
.NET Performance Testing
and Optimization
The Complete Guide

Paul Glavich and Chris Farrell

.NET Handbooks

ISBN: 978-1-906434-40-3

.NET Performance
Testing and
Optimization

By Paul Glavich

and Chris Farrell

First published by Simple Talk Publishing 2010

Copyright Paul Glavich and Chris Farrell 2010

ISBN 978-1-906434-40-3
The right of Paul Glavich and Chris Farrell to be identified as the authors of this work has been asserted by

them in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act

in relation to this publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold,

hired out, or otherwise circulated without the publisher's prior consent in any form other than that in

which it is published and without a similar condition including this condition being imposed on the

subsequent publisher.

Technical Review by Alex Davies, Jeff McWherter, and Corneliu Tusnea

Cover Image by Paul Vlaar

Edited by Chris Massey

Typeset & Designed by Matthew Tye & Gower Associates

Table of Contents

Foreword ... xix

Chapter 1: Introduction – The What and the Why ...21

Performance testing .. 21

Load testing ..22

Stress testing ..22

Profiling...23

Cost benefits of performance and load testing ...23

Example scenarios ..24

Sometimes, what seems right can be wrong. ..27

Conclusion ...27

Chapter 2: Understanding Performance Targets ... 29

Identifying performance targets .. 29

Structuring test breakdowns ...30

Determining what load to target .. 31

Contingency in your estimations ... 33

Estimate the mix of browsers for your web application ... 35

What data do we measure? .. 35

Time to First Byte ...36

Total page response time ...37

What about average response time? ..38

Sweet spots and operational ceilings ...39

Conclusion ...41

Chapter 3: Performance and Load Test Metrics ... 43

What metrics do we need? ...43

Basic metrics ..43

Web application basic metrics ... 46

What to look for ..50

CPU utilization ...50

Memory utilization ... 51

Response time ... 53

Creating a baseline ..54

Using Visual Studio to analyze the results ..54

Using the Test Results management window .. 55

Using the Open and Manage Test Results dialog .. 55

Filtering performance test result selection ...56

Sweet spots and operational ceilings .. 60

Detailed performance metrics .. 62

Performance metrics ..63

What do I do with all this information? ... 70

Conclusion ...72

Chapter 4: Implementing Your Test Rig ..75

Creating the performance test rig ..75

Architecture and structure of a performance test rig ...75

Role breakdown.. 76

Setting up and configuration...78

Port setup and firewall considerations ..78

Network segmentation/isolation .. 80

Controller setup ... 84

Creating the load test database ... 86

Guest policy on Windows XP in workgroup mode ...87

Agent setup ..87

Workstation setup ... 88

Troubleshooting the controller and agents ... 89

Setting up performance counter collection ..93

Conclusion .. 98

Chapter 5: Creating Performance Tests ...99

Basic solution structure ... 99

Recording the web tests ...102

Test replay ... 110

Data binding web tests ..117

Creating a data source for data binding ...117

Test deployment considerations ..124

Web test code generation ..126

Extensibility through plug-ins .. 128

Alternative ways of recording web tests ...131

Considerations for load balancing / load balanced hardware .. 134

Test automation .. 136

Creating a performance test scenario .. 136

Putting automation in place .. 147

Executing the load test ... 147

Collecting performance monitor data ...148

Collecting SQL Server usage statistics ...151

Clean up tasks ... 154

Conclusion ..155

Chapter 6: Application Profiling ...157

Types of profiling .. 157

Performance profiling .. 159

Memory profiling .. 161

When to start profiling ... 163

Reactive debugging ...164

Proactive analysis .. 165

Technique validation .. 165

Tools used for profiling...166

CLRProfiler ..166

Red Gate's ANTS Memory and Performance Profilers ...167

Microfocus DevPartner Studio Professional 9.1..171

Microsoft Visual Studio 2008 profiling tools ... 175

What to look for ..179

Performance analysis ..179

Memory analysis ... 181

Production / load test clues ... 183

General performance counters ... 183

Managing profiling results ...184

Comparing analysis runs ...184

Pre-check-in requirements ..184

Continuous integrated testing ...184

Summary ... 185

Chapter 7: Performance Profiling .. 187

A caveat ...187

What the load test will tell you (and profilers can't) ..188

Load testing ..188

Where is it slow? ..189

When to start testing .. 191

Competing resources .. 191

Types of profiler ...192

Sampling profiler ..192

Event-based profiling ...192

Concurrency (thread contention) profiling .. 193

Instrumenting profilers ... 193

Choosing a profiler .. 193

What profilers can measure ...194

What to look for ..194

Using the tools ...197

ANTS Performance Profiler 5 ..197

DevPartner Studio Professional 9.1 ..203

Performance timing profiler ...203

Visual Studio Professional 2008/2010 ...210

Visual Studio 2010 Team Edition ...219

SQL Profiler 2005/2008 ...222

Summary ...224

Chapter 8: Memory Profiling ..225

Why memory matters ...225

The managed heap(s) ..225

Small Object Heap ... 226

Optimizing garbage collection ...227

Large Object Heap .. 231

Finalizable objects ... 231

Profiling memory ..234

Memory issues ... 235

Using tools to uncover memory problems ..239

Test plans ...239

ANTS Memory Profiler 5 ... 240

Visual Studio 2008 Memory Profiler ...247

DevPartner Studio Professional 9 ...252

CLRProfiler ..259

Summary .. 264

Chapter 9: The Performance Testing Process .. 265

Development processes and scheduling tests ...265

An ideal world ...265

Methodology... 266

The reality ... 268

A word about best practice ... 268

Managing and monitoring performance changes .. 269

The entire performance picture ...273

Chapter 10: Common Areas for Performance Improvement ..275

Every application is different ...275

Database access ..275

The best and most efficient form of data access ... 276

What to cache? ..278

Indexing..282

Database access abstractions ... 284

Reflection ... 286

String manipulation ... 289

Cryptographic functions ..293

Network call latency .. 294

Key considerations when calling external resources ..295

Synchronous vs. asynchronous .. 297

Asynchronous web pages .. 299

Web application specific ...303

Data binding ...303

Output caching ...311

web.config ..313

Conclusion ... 314

Chapter 11: Load Balancing .. 315

What is load balancing and how does it help? ...315

Infrastructure considerations ... 317

Application considerations ...320

Performance testing and load balancing ... 323

Servers of different specifications in a farm ...324

Windows Azure ... 325

Conclusion ...327

Chapter 12: Internet Information Server .. 329

Background ..329

IIS6 and the application pool ..330

Under the hood ...330

Request listening (HTTP.sys) ...331

Request processing (user mode) ... 332

IIS common considerations ..335

Worker process recycling ..335

Bitness (32- or 64-bit application pools) .. 339

Queue length .. 340

Pipeline mode ... 340

CPU limiting .. 341

Processor affinity...342

Health monitoring ..342

Rapid failure detection...342

SSL server affinity and hardware acceleration .. 343

How it works ... 343

Load balancing and SSL ...344

Optimizing performance with SSL .. 345

HTTP compression ...346

TCP effect ...346

CPU effect ..347

Static and dynamic content compression ...347

Static content ...350

HTTP headers ...351

Freshness and validation ..351

Content expiration ... 352

Controlling content expiration in IIS ...353

Tools .. 354

Caching tip ... 354

Reverse proxy ... 355

IIS6 considerations ... 355

IIS7 considerations ... 355

Content Delivery Networks ... 356

CDN service providers ... 356

CDN and IIS7 Application Request Routing .. 357

Browser limitations .. 357

Script CDNs ... 358

Summary ... 358

Chapter 13: HTTP Optimization ...359

Tools .. 359

Firebug .. 359

Fiddler ...362

YSlow ..364

Internet Explorer Dev toolbar .. 371

JavaScript considerations ...372

Use compression ... 373

Minify scripts ... 373

Adopt a caching policy ...374

Place JavaScript files at the end of pages ...374

Reduce the number of scripts ...374

Use a Content Delivery Network (again) .. 375

JavaScript performance analysis ... 375

CSS optimization .. 380

Externalize your style definitions ... 381

Design your CSS for reuse ...382

Keep your CSS concise ... 383

Use CSS instead of JavaScript if possible ..384

Avoid CSS expressions ... 385

Use CSS Sprites to improve HTTP performance ... 385

Remove white space and comments before publishing..386

HTTP efficiency ...387

HTTP 404 responses ..387

HTTP 301/302 redirect responses ..387

Image optimization ...388

Page weight ..388

Reducing ViewState overhead ..389

Control ID page bloat ... 391

HTML white space ... 391

Layouts using tables ...392

AJAX considerations ...392

Problems with AJAX ... 393

Summary ...398

A call to action ...398

xv

About the authors

Paul Glavich

Paul has been an ASP.NET MVP for the last six years, and works as a solution architect
for Datacom. Past roles have included technical architect for EDS Australia, and senior
consultant for Readify. He has accumulated 20 years of industry experience ranging all the
way from from PICK, C, C++, Delphi, and Visual Basic 3/4/5/6 to his current speciality in .NET
with ASP.NET.

Paul has been developing in .NET technologies since .NET was first in Beta. He was technical
architect for one of the world's first Internet Banking solutions using .NET technology.

He can be found on various .NET-related newsgroups, and has presented at the Sydney
.NET user group (www.sdnug.org) and TechEd Australia on numerous occasions. He is also
a member of ASPInsiders (www.aspinsiders.com) with direct lines of communication to
the ASP.NET team. He has co-authored two books on ASP.NET Ajax, has written technical
articles which can be seen on community sites such as ASPAlliance.com (www.aspalliance.
com), and also has his own blog at http://weblogs.asp.net/pglavich. On top of all this, he
also runs the Sydney Architecture User group (http://thesaug.com).

Paul's current interests in technology revolve around anything in ASP.NET, but he also has a
strong interest in Windows Communication Foundation, on which he is a Microsoft Certified
Technical Specialist. Naturally, performance testing and optimisation have both been a major
focus throughout this entire period.

On a more personal note, he is married, with three children and two grandkids, and he holds
a 5th Degree black belt in a form of martial arts known as Budo-Jitsu, a free-style eclectic
method of close quarter combat.

Acknowledgements

We are living in an age where information has never been so accessible, nor the available
content so huge in scope. Much of what we do and say is the result of influences from a
wide variety of factors, be they technical, social, or emotional, and this book is no exception.
One cannot go through life without the help and assistance of others, and it is such a small
thing to acknowledge these factors, though they exert such a huge influence on a person's
ability to succeed. To that end, it would have been impossible to write this book without the
support and love of my family. My wife Michele shows never-ending tolerance to my late

xvi

nights writing, researching, and technical tinkering (and sometimes gaming). My children
Kristy, Marc, and Elizabeth are a constant blessing to me, and also put up with many late
nights, and with me just being a geek. My two lovely grandchildren infuse me with some
of their boundless energy, which I desperately need sometimes. My parents bought me my
first computer, a Vic 20, so long ago, and watched as I spent hours in front of a seemingly
uninteresting screen, and it all began from there. Without all this, I would not have even
started down the technical path, and I am constantly amazed at how lucky I am.

Having been in the computing industry for approximately 20 years tends to bring about a
real appreciation for where the industry is at today. Developing complex applications was
exponentially harder even 5 to 10 years ago, let alone 20 years ago. Distributed, transactional,
high-performing applications are easier than ever to develop. To make this process even
easier, abstractions on complex technologies are developed, and services, frameworks,
components, libraries, and runtimes are all mingled together to create the applications of
today. Measuring the performance of these applications is still somewhat of a "black art." It is,
without question, easier than ever, but if you have ever tried writing your own performance
test tools, or using early versions of performance test tools, you will understand how tedious
and time consuming it can be. Even with a wealth of information available to us, it is still
quite difficult and complex to research the proper steps to setting up a performance rig, what
metrics to analyze, how to record, execute, and analyze performance tests, and what to do
when problems arise.

During my career I have performed a number of performance testing engagements. Without
exception, this involved bringing together substantial amounts of information from various
sources such as blogs, articles, books, product documentation, fellow colleagues, and
anything else I could find. There was no single cohesive source for the information I needed,
and that is how the idea to create this single gospel of performance testing and optimisation
information was born. As a result, if you're doing .NET performance testing, you can save
yourself countless hours of effort by using this book

A good friend of mine, Wallace B. McClure (also a book author), started me on the path to
book writing, and I am indebted to him for providing me with that initial opportunity. It was
from that experience that I was able to form a plan for this book and present it to Red Gate.
Red Gate has been a great company in terms of technology, and produces an excellent set of
both SQL and profiling tools. They wasted no time in moving the idea forward, for which I
am deeply thankful. It would be remiss of me not to mention my editor, Chris Massey, who
has been extremely helpful and responsive throughout the entire book's progress. In addition,
my co-author, Chris Farrell, has made this book what it is by not only contributing quality
content, but by taking on additional content above and beyond any initial agreements, and
allowing this book to be delivered in a timely manner.

Finally, my thanks go out to you, the reader, for taking the time to read this book. I believe
it will prove extremely valuable to you, and I look forward to using more high performing
applications in the years to come.

xvii

Chris Farrell

Chris Farrell has over 18 years of development experience, and has spent the last seven as
a .NET consultant and trainer. For the last three years, his focus has shifted to application
performance assurance, and the use of tools to identify performance problems in complex
.NET applications. Working with many of the world's largest corporations, he has helped
development teams find and fix performance, stability and scalability problems with an
emphasis on training developers to find problems independently in the future.

In 2009, after working at Compuware as a consultant for two years, Chris joined the
independent consultancy CodeAssure UK (www.codeassure.co.uk) as their lead
performance consultant.

When not analyzing underperforming websites, Chris loves to spend time with his wife and
young son swimming, bike riding, and playing tennis. His dream is to encourage his son to
play tennis to a standard good enough to reach a Wimbledon final, although a semi would
also be fine.

Acknowledgements

I would like to thank Paul Glavich for his brilliant focus, and editor, Chris Massey, for his help
and support. Thanks, also, to my wife and son, Gail and Daniel, the sources of my happiness
and inspiration.

xviii

About the Technical Reviewers

Alex Davies

Alex Davies is a software engineer, and works on the .NET tools from Red Gate software. He
got his degree in Computer Science from Cambridge University, and now blogs on Simple-
Talk (www.simple-talk.com) on topics such as .NET performance, debugging, and design
patterns.

Jeff McWherter

Jeff McWherter is the Co-Founder of Gravity Works Design and Development, a design/
development firm based in East Lansing, Michigan. He is also an ASP.NET MVP, ASP Insider
and author, as well as Program Director and a founding member of the Greater Lansing Users
for .NET (www.glug.net).

His lifelong interest in programming began with a Home Computing Magazine in 1983,
which included an article about writing a game called "Boa Alley" in BASIC. Jeff currently lives
in a farming community near Lansing, MI, and when he is not in front of the computer, he
enjoys rock- and ice-climbing, snowboarding, and road trips with his wife and two dogs.

Corneliu Tusnea

Corneliu I. Tusnea is an Australian consultant specializing in developing high-performance
systems, and a Microsoft MVP in Development Security. He has more than 12 years'
experience in designing and developing performance-critical trading systems for various
trading exchanges around the world, as well as developing and optimizing high-traffic
websites for some of the most popular online destinations in Australia. He keeps a blog at
www.acorns.com.au and can be reached at corneliu@acorns.com.au with questions
about performance or security in .NET.

xix

Foreword

As we develop the applications to meet current and future needs, it is only natural to use
current best practices and techniques for our designs and implementations. In the quest to
improve how we develop, we can access a true wealth of information which is available on
design patterns, object-oriented analysis, low-level code techniques and language features.

The technology community is full of articles, blog posts, books, and videos describing things
such as generics, how to implement the observer pattern, LINQ to SQL techniques, CSS
tricks, and a host of other topics. These points are often easily described in a single post or
article, wherein a thorough dissemination of the technique can be presented, and readers and
viewers can quickly gain a much better understanding of the technique or point in question.

Indeed, when broken down into individual and easily digestible components, almost anything
complex becomes much easier to grasp. From the point of view of sophisticated developing,
it is a constant battle to understand how all these components work together, and what the
net effect of that synergy will be. From a functional perspective, we can simply "connect the
technology dots" and ensure that an application performs its intended functions but, from
a performance perspective, this is not so easy. Due to the high levels of abstraction offered by
today's many frameworks, the amount of moving parts to consider is huge.

Yet that vast store of knowledge isn't all good news, because the knowledge of how to
effectively test and optimize your fledgling application's performance is also distributed
across an distressingly wide virtual area, making it difficult to pull all that expertise together
on demand. With this book, I've strived to bring those expertise together for you, and to
provide a distillation of the knowledge you'll need to make sure everything you develop using
.NET runs blisteringly fast. I hope you find it useful.

– Paul

20

Chapter 1: Introduction – The
What and the Why

Performance in web applications is clearly very important. The web potentially allows
millions of users to access your application simultaneously. How is your application going to
cope with such a load? How much hardware do you need to ensure it can handle the required
number of users? What happens to your application when its peak capacity is exceeded?
These are questions that really need to be answered.

As a business, I want to know that the applications supporting my commercial endeavors
can cope with the size and usage patterns of my customer base. I also want to make
accurate estimations around the amount of infrastructure required to support my current
customer base, and what infrastructure is going to be required to support my future
customers, based on a projected growth factor. All this can apply to both intranet and broader
Internet applications.

As solution developers, we try to write software that is fast, responsive and scalable; but until
we can measure and quantify these factors, we can really only make guesses based on the
technology and techniques used, and the environment that the application must operate in.

Effective performance, load, and stress testing can be used to answer all these questions. It
removes the vague assumptions around an application's performance, and provides a level
of confidence about what the application can do in a given scenario. But what do we mean
by performance testing, load testing, and stress testing? Often, these terms will be used
interchangeably, but they actually refer to slightly different aspects of an overall process.

Performance testing

This involves testing the application at increasing levels of concurrent users, and measuring
how the system reacts under the increasing load (not to be confused with load testing, which
I'll come to in a moment). The concept of "concurrent usage levels" is one which gets thrown
around a lot in testing and profiling, and it refers to the number of users that are accessing
your web application at the same time.

Typically, a performance test may start out by simulating a low level of concurrent users, say
ten, and then increase the number of concurrent users on the system at defined intervals, and
measure the effects.

Chapter 1: Introduction – The What and the Why

21

This type of testing is used to examine response times and system usage patterns such as
CPU usage, memory usage, request execution time, and a host of other factors which will be
discussed in detail later in this book. These attributes are used to characterize the system at
various points, and to define patterns in the application's behavior when operating at various
levels of concurrent users.

Performance testing is used, not only to determine patterns or characteristics of an
application at various levels of concurrent users, but also to determine bottlenecks and
operational capacity. This all contributes to the overall capability of an application.

Load testing

Load testing involves executing tests against the system at a consistently high load level or,
typically, a high number of concurrent users. The number of concurrent users is naturally
relative to each application, but is high enough to present a large load to the system being
tested. While load testing is technically a separate, but related, aspect of performance, it can
be combined with general performance testing. The primary reason to keep them separate
is that you don't really know what a high load is for your application until you begin actually
testing it and analyzing the metrics.

This type of testing is often referred to as "volume testing," as the application is tested against
high volumes of load for extended periods of time to determine its reliability, robustness, and
availability characteristics. In other words, how does your application perform when it needs
to handle nearly its maximum capacity for hours or even days at a time?

Stress testing

Stress testing is very similar to load testing, except that the focus is on continuous stress
being applied to the system being tested. The goal is to examine the system as it is being
overwhelmed with applied load. As you can imagine, this can cause the tested system to
operate at levels beyond what it's capable of, and the net result is usually some form of failure,
ranging from requests being rejected to complete system failure. The primary question
behind stress testing is, "What is the recoverability of the application being tested?" which
also contributes towards the overall availability of the application.

This may seem somewhat unrealistic, but you are trying to determine how the application
functions when placed under extreme conditions. Does the application refuse requests and
then recover gracefully after a short period, or does the application never recover at all?

Chapter 1: Introduction – The What and the Why

22

This information can be used to confidently answer questions of the "What if…" variety. To
take an obvious example, a project stakeholder may ask, "What happens if the system gets
overloaded with requests? Will it stop functioning?" Stress testing allows you to answer these
kinds of questions with confidence and a good degree of accuracy.

Profiling

Performance, load, and stress testing all represent a broad, general approach to determining
the performance characteristics of your application. In order to improve application
performance, you need to determine what specific aspects of the application need improving.
You also need to be able to quantify the performance of isolated parts of the application, so
that you can accurately determine when you have improved them.

This is what profiling is all about – getting a performance profile of your application or, more
specifically, quantifying the performance characteristics of a "slice" of it.

Whereas the broad-based performance testing will identify slow pages or how the application
copes with a high load, profiling will highlight, at a granular level, what methods take a long
time to execute, what objects are utilizing excessive amounts of memory, and so on.

With that in mind, there are generally two types of profiling when it comes to .NET
applications: performance-based and memory-based. Performance profiling measures how
long a method or function may take to run, and memory profiling measures how much
memory certain aspects of the application (or even individual objects) use.

Profiling is a crucial part of the overall performance testing process. Performance testing can
provide the broad metrics and characteristics required to determine where changes need to
be made, and profiling can pinpoint the exact areas that need those changes.

Cost benefits of performance
and load testing

Performance testing is a comprehensive and expensive operation. It takes a lot of time to
design tests, execute them, and then gather, manage, and analyze the data. Once you have the
results and have drawn some conclusions, you often need to make some changes to improve
the overall performance of your application. This typically involves changing and refactoring
it to improve upon the areas that are performing badly.

Chapter 1: Introduction – The What and the Why

23

In addition, the hardware and infrastructure costs can also be prohibitive, depending on
how hard you would like to push your performance tests. If you want to simulate a large
number of users, you are going to need an isolated network and enough machines to simulate
that load.

This whole process can take a significant amount of time, and means that resources are
diverted away from enhancing the functional aspects of the application. It's easy to see
why many organizations shy away from performance testing, or only partially address
the situation.

This is exactly why it is so important to do it properly. Making sure that your tests
are effective and require minimal effort to execute is important to the success of your
performance-testing regime. Automation of tests is crucial in this regard, and the collection
of results should be as painless as possible. You want to be able to get the results of your tests
easily, analyze them quickly, know exactly where to make changes, and demonstrate the
benefits to the business.

There are really two major beneficiaries of performance testing. The first is the business. The
business, which is typically sponsoring your application, not only has a vested interest in
having it perform well; it also needs the metrics you provide through performance testing to
ensure infrastructure, budgets, and projected growth requirements are all taken into account.

The second set of beneficiaries of performance testing are the application developers
themselves. The metrics can be used to ensure that the development process is not itself
generating performance issues. You can ensure that developers are not writing inefficient
code, and that the architecture of the application is not an impediment to performance.
Regular or periodic testing can ensure that development always stays on track from a
performance perspective which, in turn, will cause less stress all round.

So far we have discussed the individual aspects of performance testing and what they mean.
This does not mean that we should necessarily execute them in isolation. Given the related
nature of performance, load and stress testing, you can run all these types of tests together,
provided you carefully manage their execution and the subsequent collection of metric data.

The following chapters in this book will demonstrate how to do exactly that: to provide the
most value, for as little effort as possible.

Example scenarios

What value does performance testing really offer to the business? I can most easily describe
this by providing two comparative scenarios. One, where performance testing was not done,
and one, where it was. Consider the following two scenes.

Chapter 1: Introduction – The What and the Why

24

Scenario 1

Business Stakeholder
"We currently have a user base of approximately 15,000 users. We expect about 5,000 of these
users on the system at any one time. Can the system handle that?"

Solution Architect
"Well, I cannot be exactly sure, but we have used best practices for the system architecture
and coding techniques, so it should be able to handle a reasonable number of users."

Business Stakeholder
"What exactly does this mean? I have a budget for three web servers, maybe four, but I am
unsure how many we need. How many users can a single web server sustain?"

Solution Architect
"Again, I cannot give you an accurate estimate, but I think three web servers should be
enough. I think that one web server may be able to handle around 2,000 concurrent users, so
three should be sufficient. If you have the budget for four servers, then that's probably a wise
decision to go with, just in case."

Business Stakeholder
"What about our usage peaks, as well as our projected growth? During certain peak usage
times, we could experience up to 10,000 concurrent users. We also expect to grow our
customer base by approximately 1,000 users per year. At what point should we be purchasing
extra infrastructure?"

Solution Architect
"Hmm, I'm not really sure right now. I'll need to perform some investigations and get back
to you."

Scenario 2

Business Stakeholder
"We currently have a user base of approximately 15,000 users. We expect about 5,000 of these
users on the system at any one time. Can the system handle that?"

Solution Architect
"We have measured the application on a single web server of a slightly lower specification
than what is in production. On this machine, we could achieve approximately 2,000
concurrent users with a response time of less than five seconds. A system of three web servers
could handle this required load with good response times."

Chapter 1: Introduction – The What and the Why

25

Business Stakeholder
"What exactly does this mean? I have a budget for three web servers, maybe four, but I am
unsure how many we need. How many users can a single web server sustain?"

Solution Architect
"As I mentioned, one web server, of lower specification than production, can handle
approximately 2,000 concurrent users at any one time. A higher specification machine, such
as the one in production could handle a little more, perhaps up to 2,100. Three web servers in
a load-balanced scenario will easily cope with the desired load. I would recommend that the
fourth web server be utilized to ensure adequate breathing space and allow for some growth."

Business Stakeholder
"What about our usage peaks, as well as our projected growth? During certain peak usage
times, we could experience up to 10,000 concurrent users. We also expect to grow our
customer base by approximately 1,000 users per year. At what point should we be purchasing
extra infrastructure?"

Solution Architect
"Our current test metrics show that, while the system could sustain that load, response times
may degrade to approximately 10–15 seconds per page. If this is acceptable by the business,
then the four web servers you've mentioned will be sufficient. If you want to maintain the
'five seconds or less' response time, I would recommend having two extra web servers on
hand to share the load at expected peak times or, if budget permits, to be online constantly.
At your projected growth rate, the system will easily cope for approximately two years, so I
would suggest you look at provisioning a new server every eighteen months. You would be
wise to assess the customer growth every year to ensure that it has not massively exceeded
expectation. If that occurs, the system may become unacceptably slow, and cause the load to
exceed acceptable operational capacity."

In these two scenes, it is obvious that the second is the situation that a business stakeholder
wants to be in – provided with the answers to all their questions, and armed with enough
information to be able to make accurate estimations for budget and infrastructure.
Ultimately, being able to properly service the current and future customer base is a very
attractive end result for any business. Performance testing provides known quantities for
characteristics of your application that, without performance testing, are unknown and, at
best, rough guesswork.

Chapter 1: Introduction – The What and the Why

26

Sometimes, what seems right
can be wrong.

As solution architects, we are presented with numerous theories on best practices, a
constantly changing technology landscape, and widely varying opinions from highly rated
industry experts. This, on top of a host of other variables, makes definitive statements about
the performance capability of our applications very difficult.

There are many good practices to utilize when it comes to flexible, easy-to-test solutions,
including inversion of control (IoC), design patterns, and tiered architecture, not to mention
using the latest and greatest technology. Yet, quite often, the most flexible and loosely
coupled architecture comes at the expense of performance, and the allure of utilizing the
latest technology can actually be a big performance risk.

Many development-related technologies are aimed at making developers' lives easier and
more productive, meaning that a runtime or technology stack does a lot of the work for the
developers. But how is this implemented in the runtime? It might be easy to implement, and
have taken an incredibly short time to develop, but has it cost the application a lot in terms
of performance?

Without testing, we can never really be sure. Technologies such as LINQ (.NET Language
Integrated Query) enable fantastic productivity gains, but the danger is that they can make
complex things too easy. Later in this book, we will have a look at some of these technologies
that make developers' lives easier, but which can come at the cost of performance if not used
with caution.

Conclusion

As the title implied, this chapter has just been an introduction to what performance
testing really means, and what the different aspects of performance testing are. Performance
testing, stress testing, load testing and profiling are all singular measures of an application's
performance, which contribute to the overall understanding of its usability experience.
Quite often, these measures are intangible until your application is deployed and being used
by thousands of users, by which time it's really too late to be worrying about how it's going
to cope.

The wonderful functionality or fantastic user interface features of your applications will all
count for nothing if the application takes over 20 seconds to load a single page.

Chapter 1: Introduction – The What and the Why

27

Clearly, it is extremely important to be able to quantify the performance aspects of your
application, not just for the business (although this is one of the most crucial reasons) but also
to validate the architectural and technological decisions made about the application itself.

Currently, there is a vast amount of vague, high-level information describing how someone
might go about achieving the goals I've mentioned. In the chapters that follow, you will find
detailed instructions on how you can achieve these goals, and effectively demonstrate the
performance characteristics of your applications.

No longer will performance testing be a mystical "black art," dominated by the all-knowing
few but, rather, a regular part of your application life cycle, integrated into the development
and deployment plan, and producing tangible value.

28

Chapter 2: Understanding
Performance Targets

Identifying performance targets

Naturally, in order to achieve a goal, you first need to understand what that goal is. So, before
you can determine whether your application performs well, you need to understand what
that means in terms of the metrics your application needs to produce.

Whether or not your application performs well is a relative target; not all applications are
the same, so it stands to reason that the measure by which an application's performance
is tracked changes, based on its requirements. This is where the business side of things
comes in.

It is easy to say that a given business has a customer base of 5,000 concurrent users, but what
does that really mean? It means you need to ask yourself questions like those below.

• If your application is being used by the entire customer base, what is the typical
usage pattern?

• What percentage of users are performing searches?

• What percentage of the users are buying goods?

• What percentage of users are simply browsing around?

Having an accurate determination of user behavior is absolutely critical to determining
whether your application can meet the performance needs of your customer base, and this is
what the business needs to decide. This task is made a lot easier if there is existing behavior
that can be used as an example. If there is no existing data on "typical" user behavior, then
an educated guess obviously needs to be made. Also, given that technical staff usually have
a biased view of the application usage, it is probably best if the business can provide some
metrics around what users are doing on the site (by that, I mean what percentages of users
are performing what actions on the site).

Chapter 2: Understanding Performance Targets

29

Structuring test breakdowns

An application can have many functional paths, and the amount that a functional path is
exercised is based upon typical business scenarios and user behaviors. These assessments
are made far more accurate if based on statistical evidence, such as evidence based on past
activity or, perhaps, analytical statistics gathered from companies specifically engaged to
measure usage patterns of the site. This kind of data will provide a perfect template from
which to draw test breakdowns. If no such analytical evidence is available, then the business
must provide as accurate an estimation as possible around usage patterns and functional
paths to the site.

Quite often, a site map will be produced as part of the functional or technical specification
of a web application, and this can be used as the basis from which to ascribe weighted
percentages to customer use (although they can often contain too much detail). An example
of a usage diagram might look something like Figure 2.1.

Home Page

Search Page

Product Selection Page

Promotions Page

Login Page Checkout Page

Purchase Successful Page

Home Page

Profile Page View Preferred Products Prices Logout

30%

20%

10%

Figure 2.1: Example usage patterns.

While this example is somewhat simplistic, it is indicative of the type of diagram or
"breakdown" required when structuring your performance tests. It is important to ensure
that you exercise any aspects of the application which are deemed "heavy" in terms of
performance (i.e. performing a lot of work) to gain metrics on just how much of an impact
they are having. However, it is also important to note that performance tests are not like unit
or integration tests, as it is not vitally important to cover every functional path and achieve
high code coverage when running performance tests.

For example, consider the fact that different functional paths and usage scenarios quite often
exercise similar code paths. In the same way, from a performance perspective, the same, or

Chapter 2: Understanding Performance Targets

30

very similar, performance can also be achieved from different usage patterns. Obviously, it is
necessary to model the different usage patterns that the business has identified, but trying
to exercise every single aspect in fine detail will often end up causing a lot more work than is
necessary, while achieving comparatively little extra value from a performance-measurement
perspective. Generally speaking, performance testing is a broader approach than unit,
integration, and functional testing.

Determining what load to target

By this point, we have a good understanding of what tests we need to run, and how these
tests are going to be distributed across a performance run to accurately simulate the target
application's performance requirements.

What we still need to determine is how many concurrent users the application needs to
be able to handle at various times. This is not a simple static number, though, as a typical
application needs to be able to deal with concurrent user load in a number of ways.
Specifically, it needs to be able to:

• remain responsive during a normal day's use, with a "typical" amount of customer or
client concurrent usage

• remain responsive during the high peak times, where almost the entire user base might
be using the application concurrently

• be resilient enough to sustain extreme loads without complete failure, and return to
normal operation when stress or load levels return to normal.

There are a few points here which are open to interpretation. For example, when the
application needs to "remain responsive," exactly what does this mean? Unfortunately, this
is something that can only be answered by the business in consultation with technical staff.
Quite often, if you ask the business how responsive each page in the application should
be, they respond with "sub-second" as a default answer for all pages. While this might be
achievable, there may often be some aspects of the web application that require serious
computation, and are thus very hard to deliver in sub-second time-frames.

It is also important to allow for some variance in these response figures at different load
levels. The response times during normal daily use may differ quite significantly compared
with times when the server is under extreme loads. In an ideal world, it would be preferable
to have a consistent response time across all load levels, but this can be costly and sometimes
extremely difficult to achieve. If it is achievable (as with the ideal sub-second response time),
it might require significant additional computational power, and this cost will need to be
quantified and justified to the business. Indeed, the business needs to be involved more or

Chapter 2: Understanding Performance Targets

31

less throughout this entire stage of the profiling process, as you will need to be able to make
several informed judgments before you can proceed with the actual testing.

Note

It is important to specify a frame of reference regarding what are acceptable response
times for your pages. This is also why it is important to involve technical staff in your
consultations, so that the mechanics behind each page and function can be given due
consideration when determining how they should perform.

So, what are the metrics we actually need to identify in terms of concurrent users? There are
no hard-and-fast rules here, as this is often dictated by the application and what is important
to the business. Generally speaking, you will almost certainly be looking at:

• The number of typical concurrent users that represents average usage.

• This might be expressed by number of page views per hour, or number of total users
visiting the site per day (assuming an even number of page views per user). As long
as a metric-over-time is provided by the business, the average typical concurrent
user rate can be calculated from this.

• The number of concurrent users during peak times.

• This figure represents the peak usage times of the application, and is an estimation
of what the absolute peak number of concurrent users is. It is obviously important
that the application can handle these peaks, as well as the normal day's usage.

• The project growth of the user-base over time.

• This is important for the application to accommodate future growth and not need
sudden provisioning of extra resources soon after implementation.

In addition to specifying the accepted response times during these various concurrent use
cases, it is also worth considering differences in these times across the different pages on
the site. In most applications, there is a small subset of pages which have exceptionally high
traffic (such as login pages, home pages, etc.) and these pages should often be considered
individually for testing purposes. In any case, different pages will frequently have different
computational costs, so it may be acceptable to have longer response times on some pages.

This may not be the case for most of the pages so, where certain pages involve more resources
or computational cost, special consideration must be given to achieving the desired response
times. At the very least, the cost of achieving the response time target should be known, so
the business can properly make a value decision.

Chapter 2: Understanding Performance Targets

32

There does not need to be a formal document listing these considerations, but some common
location for reference and comparison purposes is a good idea. This might be a wiki page,
a Word or Excel document, or some other listing of the agreed and expected targets and
response times. A simple example of this is shown in Table 2.1.

 Projected growth in
concurrent users

Scenario Concurrent
users

Accepted
response
times

Pages applicable
to

Next year Next 2 years

Typical
usage

1,000
< 5
seconds

reporting.aspx 1,500 2,500

Typical
usage

1,000
1–3
seconds

all (except report-
ing.aspx)

1,500 2,500

Peak 2,500–3,000
< 8
seconds

reporting.aspx 1,500 2,500

Peak 2,500–3,000
3–5
seconds

all (except report-
ing.aspx)

3,500–4,000 4,000–5,000

Table 2.1: Example of response time expectations.

This table show a very simplistic example of what may be produced by discussions between
the business and technical staff around expected response times and concurrent user load.
The goal of this is to produce explicit guidelines of what is acceptable by the business at
various points of the application's usage, within the context of the current user base. Without
explicit guidelines in these areas, all the relevant test conclusions are subjective and open to
interpretation. Bearing that in mind, it is once again up to the business, in conjunction with
consultation from appropriate technical staff, to come up with realistic and achievable goals
that meet business needs.

Now that we have clear expectations around application performance, you would think we
have set our targets to achieve when doing performance testing, right? Not quite.

Contingency in your estimations

As part of a general rule, when the table of estimations has been produced around
concurrency expectations and response times, it is important to emphasize that these
are just estimations. They have plenty of potential to be incorrect. In fact they probably
are incorrect but, because we have used whatever metric data we can, as well as knowledge
of usage patterns and systems, they should be reasonably close to reality. As a result of all

Chapter 2: Understanding Performance Targets

33

this, even using these estimations as our limits for performance testing is not going to be
accurate, either. I generally recommend that you double the concurrent load targets for any
given scenario.

Why should you double your estimates, you ask? This can be thought of as our contingency
component. In many estimation processes, such as when you judge the time and effort
taken to complete a project, some level of contingency is usually introduced to cater for
errors or unknowns in the estimation process itself. If we double our performance targets,
it is reasonable to assume that, if we can hit them, then even if our initial estimations were
incorrect by a small margin, those errors are accounted for. We can then be confident, not
only that the application does meet the required business goals, but also that it can handle
more load than anticipated, and performs well within our set bounds.

The performance targets in Table 2.1 may seem excessive once doubled, but remember
that part of the purpose of performance testing is to give the business a relatively accurate
determination of hardware and infrastructure requirements for current and future use of
the application. Using doubled performance targets clearly ensures that we cover current
requirements, future requirements, and also any contingency that either the business or
technical estimations may have failed to address. It provides a safeguard in the sometimes
tenuous game of estimation.

As a bonus, this will obviously also guarantee responsiveness under normal circumstances; if
the system maintains acceptable responsiveness under double the expected load, then it will
be even more responsive under the originally estimated load.

The previously shown table, and its double, are by no means the only way to express
estimated loads, current needs, projected growth, and performance targets. These are
provided simply as examples, and you can use them as they are, or find different ways, that
suit your individual needs, to express your targets. The main point here is that it is absolutely
essential to ascertain these targets before any testing is performed. If you don't, then there
will only be a vague understanding of what needs to be achieved in the performance testing
process. As I said, performance testing is an expensive process, and the need to gain valuable
results, as opposed to ambiguous results which do not allow proper conclusions, is of
paramount importance.

One final thing to consider is the percentage of new users accessing the site, compared to
returning users. This will have implications in terms of browser caching efficiency, and will
affect how many requests are issued against the server. The more returning users visit the
site, the more data will be cached by the clients' browsers, and so fewer requests are likely to
be issued against the server for resources within a particular page.

This will also be dependent on the type of application; this metric is quite important for
public-facing web applications, but intranet-based applications may place less significance
on it. Often, to present a worst case scenario, the amount of new users will be assumed to
be 100%.

Chapter 2: Understanding Performance Targets

34

This means that each test will consistently request all resources for a page, whereas all
common web browsers do cache resources.

Estimate the mix of browsers for your
web application

Finally, in a web application, it is also important to be able to estimate the percentage of
different browsers that will be used to access the website. Different browsers from different
vendors naturally all have different performance characteristics, and therefore impose
different performance factors on the site.

If the website is public-facing, generally the percentage of different browsers can be gleaned
by the respective market share of each browser. Quite often, the business will dictate which
browsers should be used, and even which version will be supported.

If the website is intranet based, or has its visibility limited to within certain units of the
organization, then the organization in question will often have set standards about what
browsers are permitted as part of the standard operating environment.

The final outcome of all these estimations is that you will be able to record tests that exercise
accurate, or at least realistic, usage patterns of the site. Once these are recorded, you can then
weight the results by applying percentages according to how often each test is executed as
part of the entire load test, which will be essential in establishing which result-sets are the
most relevant for your purposes. In addition, you can also specify how much each browser is
simulated within the overall load test. Within Visual Studio Team Test, you can end up with a
load test, specifying a test and browser mix, looking something like Figure 2.2.

We will discuss in detail how to set up the test percentage and browser mix in a later chapter.

What data do we measure?

We have now identified our performance targets across a number of scenarios, and we have
also identified the response times required across them by the business. Now we need to
establish what metrics we use to compare against our targets.

A huge variety of metrics are measured and analyzed as part of performance and load testing.
For comparative purposes against the targets that were identified earlier, we are primarily
concerned with a few key metrics which will give us an immediate idea of the application's
performance. These are Time to First Byte and total page response time.

Chapter 2: Understanding Performance Targets

35

Figure 2.2: Sample test and browser distribution.

Time to First Byte

Time to First Byte (TTFB) represents the time it takes a server to issue the first byte of
information, typically in response to a request from a web browser. This time covers the
socket connection time, the time taken to send the HTTP request, and the time taken to get
the first byte of the page. It is a good indicator of the responsiveness of the web application,
as the server must receive the request, interpret it, execute the ASP.NET pipeline to process
the request, and produce a response.

This is one of the primary metrics to use when determining how responsive a site or web
application is. A large TTFB value means that a typical user will see no activity in their
browser (apart from whatever "waiting" indicator the browser uses) for a long time, until that
first byte of information is received from the server and the browser can start parsing.

This is also typically a good indicator of how fast the web application can process the requests
made against it, as no response will be issued until the web server/ASP.NET has finished
processing a given request. There are caveats to this, but I'll cover them alongside analysis in
later chapters.

Chapter 2: Understanding Performance Targets

36

Total page response time

The total page response time is often referred to as simply "response time." This metric
includes, not only the TTFB time described previously, but also all the dependent requests
required to completely load and display all aspects of a web page. This can include items such
as images, JavaScript files, and Cascading Style Sheet (CSS) files.

In contrast to the TTFB measurement, the total page response time measures the time it
takes for a page to completely finish loading all resources required to present the page to
the user. This may include non-functional aspects as well, such as tracking images hosted
on external sites. It is important to quantify the effect that external tracking mechanisms
can impose upon the site. Once this is done, it is valuable to remove this component during
performance testing, to get a more accurate view of the site's performance. External tracking
mechanisms are normally beyond the control of the application and cannot, therefore, be
modified or improved.

To further illustrate these points, the following diagrams show some TTFB and total page
response time breakdowns. The first diagram represents a personal, hobby site,
http://www.theglavs.com and the second site represents the Microsoft main site at
http://www.microsoft.com.

Figure 2.3: www.theglavs.com response times.

Chapter 2: Understanding Performance Targets

37

Figure 2.4: www.microsoft.com response times.

From the previous two diagrams, it is evident that the Time to First Byte and the total page
response times can vary quite considerably. This will be dependent upon the number of
other resources and artifacts that are present on the particular page being measured. It is
important to be able to quantify these differences, as your web application may respond very
fast on its own, but the dependent requests and resources in the page may be degrading the
performance considerably.

What about average response time?

The average response time for a web application is often a misleading metric, as there is
ambiguity around what the average time actually means.

• Does it refer to the average TTFB?

• Does it refer to the average total page response time?

• Does it include static resources such as CSS and image files?

• Does it include the low end figures at low levels of load or at other different times?

Chapter 2: Understanding Performance Targets

38

It is worth bearing in mind that serving static files will be much faster than processing a
request through the full request execution pipeline so, if static files are included in this
metric, then average response times will appear faster than they really are. The result
is obviously more ambiguity, and the metric will provide no real correlation to page
responsiveness and overall application performance.

There is also the question of the point at which the metric samples are taken to determine the
average. A common practice is to use percentile brackets to determine the average response
time. For example, if a 90th percentile was used to determine the average response time, this
would mean that, out of 100 requests, ordered from best to worst times, the requests in the
last 10% of requests (that is, the ten worst-performing requests) are used to find the average.

Because of this ambiguity, the average response time is generally best used to compare against
previous averages for the same time period, but only for the purposes of determining if the
latest performance run has shown improvement or degradation compared to the last run (in
other words, it's used as a relative measure).

This can be a useful metric, though I always recommend that this percentile bracket should
be used in conjunction with examining the more specific TTFB and total page response times
discussed previously. Equally, you don't necessarily have to use the 90th percentile – the 85th
percentile could just as easily be chosen to determine averages. That being said, I recommend
that you use the 85th, 90th, and 95th percentile brackets, as these provide a valuable insight into
the worst case scenario of response times for whatever is being tested, in terms of both Time
to First Byte and total page response time.

Sweet spots and operational ceilings

We've seen that the performance targets which have been identified by the business represent
acceptable response times under various load conditions. Irrespective of the current system
load, these response times are often referred to as the "sweet spot," and are the response times
and usable states that best serve the users of the application.

The sweet spot may initially be nowhere near what the business requires from the
application. The response times expected of the application may initially be at concurrent
user levels far below what is deemed necessary to serve the customer base. It is crucial to
identify the sweet spot, and how far from that target the application currently is, as you'll
need to make those two states match before business requirements can be met.

However, the sweet spot is just one aspect of the application. It is also important to know
what the limit of the application is, and whether it is resilient enough to cope with extremely
large user loads.

Chapter 2: Understanding Performance Targets

39

This is the stress-testing aspect of performance testing and analysis, and requires you to ask
the questions below.

• How long can the application cope with relatively high concurrent user loads before it
becomes totally unresponsive?

• In addition, what characteristics does the application exhibit at these high concurrent
user loads?

These are important questions in determining the operational characteristics of the
application. The number of concurrent users (or "load") that the application can withstand
before becoming totally unresponsive is referred to as its "operational ceiling." That is, the
ceiling or limit at which the application can operate before failure. This limit will typically
involve excessive response times that make the website practically unusable, but this metric
still serves as a good comparative indicator against previous performance tests. It also
provides valuable evidence as to what will happen when the application experiences a larger
load than it can handle.

Figure 2.5: Example performance run graph.

Figure 2.5 shows an example performance run. The red line represents concurrent user load,
the blue line represents response time, the purple line represents errors per second, and the
X-axis represents the time component of the performance test. It is clearly apparent where
the operational ceiling is, as errors per second and response time make a sharp change at
approximately one hour and twenty minutes into the run.

In addition, we can discern that the sweet spot for this application (in this case, a Time to
First Byte response time of less than five seconds) is between the start of the performance run
and approximately forty minutes into the test.

Chapter 2: Understanding Performance Targets

40

Using Visual Studio Team Test we can drill into these results to determine the concurrent
user load at the sweet spot as well as the operational ceiling. This process will be described
later in the book.

Conclusion

The objective of this chapter is to provide an understanding and a framework around
determining what targets need to be identified for a web application to be classified as a
well-performing application. This is a relative term that needs to factor in the user base
and the business which the application serves. There are no "right" answers, but the more
experience a developer gains, the more honed their instincts will become.

Having these targets identified means that the relatively expensive exercise of performance
testing has a well-defined set of goals which can be measured and tested against. In addition,
the business has a clear set of measurements from which to determine whether the
application meets its requirements. These measurements provide a degree of confidence in a
technical procedure that is typically unfamiliar territory for businesses.

The sweet spot and the operational ceiling aspects of the application provide valuable
evidence into how the application performs at various load levels. With this evidence, as
solution architects, we can provide informed conclusions around the application capabilities,
and also how estimate much time and effort is needed to achieve the goals of the business.

The following chapters will take you through the technical steps required to ensure that the
business and technical staff alike can ensure that the application performs as required.

41

Chapter 3: Performance and Load
Test Metrics

What metrics do we need?

The purpose of running performance, load, and stress testing is to gather metrics about a
system so that you can determine which parts of it are performing well, and which are not.

This sounds simple enough, but the myriad combination of data-types to record can make
choosing which to use difficult. For example, if the wrong set of metrics were recorded for a
performance test run, the system might appear to be able to cope with a given load relatively
easily. However, in reality the system may have been experiencing severe problems in areas
that simply weren't measured.

Equally, one of the most frustrating things is to have just enough data to show that a problem
exists, and vaguely where it is, but not enough to provide accurate information as to why.

The short answer as to what metrics to record would be that recording everything possible
is ideal. Indeed, if at all possible, then this is a fail-safe approach to ensuring you have all the
data necessary for analysis. However, as you can imagine, this is often just not practical for
any one of a variety of reasons. When discussing performance and load test metrics, the data
gathered is quite different from data gathered during application profiling. This chapter will
deal primarily with the former. I'll discuss profiling data in the context of profiling itself (and
the associated toolset) in Chapter 6.

To start with, we'll deal with the most basic metrics that will provide the quickest indications
of application performance in most typical scenarios, before moving on to more specialized
metrics for given scenarios.

Basic metrics

So what is required to meet the most diverse set of needs? There are some basic metrics
which are important at all levels of testing, regardless of whether data is being collected from
a database server, application server, web server or even a workstation running a web browser
to access a web application. Most of the data is gathered via the performance counters that
will be discussed in Chapter 5.

Chapter 3: Performance and Load Test Metrics

42

These are typically accessed using the PerfMon tool (perfmon.exe) or via Visual Studio Team
Test. Visual Studio Team Test also collects additional metric data specific to web applications.

The most common (and mandatory) counters required at any level of testing are CPU
utilization and memory usage. Both are early indicators of problems in an application.

High CPU utilization can indicate that an application is performing tasks very inefficiently,
or is perhaps running computationally intensive tasks in unexpected ways; as a benchmark,
an application that constantly maintains more than 90% processor utilization would
be considered to have high CPU utilization. Although today's high-level languages and
frameworks provide constructs that are easy to implement, it is often not apparent what
processing is required to achieve the desired functionality.

High memory utilization can indicate that an application is not using memory efficiently, or
is perhaps not releasing resources appropriately. There are obviously instances where using
a lot of memory is required, but not releasing that memory as soon as possible is a serious
issue, and this is how memory leaks can manifest. As an application is used over time,
a memory leak causes memory usage to increase steadily until the available resources
are exhausted and, since running low on memory obviously has a big impact on system
performance, it is imperative that memory be managed correctly. It is a common
misconception that because of the .NET garbage collector silently operating in the
background, cleaning up memory, memory leaks cannot occur. This is far from the truth.
Items such as static objects, event handlers referencing shared data and many other things
are ways in which the .NET garbage collector can interpret an object as in use, when in fact it
is not. This can build up over time and cause memory issues. Later in this book, we will look
at the common mistakes with respect to memory and performance issues, what to watch out
for and how to overcome them.

CPU and memory usage are also applicable at all levels of an application, regardless of
physical topology. Even a user's system, accessing an application via a web browser, is a good
candidate to record CPU and memory usage. High indicators in this situation could indicate
inefficient JavaScript being executed in the browser on that machine, for example.

CPU utilization and memory usage are basic indicators that should form part of every
metric set recorded, regardless of system role. System performance problems will almost
always manifest via one of these broad metric counters, indicating the need to investigate
further. PerfMon can be used to gather this data and, in fact, defaults to capturing processor
utilization (amongst other counters).

Chapter 3: Performance and Load Test Metrics

43

Figure 3.1: Default PerfMon counters – Windows 7 / Server 2008.

For the basic performance counters, % Processor Time in the processor category and %
Committed bytes in use (for a high-level view), Committed bytes, or Available Mbytes in
the memory category are sufficient for initial analysis.

Figure 3.2: PerfMon memory performance counters.

Chapter 3: Performance and Load Test Metrics

44

Much like PerfMon, Visual Studio Team Test will capture CPU utilization and memory usage
in every performance test run by default. However, remember that this relies on remote WMI
(Windows Management Instrumentation) communication, and sometimes this cannot work.
Also, performance metrics may need to be analyzed by teams or individuals who do not have
Visual Studio Team Test or access to the results of the performance tests; hence the need for
separate PerfMon-recorded data.

Web application basic metrics

In addition to the basic CPU and memory counters, web applications are often broadly
measured by two other characteristics: response time and requests per second. Response
time refers to how quickly the server can provide a response to the browser, and requests per
second indicates the throughput of the server, and shows how many requests it can handle
every second. Both metrics provide an indication of how efficient an application and server
are at processing requests and providing responses. Low CPU utilization and low memory
usage will not mean much if a web page takes a long time to load.

Quite often when designing web applications, a business will specify that a particular page is
considered to be performing well if the response time is less than a certain amount, usually
measured in seconds. For example, the business can specify that the home page of the web
application must load in less than five seconds.

At this point, it is important to note that "response time" is a broad term that can be
interpreted in a few ways. Since part of the purpose of performance testing is to remove
ambiguity about an application's performance and the business's expectations, it is necessary
to clarify exactly what response time means.

A web page is typically made of many assets, including such things as the HTML itself,
images, Cascading Style Sheets (CSS), JavaScript, and many others. A web browser will not
load all these assets as one sequential block and subsequently display them on screen, but will
rather load the page in parts. The HTML is downloaded first, and then any referenced assets
are requested. These secondary assets are often referred to as "dependent requests," and are
usually accessing static resources such as CSS files, image files, and so on.

Static resources are typically delivered much faster than the HTML markup itself, since no
real processing is required to serve them to the browser; they are simply loaded from disk as
requested. In addition, Internet Information Server has extensive support for caching these
requests, making accessing them even quicker.

By contrast, the application is typically required to perform some processing before sending
the resulting HTML to the browser. In ASP.NET webforms applications, the application will
go through the full page event life cycle (in simplified terms, consisting of 18 individual steps)
before finally rendering some content. Just as an example of just how much is involved in this,

Chapter 3: Performance and Load Test Metrics

45

when an ASP.NET webforms page is requested, the following (albeit simplified) page life cycle
is executed:

• ProcessRequest

• DeterminePostBackMode

• PerformPreInit and OnPreInit

• InitialiseThemes and ApplyMasterPage

• ApplyControlSkin

• OnInit

• TrackViewState

• LoadControlState and LoadViewState

• OnPreLoad

• OnLoad

• RaiseChangedEvents and RaisePostbackEvent

• OnLoadComplete

• EnsureChildControls and CreateChildControls

• OnPreRender

• SaveControlState and SaveViewState

• RenderControl

• BeginRender and Render

• EndRender

Clearly, a lot of processing occurs before the actual rendering of any content to the browser,
so the efficiency of the application code executing during this life cycle is what will determine
the overall response time of the page.

While the life cycle of an ASP.NET MVC request is not as substantial as a webforms request,
there are still significant processing steps required to generate the HTML response.

Once the browser receives the first byte of HTML, the client can be assured that the server
processing is complete and the results of processing are being sent to the browser. This time
is referred to as Time to First Byte (TTFB) and is one of the primary measures of response
time in web applications.

Chapter 3: Performance and Load Test Metrics

46

Given the amount of processing required for ASP.NET to send a response to the browser, it is
easy to see how static resource requests can be much quicker than any page. This is important
to note as, when response times are averaged across a performance run, only page response
times should be factored into the calculation. Including static resource requests will cause the
average figures to look much better than they really are!

Static resources will be addressed later in this book when dealing with Content Delivery
Networks (CDNs) and other mechanisms to help static resource load times.

To illustrate the point, this effect is highlighted in the following graph of a website response
time report, issued by a service called "Gomez," a paid-for service for measuring response
times, provided by Telstra. Many companies provide similar services and associated reports
for monitoring websites.

Figure 3.3: Response time report.

The end of the purple bars indicate the TTFB response time, and you can see that the initial
request to http://www.theglavs.com takes considerably longer than the dependent requests
that comprise the rest of the page.

This is why it is important to only factor in the main request TTFB time. The dependent
request response times should not be ignored, as they contribute to overall page load time.
Some dependent requests may actually be the cause of long overall page load times but, to
improve the performance of the application, only the page itself should be considered. Later
chapters in this book will deal with the issue of dependent requests and how to improve load
times for these artifacts.

Visual Studio Team Test provides a convenient way to analyze these key metrics. When a
performance run is executed and the test run data loaded into Visual Studio, the results are
displayed in a series of graphs for easy analysis, as you can see below.

Chapter 3: Performance and Load Test Metrics

47

Figure 3.4: Performance run initial result display.

The areas of concern for this example are the Key Indicators and Page Response Time
graphs, which can be easily focused on using the 2 Horizontal Panels option from the View
Graph button.

Figure 3.5: Dual graph result view.

Chapter 3: Performance and Load Test Metrics

48

The available data summaries will automatically adjust to only display results from whichever
graphs you happen to be focusing on at any given time.

What to look for

The basic metrics that have been discussed can provide a good indicator of an application's
performance at a quick glance. There are other metrics to factor in, which will be discussed
later in this chapter, but these key metrics are a good start for determining if an application
will meet its performance criteria. In combination, they are the best way to quickly assess
if an application performs acceptably, without going through the time-consuming task of
analyzing all the possible metric data in detail.

CPU utilization

Naturally, the CPU utilization should ideally be as low as possible. If the CPU is being
measured on a database server, then the usage should remain low at all times; an average of
20–30% is generally acceptable. Anything over this could indicate that the database server will
begin to be overloaded and exhibit slower than usual performance.

An average CPU utilization of 20–30% on a web or application server is excellent, and
50–70% is a well utilized system. An average CPU utilization above 75% indicates that a
system is reaching its computational capacity; however, there's usually no need to panic if
you have an average of 90–95%, as you may be able to horizontally scale out by adding an
additional server.

Obviously, in this last scenario, adding extra load may mean the system consistently achieves
100% CPU utilization. For a web or application server, this is actually not that uncommon,
and the ideal is to have a stateless system which can be horizontally scaled as required. As
a matter of fact, if a web server is averaging 100% CPU utilization, but the database server's
load is only 30% CPU utilization, this is actually a good scenario to be in. This means that the
database server has capacity to serve more load, and that the web server is being well utilized.
Simply adding an extra web server into the farm at this point would be an easy, relatively
predictable way to address the web tier's capacity to handle extra load.

Some tasks, such as cryptographic functions, are computationally intensive and will cause
CPU "spikes" even at a relatively low load. In these instances, it is important to design the
system in such a way that it can be easily scaled out appropriately, and not be tied to a single
server (which is known as having Server Affinity.)

Chapter 3: Performance and Load Test Metrics

49

Memory utilization

A system with no available memory will not be able to cope with any more work to do, and
will potentially be unstable, so it's important to ensure available memory is monitored, and
remains at acceptable levels.

As I mentioned in passing earlier, it is important to ensure that memory consumption does
not steadily increase over long periods of time until there is none available, as this usually
indicates a memory leak.

Memory utilization is obviously relative to the amount of memory on the system in question
and, as long as the available memory remains above approximately 25%, then the system
should have enough "head room" to operate efficiently. Again, this is not an exact figure
and a system can operate with less than that, but this can indicate that memory thresholds
are being reached and any spike in activity or load could cause unexpected (and often
undesirable) results. At best, paging will occur, wherein memory will be read and written
from disk, causing the system to operate very slowly. At worst, further load or requests will
be unable to be serviced, connections will be refused, memory exceptions will occur, and the
system's reliability will be compromised.

In .NET, memory usage should ideally follow a predictable "saw-tooth" pattern. This is
because memory is allocated during normal program execution and then, at certain points
determined by the .NET garbage collector, the memory is reclaimed. When objects are
no longer in use, or are out of scope, they are removed from memory, and the memory is
returned to the system for use. The following screen shot shows a typical graph of memory
usage for an application, made using a tool called CLRProfiler, a memory profiling tool freely
available from Microsoft at http://tinyurl.com/CLRProfiler, which will be discussed in
Chapter 6.

Figure 3.6: "Saw-tooth" memory usage pattern.

Chapter 3: Performance and Load Test Metrics

50

The saw-tooth pattern represents memory being allocated, peaking, and then being
reclaimed by the garbage collector. Memory usage then climbs again as objects are allocated,
the garbage collector initiates another collection, and the cycle continues.

What we don't want to see is a saw-tooth pattern that is ever increasing, as below.

Figure 3.7: "Saw-tooth" memory usage pattern – potential memory leak.

Figure 3.7 shows a classic indication of a memory leak in an application, but this can occur in
both web applications and desktop or service applications.

Both of the previous graphs present a low-level, detailed view of memory usage. If memory
usage was viewed at a higher level using a tool such as PerfMon or even Visual Studio Team
Test, the saw-tooth pattern would not be as evident, but the general pattern would remain
the same – a relatively flat horizontal line for good and predictable memory usage by an
application, and a line trending upwards for a memory leak-type situation.

A database server should typically remain at a relatively constant level of memory usage
without too much variation. Again, this is dependent on other system activities such as
scheduled tasks, but memory usage should, in general, remain even. The average amount
of memory used will naturally depend on how much work the database has to do, and the
nature of the queries themselves. Memory will occasionally dip and spike but should always
return to the normal operating level.

Chapter 3: Performance and Load Test Metrics

51

Figure 3.8: PerfMon – even memory usage on a database server.

Response time

Response time (as measured in TTFB) is relatively easy to assess. Generally, any response time
over 3–4 seconds is perceived as slow, although this obviously varies for each individual case.

When developing business applications, it is best to let the business decide what is an
appropriate response time, although this metric must be determined in conjunction with
the development team. It would be potentially unrealistic if a business were to stipulate
that every page must respond in less than one second (although this is possible, and some
businesses manage it!). Latency and the operations a page performs play a huge part in
these decisions. If a page needed to produce a complex and computationally heavy report,
then this response goal would be very hard to achieve without some high-end servers and
computational equipment. Business value and realistic response times in these types of
scenario are clearly matters for negotiation.

Chapter 3: Performance and Load Test Metrics

52

Creating a baseline

Before performance tests can be properly analyzed, it is essential to establish a good way of
comparing performance data to determine if improvements have been made from one test
run to another.

The first step is to establish a "baseline" performance run against the application. A baseline
performance run is a performance test run executed against the application for the very first
time, without specific performance modifications (aside from normal development). In short,
the application as it currently stands.

Always keep track of your baseline run data, as this will allow future performance runs to
be compared to it to determine if performance has altered anywhere. The performance run
can be named as a baseline within Visual Studio Team Test; alternatively, a separate list or
spreadsheet can be used to catalog performance runs against their purpose or context.

Utilizing a spreadsheet, with each run, its date/time, and any details such as performance
modifications made, is an extremely valuable way to collate and manage performance test run
data. It then becomes easy to quickly glance over the list and view what changes were made to
achieve the performance aspects of a particular test run.

However, without a baseline run, each subsequent performance test has nothing to compare
against. Modifications made at some point in the development process could have seriously
hampered performance, rather than increasing it, and this would not be apparent without a
baseline run.

Using Visual Studio to analyze
the results

Visual Studio Team Test provides excellent tools to interactively analyze performance test
results and investigate the large amount of metric data in tabular or visual form.

Firstly, we need to load in the results of a performance test run. If a test run has just been
executed, then the results will be loaded immediately afterwards. However, if we need to load
in a previous set of results we can do so using the following two main methods.

Chapter 3: Performance and Load Test Metrics

53

Using the Test Results management window

• Select the Test > Windows > Test Results menu option to activate the
Test Runs window.

• Open the Connect drop-down and select a controller.

• Completed performance runs will be listed and can be selected to load in the
performance test results.

Using the Open and Manage Test Results dialog

To use this option, a performance test solution needs to be open, and a load test must be
loaded into the Visual Studio Editor.

• Click on the Open and Manage Test Results button to open the dialog window.

• Select a Controller to use, and then select a load test whose results you wish to load. A
list of performance test results will be shown. Select a performance test result and click
the Open button.

Note

Occasionally, for whatever reason, Visual Studio may fail to list the results in the Test
Runs window. This rarely happens, but it can sometimes be caused by the correlating
result metadata files not being present or being corrupt. This means you cannot load the
performance test results via the Test Runs window as they will not be shown. Using the
Open and Manage Test Results dialog will allow you to get around this issue.

Now that we have some performance test results to analyze, let's start off by looking at
response times. Initially, Visual Studio presents four graphs of key results. Key Indicators
is one of these graphs, and has an average response time metric listed in the table of results
shown below the graph in Figure 3.9.

Chapter 3: Performance and Load Test Metrics

54

Figure 3.9: Key Indicators graph.

The average response time metric is only a general indication. Dependent requests can factor
into this figure, in addition to the response time for low concurrent users, which skews the
result to look more favorable than it should.

Filtering performance test result selection

In order to get a better average response time figure for a particular number of concurrent
users (or, in fact, any metric data) we can use the dynamic filtering and selection feature of
Visual Studio Team Test.

By using the timeline grab handles, it is possible to constrain the result set to a specified time
window. For example, we may wish to see the average response time when the concurrent
user count is between 50 and 80 concurrent users, To do this, drag the start and end timeline
grab handles until the Min User Load column equals 50, and the Max User Load column
equals 80. The grab handles are circled in Figure 3.10.

Chapter 3: Performance and Load Test Metrics

55

Figure 3.10: Timeline grab handles.

Note that the timeline grab handles can also be moved using the keyboard for finer
adjustment, although the handle must be selected with the mouse first. There are also grab
handles on the vertical axis to change the scale upon which the graph is shown, and these
operate in exactly the same way as the timeline grab handles.

An alternative way of selecting a portion of the results is by selecting an area on the graph
itself, although this is a little less accurate, and fine-grained control is not as easy. Click and
drag the mouse to select an area. Once the area is selected, only that set of metrics will be
displayed on the graph and in the tabular results below the graph.

Chapter 3: Performance and Load Test Metrics

56

Figure 3.11: Selecting or filtering results via mouse selection on the graph.

This concept can be taken a little further. One of the first items to analyze in a performance
test run is the response time at a certain concurrent user level. For example, let's say we
would like to look at the response times when there are between 80 and 100 concurrent
users. We need to ensure that the test run's user load is set to Step Up at periodic levels of
the performance test run, which can be set in the properties for the load test scenario. The
pattern must be set to either Step Up or Goal Based with user load increment values and
time periods for the increments set to your desired values.

With a graph selection on and the key indicators graph selected, adjust the timeline grab
handles so that the User Load has a minimum value of 80 and a maximum value of 100. Now
select the drop-down box where Key Indicators is shown and select Page Response Time as
shown in Figure 3.12.

The page response times will be shown, but will be constrained to the same time period
and concurrent load that was selected while the Key Indicators graph was selected (see
Figure 3.13).

Chapter 3: Performance and Load Test Metrics

57

Figure 3.12: Selecting the Page Response Time graph.

Figure 3.13: Page response times filtered by 80–100 concurrent users.

Chapter 3: Performance and Load Test Metrics

58

This is an extremely easy way to visualize each page's response time at a particular concurrent
user level. If we take a step back and examine part of the business objectives of performance
testing that were mentioned earlier, we can see that the goal was to validate that particular
pages can respond in a set time (TTFB) at a particular concurrent user load.

Using this technique, it is easy to examine any page response time at any particular point
in time or concurrent user level. If the response time for a page exceeds the agreed business
requirements, then some performance modifications need to be made. However, even if the
pages meet the required response times, it is still important to gauge what happens beyond
the required concurrent user load.

Sweet spots and operational ceilings

Using the techniques discussed previously, it is easy to plot the response time characteristic
of the application as concurrent user load is increased. In web applications, there is a typical
pattern of response time progression as the concurrent user load is increased. This means
that during the low concurrent user-load stages of the performance test run, response time
is excellent.

There comes a point where response time is still good and within acceptable bounds, but
beyond this point response times start to increase sharply and keep increasing until timeouts
begin to occur. The period before the sharp increase is what is referred to as the "optimal
operating period" or "sweet spot." These terms refer to the time where the application can
service the largest possible number of users without incurring a large or unacceptable
response time. This is best shown in an example (see Figure 3.14).

Figure 3.14 shows a typical performance run. The optimal operating period, or sweet spot, was
achieved relatively early in the run. The concurrent user load was relatively low at 200–300
concurrent users, with page response times of 3 seconds or less. This is the time when the
application is performing at its most efficient and maintaining good response times. After
this, the application still services requests, but sharp spikes in response time start to appear
(represented by the blue line in the graph). Beyond this period, the response time continues
to increase until erratic measurements occur. This is the operational ceiling, where the
application begins to refuse requests and return Service Unavailable-type errors.

It is important to note that, while the business objectives have been exceeded before the
application hits its operational ceiling, the behavior of the application can still be observed.
This is important, as it shows the resilience of the application and what could potentially
happen if a sharp spike in load occurs that exceeds estimates.

Chapter 3: Performance and Load Test Metrics

59

Figure 3.14: Sweet spot and operational ceiling.

In addition, during times of high stress, the functional aspects of the application will
be exercised at maximum capacity and it will be easier to see what components of the
application are performing more work than others. This will be relatively easy to see through
the use of detailed performance metrics which are discussed later in the book.

While performance graphs and PerfMon metrics are extremely valuable in determining the
sweet spot of an application, there is nothing quite like practical usage. In order to truly verify
that the application is responsive and functional at the estimated sweet spot, it is best to
actually perform a performance test run and simulate the number of concurrent users that
is being applied at the estimated sweet spot. During this time, enlist the business users or
stakeholders to use the application and report on its responsiveness. It will become quickly
apparent whether the application is indeed responsive during the given load and, thus,
whether the optimal operating period is the one that has been estimated.

Chapter 3: Performance and Load Test Metrics

60

Detailed performance metrics

With an indication of system performance in hand (using the key metric values), as well as the
ability to filter and isolate portions of a performance test run, it is now important to examine
performance metrics in detail.

In particular, it is important to understand what the various metrics that are available mean
in the context of a performance run. Whilst the key metrics discussed previously usually show
whether there is a potential performance issue or not, they do not provide much insight into
what the problem is.

This is where a detailed investigation and analysis needs to be performed on all available
performance metric data to ascertain the nature of the performance issue. It is also important
to understand what areas of the application can be generally improved. The immediate
performance issue is an obvious choice, but many other areas may exist that could also be
improved and contribute to an overall performance gain.

We'll start by first looking at the general performance metrics which can be relevant to almost
all applications, whether on a server or desktop machine, and then the web application
specific metrics will be discussed. It is important to note that not every single performance
counter will be listed here as there are a huge number of them, details of which can be
found in the Microsoft reference documentation. Here, we will be concentrating on the
performance counters that aid in the detailed analysis of a test run – in other words, the
counters that deliver real value in analyzing performance test run data.

Almost all metrics and counters are normally available within the PerfMon tool. The web
specific metrics, such as response time, are only available via the Visual Studio Team Test tool
and will be listed as such. It may seem obvious, but note that ASP.NET performance counters
are typically only available on machines with the .NET runtime installed, such as web or
application servers. Database servers would not typically have the runtime installed. Finally,
rather than simply provide the detailed set of counters and their definitions, I'll also provide
a discussion on typical analysis paths using these counters. Having the counters and their
definition is not usually enough, as it is equally important to determine what counters are
worth examining in certain situations, and what indicators to look for. This is where many
people can become confused as, after determining that there is a problem, it is hard to choose
what metrics and indicators to use in the various categories of further investigation.

Chapter 3: Performance and Load Test Metrics

61

Performance metrics

For the following counter sets, it is generally recommended to monitor only the specific
process in question. For web applications, this is typically the worker process (aspnet_wp
in Windows XP and W3WP in Windows Server) that IIS uses to host them. For desktop and
other applications, such as services, it will be necessary to monitor the specific application
or host process. This is to minimize the performance counter variance that other, unrelated
processes may introduce into the measurements.

General

Category: Processor

• % Processor Time
The main counter is the % Processor Time, which shows the total percentage of
processor utilization across all processes. This provides a good general indication of
system utilization and is the best starting point when looking at system performance.
Visual Studio Team Test has predefined threshold levels for CPU utilization and will
provide visual warnings when this counter goes beyond them.

Category: Process

• % Processor Time
The % Processor Time counter is exactly the same as the previously discussed
processor category counter, but the processor utilization can be measured specific to
a single process. For example, the W3WP.exe process (the web server host process) can
be specifically measured for processor utilization in order to exclude any other process
activity. This allows a good segregation of data and makes it possible to potentially
pinpoint CPU intensive processes outside of the application itself.

• Working Set
The Working Set counter shows the amount of memory pages in use by all threads
within the process, and is listed in bytes. This is a good way to examine the memory
usage of a specific process.

Chapter 3: Performance and Load Test Metrics

62

Category: Memory

• Available Mbytes
This represents the amount of available physical memory in the system. Ongoing
monitoring of this counter can show if an application has a memory leak. This
condition can actually be mitigated somewhat in a web application using IIS health
monitoring. This is where IIS will recycle or restart an application pool (and thus the
processes running within it) when a memory limit has been reached. While this can
alleviate the consumption of all available memory by the process, it is a defensive
measure only, and the root cause of the memory leak should be investigated.

• Pages/Sec
This counter effectively represents the number of hard faults per second. A hard fault
is when pages of memory are read from, or written to, disk; since disk operations are
relatively slow compared to memory operations, hard faults are quite expensive in terms
of system performance. The larger this counter, the worse the overall system
performance will be. This counter should ideally be zero, or at least very low. If it's high,
this can indicate serious memory issues and that physical memory is either near limits or
not used effectively.

• Page Faults/Sec
This counter should be used in conjunction with the previously mentioned Pages/Sec
counter, and represents the number of hard and soft faults per second. A soft fault is
where a page of memory was elsewhere in physical memory, and needed to be swapped
into the process address space. Since memory operations are very fast, having a high
number of soft faults is generally OK, as most systems can cope with this. Monitoring
this counter can help provide the tipping point where hard faults begin to occur and
where soft faults become excessive.

Category: .NET CLR Memory

• Gen 0 heap size, Gen 1 heap size, Gen 2 heap size

• #Gen 0 Collections, #Gen 1 Collections, #Gen 2 Collections
Both the heap size set of counters and the collection counters should show similar
patterns of behavior. The .NET CLR garbage collector is a "mark and sweep" collection
mechanism that partitions objects into different generations, Generation 0 (Gen0) being
the shortest lived, most often collected and least expensive to collect. Generation 2
contains the longest-living objects, is collected the least often, and is the most expensive
in terms of performance to collect. The #Gen 0, #Gen 1, and #Gen 2 collection counters
represent the number of times each generation had a garbage collection performed,
whereas the Gen 0 heap size, Gen 1 heap size, and Gen 2 heap size represent the memory
heap size of each respective generation. While not an unbreakable rule, both sets of

Chapter 3: Performance and Load Test Metrics

63

counters should show approximately a 1:10 ratio between each generation. That is, the
#Gen 0, #Gen 1, and #Gen 2 collections should follow a 100:10:1 pattern, and the heap
size counters should show approximately a 1:10:100 pattern. This ratio of garbage
collection statistics shows a healthy and normal memory usage by the application.
Metrics that are largely different from this ratio can indicate erratic and inefficient
memory usage or use of the garbage collector itself. Note that, for web applications,
measuring only the W3WP process is preferable to looking at the total memory pattern
and, for a desktop application, monitoring the application itself is preferable. For those
of you uncomfortable with firm assertions, these ratios are supported by Microsoft
performance documentation, mentioned by Rico Mariani (a Microsoft performance
specialist), and are something I've often encountered myself. Whilst deviation from these
ratios does not prove that there is an issue, it can often provide a strong indication.

Category: .NET CLR Exceptions

• # of Exceps Thrown / sec
This counter represents the number of exceptions being thrown per second by the
application, and should be very low. Throwing exceptions is a relatively expensive
operation and should be performed only in exceptional circumstances (i.e. actual,
legitimate exceptions) not for control flow. Again, in web applications it is best to
monitor only the W3WP process specific to IIS web hosting process. The exception to
this rule is if a web application utilizes a lot of Response.Redirect calls because
they generate a thread aborted exception. If this figure is high and there are a lot of
Response.Redirect calls in the web application, then the figure may be representative
of this, and it may be worthwhile trying to replace the calls with ones to the overload of
Response.Redirect, which also takes a bool as the second parameter, and set that bool
to false. This causes the request to not immediately terminate processing of the current
page, (which is what causes the thread aborted exception).

Category: .NET CLR Jit

• % Time in Jit
This counter shows the percentage of elapsed time the CLR spent in a Just in Time (JIT)
compilation phase. This figure should be relatively low, ideally below 20%. Figures
above this level can indicate that perhaps some code is being emitted and dynamically
compiled by the application. Once a code path is JIT compiled, it should not need to be
compiled again. Using the NGEN command-line tool against your application assemblies
to create a native, pre-JIT compiled image for the target platform can reduce this figure.
Too much time spent in JIT compilation can cause CPU spikes and seriously hamper the
overall system performance. Visual Studio Team Test provides a threshold warning when
this counter has gone beyond a predefined acceptance level, which is 20% by default.

Chapter 3: Performance and Load Test Metrics

64

Category: .NET CLR Security

• % Time in RT Checks
This counter represents the percentage of time spent performing Code Access Security
(CAS) checks. CAS checks are expensive from a performance perspective and cause the
runtime to traverse the current stack to compare security context and code identity
for evaluation purposes. Ideally, this should be very low, preferably zero. An excessive
figure here (by that, I mean a figure exceeding 20%) can hamper system performance and
cause excessive CPU utilization. This can often be caused by accessing resources across a
network share or SAN where network credentials and security contexts need to be
evaluated to gain access to the resource.

Category: .NET CLR Locks and Threads

• Total # of Contentions

• Contention Rate/Sec
These counters represent the number of unsuccessful managed-lock acquisitions,
the Total # of Contentions being the total number of unsuccessful lock acquisition
attempts by threads managed by the CLR. The Contention Rate/Sec represents the
same metric but expressed as a rate per second. Locks can be acquired in the CLR by
using such constructs as the lock statement, System.Monitor.Enter statement, and
the MethodImplOptions.Synchronized attribute. When a lock acquisition is
attempted, this causes contention between the threads attempting to acquire the same
lock, and blocks the thread until the lock is released. Unsuccessful locks can cause
serious performance issues when the rate is high, as the threads are not only
synchronized but ultimately unsuccessful, potentially throwing exceptions and
waiting excessively. This rate should be very low, ideally zero.

Web/ASP.NET specific

Category: ASP.NET

• Application Restarts
This counter represents the number of times that the ASP.NET worker process has
been restarted. Ideally, this should be zero. IIS has features to detect problems and
restart worker processes, but this is a defensive measure for problem applications.
Enabling these features for performance testing will detract from the value of collecting
ongoing performance metrics for a test run. Ideally, the application should coexist with
the infrastructure well enough to not require restarts.

Chapter 3: Performance and Load Test Metrics

65

The restarts of the worker process usually indicate that IIS has detected a memory
condition, CPU condition, or unresponsive worker process, and forced the process to
restart. The memory and CPU thresholds before IIS restarts a worker process can be
configured within the IIS management tool. In addition, the amount of time to wait
before a health check request is returned from the worker process can also be defined
in the IIS management tool, although this is usually performed within the specific
application pool that the application belongs to within IIS. The options for application
pool health monitoring are shown in Figure 3.15.

Figure 3.15: Options for application pool health monitoring.

Chapter 3: Performance and Load Test Metrics

66

Category: ASP.NET Applications

• Pipeline Instance Count
This counter represents the number of concurrent or active requests currently in the
ASP.NET pipeline. Ideally (in case of very fast requests) there should be a very low
number of concurrent requests, but this is not always possible. After reaching ASP.NET
concurrency limits, requests begin to be queued. If requests are not executed quickly
enough, more and more requests will be added to the queue, until it becomes full and no
more requests can be serviced. While this counter in itself does not indicate poorly
performing requests in the pipeline, it can show a pattern in behavior at various load
levels. In conjunction with the Requests in Application Queue counter (covered next),
this can indicate at what point the system experiences too much load to efficiently
handle all requests.

• Requests in Application Queue
This counter represents the number of requests waiting to be added to the pipeline
for processing. This counter should remain at 0 most of the time, otherwise the web
server is not capable of processing requests as fast as possible. Occasional spikes are
acceptable, but ongoing system usage with requests being added to the queue will
eventually exhaust the web server's ability to process requests in a timely fashion.
Long response times will result, eventually resulting in timeouts or Service
Unavailable type errors.

• Request Execution Time
This represents the number of milliseconds it took to execute the most recent request.
The lower this figure, the faster ASP.NET is processing requests. This figure should be
compared against a baseline figure when attempting to improve the performance of
the application.

• Requests/Second
This is the number of requests executing concurrently per second, and is effectively the
throughput of the application. This counter is closely tied with the Request Execution
Time and Pipeline Instance Count counters. The higher this figure, the better, as it
indicates that more requests can be serviced by the application. Visual Studio Team Test
provides the requests-per-second figure in the metrics in the Key Indicators graph.

Database

It should be noted that, in a very general sense, if CPU utilization and memory utilization are
within acceptable bounds, then a database server is able to perform optimally.

Chapter 3: Performance and Load Test Metrics

67

CPU utilization should ideally be as low as possible and not exceed 50–60%. An average of
15–20% is a good optimum operating value.

Memory utilization should also remain as low as possible, ideally averaging below 50%. An
average of 30% is a good figure. Memory is key for a database server's fast performance, since
a database engine will generally use as much memory as possible for caching execution plans
and similar items to achieve high throughput.

While the above figures are gross generalizations, many performance issues will manifest
on the database server as high CPU or Memory utilization. Obviously, this does not include
more subtle problems such as deadlocks, transactions, and disk I/O, which are covered later.

Remember, these counters are just good indicators. Further analysis using tracing and
profiling tools may be required, and is covered in later chapters in this book, along with
typical scenarios in which performance issues can arise.

Category: Physical Disk

• Avg. Disk Queue Length
The physical disk subsystem on a database server is extremely important due to the
I/O intensive operations that a database server performs. This counter represents the
average number of read and write requests that have been queued and are yet to be
fulfilled. As the number of simultaneous requests for data from the disk increases,
the disk subsystem can become overloaded and unable to fulfill the requests as fast as
required. The requests then become queued until the system can service the request. If
the queue continues to grow, then the database server may be experiencing performance
issues. Fewer requests, more efficient requests, and a faster disk subsystem can alleviate
this issue.

Category: SQL Server: SQL Statistics

• Batch Requests/Sec
This is the amount of effective work the database server must perform, and can roughly
equate to CPU utilization. This figure is dependent on the hardware specifications of the
database server. However, 1,000+ requests per second can indicate potential issues and
that the server may soon begin to experience stress.

Chapter 3: Performance and Load Test Metrics

68

Category: SQL Server: Databases

• Transactions/Sec
This counter simply represents the number of transactions the server is processing
per second, and can be thought of as a submeasurement of the previously discussed
Batch Requests/Sec. While not an accurate measure of the total work the server has to
perform, this counter can provide an indication of how much relative transactional work
is being performed when compared to the Batch Requests/Sec counter. Transactions are
expensive from a performance perspective, and a high relative value may indicate a need
to re-evaluate the isolation level and transaction policy of the application.

What do I do with all this information?

Performance testing is a very complex process, with the analysis and investigation of metric
data extremely dependent on your application's specifics and the surrounding environment.

The large variances that can occur are the reason why specific guidelines around what
to do in a given situation are very difficult to provide. In addition, it could be regarded as
irresponsible or misleading to provide specific guidance and problem resolution to a general
performance issue. This is not the aim here; my goal is to help you know where to start the
process, which can sometimes be the catalyst to finding answers. This section will therefore
attempt to provide some general guidance or clues to kick-start the analysis of performance
issues when dealing with common problems. Once experience is gained in this process,
individuals develop a general feel for the analysis process, and can begin the investigative
process with great efficiency.

• Slow response times (TTFB) for a web application

• Examine the request execution time. If the request execution time is long, with
high CPU utilization, then look at optimizing the code itself. Profiling can provide
insight here, and is discussed in the next few chapters.

• If request execution time is long, but CPU utilization is low, look at external
systems such as database servers and/or web service calls. The system can be
executing a database request or a web service and spending its time waiting for
a response.

• Examine the HTTP modules and handlers loaded for each request. Sometimes
unnecessary handlers and/or modules can be configured for all requests, and will
perform unnecessary processing as part of their default pipeline.

Chapter 3: Performance and Load Test Metrics

69

• High CPU utilization

• This can occur for a large number of reasons and sometimes at very low load on the
system. Areas to begin looking at can be:

• CLR exceptions thrown/sec: lots of exceptions thrown can seriously hamper
system performance and place extra load on the CPU.

• % time in Jit: the Jit compilation phase can be computationally expensive. If
the application is emitting any code or utilizing XML serialization assemblies,
then this may be an issue. Optionally, test the code with all possible
assemblies having native images generated via NGEN. Note that this counter
may simply be a byproduct of the application and environment and, as such,
cannot be alleviated. If attempts at alleviating this figure prove unsuccessful
early in the process, then it is generally best to concentrate on other aspects.

• Consider utilizing caching where possible, regardless of the issue. Caching is
one of the single most important performance optimizations for all applications.
The most efficient database query is the one that doesn't occur or use the
database at all. Techniques such as Output Caching for web applications, and
caching within the application itself can help CPU utilization, response time,
and database performance.

Granted, there are situations where it may not be p[ossible to use it (such as highly
dynamic data) but that does not detract from its positive performance effects. Here,
caching refers to either browser based, proxy caching, output caching, application
level caching, or even SQL caching. This is the reason that Microsoft can support
millions of users through ASP.NET site with relatively little hardware, and also the
reason communities like Facebook can accommodate 350 million users. It is also the
reason why systems such as memcached and Project Velocity by MSFT are so high
on the priority list. (More or less as an aside, Rico Mariani and Microsoft's official
best practices also support this kind of behavior.)

• Aborted requests

• In a web application, this can manifest as HTTP 500 errors, and as exceptions in a
desktop or service application. This can be for any number of reasons but things to
look at can be:

• SQL transactions and deadlocks: a deadlock can cause the victim query to be
rejected and the request which instigated it to throw an error.

• Downstream systems unable to handle the load: it is essential to have a good
exception management policy in the application that will record external
system activity and log all errors. Looking at request execution time and
pipeline instance count metrics for web applications, and thread counts for
service or desktop applications, can provide clues here. High values here can
point to problems in this area.

Chapter 3: Performance and Load Test Metrics

70

• CLR Locks / Contention Rate/sec: this can indicate excessive locking in
application code as threads of execution fight for resources, and often threads
may abort after not acquiring those locks. At the very least, performance and
throughput will be reduced.

• Exceptions in general: these should be caught and reported by the
application; however, the exceptions/sec counter can provide clues if the
figure is very high.

While this section has provided some clues as to what to begin investigating when
performance issues are identified, there is simply nothing like deep knowledge of the
application and infrastructure.

Often, developers or application architects will have a reasonable idea as to what might be
causing the performance issues. Backing this up with metrics from various performance tests
will enable quick and efficient identification of potential issues and, ultimately, resolution.

Conclusion

This chapter has looked at a wide range of counter and metric data related to application
performance and performance tests. Initially, a set of basic metrics and indicators were
examined to provide quick and immediate insight into the performance of an application,
These were:

• CPU utilization

• Memory utilization

• Response time / Time to First Byte (for web applications).

Web application and database specific counters were also addressed to cover more detailed,
but also indicative, counters that will provide relatively quick insights into performance
issues on both web and database servers.

While far from comprehensive, these counters can provide the "at-a-glance" view of your
application's performance. Once a general idea of application performance is established,
the process of investigating and analyzing performance results can occur, as shown using the
excellent tools available within Visual Studio.

Using Visual Studio, it is possible to discern how an application performs over time, at various
load levels, utilizing a broad set of performance metrics.

Chapter 3: Performance and Load Test Metrics

71

The detailed look at performance counters and metrics does not cover every performance
counter and metric available, and yet shows the vast possibilities and variances that can affect
an application's performance. This huge number of variables is what can take an enormous
amount of time in the investigation and analysis of performance issues. The detailed view,
trigger points, and potential courses of action that have been discussed in this chapter should
significantly reduce that investigative time.

Now that we know what we're looking for, we can get a detailed view of performance testing
and metric collection. After that (Chapter 6 onwards), we'll look at more isolated forms of
performance testing, such as profiling.

Following on from that will be practical advice on typical performance traps in applications,
and how to overcome them. Integrating this process into the development process of
software will complete the entire performance testing and analysis picture.

72

73

Chapter 4: Implementing Your
Test Rig

Creating the performance test rig

So far, we have discussed the "why" and the "what" of performance testing. That is, why we
do performance testing, and what metrics we can use to determine the performance of an
application. This chapter will focus on the "how." Specifically, how is a performance test
environment constructed so that we can record and perform performance tests?

Here, the architecture and construction of the performance rig will be discussed in detail,
ranging from the test controller and test agents to the ideal network configuration to
best support high volume performance testing. We will also cover performance metrics
setup, collection, and automation to ensure that the metric data will be collected reliably
and automatically, with the minimum of effort. This data is the most valuable output of
performance testing as, without it, we cannot make any assertions and must instead resort
to guesswork. Finally, we will discuss ideal environments for application profiling, and the
implications that must be considered when using load balancing, i.e. whether to test first in a
load-balanced environment, or to begin performance testing in a single server scenario.

It is important to note that, while profiling is an important part of determining the
performance capability of an application, it is typically executed on a single workstation –
more often than not, the developer's. Profiling will be discussed in greater detail later in this
book but, for the most part, setting up for profiling is as simple as installing the necessary
profiling tools on the workstation itself. However, the majority of this chapter will discuss the
specifics of setting up a performance test rig.

Architecture and structure of a performance test rig

Being able to run high volume, effective performance tests requires more than a single
workstation connected to a web server, simply executing multiple requests concurrently.
When dealing with high loads, one workstation exercising a server is pretty soon going to run
out of resources, whether memory, processor power, or network throughput. In addition,
how are the user loads defined, what distribution of tests are run, how do we achieve
high concurrent user loads for a sustained time, and how do we ensure that the network
connection itself does not limit the amount of load generated against the server?

Chapter 4: Implementing Your Test Rig

74

To help achieve these goals, a distributed performance test rig architecture is required. To
that end, Visual Studio Team Test enables a remote workstation to connect to a dedicated
controller machine. The controller manages test runs and coordinates the activities of one
or more agents. The agents are actually responsible for running the tests and generating load
against the desired server or servers, and they also collect data and communicate the test
results back to the controller for storage and management.

Figure 4.1: Performance test rig architecture.

Role breakdown

For now, I'll just give you a brief description of the role that each component plays in this
architecture. A detailed discussion of installing, configuration, and management of each role
within the system will follow later in this chapter.

Chapter 4: Implementing Your Test Rig

75

Workstation

The workstation machine can be any machine with Visual Studio Team Test installed on it.
Using Visual Studio Team Test, you can access a local or remote controller via the Test menu
option, as shown in Figure 4.2.

Figure 4.2: VSTS Test menu option.

Controller

The controller's role in the test rig is to coordinate the execution of the tests across multiple
test agent machines, and manage the collection of results from all the test agents.

For larger-scale systems, a workstation with Visual Studio Team Test can be used to connect
to a separate machine which acts as the controller; however, the workstation can also act as
the controller itself. Setting up the controller involves a simple software install which will be
discussed later in this chapter.

Whichever machine acts as the controller, it must have access to a SQL database. By default,
SQL Express is used to store and manage test results, but a traditional SQL Server database
can also be used. SQL Express has a size limit of only 4 GB so, if you anticipate going over this
limit, it is obviously best to use a full-sized SQL Server.

The physical specifications of the controller machine should include a minimum of a 1.4 GHz
processor and 1 GB of memory. A 2 GHz or greater processor, and 2 GB or greater of memory
is relatively standard for today's workstations and is a recommended specification.

Chapter 4: Implementing Your Test Rig

76

Test agent

Each test agent machine is responsible for executing the performance tests against the
server, collecting the metric data for those tests, and then reporting those results back to the
controller for storage and management.

When tests are scheduled for execution, the controller compiles them into assemblies and
distributes these to the agents for execution. The controller manages the executing tests,
ensuring that the appropriate number of concurrent users are simulated, as well as other
factors and distribution details. Each agent, like the controller, requires a simple software
installation, and the physical specifications of an agent machine should include a minimum
of a 2 GHz processor and 1 GB of memory. Much like the controller, a 2 GHz or greater
processor and 2 GB or greater of memory is relatively standard for today's workstations and
is a recommended specification, although it's worth bearing in mind that memory is used
heavily in agent machines, so the more the better.

Profiling system

As already mentioned, profiling an application is also an important part of assessing an
application's performance and involves investigating said application at a finer-grained
level than the broad approach of load testing. Because of this, profiling is the logical next
step to load testing. However, it can be an intrusive operation, significantly affecting
the performance of the application while it is being profiled. It can also, amongst other
things, restart Internet Information Services in order to attach to profiling events to gain
measurement data at a very low level.

Profiling can also be very memory- and processor-intensive, so the more memory and the
better the processor, the better the profiling experience. Specific minimum requirements
will depend on the profiling tool being used. For these various reasons, profiling is typically
performed on a developer's workstation, as these are generally high-specification machines.

Setting up and configuration

Port setup and firewall considerations

In order to correctly install the controller and agent software on machines, certain criteria
should be observed. It is important to remember that the controller and the agent are not
normal user machines, and so should not contain all the security restrictions that regular

Chapter 4: Implementing Your Test Rig

77

organizational workstations may have. Imposing such restrictions typically restricts the
type of operations that can be performed, as well as such things as what ports are open for
communication. This can seriously impact the ability of the controller and agent software to
install or operate correctly.

This is not to say that the coexistence of the test rig and any security restrictions cannot
be achieved, but rather that it simply requires more work. That being said, sometimes
diagnosing errors in this coexisting system is not trivial, and impedes the ability to even start
running tests, let alone reliably execute them and receive results.

For these reasons, I recommend disabling firewall software on the controller and agent
machines to ease setup and operational issues. Having no firewall restrictions means no
possible port blockages at all, but it does also mean that these machines have no protection.
This may not be an issue if they are on a separate network that is well isolated from any
public networks, public access or other potential security risks, but this is not always possible.
Should you decide to keep a firewall active on these machines, and selectively enable the
ports required to allow communication between workstations, controllers and agents, the
following list shows the default ports and protocols that need to be allowed to ensure correct
setup and operation.

• Workstation used to connect to controller

• File and printer sharing protocol

• Port: 6901 (for test coordination)

• Controller

• Port: 6901 (for test result collection)

• Test agent

• Port: 6910 (for test distribution)

• Ports: 137, 138, 139 (for performance counter collection).

Note

In case you're wondering, these details come from digging deep into blog posts by
Ed Glass (a VSTS team member who has great, detailed content) and then verifying
them experimentally.

Chapter 4: Implementing Your Test Rig

78

Network segmentation/isolation

To get meaningful results from performance tests, it is important to make the metrics that
you record as clear and unambiguous as possible. In order to ensure metrics are valid and
unskewed, all unknown quantities and variables need to be removed from the tests.

It is often hard to determine what traffic is traversing a network, and this can affect test
results. While a network may seem responsive enough to perform load testing on, when
someone decides to download gigabytes-worth of data across this network, congestion can
occur. Because of this, an important factor when setting up a performance rig is ensuring a
clean and direct path between the agents (which execute the tests) and the server (or servers)
which are the target of the performance tests.

In order to conserve hardware costs, it's often tempting to provide a single machine with a lot
of memory as a controller-cum-agent machine, and to connect to the server (or servers) being
tested through the regular public network, or even the corporate intranet. The problems with
this approach are outlined below.

• Network throughput of a single machine could be a limiting factor when generating
extremely large loads. The number of users being simulated might be 1,000 (for
example), but the network interface may be saturated at the 500-user point, meaning
that a true load is not being applied to the server.

• Latency, other traffic, and multiple network hops on the network path from the agent to
the server may impede the speed at which data can be delivered to the server. Again, this
may mean that the intended simulated load is not what is actually being delivered to the
server. This may also mean that errors are generated in the tests which are not a direct
effect of the load, and thus the results are colored. Latency and general traffic are a major
impediment to the accurate application of load when you're attempting to generate it
over a public Internet.

Note

Some organizations do offer performance testing services utilizing the general Internet
and simulated browsers. They offer high load with attempts to mitigate the latency
effect of the public Internet. The effectiveness of the tests themselves can only really be
measured at a server level, and although the required load may simulated, this kind of
testing is not as easily controlled, and a sustained high load cannot be easily guaranteed,
as the amount of "interference" on the Internet may vary. This does not mean that this
type of testing is ineffective, but just that repeatable and sustained testing can be difficult.
Whatever your decision, the recording and analyzing of metric data recorded during
these kinds of tests is the same, whichever method is employed.

Chapter 4: Implementing Your Test Rig

79

The ideal scenario in which to execute tests is to have a completely separate and isolated
network, as this means that there is no network interference from the corporate
infrastructure or the general Internet. The amount of traffic can be strictly controlled, and
the load simulated by the agents has a direct route to the servers, and, thus, a direct effect. In
short, no factors outside your control can affect the simulated load and skew the results.

Figure 4.3: Isolated network test rig setup.

Chapter 4: Implementing Your Test Rig

80

As shown in Figure 4.3, the workstation that exists in the corporate network has a direct
connection to the controller machine, and so the controller is the only machine that has
 a path between the intranet/Internet/other network and the test network. The best way
to achieve this is by using dual network interface cards (NIC); one with a direct route to
the test network, and the other with a route to the intranet/Internet on which your
workstation exists.

However, completely isolating a segment of your organization's network solely for
performance testing is not always feasible, possible due to lack of time, money, or other
resources. Remember that the goal is ultimately just to ensure a clean path from the
test agents to your server or servers which are going to be tested, so that there can be no
unknown elements introduced in load generation. Often, all the machines to be utilized as
test agents are on the same network. Test agent machines are sometimes simply other users'
workstations! To fit with this kind of infrastructure, it is common practice to install dual
NICs in the machines that will act as test agents. Additionally, a simple network switch that
supports the required number of ports for the test agents and server(s) can be used to create a
separate network on which to run the performance tests. Figure 4.4 illustrates this.

In a dual NIC configuration, as has been described, the default configuration of agents may
not work. I'll discuss this issue in detail in the Agent Setup section later in this chapter.

Test agents and controllers can be installed on almost any machine. Some of those machines
can be fellow co-workers' workstations, rarely-used machines acting as file servers, etc.,
although these will most probably not be on an isolated network. Generating extremely
high loads can require many agents, so any spare machines may be enlisted to assist. If this is
your situation, then you simply need to work with what you have. The effects of a mixed test
environment can be mitigated by recording results directly on the server and ensuring that
the requisite load is being applied, or at least measuring the difference between simulated
load at the agents and actual load at the server. I touched upon this towards the end of
Chapter 3 – it simply requires a little more analysis work.

Chapter 4: Implementing Your Test Rig

81

Figure 4.4: Typical isolated test segment, dual NIC setup for agents.

Chapter 4: Implementing Your Test Rig

82

Controller setup

Both the controller and agent software are relatively easy to set up. It is important to install
the controller software first, as the load agent software needs to be able to connect to the
controller as part of the installation process.

Note

A trial version of the controller and load agent can be downloaded from the Microsoft
website. The trial version can be used for 90 days from the installation date or for 25 test
executions for the Load Agent.

Starting the controller installation process is a matter of executing the setup.exe application
located on the install media. As is normal for Microsoft installations, you'll need to click Next
through a series of screens, including a User Experience Improvement Program opt-in, the
license agreement and specifying the destination folder for installation.

Figure 4.5: Controller installation, controller service user.

Chapter 4: Implementing Your Test Rig

83

The final step prior to actually beginning the installation requires the specification of a user
account which will be used to run the controller service. This can be a local user account
or a domain account. It is best to ensure that this account does not have regular password
expiration periods. While this is not best practice with respect to security, and most domain
accounts would have this enabled, it does prevent having to re-enter the user's credentials
each time the password expires.

This user must also have sufficient access privileges to be able to read performance counters
from the computers under test – typically the server(s) being load tested – as that is the entire
purpose of the controller.

A controller can also be running in workgroup mode, meaning that a non-domain-user is
used for the controller and subsequent agents. If running in workgroup mode, there must
be a local computer account on the controller which also exists on all the agents. When
the agents are set up, this common user is specified as the agent service account, and so
can connect to the controller successfully. However, for the security negotiation to occur
successfully, the accounts must have the same username and password.

Once you've moved past all these dialogs, the actual installation should only take five
to ten minutes.

Further notes on controller installation

In most typical client engagements I have been involved in, the workstation and the
controller have been the same machine. This is generally due to the cost of an extra
controller-specific machine and, most importantly, the extra effort it takes to connect to
the controller from a workstation machine. The tangle of issues surrounding user access
privileges, or matching up users on the controller and agents, means that making the
controller and workstation the same machine is a common scenario. This setup is made more
attractive by the fact that the controller only coordinates tests and does not need excessive
resources to run.

Once the controller setup is complete, there are three new groups created on the controller
machine. These are:

• TeamTestControllerAdmins

• TeamTestControllerUsers

• TeamTestAgentService.

Chapter 4: Implementing Your Test Rig

84

If a workstation machine needs to connect to the controller, the user context being used
must be a member of the TeamTestControllerUsers group.

Note

Any workstation, controller or agents that are participating in the test rig must all be on
the same version of Visual Studio, right down to the Service Packs.

After the controller is installed, access to it is limited to the TeamTestControllerUsers
and TeamTestControllerAdmins groups that were created during setup, and to the
Administrators group. Add appropriate users and/or groups to one of these groups to allow
them to access the controller. Members of the TeamTestControllerAdmins group or the
Administrators group can administer the controller by clicking the Test menu in Visual
Studio, and then choosing Administer Test Controller. Bear in mind that members of
the TeamTestControllerAdmins group must also be power users or administrators on the
controller computer.

In order for agents to connect to the controller, they must be members of the
TeamTestControllerUsers group at the very least. Normally the user is added to this group
during the agent installation process. However, there may be instances where you change
users on the agent manually, thus you need to ensure this alternate user is also in the
appropriate group on the controller.

Creating the load test database

When the controller is installed, a database is created to hold all the performance metrics
and recorded results. Wherever this database is located, be it on another database server,
or on some other instance other than the default, it must have the correct schema. To that
end, when the controller software is installed, a SQL script file is also installed which can
recreate the load test database with the correct schema and everything required to hold the
performance test results. By default, this script is located at:
C:\Program Files (x86)\Microsoft Visual Studio 9.0 Team Test Load Agent\LoadTest\
loadtestresultsrepository.sql.

By executing this file against a database, typically using a tool such as SQL Management
Studio, a new database called LoadTest is created and is ready to be used as the repository for
performance test results.

Chapter 4: Implementing Your Test Rig

85

Guest policy on Windows XP in workgroup mode

Finally, if the controller software has been installed on a Windows XP machine in a
workgroup environment, then Windows XP will have the ForceGuest policy setting enabled
by default. This means that any time a remote user wishes to connect to this machine, it
will only be allowed to connect as the Guest user. So, no matter which user the agent is
configured to use when connecting to this controller, it will be forced to connect as the Guest
user, which has very minimal security privileges.

The fix for this is not entirely straightforward, but not very difficult either. To disable the
ForceGuest policy in Windows XP:

• Run the Registry Editor (open the Run dialog, type RegEdit and press Enter).

• Navigate to the key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
Lsa.

• Double-click on the ForceGuest item and change the value in the presented dialog from
1 to 0.

• Click OK, and you're done.

Note

This process should be performed on the controller as well as all agents, otherwise you
may find your agents listed in the controller agent list, but they remain disconnected or
offline. Any error mentioning that the server rejected the client's credentials is indicative
of this problem.

Agent setup

Starting the agent installation process is also just a matter of executing the setup.exe
application located on the install media. You will be presented with the same screen as shown
in the controller setup, albeit with some different text. As with the controller setup, you will
just need to move through the various screens until you reach the point at which you need to
specify a user account under which to run the Test Agent Service process.

This is where it is important to have defined an appropriate test agent user on the controller
machine so that, when the installation process executes, the test agent machine can connect
successfully with the controller.

Chapter 4: Implementing Your Test Rig

86

The next step in the installation is different from the controller setup, in that the user
is asked which controller to connect to. Completing this process adds the user to the
appropriate groups on the controller (if required) as well as setting up the user on the local
agent machine.

Once the controller is specified, the installation process proceeds in exactly the same fashion
as the controller setup.

Workstation setup

The workstation that is used to connect to the controller can, in fact, be the controller
machine itself. Having separate machines for the controller and the connecting workstation
is preferable, so that when the controller is busy coordinating tests and collecting data, the
responsiveness and performance of the workstation remains unaffected.

Whether the controller is on the same machine or a separate machine, to connect to it from
within Visual Studio, simply select the Test menu option, and then the + menu option.

This will present the dialog in Figure 4.6.

Figure 4.6: Administer Test Controller dialog.

Chapter 4: Implementing Your Test Rig

87

As you can see in Figure 4.6, the default controller is listed as <Local – No controller>. The
local machine is the default controller, but the controller software has not been installed.
Entering the correct machine name or IP address in this text field will connect to the
controller and list any test agents registered with that controller. The dialog should then
update to list the number of agents installed and connected to the controller, and their
current status.

Figure 4.7: Administer Test Controller showing multiple agents connected.

Note that, if you have installed the controller software on your workstation, then invoking
the dialog shown in Figure 4.7 will automatically connect to the local controller and display
any agents already connected.

Troubleshooting the controller and agents

Getting all the components in a test rig to talk to each other nicely is often not an easy task,
and things will sometimes not work for seemingly non-existent reasons.

When both the controller and agents are installed, there are certain settings within each
configuration that can help in diagnosing issues. Since the issues can be numerous and very
environment-specific it would be impossible to list them all; however, I can provide some
knowledge on the techniques to find out what the issues are.

Both the controller and agents utilize settings from their respective configuration files, which
reside in the same directory as the controller and load agent respectively.

Chapter 4: Implementing Your Test Rig

88

By default, the Load Test Agent configuration file is located in a directory such as:

For VSTS 2005: <Program Files>\Microsoft Visual Studio 2005 Team Test Load Agent\
LoadTest\QTAgentService.exe.config

For VSTS 2008: <Program Files>\Microsoft Visual Studio 9.0 Team Test Load Agent\
LoadTest\QTAgentService.exe.config

The QTAgentService.exe.config file contains the configuration of the agent.

Similarly, for the controller, the default location of the configuration file is:

For VSTS 2005: <Program Files>\Microsoft Visual Studio 2005 Team Test Load Agent\
LoadTest\QTController.exe.config

For VSTS 2008: <Program Files>\Microsoft Visual Studio 9.0 Team Test Load Agent\
LoadTest\QTController.exe.config

And the QTController.exe.config file contains the configuration of the controller.

The controller and agent configuration files are almost identical in their settings. Both
contain appSettings and system.diagnostics sections that define the specific settings,
and on default installation look similar to this:

 <system.diagnostics>
 <switches>
 <!-- You must use integral values for "value".
 Use 0 for off, 1 for error, 2 for warn, 3 for info,
and 4 for verbose. -->
 <add name="EqtTraceLevel" value="3" />
 </switches>
 </system.diagnostics> <appSettings>
 <add key="LogSizeLimitInMegs" value="20"/>
 <add key="AgentConnectionTimeoutInSeconds" value="120"/>
 <add key="AgentSyncTimeoutInSeconds" value="300"/>
 <add key="ControllerServicePort" value="6901"/>
 <add key="ControllerUsersGroup" value="TeamTestControllerUse
rs"/>
 <add key="ControllerAdminsGroup" value="TeamTestControllerAdm
ins"/>
 <add key="CreateTraceListener" value="no"/>
 </appSettings>

In order to enable trace logging for either the controller or the agent, change the following
settings in the configuration file:

Chapter 4: Implementing Your Test Rig

89

• In the appSettings section, set the CreateTraceListener value to yes.

• In the system.diagnostics section, set the EqtTraceLevel to 4.

The respective services will need to be restarted before any changes will take effect. A log
file will then be produced in the same directory as the configuration file, and will be named
VSTTAgent.log for the test agent and VSTTController.log for the controller.

With logging enabled, exhaustive detail will be written to the log file, providing very fine-
grained insight into what is happening and why a problem may be occurring. By default, the
LogSizeLimitInMegs setting limits the log file size to 20 megabytes, which is sufficient for
most purposes. If this limit is reached, a new log file will created and named in numerical
sequence. Setting the LogSizeLimitInMegs value to 0 allows unbounded log file size, limited
only by the available disk space.

Note

A tool called DebugView can be used to show logged data without actually writing to
a file, or having to monitor and refresh the log file's content. The tool is a free download
from http://tinyurl.com/MSDebugView. By simply setting the EqtTraceLevel to 4
in the appSettings section in the configuration file, log information will be captured by
DebugView and displayed immediately in a separate window.

As already discussed earlier, often either controllers or test agents will be set up in a dual NIC
configuration (dual Network Interface cards). In this instance, the controller/agent needs to
know which network card to use to communicate with the rest of the test rig. In order to
specify this, you can add the BindTo configuration value to the configuration file, and specify
the IP address of the network card to use. For example, adding the following line to the
appSettings section of a configuration file will tell the controller/agent to communicate on
the network interface card with the IP address, 192.168.1.10:

<add key="BindTo" value="192.168.1.10" />

If this value is omitted, then this could quickly result in problems with the agent connecting
to the controller or vice versa.

When dealing with issues specific to the test agents, you can also use the provided
command-line tool to configure various aspects of the agents. The command-line tool is
named AgentConfigUtil.exe, and exists in the same directory as the agent executable and
configuration file mentioned earlier. To use this tool, open a command prompt and navigate
to the load agent installation directory (by default this is C:\Program Files\Microsoft Visual
Studio 9.0 Team Test Load Agent\LoadTest) Type AgentConfigUtil and press Enter, and you
will see a display of available commands.

Chapter 4: Implementing Your Test Rig

90

C:\Program Files\Microsoft Visual Studio 9.0 Team Test Load
Agent\LoadTest>AgentConfigUtil.exe

Microsoft (R) Visual Studio Test Rig Command Line Tool Version
9.0.21022.8
Copyright (c) Microsoft Corporation. All rights reserved.

Usage: AgentConfigUtil [options]
Description: Used to perform test rig

configuration operations.
Options:
/help Displays this usage

message
 (short form: /? or /h).

/nologo Do not display the startup
banner and copyright
message.

/nolog Do not create setup log.

/unregister Removes the agent's
registration from the
specified controller.

/controller:controllername[:port] Displays the test
controller name and port
number [optional].

/controllerusername:[domain\]username Domain and user name
for connecting to the
controller.

/controlleruserpassword:password Password for connecting to
the controller.

/agentserviceusername:[domain\]username Domain and user name
for the AgentServiceUser
account.

/agentserviceuserpassword:password Password for the
AgentServiceUser account.

Chapter 4: Implementing Your Test Rig

91

For example, using this tool, you can instruct the agent to re-register with the controller,
specifying the controller machine name, port number, username, and password to use.
Alternatively, you can unregister an agent from the controller. For example, to remove an
agent from a controller called TestController, you would enter this command:

AgentConfigUtil /controller:TestController /unregister

Alternatively, to add an agent to a controller named TestController using port 6901, the
command would be:

AgentConfigUtil /controller:TestController:6901

Setting up performance counter
collection

When Visual Studio Team Test executes a load test, there are a number of metrics that
are collected by default from test agents and the server(s) being tested. These are usually
sufficient for most general purposes. What counters to record and their respective meaning
was covered in Chapter 3. For now, we know that we can collect performance data from the
agents and servers, and have those metrics recorded within the database that the controller is
configured to use as a repository.

However, this only provides one location where data can be recorded. It is also important to
record performance data directly onto the servers being tested where possible.

Before we discuss how to do this, let's discuss why we should. There are a few important
reasons why you would also want to record performance metrics on each server being tested,
even though this may seem somewhat redundant. The reasons include those below.

• In a few rare circumstances, performance data is not recorded to the controller's
data store, possibly because of system problems on the controller, disk space, etc.
While in some circumstances, the data is recoverable (this will be shown later), often
it is not. Not being able to get the recorded data is the same as not running the test at
all. As previously mentioned, performance testing is a relatively expensive operation,
and having data recorded on each server ensures you have an alternative copy of this
pricy data.

• If there are multiple servers being used in the load test, you can determine if certain
servers are experiencing more stress than others. This could be for a variety of reasons,
including load balancing configuration and system specification. Either way, ensuring
that the load is evenly distributed is important. If one server has to handle substantially
more load than others, then the ability of the entire system to handle the load will be
determined by this particular server. Additionally, being able to measure the

Chapter 4: Implementing Your Test Rig

92

performance on individual servers means that tuning the configuration of a load
balancer and observing the effects becomes a lot easier.

• Occasionally, a test agent may not send performance data to the controller for
recording. When a test agent is under stress (due to lack of memory or processor
capacity, for example), its data may not be able to be collected by the controller. This
may appear as gaps in the visual graph that Visual Studio presents for visualizing the
performance data. To be able to verify that load was still being generated during this
period, or to validate other metrics not apparent in the Visual Studio visualization, the
secondary performance data recorded on the servers can be used.

• Many individuals or teams may wish to analyze the performance data. This data may
need to be sent to external parties for analysis. Other interested parties may not have
access to the visualizations and analytical facilities provided by Visual Studio Team Test.
Recording data at the server level, using commonly available tools ensures that
performance data can be viewed and analyzed by anyone who requires it.

It is not strictly necessary to record performance data at the server in addition to using Visual
Studio Team Test, but the cost of doing so is quite low. Given that performance testing is an
expensive process, it is a worthwhile investment to be able to record the performance metrics
on the server(s) as an alternative location for data storage.

One important component that needs to be looked at more closely in load testing is the
database. Using PerfMon to record performance data on the database is extremely important,
as the database plays such a crucial role in the majority of applications today. Having a set
of recorded performance data on the database machine itself will allow individuals such as
dedicated database administrators to examine said data and provide valuable insights into
the performance of the database. Even if no other data is recorded via PerfMon on the web or
application servers, then it is recommended that the database should have PerfMon recording
SQL-specific performance metrics (along with standard counters such as CPU utilization).

You can set up recording performance metrics on the server(s) themselves using a tool called
"Performance Monitor" which is available on all versions of Windows from XP to Server 2008.
Performance Monitor will allow you to specify and record WMI counters, either to a file or to
the database.

Note

Visual Studio uses a mechanism called WMI – Windows Management Instrumentation
Counters to query and collect data.

Chapter 4: Implementing Your Test Rig

93

To use this tool, select the Start menu, go to Administrative Tools, and select Performance
Monitor. Alternatively, open the Run dialog and type PerfMon. The user interface looks
a little different on Vista / Windows 7 / Server 2008 from how it does on older operating
systems, but the functionality is very similar. You will be presented with a screen similar to
that shown in Figure 4.8.

Figure 4.8: Performance Monitor on Vista / Windows 7 / Server 2008.

This initial view presents a real-time view of the currently selected performance metrics.
By default, these metrics are % of processor time, available memory and average disk
queue length. There are a huge number of performance counters that are available to
monitor, and many products add extra counters (specific to their respective technology) to
the list when they are installed. SQL Server or Windows Communication Foundation are
examples of such products.

Adding counters to the monitoring instance is a simple process. Clicking the Add icon
will display a dialog of counter categories and their associated counters that can be added
from there.

Chapter 4: Implementing Your Test Rig

94

Figure 4.9: Add Counters dialog on Vista / Windows 7 / Server 2008.

Selecting a counter category will show the individual counters that can be selected and added.
Multiple individual counters can be selected and added and, if you like, an entire category can
be selected and added, with all the counters in that category added to the display.

You can obtain a brief description about each counter before adding it, by selecting the Show
Description option (Explain in Windows XP/2000/2003). The dialog should look similar to
the one in Figure 4.10.

Chapter 4: Implementing Your Test Rig

95

Figure 4.10: Add Counters dialog, "Show description" check box is selected in the lower
left of the window.

The initial display of the performance monitor shows a real-time view of the system with the
counters being measured shown in the display. Data can be recorded either to disk or to a
database, and recorded performance data can be reloaded, viewed, and analyzed using this
tool. This process, in addition to the range of counters and their meaning, was detailed in
Chapter 3.

Chapter 4: Implementing Your Test Rig

96

Conclusion

In this chapter, we looked at how to set up a performance testing rig. It is essential that this
fundamental piece of infrastructure be set up correctly, otherwise we risk invalidating test
results, and wasting considerable time and money in the process.

With a fully functional test rig, we are now able to record, execute, and analyze our
performance tests. The test rig, once set up, can form an important facet of an organization's
overall infrastructure. Setting up the rig is typically a one-time process that can be utilized for
multiple projects, and which provides ongoing benefits.

The next chapter will focus on the recording, creation and automation of performance tests,
as well as defining the load tests themselves. Later chapters will deal with the execution and
analysis of the tests.

Now that we have built our new toy, it's time to play with it.

97

Chapter 5: Creating Performance
Tests

Having a performance test rig is not very useful if you don't have any tests to execute with
it. Creating tests is a relatively easy task, but it is important to have the functional path
breakdown that was mentioned in Chapter 2. This way, there is a defined path to execute
when recording the tests.

Basic solution structure

To start with, we need to create a separate project to house the performance tests. This can be
added to the same solution that houses the main project and source code of your application,
but it is best to place the performance test project in a project outside the main source code
branch. This will prevent the main source code tree from being affected by the extra build
time it takes to compile the performance test project, and will also keep the test outside
the view of the main development team. It is a completely independent project that has no
dependencies on the main project or solution being tested.

With this in mind, create a new test project in Visual Studio by opening the File menu,
selecting the New Project menu option, then the Test project type, then selecting Test
Project in the project template window. Name the project PerfTests, select a directory
location and click OK.

Chapter 5: Creating Performance Tests

98

Figure 5.1: Creating a new performance test project.

Once you have performed this step, you should end up with a solution looking similar to
Figure 5.2.

Figure 5.2: New performance test project, Solution Explorer view.

Chapter 5: Creating Performance Tests

99

Note the presence of the AuthoringTests.txt and ManualTest1.mht files. The former
provides general information around testing, and the latter provides a template for manual
tests to be written. For the purposes of performance testing, these files can be safely deleted
from the project. We can also remove the UnitTest1.cs file, as it does not apply to load tests.

In the solution items folder, the LocalTestRun.testrunconfig file holds general settings
for the test run, such as which controller to use, test run naming schemes, deployment
requirements and so on. These items can be edited by opening the Test menu, selecting the
Edit Test Run Configurations option, and then selecting the test run configuration file.

There is currently only one configuration, but you can have several. Selecting this option
displays a configuration dialog.

Figure 5.3: Test Run Configuration dialog.

For basic tests, these options can be left at defaults; but I'll cover these in more detail a
little later.

Chapter 5: Creating Performance Tests

100

Recording the web tests

The functional test breakdown and how it should be structured were discussed in previous
chapters. When recording tests, the functional breakdown is used to determine what tests to
record and what functions to exercise when recording them.

In order to be able to record a test, the machine used to do the recording must clearly be
able to access the web application being tested. When a test is recorded, an instance of
Internet Explorer is automatically launched by Visual Studio. While browsing using the newly
launched instance of Internet Explorer, all web activity is recorded. This includes all browsing
activity, not just those requests targeted at your application. This is why it is important to
have a clear functional path, and only exercise singular aspects of the application at any
given time. This way, the individual tests can be executed, recorded, and later attributed to
the appropriate aspects of the application. When the tests are replayed, they are applied to
the overall run according to what percentage of activity is set up within the test run (this
will be detailed in later in this chapter). If you record too much activity in a single test, it
becomes very hard to accurately allocate functional activity within the run. It then becomes
very difficult to simulate the desired user behavior (and therefore the expected load) when
spreading tests across a load test run.

To start recording a test, right-click the test project and select either the Add > New Test or
the Test > New Test menu option (see Figure 5.4).

Chapter 5: Creating Performance Tests

101

Figure 5.4: Add New Test option.

Bear in mind that Visual Studio Team Test is the minimum requirement installation
in order for the Web Test option to be available. Once the New Test option is selected, a
dialog allowing the user to select what type of test to add is presented. Selecting Web
Test (Figure 5.5) will launch an instance of Internet Explorer and invite the user to begin
navigating the site.

Chapter 5: Creating Performance Tests

102

Figure 5.5: Selecting a web test dialog.

Once the test name is entered and you've clicked OK, the Internet Explorer instance is
opened, and all actions are recorded as part of the web test. It is important to note that, if a
particular home page is set, then accessing this home page will also be recorded, even if it has
nothing to do with testing the application itself. It is best to set the Internet Explorer home
page to a blank page so that no requests are recorded that do not pertain to the application
being tested.

Once Internet Explorer is launched, start navigating the site in line with the functional area
being tested. A web test of my own sample application can be seen in Figure 5.6.

Chapter 5: Creating Performance Tests

103

Figure 5.6: Recording a web test.

On the left side of the Internet Explorer window is a pane showing the currently recorded
web test actions. As you navigate the site, each request or post will be listed in this pane.

Continue using the site according to the functional aspect being exercised and, once you
have completed recording the necessary series of actions, close down the instance of Internet
Explorer. Visual Studio will add the recorded get and post actions as part of the web test as
shown in Figure 5.7.

Note

Be sure to name your tests appropriately. Good organization will make it easy to set up
the appropriate weighting for the tests once recorded. Having tests named Web test1,
Web test2, etc., means you'll need to actually go into the test, and perhaps run it, to find
out what aspect of functionality the test exercises. Instead, name your tests verbosely,
such as LoginAndViewAllProducts, or LoginViewCartThenLogout.

Chapter 5: Creating Performance Tests

104

Figure 5.7: Recorded web test.

The web test actions are listed sequentially according to the URL accessed for that particular
request. If a request has other elements to it, such as query string parameters, post
parameters, or hidden fields, then these are associated with that request, and can be seen
by expanding the request tree view. Clicking or selecting on the requests will display their
properties in Visual Studio's properties windows.

Chapter 5: Creating Performance Tests

105

Figure 5.8: Expanded web test request.

Figure 5.8 shows various form post parameters such as an ASP.NET viewstate and
other parameter values forming part of the POST payload of the request, all of which
are easily visible.

Chapter 5: Creating Performance Tests

106

Figure 5.9: Web test request properties.

Figure 5.9 shows some common properties of all web test requests, together with values
specific to this example request. Each request can have these properties modified to achieve
different effects within the overall test, and potentially pass or fail a particular test.

• Cache Control and Encoding are relatively self-explanatory. Cache Control determines
whether the request can be cached, and Encoding refers to the character encoding used
for the request itself.

• Method and Version refer to the specific HTTP properties of the request.

On the other hand, the properties that affect the pass or fail status of a single request are:

• Expected HTTP Status Code
Determines what the expected status code of a result of issuing this request should be.
This is a standard HTTP status code, such as 404 for "Not Found." Leaving this value as 0
means default browsing behavior will be used which, in turn, means that any 200 or 300
level code indicates a successful request, but any 400 or 500 level code indicates a failure.

Chapter 5: Creating Performance Tests

107

• Expected Response URL
Indicates what the response or returned URL is after issuing this request. A blank value
will not expect any particular URL but, if one is entered and a different URL is returned,
this indicates a test failure.

• Response Time Goal
Indicates the maximum time (in seconds) that this request should take to execute. If the
request exceeds this time, then the test is deemed failed. No value for this indicates no
expected or maximum response time.

• Timeout (seconds)
Indicates the maximum amount of time (in seconds) that this request can take
to execute.

Note

Test failures do not stop performance tests from running, but simply add to the metric or
total data for failed tests.

The Parse Dependent Requests property is interesting, because it determines whether any
further requests which would be typically required to satisfy this request in a real world
scenario are made as a result of issuing the web test request. For example, stylesheets, images
and script files are often requested by a browser after an initial request to the resource is
made and the HTML has been parsed. Web tests will simulate this behavior by default as
these are considered dependent requests.

However, in some cases you may want to disable the parsing of dependent requests to enable
you to test only the processing efficiency of the web application, and not rely on possible
latent connections for resources not directly affecting this performance. For example, if a
page makes requests to external parties, such as Google, to request JavaScript files, or to a
marketing company providing analytics for the site, then you may want to remove these
requests from performance testing and only concentrate on your application. Obviously,
these requests still affect the overall perceived performance of the request itself, but you may
have little control over them, and not want to skew the measurements of your application's
performance with these figures. If you're feeling really fine-grained, it may be useful to isolate
each aspect of the request to further analyze what are the limiting factors.

Record Results indicates whether results for this request are recorded in the database. If this
request is of no interest to you, then perhaps you may not wish to record any data about it,
thus minimizing noise within the results.

Overall, the default settings for web test requests attempt to mimic the default browser
behavior. Initially at least, it is best to leave these settings as is, though, during the course

Chapter 5: Creating Performance Tests

108

of performance test analysis, further investigation may require experimentation with them.
This will be discussed later in the book when we look at performance load test metrics and
iterative testing approaches.

Test replay

So now we have some tests. We can easily replay these by double-clicking them in the
solution explorer to display them in the main window, and then selecting a Run option from
the Run menu. The Run/Play menu is located in the top left of the main display window.

Figure 5.10: Run/Play test menu.

The menu shown in Figure 5.10, shows both the Run and Debug execution modes for
replaying a test. Debug mode provides the ability to step through each request, examining
the value of variables just as you would a normal .NET application. The options with
(Pause Before Starting) against them will prepare to run the test, but will pause just before
beginning execution, allowing you to step through each request using the Step menu option
located to the right of the Run button. Also to the right, in order, are the Pause and Stop
test options.

Chapter 5: Creating Performance Tests

109

Once a test has been run, the status will be displayed in the Test Results window, as well as in
the top left window of the test results main window.

Figure 5.11: Successful test run.

Whether the test has run successfully or not, you can now examine each request in detail.
Selecting a request will display its particular results in the Web Browser tab shown just below
the test results in Figure 5.11. In addition, you can expand the main request to show any
dependent requests, and selecting a dependent request also shows its results.

Chapter 5: Creating Performance Tests

110

Figure 5.12: Selecting a dependent request.

In the example in Figure 5.12, we can see that the dependent request was a CSS file. To the
right of the Web Browser tab are the Request and Response tabs.

Chapter 5: Creating Performance Tests

111

Figure 5.13: Web test Request tab.

The Request tab (Figure 5.13) allows you to examine individual header elements in a
formatted, table-like display, or you can view the raw request by selecting the Show raw data
check box in the bottom left-hand corner.

Figure 5.14: Web test Response tab.

The Response tab (Figure 5.14) shows the response to the selected request, with the
information segregated to display the Headers and Body responses in separate fields.

Chapter 5: Creating Performance Tests

112

Figure 5.15: Web test Context tab.

The Context tab shows any contextual information related to the current request. This
typically involves hidden fields in the request, test agent ID, environment variables such as
test directory, deployment directory, and other elements depending on the request itself.

The Details tab lists any validation or extraction rules that have been applied to the test.
Extraction rules are custom actions designed to extract data from a test response and assign it
to a variable. Many of these are added by default to requests by the Visual Studio test engine
when the test is recorded.

Figure 5.16: Web test validation rule.

Chapter 5: Creating Performance Tests

113

Validation rules will cause a test to pass or fail based on an expected value within the test. By
default, a Response URL validation rule is added to the last request of each test as shown in
Figure 5.16.

Selecting the last request and then selecting the Context tab shows the result of the
validation rule.

When a test is recorded, the explicit URL is recorded along with it. Sometimes, you may be
recording the test against a development server, but wish to replay the test against a different
server, perhaps a UAT (User Acceptance Test) server. It would be very time consuming to have
to alter the URL of each request to reflect this. It would be nice to have a way of assigning a
variable to the URL and have Visual Studio use this when replaying tests.

Fortunately, there is direct support for this via the Parameterize Web Servers option, which
is found in the web test toolbar.

Figure 5.17: Parameterize Web Servers option.

Clicking this button will display a dialog allowing you to specify the variable name assigned to
the web server address. By default, this is WebServer1.

Clicking the Change button will allow you to alter the name of the variable. If there were
more than one server detected as part of the whole test, for example, if an HTTPS address
were also used, and any other addresses as part of the test, they would be listed here.

Enter a name for the server you are targeting. This will then replace all the explicit URLs with
a dynamic variable name according to what you have entered.

Once the explicit server address has been substituted with a context variable, changing
the server address for all requests is then just a matter of altering the value of that context
variable. Clicking on the same Parameterize Web Servers button will allow you to specify a
different server.

Chapter 5: Creating Performance Tests

114

Figure 5.18: Assigning a web server a variable name in a web test.

Once you have assigned a name to the server address, all explicit references to that address
will be replaced by a context variable with the name you have specified. The test will be
altered accordingly.

Figure 5.19: Web test after server parameterization.

Chapter 5: Creating Performance Tests

115

Data binding web tests

Now that we have recorded our web tests, we would like to make them resilient enough to
be played over and over again. In addition, we would like to introduce a random factor that
ensures a different element is introduced for each web test, just like in real life.

A good example of this is a user login. We don't want one single user acting as the basis for all
of the web tests. Ideally, a wide range of users is required to better simulate the expected user
activity on a real site.

In order to do this, we first need a data source to be used as the source for our users within
the test. Visual Studio supports a database, CSV file, or XML file as the basis for a data source.
It expects a simplistic structure for the data source and simply extracts the data within either
the database table, CSV file, or XML file as it is presented. This means that all columns in the
table and CSV file are used, and all elements within the XML file are used.

When creating the data source, it is best to keep things relatively simple. For our username
and password data source, we will utilize a CSV file, which can be created with Microsoft
Excel or any text editor.

Creating a data source for data binding

Let's start by creating a simple CSV file to provide a number of usernames and passwords to
log in to our site. In Visual Studio, open the File menu, click on the New File menu option,
select Text File from the dialog displayed, and select Open.

Enter the column headings Username and Password, separated by a comma. Next, enter a
separate username and password, separated by a comma, on each line of the file. The file
should look similar to this:

Username,Password

admin,password

test,password

viewer,password

Save this file within the same directory as your performance test project.

Chapter 5: Creating Performance Tests

116

Note

To better organize your performance test project, it is good practice to create a data
sources folder if using CSV or XML files for your data sources, and place the files in that
directory. This is entirely down to personal preference, though, and you can organize the
data source files as you see fit. Having them in a separate folder reduces clutter in the
general project and keeps tests, code, and data source files separate.

You will probably want the file to be included as part of your test project so that it is included
with source control and forms a component of the project as a whole. This is not strictly
necessary, but makes sense and allows better organization of your test projects.

In your test project, ensure the web test that you would like to add a data source to is opened
in the main window, and click the Add Data Source toolbox button.

Figure 5.20: Add Data Source button.

A dialog is presented where you can specify the data source type and name. For our
example, we will select the CSV file option and name the data source, appropriately enough,
UsernamesDataSource.

Next, we choose the file that will actually be used as our data source. Either by browsing or by
specifying the file path, select the data-source file you have created.

Visual Studio will parse the file, determine what data is present, and display it in the dialog
window. Click the Finish button to add the data source to your web test. You should now see
a Data Sources node within your web test, listing the data source you have just added, as in
Figure 5.21.

Chapter 5: Creating Performance Tests

117

Figure 5.21: Web test with a data source added.

This data source can now be utilized within the test itself. In this case, we will use the
usernames and passwords contained in the file to feed into the web test. First, expand the test
action that requests the login.aspx page.

Chapter 5: Creating Performance Tests

118

Figure 5.22: Expanded login test action showing form parameters.

This request will contain some form post parameters which the page will post to the server
to log in. Currently, the values are assigned to exactly what was typed when the web test was
recorded. Select the Username parameter and switch to the Properties window.

Figure 5.23: Properties window displayed for Username parameter.

The Value property contains the value of the form parameter. Clicking in the Value property
field will present a drop-down box, which you should expand to show the values which are
options for this parameter. One of the options is the data source that was previously added.

Chapter 5: Creating Performance Tests

119

Expand this node, and also expand the data source that we added. This should display the
fields within that data source, which we can use to data bind to the form parameter.

Figure 5.24: Select a field from the data source to bind to.

Select the appropriate field to data bind to the form parameter; in this example, the
Username field. This binding will be reflected in the Properties window as well as in the web
test action parameter.

Figure 5.25: Data bound form parameter Properties window.

Chapter 5: Creating Performance Tests

120

Now, each time this test is executed, the Username form parameter will be populated from
the data source. By default, Visual Studio will start at the beginning and sequentially iterate
through the data source each time the test is run.

Figure 5.26: Data bound form parameter request action parameter window.

If you like, this behavior can be changed by expanding the Data Sources node in the main
window, selecting the relevant data source sub-node, and viewing its properties in the
properties window. Expand the drop-down in the Access Method property, and as the
property values suggest, the method of access for a data source can be changed from the
default sequential access to random order, or ensuring that each selected value is unique and
no duplicates occur (see Figure 5.27).

Figure 5.27: Access Method selection for a data source.

Since the data source has already been defined, the same technique can be used to assign a
value to the password form element from the data source. Using a database is almost identical
to using a CSV file, except that the connection to the database is specified, instead of the path
to a CSV file.

Chapter 5: Creating Performance Tests

121

Once the connection to the database is selected, a check box dialog is presented, allowing the
user to select all the tables to be used as a data source. Any number of tables can be selected
and added to the web test.

You may prefer to manage your performance test input data by having a single, separate
database containing all the necessary tables for use as a data source. If you use this system,
or indeed any databases as a data source, you must obviously ensure that all test agents can
easily access the database during test runs.

Finally, XML data sources are something of a mix between CSVs and databases. Like a CSV
file, the XML will contain the performance data input in text format, but it can also contain
multiple tables. Take the following XML file as an example:

<?xml version="1.0" encoding="utf-8" ?>
<SampleData>
 <Users>
 <UserName>admin</UserName>
 <Password>password</Password>
 </Users>
 <Users>
 <UserName>test</UserName>
 <Password>password</Password>
 </Users>
 <Users>
 <UserName>viewer</UserName>
 <Password>password</Password>
 </Users>
 <Products>
 <Product>Widget</Product>
 <Quantity>3</Quantity>
 </Products>
 <Products>
 <Product>MegaWidget</Product>
 <Quantity>1</Quantity>
 </Products>
 <Products>
 <Product>Recombobulator</Product>
 <Quantity>16</Quantity>
 </Products>
</SampleData>

The XML file contains an arbitrary root node of <SampleData> and then subsequent child
root nodes of <Users> and <Products> respectively. These nodes represent the tabular
structure. The child elements of <Users> and <Products> represent the columns, extracted
and used as the data source field. When adding the XML data source, the user specifies the
location of the XML file and then selects a table to use from that data.

Chapter 5: Creating Performance Tests

122

Figure 5.28: Selecting an XML data source and associated table.

While an XML file is more verbose, it does provide the advantage of being able to host
multiple tables in one file.

Test deployment considerations

When a data source is used within a web test, that data source must obviously be made
available to the test agents, so that the data can be extracted and used as context items during
the test execution.

For a database, this means ensuring that the agents can connect to the database machine, and
have the appropriate access to do so.

CSV and XML files must be deployed along with the tests in the compiled assemblies,
otherwise the tests will not be able to locate the files. Indicating that the files need to be

Chapter 5: Creating Performance Tests

123

deployed as part of the test execution requires the test run configuration file to be edited. To
do this, open the Test menu, then select the Edit Test Run Configuration option, and then
the Local Test Run (localtestrun.testrunconfig) option.

Note

The name of your test run configuration may differ, or you may have multiple
configurations. Ensure you apply the changes to the configuration that you will be using.

A dialog is displayed listing all the configuration categories. Select the Deployment option
from the left pane. In the right pane, multiple files or entire directories can be added, and
these items will all be included when tests are deployed to each agent during a performance
test run.

Figure 5.29: Specifying files or directories for deployment.

Having a single directory containing all the data sources means that the directory only needs
to be defined once in the deployment configuration, and all files within that directory will
be included in the deployment. If the director has been defined in this configuration, then
any new data source files added to it later on will automatically be deployed. This is a really
convenient deployment method.

Chapter 5: Creating Performance Tests

124

Specifying singular files is certainly acceptable, as long as you ensure that each new data
source file is added to the deployment configuration for all test run configurations that
require it.

Web test code generation

Web tests provide a great deal of flexibility and a wide range of possibilities for customization
and generating effective load. However, there may be instances where the supported
customization methods are simply not enough, and more specific customization is required
to create a valid test against the target system.

It is possible to generate code from web tests, and then simply treat that code like any other
.NET development library component. You can then write whatever customization code is
required. When code is generated for a web test, you will then have a separate copy of the
web test, but in pure code. This will include any references to data sources, or other specific
customization made to the test while it was still a web test.

Note

While relatively minor changes are often added to the generated code to achieve any
desired effects, specifying data sources and modifying request properties is usually easier
in web tests. For this reason, it's best to retain the original web test from which the coded
test was generated.

To generate the code from a web test, select the Generate Code button from the web test
toolbar in the main window.

Figure 5.30: Generate Code button for a web test.

A dialog will be presented, allowing you to specify a name for the generated coded test; once
you've supplied that information, selecting OK will generate the code and add the file to the
test project.

Chapter 5: Creating Performance Tests

125

The code will contain the required attributes to define a data source (if one is used) and any
other contextual items. The GetRequestEnumerator method will be overridden and will
contain the execution path of the tests, as shown in the following code snippet:

public class MyTest_CodeGenerated : Webtest
{

 public MyTest_CodeGenerated()
 {
 this.Context.Add("MainServer", "http://glavtop");
 this.PreAuthenticate = true;
 }

 public override IEnumerator<WebtestRequest>
GetRequestEnumerator()
 {
 WebtestRequest request1 = new WebtestRequest((this.
Context["MainServer"].ToString() + "/PerfTestSampleSite/"));
 request1.ThinkTime = 8;
 request1.Timeout = 60;
 yield return request1;
 request1 = null;

 WebtestRequest request2 = new WebtestRequest((this.
Context["MainServer"].ToString() + "/PerfTestSampleSite/Pages/
SearchProducts.aspx"));
 request2.ThinkTime = 2;
 request2.Timeout = 60;
 yield return request2;
 request2 = null;
...

This effectively shows one big method that yields requests for each web test action that
was recorded. The WebtestRequest object represents the request being executed, and
contains properties as you would see in the Visual Studio user interface through the
Properties window.

It quickly becomes apparent that, with a large web test recording, the generated source file
can become quite large. Performing modifications and maintenance to just one source file
can be quite time consuming, as there is a tendency to refactor and clean up the code.

In general, the best practice is to leave the generated code as untouched as possible. Any
customized actions should be factored out into separate classes and assemblies, with the
generated code simply calling into the customized methods or classes. This way, the originally
recorded web test can be retained, and code regenerated if required, with only minor changes
being needed to call into the customized code.

Chapter 5: Creating Performance Tests

126

Extensibility through plug-ins

Previously, we discussed the ability to modify the properties of a request within a web test.
An example property was the ParseDependentRequests property, which determined if items
such as style sheets and images could also be requested by the original test action. It would
obviously be time consuming and inconvenient to have to do this for each request in a web
test if you wanted to disable all dependent requests.

Extensibility is made possible in Visual Studio Team Test through plug-ins. A custom plug-in
can be created quite easily and applied to the web test. In order to create a custom plug-in,
the required steps are listed below.

• Create a new class in the test project, or in a referenced project.

• Ensure the class inherits from the Microsoft.VisualStudio.TestTools.Web
testing.WebtestPlugin class.

• Override the appropriate method for your needs.

By way of example, let's create a plug-in to disable dependent requests for all requests in a
web test.

• In your test project, add a new class to the project.

• Ensure the class is public, and that it inherits from the Microsoft.VisualStudio.
TestTools.Webtesting.WebtestPlugin class.

The class should look similar to this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.VisualStudio.TestTools.Webtesting;

namespace TestProjectCrap
{
 public class TestPlugin : WebtestPlugin
 {
 }
}

Chapter 5: Creating Performance Tests

127

• Override the PreRequest method.

• The PreRequestEventArgs parameter contains references to context elements such as
the current request. In the implementation of the method, have the following code:
e.Request.ParseDependentRequests = false;

• Compile the code.

The completed plug-in code should look something like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.VisualStudio.TestTools.Webtesting;

namespace TestProjectCrap
{
 public class TestPlugin : WebtestPlugin
 {
 public override void PreRequest(object sender,
PreRequestEventArgs e)
 {
 e.Request.ParseDependentRequests = false;
 base.PreRequest(sender, e);
 }
 }
}

This class is now a web test plug-in that can be added into any web test. To do this, click the
Add Web Test Plug-in button, located in the web test toolbar above the test display window.

Figure 5.31: The Add Web Test Plug-in button.

A dialog will be presented showing a selection of available plug-ins to choose from.

Select the plug-in that was just created and click OK. The plug-in will now appear in the web
test in a Web Test Plug-ins node as shown in Figure 5.32.

Chapter 5: Creating Performance Tests

128

Figure 5.32: Web test plug-in added into the web test.

Now, each time the test is run, the plug-in will also take effect and set the parsing of
dependent requests to "false" for every request. The changes are easy to see in these two
screenshots showing a web test being run: Figure 5.33 without the plug-in added, and Figure
5.34 with the plug-in added.

Figure 5.33: Web test run without the plug-in.

Chapter 5: Creating Performance Tests

129

Figure 5.34: Web test run with the plug-in.

As you can see, the web test with the plug-in added does not make any dependent requests
for CSS resources.

There are numerous other methods in the WebtestPlugin class that can be overridden, and
each participates in a different part of the request life cycle. All life cycle events that can be
overridden follow the same pre- and post-condition pattern. Below is a list of those methods.

PostPage(object sender, PostPageEventArgs e)
PostRequest(object sender, PostRequestEventArgs e)
PostTransaction(object sender, PostTransactionEventArgs e)
PostWebtest(object sender, PostWebtestEventArgs e)
PrePage(object sender, PrePageEventArgs e)
PreTransaction(object sender, PreTransactionEventArgs e)
PreWebtest(object sender, PreWebtestEventArgs e)
PreRequest(object sender, PreRequestEventArgs e)

The naming of the methods makes it easy to understand at what point of the request life
cycle they each take part, and this will factor in to how to implement the required plug-in to
perform any desired custom actions. As you run more web tests, you will develop your own
library of custom plug-ins to suit your personal needs or those of your organization.

Alternative ways of recording
web tests

You don't necessarily have to use Visual Studio to record web tests. Having to install Visual
Studio Team Test just for someone to record a web test may seem quite a high cost.

Chapter 5: Creating Performance Tests

130

Luckily, there is an alternative; you can also use a tool called Fiddler to record web tests.
Fiddler is an HTTP proxy which allows you to capture all incoming and outgoing HTTP
traffic for analysis. It was written by Eric Lawrence, of Microsoft, and it is a very powerful tool
indeed. What is even better is that it's freely downloadable from:
http://www.fiddler2.com/Fiddler2/version.asp.

After downloading and installing Fiddler, recording a web test is very simple. Start the
Fiddler application, load Internet Explorer and perform the usual navigational steps to
simulate the test you are recording. So far, this is no different from using Visual Studio to
record test actions.

Once you have completed your actions, switch back to the Fiddler application, and you
should have a screen with some recorded requests looking something like the screen in
Figure 5.35.

Figure 5.35: Fiddler showing captured requests.

Note

Once you have finished capturing requests for your test, it is best to either shut down
Internet Explorer or stop Fiddler from capturing requests by deselecting the Capture
Traffic option from the File menu, or alternatively by pressing F12. This is advisable
because sometimes toolbars and plug-ins in the web browser can make requests which
have nothing at all to do with the site or the test.

Chapter 5: Creating Performance Tests

131

You will notice that selecting a request in the left pane of Fiddler shows the request details in
the right pane. This is similar to Visual Studio, although the latter can show the request in a
lot more detail.

To save the captured requests as a Visual Studio web test, select them all by clicking the
Edit > Select All menu option, and then open the File menu, and select the Save > Selected
Sessions > as Visual Studio Web Test... menu option.

Figure 5.36: Fiddler, saving requests as a Visual Studio Web Test.

A dialog is then presented allowing the user to specify a name and location for the saved test.
Before the test is saved, yet another dialog is presented, this time asking the user to specify
the plug-ins used to execute against the recorded requests when saving. Simply accept the
defaults and click OK to save the test.

Figure 5.37: Fiddler plug-in selection when saving recorded requests.

Chapter 5: Creating Performance Tests

132

The test is now saved as a normal Visual Studio web test that can be included in any Visual
Studio test project. To do this, simply use Windows Explorer to copy the saved web test file
and paste it into the test project within Visual Studio.

These tests are exactly the same as those recorded within Visual Studio. Using Fiddler just
provides a convenient and low-cost (in terms of both price and installation effort) way of
recording web tests to use for performance testing.

Considerations for load balancing /
load balanced hardware

Production systems will often employ a technique called load balancing or load distribution.
This is typically where more than one server is used to handle the load, or concurrent users,
being applied to an application. This set of servers is often called a web farm, or a farm of
servers. In order to achieve this, load balancing software or hardware is employed to take the
incoming requests, and send them to one of the servers in the farm – typically the server that
is experiencing the least amount of load, or doing the least amount of work at the time.

So the question is: when setting up the performance test rig, should the production scenario
be replicated exactly, with load balancing in place while performing tests?

The answer to this question is "yes and no." It is important to test this scenario, but it is
important to first test against a single server without load balancing in place. The reason for
this is that a single server will produce a set of results which can be considered, if you like,
as the "single measure of performance." That is to say, a single server is easier to identify as a
known quantity because you are isolating results to within the specifications of that machine
only, and that is useful information to have. Adding more machines via load balancing will
typically produce better overall performance, but that performance is still essentially based
on this single measure of performance, as well as the load balancing solution itself. Having
this measurement based on a single server also provides an easy set of metrics for subsequent
analysis when changes are made. Having load balancing in place introduces another variable
into the environment in which changes are applied, and thus increases the "surface area" of
change and effect – which is a rather grand-sounding way of saying that you'll have more
things to account for when quantifying effects if you try and factor in load balancing.

Having said that, when a good idea of performance capability is ascertained from a single
server, introducing a load balanced scenario is also important to gauge the effect of horizontal
scalability. This will determine how much of an effect an extra server provides. An often
incorrect assumption is that, if one server can easily handle, say, 1,000 concurrent users, then
two servers will be able to easily handle 2,000 users. Unfortunately, load balancing doesn't
usually provide a direct linear increase in the capability of a system to bear load.

Chapter 5: Creating Performance Tests

133

The amount of extra capacity that load balancing will provide depends, for starters, upon
the load balancing solution itself. Software-based mechanisms, such as Windows load
balancing software (WLBS) are usually not as effective as hardware-based ones, although
they are often a lot cheaper. Software-based mechanisms are often suitable for smaller-scale
web farms, though.

Also bear in mind that the method of load balancing is important. How does the load
balancer distribute requests and load to other servers? Various methods are employed to do
this, such as:

• Round robin style
This involves simply alternating between the available servers for each subsequent
request coming in.

• Connection based
An incoming request is forwarded to the server that has the least number of open
connections servicing requests.

• Load based
The server experiencing the least load will receive the next request. This brings up other
questions of how the load balancer determines this information, and there are multiple
ways to achieve that, as well.

Various load balancers will support at least one or more of the methods described above,
some more efficiently than others. These variables make sure that the effects of load
balancing are not as straightforward as expected.

Finally, the ability of the application to exist on multiple servers, with no affinity to any one
server is also an important factor. This is referred to as being "stateless." Some load balancers
can accommodate an application that requires "stateful" behavior, although I'll talk about this
in greater detail in later chapters specifically covering optimization and load balancing.

This is why it's important to measure the effect of introducing load balancing. It will
provide a more accurate gauge of expected performance, and allow better quantification of
infrastructure requirements and system capability.

It is important to factor this consideration into your performance testing plan early on,
so that the appropriate infrastructure tasks can be put into place to ensure testing can be
performed against load balanced servers.

If you want to know more about load balancing, I'll cover it in the context of performance
testing and application considerations later in the book.

Chapter 5: Creating Performance Tests

134

Test automation

As the final part of creating a performance test rig, automation of test execution and
collection of performance test results should be considered.

However, in order to automate a performance test, we first need a performance test to
automate and, up until now, we have only discussed how to create and customize web tests.
Web tests are the singular test items that will ultimately comprise a performance test using
the functional scenario breakdowns mentioned earlier.

Now we need to create a performance test scenario and assign some web tests to it. For our
purposes, we will create a basic performance test scenario to execute a series of web tests, and
then automate their execution as well as the collection of the resulting performance data.

Creating a performance test scenario

Ensure you have a test project open in Visual Studio, containing some web tests that have
already been recorded. Select the Add Load Test option from the Project menu, and you will
be taken through the New Load Test Wizard.

Figure 5.38: New Load Test Wizard, Welcome screen.

Chapter 5: Creating Performance Tests

135

You will then be presented with a dialog around scenario settings. Enter a name for this load
test scenario that will be simulated.

Figure 5.39: New Load Test Wizard, Scenario settings.

Leave the other settings at their defaults. The Think time settings determine whether the
test will replay the idle periods where a user is thinking about what action to perform next;
the default is to utilize an average distribution of think times based on the think times as they
were recorded. Choosing the Do not use think times option incurs extra stress on the server
and is useful for pure stress testing, but is not indicative of real world usage.

Next, you have the option to specify the initial settings for the concurrent user load to be
simulated (see Figure 5.40).

Chapter 5: Creating Performance Tests

136

Figure 5.40: New Load Test Wizard, Load Pattern options.

If you are unsure of the concurrent user load to specify at this point, simply accept the default
setting of a constant 25 concurrent users, as this can always be edited later on.

The Step load option allows for a steadily increasing load to be applied, starting at a set user
level (Start user count), then progressively adding a number of users (Step user count). You
can also control the length of time for which to execute each progressive step (Step duration),
as well as the maximum number of users to simulate (Maximum user count).

Moving to the next screen (Figure 5.41) shows the Test Mix Model dialog, which
(unsurprisingly) allows you to specify what kind of test mix is required. For most
requirements, sticking to the default of Based on the total number of tests is best suited to
most organizations, and will allow you to best model the needs of the business and assign
percentage weightings of test based on functional paths and use cases.

If you want to investigate other available test mixes then, as each method is selected, an
information box to the right will describe the option in detail.

Chapter 5: Creating Performance Tests

137

Figure 5.41: New Load Test Wizard, Test Mix Model screen.

On the next screen (Figure 5.42) you can select the tests that the load test will execute (known
as the Test Mix), and assign percentage weightings to those tests to determine the ratio of
their execution.

Basically, this means that a test with a weighting of 50% will execute twice as many times as
a test with a weighting of 25%. Selecting the Add button will display a dialog where tests can
be selected (or deselected) to participate in this load test using the arrow buttons between the
two panes of the dialog.

Chapter 5: Creating Performance Tests

138

Figure 5.42: New Load Test Wizard with tests added.

Obviously, in order to run a performance or load test, there will need to be at least some tests
selected to execute.

Once the tests are selected, clicking OK will show the tests added to the load test scenario
with a default distribution (Figure 5.43). The distribution of the tests can be set to the
required ratio required by the functional paths and use cases decided by the business, and
they can also be easily modified later.

Chapter 5: Creating Performance Tests

139

Figure 5.43: New Load Test Wizard, Test Mix defined.

At this point, you can click the Finish button to add the load test to the project with defaults
attributed to the rest of the options. However, it's best to at least go through and confirm the
default settings are appropriate for your needs.

The next step (Figure 5.44) involves adding browsers to simulate during the load test. If this is
not a concern, then simply skip to the next step. Otherwise, the dialog will allow you to add a
simulated browser by selecting the Add button and then distribute the weighting of browsers
in the same way as was done for test weightings.

Chapter 5: Creating Performance Tests

140

Figure 5.44: New Load Test Wizard, Browser Mix.

The next step (shown in Figure 5.45) involves adding simulated networks to the mix, with the
now familiar weighting process. For most scenarios, leaving a single selection of LAN is best,
as this will not reduce any of the simulated traffic to the server.

Figure 5.45: New Load Test Wizard, Network Mix.

Chapter 5: Creating Performance Tests

141

Initially at least, this is best left at the default setting, with some tweaking performed at later
stages when a good idea of raw performance is obtained.

The next, penultimate step (Figure 5.46) involves defining additional computers and
associated counter sets for Visual Studio to monitor and collect during the performance test.
For now, we can accept the defaults Visual Studio provides, as these cover the main metric
points, such as the CPU, and memory for the test servers, load agents, and controllers.

Figure 5.46: New Load Test Wizard, Counter Sets.

The final step in the process involves defining the run settings (see Figure 5.47). These are
comprised of things like the time period for the performance test to run, including warm-
up time, or the number of test iterations to execute. Additionally, the sample rate and the
validation level are also specified. The validation level determines whether low validation
rules, low and medium ones, or all validation rules are executed against the tests. A validation
level of Low indicates only low validation rules are executed, whereas a validation level of
High indicates all validation rules are executed. Initially, leave the run duration at a default,
low time period of ten minutes, as this will allow us to perform a series of small tests to
ensure everything is working as expected.

Chapter 5: Creating Performance Tests

142

Figure 5.47: New Load Test Wizard, Run Settings.

Click on Finish, and the load test has now been added to the project.

Items can be selected in the main window and their properties edited using the property
window, in the same way as any object in the test project.

To run the load test, the controller needs to be running as an absolute minimum. Agents are
not strictly required to run the tests at low load levels, and are mainly used to distribute test
generation to simulate high load levels.

With the controller running, the Run Test button can be pressed (Figure 5.49) and the load
test will commence running, based on the run settings. If the defaults are used, then this will
be for ten minutes.

Chapter 5: Creating Performance Tests

143

Figure 5.48: Load Test in the project.

Figure 5.49: Load Test, Run Test button.

Chapter 5: Creating Performance Tests

144

When the load test is executing, a series of windows will be presented which show the
current progress of the load test, together with some key counters and measurements. The
display should look similar to that in Figure 5.50.

Figure 5.50: Load Test currently executing.

While the test is executing, additional performance metrics can be viewed by simply
expanding and locating the desired metric in the left-hand Counters pane, and then either
double-clicking or dragging the metric into the desired display window.

Once the load test has completed executing, a dialog is shown (Figure 5.51), asking if you'd like
to view the detailed results.

Chapter 5: Creating Performance Tests

145

Figure 5.51: Load Test Complete dialog.

The dialog allows the user to load in all the performance metric data for evaluation if desired,
as only a small portion is calculated and presented during the execution of the test. To get a
full view of the metric data, more data must be loaded and analyzed.

Putting automation in place

Executing a load test and collecting results is a relatively trivial task when all the
infrastructure is in place. Ideally, automating this manual task can allow tests to be run
without manual intervention and/or during non-business hours. Cleaning up after a test run
is another manual task that is a good candidate for automation.

All of this automation allows effort to be concentrated on the areas that provide value,
such as result analysis, rather than on manual, mundane tasks like initiating execution and
clean-up. Furthermore, the cost of performance testing is substantially reduced as a result of
automating as much of the process as possible.

Executing the load test

Automating the execution of load tests is actually quite easy. Typically, a load test would be
scheduled to run overnight, over a weekend, or even over the course of a few weeks. For these
scenarios, it's useful to have the performance test execute without human interaction, so that
regular performance runs can be performed and analyzed.

Chapter 5: Creating Performance Tests

146

The easiest way to accomplish this is to simply have a batch file that executes the load test,
and to use the NT Scheduler that comes with all current versions of Windows to schedule
when this batch file is executed.

The batch file itself only needs to execute the standard Microsoft test application, MSTest
executable (mstest.exe), and pass in arguments to allow MSTest to properly execute the tests.
An example load test start script may look something like this:

"C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\mstest.
exe" /TestContainer:ProdLoadTest.loadtest /RunConfig:"C:\Source
Code\LoadTest\PerfTestRun.testrunconfig"

In this example, the arguments below are passed to MSTest.

• TestContainer
Represents the load test that should be executed. This contains all the details, such as
Network Mix, run details, and so on, required to execute the test.

• RunConfig
Represents the current test configuration which lists the controller to use, deployment
options, test naming standards, etc., discussed earlier.

That is sufficient to start the load test executing. The Scheduler can be located in the
Administrative Tools section of the Windows Control Panel.

Collecting performance monitor data

Previously, the PerfMon tool was discussed as a great way of collecting server performance
metrics to validate and, indeed, of backing up the metric data collected by Visual Studio
Team Test. However, if the load test execution is being automated, it makes sense that
the beginning and end of the collection of performance data via PerfMon should also
be automated.

The PerfMon tool already contains functionality to schedule starting and stopping the
collection of performance data. Each version of PerfMon has a slightly different user
interface, although the overall functionality is the same.

Chapter 5: Creating Performance Tests

147

Figure 5.52: Windows 7 / Server 2008 Performance Monitor, Schedule dialog.

In both versions of PerfMon, you'll need to create a new counter set, select the properties
of that counter set, and then select the appropriate scheduling options. Alternatively, select
the Data Collector set and then select its properties. From the displayed dialog, select the
Schedule tab to add, edit or remove a schedule, and define when it should start collecting, as
shown in Figure 5.53.

In Windows XP, Server 2000, and Server 2003, the terminology is a little different, but the
concepts are the same. Selecting the properties of an existing counter log, then selecting the
Schedule tab, allows a user to define the start and stop times of the counter recording.

Chapter 5: Creating Performance Tests

148

Figure 5.53: Windows Vista, Windows 7, Server 2008, PerfMon Schedule dialog.

Additionally, in more recent versions of Windows and Windows Server, selecting the Stop
Condition tab provides options as to when the data collection should terminate.

When scheduling performance monitor collection and termination, it is best to generally
start the collection a short period before the performance run commences, and then to
terminate it a short period after the performance run has ended. This ensures that all data for
the performance run is collected, but it will also clearly indicate what the idle or quiet times
of activity on the system look like from a performance metric point of view.

It is important to note that, under Windows XP, Server 2000, and Server 2003, the scheduling
features of PerfMon were somewhat unreliable. Occasionally, when scheduled to start, they
simply wouldn't, and I have yet to find a good reason for this. Terminating collection has
never seemed to be an issue. To prepare against this eventuality, you can use a command-line
tool called logman to instruct PerfMon to start collection, and let the scheduling definition
in PerfMon terminate the collection. logman is available on all Windows server operating
systems, and to use it to start a PerfMon collection, use the syntax:

logman start MyPerfCounters

where MyPerfCounters represents the counter log set name. This tool can also be used to
stop counter collection.

Chapter 5: Creating Performance Tests

149

Collecting SQL Server usage statistics

Since the database plays such an important part in today's applications, it is useful to
determine, not only how hard the database server is working but, ideally, what are the most
expensive queries the database is running. This kind of information can be extremely useful
in determining how the database is performing, and how the application is making use of the
database.

SQL Server provides a convenient way to schedule the execution of scripts via the SQL Server
Agent. Other database vendors offer similar methods. However, with SQL Server it is possible
to define scheduled jobs in SQL Management Studio that execute scripts at specific times and
output the result to a file or database table. There are, of course, many ways to schedule such
an activity, but SQL Server Agent (managed via SQL Management Studio) provides one of the
most convenient.

In order to determine what the most expensive queries are, the system tables in SQL Server
need to be queried, as this is where SQL Server records its statistical data. An example SQL
script to retrieve the most expensive queries would be this:

set nocount on;

select
 qs.total_worker_time,
 qs.execution_count,
 SUBSTRING(st.text, (qs.statement_start_offset/2)+1,
 ((CASE qs.statement_end_offset
 WHEN -1 THEN DATALENGTH(st.text)
 ELSE qs.statement_end_offset
 END - qs.statement_start_offset)/2) + 1
) AS statement_text
from
 (select top 100
 qs.plan_handle,
 qs.total_worker_time,
 qs.execution_count,
 qs.statement_start_offset,
 qs.statement_end_offset
 from
 sys.dm_exec_query_stats qs
 order by qs.total_worker_time desc) as qs
 cross apply sys.dm_exec_sql_text(plan_handle) as st
order by qs.total_worker_time desc;

This query will return results that look similar to those in Figure 5.54.

Chapter 5: Creating Performance Tests

150

Figure 5.54: SQL Server most expensive query results.

The results of the query show the total worker time, execution count, and even the actual
text of the query. The first two results are related to the performance tests and SQL server
respectively, so these are not of immediate concern. The highlighted row (Row 3) represents a
query from the sample application, (Rows 12 and 13 also represent queries generated from the
application). This is determined by looking at the tables being used in the query text. Given
the relatively few times that these queries are executed, the fact that they are appearing near
the top of the result list may indicate an opportunity for optimization.

Results of this nature, when used in conjunction with performance tests, can quickly show
less than optimal parts of the application from a database perspective. This is in contrast
to the top-down perspective that Visual Studio adopts in reporting performance metrics.
Using these two techniques can provide enormous insight into potential performance gains
for your application.

Ideally, these scripts should be used after a performance run and then used comparatively
as further runs are executed, in order to ensure that any applied performance changes
are effective.

Another useful script to execute is one to determine the general index usage of the
target database:

set nocount on;

use PerfTestSampleDB;
select
 obj.Name as ObjectName,
 ind.name as IndexName,
 ind.index_id,
 ind.object_id,
 isnull(user_seeks, 0) as user_seeks,
 isnull(user_scans, 0) as user_scans,
 isnull(user_lookups, 0) as user_lookups

Chapter 5: Creating Performance Tests

151

from sys.indexes ind
 join sys.objects obj on (ind.object_id = obj.object_id)
 left join sys.dm_db_index_usage_stats st on (st.index_id =
ind.index_id and st.object_id = ind.object_id)
where obj.Type_Desc <> 'SYSTEM_TABLE'
order by obj.Name, ind.Name;

Note

If using this script, replace the PerfTestSampleDB database name with the name of the
target database to be analyzed.

Executing this script produces an output similar to that in Figure 5.55.

Figure 5.55: SQL Server database index usage statistics.

The results of the query show the general usage patterns of indexes within the sample
application, with metrics around the number of scans, seeks, and lookups for each index.
Optimization of indexes is a great way to reduce query execution times, and the metrics
provided with this query can help to ensure that the index usage is always kept efficient.

Chapter 5: Creating Performance Tests

152

Clean up tasks

When a performance run is executing, sometimes the test agents can experience low memory
conditions, high CPU utilization and other resource issues. This is particularly likely at
very high loads where the expectations placed on the test agents were not in line with their
specifications. This usually happens early in the performance test phase, when the exact
characteristics of test agents are only estimated.

Additionally, be aware that, after a performance test run has completed execution, even with
the best intention and attempts by software, some memory may not be properly released.
Eventually, this can lead to unstable test agents and, ultimately, failed or less-than-effective
performance test runs.

For this reason, I recommend that you restart or reboot the test agent machines after
each run. Fortunately, this can also be automated, using the included scheduling ability of
Windows as described previously. We need to instruct each of the agent machines to restart,
and this can be done using a command-line tool called shutdown which is available on all
versions of Windows from Windows XP to Server 2008. To restart a remote machine, for
example, the following syntax is used:

shutdown -r -t 0 -f -m \\testagent

Where:

• -r : instructs the machine to restart, rather than simply shut down

• -t 0 : instructs the shutdown/restart process to happen after a timeout of 0 seconds, that
is, immediately

• -f : instructs the machine to force all running applications to close without prompting
any warning

• -m \\testagent: represents the machine to shut down / restart. In this case, the machine
is named testagent.

Typically a batch file is created that restarts all agent machines that you may have in
your performance test rig. This script could either be called directly after the scheduled
performance test execution script, or it could be scheduled to execute at regular times during
the day when it is known that the performance run has completed.

This way, the test agent machines are always in a known, clean state before each performance
test run, which better ensures a successful performance test.

Chapter 5: Creating Performance Tests

153

Note

This technique could also be applied to the controller if desired.

Conclusion

This chapter has provided an extensive walk-through of the following aspects of
performance testing:

• architecture of a test rig

• setting up the various components of the performance test rig such as controller
and agents

• troubleshooting test rig setup

• creating web tests and load tests, and parameterization of the tests

• automation of the execution of load tests, collection of performance data, and
clean-up tasks.

The amount of setup and effort required to have a performance test rig running and
automated is not small, and it is therefore important to have a good understanding of how
a performance test rig operates and, more importantly, how to debug and diagnose it if, or
when, errors occur.

Once the rig is running and automated, the cost of performance testing then just comes
down to analyzing the results and any subsequent changes this may generate. This is exactly
the situation you need to be in to effectively and continuously monitor your applications
for performance issues. More importantly, this will allow constant metrics to be fed back to
interested parties to ensure application development is going according to plan.

154

155

Chapter 6: Application Profiling

If you talk to teams of developers about performance profiling, someone will usually say
something like, "We don't have time to profile our code, that's why we have load testers"
or "If it runs slowly we just throw another server into the farm." Many developers see
performance profiling as an extra piece of work to add to their existing workload, and yet
another steep learning curve to climb.

Many developers enter the world of performance and memory profiling only when something
has gone badly wrong. This usually means during system testing, load testing, and often
(sadly) in production. Developers will download an evaluation copy of a profiler and try to
isolate why the application is running slowly or keeps crashing. The pressure is on, and it's
now the worst possible time to learn the skills required to be an effective application profiler.

Using profiling tools to look for potential bottlenecks during development can significantly
reduce the number of problems that show up later. With the right tools and training, this can
become a regular part of the development process without adding too much overhead.

Development profiling will never uncover all of the issues that a comprehensive load test
would, but it can highlight parts of the code that have the potential to become bottlenecks
when the application is stressed. Finding and fixing them early can make a big difference
overall, especially if all the developers are testing the code they write.

This chapter, and the next two, are all about the tools and techniques that you can quickly
master, and then use as part of your development process. Remember, it costs between 15
and 75 times more to find and fix an issue found during test than if that same issue was found
during development (Boehm, 1981).

Types of profiling

Application profiling goes beyond the raw performance statistics obtained from system
performance monitoring tools, and looks directly at the functions and allocated objects inside
the executing application.

When profiling a .NET application, the execution speeds of its internal functions and the
resources they use are recorded for a specific set of test transactions. The recorded data will
give insight into where there may be performance bottlenecks and possible memory problems
(such as memory leaks).

Chapter 6: Application Profiling

156

Profilers retrieve performance and memory information from .NET applications in one of
three ways:

• Sample based
The application function call stack is periodically recorded to give a low overhead, but
equally low resolution analysis.

• Events based
The Common Language Runtime can be configured to send notifications to specific
profiler DLLs. Key information on function execution, CPU, memory, and garbage
collection can be collected using this mechanism.

• Instrumentation
Instrumentation code that measures the application is added to it at runtime, which can
give very detailed and accurate results, but also comes with a high overhead.

A word about profiler overhead

Whichever profiler you use will add some overhead to the executing application it's
measuring, and to the machine it is running on. The amount of overhead depends on the
type of profiler.

In the case of a performance profiler, the act of measurement may itself impact the
performance being measured. This is particularly true for an instrumenting profiler, which
has to modify the application binary to insert its own timing probes to every function. As
a result, there is more code to execute, requiring additional CPU and memory, causing
increased overhead. Most profilers try to compensate by deducting the overhead of the
instrumentation from the results.

The profiler also has to deal with the torrent of data it receives and, for a detailed analysis, it
may require a lot of memory and processor time just to cope.

If your application is already memory and processor intensive, things are unfortunately only
going to get worse, and it could be that it's just not possible to analyze the entire application.
Thankfully, most tools allow you to limit the scope and depth of the analysis, which can help.
In some situations, the only way to get results may be by writing test harnesses to exercise
portions of the application in ways analogous to the full application.

Chapter 6: Application Profiling

157

Performance profiling

Performance profiling is all about discovering which parts of your application consume a
disproportionate amount of time or system resource. For example, if a single function takes
up 80% of the execution time, it's usually worth investigating.

Profiling will highlight small areas of code that would never otherwise be looked at again, and
it makes developers ask some interesting questions. To be fair, most of the time the answer
will be, "It has to do that and that's as fast as we can make it." The rest of the time, a potential
bottleneck will have been uncovered.

What to profile

Profiling a multilayered networked application can be really difficult, simply because of the
number of possible variables involved. The question that's difficult to answer is, "Which bit is
slow?" Is it the client, the web server, the application server, the database server, or even one
of the network links in between?

The first stage in profiling performance is to identify the "slow bit." Application server
monitoring can help isolate the guilty layer, and will often help you determine if it is an
application or a database problem. Sometimes the problem is even more complex, and a
network monitoring tool will be required. These tools analyze packet journey times between
the layers, and break down application transactions into server processing time and network
time. They can help identify the layer responsible for slow-down, and determine if the
problem is to do with a network issue, such as congestion, bandwidth or latency. Chapter 7
discusses this topic in more detail.

Once you have identified the layer responsible (or, if you like, the slow bit) that will give a
clue as to the kind of profiler to use. Obviously, if it's a database problem, then use one of the
profiling tools available for the products of the database vendor, or simply add another index
(just kidding!). If it's a .NET application problem, then there are a whole host of profilers
available, and we will be discussing some of the best ones later in this chapter, and when we
look at more specific types of profiling later on.

Function analysis

To measure the performance of an application, you need to know how long specific test
transactions take to execute. You then need to be able to break those results down in a
number of ways. Specifically, function call and function call tree (the sequence of calls created
when one function calls another, and so on).

Chapter 6: Application Profiling

158

This breakdown identifies the slowest function and the slowest execution path, which is
useful because a single function could be slow, or a set of functions called together could be
slow. Many tools create elaborate hierarchical diagrams which allow the developer to explore
the call trees, and this can really help when trying to identify a bottleneck.

Line-level analysis

Profilers can accurately time individual code lines, allowing you to identify the slowest line
within a slow function. For me, this is an essential feature because it gives you the best chance
of coming up with workable optimizations.

However, line-level analysis does add a greater overhead to the profiling session and can
normally be switched off, leaving the profiler to analyze at the function level only.

Wall-clock (elapsed) vs. CPU time

Most profilers measure wall-clock time and CPU time. The ability to distinguish between
the two is important because CPU time is pure processing and excludes any waiting time.
By contrast, wall-clock time is the total time taken to process a function, including any
Wait time.

A function may take a long time to execute, but use comparatively little CPU time because it
is actually waiting for a database / web service call to return or for a thread synchronization
lock to free up. Identifying Wait time can help you identify where your application may
benefit from asynchronous processing.

At the same time, a CPU-intensive function is usually a good candidate for optimization,
because the CPU is a finite resource and a potential bottleneck.

Resource bottlenecks

Resources such as disk space, network bandwidth, server availability, graphics cards, and
shared threads can all create bottlenecks in an application. Identifying functions causing high
levels of resource activity and contention is a key goal in profiling. This kind of activity, when
scaled, could quickly become a problem and reduce the scalability of the application.

Chapter 6: Application Profiling

159

Call count

Function call count is the easiest statistic to look at first, because a non-trivial function with a
high call count often indicates an immediate problem. It's always worth validating the origins
of the high call count.

Small optimizations add up and scale

The great thing about performance profiling an application during development is that a
developer can immediately see where the main processing hotspots/bottlenecks in the code
are. Optimizing the hotspots and asking intelligent questions about call counts can give small
but significant improvements in performance and, if the whole team adopts this strategy, the
gain can be significant.

With so much code executing on servers, small performance gains become significant because
they quickly scale according to the number of users and the number of locations they affect.
More to the point, identifying and eliminating potential bottlenecks will prevent them from
ever becoming problems during load testing or in production.

Memory profiling

The way you write your code directly impacts how and when the objects you create are
allocated and destroyed. Get it right, and your application will use memory efficiently as
needed, with minimal performance impact. Get it wrong, however, and your application
could use more memory than necessary, which will cause the memory manager to work
harder than it needs to, and this will directly impact performance.

Even worse than that, your application could just keep allocating memory until no more is
left, causing the application or the machine to crash. This is the memory leak, which every
developer fears.

The good news is that there are plenty of tools out there which you can use to find and fix
memory problems before they actually become problems. All you need is some background
knowledge and a few basic techniques, and it will become second nature.

Checking that an application doesn't have memory leaks, and that it uses memory efficiently,
together with fixing any issues found, will improve its overall stability and performance.

Chapter 6: Application Profiling

160

Garbage collection

The .NET memory management model ensures that any allocated objects which are no
longer in use by the application will be reclaimed automatically. This relieves developers of
the responsibility of having to free memory explicitly, which is something that was often
omitted in native C/C++ applications, leading to memory leaks.

Garbage collection was invented by John McCarthy et al. in 1959 as part of the Lisp language,
but gained most prominence when it was adopted as the memory management model for
Java in 1995.

Instead of depending on the developer to manually de-allocate objects, garbage collection
adopts an automatic model in which objects are monitored to determine if they are still in
use. Those no longer used will have their memory reclaimed automatically. The automatic
memory management model, of which garbage collection is a part, was adopted by Microsoft
as the model for .NET. I will cover .NET's memory management model and how it works in
detail in Chapter 7 but, for now, here is a brief overview.

The .NET CLR allocates objects (less than 85K) onto a managed memory heap, and ensures
they are placed consecutively in memory with no gaps between objects. The garbage collector
then periodically determines which objects are still in use, by looking to see if they are
referenced by other objects, or from the stack, globals, statics, or even CPU registers. If no
references are found, it concludes that the object isn't in use and can be "garbage collected."

When an object is garbage collected, it is simply overwritten by the objects above which are
moved down in memory – a process known as compaction. This makes sure there are no gaps
left in the heap. In truth, it's actually a bit more complicated than this, as objects are grouped
into generations depending on how recently they were allocated. (For performance reasons
the garbage collector always tries to collect the youngest objects first.)

Anything that keeps hold of a reference to an object will keep it alive indefinitely, and that
can be the cause of a leak if it repeats continually. Memory profiling is all about finding
suspiciously persistent objects, and tracing back to find the references in code that are
keeping them in memory.

Using memory profiling techniques and tools, you can identify large objects that cause the
application to have a larger memory footprint than necessary. You can also look for objects
that are continually created and never garbage collected, causing memory leaks. I'll cover the
garbage collector and associated concepts in much more detail in Chapter 8.

Chapter 6: Application Profiling

161

Profiler approaches

All memory profilers will track instances of allocated classes. Some will also track the
allocation call stack, which means that they can report on a function's allocation profile and
identify function "hotspots."

The ability to view allocations, in terms of both classes and functions, can be really useful.
However, recording allocation call stacks can be very memory intensive and can sometimes
limit the size and complexity of application that can be profiled.

Symptoms of memory problems

• Memory leak

• Memory usage slowly increases over time.

• Performance degrades.

• Application will freeze/crash requiring a restart.

• After restart it's OK again, and the cycle repeats.

• Excessive memory footprint

• Application is slow to load.

• After load, other application runs slower than expected.

• Inefficient allocation

• Application performance suddenly degrades and then recovers quickly.

• % Time in GC Statistic in PerfMon is greater than 20–30%.

I will be going through memory profiling in a lot more detail in Chapter 7.

When to start profiling

In my view, the answer to this question is "profile when you feel you have achieved functional
stability in your coding task." That means, after you have completed the requirement, and
your testing confirms it works as specified.

Chapter 6: Application Profiling

162

Profiling at this stage will highlight potential bottlenecks that should be investigated. Profile
any earlier and you could be optimizing code that may significantly change.

Profiling usually occurs in one of three ways: reactive debugging, proactive analysis, or
technique validation.

Reactive debugging

Reactive debugging happens when a problem has been found, typically during a load test or in
a live system, and the developers have to react to this unwelcome news and fix the problem.

With load test debugging, you have a lot more data to work with because the results will
describe the failing transactions in fine detail and give many detailed server statistics, which
will help in isolating exactly where the problems are.

Production debugging is much more difficult, because really all you will get are some
performance monitoring statistics and, if you are lucky, some anecdotal evidence about what
might have been running when the slow-down occurred.

If you carry out load testing late in the life cycle, or if it's a production problem, a number of
things now have to happen.

Developers have to:

• isolate the tests to run to reproduce the problem

• understand how to use the profiler

• interpret the results

• get familiar with the code again

• fix the code

• confirm the fix.

Production problems are inevitably accompanied by pressure from management to fix
the issue. Developers are also usually caught off guard and are ill prepared for an in-depth
analysis of a system they may have last worked with many months earlier.

This is all just an inefficient waste of time and resources, and it doesn't even include the time
that would then be required for system testing in a production environment.

Chapter 6: Application Profiling

163

The earlier you start your application profiling and load testing, the better. Which is why my
general recommendations are:

• Test your application transactions under load as soon as you can during development,
and test regularly (as soon as you have something testable). Ensure issues are found and
fixed early.

• Encourage a culture where developers proactively look for potential bottlenecks in their
code using profiling tools (see next section).

You don't have to wait until the load test phase to begin load testing (although often the
expense is too great to use these facilities too early). There are lots of tools out there that
you can use to place stress/load on your application, and doing this as early as possible will
highlight issues that single test profiling won't find. If you can, automate the stress testing
and run it regularly, so that any code changes that impact performance are picked up quickly.

Proactive analysis

Proactive analysis, as the term implies, is all about the developer actively looking for
performance and memory issues during the development cycle. It has the major advantage of
being by far the quickest and cheapest type of analysis, because the developer already knows
the code well, and is able to quickly make knowledgeable optimization decisions.

Proactive analysis takes place as part of the developer testing process, and should be an
essential requirement before source code is checked back into the repository. It is 15–75 times
quicker to fix an issue in development, than if it was found in later testing (Boehm, 1981).

The proactive approach does require an investment in tools and training, but it also results
in more highly skilled development teams who are actively looking for problems in
applications, and who are empowered with the skills necessary to find and fix these
problems when they occur.

Technique validation

Profilers can really help developers choose the optimal algorithm to achieve a specific
processing task. Questions such as, "Should I process it all on the server, or on the client in
batches?" can be answered quickly and easily by running a few quick tests.

Finding the most efficient technique to process data can also be very difficult without a
profiler. Searching online merely opens up a huge debate, and the only way to be sure is to
write some test harnesses, and run a profile.

Chapter 6: Application Profiling

164

Tools used for profiling

Many of the available profiling tools combine both performance and memory profiling in one
package. I will summarize the features of some of the main tools on the market and, in later
chapters, I'll describe how to use them to carry out both performance and memory analysis.

CLRProfiler

The CLRProfiler is, at first glance, quite a basic memory profiling tool. On closer analysis,
it's actually extremely powerful once you get the hang of it. Whilst it isn't the most intuitive
or easy-to-use profiler you will find, it is certainly very detailed and comprehensive in the
information that can be retrieved.

It can profile applications up to and including .NET Framework 3.5, although it only officially
supports up to Framework 2.0.

Figure 6.1: CLRProfiler, histogram by age.

CLRProfiler will monitor the executing application (exes, services and web applications) and
then provide a number of histograms and call graphs. These can be used to track memory
leaks, excessive memory usage, Large Object Heap issues and excessive garbage collection
overhead; it's also possible to analyze Finalizer issues.

Unfortunately, CLRProfiler is one of those tools most developers have downloaded and tried
out, but given up on after about twenty minutes because it is quite difficult to use.

Chapter 6: Application Profiling

165

It's free to download and, once you have mastered its quirky interface, and adopted a
technique that works for you, it's possible to gain real insight into the memory state of
the application.

CLRProfiler gets complicated really quickly and for that reason I will cover it in more detail in
Chapter 8.

Red Gate's ANTS Memory and Performance Profilers

The Red Gate .NET Developer Bundle v5 works with .NET framework 1.1, 2.0, 3.0, 3.5, and 4.0,
integrates into Visual Studio 2005, 2008, and 2010 at March 2010 release, and supports both
32-bit and 64-bit profiling.

The .NET Developer Bundle includes ANTS Performance Profiler Pro and and ANTS Memory
Profiler and, at the time of writing, costs $795 for a single user license (Red Gate, 2010).

ANTS Memory Profiler

ANTS Memory Profiler (Figure 6.2) captures class instance allocation and has a low overall
overhead. It provides an easy-to-use and flexible user interface.

ANTS also provides graphical insight into the heap with the memory timeline, which is
a graphical representation of various performance counters including bytes on all heaps,
private bytes and Large Object Heap size (other counters can be added in the options). The
primary technique for using this tool involves the developer taking memory snapshots at
relevant times. Snapshots can then be compared against each other and used to find classes
requiring further investigation.

Filters allow the developer to filter out application noise and to focus on specific problems.
Application noise refers to any object allocations that are irrelevant to our analysis but
whose presence on the heap we may misinterpret. There are standard filters to eliminate
general application noise, and specific filters that can be used to find common causes of
memory leaks.

Chapter 6: Application Profiling

166

Figure 6.2: ANTS Memory Profiler.

Once a set of suspicious class instances has been identified, the Class Reference Explorer
allows the developer to trace back into the tree of object references to find the exact
references in the code which are causing the problem.

It's also possible to view a session overview of the snapshot, which gives insight into the state
of both the Small Object Heap (including Gen 1 and 2) and the Large Object Heap.

Chapter 6: Application Profiling

167

ANTS Performance Profiler

When performance profiling an application, ANTS Performance Profiler (Figure 6.3) presents
a performance graph with percentage processor time, plus a number of other performance
counters which can be selected.

Figure 6.3: ANTS Performance Profiler.

Results can be viewed for the entire analysis, or for just a small portion using the trace graph
and selecting an area of interest using the mouse (see Figure 6.4).

This can be really useful if you notice part of your trace for example with high CPU activity,
and it allows you to focus on what was happening just for that tightly-defined period. The
profile results for the trace can be viewed in Call Tree, Grid or Call Graph modes.

The Call Tree mode displays a hierarchical list of the slowest call trees for each execution path
in the selected period, and highlights as the "hottest" the path that is most likely to be
the bottleneck.

Chapter 6: Application Profiling

168

The grid mode displays the results in a classic grid format, giving:

• Time (CPU or wall clock)

• Time with children (CPU or wall clock)

• Hit count (number of times called).

A call graph can also be generated for every function, allowing the sequence of calls to and
from a function to be traced.

Figure 6.4: ANTS Performance Profiler, selecting a portion of the analysis trace.

Performance results can be viewed by CPU time or wall-clock time, which is a useful
feature as it can help to quickly identify where the application may benefit from
asynchronous processing.

ANTS also provides a number of analysis modes which change the amount of overhead that is
added to the executing application:

• method level – lower overhead but less detailed

• line level – higher overhead, more detailed.

It is also possible to further reduce the overhead of both modes by selecting to profile only
methods that have source code. That is often the most sensible course of action, since you
can only optimize where you have source code to change.

Chapter 6: Application Profiling

169

Microfocus DevPartner Studio Professional 9.1

MicroFocus's DevPartner 9 is a suite of tools for .NET framework 2.0, 3.0, and 3.5, and Visual
Studio 2005 and 2008. DevPartner pricing depends on the licensing model, but if you are
buying from ComponentSource a single-user standalone license is $2,834.67 at the time of
writing (ComponentSource.com, 2010).

The suite is a developer tool that integrates into Visual Studio 2005 and 2008, and can
optionally also be run from the command line. It supports 32-bit profiling on both x86 and
x64 systems, and includes a range of tools.

Memory Profiler

The Memory Profiler (Figure 6.5) can perform three types of analysis:

• RAM footprint analysis

• memory leak detection

• temporary object analysis.

DevPartner captures both the class instance allocation and the allocation call stack, so it's
possible to view the results in terms of class hotspots and function hotspots.

Figure 6.5: DevPartner memory analysis.

Chapter 6: Application Profiling

170

RAM footprint

RAM footprint looks at both the largest allocated objects and the methods and call trees
responsible for allocating large amounts of memory. With these types of analysis it is possible
to identify parts of the application that are causing its overall memory footprint to be larger
than may be necessary. This often occurs when an application loads data and keeps it cached
in memory for later use.

Temporary object analysis

Temporary object analysis looks at the allocation of relatively short-lived objects. These are
objects that manage to stay around long enough to survive a couple of garbage collections,
but then lose their references and become available for collection. These types of objects
make full garbage collections run more frequently, which is inefficient. Having insight into
where temporary objects are allocated can help a developer reduce object longevity and
improve overall memory usage and performance.

Memory leak detection

The memory leak detection tool allows the developer to navigate through the application
until they get to the point where they want to start tracking the leak. At that point, they
press a button and all objects allocated from that point are recorded. When the developer has
finished their test, they press a View Memory Leaks button, and the tool forces a full garbage
collection before presenting the results of all of the classes allocated since tracking began and
which survived collection.

The results can be viewed by class/object instance and also by function, as the call stack for
each allocation is also recorded.

Performance Profiler

There are two separate performance profilers in DevPartner; one for function timing analysis,
and the other, called Performance Expert, for function resource analysis, looking at the CPU,
disk, and network activity.

The timing analyzer can profile both managed and native instrumented applications, though
the resource analyzer is a pure .NET tool only.

Chapter 6: Application Profiling

171

Performance timing analysis

The timing analyzer can profile at the function and the code line level. It's also possible to
profile both managed and native code at the same time, although the native code must be
built with instrumentation.

Running a test is a simple matter of starting the application using the DevPartner Integration
toolbar button within Visual Studio.

Figure 6.6: DevPartner toolbar buttons.

A couple of further buttons will appear on the toolbar, which will allow you to take
performance snapshots, and the application will start.

The snapshot results are displayed within Visual Studio in a standard grid which can
be sorted and filtered. It's also possible to reduce the scope of results by selecting to only
view specific source or system modules. The main statistics provided per function (see
Figure 6.7) include:

• Called (number of times the function was called)

• % in Method (% of time spent in function excluding time spent in calls to
non-framework functions)

• % with Children (% of time spent in function including time spent in calls to
non-framework functions)

• Average time (total time in function / number of calls).

The user can view the source for each function listed, giving them a timed line-by-line
breakdown of the source code. Alternatively, it's possible to view the call tree for the function,
and from here you can track backwards or forwards through the call tree to investigate the
function's critical path (more on this later).

Chapter 6: Application Profiling

172

Figure 6.7: DevPartner Performance analysis.

Performance Expert Analysis

As with performance timing analysis, Performance Expert Analysis (Figure 6.8) is started from
within Visual Studio, and additional buttons appear which allow you to take performance
snapshots. This time, the application is being measured for CPU, disk, network activity, and
Wait time, which are all potential bottlenecks.

When a snapshot is taken, the most CPU-intensive execution paths and functions are
displayed, and various forms of analysis are available. Execution path analysis allows you to
perform a call graph analysis on the execution path. The functions analysis displays a grid of
resource statistics for each function, allowing you to sort by each column. From this view, you
can quickly determine the most intensive functions in terms of CPU/disk, etc.

Chapter 6: Application Profiling

173

Figure 6.8: DevPartner Performance Expert analysis.

Other tools

In addition to the profiling tools, DevPartner also has:

• Code review tool
Code quality, standards, security analysis

• Code coverage analyzer
Determines how much of an application has been tested, and what hasn't been tested.

Microsoft Visual Studio 2008 profiling tools

Visual Studio 2008 Team Edition has a built-in performance and memory profiler, and
you can choose to use either sampling or instrumentation methodologies. As well as the
usual performance timing and memory allocation information, it is also possible to collect
additional CPU counters, Windows events and Windows counters with these tools.

A profile report can be produced at any time, at which point a summary report is displayed
from where you can drill into the data or select more detailed reports from a drop-down list.
The report view provides a filter mechanism which allows for the creation of sophisticated
queries on the available data. It's also possible to compare reports, which is useful, for
example, to check that an optimization has been successful.

Chapter 6: Application Profiling

174

Performance Explorer

Visual Studio's profiler settings have a lot of options available, and so multiple performance
analysis configurations can be set up for the same application in a Performance
Explorer window. You may, for example, have separate configurations for Sampling and
Instrumentation, and for Memory and Performance profiling. All of the reports for each
configuration are stored together.

Performance Analyzer

On completion of a test, the performance analyzer will give a summary of the worst
functions, as well as reports on most called functions, functions with the most individual
work, and functions taking the longest.

Figure 6.9: Visual Studio 2008 Performance Profiler.

Chapter 6: Application Profiling

175

From here, you can choose a function from the list and view its callers, its child calls, or you
can view the source, if available. The profiler works well at the function level, but has only a
crude reporting mechanism to give code line-level statistics. The next version of Visual Studio
2010 will address this issue, giving full line-level timings and source code visibility. Many
other reports can be selected, including a function grid to determine the slowest functions,
and a call tree to identify the slowest execution paths. It is possible, using a combination of
the reports, to find function bottlenecks, which is naturally a good starting point to being
able to correct these issues.

Memory Analyzer

To carry out a memory analysis (see Figure 6.10) you need to make sure that the Performance
Explorer configuration you are using has the following .NET memory profiling options set:

• Collect .NET object allocation information

• helps identify expensive allocated classes and functions.

• Also collect .NET object lifetime information

• memory leaks

• mid-life crisis detection

• Large Object Heap issues.

The application can now be launched from within the Performance Explorer window.

Run your test transaction, then either press the Stop button on the Performance Explorer
toolbar, or close your application.

The memory analyzer (see Figure 6.11) reports on:

• functions allocating the most memory

• types with the most memory allocated

• types with the most instances.

From the summary, you can view reports that detail:

• object allocation (largest allocated classes and the methods that allocated them)

• object lifetime (when objects are de-allocated)

• call tree (most memory expensive function call trees).

Chapter 6: Application Profiling

176

Figure 6.10: Visual Studio 2008 memory analysis configuration.

Figure 6.11: Visual Studio 2008 memory analysis.

Chapter 6: Application Profiling

177

What to look for

Let's now look briefly at some of the main types of problem that can be uncovered using the
tools described above. As this chapter is just an introduction to the noble art of profiling, all
of the techniques mentioned will be described in more detailed in subsequent chapters.

Performance analysis

The following key indicators can be used to identify potential bottlenecks and problems in
your code. We will cover performance profiling in Chapter 7.

High call count

Functions with very high call counts should be treated with suspicion and investigated. Often
the high call count is valid, but sometimes it's due to an error in event handling, and can be a
major source of unintended processing.

Resolution

Using the call graphing facility of your performance tool, it should be possible to trace back
to where the calls to the function originate, and decide if it is acceptable behaviour. It's a very
quick and easy check, and a very quick optimization if a problem is found.

I have actually lost count of the number of times I have found this issue in live code!

Slowest function excluding child calls

This is the slowest function where the body of the function itself is responsible for the time.
It includes time spent calling .NET framework functions, but excludes time spent calling
other source code functions. In other words, it's answering the question, "What's the slowest
function we have written?"

Chapter 6: Application Profiling

178

Resolution

Identify the slowest functions excluding child calls and then, if available, look for the slowest
code lines and determine if they are optimizable. You will often see slow lines waiting for
database and web service calls to return.

Slowest function including child calls

This is the slowest function where the total cost of the functions, including time spent into
calls to child functions (we have written), is accounted for.

Resolution

Use your tool's call graph facility to explore the slowest part of the call tree.

Functions with high CPU utilization

Any function with high CPU utilization is a prime candidate for optimization, as high
resource demands can be a key bottleneck.

Resolution

Identify the most CPU-intensive lines of code within the function and determine if there are
workable optimizations that may apply.

Functions with Wait time

Functions with Wait time can indicate performance problems in other application layers,
or problems with thread locking (I'll discuss thread locking in Chapter 7, where it'll be
more relevant).

Resolution

Identify which resource the function is waiting for, e.g. database or web service, then
investigate the cause of the contention on that layer.

Chapter 6: Application Profiling

179

Functions generating disk activity

A function generating disk activity needs to be investigated further, as it is demanding
resources and is therefore a potential bottleneck.

Resolution

Make sure the disk activity is necessary, particularly if this is a server application. Even if it is
necessary, try to find an alternative if possible.

Functions generating network activity

A function generating network activity needs to be investigated further as another
potential bottleneck.

Resolution

Make sure the network activity is valid and not an artifact left behind from prototyping or
developer testing. Ensure that the number of times this network activity occurs is as low as
possible, to reduce the effect of latency. If possible, get more data in one hit.

Memory analysis

When and where you create objects in your code has far-reaching consequences for the
application as a whole. Allocating too early and for too long will increase the application's
memory footprint. Leave references to objects in collections or from event listeners, for
example, and they will stay in memory indefinitely.

We're going to look at memory analysis in a lot more detail in Chapter 8 but, for now,
let's look at some of the key types of analysis that can help improve your application's
memory profile.

Chapter 6: Application Profiling

180

Memory leak detection

Finding memory leaks is all about identifying objects that are allocated but never garbage
collected. Memory leaks always get worse so, in theory, the longer the application runs, the
bigger the leak will get, and the easier it will be to see. That doesn't really help when profiling,
though, because you need to be able to identify a leak quickly.

Profiling tools help leak detection by allowing you to take memory snapshots. A snapshot
usually involves forcing a garbage collection and then recording all of the objects that are
left behind in memory. Objects that repeatedly survive garbage collection should be
investigated further.

If objects of the same type continually survive garbage collection and keep building up in
memory, you need to investigate the references that are keeping those objects in memory.
Tracking object references back to source code allows you to find the cause of the leak in your
own code, which means you can fix it.

Some profilers track memory allocation by function calls, which allows you to see the
functions that are potentially leaking memory. This can also be a highly effective technique
for finding a memory leak.

Excessive memory usage

Reducing the overall memory footprint can help an application to coexist with other
applications on the desktop or server. It's always worth checking where your application is
allocating and retaining large chunks of memory, just to ensure that this behaviour really
is necessary. Often, it's done for performance reasons and is perfectly valid, as the memory
overhead is worth the performance gain. Unfortunately, I have analyzed many applications
where large amounts of data are held but then never used again, and this is the kind of
behaviour you need to be on the lookout for.

Inefficient allocation and retention

Certain programming techniques, such as string concatenation, for example, can create large
numbers of intermediate objects on the heap, which makes the garbage collector work harder
than it needs to. The harder the garbage collector works, the greater the performance impact
on the application.

Detecting when your application is allocating inefficiently will allow you correct the issue.

Chapter 6: Application Profiling

181

Large Object Heap fragmentation

The Large Object Heap is used to store objects that are greater than 85K in size. The trouble
is, it can become fragmented, which can lead to the heap size expanding to larger than it
needs to be. In severe cases, this can eventually lead to Out of Memory issues. See Chapter 8
for more detail on this.

Production / load test clues

Problems uncovered during load test or in production will usually be accompanied by a wide
variety of performance metrics collected from multiple servers. Below are some of the most
useful statistics that are widely regarded as key indicators of performance issues (Meier,
Vasireddy, Babbar, Mariani, Mackman, and Microsoft, 2004). They are, at the very least, a
starting point, and will help you identify where to begin your analysis and which tools to
employ. For this article, go to http://msdn.microsoft.com/en-us/library/ms998579.aspx.

General performance counters

The following performance counters can act as general guidelines for different performance
problems. Please refer to Chapter 3 for a more detailed breakdown.

• Processor\% Processor Time

• Memory\% Committed Bytes in Use

• PhysicalDisk\% Idle Time

• Network Interface\Output Queue Length

• .NET CLR Memory\% Time in GC

• .NET CLR Memory\# Gen 0,1,2 Collections

• .NET CLR Memory\# of Pinned Objects

• .NET CLR Memory\Large Object Heap Size

• .NET CLR LocksAndThreads\Contention Rate/sec

• ASP.NET\Requests Queued

• ASP.NET\Requests Rejected

Chapter 6: Application Profiling

182

Managing profiling results

Each of the profiling tools stores the profile data in a proprietary flat file format, although
some of the tools allow the data to be exported to XML or CSV files.

The main benefit to XML or CSV export is that you can use the data to generate your own
reports and publish that data to other systems. This becomes more important when you
begin automating your unit testing, because you can also analyze the executing tests using a
profiler. Instead of just getting Pass and Fail for your tests, you could also collect performance
and stability metrics. By comparing these metrics with previous test runs, it's then possible to
identify problems as they occur.

Comparing analysis runs

Applications such as Visual Studio 2008 Profiler and DevPartner Professional have tools
which allow various profiling results to be compared, and ANTS Memory Profiler allows for
the comparison of memory profiling snapshots. This feature can help to quickly identify
where there has been a performance improvement or degradation.

Pre-check-in requirements

In support of proactive analysis, it's a good idea to require developers to include evidence of
performance and memory analysis results as part of a source code check-in procedure at the
end of a unit of work.

This could be as simple as a manual procedure in which all of the profiler results files are
zipped together and added (suitably labelled) to the project office. Alternatively, the source
control system itself could be used to define a pre-check-in process requiring the addition
of profile results files. This largely depends on how extensible the source control system
is. Microsoft Team Foundation Server 2005 and 2008 allow custom check-in policies to be
defined, allowing more complex check-in procedures.

Continuous integrated testing

Tools which support command-line execution and XML export can be incorporated into
an automated testing framework, in which the automated tests are run and the executing
process is profiled using performance or memory analysis.

Chapter 6: Application Profiling

183

The results are then extracted to XML and uploaded to a results server, along with the results
for the control cases.

To make life even easier, an automated testing framework can be set up to identify when the
performance of a test transaction has degraded, and report it to the development team.

Summary

Knowing how to profile an application, and understanding what the potential issues are,
will help you write better code. Routinely testing the functionality you have written using a
profiler, and looking for the common bottlenecks and problems will allow you to find and fix
many minor issues that would otherwise become bigger problems later on.

Load testing as early as possible during development, as well as adding to these tests and
running them regularly with the latest builds, will identify problems almost as soon as they
occur. It will also highlight when a change has introduced a problem.

In the next two chapters, I will go through the performance and memory issues you might
encounter, and techniques you can use to deal with them. I will also highlight how to use
some of the most common tools to find and fix problems in your code.

184

185

Chapter 7: Performance Profiling

Applications are built from thousands, hundreds of thousands, and even millions of lines of
code. Any one of those lines could be hiding performance bottlenecks. Chapter 6 covered
how profilers can be used to identify bottlenecks by analyzing execution time and the use of
resources such as the CPU.

Profiling is important because it focuses developer attention on lines of code that would
otherwise go unnoticed in the mass of application complexity. Code may take a long time to
execute, use a lot of CPU, or just wait for seemingly no reason. Once attention is drawn, the
developer starts asking more searching and detailed questions of the code. It's during this
process that either an optimization is discovered or a performance limitation is highlighted.
Either way, the issue is discovered and its impact when the application runs at its peak load
can be assessed.

.NET developers have a rich array of profiling tools available, from the basic to the advanced.
The great thing about performance profiling is that, regardless of the tool, you will always
use the same methodology to carry out your profile. This really boils down to a list of key
performance metrics that you need to assess for every application method.

In this chapter, I will explain what the issues are in performance profiling, and what profiling
can, and can't, do. We will go through where an application typically spends its time, and how
an application competes for server and local resources. Next, we will look at the different
types of profilers and what to look for when profiling your application. We will finish off by
looking at how to use what are, in my view, some of the best commercial profiling tools on
the market today, and also the profiling tools already included within Microsoft Visual Studio
Team edition.

By the end, I hope you will agree that, once you understand the significance of the key
performance statistics we will discuss, profiling an application test transaction can be carried
out quickly and effectively. After profiling your first application, I hope you will also agree
that the most surprising lines of code can turn out to be the bottlenecks!

A caveat

Performance profiling has two major flaws. The first is that it affects the performance of that
which it measures. Just like checking the pressure of a tyre, you change what you measure.
The second prevalent problem is that profiling on your workstation will never find the same
issues that load testing will eventually uncover. The best we can hope for from profiling is
that it may hint at potential bottlenecks for optimization.

Chapter 7: Performance Profiling

186

I'm not advocating that developers should spend huge amounts of time "micro-performance-
optimizing" code. What I am saying is that, with the right training and tools, they can identify
potential problems and bottlenecks and fix them as part of their pre-check-in tests.

Spending time optimizing code is only worthwhile if the gain will be significant. Trying
to optimize a loop currently taking 20ms may be academically interesting but ultimately
pointless. Optimizing a loop taking 500ms in code executing on a server is a different story,
because the optimization will be realized for every hit.

What the load test will tell you (and
profilers can't)

Profiling will highlight the slowest / most CPU-intensive methods executed during a test.
Bottlenecks are identified because methods responsible for the largest percentages of total
execution and CPU time stand out.

A bottleneck identified during profiling is likely to be magnified when the application is
running at full capacity with maximum application load. When an application is stressed
in this way, other bottlenecks begin to appear as resources begin to max out. Memory, disk,
network and database access can all cause problems, and further impact CPU usage in ways
that were impossible to predict during a standard profile.

Load testing is designed to highlight these kinds of problems and load testing tools
deliberately stress an application by firing large numbers of transactions at them.

Load testing

A load test will reveal lots of both cool and uncomfortable stuff about an application. Either
way, saying, "Well it worked fine on my machine," doesn't really cut it any more.

Probably the two most important statistics or Key Performance Indicators (KPIs) from the
load test for each test transaction are the transaction response time under peak load
and the maximum transaction throughput per second. They are important because the
response time, peak load, and transaction throughput will likely be key requirements for your
project, and if the application doesn't meet them then there's a problem, and it's time to dust
off that old copy of a code profiler and get to work!

Chapter 7: Performance Profiling

187

The load test will give you a lot more data in addition to the main KPIs, namely the
performance monitoring statistics (see Chapters 3 and 6) which can be collected from each of
the different layers of the application architecture.

This is your starting point, since those KPIs will begin to show which servers were maxing out
when the peaks and break loads were hit, and these indicators should at least point towards
where the bottlenecks might be among CPU, disk, network, synchronization, memory, etc.
If the bottlenecks are in .NET application servers, you can profile the relevant transaction
using a code profiler. If it's a database, then using an appropriate database profiler will help.

This relatively simple approach can work, but the truth is that, in a complex distributed
architecture, it often won't. In this case, you really need to get a good understanding of where
your application transaction actually spends its time across the layers.

Where is it slow?

Timing an entire transaction of a distributed application doesn't really tell you a lot, because
it hides the detail of what went on behind the scenes. I could just as well tell you that it took
me 15 hours to get from London to New York City when, in fact, the flight only took 8 hours
and the rest of the time was spent delayed. But even that's not the whole story.

• 30 minutes – travel to airport

• 2 hours – check in

• 4.5 hours – delay

• 8 hours – flight.

A typical application will have a distinct set of phases, each taking its own chunk of the
elapsed time.

• Client processing time

• CPU time

• thread contention/Wait time

• disk contention

• graphics/painting/GPU contention.

Chapter 7: Performance Profiling

188

• Client network send time (client to server)

• time to wire (getting the data packets onto the card)

• time on the wire (latency and error handling).

• Server processing time

• request wait time / queuing (server queues request until ready)

• CPU time

• thread contention

• disk contention

• network contention

• wait time making calls to other server resources.

• Server network send time (server to client)

• time to wire

• time on the wire.

With all of this happening, considering an elapsed time of (for example) 5,000 milliseconds,
where is the bit that is slow? Is it all equally contributing or is there a definitive bottleneck?

To answer these sorts of questions, there are tools available that can identify exactly where
the time for particular transactions is being spent. In most cases they involve installing probes
onto each of the layers, and those probes then communicate with a central management
tool that performs network packet analysis and matching. The result is a breakdown of how
long each layer took to process, send and receive data to and from each of the other layers.
Because such tools are operating at the network packet level, they can identify many common
network problems as well, including latency, congestion, and errors/noise.

It's also possible to collect high-level performance data from some of these tools, which can
include lists of the slowest methods and methods with possible memory issues. The leading
vendors in this field include Compuware, DynaTrace and Opnet.

All of these tools provide additional information that can be used by developers to profile and
debug their code in a more targeted and intelligent way.

Chapter 7: Performance Profiling

189

When to start testing

In my view, the answer to the question, "When should you start testing?" is the same for
performance, unit and load testing – that is, as soon as you can after development starts.
Checking for bottlenecks using profiling tools will find many issues that would otherwise
become load test or production issues later on, but it's the load test that will ultimately tell
you if what you have written will meet the requirement.

Competing resources

All processes running on a machine have to compete for resources such as CPU, GPU, disk,
network, memory, etc., and every time there is a scarcity, someone has to wait for their turn
or time slice. In addition, every time an application asks another machine for some data, a
whole new world of competition opens up, together with new opportunities to wait.

Add to that the fact that threads running within the processes have also to contend with each
other to get access to shared resources, which can result in their having to wait for resources
to become available.

The art of performance profiling is, in fact, to turn it into a science, and identify the methods
executing in an application that:

• take a long time to complete

• use a lot of CPU

• create network activity

• create disk activity

• wait for other servers

• block or become blocked by other threads.

Ultimately, it's the code we have written that is doing the work. Sure, we make calls to .NET
framework classes, but we can't change those so, if there is any optimizing to do, it's going to
be in our code. Ideally, for each of the stats listed above, we need to know two things:

• what are the worst performing methods – excluding the impact from any calls made to
other non-framework methods?

Chapter 7: Performance Profiling

190

• what are the worst performing method call trees – the worst method, including the
impact from any calls it makes to other non-framework methods?

Sometimes a single method can be really slow and a major bottleneck, but equally a sequence
of method calls (call tree where one method calls another which calls another, etc.) can be a
bottleneck when taken together, even though, individually, they're not.

With the issue of resource competition in mind, the profiler you choose should ideally
capture the maximum amount of information whilst adding the minimum of overhead.

Types of profiler

There are four main types of profiler, that differ in their approach and in the impact they have
on the application they measure. I'll give you a breakdown here.

Sampling profiler

A sampling profiler will periodically, usually based on a number of CPU cycles, record the
application call stack. The call stack records the current executing method and the method
that called it, etc. Recording the call stack therefore gives a snapshot of the methods that were
in the process of being called.

Using a statistical approach to this information, it's possible to identify the most heavily-
called methods and call trees. The overhead to this approach is relatively low, and can easily
be configured by altering the frequency of stack sampling.

Key statistics such as call count and accurate measures of response time are impossible to find
using sampling, but this method does have a low overhead, and it gives a surprisingly accurate
snapshot of an application's "hotspots." Many server-based monitoring tools use sampling to
give performance statistics without adding excessive overhead to the executing application.

Event-based profiling

The Common Language Runtime can be configured to send notifications to a specific DLL
when memory allocation, garbage collection, and other events occur. This DLL can use the
information provided to accumulate performance statistics.

Chapter 7: Performance Profiling

191

Concurrency (thread contention) profiling

Increasing numbers of applications now use asynchronous processes and multi-threading.
To cope with the problems caused by multiple threads accessing shared resources, developers
employ synchronization mechanisms to control access to those resources. It's a nice idea in
principle, but unfortunately this can lead to threads contending with each other for the same
resource, causing locks.

Thread contention profiling analyzes thread synchronization within the running application
and so identifies potential problems. There is obviously overhead involved with concurrency
profiling, which basically hooks onto the .NET and native synchronization methods,
recording when blocking occurs and for how long, as well as the call stack.

Instrumenting profilers

Instrumenting profilers actually modify the binary of the application by placing probes at the
start and end of each application method, and around every system method. These probes are
used by the profiler to time method execution speed and for iteration counting.

Instrumenting profilers give the most detailed results, but have by far the highest overhead
and, as a result, are nearly always a developer-only tool and can't normally be used in a test or
production environment.

Choosing a profiler

When choosing a profiler, you need to be sure that it will actually work with your key and
future applications, and that you can actually use it effectively.

The first part is fairly easy, because most of the tool vendors allow you to download full
evaluation copies of their tools, usually with limited-duration licenses. Take advantage of this
and just make sure the thing works on your worst app.

The next question is whether the tool makes sense to you. You need a tool that you and your
team can use quickly and efficiently, otherwise it won't be used and will become shelfware.

You also need to be sure the tool is affordable, because there is a wide diversity of pricing and
licensing issues to consider. You don't want to have to put together a cost benefit assessment
on performance analysis (although I have the PowerPoint slides if you need them!).

Chapter 7: Performance Profiling

192

What profilers can measure

Let's look at some of the key metrics that many profilers collect for both methods and
call trees.

• Elapsed time / wall-clock time: this is the amount of time a method or call tree took to
complete if you timed it with a stopwatch. It includes processing time and time spent
waiting for everything else to complete.

• CPU/application time: this is the time that was spent executing on the processor. This
excludes any Wait time or time executing on other threads.

• Network activity: the number of bytes of network activity generated by the method or
call tree. Often this statistic can be broken down into bytes read and bytes written.

• Disk activity: the number of bytes of disk activity generated by the method or call tree.
This statistic can also often be broken down into bytes read and bytes written.

• Wait time: the time spent waiting for other resources or synchronization locks.

What to look for

Profiling is all about inspecting the slowest and most CPU-intensive methods in a test
transaction relative to the rest of the methods that executed. You will normally see a list of
five to ten methods which are significantly larger than the rest. They need inspecting line by
line, and this is when your expertise comes into play, because you will start asking questions
of your code. The most surprisingly innocuous lines of code can hide performance issues that
can be easily optimized.

Knowing what is significant relies on your knowledge of the application, and depends
on whether the application is client based or server based. Server-based applications need
to optimize resource usage to cope with large transaction loads. Reducing the CPU time
of a function by 200ms becomes a much bigger optimization when multiplied by a number
of concurrent hits. The profiler statistics below are used to identify slow, frequent, or
intensive methods.

Chapter 7: Performance Profiling

193

High method call counts

This is both the simplest, and one of the most common, optimizations. A non-trivial method
with an unusually high call count needs to be investigated, and nearly every application I have
profiled has uncovered at least one example of this problem.

You've probably come across it whilst debugging with breakpoints in your code. You hit the
breakpoint as expected, continue, and then immediately hit the breakpoint again. It's then
that you realize there's a problem. For every one you find through using breakpoints, quite a
few more are missed. It almost justifies code profiling on its own.

Once you have found a "problem method," your profiling tool should be able to trace
backwards in the call stack to show you where the parent calls originated.

Slowest methods (excluding child time)

Identify the slow methods that exclude time spent in calls to your own methods and, if the
tool allows it, identify the slowest line. If the line is a call to a web service or database, then
there may be some optimization work to do on one of these layers.

A method could be slow simply because it is carrying out a complex processing algorithm.
Now that you know it's slow, this could be a good time to re-evaluate the logic and look
for optimizations.

CPU-intensive methods

CPU-intensive methods are identified using a statistic which excludes Wait time and just
reports work carried out by the processor. If a method is CPU intensive, look for the worst
line and determine if there is a possible optimization. If the whole method is responsible
then, as with the slowest method, you should re-evaluate the algorithm.

Don't forget that CPU-intensive methods are accessing a scarce resource, and this could
become a bottleneck under load in a server environment. A method with a disproportionately
high CPU usage is an absolutely key target for optimization.

A method with low CPU time but high elapsed time has a high Wait time, and methods with
high Wait times are often good candidates for asynchronous processing. ASP.NET pages can
benefit particularly from asynchronous processing when they are waiting for I/O resources
to return. Running asynchronously whilst waiting for a resource will free a worker thread to
process other requests and help increase throughput.

Chapter 7: Performance Profiling

194

Slowest call trees

For each of the slowest call trees, look to see if there is a single method that is responsible
for a large proportion of the time. Many tools provide a "hot path" analysis feature that
graphically expands a call tree down to its bottleneck method.

If there is a bottleneck method on the call tree, you can analyze it at the line level to find the
slowest lines, and then look for algorithm optimizations.

CPU-intensive call trees

As with slowest call trees, use critical/hot path analysis to find the CPU bottleneck method
within the call tree, then analyze at the line level to find the most CPU-intensive lines. Look
for algorithm optimizations for the worst cases.

Slow database queries and procedures

Some profilers now give dedicated visibility into data access procedures and will highlight
slow SQL queries and stored procedures. The same information is often uncovered with slow
method analysis, where slow queries show up as the worst performing lines.

Excessive Wait time

Methods that have significant Wait time for resources or synchronization are often
candidates for analysis, as the cause of the Wait time probably needs to be investigated. Often
due to database or web service calls, Wait times can hint at problems elsewhere, and can also
indicate thread-locking problems.

Methods with network activity

Network resource is a potential bottleneck, so methods with high levels of network
read/write activity need to be identified and validated. Most of the time the activity is
necessary, but it is worth checking the frequency of the calls and the latency statistics for
the network link that will be used in production. A method with a high call count and
network activity across a high latency network link is going to be a problem in production.

Chapter 7: Performance Profiling

195

The other question to ask is whether the application is being too "chatty" – can the data
requirements be satisfied with less frequent calls that return more data?

Methods with disk activity

Methods with heavy disk utilization need validation as they are potential bottlenecks. Often
the speed of the disk controller is the rate-limiting step for a machine, so any method adding
to disk overhead and contention is an optimization target. You will frequently identify disk
activity accessing configuration or XML files that really should be cached after first access.

This check can also uncover where developer shortcuts or proof-of-concept work has been
left in the code. On a number of occasions, I've seen code being left behind that had been put
together quickly, with the intention of optimizing later.

Using the tools

Let's now go through some of the tools that are available for .NET performance profiling, and
see how they can be used to uncover some of the problems we've discussed in this book.

ANTS Performance Profiler 5

With Red Gate's ANTS Performance Profiler, you can profile the following application types:

• .NET executable

• ASP.NET web application (IIS and WebDev)

• Windows service

• COM+ server

• XBAP (local XAML browser app).

You can record wall-clock and CPU time during the same profiling run, and switch between
the two during results analysis, which is a really useful feature.

Chapter 7: Performance Profiling

196

Figure 7.1: ANTS Performance Profiler settings.

Various performance counters can be added to the analysis, which will be displayed in the
performance viewer after profiling starts. Typical counters include ones for various processor,
memory, I/O, .NET and ASP.NET metrics.

Running an analysis

Choose the application to profile and press the Start Profiling button, and the performance
analysis window will be displayed (Figure 7.2). The timeline graph at the top displays the %
processor time along with the other performance counters you selected at startup.

The timeline is really important because you will use the various counters to identify regions
of interest, which will typically involve high CPU usage, % time in garbage collection, and I/O
read/writes. Wherever you see a spike in activity or a protracted period of processing, you can
focus in on just this region and analyze what the application was doing. You can investigate
any interesting region by dragging the mouse across it, selecting it for analysis.

Chapter 7: Performance Profiling

197

Figure 7.2: ANTS Performance Profiler window.

Interpreting results

The results for the selected region will be displayed in the call tree below, where all of the
methods called will be displayed (Figure 7.3).

Figure 7.3: ANTS Performance Profiler, call tree.

Chapter 7: Performance Profiling

198

You can choose to display the method results in a number of views: call tree, grid or call
graph.

From the toolbar (in the middle of Figure 7.2) you can switch between viewing wall-clock
and CPU timings. Another useful feature is the check box to Hide insignificant methods
which hides methods responsible for less than 1% of the overall contribution. This will
reduce some of the extra noise from the results that can sometimes make it difficult to see
the real problems.

Call tree view

The call tree view (Figure 7.3) displays the method execution paths for the selected region,
and will highlight the execution path contributing most in terms of either wall-clock or
CPU time (hot/critical path analysis). You can choose to view the execution path in either
top-down (caller to callee) or bottom-up (callee to caller) orientations.

Additionally, you can opt to view only methods with source code, which sometimes reduces
the complexity of the call tree and makes it easier to see the contribution of your own code.
Selecting an individual method displays the source code in the viewer below, together with
line-level statistics for either wall-clock or CPU timings.

Hot path analysis is a great starting point in performance analysis because it immediately
highlights the worst method in the worst execution path, taking you straight to the line-level
code statistics.

Grid view

The methods grid view (Figure 7.4), displays every method called during the selected time
frame. The list can be filtered to display only methods with source code, and can display
either CPU or wall-clock time.

Figure 7.4: ANTS Performance Profiler, methods grid.

Chapter 7: Performance Profiling

199

This view is the simplest yet, for me, the most powerful, because you can very quickly find out
a number of crucial things:

• Methods with high call counts (hit count)

• sort the grid by descending hit count

• investigate methods with unusually high call counts using the call graph button.

• CPU-intensive methods

• choose CPU time and sort by descending time

• view the source for the slowest methods and look at the slowest lines

• can they be optimized?

• CPU-intensive method call trees

• choose CPU time and sort by descending time with children

• use the call graph to investigate where in the call tree the most time is being spent.

• Slowest method – excluding time spent in calls to other non-framework methods (e.g.
ones you've written)

• choose wall-clock time and sort by descending time

• view the source for the slowest methods and look at the slowest lines

• can they be optimized?

• Slowest method call tree – including time spent in calls to child or other
non-framework methods

• choose wall-clock time and sort by descending time with children

• use the call graph to investigate where in the call tree the most time is being spent.

By comparing methods between wall-clock and CPU time, you can identify methods
with significant Wait time. A method with Wait time may be blocking due to thread
synchronization, or it could just be waiting for a network resource to return.

Chapter 7: Performance Profiling

200

Call graph

The call graph helps you to understand a method's calling relationships more clearly, and to
trace execution paths in a more intuitive and explorative way.

You can drill into the call tree and investigate the most expensive paths for either wait or CPU
time. You can also trace back into the call tree to find out where calls are coming from.

Figure 7.5: ANTS Performance Profiler, call graph.

The call graph is most often used from either the call tree or the grid view to investigate a
method's calling relationships.

Optimizing analysis

Although it is already a low-overhead profiler, ANTS provides some additional options to
reduce overhead even further.

Chapter 7: Performance Profiling

201

Reducing tools overhead

ANTS can be configured to give method-level or line-level timings. Line-level timings add
greater overhead but provide a much deeper level of analysis, as they allow you to find the
slowest line of code as well as the slowest method. Overhead can be reduced further by
restricting the profiler to only profiling methods that have source code.

You can also stop the ANTS Profiler tool from profiling child processes, which will reduce
overhead even more. All of these features are set when starting an analysis (Figure 7.1).

DevPartner Studio Professional 9.1

DevPartner has two separate profilers, one for elapsed time analysis, the other for resource
analysis. You can profile the following types of applications:

• .NET executable

• ASP.NET web application (IIS and WebDev)

• Windows service

• COM+ server

• JavaScript (timing analyzer only).

Performance timing profiler

DevPartner's timing profiler can analyze both managed and unmanaged native applications,
and it requires instrumentation which, for managed applications, is carried out dynamically
when profiling begins. Unmanaged applications need to be compiled and linked using a
DevPartner-specific compiler/linker (wrappers to cl.exe and link.exe called nmcl.exe and
nmlink.exe).

A combination of managed and instrumented native applications can be profiled together.

Chapter 7: Performance Profiling

202

Running an analysis

The profiling session can be started from within Visual Studio using the DevPartner
toolbar menu, in which case the application will immediately build and execute under the
profiler. It can also be run from the command line using command-line switches or an XML
configuration file. DevPartner can be configured, either to start the process or service to be
profiled itself, or to wait for it to start.

Once the application has loaded, you can run your test transaction. When running under
the profiler, a toolbar is displayed that has a drop-down list of all of the processes that are
working with the running application. You can choose a process from the list and then use
one of the toolbar buttons to take a performance snapshot, stop profiling, or clear all recorded
data so far.

Pressing the Take Snapshot button or exiting the application will create the performance
session report (Figure 7.6).

Figure 7.6: DevPartner performance profiler summary.

The default results columns displayed (you can choose additional columns) are shown in
this table.

% in Method % time spent in executing in method only – including system/
framework calls, but not in your own child method calls

% with Children % time spent executing in method and all child method calls

Called how frequently the method was called

Average total time divided by the number of times called

Chapter 7: Performance Profiling

203

Analyzing the results

• Sort the grid by the % in Method column to find the slowest methods.

• Right-click on the largest contributors and choose Go to Method Source, and the source
view for the method will be displayed (Figure 7.7).

Figure 7.7: DevPartner performance analysis source view.

• The source for the method will be displayed, together with timing information for each
line, and the slowest line will be highlighted in red.

• Sort the grid by the % with Children column to find the slowest call trees.

• Right-click on each one and choose Go to Call Graph; the call graph for the method will
be displayed (Figure 7.8).

• The call graph allows you to navigate through the call tree for the selected methods and
investigate the method call relationships and where the time is being spent. The slowest
call path is always displayed at the top with the critical hot path arrows highlighted in
brown. Navigate along the critical path until you get to a method responsible for the
largest majority of the time. This method will be highlighted in yellow and is the call
tree bottleneck.

• Sort by the Called column to validate the most frequently called methods.

• To investigate high call counts for a method, you need to understand where the calls are
originating. To do this, use the Go to Call Graph feature, described above, to investigate
the callers of the selected method.

Chapter 7: Performance Profiling

204

Figure 7.8: DevPartner performance analysis call graph.

Comparing results

DevPartner has a comparison tool that allows you to compare two performance traces and
analyze the differences.

Optimizing analysis

DevPartner provides a number of different ways for you to reduce the level of overhead
caused by profiling. You can exclude specific modules from profiling and reduce the level of
information collected.

Chapter 7: Performance Profiling

205

Isolating components

DevPartner allows you to add executables (exe, dll, ocx) as exclusions as part of the
DevPartner Exclusions options within Visual Studio. They will not be instrumented at
runtime (.NET) or monitored for performance. System Images can also be excluded with
the DevPartner exclusions options, in which case performance data will only be collected for
user code.

Reducing tools overhead

Each project can have the following optimization settings made:

Collect COM information when set to "False," information won't be collected about
COM interfaces/methods

Exclude others when set to "True," will disregard elapsed time spent in
other application threads, thus only reporting actual
time rather than wall-clock time

Instrumentation level as mentioned earlier, method level is lower overhead but
lower detail than line level

Performance resource profiler (performance expert)

The resource profiler is a .NET-only tool and can collect CPU, network, disk, and
synchronization/Wait time data, and it is really useful precisely because it can begin to
highlight potential resource bottlenecks in your application. Always remember that small
resource bottlenecks on a development machine can scale to a major bottleneck on a server
under load.

Running an analysis

The profiling session can be started from within Visual Studio using the DevPartner toolbar
menu, or it can be run from the command line.

Starting it within Visual Studio displays a performance graph where CPU, disk, and network
utilization for the running application are traced. Clear Recorded Data and View Results
buttons are also available on this menu.

Chapter 7: Performance Profiling

206

After running the test transaction, you can either exit the application or press the View
Results button, after which a summary report is displayed (Figure 7.9), giving the five
execution paths and methods using the most CPU.

Figure 7.9: DevPartner Performance Expert analysis summary.

Analyzing the results

The method view is the most useful report with Performance Expert, because it allows you
to quickly identify methods with potential resource bottlenecks. By clicking on one of the
methods in the top five methods list, the method view will be displayed (Figure 7.10).

Chapter 7: Performance Profiling

207

Figure 7.10: DevPartner Performance Expert method view.

All you need to do is sort by the following columns:

• CPU

• Disk activity (can be broken down further into Read/Write)

• Network activity (can be broken down further into Read/Write)

• Wait time/synchronization (synchronization errors, counts, waits).

Select each method listed with high or unusual activity, and the line with the highest activity
will be highlighted in red and should be investigated further.

The most CPU-intensive call trees can be investigated by clicking on one of the trees in the
summary to display a call graph for the chosen call tree (Figure 7.11).

The critical path is displayed at the top and can be traced to find the slowest method on the
path. If there's more than one method on the path, a list of Slowest methods along all called
paths is displayed and the slowest method can be chosen from here to identify the bottleneck
method.

Unlike the Performance Timing profiler, Performance Expert doesn't have a comparison tool.

Chapter 7: Performance Profiling

208

Figure 7.11: DevPartner Performance Expert call graph.

Optimizing analysis

To reduce the impact of profiling, individual projects can be excluded from analysis by setting
the Include in Analysis property of the project's properties to "False."

Visual Studio Professional 2008/2010

Visual Studio 2008 Team Edition has a built-in performance profiler that can analyze your
application using either sampling or instrumentation. You can access the profiler from
the Analyze menu option from within Visual Studio, from where you can launch the
Performance Wizard. This wizard will ask you to select the application to analyze and the
profiling method to use (either sampling or instrumentation).

A session will be created in the Performance Explorer window from where you can change
profiling properties, control the assemblies to be profiled and manage performance results.

Chapter 7: Performance Profiling

209

Running an analysis

To start the analysis, press the Launch with Profiling button from within the Performance
Explorer window and your application will launch, ready to run your test transaction.
Alternatively you could press Launch with Profiling Paused, in which case the application
will still load, but you can choose to start the profiler later on. This can be useful if you only
want to collect data for a specific part of the application and need to navigate to it first.

Once your test transaction is complete, either stop your application, or press the Stop
Profiling button from the Data Collection window. A summary report of the performance
results will be displayed, which will vary slightly, depending on whether you chose a sampling
or an instrumentation methodology.

From here, you can choose to view a number of detailed reports including method lists, call
trees, and modules. On many of the reports you can apply noise reduction by selecting the
Noise Reduction Properties button, which allows you to exclude from the report methods
contributing less than a certain percentage overhead.

As sampling and instrumented profiles give you different data, let's go through them
separately.

Sampling analysis

Sampling is a very low-overhead profiling option because it periodically samples the
application, recording the method at the top of the call stack and its associated call tree. This
is great for identifying methods and call trees with potentially high CPU usage, but not so
good for processes that wait for other resources such as network, disk, or database calls to
return. It's also clearly no use if you want to know exactly how many times a method has been
called.

The more a method is found during a sample, the more CPU it is likely to be using. It's not
precise but it is low overhead. You can change sampling frequency, and even the event that
causes sampling to occur, to be any one of these:

• clock cycles

• page faults

• systems calls

• performance counter (selected from a list).

Chapter 7: Performance Profiling

210

The results obtained from a sampling analysis can seem a little confusing because they are
described in terms of samples, rather than something like milliseconds, as you would expect.
A sample count is simply the number of times the method was being called when a sample
event took place.

Visual Studio records two sample types:

• inclusive samples – number of times a method was in a call stack

• exclusive samples – number of times a method was top of the call stack.

Inclusive samples indicate that a method was either being called or was in the process of
calling other methods. You can use this statistic to find the most expensive call trees.

Exclusive samples allow you to find the methods that are doing the most work.

Figure 7.12 shows a typical summary report for a performance analysis session.

Figure 7.12: Visual Studio 2008 performance analysis sampling summary.

The top five functions (methods) causing the most work, which includes calls to child
methods and methods doing the most individual work, are listed in summary. From here, a
number of different views can be analyzed, although the most immediately useful are:

• function view (slowest methods and call trees)

• call tree (hot path analysis)

• modules view.

Chapter 7: Performance Profiling

211

Function view

The function view (Figure 7.13) is a sortable grid that lists all of the functions, both the
inclusive and exclusive statistics, plus their percentage contribution overall.

Figure 7.13: Visual Studio 2008 performance analysis function view (sampling).

Sorting by descending inclusive samples will list the methods creating expensive call trees,
whereas sorting by exclusive sample lists the methods doing the most individual work.

Chapter 7: Performance Profiling

212

Call tree

The call tree (Figure 7.14), as its name suggests, will display the captured execution paths and
will allow you to identify the most expensive path and method.

Figure 7.14: Visual Studio 2008 performance profiler call tree (sampling).

Each of the execution paths will be listed in a call tree, and you can navigate down through
the call tree to identify bottlenecks. If you select Show Hot Path Highlighting and Expand
Hot Path from the toolbar, the slowest execution path will be expanded and the hottest path
and method will be highlighted.

Modules view

Modules view (Figure 7.15) gives you a big picture of where processing is occurring, and you
can also use it to identify slow lines of code.

Chapter 7: Performance Profiling

213

Figure 7.15: Visual Studio 2009 performance profiler modules view (sampling).

Sorting by exclusive samples and expanding your own assemblies and methods will highlight
the slowest lines of code. You can then view the source on each line by choosing View Source
from the context menu for the selected line.

Instrumentation analysis

Instrumentation inserts probes into the code, adding timing instructions to each method
call and around every system call, increasing the overall size of the binary. It gives very high
resolution timing information and can enumerate the number of times a method has been
called, but increasing the size of the binary, and the overhead of executing and monitoring
the profiler code adds significant overhead. The tradeoff is the amount of detail that can be
retrieved. In addition, unlike with sampling, instrumenting profilers can work equally well
with CPU and I/O-bound applications.

On completion of a performance test, a summary report will be displayed as in Figure 7.16.

Chapter 7: Performance Profiling

214

Figure 7.16: Visual Studio 2008 performance summary.

The summary lists the top five functions for:

• most called functions

• functions with the most individual work

• functions taking the longest to complete.

As with sampling, each method can be analysed from a number of different views, or the
source code can be loaded if it is your own method.

Function view

The function view (Figure 7.17), as for the sampling analysis, lists all of the called methods
together with their performance statistics.

Chapter 7: Performance Profiling

215

Figure 7.17: Visual Studio 2008 function view (instrumentation).

Notice that there are two kinds of timings: elapsed and application time. Elapsed time is how
long it took if you timed it with a stopwatch (wall-clock time), whereas application time is a
calculation indicating the amount of time actually spent processing.

The main statistics provided are:

Number of calls number of times the method was called

Elapsed inclusive time elapsed time including child calls

Elapsed exclusive time elapsed time spent in method, excluding child calls

Application exclusive time time spent processing method only

Application inclusive time time spent processing method and children

You can now carry out a standard analysis:

• methods with high call count

• slow method call trees (elapsed inclusive)

• CPU-intensive call trees (application inclusive)

• CPU-intensive methods (application exclusive).

Chapter 7: Performance Profiling

216

I/O-bound methods and call trees where there is a big difference between elapsed and
application time are often due to I/O.

Call tree

The call tree view is identical to the one produced in the sampling session in Figure 7.14,
except that the sampled statistics are replaced by:

• elapsed inclusive

• elapsed exclusive

• application inclusive

• application exclusive.

You can use the hot path analysis buttons to uncover the slowest execution path and the
method bottleneck within.

Comparing analysis runs

When you have completed an optimization, it helps to make sure that the optimization has
actually worked. Visual Studio has a comparison tool available from the Analyze menu which
allows you to compare performance analysis results files.

On launching the tool, you have to choose the two files to compare before the comparison is
displayed, as in Figure 7.18.

Figure 7.18: Visual Studio 2008 performance analysis results comparison.

Chapter 7: Performance Profiling

217

Optimizing analysis

Profiling overhead can be reduced in Visual Studio 2008 by isolating components from
profiling, and by choosing the type of profiler.

Isolating components

You can choose the assemblies to be included in the analysis from within Performance
Explorer and, depending on the profiling mode, you can choose to either sample or
instrument each assembly in the target list.

Instrumentation can be limited still further using the advanced properties of each assembly in
the target list. By setting specific include or exclude switches, you can limit the namespaces
and methods that will be instrumented.

/include Namespace::FunctionName or /include Namespace::*

Reducing tools overhead

As the profiler gives you the option to choose sampling or instrumentation, you can choose
the level of overhead. As you should be aware by now, sampling gives a lower overhead
analysis but is also less detailed, and the overhead of sampling can be reduced still further by
reducing the sampling frequency within the Performance Explorer properties.

Visual Studio 2010 Team Edition

Visual Studio 2010 contains all of the functionality described in the 2008 product, and adds a
number of new features.

The most obvious new feature is the performance summary report (Figure 7.19) which now
allows you to view portions of the performance trace by selecting a region from the new
performance graph, a feature which is, admittedly, already present in the ANTS Performance
Profiler.

Chapter 7: Performance Profiling

218

Figure 7.19: Visual Studio 2010 summary report.

Concurrency profiling

There is an additional profiling mode to allow concurrency profiling. Multithreaded
applications are now very common, and both thread and resource contention have become a
major problem for many developers. The concurrency profiler will allow you to detect when
threads are waiting for other threads to complete.

Function Detail view

The new Function Detail view (Figure 7.20) will show the call stack for a method, and line-
level statistics for the selected method.

Chapter 7: Performance Profiling

219

Figure 7.20: Visual Studio 2010 Function Detail view.

Tier interaction profiling

This allows you to view how long your code is spending within ADO.NET, performing SQL
queries and stored procedures. This feature has to be switched on within the Performance
Explorer properties, and the results can be viewed in the Interactions view.

JavaScript profiling

ASP.NET developers can now profile JavaScript running within Internet Explorer 8 browsers.
With the advent of AJAX, browsers are executing more complex and demanding scripts than
ever, and the ability to profile JavaScript code is increasingly important.

Chapter 7: Performance Profiling

220

SQL Profiler 2005/2008

SQL Profiler installs as part of the SQL Management tools and is a simple, yet powerful, tool
for identifying slow SQL and stored procedures on your database server. It's an extra tool you
can use on top of code profiling to identify the root causes of bottlenecks.

Usually, for a slow SQL statement or stored procedure, the wall-clock time for the code
line making the database access call will show as a bottleneck, and that will probably be
your first hint.

Running the analysis

• Start SQL Profiler and create a New Trace from the File menu and the Trace Properties
window will be displayed (Figure 7.21).

Figure 7.21: SQL Profiler Trace Properties.

• Choose the TSQL_Duration template on the General tab and check the
Save to file option.

Chapter 7: Performance Profiling

221

• On the Events Selection tab (Figure 7.22) check the Show all columns check box and opt
to display the following columns:

• Duration

• TextData

• CPU

• Reads

• Writes

• StartTime

• EndTime.

Figure 7.22: SQL Profiler column selection and filtering.

You can also use the Column Filters... button to filter the collected data based on any of the
available columns. Typically, you could use this to restrict the profiling to a specific database,
login, and possible durations, or CPU exceeding certain thresholds.

Once your session profile is configured, you can start the analysis by pressing the Run button.
Stored procedure and SQL events will be logged to the trace, as in Figure 7.23.

Chapter 7: Performance Profiling

222

Figure 7.23: SQL Profiler results trace.

From the trace you will be able to identify the long running, CPU, and read/write-intensive
calls that require further investigation.

Other predefined profile templates are available, including ones for lock detection and more
detailed stored procedure analysis; you can even create your own templates. SQL Profiler is a
simple tool to use and can quickly identify problems.

Summary

Regardless of the tool, the techniques are the same. Once you have found a bottleneck, you
have to decide if it can be optimized. The important thing is that you now know it's there.
Profiling your code will identify important issues that you can address before you ever check
it into the source control system. The techniques I have described are quick and easy to run
on any of the tools for any developer. You don't have to be some kind of code guru to do this.

223

Chapter 8: Memory Profiling

Why memory matters

Before getting into how to profile memory, it's worth going through how memory
management in .NET actually works. Once you understand the issues you're likely to
encounter, it's much easier to see what to look for while profiling.

The managed heap(s)

When an application executes, the .NET execution engine reserves two sections of memory
called the Small Object Heap (SOH) and the Large Object Heap (LOH). As objects are created,
they are allocated onto one of the two heaps based on their size. Objects greater than 85K are
allocated onto the LOH and the rest on the SOH.

Detecting and essentially destroying redundant objects from those heaps is the job of the
garbage collector (GC). It does this by periodically inspecting the heap and reclaiming the
memory being used by objects no longer being used by the application. The goal of the GC
is to avoid increasing the size of the heap, by reclaiming as much memory as possible, as
efficiently as possible.

When the GC runs, it creates a list of all objects still in use by the application. If an object
is still in use, its chain of object references will trace back to one of the application's root
objects. Root references are just pointers to these root objects that reside on the heap. Root
references can be found on the stack, from global variables, statics, and within the CPU
registers. Every object pointed to by a root reference usually contains references to other
objects, each of which then point to other objects, and so on. To work out which objects are
still alive (rooted) the GC looks at every root object and lists every object they reference. For
each of these referenced objects it lists all of their object references. The process is repeated
until a complete list of all referenced objects is complete. The GC then applies a simple rule,
"If you're not on the list, you don't survive." Anything not on the list is classed as garbage (or
rootless) and so is available for collection.

Because the GC allocates and collects from the SOH and LOH differently, the two will be
explained separately.

Chapter 8: Memory Profiling

224

Small Object Heap

New objects are allocated onto the SOH consecutively; a reference called the Next Object
Pointer (NOP) is held, indicating where the next allocated object should be placed (see Figure
8.1). When a new object is created, it is added to the SOH at the Next Object Pointer location,
which is, in turn, incremented by the size of the object. Allocation is fast because it really only
involves some address arithmetic.

As the application executes, objects are created, used, and eventually discarded. When the GC
runs, the discarded objects are garbage collected.

In Figure 8.1 there are five objects allocated on the SOH. Object B has a reference to
object C, and is itself referenced by a static class. Objects D and E are both referenced
from the stack. The only object not referenced is Object A, which is therefore a candidate
for garbage collection.

Figure 8.1: Small Object Heap with references before GC.

When the GC runs, it builds a reference list and determines that objects E, D, C, and B are
"rooted." Everything else is assumed to be garbage, and so the GC moves the "rooted" objects
down in memory, overwriting the "rootless" ones (in this case, Object A), and the Next Object
Pointer will be reset to the new address at the top of Object E. Figure 8.2 illustrates what the
heap will look like after a GC.

Chapter 8: Memory Profiling

225

Figure 8.2: Small Object Heap with references after GC.

The point of all of this effort is to reclaim as much memory as possible. However, as it
takes processing time to build the reference list and compact the heap, this can impact
performance. The more your application garbage collects, the bigger the hit on performance.
Thus, reducing the overhead of garbage collection is a crucial part of performance tuning
an application.

Optimizing garbage collection

• Over time, the long-lived objects will reside at the bottom of the heap and the newest
objects at the top. Because most objects are allocated within the scope of a single
function call, the newer the object is, the more likely it is to be rootless. Conversely,
the older an object is, the less likely it is to be rootless, given that whatever has been
referencing it for such a long time probably continues to do so. When the GC runs, to
avoid inspecting and reorganizing every object on the heap every time, it inspects the
newest objects more often. To help with this process, the GC classifies objects into one
of three generations.

• Gen 0 (youngest)

• Gen 1 (intermediate)

• Gen 2 (oldest).

Chapter 8: Memory Profiling

226

Each time an object survives a GC, it is promoted to the next generation, until it eventually
makes it to Gen 2, where it remains.

Figure 8.3 shows the SOH with objects logically grouped into generations. Objects Z and Y
have recently been allocated and have never been inspected by the GC, classifying them as
Gen 0 objects. Object X has survived one GC and so is classified as a Gen 1 object; finally,
Object W has survived two (or more) GCs, and so is in Gen 2.

Figure 8.3: Small Object Heap with generations.

The GC will run under one of the circumstances below.

• When the size of objects in a generation reaches a threshold:

• Gen 0 reaches 256K

• Gen 1 reaches ~2MB

• Gen 2 reaches ~10Mb.

• When the application receives a Low Memory warning from the OS.

• When the programmer calls GC.Collect() in code.

The above thresholds are approximate and the GC will, in fact, tune them to optimal levels
depending on the allocation profile of the application.

Chapter 8: Memory Profiling

227

Gen 0 garbage collection

When Gen 0 reaches its threshold, the garbage collector will run and the following
events occur:

• a list of surviving (rooted) objects is created

• surviving Gen 0 objects are moved to Gen 1

• Gen 0 is now empty.

Figure 8.4 shows the end result of this garbage collection, where objects Z and Y move from
Gen 0 to Gen 1.

Figure 8.4: SOH after a Gen 0 GC.

It's important to remember that Gen 0 is always empty after a GC; all objects surviving the
GC are moved to Gen 1 and the Next Object Pointer is set back to the start of an empty Gen
0. Any rootless objects left in Gen 0 are overwritten as new objects are allocated to the heap.

Gen 0 collections should occur ten times more frequently than Gen 1.

Chapter 8: Memory Profiling

228

Gen 1 garbage collection

A Gen 1 garbage collection also collects Gen 0, and is the final step in deciding which objects
make it to Gen 2, where objects can potentially persist for a long time.

In a Gen 1 garbage collection:

• a list of surviving (rooted) objects is created

• surviving Gen 1 objects are moved to Gen 2

• Gen 1 is now empty

• surviving Gen 0 objects are moved to Gen 1

• Gen 0 is now empty.

It's worth noting that any Gen 1 object which is referenced by an unrooted Gen 2 object is not
collected in a Gen 1 collection, but only in a Gen 2 collection, when its parent is collected.

Gen 1 collections should occur ten time more frequently than Gen 2.

Gen 2 garbage collection

Gen 2 garbage collection has the biggest impact on performance because it involves a full
garbage collection of the Small Object Heap, where the entire heap is compacted, as well as
the Large Object Heap (more later). The process is much the same as earlier, just with added
steps for Gen 2:

• a map of surviving (rooted) objects is created

• rootless Gen 2 objects are overwritten by surviving (rooted) Gen 2 objects

• rooted Gen 1 objects are moved to the top of Gen 2

• Gen 1 is now empty

• rooted Gen 0 objects are moved to the top of Gen 1

• Gen 0 is now empty.

Chapter 8: Memory Profiling

229

Large Object Heap

Any object of 85K or more is allocated onto the Large Object Heap. Unlike the SOH, because
of the overhead of copying large chunks of memory, objects on the LOH aren't compacted.
When a full (Gen 2) GC takes place, the address ranges of any LOH objects not in the rooted
list are added to a "free space" allocation table. If adjacent objects are found to be rootless,
then they are recorded as one entry within a combined address range.

When a new object is allocated onto the LOH, the free space table is checked to see if there
is an address range large enough to hold that object. If there is, the object is allocated at the
start byte position, and the free space entry amended.

Naturally, it's normally very unlikely that objects being allocated will be of a size that
exactly matches an address range in the free space table. As a result, small chunks of memory
will be left between allocated objects, resulting in fragmentation. If the chunks are <85K
they will be left as they are, with no possibility of reuse. The result is, as allocation demand
increases, new memory segments are reserved for the LOH when (admittedly fragmented)
space is still available. Ultimately, the memory footprint of the application becomes larger
than it should be.

This LOH fragmentation can cause Out of Memory exceptions even when there appears to
be plenty of space available on the heaps.

Finalizable objects

Classes that access system services, such as file/disk, network, database or user interface
resources, must ensure they are closed on completion. Failure to do so will cause resources
leaks which are difficult to track from within .NET.

System resources accessed within a single function are typically cleaned up within a try-
catch-finally block, but resources held at the class level and accessed over the scope of more
than one function call must have a mechanism to close resources prior to class destruction.

To facilitate cleanup, .NET provides a destruction mechanism called "finalization." Placing
a C++ style destructor in a C# class, or including a Finalize method in a VB.NET or C#
application makes it a finalizable class. The GC will call the Finalize method or the destructor
prior to collecting the object (unless the finalization for the object is suppressed), so putting
your resource cleanup code in the finalizer makes sense. The problem is that adding a
finalizer to a class will cause object instances to survive garbage collections even when they
become rootless from application code.

Chapter 8: Memory Profiling

230

When an instance of a finalizable object is created, the CLR adds a reference to the object on
a queue structure called the "finalization queue" (see Figure 8.5). The reference's sole purpose
is to prevent the object from being collected before the finalizer method is called. It acts as yet
another root reference.

Figure 8.5: Finalizable object prior to GC.

If the GC finds objects whose only roots are in the finalization queue, it doesn't collect the
object but, instead, copies those references to the "fReachable Queue" and promotes the
object to the next generation. The fReachable queue just acts as a ToDo list containing
references to all of the objects that are ready to have their finalizer method called. The GC
doesn't call the finalizer directly because it's possible that the Finalize method itself may take
time to complete while resources are unavailable, which would could significantly slow down
the garbage collection.

As you can see in Figure 8.6, Object Z has been promoted to Gen 2 and its reference copied to
fReachable, even though it has no other root references.

Chapter 8: Memory Profiling

231

Figure 8.6: Finalizable object after GC.

The GC actually operates a separate thread that runs when items are added to the fReachable
queue. For each object reference in the fReachable queue, it calls the Finalize method (or
destructor if C#) on that object and deletes the reference. It's only when this is completed
that a finalizable object is finally rootless, and thus an candidate for GC. This is why Finalizers
can't have any thread-specific code within them, as the finalizer is called on a different thread.

In Figure 8.6, Object Z was promoted to Gen 2 in spite of the fact that it had no other
references than the one in fReachable. Object Z can now be collected on a full garbage
collection, since its Finalize method has been run.

Minimizing finalization issues

The best way to write finalizable classes is by implementing the IDisposable interface.
Providing a Dispose method on a class allows the developer to explicitly destroy the object,
as well as to explicitly suppress finalization where necessary. Code Example 8.1 illustrates
the use of Dispose to clean up a finalizable class. Notice it has a call to GC.SupressFinalize,
which effectively deletes the object's reference from the finalization queue, stopping its
Finalize method being called, and also making it available for collection as soon as it is
unrooted.

Chapter 8: Memory Profiling

232

public void Dispose()
{
 Cleanup(true);
 GC.SupressFinalize(this);
}
private void Cleanup(bool disposing)
{
 if (!disposing)
{
 // Thread specific code goes here
}

// Resource Cleanup goes here
}
public void Finalize()
{
 Cleanup(false);
}

Code Example 8.1: Minimizing finalization issues with Dispose.

Profiling memory

Memory profiling is all about understanding and then taking control of the class instances
you allocate in your application. The allocation decisions, which include the scope you
choose for variables and the way you define and clean up classes after use, will ultimately
affect the memory footprint of your application. In many cases, the classes you choose to use
in your application may have memory overheads that aren't initially apparent.

In .NET, the object reference is king. Without a reference, an object is destined for garbage
collection, and that's a good thing. Memory problems occur when references to objects that
are no longer being used persist longer than intended. It's so easy, for example, to forget to
remove an object from a collection or unsubscribe it from an event and, once missed, it's
almost impossible to find by just reviewing the code.

Running memory profilers against your main application test cases will highlight potential
issues and make you revisit areas of the code long forgotten. You will (hopefully) ask
questions, and want answers to the various anomalies raised, because any one of these
anomalies could be a potential load test or production issue in the future. Finding and fixing
those issues now will save you a lot of time and effort down the line.

Chapter 8: Memory Profiling

233

With a good understanding of how memory is managed in .NET, let's now look at the kinds
of memory problem that can occur, then how we can use different profiling tools to uncover
these issues.

Finding memory problems isn't some kind of weird science; once you understand the garbage
collector, and have established a basic method of analysis with your tool of choice, it's actually
very straightforward. At the end of this chapter, that's where I hope you will be.

Memory issues

We'll now look at some common memory problems that can occur within applications. Later
on we will consider how various profiling tools can be used to identify these issues.

Inefficient allocation

The managed heap makes allocation an extremely fast and efficient process, but the flipside
to this is that garbage collection can be expensive. There are many things you can do in your
code that will cause the garbage collector to work harder than necessary. Let's go through a
few cases.

Excessive temporary object allocation

It makes sense to ensure that you allocate only what is necessary and set the scope to
be small. Ideally, you should also try ensure that you understand the impact of the
framework functions you use – many seemingly innocuous calls create unexpected
intermediate object allocations.

One of the best examples occurs in string concatenation. Strings in .NET, once created, can't
be changed because, amongst other things, they are allocated onto a consecutive heap. As a
result, expanding or lengthening a string would involve reorganizing heap memory. Instead,
when a string is altered, a new version is created and allocated onto the heap, leaving the old
one to be collected.

string sHtml=”<div>”;
for (int i=0;i<100;i++)
{
 sHtml+=”” + i.ToString() +””;
}
sHtml+=”</div>”;

Code Example 8.2: String concatenation causing excessive allocation.

Chapter 8: Memory Profiling

234

Code Example 8.2 illustrates a typical string concatenation scenario. To create one string,
101 intermediate strings are created and discarded onto the heap. A more efficient way to
approach code this would be to use a StringBuilder class.

StringBuilder sHtml=new StringBuilder();
sHtml.Append(”<div>”);
for (int i=0;i<100;i++)
{
 sHtml .Append(””);
 sHtml.Append(i.ToString());
 sHtml.Append(””);
}
sHtml.Append(”</div>”);

Code Example 8.3: Using a StringBuilder to reduce temporary object allocation.

Another example of a seemingly innocuous technique I have seen a number of times when
optimizing code is the GetChanges method of the DataSet class (Code Example 8.4).

void Save(DataSet dsCustomers)
{
 if (dsCustomers.GetChanges().Count>0)
 {
 // Persist Customers
 }
}

Code Example 8.4: Temporary object impact of DataSet.GetChanges().

This is a misuse of the GetChanges() method which, depending on the size of the DataSet,
can create a large number of temporary objects. In fact, the DataSet has a function called
HasChanges for precisely this purpose, which returns "True" or "False," creating the same
result with no temporary object impact at all.

Short story: the more you allocate onto the heap, the harder the garbage collector will
have to work. Not always much harder, but these little additions can cumulatively become
a more serious problem. Excessive temporary object allocation also runs the risk of causing
other objects to be prematurely promoted to later generations, making the Gen 1 or Gen 2
collections work harder, and generally leaving you with a mess.

Mid-life crisis

Objects that make it to Gen 2, but lose their references soon after and become available
for garbage collection are, put simply, inefficient. Because Gen 2 collections have a big
performance hit, they occur as infrequently as possible, and objects that make it to Gen 2 only

Chapter 8: Memory Profiling

235

to die will potentially stay there for a long time. If this happens repeatedly, the size of the Gen
2 heap keeps getting bigger, and brings forward the time when another full Gen 2 collection
will occur.

The more frequently a full Gen 2 collection runs, the bigger the impact on your application,
and this is particularly true for a server application. All threads executing managed code are
suspended during collection (in the case of a server GC) and this will severely limit scalability.

Long reference chains

To find out which objects are still in use, the garbage collector has to walk through the list of
objects on the heap, starting with the root and then moving recursively through each object
and its descendants. If you hold on to references to objects with large complex allocated
object models, this process is going to have to work harder every time garbage collection
runs. Imagine an ASP.NET application caching a complex DataSet in session state for every
user, and you get the idea. The worst part is, I've actually found this running on a live web
application at a customer site.

Memory leaks

Memory leaks are the problem that strikes fear into the hearts of most developers. They can
cause the catastrophic failure of an application, and are seemingly impossible to find and fix.

The good news is that most memory leaks are actually extremely easy to find; you just need a
good tool and a basic strategy.

Memory leaks are caused by your code repeatedly leaving behind references to objects,
thereby keeping them in memory. Although this is mostly inadvertent, some of the time it's
working as designed, but the impact of the design wasn't fully understood. Hey, software
algorithms are complex, and it can be difficult to fully understand the impact of something by
just looking at the code.

Finding a memory leak is simply a case of looking for object instances that are continually
being created and never destroyed. Once identified, they can be traced back to where they
were allocated in your code, and that's where they can be fixed.

Chapter 8: Memory Profiling

236

Memory fragmentation

Memory fragmentation occurs when small, unallocated memory gaps are left behind during
the process of allocation and deallocation. Over time, the gaps can add up to quite large
amounts of memory, which is a problem that affects the both the large and small object
heaps.

Large Object Heap

As mentioned earlier, because it is never compacted, the Large Object Heap can become
fragmented (where lots of memory gaps are left behind after objects are collected). Often, the
size of the heap is expanded even when there is apparently lots of space available (tied up in
the gaps). Ultimately, an application can run out of memory when there are no free spaces of
a sufficient size on the LOH and the application has reached its memory allocation limit.

If you create a single object larger than 85K it will be allocated onto the Large Object Heap.
That means a single object, not a class plus its contents, as they are allocated separately. It's
usually classes such as strings, byte arrays, and so on, that are the culprits. Objects of this size
are allocated more frequently in your application than you might think. Typically, datasets
and ViewState strings (which are very common in ASP.NET applications) can create strings
larger than 85K without you ever being aware of it.

Small Object Heap

I know you're thinking, "Fragmentation is a Large Object Heap issue." That's true, but it can
be a Small Object Heap issue as well.

SOH fragmentation can occur if the developer uses object pinning, which would typically
happen when passing data to native code APIs. In this situation, the heap compaction and
address reorganization of objects on the SOH will cause a problem, so it's possible to tell the
GC to pin objects to fixed locations in memory. This prevents them from being moved during
compaction, but can also cause memory fragmentation.

byte[] buffer = new byte[512];
GCHandle h = GCHandle.Alloc(buffer, GCHandleType.Pinned);
IntPtr ptr = h.AddrOfPinnedObject();
// Call native API and pass buffer
if (h.IsAllocated) h.Free();

Code Example 8.5: Pinning objects to fixed locations in memory.

Chapter 8: Memory Profiling

237

Memory footprint

It's common practice to cache data structures that were expensive to create or retrieve and
are frequently used. Caching can give large performance gains to an application and reduce
the load on the application and database servers. However, caching naturally has a memory
impact, which is worth investigating and validating. If implemented wrongly, caching can
very easily turn into a memory leak.

Using tools to uncover memory
problems

To uncover memory problems, you first need to find a tool you can use effectively for the size
of application that you need to profile. You need to be able to develop strategies to filter out
application noise, and interpretation skills to understand the results produced.

It's true that the best tool is the one that works for you, but ideally you want to get to a point
where all the developers in a team feel comfortable profiling their own code before releasing
it to source control. In this case, the best tool is the one that allows you to develop the easiest-
to-use, most effective strategy. Anything else will simply fall by the wayside.

Test plans

Before you contemplate running an analysis, you need to have a test plan that describes the
sequence of user interface actions or web service calls that you will make, and the data that
will be passed. Memory analysis, particularly leak detection, involves comparing memory
states, and using inconsistent test sequences or data can skew the memory state and make it
less easy to spot patterns.

Let's now take a look at some of the main tools available for memory profiling .NET
applications.

Chapter 8: Memory Profiling

238

ANTS Memory Profiler 5

Red Gate's ANTS Memory Profiler can analyze .NET memory for the following
application types:

• .NET Executable

• ASP.NET Web Application (IIS and WebDev)

• Windows Service

• COM+ Server

• XBAP (local XAML Browser App).

It focuses on how objects are laid out on the heap rather than tracking from where they
were allocated. The overhead of tracking allocation call stacks can have a big impact on
memory and the amount of data written to disk. As a result of ignoring that, ANTS has a low
profiling overhead.

The tool allows you to take memory snapshots that list every allocated class on the heap.
Before each snapshot is taken, ANTS forces a garbage collection, which means only rooted
objects make it onto the list.

A number of predefined and configurable filters are available, which can be used to filter out
objects that meet specific criteria from the results. This allows you to remove objects that
are irrelevant to the analysis being performed. Once you have a filtered a set of results, you
can use the class and object tracing tools to find the reasons why objects are still retained.
Another really useful feature is the ability to compare snapshots. You can look for classes
occurring in one snapshot but not the other, or classes that survived in both. Snapshot
comparisons are particularly useful when looking for memory leaks.

The power of this tool really lies in the level of control and flexibility it gives you to filter,
compare, and drill down. There are no predefined analysis types, but all the facilities are there
for you to find key memory problems such as those mentioned above.

Memory leaks

To find memory leaks with ANTS, it pays to follow a basic strategy that starts with you
defining your test transaction. I will now go through a basic strategy that you can follow
to find memory leaks, but the techniques you will learn can be used to find many other
memory issues.

Chapter 8: Memory Profiling

239

Step 1 – Setting a baseline

• Start the application under ANTS Memory Profiler.

• Once it's loaded, take a baseline snapshot by pressing the Take Memory Snapshot
button.

Figure 8.7: ANTS Memory Profiler 5, baseline snapshot.

Step 2 – Running the test transaction

The next step is to run your test transaction, which is the one you suspect may have a leak.

• Run your test transaction.

• Take another snapshot.

If there is a memory leak in your test it should leak every time. Repeating the test a number
of times and taking a snapshot after each test should make it easier to see the leak when the
snapshots are compared.

Chapter 8: Memory Profiling

240

Step 3 – Applying filters

Before looking at the snapshots, it's a good idea to apply some of the filters to the results to
eliminate as much application noise as possible. ANTS comes with a couple of filters designed
specifically for two common leak causes.

• Kept in memory only by event handlers:

• Caused by not removing a reference to an added event handler. This is the most
common cause of leaks!

• Kept in memory only by disposed objects:

• Often symptomatic of a leak.

Check these two filters individually first, and move to Step 4 for each one.

If no leaks are found using the common leak filters, you need to perform a more detailed
analysis of the heap. To make this easier, it's a good idea to first eliminate object instances
that are unlikely to be causing leaks from the results, and there are a number of filters
available to help. I suggest setting each of the following filters before moving on to Step 4.

• New objects – you only need to see the new objects left behind since the previous snap-
shot, as they are possible leak candidates.

• Using the Standard object filters section on the left-hand side, go to the Compar-
ing snapshots heading.

• Click on the From current snapshot show: check box and select Only new objects.

• Finalizable objects – eliminate objects waiting for finalization. These are waiting for
.NET's finalization thread to run, they have no other references, and they will disappear
from the trace anyway. Unfortunately, they appear as noise on our trace, but they can be
easily removed.

• Click on the Advanced Filters button at the bottom left of the screen.

• Now, in the Advanced object filters section, click Kept in memory only by GC
roots of type: and uncheck Finalizer queue.

• Objects which are not GC roots – a memory leak is extremely unlikely to be GC root.

• Still on the Advanced Filters section, select Objects which and then
are not GC Roots.

Chapter 8: Memory Profiling

241

Step 4 – Comparing snapshots

We took a snapshot after each test, and we have also applied one or more filters. The next
step is to compare each snapshot against the baseline. A memory leak should get worse
each time you run the test and, by comparing each snapshot against the previous one, we
should be able to see one or more classes that always appear. These classes warrant further
investigation in Step 5.

Figure 8.8 is an example of a snapshot comparison where snapshots 2 and 3 are compared.
The class list has been selected, and ANTS is displaying a list of all classes that have allocated
and rooted object instances on the heap.

Figure 8.8: ANTS Memory Profiler 5, comparing snapshots.

In this example, the Order and Tick classes have consistently appeared in the snapshot
comparisons, and are therefore selected for analysis in Step 5.

Chapter 8: Memory Profiling

242

Step 5 – Tracking back to source code

Once a class is selected for analysis, we need to understand why it is being kept in memory –
in other words, what is keeping a reference to it?

ANTS has a Class Reference Explorer to do this, and selecting a class from the class list and
pressing the Class Reference Explorer button, displays a reference graph (Figure 8.9).

Figure 8.9: ANTS Memory Profiler, Class Reference Explorer.

From here, you can trace backwards to discover the classes that have instances holding
references to the selected class. Usually the path with the highest percentage contribution is
the one to follow first (in Figure 8.9, SqlMetaData, on the far left, is at 57%).

Ultimately, you should be able to trace back to a class you recognize. This could be one
of your own classes, a third-party class library, or a framework-based caching class such
as HTTPApplicationState or HTTPSessionState. It's now just a matter of viewing the
leaking object instances being referenced by the suspect class, and inspecting the object
retention graph.

Chapter 8: Memory Profiling

243

Figure 8.10: ANTS Memory Profiler, object retention graph.

Figure 8.10 shows an object retention graph. From it, you can see that the MemoryAnalysis.
Order class instance is ultimately referenced by an instance of MemoryAnalysis.
CurrencyManager, with a variable instance name of m_Currency. At this point, you can
open up Visual Studio to view the source code, and so you see, by tracing back to the source,
it's possible to fix the problem.

Surviving objects

The Only new objects filter will find many kinds of leaks and has the advantage of producing
a small, focused set of classes to analyze. However, it won't work in a leak scenario where the
application is designed to keep hold of a reference to the latest allocation of a leaked class, but
forgets to drop reference to the old one.

To find this kind of leak, you need to run an analysis using the Only surviving objects
filter instead of the Only new objects filter. Comparing an earlier snapshot against your
latest test snapshot will reveal classes that exist in both snapshots (i.e. which have survived
garbage collection). Classes in this list can now be investigated using the procedure described
in Step 5.

Chapter 8: Memory Profiling

244

Excessive memory usage

Objects that are constantly kept in memory can be tracked using the same technique
as for memory leak detection except, instead of filtering Only new objects, select Only
surviving objects.

Exactly the same snapshot comparison and objects tracking/tracing techniques apply.
You should be able to trace long-lived large allocations back to their source references.

Heap fragmentation

As mentioned earlier, heap fragmentation can occur when the Large Object Heap can't reuse
free space, or as a result of object pinning. The snapshot summary page in ANTS Memory
Profiler can be used to identify symptoms of fragmentation. Three statistics are provided.

• Free space on all .NET heaps (total memory reserved).

• Largest free block (largest reserved memory block).

• Max size of new object.

If the Free space on all .NET heaps statistic is large and the Largest free block is small, this
can indicate a fragmentation problem. It basically means that there are lots of small chunks
of fragmented memory available. It doesn't necessarily mean there will be an Out of Memory
exception, though. If the Max. size of new object is still large, then the size of the heap can
still be expanded by reserving more memory, increasing the application footprint.

However, if Max. size of new object is also small, an Out of Memory exception is on its way!
This is the classic fragmentation condition.

Object pinning

ANTS can help you gain some insight into object pinning issues by providing a filter helpfully
called Pinned objects. Using this filter, you can view a list of classes with pinned instances on
the heap, and then investigate their source.

Chapter 8: Memory Profiling

245

Finalization issues

A filter is also available to display classes with instances on the finalization queue
whose Dispose method wasn't called. A properly implemented Dispose pattern, together
with a properly called Dispose method would avoid these references being left on the
finalization queue.

Optimizing analysis

ANTS Memory Profiler can be optimized in either of the two following ways.

Isolating components

ANTS doesn't have a facility to exclude individual assemblies, namespaces, classes or
functions (although you can use filtering to exclude them from results).

Reducing tools overhead

There are a couple of options to further reduce the overhead from the profiler, such as
switching off the profiling of child processes and the monitoring of object disposal. This has
to be configured at the start of a new profiling session, where the two Profile child processes
and Monitor disposal of objects check boxes can be switched off.

Visual Studio 2008 Memory Profiler

Visual Studio 2008 and 2010 can perform memory analysis as part of the performance
analysis tools built into the Team Suite edition. They have both an instrumenting and a
lower-overhead sampling profiler. Sampling works well when all you need is a high-level
summary view of allocation and deallocation. To gain more insight into the function call
trees behind allocation, you'll require the detail given by instrumentation.

Getting started

You first need to create a new Performance Session in the Performance Explorer window, and
then set the properties of the session (right click on Properties). The dialog in Figure 8.11 will
be displayed.

Chapter 8: Memory Profiling

246

• Choose Sampling or Instrumentation as the profiling method and check both items in
the .NET memory profiling collection section.

• .NET object allocation information helps identify expensive allocated classes
and functions.

• .NET object lifetime information is useful for tackling memory leaks, mid-life crisis
detection and Large Object Heap issues.

Figure 8.11: Visual Studio 2008 memory analysis configuration.

• The application can now be launched from within the Performance Explorer window, so
run your test transaction, then either press the Stop button on the Performance Explorer
toolbar or close your application, to end the test.

A summary report will be displayed (Figure 8.12), showing the top five functions and classes
with the largest memory usage and the types with the most instances.

Chapter 8: Memory Profiling

247

Figure 8.12: Visual Studio 2008 Memory Analysis Summary.

A number of different views can be selected at this stage, including:

• Object Lifetime – good for mid-life crisis detection and Large Object Heap issues.

• Call Tree – good for most memory-expensive function call trees.

• Allocation – good for largest allocated classes, and the hottest function call trees
responsible for allocating them.

Object lifetime view

The object lifetime (Figure 8.13) view displays where instances of each class were allocated,
and in which of the generations they were collected. Knowing in which generation classes are
collected helps in detecting midlife crisis problems. Classes with ever-increasing live instances
could indicate memory leaks, and high levels of Large Object Heap allocation can lead to
fragmentation problems.

Chapter 8: Memory Profiling

248

Figure 8.13: Visual Studio 2008 memory analysis, object lifetime.

Mid-life crisis detection

Mid-life crisis can be easily identified by sorting the results grid by the Gen 2 Bytes Collected
column; any classes with instances collected in Gen 2 are potentially a performance problem.
They will make the garbage collector work harder and, with a bit of investigation, the code
can often be altered to release references earlier.

Large Object Heap

The number and size of objects collected from the Large Object Heap is reported by class. A
large collection size for a class warrants further investigation.

Call tree view

The call tree view (Figure 8.14) shows the most memory-intensive function call trees.
By selecting the Hot Path button from the toolbar, the most expensive call tree will be
expanded, and the most expensive function within the call tree will be highlighted. This is
usually a good starting point, as it indicates the function is allocating a lot of memory and
may benefit from optimization. This, of course, depends on the proportion of allocated
objects that make it to higher generations.

Both inclusive and exclusive bytes and allocations are included in the statistics for this view.
Inclusive includes allocations made by the function, and also includes calls it makes to child
functions. Exclusive just includes memory allocated by the function body itself.

Chapter 8: Memory Profiling

249

Figure 8.14: Visual Studio 2008 memory analysis call tree.

Allocation view

The allocation view (Figure 8.15) displays a grid of all allocated classes together with the
function call trees that allocated them. It allows you to view the classes responsible for the
largest proportion of memory usage, and then discover where that allocation is distributed
across each contributing function call tree.

Figure 8.15: Visual Studio 2008 memory analysis, allocation view.

Optimizing analysis

There are a number of ways you can optimize the analysis by isolating analyzed components
and reducing overhead.

Chapter 8: Memory Profiling

250

Isolating components

You can choose the assemblies to be included in the analysis from within Performance
Explorer and, depending on the profiling mode, you can also choose to either sample or
instrument each assembly in the target list.

To achieve a good level of targeted detail without a crippling overhead, instrumentation
can be limited using the advanced properties of each assembly in the target list. By setting
specific include or exclude switches, you can limit the namespaces and functions that will
be instrumented.

/include Namespace::FunctionName or /include Namespace::*

Reducing tools overhead

Sampling gives a lower-overhead analysis, although the cost of this is, as always, that it will
provide a less-detailed call tree. The overhead of sampling can be reduced even further by
decreasing the sampling frequency from within the Performance Explorer properties.

DevPartner Studio Professional 9

DevPartner Studio Professional 9 from Microfocus contains a .NET Memory Analysis profiler
as part of its suite of tools. It also has a native memory profiler called BoundsChecker, which
can be used to analyze native unmanaged applications.

The Managed profiler performs three types of analysis: RAM Footprint, Temporary Objects,
and Memory Leaks. Each analysis tracks object allocation by class and function call, which
allows the most expensive classes and functions for each type of analysis to be analyzed.

Using the tool

DevPartner provides a dedicated toolbar and menu within Visual Studio to allow for easy
access to each of its tools, including the memory profiler. The application being tested is
launched from the memory profiler toolbar button, which also displays the memory analysis
window after the application has launched.

Each of the analysis types can be selected from the memory analysis window (Figure 8.16)
and, depending on the analysis selected, there are options available for forcing garbage
collections, clearing recorded data (temporary object analysis only), pausing analysis and
generating a report snapshot.

Chapter 8: Memory Profiling

251

Figure 8.16: DevPartner memory analysis window.

A list of the top 20 classes, by size and instance count, is displayed by default, as is a memory
allocation graph.

RAM footprint

RAM footprint analysis allows you to identify the largest allocated objects, and the functions
that allocate the most memory. Using this analysis, you can reduce the overall memory
footprint of your application.

To perform a RAM footprint analysis:

• Start your application from the DevPartner Memory Analysis toolbar button within
Visual Studio.

• Perform your test transaction.

• Choose the RAM Footprint tab in the Memory Analysis window, and press the View
RAM Footprint button.

You can now choose to view either Objects that refer to the most allocated memory or
Methods that allocate the most memory.

Chapter 8: Memory Profiling

252

Object analysis

Choosing Objects that refer to the most allocated memory will display a table of
allocated objects sorted by size in descending order. Choosing an object will display its
Object Reference graph, which can be used to investigate the references that are keeping
that object in memory.

Method analysis

Choosing Methods that allocate the most memory displays a grid sorted by the live size of
the functions allocating the most memory (Figure 8.17). Selecting a function in the list will
display its call graph, which is the sequence of calls preceding the current one. The RAM
footprint contribution for each function in the graph will also be displayed as a percentage.

It's also possible to view the source for a function, displaying its source code along with the
allocation size information for each line of code.

Another useful feature is the ability to view live objects allocated by the selected function.
This displays the object list, similar to the one in object analysis, from which the object
reference graph can also be viewed.

Figure 8.17: DevPartner RAM footprint analysis.

Chapter 8: Memory Profiling

253

Temporary object analysis

• Temporary object analysis can be use to trace some of the inefficient allocation problems
I described earlier. Temporary objects are objects which are allocated but which are
collected after surviving one or two garbage collections, and can make the garbage
collector work harder than necessary. DevPartner classifies temporary objects into one
of three categories: short-lived (Gen 0), medium-lived (Gen 1) and long-lived (Gen 2).

DevPartner identifies which functions allocate the most memory in each of the three
generations. A function that allocates objects that reside in later generations causes overhead
due to compaction (the objects have had to be moved); therefore functions which allocate
objects which are, on average, large and long-lived should be optimized if possible. To run a
Temporary Object Analysis:

• Start your application from the DevPartner Memory Analysis toolbar button within
Visual Studio.

• Perform your test transaction.

• Choose the Temporary Objects tab in the memory analysis window, and press the View
Temporary Objects button.

The results are displayed in a grid (Figure 8.18), and can be sorted by average temporary size
to reveal medium- and long-lived objects.

Selecting a function will allow you to view, via a tabbed window, either its function call graph
or its source code. Viewing the source code will display the contribution each code line makes
to medium- and long-lived distributions. If a single line of code is responsible for a large
proportion of the temporary object allocations, it should be considered for optimization.

Chapter 8: Memory Profiling

254

Figure 8.18: DevPartner temporary object analysis.

Memory leak detection

Memory leak detection can be carried out at any point after a memory analysis has started. To
detect a memory leak:

• Start your application from the DevPartner Memory Analysis toolbar button within
Visual Studio.

• Choose the Memory Leaks tab in the Memory Analysis window, and press the Start
Tracking Leaks button.

• Perform your test transaction.

• Press the View Memory Leaks button.

As with all memory leak detection techniques, run your test transaction a number of times.

When the View Memory Leaks button is pressed, a garbage collection is forced and a report
is produced, listing all the objects that were allocated since the Start Tracking Leaks button
was pressed, but which weren't subsequently garbage collected. In addition, a summary is
produced of the objects that refer to the most leaked memory, as well as the functions that
leak the most memory. Both can be viewed separately.

Chapter 8: Memory Profiling

255

Object analysis

Each potentially leaked object is listed in the Objects that refer to the most leaked
memory report (Figure 8.19), along with various leak statistics. Selecting an object will
display its object reference graph, which can be used to track the references that are keeping
the object in memory.

Figure 8.19: DevPartner Studio memory leak detection, object analysis.

Function analysis

The Methods that allocate the most leaked memory report (Figure 8.20) displays the
functions that are potentially leaking memory, together with the leak statistics. Selecting a
function will display, via a tabbed window, either its function call graph or its source code.

Chapter 8: Memory Profiling

256

Figure 8.20: DevPartner Studio memory analysis leak detection, function view.

The call graph will display all parent and child function calls and their percentage leak
contribution. You can trace the leak's critical path (worst allocation path) by following the call
tree displayed at the top of the diagram until you get to the function highlighted in yellow.
This is the function responsible for the majority of the leak.

The source view displays the source code for the selected function, and a per-code-line
breakdown of leak statistics. If a single line of code is responsible for a large percentage
of the leak size, then it is obviously worth investigating further.

When you're performing these various analyses it can be difficult to overcome the effects of
application noise, especially when trying to detect small leaks. One way around this is to run
a larger number of test transactions, which should raise the overall leak size, and so make it
easier to see.

Optimizing analysis

Below are some ways to optimize the analysis, in much the same ways as the profilers we've
already looked at.

Chapter 8: Memory Profiling

257

Isolating components

DevPartner will collect allocation data from all of the loaded .NET assemblies.

Reducing tools overhead

The profiling overhead on an assembly can be reduced by switching off the tracking of .NET
Framework objects. This restricts the analysis to just user classes, but could potentially
obscure the source of a leak or problem. A memory leak is often most clearly identified by the
buildup of multiple .NET framework classes referenced from a single user class.

This Track System Objects setting can be controlled via a project's properties, or as a switch
from the command line.

CLRProfiler

The CLRProfiler has long been the workhorse of .NET memory analysis. It's a free tool
and can be downloaded from Microsoft (or, for convenience, from http://tinyurl.com/
CLRprofiler). It supports .NET framework 2.0 and earlier, although it does still work with
framework 3.5 applications (which is, after all, just a collection of libraries running on the
CLR 2). It isn't a particularly easy tool to use, but it does give a fascinating insight into the
memory internals of your application.

Estimates as to the overhead added by CLRProfiler vary from it making your application
anywhere from 10 to 100 times slower. You can profile WinForms applications, ASP.NET and
even Services from a simple interface window (Figure 8.21). Profiling is very simply started
and stopped using the Profiling Active check box.

Chapter 8: Memory Profiling

258

Figure 8.21: CLRProfiler main window.

Using the tool

• Choose the application type to profile from the File menu.

• Make sure Profiling active is checked, and check Allocations and Calls.

• Run your test transaction.

• Uncheck Profiling active to stop profiling and produce a summary.

Chapter 8: Memory Profiling

259

Figure 8.22: CLRProfiler summary.

Analyzing the summary

The summary window provides various statistics about the memory state after the last test
transaction, and there are a couple of important statistics are always worth checking.

Generation ratio

The generally accepted guideline is that Gen 0 collections should occur ten times more
frequently than Gen 1, and Gen 1 should occur ten times more frequently than Gen 2.

Checking the garbage collection statistics and calculating the ratios will indicate if there
is a collection problem. You should particularly pay attention if Gen 2 collection is a lot
more frequent than expected, as this could indicate a mid-life crisis issue and a temporary
object problem.

Induced collections refers to garbage collections caused by the application calling
GC.Collect to force collection. The general consensus is to avoid doing this, as it can
upset the finely-balanced garbage collection algorithm, and lead to premature generational
object promotion.

Chapter 8: Memory Profiling

260

Relocated bytes / allocated bytes

If the proportion of relocated bytes to allocated bytes is high, this means the garbage collector
is having to work harder copying bytes around memory. The higher this proportion is, the
harder it has had to work, and the more you should consider looking for an explanation.

Allocation analysis

You can identify the source of the largest allocated classes by clicking on the Allocated
bytes Histogram button in the Heap Statistics section shown in Figure 8.22. From the
histogram displayed (Figure 8.23), you can view a list of the largest allocated classes and their
distribution. Right-clicking on a specific class and choosing Show Who Allocated will display
an allocation function call graph for the class.

Figure 8.23: CLRProfiler allocation histogram.

The call graph can be used to discover where larger allocations are originating. The width of
the lines and boxes on the graph are proportionate to the size of the allocation for which they
are responsible.

Chapter 8: Memory Profiling

261

Relocation analysis

You can use exactly the same technique I have just described (for allocation analysis), in
order to find out where objects that are relocated are actually allocated. Reducing relocation
overhead will reduce the burden on the garbage collector.

Object finalization

Finalizable objects can be investigated from the Objects finalized histogram button, and the
allocation call stack for each class can be traced, just as for allocation analysis.

Heap visibility

Clicking the Objects by Address button provides a view of which heaps or generations
objects are located on.

Figure 8.24: CLRProfiler heap visibility.

Each of the generations on both the Small Object Heap and the Large Object Heap can be
inspected, the classes allocated to them can be viewed, and the allocation call stack traced.

Chapter 8: Memory Profiling

262

Memory leak analysis

You can track memory leaks with the CLRProfiler using the Show Heap now button to take
snapshots of the heap. After each snapshot, new objects are displayed in red, and older objects
in faded pink.

The basic technique for finding leaks simply involves right-clicking on a snapshot and
choosing Show New Objects. A graph of the allocation path of just the new objects will be
displayed. You can also view Show Who Allocated New Objects, which will show the call
stacks of functions that allocated new objects.

By repeating the heap snapshots and looking for classes and functions that consistently
produce new objects after each iteration, a list of possible leak candidates can be drawn up.

Summary

Memory analysis is a key part of application profiling, and you can use the techniques
described above to both validate the code you write and diagnose problems that have
occurred in test or production systems.

The technique you will probably use the most is memory leak detection, but it is also
worth remembering the impact that poor allocation patterns can have on performance
and scalability.

The tool you choose is key, and should ideally allow every member of the development team
to quickly and easily find problems, and confirm when there aren't any. With the right tool,
and a simple set of techniques, that should be easily achievable.

263

Chapter 9: The Performance
Testing Process

Development processes and
scheduling tests

Previous chapters have shown how to record tests, how to automate the execution of the
performance tests, and how to analyze the metric data that is gathered during this process.

How does performance testing fit in with various software development processes and
methodologies, though? When should performance testing be scheduled during the course of
a development project?

This chapter will discuss how performance testing can be integrated into your software
development process. We will look at how performance testing can fit into a particular
methodology, such as one of the many Agile variants or a more traditional, Waterfall-based
process. It is important that performance testing should not impede the development
process, but rather complement it and provide feedback into it.

Having such feedback into the development process is great, but we also need to be able to
action this information in the event of performance issues. Managing the ongoing flow of
data gathered from testing, and applying this data within the development process will also
be examined.

In addition, we will look at how data gathered from performance testing can be
communicated back to business stakeholders in a clear and concise form which is easily
understood by technical and non-technical individuals alike. For a business, this is invaluable
as it clearly demonstrates the value of performance testing in business terms, and allows full
transparency of the entire process.

An ideal world

Of course we don't live in an ideal world, but we need to at least strive to get as close to it as
possible. Let's examine what should happen, and then discuss the practical implications in
real-world scenarios.

Chapter 9: The Performance Testing Process

264

In an ideal world, performance testing is an integral part of the development life cycle,
irrespective of what methodology is used (such as Agile/Scrum, or Waterfall). When a
development project commences, some analysis and design may occur, project templates and
iteration plans are detailed, and some code may start to be produced. It is at this point that
the performance test rig should be estimated, designed, and built.

Factors to consider are:

• The needs of a web application compared to a desktop application. That is, what is being
simulated, whether concurrent users or simply simulated load.

• The number of users that will need to be simulated, based on business requirements and
projections. This will naturally impact how many test agents are required, and therefore
affect licensing costs.

• Provision of hardware. Ensuring that there is an environment that can be used for
performance testing, and that it is similar to the expected production environment.
This could include virtual machine provisioning as well as web, application, and
database servers.

• Ensuring that external systems are prepared for performance testing. For example, some
external systems, such as payment gateway providers, will need to be informed about
when performance testing will occur, so that they are aware of an impending load on
their systems, and can provide potential test windows and test data to use.

• Setting up the automation aspects of the performance test run. If the performance test
servers are shared systems, then other parties will need to be involved in the scheduling
and execution of performance tests. For example, the performance test system may be a
general test system during normal business hours, but be completely dedicated to
performance testing after a certain time of day.

Once a performance test rig is in place, tests should be performed at regular, logical
intervals. During initial development there may, initially, not be anything to test until the
first deliverable but, as soon as there are usable pieces of the system, performance testing
should commence.

Methodology

In an iteration-based methodology such as the many Agile variants out there, performance
testing is best done near the end of each iteration, when a deliverable is ready for deployment.
Iterations can typically range from one to two weeks in duration though, if they are longer,
consider executing performance tests at points midway through the iteration.

Chapter 9: The Performance Testing Process

265

In a milestone-based methodology, such as a Waterfall process, each milestone can be quite
lengthy. In this scenario, it is best to execute performance tests at regular intervals during the
milestone period, perhaps every week. Naturally, this period should be discussed and planned
with the technical staff as well as the project manager, to ensure value is delivered and that it
makes sense to execute performance tests at the specific stages of development.

In the early stages of the development life cycle, the application can be very dynamic, often
going through periods where its functional aspects do not work as expected. This makes it
difficult to performance test, and the value of performance testing against such code is quite
small. Unless there are specific performance concerns against the application at this time,
it is usually best to wait until a solid deliverable has been achieved, such as at the end of the
iteration. At these stages of development, the time taken to record tests and then execute
and analyze them can often be better spent ensuring quality code within the application.
Performance tests written at this stage often have to be changed significantly, or even
completely discarded, once the desired piece of functionality has been delivered in its near-
final incarnation.

As the development cycle continues, the application matures and becomes less subject to
major changes, and this is when it is possible to execute performance tests at more regular
intervals. Ideally, this could be done daily, with performance reports sent to team members
advising of any changes in performance. This way, the performance of the application is
closely monitored during the entire development cycle, and this is an excellent way of
keeping the entire team focused on the performance objectives.

The main point here is that performance should be measured early in the process, and in an
ongoing manner throughout the entire development project. This provides the most insight
into an application's performance very early in the development life cycle, and ensures that
the development is undertaken with performance in mind. Regular performance reports can
be distributed amongst the team for the benefit of everyone, and executive summaries of
those reports can be distributed to key stakeholders to ensure complete transparency, and to
keep everyone informed.

Automating the deployment of the application, combined with the automation of
performance tests, can make this process as painless as possible, with little overhead to the
development process. As mentioned previously, though, this may initially not be feasible early
in the development phase, or at least until the product begins to take shape.

With test automation in place, there should be no reason why testing cannot occur every day.
Typically this testing might occur overnight and run for a period of, say, 12 hours. Weekend
runs can execute over the course of a few days to gain valuable insight into sustained
load levels.This might begin at 7 p.m. on Friday evening, once everyone has gone home,
and complete at 7 a.m. on Monday morning, meaning that your testing process has little
or no impact on workflow from the point of view of the developers. However, analyzing
the performance metrics does take time, and there may not be enough resource in the
development team to spare a team, or even an individual, solely to look at performance test

Chapter 9: The Performance Testing Process

266

analysis. While having this analysis will provide enormous benefit, a value judgment must be
made between that analysis and development velocity.

The reality

What has just been described is, without a doubt, an idealistic scenario, and this often
does not occur. Quite often, performance tests may be executed close to the end of the
development of the application, with the aim of fulfilling a preagreed objective to carry out
performance testing.

This can be a dangerous approach, as the performance of the application may not meet the
objectives and, if this analysis is performed too late in the development cycle, then the scope
for change may be limited. Worse still, the changes required may be fundamental to the
application, and require large-scale changes that simply cannot be accommodated at the late
stage of development.

If the ideal scenario cannot be realized, then it is important to try and schedule performance
tests at a few key stages of development, well before the final deliverable is required.

The scheduled times will depend on the available resources and willingness of everyone
concerned to perform such testing. Obviously, the more tests, the better, but scheduling
tests at a few key stages is, at the very least, a good compromise. As a minimum, executing
performance tests midway through the development cycle, and then again when the
application is 85% complete, is a reasonable compromise where regular periodic performance
tests cannot be run. This approach can at least provide some warning if there are any
performance-related issues, and it allows time for changes to occur.

A word about best practice

Even a team that follows best practices, adheres to accepted coding styles, and follows current
development wisdom as well as possible, can still run into performance issues. One might
glibly suggest that the current theory isn't perfect but, when creating complex applications
that interact on a variety of levels, it is often not apparent what can have detrimental effects.
Equally, individuals may work on components in relative isolation, and may not be able to
accurately predict how efficient the component will work when it's attempting to service
3,000 concurrent users.

That being said, it is true that some aspects of best practice design and development are
actually detrimental from a performance perspective. Loosely-coupled design is an
objective for many solutions, and promotes a modular and componentized architecture.
In some implementations of this design, a generic mechanism can be used to achieve the

Chapter 9: The Performance Testing Process

267

loosely-coupled architecture, and generic mechanisms can often require relatively significant
amounts of computational power or multiple levels of abstraction, all of which can cost
valuable processor cycles.

An example of this is the use of the System.Reflection namespace to reflect over classes
and their associated methods and properties, perhaps to subscribe to events, execute methods
or otherwise utilize aspects of the class without having a direct reference to it and its
methods. While the methods within System.Reflection are very powerful, and a great way
to achieve a loosely-coupled implementation, they are relatively slow and computationally
expensive. This is not to say they should not be used, but just that you should bear in mind
the net effects, and that the implementation of these techniques should be performed with
due care and consideration.

The next chapter will examine common areas such as these, where performance issues can be
encountered, and will then look at ways of avoiding them.

Managing and monitoring performance changes

The purpose of constantly measuring the performance of an application is to ensure that the
performance remains a known quantity, and not a hypothetical guess based on how you think
the application should perform.

We have already discussed at what points we should be performance testing, but how do
we really know that the application is getting better or worse? Maintaining a database of
performance test results is important, but is hardly a quick reference that can be compared
against or, necessarily, consumed by all parties.

A type of executive summary is useful for this purpose, and should form part of the
deliverable for each performance test. This should take the form of a concise, one- or
two-page report on the main performance aspects of the application, a conclusion and, if
applicable, some next steps.

An example template for a performance test executive summary is shown below.

Example performance test results – executive summary

Date/time 12/10/2009, 7 p.m.

Duration 12 hours

Concurrent user load 5,000 users

Chapter 9: The Performance Testing Process

268

Run characteristics commence at 50 users, increase by 100 users every 20 minutes,
until 5,000 reached and sustained for duration of run

Peak operational period
(sweet spot)

1,500 concurrent users, maintained 230 requests per second,
all page times less than 3 seconds

this is sufficient to meet current user volumes

more work is required to meet projected/future user volumes

Operational ceiling 3,500 concurrent users; page times were excessive (> 40
seconds) but still responding; beyond this level, timeouts and
service errors occurred

Slowest page search; consistently slower than all pages

Fastest page home page

Changes made to
application from
last test

addition of extensive data layer caching

shrinking of image sizes

implementation of async pages

Web server high CPU utilization, averaging > 90%

memory usage good, averaging 50%

excessive number of exceptions being thrown per second

Database server CPU usage good, averaging < 30%

memory usage good, averaging < 25%

Conclusion addition of data layer caching has alleviated load on database
server and is no longer an issue

web server now experiencing high CPU usage; need to
examine ways of improving this

some more work is required to ensure projected user loads
are catered for

search page is contributing to initial throughput issues and
we need to examine better ways of performing searches

Chapter 9: The Performance Testing Process

269

Next steps high CPU usage on web servers is the main focus for
performance improvement

excessive exceptions being thrown is initial investigation
point; event logs show pricing module is generating the most
errors and will be profiled extensively

extra caching will continually be introduced via output
caching and further application level caching to reduce overall
application work

will revisit the search implementation to investigate the
slowest point of the process

From this template it is easy to see the general performance characteristics of the application.
This executive summary can be sent to all key stakeholders to ensure complete transparency
in the performance of the application, and to allow team members to see how the
performance of the application is progressing. It provides a clear indication of the current
state of the application, as well as clearly defining future steps to achieve desired goals.

For non-technical business stakeholders, this is absolutely vital information, and immediately
(not to mention proactively) answers the key questions they are likely to have:

• What is the current state of the application?

• Does it meet current and future business objectives?

• What is the plan, or next steps for ongoing improvement? (This is especially important if
the business objectives are yet to be realized.)

These types of performance summaries should be committed to the project management
repository (for example, the team SharePoint site), or source control repository (depending
on what is being used to manage project artifacts). A history of the application's performance
can then be easily viewed at any time, and any detailed performance metrics can always be
recalled from the load test database, should a detailed investigation of any particular aspect of
the application be required.

It may also be beneficial to provide a series of graphs to visually illustrate the performance
trends of the application, and to clearly highlight the points at which high and low
performance points are seen. These graphs should not form the main content of the
executive summary, but should rather serve as further illustrations of your points should the
reader wish to examine the report in more detail. Bear in mind that these types of reports
will often be used by the management to report on the status of the application to their own,
more senior management, so the concise summary is the more important facet of the report.

Chapter 9: The Performance Testing Process

270

Introducing changes

Having said all this, making performance changes should be a carefully managed process.
It is often tempting to implement a wide variety of performance enhancements into the
application, in order to achieve a large and readily demonstrable performance gain. Yet this
has risks associated with it. If a large number of changes are introduced, it is often difficult
to determine which change offered the most benefit. In addition, the total aggregate of
changes may actually be less effective than one singular change. To provide a simplistic
example, two changes might be introduced to a performance run, the first one being a simple
caching change that might yield a 30% increase in throughput. Yet the second change might
be a code change performed at a more subtle level in the application, and could actually
hamper performance; this will therefore reduce the overall performance gain to 20%. While
this is admittedly still a gain, it is not apparent that one of these changes actually hampered
performance, because the net gain is still positive.

Unless it is possible to easily identify the performance aspects of each change, it is best to
keep sets of changes isolated to ensure the most value is realized and, more importantly, to
ensure no negative effects are introduced.

Time and resources will play an important part here, and it may not be feasible to
only implement simple, small sets of changes all the time. To move forward at a faster,
more business-friendly pace, you'll need to be able to analyze the desired changes, fully
understanding the expected benefits, and know how to measure and prove those benefits. For
example, if the potential areas for change involve tweaking a computational algorithm and
altering a much-used stored procedure, it would be possible to assess the changes to these
areas individually even though both changes were applied at the same time. A computational
algorithm may typically affect CPU utilization on a web or application server, and the tuning
of a stored procedure will alter SQL execution plans and overall database throughput. These
metrics may be isolated enough within the application to be able to assess in a single change
set, but only a good understanding of the application can assess this risk.

Also, bear in mind that, the more changes you introduce, the harder it is to articulate those
changes within a single summarized report. In these instances, it is tempting to leave out
the seemingly smaller changes in favor of the perceived larger or, at any rate, more beneficial
changes, but remember that having a history of performance summaries is extremely valuable
for comparison and progress monitoring. Once details of changes are excluded from such
reports, their value diminishes and a "colored" view of the performance history is all that
is left.

Chapter 9: The Performance Testing Process

271

The entire performance picture

With all the performance pieces in place, there is now a complete overview of the entire
performance optimization path, giving you the ability to measure, analyze, plan, and predict
the performance of your application.

Performance tests can be easily recorded, and subsequent improvements managed so as to be
in line with business functional usage estimates.

Performance tests can be run at will, or completely automated over relatively short or
sustained periods of time, simulating as much load as is required. Additionally, they can go
beyond the estimated load to examine high volume effects, so as to cater for peaks or spikes in
application load.

To achieve this:

• Detailed test results and metric data are recorded and kept for analysis and investigation
at any stage of development.

• Periodic reports outlining an application's performance are produced and disseminated
to business stakeholders and the technical development team, so that performance
progress is well known at all phases of the project.

• Profiling of individual aspects of the application is undertaken to get a closer, isolated
view of application components.

• Key questions around the ability of the infrastructure to serve the needs of the
application and user-base are well known, quantified, and demonstrated through
evidence and metrics, rather than through theory and guesswork.

• A history of the performance of the application as it has moved through development is
easily available for analysis by all participants in the project.

It is the transparent, well-articulated and succinct provision of information that inspires
confidence in key stakeholders of the application. This, in turn, provides positive effects
to the team in general, as the business is more receptive when provided with open, honest
communication about the project. Detailed technical metrics around performance are
managed into an easily digestible form, with clear plans and risk mitigation strategies to
achieve business objectives. This makes it easier to manage business expectations and to
focus the development team.

Chapter 9: The Performance Testing Process

272

It also means that a development team can prove that the application meets its requirements
from a performance perspective. If the application interacts with other systems or
components outside its control, and the performance suffers as a result, justification for the
application's performance can be presented, and investigation can immediately target the
other systems or components.

Later chapters will outline typical performance enhancements that can be made, as well as
potential pitfalls in application performance that are not immediately apparent.

273

Chapter 10: Common Areas for
Performance Improvement

Every application is different

Every application is different and has different combinations of criteria that affect its overall
performance. It is very difficult to recommend specific performance improvements to an
application without knowing how it works, how it interacts with the infrastructure around it,
and other dependent systems. Quite simply, to understand where the most benefit, if any, can
be gained by applying changes, there is nothing so beneficial as having a deep understanding
of the application.

However, there are certain areas that are common to most applications which can typically
benefit from scrutiny and potential modifications to increase application performance. At
a minimum, these areas will provide a guideline as to which areas need to be investigated
to ensure a performance concern is tackled early on in development, as well as a potential
approach to the problem. This section will not provide exhaustive detail on each item, as
that could be an entire book on its own. Instead, it'll provide enough information to enable
you to properly determine whether these generic areas are relevant concerns within any
given application.

A "ground-up" approach will be taken, first looking at the database, then moving up through
the typical layers of an application, examining areas such as data access, business logic and
network latency, and finally, for where a web application is concerned, the browser.

Database access

Many applications require some form of data access, which is typically, but not always,
supplied using a database. Given that utilizing a database is the most common scenario,
this discussion will concentrate on database access. That said, most techniques can be
applied to non-database driven stores, such as XML files, message access systems or even
cloud-based resources.

Any form of data store requires some resource to access it, whether in the form of SQL
connections, TCP sockets, resource managers or a combination of all of three. It is usually

Chapter 10: Common Areas for Performance Improvement

274

quite costly for an application to acquire these resources, and even more so if it never releases
the resources back to the system.

SQL database connections in particular are a finite resource, and so need to be carefully
managed to ensure that there are enough available to the system to allow data access to
take place. In addition, we need to ensure we are not constantly recreating these database
connections, but are, instead, reusing them where possible.

The best and most efficient form of data access

The best and most efficient way of accessing your data store, is simply not to access it at all.

The idea here is to cache your data where possible. Data access will initially be required to
populate the cache, but reference data, which is data that never really changes, should be
loaded only once, and stored in memory. Subsequent requests will then only need to access
the data from memory, and the database will be spared from servicing requests to return
the same data over and over again. This technique is a great way to improve application
performance relatively easily, but it may not be practical or even possible in all instances,
depending on the data needs of the application. This has to be assessed at a functional and
architectural level. For example, data requiring real-time accuracy is generally not a good
candidate for caching.

Obviously, this approach places an extra burden on memory usage, so simply loading all your
data into memory may not be practical. This is why you should design a caching strategy.
Typically, this should involve analyzing the application to form an idea of how data is being
used, and to assess the value of storing it in memory as opposed to having to retrieve it from
the database.

In its most simple form, caching would involve storing data in a variable or object that is
never released from memory for the lifetime of the application. This assumes the data never
changes and that the data size makes it feasible to fit into main memory. A simple cache could
look similar to the following class:

public static class PostcodeCache
{
 private static Dictionary<int, string> _postcodes = new
Dictionary<int, string>();

 static PostcodeCache()
 {
 LoadPostcodes();
 }

Chapter 10: Common Areas for Performance Improvement

275

 private static void LoadPostcodes()
 {
 // Typically load from th database or datastore here....
 _postcodes.Add(2000, "Sydney");
 _postcodes.Add(3000, "Melbourne");
 _postcodes.Add(4000, "Brisbane");
 }

 public static string GetPostcode(int postcode)
 {
 if (_postcodes.ContainsKey(postcode))
 return _postcodes[postcode];
 else
 return null;
 }
}

The code sample above shows a very simple class that, when it is first constructed, loads
postcodes into a private field (typically from a database). The .NET runtime ensures that
this is only performed once because of the static nature of the class and, from that point, all
postcode data can be retrieved directly from memory. The usage of this class is even simpler:

[TestMethod]
public void TestExistingPostcode()
{
 Assert.AreEqual<string>("Sydney", PostcodeCache.
GetPostcode(2000));
 Assert.AreEqual<string>("Melbourne", PostcodeCache.
GetPostcode(3000));
 Assert.AreEqual<string>("Brisbane", PostcodeCache.
GetPostcode(4000));
}
[TestMethod]
public void TestPostcodeNonExisting()
{
 Assert.AreEqual<string>(null, PostcodeCache.
GetPostcode(1234));
}

This example shows a very simplistic implementation, and assumes data that may never need
to be changed or invalidated during the lifetime of the application.

Naturally, data doesn't always fit this easy model. Data will typically need to be invalidated
at some point, and any data requiring real-time accuracy clearly cannot be cached. This
analysis needs to be done carefully to ensure that stale data does not become an issue in
the application.

Chapter 10: Common Areas for Performance Improvement

276

Once the lifetime characteristics of segments of data have been established, it is then a matter
of implementing appropriate caching in the application. If the requirements are simple
enough, time-based expiry, event-based expiry and other forms of triggered invalidation of
cache data can be implemented using a custom solution. Often, a number of different expiry
schemes are required, and tools such as the Enterprise Library Caching component offer just
such cache management features, although there are also other third-party components that
can be used to implement your caching requirements. In ASP.NET, things are a little easier as
the provided ASP.NET cache can be used to manage all the application's caching needs.

What to cache?

At this point it is worth discussing what types of data should be cached. Unfortunately, there
is no single answer to apply to all situations, but there are some general rules.

• Static, or reference data: this data either never changes or, at least, only changes very
rarely. This can be cached indefinitely or for relatively long periods of time, for example a
day or more. As discussed earlier in this chapter, postcodes or zip codes would be a good
candidate for this.

• Read many, write few: this data is typically read a large number of times, but may be
written or updated infrequently. The data itself could be cached until an update occurs
on it, in which case it could be invalidated. Later, we will see how cache dependencies
can help achieve this.

• Write many, read few: data that is written or updated very often is generally not a good
candidate for caching.

• Search queries: in some cases, often-used search query results can be cached where the
data itself is not updated very often. Once the data is updated, then the query results can
be invalidated. We'll look at how SQL Caching Dependencies can help with this later.

• Real-time data: this is typically where the most current version of the data must be used
at all times, and is often updated quite frequently. In many cases, this data cannot be
cached. In some cases, with a careful caching strategy, some caching may be possible, but
this needs careful assessment by the business and technical stakeholders.

ASP.NET cache

The ASP.NET cache is one of the most powerful caching mechanisms available to .NET
developers. In ASP.NET versions 3.51 and below, the ASP.NET cache was only usable within
ASP.NET applications, but since the latest release of ASP.NET (version 4), the powerful
caching features can also be used within traditional desktop applications.

Chapter 10: Common Areas for Performance Improvement

277

Cache dependencies

.NET supports a variety of options for cache invalidation via dependency objects; in basic
terms, cached data will depend upon certain criteria and, when the criteria are rendered
invalid or stale, the data is removed from the cache. .NET provides support for a host of
dependency mechanisms such as:

• File based: when a file system change occurs, the associated cached item is invalid.

• Time-based: when a cached item has been in the cache for a specific amount of time, a
specific date/time is reached, or the cached data has not been accessed for a certain time
period, then the data is removed from the cache.

• SQL-based: when the result of a query in a SQL database changes, the associated data is
removed from the cache.

• Cache item-based: when an associated item that is also within the cache is removed, any
other associated cache items are also removed.

Here's an example of how to add data to the ASP.NET cache:

var data = GetDataFromStore();
if (System.Web.HttpContext.Current != null)
{
 System.Web.HttpContext.Current.Cache.Add("TheData", data,
null,
 DateTime.Now.AddSeconds(30),
 Cache.NoSlidingExpiration, CacheItemPriority.Normal,
null);
}

The previous code sample starts by retrieving data from the data store, then adding to it
the code with the TheData key and an absolute time limit of 30 seconds. The result is that,
after 30 seconds, the data is automatically removed from the cache. To retrieve that data, the
following code can be used:

ModelContainer data = null;
if (System.Web.HttpContext.Current != null)
{
 data = System.Web.HttpContext.Current.Cache["TheData"] as
ModelContainer;
 if (data == null)
 data = GetDataFromStore();
}

Chapter 10: Common Areas for Performance Improvement

278

This code fragment first checks to see if retrieving the data from the cache using the TheData
key returns null. If so, then the item has been removed from the cache and the data must be
retrieved from the data store.

SqlCacheDependency is a particularly powerful mechanism for detecting changes in your
data, and automatically invalidating cached data whenever a table or query changes in the
database. It exists in the System.Web.Caching namespace and, instead of relying on a time-
based mechanism, we can ask the SQL database to notify our application whenever there is a
change in data within a table, or in the result of a query.

Implementing SqlCacheDependency takes a little more setup work than a traditional in-
memory cache but is still relatively easy. Before we can use this mechanism, the database and
associated table must be enabled to provide SQL cache dependency notifications. This can
performed from the command line using the aspnet_regsql tool:

aspnet_regsql -t {table} -et -C {connection-string} -d {database}
–ed

Note

There are many variations available to enable SQL cache dependency on specific
database objects. For example, rather than using the command line options shown
above, providing "-W" as a command line switch will invoke wizard mode and guide you
through the process. Similarly, supplying "-?" as a command line parameter will display
all available options.

Alternatively, this can also be performed programmatically in code, provided the context of
the code has sufficient security privileges:

SqlCacheDependencyAdmin.EnableNotifications("{database-table}");

The code to utilize a SQL cache dependency is identical to standard cache usage, with the
exception of setting up a SqlCacheDependency object when inserting the data item into the
cache. The following code illustrates this:

var cacheData = Cache["MyRecord"] as DataEntity;
if (cacheData == null)
{
 SqlConnection conn = new SqlConnection(ConfigurationManager.
ConnectionStrings["sql"].ConnectionString);
 SqlCommand cmd = new SqlCommand("select CustomerName from
Customer",conn);
 SqlCacheDependency cacheDependency = null;
 try
 {

Chapter 10: Common Areas for Performance Improvement

279

 cacheDependency = new SqlCacheDependency("test-
database", "Customer");

 using (var dc = new DataStoreDataContext(ConfigurationMa
nager.ConnectionStrings["sql"].ConnectionString))
 {
 var records = dc.Customers.Take(1);
 if (records.Count() > 0)
 {
 cacheData = new DataEntity() { Name = records.
First().CustomerName, RetrievalTime = DateTime.Now };
 Cache.Insert("MyRecord", cacheData,
cacheDependency);
 }
 }
 }
}

Using this code, SQL Server will notify the web application whenever the contents of the
Customer table change, and will cause the cached data to be cleared, forcing the data to be
reloaded from the database next time it is requested.

Windows Server AppFabric

Windows Server AppFabric (formerly known as Project Velocity) is a relatively new initiative
from Microsoft that provides a highly scalable caching infrastructure that can span across
multiple servers in a farm, with the ability to synchronize the cache state across all servers in
the farm automatically. Microsoft provides technical documentation, downloads and samples
for Windows AppFabric at http://tinyurl.com/AppFabric.

Up to this point, discussions around caching have been focused on single machine scenarios;
that is, a single cache on a single machine. Obviously if there are multiple machines in a
typical web farm, then a cache on one machine may not be the same as a cache on another,
and so some efficiency is lost.

Windows Server AppFabric aims to mitigate this issue by providing its own cache farm,
together with the ability to synchronize caches across the farm as changes are made. Its
function is modeled from the ASP.NET cache, so usage patterns are very familiar to most
developers. Windows Server AppFabric provides a seamless integration with ASP.NET, which
enables ASP.NET session objects to be stored in the distributed cache without having to write
to databases. It offers the speed and efficiency advantages of an in-memory cache, but coupled
with the benefits of a distributed, synchronized cache across a farm of web servers.

Chapter 10: Common Areas for Performance Improvement

280

AppFabric presents a unified memory cache across multiple computers to give a single
unified cache view to applications. Applications can store any serializable CLR object without
worrying about where the object gets stored. Scalability can be achieved by simply adding
more computers on demand.

Windows Server AppFabric is an excellent choice for any web application wishing to achieve
high performance, and should be seriously considered.

Indexing

Indexes on database tables can significantly speed up database access and reduce query
execution time. There are many aspects to indexes and query optimization that would take a
book in themselves to explain in their entirety (and there are many such books available), but
essentially, optimizing the indexes can be a quick win for comparatively little effort.

In some cases, database use continues over time and indexes can become fragmented and
inefficient. Ideally, maintenance tasks should be scheduled to defragment and rebuild the
indexes in a database to avoid the problems this can cause. The DBCC and ALTER INDEX
SQL commands can be used to achieve this.

Creating good indexes is just as important as having them in the first place, as a badly
designed index can actually lead to worse performance. Providing a well-designed index
during system design requires a good understanding of the application and how data will
be accessed. Once the application has been accessing data for a decent period of time,
retrospective analysis and changes can then be performed to ensure indexes are optimal.

What is even better is that SQL Server provides a tool to do just that. In SQL Server 2008
Management Studio (SSMS), the Database Engine Tuning Advisor can be run against the
database to provide a report on what areas need to be improved. This is an invaluable tool for
a low effort, potentially high value, gain.

Figure 10.1: Database Engine Tuning Advisor menu option.

Chapter 10: Common Areas for Performance Improvement

281

An easy way to ensure that indexes are properly optimized is to produce daily or weekly
reports on their statistics. The following SQL script is a simple way to look at overall usage of
indexes, such as which ones are most used, and how they are used.

set nocount on;

Use PerfTestSampleDB
select
 obj.Name as ObjectName,
 ind.name as IndexName,
 ind.index_id,
 ind.object_id,
 isnull(user_seeks, 0) as user_seeks,
 isnull(user_scans, 0) as user_scans,
 isnull(user_lookups, 0) as user_lookups
from sys.indexes ind
 join sys.objects obj on (ind.object_id = obj.object_id)
 left join sys.dm_db_index_usage_stats st on (st.index_id =
ind.index_id and st.object_id = ind.object_id)
where obj.Type_Desc <> 'SYSTEM_TABLE'
order by obj.Name, ind.Name;

The SQL script produces output similar to that in Figure 10.2 and indicates how many seeks
versus scans are being performed on the indexes. This shows you which are the most used
indexes, as well as whether they are being used efficiently, and where seeks are much more
efficient than scans. This information is like gold when it comes to optimizing your indexes
and database design.

Figure 10.2: Simple index statistics SQL Script output.

Chapter 10: Common Areas for Performance Improvement

282

Database access abstractions

When building today's business applications, an abstraction layer is often placed around the
database access mechanism to make it easier to use or to make it fit easier into the object
model of the application. There are many variants that can be used, ranging from Microsoft
technologies such as LINQ to SQL and Entity Framework, all the way to a number of
third-party and Open Source products such as nHibernate. As with all abstractions, there
can be negative effects on performance if these are used without caution. Each product or
technology has different ways of ensuring performance is acceptable, and these methods are
typically specific to that product. For this reason, an in-depth discussion ranging across all
the currently popular mechanisms is beyond the scope of this book, but here's information
around some of the techniques that can cause potential issues.

LINQ to SQL, Entity Framework, nHibernate, etc.

Object relational mapping frameworks such as LINQ to SQL, Entity Framework and
nHibernate all provide good abstractions over a relational database to allow for easy working
with a traditional object model, and easy mapping of objects to the relational data.

As with all abstractions, this can incur a performance cost, especially if used without a
reasonable knowledge of the potential effects of implementing these frameworks.

To illustrate this, let's look at a very simplistic example. The following diagram shows two
tables that are linked by a foreign key relationship between the CustomerId field in the Order
table and the Id field in the Customer table.

Figure 10.3: Two tables linked by CustomerId.

Chapter 10: Common Areas for Performance Improvement

283

This very basic schema will store customers and their associated orders. For this example,
we'll use LINQ to SQL to provide the relational mapping layer, as it's a comparatively simple
framework to work with. Generating a set of LINQ to SQL classes for this schema will enable
us to manipulate the records in the database.

To iterate through the customer records in the Customer table and show the number of
orders a given customer has, we could use code similar to the following snippet:

using (var dc = new DataStoreDataContext())
{
 var customers = from c in dc.Customers
 select c;

 customers.ToList().ForEach(c =>
 {
 Console.WriteLine("Name: {0} has {1} orders.",
c.CustomerName,c.Orders.Count);
 });
}

The code is very clean and simple to understand. We are referencing the Customer object
(which maps to the corresponding Customer table) and the Orders object collection within
the Customer object, which was generated by LINQ to SQL because of a relational constraint
on the Orders table. However, if we look at the query produced, using SQL Server Profiler, we
will see the following:

First, a query is performed to obtain all the customers

SELECT [t0].[Id], [t0].[CustomerName], [t0].[EmailAddress] FROM
[dbo].[Customer] AS [t0]

Then, multiple similar queries are executed in succession to retrieve all the orders for each
customer as we iterate through the customers:

exec sp_executesql N'SELECT [t0].[OrderId], [t0].[CustomerId],
[t0].[Product], [t0].[Quantity], [t0].[Cost] FROM [dbo].[Order]
AS [t0] WHERE [t0].[CustomerId] = @p0',N'@p0 int',@p0=1

exec sp_executesql N'SELECT [t0].[OrderId], [t0].[CustomerId],
[t0].[Product], [t0].[Quantity], [t0].[Cost] FROM [dbo].[Order]
AS [t0] WHERE [t0].[CustomerId] = @p0',N'@p0 int',@p0=2

exec sp_executesql N'SELECT [t0].[OrderId], [t0].[CustomerId],
[t0].[Product], [t0].[Quantity], [t0].[Cost] FROM [dbo].[Order]
AS [t0] WHERE [t0].[CustomerId] = @p0',N'@p0 int',@p0=3

The list continues for each customer ID.

Chapter 10: Common Areas for Performance Improvement

284

It is not immediately obvious that the previous code fragment, which iterates over
the customers and produces an order count, actually performs multiple distinct SQL
queries, dependent on the number of customer records. In a small table, this may not be
noticeable, but as the number of records on both tables grows, it will reveal significant
performance issues.

These kinds of problems can be tackled in a number of ways depending on the application
requirements, such as by creating separate views and functions, or perhaps a dedicated stored
procedure to return only the required results. In our simplistic example, a stored procedure
such as the one shown in the following SQL fragment could be used to return the desired
results in a single call:

select distinct(C.CustomerName), (IsNull(O.CustomerId,0)) as
"OrderCount"
 from dbo.Customer C
left outer join [dbo].[Order] O on O.CustomerId = C.Id

While this example is specific to LINQ to SQL, the concept being presented is applicable to all
products that supply similar functionality, such as nHibernate and Entity Framework. Each
framework has specific characteristics, and it is essential to understand what the potential
costs of utilizing their powerful features are. It is beyond the scope of this book to go into
detail on the many products in the object relational mapping space, but it is important to
ensure that even seemingly simple queries are at least examined using a tool like SQL Server
Profiler to give the resulting SQL statements a "sanity check."

Reflection

Reflection is a way for application code to examine assemblies, classes, fields, and almost
anything else that is within its domain at runtime. Reflection methods exist within the
System.Reflection namespace and, using them, we can find out what methods and
properties a class has, or we can dynamically load an assembly, look for a constructor
matching a particular signature, and then invoke it.

Reflection is a very powerful mechanism, and is often employed to allow dynamic invocation
or runtime querying of type information. This can allow a great degree of loose coupling
within an application which, from an architectural perspective, is a good thing.

That being said, using reflection does come at the cost of performance. It is quite a
computationally intensive process and, when overused, can lead to performance issues such
as high CPU utilization. That is not to say that it should never be used, but just that it should
be used with full knowledge of its consequences, and its implementation carefully monitored.

Chapter 10: Common Areas for Performance Improvement

285

To illustrate this, we will use reflection to provide descriptive titles for an enumeration. First,
we create the attribute that we will use to decorate our enumeration:

[AttributeUsage(AttributeTargets.Field, AllowMultiple = true)]
public class DescriptiveTitleAttribute : Attribute
{
 public DescriptiveTitleAttribute() { }
 public DescriptiveTitleAttribute(string displayTitle)
 {
 DisplayTitle = displayTitle;
 }

 public string DisplayTitle { get; set; }
}

The DescriptiveTitleAttribute class simply provides a string DisplayTitle member.

We then create an enumeration that uses this attribute as shown in the following code:

public enum SongType
{
 [DescriptiveTitle("Contemporary Rock")]
 Rock,
 [DescriptiveTitle("Pop, Teeny Bopper")]
 Pop,
 [DescriptiveTitle("Rap and Hip Hop")]
 Rap,
 [DescriptiveTitle("Heavy Metal")]
 HeavyMetal,
 [DescriptiveTitle("Classical and Opera")]
 Classical
}

As you can see, using attributes to associate with enumerated members in this manner is a
concise and easy way of providing extra metadata (in this case a display title) that is associated
with the fields or properties of a given type. For this contrived example, we shall create
a simple dictionary that will contain a song title and the song genre using the SongType
enumeration previously shown.

Dictionary<string, SongType> songs = new Dictionary<string,
SongType>();
songs.Add("Lots of heavy guitar", SongType.HeavyMetal);
songs.Add("Oh Baby", SongType.Pop);
songs.Add("Baby Baby", SongType.Pop);
songs.Add("Oooh baby oooh", SongType.Pop);
songs.Add("Shake till it falls off", SongType.Rap);

Chapter 10: Common Areas for Performance Improvement

286

To iterate through this collection and extract the display title enumeration associated with
the element will require some reflection. Using reflection, the method shown in the following
code will take a SongType enumeration value, and extract the DisplayTitle attribute value:

private static string GetDescriptiveTitle(SongType enumItem)
{
 var typeOfEnum = enumItem.GetType();
 var field = typeOfEnum.GetField(enumItem.ToString());
 var attribList = field.GetCustomAttributes(true);
 if (attribList.Length > 0)
 {
 var attrib = (DescriptiveTitleAttribute)attribList[0];
 return attrib.DisplayTitle;
 }
 return string.Empty;
}

Iterating through our dictionary collection of songs and extracting the song type is simple, as
shown below:

foreach (var item in songs)
{
 var songType = GetDescriptiveTitle(item.Value);
 Console.WriteLine("{0} - {1}", item.Key, songType);
}

The code shown so far is all very easy to understand, with the exception of the reflection code
itself, which represents the most complexity. For comparative purposes, we shall also use a
very simple alternate method that does not use reflection to retrieve the display title of the
SongType enumeration members. For this, we will use another dictionary collection to hold
the DisplayTitle values, as shown in the following code:

Dictionary<SongType, string> songTypeDescriptions = new
Dictionary<SongType, string>();
songTypeDescriptions.Add(SongType.Classical, "Classical and
Opera");
songTypeDescriptions.Add(SongType.HeavyMetal, "Heavy Metal");
songTypeDescriptions.Add(SongType.Pop, "Pop, Teeny Bopper");
songTypeDescriptions.Add(SongType.Rap, "Rap and Hip Hop");
songTypeDescriptions.Add(SongType.Rock, "Contemporary Rock");

To extract the display title for each enumerated member, we can simply access the keyed
element of the dictionary:

foreach (var item in songs)
{
 var songType = songTypeDescriptions[item.Value];

Chapter 10: Common Areas for Performance Improvement

287

 Console.WriteLine("{0} - {1}", item.Key, songType);
}

In order to demonstrate the computational difference, we will iterate over each collection
10,000 times. The results are:

• using reflection took approximately 768 milliseconds

• not using reflection took approximately 18 milliseconds.

While the times taken here are certainly not excessive, the relative difference is very large.
In a more typical and complex application, it is not inconceivable that substantially more
reflection might be used. It is with this in mind that the effects of using reflection must
be understood, especially in a web application where multiple concurrent requests are
being processed.

As mentioned previously, that is not to say that reflection should not be used. In many cases,
reflection can be used with little detrimental effect to performance. In the simple example we
just went through, using an attribute on the enumerated members can still be employed, with
the initial call to access a display attribute triggering a call to populate an internal cache of
descriptive values. The internal cache can then subsequently be referenced in code, bringing
the benefit of fast access to the descriptive attribute, but also the clean aspect of using
attributes on the enumerated members.

This solution obviously does not apply to all situations, but it does illustrate that a happy
middle ground can be achieved. The key point is to understand that reflection does incur
a performance penalty, and the process of assessing the impact of any potential issues and
mitigating them will be unique to each application.

String manipulation

When it comes to strings in .NET, the classic performance trap is that of the immutable
string. To cut to the core of the issue: if performing more than approximately three string
operations or manipulations, use a StringBuilder object instead of a string.

The number of string operations is dependent on the size of the string and type of operations,
so your mileage may vary; but in general, any more than three string operations are better
performed with a StringBuilder. To illustrate this point, have a look at a very basic class to
concatenate a string:

class MyStringManipulator
{
 const string SomeStringData = "QWERTYUIOPASDFGHJKLZXCVBNM";

Chapter 10: Common Areas for Performance Improvement

288

 public int UseRegularString(int numberOfOperations)
 {
 string myStringData = null;

 for (int cnt = 0; cnt < numberOfOperations;cnt++)
 {
 myStringData += SomeStringData;
 }

 return myStringData.Length;
 }
}

To exercise this class, a simple console application is created to measure and display the time
taken to perform the task:

static void Main(string[] args)
{
 const int NumberOfOperations = 10000;
 var worker = new MyStringManipulator();
 var watch = new System.Diagnostics.Stopwatch();
 int numChars = 0;

 watch.Start();
 numChars = worker.UseRegularString(NumberOfOperations);
 numChars = worker.UseStringBuilder(NumberOfOperations);
 watch.Stop();
 Console.WriteLine("Your String Data totalled: {0}
chars in length in {1} milliseconds.", numChars,watch.
ElapsedMilliseconds);

 Console.WriteLine("Press ENTER key");
 Console.ReadLine();

}

The code simply performs a string concatenation 10,000 times and displays the time taken,
producing the output shown in Figure 10.4.

Chapter 10: Common Areas for Performance Improvement

289

Figure 10.4: String concatenation using a regular string object.

Now let's try exactly the same operation using a StringBuilder by slightly changing the
concatenation implementation, as shown below:

public int UseStringBuilder(int numberOfOperations)
{
 StringBuilder myStringData = new StringBuilder();

 for (int cnt = 0; cnt < numberOfOperations; cnt++)
 {
 myStringData.Append(SomeStringData);
 }

 return myStringData.Length;
}

Now when the program is executed, the output shown in Figure 10.5 is produced.

Figure 10.5: String concatenation using a StringBuilder object.

The time taken was reduced from 2,176 milliseconds to just 1 millisecond, which is a
substantial increase in execution speed. To further illustrate this, let's examine the memory
usage of the program. Using CLRProfiler and running the program that utilizes a standard
string object, the profiler reports approximately 1.8 Gigabytes of memory being allocated for
strings (see Figure 10.6).

Chapter 10: Common Areas for Performance Improvement

290

Figure 10.6: CLRProfiler allocated bytes histogram for regular string usage.

Using CLRProfiler to report on the memory usage when using the StringBuilder, we can
see a meager 512 kilobytes of memory being used to create exactly the same result, which is a
huge difference (see Figure 10.7).

Figure 10.7: CLRProfiler allocated bytes histogram for StringBuilder usage.

Chapter 10: Common Areas for Performance Improvement

291

A regular string object is immutable and cannot be changed once created. This means that
when a string is modified, a new string object is created in memory that represents the
modified string. The original string, being immutable, is never modified. The end result to the
developer is that it simply looks as if the original string is modified.

Internally, when a concatenation (or any string operation) occurs on a regular string object,
memory is first allocated to contain the resulting string, then the original string object plus
any modifications are copied into the newly allocated area of memory. This newly allocated
string object is then returned to the user as the result of the string operation. Doing this
many times obviously results in a lot of work and memory consumption. In contrast, a
StringBuilder is optimized to not do this work when manipulating strings, so the extensive
re-allocation of data and memory is not performed. Internally, a string builder is not
immutable and performs string operations on the original data. There is no need to allocate
memory for a copy of the original string and copy the original instance of the string into it to
perform modifications. A string builder will retain the original character data, only allocating
what is necessary to perform the modifications on the original data.

Finally, remember that the .NET garbage collector will also have to work very hard to reclaim
memory in the regular string object example. The reclaiming of memory will only happen at
a later time when the GC performs a collection. If the system is busy, then this may not
happen for some time. This will further hamper the performance of the application and the
system overall.

Cryptographic functions

Performing cryptographic functions in code is a computationally expensive function.
Encrypting and decrypting data requires complex algorithms, and this is more pronounced
when using asymmetric cryptography, which forms the basis of Public Key Infrastructure
(PKI). Secure Sockets Layer (SSL) communication utilizes this technique, and there are many
hardware solutions that are available to offload the encryption and decryption of data to a
separate dedicated device (this will be discussed in the final chapter, on HTTP optimization).

The System.Security.Cryptography namespace in .NET provides a number of classes
that encapsulate this functionality. In the case of encrypting and decrypting data, all of the
classes allow a particular keysize to be specified. Generally speaking, the larger the keysize,
the stronger the encryption; that is, the harder it is to break. With that in mind, there is a
tendency to choose the biggest keysize supported by the algorithm, but this can naturally
have a significant computational cost. With symmetric encryption, the effects will be
marginal, but still present; with asymmetric cryptography, the computational cost can be
huge. Indeed, the cost of choosing a keysize of 1,024 bits could be as much as 5–10 times more
than a 256 bit keysize, depending on the data and algorithm used.

Chapter 10: Common Areas for Performance Improvement

292

It is worth noting that using the cryptographic classes supplied in the .NET framework is
generally a much better approach to custom implementations. The .NET framework has
gone through extensive testing and optimization and, as a result, framework-supplied
implementations will be faster and more secure.

The main point here is to choose the keysize carefully if you're implementing cryptographic
functions in your applications. Security is important, but the effect of implementing the
highest level of cryptography needs to be carefully thought out to ensure it does not adversely
affect the entire application, and reduce the ability of the system to perform adequately as a
whole. This is particularly important in web applications, or services that have the potential
to process a large number of requests concurrently.

Network call latency

Applications often need to call external services such as web services, payment gateways, or
other non-local resources. This typically involves using some form of transport protocol to
communicate with the external resource. Web services are one of the most common forms
of communication between systems, but it can also involve traditional TCP/IP, FTP, or even
proprietary protocols. Regardless of the protocol, these points of integration act as potential
performance bottlenecks and should be carefully managed.

Even though the network in question may seem quite fast, such as an organization's 100 Gb/s
intranet, calling a web service or connecting to a TCP socket is still much slower than calling
a method on an assembly residing in the same application domain. Any time a network "hop"
is performed, the data being transferred needs to be serialized and eventually deserialized,
protocol packets must be created and synchronized, with source and destination ports
coordinating threads to accept and marshal the data to the correct destination.

It is good practice to build in a level of isolation between your application and the external
resources. Architecturally this may involve defining and implementing interface contracts
between the systems, and communicating via these APIs. Doing this has the advantage of
making it possible to then provide alternative implementations of the external resource, such
as a "dummy" or "mock" version of the resource.

Being able to provide mock implementations of an external resource allows a performance
test to focus purely on the application. With those metrics recorded, we can then examine
end-to-end functionality by using the proper external resource implementation and
measuring the "delta," or change in performance. This provides an accurate view of the effect
that the external resource has on overall system performance, making it much easier to
isolate any performance bottlenecks in either the application or the resource being accessed.

Chapter 10: Common Areas for Performance Improvement

293

Providing this mock interface layer obviously requires more work up front and consideration
when designing the system. However, it does provide great benefits, not just from a
performance metric perspective, but also in removing external dependencies during the
development phase.

The ability to provide a mock implementation is also very dependent on the resource itself.
Web services are relatively easy to work with since interfaces are a part of web service
contract design and development. Other forms of communication will require specific
implementations, and the key is abstracting that communication to encapsulate the
component, and thus provide an easy way to implement a mock version.

Irrespective of design, though, there are some key considerations when calling external
resources over a relatively slow link, such as an intranet or the Internet.

Key considerations when calling external resources

Protocol

HTTP is one of the most common forms of network communication, but is also one of
the least efficient in terms of performance, due to its verbose nature and typically string-
based representation. TCP/IP is a far more efficient protocol and typically uses binary
to communicate over the network, resulting in much faster communications. TCP/IP
implementations are usually proprietary, though, and are mostly used where both the sending
and receiving party are under your direct control and do not require interoperation with
other external systems. Basically, HTTP and its derivatives are more standards compliant and
interoperable than TCP/IP or other forms of binary communication.

Size of payload

The more data that is sent and received, the more time is taken to send that data over the
link. Data Transfer Objects (DTOs) are often employed so that large object graphs are not
sent over the link; only the necessary data is put into the DTO object and transferred over the
link. All types of information being sent and received should be carefully analyzed to ensure
they are sent in as efficient a form as possible.

Chapter 10: Common Areas for Performance Improvement

294

Serialization/deserialization

Whenever data or an object is sent through a communications protocol, it needs to be
serialized into a form where it can be sent. This process is then reversed on the receiver,
where the data is deserialized and the original object form is restored. Not only does this
take time to send and receive, but the actual serialization and deserialization processes can
be relatively time consuming. This is very prevalent in web service communication where
objects are sent over the wire (i.e. over a network) and the objects are typically serialized into
string form using an XML format. XML is a very verbose protocol, and the size of the XML
representation of the object is often much larger than its native binary form. In this scenario,
large objects become even larger when sent to the external resource, which can significantly
impact performance. Technology stacks such as Windows Communication Foundation
(WCF) provide ways of utilizing binary serialization, which is far more efficient than
traditional XML serialization in some cases, but these are non-standard. Generally speaking,
if you have control over both sending and receiving parties, it is best to use the most efficient
form of communication, such as binary serialization. If interoperation with other systems
is a requirement, then verbose protocols such as Simple Object Access Protocol (SOAP) and
higher-level protocols such as WS-Security may be required.

Chatty vs. chunky

If a link is slow, then it is best practice to ensure that the number of calls performed is kept to
a minimum. This often means that communication patterns need to be designed so that calls
are not "chatty," performing an excessive number of calls with small amounts of information.
It is best to adopt a "chunky" approach, where more data is initially transferred over the
link, but fewer calls are made overall. With large numbers of small calls, each segment or
packet of information that is transferred needs to have a header and contextual information
surrounding the data payload itself, so that the protocol can interpret the data correctly. This
means that, when transferring a given set of information, the total data size of many calls
with small payloads is often larger than one or two calls with larger payloads. This applies to
any protocol but is especially important to web services. TCP/IP utilizes a header to describe
a packet of information, and always performs an initial handshake consisting of a series of
requests and acknowledgements by the communicating parties. Large sets of data are broken
into smaller packets to be transferred via TCP/IP. Web services are a higher-level protocol,
that is, a protocol built on top of another protocol, which has its own way of packaging and
structuring its data payload in addition to what is provided through lower-level protocols
such as TCP/IP. For web services, it is generally best to avoid multiple web service calls and
try to design the communications interface to return the necessary data in a single web
service call.

The key point here is that any form of external access, especially over a network, is a relatively
expensive exercise in terms of performance. Caching can help, but this may only alleviate a

Chapter 10: Common Areas for Performance Improvement

295

small percentage of calls. Careful consideration should be employed to ensure that the best
and most efficient form of communication is used in your given scenario.

Synchronous vs. asynchronous

Asynchronous operations are operations that run in parallel with each other. Developers
often overlook the advantage of using asynchronous designs and features to provide better
throughput in their applications, as it is somewhat natural to implement process flow in a
procedural way, as shown in Figure 10.8.

Submit Order

Create Order
Context

Record Order in
Database

Write to Audit
Table

Send warehouse
dispatch

notification

Send Customer
notification

Email

Return

Figure 10.8: Synchronous process flow example.

Chapter 10: Common Areas for Performance Improvement

296

However, a more efficient way might be to asynchronously perform the functions that don't
require a response to the user or any initiating action. The same process could be designed
asynchronously as shown in Figure 10.9.

Figure 10.9: Asynchronous process flow example.

In this scenario, the Out Of Process component could be a service, a message queue, or any
other component that executes in conjunction with the main process, but serves only to
process certain requests. The main process can simply pass the necessary information to the
external component and return to the caller (or initiating action) much more responsively;
there is no need to wait for multiple processes to complete.

There are many ways to accomplish this. Microsoft Message Queue (MSMQ) is a great way
to lodge custom messages for asynchronous processing. Applications can write to the queue,
with an Out of Process service monitoring said queue and reading messages as they arrive.

SQL Server Broker also provides a similar set of features to those in MSMQ, but utilizes
SQL Server as its backing store. MSMQ is arguably a simpler way to set up a message store
for asynchronous processing, but the different supporting feature sets should be analyzed
thoroughly to determine if the needs of your specific solution will be satisfied. Even a
custom messaging solution using a technology such as WCF can be employed to provide
asynchronous messaging.

Chapter 10: Common Areas for Performance Improvement

297

Regardless of the technology chosen, the key point is to improve the responsiveness and
throughput of the application by offloading tasks to the asynchronous process where possible.
Some typical candidates for asynchronous operation include audit logging, sending emails,
and report generation. The needs of the business and the application specifics will typically
dictate what can and cannot be offloaded asynchronously.

Asynchronous web pages

ASP.NET 2.0 and later versions all support a feature called asynchronous pages. This feature
allows an individual page to offload processing tasks to be performed asynchronously. The
ASP.NET runtime then coordinates these tasks so that all tasks are completed when the page
finally renders.

This is actually a little different from launching a separate thread from within your code
and waiting for it to complete. ASP.NET provides a far more efficient mechanism for
utilizing threads, and allows the request-processing thread to service other requests during
the processing of the asynchronous tasks. This can mean better throughput for your web
applications; some obvious candidates for an asynchronous task are pages that execute web
service calls or database queries.

To implement this, asynchronous pages must first be enabled by including the
Async attribute in a page, and setting it to true in the @Page directive as shown in the
following snippet:

<%@ Page Async="true" ... %>

There are a number of ways in which asynchronous pages can be implemented, depending
on how you intend to interact with the asynchronous tasks. The following simple example
shows just one way. For this example, we'll emulate some long-running processes using the
following code:

public class MySlowObject
{
 public string SlowMethod1()
 {
 int timeToSleep = 2000;
 System.Threading.Thread.Sleep(timeToSleep);
 return string.Format("Method1 slept for {0}
milliseconds", timeToSleep);
 }

 public string SlowMethod2()
 {
 int timeToSleep = 3500;

Chapter 10: Common Areas for Performance Improvement

298

 System.Threading.Thread.Sleep(timeToSleep);
 return string.Format("Method2 slept for {0}
milliseconds", timeToSleep);
 }
}

To compare timings, we shall first implement a non-asynchronous page implementation to
call the methods on the MySlowObject. The following code shows a simple implementation
in the code behind a page.

public partial class _Default : System.Web.UI.Page
{
 Stopwatch _stopwatch = new Stopwatch();
 StringBuilder _msg = new StringBuilder();

 protected void Page_Load(object sender, EventArgs e)
 {
 _stopwatch.Start();
 this.PreRenderComplete += new EventHandler(_Default_
PreRenderComplete);

 MySlowObject obj = new MySlowObject();
 _msg.AppendFormat("
{0}", obj.SlowMethod1());
 _msg.AppendFormat("
{0}", obj.SlowMethod2());
 }

 void _Default_PreRenderComplete(object sender, EventArgs e)
 {
 _msg.AppendFormat("
Total time for page to render =
{0} milliseconds", _stopwatch.ElapsedMilliseconds);
 litMsg.Text = _msg.ToString();
 }

The preceding code fragment simply calls SlowMethod1 and SlowMethod2 synchronously,
and displays the result by writing the results to a literal control. The output is shown in
Figure 10.10.

Chapter 10: Common Areas for Performance Improvement

299

Figure 10.10: Synchronous page timing output.

The output shows that the total page time is approximately the addition of the time it
took to execute the two methods. Now examine the following implementation which uses
asynchronous tasks.

public partial class _Default : System.Web.UI.Page
{
 delegate string SlowThing();
 MySlowObject _slowObj = new MySlowObject();
 SlowThing _method1;
 SlowThing _method2;
 Stopwatch _stopwatch = new Stopwatch();
 StringBuilder _msg = new StringBuilder();

 protected void Page_Load(object sender, EventArgs e)
 {
 Page.RegisterAsyncTask(new PageAsyncTask(StartAsyncHandl
er1, EndAsyncHandler1, TimeoutHandler, null, true));
 Page.RegisterAsyncTask(new PageAsyncTask(StartAsyncHandl
er2, EndAsyncHandler2, TimeoutHandler, null, true));

 _stopwatch.Start();
 this.PreRenderComplete += new EventHandler(_Default_
PreRenderComplete);
 }

 void _Default_PreRenderComplete(object sender, EventArgs e)
 {
 _msg.AppendFormat("
Total time for page to render =
{0} milliseconds", _stopwatch.ElapsedMilliseconds);
 litMsg.Text = _msg.ToString();

Chapter 10: Common Areas for Performance Improvement

300

 }

 IAsyncResult StartAsyncHandler1(object sender, EventArgs
e,AsyncCallback cb, object state)
 {
 _method1 = new SlowThing(_slowObj.SlowMethod1);
 return _method1.BeginInvoke(cb, state);
 }
 IAsyncResult StartAsyncHandler2(object sender, EventArgs e,
AsyncCallback cb, object state)
 {
 _method2 = new SlowThing(_slowObj.SlowMethod2);
 return _method2.BeginInvoke(cb, state);
 }

 void EndAsyncHandler1(IAsyncResult ar)
 {
 string result = _method1.EndInvoke(ar);
 _msg.Append("
" + result);
 }
 void EndAsyncHandler2(IAsyncResult ar)
 {
 string result = _method2.EndInvoke(ar);
 _msg.Append("
" + result);
 }

 void TimeoutHandler(IAsyncResult ar)
 {
 }
}

The preceding code registers two asynchronous tasks that execute one of the slow methods
on the MySlowObject. The results are written to a string and output in the same way as the
previous example. The output for this code is shown in Figure 10.11.

The timings shown in Figure 10.11 show a quicker execution, with the page render time taking
only slightly longer than the slowest method, and the whole process being much quicker than
the synchronous example.

Chapter 10: Common Areas for Performance Improvement

301

Figure 10.11: Asynchronous page timing output.

This is a simple demonstration, but it serves to emphasise that proper consideration should
be given to asynchronous operations when designing systems and writing web pages. In
particular, you need to ask what can be offloaded to run asynchronously and allow normal
processing to continue. This certainly won't suit all situations, but the potential performance
benefits of being able to utilize asynchronous functionality are great.

Web application specific

The next series of techniques are all only applicable in a web application scenario. We will
be examining specific features of the ASP.NET runtime with regard to performance, and
providing details on how to extract the best performance from those techniques. With the
exception of data binding, all techniques can be applied to AAP.NET Webforms or ASP.NET
MVC applications.

Data binding

Data binding in ASP.NET Webforms applications is a common practice to display lists or
tables of information, and can also be used for simple element property manipulation for
server-based controls. Data binding provides a maintainable and descriptive way of specifying
how data can be presented in a page from a data source. This is often used to present a
repeatable table of data such as a repeater control or GridView control. However, it does
come at the cost of performance. In the majority of scenarios, this cost may be negligible, and
worth the benefit of easy readability that data binding provides.

Chapter 10: Common Areas for Performance Improvement

302

In many instances, implementations that abstract complexity to provide a generic and easy-
to-use interface can often come at a cost to performance.

To illustrate this, the following example will show a simplistic comparison between using
data binding, not using data binding, and a compromise that borrows a little benefit
from both.

For this example, we'll use a common source of data that acts as a container with a list of
items showing book authors, titles, and other information such as randomized display colors.
The list of items will contain 2,000 separate line items of information. Note that, while
displaying 2,000 line items on a single page is neither realistic nor practical, displaying 50
items on a page where there might be greater than 100 concurrent users is very realistic, and
the net system performance effect would be even more pronounced. The implementation will
be common across each web page, and is comprised of the following:

public static class DataManager
{
 public static DataContainer GetData(string title)
 {
 var itemSelection = new DataItem[5];
 itemSelection[0] = new DataItem() { AuthorName = "I.
Litterate", BookTitle = "Learning to reed and right"};
 itemSelection[1] = new DataItem() { AuthorName = "Eta
Lottafood", BookTitle = "Handy recipes"};
 itemSelection[2] = new DataItem() { AuthorName = "Holin
Mipants", BookTitle = "Embarrasing moments"};
 itemSelection[3] = new DataItem() { AuthorName = "Mr D.
Hoffman", BookTitle = "The care and maintenance of chest hair"};
 itemSelection[4] = new DataItem() { AuthorName = "K.
Thefrog", BookTitle = "It aint easy being green"};

 var dc = new DataContainer();
 dc.Title = title;
 dc.Comments = string.Format("These are the comments for
the item titled '{0}'", title);
 Random rnd = new Random(DateTime.Now.Millisecond);

 dc.MajorVersion = rnd.Next(1, 9);
 dc.MinorVersion = rnd.Next(0, 20);
 dc.Revision = rnd.Next(0, 100);

 for (int i = 0; i < 2000; i++)
 {
 dc.Items.Add(itemSelection[rnd.Next(0, 4)]);
 }

Chapter 10: Common Areas for Performance Improvement

303

 return dc;
 }
}

In order to surface this data in a web page, a typical data binding approach will be used. The
following code example demonstrates the data binding implementation:

<form id="form1" runat="server">
<div>
 <div>
 <label>Title: </label>
 <label><%# BodyTitle %></label>
 <label>Version: </label>
 <%# Version %>
 <p><%# Comments %></p>
 </div>

 <asp:Repeater ID="rpt1" runat="server">
 <HeaderTemplate>

 </HeaderTemplate>

 <ItemTemplate>
 <li runat="server" style='<%# Eval("ItemColor") %>'>
 Author:
 <%# Eval("AuthorName") %>
 Book:
 <%# Eval("BookTitle") %>

 </ItemTemplate>

 <FooterTemplate>

 </FooterTemplate>
 </asp:Repeater>
</div>
</form>

In the previous code snippet, an initial set of fields are databound to display the title, version
and comments. Then a standard ASP.NET repeater control is used to iterate through the
data item collection, display the AuthorName and BookTitle fields, as well as use data
binding to set the color of the element content. The supporting code-behind for this
is also very simple:

Chapter 10: Common Areas for Performance Improvement

304

public partial class _Default : System.Web.UI.Page
{
 private DataContainer _container = DataManager.
GetData("Using Databinding");

 protected override void OnPreRender(EventArgs e)
 {
 rpt1.DataSource = _container.Items;
 DataBind();

 base.OnPreRender(e);
 }

 public string BodyTitle { get { return _container.Title; } }
 public string Comments { get { return _container.Comments; }
}
 public string Version { get { return _container.VersionText;
} }
}

The previous code examples show HTML content which is very easy to understand and
maintain, with very simple supporting code behind its implementation.

If we access the page a few times and then, using the trace.axd handler, view the detailed
trace output that ASP.NET provides, we can see the timings, as shown in Figure 10.12.

Figure 10.12: Page event timings using databinding.

Chapter 10: Common Areas for Performance Improvement

305

Figure 10.12 shows the two important times highlighted: the time taken to execute
the PreRender event was 0.109689 seconds, and the total time for page execution was
approximately 0.64 seconds. To have something to compare that against, let's take a very
different approach to displaying exactly the same data in exactly the same way. In the next
sample, the markup is comprised of the following:

<form id="form1" runat="server">
<div>
 <%= HtmlContent %>
</div>
</form>

As shown in the HTML fragment, there is no real markup at all apart from basic body,
form and surrounding div elements. The <%= HtmlContent %> is simply performing a
Response.Write of the HtmlContent property exposed in the code-behind, for which the
implementation is:

public partial class ContentWrite : System.Web.UI.Page
{
 private DataContainer _container = DataManager.
GetData("Using literal content writing");

 public string HtmlContent
 {
 get { return GetContent(); }
 }

 private string GetContent()
 {
 StringBuilder content = new StringBuilder();
 content.AppendFormat("<div><label>Title: </
label><label>{0}</label>", _container.Title);
 content.AppendFormat("<label>Version: </
label>{0}", _container.VersionText);
 content.AppendFormat("<p>{0}</p></div>", _container.
Comments);
 content.Append("");
 foreach (var item in _container.Items)
 {
 content.AppendFormat("<li style='{0}'>", item.
ItemColor);
 content.AppendFormat("Author:{0}</
span>", item.AuthorName);
 content.AppendFormat("Book:{0}</
span>", item.BookTitle);
 }

Chapter 10: Common Areas for Performance Improvement

306

 content.Append("");
 return content.ToString();
 }
}

The previous code fragment shows a lot more work being done in the code-behind compared
to the data binding example. In particular, the raw HTML response is being constructed as
one big string and fed into the page for rendering. The page event timings for this example
are shown in Figure 10.13.

Figure 10.13: Page event timings using Response.Write of Content.

As with the data binding figure shown previously, the two important times are highlighted.
The time taken to execute the PreRender event was 0.000030 seconds and the total time for
page execution was approximately 0.02 seconds.

The direct writing of content yielded a performance thousands of times better than the data
bound example, and the total page performance was approximately 30 times faster. While
the times themselves are not large (not exceeding 1 second in any instance), the relative
performance gain is easily seen.

Yet the writing of raw content to the output response is hardly a good way to write
maintainable pages. In a complex page, where markup can be very intricate, this method can
prove very difficult, in addition to providing difficulties to designers who may be creating the
user interface. Furthermore, maintaining such code will prove arduous, time consuming and
will make it easy for subtle rendering bugs to slip into your work.

It is, nonetheless, possible to achieve a compromise in terms of maintainability and
performance, as is demonstrated by the following markup.

Chapter 10: Common Areas for Performance Improvement

307

<form id="form1" runat="server">
<div>
 <div>
 <label>Title: </label>
 <label><%= BodyTitle %></label>
 <label>Version: </label>
 <%= Version %>
 <p><%= Comments %></p>
 </div>

<% foreach (var item in DataItems)
{ %>
 <li style="<%= item.ItemColor %>">
 Author:
 <%= item.AuthorName %>
 Book:
 <%= item.BookTitle %>

<% } %>

</div>
</form>

The previous HTML fragment looks very similar to the data bound version, but no data
binding is involved. Instead, the use of Reponse.Write is still maintained using the <%=
fieldname %> expression syntax. In addition, some inline code has been introduced to
iterate through the collection in much the same way an ASP.NET repeater control does but,
because of the inline code, the Response.Write expression can still be used. The code-
behind to support this markup is as follows:

public partial class MarkupAndResponseWrite : System.Web.UI.Page
{
 private DataContainer _container = DataManager.
GetData("Using markup and response writing");

 public string BodyTitle { get { return _container.Title; } }
 public string Comments { get { return _container.Comments; }
}
 public string Version { get { return _container.VersionText;
} }
 public List<DataItem> DataItems { get { return _container.
Items; } }
}

Chapter 10: Common Areas for Performance Improvement

308

This shows a very simple code fragment behind the implementation, with no complex
construction of markup. All markup has been left in the page, in a semantically correct
manner (from a structural perspective), making maintenance relatively easy. The page event
timings for this implementation are shown in Figure 10.14.

Figure 10.14: Page event timings using Reponse.Write and structural markup in the page.

The two important times are highlighted again: the time taken to execute the PreRender
event was 0.000030 seconds and the total time for page execution was approximately 0.02
seconds. The timings are almost identical, and the overall page time is marginally faster.

These examples simply serve to demonstrate that data binding is a relatively expensive
operation. Data binding utilizes reflection and generic mechanisms to make the construction
of complex data in a web page easy, but at the cost of performance. Even if reflection is
minimized via the use of strongly typed helper objects to replace the Eval(“…”) syntax,
performance is still significantly lower compared to pages using Response.Write. This is a
cost worth wearing for a majority of cases, as data binding is an elegant solution. However, if
performance is critical, or perhaps a particular page is experiencing performance issues which
utilize a lot of data binding expressions, then these alternative techniques I've mentioned may
be useful.

Chapter 10: Common Areas for Performance Improvement

309

Output caching

As discussed previously, caching data can provide a great performance boost, although the
previous mention dealt more with caching data from a data store such as a SQL database.
However, we can also utilize the ASP.NET runtime to cache the raw HTML output of our
web controls. This means that the ASP.NET runtime will not invoke any processing or
execution of logic while the cached content is still valid and has not expired. This technique
can be used in both Webforms and ASP.NET MVC, and results in significant savings in
processing time and CPU utilization.

When content is output cached, and a request comes in to be processed by ASP.NET, the
framework first checks to see if the control or controller action has content that is output
cached. If it does, then ASP.NET extracts the raw content, and bypasses the creation of the
control or invoking of a controller action. If no matching output cached content is found,
then request processing continues as normal. When a control or controller action has output
caching enabled, ASP.NET will determine a unique key for the content, and add the content
to the cache with the conditions specified in the output caching directive.

In a Webforms application, only user controls can participate in output caching via a simple
control directive:

<%@ OutputCache Duration="60" VaryByParam="none" %>

This control directive states that the output of this user control will be cached for 60
minutes. That is, the raw HTML produced by this control when it was first invoked is cached
by the ASP.NET runtime for 60 minutes. During that period, any time the contents of that
control are requested, the raw HTML will be retrieved from the cache with no server-side
processing performed at all. That is, no server-side logic of any sort (such as code-behind
logic) is executed.

The equivalent technique in ASP.NET MVC would be applied at the controller level to a
control action using the OutputCache attribute.

 [OutputCache(VaryByParam = "none", Duration = 60)]
public ActionResult SomeAction()
{
 var data = _GetData();
 return View(“MyView”,data);
}

As with Webforms, no controller action is invoked if the output cached content is found.
This is the reason why this technique is so efficient, as there is no server-side processing that
occurs if the data in the cache can satisfy the request. The content is simply extracted from
the cache and returned in the response.

Chapter 10: Common Areas for Performance Improvement

310

While a good performance gain, this technique has potential negative side-effects where,
if content is cached globally but is actually different for each user, then each individual
user may view all the cached content, rather than the content specific to their context. For
example, if a user's name was output cached for one hour and a different user accessed the
site, then the original output-cached user name would always be presented to every different
user for the next hour until the cache expired.

Typically, the type of content that lends itself well to output caching consists of items such as
headers, footers, navigation elements, and other elements that are not dynamically generated
on every request. However, output caching can be varied, based on a range of parameters
within the incoming request, and can therefore be tailored as required.

A detailed examination of all the options available to tailor output cached content for
both Webforms and ASP.NET MVC is far beyond the scope of this section. However, both
Webforms and ASP.NET MVC can utilize other directives to ensure that cached content is
only applicable under certain conditions. In addition to setting a duration for the cached
content, the content can be uniquely cached based on the value of a control (VaryByControl
attribute), the value of a URL query string, the value of a form post element (VaryByParam
attribute), or even a custom implementation of your choosing (VaryByCustom). The
VaryByParam attribute will cache content uniquely indentified by URL parameters (in the
case of HTTP GET requests) and form post parameters (in the case of HTTP POST requests).
For example, in ASP.NET Webforms:

<%@ OutputCache Duration="60" VaryByParam="id;name" %>

Note

Webform controls require the presence of the VaryByParam attribute. If this is not
required, the value should be set to none (VaryByParam="none").

And in ASP.NET MVC:

[OutputCache(Duration=60, VaryByParam="id;name")]
public ActionResult SomeAction()
{
 // … some code
}

Both of the earlier statements will tell ASP.NET to cache the output of the control or action
for a period of 60 minutes, based on the ID and name parameter of the query string (for
HTTP GET) or the ID and name parameter of the form post collection (for HTTP POST).

Chapter 10: Common Areas for Performance Improvement

311

Output caching is an extremely powerful mechanism to alleviate the amount of processing
performed by an application but, like any cached content, it must be used with caution. We
must ensure that cached content is presented only to the users to whom it is relevant, and
careful consideration around how to vary the content, based on the available options, needs
to be factored into any output caching strategy.

web.config

The web.config and machine.config configuration files are one of the easiest places
to tinker to gain a performance boost. Too often, everything is focused on actual
development, and the basic configuration elements can be overlooked. The following list
highlights which configuration file and what configuration item to adjust, in order to gain
maximum performance.

• File: web.config

• Section: <system.web>

• Item Value: <compilation debug="false">

• Details:
Setting this value to false will instruct ASP.NET to continually assemble and in-
clude debug information into the dynamically generated assemblies. This produces
a leaner and better-optimized assembly suited for production scenarios. When a
new project is created in Visual Studio, this value is set to false, but if any debug-
ging has been performed, then Visual Studio prompts you to set this value to true.

• File: web.config

• Section: <system.web>

• Item Value: <trace enabled="false"/>

• Details:
This setting enables or disables the page tracing functionality of ASP.NET. Ensuring
this is false means that ASP.NET will not generate and retain trace information for
every request. This can result in a significant performance boost, especially in high
volume sites.

• File: machine.config

• Section: <system.web>

• Item Value: <deployment retail="true">

Chapter 10: Common Areas for Performance Improvement

312

• Details:
This is one of the most important, but often overlooked, production level settings.
It overrides all the previously mentioned settings and sets them to their appropriate
production setting as described.

• File: web.config

• Section: <httpHandlers>

• Details:
This section is normally populated with some default handlers. Handlers are run
on every request, so it is important that only the necessary handlers are present, in
order to prevent excessive or unnecessary work being performed. This can often
occur when a copy of a website is used to deliver only static content such as images,
CSS files, etc. (This is often referred to as a CDN – Content Delivery Network, and
will be discussed in a later chapter). In this case, static content does not normally
require the same number of processing handlers as the normal ASP.NET website, so
these elements can be removed to enhance throughout.

Conclusion

While each application is different, there are many common areas which can be addressed
to help improve performance in most cases. This is especially true if a common underlying
framework such as ASP.NET is used. Here, we've discussed many of these common aspects,
taking a two-fold approach to the issue.

The first is to simply highlight the fact that particular areas can be places where performance
may be an issue. With this knowledge, it is already much easier to address performance issues
in the early stages of design and development, essentially preventing them before they occur.

The second is to provide actual examples of typical code which exhibits performance issues,
and potential ways of resolving those problems. Obviously, the resolution of such issues will
most likely be slightly different in each application, and this must be assessed for each specific
set of circumstances.

In general, though, providing an abstraction over areas of complexity in order to simplify
usage can often hide performance pitfalls. While these abstraction layers undoubtedly
provide easier mechanisms for implementation and use, unmetered use can lead to
performance problems, so their deployment must be carefully judged.

313

Chapter 11: Load Balancing

What is load balancing and how does
it help?

Load balancing refers to an environment configuration that spreads the incoming requests
between two or more servers. The load is effectively "balanced" between all the servers in the
farm.

So, instead of a single server handling all the incoming traffic, there are now multiple servers,
each sharing a part of the task of handling incoming traffic. This is typically the situation in
web applications where multiple front-end web servers are used, but application servers that
expose entry points such as web services will also benefit from load balancing.

The ability of an application to be spread across a farm of servers is referred to as its
"scalability." This does not necessarily equate to a high performing application. Scalability
simply refers to the ability to be distributed across a farm or cluster of servers to handle a
greater load. This is often, but not always, tied to the stateful design of an application. An
application can be quite inefficient or slow, yet still have good scalability.

Load balancing provides the ability to horizontally scale an application, as opposed to
vertically scaling it. Vertical scaling refers to making more resources or computational power
available to the application. This could involve adding more processors or more memory to
the system, and is often referred to as "scaling up." Vertical scaling has limitations, though,
in that you will eventually hit a limit to the amount of resources that can be added. A system
can only support its maximum number of processors and addressable memory. Horizontally
scaling an application involves adding more machines or servers to a "farm" of machines, to
"scale out" the application.

Vertical scaling is beneficial, but it has limitations when dealing with serving network traffic
such as HTTP or TCP traffic. Systems such as SQL Server can benefit greatly from vertical
scaling due to the way that CPU and memory are utilized by the server. However, dealing
with network traffic means having to efficiently manage I/O threads, I/O completion ports,
request processing, and threads from the thread pool, to be able to serve all the incoming
requests. Unless the hosted application is incredibly efficient, there comes a point where
the sheer size of the load imposed on a system results in requests being queued or the
CPU (whether singular or legion) being at maximum capacity. This aspect was discussed
in Chapter 3 when we looked at performance test metrics, specifically, the ASP.NET
performance counters dealing with request execution and pipeline instance counts.

Chapter 11: Load Balancing

314

Load balancing is really only applicable to server-based applications, such as web applications,
services, and systems hosting web services. That is, systems serving multiple requests,
typically across a network. The remainder of this chapter targets only these scenarios.

A word about threads

In general, a certain amount of threads are allocated to the system for processing work.
These threads are spread across various tasks, such as I/O tasks, request processing and
other functions. A pool of threads, or "thread pool," is used as a store house to which work
can be allocated; this thread pool is a predetermined and finite resource, with a specific
number of threads available per processor to prevent thread saturation (which would create a
painful performance bottleneck). .NET uses an algorithm to determine the most appropriate
number of worker threads, I/O threads, minimum waiting worker threads, and various other
functions. The more processors available, the more threads can be utilized; too many threads
per processor can actually decrease performance because of factors such as context switching
between threads.

Note

Thread processing in Windows is a complex topic, and is well beyond the scope of this
book. The tuning of thread allocation and thresholds for .NET web applications can
be altered in the machine.config file, within the <system.web><processModel>
element. By default, this is set to <processModel autoConfig="true" />. It is
recommended that this be left at its default, but manual configuration is possible by
setting this element's attributes. It is not recommended that you do this without a
thorough understanding of how thread processing and allocation works.

While it is possible to increase the amount of processors in a system and, therefore, the
number of threads available to process work, there is a degree of management and
marshaling that must occur for all the threads to function efficiently. This means that
simply adding a processor does not automatically equate to doubling the throughput and
performance. Additionally, the more processors added to a system, the more complex the
management and marshaling system must be, and this is why massively multi-processor
systems are so expensive.

Introducing extra machines into a server farm offers a great way of sharing the load, and
without the resource contention that exists on a single server. Additionally, extra servers,
particularly virtual machines, also provide a more cost-effective way of distributing the load
of a system.

Chapter 11: Load Balancing

315

Infrastructure considerations

The following diagram shows a simplistic load balanced scenario:

Figure 11.1: Simple load balancing example.

Like the multi-processor system discussed earlier, load balancing requires some degree of
management and marshaling to direct traffic to the appropriate servers. Normally, a virtual IP
address is created by the load balancing system and this is where all requests are directed. The
load balancer intercepts these requests and redirects traffic to an appropriate server, which
can potentially be any server in the farm.

The load balancer can be a software- or hardware-based system. Windows Server comes with
a software solution known as Windows Load Balancing Service (WLBS). This can be used
to create a virtual IP address and add or subtract servers to and from the farm. It is typically
suited to smaller server farms in the range of 2–5 servers as, beyond this, the efficiency of the
system decreases.

Chapter 11: Load Balancing

316

There are many hardware-based load balancers on the market which are generally much
more efficient than software-based ones, but they are also much more expensive.

Hardware-based systems typically offer a variety of sophisticated options to determine how
busy a server is, which is useful when deciding which server to send the next request to. By
contrast, software-based systems utilize simpler means, such as using a basic round-robin
system, or checking the number of connections per system. However, these systems don't
take into account the actual load on the server, which can be dependent on the system
specification and the type of requests being processed. Choosing a load balancing system
requires consideration of all these options to ensure scaling-out is as effective as possible, but
is also achievable within the given budget.

SSL/HTTPS

Many web applications today utilize Secure Socket Layer (SSL) over HTTP (the combination
of which is more commonly called HTTPS) to provide secure communication of information
over public networks. This must be considered in a load balanced environment, as the HTTPS
protocol requires a connection back to the originating system where the SSL communication
was initiated. This means that, once negotiation has completed (which itself involves multiple
requests), the same party that established the communication must be used to transfer the
secure, encrypted traffic.

As we have seen, load balancing can involve distributing incoming requests to different
servers, which will cause problems when using SSL/HTTPS. To circumvent this, an SSL
terminator can be used, which acts as the single point for SSL negotiation. An SSL terminator
is a hardware device that is specifically designed to encrypt and decrypt SSL traffic. These
devices are very efficient and can reduce computational load on the server itself. This
device will also typically provide a virtual IP address, but will have additional functionality
to efficiently process SSL traffic. Once this has been established, traffic is then passed,
unencrypted, to the backend load balancer and servers. Obviously, the SSL terminator needs
to exist within a secure environment so that unencrypted information does not flow via a
public network. Diagram 11.2 illustrates this concept.

Chapter 11: Load Balancing

317

Figure 11.2: SSL terminator.

Most modern hardware load balancing devices now incorporate the SSL termination
capability into the device itself and offer this as an integrated feature. This also has the benefit
of offloading the encryption and decryption involved with SSL traffic onto the dedicated
hardware device. As previously stated, encryption and decryption can be a computationally
expensive exercise, and relieving the web server of this work means it can focus on processing
application requests.

Chapter 11: Load Balancing

318

Application considerations

Theoretically, an application should not be concerned with infrastructure issues such as
whether or not it will exist in a load balanced environment. However, reality is always
different from theory, and system design needs to take this aspect of the application's
environment into account.

HTTP is a stateless protocol, and web applications are stateless by nature, but a framework
such as ASP.NET or Windows Communication Foundation (WCF) can make it seem as if the
retention of an application state across requests happens automatically. By default, ASP.NET
will retain its state in the server's memory, and whether or not this is occurring is identified
in the web.config from the <sessionState> section as shown below:

<sessionState mode="InProc"

This means that whenever the ASP.NET session object is used to store objects or data, as
shown in the following example, the corresponding object and data is stored in the server's
memory.

Session["DataKey"] = MyDataObject;

If session storage is used in an application, then utilizing the server's memory is a fast way to
do this. However, in the case of multiple servers in a web farm, a request can obviously go to
any server to be processed. If the state is stored on one server, but the request is processed on
a different server in the farm, then the state will clearly not be present in the memory of the
server processing the request. At best, the application will appear inconsistent and, at worst,
this may cause an error.

Fortunately, this is easily rectified by using a different session state mode. The mode
attribute of the <sessionState> element described earlier can be set to either StateServer
or SQLServer, and that should avoid this problem. Regardless of the session state
mode, however, all objects that will be stored in session state must be marked with the
[serializable] attribute. Objects that are not marked with this attribute will cause an
exception at runtime when an attempt to store them in session is made. Primitive data types
such as int and string do not require any special attributes.

StateServer allows states to be stored on an external machine and accessed via network
calls to that machine. Alternatively, SQLServer allows states to be stored in a central SQL
Server database. While solving the problem of consistent access of session state information
in a web farm, both of these options affect performance. We considered the detrimental
impact of network calls on performance earlier, and this must be taken into account when
using StateServer mode. It's also worth noting that these options introduce a single point
of failure within a distributed web farm; if the single state server fails unexpectedly, then all
servers in the farm will no longer be able to store session information.

Chapter 11: Load Balancing

319

SqlServer session state mode is the most resilient, since SQL Server can be clustered for
redundancy; however, it is also the slowest form of session state storage. In addition to a
network call, SQL Server must also be enlisted to perform a database operation to store or
retrieve the information.

It is easy to create a large set of session data, with larger amounts of data obviously taking
longer to serialize or deserialize and send over the network. These aspects of using session
state must be taken into account when designing a solution and determining how and where
to store session information.

For applications or services that only need to cater for medium to low volumes of traffic,
utilizing one of the modes of session storage provided by ASP.NET would not present a major
performance issue (subject to performance goals and measuring impact, naturally).

For high-volume sites, setting the <sessionState> mode to Off is the recommended
setting. Saving and managing state or contextual information across requests then becomes a
function of the application itself, rather than the framework. This obviously takes extra work
to implement, but also means that state information can be tightly controlled, and efficiently
managed within the context of the application's requirements. Ideally, a combination of
storage methods is the best approach, such as cookies for small items, and a database for
all other data. Cookies are often used in web applications to store IDs, user roles, and other
small items that enable the application to "rehydrate" the state of the request from the
database when required. Cookies require no separate network access and simply accompany
the browser request, but are limited in size (generally 4 Kb). Additionally, since cookies are
stored by the browser on the client, they can present a security risk if not properly secured
and encrypted. Fortunately, ASP.NET provides mechanisms to do this via the System.Web.
Security.FormsAuthentication class using the Encrypt and Decrypt methods.

Many solution architects prefer to adopt an approach where session state is turned
off for all applications. This is initially because of the performance and infrastructure
considerations that have already been discussed, but also because it forces the architecture
of the application (and its developers) to acknowledge the inherently stateless nature of the
Web. Explicitly dealing with this aspect of web requests provides a greater degree of control
over how the application operates, especially when it comes to performance tuning and
optimization. When performing encryption and validation, a key value is typically used to
generate the encrypted data, and then to decrypt that data again. In order to successfully
decrypt data, the same key must obviously be used as when the data was encrypted.
The FormsAuthentication methods described previously are no exception, and use an
encryption key that is stored in the machine.config or web.config file on the system,
within the <system.web> section. In addition, view-state encryption and validation (if used)
also employ this same key.

By default, each application on the system uses an autogenerated key for this purpose. When
an application starts, a new key is randomly generated by the ASP.NET runtime to use for
encryption and decryption.

Chapter 11: Load Balancing

320

Also, by default, the configuration is not present in the machine.config file but defaults to
the following:

<machineKey decryption="Auto" decryptionKey="AutoGenerate,
IsolateApps" validation="SHA1" validationKey="AutoGenerate,
IsolateApps"/>

The AutoGenerate, IsolateApps setting indicates that a new key should be randomly
generated for each application. This means that, if multiple servers exist within a web farm,
each application on each server will utilize a different key. If requests go to different servers
in a typical load balanced scenario, then one server will not be able to decrypt data that was
encrypted on a different server, and the application will throw an exception.

In order to prevent this, each server in the farm should be configured with a key value that is
consistent across all the servers.

<machineKey decryption="Auto"
decryptionKey="1234567890123456789012123456789012345678901345678"
validation="SHA1"
validation Key="123456789012345678901234567890123456789012345678
"/>

The number of characters needed for a key value will depend on the encryption algorithm
chosen, and the .NET configuration system will throw an exception if a key value of an
incorrect size is used.

The decryption and decryptionKey configuration element pair is used for forms
authentication, encryption and decryption, and for view-state encryption when validation is
set to TripleDES (http://tinyurl.com/TripleDES).

The validation and validationKey configuration element pair specifies the key used to
validate encrypted data. validationKey is used when enableViewStateMAC is True in order
to create a message authentication code (MAC) to ensure that the view state has not been
tampered with. validationKey is also used to generate out-of-process, application-specific
session IDs to ensure that session state variables are isolated between sessions.

Chapter 11: Load Balancing

321

Performance testing and load
balancing

Load balancing introduces further variables into the performance testing equation, and
poses some further questions.

• When executing performance tests, how do we take into account load balanced
environments?

• Is it best to test against one server, or is it best to test in an actual load balanced
environment against multiple servers?

Both of these questions need to be addressed together. Remember that, early in this book,
we discussed what we are attempting to achieve as part of performance testing? Part of
that answer was that we needed a well-defined set of metrics around how the application
performs in a given situation, with the ability to predict application performance and
infrastructure requirements. The primary driver for this was so that the business could be
provided with accurate projections on what is required to support the current user base, as
well as any peaks in usage and future growth.

Initially, isolating performance tests to a single server is essential to gathering specific
metrics and benchmarks around how an application performs on a specific set of hardware.
A single server provides the baseline, or core metric upon which we can base the application's
performance at various load levels.

However, as already mentioned, this does not mean that introducing more servers in a
load balanced environment results in a linear increase in the ability to handle more traffic.
The ability of the load balancing solution to effectively and evenly distribute load across the
servers will be critical to the percentage of extra capacity that introducing extra servers
will provide. This will be influenced by factors such as the method of request distribution
(basic round robin, number of connections, actual querying of the server to determine
capacity, etc.), load balance device type (hardware or software) and features supported by
the load balancer.

With this in mind, it is important to continue to performance test against one server, as well
as measure the difference in capacity when introducing extra servers into a load balanced
environment. This way, the "delta" (percentage increase) in load can be accurately recorded.
The primary performance testing mechanism should always be a single server, as this has the
least number of variables. This is especially important when attempting to optimize aspects
of an application for performance.

Chapter 11: Load Balancing

322

Once the application has reached a relatively high level of maturity (with respect to the
development cycle), then introducing performance testing in a load balanced environment
and comparing against single server metrics is also important. It is at this point that problems
with sessions and server affinity can appear, and testing in a distributed and load balanced
environment is often the only place where these problems can be seen. Comprehensive and
exhaustive testing processes are also required at this stage, as simple, manual, functional
testing may not exercise the load balancer enough for it to distribute subsequent requests to
different servers, which means session and server affinity issues will not be seen.

This also means that any metrics being recorded at the server level need to be recorded
against all servers. Visual Studio Team Test can be configured to record performance
data against any number of servers (discussed in a previous chapter). If PerfMon or other
mechanisms are also used to record data at the server level, then the metric data that was
being recorded on a single server needs to also be recorded on all servers in the farm.

Servers of different specifications in a farm

Just to add to all this potential complexity, it is not uncommon for servers in a farm to be
of different physical specifications. It's not easy to predict the exact percentage change in
performance or load capacity from one server to another if there are differences in CPU
capacity, amount of memory, speed of memory, speed of the hard disk, etc. Introducing
these servers into the farm for performance testing is important, particularly if the intended
production environment also has these differences. When there are servers of varying
specification in a farm, the method of request distribution provided by the load balancer
is even more important. If requests are distributed evenly across the farm, but one server
has less capacity than the others, then this server will more quickly reach a point where it is
unable to field more requests, and potentially become the bottleneck.

To mitigate this, many load balancing systems provide a way of adding a weighting or bias to
certain servers, so that some receive more or less traffic than others, as appropriate. Windows
Load Balancing Service provides this feature, as does virtually every hardware-based solution
on the market. The feature can require some practice and, perhaps, a little trial and error
to get right in any given environment. The level of variance in the capacity of the servers,
as well as how effective the system is at distributing the requests, will affect the weighting
required, and existing performance test metrics will allow a close estimation as to the correct
weightings.

Chapter 11: Load Balancing

323

Figure 11.3: WLBS example weighting configuration dialog.

In many situations, the production environment will house a hardware-based load balancer,
whereas the test environment may not have any load balancer, due to budgetary or other
constraints. In this instance, the best course of action during testing is to use any available
load balancing mechanism suitable for the environment. In the case of Windows Server-
based systems, this will most likely be WLBS; it's a free and capable load balancing system.
At the very least, it will provide a good indication of how an application can benefit in a
load balanced environment. Given that hardware load balancers are typically better than
their software counterparts, the performance gains seen when moving to the production
environment would be even more pronounced.

Windows Azure

Windows Azure is a relatively new cloud-computing platform offered by Microsoft.
It provides the "fabric" that allows an application to be hosted in the cloud, and be
automatically scaled out according to the required load. It uses its own load balancing
mechanism to distribute traffic to as many servers as have been provisioned, which is a
significant change in perspective from the traditional hosting of applications.

Chapter 11: Load Balancing

324

Figure 11.4: Windows Azure conceptual diagram.

In other words, Microsoft datacenters host virtual server instances which, in turn, host
an application. When the virtual server instances reach capacity, the Windows Azure
framework can automatically provision more instances as load dictates. Conversely, when
load decreases, the number of provisioned servers can be reduced. This almost seems an ideal
scenario; physical servers are removed from the equation and a significant cost factor can be
reduced. It would also seem that the motivation for needing to know how well an application
performs is greatly reduced, given that servers can be provisioned as needed, rather than
estimated up front.

In reality, while the physical provisioning and capacity planning are significantly altered,
there is still a monetary cost attached to provisioning virtual servers. Microsoft will charge
according to the number of servers required, the traffic used, and a number of other variables
that simply introduce a whole new landscape in capacity planning, rather than making the
challenge magically go away.

Chapter 11: Load Balancing

325

In no way is the value of performance testing reduced; it is still just as important to be able to
run your application as efficiently as possible in order to reduce costs. In addition, Windows
Azure currently needs to impose certain restrictions to facilitate the ability to auto-provision
servers. This may negate your ability (at least initially) to use the Azure platform and host
your application in the cloud.

Windows Azure is a new platform that offers many advantages to traditional hosting, and
it is certainly worth deeper investigation to determine whether it is appropriate for a given
application, with a valid cost assessment being made. A detailed discussion is unfortunately
beyond the remit of this book, but more information can be found at http://www.
microsoft.com/windowsazure/.

Conclusion

Load balancing your application is a great way of giving it a higher capacity, and it does need
to be considered in the design of the application itself.

In addition, performance testing against such an environment requires a knowledge of how
load balancing works, and how best to measure its effects. This chapter has covered a number
of important concepts.

• Traditional, single-server performance testing should always be performed and used as a
core metric.

• The introduction of load balancing and measuring of effects.

• The comparison against the single-server metric to gauge the percentage difference
provided by the introduction of extra servers.

• Ensuring the application has not made assumptions around state management and
server affinity that will compromise its ability to scale out.

This approach will yield an accurate metric of the current capacity of the application in a
given load balanced environment, as well as how well it can scale out when required, and by
how much.

Where a farm of servers exists, particularly of varying specification and capacity, thorough
and exhaustive testing is required to ensure the correct partitioning of load.

Finally, consideration must be given to new technologies related to cloud computing. This
relatively new approach to dealing with scale, hosting, and provisioning can mean a lot of cost
savings for businesses, but it also means that a new set of problems and issues is presented.

326

327

Chapter 12: Internet Information
Server

Configuring Internet Information Server (IIS) correctly for your environment is a
fundamental part of maximizing application performance and scalability. Assuming that the
defaults will be good enough may be wishful thinking, and could lead to problems later on.
A good understanding of IIS and its configuration will help you to decide the best setup for
your application and environment, and that's what this chapter is all about.

But let's start with some background on IIS architecture, as this will make it easier to
understand some of the more complicated configuration issues later on. If you are already
familiar with this material, feel free to move on to the next section.

Background

A web server has two distinct functions: a listener that waits for HTTP requests from clients,
and a request processor that receives requests from the listener, retrieves/builds content, and
returns a response to the listener for dispatch back to the client.

To maximize the performance and scalability of IIS6, Microsoft decided to run the HTTP
listener service as part of the operating system in "kernel mode." They also rewrote the
request processor so that it allowed applications to have much better isolation, as well as
adding different configurations and features allowing performance and reliability to be
improved. The significant enhancements added to IIS6 and the subsequent release of IIS7
have placed IIS at the forefront of web server technology.

Kernel and user mode

Process threads running in kernel mode run at a higher priority, have direct access to
hardware and system data, and are usually reserved for either operating system processes or
device drivers. By contrast, user mode processes gain access to hardware and system data via
either device drivers or specific application programming interfaces (APIs).

Running the HTTP listener (implemented as HTTP.sys) in kernel mode allows it to run
at a high priority and gives it direct access to the network interface, vastly improving its
performance. Consequently, IIS's responsiveness to HTTP requests has been maximized.

Chapter 12: Internet Information Server

328

IIS6 and the application pool

IIS6 introduced the application pool or "app pool," which provides a conceptually simple
model for isolating web applications from each other. One or more web applications can be
added to an app pool, and each app pool runs within a separate process, meaning applications
in different app pools can't cause each other to crash.

As well as isolation, app pools allow configuration for things like identity, .NET Framework
version selection, health monitoring, and performance/reliability settings. A major part of
maximizing the performance, scalability and reliability of your application is to configure
your app pool correctly, and that's precisely what we'll cover later in this chapter.

Requests for each app pool are serviced by at least one executing process called the worker
process. When a request is received for a specific URL, it's routed to the correct app pool and
processed by that app pool's worker process.

An app pool can actually be configured to run with multiple worker processes, a concept
known as a "Web garden." When an app pool is configured as a Web garden, requests received
are routed in turn to one of the various worker processes in the garden.

Under the hood

As mentioned, to maximize the performance of IIS, the HTTP request listener (from IIS6
onwards) runs in kernel mode. Received requests are placed on application-pool-specific
queues for processing by the user mode worker process(es).

Chapter 12: Internet Information Server

329

Figure 12.1: IIS7 processing model.

Figure 12.1 shows the general flow of request processing for IIS7, although conceptually it
is almost identical to IIS6; in IIS6, WWW Service contains the functionality of Windows
Process Activation Service (WAS). It might look a little chaotic, but don't worry, I'll explain it
for you.

Request listening (HTTP.sys)

When a request is received by the HTTP listener (HTTP.sys), it is immediately routed to a
specific kernel mode queue for subsequent processing by the user mode app pool worker
process (following Arrows 1, 2, 3 and 4 in Figure 12.1). The request is routed to the correct
queue based on the target URL because an app pool is configured to process one or more
URLs. Queuing requests has the added benefit of releasing the HTTP listener thread to
process another request.

When the response has been generated and is ready to be served, it is returned to HTTP.sys
(Arrow 5) and then back to the client. HTTP.sys can also decide to cache the response, based
on how it is configured; we will discuss that in greater detail later.

Chapter 12: Internet Information Server

330

HTTP.sys actually maintains a kernel mode cache, which is significant because it is non-
paged. This means it will always be kept in physical memory and not paged to disk, which
would reduce performance. Request caching allows unchanged content to be served
immediately from the memory cache, rather than recreated on each request via the user
mode request processors; kernel mode caching of page content can give huge performance
gains to a web application. We will talk more about caching and its configuration later on.

Request processing (user mode)

In IIS7, two services manage the configuration and activation of both the HTTP listener and
the request processor. They are:

• WWW service

• configures and updates HTTP.sys and WAS

• maintains performance counters.

• Windows Process Activation Service

• activates and alerts worker processes to process requests

• manages running worker processes (recycling, performance limiting).

In IIS6 both pieces of functionality were combined into the WWW service, but they were
split in IIS7 so that the request processing features of WAS could be provided to non-HTTP
services such as Windows Communication Foundation services.

WWW service

The WWW service monitors the IIS configuration database (ApplicationHost.config) and
is responsible for configuring and updating the HTTP.sys listener when changes occur. It also
informs the WAS when an HTTP request is available for processing.

Windows Process Activation Service (WAS)

WAS has two main components: the configuration manager which monitors the IIS
configuration database (ApplicationHost.config), and the process manager which starts,
stops, configures, and recycles worker processes as needed.

WAS functions completely independently of the transport provider, and will work just as well

Chapter 12: Internet Information Server

331

with HTTP as with named pipes, message queuing, and so on. WAS also handles some key
aspects of worker processes, so let's go through the main ones.

Process idle timeout

Worker processes for an application pool can be configured to timeout after a set number of
minutes. When the timeout occurs, the process is stopped, which frees up unused resources.

Recycling

WAS can be configured, under certain circumstances, to stop one instance of a running
worker process once it has finished its last request, and start another instance. This can
alleviate problems caused by applications with known problems such as memory leaks, and
a whole multitude of other issues. It buys you some time to investigate the cause of the
problem, but is by no means a solution. An application pool can be configured to recycle
worker processes:

• when allocated memory exceeds certain thresholds

• after a set number of requests

• every "x" minutes

• at specific times of day

• when a config change is made.

CPU limiting

This can be used to prevent a worker process utilizing too much CPU time. If a worker
process exceeds certain thresholds over a set time period, WAS can be configured to either kill
the process or write an entry to the event log.

Health monitoring

WAS can be configured to ping the worker process to ensure it is still alive. If a response
isn't received within set thresholds, the process is assumed to be dead, and is terminated
and restarted.

Chapter 12: Internet Information Server

332

Rapid-fail protection

WAS can be configured to shut down an application pool if its worker process(es) crash within
the configured thresholds (see the later section on rapid failure detection). If this occurs, the
server would then give a "Server Unavailable" response, which would allow a load balanced
setup to process the request via another server.

Worker process and the request pipeline

The worker process is where the actual work is done. Prior to IIS7, request processing
required the following steps:

• request received

• authenticate request

• choose and execute handler for request:

• static content

• CGI

• ISAPI application (ASP, ASPX, etc.)

• send response.

Implemented as a pipeline, the output of one step was handed as an input to the next.
Modifying the pipeline involved writing a new ISAPI application, which was not an
easy undertaking.

IIS7 has introduced a modular approach, in that a number of modules are provided for HTTP,
security compression, content providers, diagnostics, and caching. Implemented either in
native or managed code, they can be combined into the pipeline to give an extremely flexible
and powerful processing model. ASP.NET is just one of the providers in the pipeline.

IIS7 can run request processing for an application pool in either Classic (IIS6 model) or the
new, integrated (IIS7) model.

Chapter 12: Internet Information Server

333

IIS common considerations

In this section we will go through some of the major configuration options available
in IIS and ASP.NET and their impact on performance and scalability. It really is worth
understanding the issues here, because just going with the defaults may not achieve what you
need. Also, even if you aren't experiencing problems per se, understanding what the settings
are doing can help you explain why IIS is causing your application to behave in a certain way.

Worker process recycling

Both IIS6 and IIS7 application pools can be configured to stop and start worker processes
under certain sets of circumstances. This feature can be used to maximize the availability of
an application, especially one which is known to have problems. Processes that are getting
progressively slower or are starting to fail can be stopped and replaced with fresh versions.

Recycling is actually more intelligent than just a restart, because the old worker process is
allowed to finish servicing its current requests. The new worker process is started in parallel
and new requests are routed to it; only when the old process has completed its "in-flight"
work load will it be killed. In IIS7, overlapped recycling can be disabled.

An important point to remember is that all "In process" states will be lost when a worker
process is recycled, which includes both the session state and cache. If you have been using a
process state up till now, it might be worth considering using a different state repository such
as SQL Server or using the State Server service.

The recycling options below (from the properties menu of each app pool) are available in
both IIS6 and 7.

Time based

Time-based recycling can occur every set number of minutes, or even at a specific time of day.

Minute frequency

You can configure an application pool to recycle worker process every "X" minutes and, by
default, this is set to 1,740 minutes. If your application fails after a predictable length of
time, then set the recycle minutes value to no more than 80% of the known failure time.
Unchecking this option in IIS6 or setting the value to zero in IIS7 will switch the feature off.

Chapter 12: Internet Information Server

334

This feature is frequently left switched to its default value of 1,740 minutes (just over a day)
as a general health measure, even for applications with no known problems. That being said,
this isn't the best way to achieve a consistently healthy application.

Time of day frequency

A better measure is to use the time-based scheduler, where the application pool can be
scheduled to recycle at specific times of the day. This enables you to target times which are
known to be problematic, or are times of low demand in which a general health recycle would
have little impact.

Request count

Not surprisingly, this feature should be used when your application is failing after it has
received a certain number of requests. It's not uncommon to hear reports of an application
or service failing after a set number of calls, so this is just a quick fix solution. You won't be
surprised to learn that the accepted practice is to set the recycle request count to be less than
the failure request count!

Memory usage

An app pool can be recycled based on its memory profile, and you can use both its used and
its virtual memory to determine when that takes place.

These features can be used as a defensive measure against applications that you suspect are
leaking or over-allocating memory. The problem is that web applications often rely heavily on
caching to maximize performance, and caching, to the untrained eye, can appear to be a leak.
Recycling an application pool that was actually holding a lot of usefully cached material will
obviously have an adverse effect on performance.

Understanding the issues involved here, and then carefully choosing the thresholds, is crucial.

Private bytes

This feature sets a limit to the amount of private unshared memory a worker process can
allocate before being recycled. If an application is leaking memory, it will be most obvious
from this performance counter, although it is by no means definitive.

In IIS6 the setting on the app pool recycling tab is called Used Memory, and is set in Mbytes.
For II7, the setting is Private bytes and is in Kbytes.

Chapter 12: Internet Information Server

335

The value you choose here is important because it will be directly affected by the way you
store session state and utilize ASP.NET caching. If you set the value too low and make heavy
use of caching, you may inadvertently cause process recycling and lose the performance gains
made by data already cached.

ASP.NET 2.0 caching tries to avoid process recycling where possible by adopting a cache
trimming policy, in which items are removed from the cache in an attempt to reduce private
bytes when the threshold value is approached.

To give finer control, the actual cache trimming level can be set using the privateBytesLimit
setting in the caching section of your application's web.config file.

<caching><cache privateBytesLimit=””/><caching>

The lower of either the Private bytes setting in IIS or privateBytesLimit in web.config is
then the value used for cache trimming. If neither value is set by default, the following default
limits are calculated:

User mode memory

<=2 GByte >2 GByte (32 Bit) >2 GByte (64 Bit)

Lower than 60% physical
RAM or 800MB

Lower than 60% physical
RAM or 1800MB

Lower than 60% physical
RAM or 1TB

You can also set the percentagePhysicalMemoryUsedLimit setting within the cache section
of web.config to constrain how much memory can be used by the cache before trimming
will take place. This value can be used to reduce the aggressiveness of the .NET garbage
collector when it encounters low memory conditions. The garbage collector will run full
garbage collections more frequently under low memory conditions, and this can be a major
source of performance degradation.

My best advice is to test your application under load using the default values in IIS, and
monitor the following performance counters:

• ASP.NET apps\cache API trims

• cache items removed due to memory threshold reached

• Process\private bytes for w3pw.exe process

• non-shared memory allocation for worker process

• ASP.NET\worker process restarts

• Number of worker process restarts.

Chapter 12: Internet Information Server

336

A combination of frequent cache trims and worker process restarts, together with evidence of
private byte memory utilization drops will indicate a need for tuning.

Don't forget that, in addition to user mode caching, IIS6 and IIS7 offer kernel mode caching
that will give significant performance gains. The main downsides at the moment are that it
won't support Basic or Windows authentication, and can't cache using VaryByQuerystring.

Virtual bytes

Virtual bytes include the private and shared address space of a process, and also reserved
memory. A worker process whose virtual memory profile continues to grow can indicate an
application causing memory heap fragmentation, and unchecked heap fragmentation can
cause premature Out Of Memory exceptions.

If you feel that you have a problem with virtual memory fragmentation, then initially set the
recycle limit to around 70% of virtual memory and monitor the counter Process/Virtual Bytes
of the w3wp.exe process under load. Reduce the recycle limit if virtual memory expansion for
the process continues to be a problem.

Idle timeout

Another cause of worker process recycling is the idle timeout setting. This setting is designed
to conserve processor and memory resources, and kills worker processes that haven't served
requests for a set number of minutes. For an application that has built up cached data,
this will obviously undo the performance gain the caching would have achieved. Careful
consideration needs to be given to the use of this setting, and the default timeout of 20
minutes should be extended if the circumstances allow.

Dynamic idle

The idle timeout can be dynamically modified using the dynamicIdleThreshold setting in
IIS7. The setting represents the percentage of physical RAM that will be used to trigger the
idle timeout threshold to be reduced in stages.

The system monitors committed (not reserved) virtual memory to ensure that the value set
in dynamicIdleThreshold is always greater than 100%, because we always have more virtual
memory than physical. When committed virtual memory reaches 80% of the calculated
dynamicIdleThreshold memory value, it will reduce the idle timeout by half.

Let's say the idle timeout is 20 minutes, the system has 4 GB of RAM, and the
dynamicIdleThreshold is 150%; then the threshold memory value is 6 GB (4 x 150 / 100).

Chapter 12: Internet Information Server

337

When committed virtual memory reaches 4.8 GB, (80% of 6 GB), idle timeout is reduced to 10
minutes (20 / 2). The following thresholds are used to reduce the timeout threshold:

Percentage of threshold Idle timeout reduction

80% 0.5

85% 0.25

90% 0.125

95% 0.0625

100% 0.03125

Table 12.1: IIS worker process idle timeout thresholds.

By default, the setting is switched off (i.e. set to zero), although you can easily switch it on
from the IIS PowerShell provider using the following script:

set-webconfigurationproperty /system.applicationHost/webLimits
-name dynamicIdleThreshold -value 130

Bitness (32- or 64-bit application pools)

Setting an application pool to run an application in 32-bit mode on a 64-bit operating system
will often give a performance gain over the same application running in a 64-bit app pool.
The reasons for this appear to be down to the extra overhead involved in 64-bit addressing
and more efficient use of the processor cache.

If your application can live with a 4 GB address space and doesn't need 64-bit math, then this
might be an option to try to squeeze a little bit more performance out of the server.

In IIS7, for an individual app pool, select Advanced settings and set Enable 32-Bit
Applications to true. IIS6 requires a global change, in that the change applies to all app pools.
Run the following script to enable 32-bit applications:

cscript %SYSTEMDRIVE%\inetpub\adminscripts\adsutil.vbs SET W3SVC/
AppPools/Enable32bitAppOnWin64 1

To ensure that the 32-bit DLLs are used by IIS for the ISAPI handler, we have to re-register
ASP.NET. At a command prompt, simply type:

%SYSTEMROOT%\Microsoft.NET\Framework\v2.0.50727\aspnet_regiis.exe
–i

Also make sure the status of ASP.NET version 2.0.50727 (32-bit) in the web services extension,
within IIS, is set to allowed.

Chapter 12: Internet Information Server

338

Queue length

Queue length sets the limit on the number of requests that the HTTP request listener
(HTTP.sys) can queue for an app pool. It is designed to avoid overloading a server with
requests that an app pool is unable to handle. In the event of the limit being reached, a
generic 503 error is returned.

By default the value is 4,000 but, if necessary, you could optimally tune this value under
load for each app pool.

Pipeline mode

IIS7 introduced the integrated pipeline for app pools, bringing a modular, extensible
approach to request processing. For backward compatibility, app pools can also run in classic
pipeline mode, which gives compatibility with IIS6.

Integrated pipeline mode also introduced a significant optimization in app pool thread
management but, to understand the optimization, we need to go through some background
on how IIS6 thread pool management worked.

IIS6 thread pools

Each app pool maintains a pool of threads ready to service requests as they are received.

When a request is handed over to ASP.NET for processing, the CLR allocates a thread in
the pool to it. To avoid a huge number of threads being created in times of peak demand,
a limit is placed on the number of concurrently executing threads in the thread pool. The
thresholds are controlled within machine.config as part of the processModel, and include
maxWorkerThreads and maxIOThreads (both of which are per-logical-CPU settings).

If the thresholds are hit, then subsequent requests are placed in a request queue until
other threads become available in the thread pool. This becomes a problem if web pages
are carrying out I/O operations that involve Wait time such as, typically, database and web
service calls. Requests waiting for I/O operations to return typically use very little CPU, but
tie up threads in the thread pool. This can lead to web applications showing low throughput
but also low CPU usage. You know you have this problem when the performance counter
ASP.NET Applications/Requests in Application Queue is greater than zero.

Chapter 12: Internet Information Server

339

Other than configuration change, the only way around the problem was to re-code the
worst pages and services to use ASP.NET asynchronous page processing for the I/O intensive
portions of their execution. This freed up worker threads to service incoming requests, and
improved overall throughput.

IIS7 integrated mode optimizations

When running in integrated mode, application queues are no longer used, as the performance
and memory impact of the CLR-based application queue used in IIS6 and IIS7 Classic
Pipeline Mode is reputed to be poor. Instead, a global application pool queue has been
implemented in native code, which is much faster and has less impact.

Instead of controlling the number of concurrently executing threads in the thread pool, the
number of concurrently executing requests are managed globally across the applications in
FIFO (first in, first out) order. The thresholds to control concurrent thread execution and
queue length for this queue can be manually configured.

Prior to .NET Framework v3.5 SP1, you had to set a registry key DWORD
MaxConcurrentRequestsPerCPU in :

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ASP.NET\2.0.50727.0

.NET Framework v3.5 SP1 release allows you to set this value much more easily in:

<system.web>
 <applicationPool maxConcurrentRequestsPerCPU="12"/>
</system.web>

CPU limiting

CPU limiting can be an invaluable tool, particularly if you have an application that
periodically hits the processors hard for a sustained period, causing significant slowdown.
This can often be due to a poorly-written or badly-behaving piece of functionality within
an application.

In IIS6 you can set the maximum CPU usage as a percentage, as well as setting how
frequently the number is refreshed.

IIS7 allows you to set the maximum CPU usage in an incredibly fine-grained 1⁄1000th of a
percent of CPU usage over a set period of time. If you want to trigger a CPU limiting action
when a worker process used 75% of the CPU for 5 minutes, then set Limit to 75,000 (75 x
1,000) and Limit Interval to 5.

Chapter 12: Internet Information Server

340

In both IIS6 and IIS7, you can set the action taken; to kill the worker process or take no
action, and in the latter case an event will be written to the event log. A new worker process is
started immediately after the old one is terminated.

CPU limiting shouldn't be used as a way to throttle CPU usage, as Microsoft Windows System
Resource Manager is actually designed to do this. Instead, it is a safeguard system that can be
used to protect system resources.

Processor affinity

Each app pool in IIS7 can have a hexadecimal processor affinity mask set. This simply
represents a bit pattern (in hex or decimal) identifying which of 8 processors from 0 to 7 the
worker processor can run on.

00000001 – indicates Processor 0; 10000001 – specifies Processors 0 and 7, and so on.

To make use of this functionality, you need to set both the Process Affinity mask and the
Process Affinity Enabled flag to true.

If the app pool is set to run multiple worker processes (Web garden), then each one will run
on the processors defined in the affinity mask.

Health monitoring

IIS can be configured to ping worker processes to detect ones that are no longer functioning.
Processes can crash or become deadlocked, or they may not have a thread available to respond
to the ping request, any of which is clearly a problem worth knowing about.

In IIS6 you can configure the ping to occur every "x" number of seconds, and in IIS7 you
set the ping period in seconds, together with the maximum response Wait time before the
process is shut down.

Rapid failure detection

IIS6 introduced rapid failure detection, which allows for graceful failover of a consistently
crashing app pool worker process onto another load balanced server.

To achieve this, you configure the number of failures that must occur over a set time frame
(measured in minutes). Once this threshold level has been reached, the kernel mode HTTP

Chapter 12: Internet Information Server

341

listener will return a HTTP 503 Service Unavailable (Out of Service) message. In a load
balanced scenario (where the load balancer is HTTP aware), this will allow another server to
service the request.

To configure this in IIS6, you go to the Health tab of the application pool properties and set
both the Failure count and Time settings.

In IIS7, you set this up from the Advanced Properties of an application pool: set the Rapid
Failure Detection Enabled property to True and the Failure count and Failures Interval
values as appropriate.

You can also configure the type of response in the Service Unavailable Response type
control. Setting it to HTTPLevel will return a HTTP 503, whereas TCPLevel will reset the
connection. Depending on the load balancer used, either of the responses should allow the
request to be redirected.

SSL server affinity and hardware
acceleration

Processing Secure Socket Layer (SSL) requests can place additional load on systems, due to
the extra overhead in dealing with the encryption/decryption involved. In fact, what appears
to be a reasonably straightforward issue can quickly snowball into an issue requiring a
fundamental rework of your system architecture.

How it works

When a client connects to a server over SSL (HTTPS), the following steps take place:

• Client begins a handshake protocol with the server by opening a connection to the server
on port 443.

• Client sends a list of its supported encryption and hashing functions (cipher suites) to
the server.

• Server replies to the client by indicating the strongest cipher it supports from the list.

• Server sends its digital certificate which includes its domain name, the certificate issuer
and the public key the client can use for encryption.

Chapter 12: Internet Information Server

342

• Client checks the validity of the certificate with issuer.

• Client generates a random number and encrypts it using the server's public key and
asymmetric encryption then sends it to the server. This is called the premaster secret.

• Server decrypts the premaster secret using the private key of its digital certificate.

• Using the premaster secret key, both client and server create master secret strings and
use them to generate session keys (large strings of data) which are used from then on for
encrypting/decrypting all of the data passed between client and server.

• HTTP requests/responses are now encrypted and decrypted (using symmetric
algorithms) by client and server using the session keys.

It's hardly surprising that the overhead of all of the handshake and subsequent data
encryption is significant, and can seriously impact performance. As a result, optimizing the
performance of HTTPS transactions is a key part of any high volume web strategy.

Load balancing and SSL

In IIS, SSL conversations occur at the HTTP.sys level, and SSL state information is cached
to avoid having to go through the handshake protocol for every request made during a
browser transaction. States held include the cipher suite used, the generated secrets, and the
encryption keys, with a unique session ID identifying the browser session.

For this to work, the browser has to maintain contact with the same server so the encryption
state can be reused. This will work for a single web server operation, but becomes a problem
in a multi-server web farm with load balancing in place.

Although load balancers allow a group of web servers to appear to the outside world as one
server, most load balancers allow you to configure them to direct each request from the same
client session to the same server. This is called server affinity, but you will also hear it called
"sticky sessions."

One way to solve the SSL problem would be to establish server affinity for port 443 (SSL)
transactions. The major downside is that you would be kind of undermining the purpose
of load balancing, in that you are forcing load to specific servers regardless of any other
consideration. The load balancing equation gets skewed to an extent.

Another possible solution is to configure the load balancer (if capable) as an SSL Terminator.
This involves installing your SSL digital certificate and allowing the load balancer to decrypt
SSL transactions. The downside is, as you have probably guessed, that it adds additional (and
significant) computation overhead to the load balancer.

Chapter 12: Internet Information Server

343

Optimizing performance with SSL

Two main techniques are used to improve SSL performance: SSL acceleration and
SSL offloading.

Both involve, to some degree, changing the location where SSL encryption and decryption is
handled. However, the two methods naturally have their own benefits and potential pitfalls.

SSL acceleration

You can quickly improve performance of SSL processing using an SSL accelerator. This is
a PCI or SCSI card containing an additional processor that carries out the SSL encryption,
usually just the asymmetric variety (the symmetric encryption is still carried out by the main
processors). These cards can significantly reduce the SSL processing overhead that would
otherwise be incurred on the system CPUs.

SSL offloading

SSL offloading involves directing SSL traffic through an SSL processing device (either
software or hardware based), where it is decrypted and then redirected to the web server(s)
for processing in unencrypted form (Figure 12.2). The response is then encrypted by the proxy
and sent back to the client.

Figure 12.2: SSL offloading using an SSL proxy.

A big advantage is that the entire SSL overhead is completely removed from the web server.
The HTTP request is decrypted and available for further analysis by other network analyzers,
such as intrusion detection systems and load balancers.

SSL proxies effectively overcome the sticky session problem associated with load
balancing SSL in Web farms (Figure 12.3). Because the request is pre-decrypted, load
balancing can continue in the normal way, and each server in the farm is relieved of SSL
processing responsibility.

Chapter 12: Internet Information Server

344

Figure 12.3: SSL proxy in a load balanced environment.

The major problems with SSL proxies are that you are introducing a single point of failure
into your system, and that the link between the proxy and the web servers is unencrypted,
which may not be acceptable to your specific requirements. The upsides of maximizing
performance are, however, crystal clear.

HTTP compression

Compression can greatly improve a user's perception of server responsiveness, and is a greatly
underused feature. Web pages mostly contain text data, with links to binary media such as
images, video and Flash and, as such, are ideal candidates for compression (media files are
already compressed).

Any browser that supports HTTP/1.1 will support compression so, today, browser coverage
will be extremely high. Even if a browser doesn't support it, the exchange will simply occur
without compression. As part of the HTTP request, the header includes an "Accept-Encoding"
which lists the encoding schemes supported by the browser. If the browser supports one of
them, then a compressed response can take place.

TCP effect

The main benefits of using compression are the increase in download speed and the
reduction in bandwidth per request (and so less congestion on the pipe). Another benefit is
the minimization of the TCP slow start effect.

TCP slow start is a TCP congestion control that adjusts the number and size of packets a new
connection can initially send. The size of the data stream is subsequently increased but, with

Chapter 12: Internet Information Server

345

compression switched on, more of a web page will reach a client in a shortened space of time,
which is particularly useful because more of the image/media links will be received in this
window, and can therefore be requested sooner.

CPU effect

Like most things, benefits are counterbalanced with downsides and, for compression, the
downside is the CPU overhead required to compress data on the server. Compression
involves computationally intensive algorithms that require CPU time and that's going to hit
server performance.

You first question when considering compression has to be, "Is the server bound by a CPU or
bandwidth limit?" The answer to this will determine your compression setup.

If you do decide to go with compression, it is recommended that you run comparative
load tests with compression switched on and off. If you can still hit your KPIs, then it's a
win-win situation.

Static and dynamic content compression

IIS deals with static and dynamic content differently. Obviously static content doesn't change,
so once its compressed, that's it. Dynamic content, such as the output from ASPX pages,
changes frequently; consequently, compression will have to occur far more frequently, and so
has much greater impact.

IIS 6

In IIS6, static and dynamic compression are on by default, and are managed by selecting the
properties of the Web Sites Folder in IIS Manager, and then choosing the Service tab. The
HTTP compression settings are shown in Figure 12.4. The Compress application files setting
controls dynamic compression.

Chapter 12: Internet Information Server

346

Figure 12.4: IIS6 compression settings.

Compression occurs after the first request for a static file, and the compressed data is stored
in the temporary directory, as seen in Figure 12.4. The maximum size of files in the directory
can be set, although this single setting will control all app pools. To gain more control
over compression, you need to edit the MetaBase (or MetaDataBase) in: C:\WINDOWS\
system32\inetsrv\MetaBase.xml.

Specifically, you manage and control compression using instances of the
<IIsCompressionScheme/> element. There will be one for the "Deflate" compression
scheme, and one for "Gzip," and you can control which file extensions are compressed by
which scheme, as well as whether dynamic and static compression will occur. There is also
an attribute that controls the compression level called HcDynamicCompressionLevel. This
defaults to zero, which is the lowest level of compression, but can be set as high as 10, giving
maximum compression. It is worth doing some experimenting on your setup to get the right
level of compression for your environment, with obvious extra CPU trade-off. Many users
find that compression levels up to 9 are acceptable.

IIS7

IIS7 also allows you to control caching of static and dynamic content separately. On Windows
Server 2008 you need to add both static and dynamic compression as web server roles. The
compression configuration option will then become available on IIS server properties, and
from here you can configure static and dynamic compression.

Chapter 12: Internet Information Server

347

Static compression

Static compression caches data to disk, and the disk usage can be controlled on a per–app-
pool basis, rather than globally (as in IIS6). You can also set a minimum file size to compress,
as very small files can often end up larger when compressed. The optimum tends to be
around 2,700 bytes, which is the default threshold.

Before compression will take place, the page in question has to reach the frequent hit
threshold. It's set in ApplicationHost.config using the serverRuntime element:

<serverRuntime
 …
 frequentHitThreshold="request count"
 frequentHitTimePeriod="time period in seconds"
/>

When a page has hit the set number of requests in frequentHitThreshold over the course
of the time period in frequentHitTimePeriod, compression will occur.

Compression can be further controlled using settings within ApplicationHost.config,
specifically within the <httpCompression> element. Deflate and Gzip compression schemes
are configured separately, and you can define the response content types (mime types) that
are applicable to each one. This differs from IIS6, which relied on file extensions.

To prevent compression adding to an already CPU-stressed server, two attributes can be set:
staticCompressionEnableCpuUsage and staticCompressionDisableCpuUsage.

They turn compression on and off, depending on CPU utilization levels.
staticCompressionEnableCpuUsage indicates the CPU level at which to enable static
compression (the default is 5%), and staticCompressionDisableCpuUsage sets the
CPU utilization percentage at which compression should be switched off again (the
default is 100%).

When kernel mode caching is switched on and compression of static content is enabled,
only the compressed version of the content will be cached, optimizing memory usage and
speeding up page delivery.

Dynamic compression

Due to the constantly-changing nature of dynamic content, its compression
product isn't cached to disk. Dynamic compression can also be controlled based on
CPU utilization using the attributes dynamicCompressionEnableCpuUsage and
dynamicCompressionDisableCpuUsage as with (and in a similar manner to) static content.

Chapter 12: Internet Information Server

348

It's important to remember that compressing dynamic content will have the biggest CPU
impact and won't benefit from caching, so you need to be sure your load tests prove that
there is a definite benefit to be gained.

Static content

We've covered quite a lot of detail on static content, and how it can be both compressed and
stored very effectively in a kernel mode cache, giving the most optimal performance possible.
So let's now move away from compression and talk about the content itself.

IIS6 provides a feature that allows you to override handler selection, called "wildcard
mapping." It's most often used for URL rewriting, allowing the .NET developer to write
code to selectively map URL paths to whatever they want in their code. They achieve this by
routing all requests through the ASP.NET handler.

It's easy enough to do; from Web Site Properties you go to the Home tab and select the
Configuration button (see Figure 12.5).

Figure 12.5: IIS6 wildcard mapping.

All you now have to do is choose Insert, and add the path to the ASP.NET IASPI DLL:

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll

The wildcard maps will appear in the configuration list in order of implementation.

Chapter 12: Internet Information Server

349

The problem is that all content will be served by ASP.NET, including static content. ASP.
NET has a basic HTTP handler, but it circumvents both the kernel mode static caching and
the compression that would have otherwise taken place. In addition, the HTTP headers that
would normally be applied are omitted.

The standard advice in this situation is, first of all, to be aware of these issues before making
the decision to use wildcard mapping. If you decide to go ahead, do it with the knowledge of
its impact and, even better, perform load tests to determine the extent of the impact.

Alternatively, IIS7 has a URL Rewrite Module that integrates into the pipeline, and has been
designed to carry out rules-based URL rewriting without massively disrupting the rest of
the process.

HTTP headers

Web pages contain links to static content that very rarely changes. Images are an excellent
example of this, and downloading them fresh for every request to a web page would be
crazy. That's obviously why browsers maintain a local cache of static files for reuse between
requests. Overlooking local caching can lead to a browser performing unnecessary network
round trips and server hits, consuming valuable bandwidth and CPU time.

Local caching is also why large organizations use proxy servers to manage Internet access for
their employees. The proxy servers also maintain a cache to try to cut down on bandwidth
usage for frequently accessed resources. Can you imagine the overhead of every employee in
a large organization downloading the Google image every time? It might not seem like much,
but these things can quickly mount up.

Used correctly, the cache has the potential to maximize both server performance and
bandwidth usage and, thus, the positive user experience.

Freshness and validation

Caching content locally is only part of the story because, whenever a page reloads or is
revisited, the browser needs to know if each of the references it has cached has changed on
the server.

In the absence of any "freshness" information, the browser sends a validation GET request to
the server containing the ETag (unique file identifier) and the Last-Modified date of the file. If
the file hasn't changed on the server, it replies with a HTTP 304 "Not Changed" message. This
is great because it avoids downloading a new copy of files each time a page is loaded, but it

Chapter 12: Internet Information Server

350

still involves a server round trip. Ideally, we have to have a way to give each of our resources a
"Best Before" date, and that's kind of what content expiration is all about.

Content expiration

Content expiration allows you to say, "This resource won't expire for a really long time,"
which is handy for an image that will never change. Equally, you can say, "This expires
immediately," which is useful for something more volatile, like the output of a pseudo-real-
time .ASPX page.

The information used in content expiration is placed in the HTTP response header for every
piece of content retrieved from the server.

The excerpt below illustrates an HTTP header for a JavaScript file. Notice the Cache-
Control, Expires and ETag entries. Expires sets an absolute date when the content should
expire, and works for both HTTP/1.0 and 1.1 compliant browsers. The Cache-Control header
is compliant with browsers from HTTP/1.1 onwards, and allows you to set a maximum age of
a resource in seconds.

HTTP/1.1 200 OK
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Cache-Control: max-age=604800
Expires: Fri, 29 Nov 2009 11:01:59 GMT
Date: Fri, 22 Nov 2009 11:01:59 GMT
Content-Type: application/x-javascript
Last-Modified: Fri, 12 May 2006 18:54:28 GMT
ETag: "70c1d1a4a775d41:df3"
Content-Length: 287

The Cache-Control header allows you to take more control over how browser and proxy
caches behave by allowing you pass various directives. The table below lists some of the most
important ones.

max-age (seconds) the maximum time from the time of the request that the
resource will be considered fresh

s-max-age (seconds) same as max-age, but applies to proxy server

Private indicates that the resource should only be cached by browsers
and not proxy servers

Public resource can be cached by a proxy server

Chapter 12: Internet Information Server

351

no-cache insists that the cache manager submits a validation request to
the server every time before a cached copy is used; this is often
used to enforce validation and freshness on a resource

no-store instruction to never cache the resource

must-revalidate instructs browser to rigidly apply freshness and validation rules

proxy-revalidate instructs proxy server to rigidly apply freshness and
validation rules

Controlling content expiration in IIS

Once you understand the importance and power of content expiration, the good news is that
to control it in IIS is really easy. You can control content expiration globally (websites), at site
level, at folder level, and at file level.

To choose the appropriate level in IIS6, select the Properties of the site, folder or file, and
choose the HTTP Headers tab. You can Enable Content Expiration and then set Expire
immediately (set Cache-Control: no-cache), Expire after (x days, hours, minutes) (set Cache-
Control: max-age), or Expire on a specific date (sets the Expires header).

 Figure 12.6: IIS6 Content Expiration.

Chapter 12: Internet Information Server

352

Figure 12.7: Content Expiration in IIS7.

For IIS7 you can set exactly the same content expiration details for each level by choosing
the server, site, folder or file, and then selecting HTTP Response Headers from the Features
window. Bring up the context menu by right-clicking on the item you want to manage,
and select the Set Common Headers menu option. The dialogue shown in Figure 12.7.
will be displayed.

Tools

There are a couple of Firefox add-ons that can really help when investigating caching. YSlow
is a great all-round tool for identifying a multitude of possible reasons why your site might be
slow. Caching is just one of them!

Live HTTP Headers will display the actual headers sent and received as part of the
HTTP conversation you start in Firefox. Looking for the HTTP 304 of static files is a
good starting point.

Caching tip

Media files such as images, Flash, video and sound are your biggest bandwidth consumers,
so a good caching tip is to place really long expirations on these files, and then change their
filenames and file references when you need to update them. Even better, make file references
dynamic and based on version numbers.

Chapter 12: Internet Information Server

353

Reverse proxy

A reverse proxy server helps reduce the load on busy web servers by caching static content
on their behalf and serving it directly to client browsers. They sit directly between the web
server(s) and the clients, and forward requests for all dynamic content and any static content
which has not yet been cached (see Figure 12.8).

Figure 12.8: Reverse proxy overview.

To the client they appear as the primary web server, but they're configured to direct traffic
to one of multiple actual web servers and return the response after obeying any caching
directives. Subsequent requests can then be served directly from the proxy cache, if valid.

Reverse proxy servers relieve the web server of the responsibility for static content caching
and greatly increase the performance of web servers in serving dynamic content. This is, quite
simply, because, more of the web servers' CPU time can be spent serving dynamic content.

Strategically placed reverse proxies are used to maximize network infrastructures by placing
cached content as close to content consumers as possible. Putting a reverse proxy in place
will also help overcome the problems caused by wildcard mapping, as discussed earlier in the
section on static content.

IIS6 considerations

IIS6 doesn't have reverse proxy facilities and so, if you want the performance gain, a third-
party solution is required. Providers include the Open Source Squid product running on an
Apache server.

IIS7 considerations

IIS7 has introduced an extension called Application Request Routing which can be configured
as a reverse proxy and load balancer. For more information and to download it go to www.iis.
net/expand/ApplicationRequestRouting.

Chapter 12: Internet Information Server

354

With the availability of these powerful features in IIS7, using reverse proxy to maximize the
performance of your IIS web server implementation is now achievable.

Content Delivery Networks

Downloading static content accounts for the majority of the initial download time for a web
page. Because of network latency, the closer your static content is to your user, the faster it
will download; so it makes sense that, if possible, you want to point your users' pages to static
content that is as close to them as possible.

There are a number of ways to do this. You could do it manually, by hosting the content
on servers on multiple continents, detecting geo-location by IP address and dynamically
assigning static URLs at runtime. If you're a developer, you are probably already thinking
about a cool data model and design pattern. That's great if you're starting from scratch,
but what do you do with an existing infrastructure? The simple answer is Content Delivery
Networks, or CDNs.

CDNs allow you to publish your static content files to their servers, to eventually become
replicated across a network of servers around the world. Each content file is assigned a
unique URL, and you place these URLs in your web pages. When a browser requests one of
your pages, it will make its request for the page's static content to the CDN. The CDN will
determine which is the best server to deliver the content and transfer will begin. Your servers
are now free to focus on processing and delivering just the dynamic content.

CDN service providers

For a fee, you can use one of the many CDN service providers to host your static content
and streaming media. They have large numbers of content servers geographically spread
throughout the Internet, as close to the edge networks (i.e. the ones users are directly
connected to) as possible. They also implement optimized links between servers in order to
minimize transfer times and avoid the normal Internet network performance limitations.

When a given piece of content is requested from a client browser, the CDN performs request
routing, determines the best server to deliver the content from, and reroutes the request to
that server. This may be the closest one to the client, or it may simply be the one with the best
current performance.

CDNs place content closer to your users, which means they will be able to download the
largest parts of your web pages faster. This also means your servers don't have to use valuable
CPU and bandwidth serving static content or carrying out compression and caching.

Chapter 12: Internet Information Server

355

A great example of a CDN provider is Amazon Simple Storage Service (Amazon S3) at http://
aws.amazon.com/s3/. You need to sign up for the service and download one of the many S3
clients that you can use to manage your file transfers, file permission, and content expiration.

Others include:

• Akamai Technologies (www.akamai.com)

• BitGravity (www.bitgravity.com)

• CD Networks (www.us.cdnetworks.com).

Plus many others. It's worth doing the math because the costs of using a CDN are very
competitive and could be a better deal than the bandwidth deal you have already.

CDN and IIS7 Application Request Routing

IIS7 plus the Application Request Routing (ARR) extension can be configured to act as a
miniature CDN service, in that it can be configured to route requests rather than just cache
them. You can configure ARR to route requests to specific static content servers, based on
predefined rules.

Your application would then hold links to content on the CDN server, which would reroute
to the appropriate content server based on the configured rules.

Browser limitations

HTTP 1.1 specifications limit the number of concurrent requests a browser can make per
domain to just two (the limit for HTTP 1.0 was four). Depending on the browser, this is
usually configurable in the registry, but we should always assume that most users will have
the default settings in place. When a page is loading, assuming these limits are in place, then
resources located on the same domain will have to share the connection pool limit, and wait
until a free connection is available before they can be downloaded.

Placing static content on CDN networks gets around some of this problem, particularly if you
distribute media, scripts, and style sheets separately. The browser will be able to download
static content from multiple domains on multiple concurrent connections, dramatically
improving the user experience.

Chapter 12: Internet Information Server

356

Script CDNs

Microsoft provides a CDN to serve the standard AJAX JavaScript libraries including:

• ASP.NET Ajax library

• JQuery library

• ASP.NET MVC library.

For the embeddable script links and more detail, go to www.asp.net/ajaxlibrary/cdn.ashx.

The script links will be resolved to servers located as close as possible to the requesting
browser, and will maximize browser connection limits. Google also operates a free CDN
script library for many widely-used Open Source JavaScript libraries including the jQuery
JavaScript library. For more information, go to http://code.google.com/apis/ajaxlibs/.

Summary

IIS has many features that you can now use to improve the performance and reliability of
your applications. I hope this chapter acts as a call to action for you to think about such
issues as:

• optimal IIS configuration

• content compression

• server caching and using reverse proxies

• using Content Delivery Networks

• content expiration and local/proxy caching

• SSL optimization.

But remember, fundamentally there is no substitute to proving your optimization with a
complete set of load test results!

357

Chapter 13: HTTP Optimization

So, you've profiled your server code on each layer, it's as efficient as you can make it, and the
database layer has every .NET positive optimization possible. Sadly that's still only part of the
story because, to recap some material from Chapter 6, server processing time is only one of
three possible bottlenecks in a client exchange. The other two are network transfer time and
client processing time.

With all the focus on optimizing server performance it is often a surprise to many that,
according to Yahoo's Exceptional Performance team, as much as 80% of web response time
occurs within the browser itself (Theurer T, 2006).

When you analyze a page's load profile, the page load itself is usually pretty fast, and the
rest of the time is spent downloading and processing referenced static files such as images,
JavaScript and CSS. Obviously this is a bit of a generalization, so you need to determine what
the page load profiles are for your critical web pages.

This chapter is all about analyzing and optimizing the web page load profile so that it
transfers as quickly as possible, and can be parsed and processed on the client in the most
optimal way. Not surprisingly, to do that we need tools and some guidance on how to
use them.

Tools

The first piece of good news is that there are a lot of freely available tools out there to help
you debug and optimize client processing and network transfer time. The other piece of
good news is that we're going to cover the great ones here. Let's start with the first one you
absolutely have to have, and that's Firebug.

Firebug

Firebug is a Firefox browser add-on that allows you to debug HTML/CSS, giving a deep,
navigable analysis of all aspects of a page and its architecture. You can install it within Firefox
(V3.x) from the Tools > Add-ons menu. In the search box at the top of the Get Add-ons tab,
just type in Firebug.

Chapter 13: HTTP Optimization

358

It's an invaluable web page deconstruction tool, used for debugging and investigating
structural issues with HTML, CSS, JavaScript and images. One of its lesser known but, for our
purposes, extremely powerful features is its Net Analysis capability.

Net Analysis

Net Analysis, when enabled (click the Net tab, then Enable), will analyze all of the HTTP
traffic originating from an initial browser URL request. The initial page request and all
subsequent images, JavaScript and CSS requests will be timed, giving all the statistics we need
to identify where the time is being spent for a page request (client, network, or server). That
sounds pretty useful, don't you think?

Figure 13.1 shows a sample Firebug Net Analysis, and you can see each request with its HTTP
status, domain, size, and a histogram detailing the above timings. Hovering over a bar on the
histogram will display the detailed statistics, (shown in the table below) and a color key chart.

DNS lookup time spent resolving the URL against the DNS

Connection time taken to establish a TCP connection

Queuing time spent waiting for a connection to become available due
to connection limit

Waiting for response time spent waiting for a response from the server. This can
be approximated as "Server Processing Time"

Receiving data time taken to transfer data from server to client

DomContentLoaded event elapsed time from the start of loading the resource that
the DomContentLoadedEvent fired for the main page;
DomContentLoadedEvent fires after content has loaded
but ignores image loading

Load event elapsed time from the start of loading the resource that the
page Load event fired for the main page; Load event fires
after all content and images have loaded

Chapter 13: HTTP Optimization

359

Figure 13.1: Firebug Net Analysis.

The key statistics to look at are:

• Waiting for Response

• relates to server processing time

• Receiving Data

• network transfer time

• Queuing

• Time spent queuing due to browser connection shortage per domain

• DomContentLoaded (event) – for the main page

• Indicates when the DomContentLoaded event fires for the page, which is after the
scripts and CSS have loaded but excluding image loading time (some images will
have loaded in parallel)

Chapter 13: HTTP Optimization

360

• Load (event) – for the main page

• Indicates when the Page Load event fires, which is when all scripts, CSS, and images
have loaded.

From these statistics you can determine where the bottleneck is; is it the server, or is the
network transfer slow for this connection?

DomContentLoaded and Load event times are important because they allow you to assess
the overall impact of image loading over pure content loading. To do this, you need to offset
the other stats (DNS Lookup, Connecting, Queuing, Waiting for Response, Receiving Data) in
order to get a meaningful metric.

The outcome from this process is a general assessment of relative performance statistics for a
web request, which you can use to gauge where your optimization efforts should be focused.
I say "general" because, at the time of writing, Firebug version 1.4.5 is reported to have some
accuracy issues that will be fixed in the upcoming 1.5 release.

Cached or Uncached

It's a good idea to run these tests first with a clear browser cache (pressing Shift + Reload in
Firefox will reload the page and clear the cache), and then with a loaded one. Obviously the
results will differ quite a bit.

The weight you give each result set depends on the general profile of your web application. If
it's a "sticky" site, in that the same users tend to return frequently, then obviously the cached
result set is the one to focus your efforts on. Watch out for lots of HTTP 304 status codes
for image files on the cached run, as they may indicate possible candidates for long content
expiration settings on the server (see Chapter 12 on HTTP headers). For one-shot sites, you
need to optimize for an empty cache (which we'll cover a little later).

JavaScript profiler

Firebug also has a JavaScript profiler built into it, and I'll describe that later in the "Javascript
considerations" section of this chapter.

Fiddler

Just as Firebug is able to analyze a Firefox HTTP request profile, Fiddler is a tool you can use
to debug HTTP (or TCP/IP) interactions. It hooks into the WinInet TCP/IP stack used by
Internet Explorer and Microsoft Office products, gives a far more detailed view of network

Chapter 13: HTTP Optimization

361

traffic than Firebug Net Analysis, and can also be used for debugging purposes. You can get a
copy at http://www.fiddlertool.com, and there is actually a great instructional video on
the site, so I won't spend a lot of time going through features in detail.

Basically, you can inspect HTTP traffic generated from a HTTP request. Fiddler will
display a list of all of the requests subsequently launched, and each one can be inspected
(see Figure 13.2).

Figure 13.2: Fiddler HTTP analysis.

You can select individual or multiple HTTP requests from the list on the left-hand side, and
view a detailed analysis of the selected items using the tabbed interface on the right side. The
available tabs are described below.

Statistics

This tab gives general statistics about the request(s), including bytes sent and received, and
wall-clock timing information. An estimate of the worldwide performance is also given
which, by Fiddler's creator's own admission, is very rough.

Chapter 13: HTTP Optimization

362

Inspectors

The Inspectors tab allows you to take a more detailed look at a request. You can inspect the
headers of the request/response in detail, and view both in text, Hex, raw, and XML views.

The response analysis can be configured to transform the response back into a readable view
if it is compressed. There are also additional options to view as image or web page, and look
at both privacy and caching information.

Request Builder

This allows you to generate and send a request manually without the need for a browser.
Useful when debugging.

Timeline

The timeline view is most useful when multiple requests are selected, displaying when each
request started relative to each one.

Filters

This tab allows you to filter out request traffic which you're not interested in. You can also set
flags and breakpoints. Fiddler also has a customizable script, written in JavaScript, that you
can modify to add more complex filtering.

AutoResponder

This tab will allow you to record specific responses and use them to reply to given requests,
allowing you to limit yourself to local content or replay specific test scenarios.

YSlow

YSlow is another free-to-download Firefox add-on, created by Yahoo's Exceptional
Performance team. It's underpinned by a large amount of research and is an excellent starting
point for HTTP optimization.

Chapter 13: HTTP Optimization

363

As with Firebug, you can install YSlow from within Firefox from the Tools > Add-ons menu.
Just type YSlow into the search box, and then install the add-on once Firefox has found it for
you. After restarting Firefox, you will see a YSlow icon in the bottom right-hand corner of the
status bar, although it is also available as a tab within Firebug.

YSlow will analyze the HTTP traffic behind any URL you submit, and give you an A–F rating
based on one of three predefined performance rule-sets, as well as on rule-sets you can define
for yourself around known performance issues. It doesn't make a judgment on the way the
site is constructed, it just assesses how efficiently it achieves what it is actually doing, and
suggests improvements (see Figure 13.3).

Grade tab

Figure 13.3 shows the YSlow Grade tab results, giving the page's overall result and a
breakdown by grade for each rule. The results can be filtered by selecting issues relating to
either content, cookies, CSS, images, JavaScript, or server(s).

Figure 13.3: YSlow URL grading.

The great thing about this tool is that it gives detailed explanations for each of the rules, and
allows you to create and edit your own rule-sets which contain only the subset of rules that
are critical to your environment. You can see some of the included rules on the left-hand side
of Figure 13.3.

Because this is such an important tool for HTTP optimization, let's go through the main rules
(all of which covered in more detail later in the chapter).

Chapter 13: HTTP Optimization

364

Make fewer HTTP requests

Every HTTP request consumes CPU cycles on the server and incurs whatever network
latency cost exists between the client and server. Reducing application chattiness is a
fundamental optimization you make to any system.

Web applications are no different, and if you think about the number of additional resources
required to build a page (CSS, images, Flash, JavaScript), each requiring a separate HTTP
request, it's no wonder web pages are usually very chatty.

Yahoo's Exceptional Performance team has determined that 80% of end-user response time
is taken up by the client browser, most of which is in downloading content and processing
script. If this holds true for your website, then reducing the number of HTTP requests will
significantly improve overall response time.

The simplest way to reduce chattiness is to combine content files. This applies equally to text
files and images.

• Multiple JavaScript files can be combined.

• CSS files can be combined into one file.

• Images can also be combined.

• Images used for toolbars and banners can be combined into an image map to make one
image file, with specific regions assigned to appropriate URLs.

• CSS Sprites use multiple background images combined into one file. The portion of the
desired image can be referenced using the background-position CSS keyword.

This optimization will improve the response time for new visitors to your site because they
will have an empty cache, and the greatest need for an optimal download experience.

Use a Content Delivery Network (CDN)

This material was covered in more detail in the last chapter but, just to recap, a CDN is
a third-party hosting service that will host your static content on an optimized Content
Delivery Network. Typically, providers host content servers close to the edge servers which
the majority of Internet users connect to, meaning your content will never be more than a
couple of hops from most worldwide users.

Chapter 13: HTTP Optimization

365

Removing the responsibility for static content delivery from your servers to a third party
will free up your servers to generate dynamic content. It will also reduce the memory and
processor overhead involved with compression and caching of static content.

If your site is suffering from latency problems inherent with a worldwide user base, then this
is a great first step before re-architecting your solution.

Add expiry headers

This is a recap of what we covered in the Chapter 12 section on content expiration in IIS.
Adding a far future expiry date to static files that you only modify rarely will allow them to be
cached by client browsers for longer periods. If your site is "sticky," then this will significantly
reduce the amount of static file serving that your servers have to do, as your true static files
will be served from the browser cache.

Properly configured file content expiration will even avoid the classic HTTP 304 request. This
occurs when a static file is found in the browser cache but the browser isn't sure how "fresh"
the file is. To find out, it sends a request to the server with the file's unique identifier (ETag)
and its Last-Modified date. If the file hasn't changed on the server, it responds with an HTTP
304 Not Modified message. This saves re-downloading the same image, but still constitutes
an HTTP round trip.

You will get the biggest gains in this area from images and other media files. The main
downside is that cached objects are difficult to update. The answer to that is not to try,
but to just change the name of the static files and their references, using a simple
versioning mechanism.

Use compression on the server

Compression of text-based content reduces its size, and consequently its download time, by
up to 70%. There is a slight penalty incurred by the need to decompress the content at the
client end, but the benefit outweighs it. Put simply, compression delivers more of the content
faster, allowing the referenced resources to begin downloading more quickly.

Most browsers are capable of handling Gzip/Deflate compression, so it pays to ensure the
web server is configured to allow compression. See Chapter 12 for more details.

Put scripts at the bottom

When a browser begins downloading a script file, it won't start any other downloads until
complete. Because of this, the recommendation is to place script references at the end of web

Chapter 13: HTTP Optimization

366

pages, wherever possible. We will discuss JavaScript issues in more detail in the "Javascript
considerations" section.

Don't embed JavaScript and CSS

Always put your JavaScript libraries and CSS definitions in separate files so they will be
downloaded and cached for future use. This will reduce the size of the actual rendered page
for every user request.

Compress JavaScript and CSS

To make it easy to read, JavaScript and CSS contain a lot of white space and comments.
Reducing the size of these files by reducing any unnecessary content will reduce download
time. Popular tools include JSMin, YUI Compressor and Packer. See the "Javascript
considerations" section later in this chapter for more details.

Eliminate 404 Not Found

If a resource isn't found, the web server will return an HTTP 404 Not Found message. This
can often go unnoticed on a website, and either means the page isn't displaying as intended
or the resource is no longer in use. If the resource isn't in use, then it's a waste of an HTTP
request and will hit performance, and so it should be removed (see the "HTTP 404 responses"
section towards the end of the chapter).

Minimize image sizes

Make sure the images you are using are as small as they can be, because smaller files obviously
download faster (see the "Image optimization" section later on).

If you are reducing the size of an image by scaling it from its actual size in HTML or CSS,
then the image is bigger than it needs to be.

Reduce cookie size

Storing large amounts of state information in cookies will increase the payload of every
request, hitting performance.

Chapter 13: HTTP Optimization

367

Minimize DOM access

Querying and navigating the browser Document Object Mode (DOM) in script has a
significant overhead and should be avoided where possible (and it usually is).

Reduce the number of DOM elements

Pages with large, complex element structures take time to parse and render. Simpler DOM
trees with as few elements as possible are more efficient.

Components tab

The Components tab gives a detailed breakdown of every content type retrieved by the
request, including documents, JavaScript, CSS, and images. The breakdown includes sizes,
response times, URL, and ETag (see Figure 13.4).

Figure 13.4: YSlow's Component tab.

Using this tab, you can determine the total weight of the page and assess where the majority
of the page weight (usually images) is concentrated.

Statistics tab

This tab gives a graphical representation of page weight, based on both a new user with an
empty cache, and a recent user with a primed cache.

Chapter 13: HTTP Optimization

368

Figure 13.5: YSlow's Statistics tab.

Tools tab

This tab lists a number of built-in tools that you can run against the resources in the current
page. They include:

JSLint runs JSLint, JavaScript's Code Quality tool, against all
JavaScript referenced by the page, displaying the results in a
separate tab

All JS displays all JavaScript in the document

All JS Beautified displays an easy-to-read format of all JavaScript in the
document

All JS Minified displays a minified version of all JavaScript in the document

All CSS displays all CSS

All Smush.it™ runs Yahoo's Smush.it image optimization tool against all of
the page's images; it will then indicate how much each image
can be optimized, and you can download them in a zip file

Printable View displays a printable report of the results for this YSlow analysis

YSlow is a fantastic tool and you can use the recommendations it makes to effect real
improvements in every page.

Chapter 13: HTTP Optimization

369

Internet Explorer Dev toolbar

The last tool to mention is Internet Explorer's Dev toolbar.It's a kind of Firebug equivalent
but for IE, with the added benefit of a script debugger and profiler. Once you get used
to it, it's a really great tool to use , and you can download it from http://tinyurl.com/
DevToolbar. Dev toolbar helps you do the things described below.

HTML and CSS debugging

Dev toolbar lets you analyze and control a loaded page using a separate UI. You can inspect
a page's HTML tree or CSS hierarchy, and switch off or change the style in place, and the
changes are then updated in the browser. This is great, because it helps you understand
where your styling/layout issues are, with instant feedback.

Figure 13.6: Dev toolbar, HTML view.

Chapter 13: HTTP Optimization

370

Script debugging

This is a full-featured code debugger, allowing you to set breakpoints, step through code,
inspect local variables, view the call stack and set up variable watches. This is pretty powerful
stuff and really useful if you have a script problem.

Profiling

The toolbar also has a code profiler, which is described in more detail in a later section.

JavaScript considerations

Depending on the demographic profile of your website, a large proportion of your users
may be new visitors with empty caches. We already know that downloading static content
contributes up to 80% of the load time for a page (Theurer T, 2006), so anything you can do
to reduce static file sizes and download latency effects will speed up the overall load time of
a page.

JavaScript always adds to initial page weight and will impact browser performance to some
extent. How big these problems are depends on the amount of JavaScript involved, and the
amount of processing carried out.

The increasing use of AJAX to create more responsive and richer user experiences has created
a surge in the amount of JavaScript now written for, and executed on, web pages. That
being said, there are many examples of brilliantly targeted AJAX features that just make life
easier for the user. They can also reduce load on servers, because they allow for partial page
updating and retrieve comparatively tiny fragments of data, compared to executing an entire
page request.

We will discuss AJAX issues later on but, for now, let's just agree that JavaScript use is
increasing within pages, so now we'll look at the steps you can take to reduce the impact of
your scripts on the HTTP and processing overhead of your web pages.

Chapter 13: HTTP Optimization

371

Use compression

Looking back to Chapter 12, static text files make ideal compression targets, so it makes sense
to configure your script files for compression. Browsers that support HTTP/1.1, and most out
there today do, can benefit from compression rates of 60–70% on text files, which is clearly
significant. Smaller files download much faster, and faster downloads are going to reduce
the total time taken to render the page. Chapter 12 has a lot more detail on the topic of static
compression within IIS6 and 7.

Minify scripts

"Minifying" your JavaScript is another essential step in reducing download durations. This is
worth doing even if you are allowing compression, simply because there is less to compress
and decompress, and ultimately the compressed file sizes will be smaller.

A number of tools are available to minify JavaScript using techniques including white space
and comment removal, as well as code obfuscation to reduce variable name lengths. The most
popular tools for minification include:

• JSMin

• http://www.crockford.com/javascript/jsmin.html

• Dojo compressor

• http://o.dojotoolkit.org/docs/shrinksafe

• YUI compressor

• http://developer.yahoo.com/yui/compressor/

• Packer

• http://dean.edwards.name/download/#packer

• Google Closure Compiler

• http://closure-compiler.googlecode.com/files/compiler-latest.zip

Ideally you would incorporate minification into your build/release procedure prior to testing.

Chapter 13: HTTP Optimization

372

Adopt a caching policy

If you adopt the policy that, once a file is published, it can't be changed, it's then much easier
to take advantage of far-future content expiry. This means you can set a content expiry
date on things like script files, which will enable browsers and proxy servers to cache them
indefinitely. That's good because it reduces the number of requests for the file from your
servers, and allows the client to retrieve the files from instantly available sources. Chapter 12
discusses how you can set content expiration on files.

Place JavaScript files at the end of pages

Browsers treat script references in web pages differently from other content. With other
content, a browser will try to parallel download as many content files as possible (within
the constraints of the TCP connection limit per domain). That's not the case with a script
reference because, once a script download has started, no subsequent downloads will begin
until it has completed. That will cause a considerable download bottleneck unless your script
references are placed at the end of the web page.

If you think about it, script can contain code that modifies the page output flow such as:

document.write('hello world');

You can add a DEFER attribute to the script tag that indicates there aren't any document.
write statements and allows for deferred loading, but it doesn't work well or even cross-
browser, so the advice is, place script at the end, if you can.

Reduce the number of scripts

There is a tendency to separate scripts out into separate files based on their functionality
type. This is great for debugging and development purposes, but it increases the number of
HTTP request that have to be made.

Every additional HTTP request incurs latency costs and TCP slow start issues (see Chapter
12), and may cause request queuing due to HTTP/1.1 domain connection limit restrictions.
These restrictions are now largely browser-dependent, but they can limit a browser from
making more than two concurrent connections per domain.

Where possible, combine your JavaScript files to avoid making multiple HTTP requests for
separate script files.

Chapter 13: HTTP Optimization

373

Use a Content Delivery Network (again)

So now your JavaScript is as small, compressed, and high performing as possible, and
hopefully it exists in just a few separate files to cut down on HTTP requests. The last thing
you can do to improve download speeds, and so page load time, is to locate your files on a
Content Delivery Network.

A CDN will host data and media on their servers for a charge, although there are free ones
available. The great thing about them is that they place large numbers of content servers in
geographically spread out locations throughout the Internet, close to the edge networks (i.e.
the ones users are directly connected to). When each piece of content is requested from a
client browser, the CDN performs "Request Routing," determining the best server to deliver
the content from, and rerouting the request to that server. This may be the closest one to the
requesting client, or just the one with the best current performance.

You could opt to use a CDN for all of your static content or, as a starting point, you could use
the free AJAX CDNs described below.

Common JavaScript CDNs

As mentioned in the CDN section in the previous chapter, Microsoft and Google both operate
CDNs for some of the most widely used JavaScript libraries currently in circulation. For more
information and embeddable script links, go to:

• http://www.asp.net/ajaxlibrary/cdn.ashx

• http://code.google.com/apis/ajaxlibs/.

JavaScript performance analysis

JavaScript processing may itself contribute significantly to page responsiveness (or a lack
thereof). If a page is slow to display because a complex JavaScript call tree is taking a long
time to complete, we need to know about it. With the increasing use of AJAX within web
pages, it makes sense to try and identify bottlenecks in script.

Chapter 13: HTTP Optimization

374

What to look for

Isolating performance issues in JavaScript requires the same techniques we discussed in
Chapter 7, in that you are looking for functions or function call trees that are taking a
significant portion of the processing time. As in .NET, function call trees are the sequence of
calls that occur when one function calls another, and so on.

But we also need to compare JavaScript processing time with overall page processing time
because if, for example, a JavaScript function is taking up 50% of the overall page load time,
we may have a problem. We certainly have a situation that needs looking at.

I guess it comes back to one of the main reasons for performance analysis, and that's
to identify problem code that you wouldn't otherwise realize was a problem. The most
innocuous, seemingly-benign sets of functionality can actually hide a major performance
problem. Performance analysis just makes you look at your implementations again and asks
you to validate that "it has to do that and there's no way around it."

Profilers

All of the main browsers have a JavaScript profiler available, and it's worth noting that how
the JavaScript performs will, to some extent, depend on which browser it executes in. Here
are some of the main JavaScript profilers available.

Firebug's JavaScript profiler

Firebug has a basic JavaScript profiler that will identify slow functions and call trees (see
Figure 13.7). You access it using the Profile button on Firebug's Console menu.

Figure 13.7: Firebug's JavaScript Profiler.

Chapter 13: HTTP Optimization

375

When you load a page, the profiling results will be displayed as in Figure 13.7. The profiling
techniques you can use are the same as the ones outlined in Chapter 7, but the key stats to
look for are those in the following table.

Own Time finds the slowest function – time spent in function, excluding
time spent in calls to other JavaScript functions

Time finds the slowest call tree – time spent in function, including time
spent in calls to other JavaScript functions

Calls helps find the most frequently called function – high call counts
sometimes indicate a problem and need to be validated

Google SpeedTracer

Another great tool for investigating the client experience is Google's SpeedTracer. It's an
extension to their Chrome browser, and allows you to analyze the performance of a web page
from both a UI processing and a resource contention perpective.

A page may be slow because the UI is taking a long time to load and paint itself (sluggishness)
and/or because its resources are taking forever to download (network issues). SpeedTrace
helps you identify where the bottlenecks are and is a great new tool to add to your belt.

Both sluggishness and network issues are tracked on separate performance graphs and both
issue types can be explored using tabs for each.

Sluggishness is all about the speed of the browser UI operations, and although it tells you
most about how Chrome itself deals with your page, it should give key insights into how your
page will behave in general.

The Network tab gives similar data to that in Firebug with Net Analysis. The really nice thing
about SpeedTracer is that this data is overlaid against the sluggishness data, giving more of a
unified view. From here, you can view when resources downloaded and how long they took.

Figure 13.8 shows a set of results from a SpeedTrace analysis. Notice the two graphs at the
top; you can select a portion of the graphs to just focus on the events that took place during
that time.

Chapter 13: HTTP Optimization

376

Figure 13.8: Google SpeedTracer, sluggishness analysis.

This analysis is looking for parsing, script evaluation, painting, layout, and DOM processing
issues that could be causing bottlenecks.

Key issues are flagged on the left side of each item, with info markers which can be expanded
by clicking on them, giving additional detail. In the above case, a script evaluation took
626ms, which exceeds Google's recommended processing threshold of 100ms per event.

IE Dev toolbar profiler

Internet Explorer 8 Dev toolbar's profiler will analyze the performance of all the script
functions called by the browser and display them for analysis. You can look at the
performance of individual functions and function call trees.

Chapter 7 details how to carry out performance profiling but, to summarize, we basically
want to find if there is a function or call tree causing a performance bottleneck.

Chapter 13: HTTP Optimization

377

To do this you need to:

• Start the profiler by pressing the Start Profiling button in Dev toolbar

• Run your test against your page in the browser

• Press Stop Profiling

The profile results will be displayed in function view (see Figure 13.9), and you can also choose
to display the results by call tree.

Figure 13.9: Dev toolbar, performance profiling results in function view.

You should sort the function list by descending Exclusive Time, as this will quickly reveal the
slowest functions where the function itself is responsible for the time (this excludes calls the
function itself makes to other script functions). If the function duration is significant, then it
may need debugging to understand where it can be optimized.

Sorting the list by descending Inclusive Time gives the function that begins the slowest call
tree. Inclusive time includes time spent in calls to child script functions.

Chapter 13: HTTP Optimization

378

A better way to analyze the call tree is by just using the Call Tree view. This gives a
hierarchical view of the call tree, which can be navigated through to find any bottleneck
functions within the call tree.

Microfocus DevPartner Studio Professional 9.0

Described in Chapter 7, this (non-free) tool suite also profiles JavaScript running within
Internet Explorer. It gives performance results down to the code-line level, allowing you to
identify the slowest line within the slowest function. The graphical call graph explorer can
also be used to investigate call tree bottlenecks and critical path analysis.

This profiler can present actual time and an accurate figure for CPU time by deducting the
effect of the performance measurement. As such, it is an extremely accurate profiler.

Microsoft Visual Studio 2010

Again, as described in Chapter 7, Visual Studio 2010 can also profile JavaScript as an option
within its Instrumentation settings.

CSS optimization

CSS optimization involves encapsulating your site style into a compact format containing as
much inheritance and reuse as possible. Ideally, you need to think about the design of both
the HTML and CSS from the beginning of the development process.

A well-designed CSS style definition will allow you to quickly change the look and feel of the
entire site, which really is the whole point of CSS. Usually, this also means the CSS has few
repeated definitions because, if a style is easy to change, it's unlikely that there are lots of
places where the same thing has to be modified. Repeated definitions are inefficient because
they make the CSS larger than it needs to be which, in turn, requires more bandwidth and
extra client processing.

So, ideally we need the CSS to be concise with few repeated style definitions. While I
could write an entire book on designing and writing optimal CSS, here are my top six
recommendations:

• encapsulate your style definitions into external CSS file(s)

• design your CSS styles and reuse where possible

Chapter 13: HTTP Optimization

379

• keep each CSS style definition as concise as possible

• use CSS instead of JavaScript if possible

• use CSS Sprites to improve HTTP performance

• remove white space and comments before publishing.

Externalize your style definitions

Too many web pages have hard-coded CSS instructions attached directly to HTML elements
in repeated sequences as seen in Code Example 13.1, a technique known as "CSS inlining."

<div id=”Content”>
<table>
<tr>
<td style=”font-family:Arial;font-size:12px”>12.99</td>
<td style=”font-family:Arial;font-size:12px”>25.99</td>
<td style=”font-family:Arial;font-size:12px”>19.99</td>
</tr>
</table>
</div>

Code Example 13.1: CSS optimization – using inline CSS styles.

HTML that contains inline CSS style is much larger than it needs to be and, unless the page is
static, it won't benefit much from browser caching.

One of the key benefits of CSS is that complex style declarations can be placed in an external
file and reused across multiple web pages. The added benefit is that, once the CSS file is
downloaded, it will be cached by the browser and reused.

At the risk of teaching you to suck eggs, the HTML in Code Example 13.1 could be replaced by
putting the following definition into a separate .css file:

.Price {font-family:Arial;font-size:12px }

… and, although still inefficient, the HTML changes to:

<td class=”Price”>12.99</td>

Chapter 13: HTTP Optimization

380

Design your CSS for reuse

HTML is a hierarchical language, and CSS styles are inherited by descendant elements unless
they are overridden or restricted. We can use this to reduce the number of definitions we
have to make.

Inheritance

We could control inheritance from the entire page downwards, but it makes more sense to
split the page into logical areas, and use CSS identifiers to control style inheritance. A page
may have the following logical areas:

• header

• menu

• content

• footer.

The basic style for each region can then be defined:

#Content {font-family:arial; font-size:10px}

And now the table definition from Code Example 13.1 becomes:

<div id=”Content”>
<table>
<tr>
<td>12.99</td>
<td>25.99</td>
<td>19.99</td>
</tr>
</table>
</div>

The <div> container has been given the ID "Content," which allows all containing elements to
inherit the style defined by #Content above.

The only problem is that, in Code Example 13.1, the font size required was 12px not 10px.
Luckily, this is easily fixed, as the CSS definition can be modified to include an override for
specific elements, in this case <td> as shown below.

Chapter 13: HTTP Optimization

381

#Content {font-family:arial; font-size:10px}
#Content td { font-size:12px }

Intelligent and careful use of CSS identifiers and inheritance will result in much smaller
HTML pages and more compact CSS files. Site style is so much easier to control as well!

Combine and reuse definitions

You can reuse and combine existing styles, which avoids redefining style definitions. Code
Example 13.2 illustrates two class definitions that are both used to define the style for a
 tag in.

.title {font-size:14px;font-weight:bold}

.logo {color:blue}

…

About Us

Code Example 13.2: CSS optimization, combining styles.

You can also combine definitions that have the same style settings to reduce repetition. So,
the definition:

.ContentText {font-family:verdana;font-size:11px;}

.HeaderText {font-family:verdana;font-size:11px }

then becomes:

.ContentText,HeaderText{font-family:verdana;font-size:11px;}

Keep your CSS concise

As well as maximizing inheritance and reuse, it's also a good idea to keep the CSS style
definitions as concise as possible. Here are a few tips on how to achieve that.

CSS abbreviations

CSS has many abbreviations that you can use and, although I can't list them all here, I can
illustrate the point.

Chapter 13: HTTP Optimization

382

Defining a font can be easily abbreviated from:

.Title {font-family:Arial;font-size:12px; font-weight:bold }

to:

.Title {font: bold 12px arial }

Other CSS abbreviations include ones for border, margin background, list style, padding,
and outline.

Use CSS default values and replication

It seems obvious, but don't define CSS properties for default values. For example font-
weight defaults to normal unless it has been overridden. Also bear in mind that CSS will
replicate a value across multiple related properties. Here, for example, all four sides of the
border will be set to 2px:

.Box {border: 2px solid}

… whereas in this example the borders at top/bottom will be 2px and at left/right will be 4px:

.Box {border: 2px 4px solid}

Eliminate unnecessary characters

These are some additional simple suggestions for reducing file size:

• reduce the length of your Class and ID names; obviously there is a fine balance between
readability and length but the shorter the better

• don't type 0px or 0em, as zero is zero in any measurement

• abbreviate hexadecimal values for colors etc., so #11aa00 becomes #1a0.

Use CSS instead of JavaScript if possible

Before resorting to writing JavaScript to achieve a specific HTML behavior, it's always a
good idea to ensure there isn't a way of achieving the same effect in CSS alone. If in doubt,
Google it!

Chapter 13: HTTP Optimization

383

CSS effects are far more efficient and take less browser processing than the equivalent
JavaScript. A classic example is the button/menu rollover effect, such as when the user
positions the mouse pointer over a button and it becomes highlighted. This kind of effect is
often achieved using JavaScript, looking something like:

<a href=”/Profile.aspx” name=”profile” class=”effectButton”
 onMouseOver=”rollover()”
 onMouseOut=”rollout()”>View Profile

The rollout() and rollover() JavaScript functions would dynamically set style properties
to achieve the rollover effect, for example changing the background color from silver to blue.

A much simpler mechanism simply uses CSS to define a "hover" behavior on the anchor tag:

a.effectButton:hover {background-color:blue; color:white}

Even more complex effects can be achieved using images and preferably CSS Sprites
(see later).

Avoid CSS expressions

Internet Explorer versions 5, 6, and 7 allow you to include CSS expressions which dynamically
set CSS properties at runtime. To achieve this, you include the expression(..) function
in your CSS style definition, which will return a value based on the evaluated code within
the expression.

CSS expressions are no longer supported in IE 8 Standard mode, and they should be avoided
anyway because of their performance overhead.

Use CSS Sprites to improve HTTP performance

A CSS Sprite is a single image that actually contains multiple images placed next to each
other. With the clever use of CSS it is possible to display just the portion of the image you
want to use, and so benefit from only having to make a single HTTP request to download the
image file. Don't forget that the fewer HTTP requests the browser makes, the faster the user
experience will be.

In the example of the button rollovers earlier, using separate images for the hover effect will
cause an image download to occur when the first rollover takes place, and maybe generate a
slight delay. Not ideal.

Chapter 13: HTTP Optimization

384

Here is an example of using a CSS sprite:

a {background-image:url('Buttons.gif')}

a.Ok {background-position:0px 0px}
a:hover.Ok{background-position:0px -72px}
a.GoHome {background-position:0px -143px;}
a:hover.GoHome {background-position:0px -215px;}

…

The image sprite is loaded for the anchor tag, but only a portion of it is displayed using
the background-position property for each of the CSS classes and hover state. Note the
negative positioning to move the correct image into view when the images are positioned left
to right.

Remove white space and comments before publishing

To aid readability, CSS files usually contain a lot of white space which includes multiple
spaces, tabs, carriage returns, etc. Comments and commented-out styles are usually quite
common as well. All of this information is pretty much redundant, and can be removed
without any impact.

The benefit is that the CSS files become smaller, and smaller is better. Making your static
files, including CSS, as small as possible will improve a user's first visit response time, and first
impressions count.

There are a number of tools available which you can use to remove white space and compress
the CSS. Probably the most widely used is Yahoo's YUI Compressor. For more information, go
to: http://developer.yahoo.com/yui/compressor.

Chapter 13: HTTP Optimization

385

HTTP efficiency

I will keep this bit really simple. Don't make the browser perform pointless network
round trips.

If you use FireBug or Fiddler on many popular websites, you will see requests that failed
because content wasn't found (HTTP 404 status) or where a redirect instruction was issued
(HTTP 301/302). In both cases, the browser request and latency time incurred are pointless
and wasted.

HTTP 404 responses

When a browser gets an HTTP 404 response it means the requested content wasn't found
on the server. The browser has wasted a connection and Wait time for a resource that didn't
exist. The amount of Wait time depends on the network latency, and the server queuing/
processing time.

This could mean one of two things; either the web page no longer needs the file reference,
or it does need it, and so probably isn't behaving as intended. If it's the first, then you can
make a quick HTTP optimization, and if it's the latter, you can fix a broken page. Either way
it's a win.

The problem can arise from simple server file mismanagement and complex multi-browser
handling. Often pages reference different CSS, scripts and images based on browser type and,
without testing the page against all browsers, inadvertent file errors can be missed, leading to
the 404.

Always test your pages with a network analyzer using multiple browsers and look for
404 errors.

HTTP 301/302 redirect responses

A server redirect response tells the browser to navigate to a different URL. It's the telephone
equivalent of being put on hold, only to then be told to dial a different number instead. The
original request is a waste of a connection and causes unnecessary Wait time. There are ways
to avoid this on the server, such as ASP.NET's Server.Transfer for example.

When you analyze the request profile of your page with Fiddler or Firebug, have a look for
301/302 responses and validate if they are necessary.

Chapter 13: HTTP Optimization

386

Image optimization

I can't state this strongly enough: make sure your images are only as large as they need to be.
Images will account for the largest proportion of the overall page weight and will have the
biggest impact on a first-time user's experience.

You need to make sure the images you are using are the correct resolution for the area you
will be displaying, and use the best compression format (gif, jpeg or png). There is no point
using a 1920 x 1024 image to be displayed in a 400 x 213 area.

All the main graphics editing packages allow you to control image resolution and file formats.
Lowering resolution and changing the compression will reduce the size of the image and thus
download time / bandwidth usage.

Yahoo's Developer network has a tool called Smush.it that you can use to analyze your page
images. It will suggest any image optimizations and will actually create a zipped version of
the optimized images that you can download and use. You can access the tool via YSlow
within Firefox.

Page weight

So far, we've looked at the references to static files and how optimization, minification, and
compression can reduce their weight on the wire, and so reduce bandwidth usage whilst
increasing user response times.

It's now time to look at the actual web pages themselves and how they can have their
weight reduced.

Look at any website, using Fiddler or Firebug's Net Analysis, and you will see the dynamic
web pages are re-requested every time, whereas the static files are served from cache or
request a file modified status from the server. As mentioned earlier, YSlow will also give a
breakdown of the request weight for a site, comparing empty and primed browser caches.

Page weight reduction is one of the most important HTTP optimizations you can make,
because any reduction will benefit new visitors with an empty cache, and returning visitors.

Let's now go through some things you can do to reduce your page weights in ASP.NET
applications.

Chapter 13: HTTP Optimization

387

Reducing ViewState overhead

ViewState was devised as a mechanism to maintain the state of server controls between page
postbacks. It allowed the ASP.NET programming model to become analogous with the event-
based WinForms model with which so many developers were already familiar. This made web
application development much simpler and far easier than classic ASP development.

ViewState is stored as a BASE64 encoded string held in a hidden field within ASPX pages. It
stores any programmatic state changes to controls, allowing these changes to persist across
postbacks. Every time a page posts back to the server, the ViewState goes along for the ride,
there and back again.

You know what I'm going to say now, don't you? ViewState strings can be quite large, and
large strings increase page weight, and that's not what we want when trying to optimize
client response time.

So, the best advice is to only use ViewState when you absolutely need to, because you can
switch it off whenever you like.

Switching off ViewState

ViewState can be switched off at the server control level by setting on each control:

EnableViewState=”false”

You can also switch it off at the page level using:

<%@Page EnableViewState="false" %>

Or, for the whole site in the web.config using:

<configuration>
 <system.web>
 <pages enableViewState="true" />
 </system.web>
</configuration>

Alternatively, if you just want to be more concise with your ViewStates, ASP.NET 4.0 has an
enhancement that allows controls within a PlaceHolder to inherit a ViewState setting. Using
the ViewStateMode property on the PlaceHolder, all child controls will inherit the
ViewState setting (see below).

Chapter 13: HTTP Optimization

388

<asp:PlaceHolder ID="p1" runat="server"
 ViewStateMode="Disabled">

 <asp:Label ID="label1" runat="server" Text="Test1" />
 <asp:Label ID="label2" runat="server" Text="Test2" />

</asp:PlaceHolder>

ViewState and ControlState

ASP.NET 2.0 changed the way ViewState worked, mainly because switching it off often
caused the basic operational behavior of more complex controls to fail. A way was needed to
separate state changes which were necessary to maintain the UI aspects of a control from the
actual contents of the control.

To achieve this, page state was split into two parts: ControlState for storing control
behavioral state, and ViewState for a control's UI content. Crucially, ControlState couldn't be
disabled, whereas ViewState could.

Now control writers could develop controls that maintained behavioral state (in
ControlState) without the fear that a developer might come along later and switch off the
state control mechanism.

For example, a DataGrid would hold paging information in ControlState, but the data
content could be stored in ViewState, or it could be switched off and the data grid
regenerated for every postback.

The point is that, from ASP.NET 2.0 onwards, you can switch off ViewState on controls
without fundamentally affecting their basic behavior, as long as you repopulate the contents
of the control for each request.

ViewState optimization

ViewState will dramatically increase the size of a page and a page's impact on server
processing. In combination with data binding, ViewState strings can become very large and
can easily exceed 85 Kbytes, which is the threshold for allocation onto the Large Object Heap,
with all of the problems that come with it (see Chapter 8).

The best advice is to switch off ViewState unless you need to use it. It can be quite a tricky
judgment to make. If ViewState will reduce load on the database server or, maybe, reduce
server cache impact, and those are already problem areas, then you could probably justify it
after conducting comparative stress tests.

Chapter 13: HTTP Optimization

389

Control ID page bloat

When you place controls within item templates for grids and repeaters, etc., the size of the ID
generated in the HTML can be huge, and this can add significantly to page weight. Here, the
generated ID for a label generated within a repeater control is 43 characters long!

Hello

Prior to ASP.NET 4.0, the only way to overcome this problem was to override the ClientId
property of an inherited version of each control to be used, and instead return a hash of the
result (Code Example 13.3):

public override string ClientID
{
 get
 {
 return base.ClientID.GetHashCode().ToString() ;
 }
}

Code Example 13.3: Overriding ClientId to reduce ID bloat.

ASP.NET 4.0 provides greater control of IDs using the ClientIDMode property on
databound controls. Using Predictable Mode, the IDs assigned to the databound control
itself and the template controls are used to create a unique name. The shorter you make
these IDs the better.

HTML white space

Another simple observation, but it makes sense to remove white space from your ASPX
pages. The challenge is to maintain readability whilst minimizing the page weight added
by white space. One way to achieve it would be to place server side comments around the
white space in the page, which wouldn't then be rendered to the client. For example, the
following code:

<html><%--
 --%><body><%--
 --%><p>Some Stuff</p><%--
 --%>More Stuff<%--
 --%><div> Some Div content </div><%--
 --%></body><%--
--%></html>

Chapter 13: HTTP Optimization

390

...would be rendered to the client as:

<html><body><p>Some Stuff</p>More Stuff<div> Some
Div content </div></body></html>

Layouts using tables

Using tables to create your page layout creates significantly more markup than if you used
CSS layout; typically, as much as 25–50% more (Zeldman J, 2010). The other downside to
table usage is that it results in a much larger and more complex tag hierarchy for the browser
Document Object Model parser to process.

Avoid this practice, and remove it from legacy code where possible as part of a page weight
optimization process.

AJAX considerations

AJAX (Asynchronous JavaScript) has made a huge impact on website design and on the overall
user experience. It enables developers to write user interfaces that communicate directly with
data sources without users having to resubmit pages. Done well, the results are fantastic, with
rich, almost instantly responsive UIs giving a really positive user experience.

Although AJAX interfaces can be written from scratch, it's far more common for developers
to use libraries such as ASP.NET's AJAX library or jQuery. These libraries provide lots of
additional functionality and rich user interface elements, allowing developers to easily build
dynamic and interactive UIs.

There is actually nothing complex about AJAX. Underlying it is a simple JavaScript accessible
object called XMLHTTP that can be used to send HTTP requests to specific URLs and
receive the responses. The response can either be in text or XML format, and can be executed
synchronously or asynchronously. All that the AJAX libraries do is wrap the use of this object
and, to some extent, the manipulation of the browser DOM.

Proper use of AJAX can reduce the overall HTTP payload of an application UI sequence,
because full page requests to achieve basic functionality can be avoided.

Chapter 13: HTTP Optimization

391

Problems with AJAX

AJAX is great when it is targeted well and is achieving something of real benefit to the user
experience. Google's search suggestions functionality is a brilliant example of well-targeted
AJAX. The trouble is that there can be a tendency to apply AJAX to anything and everything
possible, regardless of whether it's actually helpful to the user. The result can be pages that
create large numbers of asynchronous HTTP requests for no real user benefit.

You really do need to be sure the AJAX load for a page is as light as you think it is, which is
why you should always analyze your AJAX pages using some of the tools we discussed earlier
(including Fiddler and Firebug's Net Analysis). Look at the response times and payload sizes,
and ensure they are acceptable.

Browser concurrent connections

Depending on your browser type and version, there is a restriction on the number
of concurrent connections that can be made to individual domains; the HTTP 1.1
specification actually limits the number to two per domain. This is usually configurable in
the registry, depending on the browser, but that is of no use, because very few of our users
will have changed the defaults (fortunately, Internet Explorer 8 now defaults to six for
non-dial-up connections).

The result is that you could be firing off asynchronous AJAX requests which are actually
queuing whilst waiting for other AJAX requests to finish. Suddenly, what you thought was an
efficient asynchronous model actually has significant blocking.

You can easily spot the blocking behavior within the Firebug Net Analysis by looking for the
queuing time for the AJAX calls.

Network latency and performance

Multiple calls across the network to fetch data are inefficient and, depending on the location
of client and server, will suffer from latency effects every time. If it's possible to retrieve more
data in one call, then do that, even if it means caching it internally.

That brings me to another point – AJAX libraries aren't currently great at caching (or, at any
rate, caching when you actually want it!), so any manual data-caching you can do locally will
help performance, because you can avoid re-requesting data with low volatility.

Chapter 13: HTTP Optimization

392

AJAX data formats

The two most common AJAX return data formats are XML and JSON, and the format you
choose will affect AJAX response times.

XML

XML is a rich and powerful markup language that can describe complex hierarchical data
structures. The great thing about XML is that it can be processed easily using an XML
Document Object Model parser with its own navigation syntax and query language (XPath).
Code Example 13.4 is a simple example of an XML structure describing a book list.

<books>
 <book isbn=”12345”>
 <title>XML 101</title>
 <price>32.99</price>
 <authors>
 <author name=”Fred”/>
 <authors/>
 </book>
</books>

Code Example 13.4: Example XML data structure

The trouble is, for the sake of 21 characters of information, I have used 99 markup characters.

XML is both human readable and machine readable, which is great for sharing data with
others but not so good when trying to maximize HTTP performance. The same data could
have been represented in a simpler format, such as:

12345,XML 101,32.99,Fred

There is also a performance overhead to processing XML using an XML parser, which gets
worse depending on the size and hierarchical complexity of the XML structure.

JSON

JavaScript Object Notation (JSON), a common alternative to XML, is a lightweight data
format that is easily processed within JavaScript. Code Example 13.5 is an example of a book
represented in a JSON string.

Chapter 13: HTTP Optimization

393

{
 "isbn": "12345",
 "title": "XML 101",
 "price": "32.99",
 "authors": [
 { "name": "Fred" }
]
}

Code Example 13.5: JSON data definition.

A JSON string can be parsed to an object in JavaScript using either the eval function or
JSON.Parse (FireFox 3.5 or IE 8).

var data=eval(" (" + jsonData + ")");
alert(data.isbn);

Code Example 13.6: Parsing a JSON data string.

Code Example 13.6 shows some JavaScript parsing a JSON data string containing the book
data defined in Code Example 13.5. Once parsed, the isbn data value can simply be accessed
as an object property within code.

JSON is both a lighter-weight and easier to process data interchange format than XML, and it
will make your AJAX operations faster and more efficient than they would otherwise be.

Windows Communication Foundation 3.5 (WCF)

With a simple configuration change, WCF 3.5 now natively supports returning JSON instead
of SOAP XML envelopes from web service calls. In your contract definition, you need to
specify ResponseFormat=WebMessageFormat.Json, as seen in Code Example 13.7.

[WebInvoke(Method="POST",ResponseFormat=WebMessageFormat.Json)]
 [OperationContract]
 string TestMethod();
}
public class ServiceTest : Service
{
 public string TestMethod()
 {
 return "Test";
 }
}

Code Example 13.7: WCF contract definition.

Chapter 13: HTTP Optimization

394

Then, in the web.config, you specify the binding to be webHttpBinding and enable
WebScript in the behavior section (see Code Example 13.8).

<system.serviceModel>
 <services>
 <service name=" ServiceTest ">
 <endpoint
 address=""
 binding="webHttpBinding"
 contract="Service"
 behaviorConfiguration="WCFServiceAspNetAjaxBehavior"/>
 </service>
 </services>
 <behaviors>
 <endpointBehaviors>
 <behavior
 name="WCFServiceAspNetAjaxBehavior">
 <enableWebScript />
 </behavior>
 </endpointBehaviors>
 </behaviors>
</system.serviceModel>

Code Example 13.8: WCF Web.Config JSON Configuration.

ASP.NET AJAX

The ASP.NET AJAX UpdatePanel is a great way to add AJAX functionality to a web page, but
it has some major problems that you need to be aware of. UpdatePanels post back almost
as much data to the server as a standard postback, and that includes the ViewState. Also, on
postback, the page goes through pretty much its complete life cycle, including firing Init,
Page_Load, PreRender and Unload events. Even the page's control event handlers fire.

You can reduce some of the problem by setting the EnablePartialRendering attribute on the
ScriptManager to true, and UpdateMode on the UpdatePanel to conditional, as seen in
Code Example 13.9:

<asp:ScriptManager ID="ScriptManager1" runat="server"
 EnablePartialRendering="true" />
<asp:UpdatePanel ID="UpdatePanel2" runat="server"
 UpdateMode="Conditional">

Code Example 13.9: UpdatePanel setting the UpdateMode.

Chapter 13: HTTP Optimization

395

Setting the UpdateMode to conditional will only return data for the panel if a postback was
caused within that panel. However, full ViewState information from all the other panels will
still be transferred.

The thing to remember is that UpdatePanels make it easy for you to eliminate page flicker
and give the appearance of an AJAX-enabled site, but it doesn't give you the efficiency benefits
of AJAX enablement itself. For that, you need to write some code!

You can still use the functionality provided by the ASP.NET AJAX ScriptManager, with its web
service reference interface and script reference (see http://www.asp.net/ajax for
more details).

jQuery

I can't talk about AJAX without mentioning jQuery in a little more detail, because it's
probably the most popular AJAX library in use today. It is really lightweight yet powerful,
combining both asynchronous data transfer (XML and JSON) with animation functions. Its
other great feature is that it is unbelievably concise.

To use jQuery you need to include a script reference. Code Example 13.10 is a minified version
hosted on the Microsoft Script CDN.

<script
src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.min.js"
type="text/javascript"/>

Code Example 13.10: jQuery script reference.

Just to illustrate how compact and easy to use the library is, here is an example (Code
Example 13.11) of some jQuery AJAX that retrieves data from a GetBooks.aspx URL. It passes
some data in the query string and passes the returned result to an anonymous JavaScript
function that is just displaying it in an alert box.

If it's AJAX you need, then direct use of jQuery is a very lightweight and powerful tool.

$.ajax(
{
 type: "GET",
 url: "GetBooks.aspx",
 data: "genre=fiction",
 success: function(dataIn){ alert(dataIn);}
}
);

Code Example 13.11: jQuery AJAX example.

Chapter 13: HTTP Optimization

396

Summary

You can potentially make huge improvements to page load times and thus to every user's
experience of your web application. I hope that, as you've been reading through the chapter,
you have been downloading and trying the tools mentioned, and gaining real insight into
where you can improve your web applications.

It always amazes me how many of the world's websites, when you analyze them, have major
performance flaws that could easily be fixed. Why not have a go? Use YSlow and Firebug to see
the problems. It will make you feel better about the issues you've found in your own pages!

If you think about it, all I've really been saying through the whole chapter is:

• Make all of your static files as small as possible on the wire.

• Reduce your page sizes and compress whatever you can.

• Optimize your JavaScript and CSS and use HTTP efficiently.

The tools are there; you don't have to pay a fortune to use them, and it's not going to take you
huge amounts of time!

A call to action

• Analyze your site with YSlow.

• Use Firebug's Net Analysis to discover your page processing profile.

• Look at content expiration and compression.

• Profile your JavaScript-rich pages first.

• Compress your images as much as possible.

• Use CSS Sprites.

• Look for 404 errors.

• Remove white space and comments.

Sit back, and enjoy the feeling that you've just made your web application as fast as
humanly possible.

About Redgate

www.redgate.com

Compliant
Database DevOps

Redgate is the leading provider of software
solutions for Compliant Database DevOps.
We’ve specialized in database software for
over 20 years.

Now, our products help 800,000 people in every type of
organization around the world, from small businesses
to 91% of the Fortune 100.

Our solutions make life easier for development teams,
operations teams, and IT leaders by solving the
database challenges in delivering software at speed.

Whether they use industry leading products such as
Redgate Deploy and SQL Monitor, or our open-source
framework Flyway, teams benefit from faster
development, Database DevOps, and a safe, compliant
approach to deployments.

http://www.red-gate.com/community/books/
https://www.simple-talk.com/
http://www.sqlservercentral.com/
http://sqlinthecity.red-gate.com/
http://sqlinthecity.red-gate.com/
http://www.red-gate.com/

	Foreword
	Chapter 1: Introduction – The What and the Why
	Performance testing
	Load testing
	Stress testing
	Profiling
	Cost benefits of performance
and load testing
	Example scenarios

	Sometimes, what seems right
can be wrong.
	Conclusion

	Chapter 2: Understanding Performance Targets
	Identifying performance targets
	Structuring test breakdowns
	Determining what load to target
	Contingency in your estimations
	Estimate the mix of browsers for your web application
	What data do we measure?
	Time to First Byte
	Total page response time
	What about average response time?

	Sweet spots and operational ceilings
	Conclusion

	Chapter 3: Performance and Load Test Metrics
	What metrics do we need?
	Basic metrics
	Web application basic metrics

	What to look for
	CPU utilization
	Memory utilization
	Response time

	Creating a baseline
	Using Visual Studio to analyze
the results
	Using the Test Results management window
	Using the Open and Manage Test Results dialog
	Filtering performance test result selection

	Sweet spots and operational ceilings
	Detailed performance metrics
	Performance metrics

	What do I do with all this information?
	Conclusion

	Chapter 4: Implementing Your Test Rig
	Creating the performance test rig
	Architecture and structure of a performance test rig
	Role breakdown

	Setting up and configuration
	Port setup and firewall considerations
	Network segmentation/isolation
	Controller setup
	Creating the load test database
	Guest policy on Windows XP in workgroup mode
	Agent setup
	Workstation setup
	Troubleshooting the controller and agents

	Setting up performance counter collection
	Conclusion

	Chapter 5: Creating Performance Tests
	Basic solution structure
	Recording the web tests
	Test replay
	Data binding web tests
	Creating a data source for data binding
	Test deployment considerations
	Web test code generation
	Extensibility through plug-ins

	Alternative ways of recording
web tests
	Considerations for load balancing / load balanced hardware
	Test automation
	Creating a performance test scenario

	Putting automation in place
	Executing the load test
	Collecting performance monitor data
	Collecting SQL Server usage statistics
	Clean up tasks

	Conclusion

	Chapter 6: Application Profiling
	Types of profiling
	Performance profiling
	Memory profiling

	When to start profiling
	Reactive debugging
	Proactive analysis
	Technique validation

	Tools used for profiling
	CLRProfiler
	Red Gate's ANTS Memory and Performance Profilers
	Microfocus DevPartner Studio Professional 9.1
	Microsoft Visual Studio 2008 profiling tools

	What to look for
	Performance analysis
	Memory analysis

	Production / load test clues
	General performance counters

	Managing profiling results
	Comparing analysis runs
	Pre-check-in requirements
	Continuous integrated testing

	Summary

	Chapter 7: Performance Profiling
	A caveat
	What the load test will tell you (and profilers can't)
	Load testing

	Where is it slow?
	When to start testing
	Competing resources
	Types of profiler
	Sampling profiler
	Event-based profiling
	Concurrency (thread contention) profiling
	Instrumenting profilers

	Choosing a profiler
	What profilers can measure
	What to look for

	Using the tools
	ANTS Performance Profiler 5
	DevPartner Studio Professional 9.1
	Performance timing profiler
	Visual Studio Professional 2008/2010
	Visual Studio 2010 Team Edition
	SQL Profiler 2005/2008

	Summary

	Chapter 8: Memory Profiling
	Why memory matters
	The managed heap(s)
	Small Object Heap
	Optimizing garbage collection
	Large Object Heap
	Finalizable objects

	Profiling memory
	Memory issues

	Using tools to uncover memory problems
	Test plans
	ANTS Memory Profiler 5
	Visual Studio 2008 Memory Profiler
	DevPartner Studio Professional 9
	CLRProfiler

	Summary

	Chapter 9: The Performance Testing Process
	Development processes and scheduling tests
	An ideal world
	Methodology
	The reality
	A word about best practice
	Managing and monitoring performance changes
	The entire performance picture

	Chapter 10: Common Areas for Performance Improvement
	Every application is different
	Database access
	The best and most efficient form of data access
	What to cache?
	Indexing
	Database access abstractions

	Reflection
	String manipulation
	Cryptographic functions
	Network call latency
	Key considerations when calling external resources

	Synchronous vs. asynchronous
	Asynchronous web pages

	Web application specific
	Data binding
	Output caching
	web.config
	Conclusion

	Chapter 11: Load Balancing
	What is load balancing and how does it help?
	Infrastructure considerations
	Application considerations

	Performance testing and load balancing
	Servers of different specifications in a farm

	Windows Azure
	Conclusion

	Chapter 12: Internet Information Server
	Background
	IIS6 and the application pool
	Under the hood
	Request listening (HTTP.sys)
	Request processing (user mode)

	IIS common considerations
	Worker process recycling
	Bitness (32- or 64-bit application pools)
	Queue length
	Pipeline mode
	CPU limiting
	Processor affinity
	Health monitoring
	Rapid failure detection

	SSL server affinity and hardware acceleration
	How it works
	Load balancing and SSL
	Optimizing performance with SSL

	HTTP compression
	TCP effect
	CPU effect
	Static and dynamic content compression

	Static content
	HTTP headers
	Freshness and validation
	Content expiration
	Controlling content expiration in IIS
	Tools
	Caching tip

	Reverse proxy
	IIS6 considerations
	IIS7 considerations

	Content Delivery Networks
	CDN service providers
	CDN and IIS7 Application Request Routing
	Browser limitations
	Script CDNs

	Summary

	Chapter 13: HTTP Optimization
	Tools
	Firebug
	Fiddler
	YSlow
	Internet Explorer Dev toolbar

	JavaScript considerations
	Use compression
	Minify scripts
	Adopt a caching policy
	Place JavaScript files at the end of pages
	Reduce the number of scripts
	Use a Content Delivery Network (again)
	JavaScript performance analysis

	CSS optimization
	Externalize your style definitions
	Design your CSS for reuse
	Keep your CSS concise
	Use CSS instead of JavaScript if possible
	Avoid CSS expressions
	Use CSS Sprites to improve HTTP performance
	Remove white space and comments before publishing

	HTTP efficiency
	HTTP 404 responses
	HTTP 301/302 redirect responses

	Image optimization
	Page weight
	Reducing ViewState overhead
	Control ID page bloat
	HTML white space
	Layouts using tables

	AJAX considerations
	Problems with AJAX

	Summary
	A call to action

