

Performance Testing with
JMeter 2.9

Learn how to test web applications using Apache
JMeter with practical, hands-on examples

Bayo Erinle

BIRMINGHAM - MUMBAI

Performance Testing with JMeter 2.9

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded
in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1220713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-584-2

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

Credits

Author
Bayo Erinle

Reviewers
Dmitri Nevedrov

Shantonu Sarker

Acquisition Editor
Kevin Colaco

Commissioning Editor
Llewellyn F. Rozario

Technical Editors
Anita Nayak

Sampreshita Maheshwari

Copy Editors
Aditya Nair

Laxmi Subramanian

Project Coordinator
Sherin Padayatty

Proofreader
Stephen Silk

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Ronak Dhruv

Production Coordinator
Zahid Shaikh

Cover Work
Zahid Shaikh

About the Author

Bayo Erinle is a senior software engineer with over nine years' experience in
designing, developing, testing, and architecting software. He has worked in various
spectrums of the IT field, including government, finance, and health care. As a result,
he has been involved in the planning, development, implementation, integration,
and testing of numerous applications, including multi-tiered, standalone, distributed,
and cloud-based applications. He is always intrigued by new technology and enjoys
learning new things. He currently resides in Maryland, US, and when he is not
hacking away at some new technology, he enjoys spending time with his wife
Nimota and their three children, Mayowa, Durotimi, and Fisayo.

About the Reviewers

Dmitri Nevedrov has been working in software research and development
for many years, primarily focusing on Java, J2EE technology, and performance
optimization techniques. He lives in Denver, Colorado.

Shantonu Sarker is a proactive software test engineer with seven years of
experience in test automation, development (C# and Java), and project management
with Agile (Scrum and Kanban). Currently, he is working as Senior SQA (Automation
Lead) at Relisource Technologies Ltd. He also owns a startup software company
named QualitySofts, which specializes in software development and testing services.
He also gives training on software development (C# and Java) and software test
tools contractually.

He started his career as a software developer and trainer back in 2008. Before starting
his career in the software industry, he was a computer teacher.

He has attended two professional training programs from BASIS (Bangladesh
Association for Software and Information Services) on OOP, Industry Ready and
OOAD. He has completed the ISTQB and JLPT-L3 and L4 courses, and has procured
the JLPT-L4 certification (from the Japan Foundation) when he was in BJIT Ltd. He
also completed his training on Agile (Kanban and Scrum) by Naresh Jain and Software
Security by Nahidul Kibria when he was with KAZ Software. He completed his BSc.
from Institute of Science Trade & Technology, which is under the National University of
Bangladesh. His thesis subject was Object Oriented Unit Testing.

I would like to thank Guru Mahajatok, because without his guidance
I would not be what I am today. He is a great inspiration to me.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Performance Testing Fundamentals 7

The incident 7
The aftermath 8
Performance testing 8
Performance testing and tuning 13

Baselines 14
Load and stress testing 14

JMeter to the rescue 15
Up and running with JMeter 16

Installation 16
Installing the Java JDK 17
Setting JAVA_HOME 18
Running JMeter 19
Tracking errors during test execution 24
Configuring JMeter 24

Summary 26
Chapter 2: Recording Your First Test 27

Configuring the JMeter HTTP proxy server 28
Setting up your browser to use the proxy server 30

Using a browser extension 30
Changing the system settings 30
Running your first recorded scenario 34

Anatomy of a JMeter test 45
Test Plan 45
Thread Groups 46
Controllers 46
Samplers 47
Logic controllers 47

Table of Contents

[ii]

Test fragments 48
Listeners 48
Timers 48
Assertions 48
Configuration elements 49
Pre-processor and post-processor elements 49

Summary 49
Chapter 3: Submitting Forms 51

Capturing simple forms 51
Handling checkboxes 52
Handling radio buttons 53
Handling file uploads 53
Handling file downloads 54
Posting JSON data 55
Reading JSON data 59

Using the BSF PostProcessor 60
Handling the XML response 62

Summary 64
Chapter 4: Managing Sessions 65

Managing sessions with cookies 66
Managing sessions with URL rewriting 70
Summary 73

Chapter 5: Resource Monitoring 75
Basic server monitoring 76

Setting up Apache Tomcat Server 76
Configuring Tomcat users 80
Setting up a monitor controller in JMeter 81

Monitoring the server with a JMeter plugin 84
Installing the plugins 84
Adding monitor listeners to the test plan 86

Summary 89
Chapter 6: Distributed Testing 91

Remote testing with JMeter 91
Configuring JMeter slave nodes 93

Configuring one slave per machine 94
Configuring the master node to be tested against one slave per machine 96
Configuring multiple slave nodes on a single box 100
Configuring the master node to be tested against multiple slave nodes on a single box 102

Leveraging the cloud for distributed testing 104
Obtaining your access key, secret key, and key pair 104
Launching an AWS instance 106

Table of Contents

[iii]

Executing the test plan 108
Viewing the results from the virtual machines 109

Summary 113
Chapter 7: Helpful Tips 115

JMeter properties and variables 115
JMeter functions 117
The Regular Expression tester 118
The Debug sampler 120
Using timers in your test plan 121

The Constant timer 121
The Gaussian random timer 121
The Uniform random timer 121
The Constant throughput timer 121
The Synchronizing timer 121
The Poisson random timer 122

The JDBC Request sampler 122
Setting up an H2 database 122
Configuring a JDBC Connection Configuration component 124
Adding a JDBC Request sampler 125

A Dummy sampler 126
The JSON Path Extractor element 128
Handling RESTful web services 129
Summary 130

Index 131

Preface
Performance Testing with JMeter 2.9 is about a type of testing intended to determine
the responsiveness, reliability, throughput, interoperability, and scalability of a
system and/or application under a given workload. It is critical and essential to the
success of any software product launch and its maintenance. It also plays an integral
part in scaling an application out to support a wider user base.

Apache JMeter is a free open source, cross-platform performance testing tool that has
been around since the late 90s. It is mature, robust, portable, and highly extensible.
It has a large user base and offers lots of plugins to aid testing.

This is a practical hands-on book that focuses on how to leverage Apache JMeter to
meet your testing needs. It starts with a quick introduction on performance testing,
but quickly moves into engaging topics such as recording test scripts, monitoring
system resources, an extensive look at several JMeter components, leveraging the
cloud for testing, and extending Apache JMeter capabilities via plugins. Along
the way, you will do some scripting, learn and use tools such as Vagrant, Puppet,
Apache Tomcat, and be armed with all the knowledge you need to take on your next
testing engagement.

Whether you are a developer or tester, this book is sure to give you some valuable
knowledge to aid you in attaining success in your future testing endeavors.

What this book covers
Chapter 1, Performance Testing Fundamentals, covers the fundamentals of performance
testing and the installation and configuration of JMeter.

Chapter 2, Recording Your First Test, dives into recording your first JMeter test script
and covers the anatomy of a JMeter test script.

Preface

[2]

Chapter 3, Submitting Forms, covers form submission in detail. It includes handling
various HTML form elements, (checkboxes, radio buttons, file uploads, downloads,
and so on), JSON data, and XML.

Chapter 4, Managing Sessions, explains session management, including cookies and
URL rewriting.

Chapter 5, Resource Monitoring, dives into active monitoring of system resources while
executing tests. You get to start up a server and extend JMeter via plugins.

Chapter 6, Distributed Testing, takes an in-depth look at leveraging the cloud for
performance testing. We dive into tools such as Vagrant, Puppet, and AWS.

Chapter 7, Helpful Tips, provides you with helpful techniques and tips for getting the
most out of JMeter.

What you need for this book
To follow along with the examples in this book, you will need the following:

• A computer with an Internet connection
• Apache JMeter (http://jmeter.apache.org/)
• Java Runtime Environment (JRE) or Java Development Kit (JDK) (http://

www.oracle.com/technetwork/java/javase/downloads/index.html)

In addition, for Chapter 4, Resource Monitoring, you need the following:

• Apache Tomcat (http://tomcat.apache.org/download-70.cgi)

And for Chapter 6, Distributed Testing, you need the following:

• Vagrant (http://www.vagrantup.com/)
• An AWS account (http://aws.amazon.com/)

The book contains pointers and additional helpful links in setting all these up.

Preface

[3]

Who this book is for
The book is targeted primarily at developers and testers. Developers who have
always been intrigued by performance testing and wanted to dive in on the action
will find it extremely useful and gain insightful skills as they walk through the
practical examples in the book.

Testers will also benefit from this book since it will guide them through solving
practical, real-world challenges when testing modern web applications, giving them
ample knowledge to aid them in becoming better testers. Additionally, they will be
exposed to certain helpful testing tools that will come in handy at some point in their
testing careers.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Append %JAVA_HOME%/bin to the end of the existing path value (if any)."

A block of code is set as follows:

DROP TABLE IF EXISTS TEST;
CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255));
INSERT INTO TEST VALUES(1, 'Hello');
INSERT INTO TEST VALUES(2, 'World');

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

DROP TABLE IF EXISTS TEST;
CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255));
INSERT INTO TEST VALUES(1, 'Hello');
INSERT INTO TEST VALUES(2, 'World');

Preface

[4]

Any command-line input or output is written as follows:

./jmeter.sh -H proxy.server -P7567 -u username -a password

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/5842OS_graphics.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any
existing errata can be viewed by selecting your title from http://www.packtpub.
com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Performance Testing
Fundamentals

Baysoft Training Inc. is an emerging startup company focused on redefining how
software will help get more people trained in various fields in the IT industry.
The company achieves this goal by providing a suite of products, including online
courses, onsite training, and offsite training. As such, one of their flagship products,
TrainBot—a web-based application—is focused solely on registering individuals for
courses of interest that will aid them in attaining career goals. Once registered, the
client can then go on to take a series of interactive online courses.

The incident
Up until recently, traffic on TrainBot had been light as it had only been opened to
a handful of clients, since it was still in closed beta. Everything was fully operational
and the application as a whole was very responsive. Just a few weeks ago, TrainBot
was open to the public and all was still good and dandy. To celebrate the launch and
promote its online training courses, Baysoft Training Inc. recently offered 75 percent
off for all the training courses. However, that promotional offer caused a sudden
influx on TrainBot, far beyond what the company had anticipated. Web traffic
shot up by 300 percent and suddenly things took a turn for the worse. Network
resources weren't holding up well, server CPUs and memory were at 90-95 percent
and database servers weren't far behind due to high I/O and contention. As a result,
most web requests began to get slower response times, making TrainBot totally
unresponsive for most of its first-time clients. It didn't take too long after that for
the servers to crash and for the support lines to get flooded.

Performance Testing Fundamentals

[8]

The aftermath
It was a long night at BaySoft Training Inc. corporate office. How did this happen?
Could this have been avoided? Why was the application and system not able to
handle the load? Why weren't adequate performance and stress tests conducted
on the system and application? Was it an application problem, a system resource
issue or a combination of both? All of these were questions management demanded
answers to from the group of engineers, which comprised software developers,
network and system engineers, quality assurance (QA) testers, and database
administrators gathered in the WAR room. There sure was a lot of finger pointing
and blame to go around the room. After a little brainstorming, it wasn't too long
for the group to decide what needed to be done. The application and its system
resources will need to undergo extensive and rigorous testing. This will include
all facets of the application and all supporting system resources, including, but not
limited to, infrastructure, network, database, servers, and load balancers. Such a test
will help all the involved parties to discover exactly where the bottlenecks are and
address them accordingly.

Performance testing
Performance testing is a type of testing intended to determine the responsiveness,
reliability, throughput, interoperability, and scalability of a system and/or
application under a given workload. It could also be defined as a process of
determining the speed or effectiveness of a computer, network, software application,
or device. Testing can be conducted on software applications, system resources,
targeted application components, databases, and a whole lot more. It normally
involves an automated test suite as this allows for easy, repeatable simulations of
a variety of normal, peak, and exceptional load conditions. Such forms of testing
help verify whether a system or application meets the specifications claimed by its
vendor. The process can compare applications in terms of parameters such as speed,
data transfer rate, throughput, bandwidth, efficiency, or reliability. Performance
testing can also aid as a diagnostic tool in determining bottlenecks and single points
of failure. It is often conducted in a controlled environment and in conjunction
with stress testing; a process of determining the ability of a system or application to
maintain a certain level of effectiveness under unfavorable conditions.

Chapter 1

[9]

Why bother? Using Baysoft's case study mentioned earlier, it should be obvious
why companies bother and go through great lengths to conduct performance
testing. Disaster could have been minimized, if not totally eradicated, if effective
performance testing had been conducted on TrainBot prior to opening it up to
the masses. As we go ahead in this chapter, we will continue to explore the many
benefits of effective performance testing.

At a very high level, performance testing is always almost conducted to address one
or more risks related to expense, opportunity costs, continuity, and/or corporate
reputation. Conducting such tests help give insights to software application release
readiness, adequacy of network and system resources, infrastructure stability,
and application scalability, just to name a few. Gathering estimated performance
characteristics of application and system resources prior to the launch helps to
address issues early and provides valuable feedback to stakeholders, helping them
make key and strategic decisions.

Performance testing covers a whole lot of ground including areas such as:

• Assessing application and system production readiness
• Evaluating against performance criteria
• Comparing performance characteristics of multiple systems or

system configurations
• Identifying source of performance bottlenecks
• Aiding with performance and system tuning
• Helping to identify system throughput levels
• Testing tool

Most of these areas are intertwined with each other, each aspect contributing
to attaining the overall objectives of stakeholders. However, before jumping
right in, let's take a moment to understand the core activities in conducting
performance tests:

• Identify the test environment: Becoming familiar with the physical test
and production environments is crucial to a successful test run. Knowing
things, such as the hardware, software, and network configurations of the
environment help derive an effective test plan and identify testing challenges
from the outset. In most cases, these will be revisited and/or revised during
the testing cycle.

Performance Testing Fundamentals

[10]

• Identify acceptance criteria: What is the acceptable performance of the
various modules of the application under load? Specifically, identify the
response time, throughput, and resource utilization goals and constraints.
How long should the end user wait before rendering a particular page? How
long should the user wait to perform an operation? Response time is usually
a user concern, throughput a business concern, and resource utilization a
system concern. As such, response time, throughput, and resource utilization
are key aspects of performance testing. Acceptance criteria is usually driven
by stakeholders and it is important to continuously involve them as testing
progresses as the criteria may need to be revised.

• Plan and design tests: Know the usage pattern of the application (if any),
and come up with realistic usage scenarios including variability among
the various scenarios. For example, if the application in question has a user
registration module, how many users typically register for an account in
a day? Do those registrations happen all at once, or are they spaced out?
How many people frequent the landing page of the application within an
hour? Questions such as these help to put things in perspective and design
variations in the test plan. Having said that, there may be times where the
application under test is new and so no usage pattern has been formed yet.
At such times, stakeholders should be consulted to understand their business
process and come up with as close to a realistic test plan as possible.

• Prepare the test environment: Configure the test environment, tools, and
resources necessary to conduct the planned test scenarios. It is important to
ensure that the test environment is instrumented for resource monitoring to
help analyze results more efficiently. Depending on the company, a separate
team might be responsible for setting up the test tools, while another may be
responsible for configuring other aspects such as resource monitoring.
In other organizations, a single team is responsible for setting up all aspects.

Chapter 1

[11]

• Record the test plan: Using a testing tool, record the planned test scenarios.
There are numerous testing tools available, both free and commercial that
do the job quite well, each having their pros and cons.
Such tools include HP Load Runner, NeoLoad, LoadUI, Gatling, WebLOAD,
WAPT, Loadster, LoadImpact, Rational Performance Tester, Testing
Anywhere, OpenSTA, Loadstorm, and so on. Some of these are commercial
while others are not as mature or as portable or extendable as JMeter is. HP
Load Runner, for example, is a bit pricey and limits the number of simulated
threads to 250 without purchasing additional licenses. It does offer a much
nicer graphical interface and monitoring capability though. Gatling is the
new kid on the block, is free and looks rather promising. It is still in its
infancy and aims to address some of the shortcomings of JMeter, including
easier testing DSL (domain specific language) versus JMeter's verbose XML,
nicer and more meaningful HTML reports, among others. Having said that, it
still has only a tiny user base when compared with JMeter, and not everyone
may be comfortable with building test plans in Scala, its language of choice.
Programmers may find it more appealing.
In this book, our tool of choice will be Apache JMeter to perform this step.
That shouldn't be a surprise considering the title of the book.

• Run the tests: Once recorded, execute the test plans under light load and
verify the correctness of the test scripts and output results. In cases where
test or input data is fed into the scripts to simulate more realistic data (more
on that in the later chapters), also validate the test data. Another aspect to
pay careful attention to during test plan execution is the server logs. This
can be achieved through the resource monitoring agents set up to monitor
the servers. It is paramount to watch for warnings and errors. A high rate of
errors, for example, could be indicative that something is wrong with the test
scripts, application under test, system resource, or a combination of these.

Performance Testing Fundamentals

[12]

• Analyze results, report, and retest: Examine the results of each successive
run and identify areas of bottleneck that need addressing. These could be
system, database, or application related. System-related bottlenecks may
lead to infrastructure changes such as increasing the memory available to
the application, reducing CPU consumption, increasing or decreasing thread
pool sizes, revising database pool sizes, and reconfiguring network settings.
Database-related bottlenecks may lead to analyzing database I/O operations,
top queries from the application under test, profiling SQL queries, introducing
additional indexes, running statistics gathering, changing table page sizes
and locks, and a lot more. Finally, application-related changes might lead to
activities such as refactoring application components, reducing application
memory consumption and database round trips. Once the identified
bottlenecks are addressed, the test(s) should then be rerun and compared
with previous runs. To help better track what change or group of changes
resolved a particular bottleneck, it is vital that changes are applied
in an orderly fashion, preferably one at a time. In other words, once a change
is applied, the same test plan is executed and the results compared with
a previous run to see if the change made had any improved or worsened
effect on results. This process repeats until the performance goals of the
project have been met.

Identify the test environment

Identify acceptance criteria

Plan and design tests

Prepare the test environment

Record the test plan(s)

Run the tests

Analyze results

Perform tuning/Change configuration

Performance testing core activities

Chapter 1

[13]

Performance testing is usually a collaborative effort between all parties involved.
Parties include business stakeholders, enterprise architects, developers, testers,
DBAs, system admins, and network admins. Such collaboration is necessary to
effectively gather accurate and valuable results when conducting testing. Monitoring
network utilization, database I/O and waits, top queries, and invocation counts, for
example, helps the team find bottlenecks and areas that need further attention in
ongoing tuning efforts.

Performance testing and tuning
There is a strong relationship between performance testing and tuning, in the
sense that one often leads to the other. Often, end-to-end testing unveils system or
application bottlenecks that are regarded as incompatible with project target goals.
Once those bottlenecks are discovered, the next step for most teams is a series of
tuning efforts to make the application perform adequately.

Such efforts normally include but are not limited to:

• Configuring changes in system resources
• Optimizing database queries
• Reducing round trips in application calls; sometimes leading to re-designing

and re-architecting problematic modules
• Scaling out application and database server capacity
• Reducing application resource footprint
• Optimizing and refactoring code; including eliminating redundancy, and

reducing execution time

Tuning efforts may also commence if the application has reached acceptable
performance but the team wants to reduce the amount of system resources being
used, decrease volume of hardware needed, or further increase system performance.

After each change (or series of changes), the test is re-executed to see whether
performance has increased or declined as a result of the changes. The process will be
continued until the performance results reach acceptable goals. The outcome of these
test-tuning circles normally produces a baseline.

Performance Testing Fundamentals

[14]

Baselines
Baseline is a process of capturing performance metric data for the sole purpose
of evaluating the efficacy of successive changes to the system or application. It is
important that all characteristics and configurations except those specifically being
varied for comparison remain the same, in order to make effective comparisons as
to which change (or series of changes) is the driving result towards the targeted
goal. Armed with such baseline results, subsequent changes can be made to system
configuration or application and testing results compared to see whether such
changes were relevant or not. Some considerations when generating baselines include:

• They are application specific
• They can be created for system, application, or modules
• They are metrics/results
• They should not be over generalized
• They evolve and may need to be redefined from time to time
• They act as a shared frame of reference
• They are reusable
• They help identify changes in performance

Load and stress testing
Load testing is the process of putting demand on a system and measuring its
response; that is, determining how much volume the system can handle. Stress
testing is the process of subjecting the system to unusually high loads far beyond
its normal usage pattern to determine its responsiveness. These are different
from performance testing whose sole purpose is to determine the response and
effectiveness of a system; that is, how fast is the system. Since load ultimately affects
how a system responds, performance testing is almost always done in conjunction
with stress testing.

Chapter 1

[15]

JMeter to the rescue
In the previous section, we covered the fundamentals of conducting a performance
test. One of the areas performance testing covers is testing tools. Which testing
tool do you use to put the system and application under load? There are numerous
testing tools available to perform this operation, from free to commercial solutions.
However, our focus in this book will be on Apache JMeter, a free open source,
cross platform desktop application from The Apache Software Foundation. JMeter
has been around since 1998 according to historic change logs on its official site,
making it a mature, robust, and reliable testing tool. Cost may also have played a
role in its wide adoption. Small companies usually may not want to foot the bill for
commercial testing tools, which often still place restrictions on how many concurrent
users one can spin off, for example. My first encounter with JMeter was exactly as a
result of this. I worked in a small shop that had paid for a commercial testing tool,
but during the course of testing, we had overrun the licensing limits of how many
concurrent users we needed to simulate for realistic test plans. Since JMeter was free,
we explored it and were quite delighted with the offerings and the sheer number of
features we got for free.

Here are some of its features:

• Performance test of different server types including web (HTTP and HTTPS),
SOAP, database, LDAP, JMS, mail, and native commands or shell scripts

• Complete portability across various operating systems
• Full multithreading framework allowing concurrent sampling by many

threads and simultaneous sampling of different functions by separate
thread groups

• GUI (Graphical User Interface)
• HTTP proxy recording server
• Caching and offline analysis/replaying of test results
• Highly extensible
• Live view of results as testing is being conducted

Performance Testing Fundamentals

[16]

JMeter allows multiple concurrent users to be simulated on the application allowing
you to work towards most of the target goals mentioned earlier in the chapter, such
as attaining baseline, identifying bottlenecks, and so on.

It will help answer questions such as:

• Will the application still be responsive if 50 users are accessing
it concurrently?

• How reliable will it be under a load of 200 users?
• How much system resources will be consumed under a load of 250 users?
• What is throughput going to look like when 1000 users are active

in the system?
• What is the response time for the various components in the application

under load?

JMeter, however, should not be confused with a browser (more on that in Chapter 2,
Recording Your First Test and Chapter 3, Submitting Forms). It doesn't perform all the
operations supported by browsers; in particular, JMeter does not execute JavaScript
found in HTML pages, nor does it render HTML pages the way a browser does.
It does give you the ability to view request responses as HTML through one of
its many listeners, but the timings are not included in any samples. Furthermore,
there are limitations as to how many users can be spun on a single machine. These
vary depending on the machine specifications (for example, memory and processor
speed) and the test scenarios being executed. In our experience, we have mostly been
able to successfully spin off 250-450 users on a single machine with 2.2GHz processor
and 8 GB of RAM.

Up and running with JMeter
Now let's get up and go running with JMeter, beginning with its installation.

Installation
JMeter comes as a bundled archive so it is super easy to get started with it. Those
working in corporate environments behind a firewall or machines with non-admin
privileges appreciate this more. To get started, grab the latest binary release by
pointing your browser to http://jmeter.apache.org/download_jmeter.cgi.
At the time of writing, the current release version is 2.9. The download site offers the
bundle as both zip and tar. In this book, we will use the ZIP option, but feel free to
download the TGZ if that's your preferred way of grabbing archives.

Once downloaded, extract the archive to a location of your choice. Throughout this

Chapter 1

[17]

book, the location you extracted the archive to will be referred to as JMETER_HOME.

Provided you have a JDK/JRE correctly installed and a JAVA_HOME environment
variable set, you are all set and ready to run!

The JMETER_HOME folder structure

The following are some of the folders in the apache-jmeter-2.9 folder, as shown
in the preceding screenshot:

• bin: This folder contains executable scripts to run and perform other
operations in JMeter

• docs: This folder contains a comprehensive user guide
• extras: This folder contains miscellaneous items including samples

illustrating using Apache Ant build tool (http://ant.apache.org/)
with JMeter and bean shell scripting

• lib: This is the folder utility JAR files needed by JMeter (you may add
additional JARs here to use from within JMeter — more on that later)

• printable_docs: This is the printable documentation

Installing Java JDK
Follow these steps to install Java JDK:

1. Go to http://www.oracle.com/technetwork/java/javase/downloads/
index.html.

2. Download Java JDK (not JRE) compatible with the system you will be using
to test.

3. Double-click on the executable and follow the on-screen instructions.

Performance Testing Fundamentals

[18]

On Windows systems, the default location for the JDK is under
Program Files. While there is nothing wrong with that, the issue
is that the folder name contains a space, which can sometimes be
problematic when attempting to set PATH and run programs such
as JMeter from the command line. With that in mind, it is advisable
to change the default location to something such as C:\tools\jdk.

Setting JAVA_HOME
The steps to set up the JAVA_HOME environment variable for Windows and Unix
operating systems are explained next.

On Windows
For illustrative purposes, we assume you have installed Java JDK at C:\tools\jdk:

1. Go to Control Panel.
2. Click on System.
3. Click on Advance System settings.
4. Add the Environment variable as follows:

 ° Value: JAVA_HOME
 ° Path: C:\tools\jdk

5. Locate Path (under System variables; bottom half of the screen).
6. Click on Edit.
7. Append %JAVA_HOME%/bin to the end of the existing path value (if any).

On Unix
For illustrative purposes, we assume you have installed Java JDK at /opt/
tools/jdk:

1. Open a terminal window.
2. Export JAVA_HOME=/opt/tools/jdk.
3. Export PATH=$PATH:$JAVA_HOME.

It is advisable to set this in your shell profile settings such as .bash_profile
(for Bash users) or .zshrc (for zsh users) so you won't have to set it for each new
terminal window you open.

Chapter 1

[19]

Running JMeter
Once installed, the bin folder under JMETER_HOME folder contains all the executable
scripts that can be run. Based on which operating system you installed JMeter on,
you either execute the shell scripts (.sh) for Unix/Linux flavored operating systems
or their batch (.bat) counterparts on Windows operating systems.

JMeter files are saved as XML files with a .jmx extension. We refer
to them as test scripts or JMX files in this book.

These scripts include:

• jmeter.sh: This script launches JMeter GUI (the default)
• jmeter-n.sh: This script launches JMeter in non-GUI mode (takes a JMX file

as input)
• jmeter-n-r.sh: This script lauches JMeter in non-GUI mode, remotely
• jmeter-t.sh: This script opens a JMX file in the GUI
• jmeter-server.sh: This script starts JMeter in server mode (this will be

started on the master node when testing with multiple machines remotely.
More on that in Chapter 6, Distributed Testing).

• mirror-server.sh: This script runs the mirror server for JMeter
• shutdown.sh: This script gracefully shuts down a running non-GUI instance
• stoptest.sh: This script abruptly shuts down a running non-GUI instance

To start JMeter, open a terminal shell, change to the JMETER_HOME\bin folder and
run the following:

• On Unix/Linux:
./jmeter.sh

• On Windows:

jmeter.bat

Performance Testing Fundamentals

[20]

After a short moment, you should see the JMeter GUI (as shown in the following
screenshot). Take a moment to explore the GUI. Hover over each icon to see a
short description of what it does. The Apache JMeter team has done an excellent
job with the GUI. Most icons are very similar to what you are used to, which helps
ease the learning curve for new adapters. Some of the icons, for example, stop, and
shutdown, are disabled until a scenario/test is being conducted. In the next chapter,
we will explore the GUI in more detail as we record our first test script.

The Apache JMeter GUI

Command-line options
Running JMeter with incorrect option provides you with usage info. The options
provided are as follows:

./jmeter.sh –

 -h, --help

 print usage information and exit

 -v, --version

 print the version information and exit

 -p, --propfile <argument>

 the jmeter property file to use

 -q, --addprop <argument>

Chapter 1

[21]

 additional JMeter property file(s)

 -t, --testfile <argument>

 the jmeter test(.jmx) file to run

 -l, --logfile <argument>

 the file to log samples to

 -j, --jmeterlogfile <argument>

 jmeter run log file (jmeter.log)

 -n, --nongui

 run JMeter in nongui mode

The previous code snippet (non-exhaustive list) is what you might see if you did the
same. We will explore some, but not all of these options as we go through the book.

JMeter's Classpath
Since JMeter is 100 percent pure Java, it comes packed with functionality to get
most test cases scripted. However, there might come a time when you need to pull
in a functionality provided by a third-party library or one developed by yourself,
which is not present by default. As such, JMeter provides two directories where
such third-party libraries can be placed to be autodiscovered in its classpath.

• JMETER_HOME\lib: This is used for utility JARs
• JMETER_HOME\lib\ext: This is used for JMeter components and add-ons.

All custom developed JMeter components should be placed in the lib\ext
folder, while third-party libraries (JAR files), should reside in the lib folder.

Configuring the proxy server
If you are working from behind a corporate firewall, you may need to configure
JMeter to work with it by providing the proxy server host and port number. To do
so, supply additional command-line parameters to JMeter when starting it up. Some
of them are as follows:

• -H: Specifies the proxy server hostname or IP address
• -P: Specifies the proxy server port
• -u: Specifies the proxy server username if required
• -a: Specifies the proxy server password if required, for example:

./jmeter.sh -H proxy.server -P7567 -u username -a password

On Windows, run jmeter.bat instead.

Performance Testing Fundamentals

[22]

Do not confuse the proxy server mentioned here with JMeter's built-in HTTP Proxy Server,
which is used for recording HTTP or HTTPS browser sessions. We will be exploring that
in the next chapter when we record our first test scenario.

Running in non-GUI mode
As described earlier, JMeter can run in non-GUI mode. This is needed for times when
you are running remotely, or want to optimize your testing system by not taking the
extra overhead cost of running the GUI. Normally, you will run the default (GUI),
when recording your test scripts and running a light load but run in non-GUI mode
for higher loads.

To do so, use the following command-line options:

• -n: This command-line option indicates to run in non-GUI mode
• -t: This command-line option specifies the name of the JMX test file
• -l: This command-line option specifies the name of the JTL file to log results to
• -j: This command-line option specifies the name of the JMeter run log file
• -r: This command-line option runs the test servers specified by the JMeter

property remote_hosts
• -R: This command-line option runs the test on the specified remote servers

(for example, -Rserver1,server2)

In addition, you can also use the -H and -P options to specify proxy server host and
port, as we saw earlier:

./jmeter.sh -n -t test_plan_01.jmx -l log.jtl

Running in server mode
This is used when performing distributed testing; that is, using more testing servers
to generate additional load on your system. JMeter will be kicked off in server mode
on each remote server (slaves) and then a GUI on the master server is used to control
the slave nodes. We will discuss this in detail when we dive into distributed testing
in Chapter 6, Distributed Testing.

./jmeter-server.sh

Specify the server.exitaftertest=true JMeter property if you
want the server to exit after a single test has been completed. It is set
to false by default.

Chapter 1

[23]

Overriding properties
JMeter provides two ways to override Java, JMeter, and logging properties. One
way is to directly edit the jmeter.properties, which resides in the JMETER_HOME\
bin folder. We'll suggest you take a peek into this file and see the vast number of
properties you can override. This is one of the things that make JMeter so powerful
and flexible. On most occasions, you will not need to override the defaults, as they
have sensible default values.

The other way to override these values is directly from the command line when
starting JMeter.

The options available to you include:

• Define a Java system property value:
-D<property name>=<value>

• Define a local JMeter property:
-J<property name>=<value>

• Define a JMeter property to be sent to all remote servers:
-G<property name>=<value>

• Define a file containing JMeter properties to be sent to all remote servers:
-G<property file>

• Overriding a logging setting by setting a category to a given priority level:

-L<category>=<priority>
./jmeter.sh -Duser.dir=/home/bobbyflare/jmeter_stuff \
 -Jremote_hosts=127.0.0.1 -Ljmeter.engine=DEBUG

Since command-line options are processed after the logging system has
been set up, any attempts to use the -J flag to update the log_level
or log_file properties will have no effect.

Performance Testing Fundamentals

[24]

Tracking errors during test execution
JMeter keeps track of all errors that occur during a test in a logfile named
jmeter.log by default. The file resides in the folder from which JMeter was
launched. The name of this log file, like most things, can be configured in jmeter.
properties or via a command-line parameter (-j <name_of_log_file>). When
running the GUI, the error count is indicated in the top-right corner, to the left of
the number of threads running for the test. Clicking on it reveals the log file contents
directly at the bottom of the GUI. The log file provides an insight into what exactly
is going on in JMeter when your tests are being executed and helps determine the
cause of error(s) when they occur.

The JMeter GUI error count/indicator

Configuring JMeter
Should you need to customize the default values for JMeter, you can do so by editing
the jmeter.properties file in the JMETER_HOME\bin folder, or making a copy of
that file, renaming it to something different (for example, my-jmeter.properties),
and specifying that as a command-line option when starting JMeter.

Some options you can configure include:

• xml.parser: It specifies a custom XML parser implementation. The default
value is org.apache.xerces.parsers.SAXParser. It is not mandatory. If
you find the provided SAX parser buggy for some of your use cases, this
provides you the option to override it with another implementation. You
could, for example, use javax.xml.parsers.SAXParser provided the right
JARs exist on your instance of the JMeter classpath.

• remote_hosts: It is a comma-delimited list of remote JMeter hosts (or
host:port if required). When running JMeter in a distributed environment,
list the machines where you have JMeter remote servers running. This will
allow you to control those servers from this machine's GUI. This applies only
while doing distributed testing and is not mandatory. More on this in Chapter
6, Distributed Testing.

Chapter 1

[25]

• not_in_menu: It is a list of components you do not want to see in JMeter's
menus. Since JMeter has quite a number of components, you may wish
to restrict it to show only components you are interested in or those you
use regularly. You may list their classname or their class label (the string
that appears in JMeter's UI) here, and they will no longer appear in the
menus. The defaults are fine, and in our experience we have never had
 to customize this, but we list it here so that you are aware of its existence.
It is not mandatory.

• user.properties: It specifies the name of the file containing additional
JMeter properties. These are added after the initial property file, but before
the -q and -J options are processed. It is not mandatory. User properties
can be used to provide additional classpath configurations such as plugin
paths, via the search_paths attribute, and utility JAR paths via the
user_classpath attribute. In addition, these properties file can be used
to fine-tune JMeter components' log verbosity.

 ° search_paths: It specifies a list of paths (separated by ;) that
JMeter will search for JMeter add-on classes; for example, additional
samplers. This is in addition to any JARs found in the lib\ext
folder. It is not mandatory. This comes in handy, for example, when
extending JMeter with additional plugins that you don't intend to
install in the JMETER_HOME\lib\ext folder. You could use this to
specify an alternate location on the machine to pick up the plugins.
See Chapter 5, Resource Monitoring.

 ° user.classpath: In addition to JARs in the lib folder, use this
attribute to provide additional paths JMeter will search for utility
classes. It is not mandatory.

• system.properties: It specifies the name of the file containing additional
system properties for JMeter to use. These are added before the -S and -D
options are processed. It is not mandatory. This typically provides you with
the ability to fine-tune various SSL settings, key stores, and certificates.

 ° ssl.provider : It specifies a custom SSL implementation, if ou don't
want to use the built-in Java implementation. It is not mandatory.
If for some reason, the default built-in Java implementation of SSL,
which is quite robust, doesn't meet your particular usage scenario,
this allows you to provide a custom one. In our experience, the
default has always been sufficient.

Performance Testing Fundamentals

[26]

The command-line options are processed in the following order of precedence:

• -p profile is optional. If present, it is loaded and processed.
• jmeter.properties is loaded and processed after any user provided custom

properties file.
• -j logfile is optional. If present, it is loaded and processed after the

jmeter.properties file.
• Logging is initialized.
• user.properties is loaded (if any).
• system.properties is loaded (if any).
• All other command-line options are processed.

Summary
In this chapter, we have covered the fundamentals of performance testing. We also
learned key concepts and activities surrounding performance testing in general.
In addition, we installed JMeter, learned how to get it fully running on a machine
and explored some of the configurations available with it. We explored some of the
options that make JMeter a great tool of choice for your next performance testing
engagement. These include the fact that it is free and mature, open-sourced, easily
extensible and customizable, completely portable across various operating systems,
has a great-plugin ecosystem, large user community, built-in GUI, and recording
and validating test scenarios among others. In comparison with the other tools for
performance testing, JMeter holds its own. In the next chapter, we will record our
first test scenario and dive deeper into JMeter.

Recording Your First Test
JMeter comes with a built-in proxy server (http://en.wikipedia.org/wiki/
Proxy_server) to aid you record test plans. The proxy server, once configured,
watches your actions as you perform operations on a website, creates test sample
objects for them and eventually stores them in your test plan; that is, a JMX file.
JMeter gives you the option of creating test plans manually, but this is mostly
impractical for recording most testing scenarios. You will save a whole lot of time
using the proxy recorder, as you will see in a bit.

So without further ado, let's record our first test! For this, we will record the
browsing of JMeter's own official website as a user would normally do. For the
proxy server to be able to watch your actions, it will need to be configured.
This entails two steps:

1. Setting up the HTTP proxy server within JMeter.
2. Setting the proxy in the browser.

Recording Your First Test

[28]

Configuring the JMeter HTTP
proxy server
The first step is to configure the proxy server in JMeter. To do this, we follow the
following steps:

1. Start JMeter.
2. Add a Thread Group by right-clicking on Test Plan and navigating to

Add | Threads (User) | Thread Group.
3. Add the HTTP Proxy Server element by right-clicking on WorkBench and

navigating to Add | Non-Test Elements | HTTP Proxy Server.
4. Change the port to 7000 (under Global Settings).You can use a different

port if you want to. What is important is to choose a port that is not currently
used by an existing process on the machine. The default is 8080.

5. Go to Test Plan | Thread Group under HTTP Proxy Server (under the Test
plan content | Target Controller section). This allows the recorded actions
to be targeted to the thread group we created in step 2.

6. Choose the option Put each group in a new transaction controller under
HTTP Proxy Server (under Test plan content | Grouping section). This
allows you to group a series of requests as constituting a page load. We will
see more on this topic later.

7. Click on Add Suggested Excludes (under URL Patterns to Exclude).
This instructs the proxy server to bypass recording requests of a series of
elements which are not relevant to test execution. These include JavaScript
files, stylesheets, and images. Thankfully, JMeter provides a handy button
that excludes the often-excluded elements.

8. Click on the Start button at the bottom of the HTTP Proxy
Server component.

Chapter 2

[29]

With these settings, the proxy server will start on port 7000, monitor all requests
going through that port, and record them to a test plan using the default recording
controller. For details see the following screenshot:

Configuring the JMeter HTTP Proxy Server

Recording Your First Test

[30]

Setting up your browser to use the
proxy server
There are several ways to set up the browser of your choice to use the proxy server.
We'll go over two of the most common ways, starting with our personal favorite,
which is using a browser extension.

Using a browser extension
Google Chrome and Firefox have vibrant browser plugin ecosystems that allow you
to extend the capabilities of your browser with each plugin you choose. For setting
up a proxy, we really like FoxyProxy (http://getfoxyproxy.org/). It is a neat
add-on to the browser that allows you to set up various proxy settings and toggle
between them on the fly, without having to mess around with system settings on the
machine. It really makes the work hassle free. Thankfully, FoxyProxy has a plugin
for Internet Explorer, Chrome, and Firefox. If you are using any of those, you are in
luck; go ahead and grab it!

Changing the system settings
For those who would rather configure the proxy natively on their operating system,
we have provided the following steps for Windows and Mac OS.

On a Windows OS, perform the following steps to configure a proxy:

1. Click on Start and then on Control Panel.
2. Click on Network and Internet.
3. Click on Internet Options.
4. In the Internet Options dialog box, click on the Connections tab.
5. Click on the LAN Settings button.

Chapter 2

[31]

6. To enable the use of a proxy server, check the box for Use a proxy server for
your LAN (These settings will not apply to dial-up or VPN connections) as
shown in the following screenshot:

Manually setting up a proxy on Windows 7

1. In the proxy's Address box, enter localhost in the IP address.
2. In the Port textbox, enter 7000 (to match the port you set up for your JMeter

proxy earlier).
3. If you want to bypass the proxy server for local IP addresses, select the

Bypass proxy server for local addresses checkbox.
4. Click on OK to complete the proxy configuration process.

On a Mac OS, perform the following steps to configure a proxy:

1. Go to System Preferences.
2. Click on Network.
3. Click on the Advanced… button.
4. Go to the Proxies tab.

Recording Your First Test

[32]

5. Check Web Proxy (HTTP).
6. Under Web Proxy Server, enter localhost.
7. For port, enter 7000 (to match the port you set up for your JMeter

proxy earlier).
8. Do the same for Secure Web Proxy (HTTPS).
9. Click on OK.

Manually setting up a proxy on Mac OS

For all other systems, please consult the related operating system's documentation.

Chapter 2

[33]

Now that all of that is out of the way and the connections have been made, let's get
to recording.

1. Point your browser to http://jmeter.apache.org/.
2. Click on the Changes link under About.
3. Click on the User Manual link under User Manual.
4. Stop the JMeter proxy server by clicking on the Stop button; it will not record

any further activities.
5. If you have done everything correctly, your actions should have been

recorded under the test plan.

First recorded scenario

Congratulations! You have just recorded your first test plan. Admittedly, we have
just scraped the surface of recording test plans, but we are off to a good start. We will
record many more plans, even complex ones, as we proceed through the book.

Recording Your First Test

[34]

Running your first recorded scenario
We can go right ahead and replay or run our recorded scenario now, but before that
let's add a listener or two to give us feedback on the results of the execution. We will
cover listeners in depth in Chapter 5, Resource Monitoring, when we discuss resource
monitoring, but for now it is enough to know that they are components that show
the results of the test run. There is no limit to the amount of listeners we can attach to
a test plan, but we will often use only one or two.

For our test plan, let's add three listeners for illustrative purposes. Let's add the
Graph Results, View Results Tree, and Aggregate Report listeners. Each gathers
a different kind of metric that can help analyze performance test results.

1. Right-click on Test Plan and navigate to Add | Listener | View
Results Tree.

2. Right-click on Test Plan and navigate to Add | Listener | Aggregate Report.
3. Right-click on Test Plan and navigate to Add | Listener | Graph Results.

Now that we can see more interesting data, let's change some settings at the thread
group level.

1. Click on Thread Group.
2. Under Thread Properties, enter the following values:

 ° Number of Threads (users): 10
 ° Ramp-Up Period (in seconds): 15
 ° Loop Count: 30

This will set up our test plan to run for 10 users, with all users starting their test
within 15 seconds, and have each user perform the recorded scenario 30 times.
Before we proceed with test execution, save the test plan by clicking on the
Save icon.

Once saved, click on the Start icon (the green play icon on the menu) and watch the
test run. As the test runs, you can click on Graph Results (or either of the other two)
and watch the results gathering in real time. This is one of the many features
of JMeter.

Chapter 2

[35]

From the Aggregate Report listener, we can see that there were 600 requests made to
both the changes and usermanual links. Also, we see that most users (90% Line) got
very good responses - below 200 milliseconds for both. In addition, we see what the
throughput is per second for the various links and that there was a 0.33 percent error
rate on the changes link, meaning some requests to that link failed.

The Aggregate Report listener

Looking at the View Results Tree listener, we see exactly which changes link
requests failed and the reasons for their failure. This can be valuable information
to developers or system engineers in diagnosing the root cause of the errors.

The View Results Tree listener

Recording Your First Test

[36]

The Graph Results listener also gave a pictorial representation of what is seen in the
View Results Tree listener in the preceding screenshot. If you clicked on it as the test
was going on, you would have seen the graph get drawn in real time as the requests
were coming in. The graph is self-explanatory, with lines representing the average,
median, deviation, and throughput. Average, Median, and Deviation show average,
median, and deviation of the number of samplers per minute respectively, while
Throughput shows the average rate of network packets delivered over the network
for our test run in bits per minute. Please consult the Web (for example, Wikipedia)
for detailed explanation of these terms. The graph is also interactive and you can
go ahead and uncheck/check any of the irrelevant/relevant data. For example, we
mostly care about the average and throughput. Let's uncheck Data, Median, and
Deviation and you will see that only the data plots for Average and Throughput
remain. See the following screenshot for details:

The Graph Results listener

With our little recorded scenario, you have seen some of the major components that
constitute a JMeter test plan. Let's record another scenario, this time using another
application that will allow us to enter form values. We will explore this in depth in
the next chapter, but for now let's take a sneak peek.

Chapter 2

[37]

We'll borrow a website created by the wonderful folks at Excilys, a company focused
on delivering skills and services in IT (http://www.excilys.com/). It's a light
banking web application created for illustrative purposes. Let's start a new test plan.
Set up the proxy like we did previously, and start recording.

1. Point your browser to http://excilysbank.aws.af.cm/public/
login.html.

2. Enter the username and password into the login form as follows:
 ° Username: user1
 ° Password: password1

3. Click on the Personal Checking link.
4. Click on the Transfers tab.
5. Click on My Accounts.
6. Click on the Joint Checking link.
7. Click on the Transfers tab.
8. Click on the Cards tab.
9. Click on the Operations tab.
10. Click on the Log out button.
11. Stop the proxy server (click on the Stop button).

That concludes our recorded scenario. At this point, we could add listeners to gather
results of our execution and then replay the recorded scenario as we did before. If
we did, we would be in for a surprise. We would have several failed requests after
login, since we did not include the component to manage sessions and cookies
needed to successfully replay this scenario. Thankfully, JMeter has such a component
and it is called HTTP Cookie Manager. This seemingly simple, yet powerful,
component helps maintain an active session via HTTP cookies, once our client
has established a connection with the server, after login. It ensures that a cookie is
stored upon successful authentication and passed around for subsequent requests,
hence allowing those to go through. Each JMeter thread (that is, user) has its own
cookie storage area. This is vital since you wouldn't want a user gaining access to
the site under another user's identity. This becomes more apparent when we test for
websites requiring authentication and authorization (like the one we just recorded)
for multiple users. So, let's add this to our test plan by right-clicking on Test Plan
and navigating to Add | Config Element | HTTP Cookie Manager.

Recording Your First Test

[38]

Once added, we can successfully run our test plan. At this point, we can simulate
more load by increasing the number of threads at the Thread Group level. Let's go
ahead and do that. If executed, the test plan will pass, but this is not realistic. We
have just emulated one user and essentially repeated the process five times. All
threads will use the credentials of user1, meaning that all threads log into the system
as user1. That is not what we want. To make the test realistic, what we want is each
thread authenticating as a different user of the application. In reality, your bank
creates a unique user for you, and only you and your spouse will be privileged to see
your account details. Your neighbor down the street, if he uses the same bank, can't
get access to your account (at least we hope not!). So with that in mind, let's tweak
the test to accommodate such a scenario.

We begin by adding a CSV Data Set Config component (go to Test Plan | Add
| Config Element | CSV Data Set Config) to our test plan. Since it is expensive
to generate unique random values at runtime due to high CPU and memory
consumption, it is advisable to define those values upfront. The CSV Data Set
Config component is used to read lines from a file and split them into variables
that can then be used to feed input into the test plan. JMeter gives you a choice for
the placement of this component within the test plan. You would normally add the
component at the HTTP request level of the request that needs values fed from it.
In our case, this will be the login HTTP request, where the username and password
are entered. Another is to add it at the Thread Group level; that is, as a direct child of
the Thread Group. If a particular data set is applied to only a Thread Group, it makes
sense to add it at that level. The third place where this component can be placed
is at the Test Plan root level. If a data set applies to all running threads, it makes
sense to add it at the root level. In our opinion, this also makes your test plans more
readable and maintainable as it is easier to see what is going on when inspecting or
troubleshooting a test plan, since this component can easily be seen at the root level
rather than being deeply nested at other levels. So for our scenario, let's add this at
the Test Plan root level.

You can always move the components around using drag-and-drop,
even after adding them to the Test Plan.

Chapter 2

[39]

CSV Data Set Config

Once added, the Filename entry is all that is needed if you have included headers in
the input file. For example, if the input file is defined as such:

user, password, account_id
user1, password1, 1

If the Variable Names field is left blank, JMeter will use the first line of the input file
as the variable names for the parameters. In cases where headers are not included,
the variable names can be entered here. The other interesting setting here is Sharing
mode. This defaults to All threads, meaning that all running threads will use the
same set of data. So in cases where you have two threads running, Thread1 will use
the first line as input data while Thread2 will use the second line. If the number of
running threads exceeds the input data, entries will be reused from the top of the
file, provided that Recycle on EOF is set to true (the default). The other options for
sharing modes include Current thread group and Current thread. Use the former for
cases where the data set is specific for a certain Thread Group and the latter for cases
where the data set is specific to each thread. The other properties of the component
are self-explanatory, and additional information about them can be found in JMeter's
online user guide.

Recording Your First Test

[40]

Now that the component is added, we need to parameterize the login HTTP request
with the variable names defined in our file (or the csvconfig component), so that
the values can be dynamically bound during test execution. We do that by changing
the value of the username to ${user} and password to ${password} on the HTTP
login request.

The values between the braces, ${}, match the headers defined in
the input file or the values specified in the Variable Names entry
of the CSV Data Set Config component.

Binding parameter values for the HTTP Requests

We can now run our test plan and it should work as before, only this time the values
are dynamically bound through the configuration we have set up. So far, we have
run it only for a single user. Let's change the thread group properties and run it
for 10 users, with a ramp up of 30 seconds for 1 iteration. Now let's re-run our test.
Examining the test results, we notice that some requests failed with a status code
of 403 (http://en.wikipedia.org/wiki/HTTP_403), which is an access denied
error. This is because we are trying to access an account that does not belong to the
user that is logged in. In our sample, all users made a request for account number 1,
which only one user (user1) is allowed to see. You can trace this by adding a View
Results Tree listener to the test plan and returning the test.

If you closely examine some of the HTTP requests in the Request tab of the View
Results Tree listener, you'll notice requests such as the following:

/private/bank/account/ACC1/operations.html

/private/bank/account/ACC1/year/2013/month/1/page/0/operations.json

...

Observant readers would have noticed that our input datafile also contains an
account_id column. We can leverage this column to parameterize all requests
containing account numbers to pick the right accounts for each user that is
logged in.

Chapter 2

[41]

To do that, we change the following line of code:

/private/bank/account/ACC1/operations.html

To this line of code:

/private/bank/account/ACC${account_id}/operations.html

And the following line of code:

/private/bank/account/ACC1/year/2013/month/1/page/0/operations.json

To this line of code:

/private/bank/account/ACC${account_id}/year/2013/month/1/page/0/
operations.json

And so on. Go ahead and do that for all such requests. Once completed, we can
re-run our test plan, and this time things are logically correct and will work fine.
You can also verify all work as expected after test execution, by examining the View
Results Tree listener, clicking on some account requests URL, changing the response
display from text to HTML, and you should see an account other than ACCT1.

This brings us to one more scenario to explore. Sometimes, it is useful to parse the
response to get the required information, rather than have it sent as a column of the
input data. The parsed response can be any textual format. These include JSON,
HTML, TXT, XML, CSS, and so on. This could further help make your test plans
more robust. In our preceding test plan, we could have leveraged this feature and
parsed the response to get the required account number for users rather than sending
it along as an input parameter. Once parsed and obtained, we can save and use the
account number for other requests down the chain. Let's go ahead and record a new
test plan as we did before. Save it under a new name. To aid us extract a variable
from the response data, we will use one of JMeter's post processor components,
Regular Expression Extractor. This component runs after each sample request
in its scope, applying the regular expression and extracting the requested values.
A template string is then generated and the result of this is stored into a variable
name. This variable name is then used to parameterize, as in the case of the CSV
Data Set Config component we saw earlier.

Recording Your First Test

[42]

We'll add a Regular Expression Extractor component as a child element of the HTTP
request to /private/bank/accounts.html just below the /login request. Unlike
the CSV Data Set Config component we saw earlier, this component has to be placed
directly as a child element of the request it will be acting on, since it's a post processor
component. Its configuration should be as shown in the following screenshot:

Using the View Results Tree to verify the response data

When configuring the Regular Expression Extractor component, use the following
values for each of the indicated fields:

• Apply to: Main sample only
• Response Field to check: Body
• Reference Name: account_id
• Regular Expression: <td class="number">ACC(\d+)</td>
• Template: 1

Chapter 2

[43]

• Match No.: 1
• Default Value: NOT_FOUND

The following screenshot shows what the component will look like with all of the
entries filled out:

The Regular Expression Extractor configuration

Once configured, proceed to parameterize the other requests for accounts with the
${account_id} variable just like we did earlier. At this point, we are able to re-run
our test plan and get the exact same behavior and output as we did before when we
were feeding in a data set, which also had account_id as a column. You have now
seen two ways to get at the same information when building your own test plans.
Though your use case will mostly vary from those we have examined here, the same
principles will apply.

Here is a brief summary of the various configuration variables for the Regular
Expression Extractor component:

Apply to: The default, Main sample only, is almost always okay, but there are times
when the sample contains child samples that request embedded resources.
The options allow you to target the main sample, subsamples, or both. The last
option, JMeter Variable, allows assertions to be applied to the contents of the
named variable.

Recording Your First Test

[44]

Response field to check: This parameter specifies which field the regular expression
should apply to. The options include:

• Body – The body of the response, excluding headers.
• Body (unescaped) – The body of the response with all HTML escape

codes replaced.
• Headers – These may not be present for non-HTTP samples.
• URL – The URL of the request will be parsed with the regular expression.
• Response code – This can be 200, 403, or 500, meaning success, access denied,

or internal server error, respectively. Check http://en.wikipedia.org/
wiki/HTTP_200#2xx_Success for a complete list of various HTTP
status codes.

• Response Message – This can be OK, Access Denied, or Internal server error.

Reference name: The variable name under which the parsed results will be saved.
This is what will be used for parameterization.

Regular expression: Enter any valid regular expression. As a side note, JMeter
regular expressions differ from their Perl counterparts. While all regular expressions
in Perl must be enclosed within //, the same is invalid in JMeter. Regular expressions
are a broad topic and you will see more of them throughout the course of the book,
but we encourage you to read more at http://en.wikipedia.org/wiki/
Regular_expression.

Template: The template used to create a string from the matches found. This is an
arbitrary string with special elements to refer to a group; 1 refers to group 1, 2
to refers to group 2, and so on. 0 refers to whatever the expression matches. In our
example, 0 would refer to ACC<td class="number">ACC4</td>, for example, and
1 refers to ACC4.

Match No.: This parameter indicates which match to use since the regular expression
may match multiple times.

• 0 – This indicates that JMeter should use a match at random
• n – A positive number n means to select the nth match. The variables are set

as follows:
 ° refName – The value of the template

Chapter 2

[45]

 ° refName_gn – Where n is the groups for the match, for example, 1, 2,
3, and so on

 ° refName_g – The number of groups in the regular expression
(excluding 0)

Note that when no matches occur, the refName_g0, refName_g1, and
refName_g variables are all removed and the refName value is set to
the default value, if present.

• Negative numbers can be used in conjunction with a ForEach controller. The
variables are set as follows::

 ° refName_matchNr – This is the number of matches found.
It could be 0.

 ° refName_n – Where n is the number of strings generated
by the template, for example, 1, 2, 3, and so on.

 ° refName_n_gm – Where m is the number of groups for the match;
for example, 0, 1, 2, and so on.

 ° refName – This is set to the default value (if present).
 ° refName_gn – This is not set.

Default value: If the regular expression doesn't match, the variable will be set to the
default value set. This is an optional parameter, but we recommend you always set it
as it helps debug and diagnose issues while creating your test plans.

Anatomy of a JMeter test
With the samples we have explored so far, we have seen a similar pattern emerging.
We have seen what mostly constitutes a JMeter test plan. We'll use the remainder of
this chapter to explore the anatomy and composition of JMeter tests.

Test Plan
Test Plan is the root element of the JMeter scripts and houses the other components,
such as Threads, Config Elements, Timers, Pre-Processors, Post-Processors,
Assertions, and Listeners. It also offers a few configurations of its own.

Recording Your First Test

[46]

Firstly, it allows you to define user variables (name-value pairs) that can be used
later in your scripts. It also allows us to configure how the Thread Groups it contains
should run; that is, should Thread Groups run one at a time? As test plans evolve
over time, you'll often have several Thread Groups contained within a test plan. This
option allows you to determine how they run. By default, all Thread Groups are set
to run concurrently. A useful option when getting started is Functional Test Mode.
When checked, all server responses returned from each sample are captured. This
can prove useful for small simulation runs, ensuring JMeter is configured correctly
and the server is returning the expected results, but the downside is that JMeter will
see performance degradation and file sizes could be huge. It is set to off by default
and shouldn't be checked when conducting real test simulations. One more useful
configuration is the ability to add third-party libraries that can be used to provide
additional functionality for test cases. A time may come when your simulation needs
additional libraries, those that are not bundled with JMeter by default. At such times,
you can add those JARs via this configuration.

Thread Groups
Thread Groups, as we have seen, are the entry points for any test plan. They
represent the number of threads/users JMeter will use to execute the test plan.
All controllers and samplers for a test must reside under a Thread Group. Other
elements, such as listeners, may be placed directly under a test plan in cases where
you want them to apply to all Thread Groups or under a single Thread Group if
they only pertain to that group. Thread Group configurations provide options to
specify the number of threads that will be used for the test plan, how long it will
take for all threads to become active (ramp up), and the number of times to execute
the test. Each thread will execute the test plan completely independently of other
threads. JMeter spins off multiple threads to simulate concurrent connections to the
server. It is important that the ramp up be long enough to avoid too large a workload
at the start of a test, as this can often lead to network saturation and invalidate
test results. If the intention is to have X number of users active in the system, it is
better to ramp up slowly and increase the number of iterations. A final option the
configuration provides is the scheduler. This allows setting the start and end time of
a test execution. For example, you can kick off a test to run during off-peak hours for
exactly 1 hour.

Controllers
Controllers drive the processing of a test and come in two flavors: sampler
controllers and logical controllers.

Chapter 2

[47]

Sampler controllers send requests to a server. These include HTTP, FTP, JDBC,
LDAP, and so on. JMeter has a comprehensive list of samplers, but we will mostly
focus on HTTP request samplers in this book since we are focusing on testing
web applications.

Logical controllers, on the other hand, allow the customization of the logic used to
send the requests. For example, a loop controller can be used to repeat an operation
a certain number of times, the if controller is for selectively executing a request,
and the while controller for continuing to execute a request until some condition
becomes false. As of the time of this writing, JMeter 2.9 came bundled with sixteen
different controllers, each serving a different purpose.

Samplers
Samplers are components that help send requests to the server and wait for a
response. Requests are processed in the order they appear in the tree. JMeter comes
bundled with the following samplers:

• HTTP Request
• JDBC Request
• LDAP Request
• Soap/XML-RPC request
• Web service (SOAP) request
• FTP Request

Each of these has properties that can be tweaked further to suit your needs. In most
cases, the default configurations are fine and can be used as is. You should consider
adding assertions to samplers to perform basic validation on server responses. Often,
during testing, the server may return a status code of 200, indicative of a successful
request, but fail to display the page correctly. At such times, assertions can help to
make sure that the request was indeed successful.

Logic controllers
Logic controllers help customize the logic used to decide how requests are sent to
a server. They can modify requests, repeat requests, interleave requests, control the
duration of requests' execution, switch requests, measure the overall time taken to
perform requests, and so on. At the time of writing, JMeter comes bundled with a
total of fifteen logic controllers. Please visit the online user guide (http://jmeter.
apache.org/usermanual/component_reference.html#logic_controllers) to
see a comprehensive list and details on each.

Recording Your First Test

[48]

Test fragments
Test fragments are a special type of controller purely for code re-use within a test
plan. They exist on the test plan tree at the same level as the Thread Group element
and are not executed unless referenced either by an Include or Module Controller.

Listeners
Listeners are components that gather the results of a test run, allowing it to be further
analyzed. In addition, listeners provide the ability to direct the data to a file for later
use. Furthermore, they allow allows us to choose which fields to save and whether to
use the CSV or XML format. All listeners save the same data, with the only difference
being the way the data is presented on the screen. Listeners can be added anywhere
in the test, including directly under the test plan. They will collect data only from the
elements at or below their level.

JMeter comes bundled with about eighteen different listeners, all serving different
purposes. Though you will often use only a handful of them, it is advisable to
become familiar with what each offers to know when to use them.

Some listeners, such as Assert Results, Comparison Assertion
Visualizer, Distribution Graph, Graph Results, Spline
Visualizer, and View Results, in the tree are memory- and
CPU-intensive and should not be used during actual test runs. They are
okay to use for debugging and functional testing.

Timers
By default, JMeter threads send requests without pausing between each request. It is
recommended that you specify a delay by adding one of the available timers to the
Thread Group(s). This also helps make your test plans more realistic as real users
couldn't possibly send requests at that speed. The timer causes JMeter to pause a
certain amount of time before each sampler in its scope.

Assertions
Assertions are components that allow you to verify responses received from the
server. In essence, they allow you to verify that the application is functioning
correctly and that the server is returning the expected results. Assertions can be
run on XML, JSON, HTTP, and other forms of responses returned from the server.
Assertions can also be resource-intensive, so make sure you don't have them on for
actual test runs.

Chapter 2

[49]

Configuration elements
Configuration elements work closely with a sampler, enabling requests to be
modified or added to. They are only accessible from inside the tree branch where
you place the element. These elements include the HTTP Cookie Manager, HTTP
Header Manager, and so on.

Pre-processor and post-processor elements
A pre-processor element, as the name implies, executes some actions prior to a
request being made. Pre-processor elements are often used to modify the settings
of a request just before it runs or to update variables that aren't extracted from the
response text.

Post-processor elements execute some actions after a request has been made. They
are often used to process response data and extract values from it.

Test Plan

Pre/Post
Processor

Pre/Post
Processor

Controller 1

Sampler 3

Timer 2
Assertion(s)

Thread
Group(s)

Configuration
Element(s)

Listener(s)

Sampler 1

Timer 1

Sampler 2

Anatomy of a JMeter test

Summary
We have covered quite a lot in this chapter. We have learned how to configure
JMeter and our browsers to help record test plans. In addition, we have learned
about some built-in components that can help us feed data into our test plan
and/or extract data from server responses. In addition, we have learned what
composes a JMeter test plan and got a good grasp on those components. In the
next chapter, we will dive deeper into form submission and explore more
JMeter components.

Submitting Forms
In this chapter, we'll expand on the foundations we started building in Chapter 2,
Recording Your First Test, and dive deeper into submitting forms in greater detail.
While most of the forms you encounter while recording test plans might be simple
in nature, some are a whole different beast and require you to pay them more
careful attention. For example, more and more websites are embracing RESTful
web services, and as such, you would mainly interact with JSON objects when
recording or executing test plans for such applications. Another area of interest will
be recording applications that make use of AJAX heavily to accomplish business
functionality. Google, for one, is known to be a mastermind at this. Most of their
products, including Search, Gmail, Maps, YouTube, and so on, use AJAX extensively.
Occasionally, you might have to deal with XML response data; for example,
extracting parts of it to use for samples further down the chain in your test plan.
You might also come across cases when you need to upload a file to the server or
download one from it.

For all these and more, we will explore some practical examples in this chapter and
gain some helpful insights as to how to deal with these scenarios when you come
across them as you prepare your test plans.

Capturing simple forms
We have already encountered a variation of form submission in Chapter 2, Recording
Your First Test, when we submitted a login form to authenticate with the server. The
form had two text fields for username and password respectively. That's a good
start. Most websites requiring authentication will have a similar feel to them. HTML
forms, however, span a whole range of other input types. These include checkboxes,
radio buttons, select and multiselect drop-down lists, text areas, file uploads, and so
on. In this section, we take a look at handling other HTML input types.

Submitting Forms

[52]

We have created a sample application we will be using throughout most of this
chapter to illustrate some of the concepts we will be discussing. The application
 can be reached at http://jmeterbook.aws.af.cm. Take a minute to browse around
and take it for a manual spin so as to have an idea what the test scripts we record
will be doing.

Handling checkboxes
Capturing checkbox submission is similar to that of capturing textbox submissions,
which we encountered earlier in Chapter 2, Recording Your First Test. Depending on
the use case, there might be one or more related/unrelated checkboxes on a form.
Let's run through a scenario for illustrative purposes. With your JMeter proxy server
running and capturing your actions, perform the following steps:

1. Go to http://jmeterbook.aws.af.cm/form1/create.
2. Enter a name in the textbox.
3. Check off a hobby or two.
4. Click on Submit.

At this point, if you examine the recorded test plan, the /form1/submit post request
has parameters for the following:

• name: This represents the value entered in the textbox
• hobbies: You can have one or more depending on the number of hobbies

you checked on
• submit: This is the value of the Submit button

We can then build upon the test plan by adding a CSV Data Set Config
to the mix to allow us to feed different values for the names and hobbies
(see handling-checkboxes.jmx). Finally, we can expand the test plan further by
parsing the response from the /form1/create sample to determine what hobbies
are available on the form using a post processor element (for example, the regular
expression extractor) and then randomly choosing one or more of them to submit.
I'll leave that as an exercise for the reader. Handling the multiselect option is no
different from this.

Chapter 3

[53]

Handling radio buttons
Radio buttons are normally used as option fields on a web page; that is, they are
normally grouped together to present a series of choices to the user, allowing them
to select one per group. Things such as marital status, favorite food, and polls are
practical uses of them. Capturing their submission is quite similar to dealing with
checkboxes, except that we will have just one entry per submission for each radio
group. Our sample at http://jmeterbook.aws.af.cm/radioForm/index has
only one radio group, allowing users to identify their marital status. Hence, after
recording this, we will only have one entry submission for a user.

1. Go to http://jmeterbook.aws.af.cm/radioForm/index.
2. Enter a name in the textbox.
3. Pick a marital status.
4. Click on Submit.

Viewing the HTML source of the page (right-click anywhere on the page and select
View Source) will normally get you the "IDs" the server is expecting back for each
option presented on the page. Armed with that information, we can expand our
input test data, allowing us to run this same scenario for more users with varying
data. As always, you can use a post-processor component to further eliminate the
need to send the radio button IDs in your input feed. Handling a drop-down list
is no different to this scenario. Handling all other forms of HTML input types; for
example, text and text area fall under the categories we have explored thus far.

Handling file uploads
You may encounter situations where uploading a file to the server is part of the
functionality of the system under testing. JMeter can also help in this regard. It
comes with a built-in multipart/form-data option on post requests, which is needed
by HTML to correctly process file uploads. In addition to checking the option to
make a post request multipart, you will need to specify the absolute path of the file,
in cases where the file you are uploading is not within JMeter's bin directory, or the
relative path in cases where the file resides within JMeter's bin directory. Let's record
a scenario illustrating this:

1. Go to http://jmeterbook.aws.af.cm/uploadForm.
2. Enter a name in the textbox.

Submitting Forms

[54]

3. Choose a file to upload by clicking on the Choose File button.
4. Click on Submit.

Note that files to be uploaded can't be larger than 1 MB.

Depending on the location of the file you choose, you might encounter an error
similar to the following:

java.io.FileNotFoundException: Argentina.png (No such file or directory)

 at java.io.FileInputStream.open(Native Method)

 at java.io.FileInputStream.<init>(FileInputStream.java:120)

 at org.apache.http.entity.mime.content.FileBody.writeTo(FileBody.
java:92)

 at org.apache.jmeter.protocol.http.sampler.
HTTPHC4Impl$ViewableFileBody.writeTo(HTTPHC4Impl.java:773)

Do not be alarmed! This is because JMeter is expecting to find the file in its bin
directory. You will have to either tweak the file location in the recorded script to
point to the absolute path of the file or place it in the bin directory or a subdirectory.
For the sample packaged with the book, we have opted to place the files in a
subdirectory of the bin directory ($JMETER_HOME/bin/samples/images). Examine
the file handling-file-uploads.jmx.

Handling file downloads
Another common situation you may encounter will be testing a system that has file
download capabilities exposed as a function to its users. Users, for example, might
download reports, user manuals, and documentation from a website. Knowing how
much strain this can put on the server could be an area of interest to stakeholders.
JMeter provides the ability to record and test such scenarios. As an example, let's
record a user retrieving a PDF tutorial from JMeter's website.

1. Go to http://jmeterbook.aws.af.cm/.
2. Click on the Handling File Downloads link.
3. Click on the Access Log Tutorial link.

Chapter 3

[55]

This should stream a PDF file to your browser. You could add a View Results Tree
listener and examine the response output after playing back the recording. You
could also add a Save Responses to file listener and have JMeter save the contents
of the response to a file you can later inspect. This is the route we have opted for
in the sample recorded with the book. Files will be created in the bin directory of
JMeter's installation directory. See handling-file-downloads-1.jmx. Also, using a
Save Responses to file listener is useful for cases when you would like to capture the
response, in this case a file, and feed it to other actions further on in the test scenario.
For example, we could have saved the response and used it to upload the file to
another section of the same server or a different server entirely.

Posting JSON data
REST (REpresentational State Transfer) is a simple stateless architecture that
generally runs over HTTP/HTTPS. Requests and responses are built around the
transfer of representations of resources. It emphasizes interactions between clients
and services by providing a limited number of operations (GET, POST, PUT, and
DELETE). GET fetches the current state of a resource, POST creates a new resource,
PUT updates an existing resource, and DELETE destroys the resource. Flexibility is
provided by assigning resources their own unique universal resource indicators
(URIs). Since each operation has a specific meaning, REST avoids ambiguity.
In modern times, the typical object structure passed between client and server is
JSON. More information about REST can be found at http://en.wikipedia.org/
wiki/REST.

When dealing with websites that expose RESTful services in one form or another,
you will most likely have to interact with JSON data in some way. Such websites
may provide means to create, update, and delete data on the server via posting
JSON data. URLs could also be designed to return existing data in JSON format.
This happens even more in most modern websites, which use AJAX to an extent,
as we use JSON mostly when interacting with AJAX. In all such scenarios, you
will need to be able to capture and post data to the server using JMeter. JSON,
also known as JavaScript Object Notation, is a text-based open standard designed
for human readable data interchange. You can find out more information about it
at http://en.wikipedia.org/wiki/JSON and http://www.json.org/. For this
book, it will suffice to know what the structure of a JSON object looks like. Here
are some examples:

{"empNo": 109987, "name": "John Marko", "salary": 65000}

Submitting Forms

[56]

And:

[{"id":1,"dob":"09-01-1965","firstName":"Barry", "lastName":"White",
"jobs":[{"id":1,"description":"Doctor"}, {"id":2,"description":"Firem
an"}]}]

Some basic rules of thumb when dealing with JSON are as follows:

• [] – indicates a list of objects
• {} – indicates an object definition
• "key": "value" – define string values of an object, under a desired key
• "key": value – define integer values of an object, under a desired key

So the first example we saw shows an employee object, with employee number
109987, whose name is John Marko, and who earns $65,000. The second sample
shows a person named Barry White, born on 9/1/1965, who is both a doctor
and fireman.

Now that we have covered a sample JSON structure, let's examine how JMeter
can help with posting JSON data. The example website provides a URL to save
the Person object. A person has a first name, last name, and date of birth attributes.
In addition, a person can hold multiple jobs. So a valid JSON structure to store
a person might look like the following code:

{"firstName":"Malcom", "lastName":"Middle", "dob": "2/2/1965",
"jobs":[{"id": 1, "id": 2}]}
{"firstName":"Sarah", "lastName":"Martz", "dob": "3/7/1971"}

Instead of recording, we will manually construct the test scenario for this case;
we have intentionally not provided a form to save a person's entry so as to give you
hands-on practice in writing test plans for such scenarios.

1. Launch JMeter.
2. Add a Thread Group to the Test Plan by right-clicking on Test Plan and

navigate to Add | Threads (Users) | Thread Group.
3. Add a HTTP Request Sampler to the Thread Group by right-clicking

on Thread Group and navigate to Add | Sampler | HTTP Request.
4. Under HTTP Request, change Implementation to HttpClient4.
5. Fill in the properties of the HTTP Request Sampler as:

 ° Server Name or IP: jmeterbook.aws.af.cm
 ° Method: POST
 ° Path: /person/save

Chapter 3

[57]

6. Under Send Parameters with Request, click on Add and fill in the attributes
as follows:

 ° Name: (leave blank)
 ° Value: {"firstName":"Bob", "lastName":"Jones",

"jobs":[{"id":"3"}]}

7. Add an HTTP Header Manager to the HTTP Request Sampler
(right-click on HTTP Request Sampler | Add | Config Element |
HTTP Header Manager).

1. Add an attribute to HTTP Header Manager by clicking on it, and
clicking on the Add button

 ° Name: Content-Type
 ° Value: application/json

8. Add a View Results Tree listener to the Thread Group by right-clicking
on Thread Group and navigate to Add | Listener | View Results Tree.

9. Save the Test Plan.

If you have done everything correctly, your HTTP Request Sampler should look like
the following screenshot:

Configuring the HTTP Request Sampler to post JSON

Submitting Forms

[58]

Now you should be able to run the test, and if all was correctly set, Bob Jones
should now be saved on the server. You can verify that by examining the View
Results Tree listener. The request should be green and in the Response data tab,
you should see Bob Jones listed as one of the entries returned. Even better yet, you
could view the last ten stored entries in the browser directly at http://jmeterbook.
aws.af.cm/person/list.

Of course all other tricks we have learned thus far apply here as well. We can use
a CSV Data Config element to parameterize the test and have variation in our data
input. See posting-json.jmx for that. Regarding input data variation, since jobs are
optional for this input set, it might make sense to parameterize the whole JSON
string read from input feed to give you more variation.

For example, you could replace the value with ${json}, and have the input CSV
Data have entries such as:

json
{"firstName":"Malcom", "lastName":"Middle", "dob": "1/2/1971",
"jobs":[{"id": 1, "id": 2}]}
{"firstName":"Sarah", "lastName":"Martz", "dob": "6/9/1982"}

We'll leave that as an exercise for you. Although simplistic in nature, what we have
covered here should give you all of the information you need to post JSON data
when recording your test plans.

When dealing with RESTful requests in general, it helps to have some tools handy to
examine requests, inspect responses, and view network latency, among many others.
The following is a list of handy tools that could help:

• Firebug (an add-on that is available with Firefox, Chrome, and IE): http://
getfirebug.com/

• Chrome developer tools: https://developers.google.com/chrome-
developer-tools/

• Advance REST Client (the Chrome browser extension): http://bit.
ly/15BEKlV

• REST Client (the Firefox browser add-on): http://mzl.la/h8YMlz

Chapter 3

[59]

Reading JSON data
Now that we know how to post JSON data, let's take a brief look at how to consume
it in JMeter. Depending on the use case, you might find yourself dealing more with
reading JSON than posting it. JMeter provides a number of ways to digest this
information, store it if needed, and use it further down the chain in your test plans.
Let's start with a simple use case. The example website has a link that provides
details of the last ten person entries stored on the server. It is available at
http://jmeterbook.aws.af.cm/person/list.

If we were to process the JSON response and use the first and last name further
down the chain, we could use a Regular Expression Extractor post processor to
extract those. Let's create a test plan to do just that.

1. Launch JMeter.
2. Add a Thread Group to the Test Plan (right-click on Test Plan and navigate

to Add | Threads (Users) | Thread Group).
3. Add a HTTP Request Sampler to the Thread Group by right-clicking

on Thread Group and navigate to Add | Sampler | HTTP Request.
4. Under HTTP Request, change Implementation to HttpClient4.
5. Fill in the properties of the HTTP Request Sampler as follows:

 ° Server Name or IP: jmeterbook.aws.af.cm
 ° Method: GET
 ° Path: /person/list

6. Add a Regular Expression Extractor as a child of the HTTP Request Sampler
by right-clicking on HTTP Request Sampler and navigate to Add | Post
Processors | Regular Expression Extractor.

7. Fill in the properties as follows:
 ° Reference Name: name
 ° Regular Expression: "firstName":"(\w+?)",.+?,"lastName":"(\

w+?)"

 ° Template: $1$$2$
 ° Match No: 1
 ° Default Value: name

Submitting Forms

[60]

8. Add a Debug Sampler to the Thread Group by right-clicking on Thread
Group and navigate to Add | Sampler | Debug Sampler.

9. Add a View Results Tree listener to the Thread Group by right-clicking
on Thread Group and navigate to Add | Listener | View Results Tree.

10. Save the Test Plan.

The interesting bit here is the cryptic regular expression we are using here.
It basically says to match words and store them in the variable defined as name.
The \w+? regular expression instructs the pattern engine not to be greedy when
matching and to stop on the first occurrence. The full capabilities of regular
expressions are beyond the scope of this book, but we encourage you to master some
as they will help you while scripting your scenarios. For now, just believe that it
does what it says. Once you execute the test plan, you will be able to see the matches
in the debug sampler of the View Results Tree. Here's a snippet of what you should
expect to see:

name=firstName0lastName0
name_g=2
name_g0="firstName":"Larry","jobs":[{"id":1,"description":"Doctor"}],"
lastName":"Ellison"
name_g1=Larry
name_g2=Ellison
server=jmeterbook.aws.af.cm

Now let's shift gears to a more complicated example.

Using the BSF PostProcessor
When dealing with much more complicated JSON structures, you might find that
the Regular Expression Extractor post processor just doesn't cut it. You might
struggle to come up with the right regular expression to extract all the info you need.
Examples of that might be deeply nested object graphs that have an embedded list
of objects in them. At such times, a BSF PostProcessor will fit the bill. BSF (Bean
Scripting Framework) is a set of Java classes that provide scripting language support
within Java applications. This opens a whole realm of possibilities, allowing you
to leverage the knowledge and power of scripting languages within your test plan
while still retaining access to Java class libraries. Scripting languages supported
within JMeter at the time of writing include AppleScript, JavaScript, BeanShell,
ECMAScript, and Java to name a few. Let's jump right in with an example of
querying Google's search service.

Chapter 3

[61]

1. Launch JMeter.
2. Add a Thread Group to the Test Plan by right-clicking on Test Plan and

navigate to Add | Threads (Users) | Thread Group.
3. Add a HTTP Request Sampler to the Thread Group by right-clicking

on Thread Group and navigate to Add | Sampler | HTTP Request.
4. Under HTTP Request, change Implementation to HttpClient4.
5. Fill in the properties of the HTTP Request Sampler as follows:

 ° Server Name or IP: ajax.googleapis.com
 ° Method: GET
 ° Path: /ajax/services/search/web?v=1.0&q=Paris%20Hilton

6. Add a BSF PostProcessor as a child of the HTTP Request Sampler by right-
clicking on HTTP Request Sampler and navigate to Add | Post Processors |
BSF PostProcessor:

1. Pick JavaScript in the Language dropdown list
2. In the Scripts text area, enter this:

// Turn the JSON into an object called 'response'
eval('var response = ' + prev.getResponseDataAsString());

// Create a variable called haveBoots_# containing the
number of matching URLs
// For each result, create a variable called haveBoots and
assign it the URL
vars.put("url_cnt", response.responseData.results.length);

//for each result, stop the URL as a JMeter variable
for (var i = 0; i <= response.responseData.results.length;
i++)
{
 var x = response.responseData.results[i];
 vars.put("url_" + i, x.url);
}

7. Add a Debug Sampler to the Thread Group by right-clicking on Thread
Group and navigate to Add | Sampler | Debug Sampler.

8. Add a View Results Tree listener to the Thread Group by right-clicking
on Thread Group and navigate to Add | Listener | View Results Tree.

9. Save the Test Plan.

Submitting Forms

[62]

Once saved, you can execute the test plan and see the full JSON returned by the
request and the extracted values that have now been stored as JMeter variables.
If all is correct, you should see values similar to the following:

url_0=http://www.parishilton.com/

url_1=http://en.wikipedia.org/wiki/Paris_Hilton

url_2=https://twitter.com/ParisHilton

url_3=http://www.imdb.com/name/nm0385296/

url_cnt=4

The BSF PostProcessor exposes a few variables that can be used in your scripts
by default. In our preceding example, we have used two of them (prev and var).
prev gives access to the previous sample result and var gives read/write access
to variables. See a list of available variables at http://jmeter.apache.org/
usermanual/component_reference.html#BSF_PostProcessor.

A quick run down of the code is as follows:

eval('var response = ' + prev.getResponseDataAsString());

Retrieves the response data of the previous sampler as a string and uses the JavaScript
eval() function to turn it into a JSON structure. Take a look at the JavaDocs at http:
//jmeter.apache.org/api/org/apache/jmeter/samplers/SampleResult.html
to see all the other methods available for the prev variable. Once a JSON structure has
been extracted, we can call methods like we normally would in JavaScript.

vars.put("url_cnt", response.responseData.results.length);

This gets the size of the results that were returned and stores the result in a JMeter
variable called url_cnt. The final bit of code iterates through the results and extracts
the actual URLs and stores them into distinct JMeter variables url_0 through url_3.

Handling the XML response
Yet another structure you may encounter as you build test plans is XML. Some
websites may hand off XML as their response to certain calls. XML (Extensible
Markup Language) allows you to describe object graphs in a different format
than JSON does. For example, we could get our test application to return an XML
representation of the person list we were working with earlier in this chapter by
making a call to http://jmeterbook.aws.af.cm/person/list?format=xml.
Describing XML in detail goes beyond the scope of this book, but you can find much
more about it online. For our exercise, it will suffice just to know what it looks like.
Have a look at the XML returned by the previous link.

Chapter 3

[63]

Now that you know what XML looks like, let's get going with a sample test
plan that deals with retrieving an XML response and extracting variables from
it. Have a look at the XML we will be parsing at http://search.maven.org/
remotecontent?filepath=org/springframework/spring-test/3.2.1.RELEASE/
spring-test-3.2.1.RELEASE.pom. Our goal is to extract all the artifactId
elements (deeply nested within the structure) into variables that we can then use
later in our test plan, if we choose.

1. Launch JMeter.
2. Add a Thread Group to the Test Plan by right-clicking on Test Plan and

navigate to Add | Threads (Users) | Thread Group.
3. Add a HTTP Request Sampler to the Thread Group byright-clicking

on Thread Group and navigate to Add | Sampler | HTTP Request.
4. Under HTTP Request, change Implementation to HttpClient4.
5. Fill in the properties of the HTTP Request Sampler as follows:

 ° Server Name or IP: search.maven.org
 ° Method: GET
 ° Path: /remotecontent?filepath=org/springframework/spring-

test/3.2.1.RELEASE/spring-test-3.2.1.RELEASE.pom

6. Add a Save Responses to a file listener as a child of the HTTP Request
Sampler by right-clicking on HTTP Request Sampler and navigate to Add |
Listener | Save Responses to a file.

7. Fill in the properties of the Save Responses as follows:
 ° Filename prefix: xmlSample_
 ° Variable name: testFile

8. Add a XPath Extractor as a child of the HTTP Request Sampler
by right-clicking on HTTP Request Sampler and navigate to Add | Post
Processors | XPath Extractor.

9. Fill in the properties of the HTTP Request Sampler as follows:
 ° Reference name: artifact_id
 ° XPath query: project/dependencies/dependency/artifactId
 ° Default value: artifact_id

10. Add a Debug Sampler to the Thread Group by right-clicking on Thread
Group | Add and navigate to Sampler | Debug Sampler.

Submitting Forms

[64]

11. Add a View Results Tree listener to the Thread Group by right-clicking
Thread Group and navigate to Add | Listener | View Results Tree.

12. Save the Test Plan.

Once saved, you will be able to execute the test plan and see the artifact_id
variables in the View Results Tree listener. The only new element we have used here
is the XPath Extractor post processor. This nifty JMeter component allows you to
use the XPath query language to extract values from a structured XML or (X)HTML
response. As such, we can extract an element deeply nested in the structure with this
simple query: project/dependencies/dependency/artifactId.

This will look for the tail element (artifactId) of the query string within the
following structure:

<project...>
 ...
 <dependencies>
 <dependency>
 <groupId>javax.activation</groupId>
 <artifactId>activation</artifactId>
 <version>1.1</version>
 <scope>provided</scope>
 </dependency>
 ...
 </dependencies>
</project>

This will return activation. That is exactly the information we are interested
in. Now you know just how to get at the information you need when dealing with
XML responses.

Summary
In this chapter, we have gone through the details of how to capture form submission
in JMeter. We covered simple forms, with checkboxes and radio buttons. The same
concepts covered in those sections can be applied to other input form elements such
as text areas and comboboxes. We then explored how to deal with file uploads and
downloads when recording test plans. Along the way, we addressed working with
JSON data, both posting and consuming it. This exposed us to two powerful and
flexible JMeter post processors, Regular Expression Extractor and BSF PostProcessor.
Finally, we took a look at how to deal with XML data when we encounter it. For that,
we covered yet another post processor JMeter offers, XPath Extractor PostProcessor.
You should now be able to use what we have learned so far to accomplish most tasks
you need to accomplish with forms while planning and scripting your test plans.

In the next chapter, we will dive into managing sessions with JMeter.

Managing Sessions
In this chapter, we'll cover session management in JMeter in detail. Web applications,
by their very nature, use client and server sessions. Both work in harmony to give
each user a distinct enclosure to maintain a series of communication with the server
without affecting other users. For example, in Chapter 2, Recording Your First Test,
the server session was created the moment a user logged in to the application, and
maintained for all requests sent to the server by that user until he/she logged off or
timed out. This is what protects other users from seeing each other's information.
Depending on the application's architecture, the session may be maintained through
cookies (most commonly used) or URL rewriting (less commonly used). The former
maintains the session by sending a cookie in the HTTP headers of each request while
the latter rewrites the URLs to append the session ID. The main differences are that
the former relies on a client's browser choosing to accept cookies and is transparent
to the application developer, while the latter isn't transparent and works regardless
of if cookies are enabled or not. That said, diving into the details of the two modes
goes beyond the scope of this book, but we would encourage you to spend some
time reading some online resources to gain better understanding if you are the
curious type. For this book, it will suffice to know that there are two modes and that
JMeter handles both.

Let's dig right in and explore these scenarios and see how JMeter deals with each.

Managing Sessions

[66]

Managing sessions with cookies
A majority of web applications rely on cookies to maintain the session state. In the
very early stages of the Internet, cookies were only used to keep the session ID.
Things have since evolved and cookies now store a lot more information, such as
user IDs and location preferences. The banking application we used as a case study
in Chapter 2, Recording Your First Test, for example, relies on cookies to help each
user maintain a valid session with the server, enabling the user to make a series of
requests to the server. An example will help clear things up, so let's get right to one.
For our example, some resources are protected based on the role of the user that is
logged in. Users can have an admin or user role.

The steps to manage sessions with cookies are as follows:

1. Launch JMeter.
2. Start the HTTP proxy server (see Chapter 2, Recording Your First Test, if you

don't know how).
3. In the browser, go to http://jmeterbook.aws.af.cm/.
4. Click on the User Protected Resource link (under Chapter 4).
5. Log in.
6. Fill in the Username field with user1.
7. Fill in the Password field with password.
8. Click on Link under User resources.
9. Log out.
10. Save the Test Plan.

Attempting to execute the recorded scenario upon saving it will not yield the
expected results. Go ahead and add a View Results Tree listener (right-click
on Test Plan and go to Add | Listener | View Results Tree) to diagnose what
is actually going on. Once the simulation is run, examine the responses from the
server through the View Results Tree listener. Even though all responses are green,
indicating successful requests (since we got a response code of 200 from the server),
we are actually still just getting back the login page after successfully logging in
(see the Response tab of View Results Tree for subsequent requests after
successful authentication).

If you examine the Request tab, you will see the reason for that. Following is a
snippet of the Request data of the login process. You should see something similar
to it:

Chapter 4

[67]

GET
 http://jmeterbook.aws.af.cm/;jsessionid=2CE58BC032344AA90CA60C6C880
687A4

[no cookies]

Request Headers:
Connection: keep-alive
Content-Type: application/x-www-form-urlencoded
Accept-Language: en-US,en;q=0.8
Accept:
 text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Origin: http://jmeterbook.aws.af.cm
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_2)
 AppleWebKit/537.22 (KHTML, like Gecko) Chrome/25.0.1364.99
 Safari/537.22
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3
Cache-Control: max-age=0
Referer: http://jmeterbook.aws.af.cm/login/auth
Accept-Encoding: gzip,deflate,sdch
Host: jmeterbook.aws.af.cm

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Notice two things here. First, there is a [no cookies] line present, indicating JMeter
didn't find any stored cookie to use for this request. Second is the jsessionid
cookie in the first line of the request. The server uses this to group all requests from
a user under the same session ID, once authentication is established. If you compare
this with the subsequent calls in View Results Tree, you will notice different
jsessionid values, further indicating that the server is treating those subsequent
calls as new requests and not associating it with a previous request. Thirdly, the
URL for subsequent calls also mimics what we saw earlier in http://jmeterbook.
aws.af.cm/login/auth, indicating that we are actually being asked to authenticate
again on the login page since the server didn't associate our requests for protected
resources with the same jsessionid cookie.

GET
 http://jmeterbook.aws.af.cm/login/auth;jsessionid=0B478A8A1F93D68D14
745261D0A7E792

[no cookies]
…

Managing Sessions

[68]

All this is evidence that JMeter is not currently managing the session appropriately.
But how can it? We have not instructed it to. JMeter comes with a couple of
components to help maintain sessions. Since our sample here relies on cookies
to maintain sessions, we will use the HTTP Cookie Manager component. This
component stores and sends cookies just as web browsers do. If an HTTP request
and response contains a cookie, the Cookie Manager automatically stores that cookie
and will use it for all future requests to the application.

Since a thread is synonymous to a user in JMeter, each thread has its
own cookie storage area, giving us the ability to run multiple users
for a simulation with each maintaining a separate session.

This is exactly what we want. Let's go ahead and add a Cookie Manager to our test
plan. Right-click on Test Plan and navigate to Test Plan | Add | Config Element
| HTTP Cookie Manager (see the upcoming screenshot). This component allows
you to define additional cookies, but the default will usually suffice except in cases
where your application might be doing something tricky. Once that is added, if we
rerun our test plan and examine the Request tab, we will see a different outcome.
This time, the jsessionid cookie is stored and maintained across requests and the
[no cookie] line is gone. Here is a snippet of the two subsequent requests in View
Results Tree:

GET http://jmeterbook.aws.af.cm/login/auth

Cookie Data:
JSESSIONID=013FA93C2AABB31EBE8FDF8CCC575F09
GET http://jmeterbook.aws.af.cm/secure/user

Cookie Data:
JSESSIONID=013FA93C2AABB31EBE8FDF8CCC575F09

Chapter 4

[69]

Notice that the same session ID is maintained across the requests. If you examine the
Response data, you will see that we are now able to access the intended protected
resources. Refer to the following screenshot, which shows how to use the HTTP
Cookie Manager component to define additional cookies:

The HTTP Cookie Manager

This completes our exploration of the HTTP Cookie Manager element. It is possible
to have more than one Cookie Manager in a test plan depending on the application
needs. For example, if you have multiple thread groups within a test plan, it is
possible to have a Cookie Manager per thread group.

If there is more than one Cookie Manager in the scope of a sampler,
there is no way to specify which will be used. Also, a cookie stored in
one Cookie Manager is not available to any other manager, so exercise
caution when using multiple Cookie Managers.

Managing Sessions

[70]

Managing sessions with URL rewriting
In the absence of cookie support, the alternative method web applications use to
manage session information is a technique known as URL rewriting. With this
approach, the session ID is attached to all URLs that are within the HTML page that
is sent as a response to the client. This ensures that the session ID is automatically
sent back to the server as part of the request, without the need to put it in the header.
The advantage of this technique is that it works even if a client browser has cookies
disabled. Let's examine a sample and see how JMeter comes to the rescue.

1. Launch JMeter.
2. Start the HTTP Proxy Server (see Chapter 2, Recording Your First Test, if you

don't know how).
3. In the browser, go to http://jmeterbook.aws.af.cm.
4. Click on the URL Rewrite Sample link under Chapter 4.
5. Click on First Link.
6. Click on Another Link (at the bottom of the page).
7. Click on the Home link.
8. Click on Second Link.
9. Click on the jmeter-book link on the banner on the navigation bar at the top.
10. Save the Test Plan.

If you re-execute the test plan after saving it, you'll notice that all the links have a
jsessionid cookie appended to them. This ensures that the same session ID is sent
along to the server, thereby treating our series of request as one whole conversation
with the server; in short, our session is maintained. Since we recorded this, the
session ID sent with all the requested links is the one the server generated at the time
we recorded. Obviously, we will need to turn this into a variable that can then be
used for multiple threads, as each new thread will be treated as a new user with each
getting their own unique session ID.

Chapter 4

[71]

To do that, we'll employ JMeter's HTTP URL Re-writing Modifier component.
This component is similar to the HTML Link Parser modifier except that its specific
purpose is to extract session IDs from the response; that is, a page or link. Let's add
this to the test plan (right-click on Thread Group and navigate to Thread Group |
Pre Processors | HTTP URL Re-writing Modifier). See the following screenshot
to see what the configuration elements are. The most important parameter there
is Session Argument Name. This allows you to specify the session ID parameter
name to grab from the response. This may vary based on your application. Java
web applications, for example, usually have this as jsessionid (as in our case) or
JSESSIONID. Web applications that are not written in Java might have a variation of
this; for example, SESSION_ID. Inspect the application under test and see what key
the session ID is getting stored in. That value is what goes into this parameter box.
In our case, it is simply jsessionid. Refer to the following screenshot to see the
configuration elements of the HTTP URL Re-writing Modifier:

The HTTP URL Re-writing Modifier

Managing Sessions

[72]

The other options that can be configured are:

• Path Extension: If checked, a semicolon will be used to separate the session
ID and the argument URL. Java web applications fall into this category, so go
ahead and check it for our sample.

• Do not use equals in path extension: If checked, omits the use of = when
capturing the rewrite URL. Java web applications use =, so we leave
this unchecked.

• Do not use questionmark in path extension: This prevents the query string
from ending up in the path extension. We will leave it unchecked.

• Cache Session Id: Saves the value of the session ID for later use, when it is
not present, for example, in subsequent page requests. We check this option
as it applies to us. We want the same session ID sent for all page requests by
a thread/user.

The last thing to clean up before we rerun our test plan is the already existing session
IDs that were captured during our recording. Go through each sampler and delete
that from the URL request paths. So, for example, this:

/urlRewrite/link1;jsessionid=9074385741E66F07B36286763FF8C2FD

Should become the following:

/urlRewrite/link1

This will be captured by the HTTP URL Re-writing Modifier component and
appended to subsequent calls automatically. At this point, we are ready to
rerun our sample and see the outcome. Remember to add a View Results Tree
listener to the plan if you haven't already done so. Once run, we should be able
to verify that the outcome is what we expected. The same session ID should
be maintained for subsequent requests from a user. Below is a snippet of three
subsequent requests from the same thread, all maintaining the same session ID
(774F9D6220F76C54CA346D0365A33998).

GET
 http://jmeterbook.aws.af.cm/urlRewrite/index;jsessionid=774F9D6220F7
6C54CA346D0365A33998

[no cookies]

Request Headers:
Connection: keep-alive

Chapter 4

[73]

Accept-Language: en-US,en;q=0.5
Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:16.0)
 Gecko/20100101 Firefox/16.0
Referer: http://jmeterbook.aws.af.cm/
Accept-Encoding: gzip, deflate
Host: jmeterbook.aws.af.cm

GET
 http://jmeterbook.aws.af.cm/urlRewrite/link1;jsessionid=774F9D6220F7
6C54CA346D0365A33998

GET
 http://jmeterbook.aws.af.cm/urlRewrite/link3;jsessionid=774F9D6220F7
6C54CA346D0365A33998

Although we have placed the element at the Thread Group level, it can also be
placed at the sampler level. In such a case, it will modify only that request and not
affect subsequent calls. You may need such flexibility in some situations.

This wraps up the different ways in which we can manage sessions with JMeter. The
web applications you test will normally fall under one of these two major categories,
cookie management or URL rewriting. Based on your needs, JMeter provides
components to help manage sessions for both.

Summary
In this chapter, we have covered how JMeter helps manage web sessions for your
test plans. First we examined the most common way web applications manage
sessions, using a cookie. For these cases, JMeter provides a component called HTTP
Cookie Manager, whose primary job is to help capture the cookie generated by
the server and store it for future use during test execution. We then explored web
applications that use URL rewriting to maintain sessions as opposed to cookies. This
led us to the HTTP URL Re-writing Modifier, another component JMeter provides
for handling these cases.

In conclusion, what we have covered here should suffice in helping you effectively
manage sessions as you build test plans for your own applications.

In the next chapter, we will cover resource monitoring.

Resource Monitoring
So far, we have seen how JMeter can help with conducting performance testing.
In this chapter, we will explore what it offers in terms of resource monitoring.
Resource monitoring is a broad subject that covers analyzing system hardware
usage, which includes CPU, memory, disk, and network. As you conduct testing,
it is important to know how each of these resources are behaving under load to
better understand if there are bottlenecks and address them accordingly. Most
organizations have dedicated teams (for example, network and system engineers)
for configuring and monitoring these resources. In addition, there are dedicated
tools for monitoring and analyzing them. Tools such as HP OpenView, CA Wily
Introscope (now CA Application Performance Management), New Relic, and profiler
agent probes were created for this very purpose. We have said all that to say that
what JMeter offers pales in comparison to what you will get using such dedicated
tools. Moreover, not all companies can afford such tools or have personnel in charge
of setting up adequate monitoring. You just might be a one-man shop doing testing
and monitoring all by yourself!

Since this is a book on JMeter, let's see how we can go about doing some resource
monitoring with it.

Resource Monitoring

[76]

Basic server monitoring
JMeter comes with an out-of-the-box monitoring controller. This allows you
to monitor the general health of the application or web server. These include
light-weight web containers such as Jetty, Apache Tomcat, Resin, or fully-stacked,
heavier ones such as WebSphere, Weblogic, JBoss, Geronimo, and Oracle OCJ4.
Metrics such as active threads, memory, health, and load are gathered and reported
in a graphical form. Having such metrics makes it easier to see the relationship
between server performance and response time on the clients. Multiple servers can
be monitored using a single monitor controller. Although originally designed to
work with the Apache Tomcat server (http://tomcat.apache.org/), any servlet
container (http://en.wikipedia.org/wiki/Servlet_container) supporting JMX
(Java Management Extension) can port the Tomcat status servlet to provide the
same information. Providing such ports for other servers goes beyond the scope of
this book, so we will stick to using Apache Tomcat for our use case.

Monitoring servers during test executions helps identify potential bottlenecks in
the application or system resources. It can draw focus to long-running queries,
insufficient thread and data source pools, insufficient heap size, high I/O activity,
server capacity inadequacies, slow-performing application components, CPU usage,
and so on. All these are important to troubleshooting performance issues and
attaining the targeted goals.

To get started, we first need a server to monitor. Let's download Apache Tomcat and
get it up and running.

Setting up Apache Tomcat Server
1. Download Apache Tomcat from http://tomcat.apache.org/

download-70.cgi. At the time of writing, version 7.0.37 was the latest.
That is what we will use for our purposes, though an older version should
work just as well.

2. Get the ZIP or compressed TAR file.
3. Extract the contents of the archive to a location of your choosing. We will

refer to this as TOMCAT_HOME for the remainder of this chapter.
4. From the command line, switch to the TOMCAT_HOME/bin directory

http://tomcat.apache.org/download-70.cgi

Chapter 5

[77]

5. Start the server to verify that the installation was successful

 ° On Windows, run the following:
catalina.bat run

 ° On Unix, run this:

./catalina.sh run

If all goes OK, the server should start up and you should see something similar to the
following on the console:

Mar 16, 2013 8:55:12 AM org.apache.coyote.AbstractProtocol init

INFO: Initializing ProtocolHandler ["http-bio-8080"]

Mar 16, 2013 8:55:12 AM org.apache.coyote.AbstractProtocol init

INFO: Initializing ProtocolHandler ["ajp-bio-8009"]

Mar 16, 2013 8:55:12 AM org.apache.catalina.startup.Catalina load

INFO: Initialization processed in 1282 ms

Mar 16, 2013 8:55:13 AM org.apache.catalina.core.StandardService
startInternal

INFO: Starting service Catalina

Mar 16, 2013 8:55:13 AM org.apache.catalina.core.StandardEngine
startInternal

INFO: Starting Servlet Engine: Apache Tomcat/7.0.37

…

INFO: Deploying web application directory /Users/berinle/devtools/server/
apache-tomcat-7.0.37/webapps/ROOT

Mar 16, 2013 8:55:13 AM org.apache.coyote.AbstractProtocol start

INFO: Starting ProtocolHandler ["http-bio-8080"]

Mar 16, 2013 8:55:13 AM org.apache.coyote.AbstractProtocol start

INFO: Starting ProtocolHandler ["ajp-bio-8009"]

Mar 16, 2013 8:55:13 AM org.apache.catalina.startup.Catalina start

INFO: Server startup in 981 ms

Resource Monitoring

[78]

If the server doesn't start up, it could be that JAVA_HOME is not properly
set (see Chapter 1, Performance Testing Fundamentals, for details) or the
executable files in the bin directory don't have the right permissions.
Please refer to the Apache Tomcat documentation for more details, at
http://tomcat.apache.org/tomcat-7.0-doc/setup.html.

The Apache Tomcat extracted content

Chapter 5

[79]

Go to http://localhost:8080 and verify that you are greeted with the Apache
Tomcat home screen.

The Apache Tomcat home screen

http://localhost:8080

Resource Monitoring

[80]

Congratulations, your server is now up and running! To monitor it, we need to
perform one more step on the server. We need to set up at least one user account
with the proper role on the server to get us the information we need. The account we
set up will later be used when we configure the monitoring controller in JMeter.

Configuring Tomcat users
The following are the steps to configure Tomcat users:

1. Navigate to TOMCAT_HOME/conf.
2. Open tomcat-users.xml in any suitable editor.
3. Between <tomcat-users> and </tomcat-users>, add the following:

<role rolename="manager-gui"/>
<user username="admin" password="admin" roles="manager-gui"/>

This creates a user named admin with password admin for authenticating
with the Tomcat manager application.

4. Save the file.
5. Restart your server by stopping it (Ctrl + C) from the console you started it

from earlier and starting it again to make sure the configuration changes are
picked up.

6. Navigate to http://localhost:8080/manager/html.
7. Enter the login credentials (admin for both username and password) when

prompted.
8. You should now be able to see the manager page as shown in the

following screenshot.

Finally, with the server configuration behind us, we can now proceed with setting up
JMeter to monitor the server.

The contents of tomcat-users.xml are as follows:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
 <role rolename="manager-gui"/>
 <user username="admin" password="admin" roles="manager-gui"/>
</tomcat-users>

http://localhost:8080/manager/html

Chapter 5

[81]

Authenticating with Tomcat Application Manager

Setting up a monitor controller in JMeter
The following are the steps to set up a monitor controller in JMeter:

1. Launch JMeter.
2. Add a new Thread Group by navigating to Test Plan | Add | Threads

(Users) | Thread Group.
3. Add an HTTP Authorization Manager by navigating to Thread Group |

Add | Config Element | HTTP Authorization Manager.
 ° Base URL: (leave blank)
 ° Username: admin
 ° Password: admin
 ° Domain: (leave blank)
 ° Realm: (leave blank)

4. Add an HTTP Request by navigating to Thread Group | Add | Sampler |
HTTP Request.

 ° Name: Server Status (optional)
 ° Server Name: localhost
 ° Port Number: 8080
 ° Path: /manager/status

Resource Monitoring

[82]

5. Add a request parameter named XML, in uppercase. Give it a value of true
(in lowercase).

6. Check User Monitor at the bottom of the sampler.
7. Add a constant timer with a thread delay of 5000 milliseconds by navigating

to Thread Group | Add | Timer | Constant Timer.
8. Add a Monitor listener by navigating to Thread Group | Add | Listener |

Monitor Results.
9. Save the Test Plan.
10. Now we have JMeter all set up and ready to monitor the server. We could

go ahead and execute the test plan now, but we won't see too much in terms
of results, since there is no activity on the server and we need to have JMeter
actively monitoring during such activities. We have prepared a test plan
using examples that came with Apache Tomcat (basic-monitor-sampler.
jmx), so grab it and let's use that to put some load on the server. Assuming
you haven't changed the default server ports of Tomcat, the provided test
plan should work right off the bat.

11. Before starting the provided test plan, let's change the monitor test plan
to loop forever, so we can watch the server metrics as activity continues
on the server.

12. For the monitor test plan, click on Thread Group and check the forever box
for the loop count. Save the test plan.

For the constant timer in the monitor test plan, intervals shorter than 5
seconds add stress to the server. You should consult with infrastructure
engineers in your company (if any) to see what an acceptable interval
might be before configuring monitoring for a production environment.
As a rule of thumb, 5 seconds is a decent number.

To run the provided test plan alongside the monitoring test plan, you
need to launch another instance of JMeter and open the provided test
plan in it.

So, without further ado, let's kick off the monitor test plan and then execute the
provided test plan to put stress on the server and see the monitoring results. If it
has all been set up properly, you should see some results starting to show up under
the monitor results listener. The Health tab might look similar to the following
screenshot, and the Performance tab like the screenshot after that. As you can see
from the following screenshot, our run gradually progressed from healthy and
stopped at active at the end of the simulation run. We didn't get to warning or dead
levels, which is a good sign our server stayed healthy overall.

Chapter 5

[83]

The Monitor Results listener (Health tab)

In the following screenshot, you can see the memory (represented by the yellow line)
and load (represented by the blue line) gradually spike up during our simulation.
The thread percentage (represented by the red line) and health (represented by the
green line) also stayed at healthy levels, consistent with what we observed.

That wraps up our look into basic monitoring with JMeter. In the next section,
we will see how we can leverage JMeter's plugin architecture and use a plugin
to provide even more granular monitoring metrics for our needs.

Monitor the Results listener (the Performance tab)

Resource Monitoring

[84]

Monitoring the server with a
JMeter plugin
So far we have examined how we can use the inbuilt server monitoring capabilities
of JMeter to monitor server health. While this might be OK for basic needs, it falls
short for advanced needs. For instance, the graphs generated don't provide CPU and
disk I/O metrics that could be deemed critical for your analysis. To get such metrics,
you could extend JMeter with a suite of plugins that give better results. JMeter
plugins, hosted on Google code at https://code.google.com/p/jmeter
-plugins/, is a neat project that aims to extend JMeter with some much-needed
features that are lacking out of the box. The project provides additional samplers,
graphs, listeners, and so on, all of which make it easier to work with JMeter.
In this section, we will install this suite of plugins and use the monitoring capability
it provides to get better metrics.

The only prerequisite for installing it is that you are running JMeter 2.8 or later with
JRE (the Java Runtime Environment) 1.6 or higher.

Installing the plugins
The plugin comes with three archives, all of which must be extracted to different
destinations. At the time of writing, the project was at version 1.0.0,
which is what we will be working with.

1. Download JMeterPlugins-1.0.0.zip. This archive contains JMeter
custom plugins.

2. Download JMeterPlugins-libs-1.0.0.zip. This archive contains
additional third party JARs used by some of the custom plugins provided.

3. Download ServerAgent-1.0.0.zip. This archive contains server resource
monitoring agents to use with the PerfMon Metrics Collector plugin
standalone utility.

4. Extract the contents of JMeterPlugins-1.0.0.zip into JMETER_HOME/
lib/ext.

5. Extract the contents of JMeterPlugins-libs-1.0.0.zip into
JMETER_HOME/lib.

6. Extract the contents of ServerAgent-1.0.0.zip into TOMCAT_HOME.

https://code.google.com/p/jmeter-plugins/

Chapter 5

[85]

With those steps, we have installed a whole suite of plugins, adding new features
to JMeter. If you were to relaunch JMeter now, you will notice additional samplers,
listeners, timers, and so on, all beginning with jp@gc to distinguish them from the
bundled ones.

Let's start the server agent, which will feed the JMeter listener probe we will add to
our test plan later.

1. Start a shell or DOS prompt.
2. Navigate to TOMCAT_HOME\serveragent.
3. Start the agent.

 ° On Windows, run the following:
startAgent.bat

 ° On Unix, run this:
./startAgent.sh

You should get logs similar to the following ones if the agent has started successfully:

INFO 2013-03-16 19:13:33.328 [kg.apc.p] (): Binding UDP to 4444

INFO 2013-03-16 19:13:34.329 [kg.apc.p] (): Binding TCP to 4444

INFO 2013-03-16 19:13:34.334 [kg.apc.p] (): JP@GC Agent v2.2.0 started

As you can see, the agent has started on port 4444, the default. We will use this
port later when configuring the monitor listener for JMeter. If this port is not
satisfactory for you, the plugin provides configuration files that can be edited to
choose a desired port. Please refer to the documentation at https://code.google.
com/p/jmeter-plugins/.

With the server agent running, let's add a few monitor listeners to our test plan.
For our purposes, we have chosen the sample test plan we recorded using the
samples provided by Apache Tomcat.

Please note that this same concept can be applied to other applications
deployed on the same server where the monitor agent has been installed.

Resource Monitoring

[86]

Adding monitor listeners to the test plan
1. Launch JMeter.
2. Open the provided test plan (advanced-monitoring-sampler-1.jmx).
3. Add a PerfMon Metrics Collector listener byright-clicking on Test Plan

and navigating to Test Plan | Add | Listener | jp@gc – PerfMon
Metrics Collector.

 ° Add one row each to gather these metrics (CPU, Memory, Network
I/O, and Disks I/O)

 ° Host / IP: localhost
 ° Port: 4444
 ° Metrics to collect (dropdown): CPU, Memory, Network I/O,

and Disks I/O

4. Add a Response Times vs Threads listener by right-clicking on Test Plan
and navigating to Test Plan | Add | Listener | jp@gc – Response Times
vs Threads.

5. Add a Transactions per Second listener by right-clicking on Test Plan and
navigating to Test Plan | Add | Listener | jp@gc – Transactions
per Second.

6. Save the Test Plan.

With the server agent running, and our additional monitor listeners set up, we are
ready to kick off the simulation execution. Let's go right on and execute it. While it's
executing, you can see the graphical representation of the metrics you have chosen to
analyze if you click on jp@gc - PerfMon Metrics Collector. As you can see from the
following screenshot, CPU is spiking up and down, showing quite a decent load on
the server. Memory stays almost constant while network, which is relatively stable,
spiked quite high two minutes into our simulation run. It immediately dropped
down, back to the low ranges after the spike, so something might have transpired
on the network at the time of the execution run, causing such a spike. Since this test
plan doesn't involve any disk I/O, it stays on 0 for the duration of our simulation.

Chapter 5

[87]

The PerfMon Metrics Collector

Resource Monitoring

[88]

The Response Time vs. Threads listener shows a true picture of how much time
the server takes to service each request in relation to the number of executing
threads. The graph can be a bit messy to read, so in the Rows tab, you can check
only the requests you are interested in analyzing. We have done just that in the
following screenshot, and chose only a handful of requests. As you can see, we have
a maximum number of 20 threads running, and the highest response time from
this graph was for the /examples/jsp/chat request, when about 13 threads
were running.

Response Times vs. Threads

Chapter 5

[89]

Though the graph isn't shown here, the last listener we added was the Transactions
per Second listener. It shows just how many requests (transactions) the server was
able to handle during the course of our simulation run on a second-by-second basis.
Like the Response Times vs Threads listener, the chart can be messy and you will
need to selectively choose which requests you were interested in to make some sense
of the graph.

As you can see, these new listeners, along with the server agent, allow you to
monitor resources in far greater detail than with those shipped with JMeter.
In addition to the metrics we gathered, you can choose to gather additional ones
including swap, TCP, and JMX if those were areas of concern. By and large, we can
use this to effectively monitor resources on the server.

Although we have only set this up for one server, the monitor can be set
up to monitor multiple servers; for example, in cases where you have a
cluster of servers.

Summary
In this chapter, we walked through how JMeter can help with monitoring server
resources. To do that, we set up an Apache Tomcat server. Once done, we examined
the built-in capabilities of JMeter with regards to monitoring. We further examined
how we could get more granular monitoring metrics by extending JMeter with
custom-developed plugins. This allowed us to monitor server resources such as
CPU, disk I/O, memory, and network I/O, among other things. Through the plugin,
we also got additional samplers, timers, processors, and listeners that allowed us to
monitor transactions per second and response time versus thread metrics. Though
not an extensive monitoring tool, JMeter proved itself a capable tool to do basic
monitoring of server resources.

In the next chapter, we will go into depth on distributed testing and see how to
leverage the capabilities of JMeter to accomplish this.

Distributed Testing
There will come a time when running your test plans on a single machine won't
cut it any longer performance-wise, since resources on the single box are limited.
For example, this could be the case when you want to spin-off a thousand users for
a test plan. Depending on the power and resources of the machine you are testing
on, and the nature of your test plans, a single machine can probably spin-off with
300-600 threads before starting to error out or causing inaccurate test results. There
are several reasons why this may happen. One is because there is a limit to the
amount of threads you can spin-off on a single machine. Most operating systems
guard against complete system failure by placing such limits on hosted applications.
Also, your use case may require you to simulate requests from various IP addresses.
Distributed testing allows you to replicate tests across many low-end machines,
enabling you to start more threads and thereby simulating more load on the server.
In this chapter, we will learn how to leverage JMeter for distributed testing and put
more load on the server under test in the process.

Remote testing with JMeter
JMeter has inbuilt support for distributed testing. This enables a single JMeter
GUI instance, known as the master, to control a number of remote JMeter instances,
known as slaves, and collect all the test results from them. The features offered by
this approach include:

• Saving test samples to the local machine
• Managing multiple instances of JMeterEngine (slave nodes) from a

single machine
• Replicating the test plan from the master node to each controlled server

without the need to copy them to each server

Distributed Testing

[92]

JMeter does not distribute the load between servers.
Each server will execute the same test plan in its entirety.

Though the test plan is replicated across to each server, the data needed by the test
plan, if any, is not. In cases where input data such as CSV data is needed to run
the tests, such data needs to be made available on each server where the test plan
will be executed.

The remote mode is more resource intensive than running the same
number of non-GUI tests independently. If many server instances are
used, the client's JMeter can become overloaded, as can the client's
network connection.

slaves

jmeter-server
192.168.0.50

requests

webserver requests

requests

jmeter-server
192.168.0.51

jmeter
192.168.0.9

master

jmeter-server
192.168.0.52

JMeter distributed testing architecture

It is important for all slave nodes and the master node to run the same
version of JMeter, and if possible the same version of the Java Runtime
Environment. Mostly, minor JRE variations are fine, but not major ones.
For example, it is okay for the master to be running on JRE 1.6.12 and
slaves on 1.6.17, but 1.6.xx with 1.5.xx is not.

Chapter 6

[93]

Configuring JMeter slave nodes
There are a number of ways to get the slave nodes going. In this section, we will go
over two options that will often fit the bill for accomplishing your goals.

The most obvious is to go out and buy new machines just for this purpose. For most
of us, that is not feasible. Another option is to get hold of extra computers lying
around in the office, configure them appropriately, and use them for this purpose.
While that will work perfectly, it might be time-consuming to get all of the boxes set
up without the appropriate tools, knowledge, and expertise. Yet another option is to
use virtual machines to accomplish the same outcome. This is the option we will be
focusing on in this section. We favor this approach for the following reasons:

• We don't necessarily need another physical machine to try out
distributed testing

• We can leverage Vagrant and Puppet, excellent infrastructure automation
tools, to set up virtual boxes with the required software with little interaction
from us

• We can be up and running with a few virtual machines in less time than
it takes to run to your local coffee shop and grab a cup of coffee

• It is free
• The same concepts can be applied to leverage machines in the cloud

(AWS, Rackspace, and so on) to test

In case you haven't heard of Vagrant before, don't be alarmed. It's an excellent tool
that makes building development environments easy. It allows you to create and
configure lightweight, reproducible, and portable development environments.
Elaborating on the uses of Vagrant and Puppet go beyond the scope of this book,
but I would encourage you to read more about them at http://www.vagrantup.
com and https://puppetlabs.com/. Grab a copy of Vagrant at http://downloads.
vagrantup.com/. At the time of writing, version 1.1.4 was the latest and that is what
we will be using in this chapter.

For the book, We have prepared the necessary scripts needed to provision boxes.
The only requirement to use the scripts is to have Oracle's VirtualBox installed
on your machine. VirtualBox comes with installers for Windows, Mac OS, Solaris,
and Linux. You can grab a copy of the operating system of your choice at
https://www.virtualbox.org/wiki/Downloads. At the time of writing,
VirtualBox was at Version 4.2.10 and that is what we have installed.

With both Vagrant and VirtualBox installed, we are ready to configure our
distributed testing environment. Let's go right ahead and do that.

Distributed Testing

[94]

Configuring one slave per machine
In this configuration, we are going to set up three slave machines and control them
with one master client. This will mimic having four separate physical machines with
one of them acting as master (where the JMeter GUI client runs) and the other three
acting as slave nodes (where the JMeter server scripts are kicked-off).

1. Download the Vagrant project provided for this section
(978-1-78216-584-2_6_1_codes.zip).

2. Extract the contents to a folder named node_one.
3. On the command line, go to the node_one folder.
4. Run Vagrant by typing vagrant up.
5. Choose the appropriate connection to bridge. For example, if you are

on a wireless connection, choose en1: Wi-Fi. If you are on Ethernet, choose
en0: Ethernet.

In a few moments, a fully functional VirtualBox will be created with JMeter installed
and ready to run! You should see logs similar to the following:

[default] Running provisioner: VagrantPlugins::Puppet::Provisioner::Pupp
et...

Running Puppet with main.pp...

stdin: is not a tty

warning: Could not retrieve fact fqdn

notice: /Stage[main]//Package[curl]/ensure: ensure changed 'purged' to
'present'

notice: /Stage[main]//Exec[download_jmeter]/returns: executed
successfully

notice: /Stage[main]//Package[git-core]/ensure: ensure changed 'purged'
to 'present'

notice: /Stage[main]//Package[zsh]/ensure: ensure changed 'purged' to
'present'

notice: /Stage[main]//Package[vim]/ensure: ensure changed 'purged' to
'present'

notice: /Stage[main]/Java::Package_debian/Package[java]/ensure: ensure
changed 'purged' to 'present'

notice: Finished catalog run in 56.75 seconds

Don't take our word for it though; verify that the box is properly configured by
performing the following on the command line (from the node_one folder):

vagrant ssh

Chapter 6

[95]

cd apache-jmeter-2.9/bin

./jmeter --version

This should show you the version of JMeter that you are running on the guest
machine. In my case, as you can see in the following log, it reports Version
2.9 r1437961:

vagrant ssh

Welcome to Ubuntu 12.04 LTS (GNU/Linux 3.2.0-23-generic-pae i686)

 * Documentation: https://help.ubuntu.com/

Welcome to your Vagrant-built virtual machine.

Last login: Fri Sep 14 06:22:31 2012 from 10.0.2.2

vagrant@precise32:~$ cd apache-jmeter-2.9/bin

vagrant@precise32:~/apache-jmeter-2.9/bin$./jmeter --version

Copyright (c) 1998-2013 The Apache Software Foundation

Version 2.9 r1437961

If we attempt to kick off the JMeter server on this node now (from the
apache-jmeter-2.9/bin directory, run ./jmeter-server), we will encounter
an error like the following:

vagrant@precise32:~/apache-jmeter-2.9/bin$./jmeter-server

Created remote object: UnicastServerRef [liveRef:
[endpoint:[127.0.1.1:43765](local),objID:[67bbc70b:13da4550a5f:-7fff,
-2865662902309525657]]]

Server failed to start: java.rmi.RemoteException: Cannot start. precise32
is a loopback address.

An error occurred: Cannot start. precise32 is a loopback address.

This is because the server is returning an IP address of 127.0.1.1, which is
considered a loop back address. To fix that, we need to find out the assigned IP
address of the virtual machine and edit apache-jmeter-2.9/bin/jmeter-server
to add that IP address. To get the assigned IP address from the newly created virtual
machine, run this on the command line:

ifconfig | grepinet

The line of interest here is the line containing 192.168.x.x. For our node, the assigned
IP address is 192.168.1.27.

inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0

inet6addr: fe80::a00:27ff:fe12:9698/64 Scope:Link

Distributed Testing

[96]

inet addr:192.168.1.27 Bcast:192.168.1.255 Mask:255.255.255.0

inet6addr: fe80::a00:27ff:fe66:422c/64 Scope:Link

inet addr:127.0.0.1 Mask:255.0.0.0

 inet6 addr: ::1/128 Scope:Host

Now edit apache-jmeter-2.9/bin/jmeter-server using the command
vi apache-jmeter-2.9/bin/jmeter-server. Look for the line beginning
with RMI_HOST_DEF and add the following just below it:

RMI_HOST_DEF=-Djava.rmi.server.hostname=192.168.1.27

Be sure to replace 192.168.1.27 with the assigned
IP address of your own virtual box.

Save the file (by pressing Esc and then typing :wq) and this machine is ready to act
as a server. Before we configure a second node, it would be wise to take the first for
a spin. Let's run JMETER_HOME/bin/jmeter-server on the machine once again.
This time it should succeed and you should see something similar to the following
on the console:

Created remote object: UnicastServerRef [liveRef:
[endpoint:[192.168.1.27:46313](local),objID:[62a8e304:13da47c073a:-7fff,
-369620866826328728]]]

Now it is waiting for instructions from the master. Let's go right ahead and configure
the master to control it.

Configuring the master node to be tested against
one slave per machine
Now that we have one slave node configured, we can test it out by configuring the
master node to connect to it and control it. To do that, we will have to add the slave
node's IP address to the master's node configuration file.

On the host machine (where the JMeter GUI client is running), perform the
following steps:

1. Open JMETER_HOME/bin/jmeter.properties.
2. Look for the line beginning with remote_hosts=127.0.0.1.
3. Change it to remote_hosts=192.168.1.27.

Chapter 6

[97]

4. 192.168.1.27 should be changed to match the assigned IP address of your
virtual box.

5. Save the file.
6. Launch JMeter.
7. Navigate to Run | Remote Start | Slave IP address, where Slave IP address

is the assigned IP address of your virtual machine.

By clicking on the Slave IP address, the master node will make a connection with the
remote server running on the VirtualBox. You should see a similar log on the client
and the server.

The Remote Start menu

The following will appear on the JMeter GUI client console:

Using remote object: UnicastRef [liveRef: [endpoint:[192.168.1.27:46313]
(remote),objID:[62a8e304:13da47c073a:-7fff, -369620866826328728]]]

The following will appear on the JMeter server console:

Starting the test on host 192.168.1.27 @ Tue Mar 20 02:42:12 UTC 2013
(1364265732881)

Finished the test on host 192.168.1.27 @ Tue Mar 20 02:42:13 UTC 2013
(1364265733154)

Congratulations! We are now able to control this slave node from the master.
We can proceed with testing at this point, but since we are focusing on distributed
testing in this chapter, it will help to have two or more nodes to control.

Repeat the steps we used earlier to spin off two more nodes: node_two and
node_three. Add their assigned IP addresses to the jmeter.properties file of
the master node, just as we did for node_one. At the end of it all, we should have
three slave nodes we can control from the master node.

Distributed Testing

[98]

Now your JMeter GUI client should have three server IP addresses which you will
find by navigating to Run | Remote Start and you can either kick-off an individual
server node by targeting the server IP address of choice or start all the configured
slave nodes at once by navigating to Run | Remote Start All (Command + Shift +
R on Mac or Ctrl + Shift + R on Windows). When starting all the configured node
servers, if everything has been properly configured, you should see logs similar to
the following ones on the master console with each server node responding and
acknowledging the kicking-off of the intended test plan:

Using remote object: UnicastRef [liveRef: [endpoint:[192.168.1.27:59212]
(remote),objID:[49a18727:13da4a8a955:-7fff, -4630561463080329291]]]

Using remote object: UnicastRef [liveRef: [endpoint:[192.168.1.149:51200]
(remote),objID:[46a1e04c:13da4a79d3d:-7fff, -5213066472819797239]]]

Using remote object: UnicastRef [liveRef: [endpoint:[192.168.1.6:51791]
(remote),objID:[-1434b37d:13da4a85f8a:-7fff, -2658534524006849789]]]

As you can see from the preceding logs, the master node makes connections with all
three configured slave nodes, 192.168.1.6, 192.168.1.27, and 192.168.1.149.
With the connections verified, we can now pick a test plan to run and gather the
results on the master node.

For our first test, we are going to execute a test that doesn't require input data.
The provided test plan (browse-apple-itunes.jmx) navigates to Apple's iTunes
website and browses around a bit for music, movies, apps, and so on. It does no data
entry and therefore doesn't need any input data. Load that into the master node's
JMeter GUI and kick it off on all the slave nodes. The script launches 150 users over
30 seconds and runs for two iterations. Since we are distributing this over three slave
nodes, we will have a total of 450 users launched (150 users per node) and 15 users
started per second; that is, 450/30. Following are the results our machine produced.
It's a quad-core MacBook Pro with a 2.2 GHz processor and 8 GB of RAM. Your
mileage may vary depending on the computing power of your machine.

The aggregate report for Browse Apple iTunes distributed test

Chapter 6

[99]

It should be noted that in our case we are still running all these virtual
slave nodes on a single box, so the resources are still limited. That is, all
the slaves are still sharing the resources of the host machine. Therefore,
attempting to distribute more load than could originally be handled by
the host machine can lead to degraded performance with high response
times. However, nothing prevents you from running the provided
Vagrant scripts on additional physical machines to simulate more load
without worrying about constrained resources.

The second test is one we have seen before, in Chapter 2, Recording Your First Test. It's
the Excilys banking application that requires an input data file. As JMeter only sends
the test plans to slave nodes, we need to get the input files across to all the slave
nodes in order to successfully execute the test. To do that, perform the following
steps on the command line:

1. Go to the directory of the slave node.
2. Run the following commands in sequence:

1. Log in to the machine:
vagrant ssh

2. Go to JMeter's bin directory:
cd apache-jmeter-2.9/bin

3. Get the users2.txt file from a remote location:

wget https://raw.github.com/berinle/vagrant-data/master/
users2.txt

Repeat these steps for all three nodes. This puts the users2.txt file, which is needed
by the test plan, in a location that can be seen by the JMeter server on the slave
nodes. Now open the test plan (excilys-bank-scenario-2.jmx) on the master
JMeter GUI client. Just as before, go to Run | Remote Start All. Feel free to increase
the number of threads, ramp-ups, and iterations, but please be careful not to crash
the server.

Distributed Testing

[100]

Configuring multiple slave nodes on a single box
JMeter allows you to configure multiple slave nodes on a single box as long as they
are configured to broadcast on different RMI ports. This could come handy in cases
where the machine you are using is powerful enough to handle it or you don't have
access to additional physical machines. Just as in the previous section, we will be
using Vagrant to configure a single virtual machine and spin off multiple JMeter
slave nodes on it. For this illustration, I have prepared a Vagrant script with Puppet
provisioning, similar to what we used in the last section. This starts up a VirtualBox;
exposes port 1099 (the standard JMeter RMI port), 1664, and 1665; and installs three
JMeter slave nodes named jmeter-1, jmeter-2, and jmeter-3 on them respectively.
These are the different ports that will be used by the different slave nodes when
starting the server. To get started, perform the following steps:

1. Extract the provided Vagrant bundle (978-1-78216-584-2_6_2_codes.zip)
into a directory of your choice. We will call it VAGRANT_EXTRACT.

2. From the command line, go to the VAGRANT_EXTRACT directory.
3. Run vagrant up.
4. Choose the appropriate connection to bridge. For example, if you are on a

wireless connection, choose en1: Wi-Fi and if you are on Ethernet, choose
en0: Ethernet.

5. Wait for VirtualBox to be fully built.
6. Run vagrant ssh.
7. Run ls -l.

At this point, you should see the three slave nodes present on the machine.

vagrant@precise32:~$ ls -l

total 388

drwxr-xr-x 7 vagrant vagrant 4096 Mar 27 10:57 jmeter-1

drwxr-xr-x 7 vagrant vagrant 4096 Mar 27 11:02 jmeter-2

drwxr-xr-x 7 vagrant vagrant 4096 Mar 27 11:02 jmeter-3

-rwxr-xr-x 1 vagrant vagrant 6487 Sep 14 2012 postinstall.sh

Chapter 6

[101]

The only thing left now is to configure the RMI_HOST_DEF variable in JMETER_HOME/
bin/jmeter-server, just as we did in the previous section to avoid the look back
error that would be reported. From the VirtualBox, run the following on the
command line:

ifconfig | grepinet

This will provide you the assigned IP address of the box.

Edit the jmeter-server script to add the box's IP address using the following steps:

1. Run vi jmeter-1/bin/jmeter-server.
2. Look for the line beginning with #RMI_HOST_DEF and replace it with

RMI_HOST_DEF=-Djava.rmi.server.hostname=192.168.1.55 (replace
192.168.1.55 with the assigned IP address of your virtual box).

3. Save and close the file (press Esc and type :wq).
4. Repeat the process for the other two slave nodes (jmeter-2 and jmeter-3).

At this point, the slave nodes are ready to be kicked off and the only thing left
to do is to start each of them up on our already configured RMI ports (1099, 1664,
and 1665).

To start the jmeter-1 slave node in a new shell/console, perform the
following steps:

1. Go to the VAGRANT_EXTRACT directory by using the following:
cd VAGRANT_EXTRACT

2. SSH into the box by using the following:
vagrant ssh

3. Start the JMeter server on the default port, 1099, by using the following:

./jmeter-1/bin/jmeter-server

Distributed Testing

[102]

To start the jmeter-2 slave node in a new shell/console, perform the
following steps:

1. Go to the VAGRANT_EXTRACT directory.
cd VAGRANT_EXTRACT

2. SSH into the box.
vagrant ssh

3. Start the JMeter server on port 1664.

SERVER_POST=1664 ./jmeter-1/bin/jmeter-server

To start the jmeter-3 slave node in a new shell/console, perform the
following steps:

1. Go to the VAGRANT_EXTRACT directory.
cd VAGRANT_EXTRACT

2. SSH into the box.
vagrant ssh

3. Start the JMeter server on port 1665.

SERVER_POST=1665 ./jmeter-1/bin/jmeter-server

Configuring the master node to be tested against
multiple slave nodes on a single box
With the slave nodes configured, we need to configure the master node to
communicate with them before we can proceed with executing our tests remotely.
To do that, we have to add the slave nodes' IP addresses and ports to the master
node's configuration file.

On the host machine (where the JMeter GUI client is running), perform the
following steps:

1. Open JMETER_HOME/bin/jmeter.properties.

Chapter 6

[103]

2. Look for the line beginning with remote_hosts=127.0.0.1 and then:
1. Change it to remote_hosts=192.168.1.55:1099,

192.168.1.55:1664, 192.168.1.55:1665.
2. 192.168.1.55 should be changed to match the assigned IP address

of your virtual box.

3. Save the file (press Esc and type :wq).
4. Launch JMeter.
5. Navigate to Run | Remote Start | Slave IP address, where Slave IP address

is the assigned IP address of your virtual machine.

With that done, we are ready to kick off our tests as we did in the previous section.
The only difference now is that all our slave nodes are configured on one virtual
host. Open up the browse-apple-itunes.jmx test plan in the JMeter GUI client
on the master. Change the number of threads from 150 to 15. Now kick off the test
remotely on all slave nodes. The test should complete after a while (be patient). If
you compare the results of this run with the previous run that had slaves configured
on separate virtual boxes, you will see quite an increase in the response times. The
following screenshot shows the results we got from our run:

The aggregate report for Browse Apple iTunes distributed test 2

You can see we are seeing higher response times in the 90% Line column for this run
when compared with the previous run, even though this test is using far less users
(15 compared to 150). One conclusion that can be drawn from these results is that
spinning off multiple slave nodes on a machine is not always optimal and should
not be your first choice. Your mileage may vary based on the capacity of the machine
you use.

Distributed Testing

[104]

Leveraging the cloud for
distributed testing
So far, we have seen how we can distribute load to various physical or virtual
machines and by so doing achieve more load than could ever be possible with a
single machine. Our setup thus far, though, has been internal to our network using
a master/slave configuration. Sometimes, it helps to isolate any artificial bottlenecks
occurring on the LAN and run your tests from more realistic locations external to
your network. This has the added benefit of leveraging substantially larger hardware
at minimal cost thanks to the various cloud offerings now at our disposal. Another
area worth considering is the master/slave setup we have employed thus far. While
this will work perfectly fine when few slaves are configured, as more slaves get
added to the mix, the master node becomes a huge bottleneck. This shouldn't come
as a surprise since I/O and network operations increase as more and more slave
nodes try to feed ongoing testing results to the master. What would be most efficient
and ideal is to have each slave node run its test in isolation in the non-GUI mode,
save the results, and its cumulative results from all the slave nodes gathered at the
end of the test. The challenge of course is kicking off all the test executions on all the
nodes in harmony and gathering the results from each. That could be a little bit
daunting, not to mention time-consuming. Thankfully, we can use Vagrant, our
Swiss-Army-knife environmental setup tool, to get partly there. We will employ it
to start server instances on AWS (Amazon Web Service), set up the Java Runtime
Environment (JRE), JMeter, and upload our test scripts to the cloud virtual machines
we bring up. Amazon has an excellent variety of cloud services that make it easy to
run your whole company's infrastructure in the cloud, if you so choose. Read more
about it at http://aws.amazon.com/.

Provided the application under test is accessible from outside your corporate
network, the methods described here should suit your needs just fine.

The first step is to register for an AWS account, if you don't already have one. You
can do that by going to http://aws.amazon.com/ and clicking on the Sign up
button. Once registered, you'll need to obtain your access key, secret key, and a key
pair to use for authenticating with the machines you create on AWS.

Obtaining your access key, secret key, and
key pair
To obtain your access key, secret key, and key pair, perform the following steps:

1. Sign in to your AWS account at http://aws.amazon.com/.

Chapter 6

[105]

2. In the upper right-hand corner, click on the My Account/Console
drop-down list.

3. Select Security Credentials.
4. In the Access Keys tab under Access Credentials Section, perform the

following steps:
1. Click on Create a new Access Key.
2. Note the Access Key ID.
3. Click on Show link under Secret Access Key to reveal the secret

access key.

5. Generate a key pair by following the instructions at http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/generating-a-keypair.html.

1. If you use the browser, it will create a key pair and automatically
download the private key for you.

2. Copy or move it to a location of your choice. We will use the name
and location created here later.

6. With all that done, we are ready to start launching some instances in the
cloud! See the following screenshot for details:

Obtaining AWS credentials

AWS is a paid service and you are billed for every hour you have
an instance up and running. At the time of writing, for a small
instance that we used during the course of this section, it costs
$0.10/hr for each instance, which is not bad considering all the effort
it saves getting a box, setting it up, and doing it multiple times.

Distributed Testing

[106]

We have prepared a Vagrant script with Puppet provisioning, just as we did in the
previous sections. The only difference this time is that is it configured to work with
AWS as opposed to virtual boxes in our intranet. To use it, you need to install the
Vagrant AWS plugin. Do that by running the following from the command line:

vagrant plugin install vagrant-aws

This simple one liner makes Vagrant AWS aware, and now it understands how to
interact with machines on AWS. We can now transparently spin off virtual machines
on Amazon's infrastructure just as we did with VirtualBox locally.

By running the vagrant plugin install command, we assume you
have already installed Vagrant on the machine where this operation is
performed. If you haven't, please grab a copy at http://downloads.
vagrantup.com/ and proceed with the installation as directed.

Launching an AWS instance
With the Vagrant AWS plugin installed, the next step is to follow these
listed instructions:

1. Download the prepared Vagrant bundle for this section (978-1-78216-584-
2_6_3_codes.zip).

2. Extract it to a location of your choice. We will refer to this as INSTANCE_HOME.
3. Open the $INSTANCE_HOME/Vagrant file in an editor of your choice and fill in

the required entries.
 ° aws.secret_access_key = "YOUR AWS SECRET KEY"

 ° aws.keypair_name = "YOUR KEYPAIR NAME"

 ° aws.ssh_private_key_path = "PATH TO YOUR PRIVATE KEY"

 ° aws.region = "YOUR AWS REGION"

These are values as generated in the previous section, Obtain your access key,
secret key, and key pair.

4. Save your changes.
5. From the command line, go to the directory INSTANCE_HOME:

cd $INSTANCE_HOME

6. Bring up the first virtual machine on AWS.
vagrant up vm1 --provider=aws

Chapter 6

[107]

7. Wait for the process to complete. You will see a bunch of entries (similar
to what follows) written to the console and the whole process could take
up to a minute or two depending on network latency, Internet speed,
communication with AWS, among others.
Bringing machine 'vm1' up with 'aws' provider...

[vm1] Warning! The AWS provider doesn't support any of the Vagrant

high-level network configurations (`config.vm.network`). They

will be silently ignored.

[vm1] Launching an instance with the following settings...

[vm1] -- Type: m1.small

[vm1] -- AMI: ami-7747d01e

[vm1] -- Region: us-east-1

[vm1] -- SSH Port: 22

[vm1] -- Keypair: book-test

[vm1] Waiting for instance to become "ready"...

[vm1] Waiting for SSH to become available...

[vm1] Machine is booted and ready for use!

…

notice: /Stage[main]/Java::Package_debian/Package[java]/ensure:
ensure changed 'purged' to 'present'

notice: Finished catalog run in 113.17 seconds

8. Verify that you are able to connect to the box and that JMeter was
successfully installed on the machine.
vagrant ssh vm1

ls –l This should contain a testplans directory.
ls –l /usr/local/ This should contain some directories, including the one
for JMeter:

Now our first VirtualBox is up and running, ready to execute our test plans.

Start up three additional console/shell windows, one for each additional virtual
machine we will bring up. In each of the new shell windows, bring up an additional
box running the following commands:

vagrant up vm2 --provider=aws

vagrant up vm3 --provider=aws

vagrant up vm4 --provider=aws

Distributed Testing

[108]

To bring up the second (vm2), third (vm3), and fourth (vm4) virtual machines
respectively. Verify that each of them is properly set up, just as we did for the first
virtual machine. With all four machines running, we are ready to proceed with
executing our test plan.

Executing the test plan
Since we are not using a master/slave node configuration in this section for reasons
described earlier, we'll need to execute the following command on all four virtual
machines simultaneously as best we can.

To execute our test plan, run the following on the virtual boxes:

On vm1, type (or copy) the following on the console:

/usr/local/jmeter/bin/jmeter -n -t testplans/browse-apple-itunes.jmx -l
vm1-out.csv

On vm2, type (or copy) the following on the console:

/usr/local/jmeter/bin/jmeter -n -t testplans/browse-apple-itunes.jmx -l
vm2-out.csv

On vm3, type (or copy) the following on the console:

/usr/local/jmeter/bin/jmeter -n -t testplans/browse-apple-itunes.jmx -l
vm3-out.csv

On vm4, type (or copy) the following on the console:

/usr/local/jmeter/bin/jmeter -n -t testplans/browse-apple-itunes.jmx -l
vm4-out.csv

These will run JMeter in the non-GUI mode and execute the browse-apple-itunes.
jmx test plan. Each virtual machine will print simulation results to CSV files. So vm1
will output results to vm1-out.csv, vm2 to vm2-out.csv, and so on.

Now that all the consoles are ready, press Enter on your keyboard in each console
to execute the test plan on each virtual machine. You should see a log similar to the
following on each console:

Created the tree successfully using testplans/browse-apple-itunes.jmx

Starting the test @ Thu Apr 04 20:49:38 UTC 2013 (1365108578406)

Waiting for possible shutdown message on port 4445

Generate Summary Results + 3592 in 82s = 43.9/s Avg: 1030 Min:
4 Max: 7299 Err: 0 (0.00%) Active: 208 Started: 300 Finished: 92

Chapter 6

[109]

Generate Summary Results + 3008 in 55s = 54.8/s Avg: 541 Min:
4 Max: 6508 Err: 0 (0.00%) Active: 0 Started: 300 Finished: 300

Generate Summary Results = 6600 in 114s = 57.7/s Avg: 807 Min:
4 Max: 7299 Err: 0 (0.00%)

Tidying up ... @ Thu Apr 04 20:51:34 UTC 2013 (1365108694177)

... end of run

The last line (... end of run) indicates the test has finished on that node and the
result is ready for viewing. You should be able to verify the results file was generated
by listing the contents of the current directory using the ls -l command. You should
see an output of the format vmX-out.csv (where X represents the node you are on. 1,
2, 3, or 4 in our case).

Viewing the results from the virtual machines
To view the results, we need to grab the files from each host machine and then
concatenate them together to form a composite whole. We can then view the final
merged file using a JMeter GUI client. To grab the files, we can use any SFTP tool of
our choice. If you are on a Unix-flavored machine, chances are that you already have
the scp command-line utility handy. That is what we will be using here. To proceed,
we will need the name of the host machine we are trying to connect to. To get that,
type in the exit command on the console of the first virtual machine.

You will see lines similar to the following:

ubuntu@ip-10-190-237-149:~$ exit

logout

Connection to ec2-23-23-1-249.compute-1.amazonaws.com closed.

ec2-xxxxxx.compute-1.amazonaws.com is the host name of the machine. We can
now connect to the box using our keypair file and retrieve the results file. On the
console, issue the following command:

scp -i [PATH TO YOUR KEYPAIR FILE] ubuntu@[HOSTNAME]:"*.csv" [DESTINATION
DIRECTORY ON LOCAL MACHINE]

As an example, on our box, our keypair file named book-test.pem is stored under
the .ec2 directory in our home directory and we want to place the results file in
/tmp directory. So we run the following command:

scp -i ~/.ec2/book-test.pem ubuntu@ec2-23-23-1-249.compute-1.amazonaws.
com:"*.csv" /tmp

This will transfer all the .csv files on the AWS instance to our local machine under
the /tmp directory.

Distributed Testing

[110]

Repeat the command for the three additional virtual boxes.

Remember to use the correct hostname for each of the
virtual boxes.

After transferring all the result files from the virtual machines, we can terminate all
the instances since we are done with them.

AWS is a paid service and you are charged per hour per
instance. If you are done with a box, remember to shut it
down, else you will incur unneeded charges.

You can either shut down each individually using vagrant destroy [VM ALIAS
NAME](vagrant destroy vm1 will shut down the virtual box aliased vm1) or shut
down all running instances using vagrant destroy.

You can always verify the state of your instances through
the vagrant status command or through the AWS web
console, at https://console.aws.amazon.com/ec2.

With our entire results file from all hosts now available locally, we will need to
merge them together to get an aggregate of response time across all hosts. We can
do this with any editor that can deal with CSV file formats. Basically, you will open
a file (say vm1-out.csv) and append the entire contents of the other files (vm2-out.
csv, vm3-out.csv, and vm4-out.csv) into it. Alternatively, this can all be done
from the command line. For those on Unix-flavored machines, the cat command
can be employed. Open the command line and go to the directory where you have
transferred the result files. Then run the following on the console:

cat vm1-out.csv vm2-out.csv vm3-out.csv vm4-out.csv >> merged-out.csv

This assumes you have followed along with this section
and named your result files vm1-out.csv through
vm4-out.csv.

Chapter 6

[111]

This creates a file named merged-out.csv that can now be opened in our JMeter
GUI client. To do that, perform the following steps:

1. Launch the JMeter GUI.
2. Add a Summary Report listener by navigating to Test Plan | Add | Listener

| Summary Report.
3. Click on Summary Report.
4. Click on the Browse… button.
5. Select the merged-out.csv file.

Since our test plan spins off 300 users and runs for two iterations, each virtual node
generates 600 samples. Since we ran this across four nodes, we have a total of 2,400
samplers generated, as can be seen from the following screenshot. We also see that
the Max response time is not too shabby. There were no errors reported on any of
the nodes and the throughput was good for our run. These are not bad numbers
considering we used small instances of AWS. We can always put more stress on the
application or web servers by spinning off more nodes to run test plans or by using
higher capacity machines on AWS. Although we have only used four virtual boxes
for illustrative purposes here, nothing prevents you from scaling out to hundreds of
machines to run your test plan.

As you start to scale out to more and more servers for your test plans, it may become
increasingly difficult and cumbersome to simultaneously start your test plans across
all nodes. At the time of writing, we discovered yet another tool that promises to
ease the management pain across multiple AWS nodes or in-house networked
machines. The tool helps spin off AWS instances (as we have done here); install
JMeter; run a test plan, distributing the load across the number of instances spun;
and gathers all the results from all hosts to your local box, all the while giving you
real time aggregate information on the console.

Distributed Testing

[112]

At the end of the tests, it terminates all AWS instances that were started. We gave
it a spin, but couldn't quite get it working as advertised. It is still worth keeping
an eye on the project and you can find out more about it at https://github.com/
oliverlloyd/jmeter-ec2. Furthermore, we should mention that there
are some services out on the Web helping to bring ease to distributed testing.
Two such services are Gridinit (http://gridinit.com/) and BlazeMeter
(http://blazemeter.com/). They are both worth checking out.

The Summary Report listener

Chapter 6

[113]

With that, we wrap up our look into distributed testing with JMeter. Though the
test plan we used had no input test data, nothing prevents you from using one that
does. Also, all the other techniques we have learned in other chapters can be applied
whenever they make sense. Also, not using a master/node configuration got us past
the hurdle of known limitations. These include:

• Network saturation due to high number of slave nodes writing to the
master node

• RMI communication is not possible across subnets without a proxy, thereby
forcing slaves and the master to be on the same subnet

• The master node server could be easily overwhelmed with very few slave
nodes reporting to it, depending on its resources (CPU and memory)

Summary
We have covered quite a lot of ground in this chapter. We have learned how we can
distribute load using different techniques when executing test plans. We learned
how to have JMeter work in a master/node configuration. With the help of tools
such as Vagrant and Puppet, we made a daunting task really easy. We learned how
to spin off several node machines on the same physical box (or different boxes) and
use a master node to control them all from a JMeter GUI. While convenient, we
saw that this method was limiting in terms of scalability. As the number of slave
nodes grew, the master quickly became the bottleneck due to high I/O generated
from several nodes trying to report progress to it. To overcome such restrictions
and ultimately achieve infinite scalability, we learned how to run several test
machines in parallel to execute our test plans. In the process, we leveraged the AWS
infrastructure and saw how we can use the cloud to aid testing more efficiently, thus
helping us reach our targeted goals.

In the next chapter, we will look at some tips that are helpful to have handy when
working with JMeter.

Helpful Tips
At this point, you have hopefully become familiar with the inner workings of JMeter
and are comfortable with using it to achieve most of your testing needs. However,
before we wrap up the book, there are some helpful tips worth mentioning that will
make working with JMeter more pleasant and perhaps save you time in the process.
These are some techniques we have learned over the years and they have proven
useful in almost every environment we have found ourselves.

JMeter properties and variables
JMeter properties are defined in jmeter.properties, which is global in nature
and used to define some defaults that JMeter uses. The value of the remote_hosts
property encountered in the previous chapter is a good example of this. Properties
can be referenced from within a test plan, but cannot be used for thread-specific
values because of their global nature (shared among all threads).

JMeter variables, on the other hand, are local to each thread. The values may stay the
same or vary between threads. In cases where a variable is updated by a thread, only
the thread copy of the variable is changed, thus remaining invisible to other running
threads. A good example of this is the Regular Expression Extractor post processor
we encountered in the previous chapters. The values extracted and acted upon are in
the context of the samples of the running thread. The variables that are extracted are
user-defined and available to the whole test plan at startup. If the same variable is
defined by multiple user-defined variable elements, the last one wins.

Helpful Tips

[116]

As simple as they appear, using JMeter variables wisely can save you time by
allowing you to use the same recorded scripts from one environment to another
environment without having to rescript for every single environment you are
targeting, provided the two environments are structured similarly architecturally.
So, for instance, test plans recorded against the User Acceptance Test (UAT)
environment can be run in production if those two environments bear a resemblance
in structure. To accomplish that, you can either define User Defined Variables (UDV)
at the Test Plan root level, or replace individual URLs for HTTP Request samplers.
For example, we can define the following UDVs at the Test plan root level:

Name Value
app_url ${__P(app_url, https://uat.fastcompany.com/someapp)}

sso_url ${__P(sso_url, https://sso.uat.fastcompany.com/
login)}

threads ${__P(threads, 10)}

loops ${__P(loops, 30)}

With such a configuration, we have defined default values for app_url, sso_url,
threads, and loops and still provided the ability to override them from the
command line as follows:

jmeter ... -Japp_url=https://fastcompany.com/someapp Jsso_url=https://
sso.fastcompany.com/login –Jloops=15

This will make our test plans use an app_url variable having the value https://
fastcompany.com/someapp, an sso_url variable having the value https://sso.
fastcompany.com/login, and the loops variable having the value 15. The number
of threads will remain 10 (the default) since it wasn't overridden. This concept saves
a lot of time when developing test plans against various environments, allowing
you to record once and target various environments with the same set of scripts.
For instance, this is useful when a particular environment isn't ready yet and scripts
have already been developed targeting an active environment. Once the environment
becomes available, the same scripts can target the newly available environment
without having to rerecord them.

Chapter 7

[117]

We have bundled a sample with the book (excilys-bank-scenario-3.jmx).
It's from the banking application sample test plan we saw in , Recording Your
First Test. It is hosted on two different cloud providers: Cloudbees at http://
excilysbank.gatling.cloudbees.net and AppFog at http://excilysbank.
aws.af.cm. It runs against AppFog by default. To run it against Cloudbees, you
will need to override the hostname variable when you start JMeter like so:

jmeter -Jhostname=excilysbank.gatling.cloudbees.net

JMeter functions
JMeter functions are special values that can populate fields or any sampler or other
element in the test plan. They take the following form:

${__functionName(var1,var2,var3)}

Here, __functionName matches any of the many function names JMeter offers.
Parentheses surround the parameters sent to the function, which can vary from
function to function. Functions with no parameters don't need the parentheses;
for example, ${__threadNum}. A list of all the available functions can be found on
JMeter's website at http://jmeter.apache.org/usermanual/functions.html.
Functions are divided into seven main categories. They are given here along with
their examples:

• Information: threadNummachineIP, time, and so on
• Input : CSVRead, XPath, and so on
• Calculation: counter, random, UUID, and so on
• Scripting: javaScript, BeanShell, and so on
• Properties: property, P, setProperty, and so on
• Variables: split, eval, and so on
• String: char, unescape, and so on

Helpful Tips

[118]

Functions can prove useful in certain situations, allowing the computation of new
values at runtime based on previous response data, which thread the function is
in, time, and numerous other sources. Their values are generated afresh for every
request throughout the course of the test. There are also some restrictions regarding
where certain functions can be invoked. Since JMeter thread variables are not fully
initialized when functions are processed, variable names passed as parameters will
not be set up, causing variable references to fail.

Functions are shared between threads in the test plan. Each occurrence of
a function call is handled by a separate function instance.

The Regular Expression tester
Throughout the course of the book, we have seen Regular Expression Extractor post
processors in action in several of our scenarios. These components allow you to
extract values from a server response using a Perl-type regular expression. As a post
processor, this element executes after each sample request in its scope, applying the
regular expression; extracts the requested values, generating the template string;
and finally stores the result into a given variable name, which can then be referenced
further down the test plan.

To fully maximize the use of the Regular Expression Extractor post processor, it helps
to get acquainted with regular expressions in general. There are numerous online
resources that can help, but you can start with this one: http://www.regular-
expressions.info/tutorial.html. The RegExp Tester view is one of the options
you can choose from the View Results Tree listener dropdown menu items. It allows
you to test various regular expressions against the server response on a per-sampler
basis. When you are interested in extracting a variable or group of variables that
vary dynamically based on which thread is currently executing, this gives you the
maximum flexibility to test and tune your regular expression until you find the exact
match that suits your needs. Without such an element, significant time could be spent
nailing down the right pattern matcher, as it would involve rerunning your test plan
several times with various inaccurate expressions, hoping it eventually matches.

Chapter 7

[119]

The RegExp Tester

In our browse iTunes store test plan from the previous chapter, say we were
interested in extracting the class elements from the HTML response of the /
itunes/charts/ sampler. Once the test has been exercised, we could explore the
RegExp Tester view to find the right regular expression for this. For our purpose,
it came down to li class="([^"]*).*, which matched 22 elements, listed in the
bottom half of the window as seen in the previous screenshot. We can then copy
that pattern into a Regular Expression Extractor post processor under the /itunes/
charts/ sampler and store the results in a variable to use further down the chain
in our test plan.

Helpful Tips

[120]

The Debug sampler
The debug sampler generates a sample containing all the values of JMeter variables
and/or properties. A View Results Tree listener must be present in the test plan to
view its results. This nifty component helps you debug your test plans appropriately,
providing you with the tools to analyze the runtime-assigned values of various
variables during test execution. In our example above, suppose we added a Regular
Expression Extractor post processor to the /itunes/charts sampler and stored it in
a variable. We can view the value assigned to the variable, and more importantly how
to get to the different values if there is more than one match. To add a Debug sampler,
right-click on Thread Group and navigate to Add | Sampler | Debug Sampler.

The Debug sampler via the View Result listener

As you can see from this screenshot, the multiple matches are stored under
linkclass_n (where n is a match position), followed by the variable name declared
in our Regular Expression Extractor post processor. Thus we can get hold of the
first match as linkclass_1, the second as linkclass_2, and so on As you record
more and more complex scripts, you will find the debug sampler to be an invaluable
component that is worth keeping handy.

Chapter 7

[121]

Using timers in your test plan
By default, JMeter doesn't put timers in your test plans when a scenario is recorded.
This is far from reality. Ideally, users will have a think or wait time between page
views and requests. Getting JMeter to simulate such pauses or waits makes your
test plans more realistic, bringing it closer to how actual users might behave. JMeter
offers various built-in timer components that help achieve this. Each varies from
the others in how it varies the simulated pauses. The following is a list of included
timers as of the time of writing.

The Constant timer
The Constant timer is used if you want each thread to pause for the same amount of
time between requests.

The Gaussian random timer
The Gaussian random timer pauses each thread request for a random amount of time
with most of the time intervals occurring near a particular value. The total delay is
the sum of the Gaussian distributed value times, the value specified, and the offset.

The Uniform random timer
The Uniform random timer pauses thread requests for a random amount of time,
with each time interval having the same probability of occurring. The total delay is
the sum of the random and offset values.

The Constant throughput timer
The Constant throughput timer introduces variable pauses calculated to keep the
total throughput that is, samples per minute as close as possible to the targeted
figure. Though called a constant throughput timer, the throughput can be varied by
using a counter value, JavaScript value, BeanShell value, or remote BeanShell server.

The Synchronizing timer
The Synchronizing timer helps simulate large instantaneous loads on various points
in the test plan by blocking threads until a certain number of threads have been
blocked, then releasing them all at once.

Helpful Tips

[122]

The Poisson random timer
The Poisson random timer, like the Gaussian random timer, pauses thread requests
for a random amount of time, with most of the time intervals occurring near a
particular value. The total delay is the sum of the Poisson distributed value and the
offset value.

Any of these timers can be added by right-clicking on a Thread Group and
navigating to Add | Timer | (Timer to Add). You can read more about each of
these and more at JMeter's website at http://jmeter.apache.org/usermanual/
component_reference.html#timers.

The JDBC Request sampler
Sometimes, it's necessary to test durability and I/O operations against the database
directly. How fast are inserts, updates, and selects on the tables in question? For such
tests, JMeter provides a JDBC Request sampler to help issue SQL queries against the
database. However, to use it, we need to set up a JDBC Connection Configuration
component. Setting up this component requires us to point to a database. So let's go
ahead and set up the database. Normally, this will already be set up for you to test
against, but for illustrative purposes, we are going to assume none has been set up.
We will be using H2, an open source pure Java SQL database. It is lightweight and
relatively easy to set up.

Setting up an H2 database
1. Download a distribution at http://www.h2database.com/html/

download.html.
2. Extract the archive to a location of your choosing. We will refer to this

as H2_HOME.
3. From the command line, go to the H2_HOME/bin folder.
4. Start the H2 database server by issuing either of these commands.

 ° On Unix:
./h2.sh

 ° On Windows:
h2.bat

Chapter 7

[123]

5. This will launch your browser and point to the H2 Admin console as seen in
the following screenshot.

The H2 Admin console (before the connection)

6. Create a test database named test by changing your JDBC URL value to
either of the following:

 ° On Unix:
jdbc:h2:tcp://localhost//tmp/test;MVCC=TRUE

 ° On Windows:
jdbc:h2:tcp://localhost/c:/test;MVCC=TRUE

7. Click on the Connect button.
8. Create the sample table we will be using to test by copying the following

script into the space provided in the console (see the following screenshot).
DROP TABLE IF EXISTS TEST;
CREATE TABLE TEST(ID INT PRIMARY KEY, NAME VARCHAR(255));
INSERT INTO TEST VALUES(1, 'Hello');
INSERT INTO TEST VALUES(2, 'World');

9. Click on the Run button.

Now that we have a database and table to test with, we can go ahead and configure a
JDBC Connection Configuration component to point to it.

Helpful Tips

[124]

Since H2 is Java-based, to run it, you need to have a JRE (Java Runtime
Environment) set up on the machine of choice. Please refer to Chapter 1,
Performance Testing Fundamentals, for instructions on setting up JRE on
your machine if you don't already have it.

The H2 Admin console (after the connection)

Configuring a JDBC Connection
Configuration component
As the name suggests, this component helps create a connection to the database
from the supplied settings. Each thread could get its own dedicated connection, or
connections may be pooled between threads.

1. Copy the JDBC driver (h2-1.3.171.jar or similar) from the H2_HOME/bin
folder to the JMETER_HOME/lib/ext folder.

2. Add a JDBC Connection Configuration component to the test plan by right-
clicking on Test Plan and navigating to Test Plan | Add | Config Element |
JDBC Connection Configuration

3. Configure the properties as follows:
 ° Variable Name: testPool
 ° Validation Query: Select 1 from dual
 ° Database URL: jdbc:h2:tcp://localhost//tmp/test;MVCC=TRUE

(those using Windows should use jdbc:h2:tcp://localhost/c:/
test;MVCC=TRUE)

 ° JDBC Driver class: org.h2.Driver
 ° Username: sa

Chapter 7

[125]

4. Leave the rest of the configuration as is.

The JDBC Connection Configuration component

Adding a JDBC Request sampler
Now that we have a JDBC Connection Configuration component configured,
the final step is to add a JDBC Request sampler to our test plan to make use of it.
Adding that is no different from how we have added other samplers throughout
the book.

1. Create a Thread Group element, if none already exist, by right-clicking
on Test Plan and navigating to Test Plan | Threads | Thread Group.

2. Add a JDBC Request sampler by right-clicking on Thread Group and
navigating to Thread Group | Add | Sampler | JDBC Request.

3. In the SQL Query input field, type in the following:
SELECT * FROM TEST

Helpful Tips

[126]

4. Add a View Results Tree listener by right-clicking on Thread Group and
navigating to Add | Listener | View Results Tree.

5. Save the test plan.
6. Execute the test.

Although a simple query, it illustrates the concept. The JDBC Request sampler
allows you to issue complex queries with bind parameters, inserts, updates, deletes,
and even stored procedures. More details can be found at http://jmeter.apache.
org/usermanual/build-db-test-plan.html and http://jmeter.apache.org/
usermanual/component_reference.html#JDBC_Request.

A Dummy sampler
Though not part of the built-in JMeter samplers, this sampler can be added to
your JMeter toolkit via the JMeter extensions project. We discussed this in detail
in Chapter 5, Resource Monitoring, so if you don't already have it configured, please
refer to that chapter to get the gist of it. This sampler generates samples with just
the values that are defined for it. It comes in extremely handy when debugging post
processors without having to repeat the entire execution of the test plan or waiting
for the exact condition in the application under testing.

This component allows you to determine if the response should be marked a
successful sample, what response code to return, the response message, the latency,
and response times. In addition, it allows you to specify a request and a response,
which can be anything you choose; for example, HTML, XML, and JSON.

Once the plugins have been properly installed into your JMeter instance, you should
see additional samplers available to pick from.

1. Add a Thread Group element to the Test Plan by right-clicking on Test Plan
and navigating to Threads | Thread Group.

2. Add a Dummy Sampler element by right-clicking on Thread Group and
navigating to Add | Sampler | jp@gc - Dummy Sampler. For the contents of
the Response Data, add the following HTML snippet:
<html>
<head>
 <title>Welcome to Debug Sampler</title>
</head>
<body>
 This is a test
</body>
</html>

Chapter 7

[127]

3. Add a View Results Tree listener by right-clicking on Thread Group and
navigating to Add | Listener | View Results Tree.

4. Save the test plan.
5. Execute the test.

The Dummy Sampler

See the bundled dummy-sampler.jmx file for the full example.

Helpful Tips

[128]

The JSON Path Extractor element
Another helpful nugget in the JMeter plugin's project is the JSON Path Extractor
element. This makes working with JSON pure bliss. It helps extract data out of
a JSON response using JSONPath syntax (http://goessner.net/articles/
JsonPath/index.html#e2). For complex JSON structures, using JMeter's bundled
XPath Extractor can sometimes lead to heartache when trying to get at targeted
elements. Where XPath Extractor fails, JSON Path Extractor shines.

Consider a JSON structure like the following:

{ "store": {
 "book": [
{ "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95
 },
{ "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99
 },
{ "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99
 },
{ "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99
 }
],
 "bicycle": {
 "color": "red",
 "price": 19.95
 }
 }
}

Chapter 7

[129]

If you wanted to get to the title of the second book in the store, an expression such
as $.store.book[1].title gets you there swiftly. No matter how nested the
structure is, JSON Path Extractor gets the job done elegantly. See the two examples
that accomplish this in the book: JSONPathExtractorExample.jmx (from the JMeter
plugin's site) and dummy-sampler.jmx.

Handling RESTful web services
An increasing number of applications are shifting to RESTful web services due to
their simplicity to build, test, and consume compared to their SOAP counterparts. All
REST communication is done over the HTTP protocol between the parties involved.
HTTP is used for CRUD (create, read, update, and delete) operations. The built-in
HTTP Request sampler in JMeter is more than up to the task. It supports GET, POST,
PUT, and DELETE operations, among other things. The body of the request can be in
XML or JSON format. An HTTP Header Manager component can be used to send
additional HTTP header attributes if needed.

In our sample, we are going to create a new person in our sample application using
a POST request, and then verify that the person was actually created using a GET
request.

1. Create a new test plan.
2. Add a new Thread Group (by navigating to Test Plan | Add |

Thread Group).
3. Add an HTTP Request sampler (this retrieves all the people records in our

application so far), by navigating to Thread Group | Add | Sampler |
HTTP Request. Call it Get All People. You will get the following fields.
Fill in their values as given here:

 ° Server Name: jmeterbook.aws.af.cm
 ° Method: GET
 ° Path: /person/list

4. Add another HTTP Request sampler by navigating to Thread Group | Add
| Sampler | HTTP Request (this will create a new person record). Call it
Save Person().

 ° Server Name: jmeterbook.aws.af.cm
 ° Method: POST
 ° Post Body: {"firstName":"Test", "lastName":"Jmeter",

"jobs":[{"id":5}]}

Helpful Tips

[130]

5. Add a JSON Path Extractor element as a child element of the Save
Person sampler.

 ° Name: person_id
 ° JSON path: $.id

6. Add another HTTP Request sampler (this will retrieve the newly created
person using the extracted ID). Call it Get Person.

 ° Server Name: jmeterbook.aws.af.cm
 ° Method: GET
 ° Path: /person/get/${person_id}

7. Add a View Results Tree listener.
8. Save the test plan.
9. Execute the test plan.

If all was correctly done, a new person with the name Test JMeter will be created
in our application and you can verify this by pointing your browser to http://
jmeterbook.aws.af.cm/person/list. By the same token, we can issue DELETE and
PUT requests to delete and update resources if our application supports it.

Summary
In this chapter, we have learned some helpful tips that are essential to making testing
with JMeter more efficient. We have covered variables, functions, regular expression
testers, and timers, to name a few. Along the way, we covered some additional
helpful components provided by the excellent JMeter plugin extensions. We barely
scratched the surface of the additional components it provides. We looked at JSON
Path Extractor and Dummy Sampler to name a few. For a full list of all components,
we will encourage you to read up on their website at https://code.google.com/p/
jmeter-plugins/. Finally, we looked at how JMeter can help us work with the
database and REST web services.

We hope by now you know enough about JMeter to become proficient and attain
your testing goals. In just a short time, you have grown from novice to pro. Though
we couldn't cover all JMeter has to offer, we hope we have covered enough to make
you see it as a valuable tool of choice when embarking on your next performance
testing engagement and that you have enjoyed reading the book as much as we have
had writing it.

Index
A
Advance REST Client

URL 58
anatomy, JMeter test

assertions 48
configuration elements 49
Controllers 46
listeners 48
logic controllers 47
post-processor element 49
pre-processor element 49
samplers 47
test fragments 48
Test Plan 45, 46
Thread Groups 46
timers 48

Apache Tomcat Server
setting up 76-80

assertions 48
AWS (Amazon Web Service) 104

B
baseline 14
basic server monitoring 76
Baysoft Training Inc 7
browser configuration

about 30
browser extension, using 30
machine system settings, changing 30-33
recorded scenario, running 34,-44

BSF (Bean Scripting Framework) 60
BSF PostProcessor

using 60

C
checkboxes, simple forms

handling 52
Chrome developer tools

URL 58
cloud, leveraging for distributed testing

about 104
access key, obtaining 104
AWS instance, launching 106-108
key pair, obtaining 104, 105
results, viewing from virtual

machines 109-113
secret key, obtaining 104
test plan, executing 108, 109

command-line options, JMeter
not_in_menu 25
remote_hosts 24
search_paths 25
ssl.provider 25
system.properties 25
user.classpath 25
user.properties 25
xml.parser 24

configuration elements 49
Constant throughput timer 121
Constant timer 121
controllers

about 46
logical controllers 47
sampler controllers 47

cookies
used, for managing sessions 66-69

[132]

D
debug sampler 120
dummy sampler

adding 126, 127

E
executable scripts, JMeter

jmeter-n-r.sh 19
jmeter-n.sh 19
jmeter-server.sh 19
jmeter.sh 19
jmeter-t.sh 19
mirror-server.sh 19
shutdown.sh 19
stoptest.sh 19

F
file downloads, simple forms

handling 54
file uploads, simple forms

handling 53, 54
Firebug

URL 58

G
Gaussian random timer 121

H
H2 database

setting up 122, 123

J
JAVA_HOME

setting 18
setting, on Unix 18
setting, on Windows 18

Java JDK
installing 17

Java Management Extension. See JMX
JavaScript Object Notation 55
JDBC Connection Configuration component

configuring 124

JDBC Request sampler
about 122
adding 125, 126
H2 database, setting up 122, 123
JDBC Connection Configuration compo-

nent, configuring 124
JDBC Request sampler, adding 125, 126

JMeter
about 15, 16, 91
bin folder 17
classpath 21
command-line options 20, 21, 24
configuring 24
docs folder 17
downloading 16
errors, tracking 24
executable scripts 19
extras folder 17
features 15
folder 17
installing 16
JAVA_HOME, setting 18
Java JDK, installing 17
lib folder 17
monitor controller, setting up 81-83
monitor listeners, adding 86-89
non-GUI mode, running 22
printable_docs folder 17
properties, overriding 23
proxy server, configuring 21
remote testing 91, 92
running 19
server mode, running 22
session management 65

JMeterEngine 91
JMeter functions 117, 118
JMeter GUI 20
JMeter HTTP proxy server

configuring 28
jmeter-n-r.sh script 19
jmeter-n.sh script 19
JMeter plugin

used, for monitoring server 84
JMeter plugins

installing 84, 85
JMeter properties 115
jmeter-server.sh script 19

[133]

jmeter.sh script 19
JMeter slave nodes

configuring 93
master node, configuring 96-99
master node, configuring for testing

multiple slave nodes 102, 103
multiple slave nodes, configuring on single

box 100, 102
one slave per machine, configuring 94, 96

JMeter test
anatomy 45

jmeter-t.sh script 19
JMeter variables 115
JMX 76
JSON data, simple forms

BSF PostProcessor, using 60, 62
posting 55-58
reading 59, 60

JSON Path Extractor element 128, 129

L
listeners 48
load testing 14
logical controllers 46
logic controllers 47

M
master node

configuring, for testing against multiple
slave nodes 102

configuring, for testing against one slave
per machine 96

mirror-server.sh script 19
monitor controller, JMeter

setting up 81-83
multiple slave nodes

configuring, on single box 100-102

N
not_in_menu, command-line options 25

O
one slave node per machine

configuring 94-96

P
PerfMon Metrics Collector listener

adding 86
performance testing

about 8, 9
acceptance criteria, identifying 10
baselines 14
load testing 14
plan and design test 10
results, analyzing 12, 13
stress testing 14
test environment, identifying 9
test environment, preparing 10
test plan, recording 11
tests, running 11
tuning 13

Poisson random timer 122
post-processor element 49
pre-processor element 49

R
radio buttons, simple forms

handling 53
Regular Expression tester 118, 119
remote_hosts, command-line options 24
resource monitoring

about 75
basic server monitoring 76
server, monitoring with JMeter plugin 84

Response Time vs. Threads listener
adding 86-88

REST Client
URL 58

RESTful web services 51
handling 129, 130

REST (REpresentational State Transfer) 55

[134]

S
sampler controllers 46
samplers

about 47
FTP Request 47
HTTP Request 47
JDBC Request 47
LDAP Request 47
Soap/XML-RPC request 47
Web service (SOAP) request 47

search_paths, command-line options 25
server

monitoring, with JMeter plugin 84
session management

with cookies 66-69
with URL rewriting 70-73

shutdown.sh script 19
simple forms

BSF PostProcessor 60, 62
capturing 51
checkboxes, handling 52
file downloads, handling 54
file uploads, handling 53, 54
JSON data, posting 55-58
JSON data, reading 59, 60
radio buttons, handling 53
XML response, handling 62-64

stoptest.sh script 19
stress testing 14
Synchronizing timer 121
system.properties, command-line options 25

T
test fragments 48
testing tools 15
Test Plan 45, 46
Thread Groups 46
timers

about 48
Constant throughput timer 121
Constant timer 121
Gaussian random timer 121
Poisson random timer 122
Synchronizing timer 121
Uniform random timer 121
using 121

Tomcat users
configuring 80

Transactions per Second listener
adding 86

U
Uniform random timer 121
URL rewriting

about 70
used, for managing sessions 70-73

user.classpath, command-line options 25
user.properties, command-line options 25

X
XML (Extensible Markup Language) 62
xml.parser, command-line options 24
XML response, simple forms

handling 62-64

Thank you for buying
Performance Testing with JMeter 2.9

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning jQuery, Third Edition
ISBN: 978-1-84951-654-9 Paperback: 428 pages

Create better interaction, design, and web
development with simple JavaScript techniques

1. An introduction to jQuery that requires
minimal programming experience

2. Detailed solutions to specific
client-side problems

3. Revised and updated version of this popular
jQuery book

Getting Started with Oracle
Data Integrator 11g:
A Hands-On Tutorial
ISBN: 978-1-84968-068-4 Paperback: 384 pages

Combine high volume data movement, complex
transformations and real-time data integration with
the robust capabilities of ODI in this practical guide

1. Discover the comprehensive and sophisticated
orchestration of data integration tasks made
possible with ODI, including monitoring and
error-management

2. Get to grips with the product architecture
and building data integration processes with
technologies including Oracle, Microsoft SQL
Server and XML files

Please check www.PacktPub.com for information on our titles

Java EE 6 Cookbook for Securing,
Tuning, and Extending
Enterprise Applications
ISBN: 978-1-84968-316-6 Paperback: 356 pages

Packed with comprehensive recipes to secure, tune,
and extend your Java EE applications

1. Secure your Java applications using Java EE
built-in features as well as the well-known
Spring Security framework

2. Utilize related recipes for testing various Java
EE technologies including JPA, EJB, JSF, and
Web services

3. Explore various ways to extend a Java EE
environment with the use of additional
dynamic languages as well as frameworks

JBoss ESB Beginner's Guide
ISBN: 978-1-84951-658-7 Paperback: 320 pages

A comprehensive, practical guide to developing
service-based applications using the Open Source
JBoss Enterprise Service Bus

1. Develop your own service-based applications,
from simple deployments through to complex
legacy integrations.

2. Learn how services can communicate with
each other and the benefits to be gained from
loose coupling.

3. Contains clear, practical instructions for service
development, highlighted through the use of
numerous working examples.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.packtpub.com
	Table of Contents
	Preface
	Chapter 1: Performance Testing Fundamentals
	The incident
	The aftermath
	Performance testing
	Performance testing and tuning
	Baselines
	Load and stress testing

	JMeter to the rescue
	Up and running with JMeter
	Installation
	Installing Java JDK
	Setting JAVA_HOME
	Running JMeter
	Tracking errors during test execution
	Configuring JMeter

	Summary

	Chapter 2: Recording Your First Test
	Configuring the JMeter HTTP
proxy server
	Setting up your browser to use the
proxy server
	Using a browser extension
	Changing the machine system settings
	Running your first recorded scenario

	Anatomy of a JMeter test
	Test Plan
	Thread Groups
	Controllers
	Samplers
	Logic controllers
	Test fragments
	Listeners
	Timers
	Assertions
	Configuration elements
	Pre-processor and post-processor elements

	Summary

	Chapter 3: Submitting Forms
	Capturing simple forms
	Handling checkboxes
	Handling radio buttons
	Handling file uploads
	Handling file downloads
	Posting JSON data
	Reading JSON data
	Using the BSF PostProcessor

	Handling the XML response

	Summary

	Chapter 4: Managing Sessions
	Managing sessions with cookies
	Managing sessions with URL rewriting
	Summary

	Chapter 5: Resource Monitoring
	Basic server monitoring
	Setting up the Apache Tomcat Server
	Configuring Tomcat users
	Setting up a monitor controller in JMeter

	Monitoring the server with a JMeter plugin
	Installing the plugins
	Add monitor listeners to the test plan

	Summary

	Chapter 6: Distributed Testing
	Remote testing with JMeter
	Configuring JMeter slave nodes
	Configuring one slave per machine
	Configuring the master node to be tested against one slave per machine
	Configuring multiple slave nodes on a single box
	Configuring the master node to be tested against multiple slave nodes on a single box

	Leveraging the cloud for
distributed testing
	Obtaining your access key, secret key, and key pair
	Launching an AWS instance
	Executing the test plan
	Viewing the results from the virtual machines

	Summary

	Chapter 7: Helpful Tips
	JMeter properties and variables
	JMeter functions
	The Regular Expression tester
	The Debug sampler
	Using timers in your test plan
	The Constant timer
	The Gaussian random timer
	The Uniform random timer
	The Constant throughput timer
	The Synchronizing timer
	The Poisson random timer

	The JDBC Request sampler
	Setting up the H2 database
	Configuring a JDBC Connection Configuration component
	Add a JDBC Request sampler

	A Dummy sampler
	The JSON Path Extractor element
	Handling RESTful web services
	Summary

	Index

