_PT

Performance engineers gain a deeper understanding of the behavior and

performance of the system under test not only by collecting metrics but by analyzing

these metrics and establishing the cause-effect relationship between them.

The deeper understanding for the stakeholders comes from:

 1. The generic metrics set

 2. The stakeholders learning more about performance testing and

performance issues

 3. The performance engineer analyzing the metrics to outline

performance against the requirements/user stories and

highlighting issues if they exist

 4. The performance engineer creating specific targeted reports for

stakeholder groups

 5. The performance engineer remembering the Golden Rules of

Monitoring3

Summary aggregated metrics let stakeholders see the big picture, identify
performance trends, and allow clear reporting.

3 Keep it simple!

Chapter 2 performanCe measurement fundamentals

94

 2.3 Key Sources of Performance Metrics
PTFL-2.3.1 (K2) Understand the key sources of performance metrics

Launch the probe!

—Dr. Evil

System performance should be no more than minimally impacted by the
metrics collection effort (known as the “probe effect”). In addition, the vol-
ume, accuracy and speed with which performance metrics must be col-
lected makes tool usage a requirement. While the combined use of tools is
not uncommon, it can introduce redundancy in the usage of test tools and
other problems (see Section 4.4).

—ISTQB_CTFL_PT

probe effect4

An unintended change in behavior of a component or system caused by
measuring it.

—ISTQB Glossary

The simplest way to understand the probe effect is to think of checking the pressure

in a tire. To check the tire pressure, a small amount of air will be released into the

pressure gauge, allowing the current pressure to be measured. Once the measurement is

taken, the gauge is removed, and the air filling the gauge is released. Thus, the pressure

is now slightly lower than when it was measured. Depending on the precision of the

measurement taken by the tire pressure gauge, this may never be detected. On the other

hand, a bicycle tire with a smaller volume might show the relative pressure loss greater

than a huge mining truck tire with an immensely greater volume.

4 This is the updated ISTQB Foundation Certificate V3.1 2018. The previous version of this term
for reference:The effect on the component or system by the measurement instrument when the
component or system is being measured, e.g., by a performance testing tool or monitor. For
example, performance may be slightly worse when performance testing tools are being used.

Chapter 2 performanCe measurement fundamentals

95

The performance and/or monitoring tools being used to monitor the system under

test can vary greatly, and all tools will add some measure of load to the system under

test. How much of an effect will depend on two factors:

 1. The level of measurement precision required (e.g., the timing

measurements taken rounded to the nearest second or

thousandth of a second)

 2. The ratio of effect the tool measurement load will have on the

overall system (e.g., an embedded PCB with limited CPU/

memory – the bike tire – or a high-end server with multicore

processors and hundreds of GB of memory, the mining truck)

Summary monitoring uses resources, which could affect the system
performance.

There are three key sources of performance metrics:

 1. Performance test tools

 2. Performance monitoring tools

 3. Log analysis tools

 Performance Test Tools
All performance test tools provide measurements and metrics as the result
of a test. Tools may vary in the number of metrics shown, the way in which
the metrics are shown, and the ability for the user to customize the metrics
to a particular situation (see also Section 5.1).

Some tools collect and display performance metrics in text format, while
more robust tools collect and display performance metrics graphically in a
dashboard format. Many tools offer the ability to export metrics to facilitate
test evaluation and reporting.

—ISTQB_CTFL_PT

Chapter 2 performanCe measurement fundamentals

96

The amount of information available from a performance test tool can vary. Some

tools present a huge number of monitoring options; others are much more rudimentary.

Some tools have built-in monitoring; others rely on integration with external monitors

(such as Windows perfmon) to gather metrics.

Certainly, in recent history there has been a drive within the performance tool

market to consider the usability of tools. Commercial tools have always been ahead of

open source tools in terms of usability, but today that gap is shrinking.

Two basic types of performance test monitoring information exist (and note that the

same monitoring information may be displayed in both types):

Summary displays information at a “point in time,” such as the CPU utilization

at 19:07:30 during a performance test. Typically, summary information includes

maximum/minimum/average results. Summary information is normally displayed as a

table (Figure 2-1).

Progress displays information representing changes over a defined time during the

performance test. Many data points are sampled during the defined time and usually

displayed as a graph displaying the line of best fit through the sampled data points

(Figure 2-2).

Figure 2-1. Performance test summary results

Chapter 2 performanCe measurement fundamentals

97

Summary performance tools vary in the quality and number of metrics they can
display and export for analysis.

 Performance Monitoring Tools
Performance monitoring tools are often employed to supplement the report-
ing capabilities of performance test tools (see also Section 5.1). In addition,
monitoring tools may be used to monitor system performance on an ongo-
ing basis and to alert system administrators to lowered levels of perfor-
mance and higher levels of system errors and alerts. These tools may also be
used to detect and notify in the event of suspicious behavior (such as denial
of service attacks and distributed denial of service attacks).

—ISTQB_CTFL_PT

Figure 2-2. Performance test progress results

Chapter 2 performanCe measurement fundamentals

98

He sits motionless, like a spider in the center of its web, but that web
has a thousand radiations, and he knows well every quiver of each of
them.

—Conan Doyle, 1893

Performance monitoring could cover a range of tools, each gathering information

on the performance of the system. These tools could be embedded into the operating

system (Microsoft Performance Monitor, or “perfmon”), applications (VMware vSphere),

or stand-alone tools (Cisco AppDynamics or Splunk). These tools have a wide range

of counters and can monitor individual systems (perfmon – Figure 2-3) or the entire

infrastructure (vSphere/AppDynamics/Splunk).

To the advantage of performance engineers, some performance test tools integrate

with performance monitoring tools to allow a connection between the executing

performance test and the results data gathered by the monitoring tool. Without this, it

can be problematic associating the results data with the executing performance test,

especially if multiple monitoring tools are used in conjunction with the performance

Figure 2-3. Microsoft Performance Monitor (perfmon)

Chapter 2 performanCe measurement fundamentals

99

test tool. A big help in overcoming this problem is the common absolute time reference

mentioned earlier – allowing both the execution of the performance test and the

gathering of results data have a common frame of reference. This simple step won’t

make correlation easy, but it will certainly make it easier.

Summary monitoring tools supplement performance tools for monitoring, can
alert suspicious behavior, and can monitor the system on an ongoing basis.

 Log Analysis Tools
There are tools that scan server logs and compile metrics from them. Some
of these tools can create charts to provide a graphical view of the data.
Errors, alerts and warnings are normally recorded in server logs. These
include:

• High resource usage, such as high CPU utilization, high levels of
disk storage consumed, and insufficient bandwidth

• Memory errors and warnings, such as memory exhaustion

• Deadlocks and multi-threading problems, especially when
performing database operations

• Database errors, such as SQL exceptions and SQL timeouts

—ISTQB_CTFL_PT

A good example of a log analysis tool is Splunk – a set of ever-expanding tools that

can aggregate and analyze multiple datasets into a dashboard allowing instant access

to information. With the addition of AI in recent years, these tools have become much

more capable in helping performance engineers correlate the cause-effect relationship

between components in the system under test.

Summary log analysis tools convert text logs to graphic data, alerting based on
predefined performance criteria.

Chapter 2 performanCe measurement fundamentals

100

 2.4 Typical Results of a Performance Test
PTFL-2.4.1 (K1) Recall the typical results of a performance test

In functional testing, particularly when verifying specified functional
requirements or functional elements of user stories, the expected results
usually can be defined clearly, and the test results interpreted to determine
if the test passed or failed. For example, a monthly sales report shows either
a correct or an incorrect total.

Whereas tests that verify functional suitability often benefit from well-
defined test oracles, performance testing often lacks this source of informa-
tion. Not only are the stakeholders notoriously bad at articulating
performance requirements, many business analysts and product owners
are bad at eliciting such requirements. Testers often receive limited guid-
ance to define the expected test results.

—ISTQB_CTFL_PT

Herein lies the fallacy of performance testing. This fallacy relates in much part to the

difference between functional and performance testing. Functional testing considers

what the system does, whereas performance testing is looking at how the system

behaves. From a functional point of view, it can be easier most of the time for functional

testers to know if a defect exists. But consider a performance engineer in the following

scenario:

An on-site shopping website has a performance requirement stating that
under a certain level of load, the search transaction will respond in less
than two seconds. A performance engineer regarding the two second limit
would immediately ask if the defined two second limit was a maximum
time, average or percentile time. Once established (let’s say in this case it’s
maximum time), a clear goal has now been established. Accordingly, a per-
formance test was subsequently run measuring the search transaction
response time. The test found in the 15,000 search transactions conducted,
seven searches responded in a greater than two second response time. Based
on this, the test would be a failure.

A magistrate in Australia5 was once quoted speaking of the law – “It’s a set of black

and white rules for a collection of grey circumstances…”

5 Alan Yorkston – Magistrate and my father!

Chapter 2 performanCe measurement fundamentals

101

This is much the same as establishing quantitative performance requirements and/

or user stories. Many points related to this have already been covered, including:

• Measurable non-functional goals – Much of the time, without the

input of a performance engineer, the usual people who create

performance test goals/objectives/requirements/user stories do

not have the necessary technical or performance test knowledge

required. They default to response time to define quantifiable,

measurable goals.

• Lack of performance test understanding – Project staff often do not

appreciate the technical requirements for performance testing.

Things like configuration management, version control, an adequate

performance test environment, and necessary types and amounts of

performance test data should be shared by the performance engineer

with the stakeholders.

• Interpreting the results of performance testing – Performance

engineers can create many reports with colorful graphs and tables

of information, but if the stakeholders cannot understand how these

relate to the performance test goals/objectives/requirements/user

stories, these reports will be of little value.

If a maximum response time of two seconds is defined, the first question would be,

“Why two seconds?”

Experienced performance engineers often see the same response times occurring

when establishing time-related requirements. Typical answers include the system

responding in:

• Instantly/instantaneously

• Two seconds

• Five seconds

• Seven seconds

• Ten seconds

• Multiples of five seconds

Chapter 2 performanCe measurement fundamentals

102

There is an urban myth behind some of these (five and seven seconds), a desire

of the stakeholders (instantly/instantaneously), or psychological reasons (two, five,

ten, and multiples of five seconds). Another psychological factor is the impact of

unconscious bias – specifically the anchoring effect.6

But we must return to the preceding question – why is that time significant? It could

be because the stakeholders have a perception that real users of the system will not wait

longer for the task to complete. It could be a regulatory requirement or a service-level

agreement. Or, more often, it is based on a reasoning principle mentioned earlier called

inductive reasoning, a fancy name for the process of guessing.

It cannot be stressed enough that whatever the goals/objectives/requirements/user

stories are based upon, it should be realistic, quantified, and relevant.

It can also be useful to build in a tolerance to any defined goals/objectives/

requirements/user stories. To return to the initial two-second response time example,

where in 15,000 transactions the performance test failed due to seven measured

response times exceeding the maximum of two seconds. It is at this point we should

consider building in a gray area rather than thinking of the target time as black or white.

It might be that the performance engineer suggested a tolerance of 10% to that goal. In

effect, the following would apply:

Green Within the 100% goal <=2 seconds

Amber Within the 10% tolerance 2.0–2.2 seconds

Red Exceeding 110% 2.2 seconds +

Thus, if the seven response times were within the 10% tolerance, it gives the

stakeholders more information. In effect, the maximum time was exceeded, but only by

a little. In most performance testing today, this tolerance method is well used.

6 Anchoring is a cognitive bias where an initial piece of information is heavily favored when
making a decision. For example, is the Golden Gate Bridge shorter or longer than 600 m?
Irrelevant of the answer to this question, if a person is then asked to estimate the length of the
Golden Gate Bridge, the distance in the previous question (600 m) becomes the anchor upon
which the person estimates the length.

Chapter 2 performanCe measurement fundamentals

103

Summary defining both adequately quantifiable requirements and gathering
results data to definitively show pass or fail is difficult in performance testing, due
to a lack of stakeholder performance knowledge.

When evaluating performance test results, it is important to look at the
results closely. Initial raw results can be misleading with performance fail-
ures being hidden beneath apparently good overall results. For example,
resource utilization may be well under 75% for all key potential bottleneck
resources, but the throughput or response time of key transactions or use
cases are an order-of-magnitude too slow.

The specific results to evaluate vary depending on the tests being run, and
often include those discussed in Section 2.1.

—ISTQB_CTFL_PT

Performance engineers obtain the return on investment in two parts of the overall

performance test – the performance test planning to make sure the right questions

are being answered and the analysis of the results to show the system has positively or

negatively answered the questions posed.

It is the ability of performance engineers to diagnose the cause-effect relationships

between various metrics that help to answer the questions posed by the performance

requirements/user stories. An apt analogy is identifying the forest through the trees.

Knowing what to look for in a mass of lines on a graph or numbers in a table is a vital

skill. In fact, too much monitoring during a performance test can hinder identifying

where an issue may lie. A good performance engineer will also know when to use the

diagnostic or deductive approaches mentioned earlier if an issue is identified. Quite

often, the first sign the system under test has a performance issue is a transaction

time slows down. Ultimately, this slow transaction is the effect, and it’s the job of the

performance engineer to determine the cause.

Summary Initial results can be misleading and can hide potential performance
problems.

Chapter 2 performanCe measurement fundamentals

104

 Chapter 2 Questions

 1. Which of the following is NOT a technical environment metric?

 A. Alerts and warnings (the time needed for the system to issue an

alert or warning).

 B. Numbers of errors impacting performance

 C. Throughput rate of key transaction (the number of transactions

that can be processed in a given period of time)

 D. Background load on shared resources (especially in virtualized

environments)

 2. Performance testing should not be undertaken without first

understanding which measurements and metrics are needed.

Performance planning went well, with sets of user stories developed

by the business stakeholders. Unfortunately, the project you are

joining has been running several performance test cycles without

any metric planning. An argument over the captured response time

results has been long running between stakeholders. Which of the

following project risks would apply to this problem?

 A. The results provided by a performance test tool are not

understood.

 B. Performance test execution will not be completed on time due to

the continuing argument.

 C. It may not be possible to identify trends that may predict lower

levels of performance.

 D. The performance requirements are not defined in measurable

terms.

Chapter 2 performanCe measurement fundamentals

105

 3. Which of the following is NOT a reason for aggregating results?

 A. Business and project stakeholders can see the “big picture”

status of system performance.

 B. Performance metrics can be reported in an understandable way.

 C. Performance metrics can be viewed at the detailed level allowing

business stakeholders to understand the system.

 D. Performance trends can be identified.

 4. Which of the following is NOT a source of performance metrics?

 A. Metric tools

 B. Test tools

 C. Monitoring tools

 D. Log analysis tools

 5. Which of the following describes the “probe effect”?

 A. The impact performance testing has on the system performance

 B. The effect of redundancy in using multiple monitoring tools

 C. The impact metric collection tools have on system performance

results

 D. The volume, accuracy, and speed at which performance metrics

are collected

 6. In what way are performance monitoring tools helpful for collecting

metrics?

 A. They create the system load and monitor the system performance.

 B. They monitor the systems while the performance tests are

conducted and report on the behavior during the tests.

 C. They scan the various server logs and compile metrics for events

that were recorded during the test execution.

 D. They write the performance results to the server logs for later

manual analysis.

Chapter 2 performanCe measurement fundamentals

106

 7. Which of the following is a failure that would typically be found by

conducting an endurance test?

 A. The system performance gradually degrades.

 B. The system provides inconsistent responses to errors.

 C. The system handles a sudden burst of activity but can’t resume a

steady state.

 D. The system performs well for the expected load but can’t scale to

a larger load.

Chapter 2 performanCe measurement fundamentals

107
© Keith Yorkston 2021
K. Yorkston, Performance Testing, https://doi.org/10.1007/978-1-4842-7255-8_3

CHAPTER 3

Performance Testing
in the Software Lifecycle

 ISTQB Keywords
metric

A measurement scale and the method used for measurement.

risk
A factor that could result in future negative consequences.

software development lifecycle
The activities performed at each stage in software development, and how they relate to

one another logically and chronologically.

test log
A chronological record of relevant details about the execution of tests.

 3.1 Principal Performance Testing Activities
PTFL-3.1.1 (K2) Understand the principal performance testing activities

Performance testing is iterative in nature. Each test provides valuable
insights into application and system performance. The information gath-
ered from one test is used to correct or optimize application and system
parameters. The next test iteration will then show the results of modifica-
tions, and so on until test objectives are reached.

Performance testing activities align with the ISTQB test process
[ISTQB_FL_SYL].

—ISTQB_CTFL_PT

https://doi.org/10.1007/978-1-4842-7255-8_3#DOI

108

From the 2018 ISTQB Certified Tester Foundation Level Syllabus, the test process is

summarized in Figure 3-1.

It might seem these test process phases are better suited for functional testing.

In fact, more functional testers recognize this than performance engineers. The

model is also designed for non-functional (performance) testing. Where it differs

from functional testing are the steps within each of the test process phases that are

undertaken.

Before commencing, it can be useful to have a means through which to track the

planning and creation of performance tests. As stages are completed and checked off,

it is possible to show stakeholders the progression. Of course, there may be project

tracking software used by the project, and performance testing can always be built into

these applications. But if you work on a project without this software, Table 3-1 could be

used as a starting point.

Figure 3-1. The ISTQB fundamental test process

Chapter 3 performanCe testing in the software LifeCyCLe

109

Summary performance testing is iterative (running cycles of testing) and
complies with the istQB test process.

Table 3-1. Performance Testing Task List

Requirement Showstopper Status Notes

test requirements approved y

Volumetric data approved y

performance test plan approved y

test tool is available and working after poC n

Business process list approved y

test environment designed n

test scripts designed n

test scenarios designed n

test data design/volume approved y

test monitoring designed n

initial recording environment accepted y

test scripts created and approved y

test scenarios created and approved y

test data created y

test monitoring completed y

test tool setup complete (with licenses) n

test result collection set up n

execution environment completed and checked y

OVERALL STATUS Not Ready 0%

Chapter 3 performanCe testing in the software LifeCyCLe

110

 Test Planning
Test planning is particularly important for performance testing due to the
need for the allocation of test environments, test data, tools and human
resources. In addition, this is the activity in which the scope of performance
testing is established.

During test planning, risk identification and risk analysis activities are
completed, and relevant information is updated in any test planning docu-
mentation (e.g., test plan, level test plan). Just as test planning is revisited
and modified as needed, so are risks, risk levels and risk status modified to
reflect changes in risk conditions.

—ISTQB_CTFL_PT

As mentioned earlier, planning is an important part of any performance test. In earlier

times, a performance engineer would make some notes and start scripting. Much of the

time, this was adequate, as the project stakeholders for which the performance engineer

was working didn’t want to know the level of detail required. It was soon discovered

however that an old military axiom came into play:

Failing to plan is planning to fail…

As performance testing matured, the need for test planning became evident.

Experienced performance engineers then started to tweak the standard planning process

to become better suited for performance testing. Today, thanks to standards like ISO 29119,

both the test process and especially test planning are suited to non-functional testing.

As part of the planning process, it is useful to think of the final output of this phase.

To complete a test plan, a lot of information needs to be gathered from the project.

As well, a performance engineer will have a lot to add to any ideas the project has on

performance testing. Working backward from the test plan, the following steps are

needed within test planning:

 Initial Workshop

The initial workshop is a meeting where both the stakeholders involved in both the project

and performance testing are brought together with the performance engineer. This is an

opportunity for the performance engineer to inform the project stakeholders on the basic

rules, requirements, and procedures for performance testing. It is also an opportunity for

the project stakeholders to elicit requirements and the background from the project.

Chapter 3 performanCe testing in the software LifeCyCLe

111

 Business and Technical Overview

This may be done in conjunction with the initial workshop or separately depending

on the availability of key stakeholders in both the business and technical aspects of

the project. This is an opportunity for the performance engineer to get a clear view of

the nature of the application/infrastructure (software, hardware, protocols, business

processes, and required data). This may be a point at which the performance engineer

can highlight any early potential performance weaknesses in the system giving forward

notice that more information on these weaknesses may be required.

 Definition of Requirements/User Stories

Requirements definition is where the basis, the reasoning, and the outcome of the

project are outlined. It’s important that in conjunction with the requirements/user

stories, an indication of the performance engineering effort is also linked to the

requirements/user stories. From this, explicit success criteria can be derived (for both

requirements and user stories, as both require a measurable way of knowing if the

eventual test will pass).

Linked to the definition of requirements/user stories is the discovery of performance

product risk. This includes potential technical-related performance risks and business-

related performance risks. For example, a technical risk relates to an older database

with a limited connection pool linked to a system that requires more connections than

is available. A business-related performance risk could possibly be linked to this in that

there is now a business process delay while users wait for a database connection to

become free to access information.

More information regarding risk is covered later. At this point, it should be noted that

risk isn’t the opposite of a requirement.

Project risk should also be considered. These risks relate to the successful

completion of performance testing unrelated to the performance of the system under

test. Examples of performance project risk include problems with the test environment

or test data.

A final point is to reinforce the emphasis around measurable quantitative

requirements/user stories and associated completion criteria. If the requirement/user

story cannot be measured, it makes it more difficult to achieve this requirement and pass

the test.

Chapter 3 performanCe testing in the software LifeCyCLe

112

 Volumetric Analysis

Referring to points covered earlier in Chapter 1.2, this becomes the who/what/where/

when/how of the performance test. Ideally, a real-world usage model should be

constructed. These should be based on both average, peak and worst-case scenarios

(end of week, end of month, end of quarter, or end of financial or calendar year, or

an expected peak next year or in five years’ time). Volumetric analysis enables a

performance engineer to determine which performance test scenario will be appropriate

for the upcoming performance tests. These scenarios will relate back to the performance

requirements/user stories and risks mentioned earlier.

The product of this step is the operational profile and subsequently the load profile

(the ISTQB syllabus considers the operational and load profile as related, but not the

same – more on this in Chapter 4).

 Performance Test Environment Analysis

Based on the volumetric analysis, a determination on the required performance testing

environment can now be done. If an existing test environment is available, it should be

assessed as to whether it will be suitable for performance testing. It should also include a

gap analysis of the key differences between the proposed/available test environment and

the production environment. If gaps exist, the question as to how the gap impacts can be

mitigated with the existing environment could be considered.

If an opportunity exists to specify a performance test environment, this should

be “production like.” Ideally, if the actual production environment is available, the

performance test should use this.

 Performance Test Tool Analysis/Proof of Concept

In almost every instance, performance testing needs tools. A vast range of both

commercial and open source tools are available, and choosing the right tool will make

performance testing easier. It’s important to note that no tool is right for every situation,

and no tool is perfect for any situation.

With any performance test, the timeframe, budget, technologies, performance

product risk (if any), the current toolset used by the organization and/or project must be

considered (performance tools are looked at in Chapter 5).

Chapter 3 performanCe testing in the software LifeCyCLe

113

 Performance Project Planning

The final step in the planning process is determining the performance project timeline.

From the overall project timeline and completion date and working backward, the test

plan phases for performance testing can be documented. Further detail will be required,

but at this point it will give an overall picture of the estimated performance test timeline.

It’s useful at this point to generate a Gantt chart to add to the performance test plan. It

should also be remembered that the planning process can always miss tasks or random

events that might happen, but with the benefit of experience (or maybe a good previous

performance test plan to “copy”), this can be reduced.

 Performance Test Plan

At this point, the performance test plan won’t be completed. It is appropriate however to

involve project management and stakeholders to review the performance test plan. This

document becomes the expected result for the performance test project, and it’s useful

to get feedback from the stakeholders to ensure that both the performance test goals/

objectives and the overall project goals/objectives are being achieved.

A useful performance test plan template can be found in Chapter 4. Another

example is from the test plan template found in ISO 29119.

Summary test planning defines the performance test scope, test environments,
test data, tools, and human resources needed and completes risk identification and
analysis. the output is an updated project test plan and/or performance test plan.

 Test Monitoring and Control
Note the monitoring mentioned here refers to monitoring the progress of the

performance test project and not the monitoring performed during performance testing.

Control measures are defined to provide action plans should issues be
encountered which might impact performance efficiency, such as:

• increasing the load generation capacity if the infrastructure
does not generate the desired loads as planned for particular
performance tests

• changed, new or replaced hardware

Chapter 3 performanCe testing in the software LifeCyCLe

114

• changes to network components

• changes to software implementation

The performance test objectives are evaluated to check for exit criteria
achievement.

—ISTQB_CTFL_PT

The performance test plan (expected result for the performance test project) will

almost always change. It should be outlined at this point that monitoring and control

extends throughout the performance test project. All phases of the performance

test project can and should be monitored. Monitoring at this stage of the project

concentrates on the performance test project risk rather than performance product risk.

Performance test project risk reflects on the time, cost, and resourcing implications of

the performance test project going “off course.” It allows performance engineers and

project staff to implement controls to mitigate these performance test project risks.

The main aim of these controls is to mitigate performance project risk and get the

performance test project back on track to finish on time, on budget with the required

level of product quality and risk.

Based on this, flexibility becomes an important requirement for any performance

test plan. As stated earlier, there will be a necessity to change the performance test plan,

based on information discovered as part of the performance test project. Any changes

made must be documented to capture the actual results of the performance test project.

The importance of documenting these changes cannot be emphasized enough, as these

changes will feed back into the performance project lessons learnt/retrospectives to

improve the performance test planning process.

Summary monitoring checks if the performance test exit criteria have been met.
Control provides potential mitigation actions to performance project risks.

 Test Analysis
Effective performance tests are based on an analysis of performance
requirements, test objectives, Service Level Agreements (SLA), IT archi-
tecture, process models and other items that comprise the test basis. This

Chapter 3 performanCe testing in the software LifeCyCLe

115

activity may be supported by modelling and analysis of system resource
requirements and/or behavior using spreadsheets or capacity planning
tools.

Specific test conditions are identified such as load levels, timing conditions,
and transactions to be tested. The required type(s) of performance test (e.g.,
load, stress, scalability) are then decided.

—ISTQB_CTFL_PT

To put the next sections of the test process into context, it’s best to consider the

output from each of the next phases in the process (Figure 3-2).

Basically put, a test is formed of the three constituent parts of a test condition, one

or more test cases, and one or more test procedures. To use a functional example, there

might be a requirement within the project that specifies opening different document

types using Microsoft Word. A test condition contains some testable aspect of the system.

Thus, a high-level test condition might be

To test opening a document successfully using Microsoft Word.

Figure 3-2. Creating a test

Chapter 3 performanCe testing in the software LifeCyCLe

116

This test condition is high level, as it contains little detail about the documents to

be opened. The advantage of a high-level test condition is that it doesn’t take a lot of

effort to create these. The disadvantage is the test condition isn’t specific and will require

many test cases to obtain adequate coverage. This could also hurt in that there may be an

obsolete document type as part of a test case (e.g., WordPerfect 5) that fails, and hence

the high-level test condition would show a failure. If lower-level test conditions were

written, it might show that only the “opening a WordPerfect 5 document” failed, which

may be acceptable to stakeholders.

The test cases contain the precondition, postcondition, input data, and expected

result. Thus, the test cases might contain:

• Microsoft Word is open, with no document open – the precondition.

• A list of the different types of document to be opened (e.g., .doc,

.docx, .pdf, .rtf, .txt, etc.) – the input data.

• The screenshot showing how the document will display in Microsoft

Word (the expected result).

• Microsoft Word now has a document open that could subsequently

be edited, printed, and/or saved.

The test procedure contains the steps that the test could follow to execute the test

cases against the system under test. In this case, there are ten different ways to open a

Microsoft Word document – see if you can find them all! Don’t forget the command line

and right-click options…

Each of these different sets of steps might need to be tested against each of the

different document types.

By combining all the constituent parts (test condition, test cases, and test

procedures), tests are formed. This approach emphasizes the modularity required with

testing, as the test cases and test procedures might be reused across a series of test

conditions.

To consider the idea of modularization further, we can also look at the business

process model specified earlier (Figure 3-3).

Chapter 3 performanCe testing in the software LifeCyCLe

117

To extend this to an approach that we could use with performance testing, this

breakdown extends to the test we write in the following way (Figure 3-4).

In the preceding automated performance test example:

• The test condition relates to the script (which itself relates to the end-

to- end business process).

• The test procedure is represented by the task level, with the steps

represented by the lines of code.

• The test cases feed into the test procedures/test conditions to denote

the start and end points and give the test data and expected results.

 Test Script Design

Based on the performance test requirements/user stories and associated performance

product risks identified earlier, the business processes associated with these can now

be identified. As outlined earlier, the business process can be broken down into a series

of reusable tasks, each of which will have associated sets of steps, input test data, and

expected results.

Business
Process

Task

Task

Task Steps

Figure 3-3. Business process breakdown

Script

Action/
Module/
Function

Action/
Module/
Function

Action/
Module/
Function

Lines of code

Figure 3-4. Performance test breakdown

Chapter 3 performanCe testing in the software LifeCyCLe

118

It’s important at this point to consider the actual users of the system. Quite often,

the test conditions, test cases, and test procedures can be designed on a theoretical

basis that somebody has decided the users will follow. And just as often, the users find

different ways of using the system.

Performance engineers need to consider the steps a real user might follow, as not all

users do “everything right”:

A gambling company, at the beginning of online gambling in the late 1990s,
created a set of performance test scripts following the assumed behavior of
users. For each iteration of one of the tests, the script logged the user in,
placed a bet on a horse or dog race, and logged out.

When the site went live however, the actual users behaved differently.

The system administrators noticed problems with the number of concur-
rent sessions being maintained affecting performance. When a user logs in,
a session ID was created and stays persistent until either:

 a) the user logs out (a user-terminated session); or

 b) the session times out (a server-terminated session).

The problem was identified relating to session maintenance - it was discov-
ered the users behaved in a different way from that that was tested. In the
performance test every user login, placed a bet, AND LOGGED OUT. When
the real users placed bets they logged in, placed one or more bets, and then
either close the browser or navigated to a different website, leaving the ses-
sion ID to time out.

When the administrators went back and looked at the ratio of user-
terminated and server-terminated sessions, they found only 2% of the ses-
sions were user terminated. Hence, 98% of the user sessions were sitting idle
waiting to timeout, consuming resources on the Web server.

Occasionally, actual users do things the stakeholders don’t expect. It’s essential that

the test conditions, test cases, and test procedures replicate the behavior of real users.

 Test Scenario Design

In conjunction with the requirements/user stories identified earlier and the test script

design identifying the business processes to be executed, the overall performance test is

the next thing on the list. Earlier, different performance test types were covered. These

now need to be combined with the outputs from earlier in the test process:

Chapter 3 performanCe testing in the software LifeCyCLe

119

• The requirements/user stories

• Business processes

• Performance risks

• The chosen performance tools

• Volumetric information

• Project scope and constraints

To create the scenario (Figure 3-5), the following need to be included:

 1. The performance test type mentioned earlier

 2. The total number of virtual users and the distribution between the

user groups

 3. The business processes to be tested

Performance
Test Type

(1)

Requirements/
User Stories

(3)

Virtual User
Number

(2)

Load Model
(Ramp-Up/
Duration/

Ramp-Down)
(4)

Scripts &
Weightings

(5)

Background
Jobs
(6)

Figure 3-5. Performance scenario breakdown

Chapter 3 performanCe testing in the software LifeCyCLe

120

 4. The load model – the rate at which virtual users log in (ramp up),

the duration of the test, and how the virtual users log out (ramp

down)

 5. The total number of transactions broken down over the business

processes

 6. Any required background jobs to be added to the load during the

performance test

 Monitoring Design

The monitoring approach is the next consideration. The software, hardware, and

infrastructure will dictate how the monitoring will be done, and the requirements/user

stories will determine the amount of monitoring required. Things to consider include:

• The chosen performance and monitoring tools – Will one tool cover

all the required monitoring, or will multiple tools be required?

• Result storage – How much storage will be required to store the result

set, and will the tools be able to access this storage area?

• Security access – Will the performance monitoring tools be able to

access the required counters for monitoring?

• The metrics required – Consider both the default metric set and

specific metrics associated with performance test requirements/user

stories and stakeholder needs.

 Performance Test Data Planning

Coupled with the script and scenario design, a part of the testing trifecta has been

neglected. Both the test condition and test procedure have been considered, but

now we need an important part of the test case – the performance test input data. It’s

important to note that whatever data is required, a lot of it will be needed. The volume of

required data is something most project stakeholders underestimate dramatically. The

performance test might require hundreds of users doing tens of iterations, requiring tens

of thousands of input data records. The next problem will be sourcing the volume of data

and populating the data into the performance test environment.

Chapter 3 performanCe testing in the software LifeCyCLe

121

 Scheduling

The final step is to create a more detailed low-level schedule for performance test

creation and execution. This schedule should consider not only when performance tests

will be created and run but also by whom. The Gantt chart that was created earlier can

be filled out with lower-level detail to show the day-by-day plan to include the creation

of specific performance tests planned in this phase and the subsequent execution.

Summary performance tests are based on an analysis of the test basis
(performance requirements, test objectives, service-level agreements, it
architecture, process models, and other items), supported by modeling and
analysis of system resource requirements and/or behavior. specific test conditions
such as load levels, timing conditions, and transactions to be tested determine the
type(s) of performance test (e.g., load, stress, scalability).

 Test Design
Performance test cases are designed. These are generally created in modu-
lar form so that they may be used as the building blocks of larger, more
complex performance tests (see section 4.2).

—ISTQB_CTFL_PT

Remember from earlier, the performance test case includes:

• Test precondition

• Test postcondition

• Input data

• Expected results

Chapter 3 performanCe testing in the software LifeCyCLe

122

Test Case Data Preparation

“Data! Data! Data!” he cried impatiently. “I can’t make bricks with-
out clay.”

—Conan Doyle, 1892cb

The required data specification from the earlier planning stage makes this task

easier. The focus now is to develop the datasets to allow both the performance test

scripts and scenarios to be created. This input data can be thought of in three loose

categories. Consider the online shopping website example from earlier.

 Master Data

Master data is contained within the system before the performance test is executed and

isn’t expected to change as part of the test. It includes existing user accounts, the product

catalogue, and so on.

 User-Defined Data

User-defined data is data to be input by the test during execution. Some of this will be

existing master data (user accounts/product codes/etc.) with some being added to the

test (order quantities, delivery addresses, etc.). It’s this data that forms the input data

during the performance test.

 Transactional Data

Transactional data is created dynamically as part of execution by the system under test

(order numbers/delivery docket numbers/etc.). To correlate the input data with the

results, transactional data will be captured as part of the test execution results.

The performance data poem to remember is:

We need master data before we start,

We input user-defined data at runtime,

And we capture transactional data for the results.

Chapter 3 performanCe testing in the software LifeCyCLe

123

I never claimed it was a good poem!

Due to recent improvements in data privatization and data security, this area has

now become somewhat more regulated. Performance engineers need to source data that

is both realistic and compliant with local data privacy regulations. Familiarity with data

privacy regulations and what is covered by them is invaluable when sourcing or creating

test data.

Negative data is also required. One of the primary mistakes made when sourcing test

data performance testing is the dataset is made up of positive data only. Negative testing

is an aspect that is rarely considered when performance testing is being built. It should

be argued however that negative testing is not a functional only activity. If performance

tests only exercise positive paths through the system, potential performance issues may

be missed. It should never be assumed that all users will always do the right thing in the

system under test. For example, users that try to log in with incorrect user credentials or

attempt to submit partially completed forms could be added to the business processes.

Summary performance test cases are created in modular form to be used as the
building blocks of larger performance tests.

 Test Implementation
In the implementation phase, performance test cases are ordered into per-
formance test procedures. These performance test procedures should reflect
the steps normally taken by the user and other functional activities that are
to be covered during performance testing.

A test implementation activity is establishing and/or resetting the test envi-
ronment before each test execution. Since performance testing is typically
data-driven, a process is needed to establish test data that is representative
of actual production data in volume and type so that production use can be
simulated.

—ISTQB_CTFL_PT

As stated by the syllabus, test implementation is the last building phase of the

performance tests. It should be noted at this point that the following stages are not

sequential. It may be that after the initial environment acceptance check, the subsequent

stages are performed simultaneously by one or more performance engineers.

Chapter 3 performanCe testing in the software LifeCyCLe

124

 Initial Environment Acceptance Check

This initial stage allows the performance engineer to verify the functionality of the test

environment used to prepare the performance test scripts and scenarios. This may

not be the performance execution environment to be used later unless of course it is

available. Typically, the environment used to build scripts and scenarios is a functional

test environment. It is at this point where the paper-based planning exercises have

concluded; this and the technical work commences.

 Script Construction

Performance test scripts are created using the chosen performance test tools. The

starting point for these is the requirements/user stories, the test script and scenario

designs, and the test cases produced earlier. These scripts are designed to replicate the

business processes selected performance test in the way the designated users would

complete them. The overriding objective of creating scripts is to make them as realistic

as possible given the constraints of the available tool and data.

As this is a scripting activity, the usual rules of writing good code should apply.

Things to consider when building scripts are:

 1. Naming conventions – Naming conventions should be developed,

for everything from variables/parameters to actions/methods/

functions to the scripts and scenarios themselves. Beyond that,

results, analyses, and reports would also need naming. Try and be

descriptive as possible with any name – don’t call a variable that

counts iterations a, b, or x, call it iteration_counter! It will be much

easier to maintain the scripts later and keep the myriad of files in

order if these principles are followed:

 a. With dates, use YYYYMMDD or YYMMDD to allow dated files/

variables to be ordered chronologically.

 b. Special characters (~ ! @ # $ % ^ & * () ` ; < > ? , [] { } ‘ “ |) should

be avoided.

 c. When using numbering, using leading zeros adds clarity (“001,

002, …010, 011 … 100, 101, etc.” instead of “1, 2, …10, 11 … 100,

101, etc.”).

Chapter 3 performanCe testing in the software LifeCyCLe

125

 d. Use underscores (file_name.xxx) or camel case (FileName.xxx)

with any multiword names.

 e. Use prefixes/suffixes to denote specific types (e.g., a load test

scenario or result set might begin with LO_, a stress test with ST_).

 2. Standard headers – Headers are the “back of the book”

information every script and function needs. Basic information

such as the author, script and business process information, and

dependencies are extremely useful when maintenance is needed.

A typical header should contain creation information and revision

history to track the script or function development. An example is

as follows:

**

* Project: Merlin - Online Sales Performance

*

* Script name: SingleAnonymousSearch

*

* Author: jonesh

*

* Date created: 200612

*

* Purpose: Single item search by a guest user (no login)

*

* Revision History:

*

* Variables:

* Item – search item

* SearchCount – item count after search

* Filter – optional search filter

*

* Data File – Search.csv

*

* Dependencies: function Online_Search

*

Chapter 3 performanCe testing in the software LifeCyCLe

126

* Date Author Ver Revision

* 200709 jonesh 1 Added verification check

*

**/

 3. Comments – Commenting is a must in any programming. It

allows for new people looking at the code to understand what

the original author of the code was thinking when it was written

(including the original author, who might not have seen the code

in a while). Of course, there is an argument that states “good

code is self-commenting” – if you can’t read the code, you should

learn more! The opposite end is to comment everything, wasting

development time for little benefit. Of course, the middle ground

between the two extremes is to think of comments as “deodorant

for smelly code.”1 In terms of effective commenting, the rules to

follow are

 a. Make comments brief.

 b. Keep comments relevant.

 c. Write comments for the least experienced person to view the code.

 4. Verification – It helps to know if the business process completed

successfully. Based on this, many performance engineers add

some form of verification to the test. This is an interesting area

though, as much of the time the checks done are somewhat

rudimentary. Just capturing a single order number (transactional

data) does not constitute verification. As well, the fact the script

did not stop in error does not mean that it has passed. A type of

performance testing not mentioned by the syllabus is functionality

under load (FUL). Every performance test can have elements of

checking functionality under load by treating any performance

test as if it were an automated functional test. It’s not unusual that

functional errors occur under load, for example, a system that

under load fails to generate transactional data in a timely manner

1 Thanks to the Refactoring Guru – https://refactoring.guru/smells/comments

Chapter 3 performanCe testing in the software LifeCyCLe

https://refactoring.guru/smells/comments

127

(or display it at all). Rather than create the message “standard

order 12345 saved” and display it as it did during functional

testing, the system would respond with “standard order saved.”

After execution when testers checked the database, the order

number was written within the record. Upon investigation, the

system while under load was found to delay creating the order

number, and hence the end user wouldn’t see the order number

saved at completion of the business process. It’s advisable to

think of every performance script as a functional test as well as a

performance test. Under load the system can behave differently

and uncover errors such as these that although they appear to be a

functional error, they only appear under load conditions.

 5. Standardized error handling – Many tools already have standard

error handling based on such things as the HTTP return codes,

where return codes in the range of 400 or 500 are immediately

captured as errors. Where this error capturing ability does fall

short is recovery from an error condition. Some tools allow a

predetermined response to an error condition (e.g., restarting the

next test iteration on error). Many systems though will have a set

of error conditions specific to that system. It is worth considering

writing custom functions to capture and recover from these

internal errors.

 6. Common libraries/repositories – Every good developer would

agree with the premise of modularization and the use of reusable

code. The same stands true for performance scripts. To use

common function libraries and data repositories to minimize the

maintenance overhead needed to keep the scripts up to date.

Chapter 3 performanCe testing in the software LifeCyCLe

128

A checklist can be useful to track the progression of script creation, allowing both the

performance engineers and stakeholders visibility of this stage (Table 3-2).

Table 3-2. Performance Scripting Development Checklist

Performance Script Development
Purchase_Single Purchase_Multi Purchase_Special

manual execute script business

processes

initial recording

replay success with original

recording

parameterize

Correlate

add checkpoints

transaction timing

replay with original data

replay with multiple iterations

replay multiple users/iterations

replay in perf test scenario

reaDy to rUn

 Scenario Construction

Scenarios should be created as per the Test Scenario Design developed earlier. Once

again, a scenario development checklist is a useful aid (Table 3-3).

Chapter 3 performanCe testing in the software LifeCyCLe

129

 Test Data Preparation

Again, this is a simple matter of putting the test data plan into practice. A small amount

of data will need creating for use in building the scripts. The next concern is to create

the volume of data required to run a full performance test. This will consist mainly of

master data, with some user-defined data thrown in. The focus now will be feeding data

into the performance execution environment. Data can be copied from the production

environment, especially if it doesn’t relate to any data covered by privacy regulations.

Private data SHOULD NOT BE USED in testing.

Table 3-3. Performance Scenario Checklist

Performance Scenario Development
Load_Ave_Day Load_Peak_Day Stress_Peak_Day

Conform scenario design

initial scenario creation

add scripts

initial test run (single Vuser)

set scenario runtime settings

set and check monitoring

final test shakedown run (5 Vusers)

reaDy to rUn

Chapter 3 performanCe testing in the software LifeCyCLe

130

To recreate private data, tools like the example in Figure 3-6 can be used.

Generatedata.com allows random private information to be recreated to be

added to records for use in performance tests (or any other type as well). It allows the

development of a custom dataset via an easy-to-use interface and can generate up to 100

records using the free version or, for a small license price, generate thousands of records

based on the configured dataset defined. It can then output these in different formats.

Tools like this make data generation and data management much easier. A wide range

of tools exist, including Excel macros up to full data management toolsets. This dataset

should be quick to build, quick to refresh, and compliant with all data privacy and

security regulations.

This data preparation process can be tested in the environment used to create

the performance test scripts and scenarios with a cut-down dataset. The execution

environment can then be populated with the full dataset.

Figure 3-6. www.generatedata.com/

Chapter 3 performanCe testing in the software LifeCyCLe

https://www.generatedata.com/

131

Table 3-4. Performance Execution Checklist

Performance Tool Preparation Checklist

Hardware

Checks pass/fail action on failure

is the test controller available (via physical

or remote access)?

obtain access (physical is preferred) from

the supplier/environment administrator

are load generators available (physically or

remotely)?

obtain access/schedule load generator

availability

(continued)

 Test Environment Preparation

The test environment needs to be configured to allow the full performance test to be

run. This environment should be built as per the test environment design. Any shortfalls

with the environment could lead to the performance test objectives not being achieved.

Once again, an environment checklist can be useful to ensure whoever is building

the environment covers all that is required. This also includes the dataset mentioned

previously, and any tools and/or monitoring is also added.

As well, this environment from this point should be managed, subject to both change

control and configuration management. As some performance engineers have found, if

changes are made to the environment without the performance engineer’s knowledge,

time can be wasted diagnosing nonexistent problems as a result of changes to the

environment.

 Test Tool Preparation

Based on the work in the planning phase, a proof of concept may already have led to the

tool being installed. This stage now prepares the tool to begin recording scripts, creating

scenarios, and executing a full performance test. Some tools, such as LoadRunner by

Micro Focus, have a set of tools, each of which performs a specific function within the

performance test. Other tools, such as JMeter, have everything incorporated into a

single tool. At this point, it’s important to set up the tool to run the full suite of planned

performance tests. As per other stages, a checklist is valuable to ensure everything is

considered (Table 3-4).

Chapter 3 performanCe testing in the software LifeCyCLe

132

Table 3-4. (continued)

Performance Tool Preparation Checklist

Check permissions on controller and load

generator machines

obtain local admin on the relevant

machines

Can the controller gain network access to

the load generators?

obtain access via environmental support/

vendor support

Can the load generators gain network

access to the system under test?

obtain access via environmental support

…

Software

Controller machine – are the prerequisites/

controller installed?

obtain local admin and complete

installation

Load generators – are the prerequisites/

load generators installed?

obtain local admin and complete

installation

monitoring – are all monitors installed and

working correctly?

obtain local admin and complete

installation

are the necessary tool licenses available

and installed?

obtain access via environmental support/

vendor support

Can the controller connect and maintain

connection to the load generators?

obtain licenses via vendor support

Can the load generators execute the scripts

against the system under test?

…

This list will vary depending on the nature and design of the tool. Both open source

and commercial tools will have similar characteristics, and many tools work in a similar

manner.

Chapter 3 performanCe testing in the software LifeCyCLe

133

 Monitoring Preparation

Some performance test tools have the monitoring built within the tool; others integrate

with external tools. Some performance tools have a vast array of monitoring options;

others are limited.

Monitoring should be set up based on:

 1. The requirements of the performance test specified earlier in the

monitoring planning

 2. The capabilities of the performance test/monitoring tool(s) to

capture the required metrics

It will be important if multiple monitoring tools are being used to correlate the

monitoring with the actions of the performance test. The usual method for this is to

set all monitoring to use absolute time (i.e., the local clock time), allowing the various

metrics to be matched.

Just like the performance tests themselves need to be checked, the monitoring too

needs testing. It should become a standard practice that every time the “performance

test” test is executed, the opportunity should be taken to test fully the monitoring as well.

In preparing monitoring for performance testing, four issues exist:

 1. Permissions – As mentioned previously in the checklist,

permissions involve environment and network administrators

granting permissions to run monitoring services like perfmon

or opening ports to allow the tool to communicate with the

machines being monitored.

 2. Knowledge of the metrics – It’s the responsibility of performance

engineers to educate themselves on the “art of the possible” in

terms of the available monitoring counters.

 3. Collection and consolidation – Having a common storage area

for results is an important consideration. Having the ability to

compare the metrics produced will aid in finding the root cause

of issues. Some of this can be automated – never forget that Excel

macros and other useful scripts can cut down on the performance

engineers’ legwork to consolidate results.

Chapter 3 performanCe testing in the software LifeCyCLe

134

 4. Storage – An aspect of performance monitoring that sometimes

gets overlooked is the amount of data that is gathered due to

monitoring. Sufficient disk space for the storage of results is an

absolute necessity (considering some result sets on longer soak

tests might run into gigabytes of data).

 Results Capture and Analysis Preparation

At this point, the next consideration is displaying the analysis work after execution. As

mentioned before in monitoring preparation, if some of this can be automated, it will

save time. Standard summary information from the performance test along with average

and maximum transaction times will always be of interest and are prime candidates for

automatic capture.

The results return to the original objectives of the performance test. Ultimately, the

results are the answers to these questions. An important consideration is the needs of

the stakeholders, some of which will be technical and some less so. A simple pass/fail on

these allows the overall outcome of the test to be quickly determined.

Deep analysis is unfortunately difficult to automate, but as tools be☑come more

advanced it becomes easier for performance engineers to conduct analysis sessions with

the tool’s assistance. More details on analysis and reporting follow in Chapter 4.

Table 3-5. Performance Test Objective Results

Performance Test Objectives Outcome Notes

to verify the system can support the

current peak user load

☑ system supports 100% current peak load with

• 92% transaction times met

• 99% transaction success rate

to determine if the current system is

scalable to the 5-year growth target

☑ system supports 150% current peak load with

• 86% transaction times met

• 97% transaction success rate

to verify the integration between the

system and optimus 3.2 with current

peak load

☒ system supports 67% current peak load before

errors with

• 42% transaction times met

• 87% transaction success rate

Chapter 3 performanCe testing in the software LifeCyCLe

135

 Final Environment Acceptance Test and Readiness Report

The final environment acceptance test is like that done at the beginning of the test

implementation test process phase. The difference now is that the execution environment

is being tested. This test will include the hardware and infrastructure, software, test data,

performance, and monitoring tools required to conduct the full performance test.

The performance test readiness report covers off the test process until this point. It’s

the final checklist to track progress until execution. The example in Table 3-6 might be

recognized as the checklist from the planning phase – hopefully now completed.

Table 3-6. Performance Readiness Check

Requirement Showstopper Status Notes

test requirements approved y Pass

Volumetric data approved y Pass

performance test plan approved y Pass

test tool is available and working after poC n Pass

Business process list approved y Pass

test environment designed n Pass

test scripts designed n Pass

test scenarios designed n Pass

test data design/volume approved y Pass

test monitoring designed n Pass

initial recording environment accepted y Pass

test scripts created and approved y Pass

test scenarios created and approved y Pass

test data created y Pass

test monitoring completed y Pass

test tool setup complete (with licenses) n Pass

test result collection set up n Pass

execution environment completed and checked y Pass

OVERALL STATUS Ready 100%

Chapter 3 performanCe testing in the software LifeCyCLe

136

This table becomes a key deliverable to the project to provide the status and

(hopefully) the evidence of the completion of the preparation of the performance test.

Summary performance test procedures contain the steps implementing the
performance test cases. performance testing is reliant on production-like amounts
and types of test data to simulate real users.

 Test Execution
Test execution occurs when the performance test is conducted, often by
using performance test tools. Test results are evaluated to determine if the
system’s performance meets the requirements and other stated objectives.
Any defects are reported.

—ISTQB_CTFL_PT

Unusual as it may seem, performance test execution can be the boring part of

performance testing. The automated performance test scenarios can take hours to

complete, with the only excitement for the performance engineer being small graphs

slowly creeping across a dashboard. Another point is in most instances, later levels of

performance test execution is done outside of normal working hours. Methodologies

such as DevOps have changed the traditional view of performance testing, as component

performance testing may now be run similar to automated functional tests within each

sprint (even to the point that they are automated as part of the build process).

Performance testing can add large amounts of load to the network, which can

adversely affect the overall performance of the network for other users. As well, the load

from other users can affect the results of the performance test. At this point, performance

engineers can become a creature of the night, sitting in an empty office watching those

small graphs creep across the screen…

The following stages cover test execution. Incorporated into this will be analysis and

remediation.

Chapter 3 performanCe testing in the software LifeCyCLe

137

 Initial Test Setup

Initial test setup ensures the entry criteria for the performance test to be executed have

been completed. Things to be added to this test setup checklist can include:

• Support – Administrator support for the system under test,

network, database, and infrastructure can be helpful. Being

able to immediately diagnose issues is a bonus, and the above

administrators can certainly help with this.

• Monitoring – Before each execution, a quick monitoring check to

ensure all the monitors are up and able to record the test results

should always occur.

• System under test state – Things to investigate include checking

the system state and any user sessions still running. Often after a

previous test is completed, some leftover user sessions might still be

running. These can either be left to time out or terminated before the

next execution.

• Data setup – Any test data required should be checked, such as:

• Master data, both that used by the test and the amount required

for the database to behave in a production-like manner

• User-defined data that is both lifelike and in enough quantity to

allow the performance test to execute per the operational and

load profiles successfully

• Transactional data or business processes in a specific state to

be used in the test and the means to capture transactional data

during the test

• Tools – Any specific requirements for the tools and/or scripts, such as:

• Specific runtime settings for that scenario execution.

• Specific result names or settings for the execution.

• Specific run logic for the tasks within the business process.

• Specific environment or other variables are set for the execution.

Chapter 3 performanCe testing in the software LifeCyCLe

138

 Test Execution

Run the performance test, ensuring the proper controls are in place to allow meaningful

results. It sounds obvious, but it’s surprising how often things are forgotten before

execution leading to invalid results and wasted time. Performance testing is usually run

in cycles – there may be one or a number of performance tests that will be executed

against a version/build of the code/application/system. One difference with other types

of testing is a performance test cycle may be completed quite quickly. A functional cycle

might take a week, whereas a performance test cycle consisting of a load test and a stress

test might only take a few hours.

 Results Analysis

Analyze the results of the execution. This can begin during the execution as data is

incoming from the tools and continue after the execution is complete. Results analysis

is a subject that is deserving of its own chapter, which in fact comes a little later. At this

point, some simple questions require answering (Figure 3-7).

Chapter 3 performanCe testing in the software LifeCyCLe

139

 Interim Test Report

After each test, a results summary should be written. The interim report should be a brief

summary (an email or a one-page report) of the success or failure of test objectives. This

may not be possible if you are running hundreds of tests; obviously, a report for each of

them is impractical, and a single report for a test cycle may be more appropriate.

Figure 3-7. Results analysis logic

Chapter 3 performanCe testing in the software LifeCyCLe

140

Importantly, this summary will give the stakeholders a view of the objectives to make

decisions as required. Deeper analysis can be included within this report, or it may

require several execution cycles to determine the deeper issues.

 Remedial Action (If Needed)

At the completion of each performance test execution, a decision point should exist

deciding whether the test was completed satisfactorily.

In the preceding flowchart, the represented remedial work could focus on the script

(change or update), the test data (change or refresh), the infrastructure, or the system

under test. Any remedial work must be documented, as one of the traditional issues is

the lack of changes being documented.

 Test Cycle Report

At the completion of a performance test cycle, a test cycle report shall be completed. This

is more comprehensive from the interim test report, containing additional information

not included in the interim test report. It’s at this point that comparisons in performance

can be made between the tests within the cycle, along with earlier executed cycles.

 Results Review Meeting

The purpose of this meeting is to analyze the results with stakeholders (both technical

and business). It’s at this point that information from the review meeting can be used

by stakeholders to make informed decisions about the performance test project. The

performance engineer:

• Proves the performance tests have been executed successfully.

• Identifies new potential performance risks.

• Identifies and shows documented any changes to the test plan.

• Shows documented any remedial work undertaken.

• Shows documented any further opportunities for system and process

improvements.

Chapter 3 performanCe testing in the software LifeCyCLe

141

 System and Process Improvement

This covers both improvements to the system (tuning) and improvements to the

performance process. This state will be entered only if outstanding performance project

risks still require further mitigation. The goal should be to improve the performance

testing process and/or procedures being followed. The process loops once this is

completed back to the initial test setup.

If performance testing has been completed, the test completion activities are next.

Summary test execution runs the performance tests; results are evaluated to
see if the system’s performance meets the stated objectives and any defects are
reported.

 Test Completion
Performance test results are provided to the stakeholders (e.g., architects,
managers, product owners) in a test summary report. The results are
expressed through metrics which are often aggregated to simplify the mean-
ing of the test results. Visual means of reporting such as dashboards are
often used to express performance test results in ways that are easier to
understand than text-based metrics.

—ISTQB_CTFL_PT

First, a quick anecdote. As the success of the LEGO Group proves, many people of

all ages love to build. Performance test execution can be compared to building with

LEGO. By the end of building, there is usually LEGO spread all over the table or the floor.

But once building is complete, there is still some work to be done. Test completion can

be compared to this point – it’s time to pick up the LEGO!

 Test Completion Report

The test completion report is a consolidation of the test cycle reports in conjunction with

the performance test plan. It not only provides information on the test cycles executed

but details the performance test project and product risks, the defects found, and how

both were mitigated.

Chapter 3 performanCe testing in the software LifeCyCLe

142

Once again, it needs to be emphasized that there are multiple stakeholders viewing

this report. All stakeholder requirements, both technical and business, must be

considered in this final report.

 Presentation and Recommendations

It can be easier to present the findings and recommendations to the project

stakeholders in a meeting. This allows the stakeholders to clarify any points they don’t

understand. This stage is extremely important in terms of giving performance testing

and performance engineers a positive impression to those stakeholders present in this

meeting. Performance engineers must consider the differences in both business and

technical knowledge – it could be that two meetings are required. It’s a good practice to

give business information with little technical detail in the first meeting and get “down

and dirty” in the technical details with the relevant nerds in a subsequent meeting.

 Performance Test Pack Creation

At this point, it’s time to create a regression test pack which will contain all performance

test assets and enough documentation for those assets to be reusable as is.

Most organizations have comprehensive regression sets. The failing of many of

them is they almost exclusively contain functional tests only. If any change is made to

a system, the potential for defects to be present has increased; by how much though is

dependent on a variety of factors. The normal reaction is of course to test to hopefully

discover these defects. The unfortunate issue is when defects are mentioned, people

think of functional defects.

Summary performance test results are provided to the stakeholders in a test
summary report, shown as metrics and dashboards aggregated to simplify the test
results to be understood by stakeholders.

Performance testing is often considered to be an ongoing activity in that is
performed at multiple times and at all test levels (component, integration,
system, system integration and acceptance testing). At the close of a defined
period of performance testing, a point of test closure may be reached where

Chapter 3 performanCe testing in the software LifeCyCLe

143

designed tests, test tool assets (test cases and test procedures), test data and
other testware are archived or passed on to other testers for later use during
system maintenance activities.

—ISTQB_CTFL_PT

The system maintenance activities mentioned earlier mean changes. Non-functional

testing (including performance testing) within the regression set is vital in uncovering

performance-related issues introduced by these changes.

 Transition

The main transition action is to pass the performance test pack onto the next owners

and to walk them through it. The next owner could be operations support, application

support, or the testing department. This pack can be used for multiple jobs:

• Regression testing

• Go-live assurance monitoring

• Availability monitoring after go-live

Summary performance testing is an ongoing activity performed at multiple
times and at all test levels. once testing is completed, the tests, test tool assets
(test cases and test procedures), test data, and other testware are archived or
passed on to others for use during maintenance activities.

 3.2 Categories of Performance Risks for Different
Architectures
PTFL-3.2.1 (K2) Explain typical categories of performance risks for different architectures

As mentioned previously, application or system performance varies consid-
erably based on the architecture, application and host environment. While
it is not possible to provide a complete list of performance risks for all sys-
tems, the list below includes some typical types of risks associated with par-
ticular architectures.

—ISTQB_CTFL_PT

Chapter 3 performanCe testing in the software LifeCyCLe

144

These risks should be thought of as a tiered set of product risks. And an example

could be the failure of a single server in a multi-tiered system because of excessive

resource consumption on that machine. That single machine failure could cause the

entire system to fail.

Performance engineers should always be considering the cause-effect relationship.

It’s the goal to identify the root cause of a problem, when often the first sign is the system

is “a bit slow.” This could relate to a bottleneck caused by high CPU utilization, low

memory, low bandwidth, and so on. Performance engineers should always refer to the

fundamental question looked at earlier:

What is load?

If performance engineers always consider the code executing in a defined

environment, they think beyond “the CPU is running at 100%.” They will identify the

code that’s causing the CPU to run at 100%.

Hopefully…

Summary performance varies based on the architecture, application, and the
host environment.

 Single Computer Systems
These are systems and applications that run entirely on one non- virtualized
computer. Performance can degrade due to:

• excessive resource consumption including memory leaks,
background activities such as security software, slow
storage subsystems (e.g., low-speed external devices or disk
fragmentation), and operating system mismanagement.

• inefficient implementation of algorithms which do not make
use of available resources (e.g., main memory) and as a result
execute slower than required.

—ISTQB_CTFL_PT

Chapter 3 performanCe testing in the software LifeCyCLe

145

Excessive resource consumption relates back to the generic monitoring elements

mentioned in Chapter 1:

• CPU utilization:

• Note should be taken on any system that continuously runs above

70% for an extended time. Running above 70% CPU utilization

leaves little room for other operations that may run (such as

operating system actions).

• Consider how the CPU utilization is spread across the available

processors. If the application being tested is single threaded,

only one processor might be busy in a multicore processor or

a multithreaded application where the load is being spread

unequally across the available processors.

• Examining which processes are consuming the processors can

also be of value.

• Look out for heat – a CPU running above 70% can heat up and

could possibly reduce the life of the processor!

• Memory utilization:

• Memory could refer to cached memory (L1 – part of each CPU

core, small but fast; L2 and L3 between the CPU and RAM,

slightly slower than L1 and has more storage) as well as RAM

itself. Cached memory is used for instructions and data the CPU

needs to access quickly or instructions/data to be reused. The

more L2 and L3 memory the machine has, the faster it will run.

• Memory utilization should be closely tracked, both in terms

of the overall memory use and memory use by each process.

Watching both will help uncover memory leaks and more

importantly which process is causing this.

• If available memory starts running low, paging starts (paging is a

memory management function that stores and retrieves blocks

of memory). If a process references a page that isn’t in RAM, a

page fault occurs. The CPU must then find the page on the HD/

SSD, find room in memory to place the retrieved page (meaning

Chapter 3 performanCe testing in the software LifeCyCLe

146

something might need to be written to disk), move the paged

information into RAM, update the page table, and return the

control back to the code needing the data. Monitoring page faults

can indicate the amount of paging occurring during the test.

• Disk input/output:

• Hard disks – Retrieving from or writing to the HD involves moving

the disk arm to position the disk heads over the correct track

(seek time), waiting for the data to be under the heads (rotational

latency), and then transferring the data. Excessive HD activity can

become a bottleneck in the system and can lead to HD read/write

queueing.

• Solid-state disks – SSD avoids the seek time and rotational latency

and hence is much faster (five or more times faster to read/write

than HDs, depending on the technology). If a HD is a bottleneck,

SSD can improve this between 200% and 800%. However, the

downside of SSD is the price (more expensive than HDs, although

the price is dropping dramatically).

• Bandwidth consumption:

• Bandwidth isn’t just relevant to the ethernet cable out the back

of the machine, as bandwidth also exists internally within

machines.

• Network bandwidth can directly affect transmission time (how

much data fits down the network segment), coupled with latency

(how long it takes to traverse the network segment) and packet

loss (the quality of the network segment).

• To the same extent, bandwidth can also affect moving data

internally between the CPU, memory, disks, network card, etc.

• Queueing:

• Queued processes, threads, and/or read/write transactions are

indicators of congestion. All can become system bottlenecks.

Chapter 3 performanCe testing in the software LifeCyCLe

147

• Queue lengths should be snapshot as an actual queue length,

or queue length/sec, rather than looking at the average queue

length over the length of the test. The average may hide a short-

term high spike in queueing.

• Queueing can cause cascades, where multiple queues increase

as a result of a single queue. For example, a HD read queue may

lead to a processor queue as the processor waits for values to

continue working.

Summary performance on single systems can degrade due to excessive
resource consumption (memory leaks, background activities, slow storage
subsystems, and operating system mismanagement) or inefficient implementation
of algorithms.

 Multi-tier Systems
These are systems of systems that run on multiple servers, each of which
performs a specific set of tasks, such as database server, application server,
and presentation server. Each server is, of course, a computer and subject to
the risks given earlier. In addition, performance can degrade due to poor or
non-scalable database design, network bottlenecks, and inadequate band-
width or capacity on any single server.

—ISTQB_CTFL_PT

Any multi-tier system will always perform at the speed of the slowest component or

tier that is used. Initially, after identifying poor system performance, the job will be to

identify the component or tier causing the problem. The next step is to focus effort to

identify the root cause of that component or tier bottleneck. One point to consider is

the inclusion of load balancing. If load balancing is a part of the production system,

it is often not included in the test environment. It is also not a coincidence that load

balancing often is a problem in production, a component not tested.

As would be thought, a multi-tier system is made up of multiple single computer

systems talking to each other. Inevitably, the same rules apply from the single computer

systems mentioned earlier.

Chapter 3 performanCe testing in the software LifeCyCLe

148

Summary systems of systems running on multiple servers (database/
application/presentation server), each of which is a computer and subject to
the risks given earlier, as well as poor or nonscalable database design, network
bottlenecks, and inadequate bandwidth or capacity on any single server.

 Distributed Systems
These are systems of systems, similar to a multi-tier architecture, but the
various servers may change dynamically, such as an e-commerce system
that accesses different inventory databases depending on the geographic
location of the person placing the order. In addition to the risks associated
with multi-tier architectures, this architecture can experience performance
problems due to critical workflows or dataflows to, from, or through unreli-
able or unpredictable remote servers, especially when such servers suffer
periodic connection problems or intermittent periods of intense load.

—ISTQB_CTFL_PT

Distributed systems can be compared with multiple single computer systems that are

a long way apart, so once again the same rules apply. Issues relating to the network

(bandwidth, packet loss, and latency) can play havoc with distributed systems,

especially if the system shares LAN/WAN where traffic can vary. Limitations on the test

environment can hamper performance testing this system type. A test environment

can always use WAN emulation, where software or hardware switches allow the

network bandwidth/latency/packet loss conditions to be replicated. The downside of

WAN emulation however is although the real network is being emulated, it may not

produce the variable conditions that might occur in production. If testing is done on

the production network, the performance engineer will not have control of the network

traffic and may get test results that cannot be replicated due to possibly variable network

traffic.

Chapter 3 performanCe testing in the software LifeCyCLe

149

Summary Distributed systems are like multi-tier architecture, but servers can
change dynamically (such as geolocation). in addition to multi-tier architectures,
performance problems due to critical workflows or dataflows to/from/through
unreliable or unpredictable remote servers (periodic connection problems or
intermittent periods of intense load) can lead to performance issues.

 Virtualized Systems
These are systems where the physical hardware hosts multiple virtual com-
puters. These virtual machines may host single-computer systems and
applications as well as servers that are part of a multi-tier or distributed
architecture. Performance risks that arise specifically from virtualization
include excessive load on the hardware across all the virtual machines or
improper configuration of the host virtual machine resulting in inadequate
resources.

—ISTQB_CTFL_PT

Virtualization is an option many organizations take for both production and test

environments and is a much-valued addition. Virtualization has a downside though. If

a test environment needs to be “production like,” virtualization can introduce problems.

For functional testing, the environment needs to be functionally the same as the

production environment. Virtualization can achieve this without question.

When it comes to performance testing, the environment needs to perform the same

as the production environment. An important difference with a virtualized environment

is the architecture. Many production environments are virtualized, so the architecture

will be similar. One difference might be significant however – the use of dynamic

resource allocation. As load increases on an environment with dynamic resource

allocation activated, more resources (CPU/memory/disk) are added for the resource

pool. In this instance, it’s better to fix the resources for the initial performance testing to

get a measured set of results on a standard environment.

Chapter 3 performanCe testing in the software LifeCyCLe

150

On the other hand, if the test environment is virtualized to represent a distributed

or multi-tier system, it may behave differently due to it being virtualized. It needs to be

noted that any virtual environment is different from a physical environment:

• A physical environment has the application installed directly on the

base operating system.

• A virtual environment on the base operating system is an application

(e.g., VMware or VirtualBox), within which an entire operating

system executes (which may or may not think it’s the only operating

system on the machine).

A discrepancy may exist between a virtualized environment and a physical

environment. Arif et al.2 conducted a study on this difference and found

We conducted the same performance tests in both virtual and physical
environments and compare the performance testing results based on the
three aspects that are typically examined for performance testing results:

 1. single performance metric (e.g. CPU time from virtual
environment vs. CPU time from physical environment)

 2. the relationship among performance metrics (e.g. correlation
between CPU and IO) and

 3. performance models that are built to predict system
performance.

Our results show that:

 1. a single metric from virtual and physical environments do
not follow the same distribution, hence practitioners cannot
simply use a scaling factor to compare the performance
between environments,

 2. correlations among performance metrics in virtual
environments are different from those in physical
environments,

2 [Arif et al] M.M. Arif, W. Shang & E. Shihab, “Empirical Study on the Discrepancy Between
Performance Testing Results from Virtual and Physical Environments,” Empirical Software
Engineering, June 2018, Volume 23, Issue 3, pp1490–1518

Chapter 3 performanCe testing in the software LifeCyCLe

151

 3. statistical models built based on performance metrics from
virtual environments are different from the models built from
physical environments suggesting that practitioners cannot
use the performance test results across virtual and physical
environments.

—Arif et al.

Summary Virtual machines host single computer systems/applications/servers.
performance risks include excessive load on the hardware across all the virtual
machines or inadequate resources from improper configuration of the host virtual
machine.

 Dynamic/Cloud-Based Systems
These are systems that offer the ability to scale on demand, increasing
capacity as the level of load increases. These systems are typically distrib-
uted and virtualized multitier systems, albeit with self-scaling features
designed specifically to mitigate some of the performance risks associated
with those architectures. However, there are risks associated with failures to
properly configure these features during initial setup or subsequent updates.

—ISTQB_CTFL_PT

So, by this point, a pattern should be detected. If we combine virtualized systems with

distributed systems, we end up with dynamic/cloud-based systems. Along with the

previous issues, cloud-based systems have some extra considerations.

The first highlights an issue in getting information from the cloud environment.

Because some monitoring requires certain ports to be open to conduct monitoring,

it might be difficult to gather information from a virtual environment on the cloud.

Communicating with the cloud provider might help mitigate this problem.

The second relates to security. The nature of a performance test (many users

accessing the system from a limited number of IP addresses) might be mistaken by

the cloud provider as a denial-of-service attack. The cloud provider should be notified

performance testing is being undertaken, both to allow monitoring and notify security to

allow the performance test.

Chapter 3 performanCe testing in the software LifeCyCLe

152

Summary Cloud systems (typically distributed and virtualized multi-tier
systems) can scale on demand, increasing capacity as the level of load increases.
performance risks include failures to properly configure self-scaling features and
loss of network.

 Client-Server Systems
These are systems running on a client that communicate via a user inter-
face with a single server, multi-tier server, or distributed server. Since there
is code running on the client, the single computer risks apply to that code,
while the server-side issues mentioned above apply as well. Further, perfor-
mance risks exist due to connection speed and reliability issues, network
congestion at the client connection point (e.g., public Wi-Fi), and potential
problems due to firewalls, packet inspection and server load balancing.

—ISTQB_CTFL_PT

An important characteristic of a client-server (or “thick client”) system is the processing

that is passed to the client. Going back to the 1960s and 1970s, most machines used

were dumb terminals connected to a mainframe or minicomputer. These machines

were basic input/output devices, with no real processing capability. All the processing

was done on the mainframe/minicomputer. After the birth of the microcomputer,

the capabilities of these end-user machines began to increase. This meant the server

(whether a mainframe/minicomputer/microcomputer) could now pass some processing

off to the client. This changed the communication behavior – the mainframe/dumb

terminal model had small amounts of information sent and received very frequently.

Client-server communication changed this by the server passing much larger amounts

of data back to the client for processing (Figure 3-8).

Chapter 3 performanCe testing in the software LifeCyCLe

153

The importance of this in terms of performance means:

• Processing load is passed from the server to the client, meaning

potentially more users can be served with the same server resource

utilization.

• Client resource utilization now must be considered as part of the

performance testing.

• The network must now support larger dataflows less frequently than

the mainframe environment.

Mainframe
Communica�on frequency High frequency
Data amount/ message Small

Client-Server
Communica�on frequency Low frequency
Data amount/ message Large

Figure 3-8. Traffic flow – mainframe vs. client-server

Chapter 3 performanCe testing in the software LifeCyCLe

154

Another issue to be considered with client-server is the type of connection between

the client and the server. In almost every instance, a stateful connection is created. This

is important for two reasons:

 1. The number of connections now becomes a consumable

resource that requires both inclusion in the performance test and

monitoring.

 2. Virtual users sitting idle consuming a connection must be taken

into consideration.

Summary Client-server systems (client user interface with a single/multi-tier/
distributed server). performance risks include single computer risks (client) and the
distributed/multi-tier server risks (server), connection speed and reliability issues,
network congestion at the client connection point (e.g., public wi-fi), and problems
due to firewalls, packet inspection, and server load balancing.

 Mobile Applications
These are applications running on a smartphone, tablet, or other mobile
device. Such applications are subject to the risks mentioned for client- server
and browser-based (web apps) applications. In addition, performance
issues can arise due to the limited and variable resources and connectivity
available on the mobile device (which can be affected by location, battery
life, charge state, available memory on the device and temperature). For
those applications that use device sensors or radios such as accelerometers
or Bluetooth, slow dataflows from those sources could create problems.
Finally, mobile applications often have heavy interactions with other local
mobile apps and remote web services, any of which can potentially become
a performance efficiency bottleneck.

—ISTQB_CTFL_PT

Mobile environments introduce an added layer of complexity. Because of their very

nature, communication with mobile devices may be intermittent. The means of

communication may also change – the network might switch from GPRS or EDGE to 3G,

to 4G, to 5G (if available), to Wi-Fi.

Chapter 3 performanCe testing in the software LifeCyCLe

155

Based on this, mobile applications operate in one of three modes:

 1. Never Connected, for stand-alone applications. All required

data and information becomes available upon installation of the

application. For example, the calculator on Android OS is a stand-

alone application that does not need any network connection.

 2. Partially Connected, normally used for ad hoc updates to the

application. Updates can be full updates of data back to the

server or just changes to data. An example is the game Candy

Crush Saga, where users can play the game without a connection,

and once a network connection is available, data is uploaded to

Facebook.

 3. Always Connected, like an enterprise wireless network and a set

of applications and servers allowing employees to connect to the

organization’s network. This could allow employees to use their

mobile devices within the organization’s network connections to

Microsoft Teams to make audio and video calls. A good example

of this always connected mode is WhatsApp.

These connection types determine the way in which data is synchronized between

the mobile device and the back-end system. Data synchronization can be done in two

ways using two methods:

• “Store-and-forward” synchronization allows users to store and

transmit information. Initially, the application stores the data locally,

and when a connection is established, the mobile app forwards the

locally stored data onto the server.

• Continuous synchronization is achieved either synchronously or

asynchronously when the connectivity between the client and server

is continuous.

• Synchronous method requires both the sender and receiver to have

a synchronized clock before data transmission commences.

• Asynchronous method does not require a clock synchronization but

adds a parity bit to the data before transmission.

Chapter 3 performanCe testing in the software LifeCyCLe

156

These factors add a level of complexity to any performance test environment.

Summary mobile applications are subject to the risks for client-server and
browser-based (web apps) applications and performance issues due to the
limited/variable resources and connectivity available on the mobile device
(location, battery life, charge state, available memory on the device, temperature),
slow dataflows from internal components (accelerometers or Bluetooth), and
interactions with other local mobile apps/remote web services.

 Embedded Real-Time Systems
These are systems that work within or even control everyday things such as
cars (e.g., entertainment systems and intelligent braking systems), eleva-
tors, traffic signals, Heating, Ventilation and Air Conditioning (HVAC) sys-
tems, and more. These systems often have many of the risks of mobile
devices, including (increasingly) connectivity-related issues since these
devices are connected to the Internet. However, the diminished performance
of a mobile video game is usually not a safety hazard for the user, while
such slowdowns in a vehicle braking system could prove catastrophic.

—ISTQB_CTFL_PT

Embedded real-time systems can once again combine the technology of a single

computer system with mobile. The real difference here is the operating system the

device uses. A single computer or a mobile device will have a full operating system

(Microsoft/Linux/OS X or Android/iOS). An embedded real-time system will only have a

basic “as needed” OS to do a specific job. These devices could include simple PCBs with

embedded software, up to complex Internet of Things (IoT – in effect embedded system)

devices. The moment these devices connect online or operate within a larger “system

of systems,” the issue of performance vs. security comes into play (especially in recent

times in industries like automotive and manufacturing). Previously, security was left out

or minimal because of the impact on performance. As could be well understood, these

devices were limited in terms of processing and memory. As the hardware became more

capable (and more connected), the need to secure these devices increased.

Chapter 3 performanCe testing in the software LifeCyCLe

157

To highlight this, an interesting event occurred on September 20, 2016, against

the website krebsonsecurity.com. A distributed denial-of-service attack was launched

against the site, and the attack included several unique characteristics, these being:

• The size of the attack – 620 gigabits of traffic per second, the largest

DDoS attack traffic detected at the time.

• The nature of the attack – Most of the attack consisted of simple

methods (SYN floods, GET and POST floods), with the addition of

GRE traffic.3

• The dispersed nature of the attack – Many DDoS attacks are region

based, whereas this attack used a botnet dispersed around the globe.

The botnet used in this attack possessed a new set of capabilities, using slave IoT

devices to generate a proportion of the malicious traffic.

Another consideration is the fact that embedded real-time systems show the essence

of the answer to the question, “What is load?”

Changes to the code could have a dramatic effect on the performance of these

systems due to the limited amount of resources available.

Summary embedded systems have the risks of mobile devices, including
(increasingly) connectivity-related issues. as these systems can be safety critical,
both performance and security can be an issue.

 Mainframe Applications
These are applications—in many cases decades-old applications—sup-
porting often mission-critical business functions in a data center, some-
times via batch processing. Most are quite predictable and fast when used
as originally designed, but many of these are now accessible via APIs, web
services, or through their database, which can result in unexpected loads
that affect throughput of established applications.

—ISTQB_CTFL_PT

3 Generic routing encapsulation (GRE) is a communication protocol used to establish a direct,
point-to-point connection between network nodes (www.incapsula.com/blog/what-is-gre-
tunnel.html).

Chapter 3 performanCe testing in the software LifeCyCLe

https://www.incapsula.com/blog/what-is-gre-tunnel.html
https://www.incapsula.com/blog/what-is-gre-tunnel.html

158

Historically, the users of mainframe environments interfaced with these systems

using a “dumb terminal.” A dumb terminal is an input/output device with no processing

resources available. It basically sends a request to the mainframe; the mainframe

processes the request to derive a response which is then sent back to the dumb terminal.

This principle has been moved forward to today with remote desktop emulation and

applications such as Citrix mimicking this behavior. In both cases, the only things sent to

the server are mouse movements, mouse clicks, and typing.

Mainframes are designed to handle a large volume of input and output data by

including several subsidiary computers called channels or peripheral processes. This

leaves the mainframe CPU free to deal only with high-speed data handling. Today,

mainframe systems consist mainly of databases and files of considerable size, and their

primary job is data handling.

It was typical to partition a mainframe to handle various tasks simultaneously. In this

way, it is closely related to virtual machines sharing a limited resource pool.

Any mainframe system that still exists runs code written in legacy languages (e.g.,

COBOL). The mainframe may also run an old operating system which may be difficult to

monitor with modern tools.

Summary Legacy mainframe systems support mission-critical business
functions in a data center (sometimes via batch processing) and are accessible
today via apis, web services, or through their database. risks come from
unexpected loads that affect throughput of applications.

Note that any particular application or system may incorporate two or more
of the architectures listed above, which means that all relevant risks will
apply to that application or system. In fact, given the Internet of Things and
the explosion of mobile applications—two areas where extreme levels of
interaction and connection is the rule—it is possible that all architectures are
present in some form in an application, and thus all risks can apply.

—ISTQB_CTFL_PT

The preceding quote explains the issues today with performance testing. Because many

of these environments can be combined into a larger system of systems, the relevant

risks of all the constituent components will certainly apply. The combination of these

risks could also create new risks not considered.

Chapter 3 performanCe testing in the software LifeCyCLe

159

Summary systems of systems combine the risks from the individual constituent
parts.

While architecture is clearly an important technical decision with a pro-
found impact on performance risks, other technical decisions also influence
and create risks. For example, memory leaks are more common with lan-
guages that allow direct heap memory management, such as C and C++,
and performance issues are different for relational versus non- relational
databases. Such decisions extend all the way down to the design of indi-
vidual functions or methods (e.g., the choice of a recursive as opposed to an
iterative algorithm). As a tester, the ability to know about or even influence
such decisions will vary, depending on the roles and responsibilities of tes-
ters within the organization and software development lifecycle.

—ISTQB_CTFL_PT

 Memory Leaks

memory leak

A memory access failure due to a defect in a program’s dynamic store alloca-
tion logic that causes it to fail to release memory after it has finished using it.

—ISTQB Glossary

Memory leaks were a common problem, especially when computers had very little

memory and developers fundamentally oversaw memory management. This problem

today has been reduced with languages like Java having “garbage collection,” or

automatic memory management. Both C and C++ have no such built-in memory

management. Systems built with these languages can still have memory leak problems.

Be warned however, memory leaks can still occur in Java. A Java object being

referenced (but not used) wouldn’t be removed by garbage collection and could allow

multiple objects to be created, consuming memory.

Even with working garbage collection, issues can still occur. As it consumes

resources, inefficient garbage collection can have effect on the overall performance, even

stalling the system until the operation is complete. A primary choice relating to this is

Chapter 3 performanCe testing in the software LifeCyCLe

160

the frequency of garbage collection. If the garbage collectors were to come to your house

every day, they wouldn’t have much rubbish to take away, but you would need to put

the bin out each night. If your garbage pickup was every two weeks, there would be a lot

more rubbish, but you must only put the bins out once. Garbage collection from memory

works the same. It can be done frequently, with lots of short stalls, or infrequently with

much fewer long stalls. Garbage collection also requires more memory and is slower

than explicit memory management.

 Relational vs. Nonrelational Databases

Relational vs. nonrelational databases are a fascinating area, becoming more relevant in

the “Age of Data” we are just entering. Basically put, the hint to defining these both is in

the name:

• Relational DBs define a structure (tables, fields, and rows) into

which the data is placed to allow it to be easily sorted, filtered, and

combined (“joined”) with other stored data. Think of a relational DB

as a set of index cards stored within a filing cabinet. It allows data to

be consistent, easily categorized, and navigated, with clearly defined

relationships between elements.

• Nonrelational DBs don’t have a clear structure to allow unorganized

data to be stored. All the data is added into something much like

a journal, into which people write their thoughts. There is a basic

structure (dates or page numbers), with the journal getting longer

and longer. If you need to find something, there’s a rough index based

on dates/page numbers; otherwise, you start reading at page one.

This greater flexibility for changing datasets, with analysis being more

dynamic.

Relational DBs are good for complex queries against a finite dataset. Nonrelational

DBs are good for storing large amounts of nonstructured data for dynamic analysis.

There is no defined performance standards for these, as there are too many variables

(the size of the dataset, data read/writes per second, available bandwidth/machine

resources/etc.). Suffice to say, data storage and retrieval can become a bottleneck in any

system.

Chapter 3 performanCe testing in the software LifeCyCLe

161

 Recursive and Iterative Algorithms

Finally, the difference between recursive and iterative algorithms (and no, they’re not

quite the same – Figure 3-9). The main difference between recursion and iteration is a

recursion is a process applied to a function. An iteration is a set of instructions which we

want to get repeatedly executed:

• A recursive function calls itself until a control variable condition is

met, leading to less code being executed, but possibly taking longer

to run. Because the recursive functions are continuously called, it can

put a performance overhead on this method.

• An iterative function loops until a condition is met, leading to more

code executed, but that code being simpler.

Importantly, if there’s an issue, infinite recursion can crash the system, while infinite

iteration can consume resources.

Figure 3-9. Iterative vs. recursive algorithm

Summary more than architecture influences and creates risks, such as

• memory leaks with languages that allow direct heap memory
management (C and C++)

• relational vs. nonrelational databases

• recursive as opposed to an iterative algorithm

Chapter 3 performanCe testing in the software LifeCyCLe

162

the ability to know about or even influence such decisions will vary, depending on
the roles and responsibilities of performance engineers within the organization and
development lifecycle.

 3.3 Performance Risks Across the Software
Development Lifecycle
PTFL-3.3.1 (K4) Analyze performance risks for a given product across the software

development lifecycle

The process of analyzing risks to the quality of a software product in general
is discussed in various ISTQB syllabi (e.g., see [ISTQB_FL_SYL] and [ISTQB_
ALTM_SYL]). You can also find discussions of specific risks and consider-
ations associated with particular quality characteristics (e.g.,
[ISTQB_UT_SYL]), and from a business or technical perspective (e.g., see
[ISTQB_ALTA_SYL] and [ISTQB_ALTTA_SYL], respectively). In this sec-
tion, the focus is on performance-related risks to product quality, including
ways that the process, the participants, and the considerations change.

—ISTQB_CTFL_PT

risk

a factor that could result in future negative consequences

—ISTQB Glossary

the combination of the probability of an event and its consequence

—ISO 16085

the effect of uncertainty on objectives

—ISO Guide 73

Chapter 3 performanCe testing in the software LifeCyCLe

163

Today, there exist many definitions for risk. The preceding definitions each look at an

aspect that should be considered:

 1. The glossary definition includes important components on the

definition of risk – probability (“could” result) and impact (future

negative consequences). When assessing risks, an area of concern

is determining accurate levels for both probability and impact

(more on this shortly).

 2. The ISO 16085 definition covers an important point about

defining risk. One of the major problems with risk is very similar

to another favorite of performance engineers – defining non-

functional requirements. Both suffer from similar issues in that

they can both be poorly defined. As this definition comes from

an ISO standard, there are some notes that accompany this

definition:

 a. The term “risk” is generally used only when there is at least the

possibility of negative consequences.

 b. In some situations, risk arises from the possibility of deviation

from the expected outcome or event.

 3. This ISO guide tries to unify the many definitions around

risk. Accordingly, there are several notes that accompany this

definition:

 a. An effect is a deviation from the expected – positive and/or

negative.

 b. Objectives can have different aspects (such as financial, health

and safety, and environmental goals) and can apply at different

levels (such as strategic, organization-wide project, product, and

process).

 c. Risk is often characterized by reference to potential events and

consequences, or a combination of these.

Chapter 3 performanCe testing in the software LifeCyCLe

164

 d. Risk is often expressed in terms of a combination of the

consequences of an event (including changes in circumstances)

and the associated likelihood of occurrence.

 e. Uncertainty is the state, even partial, of deficiency of information

relating to understanding or knowledge of an event, its

consequence, or likelihood.

We should also consider the relationship between the different risk categories

(Figure 3-10).

quality risk

a product risk related to a quality characteristic

project risk

a risk that impacts project success

—ISTQB Glossary

Although not included in the glossary, organizational risk relates to the damage to an

organization’s reputation and profitability.

Figure 3-10. Risk relationship model

Chapter 3 performanCe testing in the software LifeCyCLe

165

The relationship between each of these risk categories can be both simple and

complex. There is a defined relationship between quality, project, and organizational

risk. No risk exists in a vacuum. A mistake people often make is to consider a risk as a

single entity. Risks exist in the context of a larger cause-effect chain – one risk becoming

a problem could indeed be triggering events for further risks to change probability.

The 2010 Deepwater Horizon explosion serves as a good example to consider each

risk level and the relationship between them:

• At the product level, there were several failures (the safety history

of the oil rig was poor), leading to an increased probability of a

catastrophic accident.

• At the project level, because operations were already running five

weeks late, the operators appear to have chosen riskier procedures

to save time, even disregarding the safety advice of the rig staff and

contractors.

• At the organizational level, the explosion led to the deaths of 11

people with 16 others injured. It went on to become the largest

environmental disaster in US history, leaking an estimated 4.9

million barrels of oil into the Gulf of Mexico. The disaster cost BP

$54 billion for the clean-up, environmental and economic damages,

and penalties, along with BP pleading guilty to 11 criminal counts of

manslaughter, two misdemeanors, and a felony count of lying to the

US Congress. BP was also temporarily banned from contracts with

the US government until March 2014.

This is a dramatic example of how both quality and project risks can have an effect at

the organizational level.

Performance engineers, once again like non-functional requirements, need to know

how to define a risk. Most risks (like non-functional requirements) are poorly defined. A

correctly defined risk is made up of three parts (Figure 3-11):

Chapter 3 performanCe testing in the software LifeCyCLe

166

Cause – A description of the source of the risk. The event or situation that gives rise

to the risk

Event – A description of the area of uncertainty in terms of the threat or the

opportunity

Effect/impact – A description of the impact that the risk would have on the

organizational activity should the risk materialize

For performance-related risks to the quality of the product, the process is:

 1. Identify risks to product quality, focusing on characteristics
such as time behavior, resource utilization, and capacity.

 2. Assess the identified risks, ensuring that the relevant
architecture categories (see Section 3.2) are addressed.
Evaluate the overall level of risk for each identified risk in
terms of likelihood and impact using clearly defined criteria.

 3. Take appropriate risk mitigation actions for each risk item
based on the nature of the risk item and the level of risk.

 4. Manage risks on an ongoing basis to ensure that the risks are
adequately mitigated prior to release.

—ISTQB_CTFL_PT

The process listed earlier is encompassed within risk management:

risk management

The coordinated activities to direct and control an organization with
regards to risk.

—ISTQB Glossary

Figure 3-11. Components of a well-defined risk

Chapter 3 performanCe testing in the software LifeCyCLe

167

A continuous process for systematically identifying, analyzing, treating and
monitoring risk throughout the lifecycle of a product or service.

—ISO 16085

Coordinated activities to direct and control an organization with regards
to risk.

—ISO Guide 73

Once again, each of the three definitions deals with the slightly different version of

risk management:

• ISTQB emphasizes coordinated activities – risk management is like

any other process. It doesn’t just happen but needs to be formalized.

• ISO 16085 looks at risk management as a continuous process,

additionally mentioning monitoring – a forgotten but important risk

management component.

• ISO Guide 73 describes risk management as an organization-wide

process.

Risk management is a combination of all three definitions.

risk analysis

The overall process of risk identification and risk assessment.

—ISTQB Glossary

risk identification

The process of finding, recognizing and describing risks.

—ISTQB Glossary

By calling on a broad sample of stakeholders, the risk identification process is most

likely to identify risks. A range of techniques exist for identifying risk, broadly grouped

in techniques that “look backward” (a risk checklist), identifying historic risks that could

Chapter 3 performanCe testing in the software LifeCyCLe

168

occur, and “look forward” (a brainstorming exercise) to identify new, undiscovered risks.

As mentioned earlier, these identified risks must consist of cause/event/effect. Countless

times on projects, there is a risk in the risk register that states

There is a risk the project could run late.

The format to follow to define the risk:

There is a risk that [the cause] which could cause [the event] leading to [the effect].

The risk above (the project running late) is not a risk based on the risk format. It could be

the effect of a risk, or it could be the event. It certainly isn’t the cause and isn’t all three. The

cause is the important, as this is the focus to attempt to mitigate the risk. The first question to

ask would be what event could lead the project to run late? There might be many events:

• The test environment failed the environment acceptance test.

• A third-party supplier delayed delivery of code.

• Performance requirements were not quantifiable.

• The performance tool was incompatible with the new system.

Following that, if we take the event of the test environment failing the acceptance

test, what could cause this? It might be:

• The specification for the environment wasn’t defined.

• The required hardware wasn’t available in time.

• The specification was defined but not followed.

• The person tasked with preparing the environment went on extended

sick leave.

Each of these could then be a separate project risk, one of which is:

There is a risk that the test environment specification isn’t defined which
could cause the test environment to fail the environment acceptance test,
leading to the project running late.

Risk identification is complete once the risks have been properly identified and

defined. It must be stressed that risks identified may be a mix at this point and may not

relate to performance. But this nonperformance risk should not be discarded, as it still

could be a risk to the project.

Chapter 3 performanCe testing in the software LifeCyCLe

169

risk assessment

The process to examine identified risks and determine the risk level.
risk level

The qualitative or quantitative measure of a risk defined by impact and
likelihood.

—ISTQB Glossary

The next step is to categorize the identified risks in our case into performance and

nonperformance risks (as nonperformance risks should be out of scope). These could

then be further categorized into quality (product), project, and organizational risks.

Examples of each of these:

• Quality (product) – There is a risk that hard disk IO delays could

cause business process delays leading to data processing transaction

failure.

• Project – There is a risk that the performance test environment

specification isn’t defined which could cause environment

acceptance test failure leading to a project delay.

• Organizational – There is a risk that performance failure due to a load

spike after go-live could cause a system failure leading to a regulatory

fine.

Notice that with the quality risk the mitigation would be running a performance test

to check the hard disk IO. The project risk would require steps taken to ensure the test

environment specification is written to allow the performance test environment to be

built to specification. The simple view on both risks is to return to the time-cost-quality-

scope-risk diagram. The quality risk looks at the quality corner and can be mitigated

with testing. The project risk considers the time-cost part – it could take longer or cost

more if any risk becomes an issue. Scope can also affect this relationship – the more

things against which we need to consider quality, the more time and money (project

risk) it might take. And, of course, the more overall risk we are faced with (both quality

and project), the higher the overall organizational risk the organization might face.

The organizational risk is interesting, in that conducting spike testing could mitigate

the quality risk of a performance failure due to a load spike but could also reduce the

cost of a fine were this risk to become an issue. This is also a good example of how risks

Chapter 3 performanCe testing in the software LifeCyCLe

170

do not exist in a vacuum. The organizational risk links back to quality risks relating to a

spike in load. Often, a risk becoming an issue could become the triggering event for the

probability of other risks becoming an issue changing.

Next is to determine the risk level. The risk level is a product of both the impact (how

bad the risk will be if it becomes an issue) and the probability (how likely is this risk to

become an issue). One of the biggest problems with risk assessment is the qualitative

perception of risk that stakeholders tend to rely on over the recorded facts.

We don’t see things as they are, we see them as we are….

—Anais Nin

As the quote says, people tend to see things based on our own perception rather

than on objective data (whether it is available or not). Of course, the illustration shows

a person holding the sun. We know the person isn’t really holding it, but the perception

we have can show otherwise! It is interesting to consider the relationship between actual

risk which could have an adverse effect on an organization and the perception of risk.

Different individuals will have different perceptions of risk, just as will different teams,

departments, and even organizations.

On this, Bruce Schneier wrote:

We over-react to intentional actions, and under-react to accidents, abstract
events, and natural phenomena (if two aircraft had been hit by lightning
and crashed into a New York skyscraper, few of us would be able to name
the date on which it happened)

We over-react to things that offend our morals (moral emotions are the
brain’s call to action).

We over-react to immediate threats and under-react to long-term threats.

We under-react to changes that occur slowly and over time.

—schneier.com, 2008

The main consideration is the difference between qualitative and quantitative

assessment.

Chapter 3 performanCe testing in the software LifeCyCLe

171

Quantitative

(Actual)

Qualitative

(Perceived)

impact and likelihood are calculated from

known facts
impact and likelihood are assigned using

subjective judgment

Can be accurately replicated Cannot be accurately replicated

The preference would be to use quantitative analysis. Unfortunately, the facts

required to perform quantitative analysis are rarely available.

Therefore, performance engineers are forced to use qualitative assessment. If this is

the case, it’s a good idea to involve a range of different knowledgeable stakeholders to

help assess the risk. Even relying on subjective judgment, an attempt should be made

to conduct the assessment as “objectively” as possible. When quantitative assessments

of risk levels are used inappropriately, the results mislead the stakeholders about

the extent to which one understands and can manage risk. This is a dangerous area

as so much risk assessment is done relying on qualitative assessment to conduct the

assessment (recall inductive reasoning from earlier). Stakeholders will guess both the

probability and impact of a particular risk. It’s much better to try and be quantitative –

basing the probability and impact on known calculable values. Unfortunately, no risk

assessment can be 100% quantitative, so the challenge will be to make risk assessment

as quantitative as possible. An excellent standard from the US National Institute of

Standards and Technology (NIST) Special Publication 800-30 Revision 1 “Guide for

Conducting Risk Assessments” gives a great outline of risk assessment. Although the

standard was written for information security, the method can be applied to any risk

assessment. This standard is available for free online at https://nvlpubs.nist.gov/

nistpubs/Legacy/SP/nistspecialpublication800- 30r1.pdf.

To determine the quantitative value associated with both the likelihood and impact,

objective criteria must be defined. For example, an individual might score the impact

from 1 to 5 (1 the lowest, 5 the highest). But how can it be decided what a “3” is?

Chapter 3 performanCe testing in the software LifeCyCLe

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

172

Impact criteria might relate to the cost of the loss if the risk becomes an issue. For an

example, see Table 3-7.

More than one single criterion should be used. This could be combined with the

number of customers affected (Table 3-8).

The overall risk impact could then be the average of the combined criteria impact

values.

NIST has a well-structured methodology for assessing both the impact and

likelihood. From NIST Publication 800-30, the following tables for the risk likelihood are

used.

Table 3-7. Impact Criteria – Cost of Loss

Impact Value Cost of Loss

1 $1–10,000

2 $10,001–100,000

3 $100,001–1,000,000

4 $1,000,001–10,000,000

5 $10,000,001+

Table 3-8. Impact Criteria – Customer Exposure

Impact Value Customer Exposure

1 no exposure

2 <5%

3 5–10%

4 11–24%

5 25%+

Chapter 3 performanCe testing in the software LifeCyCLe

173

Although not quite appropriate, the table shows how probability levels could be

calculated. The risk level can be determined using a risk matrix (Table 3-10).

Once the risk has been categorized and assessed, mitigation is the next step.

risk mitigation

The process through which decisions are reached and protective measures
are implemented for reducing or maintaining risks to specified levels.

—ISTQB Glossary

Risk management differs depending on the type of risk. Mitigation for quality risk

involves testing, whereas project risk requires management to make decisions regarding

the time, cost, or scope of the performance project.

Table 3-10. Risk Matrix

Table 3-9. Probability Criteria

Qualitative
Values

Semi-qualitative
Values

Description – If the Threat Event Is Initiated or
Occurs

Very high 96–100 5 it is almost certain to have adverse impacts

high 80–95 4 it is highly likely to have adverse impacts

moderate 21–79 3 it is somewhat likely to have adverse impacts

Low 5–20 2 it is unlikely to have adverse impacts

Very low 0–4 1 it is highly unlikely to have adverse impacts

Chapter 3 performanCe testing in the software LifeCyCLe

174

Mitigation will lower either the probability, the impact, or maybe both. The question

that remains is by how much was the risk probability and/or impact reduced by the

mitigation steps. There can be three factors to consider:

 1. Was the original risk mitigated? Occasionally, mitigation steps

are put in place that mitigate risk, but not the identified risk. A

good example is a warning sign. The sign may not be effective in

discouraging risky behavior, and people might continue doing

things they are warned about. In most cases, however, the sign is

more to protect the organization or person posting the sign from

liability.

 2. Could mitigation introduce new risks? Occasionally, the

mitigation selected can introduce new risks. For example, if a

decision is made to run more performance test than initially

planned, it could introduce a new risk regarding more testing

taking longer and increasing the probability of the project running

late.

 3. Is the mitigation effective? Even putting mitigation into place

may only reduce the original risk probability and/or impact by a

small amount. The misnomer for some stakeholders is that the

risk will be removed once mitigated. The task of mitigation is to

reduce the risk level to the risk appetite defined for this risk.

risk appetite

The amount of risk the organization, or subset of it, is willing to accept.

—M_o_R

To reduce the risk to zero for a quality risk, exhaustive testing would be required.

Exhaustive testing, as per Principle 2 of the general testing principles, is impossible.

Summary identify risks to product quality. assess the identified risks, and
evaluate the overall level of risk for each identified risk in terms of likelihood and
impact using clearly defined criteria. take risk mitigation actions for each risk
based on the nature of the level of risk. manage risks on an ongoing iterative basis.

Chapter 3 performanCe testing in the software LifeCyCLe

175

As with quality risk analysis in general, the participants in this process
should include both business and technical stakeholders. For performance-
related risk analysis the business stakeholders must include those with a
particular awareness of how performance problems in production will
actually affect customers, users, the business, and other downstream stake-
holders. Business stakeholders must appreciate that intended usage, busi-
ness-, societal-, or safety-criticality, potential financial and/or reputational
damage, civil or criminal legal liability and similar factors affect risk from
a business perspective, creating risks and influencing the impact of
failures.

—ISTQB_CTFL_PT

An interesting point between both the technical and business stakeholders is their joint

understanding of a risk, but from different points of view. The technical stakeholders are

better placed to determine on the probability of a performance risk – the probability of

the system not achieving the desired performance goals. The business stakeholders are

better to determine the impact, whether this be in lost productivity or lost revenue, if the

risk becomes an issue in production.

Summary Both business and technical stakeholders should be involved in risk
management. Business stakeholders must understand risk factors to the business
processes such as intended usage; business, societal, or safety criticality; potential
financial and/or reputational damage; and civil or criminal legal liability can affect risk.

Further, the technical stakeholders must include those with a deep under-
standing of the performance implications of relevant requirements, archi-
tecture, design, and implementation decisions. Technical stakeholders must
appreciate that architecture, design, and implementation decisions affect
performance risks from a technical perspective, creating risks and influenc-
ing the likelihood of defects.

—ISTQB_CTFL_PT

The technical definition of the system was covered previously in Chapter 3.1 (technical

overview/requirements definition/volumetric analysis/environment analysis and

specification/test data planning).

Chapter 3 performanCe testing in the software LifeCyCLe

176

Summary technical stakeholders must understand the requirements,
architecture, design, and implementation decisions of the system and that they can
affect risk.

The specific risk analysis process chosen should have the appropriate level
of formality and rigor.

—ISTQB_CTFL_PT

The process can be drawn from international or national standards (such as NIST

SP 800-37 or ISO 16085), industry standards (PCI DSS4 or DO-178C/ED-12C5), or

the organization’s internal standards. These can be mandatory regulatory processes

(DO178C, for example) or optional (ISO 16085) depending on the requirements of the

organization, the legal jurisdiction, and the project.

Summary risk management should have the relevant formality.

For performance-related risks, it is especially important that the risk analy-
sis process be started early and is repeated regularly. In other words, the
tester should avoid relying entirely on performance testing conducted
towards the end of the system test level and system integration test level.
Many projects, especially larger and more complex systems of systems proj-
ects, have met with unfortunate surprises due to the late discovery of perfor-
mance defects which resulted from requirements, design, architecture, and
implementation decisions made early in the project. The emphasis should
therefore be on an iterative approach to performance risk identification,
assessment, mitigation, and management throughout the software devel-
opment lifecycle.

—ISTQB_CTFL_PT

4 The Payment Card Industry Data Security Standard (PCI DSS) is an information security
standard for organizations handling credit cards from the major card schemes.
5 DO-178C/ED-12C – Software Considerations in Airborne Systems and Equipment Certification
is the primary document by which certification authorities such as the US FAA, the European
EASA, and Transport Canada approve all commercial software-based aerospace systems.

Chapter 3 performanCe testing in the software LifeCyCLe

177

The two keywords mentioned earlier are early and continuous. Risk management

begins on day one of any project and continues until the system is finally

decommissioned, never to be used again. The principle of Performance by Design should

be adhered to, meaning performance engineering (and the associated risks) should be

the goal throughout the system life span.

Summary risk management should be iterative throughout the software
development lifecycle project.

For example, if large volumes of data will be handled via a relational data-
base, the slow performance of many-to-many joins due to poor database
design may only reveal itself during dynamic testing with large-scale test
datasets, such as those used during system test. However, a careful technical
review that includes experienced database engineers can predict the prob-
lems prior to database implementation. After such a review, in an iterative
approach, risks are identified and assessed again.

—ISTQB_CTFL_PT

The above is a good example, as it starts to demonstrate a move from performance

testing to performance engineering. Something that’s been made popular by such

problems as data security and privacy is the “by design” concept. Often, people believe

performance can be “tested” into a system. Certainly, when the organization starts

performance testing, this will be the case. But this will be limited in scope and can

only remediate known defects. As performance data is built up over time, performance

engineers can give more information on the various bottlenecks and issues the

organization may have and allow these to be designed out of the system.

Summary iterative risk management will regularly conduct risk analysis.

In addition, risk mitigation and management must span and influence the
entire software development process, not just dynamic testing. For example,
when critical performance-related decisions such as the expected number of
transactions or simultaneous users cannot be specified early in the project,

Chapter 3 performanCe testing in the software LifeCyCLe

178

it is important that design and architecture decisions allow for highly vari-
able scalability (e.g., on-demand cloud-based computing resources). This
enables early risk mitigation decisions to be made.

—ISTQB_CTFL_PT

Techniques such as FMEA6 can be an important method for removing performance

quality risks early in the lifecycle, aligning with the Performance by Design principle.

Summary iterative risk management starts at the beginning of any project.

Good performance engineering can help project teams avoid the late dis-
covery of critical performance defects during higher test levels, such as sys-
tem integration testing or user acceptance testing. Performance defects
found at a late stage in the project can be extremely costly and may even
lead to the cancellation of entire projects.

—ISTQB_CTFL_PT

In 2004, Stecklein et al. wrote the paper “Error Cost Escalation Through the Project Life

Cycle” looking at the error cost escalation. Although not directly related to performance

(the paper covered both hardware and software errors), the results are telling:

The results show the degree to which costs escalate, as errors are discovered
and fixed at later and later phases in the project life cycle. If the cost of fixing
a requirements error discovered during the requirements phase is defined
to be 1 unit, the cost to fix that error if found during the design phase
increases to 3 — 8 units; at the manufacturing/build phase, the cost to fix
the error is 7 — 16 units; at the integration and test phase, the cost to fix the
error becomes 21 — 78 units; and at the operations phase, the cost to fix the
requirements error ranged from 29 units to more than 1500 units.

—Stecklein et al., 2004

6 Failure mode and effect analysis (FMEA) is a proactive method developed to identify, evaluate,
and prevent product and/or process failures early in the design stage, to design risk out of a
system.

Chapter 3 performanCe testing in the software LifeCyCLe

179

Summary performance defects identified late can be more expensive than
defects found earlier.

As with any type of quality risk, performance-related risks can never be
avoided completely, i.e., some risk of performance-related production fail-
ure will always exist. Therefore, the risk management process must include
providing a realistic and specific evaluation of the residual level of risk to
the business and technical stakeholders involved in the process. For exam-
ple, simply saying, “Yes, it’s still possible for customers to experience long
delays during check out,” is not helpful, as it gives no idea of what amount
of risk mitigation has occurred or of the level of risk that remains. Instead,
providing clear insight into the percentage of customers likely to experience
delays equal to or exceeding certain thresholds will help people understand
the status.

—ISTQB_CTFL_PT

In accordance with the definition supplied by ISO Guide 73, the relationships between

the risk level, risk tolerance, and risk appetite (Figure 3-12) are:

• The risk level faced by many organizations is usually distributed over

a wide continuum – simplified in this instance from low to high risk

levels.

• The risk tolerance specifies the level of risk the organization is aiming

to reduce the risk level of the identified performance risk either to or

below.

• The risk appetite is the range of risk that the organization is targeting

with mitigation to reduce the risk level of each.

Chapter 3 performanCe testing in the software LifeCyCLe

180

The diagram represents the ideal – all risks above the risk tolerance are targeted. As

testing is performed, the mitigated risk lowers the level of quality risk. Sometimes, the

tolerance may not be achieved, and a decision would need to be made on whether the

tolerance should be raised or time/cost extended to allow more quality risk mitigation

(i.e., testing) to continue. An easy way to remember this relationship is:

• Risk level is a measure.

• Risk tolerance is a threshold.

• Risk appetite is a range.

risk appetite

The amount of risk the organization, or subset of it, is willing to accept.

—M_o_R

risk tolerance

The threshold levels of risk exposure that, with appropriate approvals, can
be exceeded, but which when exceeded, will trigger some form of response
(e.g. reporting the situation to senior management for action).

—M_o_R

Figure 3-12. Risk terminology

Chapter 3 performanCe testing in the software LifeCyCLe

181

The final point to note is this risk model defines that acceptable risk is not zero risk.

Zero risk is unachievable, as it falls into the realm of exhaustive testing. There will always

be some residual risk even after the risk has been mitigated. But because the residual risk

is below the risk tolerance, it has been accepted by the organization.

Summary performance risk cannot be eliminated. accurate, quantified risk levels
should be reported to stakeholders to enable them to make informed decisions.

 3.4 Performance Testing Activities
PTFL-3.4.1 (K4) Analyze a given project to determine the appropriate performance testing

activities for each phase of the software development lifecycle

Performance testing activities will be organized and performed differently,
depending on the type of software development lifecycle in use.

—ISTQB_CTFL_PT

Performance testing activities will be organized and performed differently depending on

the type of software lifecycle in use.

 Sequential Development Models
The ideal practice of performance testing in sequential development mod-
els is to include performance criteria as a part of the acceptance criteria
which are defined at the outset of a project. Reinforcing the lifecycle view of
testing, performance testing activities should be conducted throughout the
software development lifecycle. As the project progresses, each successive
performance test activity should be based on items defined in the prior
activities as shown below.

—ISTQB_CTFL_PT

Sequential methodologies are less used today as organizations select agile-based

methodologies. It doesn’t mean these sequential methodologies will never be used

however. To refresh your memory (especially if you’ve never worked in a non-agile-

based project), the V-model is covered in Figure 3-13.

Chapter 3 performanCe testing in the software LifeCyCLe

182

IS
TQ

B_
C
TF

L_
PT

Fi
gu

re
 3

-1
3.

 V
-m

od
el

 d
ev

el
op

m
en

t m
et

ho
do

lo
gy

Chapter 3 performanCe testing in the software LifeCyCLe

183

Summary performance criteria should be included as part of the acceptance
criteria and should be included throughout sequential methodology–based projects.

 Iterative and Incremental Development Models
In these development models, such as Agile, performance testing is also seen
as an iterative and incremental activity (see [ISTQB_FL_AT]). Performance
testing can occur as part of the first iteration, or as an iteration dedicated
entirely to performance testing. However, with these lifecycle models, the
execution of performance testing may be performed by a separate team
tasked with performance testing.

—ISTQB_CTFL_PT

Figure 3-14. Iterative/incremental sprint–based development methodology

Performance testing within the iterative/incremental methodologies is interesting

(Figure 3-14). It’s important to note a full end-to-end performance test in almost all

situations cannot be created and executed within the sprint due to a lack of time (most

sprints are two weeks in length). The trade-off tends to be new features encoded are

performance tested, and a limited amount of regression testing can be done within the

sprint. Larger end-to-end performance tests are normally conducted outside of the

sprint on a fixed snapshot of the code. Any information gathered at the end of this run is

then fed back into a subsequent sprint for defect repair, refactoring, and/or development

process improvement.

Chapter 3 performanCe testing in the software LifeCyCLe

184

Summary performance criteria should be included as part of the acceptance
criteria and should be included throughout iterative and incremental methodology–
based projects. performance testing may consist of small tests within the sprint
and larger end-to-end tests run outside the sprints.

The following list from the syllabus (the bulleted list inside the syllabus references)

includes sections added to the syllabus points:

Continuous Integration (CI) is commonly performed in iterative and incre-
mental software development lifecycles, which facilitates a highly auto-
mated execution of tests. The most common objective of testing in CI is to
perform regression testing and ensure each build is stable. Performance test-
ing can be part of the automated tests performed in CI if the tests are designed
in such a way as to be executed at a build level. However, unlike functional
automated tests, there are additional concerns such as the following:

• The setup of the performance test environment – This often
requires a test environment that is available on demand, such as
a cloud- based performance test environment.

—ISTQB_CTFL_PT

As the environment requirements are ubiquitous to Agile, this point is expected.

Of course, in earlier sprints the code base may not be adequate to create a full end-to-

end performance test, hence end-to-end testing happens later. But it could be (and

is actually happening more and more) a performance testing requirement that each

component is tested to a production-like level.

Summary Ci relies on automated regression test execution as part of the iterative
development. test environments need to be available on demand for execution.

• Determining which performance tests to automate in CI – Due
to the short timeframe available for CI tests, CI performance tests
may be a subset of more extensive performance tests that are
conducted by a specialist team at other times during an iteration.

—ISTQB_CTFL_PT

Chapter 3 performanCe testing in the software LifeCyCLe

185

Risk and user story prioritization can help with this decision.

Summary prioritizing performance tests to automate are a subset due to limited
execution time.

• Creating the performance tests for CI – The main objective of
performance tests as part of CI is to ensure a change does not
negatively impact performance. Depending on the changes made
for any given build, new performance tests may be required.

—ISTQB_CTFL_PT
regression testing

A type of change-related testing to detect whether defects have been intro-
duced or uncovered in unchanged areas of the software.

—ISTQB Glossary

A great deal of testing in Agile is predicated on regression testing. Sometimes (and often

mistakenly) functional testing is the basis for regression. It must be noted that ALL

test types – including performance testing – must be considered when establishing a

regression test suite.

Summary Ci performance tests mainly check regression, with tests created for
new features.

Executing performance tests on portions of an application or system – This
often requires the tools and test environments to be capable of rapid perfor-
mance testing including the ability to select subsets of applicable tests.

—ISTQB_CTFL_PT

This can be a major limiting factor for many CI/CD environments. Often, the tool

isn’t the issue, but the way the performance test scripts are created. Programming

disciplines like modularization can help mitigate this. As well, returning to the

business process model, breaking the scripts into the business process/task/step

model can also be useful in modularizing the script.

Chapter 3 performanCe testing in the software LifeCyCLe

186

Performance testing in the iterative and incremental software development
lifecycles can also have its own lifecycle activities:

 1. Release Planning –In this activity, performance testing is
considered from the perspective of all iterations in a release,
from the first iteration to the final iteration. Performance
risks are identified and assessed, and mitigation measures
planned. This often includes planning of any final
performance testing before the release of the application.

 2. Iteration Planning – In the context of each iteration,
performance testing may be performed within the iteration
and as each iteration is completed. Performance risks are
assessed in more detail for each user story.

Figure 3-15. Iterative/incremental sprint–based development methodology

Summary Ci performance tests are often executed on a subset of the system.

Although the test process is similar, Agile does not change things. As mentioned, test

environments are needed much earlier, and regression testing is a continuous activity. It

is usually a question not of what is needed with Agile, but when will it be needed.

The answer is it’s usually needed early!

CI/CD processes rely on Agile-based methodologies as shown in Figure 3-15.

Chapter 3 performanCe testing in the software LifeCyCLe

187

 3. User Story Creation – User stories often form the basis of
performance requirements in Agile methodologies, with the
specific performance criteria described in the associated
acceptance criteria. These are referred to as “non-functional”
user stories.

 4. Design of Performance Tests – performance requirements
and criteria which are described in particular user stories are
used for the design of tests (see section 4.2)

 5. Coding/Implementation – During coding, performance
testing may be performed at a component level. An example
of this would be the tuning of algorithms for optimum
performance efficiency.

 6. Testing/Evaluation – While testing is typically performed
in close proximity to development activities, performance
testing may be performed as a separate activity, depending
on the scope and objectives of performance testing during the
iteration. For example, if the goal of performance testing is to
test the performance of the iteration as a completed set of user
stories, a wider scope of performance testing will be needed
than that seen in performance testing a single user story. This
may be scheduled in a dedicated iteration for performance
testing.

 7. Delivery – Since delivery will introduce the application to
the production environment, performance will need to be
monitored to determine if the application achieves the desired
levels of performance in actual usage.

—ISTQB_CTFL_PT

Although this breakdown looks different from the earlier diagram for sequential

methodologies, the actual activities performance testers complete are similar. The

biggest difference between the two is WHEN these activities are done within the

iterative/incremental methodologies and how often these are done.

Chapter 3 performanCe testing in the software LifeCyCLe

188

Summary iterative and incremental methodologies have the following lifecycle
activities:

1. release planning 3. User story Creation 5. Coding/implementation 7. Delivery

2. iteration planning 4. Design of performance tests 6. testing/evaluation

 Commercial Off-the-Shelf (COTS) and Other Supplier/
Acquirer Models

Many organizations do not develop applications and systems themselves,
but instead are in the position of acquiring software from vendor sources or
from open-source projects. In such supplier/acquirer models, performance
is an important consideration that requires testing from both the supplier
(vendor/developer) and acquirer (customer) perspectives.

—ISTQB_CTFL_PT

This creates an interesting paradigm. Many reasons exist for a system performing poorly.

A system could perform poorly due to architectural issues or code bottlenecks. Irrelevant

of the environment the system is installed upon, these issues will exist. A system with

good performance however could be installed onto an environment inadequate for the

resource demand the system needs. And, not to point fingers at software vendors, the

customer must realize the vendor may be reluctant to speak about poor performance…

Summary Built software (Cots/open source) acquisition is typical, with the need
for performance test from both the vendor and acquirer.

Regardless of the source of the application, it is often the responsibility of the
customer to validate that the performance meets their requirements. In the
case of customized vendor-developed software, performance requirements
and associated acceptance criteria which should be specified as part of the
contract between the vendor and customer. In the case of COTS applica-
tions, the customer has sole responsibility to test the performance of the
product in a realistic test environment prior to deployment.

—ISTQB_CTFL_PT

Chapter 3 performanCe testing in the software LifeCyCLe

189

Hence, the requirement that the customer tests the product in a realistic test

environment. It could be required that some performance criteria be added to the

requirements list when purchasing software.

It may not always be the vendor’s fault. The author has had experience when working

as a consultant performance engineer; both the vendor and the customer were blaming

each other for failed performance.

The vendor blamed the poor client infrastructure for the performance issues.

The customer blamed the inefficient server client communication being used.

“This is indeed a mystery”, I remarked. “What do you imagine that it
means?”

“I have no data yet. It is a capital mistake to theorize before one has
data. Insensibly one begins to twist facts to suit theories instead of the-
ories to suit facts…”

—Conan Doyle, 1892sb

It was an interesting job, as both the vendor and client had a very limited dataset

to prove that they were correct. Both were twisting the data to suit their own theory.

After performance testing, it was proved that both were correct in this case – both the

inefficient protocol (taking more bandwidth than was stated) and the poor infrastructure

(a limited WAN network with high latency) were to blame.

Another complication today is systems supplied as Software as a Service (SaaS).

There are challenges for multitenant systems (and indeed single tenant) as the acquirer

has little control over the infrastructure the system runs on or the code versions

and upgrade/change control managed by the vendor. The vendor may give broad

performance SLAs, but these are often from production experience or testing a vanilla

version and not the real version the customer is using. In this case, custom configuration

to the customer’s needs (and therefore changing the system characteristics from vanilla)

or even adding customizations and integrations. Access to test systems are also an issue

as they are hard to recreate, and the customer testing in production is usually impractical

and even contractually banned by the vendor.

Chapter 3 performanCe testing in the software LifeCyCLe

190

Summary Cots – the acquirer is responsible for performance testing in a
realistic environment to check it meets the performance acceptance requirements.

Customized, vendor-developed –the acquirer tests to accept the product; the
vendor can also be contracted to provide performance requirement data.

 Chapter 3 Questions

 1. When applying the principal performance testing activities, when

should defining the scope occur?

A. Test planning, monitoring, and control

B. Test analysis and design

C. Test implementation and execution

D. Test closure

 2. When applying the principal performance testing activities, when

should performance test cases be assembled into performance

test procedures?

A. Test planning, monitoring, and control

B. Test analysis and design

C. Test implementation and execution

D. Test closure

 3. When applying the principal performance testing activities, when

should analysis of test objectives, SLAs, IT architecture, process

models, and other items that comprise the test basis occur?

A. Test planning, monitoring, and control

B. Test analysis and design

C. Test implementation and execution

D. Test closure

Chapter 3 performanCe testing in the software LifeCyCLe

191

 4. When applying the principal performance testing activities, when

should action plans be provided in case issues be encountered?

A. Test planning, monitoring, and control

B. Test analysis and design

C. Test implementation and execution

D. Test closure

 5. When applying the principal performance testing activities, when

should results be expressed through metrics which are often

aggregated to simplify the meaning of the results?

A. Test planning, monitoring, and control

B. Test analysis and design

C. Test implementation and execution

D. Test closure

 6. When applying the principal performance testing activities, when

should performance test cases be devised?

A. Test planning, monitoring, and control

B. Test analysis and design

C. Test implementation and execution

D. Test closure

 7. Consider the following technical environments:

1. single computer 4. Virtualized 7. mobile

2. multi-tier system 5. Dynamic/cloud-based 8. embedded

3. Distributed 6. Client/server and browser-based 9. mainframe

Which of these is likely to have a performance risk due to

excessive resource consumption?

A. 1

B. 1,2,3,6,7

Chapter 3 performanCe testing in the software LifeCyCLe

192

C. 1,2,4,5,6,7,8,9

D. 1,2,3,4,5,6,7,8,9

 8. Which of these is most likely to cause a performance risk due to a

by-product of using a development language which allows direct

heap management?

A. Memory leak

B. Stack overflow

C. Garbage collection

D. Increased CPU utilization

 9. A company is changing the data it collects on customers to

include statistical information on racial and/or ethnic origin and

trade union membership and, to improve security, biometric

data. As this company has operations in Europe, the General Data

Protection Regulations will apply to this data. Furthermore, this

data falls into the special category data (personal data that needs

more protection because of its sensitive nature). Which of the

following performance test product risk characteristics should

NOT apply when identifying risks?

A. Time behavior

B. Capacity

C. Performance risk impact

D. Resource utilization

 10. A company is reengineering an in-house system to move into a

cloud environment. A product risk was identified relating to systems

running in a cloud environment not performing to the expected

level. Stakeholders are unsure the system will perform with an

adequate response time. The first development iteration is about to

begin – what steps could be conducted to help reduce the risk?

Chapter 3 performanCe testing in the software LifeCyCLe

193

A. Test from the UI with the full dataset loaded to ensure the response time

will be adequate when the full API set has been migrated to the cloud.

B. Conduct a network assessment to ensure there are no latency or

bandwidth issues between the cloud environment and the client

machines.

C. Test via the web services at the API level to ensure access to the data is fast

enough without having the testing complicated by the UI.

D. Conduct a technical review of the database implementation and conduct

a performance test from the UI with the full dataset loaded.

 11. A project stakeholder has contacted you to begin planning for

the performance testing of a new project. You have a vague

description of the system and business processes to be built, and

the project is about to begin. The stakeholder has a template

performance planning document but doesn’t understand which

SDLC will be used.

release planning performance test Design performance testing/

evaluationsprint planning Coding/implementation

User story Creation Delivery

Can you identify the SDLC?

A. Sequential

B. Test-driven development

C. Iterative/incremental

D. Commercial off the shelf

 12. The following relate to key characteristics of performance testing

in the listed software development methodologies:

 i. Performance tests are automated to be run automatically with each build,

focusing on regression testing the stability of each build.

 ii. Performance testing can be conducted as small tests within each cycle, as

well as larger, end-to-end performance tests outside the cycle.

Chapter 3 performanCe testing in the software LifeCyCLe

194

 iii. As the project progresses, each successive performance test

activity should be based on items defined in the prior activities to

achieve the acceptance criteria developed at the project outset.

 iv. Acceptance testing is the test level performance testing is

conducted, executed in a production-like environment by

representatives of the end users.

Which of the following combination is correct?

A. (i) Sequential; (ii) CI; (iii) iterative/incremental; (iv) COTS

B. (i) CI; (ii) iterative/incremental; (iii) sequential; (iv) COTS

C. (i) Iterative/incremental; (ii) CI; (iii) COTS; (iv) sequential

D. (i) CI; (ii) COTS; (iii) iterative/incremental; (iv) sequential

Chapter 3 performanCe testing in the software LifeCyCLe

195
© Keith Yorkston 2021
K. Yorkston, Performance Testing, https://doi.org/10.1007/978-1-4842-7255-8_4

CHAPTER 4

Performance Testing
Tasks

 ISTQB Keywords
concurrency

The simultaneous execution of multiple independent threads by a component or

system.

load generation
The process of simulating a defined set of activities at a specified load to be submitted

to a component or system.

load profile
Documentation defining a designated number of virtual users who process a defined

set of transactions in a specified time period that a component or system being tested may

experience in production.

operational profile
An actual or predicted pattern of use of the component or system.

ramp-down
A technique for decreasing the load on a system in a measurable and controlled way.

ramp-up
A technique for increasing the load on a system in a measurable and controlled way.

system of systems
Multiple heterogeneous, distributed systems that are embedded in networks

at multiple levels and in multiple interconnected domains, addressing large-scale

interdisciplinary common problems and purposes, usually without a common

management structure.

https://doi.org/10.1007/978-1-4842-7255-8_4#DOI

196

system throughput
The amount of data passing through a component or system in a given time period.

test plan
Documentation describing the test objectives to be achieved and the means and the

schedule for achieving them, organized to coordinate testing activities.

think time
The amount of time required by a user to determine and execute the next action in a

sequence of actions.

virtual user
A simulation of activities performed according to a user operational profile.

 4.1 Planning
Planning is an important part of the performance test process. Traditionally, it was often

neglected or minimalized for the simple reason that the performance engineer “knew

what they were doing….”

Today, the importance of planning is seen at the completion of the project. The

performance testing process must work within the wider software development lifecycle,

and the plan creates the “expected result” for the performance testing project, process,

and tasks.

 4.1.1 Deriving Performance Test Objectives
PTFL-4.1.1 (K4) Derive performance test objectives from relevant information

Stakeholders may include users and people with a business or technical
background. They may have different objectives relating to performance
testing. Stakeholders set the objectives, the terminology to be used and the
criteria for determining whether the objective has been achieved.

—ISTQB_CTFL_PT

Stakeholders can be considered according to the following four categories:

• Internal stakeholders – An obvious definition to an internal

stakeholder is someone internal to a project/department/

organization.

Chapter 4 performanCe testing tasks

197

• External stakeholders – Users, third-party suppliers, or people

outside of the “internal” stakeholder group.

• Neutral stakeholders – Auditors/regulators/law enforcement who are

more interested in ensuring the organization “follows the rules.”

• Anti-stakeholders – Rarely, some stakeholders want the project to fail

(e.g., users of a legacy system being replaced, who could lose their job

as a result).

The primary stakeholder groups performance engineers deal with are the internal

and external stakeholders. It would be wrong to assume either business or technical

knowledge in any stakeholder group. In fact, individuals could possess either or, in the

rare occasion, both business and technical knowledge.

Summary stakeholders include technical and business backgrounds, each with
different objectives, terminology, and acceptance criteria.

Objectives for performance tests relate back to these different types of stake-
holders. It is a good practice to distinguish between user-based and techni-
cal objectives. User-based objectives focus primarily on end-user satisfaction
and business goals. Generally, users are less concerned about feature types
or how a product gets delivered. They just want to be able to do what they
need to do.

—ISTQB_CTFL_PT

One of the main communication tasks for performance engineers is to act as a

translator between business and technical stakeholders. A knowledgeable performance

engineer can help convert business requirements into technical performance objectives.

The communication goes back the other way, with the translation of technical details

back to the business stakeholders.

Communication is an important skill for all performance engineers. One of the

tasks required is to explain exactly what performance is. Stakeholders some of the time

imagine that performance testing is purely stress testing – loading the system until

failure. Or only focused on response time. It’s the job of performance engineers to let

stakeholders know the methodology, the tasks, and the analysis and interpretation of

results.

Chapter 4 performanCe testing tasks

198

Summary Business stakeholders focus on user-based objectives (end-user
satisfaction and business goals), allowing users to do what they need to do.

Technical objectives, on the other hand, focus on operational aspects and
providing answers to questions regarding a system’s ability to scale, or
under what conditions degraded performance may become apparent.

—ISTQB_CTFL_PT

Once again, the need for an interpreter is evident. It does raise the point that to

be a good interpreter a performance engineer can be great technically, but without a

knowledge of the business, you’re only halfway to the objective of becoming a great

performance engineer.

The following list includes [italics] added to the syllabus points.

Summary technical stakeholders focus on operational aspects (resource
utilization/capacity/scalability).

Key objectives of performance testing include identifying potential risks,
finding opportunities for improvement, and identifying necessary changes.

When gathering information from the various stakeholders, the following
questions should be answered:

• What transactions will be executed in the performance test and
what average response time is expected? [Business]

• What system metrics are to be captured (e.g., memory usage,
network throughput) and what values are expected? [Technical]

• What performance improvements are expected from these tests
compared to previous test cycles? [Both]

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

199

The preceding list is a generic (and very short) list of questions to ask. The “Art

of Questioning” can be vital for performance engineers as many performance test

objectives and even the types of performance test needed come from the questions the

organization stakeholders ask. Especially when prompted by experience performance

engineers. Clarification of stakeholder needs is a necessary skill. For example, a

stakeholder might make the statement, “The system needs to be faster.”

A good question a performance engineer might ask is, “Why?”

It can even be better (as found by Toyota) to ask why five times:

The basis of Toyota’s scientific approach is to ask why five times whenever
we find a problem… By repeating why five times, the nature of the problem
as well as its solution becomes clear.1

Why does the system need to be faster? How much faster? If you require a 2-second

response time, what would happen if the response time was 2.1 seconds?

That level of performance test translation (business to technical and technical to

business) can help stakeholders understand the ramifications of objectives and more

importantly the time and cost of achieving them. The system can always be faster, but it

might be very expensive to achieve…

Summary key performance objectives include

• identifying potential risks

• identifying improvements and changes needed

• Business transactions and expected response times

• technical system metrics and expected values

1 5 Whys: The Ultimate Root Cause Analysis Tool – https://kanbanize.com/lean-management/
improvement/5-whys-analysis-tool

Chapter 4 performanCe testing tasks

https://kanbanize.com/lean-management/improvement/5-whys-analysis-tool
https://kanbanize.com/lean-management/improvement/5-whys-analysis-tool

200

 4.1.2 The Performance Test Plan
PTFL-4.1.2 (K4) Outline a performance test plan which considers the performance

objectives for a given project

The Performance Test Plan (PTP) is a document created prior to any per-
formance testing occurring. The PTP should be referred to by the Test Plan
(see [ISTQB_FL_SYL]) which also includes relevant scheduling informa-
tion. It continues to be updated once performance testing begins.

—ISTQB_CTFL_PT

As a side note, the standard ISO29119-3 also has a slightly more comprehensive

document hierarchy with the contents of test plans included. This standard speaks of

two types of test plan – the higher-level project or master test plan and the subprocess

test plan which the PTP falls under. It also has test plan examples for both sequential and

iterative/incremental methodologies.

An important practical note is the size of the PTP. Performance engineers should try

to limit the size of the PTP document to less than 30 pages. This is based on the premise

that the larger the document, the fewer people are likely to read and understand it. If

there is generic information repeated in the document taken from the glossaries (like the

performance test type definitions) or the test strategy (like the PTP objectives), they can

be cross-referenced rather than repeated ad nauseam.

Summary the performance test plan is created prior to performance testing
occurring, refers to the project test plan, and will be updated as needed during
performance testing.

The following information should be supplied in a PTP.

 Objective
The PTP objective describes the goals, strategies and methods for the perfor-
mance test. It enables a quantifiable answer to the central question of the
adequacy and the readiness of the system to perform under load.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

201

Note this information on strategies and methods can often be taken from the

relevant test strategy. Often, a simple reference to the relevant strategy section will

suffice, but it can be helpful to copy these into the PTP for easy reference.

Summary objectives describe the quantifiable goals, strategies, and methods.

 Test Objectives
Overall test objectives for performance efficiency to be achieved by the
System Under Test (SUT) are listed for each type of stakeholder (see Section
4.1.1).

—ISTQB_CTFL_PT

As mentioned previously, these performance test objectives must be quantifiable

and clearly state under what load conditions the objective is to be achieved.

Summary test objectives describe the quantifiable system under test business
and technical objectives.

 System Overview
A brief description of the SUT will provide the context for the measurement
of the performance test parameters. The overview should include a high-
level description of the functionality being tested under load.

—ISTQB_CTFL_PT

As well as describing the functionality, a simple architecture diagram should

also be included at this point – further details are included in the following System

Configuration.

Summary system overview includes the high-level functions and brief system
description.

Chapter 4 performanCe testing tasks

202

 Types of Performance
The types of performance testing to be conducted are listed (see Section 1.2)
along with a description of the purpose of each type.

—ISTQB_CTFL_PT

The purpose of the PTP is to create an “expected result” for the planned

performance testing that can act to inform stakeholders. As mentioned earlier, this could

be cross-referenced from the test strategy rather than repeated in the PTP. Not all types

will be used in every performance test project, so only the relevant performance test

types need be included.

Summary types to be tested (load/stress/scalability spike/endurance/
concurrency/capacity).

 Acceptance Criteria
Performance testing is intended to determine the responsiveness, through-
put, reliability and/or scalability of the system under a given workload. In
general, response time is a user concern, throughput is a business concern,
and resource utilization is a system concern. Acceptance criteria should be
set for all relevant measures and related back to the following as
applicable:

• Overall performance test objectives

• Service Level Agreements (SLAs)

• Baseline values – A baseline is a set of metrics used to compare
current and previously achieved performance measurements.
This enables particular performance improvements to be
demonstrated and/or the achievement of test acceptance criteria
to be confirmed. It may be necessary to first create the baseline
using sanitized data from a database, where possible.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

203

Performance engineers can sometimes fall into the trap of describing an end

solution with acceptance criteria. We must remember that acceptance criteria should

state the intent, not a solution. This stands true for all types of acceptance criteria, both

functional and non-functional. A good acceptance criteria checklist to follow is:

• Clear

• Concise

• Testable

• Understandable

• User perspective based

These could be measured as a response time or other such performance criteria.

They should also be stated as a desired outcome (e.g., “2–3 seconds to save a form”)

which could be investigated and quantified to define expected results. Of course, having

“a number” to work toward is helpful. The danger can be to make up a number (seven

seconds?) for the sake of a number. A better approach is to give a range to work toward,

then investigate this to narrow the range.

Summary acceptance criteria should be based on response time (user),
throughput (business), and resource utilization (system) and relate back to the
performance test objectives, sLas, and/or baseline values.

 Test Data
Test data includes a broad range of data that needs to be specified for a
performance test. This data can include the following:

• User account data (e.g., user accounts available for simultaneous
log in)

• User input data (e.g., the data a user would enter into the
application in order to perform a business process)

• Database (e.g., the pre-populated database that is populated
with data for use in testing)

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

204

Much was written in Chapter 3.1 on test data. Remember the three types of test data

required:

• Master data – Data in the system before execution that may or may

not be used directly in the performance test

• User-defined data – Data that is input at runtime as part of the

performance test

• Transactional data – Data created at runtime that should be captured

as part of the results of the performance test

To use the preceding examples:

• Database = master data

• User accounts = master data (not directly used in the test)/user-

defined data (used in the test)

• User input data = user-defined data

Summary test data includes master/user-defined/transactional data.

The test data creation process should address the following aspects:

• data extraction from production data

• importing data into the SUT

• creation of new data

• creation of backups that can be used to restore the data when
new cycles of testing are performed

• data masking or anonymizing. This practice is used on
production data that contains personally identifiable
information and is mandatory under General Data Protection
Regulations (GDPR). However, in performance testing, data
masking adds risk to the performance tests as it may not have the
same data characteristics as seen in real-world use.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

205

It’s also essential that any data used comply with local data privacy regulations. This

point cannot be emphasized enough, but not for the reason most people think. From

a security point of view, test systems are a tempting target. Sometimes, they contain

production data, and security can quite often be very lax (e.g., users with elevated

privileges and/or simple-to-guess passwords). An example of this type of hack was the

Equifax data breach experienced in the UK in 2017. Initially, the company stated 400,000

records were lost, before the number jumped to over 15.2 million. Disturbingly, the

following line in the press release from Equifax (October 10, 2017) stated about the lost

data:

Regrettably this file contained data relating to actual consumers as well as
sizeable test datasets, duplicates and spurious fields.

—www.equifax.co.uk/about-equifax/press-releases/en_gb/-/
blog/equifax-ltd-uk-update-regarding-the-ongoing-

investigation-into-us-cyber-security-incident

This is a primary reason (especially for organizations affected by the provisions of the

General Data Protection Regulations) to ensure that test data is not in danger of releasing

private information. Even allowing performance engineers access to organization

information (such as personnel records or payroll information) could be a breach of the

privacy regulations.

Summary test data creation can be extracted production data/ sUt imported
data/ new data/ restored backup data. personal data must be masked or
anonymized to comply with privacy regulations.

 System Configuration
The system configuration section of the PTP includes the following techni-
cal information:

• A description of the specific system architecture, including servers
(e.g., web, database, load balancer)

• Definition of multiple tiers

Chapter 4 performanCe testing tasks

https://www.equifax.co.uk/about-equifax/press-releases/en_gb/-/blog/equifax-ltd-uk-update-regarding-the-ongoing-investigation-into-us-cyber-security-incident
https://www.equifax.co.uk/about-equifax/press-releases/en_gb/-/blog/equifax-ltd-uk-update-regarding-the-ongoing-investigation-into-us-cyber-security-incident
https://www.equifax.co.uk/about-equifax/press-releases/en_gb/-/blog/equifax-ltd-uk-update-regarding-the-ongoing-investigation-into-us-cyber-security-incident

206

• Specific details of computing hardware (e.g., CPU cores, RAM,
Solid State Disks (SSD), Hard Drive Disks (HDD)) including
versions

• Specific details of software (e.g., applications, operating systems,
databases, services used to support the enterprise) including
versions

• External systems that operates with the SUT and their
configuration and version (e.g., Ecommerce system with
integration to NetSuite)

• SUT build/version identifier

—ISTQB_CTFL_PT

Another consideration is the mechanism through which any changes to

configuration are made. In fact, any changes to the software, hardware, or the

configuration for either must be tracked. It can be wise to capture a “before and after” for

the system configuration and the related performance test results. This can show a direct

benefit of performance testing to the stakeholders.

Summary system configuration includes the system build and version,
architecture, tier definitions, hardware details, software details, and external
system integration.

 Test Environment
The test environment is often a separate environment that mimics produc-
tion, but at a smaller scale. This section of the PTP should include how the
results from the performance testing will be extrapolated to apply to the
larger production environment. With some systems, the production envi-
ronment becomes the only viable option for testing, but in this case the spe-
cific risks of this type of testing must be discussed.

Testing tools sometimes reside outside the test environment itself and may
require special access rights in order to interact with the system compo-
nents. This is a consideration for the test environment and configuration.

Chapter 4 performanCe testing tasks

207

Performance tests may also be conducted with a component part of the sys-
tem that is capable of operating without other components. This is often
cheaper than testing with the whole system and can be conducted as soon
as the component is developed.

—ISTQB_CTFL_PT

Test environments can become a massive issue, and yet they can also be a

performance engineer’s best friend. Processes must be put in place for the creation,

management, configuration changes, and the eventual monitoring, reporting, and

archiving of this environment. The environment includes the test data and tools as well

as the SUT.

An important rule that all performance engineers and project staff must understand

is The Golden Rule of Test Environments During Performance Test Development and

Execution:

We work as a team, and we do what the performance engineer says!

Having control of the performance test environment is vital, as small configuration

changes, code drops, OS tweaks, and even “extra users” can have a significant effect on the

results of a performance test. The author once spent two days diagnosing a performance

issue – during a load test, there were strange peaks in the resource utilization on the

system. After spending time diagnosing this, it was discovered the performance testing

environment was simultaneously being used for performance testing and the end-user

training! The system under test behaved as expected for about an hour, until the training

users started an exercise, and the performance dropped. (Still not happy about this…)

Extrapolation is highlighted in the syllabus quote because it is fraught with danger.

Important to this is the definition of extrapolation:

Extrapolation is an estimation beyond the original observation data
range.

The key parts of this definition are the fact that it’s an estimate, beyond the range of

collected data. Two schools of thought exist on extrapolation:

 1. Extrapolation is a valid scientific approach, often used in

engineering simulations.

 2. There are lies, d*mn lies, and extrapolations.

Chapter 4 performanCe testing tasks

208

There is truth in both statements, but in terms of performance testing, extrapolation

can be dangerous. Engineering simulations can extrapolate based on known behavior –

we can extrapolate upon the tensile strength of concrete because engineers have

experimented enough to have a basis for known behavior. This data is then converted

into an equation or algorithm to allow calculations based on the observed behavior.

But engineers are always aware that this extrapolation could be subject to outside

environment variables.

In the case of IT system performance, it can almost be guaranteed we do not have

enough data on which to base an assumption. Most systems we test are complex with

many varying factors involved. Extrapolation, as a result, tends to oversimplify the

questions being asked. For example, a system can support 500 concurrent users with two

application servers. If another three application servers are added, will the system be

able to host 1250 concurrent users?

The danger performance engineers can be subject to is almost all systems do not

scale linearly. At some point, the system will reach a bottleneck limit affecting the overall

performance of the system.

Figure 4-1. A possible pitfall in extrapolating beyond a data sample

And, at that point, measurements tend to change from the near lin-
ear to the unpredictable. Once again, Holmes gives the best advice:

I never guess. It is a shocking habit – destructive to the logical
faculty.

—Conan Doyle, 1890

Chapter 4 performanCe testing tasks

209

The more data performance engineers gather, the more assured we can be on a

conclusion. More data points can give a better indication of the actual path the data will

take – only plotting two points will always give a straight line!

The reasons why we might need to extrapolate include:

• Production hardware is expensive or cannot be supplied in time

leading to a less capable test environment.

• Certain types of performance testing (stress or capacity planning)

which might encourage extrapolation.

In conclusion, extrapolation can be performed, but both the performance engineer

and the stakeholders must be aware of the risks.

Summary the test environment can be a smaller version of production (although
production can be used with risks), include tool access (with access rights), and
can be performed on components of the system. results may need extrapolation to
suit behavior in production.

 Test Tools
This section includes a description of which test tools (and versions) will be
used in scripting, executing and monitoring the performance tests (see
Chapter 5). This list normally includes:

• Tool(s) used to simulate user transactions

• Tools to provide load from multiple points within the system
architecture (points of presence)

• Tools to monitor system performance, including those described
above under system configuration

—ISTQB_CTFL_PT

As briefly mentioned earlier, the tools themselves form part of the performance test

environment. An essential part of the performance test project is to conduct a proof of

concept on the SUT to ensure the tool will be adequate to create virtual user scripts,

generate an adequate load, and gather monitoring data and results.

Chapter 4 performanCe testing tasks

210

Something that could be added to the PTP or included in the test strategy or as a

separate document is a set of test tool guidelines. These could include:

• The points mentioned in Chapter 3.1 around scripting and scenario

creation

• Procedures to follow when installing and setting up the tool

• Procedures for execution and results capture

• Information on data creation and management

• Notes on the maintenance of scripts, scenarios, and data

• Procedures for maintaining and updating the tools

Summary performance tools include scripting (tools to simulate and monitor
transactions), test execution (applying load from multiple points of presence), and
monitoring.

 Profiles
Operational profiles provide a repeatable step-by-step flow through the
application for a particular usage of the system. Aggregating these opera-
tional profiles results in a load profile (commonly referred to as a scenario).
See Section 4.2.3 for more information on profiles.

—ISTQB_CTFL_PT

operational profile

An actual or predicted pattern of use of the component or system.

—ISTQB Glossary

Operational profiles have been mentioned previously in Chapter 1.2. Operational

profiles are a result of the volumetric analysis, following the mantra of who/what/

where/when/how. On the information derived from this, linked to the performance

test requirements, an operational profile can be derived. The operational profile

becomes the basis for any subsequent performance testing; it becomes imperative

Chapter 4 performanCe testing tasks

211

for performance engineers to “think outside the box” when considering what actual

users would do when using the system. The load profile then goes on to document the

performance test.

Summary operational profiles describe the business process path through the
system. these combine to form the load profile (scenario) to include further details
on ramp-up and ramp-down, duration, and virtual user numbers.

 Relevant Metrics
A large number of measurements and metrics can be collected during a
performance test execution (see Chapter 2). However, taking too many
measurements can make analysis difficult as well as negatively impact the
application’s actual performance. For these reasons, it is important to iden-
tify the measurements and metrics that are most relevant to accomplish the
objectives of the performance test.

—ISTQB_CTFL_PT

Performance testing can suffer from an effect known to quantum physics as the

observer effect:

The observer effect is the theory that the observation of a quantum phe-
nomenon inevitably changes that phenomenon.

The same can be said of the monitoring performance engineers set up during

performance testing. The more data from multiple sources the performance engineer

gathers during the test, the more resources and bandwidth are required to perform

this monitoring. As well, the more data gathered means more data for the performance

engineer to filter through to find the significant results.

In the same token, merely monitoring response time would be wholly inadequate.

A good rule to follow with monitoring goes back to the standard set of metrics. Following

this model allows stakeholders to understand the metrics gathered (as they are

standard), along with giving a basic set of information to guide further analysis if an issue

is discovered.

Chapter 4 performanCe testing tasks

212

Summary relevant metrics and measures are defined for capture during test
execution. too much monitoring can affect system performance.

The following table, explained in more detail in Section 4.4, shows a typical
set of metrics for performance testing and monitoring. Test objectives for
performance should be defined for these metrics, where required, for the
project:

Performance Metrics
Type Metric

Virtual User Status # Passed
Failed

Transaction Response Time Minimum
Maximum
Average
90% Percentile

Transactions Per Second # Passed/second
Failed/second
Total/second

Hits (e.g., on database or web server) Hits/second
• Minimum
• Maximum
• Average
• Total

Throughput Bits/second
• Minimum
• Maximum
• Average
• Total

(continued)

Chapter 4 performanCe testing tasks

213

Performance Metrics
Type Metric

HTTP Responses Per Second Responses/second
• Minimum
• Maximum
• Average
• Total
Response by HTTP response codes

CPU usage % of available CPU used

Memory usage % of available memory used

—ISTQB_CTFL_PT

From the monitoring list earlier, items from Chapter 2.1 could include disk input/

output and queueing. Other monitoring could be protocol specific (such as hits

and HTTP responses listed earlier), environment specific (database read/writes), or

application or system specific (SAP background/batch jobs or ABAP processes).

At this point, it’s worth thinking about sampling rate. How much data will be

captured as part of the performance test? The sampling rate is the time period between

each sample for that particular monitor. There’s a balancing act between the amount

of data captured and the granularity of the sampling rate. A good example could be

a performance test might show a banking system has a CPU problem when the staff

logs in between 0915 and 0945 each morning. The administrators were monitoring

the CPU constantly (sampling continuously), but averaging the results in 30-minute

blocks – 09:00 to 09:30 and 09:30 to 10:00 (low granularity). Because of this averaging,

the administrators were seeing no issue in the CPU monitoring data. After removing the

averaging and looking at the raw sample data, the CPU issue became evident.

Chapter 4 performanCe testing tasks

214

The sampling rate should be frequent enough to resolve the details of changes in the

data. If however we capture measures every second for a 48-hour endurance test, we will

see every change, but the dataset captured will take up a lot of disk space! A good way

of thinking about this is to apply the Shannon-Nyquist sampling rate2 – the minimum

sample rate that captures the “essence” of the information.

Summary typical metrics include virtual user status, transaction response times,
transactions per second, hits per second, throughput, http response per second (if
applicable), and CpU and memory usage.

 Risks
Risks can include areas not measured as part of the performance testing as
well as limitations to the performance testing (e.g., external interfaces that
cannot be simulated, insufficient load, inability to monitor servers).
Limitations of the test environment may also produce risks (e.g., insuffi-
cient data, scaled down environment). See Sections 3.2 and 3.3 for more
risk types.

—ISTQB_CTFL_PT

A main role of the PTP is the mitigation of both performance project risk relating

to the performance testing and performance -related quality risk. Although specific

performance risks can be included in the PTP, often it’s more efficient to link to these

risks in a project or organization risk register. It should always be remembered that the

PTP should act as the “performance risk mitigation manual.”

Summary risks include quality/project risks not covered, including limitations to
testing or the environment.

2 There’s an excellent video available on the Shannon-Nyquist sampling theorem – www.youtube.
com/watch?v=FcXZ28BX-xE. Although it doesn’t ever mention performance test monitoring, it’s a
sound basis onto which to build monitoring sampling.

Chapter 4 performanCe testing tasks

https://www.youtube.com/watch?v=FcXZ28BX-xE
https://www.youtube.com/watch?v=FcXZ28BX-xE

215

 4.1.3 Communicating About Performance Testing
PTFL-4.1.3 (K4) Create a presentation that enables various stakeholders to understand the

rationale behind the planned performance testing

The tester must be capable of communicating to all stakeholders the ratio-
nale behind the performance testing approach and the activities to be
undertaken (as detailed in the Performance Test Plan). The subjects to be
addressed in this communication may vary considerably between stake-
holders depending on whether they have a “business/user-facing” interest
or a more “technology/operations-facing” focus.

—ISTQB_CTFL_PT

ISO29119 Part 3 deals directly with issues surrounding communication. It has long

been an area many organizations could improve in general, let alone the QA team and

more specifically performance testing. The following are taken from the communication-

related test plan section:

6.2.4.5 Stakeholders

Lists the stakeholders and their relevance to the testing. Describes how the
communication with each stakeholder is to be performed.

—ISO29119-3

This section should outline the “who’s who” in the project and how these people can

keep in touch via meetings/stand-ups/team chat/etc. The stakeholders will include both

technical- and business-focused staff to enable a broad range of expertise be available to

the performance engineer.

6.2.5 Testing communication

Describes the lines of communication between testing, other lifecycle activi-
ties, and within the organization.

EXAMPLE This could include the authority for resolving issues raised as a
result of the testing activities and the authority for approving test products
and processes. This information may be represented visually.

Chapter 4 performanCe testing tasks

216

NOTE A visual representation could include an organization chart or a fig-
ure that illustrates the flow of information and data.

—ISO29119-3

This section helps fit performance testing into the wider communication between

the project staff (developers/other testers/project management staff), business staff

(business analysts and frontline business staff), and technical staff (system admins/

network admins/DBAs). All are important for performance testing to allow performance

engineers the full end-to-end information set for the system under test.

6.2.7.2 Test deliverables

Identifies all documents that are to be delivered from the testing activity or
equivalent information to be recorded electronically, for example in data-
bases or dedicated test tools.

EXAMPLE The following documents could be included:

 – Test Plan;

 – Test Design Specification;

 – Test Case Specification;

 – Test Procedure Specification;

 – Test Data Readiness Report;

 – Test Environment Readiness Report;

 – Incident Reports;

 – Test Status Reports; and

 – Test Completion Report.

Test input data and test output data may be identified as deliverables. Test
tools created as part of the testing activity may also be included. If docu-
ments have been combined or eliminated, then this list will be modified
accordingly.

This subsection may include when the document(s) should be delivered,
and to/from whom (preferably by position, not name).

—ISO29119-3

Chapter 4 performanCe testing tasks

217

Test deliverables are the written form of communication. And, just like other project

members, performance engineers must think about what is needed to adequately

document the project.

6.2.9.1 Roles, activities, and responsibilities

Provides an overview of the primary (they are the activity leader) and sec-
ondary (they are not the leader, but providing support) people filling the
test-related roles and their corresponding responsibilities and authority for
the testing activities. In addition, identifies those responsible for providing
the test item(s). They may be participating either full- or part-time.

EXAMPLE The responsible parties could include the project manager, the
test manager, the developers, the test analysts and executors, operations
staff, user representatives, technical support staff, data administration staff,
and quality support staff.

For each testing person, specify the period(s) when the person is required.

—ISO29119-3

Roles, activities, and responsibilities give the job description for project members.

Once again, the performance engineer needs to understand not only their own role and,

importantly, how to communicate this role to other project members. As well, performance

engineers must understand other roles and how they can help in the work we do.

Before proceeding, a few notes on this standard. There are a few in the software

testing realm that heartily disagree with this standard, for a host of valid reasons. Rather

than revisit this argument that began in 2014 and continues today, there is an anecdote

that might help put this in context:

Many years ago, a colleague of mine ran an ISEB Practitioner course for a
large insurance company in the UK. One attendee on the course had an inter-
esting background, they were now managing UAT but had come from the
business not from the IT department – so had considerable experience of
management, but none of software development and testing. Part of this
course covered methods of test process improvement – specifically a method
called TPI (test process improvement!) This individual could see the benefit
in the method – so much so they bought the book (Test Process Improvement:
A step-by-step guide to structured testing by Tim Koomen and Martin Pol).
This individual began implementing TPI in their test team within the orga-
nization and found that it helped fill in the gaps in their knowledge. A few

Chapter 4 performanCe testing tasks

218

years later, my colleague met this individual at a conference – who just so
happened to now be the Head of Quality within this multinational insur-
ance firm. In that time, this individual had progressed from just using TPI, to
understanding the flaws in the method and knowing how to improve them.

ISO29119 is a tool. If a performance engineer has limited experience in test planning,

it can be very useful to help establish the document hierarchy (including the PTP), the

types of documents needed, and their content.

But, inevitably, the gaps will start to show. It’s OK to stop using it! It’s OK to change,

remove, or add to the PTP template, the hierarchy, types, or content.

The moral of the story is – if a tool is useful, use it. If it’s not, then please don’t.

What should be added to the PTP (and even the test strategy if it’s continuously used)

is a communications plan. This section isn’t as important if all stakeholders, project

staff, and performance engineers are based in one location. If the aforementioned are

distributed (whether across town or around the world), formal planned communication

becomes more important. The communications plan should include:

• The documents required, including who will write them, when they

are to be completed, and to whom they are distributed (roles, not

names).

• The lines of communication, including scheduled meetings/emails/

instant messaging, including the communication schedule and/or

frequency, who prepares them, and once again to whom they are

distributed (roles, not names).

• The lines of authority, including to whom issues are raised (whether

they be performance defects, environment issues, or the like).

• Any nonformal communication conducted during the project – that

is, the performance engineer working in the server room with the

administrators probably won’t need formal meetings with each other.

Summary performance engineers communicate to all stakeholders (business/
user-facing and technology/operations-facing) the rationale behind the
performance testing approach and the activities to be undertaken.

The following stakeholder lists include sections added to the syllabus points.

Chapter 4 performanCe testing tasks

219

 Stakeholders with a Business Focus
The following factors should be considered when communicating with
stakeholders with a business focus:

• Stakeholders with a business focus are less interested in the
distinctions between functional and non-functional quality
characteristics.

—ISTQB_CTFL_PT

Part of the reason why business stakeholders don’t care about the non-functional

aspects comes down to the misunderstanding that it’s not their concern. Much of the

time, the technical aspects are out of scope for this group because, “It’s a technical thing,

we should leave it to IT to worry about.”

• Technical issues concerning tooling, scripting and load
generation are generally of secondary interest.

—ISTQB_CTFL_PT

Much the same as the previous point, these technical issues can be compared to

the “mobile phone magic” of making a phone call – the end user only wants to make a

successful call and doesn’t think of the technology and infrastructure needed to do this.

Of course, it could become a primary interest if the ability to generate the required load

comes at a high cost.

• The connection between product risks and performance test
objectives must be clearly stated.

—ISTQB_CTFL_PT

Performance objectives describe the overall desired outcome. These objectives are

derived from both performance testing requirements (describing the positive aspects)

and performance quality risks (defining the negative). It has been likened to the

requirements telling performance engineers what to test and the risk telling them how

much to test.

Chapter 4 performanCe testing tasks

220

• Stakeholders must be made aware of the balance between the
cost of planned performance tests and how representative the
performance testing results will be, compared to production
conditions.

—ISTQB_CTFL_PT

Describing the limitations to the planned performance testing is vital.

Understanding the cost of exposure metric will be a great help to understanding

the return on investment for performance testing. The cost of exposure involves

determining, for each performance risk item, three factors:

 1. The probability of a failure relating to the performance risk

 2. The cost of loss (expressed as an average cost for each occurrence

of the performance risk) associated with a typical failure related to

the performance risk should it occur in production

 3. The cost of mitigating (performance testing) such failures

For example, a small bank is about to go live with a new payment processing system.

The project stakeholders were handed a quote for £50,000 for performance testing this

system, which they think is a high cost and are hesitant to pay for this.

This system, if it fails, will cost $1 million per day in revenue (impact) for every day

it isn’t servicing clients (impact). It was calculated there is a 10% probability the system

will fail under high processing load (probability), typical on the last working day each

month. Initially, there’s a calculation called expected monetary value (EMV – Figure 4-2)

that can be used to estimate the cost of the risk occurring (covering points 1 and 2):

$1 000 000 x 10% = $100 000 (for a 24-hour outage);

or

$41 666.67 per hour (for simplicity, a linear progression can be assumed)

Chapter 4 performanCe testing tasks

221

As well, this could happen each month. If performance testing is estimated to cost

$50,000 to reduce the probability to 1%, the calculation changes:

$1 000 000 x 1% = $10 000 (for a 24-hour outage);

or

$4 166.67 per hour

This is a coarse calculation, but demonstrative as to the benefit the bank might

get from performance testing. The end result may be to convince the bank it’s a wise

investment to pay for about an hour of downtime to avoid the direct loss of revenue,

and at this point the uncalculated effect any occurrence this outage might have on the

reputation and future profitability of the bank (organizational risk).

$1 000 000 x 10% = $100 000 (for a 24-hour outage);

or

$41 666.67 per hour (for simplicity, a linear progression can be assumed)

Figure 4-2. Expected monetary value progression per hour

Chapter 4 performanCe testing tasks

222

• The repeatability of planned performance tests must be
communicated. Will the test be difficult to repeat, or can it be
repeated with a minimum of effort?

—ISTQB_CTFL_PT

This is vital for performance tests used in regression testing. In many organizations,

regression testing is a key component of the testing work conducted. Unfortunately,

the regression test set for many organizations only contain functional tests. Any change

might indeed introduce functional defects, but they can also introduce performance

defects as well.

• Project risks must be communicated. These include constraints
and dependencies concerning the setup of the tests, infrastructure
requirements (e.g., hardware, tools, data, bandwidth, test
environment, resources) and dependencies on key staff.

—ISTQB_CTFL_PT

The PTP should also state how these performance project risks could be mitigated –

a key requirement for any test plan. If, for example, an organization continuously has

problems with test environments, the risks associated with this should be identified,

assessed, and mitigated within the next PTP or even promoted into the test strategy

to be used by all projects. Mitigating project risks often means changing the way the

process runs to exclude the cause. If test environments are problematic (as they often

are), performance engineers should get better at specifying the environment, along

with justifying the expense of creating the desired environment against the cost and

probability of system failure.

• The high-level activities must be communicated (see Sections 4.2
and 4.3) together with a broad plan containing costs, time
schedule and milestones.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

223

Summary Communication with business stakeholders includes highlighting

• the distinction between function and non-functional requirements

• technical issues impacting performance project success

• Demonstration of return on investment

• the importance of repeatable tests for regression

• the balance between time, cost, risk, quality, and performance
project scope

And now for those techy nerds…

 Stakeholders with a Technology Focus
The following factors must be considered when communicating with stake-
holders with a technology focus:

• The planned approach to generating required load profiles
must be explained and the expected involvement of technical
stakeholders made clear.

—ISTQB_CTFL_PT

Using the phone call analogy from the earlier point – these are the phone company

staff who ensure calls can be completed. They don’t care what the call is about, just that

it is completed successfully.

• Detailed steps in the setup and execution of the performance
tests must be explained to show the relation of the testing to the
architectural risks.

—ISTQB_CTFL_PT

Another important point once again. The translation between the business process

steps and the impact these steps have on the SUT and related infrastructure is an

important analysis step upon which the performance engineer should focus. As an

Chapter 4 performanCe testing tasks

224

example, a performance engineer was to create a set of performance tests required

over 80 different individual business reports, each to be run by a virtual user. After

studying the underlying architecture, it was found that all 80 reports would fit into seven

different report categories against the back-end architecture – each category taking

a different path through the infrastructure tiers. The individual reports within each

category were simply variations on the data being selected. Thus, the scripting job went

from 80 record-and-playback scripts to 7 slightly more capable scripts.

• Steps required to make performance tests repeatable must be
communicated. These may include organizational aspects (e.g.,
participation of key staff) as well as technical issues.

—ISTQB_CTFL_PT

Performance engineers must create repeatable performance tests to enable their

addition to the regression set. This could mean involving both business and technical

stakeholders to achieve repeatability (running a certain business path through the

system or having custom performance test API or functions created).

• Where test environments are to be shared, the scheduling of
performance tests must be communicated to ensure the test
results will not be adversely impacted.

—ISTQB_CTFL_PT

Once again, The Golden Rule of Test Environments During Performance Test

Development and Execution applies (do what the performance engineer says, especially

when changing anything). We really need to come up with a better name for this rule!

Scheduling can become an issue, as the performance environment is now a well-

specified environment, populated with production-like data that everyone would like

to use. It can mean performance testing is often run outside of normal work hours (as

previously mentioned).

• Mitigations of the potential impact on actual users if
performance testing needs to be executed in the production
environment must be communicated and accepted.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

225

Occasionally, conducting performance tests in the production environment is

the only alternative. The primary advantage of using the production environment is

the environment will be realistic. On the negative side, results can be unpredictable

based on the network conditions. Any other traffic on this network can adversely affect

reproducible results. Also, certain types of performance testing (such as stress and spike

testing) can put the production system at greater risk of failing.

• Technical stakeholders must be clear about their tasks and when
they are scheduled.

—ISTQB_CTFL_PT

It’s important that performance engineers inform technical stakeholders they aren’t

required for the full duration of performance testing. In most cases, technical resources

will be required while preparing the performance tests. Once execution commences and

results are available, it will be important for the technical stakeholders to be available

during analysis to help decide the next steps in the performance test.

Summary Communication with technical stakeholders includes highlighting

• the load profile and the technical stakeholder’s tasks and
involvement

• how the detailed steps relate to the environment architecture

• how the performance test can be repeatable

• how the environment can be shared

• possible risks of performance testing in production

Chapter 4 performanCe testing tasks

226

 4.2 Analysis, Design, and Implementation
 4.2.1 Typical Communication Protocols
PTFL-4.2.1 (K2) Give examples of typical protocols encountered in performance testing

Communication protocols define a set of communications rules between
computers and systems. Designing tests properly to target specific parts of
the system requires understanding protocols.

—ISTQB_CTFL_PT

A performance engineer must understand both how performance testing is done

and the key characteristics of a system or application under test. How APIs, applications,

and systems communicate is an important facet of a performance engineer’s knowledge

(Table 4-1).

Table 4-1. OSI Layers

Open Source Interconnection (OSI) Layers

7 Application Data presents the data to the users

6 Presentation Data formats the data to be presented to the application layer

5 Session Data allows the establishment of sessions between processes

4 Transport segment/

Datagram

ensures the message is delivered error-free, in sequence, with no

duplication or data losses

3 Network packet Controls the physical part the data takes

2 Data link frame provides the data frame transfer from one node to another

1 Physical Bit provides the transmission and reception of the unstructured raw

data bitstream over some physical means (ethernet/wireless)

Communication protocols are often described by the Open Systems
Interconnection (OSI) model layers (see ISO/IEC 7498-1), although some
protocols may fall outside of this model. For performance testing, protocols
from Layer 5 (Session Layer) to Layer 7 (Application Layer) are most com-
monly used for performance testing. Common protocols include:

Chapter 4 performanCe testing tasks

227

• Database – ODBC, JDBC, other vendor-specific protocols

• Web – HTTP, HTTPS, HTML

• Web Service – SOAP, REST

—ISTQB_CTFL_PT

The syllabus refers to the following protocols as being typical for performance testing

today (Table 4-2). These protocols relate to web-based applications and systems. Note

these are a good target for questions in the exam!

Table 4-2. Protocols from the Syllabus

Protocols

htmL hypertext markup Language – the standard markup language of the Web. Browsers use

htmL for font, color, graphic, and hypertext effects on web pages. in its latest iteration

(htmL5), pages are built using less htmL (as htmL5 uses cascading style sheets (Css3)

or Javascript), with dynamic elements created server-side using php (“hypertext pre-

processor” – php code is transformed into htmL before the page is loaded) or asp (“active

server page” – similar to php, asp is run server-side to generate dynamic pages).

http hypertext transfer protocol – describes the formatting and transmission of messages. http

is called a stateless protocol because each command is executed independently, without

any knowledge of the commands that came before it.

https hypertext transfer protocol secure – the secure version of http. Communications between

the browser and website are encrypted by transport Layer security (tLs) or its predecessor

secure sockets Layer (ssL).

JDBC Java Database Connectivity – similar in function to oDBC, JDBC uses Java api to connect

and execute database queries, being part of Java se (Java standard edition).

oDBC open Database Connectivity – a standard api to connect to and execute database queries.

rest representational state transfer – a messaging protocol for web service interfaces like

soap. rest allows a greater variety of data formats (soap only allows XmL) and performs

better than soap.

soap simple object access protocol – a messaging protocol for web service interfaces using

XmL (eXtensible markup Language).

Chapter 4 performanCe testing tasks

228

Summary performance testing normally uses protocols from osi layers 5 to
7 for databases (oDBC, JDBC), the Web (http, https, htmL), and web services
(soap, rest).

Generally speaking, the level of the OSI layer which is most in focus in per-
formance testing relates to the level of the architecture being tested. When
testing some low level, embedded architecture for example, the lower num-
bered layers of the OSI model will be mostly in focus.

—ISTQB_CTFL_PT

This is an interesting area to consider. There can be many reasons why a

performance engineer might select an OSI level in which to create virtual user scripts.

A good example is to record the same script at different recording levels – in this case,

recording opening the website www.bbc.co.uk at the network layer (Figure 4-3) and the

application layer (Figure 4-4).

Figure 4-3. A winsock script recorded at the network layer

Chapter 4 performanCe testing tasks

http://www.bbc.co.uk

229

At the network layer, the contents of individual packets were recorded literally,

ending in hundreds of packets captured.

At the application layer, a single (albeit large) function captures the page request.

Why use the lower level? It might be that some information is missed in the higher

level that needs capturing, or the higher-level protocol isn’t able to be recorded –

resulting in the lower-level protocol being the alternative.

Summary performance testing focuses on the osi layer of the architecture being
tested.

Additional protocols used in performance testing include:

• Network – DNS, FTP, IMAP, LDAP, POP3, SMTP, Windows
Sockets, CORBA

• Mobile – TruClient, SMP, MMS

• Remote Access – Citrix ICA, RTE

• SOA – MQSeries, JSON, WSCL

—ISTQB_CTFL_PT

Figure 4-4. An HTTP/HTML script recorded at the application layer

Chapter 4 performanCe testing tasks

230

Of course, even though a lot of performance testing relates to web-based systems,

other protocols are important. It may be that a selection of protocols is needed - HTTPS

at the front end using REST with data passed using JSON, with JDBC interacting with the

back-end database. Further protocols are included in Table 4-3.

Table 4-3. More Syllabus Protocols

Protocols

CorBa Common object request Broker architecture – a messaging protocol allowing objects

distributed over a network to communicate with each other irrespective of the platform

and language used to develop those objects.

Citrix iCa independent Computing architecture – a proprietary protocol for an application service

system designed by Citrix systems for thin client, transporting keystrokes and mouse

coordinates and clicks from the client and screen updates from the server.

Dns Domain network system – a protocol that converts a website’s numeric ip address

into human-readable host names.

ftp file transfer protocol – a protocol for the transfer of computer files between a client

and a server.

imap internet message access protocol – an internet standard protocol used by email clients

to retrieve email messages from a server over a tCp/ip connection.

Json Javascript object notation – an open standard file format using human-readable

text to transmit data objects (attribute-value pairs and array data types or any other

serializable value).

LDap Lightweight Directory access protocol – a protocol used for directory services

authentication, providing a communication language that applications use to

communicate with other directory service servers.

mms multimedia messaging service – a standard mobile messaging protocol including

multimedia content to and from a mobile device.

mQseries message Queue (also known as Websphere mQ and iBm mQ) – a messaging protocol

allowing independent and potentially nonconcurrent applications on a distributed

system to securely communicate with each other.

pop3 post office protocol 3 – the latest version of a client/server standard communication

protocol for receiving email.

(continued)

Chapter 4 performanCe testing tasks

231

Summary additional protocols for network (Dns, ftp, imap, LDap, pop3, smtp,
Windows sockets, CorBa), mobile (truClient, smp, mms), remote access (Citrix
iCa, rte), and soa (mQseries, Json, WsCL).

It is important to understand the overall system architecture because per-
formance tests can be executed on an individual system component (e.g.,
web server, database server) or on a whole system via end-to-end testing.
Traditional 2-tier applications built with a client-server model specify the
“client” as the GUI and primary user interface, and the “server” as the back-
end database. These applications require the use of a protocol such as
ODBC to access the database. With the evolution of web-based applica-
tions and multi-tiered architectures, many servers are involved in process-
ing information that is ultimately rendered to the user’s browser.

—ISTQB_CTFL_PT

Table 4-3. (continued)

Protocols

rte remote terminal emulation – a protocol passing individual keystrokes to a server via a

terminal emulator.

smp session multiplex protocol – a protocol providing session management capabilities

between a database client and server. the protocol enables multiple logical client

connections to connect to a single server over a single physical connection.

smtp simple mail transfer protocol – a standard communication protocol for transmitting

email.

truClient a technology patented by hp (now micro focus, formerly mercury/mercury interactive)

for Loadrunner Vugen scripting, making scriptwriting easier but making the actual

virtual user scripts more memory hungry.

Windows

sockets

a microsoft network protocol describing how software should access network

services.

WsCL Web services Conversation Language – made up of the document type descriptions

(the XmL schema), the interactions (send/sendreceive/receivesend/receive/empty),

the transitions (the ordering relationship), and the conversations (the transactions) of a

web service.

Chapter 4 performanCe testing tasks

232

Consider the architecture in Figure 4-5.

Figure 4-5 tends to be a typical diagram (minus the cute little server and client

graphics) presented to performance engineers. But it should be argued it isn’t complete!

Remember, the test environment may include other devices (firewalls, switches/routers,

or load balancers), so it’s always a good idea to check! Other things might be the link

between the client and web server – will this be using TLS or SSL? But for this example, it

will suffice…

To perform end-to-end performance testing, it would be natural to script virtual

users from the GUI point of view from the client. That way, the requests sent from the

user would pass through the infrastructure as it would in production. Vusers would be

created to simulate the end users.

Figure 4-5. Overall system architecture

Chapter 4 performanCe testing tasks

233

But, the database in this case is shared by another system. The performance test

cannot push more load through the front end, as this wouldn’t create the correct

performance test conditions. In this case, the load coming from the other system (which

is out of scope for this test) could be simulated using ODBC Vusers (Figure 4-6).

Figure 4-6. Splitting the load across multiple injection points

Figure 4-7. Testing a single tier

Chapter 4 performanCe testing tasks

234

Another use is testing an individual tier within the system (Figure 4-7). If this system

is being built, it may be that the file server is a third-party application being integrated

into the end-to-end system. Thus, the project might need to performance test this

individual tier – to check the third-party application not only can handle the input load

requests but also can retrieve the results in a timely manner.

This could be done by creating the specific MQSeries Vusers. In this case, the

output isn’t returned to the source generating the load. These .pdf files could be

forwarded to a machine simulating the web server – these results could then be

captured as part of the test.

Once again, this is a typical action used by performance engineers.

Summary tests can be performed on individual components or the end-to-end
system, broken into the client (gUi) and server (web/database server(s)), with
different protocols used between the client and web server (htmL/http) and web
and database server (oDBC).

Depending on the part of the system that is targeted for testing, an under-
standing is required of the appropriate protocol to be used. Therefore, if the
need is to perform end-to-end testing emulating user activity from the
browser, a web protocol such as HTTP/HTTPS will be employed. In this
way, interaction with the GUI can be bypassed and the tests can focus on
the communication and activities of the backend servers.

—ISTQB_CTFL_PT

This refers to the point made in Chapter 1.4 regarding load generation (Figure 4-8).

Figure 4-8. Performance script recording

Chapter 4 performanCe testing tasks

235

As the tool records the script, it creates a proxy through which all the specific

protocol traffic passes, and the script is generated. On playback, the load is generated

by the scripts executing the protocol calls – thus avoiding the overhead of running the

browser and rendering the GUI (Figure 4-9).

Summary knowledge of the protocol for the part of the system being tested is
essential. recording from the gUi, the protocol calls are captured and replayed to
bypass the need for the gUi.

 4.2.2 Transactions
PTFL-4.2.2 (K2) Understand the concept of transactions in performance testing

Transactions describe the set of activities performed by a system from the
point of initiation to when one or more processes (requests, operations, or
operational processes) have been completed. The response time of transac-
tions can be measured for the purpose of evaluating system performance.
During a performance test these measurements are used to identify any
components that require correction or optimization.

—ISTQB_CTFL_PT

Figure 4-9. Performance script playback

Chapter 4 performanCe testing tasks

236

Transaction can be simplified to an interaction between an actor/client and the

target server. For example, a user can use amazon.co.uk to search for The Proclaimers

album Sunshine on Leith. This involves:

• A request from the user sent to amazon.co.uk for “Sunshine on

Leith CD”

• Processing by the Amazon website to retrieve and assemble the

search results

• The search result response received by the user

The transaction would time this end-to-end interaction. It could be then broken

down further to consider the time spent in transit on the network between the client and

server, time taken to complete the operation among the various Amazon servers, and the

response time traveling back to the client from Amazon.

Using Micro Focus LoadRunner Virtual User Generator (VuGen), the following

statement sends the request to the server:

To time this transaction, statements are added to the code to time the user request

and server response:

These times are then captured as part of the execution:

Action.c(214): Notify: Transaction "Search" started.

Action.c(216): web_url("ref=nb_sb_noss") started [MsgId: MMSG-26355]

...

Chapter 4 performanCe testing tasks

237

Action.c(216): web_url("ref=nb_sb_noss") was successful, 285540 body bytes,

9497 header bytes [MsgId: MMSG-26386]

Action.c(225): Notify: Transaction "Search" ended with a "Pass" status

(Duration: 0.8170 Wasted Time: 0.0874).

Summary transactions describe a set of activities from initiation to process
completion, to be measured as part of the performance test to identify issues.

Simulated transactions can include think time to better reflect the timing of
a real user taking an action (e.g., pressing the “SEND” button). The transac-
tion response time plus the think time equals the elapsed time for that
transaction.

—ISTQB_CTFL_PT

It could be easy to misinterpret the preceding statement. Think time is a concept

used to represent the time during the test when no activity is taking place between the

client and the server. To use the previous example, before a user submits the Amazon

search, the user might take a few seconds to look at the page and type in the initial search

string (in this case, 14 seconds). This was the time recorded that it took the performance

engineer to record the step with no requests being sent to the server. Hence, that is

represented in the script as the think time (like a wait method – execution pauses):

Currently, this think time is fixed. This is useful at the beginning of performance

testing as it allows the test to be replicated if a problem occurs. Once any initial issues

have been rectified, this think time can be set as randomized (e.g., between 50% and

150% of the recorded think time – the think time for that statement would now be a

random value between 7 and 21 seconds), to allow the script to run in a realistic manner.

Chapter 4 performanCe testing tasks

238

The placement of both transaction time and think time steps is important, as the last

thing a script needs is to have a think time embedded within a transaction, corrupting

the recorded time.

Summary think time is used to simulate a real user performing actions. the
response time plus the think time is the elapsed time.

The transaction response times collected during the performance test show
how this measurement changes under different loads imposed on the sys-
tem. Analysis may show no degradation under load while other measure-
ments may show severe degradation. By ramping up load and measuring
the underlying transaction times, it is possible to correlate the cause of deg-
radation with the response times of one or more transactions.

—ISTQB_CTFL_PT

As mentioned previously, the first sign a system could have a potential performance

issue can be transaction times increasing. Transaction time usually is the end effect –

from this point, we can start to derive the cause/effect relationship.

There is nothing like first-hand evidence.

—Conan Doyle, 1887

Slow transaction times could in fact be the first evidence of the crime of poor

performance.

Summary transaction time changes dependent on load, with some
measurements varying more than others. transactions with severe degradation
can be the effect source for diagnosing the cause.

Chapter 4 performanCe testing tasks

239

Transactions can also be nested so that individual and aggregate activities
can be measured. This can be helpful, for example, when understanding
the performance efficiency of an online ordering system. The tester may
want to measure the discrete steps in the order process (e.g., search for item,
add item to cart, pay for item, confirm order) as well as the order process as
a whole. By nesting transactions, both sets of information can be gathered
in one test.

—ISTQB_CTFL_PT

Although transaction times can be nested, the statement earlier stands true. If any

think times are included with a transaction time, it will give an incorrect measurement.

The use of nested transaction times can aid in the breakdown of an entire web page.

Some tools (LoadRunner among them) allow a lower-level recording still at the

application layer. This would allow individual transactions to be created against

elements of the page, as well as an overall transaction for the page request/response.

Summary transactions can also be nested so that individual and aggregate
activities can be measured within one test.

 4.2.3 Identifying Operational Profiles
PTFL-4.2.3 (K4) Analyze operational profiles for system usage

Operational profiles specify distinct patterns of interaction with an appli-
cation such as from users or other system components. Multiple operational
profiles may be specified for a given application. They may be combined to
create a desired load profile for achieving particular performance test
objectives (see Section 4.2.4).

—ISTQB_CTFL_PT

operational profile

An actual or predicted pattern of use of the component or system.

—ISTQB Glossary

Chapter 4 performanCe testing tasks

240

The representation of a distinct set of tasks performed by the component or
system, possibly based on the behavior of users when interacting with the
component or system, and their probabilities of occurrence. A task is logical
rather than physical and can be executed over several machines or be exe-
cuted in non-contiguous time segments.

—Bath and McKay, 2014

operational profile testing

Statistical testing using a model of system operations (short duration tasks)
and their probability of typical use.

—Bath and McKay, 2014

Summary operational profiles describe a user’s interaction with the system.
multiple operational profiles are combined to form a load profile (scenario) to fulfill
a test objective.

The following principal steps for identifying operational profiles are
described in this section:

 1. Identify the data to be gathered

 2. Gather the data using one or more sources

 3. Evaluate the data to construct the operational profiles

—ISTQB_CTFL_PT

As spoken of in Chapter 1.2, the operational profile is based on the following

volumetric questions:

• Who – Who are the users?

• What – Which business processes are they using?

• Where – Where is the load coming from?

• When – Which time of the day does the load represent?

• How – What are the users doing to complete the transaction?

Chapter 4 performanCe testing tasks

241

As mentioned in the previous paragraph, operational profiles can be defined at the

user group level (focusing on the who) rather than focusing on the system under test

(focusing on the what).

The example to follow with the syllabus points is as follows.

A mid-sized savings bank (Min Lille Bank) is consolidating their business offering in

the mortgage market. The bank has 4500 employees and 150,000 mortgage customers.

They have 87 branches, spread through all major towns and cities in the country. The

bank has €39 billion in mortgage assets, with an annual turnover of €924 million. Being

an early adopter of online services, they are known in the country as online mortgage

specialists, with 70% of their mortgages coming from online applications. A new CEO has

set some new business objectives of growing their mortgage market by 5% per annum

for the next four years (growth total of 20% on today’s success number – added pressure

for marketing and sales). The bank uses both internal branch staff, who use an internal

client to complete 20% in branch, and mortgage brokers using the online system for the

remaining 10%.

Currently, the bank has 3000 successful mortgage applications per year, with a

current mortgage closure rate of 1100 per year (lower than the current mortgage success

rate, due to market growth). The bank CEO is concerned only 40% of applications are

successful and wants to increase that.

Potential customers can access the web front end on the new system to complete

their mortgage application (Figure 4-10).

Chapter 4 performanCe testing tasks

242

Figure 4-10. Mortgage application process

There is a requirement that the prepare contract step is 100% successful under load –

these documents are legally binding, and early in the bank’s online mortgage experience,

some mortgages were created with a 0% interest rate that were legally binding if the

customer signed (and all the customers presented a 0% interest mortgage did sign!)

The application can be halted and returned to if interrupted (like not having that

important piece of paper I thought was in the shoebox with the other papers…).

Once the mortgage is created, active mortgages can be viewed (Figure 4-11).

A concern was raised by the business – if the base mortgage rate changes, they are afraid

of a spike in active mortgage users viewing their new mortgage rates. A recent rate change

Chapter 4 performanCe testing tasks

243

had 60% of total active mortgages customer log in within 12 hours of the country’s central

bank changing the base rate, with the mortgage system subsequently crashing.

Figure 4-11. Adding the view mortgage process

On an average day, 1500 customers view their mortgage, with an average peak day

viewing of 20,000 customers.

This is an opportunity to work through the scenario, based on the following syllabus

points. Develop an operational profile, to compare with the model answer. Gaps have

been left – it will be good practice to also consider further questions to be asked.

Chapter 4 performanCe testing tasks

244

 Identify Data

Earlier, three types of performance test data were covered.

Master Data

Master data is contained within the system before the performance test is executed. It

includes existing user accounts, the product catalogue, existing user orders, and so on.

User-Defined Data

User-defined data is data to be input by the test during execution. Some of this will be

existing master data (user accounts/product codes/etc.) with some being added to the

test (order quantities, delivery addresses, etc.). It’s this data that forms the input data

during the performance test.

Transactional Data

Transactional data is created dynamically as part of execution by the system under test

(order numbers/delivery docket numbers/etc.). To correlate the input data with the

results, transactional data will be captured as part of the test execution results.

Although these will be useful for creating tests, the syllabus looks at this not as the

data used during performance testing earlier, however. To avoid confusion, the section

refers to data relating to volumetrics and the creation of operational profiles. From

earlier, volumetrics consider:

• Who – who are the users?

• What – which business processes are they using?

• Where – where is the load coming from?

• When – which time of the day does the load represent?

• How – what are the users doing to complete the transaction?

This then goes on to help develop the operational profiles and eventual load profiles.

Where users interact with the system under test the following data is gath-
ered or estimated in order to model their operational profiles (i.e., how they
interact with the system):

Chapter 4 performanCe testing tasks

245

• Different types of user personas and their roles (e.g., standard
user, registered member, administrator, user groups with specific
privileges).

• Different generic tasks performed by those users/roles (e.g.,
browsing a web site for information, searching a web site for
a particular product, performing role-specific activities). Note
that these tasks are generally best modelled at a high level of
abstraction (e.g., at the level of business processes or major user
stories).

• Estimated numbers of users for each role/task per unit of time
over a given time period. This information will also be useful for
subsequently building load profiles (see Section 4.2.4).

—ISTQB_CTFL_PT

If we consider the preceding scenario, let’s break this down using the syllabus points

(be prepared to flip back a few pages):

Different Types of User Personas and Their Roles

• From the preceding scenario, the user personas include users

creating mortgages:

• Internal bank staff – In branch completing mortgages with

customers

• Mortgage brokers – Independent agents using the website to

complete mortgages for clients

• Online customers – Completing the application online

• The user persona for viewing an active mortgage.

What other users might there be? Could we include internal staff running sales

reports or administrators running admin tasks as part of the user personas within this

performance testing?

Chapter 4 performanCe testing tasks

246

Different Generic Tasks Performed by Those Users/Roles

The two main business processes are:

• The mortgage application process (Figure 4-10)

• The view mortgage process (Figure 4-11)

Could other business processes be included? As mentioned before, could there

be sales reports or admin tasks added to the process list? Reporting might be a

consideration, as any business intelligence reporting can sometimes add a large amount

of load to the database.

Estimated Numbers of Users for Each Role/Task

So far, we have the percentage breakdown from the scenario:

• Internal bank staff – 20%

• Mortgage brokers – 10%

• Online customers – 70%

If we look at successful applications, there’s 3000 per year (so just over 8 per day

average). But earlier, there was a line where the “bank CEO is concerned only 40% of

applications are successful.” Thus, those 3000 successful mortgages are only 40% of

applications. We could then look at:

• Successful transactions – 3000 (40%)

• Unsuccessful transactions – 4500 (60%)

So far, so good. We can now also add the customers viewing mortgages:

• On an average day, 1500 customers view their mortgage, with an

average peak day viewing of 20,000 customers.

Note there’s a difference here. In the first example, we only have a total number

of transactions per year. We would need to ask about the distribution of the 3000

transactions – ideally, “when do they happen?” Even with the view mortgages, we would

need to determine when during the day these transactions would occur.

And, once again, the question to ask relates to “anything else.” Any other reports/

admin tasks/business processes would also be included into the role/task breakdown.

We have covered the who and the what, but what about the other three?

Chapter 4 performanCe testing tasks

247

Where the users come from are two places. There are internal users working in bank

branches or offices, who might be taking a different network path to the server than the

external, distributed web users. Thus, any performance test might need to take these into

account when considering the source of load.

When these transactions occur was highlighted earlier. The way these transactions

are distributed over the days of the week and the hours of each day. It might be

generalized, for example, that almost all the external web users will create their online

mortgage applications on a weekday night after 19:00. Business report, on the other hand,

might be needed for the board meeting the next day. So these might be run before 17:00.

How the users complete their transactions will differ. For example, the internal staff

and mortgage brokers might complete the transactions much faster than external online

applications.

All of these characteristics must be considered when building the operational

profiles.

 Gather Data

It should always be remembered the source of performance test information may not

always be in the expected spot. Sometimes, performance information will come from

databases or server logs. It may come from individual expert users or from a survey

of a wide range of different users. Or it might come from an unexpected location – a

train company once needed to find out how many people might access their website in

adverse weather. They determined this by counting the number of passengers departing

the stations via the ticket gates. From this, they assumed that if a major storm hit Sunday

night, the number of people hitting the website to see if the trains are still running would

be the Monday morning number of exits from the station.

The data mentioned above can be gathered from a number of different
sources:

• Conducting interviews or workshops with stakeholders, such as
product owners, sales managers and (potential) end users. These
discussions often reveal the principal operational profiles of
users and provide answers to the fundamental question “Who is
this application intended for”.

Chapter 4 performanCe testing tasks

248

• Functional specifications and requirements (where available)
are a valuable source of information about intended usage
patterns which can also help identify user types and their
operational profiles. Where functional specifications are
expressed as user stories, the standard format directly enables
types of users to be identified (i.e., As an X, I want Y so that Z).
Similarly, UML Use Case diagrams and descriptions identify the
“actor” for the use case.

• Evaluating usage data and metrics gained from similar
applications may support identification of user types and
provide some initial indications of the expected numbers of
users. Access to automatically monitored data (e.g., from a web
master’s administration tool) is recommended. This will include
monitoring logs and data taken from usage of the current
operational system where an update to that system is planned

• Monitoring the behavior of users when performing predefined
tasks with the application may give insights into the types of
operational profiles to be modelled for performance testing.
Coordinating this task with any planned usability tests
(especially if a usability lab is available) is recommended.

—ISTQB_CTFL_PT

All information gathered can be useful to a performance engineer who considers

a wide source of performance information. Even down to the way users might think

while using the system, this point alone has served well in creating operational profiles.

Small changes to the way the transactions are done can have a big influence on how

“lifelike” the performance test actually is. The desire should always be to create “real”

performance scripts and scenarios that behave like real users. Thus, the operational

profile too must match the users.

Chapter 4 performanCe testing tasks

249

 Construct Operational Profiles
The following steps are followed for identifying and constructing opera-
tional profiles for users:

• A top-down approach is taken. Relatively simple broad
operational profiles are initially created and only broken down
further if this is needed to achieve performance test objectives
(see Section 4.1.1)

• Particular user profiles may be singled out as relevant for
performance testing if they involve tasks which are executed
frequently, require critical (high risk) or frequent transactions
between different system components, or potentially demand
large volumes of data to be transferred.

• Operational profiles are reviewed and refined with the principal
stakeholders before being used for the creation of load profiles
(see Section 4.2.4).

—ISTQB_CTFL_PT

Based on the preceding points, our operational profiles might begin to look as follows:

 1. Internal staff creating mortgage applications – 600 successful

transactions (20% of 3000), determined to occur between banking

business hours (1000–1600), with the application completed

quickly to simulate experienced staff, from a more centralized

load source (to simulate staff within branches) via the WAN.

 2. Mortgage brokers creating mortgage applications – 300 successful

transactions (10% of 3000) determined to occur throughout the

day (08:00 to 21:00) to reflect brokers visiting customers at their

workplace or at home, with the application completed quickly

to simulate experienced staff, from a distributed load source

accessing the server via an external-facing web server.

Chapter 4 performanCe testing tasks

250

 3. External customers creating successful mortgage applications –

2100 successful transactions (70% of 3000) determined to occur

in the evening (19:00 to 22:00) to reflect customers completing the

application after dinner, with the application completed slowly

to simulate customers inexperienced with the process, from a

distributed load source accessing the server via an external-facing

web server.

 4. External customers creating unsuccessful mortgage applications –

4500 unsuccessful transactions completed during the evening (19:00

to 22:00) to represent customers failing the mortgage criteria for

the amount being borrowed/mistakes in the online application,

completed slowly to simulate inexperienced customers accessing the

server from a distributed source through the external web server.

 5. Viewing active mortgages

a. 1500 active mortgage views, completed in the evening (19:00–22:00)

b. 22,000 active mortgage views within a four-hour period to

simulate a change in central bank interest rates and mortgage

holders viewing their updated mortgage amounts

Of course, there’s still quite a bit missing. For example, we still don’t know how many

of the transactions will look as part of a performance test, but that will come later as part

of the load profile.

Now you might think, “Well, why not give us the full information to work it out in the

notes above?!?”

You very rarely get the full set of volumetric information when you start to look at

establishing operation profiles (and if you do, I hope you stay at that organization – your

job will be much easier). Much of the time, it’s better to know which questions to ask (the

right combination of who/what/where/when/how) to get the information you need.

Summary identify data to gather – user roles, user tasks, estimated number
of users. gather the data – interviews, functional specifications/requirements,
evaluate usage data, monitor user behavior. evaluate the data to create the
operational profile – top-down approach to create broad operational profiles, single
out relevant user profiles, review and approval by stakeholders.

Chapter 4 performanCe testing tasks

251

The system under test is not always subjected to loads imposed by the user.
Operational profiles may also be required for performance testing of the fol-
lowing types of system (please note this list is not exhaustive).

—ISTQB_CTFL_PT

Some buzzwords – robotic process automation (RPA) and digital transformation can

be distilled into the generated load mentioned earlier. Both terms are marketing spin for

getting the system to do more of the business legwork itself.

What was once the work of genius soon becomes the work of tinsmiths…

Or, in our case, the work of a server tier.

Summary Load can also be generated by automated system processes.

Off-line Batch Processing Systems

The focus here lies principally on the throughput of the batch processing sys-
tem (see Section 4.2.5) and its ability to complete within a given time period.
Operational profiles focus on the types of processing which are demanded of
the batch processes. For example, the operational profiles for a stock trading
system (which typically includes online and batch-based transaction pro-
cessing) may include those relating to payment transactions, verifying cre-
dentials, and checking compliance of legal conditions for particular types of
stock transactions. Each of these operational profiles would result in differ-
ent paths being taken through the overall batch process for a stock. The steps
outlined above for identifying the operational profiles of online user-based
systems can also be applied in the batch processing context.

—ISTQB_CTFL_PT

An example implementation of this process is the separation between an online

transaction processing system (OLTP) and an online analytical processing system

(OLAP). Consider the trading system mentioned earlier to which OLTP/OLAP is applied.

OLTP would be used for day trading, capturing the details of trades done that day. Based

on the nature of trading in today’s world, these transactions need processing as rapidly

Chapter 4 performanCe testing tasks

252

as possible. Thus, OLTP queries should be short and simple and hence require less

processing time and less memory and disk space.

OLAP holds archived data – passed to it from the OLTP system. It allows a user to

view different summaries of multidimensional data. Using OLAP, information can be

extracted from the much larger structured database for analysis. OLAP queries can

be much more complex, as time is less of a factor and they run much less frequently

(Figure 4-12).

Summary offline batch processes are automated processes that are triggered
with the requirement to complete in an expected time. multiple operational profiles
may be included.

Figure 4-12. OLAP vs. OLTP

Chapter 4 performanCe testing tasks

253

Systems of Systems
Components within a multi-system (which may also be embedded) envi-
ronment respond to different types of input from other systems or compo-
nents. Depending on the nature of the system under test, this may require
modelling of several different operational profiles to effectively represent
the types of input provided by those supplier systems. This may involve
detailed analysis (e.g., of buffers and queues) together with the system
architects and based on system and interface specifications.

—ISTQB_CTFL_PT

The system of systems concept is more common than most realize. Even legacy

systems today are being incorporated into interconnected systems of systems. As

systems of systems grow larger with more interconnected tiers, the performance

challenge also grows larger. And, with more interconnected tiers, the more difficult it will

be to find the performance bottleneck.

Another consideration that’s becoming more relevant is the integration of IoT

devices. IoT devices can complicate tracking bottlenecks as they can be difficult to

monitor as part of a wider performance test.

One of the performance factors is the choice of middleware. A good example is the

use of XML to pass data. XML is wonderfully useful in that it can be formatted to suit any

situation – so long as the message receiver can understand it. The downside of XML is

that the protocol is insecure plain text that is often used to send more information than is

needed – a typical performance issue.

This is one of the requirements of using a system of systems – a common

communication method. A wide range of middleware options exists to act as a translator

between disparate systems – database, application server, message-oriented, and web

and transaction processing monitors, along with messaging frameworks like XML, REST,

SOAP, and JSON.

Chapter 4 performanCe testing tasks

254

Summary systems of systems are multiple systems linked together, running
different operational profiles to simulate load from these systems.

 4.2.4 Creating Load Profiles
PTFL-4.2.4 (K4) Create load profiles derived from operational profiles for given

performance objectives

A load profile specifies the activity which a component or system being
tested may experience in production. It consists of a designated number of
instances that will perform the actions of predefined operational profiles
over a specified time period. Where the instances are users, the term “vir-
tual users” is commonly applied.

—ISTQB_CTFL_PT

operational profile

An actual or predicted pattern of use of the component or system.
load profile

Documentation defining a designated number of virtual users who process
a defined set of transactions in a specified time period that a component or
system being tested may experience in production.

—ISTQB Glossary

Chapter 4 performanCe testing tasks

255

Earlier in Chapter 1, the difference between the operational profiles (Figure 4-13)

and load profiles (Figure 4-14) was defined. Several possible operational profiles could

make up a single load profile, from which the performance test can be built.

Figure 4-13. An operational profile

Figure 4-14. A load profile

The principal information required to create a realistic and repeatable load profile is:

• The performance testing objective (e.g., to evaluate system behavior

under stress loads)

• Operational profiles which accurately represent individual usage

patterns (see Section 4.2.3)

Chapter 4 performanCe testing tasks

256

• Known throughput and concurrency issues (see Section 4.2.5)

• The quantity and time distribution with which the operational

profiles are to be executed such that the SUT experiences the desired

load. Typical examples are:

• Ramp-ups – Steadily increasing load (e.g., add one virtual user

per minute)

• Ramp-downs – Steadily decreasing load

• Steps – Instantaneous changes in load (e.g., add 100 virtual users

every five minutes)

• Predefined distributions (e.g., volume mimics daily or seasonal

business cycles)

A point of clarification is required. It’s important to distinguish the difference

between a user and a transaction. A user can perform many transactions (depending on

the business process being executed).

As well, the concept of a virtual user isn’t to represent a single person. For example,

an online betting site might be conducting performance testing around placing bets on

a horse or dog race. The operational profile states the user logs in, places a bet before the

event, then 2% of the users log out. It takes the average user 20 seconds to complete this

action. Hence, a single virtual user might log in with a single user ID and place a bet on

Duffel Coat Supreme (2) in Race 4 of the Dapto Dogs (yes – it’s a real place). That same

virtual user might then not log out (leaving the stateless session ID running on the server

to simulate a user leaving the page open with no activity or browsing to a different site)

and begin the next iteration with a new user ID.

So, in the space of one minute, the same virtual user might have logged in

three times (login transactions) with three separate user IDs, placed three bets (bet

transactions), and left two session IDs running (one logout transaction).

Summary a load profile combines operational profiles with groups of virtual
users ramping up, running for a duration, and ramping down to replicate
production load.

Chapter 4 performanCe testing tasks

257

The following example shows the construction of a load profile with the
objective of generating stress conditions (at or above the expected maxi-
mum for a system to handle) for the system under test.

At the top of the diagram a load profile is shown which consists of a step
input of 100 virtual users. These users perform the activities defined by
Operation Profile 1 over the entire duration of the test. This is typical of
many performance load profiles that represent a background load.

—ISTQB_CTFL_PT

The real load would include the ramp-up and ramp-down to effectively add to the

overall test time. It would look like the one in Figure 4-15.

Figure 4-15. Ramp-up, duration, and ramp-down

It’s always worth thinking of the entire end-to-end test as the end product.

Chapter 4 performanCe testing tasks

258

The middle diagram shows a load profile that consists of a ramp-up to 220
virtual users that is maintained for two hours before ramping down. Each
virtual user performs activities defined in Operational Profile 2.

Diagram 1: Example of constructing a “stress” load profile

The lower diagram shows the load profile that results from the combina-
tion of the two described above. The system under test is subjected to a
three-hour period of stress. For further examples, refer to [Bath & McKay
2014].

—ISTQB_CTFL_PT

Combining tests together in the preceding manner can save time in the ramp-up and

ramp-down of large numbers of users – it’s not unusual to have multiple load/stress/

spike tests or even endurance tests combined.

From Bath and McKay, this is a good example of the relationship between the

volumetric analysis and the derived operational profile for a vacation booking website.

This operational profile is like many online transaction sites – a smaller midday peak,

followed by a much higher peak later in the day after everyone is home from work/

school, Pointless3 has been watched, and dinner is done. Note as well we have different

“user groups” – one group browsing and the other booking.

3 A very British gameshow, where the object is not to just get the question right but to come up
with an answer no one else has thought of! Lowest number of points win – question points are
from when asking 100 random people the question, how many out of 100 got that answer. Zero
points (or “pointless”) are the best answers!

Chapter 4 performanCe testing tasks

259

The number of transactions/minute is the next example (Figure 4-17). Note that from

the y-axis, in combination with the preceding example, we could say between 1400 and

1900 the running users ramp up from 100 transactions/minute to 1000 transactions/

minute.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

U
se

r n
um

be
r

Time of Day

24 hr User Traffic Pa�ern

Browsser Booker

Maximum Normal
User Load

Midday
browsing peak

Evening
browsing

peak

Stress point

Figure 4-16. User traffic pattern over 24 hours (from Bath & McKay 2014)

0
200
400
600
800

1000
1200
1400
1600
1800

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Tr
an

sa
ct

io
ns

/ h
r

Time of Day

Transaction Load

Transaction Load

Normal
load limit

Spike
testing

Stress
testing

Figure 4-17. Transaction traffic pattern (from Bath & McKay 2014)

Chapter 4 performanCe testing tasks

260

The above is a good example of the comparison between the number of transactions

(Figure 4-17) and the number of users (Figure 4-16). The syllabus referred to load as the

running virtual users, whereas Bath and McKay look at the measure of load as both users

and transactions, highlighting the difference between the two.

Finally, although the examples refer to stress testing, it might be the tests are closer

to capacity tests. Stress testing (Figure 4-18) tends to have an “open end” – load increases

until a point of failure is reached. Capacity testing is looking to see if the maximum limits

of a component or system meet the requirements.

Efficiency should always be a consideration when planning and creating

performance tests. The ability to include multiple operational and load profiles within

one scenario can save a lot of time ramping up virtual users. Other efficiencies (data

refresh/reuse; after-hours execution) can also aid execution efficiency.

As an example, three load profiles are to be run – one test with 1000 virtual users, one

with 1500, and one with 1900, with a legacy system that can only support the ramp-up

of 1 virtual user every four seconds. Thus, if running each load profile individually, the

ramp-ups on three separate tests would be

Vusers Ramp-Up Time

Level 1 load 1000 4000 sec = 1hr 6min 40s

Level 2 load 1500 6000 sec = 1hr 40min

Level 3 load 1900 7600 sec = 2hrs 6min 40s

Figure 4-18. Stress/capacity test

Chapter 4 performanCe testing tasks

261

Of course, it will still take over two hours to log in the 1900 virtual users, but it makes

sense to “stop on the way” to test at 1000 and 1500 virtual users as shown in Figure 4-19.

 4.2.5 Analyzing Throughput and Concurrency
PTFL-4.2.5 (K4) Analyze throughput and concurrency when developing performance tests

It is important to understand different aspects of workload: throughput
and concurrency. To model operational and load profiles properly, both
aspects should be taken into consideration.

—ISTQB_CTFL_PT

Simply put, throughput is how much is being done; concurrency is when it’s being

done.

 System Throughput
System throughput is a measure of the number of transactions of a given
type that the system processes in a unit of time. For example, the number of
orders per hour or the number of HTTP requests per second. System through-
put should be distinguished from network throughput, which is the amount
of data moved over the network (Section 2.1).

—ISTQB_CTFL_PT

Figure 4-19. Load profile breakdown

Chapter 4 performanCe testing tasks

262

system throughput

The amount of data passing through a component or system in a given time
period.

—ISTQB Glossary

Throughput is the rate at which something is processed. In the case of a system,

throughput can be both categorized and calculated as the number of transactions

completed (either total or successful/unsuccessful).

Summary system throughput is the amount of transactions processed in a
given time. system throughput differs from network throughput (data passing the
network in a given time).

System throughput defines load on the system. Unfortunately, quite often
the number of concurrent users is used to define the load for interactive sys-
tems instead of throughput. This is partially true because that number is
often easier to find, and partially because it is the way load testing tools
define load. Without defining operational profiles – what each user is doing
and how intensely (which also is throughput for one user) – the number of
users is not a good measure of load. For example, if there are 500 users run-
ning short queries each minute, we have a throughput of 30,000 queries per
hour. If the same 500 users are running the same queries, but one per hour,
the throughput is 500 queries per hour. So there are the same 500 users, but
a 60x difference between loads and at least a 60x difference in the hardware
requirements for the system.

—ISTQB_CTFL_PT

Although system throughput can be used to define load, actual load is code

executing in an environment (including all the code execution outcomes such as

messages sent/received, files created/read/updated/deleted, etc.).

As mentioned earlier (and later in the preceding syllabus quote), one user can

perform more than one transaction. Another consideration is the rate at which these

transactions are done.

Chapter 4 performanCe testing tasks

263

Summary system throughput defines load on the system, as it links to the
operation profile to describe the rate at which users are performing actions.

Workload modelling is usually done by considering the number of virtual
users (execution threads) and the think time (delays between user actions).
However, system throughput is also defined by processing time, and that
time may increase as load increases.

system throughput
number of virtual users

processing time

�
� �

�� � � � �� �think time

So when the processing time increases, throughput may significantly
decrease even if everything else stays the same.

System throughput is an important aspect when testing batch processing
systems. In this case, the throughput is typically measured according to the
number of transactions that can be accomplished within a given time frame
(e.g., a nightly batch processing window).

—ISTQB_CTFL_PT

An example of the system throughput equation could be a system with 500 users, a

transaction processing time of 30 seconds, and a think time of 20 seconds. According to

the equation

system throughput �

�� �
500

30 20

= 10 transactions/second

It’s important to note that this transaction rate is an average. Were a performance

test to be run, for the first 50 seconds of the test, there would be zero transactions. As the

performance test ramps up, the transaction rate would increase until the full 500 virtual

users are running. This is the reasoning behind the test “not starting” until the ramp-up

has completed.

Chapter 4 performanCe testing tasks

264

Using the scenario from earlier in the chapter, let’s say the central bank has changed

the base interest rate (meaning the upper rate will apply):

On an average day, 1500 customers view their mortgage, with an aver-
age peak day viewing of 20,000 customers.

We can also use the distribution suggested by Bath and McKay for the rate at which

over a day the mortgage viewing will be spread (Figure 4-20).

From this, we have an approximation of the distribution of the performance test

numbers. But, how would these relate to the preceding graph? If we were considering the

upper peak of 20,000 transactions, we would need to consider how many virtual users

would be required to generate this transaction rate. It will depend on a few factors:

• How long it takes for a user to complete the view mortgage business

process (web logs have shown on average, users take 180 seconds for

the end-to-end view mortgage business process).

• How many transactions are needed per hour (to cover the average of

20,000 transactions in 18 hours as above, 1100 transactions per hour

are needed).

• How many transactions are done by each user (in this case, it’s a

bit easier, as each user will log in, view their mortgage with the new

interest rate, and log out).

Figure 4-20. Mortgage viewing distribution breakdown

Chapter 4 performanCe testing tasks

265

• Which transactions have a higher organization importance (in the

example, it could be argued that all have importance, but from

a performance point of view, login and view mortgage are more

resource intensive).

• Which key transaction is being tested (as per the requirement, the

view mortgage is the key based on the customer requirement of

viewing the effect of a base rate change on their mortgage payments).

Initially, transaction rate can be calculated for a planned test. For each user taking

180 seconds to complete the business process, 20/hour can be completed. It was decided

that each of the first two peaks will take 1 hour, and the third peak will ramp up in 15

minutes, run for 1 hour, then ramp down (about 4 hours in total). To break this down

further, calculations can be done for each of the load profile components – the base load

and the three peaks (Figure 4-21).

BASE LOAD – Over 4 hours, with a 50-user group, 4000 transactions will be

completed.

PEAK 1 – Over 1 hour, with a 100-user peak over base, 1000 transactions will be

completed.

PEAK 2 – Over 1 hour, with a 150-user peak over base, 1500 transactions will be

completed.

PEAK 3 – Over 1 hour, with a 300-user peak over base, 6000 transactions will be

completed, plus 1500 for ramp-up and ramp-down (Figure 4-22).

Figure 4-21. User profile breakdown

Chapter 4 performanCe testing tasks

266

Thus, in the 4-hour performance test, with a peak of 350 virtual users, a total of

14,000 transactions will be completed.

To determine these numbers, use area calculations:

BASE – 50 (users) x 4 (hours) = 200 user-hours;

with 20 transactions/hour = 20 x 200 = 4000 transactions4

PEAK 1 – 100 (users) x 1 (hour)/ 2 = 50 user-hours

with 20 transactions/hour = 20 x 50 = 1000 transactions

PEAK 2 – 150 (users) x 1 (hour)/ 2 = 75 user-hours

with 20 transactions/hour = 20 x 75 = 1500 transactions

4 Note the ramp-up and ramp-down were excluded from the calculation, as the test hasn’t
officially “begun” until the base 50-user load was running.

Figure 4-22. Transaction profile breakdown

Chapter 4 performanCe testing tasks

267

PEAK 3 – 300 (users) x 0.5 (hour)/ 2 = 75 user-hours (15 minutes ramp-up, 15

minutes ramp-down)

with 20 transactions/hour = 20 x 75 = 1500 transactions

Plus

300 (users) x 1 (hour) = 300 user-hours

with 20 transactions/hour = 20 x 300 = 6000 transactions

TOTAL = 7500 transactions

If you ever said while doing geometry at school, “When will I ever use this stuff?” –

question answered!

It should also be noted that each virtual user will log in with different user credentials

each iteration to simulate different users querying the relevant mortgage documents.

Summary Workload modeling is the combination of the number of virtual users,
the transaction, and think times to calculate the system throughput:

system throughput
number of virtual users

processing time
�

� �
�� � � � �� �think time

system throughput is important for batch processing systems (the number of
transactions completed within a given timeframe).

Chapter 4 performanCe testing tasks

268

 Concurrency
Concurrency is a measure of the number of simultaneous/parallel threads
of execution. For interactive systems, it may be a number of simultaneous/
parallel users. Concurrency is usually modelled in load testing tools by set-
ting the number of virtual users.

—ISTQB_CTFL_PT

concurrency

The simultaneous execution of multiple independent threads by a compo-
nent or system.

—ISTQB Glossary

Bear in mind that idle users in a system might also represent concurrency – either

stateless sessions being maintained by the server or a stateful session consuming a

connection.

Concurrency is an important measure. It represents the number of parallel
sessions, each of which may use its own resources. Even if throughput is the
same, the amount of resources used may differ depending on concurrency.
Typical test setups are closed systems (from the queuing theory point of
view), where the number of users in the system is set (fixed population). If
all users are waiting for the system’s response in a closed system, no new
users can arrive. Many public systems are open systems – new users are
arriving all the time even if all the current users are waiting for the system’s
response.

—ISTQB_CTFL_PT

Queueing theory is the study of the formation, function, and congestion of waiting

lines (queues).

The theory is built on two components:

• One or more servers supplying a service

• Several clients requesting a service

Chapter 4 performanCe testing tasks

269

Queueing theory studies the queue (the client arrival rate, number of servers,

number of clients, the maximum queue capacity, average service completion time, and

queuing rules – first-in-first-out, last-in-first-out, prioritized, or random-order service).

It’s an interesting area that can directly impact performance engineers from both the

technical side (read/write queueing on a hard drive) and the business side (a bank teller

system response time affecting the length of the queue at the bank at lunchtime).

The concept of a closed system is relevant to queueing theory. Closed systems have

a fixed client number that move between the internal system queues but never leave the

system. This relates to many test environment, as the environment (and in fact many

internal organization systems) have a fixed number of users. This may be unrealistic in

terms of the production system – if the system is a web-based public system, it will be an

open system (or more accurately a worldwide closed system with a client number in the

billions). This should be considered, as many web systems are tested with an estimated

peak load, but that might be below the number of users the system could spike to.

A company called Click Frenzy (ClickFrenzy.com.au) discovered this in 2012. Click

Frenzy was an online sales site, where manufacturers and large retailers could join a

shopping event called a flash sale (like “Cyber Monday”) that has become popular.

The first “Click Frenzy” date was announced to begin on November 20, 2012, with a

large amount of marketing leading up to the event. The company was confident they

could handle the anticipated load, convinced they had created a “user-friendly online

marketplace built to withstand enormous concurrent traffic volumes.”5 Having

signed up hundreds of retailers and thousands of users, the sale began at 19:00 AEST,

November 20. Within the first minute, the site crashed due to the spike in load. This then

had a cascading effect to the retailer’s websites, as users who couldn’t gain access to

the sale went from ClickFrenzy.com.au to the retailer’s sites. After the dust settled, the

following lessons were proposed:

 1. It’s vital the servers can handle a massive and rapid increase in

load while running a flash sale. If the servers cannot, be prepared

for reputational and financial loss (remember organizational risks

can become issues!).

 2. If your site is covered in the media (especially if the flash sale gets

news coverage), refer to point 1.

5 www.digitalpulse.pwc.com.au/click-frenzy-fail-learnings/

Chapter 4 performanCe testing tasks

http://www.digitalpulse.pwc.com.au/click-frenzy-fail-learnings/

270

 3. If competitors run a flash sale, ensure your servers can handle

overflow load to your website in the event of the competitor’s site

failing.

 4. Your site will get a large traffic spike, so cloud services offering

automatic resource scaling (AWS Auto Scaling/Azure Autoscale/

Google Cloud Managed Instance Groups Autoscaling) are a must.6

From the perspective of a user/virtual user, concurrency can be considered at three

levels. Consider the vacation site used by Bath and McKay earlier:

 1. Application level – How many users are active on the site

(searching for holidays, viewing destination information, booking

vacations, checking booked vacation details)

 2. Business process level – How many users are in the booking

vacation process (selecting flights/hotels/car rentals/insurance/

inputting payment information)

 3. Transaction level – How many users are clicking on purchase

RIGHT NOW (clicking the “Purchase” button in the last second)

Concurrency, at whatever level, can place specific performance conditions onto

the system under test. In many performance situations, a sub-objective may be to,

“under load,” determine the system’s ability to handle simultaneous business process/

transaction events. Different issues can be explored:

• Race conditions – At a low level, two threads simultaneously access

a shared variable. The first thread reads the variable, and the second

thread reads the same value. The first thread and second thread then

perform operations on the value, and they “race” to see which thread

writes its values last is preserved because of the thread is writing over

the value that the previous thread wrote. This can cause functional

defects directly. If one of the threads is delayed due to performance

issues, a race condition can be a functional defect dependent on the

amount of load on the system. It can also be one of the intermittent

defects found by functional testers that are very difficult to diagnose.

6 http://littleredjet.com/click-frenzy-crazy-fail-all-of-the-above-of-2012/

Chapter 4 performanCe testing tasks

http://littleredjet.com/click-frenzy-crazy-fail-all-of-the-above-of-2012/

271

• Semaphoring – In programming, a semaphore can be used as a

thread stoplight. Depending on the value of a variable or data type, it

might allow or disallow execution of a designated thread to continue.

Semaphoring can be used to avoid a race condition, but it can also

cause operations to take much longer to complete.

• Load spikes – Imagine a sales website has run a marketing campaign

advertising next Monday at 08:00 GMT the online store will open,

and “amazing savings can be had for a limited time while stocks last.”

It would be safe to predict a spike in load at 08:00 based on business

process and transaction concurrency could overload the system’s

ability to complete customer sales.

• Resource exhaustion – Consumable resources such as available

threads or connections from a connection pool might be exhausted,

leading to a drop in performance. Or it could be the system servers

simply run out of memory.

Summary Concurrency represents parallel sessions consuming resources.
Consider the nature of the production system (closed – fixed user number
vs. open – web-based public system) when considering how concurrency is
determined.

 4.2.6 Basic Structure of a Performance Test Script
PTFL-4.2.6 (K2) Understand the basic structure of a performance test script

The differences between theory and practice are smaller in theory than they
are in practice…

—Unknown

Chapter 4 performanCe testing tasks

272

A performance test script should simulate a user or component activity that
contributes to the load on the system under test (which may be the whole
system or one of its components). It initiates requests to the server in a
proper order and at a given pace.

—ISTQB_CTFL_PT

It is imperative that the script:

• Performs the business process as the user would perform it

(within reason, of course. An approval, e.g., might be scripted to be

completed immediately as part of a performance test rather than wait

for hours for an authorizer to see the email…)

• Uses a range of both positive and negative test data (as if there is

a possibility a user will perform a transaction the right way or the

wrong way, someone will always choose the wrong way)

• Is created in a modular, easy-to-maintain form (as you will be

changing it in the future, so make it easy both for yourself and fellow

performance engineers)

• Can perform error handling (as it will need to deal with both negative

and positive data as well as error conditions)

Summary performance scripts should simulate the real system user, in the same
order and at the same speed.

The best way to create performance test scripts depends on the load genera-
tion approach used (Section 4.1):

• The traditional way is to record communication between the
client and the system or component on the protocol level and
then play it back after the script has been parameterized and
documented. The parameterization results in a scalable and
maintainable script, but the task of parameterization may be
time consuming.

Chapter 4 performanCe testing tasks

273

• Recording at the GUI level typically involves capturing GUI
actions of a single client with a test execution tool and running
that script with the load generation tool to represent multiple
clients.

• Programming may be done using protocol requests (e.g., HTTP
requests), GUI actions, or API calls. In the case of programming
scripts, the exact sequence of requests sent to and received from
the real system must be determined, which may be not trivial.

—ISTQB_CTFL_PT

Script creation isn’t as clear-cut as the preceding bullet points. It would be rare that a

single method on its own would be used, unless limited by the tool itself.

As an example, Fiddler is a proxy server tool used to log, inspect, and (potentially)

alter HTTP and HTTPS traffic. It captures the web traffic by diverting the web ports (80 and

443) through the tool proxy. Although you cannot script using Fiddler, the captured output

log can be imported into other tools (such as Micro Focus LoadRunner or Performance

Center) to automatically create a script from the captured log.

LoadRunner and Performance Center both use the same tool – the Virtual User

Generator, or VuGen – to create scripts. This tool uses the GUI to record the script, but

predominantly doesn’t record this from the front-end GUI. Once again, it diverts ports

through the tool proxy to capture the protocol calls to create the scripts. VuGen also has

TruClient – a patented recording method that creates a GUI-based script which, like the

Fiddler log, can be converted to a protocol-based script for execution in a load test.

JMeter is an open source tool that also uses the proxy recording method. Like Fiddler

and VuGen, the proxy captures the user actions and the corresponding protocol calls to

the server.

Again, both VuGen and JMeter can also run API and custom protocol functions.

Almost every script created uses a similar combination today. It would be extremely rare

to program a full script for a load test, but there are specific instances where this might

be the only alternative.

Chapter 4 performanCe testing tasks

274

Summary performance scripts can be created with

 1. Capturing the protocol request/response (avoiding the gUi
interaction)

 2. recording the gUi and playing this back

 3. programming protocol/gUi/api calls

Usually a script is one or several sections of code (written in a generic pro-
gramming language with some extensions or in a specialized language) or
an object, which may be presented to a user by the tool in a GUI. In both
cases the script will include server requests creating load (e.g., HTTP
requests) and some programming logic around them specifying how exactly
these requests would be invoked (e.g., in what order, at what moment, with
what parameters, what should be checked). The more sophisticated the
logic, the more need for using powerful programming languages.

—ISTQB_CTFL_PT

Most scripting tools today are based on either Java or a C-based language (C, C++,

C#). Allowing programming logic to be added to the base recording helps add run logic,

error handling, and custom methods/functions to the script.

Summary performance scripts are written in code sections/ functions/ objects
and methods in a generic language (C-based, Java), with programming logic to
decide how the requests are run.

 Overall Structure
Often the script has an initialization section (where everything gets pre-
pared for the main part), main sections that may be executed multiple
times, and a clean-up section (where necessary steps are taken to finish the
test properly).

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

275

This is based on the earlier premise that for legacy client/server systems (with a

stateful connection and no timeout set), a user logs in once, performs many tasks, and

logs off in the evening. This has been carried forward to today in many areas – an ERP

user would recognize this as a standard workday (Figure 4-23).

Figure 4-23. Run logic for a client-server type system

It’s important to note that, as mentioned before, an idle user may still be a

consideration in such a test. Any connected user, whether they are performing a task or

not, still consumes a connection.

Another point to note on this type is the logout process. Occasionally, these systems

capture users’ states at logout – meaning the logout transaction does not merely

terminate the session. In the example illustration, the login is contained within the

vuser_init, the tasks contained within the PlaceBet action, and the logout in the vuser_

end. It’s important to note the vuser_init and vuser_end only execute once.

Chapter 4 performanCe testing tasks

276

User behavior can change depending on the environment. A browser-based

application may still require a user to login. However, this will be either a stateful

connection with a timeout or a stateless connection. But the nature of the transaction

may change. It may be the user only wishes to perform a discrete task. Hence, they log in,

perform the task, and either log out or the session eventually times out (Figure 4-24).

Many systems today follow this pattern – even the web-equivalent ERP that have

taken over from the client/server versions.

In this example, both vuser_init and vuser_end are empty. The actions within the

Run section contain the tasks the user would perform. Further, the Logout action has

been randomized to mimic the behavior of real users – in this system, only 2% of users

manually log out. The others rely on the session ID expiring. The BLANK action contains

no code to allow that user session to stay running.

Summary performance scripts have an initiation section (run once to “to log in”/
start the test), a main section (run multiple times to perform user actions), and a
clean-up section (“log out”).

Figure 4-24. Run logic for a web-based system

Chapter 4 performanCe testing tasks

277

 Data Collection
To collect response times, timers should be added to the script to measure
how long a request or a combination of requests takes. The timed requests
should match a meaningful unit of logical work–for example, a business
transaction for adding an item to an order or submitting an order.

It is important to understand what exactly is measured: in the case of pro-
tocol-level scripts it is server and network response time only, while GUI
scripts measure end-to-end time (although what exactly is measured
depends on the technology used).

—ISTQB_CTFL_PT

Another consideration is that of transactional data. As stated, transactional data is

created at runtime by the system. This could be status bar messages, order numbers,

and even mortgage contract documents. These could be used as actual results for

checkpoints added to the script, to be compared with some predetermined expected

result. This is an important consideration, as this will be proof that the business process

was completed satisfactorily or could be the starting point for remediation.

Summary performance scripts collect response times via tool functions to
measure the time a transaction takes. protocol-level scripts exclude gUi rendering
times (hence not end-to-end).

 Result Verification and Error Handling
An important part of the script is result verification and error handling.
Even in the best load testing tools, default error handling tends to be mini-
mal (such as checking the HTTP request return code), so it is recommended
to add additional checks to verify what the requests actually return. Also, if
any clean-up is required in case of an error, it likely will need to be imple-
mented manually. A good practice is to verify that the script is doing what
it is supposed to do using indirect methods–for example, checking the data-
base to verify that the proper information was added.

Chapter 4 performanCe testing tasks

278

Scripts may include other logic specifying rules concerning when and how
server requests will be made. One example is setting synchronization points,
which is done by specifying that the script should wait for an event at that
point before proceeding. The synchronization points may be used to ensure
that a specific action is invoked concurrently or to coordinate work between
several scripts.

Performance testing scripts are software, so creating a performance testing
script is a software development activity. It should include quality assur-
ance and tests to verify that the script works as expected with the whole
range of input data.

—ISTQB_CTFL_PT

Much can be written regarding error handling. One of the main issues (and this is

specific to HTTP return codes) is the redirect. Tools are preprogrammed to know that

the HTTP return codes in the 200s are OK; 400s and 500s are error states. It’s those in the

300s range that cause issues (more on this shortly). Redirects are used across the Internet

to improve usability – an example being if a user visits www.ba.com, they are redirected to

www.britishairways.com. Unfortunately, sometimes the redirect is because of an error

state and sends the user to an internal error page within the site. But tools may interpret

the 300 return code as a legitimate redirect (which it is), which could then be interpreted

as everything is working (which it may not be).

Synchronization points are a useful technique, especially where the possibility

of a race condition (or similar) could exist. It must be understood that the use of

synchronization points can affect performance results. For example, if a virtual user is

locked within a synchronization point waiting for a condition that cannot be met, it may

never exit this condition.

The final point is once again a deficiency with many performance test scripts. A

performance engineer must always remember once they start creating test scripts, they

are writing code. And, it also must be acknowledged that just like any other developers,

performance engineers can also make mistakes.

Chapter 4 performanCe testing tasks

http://www.ba.com
http://www.britishairways.com

279

The moral of the story is – test your scripts!

Summary performance scripts must verify expected results to confirm correct
behavior. error handling should be used to recover from error conditions and clean
up after the error. synchronization points are useful to avoid race conditions. as the
performance scripts are code, they must be tested after every change to confirm
correct execution.

 4.2.7 Implementing Performance Test Scripts
PTFL-4.2.7 (K3) Implement performance test scripts consistent with the plan and load

profiles

Performance test scripts are implemented based on the PTP and the load
profiles. While technical details of implementation will differ depending on
the approach and tool(s) used, the overall process remains the same. A per-
formance script is created using an Integrated Development Environment
(IDE) or script editor, to simulate a user or component behavior. Usually
the script is created to simulate a specific operational profile (although it is
often possible to combine several operational profiles in one script with
conditional statements).

—ISTQB_CTFL_PT

As mentioned earlier, the virtual user script steps must replicate the steps real users

or components perform, including the negative (incorrect) steps!

Summary performance scripts follow the performance test plan, load profile,
and operational profile(s) defined.

As the sequence of requests is determined, the script may be recorded or
programmed depending on the approach. Recording usually ensures that it
exactly simulates the real system, while programming relies on knowledge
of the proper request sequence.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

280

Writing the script without recording is very rare. Many performance engineers will

go throughout their career never needing to write an entire script from scratch. But it can

be guaranteed that many hours will be spent ensuring changes to the recorded script

execute correctly. Any time a change is made to a script, it must be tested!

Summary although rare, performance scripts can be programmed. more
common is recording user input actions to record the script.

If recording on the protocol level is used, an essential step after recording in
most cases is replacing all recorded internal identifiers that define context.
These identifiers must be made into variables that can be changed between
runs with appropriate values that are extracted from the request responses
(e.g., a user identifier that is acquired at login and must be supplied for all
subsequent transactions). This is a part of script parameterization, some-
times referred to as ‘correlation’. In that context the word correlation has a
different meaning than when used in statistics (where it means relationship
between two or more things). Advanced load testing tools may do some cor-
relation automatically, so it may be transparent in some cases—but in
more complex cases, manual correlation or adding new correlation rules
may be required. Incorrect correlation or lack of correlation is the main rea-
son why recorded scripts fail to playback.

—ISTQB_CTFL_PT

Correlation is needed when dynamic server values are hard-coded into the script.

For example, a music website lists a range of different albums for sale. As humans, we

might refer to one of these albums as The Proclaimers Sunshine On Leith. The system

refers to this as SKU7 1049296. If we record a script that selects this album, it’s recorded

as information within the protocol call to the server (within the web_submit_form

function):

7 SKU – stock keeping unit – a number used as a unique primary key identifier to track inventory
items in a stock management database.

Chapter 4 performanCe testing tasks

281

Parameterization is where hard-coded values are replaced with parameters to allow

the script to draw different data each time the script iterates (loops). If the album title was

parameterized (as the script will need to choose at random from a list of albums), the SKU

would remain the same without the performance engineer parameterizing this too. If the

performance engineer were to rerun the script after parameterizing the name, the first

iteration would pass. Any subsequent iterations though would fail, as there would be an

incorrect SKU for the next album. It would be easy to parameterize the SKU along with the

album name, as it could be extracted along with the album name from the stock database.

Dynamic server–created values, on the other hand, are unknown before execution.

A session ID is a good example – no way to predict this before execution. Session IDs

can be annoying, as once the script is recorded, the session ID may be kept active by

replaying the script (as the “user” is still active as far as the server knows). The absolute

best thing to do in this case is have a long lunch:

Seven course meal with three wines and brandy…8

Non-alcoholic options are also available.

8 Yes, Prime Minister Episode 1 – “The Grand Design,” lunch with the German Ambassador, just for
Joe!

Chapter 4 performanCe testing tasks

282

During this dining bonanza, the session ID will expire, and upon return replaying the

script will pass an expired session ID and fail.

The steps to correlate these dynamic server values are shown in Figure 4-25.

And, of course, after the changes are made, test the script!

Summary internal identifiers (like session iDs) must be correlated to allow the
script to run successfully. Correlation involves finding the first instance of the value
sent from the server, capturing the value, and parameterizing all occurrences of the
recorded value. some tools automate correlation, or it can be done manually.

Figure 4-25. Steps to correlate

Chapter 4 performanCe testing tasks

283

Running multiple virtual users with the same username and accessing the
same set of data (as usually happens during playback of a recorded script
without any further modification beyond necessary correlation) is an easy
way to get misleading results. The data could be completely cached (copied
from disk to memory for faster access) and results would be much better
than in production (where such data may be read from a disk). Using the
same users and/or data can also cause concurrency issues (e.g., if data is
locked when a user is updating it) and results would be much worse than in
production as the software would wait for the lock to free before the next
user could lock the data for update.

—ISTQB_CTFL_PT

Data caching is a useful function in production systems but can also be the bane of

many performance engineers. The cache is an area of memory reserved to temporarily

store frequently accessed data. Computers, routers, and switches use caching to speed

up memory access, browsers cache objects to stop retrieving the same object multiple

times, client/server systems cache information at both the client and server, and

databases cache frequently accessed records.

The problems with performance testing lie in the unintended use of the cache. If the

cache is used in production, it should be used during the performance test. But there are

several situations that could cause problems:

• If the browser cache is turned on, each virtual user might be using

a cache when it may be the first time that “user” should have

accessed the system (and hence download the objects). Performance

engineers should check how web caching is set up on the client –

many performance tools allow the cache to be cleared on each new

user iteration.

• If the performance script has a limited set of user-defined data being

used, it may be that records are cached, giving a false impression

as to the speed at which the database responds. If the required data

needs to be found on the disk, it will take much longer than accessing

the data from the cache in RAM.

The steps to reduce the adverse effect of data caching are shown in Figure 4-26.

Chapter 4 performanCe testing tasks

284

Summary reusing the same master or user-defined data can cause

• Data caching (reading from ram rather than disk), meaning results
are returned faster

• Concurrency issues due to record locking in the database, meaning
results are returned slower

So scripts and test harnesses should be parameterized (i.e., fixed or recorded
data should be replaced with values from a list of possible choices), so that
each virtual user uses a proper set of data. The term “proper” here means
different enough to avoid problems with caching and concurrency, which is
specific for the system, data, and test requirements. This further parameter-

Figure 4-26. Test data considerations

Chapter 4 performanCe testing tasks

285

ization depends on the data in the system and the way the system works
with this data, so it usually is done manually, although many tools provide
assistance here.

—ISTQB_CTFL_PT

Although automated parameterization can be tempting, it’s like doing a search

and replace in a document. It can be that values that shouldn’t be parameterized can

unintentionally be replaced, or values that require parameterization are missed.

Summary script and test harness fixed values should be parameterized.

There are cases where some data must be parameterized for the test to work
more than once–for example, when an order is created, and the order name
must be unique. Unless the order’s name is parameterized, the test will fail
as soon as it tries to create an order with an existing (recorded) name.

—ISTQB_CTFL_PT

Unique transactional data often becomes a primary key in a database table and can

be valuable to capture. This can be the advantage of capturing transactional data – as

this output data can now be reused as input data for a later script. It can also be used as

an expected result – this order number should be returned on a search for open orders

for this customer.

Summary Unique values must be parameterized for the script to work.

To match operational profiles, think times should be inserted and/or
adjusted (if recorded) to generate a proper number of requests/throughput
as discussed in Section 4.2.5.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

286

This is a good point. As an example, we can return to the code from earlier:

The lr_think_time represents some user action in the client – it took 12 seconds from

getting the search results to placing the desired item in the basket. It might be the user

who created this script is a new user, unfamiliar with the interface. An experienced user

might only take 4 seconds. There are options here:

• The lr_think_time value could be parameterized, with the desired

value being replaced by a variable being drawn from the user-defined

dataset in the script.

• Some tools allow the think time to be handled according to a set of

think time rules. When the performance engineer is testing the script,

think time can be disabled (to speed up execution replay). It can

be replayed as recorded or multiplied by a factor (e.g., 12 seconds

x 1.5 = 18 seconds), with these values being hard-coded based on

the recorded value. The third randomizes the think time based on

the percentage multipliers (in the example, the time would be a

random value between 6 and 18 seconds). The last option limits the

think time to less than a value (e.g., if this was set to 10 seconds, the

random value would be restricted between 6 and 10 seconds). See

Figure 4-27.

Chapter 4 performanCe testing tasks

287

But this only affects the internal think time until the iteration is complete. Another

setting that can be used is adding time onto the end of the iteration – known as pacing

(Figure 4-28).

Pacing can be both fixed and random. An iteration can be delayed after the iteration

is complete by a set time or can be started at a defined interval. The last could be

problematic, as if the iteration takes longer than 60 seconds, and another iteration

should start, it waits until the previous iteration ends and commences the next iteration

immediately.

Summary think times can be adjusted to suit the operational profile.

Figure 4-27. Micro Focus LoadRunner think time runtime settings

Figure 4-28. Micro Focus LoadRunner pacing runtime settings

Chapter 4 performanCe testing tasks

288

When scripts for separate operational profiles are created, they are com-
bined into a scenario implementing the whole load profile. The load profile
controls how many virtual users are started using each script, when, and
with what parameters. The exact implementation details depend on the
specific load testing tool or harness.

—ISTQB_CTFL_PT

Creating the full performance test scenario allows multiple user groups, each

running a specified number of virtual users, with specific ramp-up, run duration, and

ramp-down settings (Figure 4-29). Importantly, other variables, from the think time and

pacing mentioned earlier, to the type of browser and bandwidth each user group uses, to

individual environment variables to be set. The scenario then, during execution, allows the

results and metrics to be captured, observed during runtime, and analyzed (Figure 4-30).

Figure 4-29. LoadRunner – building a scenario

Chapter 4 performanCe testing tasks

289

Summary a script is written to match the operational profile, which are
combined into a scenario (the load profile).

 4.2.8 Preparing for Performance Test Execution
PTFL-4.2.8 (K2) Understand the activities involved in preparing for performance test

execution

The main activities for preparing to execute the performance tests include:

• Setting up the system under test

• Deploying the environment

• Setting up the load generation and monitoring tools and making
sure that all the necessary information will be collected

—ISTQB_CTFL_PT

Figure 4-30. LoadRunner – scenario execution

Chapter 4 performanCe testing tasks

290

Preparing the performance environment can cover a wide range of points beneath

the syllabus points. Some things to consider are:

• Security – Occasionally, the security settings on the system under

test are altered “to make testing easier.” Although this may be true, it

can alter the end-to-end performance. Any security added can add

to the performance resource utilization. Removing it can remove this

overhead. As well (and arguably more importantly), reducing the

security on a test environment can create a vulnerability to become

an attack vector for malicious users (both external and internal). Test

environments must be secured as they would be in production to

remove this possibility. This includes the passwords for virtual users

(as weak passwords are another security vulnerability many test

environments fall victim to).

• Test data – As previously mentioned, not only the system under test

and performance test tool make up the performance environment.

Master data is also included. Processes to manage the master data

(source/ create/ refresh/ update) in the performance test master

dataset are important. It also ties to security – sourcing or creating

data that complies with the privacy regulations is required by law

(as weakened security and production data in test is a recipe for

disaster).

• Availability – A good performance environment makes the

performance testing job much easier. But it also becomes useful for

others to use as well – it can be typical that the environment is used

for user training or some other form of testing. Proper scheduling of

the environment for different user groups is a must. Change control/

configuration management are essential, as without these controls,

time can be wasted chasing spurious performance results based on

unauthorized changes.

Chapter 4 performanCe testing tasks

291

Summary the performance test execution tasks

• set up the system under test

• Deploy the environment

• set up load generators/monitoring tools and ensure necessary
information is collected

It is important to ensure the test environment is as close to the production
environment as possible. If this is not possible, then there must be a clear
understanding of the differences and how the test results will be projected
on the production environment. Ideally, the true production environment
and data would be used, but testing in a scaled-down environment still
may help mitigate a number of performance risks.

—ISTQB_CTFL_PT

Performing a gap analysis between the (planned) production environment and the

planned and actual performance test environment can help cover any issues that could

occur. This would include shortfalls in performance test results which could affect the

achievement of the performance test objectives. Any shortfalls should be recorded as

risks to the project and added to the risk register and evaluated. Any assumptions and

constraints should also be captured to be dealt with.

Summary the test environment should be as close to production-like as possible
(both the hardware and test data), or there must be a documented understanding
of the differences and how they will affect the results.

It is important to remember that performance is a non-linear function of
the environment, so the further the environment is from production stan-
dard, the more difficult it becomes to make accurate projections for produc-
tion performance. The lack of reliability of the projections and the increased
risk level grow as the test system looks less like production.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

292

Remember extrapolation? This is the reason why it may not work. Extrapolation

requires a prediction on the system under test’s behavior beyond any gathered results

data. It might work, but the risks of the extrapolation being wrong should always be

acknowledged.

Summary performance is nonlinear. the bigger the difference between
production and test environments, the less accurate the results.

The most important parts of the test environment are data, hardware and
software configuration, and network configuration. The size and structure
of the data could affect load test results dramatically. Using a small sample
set of data or a sample set with a different data complexity for performance
tests can give misleading results, particularly when the production system
will use a large set of data. It is difficult to predict how much the data size
affects performance before real testing is performed. The closer the test data
is to the production data in size and structure, the more reliable the test
results will be.

If data is generated or altered during the test, it may be necessary to restore
the original data before the next test cycle to ensure that the system is in the
proper state.

—ISTQB_CTFL_PT

A good tip is to set a database or virtual machine restore point. This simple step can

speed up any environment refresh needed, but at the same time limit the performance

testing being executed. Returning to a known starting point can ensure multiple runs are

executed under the same conditions and return similar results – particularly useful when

isolating an issue. It can however restrict the observation of database performance as the

dataset expands. As well, it can take time to refresh a large dataset. A project once used

a database that was very comprehensive but took 26 hours to restore to a known starting

point after a performance test cycle was complete. That amount of time placed pressure

on the schedule, so as strange as it might be, sometimes there can be too much data. The

performance tests in this case would have been better to be written to use the test system

database in whatever state it was in, to save on the refresh time.

Chapter 4 performanCe testing tasks

293

Summary the important parts of the test environment are data and hardware,
software, and network configurations. the closer the data size is to production, the
more realistic the results.

If some parts of the system or some of the data is unavailable for perfor-
mance tests for whatever reason, a workaround should be implemented.
For example, a stub may be implemented to replace and emulate a third-
party component responsible for credit card processing. That process is
often referred to as “service virtualization” and there are special tools avail-
able to assist with that process. The use of such tools is highly recommended
to isolate the system under test.

—ISTQB_CTFL_PT

A range of service virtualization tools exist (including both commercial and

open source). They allow the creation and deployment of virtual API sets to replicate

the behavior of a system or externally sourced service. This is particularly useful for

performance testing a single tier – the other tiers in the system might be replaced with

service virtualization. Performance engineers should consider the nature of the API

(languages/libraries/frameworks), along with the protocol used in communication

between the service provider and the system under test.

Summary service virtualization can allow testing to continue if components or
data are missing by replacing the missing components or data feeds.

There are many ways to deploy environments. For example, options may
include using any of the following:

• Traditional internal (and external) test labs

• Cloud as an environment using Infrastructure as a Service
(IaaS), when some parts of the system or all of the system is
deployed to the cloud

• Cloud as an environment using Software as a Service (SaaS),
when vendors provide the load testing service

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

294

Performance engineers should consider the advantages and disadvantages of any

deployment option, as has been mentioned earlier. It should be noted that, although

not explicitly mentioned in the syllabus, these environments might also be virtualized,

adding to the complexity. Things to note include:

• Production likeness – Like virtual environments, the two cloud

options might be chosen for cost reasons rather than production

likeness. When looking at virtual environments, the difference

between the test and production environments were considered; the

same should be done here.

• Monitoring – It can be difficult to get low-level monitoring

information from the cloud provider. Arrangements should be

made for the provision of such – either access via the performance

engineer’s monitoring tool(s) or the provision for the cloud provider

to supply these results.

• Change control/configuration management – Performance engineers

must abide by The Golden Rule of Test Environments During

Performance Test Development and Execution:

We work as a team, and we do what the performance engineer says!

Unauthorized changes can have a major impact on the

performance test results – best avoid these. As well, any

authorized changes made to the environment (whether for defect

repair or performance tuning the environment) must be recorded.

Summary test environments are deployed using the following:

• traditional internal/external test labs

• Cloud environments using infrastructure as a service (iaas)

• Cloud environments using software as a service (saas)

Chapter 4 performanCe testing tasks

295

Depending on the specific goals and the systems to test, one test environ-
ment may be preferred over another. For example,

• To test the effect of a performance improvement (performance
optimization), using an isolated lab environment may be a
better option to see even small variations introduced by the
change.

—ISTQB_CTFL_PT

An isolated environment allows The Golden Rule of Test Environments During

Performance Test Development and Execution to reign supreme! It can remove

extraneous factors that could affect the outcome of the performance test.

To load test the whole production environment end-to-end to make sure the
system will handle the load without any major issues, testing from the cloud
or a service may be more appropriate. (Note that this only works for SUTs
that can be reached from a cloud).

To minimize costs when performance testing is limited in time, creating a
test environment in the cloud may be a more economical solution.

—ISTQB_CTFL_PT

Cloud testing is becoming more popular for several reasons:

 1. Scaling – Scaling the load can be easier due to the availability of

resources.

 2. External load – Because the load is coming from “outside the

firewall,” the full end-to-end infrastructure (firewall/proxy/

internal bandwidth) can be tested.

 3. Available as a service – Vendors (such as IBM and Micro Focus)

have cloud performance testing as a service. Performance

engineers can create the tests and scenarios, then execute using

the vendor’s cloud servers.

 4. Cost – Obtaining cloud resource can be a cost-effective option

(when both licensing and maintenance are also considered)

against internal servers. Much of the time, older hardware is used

in test environments, which may be OK for functional testing,

Chapter 4 performanCe testing tasks

296

even some limited testing of non-functional test types (security/

usability/maintainability), although performance may have an

impact on testing these.

Summary test environments can differ depending on the performance test type.

Whatever approach to deployment is used, both hardware and software
should be configured to meet the test objective and plan. If the environment
matches production, it should be configured in the same way. However, if
there are differences, the configuration may have to be adjusted to accom-
modate these differences. For example, if test machines have less physical
memory than the production machines, software memory parameters
(such as Java heap size) may need to be adjusted to avoid memory paging.

—ISTQB_CTFL_PT

Compromises such as the memory mentioned earlier are always a possibility in

any performance test project. If configuration changes (such as changing the Java heap

size) are needed, these changes must be analyzed, and the results added as required

to the project risk register. Any configuration changes could compromise the overall

performance objectives and need to be treated as a risk. For example, if the project is

testing a Citrix server farm with ten servers, might suggest taking a single server for

performance testing and applying 10% of the load through that single server. The risks

relate to the fact we are only testing 10% of the load and thus cannot check the rest of

the infrastructure (specifically load balancing and network bandwidth). This type of

test could also succumb to the Law of Diminishing Returns,9 coupled with the danger of

extrapolation also possibly affecting the performance test results.

Summary the test environment should be configured to meet the performance
test objectives. if the environment differs from production, the configuration can be
adjusted to compensate for the difference.

9 Although the Law of Diminishing Returns relates to economics, the applicability to performance
means if one server gives 100% of the required performance, it isn’t necessarily true that two
servers will give 200%.

Chapter 4 performanCe testing tasks

297

Proper configuration/emulation of the network is important for global and
mobile systems. For global systems (i.e., one which has users or processing
distributed worldwide) one of approaches may be to deploy load genera-
tors in places where users are located. For mobile systems network emula-
tion remains the most viable option due to the variances in the network
types that can be used. Some load testing tools have built-in network emu-
lation tools and there are standalone tools for network emulation.

—ISTQB_CTFL_PT

As mentioned in Chapter 3.2, each option has good and bad points. Network

emulation allows full control over the test infrastructure, with either software or hardware

devices simulating the network conditions (bandwidth, latency, and packet loss). The

good side of network virtualization is the performance engineer has full control over the

infrastructure with no extraneous load on the network (unless the performance engineer

puts it there). The downside of network virtualization is a virtual network may not match

the real-world network, the performance engineer does NOT have full control, and

extraneous load (which will affect the production load to varying degrees) is NOT present.

Summary for global environment network configuration, load generators should
be distributed to match the source of users. for mobile environments, network
emulation should be used to simulate different network conditions.

The load generation tools should be properly deployed, and the monitoring
tools should be configured to collect all necessary metrics for the test. The
list of metrics depends on the test objectives, but it is recommended to collect
at least basic metrics for all tests (see Section 2.1.2).

Depending on the load, specific tool/load generation approach, and
machine configuration, more than one load generation machine may be
needed. To verify the setup, machines involved in load generation should
be monitored too. This will help avoid a situation where the load is not
maintained properly because one of the load generators is running slowly.

Depending on the setup and tools used, load testing tools need to be config-
ured to create the appropriate load. For example, specific browser emula-
tion parameters may be set or IP spoofing (simulating that each virtual
user has a different IP address) may be used.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

298

These items (having been covered earlier) are important, as the ability to generate

the correct level and type of load in a production-like (and tested) environment cannot

be undervalued.

Summary for global environment network configuration, load generators should
be distributed to match the source of users. for mobile environments, network
emulation should be used to simulate different network conditions.

Before tests are executed, the environment and setup must be validated.
This is usually done by conducting a controlled set of tests and verifying the
outcome of the tests as well as checking that the monitoring tools are track-
ing the important information.

—ISTQB_CTFL_PT

Refer to the initial and final environment acceptance tests in Chapter 3.1. The test

environment delivered should match that which was planned, should be enough to

support the performance objectives, and, hopefully, should be production-like. Any

monitoring should capture the required metrics, store them, and make the results

available for analysis.

Summary the performance test environment must be tested!

To verify that the test works as designed, a variety of techniques may be used,
including log analysis and verifying database content. Preparing for the test
includes checking that required information gets logged, the system is in the
proper state, etc. For example, if the test changes the state of the system signifi-
cantly (add/change information in database), it may be necessary to return
the system to the original state before repeating the test.

—ISTQB_CTFL_PT

Testing the tests should become second nature to all performance engineers.

Summary the performance test scripts and scenarios must be tested!

Chapter 4 performanCe testing tasks

299

 4.3 Execution
PTFL-4.3.1 (K2) Understand the principal activities in running performance test scripts

“It's quite exciting," said Sherlock Holmes, with a yawn.

—Conan Doyle, 1887

First – a warning. Performance test execution can be boring. It might involve sitting

in a dark office after hours watching little graphs creep across the screen. Performance

engineers sometimes execute tests after hours to minimize the impact of normal

organization network traffic interfering with the executing performance test. As well, the

performance test can interfere with organization traffic.

If after-hours execution is required, it’s important for performance engineers

to consider the following personal security points (along with the downside of not

following them):

 1. Notification – Inform site security you will be in the office late

(the author was held at gunpoint while his ID was checked due to

security being “unaware” of a late-night performance test running

within a high security site!).

 2. Access – Never, EVER, remove your security pass when running

performance tests, especially if you need to open security doors

(a colleague of the author was once found asleep in the toilets the

next morning due to having left his security pass at his desk for a

call of nature).

 3. Transport – Ensure your chosen mode of transport is operating at

the time you plan to finish work and leave (another colleague slept

on the office floor one night, as the only available cab company in

the area had closed for the night before he called. His other choice

was a 10-mile walk back to the hotel). If you’re driving – be careful

driving tired!

 4. Food – It’s a good idea to have access to more than the contents

of the office vending machines; you will get sick of eating Doritos

and chocolate bars after a few days. And please be careful

ordering pizza. Remember the security pass? You can probably

Chapter 4 performanCe testing tasks

300

guess what happened – pizza on a bench outside the office, with

everything (including the security pass) safely locked up inside

the building…

 5. Office ergonomics – If your office has motion-sensitive lights, you

have a choice. You could either:

a. Stand and wave your arms

b. Stand and wave your arms to music, creating an impromptu

aerobics session

c. Bring a Frisbee – A short lob into the air and catch it yourself to

reactivate the lights

or

d. (My favorite) Sit in darkness…

Performance test execution involves generation of a load against the SUT
according to a load profile (usually implemented by performance testing
scripts invoked according to a given scenario), monitoring all parts of the
environment, and collecting and keeping all results and information related
to the test. Usually advanced load testing tools/harnesses perform these
tasks automatically (after, of course, proper configuration). They generally
provide a console to enable performance data to be monitored during the
test and permit necessary adjustments to be made (see Section 5.1).
However, depending on the tool used, the SUT, and the specific tests being
executed, some manual steps may be needed.

—ISTQB_CTFL_PT

Performance engineers should look to automate result collection as much as

possible. If the tool can gather the results automatically, it can solve many problems. But

there may be monitoring options that exist separately to the tool. Monitoring tools such

as the Splunk set or more specific tools like AppDynamics (application monitoring) or

Fiddler (network monitoring) could always augment any performance test monitoring.

Chapter 4 performanCe testing tasks

301

Summary the performance test generates the load as defined by the load
profile, load against the system, allowing the system to be monitored to collect
results and metrics. these can be monitored during the test through the tool, and
adjustments to the execution can be made.

Performance tests are usually focused on a steady state of the system, i.e.,
when the system’s behavior is stable. For example, when all simulated
users/threads are initiated and are performing work as designed. When the
load is changing (for example, when new users are added), the system’s
behavior is changing, and it becomes more difficult to monitor and analyse
test results. The stage of getting to the steady state is often referred to as the
ramp-up, and the stage of finishing the test is often referred to as the
ramp-down.

—ISTQB_CTFL_PT

The concept of ramp-up/steady state/ramp-down looks at, in most cases, starting

and stopping the virtual users as part of the planned load profile. This goes on to form

the typical load test shape of the running virtual users (Figure 4-31).

Figure 4-31. Ramp-up, steady state, and ramp-down

Summary performance tests focus on a steady system state under load to
gather results. if the environment state is changing, results analysis becomes more
difficult.

Chapter 4 performanCe testing tasks

302

It is sometimes important to test transient states, when the system’s behav-
ior is changing. This may apply, for example, to the concurrent logging of a
large number of users or spike tests. When testing transient states, it is
important to understand the need for careful monitoring and analysis of
the results, as some standard approaches—such as monitoring averages—
may be very misleading.

—ISTQB_CTFL_PT

Testing in a constant state can make the job of analyzing performance tests much

easier. Unfortunately, it’s rare that a system exists for an extended period in a continual

constant state. Small fluctuations in load will occur, and these are conditions tests should

replicate. These fluctuations can be manipulated by varying the think time and pacing

of the virtual user iterations. Initially, think time and pacing should be fixed to allow

the test to run in a constant state. If issues are discovered, they can then be investigated

with multiple runs of the performance test to diagnose the root cause. Once any initial

defects have been identified and removed, think time and pacing randomization can be

introduced. These small timing variations create a more realistic simulation of real load.

Summary in some situations, the ramp-up/ramp-down form part of the
performance test. Careful monitoring/analysis is required.

During the ramp-up it is advisable to implement incremental load states to
monitor the impact of the steadily increasing load on the system’s response.
This ensures that sufficient time is allocated for the ramp-up and that the
system is able to handle the load. Once the steady state has been reached, it
is a good practice to monitor that both the load and the system’s responses
are stable and that random variations (which always exist) are not
substantial.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

303

In every performance test project, the question always comes up around the rate at

which the virtual users log in (Figure 4-32). How quickly can this be done?

If the login transaction does form an active part of the performance test, virtual user

ramp-up is defined by the load profile. For example, the performance test could replicate

users are arriving at work to log in to an organization-based client/server system. For this

test, the ramp-up forms an active part of the load test and should match the rate at which

staff members would log in (Figure 4-33).

Figure 4-32. Load profile diagram

Figure 4-33. Ramp-up

Chapter 4 performanCe testing tasks

304

In this case, the ramp-up rate changes, as many staff might arrive on the 08:00 train

(a typical requirement in these situations).

If the objective of the performance test relates to the duration (i.e., the time after

ramp-up is completed), then the objective would be twofold:

 1. Log the users in fast enough to not waste time

 2. Log the users in slow enough not to cause the system under test

to fail

The performance test proper starts once the virtual users are logged in. But until

then, performance engineers should always keep a watching eye on the system

performance, just to be sure. For example, if Active Directory (AD) is involved in the test,

it could be the performance AD is the production AD. Similar to the network that both

production and performance testing are using, care must be taken before flooding both

with performance traffic!

Summary ramp-up should be fast enough not to waste time and slow enough
not to adversely affect the system under test.

It is important to specify how failures should be handled to make sure that
no system issues are introduced. For example, it may be important for the
user to logout when a failure occurs to ensure that all resources associated
with that user are released.

—ISTQB_CTFL_PT

A fundamental issue every performance engineer will face is defining the term

“failure.” The ISTQB Foundation syllabus defines this in the following (Figure 4-34):

A person can make an error (mistake), which can lead to the introduction
of a defect (fault or bug) in the software code or in some other related work
product. An error that leads to the introduction of a defect in one work
product can trigger an error that leads to the introduction of a defect in a
related work product. For example, a requirements elicitation error can
lead to a requirements defect, which then results in a programming error
that leads to a defect in the code. If a defect in the code is executed, this may
cause a failure, but not necessarily in all circumstances. For example, some
defects require very specific inputs or preconditions to trigger a failure,
which may occur rarely or never…

Chapter 4 performanCe testing tasks

305

In addition to failures caused due to defects in the code, failures can also be
caused by environmental conditions. For example, radiation, electromag-
netic fields, and pollution can cause defects in firmware or influence the
execution of software by changing hardware conditions.

The difficulty for performance engineers is the definition of a performance defect

can, by and large, fit this definition. But let’s say a performance test has a goal of a two-

second maximum response time under a defined load for a particular transaction. After

running the test, the actual response time maximum was 2.1 seconds – a fail based on

the requirement. Is the system “broken”? Or is it simply 5% slower than the desired

and is not based on a defect caused by an error? Could it be a defect in the original

specifications – why two seconds?

Another issue is the language we use. If a performance engineer calls this a failure

(as in “The test failed…”), in almost every instance the stakeholders think “functional

failure” – something is broken.

An important task for performance engineers in any performance project is to

define the meaning of “a performance defect.” Although the example did use transaction

time, stakeholders should be encouraged to think beyond only transaction times as

performance test goals. If a particular transaction time under load is desired, the nature

of this time must be specified. If the objective is to achieve a two-second response time

under load, it should be specified if that time is:

 1. The maximum time – The maximum time a transaction can take

during this performance test. If the requirements specified 2

seconds and out of 15,000 transactions, one was 2.1 seconds, the

test would be defined as a failure.

Figure 4-34. Error-defect-failure (from ISTQB CTFL)

Chapter 4 performanCe testing tasks

306

 2. The average time – The mean value of the transaction results.

Unfortunately, some tools by default report average time in

graphical form which can subsequently be misinterpreted by

stakeholders. It should be acknowledged that an average will have

a lot of data points above that line as well as below it. Performance

engineers must ensure if the requirement states an average,

stakeholders must understand there can be a significant deviation

of values both above and below the mean. To sum up averages

Say you were standing with one foot in the oven and one foot in an ice
bucket. According to the percentage people, you should be perfectly
comfortable.

—Bobby Bragan

 3. A percentile – A percentage of transactions completed within the

specified requirement. For example, if the requirement states the

90th percentile as the goal, 90% of the transactions would need to

complete within the stated two-second time.

A problem that exists within the performance space is the “black and white” nature

of functional testing. Once again, most stakeholders think of the system as either

working or not working. Tends to be different shades of gray. We can take this into

account by using a measurement tolerance. For example, the two-second response time

mentioned earlier, a RAG status could be implemented to build in an element of gray

between the black and white. If a tolerance of 10% above goal were to be used:

Tolerance Range

red 2.2 seconds +

amber 2.01–2.2 seconds

green Up to 2 seconds

To refer to the maximum time example mentioned earlier, the 2.1-second response

time would show in the results as amber – signaling to the stakeholders the goal was

exceeded by a small (and maybe acceptable) amount.

Chapter 4 performanCe testing tasks

307

Another important consideration is the recording of performance defects.

Countless times, the performance engineers discover an issue, investigate, and pass the

information to administrators and/or developers. They fix the problem, the performance

engineer retests, and the issue has been mitigated. And nothing was recorded. This

creates a problem – no details of the issue, no cause-effect information, and no

remediation steps captured. Later, when reporting is done on the overall project, the

return on investment for performance testing is sometimes questioned, as in the words

of project management, “No defects were discovered!”

Summary performance test failures should be defined, with error handling steps
run as needed.

If monitoring is built into the load testing tool and it is properly configured,
it usually starts at the same time as the test execution. However, if stand-
alone monitoring tools are used, monitoring should be started separately,
and the necessary information collected such that subsequent analysis can
be carried out together with the test results. The same is true for log analysis.
It is essential to time-synchronize all tools used, so that all information
related to a specific test execution cycle can be located.

—ISTQB_CTFL_PT

The statement on time-synching different tools together is vital as it addresses one

of the shortfalls of disparate monitoring. Analysis involves the merging of this results

information to discover the effects and their causes to eventually determine the root

cause of a performance issue. If there is no common reference point, it makes this

comparison and merging of results much less certain.

Summary performance test monitoring should be properly configured, starting
when the test begins (either automatically within the performance test tool or
manually for external tools). all monitoring should be time synched.

Test execution is often monitored using the performance test tool’s console
and real-time log analysis to check for issues and errors in both the test and
the SUT. This helps to avoid needlessly continuing with running large-scale
tests, which might even impact other systems if things go wrong (e.g., if fail-

Chapter 4 performanCe testing tasks

308

ure occur, components fail, or the generated loads are too low or high).
These tests can be expensive to run, and it may be necessary to stop the test
or make some on-the-fly adjustments to the performance test or the system
configuration if the test deviates from the expected behavior.

—ISTQB_CTFL_PT

Previously, in this chapter, some remarks were made about boredom regarding

performance test execution. Occasionally, it can get a bit more exciting (but only a bit).

Although a necessary evil, the need to “babysit” performance tests can pay off for the

reason mentioned in the syllabus. Removing a single virtual user with troublesome data

or a script-related error can save time in the long run.

Summary test execution is monitored to spot issues in the tests themselves and
the test system. if an issue exists, it can be fixed while execution continues, or the
test can be stopped.

One technique for verifying load tests which are communicating directly on
the protocol level is to run several GUI-level (functional) scripts or even to
execute similar operational profiles manually in parallel to the running
load test. This checks that response times reported during the test only differ
from the response times measured manually at the GUI level by the time
spent on the client side.

—ISTQB_CTFL_PT

In Chapter 1.4, UI load generation was covered. This is similar – we can run

background load on the system to create the correct load profile; the shortfall of this

is any client-side processing being done can be excluded from the transaction times

(Figure 4-35).

Chapter 4 performanCe testing tasks

309

If the requirement is for a 100-user load test, 98 could be protocol virtual users, with

2 GUI virtual users in addition. The protocol virtual users create the background load

with the two GUI virtual users giving a realistic response time by including the client-

side processing.

Summary protocol-level scripts can be run, but do not capture client-side
processing. With a small number of gUi users, the performance test can measure
the client-side performance time.

In some cases when running performance testing in an automated way (for
example, as a part of Continuous Integration, as discussed in Section 3.4)
checks must be done automatically, since manual monitoring and inter-
vention may not be possible. In this case, the test set up should be able to
recognize any deviations or problems and issue an alert (usually while
properly completing the test). This approach is easier to implement for
regression performance tests when the system’s behavior is generally known
but may be more difficult with exploratory performance tests or large-scale
expensive performance tests that may need adjustments to be made dynam-
ically during the test.

—ISTQB_CTFL_PT

The CI-based alert reporting works well with the RAG status mentioned earlier.

In these cases, if alerts are flagged by the automated tests, they can be assessed by the

performance engineer, and if needed further tests can be run. A good set of metrics

Figure 4-35. Protocol scripts missing client processing time

Chapter 4 performanCe testing tasks

310

is vital in the DevOps space to allow performance engineers, administrators, and

developers to assess if the latest code drop achieves the minimum performance

requirements. The process gives the stakeholders a decision point within the workflow to

accept or reject the build.

A process walk-through for CI/CD automation is shown in Figure 4-36. At each

automated process stage, decision points allow the process to continue, or deployment

can be stopped after review by the development team. At both unit and system tests, the

scripts are designed to run automatically without intervention (Figure 4-36).

The range of tools available in the CI/CD space grows larger by the day. A good

source of information surrounding this space is https://devops.com/ – with a wealth of

information (including blogs on continuous testing). Tool information can be found at

the following link:

https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

Figure 4-36. A CI/CD pipeline

Chapter 4 performanCe testing tasks

https://devops.com/
https://blog.xebialabs.com/2016/06/14/periodic-table-devops-tools-v-2/

311

Summary for continuous integration, both execution and checks are automated.
issues should be recognized, and alerts sent. this approach is good for regression
but is more difficult for exploratory or tests requiring manual adjustment.

 4.4 Analyzing Results and Reporting
PTFL-4.4.1 (K4) Analyze and report performance test results and implications

The world is full of obvious things which nobody by any chance ever
observes.

—Conan Doyle, 1901

“They say that genius is an infinite capacity for taking pains,” he remarked
with a smile. “It’s a very bad definition, but it does apply to detective work.”

—Conan Doyle, 1887

You know my methods. Apply them.

—Conan Doyle, 1890

Section 4.1.2 discussed the various metrics in a performance test plan.
Defining these up front determines what must be measured for each test
run. After completion of a test cycle, data should be collected for the defined
metrics.

—ISTQB_CTFL_PT

Additionally, in Chapters 1.1 and 2.1.2, a standard set of generic metrics were

outlined. Ultimately, whatever set of metrics are captured, whether they be via the test

tool or another source of monitoring, this is the point where performance engineers earn

their money. A performance engineer can only become a good performance engineer by

mastering results analysis.

Chapter 4 performanCe testing tasks

312

When analyzing the data, it is first compared to the performance test objec-
tive. Once the behavior is understood, conclusions can be drawn which
provide a meaningful summary report that includes recommended actions.
These actions may include changing physical components (e.g., hardware,
routers), changing software (e.g., optimizing applications and database
calls), and altering the network (e.g., load balancing, routing).

—ISTQB_CTFL_PT

Having gathered these facts, Watson, I smoked several pipes over them,
trying to separate those which were crucial from others which were
merely incidental.

—Conan Doyle, 1894

Cause-effect (also known as causality or causation) states one event, process, or state

(a cause) contributes to the production of another event, process, or state (an effect).

This was considered in Chapter 1.5 – available memory is running low (a cause), leading

to paging commencing (an effect).

It needs to be stated, however, that more often the initially identified effect is the end of

a chain of causality. It usually manifests (at least initially) in a transaction time exceeding a

stated goal. Performance engineers need to scroll through the chain to find the initial cause.

There can also be a danger, as specified by folks even older than Holmes:

Post hoc ergo propter hoc

(after it, therefore because of it)

The modern interpretation is correlation does not imply causation (although this is

slightly different from that above, it’s still relevant). Occasionally, the wrong conclusion

can be drawn. For example, if the available memory drops low, simultaneously the CPU

utilization spikes, are the two related? It may, or it could be a memory leak from one

process and another separate process spiking the CPU.

Final point, don’t stop too early. Once again, countless times performance engineers

see the CPU utilization is running at 100%, and they identify that as the problem and stop

investigating (Inspector Lestrade, anyone?). The next step is always worth considering –

which process or processes are using the CPU? Does this CPU utilization correspond

with a business process running?

Chapter 4 performanCe testing tasks

313

Summary analysis begins with the test objectives. the results are then
compared to obtain conclusions and from which subsequent recommendations can
be drawn (changes to hardware, software, and/or infrastructure).

When analyzing the data, it is first compared to the performance test objective.

Once the behavior is understood, conclusions can be drawn which provide a

meaningful summary report that includes recommended actions. These actions may

include changing physical components (e.g., hardware, routers), changing software

(e.g., optimizing applications and database calls), and altering the network (e.g., load

balancing, routing).

The following data is typically analyzed:

• Status of simulated (e.g., virtual) users. This needs to be
examined first. It is normally expected that all simulated
users have been able to accomplish the tasks specified in the
operational profile. Any interruption to this activity would
mimic what an actual user may experience. This makes it very
important to first see that all user activity is completed since any
errors encountered may influence the other performance data.

—ISTQB_CTFL_PT

In Chapter 1.2, the levels of concurrency were defined. The three levels are:

• Application concurrency (all virtual users on the system under test)

• Business process concurrency (virtual users all completing the same

business process)

• Transaction concurrency (all virtual users performing the same step

simultaneously)

Concurrency should form part of the load profile created as part of the performance

test. Of course, the load profile should replicate the behavior of real users, including

a small number of users using negative data to simulate real users making a mistake.

At the end of the performance test, the status of the virtual users is usually shown as a

virtual user passed/failed graph or table of results.

Chapter 4 performanCe testing tasks

314

The virtual user status information gives limited data, but it can show individual

virtual users or virtual user groups that may have problems relating to one or more of the

following:

• Bad user-defined data

• A script error (especially if all virtual users running that script fail)

• A scenario issue (such as virtual users ramping up too quickly)

• A possible business process issue

• A possible database issue (connection pool/table locks)

This is not an exhaustive list, and anything at this stage should be investigated

further.

Summary Check the virtual user status, and look for issues/errors in completing
the specified tasks.

• Transaction response time. This can be measured in multiple
ways, including minimum, maximum, average, and a percentile
(e.g., 90th). The minimum and maximum readings show the
extremes of the system performance. The average performance
is not necessarily indicative of anything other than the
mathematical average and can often be skewed by outliers.
The 90th percentile is often used as a goal since it represents the
majority of users attaining a specific performance threshold.
It is not recommended to require 100% compliance with the
performance objectives as the resources required may be too
large and the net effect to the users will often be minor.

—ISTQB_CTFL_PT

Much of the time, minimum times are ignored as they tend to be when a low number

of virtual users are on the system at the beginning of a performance test. If the business

stakeholders are setting response times as performance test requirements, these need

to be defined as an average/maximum/percentile and need to be defined with a defined

operational profile in mind.

Chapter 4 performanCe testing tasks

315

Summary Check the transaction response time:

• minimum and maximum – extremes of the system performance
(outliers)

• average – Can be skewed by the outliers

• percentile – Usually 90th percentile, as it returns the time for most
virtual users

100% compliance can be costly in resources.

• Transactions per second. This provides information on how
much work was done by the system (system throughput).

—ISTQB_CTFL_PT

Some tools allow transactions to be grouped (e.g., database access, search, form

submission, etc.) or separated into individual transactions per second. It should

be stated in the graph in Figure 4-37 that each individual line represents a single

transaction. Total transactions per second would be the sum of all individual graph lines

at any time.

Figure 4-37. Transaction count per second

Chapter 4 performanCe testing tasks

316

Summary Check the transaction per second, as a measure of work performed
by the system.

• Transaction failures. This data is used when analyzing
transactions per second. Failures indicate the expected event
or process did not complete or did not execute. Any failures
encountered are a cause for concern and the root cause must
be investigated. Failed transactions may also result in invalid
transactions per second data since a failed transaction will take
far less time than a completed one.

—ISTQB_CTFL_PT

As mentioned earlier in this chapter, for any failure to be a cause of concern the

definition of performance “failure” must be defined. For example, it could be a bad set

of input user-defined data for that iteration of that virtual user, and not a failure as far

as the system under test is concerned. A failed transaction can take less time, but it will

depend on the nature of the failure. For example, if the failure is caught by a client-side

checkpoint, or a default error captured by the performance test tool, the failure might

return quickly. Alternatively, if a search is done for an invalid record, it might take much

longer to search or even time out.

Once again, the nature of the failure is important. It could be:

• A standard default failure the tool captures (such as those returned

by HTTP return codes or similar)

• A failure relating to bad data

• A business process failure (such as selecting the wrong account for a

business process)

• A custom checkpoint failure (a checkpoint created by the

performance engineer to check some specific aspect of the system

under test)

• A tool failure (such as a failure to access a data source)

Unless the source of the failure is obvious, it will require investigation.

Chapter 4 performanCe testing tasks

317

Summary Check the transaction failures, as a measure of work not completed
successfully. any failures must have the root cause of failure investigated. failed
transactions can affect the transactions per second.

• Hits (or requests) per second. This provides a sense of the
number of hits to a server by the simulated users during each
second of the test.

—ISTQB_CTFL_PT

Hit per second records the number of hits made on the server by virtual users during

each second of the performance test (Figure 4-38).

One problem easily seen with hits per second is the “plateau effect.” The number

of virtual users increases, but the number of hits per second reaches a point and then

flatlines, possibly demonstrating a saturation point. More on the plateau effect will

follow.

Figure 4-38. Hits per second

Chapter 4 performanCe testing tasks

318

Summary Check the hits (server requests) per second.

Network throughput. This is usually measured in bits by time interval, as
in bits per second. This represents the amount of data the simulated users
receive from the server every second. (see Section 4.2.5)

—ISTQB_CTFL_PT

Throughput captures the amount of data in bytes the virtual users receive from the

server at any given second during the performance test (Figure 4-39).

There is a somewhat misunderstood relationship between hits per second and

throughput. A large vendor’s performance tool training stated that hits per second and

throughput should correspond. This was sometimes misinterpreted, as because the

demo training website used for training had pages of the same size, both hits per second

and throughput exactly mirrored each other. Consider the definitions of hits (a request to

the server searching for an item) and throughput (information returned could result in

zero to many items). One hit could result in throughput of 100kB, 100MB, or more.

Figure 4-39. Throughput (bytes per second)

Chapter 4 performanCe testing tasks

319

A change in hits per second (an increase or decrease) should see a corresponding

change in throughput (an increase or decrease in kind). But rarely do they exactly mirror

each other.

Once again, the same plateau effect mentioned earlier can also be evident with

network throughput.

Summary Check the network throughput (bits per second), the amount of data
received from the server.

• HTTP responses. These are measured per second and include
possible response codes such as: 200, 302, 304, 404, the latter
indicating that a page is not found.

—ISTQB_CTFL_PT

If any work is done in a web environment, the HTTP return codes become an

extremely useful tool. A full list of return codes is available from W3C (www.w3.org/

Protocols/rfc2616/rfc2616-sec10.html).

Any request made using the HTTP format will generate an HTTP response code in

one of five classes. The first digit of the status code defines the class of response:

• 1xx Informational – The request was received, continuing process.

• 2xx Successful – The request was successfully received, understood,

and accepted.

• 3xx Redirection – Further action needs to be taken in order to

complete the request.

• 4xx Client Error – The request contains bad syntax or cannot be

fulfilled.

• 5xx Server Error – The server failed to fulfill an apparently valid

request.

Chapter 4 performanCe testing tasks

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

320

The following requests/responses have been abbreviated:

Return Code Client Request Server Response

200 – OK, the resource was

found.

GET /index.html HTTP/1.1

Host: www.example.com

HTTP/1.1 200 Found

302 – Found, a redirection from

the initial UrL to a new UrL.

GET /index.html HTTP/1.1

Host: www.example.com

HTTP/1.1 302 Found

Location: http://www.

anotherexample .com/

domains/example/

304 – Not Modified, the

resource has not been modified

since the last download by the

client; thus, a server retransmit

isn’t necessary, the client

cached copy could be used.

GET /index.html HTTP/1.1

Host: www.example.com

If-Modified-Since: Wed,

05 Aug 2020 14:22:56 GMT

If-None-Match:

"c794ab9415dbcc1:0"

HTTP/1.1 304 Not

Modified

404 – Page Not Found, the

client could communicate with

the server, but it was unable

to find the requested resource.

in the example, a simple typo

becomes the problem.

GET /index.html HTTP/1.1

Host: www.examlpe.com

HTTP/1.1 404 Not Found

Of note, a class not referred to earlier is the 5xx class denoting a server error. This

typically will occur when the web server fails under load. Return codes in this class that

appear frequently are the following:

500 – Internal Server Error, a generic error message sent when an unexpected

condition was encountered on the server (in effect, it’s broken, and we don’t know

why…).

502 – Bad Gateway, a gateway/proxy server received an invalid response from an

upstream server, possibly as a result of excessive load.

503 – Service Unavailable, the server cannot handle the request (most often

because it is overloaded). It’s the best case for the server not supporting this load profile.

504 – Gateway Timeout, the gateway/proxy server did not receive a response from

the upstream server within the timeout period.

Chapter 4 performanCe testing tasks

321

Another class that can cause problems is the 3xx class. Many performance tools

today will automatically fail a script if the tool receives a 4xx or 5xx class response. But

class 3xx are different in that they could be part of a legitimate redirect (e.g., ba.com

redirects to britishairways.com). The problem is when an internal error within the

website occurs and the user is redirected to an internal site error page. This could be

mistakenly interpreted by the tool as a legitimate redirect, and the script continues

without raising an error. A useful backup to this problem occurring is to add an

additional checkpoint into each page to confirm that the requested URL is the actual

page the virtual user reaches during the performance test.

Summary Check the http responses per second (200, 302, 304, 404, and
500–504).

Although much of this information can be presented in tables, graphical
representations make it easier to view the data and identify trends.

Techniques used in analyzing data can include:

• Comparing results to stated requirements

• Observing trends in results

• Statistical quality control techniques

• Identifying errors

• Comparing expected and actual results

• Comparing the results to prior test results

• Verifying proper functioning of components (e.g., servers, networks)

—ISTQB_CTFL_PT

The table vs. graph question is interesting. The answer to which is better depends on

the following:

 1. Personal preference – The graph and table in Figure 4-40 display

the same information, and yet stakeholders will prefer one or

the other. Occasionally, stakeholders cannot understand the

information being displayed in the graph, whereas the numbers

make more sense for them.

Chapter 4 performanCe testing tasks

322

 2. The nature of the information – The preceding information shows

an absolute in the measurements (in this case, 90th percentile)

or a “point in time.” This is known as summary information. The

alternative is progress information representing a change over

a defined period. For summary information, either a table or a

graph (such as the histogram shown above) can represent this

data. But for progress information, the change over time is better

represented by a line graph or similar (Figure 4-41).

Page 1 100 250
Home page 0.18 0.39 1.41

Login 0.29 2.67 5.97
Valid item search 1.49 3.69 9.71

Figure 4-40. Graph vs. table preference

Chapter 4 performanCe testing tasks

323

In this instance, the change over time can be displayed much

clearer than it could in tabulated data.

 3. The relevance of the information – There can be a temptation to

display large amounts of information. It is important to remember

the KISS principle when analyzing and reporting – Keep It Simply

Simple (a slightly more polite variation on the original that most

ex-military personnel would remember). Sometimes, there can

be a temptation to display EVERYTHING, even though a small

number of metrics might show the relevant information. A good

example is the graph in Figure 4-42.

Figure 4-41. Transaction response time

Chapter 4 performanCe testing tasks

324

There is a lot of unnecessary information within this graph – the relevant metrics will

be looked at in more detail shortly.

 Analysis Techniques
It is my business to know what other people don’t know.

—Conan Doyle, 1892bc

In the syllabus bullet point reference earlier, several techniques are considered for

analysis. Ultimately, it’s the performance engineer’s job to investigate and filter the

performance test results data to either:

• Develop the cause-effect relationship chains to uncover the root

cause of performance issues

• Prove the system under test has achieved the stated performance

requirements

Figure 4-42. Windows server resources

Chapter 4 performanCe testing tasks

325

The first step is to consider the basic statistical information captured from the

performance test. The initial basic statistics include:

• The maximum, average, and minimum transaction times (although

the minimum isn’t the most useful measure, it does come into play

for the following percentile and standard deviation)

• The percentile, either a nominated percentile (90th/95th/98th) or a

percentile graph to show the percentage measure progression

• The standard deviation, useful in two ways, to understand if the data

is normally distributed and how disbursed the collected data is

These five measures can start to give some information regarding the performance

from an overall point of view of the system under test. It might highlight a certain

transaction or group of transactions that are performing poorly, allowing a starting point

for analysis. From these measures, we can continue the statistical journey, considering

the following.

The sample size of measures: How many data points for that transaction were

collected? The sample size goal is to gather enough measurements to allow a conclusion

to be made based on the gathered data. A minimum sample number should be

established for each measure to allow those data points to be considered in terms of the

initial measures listed earlier. For example, it would be foolish to predict the outcome

of a federal election based on asking five random people at a bus stop who will win.

The smaller the sample, the wider the confidence intervals and higher the probability

of error. As a rule of thumb, the performance test should collect at least 20 data points

for a measurement. But beware, as this is a number purely based on experience. A more

calculated method can be the use of Creative Research Systems’ sample size calculator.10

Outliers: Outliers tie in with the maximum/minimum/percentile measurements

earlier. Much work has been done around statistical significance relating to the outliers –

a result is statistically significant if it’s within roughly 48% either side of the mean. This

would mean that we reject measures from 0–2% and 98–100% of a measurement. This

can be dangerous for performance engineers, as we can use the maximum measure as a

performance goal. Earlier, it was mentioned that we reject the minimum measurements,

due to them being gathered when the load level is very low. Accordingly, it may make

more sense to reject 0–5% of measurements and keep the rest.

10 www.surveysystem.com/sscalc.htm

Chapter 4 performanCe testing tasks

http://www.surveysystem.com/sscalc.htm

326

Correlation and trends: This goes on to become the primary focus of analysis

beyond the initial sample and high-level statistical analysis. Results from all previous

relevant performance tests can be considered, as individually a pattern may not be

discerned, but together they might show relevant cause-effect relationships.

Before proceeding further with analysis, a clarification is required. We must return to

an earlier quote from Holmes:

I have no data yet. It is a capital mistake to theorize before one has
data. Insensibly one begins to twist facts to suit theories instead of
theories to suit facts…

—Conan Doyle, 1892

Often, performance engineers are too quick to jump to a conclusion as to what the

root cause may be. Certainly, it can be a temptation, especially if we have a basis for that

conclusion. But unless there is definitive proof, it is only a theory. A good performance

engineer must always separate two things:

what we know; and

what we think.

Any one piece of information we can identify is what we know. What could have

caused that is what we think. Unfortunately, unless you can find something that proves

what you think is correct (and more than one thing is always preferred), what you think

is wrong!

This point cannot be stressed highly enough. It often pays to write two lists – the first

of what you know. Consider the graph from earlier (Figure 4-43).

Chapter 4 performanCe testing tasks

327

Stop for a minute, study the graph and write what you know from this.

We know this graph shows the resources of a Windows machine. It also shows

numerous measurements collected on that machine.

We know the bright pink line (available memory in MB) shows that the available

memory reduces until, at about 22 minutes, there is less than 10% available memory.

After 22 minutes, available memory continues to decrease. At 26 minutes, there was a

brief positive spike which then dropped back to 5% at 28 minutes. Beyond that, available

memory began to trend upward.

We know the gray line (% processor time – the percentage of elapsed time the process

spends executing non-idle threads) begins at around 20%, increases until it hits 60% at

14 minutes, and peaks at just above 75% at 31 minutes. We also know that between 26

and 28 minutes, there were positive (upward) spikes in several measurements. There are

many other things we know from that graph, but let’s pause.

Now for a new list – what you think. From this, we can now surmise that based on

the available memory, and knowing that as memory runs low, page faults start to occur

as information is moved from RAM to the hard disk. Based on this, we should see a spike

Figure 4-43. Windows server resources

Chapter 4 performanCe testing tasks

328

in both page faults per second, as the CPU looks for something in memory that isn’t

there, and % disk time as the thing the CPU is looking for is now on the disk.

To now consider causality, we could surmise that the cause of low available memory

led to the effect of paging and disk activity. What’s the next step we could take? Any of

the following could be the next step:

• Match transaction times to the time paging occurred – Did the

transaction times increase?

• Investigate the server – Which processes were running to cause the

available memory to reduce?

• Investigate the load level – Did the paging occurrence match a

peak in the level of virtual users (as in a stress test to determine the

maximum capacity of the system)?

• Investigate the test environment – Could dynamic resource allocation

be affecting the performance of a virtual machine on which the

system is running?

Identifying correlation between metrics can help us understand at what
point system performance begins to degrade. For example, what number of
transactions per second were processed when the CPU reached 90% capac-
ity and the system slowed?

—ISTQB_CTFL_PT

The easiest way to correlate performance test metrics (and could be argued by

some the best and only way) is to work from a common starting point. In most cases,

this relates to the X-axis on many of the metric graphs captured. This axis should be the

execution time. There are two to choose from:

• The relative time (starting at 00:00:00 and proceeding)

• The absolute time (the actual clock time)

Problems exist with both. For example, if the performance test draws metrics

from a tool external to the performance test tool, relative time will be problematic

as the external tool may be using absolute time. If absolute time is used during the

performance test, will that time match all the server times in the system under test

(considering some servers may be based in a different time zone)?

Chapter 4 performanCe testing tasks

329

Once a common frame of reference has been established, server logs and other

monitoring tools can be compared to the execution results.

In looking at the results graphs (and to an extent seen previously), two shapes are

significant. These are referred to as the exponential and the plateau (Figure 4-44).

Based on this, a cause-effect relationship could then be derived based on the shared

X-axis. For example, returning to what we know, the preceding graphs could show a

cause-effect relationship. During the test, an exponential started at time X (the top

graph), which also has a corresponding plateau in the bottom graph.

What we think would relate to the possible cause of this. Did the exponential cause

the plateau or the plateau cause the exponential? Could another cause occurring at time

X be the actual cause and what is seen in the graphs are a combination of effects?

Other considerations would be:

 1. If the cause of the effect is discovered, is this the root cause? In

most cases, the answer is no, so the search continues.

 2. Why is your conclusion wrong? It always pays to ask yourself this

question as it can save a lot of time to stop investigating down the

wrong path.

 3. If in doubt, ask! In almost every performance test, there could

be someone who knows more about the system/infrastructure/

network/database than you.

Figure 4-44. The exponential and plateau

Chapter 4 performanCe testing tasks

330

There is nothing more deceptive than an obvious fact.

—Conan Doyle, 1892bv

It should be noted that cause-effect correlation can be a statistical exercise as well

as a skilled performance engineer visual inspection exercise. Remembering back to the

qualitative vs. quantitative analysis, the statistical (quantitative) method can be better.

However, it’s accepted it might be easier to find the cause-effect correlation visually and

then measure afterward. The Excel function STANDARDIZE11 is an underused function,

and performance engineers should be using it much, much more.

Summary identifying correlation between metrics can help understand at what
point system performance begins degrading.

Analysis can help identify the root cause of the performance degradation or
failure, which in turn will facilitate correction. Confirmation testing will
help determine if the corrective action addressed the root cause.

—ISTQB_CTFL_PT

The root cause can be an elusive adversary. It’s always worth thinking back to the

first principle – the nature of load being code executing in an environment. Can the

executing code be identified that relates to the discovered issue?

Any performance engineer who states, “The problem is the CPU as it’s running at

100% on server X,” has not finished the job of analysis. Ultimately, whatever the root

cause of any issue might be, proof is required.

Without proof, all that remains are theories.

Summary analysis identifes the root cause of identified issues. Confirmation
testing determines if the fix corrects the issue.

11 STANDARDIZE returns a normalized value (the number of standard deviations a given data
point is from the mean) from a distribution based on the mean and the standard deviation of the
dataset.

Chapter 4 performanCe testing tasks

331

 Reporting
Analysis results are consolidated and compared against the objectives
stated in the performance test plan. These may be reported in the overall
test status report together with other test results or included in a dedicated
report for performance testing. The level of detail reported should match
the needs of the stakeholders. The recommendations based on these results
typically address software release criteria (including target environment)
or required performance improvements.

—ISTQB_CTFL_PT

Reporting can be done after:

• Each performance test execution

• Each performance test cycle

• The completed performance test project

The reporting aim is twofold:

 1. To report against the requirements, risks, and goals of the

performance test

 2. To prove the performance engineer’s conclusions are correct

based on the reported facts

A major consideration is the stakeholders to whom the report will be presented.

Each stakeholder group may require different information.

Business stakeholders may be interested in the achievement of requirements and

goals but will not delve into the technical detail. Technical stakeholders, on the other

hand, probably will appreciate technical details relating to why the goal was achieved or

not achieved. It may even be the case that separate reports are created for the different

stakeholder groups.

The KISS principle should always be at the forefront of reporting. Performance

engineers can fall into the trap of using the report to show how clever they are. In many

cases, it may even be true. But it should be remembered that cleverness merely helps

solve problems, whereas wisdom avoids problems. The best reports will always be

understood by their audience, however technical the details they are reporting.

Chapter 4 performanCe testing tasks

332

Reporting may also be based on a defined format coming directly from a

performance test tool or be a custom-created format incorporating multiple feeds of

information from a range of tools. Or, it may be a simple Excel spreadsheet. Whatever the

format, the properties to consider are:

• KISS – Keep it simple; the least experienced stakeholder should

understand its contents.

• Standard information sets – Provide a standard set of understood

metrics (with descriptions if necessary).

• Automation – As much as possible, automate the collection of results

and the creation of standard reports.

There is a word of warning on the last point. Tools such as LoadRunner can automate

the creation of reports based on created report templates. There are however sections

within these reports that state

Insert text here…

Unfortunately, it’s surprising how often new performance engineers miss this bit.

Summary analysis results are consolidated and compared against the
performance test objectives, reporting the overall test status and details in
the performance test report. the report details should match the needs of the
stakeholders, with recommendations.

A typical performance testing report may include:

Executive Summary

This section is completed once all performance testing has been done and
all results have been analyzed and understood. The goal is to present con-
cise and understandable conclusions, findings, and recommendations for
management with the goal of an actionable outcome.

—ISTQB_CTFL_PT

Chapter 4 performanCe testing tasks

333

It’s not surprising that many people looking at a performance test report may not get

past the executive summary. Care should be taken with this section to include:

 1. A unique report identifier – Allowing the reader to quickly see the

report type (execution, cycle, or completion report), along with a

means of uniquely identifying this document.

 2. The reporting period – When was the execution/cycle/

performance test project covered by this report?

 3. The key conclusions, findings, and recommendations.

Test Results

Test results may include some or all of the following information:

• A summary providing an explanation and elaboration of the
results.

• Results of a baseline test that serves as “snapshot” of system
performance at a given time and forms the basis of comparison
with subsequent tests. The results should include the date/
time the test started, the concurrent user goal, the throughput
measured, and key findings. Key findings may include overall
error rate measured, response time and average throughput.

• A high-level diagram showing any architectural components
that could (or did) impact test objectives.

• A detailed analysis (tables and charts) of the test results showing
response times, transaction rates, error rates and performance
analysis. The analysis also includes a description of what was
observed, such as at what point a stable application became
unstable and the source of failures (e.g., web server, database server).

—ISTQB_CTFL_PT

Additionally, the following factors could also be added:

 1. Progress against the performance test plan

 2. New performance test quality risks and/or performance project

risks identified in the reporting time period

Chapter 4 performanCe testing tasks

334

Test Logs/Information Recorded

A log of each test run should be recorded. The log typically includes the
following:

• Date/time of test start

• Test duration

• Scripts used for test (including script mix if multiple scripts are
used) and relevant script configuration data

• Test data file(s) used by the test

• Name and location of data/log files created during test

• HW/SW configuration tested (especially any changes between
runs)

• Average and peak CPU and RAM utilization on web and
database servers

• Notes on achieved performance

• Defects identified

—ISTQB_CTFL_PT

This list is self-explanatory. A few points:

 1. Average and peak CPU and RAM utilization (or any other metric)

can be included if they are useful in proving your conclusions,

findings, and recommendations are correct.

 2. Hardware and software configuration changes during the

reporting period should be recorded, with the total changes

consolidated and included within the final performance test

completion report.

 3. Defects identified – It’s helpful to include further information on

changes to existing performance defects (such as the retesting of

repaired performance defects).

Recommendations

Chapter 4 performanCe testing tasks

335

Recommendations resulting from the tests may include the following:

• Technical changes recommended, such as reconfiguring
hardware or software or network infrastructure

• Areas identified for further analysis (e.g., analysis of web server
logs to help identify root causes of issues and/or errors)

• Additional monitoring required of gateways, servers, and
networks so that more detailed data can be obtained for
measuring performance characteristics and trends (e.g.,
degradation)

—ISTQB_CTFL_PT

Added to this:

• Any further performance testing required based on newly discovered

defects and/or performance quality risks

• Any lessons learned discovered as part of the performance testing

conducted in the reporting period

Finally, we return to what we know and what we think. Any recommendations

should lead with “What we know.” A summary of facts should be provided to back up any

recommendations.

It’s always a good tip to start “What we think” with the phrase, “In my opinion…”. This

provides a clear marker between the facts gathered and proved with any supposition

performance engineers make regarding the performance testing conducted. Anything

included in the “What we think” section should as much as possible be reflected in the

performance test data gathered, pointing the direction any further investigation will continue.

Summary a typical performance test report contains

• executive summary – presents concise conclusions, findings, and
recommendations understandable by all stakeholders

• test results – a summary of the results, comparisons between
baselines and subsequent tests, architectural components that
impacted test objectives, and a detailed analysis

Chapter 4 performanCe testing tasks

336

• test logs/information recorded – including date/time, test duration,
scripts used, test data used, results data, CpU/ram notes, and
defects

• recommendations – including technical changes recommended,
areas identified for further analysis, and additional monitoring
required for further tests

 Chapter 4 Questions
Note: This section is the largest in the syllabus, with 50% of the exam questions coming

from this section alone.

 1. Which of the following is NOT a key objective of performance

testing?

A. The identification of necessary changes

B. The identification of performance-related risks

C. The identification of opportunities for improvements

D. The identification of trends predicting lower-level performance

 2. A company is reengineering an in-house system to move into

a cloud environment. A product risk was identified relating to

systems running in a cloud environment not performing to the

expected level. The system will receive transaction inputs from

multiple large manufacturing plants around the globe to be

scheduled for shipping to customer sites. Two objectives exist for

this project:

i. The transaction submit response time between the plant and

the cloud instance must be within two seconds to all plants from

the time the transaction submit is sent when ten concurrent

manufacturing flows are submitting data.

Chapter 4 performanCe testing tasks

337

ii. The system must handle 400 transaction submits per minute with

no degradation failures in resource utilization.

Which of the following combination is correct?

A. (i) and (ii) are both technical objectives.

B. (i) and (ii) are both user-based objectives.

C. (i) is a user-based objective; (ii) is a technical objective.

D. (i) is a technical objective; (ii) is a user-based objective.

 3. You are working for an international shipping company. The

number of shipments handled by the shipping system each

day averages 120,000 packages, evenly spread across 24 hours.

Shipments contain everything from birthday gifts to high-value

retail goods to special shipments (dangerous goods and medical

supplies). SLAs exist for special shipments:

• As a customer, I must be able to access the open shipping records

any time to check on their status and expected arrival time.

• As a customer, I want available delivery time slots presented

within three seconds when booking a shipment.

• As a customer, I want to secure my transactions to avoid theft of

deliveries.

This project will be using DevOps as the development

methodology. Which of the following statements is true?

A. DevOps projects do not require a performance test plan.

B. A key performance objective is the three-second response time

under a 5000 shipment/hr load.

C. A key performance objective is the authentication and

authorization of user logins responding within three seconds.

D. A key performance objective is the three-second response time.

Chapter 4 performanCe testing tasks

338

 4. You are working for a large legal firm running as a partnership.

The firm has had problems in the past with overbilling staff

time. In a business goal update by the senior partners, a new

microservice system is being implemented to track correct billing

of the firm lawyers. These microservices will be deployed as a

customized SaaS solution running in the cloud to allow the firm’s

staff to work from home. Each of the 1200 lawyers must track each

six-minute block of time throughout the eight-hour standard

workday. This can be done in the following ways:

• Automatically by assigning a case file number to the billing

system – as the lawyer’s machine is active in the case files, time is

booked to the server.

• Manually by bulk booking six-minute time blocks several times a

day to case file numbers.

Which of the following performance test objectives would be

suitable for this project?

A. A key performance indicator is testing the SaaS system with a

load of 1200 users submitting time every six minutes.

B. A key performance indicator is testing the SaaS system with a

mixed load of 1200 manual and automated users submitting time.

C. A key performance indicator is testing the SaaS system with a

mixed load of 1200 manual and automated users submitting

manual time every six minutes.

D. A key performance indicator is testing the SaaS system with a

load submitting 7200 transactions/hour.

 5. You are working for a large legal firm run as a partnership. The

firm has had problems in the past with overbilling staff time. In a

business goal update by the senior partners, a new microservice

system is being implemented to track correct billing of the firm

lawyers. These microservices will be deployed as a customized

SaaS solution running in the cloud to allow the firm’s staff to work

from home. Each of the 1200 lawyers must track each six-minute

Chapter 4 performanCe testing tasks

339

block of time throughout the eight-hour standard workday. You

have been asked to prepare a presentation for the firm partners

regarding your plan for performance testing. Which of the

following is the best example of information that should be shared

with these stakeholders?

A. The repeatability of planned performance tests must be

communicated, with the time booking performance tests

repeated with minimum effort.

B. The technical stakeholders must be clear about their tasks and

when they are scheduled.

C. The planned approach to generating required load profiles must

be explained and the expected involvement of the cloud services

team made clear.

D. The steps required to make performance tests repeatable must

be communicated, including the participation of key staff and

technical issues.

 6. You are working for a large legal firm run as a partnership. The

firm has had problems in the past with overbilling staff time. In a

business goal update by the senior partners, a new microservice

system is being implemented to track correct billing of the firm

lawyers. These microservices will be deployed as a customized

SaaS solution running in the cloud to allow the firm’s staff to work

from home. Each of the 1200 lawyers must track each six-minute

block of time throughout the eight-hour standard workday. Two

stakeholder considerations exist for this project:

i. Where test environments are to be shared with other ongoing

projects, the scheduling of performance tests must be

communicated with other project teams to ensure the test results

will not be adversely impacted.

ii. Project risks must be communicated. These include constraints

and dependencies concerning the setup of the tests and

infrastructure requirements.

Chapter 4 performanCe testing tasks

340

Which of the following combination is correct?

A. (i) and (ii) are both for business-focused stakeholders.

B. (i) and (ii) are both for technical-focused stakeholders.

C. (i) is for business-focused stakeholders; (ii) is for technical-

focused stakeholders.

D. (i) is for technical-focused stakeholders; (ii) is for business-

focused stakeholders.

 7. You are working for a large legal firm run as a partnership. The

firm has had problems in the past with overbilling staff time. In a

business goal update by the senior partners, a new microservice

system is being implemented to track correct billing of the firm

lawyers. These microservices will be deployed as a customized

SaaS solution running in the cloud to allow the firm’s staff to

work from home. Each of the 1200 lawyers must track each

six-minute block of time throughout the eight-hour standard

workday. You have been asked to prepare a presentation for the

IT team regarding your plan for performance testing. Which of the

following is the best example of information that should be shared

with these stakeholders?

A. Mitigation for the potential impact on real users if performance

testing needs to be executed in the production environment must

be communicated and accepted.

B. Awareness of the balance between the cost of planned

performance tests and how representative the performance

testing results should be covered, compared to production

conditions.

C. The connection between performance quality risks and

performance test objectives must be clearly stated.

D. The plan containing the high-level activities, costs, time schedule,

and milestones.

Chapter 4 performanCe testing tasks

341

 8. You are working for a large legal firm run as a partnership. The

firm has an old web application publishing staff biographies

and case information internally. The application is a two-tier

application, with a web front end using HTTPS to communicate

with the web servers and database back end using the open

source GNU Data Access (GDA) APIs, as shown in the following:

Web Gateway
Web Servers

Database

HTTPS GDA

You are asked to performance test this application. Due to cost,

the test environment only has one web server available, with a

full-sized production-like database back end and no gateway. The

business stakeholders would like a full load pushed through the

system. Which of the following options would you recommend for

creating a load test?

A. As each web server can support 50% full load, a full 100% load

test cannot be run. A 50% load test would be the best option.

B. A full 100% load test could be run by pushing 50% load through

the web server and 50% load applied directly to the database.

C. A full 100% load test could be run, with careful note taken of the

failure point to show the maximum capacity of the web server.

D. A full 100% load test could be run directly against the database, as

many performance issues are found in the database.

Chapter 4 performanCe testing tasks

342

 9. If a performance test is testing a web service, which protocol listed

in the syllabus might be used?

A. HTTPS

B. RTE

C. SOAP

D. JSON

 10. If a performance test is testing a remote desktop, which protocol

listed in the syllabus might be used?

A. TruClient

B. MQSeries

C. Windows Sockets

D. Citrix ICA

 11. If a performance test is testing network access, which protocol

listed in the syllabus might be used?

A. LDAP

B. SMP

C. JDBC

D. HTML

 12. A performance test has been written to create a directory on a

target server and copy a 1GB file across the network to the target

server to test the network. A code section is as follows:

char sourcefile[] = "D:\\Data\\1GB.zip";

char new_dir[] = "\\\\server1.ise.local\\PerfTestTarget";

lr_start_transaction("DataTransfer_MakeDir");

/* Create a directory '\\server1.ise.local\PerfTestTarget' and

make it the current directory */

if (mkdir(new_dir)) {

Chapter 4 performanCe testing tasks

343

 // If test directory exists, output message

 lr_output_message ("Create directory %s exists", new_dir);

 }

else {

 // If test directory is created, output message

 lr_output_message ("Created new directory %s", new_dir);

 lr_think_time(10);

 }

lr_start_transaction("DataTransfer_1GB");

lr_end_transaction("DataTransfer_MakeDir", LR_AUTO);

// Copies the xcopy command to the variable 'command'

sprintf(command, "xcopy %s %s /y", sourcefile, new_dir);

// runs the xcopy command to copy the file to the test dir

system(command);

lr_end_transaction("DataTransfer_1GB", LR_AUTO);

lr_think_time(10);

It is suspected a problem exists with the script, with some

transaction response times takes much longer than they should.

Which of the following is the reason for the suspected delay?

A. The DataTransfer_1GB transaction begins before the

DataTransfer_MakeDir transaction ends, causing a delay.

B. The problem could exist with intermittent latency problems

caused by variable traffic on the network while the test is running.

C. The DataTransfer_MakeDir transaction is not in the right place

and should be moved after the if (mkdir(new_dir)) statement.

D. The lr_think_time statement is within the DataTransfer_
MakeDir transaction and is only executed when a new directory

is created.

Chapter 4 performanCe testing tasks

344

 13. Which of the following statements about transactions are NOT

true?

A. Transactions can be nested so that individual and aggregate

activities can be measured.

B. By increasing load and measuring transaction times, it is possible

to determine the cause of degradation with the response times

alone.

C. The transaction response times collected during the performance

test show how this measurement changes under different loads

imposed on the system.

D. The transaction response time plus the think time equals the

elapsed time for that transaction.

 14. You are working for a large legal firm run as a partnership. The

firm has had problems in the past with overbilling staff time. In a

business goal update by the senior partners, a new microservice

system is being implemented to track correct billing of the firm

lawyers. These microservices will be deployed as a customized

SaaS solution running in the cloud to allow the firm’s staff to work

from home. Each of the 1200 lawyers must track each six-minute

block of time throughout the eight-hour standard workday either

automatically or manually via the case file.

An identified operational profile is a lawyer entering manual time.

You have determined that lawyers entering manual time will

access the system on average once every 60–90 minutes to enter

time for that period against the case files worked on. What further

information would be required to complete the load profile?

A. The ratio between the users updating times manually and

automatically.

B. The size of the case files being downloaded each time the lawyer

changes cases.

Chapter 4 performanCe testing tasks

345

C. The hours of overtime the users work to accurately model the

transaction numbers.

D. The size of the time entries being sent to model the volume of

traffic.

 15. What is the difference between an operational profile and a load

profile?

A. There is no practical difference between load and operational

profiles.

B. A load profile describes the business process; the operational

profile describes the predicted behavior of the business

processes.

C. The operational profile describes the business process; the load

profile describes the number and way the virtual users will run

the business processes.

D. Performance tests can be built with a large number of operational

profiles, but can only contain one load profile.

 16. Identifying data for an operational profile considers the users

interacting with the system. Which of the following four steps are

undertaken during identification?

i. Use a top-down approach to create simple broad operational

profiles and possibly broken down further if needed to achieve

performance test objectives.

ii. Gather different types of user personas and their roles (e.g.,

standard user, registered member, administrator, user groups

with specific privileges).

iii. Estimate numbers of users for each role/task per unit of time over

a given time period.

iv. Document different generic tasks performed by those users/roles

(e.g., browsing a website for information, searching a website for

a particular product, performing role-specific activities).

Chapter 4 performanCe testing tasks

346

A. ii, iii, iv

B. i, iii, iv

C. i, ii, iv

D. i, ii, iii

 17. You are working for a large legal firm run as a partnership. You

have been asked to performance test an existing network link

between the firm’s main office and the firm’s data center. It

simulates a Saturday, where a case deadline is forcing 150 staff to

work on the weekend. The total load varies throughout the day

based on a combination of FTP transfers, web traffic, and email as

shown in the following:

0
50

100
150
200
250
300
350
400

00
:0

0

01
:0

0

02
:0

0

03
:0

0

04
:0

0

05
:0

0

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

M
bp

s

Time

Network Traffic

The peak load at 10:00 is made up of 50% FTP traffic, 20% web

traffic, and 30% email.

Each planned FTP operational profile user consumes 10Mbps.

Each planned web operational profile user consumes 3Mbps.

Each planned email operational profile user consumes 1Mbps.

Chapter 4 performanCe testing tasks

347

The peak load to be replicated is 360Mbps, and 150 virtual user

licenses for your tool are available. How would a load test be

designed to test the network to meet the desired load?

A. A test scenario would consist of 30 web virtual users, 45 email

virtual users, and 75 FTP virtual users.

B. A test scenario would consist of 24 web virtual users, 108 email

virtual users, and 18 FTP virtual users.

C. A test scenario would consist of 36 web virtual users, 72 email

virtual users, and 18 FTP virtual users.

D. A test scenario would consist of 60 web virtual users, 30 email

virtual users, and 15 FTP virtual users.

 18. You are working for a large legal firm run as a partnership.

You have been asked to performance test an existing network

link between the firm’s main office and the firm’s data center.

It simulates a normal weekday traffic. The total load varies

throughout the day based on a combination of FTP transfers, web

traffic, and email as shown in the following:

0

500

1000

1500

2000

2500

00
:0

0

01
:0

0

02
:0

0

03
:0

0

04
:0

0

05
:0

0

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

M
bp

s

Time

Network Traffic

The peak load at 15:00 is due to a court filing deadline where

documents for cases must be submitted via STARTTLS secure

email/SFTP transfer. These transfers must have a success rate of

Chapter 4 performanCe testing tasks

348

100%. The weekday load at 15:00 is made up of 50% SFTP traffic,

20% web traffic, and 30% email.Each planned email operational

profile user consumes 1Mbps.

Each planned web operational profile user consumes 3Mbps.

Each planned SFTP operational profile user consumes 10Mbps.

The 15:00 load peak to be replicated is 1920Mbps. What are the

differences between this scenario and the previous scenario in

Q17?

i. The load has increased between weekdays and the weekend.

ii. The overall traffic percentages are different between the weekend

and weekdays.

iii. Traffic peaks have changed between weekdays and the weekend.

iv. There are no court submissions on the weekend, as the courts do

not hear cases.

v. The protocols have changed between the weekend and the

weekday traffic.

vi. A new 100% success rate for email/FTP transfers to the courts.

A. i, iii, v, vi

B. i, ii, iv, vi

C. ii, iii, iv, v

D. i, ii, iii, iv, v, vi

 19. The focus of batch processing lies principally on the throughput

of the batch processing system and its ability to complete within a

given time period. A batch payment system is being performance

tested for different payment types (bank transfer, Stripe,

Worldpay, ACI Worldwide, PayPal, Amazon Pay, Apple Pay, and

AmEx/Visa/Mastercard credit cards). There is a concern in the

business that payments be as fast as possible, as there are SLAs

Chapter 4 performanCe testing tasks

349

with each payment provider that must be met. Working with the

stakeholders to create an operational profile for this batch process,

which would be the best option?

A. A single operational profile could be used to save time and

scripting, as these are all payment options that would pass the

same data.

B. The payments could be separated into different operational

profile groups of the same payment type (bank transfer; Stripe/

Worldpay/ACI; PayPal, Amazon Pay, Apple Pay/AmEx, Visa,

Mastercard) as each payment type is different.

C. A separate end-to-end payment option would be created for

every payment provider, as every different payment to each

provider could take different times to process.

D. Single payment types would be tested based on the percentage

of payments processed of that type, and payment types that have

been identified as slow.

 20. What is an advantage to conducting performance testing at the

user interface level?

A. It’s the easiest method for manual scripting.

B. It’s scalable because the client is included.

C. It’s an effective way to assess the user experience.

D. It’s the best way to handle data correlation.

 21. What is one disadvantage to conducting performance testing at

the protocol level?

A. It might affect the scalability of the performance test due to the

test execution resource overhead running longer scripts.

B. It might not capture the time required for the client to render the

server response in the user interface.

Chapter 4 performanCe testing tasks

350

C. It might make data correlation more difficult due to session

information changing each time the test is executed.

D. It might make the script more difficult to analyze as more code

will need to be written to help execution.

 22. You have a requirement to create two scripts for a system within

a logistics organization. The first script is to test a client-server

version of a shipping business process where an internal staff

member logs in to the shipping system in the morning, creates

shipments for different customers phoning to transport goods,

and logs out in the evening. The second script tests the web

version, where customers can create their own shipments. Which

of the following combinations would represent the best way to

develop these performance test scripts?

A. The client-server script would log in once, perform many

iterations of adding shipments, and log out once; the web script

would log in once, perform many iterations of adding shipments,

and log out once.

B. The client-server script would log in, perform an add shipment,

and log out each iteration; the web script would log in, perform

an add shipment, and log out each iteration.

C. The client-server script would log in, perform an add shipment,

and log out each iteration; the web script would log in once,

perform many iterations of adding shipments, and log out once.

D. The client-server script would log in once, perform many

iterations of adding shipments, and log out once; the web

script would log in, perform an add shipment, and log out each

iteration.

 23. The way to create a performance script depends on the nature

of the tool, the system under test, and the script being created.

Which of the following is NOT an option to create a script?

A. The script can be created by recording communication between

the client and the system or component at the protocol level.

Chapter 4 performanCe testing tasks

351

B. The script can be created by recording at the GUI level by

capturing GUI actions of a single client.

C. The script can be created by converting available system source

code into an executable client.

D. The script can be created by programming protocol requests, GUI

actions, or API calls.

 24. What is correlation in terms of performance testing?

A. Correlation is capturing a server-presented value to replace input

data at replay.

B. Correlation is a statistical relationship between two or more

performance test results.

C. Correlation is an automated parameterization of performance

test input data.

D. Correlation is capturing a server-presented value.

 25. You are working for a logistics organization, shipping goods

around the world. A customer can log in to the website and create

shipments. Each shipment’s details contain shipping information

input by the customers (address information from the sender and

shipment receiver) and system-supplied information hidden from

the end user (customer ID/shipment ID/etc.). You have recorded

the script, and initially it replayed fine. After you replaced the

hard-coded input data, it replays the first iteration, but every

subsequent iteration fails. Which of the following is the most likely

cause of this issue?

A. A server-supplied session ID has not yet been correlated.

B. The first input data record is correct; the subsequent

parameterized data is wrong.

C. A system-supplied value has not been parameterized.

D. The system cannot handle the applied load.

Chapter 4 performanCe testing tasks

352

 26. You are working for a logistics organization, shipping goods

around the world. The organization is moving internal systems

across to cloud-based virtual machines running Software as a

Service systems. During test execution, you notice a wide variation

in response time while running the same load test with the same

data at different times of the day. Which of the following are NOT

possible reasons for this variation in response time?

A. The variations in the load generators for each run could be

affecting the response time.

B. The changing volume of network traffic affecting available

bandwidth could be affecting the response time.

C. The caching of the load test data on the database could be

affecting the response time.

D. More concurrent processes running in the cloud virtual machines

could be affecting the response time.

 27. You are working for a large legal firm run as a partnership. A

system tracking lawyer’s time spent on a case is being load tested,

with the execution schedule requiring the 90-minute load test to

be executed four times each day, with a 15-minute gap between

each run. You find, however, the system login behaves differently

each time the test is rerun. In the first run of the day, the

individual login transactions complete in less than two seconds,

with the following runs taking up to eight seconds on average.

Other transactions behaved the same across each run, with little

variation. What could be the possible issue with this load testing?

A. A problem with the user login information not being cached on

the client machine, leading to user details being resent by the

load test

B. A problem logging the virtual users out at the end of the test,

leading to old session still running from previous tests causing

queueing

Chapter 4 performanCe testing tasks

353

C. A problem with congestion on the network due to increased

production casework being conducted at the same time during

the execution time

D. A problem with server RAM running low causing the system to

page to hard disk, leading to a delay in processing time for the

login process

 28. You are working on a national integrated database project that

allows citizens to register to vote, with voter numbers in the

millions. Voters can register to vote online, change their address,

or remove themselves from the voter register if they move. The

government has two SLAs:

Section 1 Personal data

1 a) Safeguards must be applied with reference to two criteria: the
need to know (only those officials to whom the information be

permitted shall view records); and the right to know (voters are

permitted to view their own data).

Section 2 Voter usability

2 a) When checking their voter registration, the voter information

should be returned within five seconds of the request under peak

pre-election load.

You have conducted your tests and have determined the following

percentile metrics:

<3-second response time: 85% of the time <6-second response time: 95% of the time

<5-second response time: 90% of the time <10-second response time: 100% of the time

Which of the following statements would be the best response to

the project stakeholders (the minister and senior civil servant) on

the test results?

Chapter 4 performanCe testing tasks

354

A. The test failed as the system is deemed too slow. The

requirements should be reviewed to ensure that the response

time of less than five seconds is required 100% of the time, or if

this time could be increased.

B. The test has provisionally passed, as 95% of the voter requests

responded within six seconds, which is within the 20% tolerance

for time measurements and could be tuned to reduce the time

further.

C. There is insufficient information to report the results back to

the stakeholders at this point, as the performance testing is only

reporting response times, and no further information on resource

utilization is available.

D. Clarify SLA 2 a) with the stakeholders in reporting the full results

to check if the response time target is the maximum, the average,

or a percentile time, allowing the stakeholders to then make a

pass/fail decision.

Chapter 4 performanCe testing tasks

355
© Keith Yorkston 2021
K. Yorkston, Performance Testing, https://doi.org/10.1007/978-1-4842-7255-8_5

CHAPTER 5

Tools

 ISTQB Keywords
load generator

A tool that generates a load for a system under test.

load management
The control and execution of load generation, and performance monitoring and

reporting of the component or system.

monitoring tool
A software tool or hardware device that runs concurrently with the component or

system under test and supervises, records, and/or analyzes the behavior of the component

or system.

performance testing tool
A test tool that generates load for a designated test item and that measures and records

its performance during test execution.

 5.1 Tool Support
PTFL-5.1.1 (K2) Understand how tools support performance testing

—ISTQB_CTFL_PT

"… Bring with you a jemmy, a dark lantern, a chisel, and a revolver.
S.H."

It was nice equipment for a respectable citizen to carry through the
dim, fog-draped streets.

—Conan Doyle, 1908

https://doi.org/10.1007/978-1-4842-7255-8_5#DOI

356

As previously stated, manual performance testing is fraught with problems. By far the

largest are controlling the users while the test is running and gathering disparate data for

the results. Manual performance testing tends to give load that is not reproducible and

results that are almost impossible to correlate back to user actions. Surprisingly, it also

adds to the cost of any project using manual performance testing, as the cost of both the

users involved in the test and the hardware they use must be a consideration. In effect,

manual performance testing gives poor results, takes additional time to organize, and

any issues found very rarely can be investigated.

If project stakeholders suggest manual performance testing, performance engineers

tend to start looking for easily accessible fire escapes.

Performance engineers will get to know certain tools well. These tools could

be commercial (Micro Focus LoadRunner or Performance Center; IBM Rational

Performance Tester) or open source (JMeter; Gatling). They may work in a single

environment or with a single protocol or may operate across a wide range of

environments and protocol types.

Many today share a common architecture. The diagram used earlier in the book

relates to the following syllabus points (Figure 5-1).

Performance testing tools include the following types of tool to support performance

testing.

Figure 5-1. View of the tool components of a performance test

Chapter 5 tools

357

 Load Generators (2)
The generator, through an IDE, script editor or tool suite, is able to create
and execute multiple client instances that simulate user behavior accord-
ing to a defined operational profile. Creating multiple instances in short
periods of time will cause load on a system under test. The generator creates
the load and also collects metrics for later reporting.

—ISTQB_CTFL_PT

The load management console or test controller (1) passes the executable scripts to

the load generator. It's the load generator's responsibility to execute the scripts and

capture the performance script–related test results (such as the executing virtual user

status, any checkpoints internal to the script, and other basic default result sets specified

by the tool in use). Of note, the load generator will not capture specific monitoring

information from the system under test (such as CPU/memory/etc.). It can in fact be the

subject of monitoring, as while performance tests are executing, it can be helpful for the

performance engineer to know the state of health of the load generators.

Summary load generators create load by executing multiple client instances
(virtual users) simulating user behavior.

When executing performance tests, the objective of the load generator is to
mimic the real world as much as is practical. This often means that user
requests coming from various locations are needed, not just from the testing
location. Environments that are set up with multiple points of presence will
distribute where the load is originating from so that it is not all coming
from a single network. This provides realism to the test, though it can some-
times skew results if intermediate network hops create delays.

—ISTQB_CTFL_PT

This all forms part of the individual operational profiles and the overall load profile

for the performance test. It also touches on the performance test environment, all of

which were covered earlier in the book.

Chapter 5 tools

358

Summary load generators mimic real user behavior, including setting up
multiple load generators to simulate distributed load, but can skew results if
additional network hops are needed.

 Load Management Console (1)
The load management console provides the control to start and stop the
load generator(s). The console also aggregates metrics from the various
transactions that are defined within the load instances used by the genera-
tor. The console enables reports and graphs from the test executions to be
viewed and supports results analysis.

—ISTQB_CTFL_PT

The load management console (or controller) lives up to its name – it controls the

performance test. In this tool, the load profile is converted into a performance test

scenario with the appropriate numbers and types of virtual users, scripts, and runtime

settings to match the real-world behavior of users on the system under test. The

performance test is subsequently executed from the load management console, also

gathering the results from both the load generators and the performance monitors.

These results are consolidated into a single result set upon completion of the

performance test. Many performance tools also allow real-time monitoring during the

performance test, available through the load management console.

Summary the load management console controls the performance test. It
starts and stops the test, controls the load generators, and collects metrics during
the test, which can be viewed during the test and generate test reports after
completion.

 Monitoring Tool (5)
Monitoring tools run concurrently with the component or system under test
and supervise, record and/or analyses the behavior of the component or
system. Typical components which are monitored include web server
queues, system memory and disk space. Monitoring tools can effectively

Chapter 5 tools

359

support the root cause analysis of performance degradation in a system
under test and may also be used to monitor a production environment
when the product is released. During performance test execution monitors
may also be used on the load generator itself.

—ISTQB_CTFL_PT

Much has already been said on monitoring. But the last consideration is the amount of

resources the monitoring tool itself uses. Monitoring should be performed selectively

as the greater the amount of metrics captured, and the rate at which each measurement

is sampled can influence the performance test. Much of the time, this resource drain is

negligible, but depending on the testing performed, it could be an issue.

Summary Monitoring collects metric information (both direct test results like
transaction times and indirect results like CpU, memory, disk Io, and queueing).
this can support root cause analysis and aid reporting. It can also monitor
production environments and load generators.

License models for performance test tools include the traditional seat/site-
based license with full ownership, a cloud-based pay-as-you-go license
model, and open source licenses which are free to use in a defined environ-
ment or through cloud-based offerings. Each model implies a different cost
structure and may include ongoing maintenance. What is clear is that for
any tool selected, understanding how that tool works (through training
and/or self-study) will require time and budget.

—ISTQB_CTFL_PT

The licensing model for the selected tool would of course depend on the tool itself,

its developers, and the licensing arrangement an organization has with the vendor.

Open source tools also have licensing, although it may be somewhat different from the

commercial. Performance engineers must be familiar with the licensing model used

by all tools involved in the performance test. Beware of tools sourced through Google –

always make a point of reading any licensing agreement. It could be that a tool is free to

use for personal or educational use but may require a licensing fee if used commercially.

Chapter 5 tools

360

Whichever tool is selected, the performance engineer must get the most from it.

It can be a benefit to practice using the tool against a wide range of environments and

systems. A wide range of resources exist online for both commercial and open source

tools.

It can even be useful to use the tool of choice to record accessing sites like Facebook,

Amazon, or YouTube. It can be an interesting exercise to see the amount of data being

passed from the client back to the server…

Summary licensing models include traditional seat/site-based licenses, cloud-
based pay-as-you-go licenses, and open source licenses. training on the tool
requires budget and time.

 5.2 Tool Suitability
PTFL-5.2.1 (K4) Evaluate the suitability of performance testing tools in a given project

scenario

Before moving on, it is worth considering the limitations surrounding open source

tools. Yes, they don’t cost much to obtain. But there can be hidden costs to an open

source tool – it might take longer to create tests, or support and training for the tool

might be lacking. Many commercial tools are sold with support packages and training

bundled into the purchase price. If an organization works in a high-risk environment,

the tool may require certification (and each time it’s upgraded, it might need to be

recertified). Many commercial tools are sold on the premise that the tool vendor has

achieved this required certification as it becomes a selling point for the commercial tool.

The issue of warranty and associated liability is also a factor – some organizations will

reject the use of open source tools purely because there is no legal warranty relationship

between the open source tool supplier and user under the GNU license. Security too can

be a blocker – some online tools can be downloaded from a number of different sites,

and if you pick the wrong site, you might get some unofficial “add-ins” included. Finally,

finding a skilled user for the tool can be daunting, especially if the tool in question is less

common. Commercial tools usually have consultants either working for the vendor or

certified by the vendor who will have the required knowledge.

This shouldn't be taken as an indictment of open source tools, merely a reminder of

the potential challenges in using open source tools.

Chapter 5 tools

361

Commercial tools can have their own problems – the first of which is cost. Tool

licensing and maintenance costs can run to a tidy sum, and this might be prohibitively

expensive for some organizations. Some tools charge by the protocol needed and the

number of virtual users required, so the bigger the test, the higher the cost. Support,

even though it’s paid for, might not be adequate. Or the commercial tool might use a

proprietary scripting language to build performance test scripts rather than a standard,

well-known language.

The following factors should be considered when selecting a performance testing tool.

 Compatibility
In general, a tool is selected for the organization and not only for a project.
This means considering the following factors in the organization:

• Protocols: As described in Section 4.2.1, protocols are a very
important aspect to performance tool selection. Understanding
which protocols a system uses and which of these will be tested
will provide necessary information in order to evaluate the
appropriate test tool.

• Interfaces to external components: Interfaces to software
components or other tools may need to be considered as part of
the complete integration requirements to meet process or other
inter- operability requirements (e.g., integration in the CI process).

• Platforms: Compatibility with the platforms (and their versions)
within an organization is essential. This applies to the platforms
used to host the tools and the platforms with which the tools
interact for monitoring and/or load generation.

—ISTQB_CTFL_PT

The one constant in information technology is change. New languages, upgrades of

operating system and tools, new protocols, new software development methodologies,

all are in a continuous cycle. Coupled to that are the older legacy systems that continue

to fulfill an organization business need.

It can pay to perform a periodic proof of concept against various systems within the

organization with the tool of choice. Occasionally, a tool that previously worked against

Chapter 5 tools

362

an older system won’t work against a later version. A good example was LoadRunner,

where the latest version of the tool was designed to work against the latest version of

Oracle/SAP/etc. If the tool was upgrading to a later version, it was sometimes necessary

to patch the tool backward to enable it to continue operating against earlier versions of

systems.

Although the need for a specific project needing a specific tool always exists,

in general the organization should always be looking for the maximum return on

investment on the time, effort, and money used to obtain and use a performance tool.

Summary a tool is selected for an organization, not a project, considering the
required protocols, interfaces to external components, and platforms.

 Scalability
Another factor to consider is the total number of concurrent user simula-
tions the tool can handle. This will include several factors:

• Maximum number of licenses required

• Load generation workstation/server configuration requirements

• Ability to generate load from multiple points of presence (e.g.,
distributed servers)

—ISTQB_CTFL_PT

As more organizations move toward the goal of digital transformation, flexible

workforces, remote working, and cloud-based computing, the nature of the way

systems are accessed and used is also changing. Organizations are growing, shrinking,

merging, and acquiring others or being acquired. Acquiring licenses for more users or

different protocols should always be a consideration when sourcing a performance tool.

Understanding the licensing model can help with future proofing the tool.

Summary User simulations supported by the tool are a consideration, including
the maximum number, load generator requirements, and multiple load generation
points.

Chapter 5 tools

363

 Understandability
Another factor to consider is the level of technical knowledge needed to use
the tool. This is often overlooked and can lead to unskilled testers incor-
rectly configuring tests, which in turn provide inaccurate results. For testing
requiring complex scenarios and a high level of programmability and cus-
tomization, teams should ensure that the tester has the necessary skills,
background, and training.

—ISTQB_CTFL_PT

A basic set of questions to ask of any potential performance tool is:

• Is the tool easy to use (how long to create a virtual user script or

performance test)?

• Is the tool easy to understand (including the tool itself, the virtual

user scripts, the configuration of the performance test, etc.)?

• Is the tool easy to learn (for performance engineers to develop

expertise in the tool) and the language the tool uses (is it an old

language like ANSI C or a not-well-known language like Scala vs. Java

or Python)?

• Is the tool attractive (regarding results and reporting)?

A historic issue with open source tools is this usability aspect. These tools are developed

by groups of highly technical developers and performance engineers. It has only been in

recent times that usability has been thought important. Commercial tools have had an

advantage in the usability stakes – part of the selling of these tools is to make the process

of performance testing “look easy.”

Summary performance engineers need the necessary technical knowledge,
skills, background, and training to use the tool.

Chapter 5 tools

364

 Monitoring
Is the monitoring provided by the tool sufficient? Are there other monitor-
ing tools available in the environment that can be used to supplement the
monitoring by the tool? Can the monitoring be correlated to the defined
transactions? All of these questions must be answered to determine if the
tool will provide the monitoring required by the project.

When monitoring is a separate program/tools/whole stack then it can be
used to monitor production environment when the product is released.

—ISTQB_CTFL_PT

In all that has been spoken on monitoring, the basic question remains. Can the

performance tool capture what is needed, and can it report on the results once the data

is gathered?

Summary tool monitoring should provide enough coverage, correlate against
defined transactions, and (if the tools alone do not have sufficient coverage)
integrate with other monitoring tools. Monitoring can also be continued within the
production environment.

 Chapter 5 Questions

 1. What is the purpose of a load management console?

 A. It creates the load on the network to allow performance testing by

executing the performance scripts.

 B. It aggregates the performance test results to allow analysis after

the performance test.

 C. It executes the load profile designed into the performance test

and aggregates the results of the test.

 D. It simulates user behavior according to the operational profiles

built into the performance test.

Chapter 5 tools

365

 2. Which of the following factors are relevant for selecting a

performance tool?

i. Monitoring ii. scalability iii. Maintainability

iv. Understandability v. performance vi. Compatibility

 A. i, iii, v, vi

 B. i, ii, iv, vi

 C. ii, iii, iv, v

 D. i, ii, iii, iv, v, vi

 3. According to the syllabus, which of the statements regarding tool

licensing is NOT true?

 A. A freeware license model which is free to use, but could incur

costs associated with the purchase of load generators and

performance scripts.

 B. A cloud-based pay-as-you-go license model allows flexibility

to buy virtual users, but could be an issue as load is generated

outside the organization domain.

 C. A seat/site-based license model allows full ownership, but

could include extra maintenance cost annually to the vendor for

support and upgrades.

 D. An open source license model which is free to use, but could

incur extra costs in building and maintaining assets as training

and support are limited.

Chapter 5 tools

367
© Keith Yorkston 2021
K. Yorkston, Performance Testing, https://doi.org/10.1007/978-1-4842-7255-8_6

CHAPTER 6

Final Thoughts
The only easy day was yesterday…

—US Navy SEALs

Being a performance engineer isn’t easy. The more technology changes, the more a good

performance engineer is needed. A good performance engineer:

• Learns continuously – As each new bit of technology needs to be

understood, as well as understanding how it will communicate and

integrate with older technology.

• Communicates well – In both spoken and written forms.

Performance engineers will need to communicate with and

potentially present to both business and technical stakeholders in

language they understand.

• Understands the psychology of the users – Looking at a system under

test and understanding the motivation and thought processes of

users will help write better performance scripts and scenarios.

• Understands risk – In defining the scope of performance risk,

identifying risk, assessing this risk quantitatively, and effectively

mitigating performance quality risk with performance testing and

performance project risk with better processes to save time and

money.

• Experiments to get answers – Scientific method, like performance

testing, involves creating hypotheses (the performance

requirements), deriving predictions on performance from them

(what we think), and then carrying out performance tests to confirm

these (what we know).

https://doi.org/10.1007/978-1-4842-7255-8_6#DOI

368

• Writes things down(!) – A historic failure of many performance

engineers, now corrected in the performance test plans, environment

specifications and acceptance tests, the scripts and scenarios, results

and reports the performance tests generate.

Finally, continue being curious. How does this system/application/API/protocol

work? How could it integrate/communicate/adversely affect existing systems or

components? How would the users access and use this system?

Education never ends, Watson. It is a series of lessons, with the great-
est for the last.

—Conan Doyle, 1917

Performance testing is the ultimate mix of business and technology, wrapped in

quality. It’s the testing type that includes elements of functionality and reliability on top

of performance. The type that when it’s done well, users never notice. But when it’s bad,

they all know. It’s sometimes very challenging, but always fulfilling to those conducting it.

 Need an Exam?
To take the exam, make contact with an authorized exam provider. iSQI is a global exam

provider for the ISTQB Certified Tester Foundation Level – Performance Tester. For more

information, go to www.isqi.org.

Chapter 6 Final thoughts

http://www.isqi.org

369
© Keith Yorkston 2021
K. Yorkston, Performance Testing, https://doi.org/10.1007/978-1-4842-7255-8

APPENDIX A

 References

 Standards
[ISO9126] ISO/IEC 9126-1:2001, Software engineering – Product quality – Part 1: Quality

model

[ISO25000] ISO/IEC 25000:2005, Software Engineering – Software Product Quality

Requirements and Evaluation (SQuaRE)

[ISO25010] ISO/IEC 25010:2011, Systems and software engineering – Systems and

software Quality Requirements and Evaluation (SQuaRE) – System and software quality

models

[ISO29119] ISO/IEC/IEEE 29119-3:2013, Software and systems engineering –

Software testing – Part 3: Test documentation

[ISO Guide 73] ISO GUIDE 73:2009, Risk management – Vocabulary

[NIST 800-30] NIST SpPub 800-30, Rev 1, Guide for Conducting Risk

Assessments (2012) – http://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800- 30r1.pdf

 ISTQB Documents
All syllabi and the glossary used remain the Copyright of the International Software

Testing Qualifications Board (ISTQB).

[ISTQB_UT_SYL] ISTQB Foundation Level Usability Testing Syllabus, Version 2018

[ISTQB_ALTA_SYL] ISTQB Advanced Level Test Analyst Syllabus, Version 2012

[ISTQB_ALTTA_SYL] ISTQB Advanced Level Technical Test Analyst Syllabus,

Version 2012

[ISTQB_ALTM_SYL] ISTQB Advanced Level Test Manager Syllabus, Version 2012

[ISTQB_FL_SYL] ISTQB Foundation Level (Core) Syllabus, Version 2018

https://doi.org/10.1007/978-1-4842-7255-8#DOI
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-30r1.pdf

370

[ISTQB_FL_AT] ISTQB Foundation Level Agile Tester Syllabus, Version 2014

[ISTQB_GLOSSARY] ISTQB Glossary of Terms used in Software Testing, http://

glossary.istqb.org

[ISTQB_CTFL_PT] ISTQB Certified Tester Advanced Level Syllabus Security Tester

Version 2016

 Books
[Anderson04] G. W. Anderson, “mySAP Tool Bag for Performance Tuning and Stress

Testing,” Prentice-Hall, 2004, ISBN: 0131448528

[Anderson01] Lorin W. Anderson, David R. Krathwohl (eds.) “A Taxonomy for

Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational

Objectives,” Allyn & Bacon, 2001, ISBN 978-0801319037

[Bath & McKay 2014] Graham Bath, Judy McKay, “The Software Test Engineer’s

Handbook,” Rocky Nook, 2014, ISBN 978-1-933952-24-6

[Bondi 2014] A.B. Bondi, “Foundations of Software and System Performance

Engineering: Process, Performance Modeling, Requirements, Testing, Scalability, and

Practice,” Addison-Wesley Professional, 2014, ISBN: 9780133038149

[Conan Doyle 1887] A Study in Scarlet (1887)

[Conan Doyle 1890] The Sign of the Four (1890)

[Conan Doyle 1892bc] The Adventures of Sherlock Holmes (1892) “The Adventure of

the Blue Carbuncle”

[Conan Doyle 1892bv] The Adventures of Sherlock Holmes (1892) “The Boscombe

Valley Mystery”

[Conan Doyle 1892cb] The Adventures of Sherlock Holmes (1892) “The Adventure of

the Copper Breeches”

[Conan Doyle 1892ci] The Adventures of Sherlock Holmes (1892) “A Case of Identity”

[Conan Doyle 1893] The Strand Magazine (December 1893) “The Adventure of the

Final Problem”

[Conan Doyle 1894] The Memoirs of Sherlock Holmes (1894) “The Adventure of the

Final Problem”

[Conan Doyle 1908] His Last Bow (1908) “The Adventures of the Bruce-Partington

Plans”

[Conan Doyle 1901] The Strand Magazine (August 1901–April 1902) “The Hound of

the Baskervilles”

Appendix A RefeRences

http://glossary.istqb.org
http://glossary.istqb.org

371

[Molyneaux09] Ian Molyneaux, “The Art of Application Performance Testing: From

Strategy to Tools,” O’Reilly, 2009, ISBN: 9780596520663

[Microsoft07] Microsoft Corporation, “Performance Testing Guidance for Web

Applications,” Microsoft, 2007, ISBN: 9780735625709

[M_o_R] AXELOS, “Management of Risk Guidance for Practitioners,” The Stationery

Office, 2010, ISBN: 9780113312740

[Stamatis03] D.H. Stamatis, “Failure Mode and Effect Analysis: FMEA from Theory to

Execution” (Rev 2), American Society for Quality Press, 2003, ISBN: 9780873895989

[van Veenendaal12] E. van Veenendaal, “Practical Risk-Based Testing: The PRISMA

Approach,” UTN Publishers, 2012, ISBN: 9789490986070

 Papers and Articles
[Arif et al] M.M. Arif, W. Shang & E. Shihab, “Empirical Study on the Discrepancy

Between Performance Testing Results from Virtual and Physical Environments,”

Empirical Software Engineering, June 2018, Volume 23, Issue 3, pp1490–1518

[Stecklein et al] Stecklein, J. Dabney, J. Dick, B. Haskins, B. Lovell, R. Moroney, G.,

“Error Cost Escalation Through the Project Life Cycle,” Report JSC-CN-8435, June 2004,

https://ntrs.nasa.gov/citations/20100036670

[Schneier 2008] The Security Mindset – www.schneier.com/blog/

archives/2008/03/the_security_mi_1.html

Appendix A RefeRences

https://ntrs.nasa.gov/citations/20100036670
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html
https://www.schneier.com/blog/archives/2008/03/the_security_mi_1.html

373
© Keith Yorkston 2021
K. Yorkston, Performance Testing, https://doi.org/10.1007/978-1-4842-7255-8

APPENDIX B

 Question Answers

 Chapter 1

Question Correct Notes

1 B Scalability is a type of performance testing.

2 C Usability and functional stability are the options from the syllabus.

Component and integration are test levels, not quality characteristics.

Capacity and resource utilization are subcharacteristics beneath

performance efficiency.

Usability and efficiency include one correct characteristic (usability) and

efficiency being the characteristic tested with performance testing.

3 D Tests must align to the defined expectations, not build the defined

expectations.

Performance user stories are written before test results are obtained.

Performance tests should be affordable, as per the syllabus.

4 A Availability Testing (1) and Efficiency Testing (5) are not performance test

types.

5 A Endurance Testing is testing to determine the stability of a system under

a significant load over a significant time period within the system's

operational context.

6 C Integration testing tests the interfaces between components and systems –

including dataflows and workflows.

7 B Issues with crowd-based load generation are controlling the users – making

it hard to reproduce the load in subsequent tests and organize the testers.

(continued)

https://doi.org/10.1007/978-1-4842-7255-8#DOI

374

Question Correct Notes

8* D Saturation of one or more resources is listed in the syllabus as a cause of

slow response under moderate to heavy load. Resource limits can create

bottlenecks in the system, slowing the entire system.

9* B Disk fragmentation can increase the time it takes to find and retrieve data

from disks (note this becomes less of a problem with SSD disks). The

syllabus suggests this as a cause of degradation over time.

*NOTE: Both questions 8 and 9 relate directly to the syllabus. It could be that an inefficient database
design or implementation could cause the system to slow under load. The database could be the
bottleneck under load. It’s important to distinguish the syllabus points, as the exam questions will
always refer to the syllabus.

 Chapter 2

Question Correct Notes

1 A Alerts and warnings are an operational environment metric.

2 D D – A long-running issue with performance requirements/user stories

created by business stakeholders is the lack of measurable metrics.

A isn’t correct, as times are easily understood.

For B, test execution MAY take longer, but it’s not guaranteed.

For C, transaction times are the end effect of a performance test. It might be

true that lower levels of performance cannot be determined, but the leader

in this question was the reference to requirements earlier in the question.

3 C As per the bullet point list in Section 2.2.

4 A As per the bullet point list in Section 2.3.

5 C Probe effect is the unintended change in behavior of a component or system

caused by measuring it.

A – Performance testing WILL have an impact on performance but is not the

answer matching the definition.

B and D are incorrect.

(continued)

APPEnDIx B QUESTIon AnSWERS

375

Question Correct Notes

6 B A is the performance test tool.

C is the log analysis tool.

D is the performance monitoring tool.

7 A A associates with a loss of resource over time leading to less resource to

service system transactions, which can be typical for endurance testing.

B is typical for stress testing.

C is typical for spike testing.

D is typical for scalability testing.

 Chapter 3

Question Correct Notes

1 A A is correct according to the syllabus. Defining the performance test scope

early in the project is vital, as it informs performance engineers of the

project “field of play.” Planning can then proceed based on this scope.

2 C C is correct according to the syllabus. Performance test procedures outline

the steps the performance test will take. Defining the procedure occurs after

the performance test conditions and cases are created.

3 B B is correct according to the syllabus. Analysis of the performance test basis

allows performance test conditions to be created.

4 A A is correct according to the syllabus. Contingent action plans form part of

the control measures taken if the performance project plan begins to slip.

5 D D is correct according to the syllabus. Aggregating results needs results

firstly to be generated and analyzed. Aggregation then allows a simpler view

of the results and analysis than the raw results data.

6 B B is correct according to the syllabus. Performance test cases are created

after the test conditions and before the test procedures.

7 D D is correct. Resource utilization could be an issue in any environment, as

any executing code requires resources to run.

(continued)

APPEnDIx B QUESTIon AnSWERS

376

Question Correct Notes

8 A Memory leaks can be caused by C-based languages which allow direct

heap management – in effect, a developer could make a mistake with

memory management allowing a memory leak to occur. Languages like

Java allow garbage collection, which can “tidy up” memory and reduce (but

not eliminate) the probability of memory leaks.

9 C C (performance risk impact) is determined during risk assessment. The

question referred to the characteristics for risk identification. Time behavior,

capacity, and resource utilization are covered in the syllabus.

10 B A is incorrect – it would create a baseline for the existing product in its

current environment, but it wouldn’t address the product risk.

C could remove the GUI, allowing more virtual users to be executed on the

load generator(s). But, once again, it doesn’t address the product risk.

D is a good idea – database tuning can often improve performance. But, as

this is the first iteration, it would be difficult to performance test through the

UI with a full dataset.

B is the best response, as it addresses the product risk directly.

11 C C is correct – the SDLC steps are from the syllabus. Test-driven

development (B) isn’t a development methodology but may be used within

an iterative/incremental project. CoTS and sequential are incorrect.

12 B B is the correct combination of each sentence taken from the syllabus.

 Chapter 4

Question Correct Notes

1 D D is the correct answer – the identification of trends predicting lower-level

performance is not a key objective, but a function of performance test

results analysis.

(continued)

APPEnDIx B QUESTIon AnSWERS

377

Question Correct Notes

2 C C is correct – option (i) focuses on the response time (a user-based metric)

vs. option (ii) based on resource utilization (a technical metric looking at the

ability to provide an adequate service with those resources).

3 B B is correct – the objective quantifies the load (120,000/24hrs=5000

shipments) with the response time (3 sec). A – Devops can (and should) use

performance test plans; C has the response time reference, but incorrectly

references only authentication/authorization; D only refers to the response time.

4 B B is correct – it includes both user types submitting time (not specifically

manual bulk upload or automatic). A includes users submitting time only

every six minutes (no bulk upload) and no breakdown of the users. C has a

mixed load, but automated time submission. D – The transaction number

is incorrect (1200 users x 10 time submissions per hour=12,000 times

submitted).

5 A From syllabus Section 4.1.3 – A is a business-focused factor; the other

answers are technical focused.

6 D From syllabus Section 4.1.3 – (i) is a technical factor; (ii) is a business factor.

7 A From syllabus Section 4.1.3 – D is a technical-focused factor; the other

answers are business focused.

8 B B is correct – 50% of load could be pushed via HTTPS and 50% via GDA to

apply 100% load to the server. A only pushes 50% HTTPS as total load. C

pushes 100% load through the web server causing 200% load through this

server. D only pushes GDA against the DB, and not through the web server.

9 C A – web; B – remote access; C – web service; D – database.

10 D A – TruClient; B – SoA; C – network; D – remote access.

11 A A – network; B – mobile; C – database; D – web.

(continued)

APPEnDIx B QUESTIon AnSWERS

378

Question Correct Notes

12 D D is correct – the lr_think_time is inside the DataTransfer_MakeDir

transaction, meaning this transaction would have an extra ten seconds

added to it. A – Although not the neatest code, the DataTransfer_1GB

starting won’t affect the DataTransfer_MakeDir timing, as transactions can

be nested. B – Latency could exist, but is irrelevant to the question.

C – The DataTransfer_MakeDir start transaction needs to begin to time

making the directory, thus is in the right place.

13 B Section 4.2.2 contains A, C, and D. B is not in this section – response time

is the end result of any performance issue; the first sign a problem might

exist is a transaction slowing, but further investigation using resource

utilization would be needed.

14 A A gives the number of users running the transaction to give the load profile.

The operational profile describes a single user journey. B – File size is not

relevant as it would relate to input data. C – overtime is not relevant, as

the operational profile specified a standard day. D – Transaction size is not

relevant, as per B.

15 C As per the ISTQB definitions for load profile and operational profile.

16 A A is in the syllabus as part of constructing operational profiles.

17 B 24 web x 3Mbps = 72Mbps;

108 email x 1Mbps = 108Mbps;

18 ftp x 10Mbps = 180Mbps.

72 + 108 + 180 = 360Mbps

24 + 108 + 18 = 150 users

18 A i) TRUE – Traffic has changed between the weekend and weekdays.

 ii) FALSE – Both have 50% (S)FTP/20% web/30% email traffic.

 iii) TRUE – The 1500 peak weekdays is relatively higher than the weekend.

 iv) FALSE – nothing says they do or don’t in the question.

 v) TRUE – FTP (weekend) vs. SFTP (weekday).

 vi) TRUE – 100% successful court submissions not in the weekend

specification.

(continued)

APPEnDIx B QUESTIon AnSWERS

379

Question Correct Notes

19 D A – As different payments follow different business processes, A is incorrect.

B – Within each group are differences; PayPal and Apple Pay have different

networks/etc.

C – Every payment provider could be looked at as being exhaustive; do we

need to test separate Barclays Visa from Bank of America Visa?

D is the best answer – each different payment type could be done based on

the % of total use and associated risk.

20 C C is correct – it measures the total transaction time, including client-side

processing. Protocol-based scripts may not capture this.

A is subjective – it may be easy or may not.

B – Scalability is reduced with UI scripting; often, only a single UI script can

run on a load generator.

D – Data correlation can be difficult, as UI scripts often don’t capture hidden

information like session IDs/etc.

21 B B is correct, as protocol scripts don’t include client-side processing in times

they capture.

A – Protocol scripts can be more efficient, running many Vusers from a

single load generator.

C – Data correlation is easier, as hidden values can be captured.

D – Difficult or easy is subjective.

22 D D is correct – the internal user logs in once, performs many transactions,

and logs out at the end of the day. Web users typically log in, do their

transaction, then log out. There will be many more single customers booking

shipments than individual internal users booking many transactions.

23 C C is not an option in the syllabus (Section 4.2.6). Converting source code

could create much more code to maintain in a test and most often isn’t

written as a performance test. Specifically, creating code with performance

testing as the goal is more efficient.

24 A Correlation is capturing a server-presented value and reusing that value as

an input parameter in the script.

(continued)

APPEnDIx B QUESTIon AnSWERS

380

Question Correct Notes

25 C C is correct – the first iteration ran with the data that was hard-coded in the

script as the first row of parameterized data.

A – A server-side session ID would fail on the first iteration because an

expired session ID would be passed.

B – Could be true, but unlikely that the only valid data was the first set.

D – A shipping organization would need to book more than one shipment to

remain profitable.

26 A A – If the same test is running on the same load generators, the probability

the load generators are causing the time variation is very low.

B – Changing network conditions could affect the response time.

C – Database caching could cause the DB to respond faster (which may or

may not be an intended effect).

D – Processes running within the same environment could consume

resources needed by the system under tests.

27 B B is correct – cleaning up old user sessions at the end of a test run can

ensure then environment is the same for the next test execution.

A – User session caching locally on a client would not cause this effect.

C – Congestion would slow all transactions, not just the login.

D – Paging would, once again, slow down all transactions.

28 D D is the best option – report the results and let the stakeholders decide if

the system is acceptable.

A – It’s not known if the <5 sec response time is a maximum time goal.

B – no tolerance is mentioned in the scenario.

C – The stakeholders are not technical, so more technical information would

be irrelevant.

APPEnDIx B QUESTIon AnSWERS

381

 Chapter 5

Question Correct Notes

1 C A – Load generator.

B – Part of load management console.

C – Load management console.

D – A performance test script.

2 B Maintainability (iii) and performance (v) are test types.

3 A A is incorrect, as the freeware model doesn’t exist in the syllabus

(Section 4.2.6), but hey, it’s a tool question, after all!

APPEnDIx B QUESTIon AnSWERS

383
© Keith Yorkston 2021
K. Yorkston, Performance Testing, https://doi.org/10.1007/978-1-4842-7255-8

Index

A
Acceptance criteria, 202, 203
Acceptance testing, 168

alpha testing, 43
beta testing, 43
contractual acceptance, 42
definition, 42
QAT, 42
regulatory acceptance, 42
UAT, 42

Active Directory (AD), 304
Aggregating performance metrics

absolute time, 91
elapsed time, 91
organization risks, 92
purpose, 91
response time, 92
stakeholders, 93
steps, 93

Alpha testing, 43
Analysis techniques

causality, 328
considerations, 329
correlation and trends, 326
execution time, 328
exponential and

plateau, 329
measurements, 327
outliers, 325

performance test results, 324
root cause, 330
sample size, 325
statistics, 325
steps, 328
visual inspection exercise, 330

Analyzing data, 321
Anti-stakeholders, 197
Application concurrency, 29
Application layer, 229
Application programming

interface (API), 49, 50

B
Background load, 55
Bandwidth consumption, 12, 77, 146
Batch processing, 63
Beta testing, 43
Business environment

concurrency, 85
searches, 86
performance metrics, 83
throughput data, 83
time behavior and resource

utilization, 83
timing of usage, 85

Business process breakdown, 21, 117
Business process concurrency, 29

https://doi.org/10.1007/978-1-4842-7255-8#DOI

384

C
Capacity

definition, 13
load profile, 13–15
operational profile, 13
testing, 30
ways, 14

Captured communication protocols, 51
Causation, 312
Cause-effect states, 312
Click Frenzy company, 269
Client interfaces, 8
Client/server infrastructure, 6
Client-server systems, 152, 154
Closed system, 269
Cloud-based microservices, 42
Cloud testing, 295, 296
Commercial off-the-shelf

(COTS), 188, 189
Communication, 197

roles, activities and
responsibilities, 217, 218

stakeholders, 215
stakeholders with business

focus, 219–222
stakeholders with technology

focus, 223–225
test deliverables, 216
testing, 215

Communication protocols
definition, 226
HTTP/HTML script, 229
multiple injection points, 233
OSI layers, 226
performance testing, 229
single tier testing, 233
syllabus, 227, 230

system architecture, 231, 232
virtual users, 232
winsock script, 228

Component integration, 41
Component testing, 40
Concurrency

cascading effect, 269
closed system, 269
concept, 268
issues, 270, 271
levels, 270, 313
load profile, 313
problems, 314
queueing theory, 269
resources, 268

Concurrency testing, 28, 29
Continuous integration (CI), 184, 309
Contractual acceptance testing, 42
Control measures, 113
Correlation, 280, 282
CPU utilization, 12, 70, 75, 145, 312
Crowd testing, 48

D
Data caching, 283
Data privatization, 123
Data security, 123
Data synchronization, 155
Digital transformation, 79, 251
Disk fragmentation, 57
Disk input/output, 12, 76, 146
Disk thrashing, 57
Distributed systems, 148
Drivers, 41
Dumb terminal, 158
Dynamic/cloud-based systems, 151

Index

385

E
Embedded real-time systems, 156, 157
Endurance testing, 28
Error-defect-failure, 305
Exhaustive testing, 174
Expected monetary value (EMV), 220, 221
External stakeholders, 197
Extrapolation, 207–209, 292

F
Failure mode and effect analysis

(FMEA), 178
Final environment acceptance test, 135
Functional testing, 100, 108

G
Garbage collection, 159
General data protection regulations

(GDPR), 204
Geolocation, 21, 22
Goal-question-metric (GQM), 89
Graph vs. table preference, 322

H
Harnesses, 41
Hits per second, 317
Horizontal and vertical scalability, 25
HTTP response code, 319

I
Inductive reasoning, 37, 102
Integrated development environment

(IDE), 41
Internal stakeholders, 196

ISO 9126, 6–8
ISO 25010, 7–9
ISO29119, 218
ISO29119-3, 200
ISTQB Foundation syllabus, 304
Iterative/incremental development

models, 183–187
Iterative vs. recursive algorithm, 161

J
JMeter, 273

K
KISS principle, 331

L
Load management console, 358
License models, 359
Load balancing, 55
Load generation, 234, 297

API, 49, 50
captured communication protocols, 51
components, 45
concept, 44
crowds, 48
performance tests, 46
testing principles, 45
user interface, 46, 47, 48

Load generators, 357
Load management console, 358
Load profiles

breakdown, 261
concept, 254
diagram, 258
efficiency, 260

Index

386

legacy system, 260
online transaction sites, 258
ramp-up, duration and ramp-down, 257
realistic and repeatable

information, 255, 256
stress, 258
tests, 260
transaction traffic pattern, 259
user traffic pattern, 259
virtual user, 256

Load spikes, 271
Load testing, 20–22
Load test vs. stress test, 23
Log analysis tools, 99

M
Mainframe applications

channels/peripheral processes, 158
dumb terminal, 158
legacy languages, 158
memory leaks, 159, 160
mobile applications, 158
recursive and iterative algorithms, 161
relational vs. nonrelational

databases, 160
technical decisions, 159

Mainframe vs. client-server, 153
Manual performance testing, 48
Memory leaks, 56, 57, 159, 160
Memory utilization, 12, 76, 145, 146
Metrics

accuracy and precision, 72
advantages and disadvantages, 90
bandwidth consumption, 77
business environment, 83–86
categories, 78

cause-effect relationship, 78
CPU utilization, 75
deductive approach, 90
diagnostic approach, 90
disk input/output, 76
GQM, 89
memory utilization, 76
operational environment, 87, 88
performance engineers, 71
performance test, 75
project risks, 70
PTP, 211, 213, 214
queueing, 77
requirements/user stories, 74
response time, 72
results analysis, 311
sources

factors, 95
log analysis tools, 99
performance monitoring

tools, 97, 99
performance test tools, 95, 96
probe effect, 94

stakeholders, 71, 88
technical/business knowledge, 71
technical environment, 79–82
temptation, 71
test objective/regulatory

requirement, 72
train punctuality, 73

Micro Focus LoadRunner Virtual User
Generator (VuGen), 236

Microservice architecture, 50
Mobile applications, 154–156
Mock objects, 41
Monitoring tools, 358, 359, 360
Mortgage application process, 242
Multi-tier systems, 8, 147

Load profiles (cont.)

Index

387

N
National Institute of Standards and

Technology (NIST), 171
Negative testing, 123
Network congestion, 55
Network emulation, 297
Network latency, 54
Network layer, 228
Network throughput, 318
Neutral stakeholders, 197
Non-functional testing, 108, 143
Normalization, 52

O
Observer effect, 211
Off-line batch processing systems, 251
OLAP vs. OLTP, 252
Online analytical processing system

(OLAP), 251
Online shopping system, 90
Online transaction processing system

(OLTP), 251
Open systems interconnection

(OSI), 226
Operational acceptance testing

(OAT), 42, 43
Operational environment, 87, 88
Operational profiles, 210, 254, 255, 314

construction
business legwork, 251
off-line batch processing

systems, 251
OLTP/OLAP, 251
steps, 249, 250
systems of systems, 253
volumetric information, 250

definition, 239
identify data

business report, 247
estimated number of users, 246
gather data, 247, 248
generic tasks, 246
master data, 244
network path, 247
transactional data, 244
user-defined data, 244
user personas and roles, 245

mortgage process, 242, 243
prepare contract step, 242
steps, 240
syllabus, 241
testing, 240
user group level, 241
volumetric questions, 240

Organizational risk, 164, 169
OSI layers, 226

P
Pacing, 287
Parameterization, 281, 284
Payment processing system, 220
Performance efficiency, 3
Performance efficiency failure modes

background load, 55
bad database

design/implementation, 52–54
degraded response over time

disk fragmentation, 57
file/database growth, 58
increased network load, 58
memory leaks, 56, 57
STATISTICS TIME counter, 58

Index

388

error handling
batch process, 63
insufficient resource pool, 59
issues, 62
load profiles, 63
scalability testing, 63
timeout settings, 60–62
undersized queues/stacks, 59

moderate-to-heavy load, 55
network latency, 54
slow response, load levels, 52

Performance engineer, 15, 367, 368
Performance measurement

cause-effect relationships, 103
functional testing, 100
metrics (see Metrics)
monitoring, 70
quantitative performance

requirements, 101
response times, 102
resource utilization, 103
system responding, 101
tolerance method, 102
unconscious bias, 102

Performance monitoring tools, 97–99
Performance readiness check, 135
Performance risks architectures

client-server systems, 152, 154
distributed systems, 148
dynamic/cloud-based systems, 151
embedded real-time systems, 156, 157
load, 144
mainframe applications, 158–161
mobile applications, 154–156
multi-tier systems, 147
single computer systems, 144–147

virtualized systems, 149–151
Performance scenario breakdown, 119
Performance script playback, 235
Performance script recording, 234
Performance test breakdown, 117
Performance test execution

acceptance tests, 298
activities, 289
AD, 304
availability, 290
CI-based alert reporting, 309
CI/CD pipeline, 310
client processing time, 309
cloud testing, 295, 296
configuration changes, 296
continuous integration, 309
database performance, 292
data complexity, 292
deployment options, 293, 294
error-defect-failure, 304, 305
extraneous factors, 295
fluctuations, 302
goals, 295
load generation, 297
load profile diagram, 302, 303
load testing, 308
log analysis, 307
monitoring tools, 300
network emulation, 297
non-linear function, 291
objective, 305
organization-based client/server

system, 303
performance defects, 307
personal security points, 299, 300
production environment, 291
ramp-up, 303, 304
ramp-up/steady state/ramp-down, 301

Performance efficiency failure
modes (cont.)

Index

389

security, 290
service virtualization tools, 293
task, 305
test data, 290
time-synching, 307
tolerance, 306
transient states, 302
unauthorized changes, 294

Performance testing, 368
acceptable quality levels, 3
capacity, 13, 14
definition, 19
description, 3
diagram, 19
dynamic testing activities

acceptance testing, 42, 43
change-controlled environment, 43
component integration, 41
component integration level, 43
infrastructure tier, 41
opportunities, 40
simulators, 44
system testing, 41
test levels, 40

experimentation, 15
external and internal quality model, 6
functional and non-functional

characteristics, 3
issues, 4
objectives

communication tasks, 197
interpreter, 198
stakeholder, 199
stakeholders, 196
translation, 199

principles, 15–18
quality risk, 5
resource utilization, 11, 12

social media, 4
static testing activities

capacity, 38
library, 32
memory issues, 32
performance defects, 31
project attributes, 37
project characteristics, 36
project success definition

diagram, 36
quality system, 34
quality triangle, 35
requirements, 32–34
resource utilization, 39
SLAs, 34
stakeholders, 37, 38
steps, 31
thread locking, 32
time behavior, 38

time behavior, 9–11
types, 19

capacity testing, 30
concurrency testing, 28, 29
endurance testing, 28
load testing, 20–22
scalability testing, 24, 25, 26
spike testing, 26, 27
stress testing, 22, 23, 24

usability, 5
Performance testing activities

analysis (see Test analysis)
completion (see Test completion)
concept, 181
COTS and supplier/acquirer models,

188, 189
design (see Test design)
execution (see Test execution)
functional testing, 108

Index

390

implementation (see Test
implementation)

ISTQB test process, 108
iterative and incremental development

models, 183–187
monitoring and control, 113, 114
non-functional testing, 108
planning (see Test planning)
sequential development models, 181
task list, 109

Performance test plan (PTP)
acceptance criteria, 202, 203
concept, 200
metrics, 211, 213, 214
objective, 200
performance types, 202
profiles, 210, 211
risks, 214
size limit, 200
system configuration, 205, 206
system overview, 201
test data, 203–205
test environment, 206–209
test objectives, 201
test tools, 209, 210

Performance test script
implementation

building LoadRunner, 288
coding, 286
correlation, 280
data caching, 283
dynamic server-created

values, 281, 282
LoadRunner execution, 288, 289
options, 286
pacing, 287
parameterization, 281, 285

problems, 283
PTP and load profiles, 279
recorded internal identifiers, 280
test data considerations, 284
think time, 287
transactional data, 285
virtual user, 279

structure
browser-based application, 276
client/server systems, 275
creation, 273
data collection, 277
load generation approach, 272
result verification and error

handling, 277, 278
tools, 273, 274
user/component activity, 272
VuGen and JMeter, 273
web-based systems, 276

Performance test tools, 356, 360
concept, 95
progress results, 96, 97
summary results, 96
usability, 96

Personal preference, 321
Planning

communicating (see Communication)
concept, 196
performance test objectives, 196–199
PTP (see Performance test plan (PTP))

Point in time, 322
Probe effect, 94
Product quality model, 5
Product risks, 144
Project risk, 111, 164, 168, 169
Protocol-based recording, 47
Protocol recording mechanism, 51
Public performance measure (PPM), 73

Performance testing activities (cont.)

Index

391

Q
Qualitative vs. quantitative

assessment, 170
Quality risk, 5, 164, 169, 179
Queueing, 12, 59, 77, 146
Queueing theory, 269

R
Race conditions, 270
Readiness report, 135
Recursive/iterative algorithms, 161
Regression testing, 185, 186, 222
Regulatory acceptance testing, 42
Relational vs. nonrelational databases, 160
Reporting

business stakeholders, 331
factors, 333
KISS principle, 331
properties, 332
recommendations, 334, 335
self-explanatory, 334
steps, 331
summary, 333
templates, 332
test logs/information recorded, 334
test results, 333

Resource exhaustion, 271
Resource pools, 59
Resource saturation, 55
Resource utilization

bandwidth consumption, 12
CPU utilization, 12
definition, 11
disk input/output, 12
memory utilization, 12

queueing, 12
Return codes, 320
Return on investment (ROI), 17
Reusable task, 21
Risk relationship model, 164
Risks

analysis, 167, 175
appetite, 174, 179, 180
assessment, 169
by design concept, 177
categorized, 169
cause-effect chain, 165
components, 165, 166
cost of loss, 172
customer exposure, 172
definition, 162–164
events, 168
identification, 167, 168
level, 169, 170, 179
level and relationship, 165
management, 166, 177
matrix, 173
mitigation, 173, 174, 177
non-functional requirements, 165
perceptions, 170
probability criteria, 173
product quality, 166
project, 164
PTP, 214
quality, 164
results, 178
technical and business

stakeholders, 175
terminology, 180
tolerance, 179, 180

Robotic process automation (RPA), 251

Index

392

S
System architectures, 5
Scalability testing, 24–26
Script editor, 279
Semaphoring, 64, 271
Sequential development models, 181
Service-level agreements (SLAs), 34
Service virtualization, 41
Simulated users, 313
Simulators, 44
Single computer systems

bandwidth consumption, 146
CPU utilization, 145
disk input/output, 146
memory utilization, 145, 146
performance, 144
queueing, 146

Single-tier system, 8
Soak testing, 28
Social media, 4
Software as a service (SaaS), 189
Software development lifecycle, 33

analyzing risks, 162
risk (see Risks)

Software metrics, 82
Software product Quality Requirements

and Evaluation (SQuaRE), 6
Spike testing, 26, 27
Stock keeping unit (SKU), 280
Stress/capacity test, 260
Stress testing, 22, 23, 24
Stubs, 41
Supplier/acquirer models, 188, 189
Synchronization points, 278
System crashes, 62
System integration testing, 42
System response, 62

System restoration, 87
Systems of systems, 253
System testing, 41
System throughput

calculations, 266, 267
concept, 261
equation, 263
factors, 264, 265
load system, 262
mortgage viewing distribution

breakdown, 264
testing batch processing systems, 263
transaction profile

breakdown, 265, 266
transactions, 262
user profile breakdown, 265
workload, 263

System under test (SUT), 18, 201

T
Test cases, 44
Technical environment

background load, 82
batch processing time, 81
code complexity, 82
completion time, 81
digital transformation, 79
list, 79
metrics, 80
number of errors, 81
resource utilization, 80
software metrics, 82
system performance, 79
testing levels, 82
throughput rate, 80

Technical risk, 111

Index

393

Telecommunications, 4
Test analysis

business process breakdown, 117
cases, 116
conditions, 116
constituents, 115
creation, 115
document types, 116
modularization, 116
monitoring design, 120
performance test breakdown, 117
performance test data planning, 120
scenario design, 118, 119
scheduling, 121
script design, 117, 118
spreadsheets/capacity planning

tools, 115
Test completion

performance test pack
creation, 142, 143

presentation and
recommendations, 142

report, 141
stakeholders, 141
transition, 143

Test design
cases, 121
data preparation, 122
master data, 122
transactional data, 122, 123
user-defined data, 122

Test environment, 206–209
Test execution

automated functional tests, 136
controls, 138
cycles, 138
initial test setup, 137
interim test report, 139, 140

remedial action, 140
result analysis, 138, 139
results review meeting, 140
scenarios, 136
system and process improvement, 141
test cycle report, 140

Test implementation
concept, 123
environment preparation, 131
final environment acceptance

test, 135
initial environment acceptance

check, 124
monitoring preparation, 133, 134
overall status, 136
performance execution checklist, 131
readiness report, 135
results capture and analysis

preparation, 134
scenario construction, 128–130
script construction

business processes, 124
checklist, 128
comments, 126
common libraries/repositories, 127
naming conventions, 124
standard headers, 125
standardized error handling, 127
verification, 126

tool preparation, 131
Test planning

business and technical overview, 111
initial workshop, 110
non-functional testing, 110
performance project planning, 113
performance test environment

analysis, 112
performance test plan, 113

Index

394

performance test tool analysis/proof
of concept, 112

requirements definition/user
stories, 111

risk identification and analysis, 110
scope, 110
scripting, 110
volumetric analysis, 112

Test process improvement (TPI), 217
Test tools, 209, 210
Time behavior, 9, 10, 11
Tool suitability

commercial tools, 360
compatibility, 361, 362
limitations, 360
monitoring, 364
open source tools, 360
problems, 361
scalability, 362
understandability, 363

Tool support
components, 356
load generators, 357
load management console, 358
manual performance testing, 356
monitoring tools, 358, 359, 360
open source, 356

Transaction concurrency, 29
Transaction count per second, 315
Transaction response time, 314, 323
Transactions

definition, 235
end-to-end interaction, 236
execution, 236
failures, 316
individual and aggregate

activities, 239
response time, 238
simulated, 237
think time, 237
tools, 239, 315
user request and server response, 236

Transition, 143

U
User acceptance testing (UAT), 42
User interface (UI), 46–48

V
Virtualized environments, 82
Virtualized systems, 149–151
Virtual User Generator (VuGen), 273
Virtual users, 46
V-model development methodology, 182
Volumetric analysis, 112
Volumetrics, 20

W, X, Y, Z
Windows server resources, 324, 327
Workload modelling, 263

Test planning (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword
	Introduction
	Chapter 1: The Basic Concepts of Performance Testing
	ISTQB Keywords
	Other Keywords
	1.1 Principles of Performance Testing
	Time Behavior
	Resource Utilization
	CPU Utilization
	Memory Utilization
	Disk Input/Output
	Bandwidth Consumption
	Queueing

	Capacity

	1.2 Types of Performance Testing
	Performance Testing
	Load Testing
	Who
	What
	Where
	When
	How

	Stress Testing
	Scalability Testing
	Spike Testing
	Endurance Testing
	Concurrency Testing
	Capacity Testing

	1.3 Testing Activities in Performance Testing
	Static Testing
	Reviews of Requirements with a Focus on Performance Aspects and Risks
	Capacity
	Time Behavior
	Resource Utilization

	Dynamic Testing

	1.4 The Concept of Load Generation
	Load Generation via the User Interface
	Load Generation Using Crowds
	Load Generation via the Application Programming Interface (API)
	Load Generation Using Captured Communication Protocols

	1.5 Common Performance Efficiency Failure Modes and Their Causes
	Slow Response Under Moderate-to-Heavy Load Levels
	Degraded Response over Time

	Inadequate or Graceless Error Handling Under Heavy or Overlimit Load
	Chapter 1 Questions

	Chapter 2: Performance Measurement Fundamentals
	ISTQB Keywords
	Other Keywords
	2.1 Typical Measurements Collected in Performance Testing
	Why Performance Metrics Are Needed
	Collecting Performance Measurements and Metrics
	CPU Utilization
	Memory Utilization
	Disk Input/Output (Physical Disk)
	Bandwidth Consumption
	Queueing
	Technical Environment
	Business Environment
	Operational Environment

	Selecting Performance Metrics

	2.2 Aggregating Results from Performance Testing
	2.3 Key Sources of Performance Metrics
	Performance Test Tools
	Performance Monitoring Tools
	Log Analysis Tools

	2.4 Typical Results of a Performance Test
	Chapter 2 Questions

	Chapter 3: Performance Testing in the Software Lifecycle
	ISTQB Keywords
	3.1 Principal Performance Testing Activities
	Test Planning
	Initial Workshop
	Business and Technical Overview
	Definition of Requirements/User Stories
	Volumetric Analysis
	Performance Test Environment Analysis
	Performance Test Tool Analysis/Proof of Concept
	Performance Project Planning
	Performance Test Plan

	Test Monitoring and Control
	Test Analysis
	Test Script Design
	Test Scenario Design
	Monitoring Design
	Performance Test Data Planning
	Scheduling

	Test Design
	Master Data
	User-Defined Data
	Transactional Data

	Test Implementation
	Initial Environment Acceptance Check
	Script Construction
	Scenario Construction
	Test Data Preparation
	Test Environment Preparation
	Test Tool Preparation
	Monitoring Preparation
	Results Capture and Analysis Preparation
	Final Environment Acceptance Test and Readiness Report

	Test Execution
	Initial Test Setup
	Test Execution
	Results Analysis
	Interim Test Report
	Remedial Action (If Needed)
	Test Cycle Report
	Results Review Meeting
	System and Process Improvement

	Test Completion
	Test Completion Report
	Presentation and Recommendations
	Performance Test Pack Creation
	Transition

	3.2 Categories of Performance Risks for Different Architectures
	Single Computer Systems
	Multi-tier Systems
	Distributed Systems
	Virtualized Systems
	Dynamic/Cloud-Based Systems
	Client-Server Systems
	Mobile Applications
	Embedded Real-Time Systems
	Mainframe Applications
	Memory Leaks
	Relational vs. Nonrelational Databases
	Recursive and Iterative Algorithms

	3.3 Performance Risks Across the Software Development Lifecycle
	3.4 Performance Testing Activities
	Sequential Development Models
	Iterative and Incremental Development Models
	Commercial Off-the-Shelf (COTS) and Other Supplier/Acquirer Models
	Chapter 3 Questions

	Chapter 4: Performance Testing Tasks
	ISTQB Keywords
	4.1 Planning
	4.1.1 Deriving Performance Test Objectives
	4.1.2 The Performance Test Plan
	Objective
	Test Objectives
	System Overview
	Types of Performance
	Acceptance Criteria
	Test Data
	System Configuration
	Test Environment
	Test Tools
	Profiles
	Relevant Metrics
	Risks

	4.1.3 Communicating About Performance Testing
	Stakeholders with a Business Focus
	Stakeholders with a Technology Focus

	4.2 Analysis, Design, and Implementation
	4.2.1 Typical Communication Protocols
	4.2.2 Transactions
	4.2.3 Identifying Operational Profiles
	Identify Data
	Master Data
	User-Defined Data
	Transactional Data
	Different Types of User Personas and Their Roles
	Different Generic Tasks Performed by Those Users/Roles
	Estimated Numbers of Users for Each Role/Task

	Gather Data
	Construct Operational Profiles
	Off-line Batch Processing Systems
	Systems of Systems

	4.2.4 Creating Load Profiles
	4.2.5 Analyzing Throughput and Concurrency
	System Throughput
	Concurrency

	4.2.6 Basic Structure of a Performance Test Script
	Overall Structure
	Data Collection
	Result Verification and Error Handling

	4.2.7 Implementing Performance Test Scripts
	4.2.8 Preparing for Performance Test Execution

	4.3 Execution
	4.4 Analyzing Results and Reporting
	Analysis Techniques
	Reporting
	Chapter 4 Questions

	Chapter 5: Tools
	ISTQB Keywords
	5.1 Tool Support
	Load Generators (2)
	Load Management Console (1)
	Monitoring Tool (5)

	5.2 Tool Suitability
	Compatibility
	Scalability
	Understandability
	Monitoring
	Chapter 5 Questions

	Chapter 6: Final Thoughts
	Need an Exam?

	Appendix A: References
	Standards
	ISTQB Documents
	Books
	Papers and Articles

	Appendix B: Question Answers
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Index

