

 i

����������	
������	��

���	����������	��������

	�������������	�����

B. M. Subraya
Infosys Technologies Limited, Mysore, India

���	�����

���������	 ��	 ����������	 ��������	 ���	 ������������

�����������	 ���������	 ������	 ��	 ���	�������

Hershey • London • Melbourne • Singapore

ii

Acquisitions Editor: Michelle Potter
Development Editor: Kristin Roth
Senior Managing Editor: Amanda Appicello
Managing Editor: Jennifer Neidig
Copy Editor: April Schmidt
Typesetter: Jennifer Neidig
Cover Design: Lisa Tosheff
Printed at: Integrated Book Technology

Published in the United States of America by
IRM Press (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033-1240
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.irm-press.com

and in the United Kingdom by
IRM Press (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2006 by Idea Group Inc. All rights reserved. No part of this book may be reproduced,
stored or distributed in any form or by any means, electronic or mechanical, including photocopying,
without written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI of the trademark
or registered trademark.

Library of Congress Cataloging-in-Publication Data

Integrated approach to web performance testing : a practitioner's guide
 / B.M. Subraya, editor.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book provides an integrated approach and guidelines
 to performance testing of Web based systems"--Provided by publisher.
 ISBN 1-59140-785-0 (hbk.) -- ISBN 1-59140-786-9 (pbk.) -- ISBN
 1-59140-787-7 (ebook)
 1. Web services. 2. Application software--Development. 3. Com-
 puter software--Testing. I. Subraya, B. M., 1954- .
 TK5105.88813.I55 2005
 006.7--dc22
 2005023877

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this
book are those of the authors, but not necessarily of the publisher.

 iii

����������	
������	��

���	����������	��������

	�������������	�����

�����	��	 �������

Chapter 1. Web-Based Systems and Performance Testing 1
Web Systems and Poor Performance ... 2
Classification of Web Sites ... 4
The Need for Performance Testing .. 5
General Perception about Performance Testing 12
Performance Testing: “LESS” Approach .. 14
Difference between the Components of LESS................................ 18
Performance Testing Life Cycle ... 21
Performance Testing vs. Functional Testing 22

Chapter 2. Performance Testing: Factors that Impact Performance ...29
Project Peculiarities .. 29
Technical Peculiarities .. 31
Web Site Contents .. 32
Client Environment ... 34
Server Environment .. 36
Network Environment .. 43
Web Caching ... 45
Challenges Ahead ... 48

Chapter 3. Performance Testing: Reference Technology and
 Languages ...52

Client Server and Web-Based Technology 52
Web Server and Application Server .. 56
Evolution of Multi-Tier Architecture ... 62
Scripting Languages for Web-Based Applications 68
Meeting the Challenges .. 73

iv

Chapter 4. Test Preparation Phase I: Test Definition77
Need for Test Definition Phase .. 77
Peformance Requirements and Their Importance 79
Business Functions Related Performance Requirement 80
Infrastructure and Network Environment ... 85
Explicitly Specified Requirements for Performance 88
Developing Performance Test Strategy Document 92

Chapter 5. Test Preparation Phase II: Test Design 102
Importance of Test Design Phase... 102
Benchmark Requirements .. 104
Developing a Workload ... 111
Sequencing Transactions .. 119
Selection of Tools ... 122

Chapter 6. Test Preparation Phase III: Test Build 124
Developing the Performance Test Plan .. 124
Working with the Proper Testing Environment 126
Challenges in Creating a Simulated Environment 136
Developing Test Scripts ... 138
Preparing the Test Schedule .. 141
Defining the Testing Process ... 141
Analysis of Risk Factors .. 143

Chapter 7. Performance Test Execution Phase 148
Entry Criteria .. 148
Exit Criteria ... 152
Elaboration Testing ... 156
Self Satisfaction Test (SST) .. 157
Multiple Test Runs ... 158
Challenges in Test Execution ... 160
Guidelines for Test Execution .. 163

Chapter 8. Post Test Execution Phase .. 167
Objectives of the Analysis Phase.. 168
Analysis Process ... 168
Analyze Test Logs .. 169
Verifying Pass or Fail Criteria ... 172
Test Reports .. 173
Areas of Improvement ... 185
Tuning Process ... 187
Guidelines for Performance Tuning ... 195

 v

Chapter 9. Performance Test Automation .. 201
Performance Test Automation Process .. 202
Preparation Phase .. 203
Planning Phase ... 216
Execution Phase ... 224
Postexecution Phase ... 226

Chapter 10. Introduction to Performance Monitoring and Tuning:
 Java and .NET .. 234

Areas of Bottlenecks in Web-Based Applications 235
Performance Counters in the Operating System 236
Performance Monitoring and Tuning in UNIX............................... 237
Performance Monitoring and Tuning in Windows 2000 241
Architectural Similarities between Java and .NET 242
General Guidelines for Performance Monitoring 245
Performance Monitoring and Tuning: Java 247
Performance Monitoring and Tuning: .NET 253
.NET Framework Tuning ... 259
Coding Guidelines ... 266

Appendix Section .. 270

Glossary .. 347

About the Author .. 360

Index ... 361

vi

!���"���

Globalization, aided by technology innovation and newer, faster communication
channels are changing the basis of competition across industries today. To com-
pete, firms must rapidly respond and adapt to a changing market and create
responsive, flexible links across their value chains.
In this environment, the advent of Web-based systems has created a range of
opportunities for organizations. Web-based systems and applications are en-
abling businesses to improve workflow costs and efficiencies across their sup-
ply chains, streamline and integrate their business processes, and collaborate
with value-chain partners to deliver a strong value proposition to their custom-
ers.
Ensuring the robustness and reliability of Web-enabled systems has, therefore,
become an increasingly critical function. Integrated Approach to Web Per-
formance Testing: A Practitioner’s Guide addresses the realities of perfor-
mance testing in Web systems and provides an approach for integrating testing
with the software development life cycle.
By offering a mix of theory and practical examples, Subraya provides the reader
with a detailed understanding of performance testing issues in a Web environ-
ment. He offers an experience-based guidance of the testing process, detailing
the approach from the definition of test requirements to design, simulation and

 vii

benchmarking, and building, executing and analyzing testing strategies and plans.
The book also details key processes and issues involved in test automation, as
well as performance monitoring and tuning for specific technologies.
The chapters are filled with real-life examples, as well as illustrative working
code, to facilitate the reader’s understanding of different facets of the testing
process. The discussion of testing methodology is anchored by a running case
study which helps illustrate the application of test plans, strategies, and tech-
niques. The case study and examples help demonstrate various approaches in
developing performance testing strategies, benchmark designs, operation pro-
files and workloads. By bringing an experiential understanding into aspects of
Web performance testing, the author is able to offer useful tips to effectively
plan and execute testing activity. In addition, the book offers various guidelines
and checklists to help practitioners conduct and analyze results using the vari-
ous testing tools available for Web based applications.
The book provides a highly systematic approach to performance testing and
offers an expert’s eye view of the testing and functionality of Web systems.
Subraya is careful to provide broad, initial groundwork for the subject in his
first three chapters, which makes this text accessible even to the beginner.
Integrated Approach to Web Performance Testing: A Practitioner’s Guide
will prove to be a valuable tool for testing professionals, as well as for students,
academicians and researchers.

N. R. Narayana Murthy, Chairman and Chief Mentor
Infosys Technologies Ltd.

viii

������

In the current scenario where Information and Communication Technology (ICT)
integration has become affordable, most organizations are looking at every single
application to be Web-enabled. The functional aspects of an application get
reasonable treatment, and also abundant literature is available for the same,
whereas no books or insufficient literature is available on the performance as-
pects of such applications. However, the requirement for developing or creat-
ing systems that perform well in the Web commerce scenario is uncontestable.
The proliferation of Internet applications in recent years is a testimony to the
evolving demands of business on technology. However, software life cycle
methodologies do not yet seem to consider application performance as a critical
parameter until late in the developmental process. Often, this impacts cost and
delivery schedules negatively, leading to extensive rework and also results in
unsatisfactory application performance. In addition, the field of performance
testing is still in its infancy, and the various activities involved do not seem to be
well understood among practitioners.
Today, Web based software systems are both popular and pervasive across the
world in most areas of business as well as in personal life. However, the soft-
ware system development processes and the performance testing processes do
not seem to be well integrated in terms of ensuring adequate match between
required and actual performance, especially since the latter activity is usually
carried out very late in the developmental life cycle. Further, for practitioners, it
is critical to understand the intricacies of environments, platforms, and tech-

 ix

nologies and their impact on the application performance. Given the wide spec-
trum of technologies and tools employed in the implementation of systems for
different platforms, and a variety of tools used for performance testing, it is
important to understand which of the parameters associated with each one of
these is significant in terms of their effect on the system performance.
This book fulfills this void and provides an integrated approach and guidelines
to performance testing of Web based systems. Based upon a mix of theoretical
and practical concepts, this work provides a detailed understanding of the vari-
ous aspects of performance testing in relation to the different phases of the
software development life cycle, using a rich mixture of examples, checklists,
templates, and working code to illustrate the different facets of application per-
formance. This book enables a practical approach to be adapted in making
appropriate choices of tools, methodologies, and project management for per-
formance testing.
The material presented in the book is substantially based on the experience
gained by studying performance testing issues in more than 20 IT application
development projects for leading global/fortune 500 clients at Infosys Tech-
nologies Limited (a leading CMM level-5 global company specializing in soft-
ware consulting, www.infosys.com) since 2000. This has been further rein-
forced through the delivery of more than 10 international preconference tutori-
als and more than 18 internal workshops at Infosys. Research studies con-
ducted in this area by me has led to eight publications in various national and
international conferences. Feedback from participants in tutorials and work-
shops in addition to those from reviewers has been used extensively to continu-
ously refine the concepts, examples, case studies, and so forth presented in the
work to make it useful for designers and architects.
Using a running case study, this book elucidates the concept of performance
life cycle for applications in relation to the development life cycle; this is subse-
quently specialized through an identification of performance related activities
corresponding to each stage of the developmental life cycle. Performance test
results from the case study are discussed in detail to illustrate various aspects
of application performance in relation to hardware resources, network band-
width, and the effects of layering in the application. Finally, guidelines, check-
lists, and tips are provided to help practitioners address, plan, schedule, con-
duct, and analyze performance test results using commonly available commer-
cial performance testing tools for applications built with different technologies
on different platforms, together with enabling them to identify and resolve bottle-
necks in application performance.
This book is written primarily for technical architects, analysts, project manag-
ers, and software professionals who are involved in development and manage-
ment of projects. By using various techniques described in this book, they can
systematically improve the planning and execution of their performance testing

x

based projects. This book could also be used as a text in a software testing
course or it can be introduced as an elective course for graduate level students.
The book is targeted toward two types of readers: the novice and those who
have been exposed to performance testing. The first three chapters are de-
voted mainly to a novice reader who needs a strong foundation with necessary
ingredients on performance testing. The book provides many benefits to differ-
ent categories of professionals.
The benefits from this book would include:

• A method to capture performance related data during requirement analy-
sis;

• A process and method to plan and design for performance tests;
• A process and guidelines for analyzing and interpreting performance test

data;
• Guidelines for identifying bottlenecks in application performance and re-

medial measures;
• Guidelines for optimal tuning of performance related parameters for appli-

cations developed using a sample set of different technologies.

Chapter 1 starts with an overview of software testing and explains the differ-
ence between Web application testing and client server testing, particularly
performance testing, and sets the context for this book. This chapter also dis-
cusses the implications of poor performance and the need for performance
testing and sets an abstract goal. Though the performance testing objective is
to ensure the best field level performance of the application before deployment,
it is better to set subgoals at each level of testing phases. To meet such goals,
one needs to understand the basic definition of various types of performance
testing like load testing, stress testing, and their differences. What type of test-
ing is required to meet the goal or what kind of comprehensive performance
testing is required to ensure an optimal result best understood by the LESS
approach which is discussed in this chapter? Finally, the myths on performance
testing which are always hogging around project managers while investing on
tools and time required to complete the testing is removed in this chapter.
Once the importance of the performance of an application is known, it is neces-
sary to understand how various factors affect the performance. The factors
could be many and varied from different perspectives like technology, project
management, scripting language, and so forth.
Chapter 2 discusses more on these factors that affect the performance. For
instance, technical peculiarities like too many scripting languages, mushroom-
ing of browsers, and Rapid Application Development approach affect the per-

 xi

formance of the application. Further, different environments like client server
environment may affect the performance of the application. A firewall is one of
the important components which is needed to secure the application, but it slows
down the performance of the application. Likewise, all possible aspects affect-
ing the performance are discussed in this chapter.
Performance testing is not to be construed as features testing even though it
has a definite linkage with the latter. In fact, performance testing begins from
where the feature testing ends, that is, once all the desired functional require-
ments expected from the system are fully met. Both features and performance
testing are in one way or another impacted by the various technologies and
languages.
Chapter 3 provides insight about the technology aspects, including the software
languages necessary for Web development. Without understanding the technol-
ogy, working on performance testing is difficult. Hence, the topic on reference
technology will help readers to understand and to appreciate the performance
testing discussed in later chapters. This chapter also discusses various issues
like network performance, technology, and user’s perception.
Once the basic building blocks on concepts about performance testing and its
importance on Web application are ready, the reader is comfortable to dwell on
the process of conducting the performance testing as a practitioner would.
Customarily, designers address performance issues close to the end of the project
life cycle, when the system is available for testing in its entirety or in signifi-
cantly large modular chunks. This, however, poses a difficult problem, since it
exposes the project to a potentially large risk related to the effort involved in
both identifying as well as rectifying possible problems in the system at a very
late stage in the life cycle. A more balanced approach would tend to distribute
such risks by addressing these issues at different levels of abstraction (intended
to result in increased clarity with time), multiple times (leading to greater effec-
tiveness and comprehensiveness in testing application performance), and at
different stages during the life cycle. The very first component of activities
related to preparation for such testing is in collecting and analyzing require-
ments related to the performance of the system alongside those related to its
features and functions.
The main objectives of Chapter 4 is to define goals of performance testing,
remove ambiguities in performance goals, determine the complexity involved in
performance testing, define performance measurements and metrics, list risk
factors, and define the strategy for performance testing.
Real performance testing depends on how accurately the testers simulate the
production environment with respect to the application’s behavior. To simulate
the behavior of the Web site accurately, benchmarks are used. The benchmark
is a standard representation of the applications expected behavior or the likely
real world operating conditions. It is typically essential to estimate usage pat-

xii

terns of the application before conducting the performance test. The behavior
of the Web site varies with time, peak or normal, and hence the benchmarks do
also. This means, there is no single metric possible. The benchmark should not
be too general as it may not be useful in particular. The accuracy of the bench-
mark drives the effectiveness of the performance testing.
Chapter 5 highlights the complexity of identifying proper business benchmarks
and deriving the operation pattern and workload from them. Types of workload
and their complexities, number of workloads required and their design, sequencing
various transactions within the workload and their importance, and required
tools for creating the workload are some of the highlights of this chapter.
Design provides only the guidelines, but the build phase really implements the
design so that execution of the test can be carried out later. Developing a good
testing process guides the build phase properly.
Chapter 6 provides in-depth information on the build phase. The first activity in
the build phase is to plan the various activities for testing. Preparing a test plan
for performance testing is entirely a different ball game when compared to the
functional test plan. A comprehensive test plan comprises test objectives, sys-
tem profile, performance measurement criteria, usage model, test environment,
testing process, and various constraints. However, building a comprehensive
test plan addressing all the issues is as important as executing the test itself.
The build phase also includes planning a test environment. Developing a test
script involves identifying the tool, building proper logics, sequencing transac-
tions, identifying the user groups, and optimizing the script code. Chapter 6 also
drives the practitioners to prepare for the test execution. Once the preparation
for test execution is ready, the system is ready for test execution.
Chapter 7 discusses more on practical aspects of test execution, wherein we
address issues like, entry/exit criteria (not the same criteria as in functionality
testing), scheduling problems, categorizing and setting performance parameters,
and various risks involved. Practitioners can use this chapter as guidelines for
their project during performance test execution.
Once the test execution is completed, the next task is to analyze the results.
This is performed in post-test execution phase which is discussed in Chapter 8.
The post-test execution phase is tedious and has multifaceted activity. Testers
normally underestimate the complexity involved in this phase and face the uphill
tasks while tuning the system for better performance. This chapter mainly dis-
cusses the revisit to the specific test execution through logs, defines a method/
strategy for analysis, compares the results with standard benchmarks, and iden-
tifies the areas of improvement. Guidelines for performance tuning are also
discussed here. The chapter mainly helps the practitioner who is keen on test
execution and analysis of results.
By now, most practitioners understand the complexity of the performance test-
ing and the inability to conduct such a test manually. Managing the performance

 xiii

testing manually and handling performance issues are next to impossible. Auto-
mation is the only solution for any performance testing project, with the best
tools available on the market. There is a need for automation and the automa-
tion process. Test automation is not just using some tools, and the common
assumption is that the tool solves the performance problems. Testers are not
aware of the complexities involved in test automation.
Chapter 9 is dedicated to set up a process for test automation and highlights
various issues involved in test automation. Some of the strategies to succeed in
test automation, based on the author’s vast experience in performance testing,
are also discussed in this chapter. Practitioners always face problems while
selecting a proper automation tool. We present a set of characteristics of a
good tool and a survey of available tools in the market. The chapter summa-
rizes by presenting the guidelines for test automation.
Any application should be performance conscious; its performance must be
monitored continuously. Monitoring of performance is a necessary part of the
preventive maintenance of the application. By monitoring, we obtain perfor-
mance data which are useful in diagnosing performance problems under opera-
tional conditions. This data could be used for tuning for optimal performance.
Monitoring is an activity which is normally carried out specific to technology.
In Chapter 10, we highlight performance monitoring and tuning related to Java
and .NET. The first nine chapters together described the performance testing
from concept to reality whereas Chapter 10 highlights aspects of monitoring
and tuning to specific technologies. This chapter provides an overview of moni-
toring and tuning applications with frameworks in Java and .Net technologies.
Readers must have basic exposure to Java and .NET technology before under-
standing this chapter.
To help practitioners, a quick reference guide is provided. Appendix A dis-
cusses the performance tuning guidelines. Performance tuning guidelines for a
Web server (Apache), a database (Oracle), and an object oriented technology
(Java) are presented. Along with this, .NET coding guidelines and procedure to
execute Microsoft’s performance monitoring tool, PERFMON, are also dis-
cussed. Characteristics of a good performance testing tool and a comparative
study of various tools are presented in Appendix B. Further, some templates on
performance requirement and test plan are provided in Appendix C for easy
reference.
Though guidelines on planning, execution, and result analysis are discussed in
various chapters, they are better understood if discussed with a case study.
Accordingly, a detailed case study on banking function is taken and discussed.
Appendix D highlights various aspects of the case study and brings concepts to
practices. A virtual bank is considered and simple routine business functions
are considered. Here more emphasis is given on performance and thus only
relevant business functions which impact performance are considered. This

xiv

case study provides the performance requirement document and basic design
document on performance testing. Only a sample workload, one test run, and
relevant results are presented and discussed. The case study will help practitio-
ners validate their understanding from the book.
This book addresses only the performance testing aspects, not performance
engineering like capacity planning.

 xv

#��"���������

This book is dedicated to my wife, Yamuna, and son, Gaurav, for their loving
support and inspiration.
I would like to acknowledge and thank Infosys Technologies Ltd. for support-
ing and promoting this project. I am deeply indebted to Mr. Narayana Murthy
NR, Chairman and Chief Mentor, Infosys Technologies Ltd., for his persistent
support and encouragement during the project. I owe enormous thanks to him
for writing the Foreword for this book. I would like to specially thank SV
Subrahmanya, Infosys, who was instrumental in motivating and encouraging
me to work toward the completion of the book. A special thanks goes to JK
Suresh, Infosys, who was and is always a source of inspiration for me. I am
grateful to him for sharing several valuable inputs and for participating in inter-
actions pertinent to the subject. A special acknowledgement goes to Dr. MP
Ravindra for his encouragement and timely intervention on various interactions
during the course of the project.
Creating a book is a Herculean task that requires immense effort from many
people. I owe enormous thanks to Kiran RK and Sunitha for assisting in going
through the chapters. Mr. Kiran was instrumental in aiding the consolidation of
many aspects of practitioner’s requirement from concept to reality. Sujith
Mathew deserves special thanks for reviewing and proffering valuable inputs
on various chapters. Subramanya deserves high praise and accolades for keep-
ing me abreast on the latest happenings in this field and helping in the prepara-
tion of the manuscript. I would also like to commend Siva Subramanyam for his
valuable feedbacks on Chapter 10 and his timely corrections.
A large part of the pragmatics of this book is derived from my involvement with
complex projects developed in Infosys and the experience sharing with many

xvi

participants of tutorials in international conferences. I have had the opportunity
to interact with hundreds of professional software engineers and project man-
agers of Infosys and I thank them all for their help in making this book relevant
to real-world problems. I sincerely appreciate Joseph Juliano’s contribution to
the case study during the analysis of results. Special thanks to Bhaskar Hegde,
Uday Deshpande, Prafulla Wani, Ajit Ravindran Nair, Sundar KS, Narasimha
Murthy, Nagendra R Setty, Seema Acharya and Rajagopalan P for their contri-
bution to the book at various stages.
Thanks are also due to all my colleagues of Education and Research, Infosys
for their continual moral support, especially colleagues at the Global Education
Center.
Besides the reviewers from Idea Group Inc., the only other person who read
every chapter of the book prior to technical review was Shivakumar M of Bharath
Earth Movers Ltd. I wish to express heartfelt gratitude to Shivakumar for scru-
pulously reviewing the first draft of every chapter in this book.
Finally, I would like to thank my family and friends for their perpetual support.
Special thanks to my son, Gaurav for his company on scores of occasions in-
cluding several late nights of writing. Last but not the least, I owe special thanks
to my parents for their blessings.

B. M. Subraya
Mysore, India
January 2006

Web-Based Systems and Peformance Testing 1

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 1

Web-Based Systems and
Performance Testing

For many years, the World Wide Web (Web) functioned quite well without any concern
about the quality of performance. The designers of the Web page, as well as the users
were not much worried about the performance attributes. The Web, in the initial stages
of development, was primarily meant to be an information provider rather than a medium
to transact business, into which it has grown. The expectations from the users were also
limited only to seek the information available on the Web. Thanks to the ever growing
population of Web surfers (now in the millions), information found on the Web
underwent a dimensional change in terms of nature, content, and depth.
The emergence of portals providing extensive, as well as intensive information on desired
subjects transformed the attitude of users of the Web. They are interested in inquiring
about a subject and, based on replies to such queries, make decisions affecting their
careers, businesses, and the quality of their life. The advent of electronic commerce (e-
commerce) (see Ecommerce definition, 2003) has further enhanced user Web interface,
as it seeks to redefine business transactions hitherto carried out between business to
business (B2B) (see Varon, 2004) and business to customer (B2C) organizations (see
Patton, 2004). Perhaps it may even reach a stage where all the daily chores of an individual
may be guided by a Web-based system.
Today, Web-based transactions manifest in different forms. They include, among other
things, surfing the news portal for latest events, e-buying a product in a shopping mall,
reserving an airticket online at a competitive price, or even participating in an e-
auctioning program. In all these transactions, irrespective of users’ online objectives, the
Web users expect not only accuracy but also speed in executing them. That is to say, the

2 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

customer loyalty to a Web site greatly depends on these two attributes, speed and
accuracy. If the Web site design sacrifices speed for accuracy or vice versa, the users
of such Web site lose interest in it and seek greener pastures. Thus, in order to retain its
existing customers and also add new customers to it, the quality of performance of the
Web site must be ensured, apart from accuracy in terms of speed of response and
consistency in behavior. Above all, the user must be privileged to access the Web site
at any time of the day throughout the year.
Perhaps, no other professional is better privileged than a software professional in
appreciating the performance of Web sites, both from user and designer perspectives.
From the user perspective, the parameters for evaluating the performance of the Web site
are only Web site availability and response time. Factors such as server outages or slow
pages have no significance in the mind of the user, even if the person happens to be a
software professional. On the other hand, the same person as a Web master expects the
server to exhibit high throughput with minimum resource utilization. To generalize,
performance of Web-based systems is seen as a thorough combination of 24×7 (24 hours
in a day times 7 days in a week) Web site availability, low response time, high throughput,
and minimum resource utilization. This book discusses the importance of the perfor-
mance of Web applications and how to conduct performance testing (PT) efficiently and
analyze results for possible bottlenecks.

Web Systems and Poor Performance

From users’ perspectives, as said earlier, the performance of Web systems is seen only
as a thorough combination of 24×7 Web site availability, low response time, high
throughput, and minimum resource utilization at client side. In such a situation, it is
worthwhile to discuss the typical reactions of the user for the poor performance variation
of the Web site.

How Web Users React on Web Application’s Poor
Performance

The immediate reaction of the user to server outages or slow pages on the Web is the
feeling of frustration. Of course, the level of frustration depends mainly on the user’s
psychology and may manifest into:

• Temporarily stop accessing the Web page and try after a lapse of time;

• Abandon the site for some days (in terms of days or months and rarely years);

• Not to return to the site forever (sounds a bit unrealistic, but possibilities cannot
be ignored);

• Discourage others from accessing the Web site.

Web-Based Systems and Peformance Testing 3

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Web users want the site to be up whenever they visit it. In addition, they want to
feel that the access is fast. A Web site which is fast for one user may not be fast enough
for another user.

User’s Previous Experience with Internet Speed

A user who is comfortable with a response time of 15 seconds may feel the response time
of 10 seconds as ultra fast; however, the user who is used to accessing sites with
response time of 5 seconds will be frustrated with response time of 10 seconds. Here
user’s experience counts more than the concerned Web sites.

User’s Knowledge on Internet

Those users having working knowledge on the Internet are well aware of the tendency
of response time degradation in Web sites. This enables them to either wait patiently for
the Web site to respond or try to access the site after some time.

User’s Level of Patience

This is something that has to do with the human mind. According to psychologists, the
level of patience in a human being, unlike body temperature, is neither measurable nor
a constant quantum. On the other hand, it differs from person to person depending upon
personality, upbringing, levels of maturity, and accomplishment. The user with a lesser
level of patience will quickly abandon the site if the response is slow and may not return
to it immediately. However, the user with higher levels of patience will be mature enough
to bear with slow pages of the Web site.

User’s Knowledge About the Application

The perception of the user about the performance of the Web site also depends upon
knowledge about the application accessed on the Web. If the user is aware about the
intricacies and complexities involved in the architecture of the application, then the user
will be favorably inclined with regard to the slow response time of the Web site.

User’s Need for the Web Site

The user will bear with the performance of the Web site, however bad it is, if the user
believes that it is the only place where the required information can be obtained.

4 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Stakeholder’s Expectations on Performance

The system developers, sponsors, and owners have a definite stake or interest in the Web
site. The expectations of these stakeholders of the Web site are more exhaustive than that
of the users of the Web site. Their expectations may be in terms of:

• 24×7 Web site availability;

• Quick response time when a query is performed;

• High throughput when a user is Involved in multiple transactions;

• Adequate memory usage of both client and server;

• Adequate CPU usage of various systems used for the transactions;

• Adequate bandwidth usage of networks used for the application;

• Maximum transaction density per second;

• Revenue generated from the Web site from the business perspective.

In addition, the aspects relating to security and user friendly interface, though they have
an expending impact on available resources, will also add to the expectations of the
stakeholders. Of course, the degree of sophistication to be incorporated on these aspects
varies with the nature of application.

Classification of Web Sties

Classification of Web sites based on performance is a subjective exercise. This is because
the demand or expectations from a Web site vary from not only user to user but on the
type of Web sites with which each user is associated. A study on commercial Web sites
by James Ho, “Evaluating the World Wide Web: A Global Study of Commercial Sites”
(1997), classifies the Web sites into three types (see Ho, 2003):

• Sites to promote products and services;

• Sites with a provision of data and information;

• Sites processing business transactions.

Another classification is based on the degree of interactivity the Web site offers. Thomas
A. Powell (1998) classifies Web sites into five categories as shown in Table 1.0. Based
on complexities and interactivity, he categorizes Web sites into static, dynamic, and
interactive ones, and they differ in features.

Web-Based Systems and Peformance Testing 5

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This classification helps to understand the nature of the system and to adopt a better
testing process. These two classifications provide two distinctions in which the Web
sites could be classified. Together they provide information about degree of interactivity
and complexity of Web sites.

The Need for Performance Testing

Before getting into the details regarding the need for performance testing, it is worthwhile
to know whether an organization can survive long term without performance testing. A
thoughtful survey of 117 organizations to investigate the existence of PT provides a
pattern between project’s success and need for PT (see Computer World, 1999). Table
1.1 explains how user acceptance of the system is highly dependent on PT.
The need for speed is a key factor on the Internet (see Zimmerman, 2003). Whether users
are on a high speed connection or a low speed dial up modem, everyone on the Internet
expects speed. Most of the research reports justify the fact that speed alone is the main
factor accessing the Web site.
To illustrate, eMarketer (November 1998) reports that a user will bail out from a site if
pages take too long to load. A typical load time against percentage of users waiting is
tabulated in Table 1.2 (see To be successful, a Web site must be effective, 2003). To
illustrate, 51% of the users wait no more than 15 seconds to load a specific page.
Zona Research Group (see Ho, 2003) reported that the bail out rate increases greatly when
pages take more than 7 to 8 seconds to load. This report popularized the 8 second rule,
which holds that if a Web page does not download within 8 seconds, users will go
elsewhere. This only signifies that the average user is concerned with the quality of the
content in the Web as long as the downloading time is restricted to only a few seconds.
If it is more, they tend to bail out of the Web site. To account for various modem and

Table 1.0. Classification of Web sites based on complexity and interactivity

Sites Features
Static Web sites The Web sites contain basic, plain HTML pages.

The only interactivity offered to user is to click the
links to download the pages

Static with form based interactivity Web sites contain pages with forms, which are
used for collecting information from the user. The
information could be personal details, comments or
requests.

Sites with dynamic data access Web site provides front end to access elements
from database. Users can search a catalogue or
perform queries on the content of a database. The
results of the search or query is displayed through
HTML pages

Dynamically generated Web sites Web sites displaying customized pages for every
user. The pages are created based on the
execution of scripts.

Web-based software applications Web sites, which are part of a business, process
that work in a highly interactive manner.

6 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

transfer speeds, Zona Research provides expected load time against modem speed as
shown in Table 1.3 (see Chen, 2003). The findings demonstrate that T1 lines are fast
compared to modems.
Furthermore, Zona Research cautions about the impact of violating the 8 second rule (see
Submit Corner, 2003). It says violation of the 8 second rule inflicts more losses than slow
modems. According to this finding, U.S. e-commerce is incurring a loss as high as $44.35
billion each year due to slow pages as shown in Table1.4 (see Zona Research, Inc., 2003).
ISDN or T1 lines are good for e-commerce.

Table 1.1. Survey of 117 organizations to investigate the existence of performance
testing

Organization in which PT is considered Performance Testing practices
Was accepted Was not accepted

Reviewed or Simulated (performance during
requirements analysis and design)

21% 0%

Testing conducted at early stages of SDLC 35% 38%
Testing conducted at later stages of SDLC 38% 26%
Did post deployment testing 0% 8%
Did not do performance or load testing at all 6% 60%

Table 1.2. Bail out statistics according to eMarketer reports

Load Time Percentage of Users Waiting
10 seconds 84%
15 seconds 51%
20 seconds 26%
30 seconds 5%

Table 1.3. Expected load time against modem speed

Modem Speed Expected Load time
14.4 Kilobytes Modem 11.5 seconds
33.6 Kilobytes Modem 7.5 seconds
56 Kilobytes Modem 5.2 seconds
Cable/DSL Modem 2.2 seconds

T1 and Above 0.8 seconds

Table 1.4. Monthly loss from slow page loading

Speed Lost sales in millions
14.4 Kilobytes $73
28.8 Kilobytes $97
56 Kilobytes $100

ISDN $14
T1 $38

Web-Based Systems and Peformance Testing 7

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Industry wise annual losses (see Table 1.5) due to violation of the eight second rule show
the concern on slow downloading pages as reported by Zona Research Group (2003).
Table 1.5 shows how different categories of loading pages affect the business.
TurboSanta (see Upsdell, 2003) reports (December 1999) that the average home page load
time among the Web’s top 120 retailers is about five seconds.
Jacob Neilson (2000) (see Response times: The three important limits, 2003) says the goal
must be to ensure customers the right answers to their mouse clicks within a few seconds
at anytime. He suggests that 95% of requests must be processed in less than 10 seconds
to win customer confidence as shown in Table 1.6.
Zona Research (2003) estimates that businesses lose US$25 billion a year because of Web
site visitors tendency not to wait for the long pages to load. However, Jupiter Media
Metrix say (see Sherman, 2004) that 40% of surfers in the U.S. return or revisit the Web
sites loading their pages in a few seconds.
Appliant (Chen, 2003) surveyed 1,500 of the most popular Web sites, including AltaVista,
AOL, eBay, MSN, and Yahoo. Unlike prior studies which were based on robot-based test
traffic, this study was conducted by downloading each home page, counting content
components, measuring document sizes, and then computing best case download times
for a typical end user connection via a 28.8 Kilobytes/second modem.
The findings of the study revealed that the average home page uses 63 Kilobytes for
images, 28 Kilobytes for HTML, 12 Kilobytes for other file contents, and have a best case
first load time of 32 seconds. In other words, the average American user waits for about
30 seconds the first time they look at a new home page. According to this research, the

Table 1.5. Annual losses due to violation of eight second rule

Industry Lost sales in millions
Securities trading $40
Travel & Tourism $34
Publishing $14
Groceries $9
Personal Finance $5
Music $4
Box office receipts $3
Textiles/Apparel $3

Table 1.6. User’s view on response time

Response time User’s view
< 0.1 second User feels that the system is reacting instantaneously.
<1.0 second User experiences a slight delay but he is still focused on

the current Web site.
< 10 seconds This is the maximum time a user keeps the focus on a Web

site, but his attention is already in distract zone.
>10 seconds User is most likely to be distracted from the current Web

site and looses interest.

8 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

average load time for AltaVista, AOL, eBay, MSN, and Yahoo home pages is about 25
seconds.
Web sites such as AltaVista and AOL receive many repeat visits with load time benefiting
from documenting the cache in the browser. The best case of “cached download time”,
assuming browsers retain all cacheable document components, for the five first tier sites
is 4 seconds which is faster than the 1,500 site average load time of 7.8 seconds. This
estimation always addresses best case scenarios only. However, actual performance also
depends on factors such as network conditions and Web server load time. Based on this
report and Web site user experience, a new rule of 30 seconds has emerged as opposed
to the initial eight second rule of Zona Research.
In addition, it is also noted by Appliant Research that some of the Web sites in the US
targeting the business audience are less concerned with the performance of dial up
systems. This is also reinforced by the findings of Neilsen/NetRatings (February 2003)
(see High speed connections, 2003) that high speed connections are quite common
among business users (compared with home users) in many of the developed countries.
However, knowing connection speeds of target users is an important aspect in determin-
ing the user’s expectation on performance. Many people still use lower speed modems.
Table 1.7 provides the percentage of users with reference to the speed of modems.
A survey by Pew Internet (April 2004) strengthens the views of Neilsen/NetRatings
report. The survey was conducted in 2003 and 2004 and found that 60% of dial up users
were not interested in switching to a broadband connection. This shows that some users
are perfectly satisfied with their slow connections. These statistics alert PT profession-
als to not ignore users with slower connections while planning the effort required for
performance testing.

Table 1.7. User’s connection speeds as reported by Neilsen/Netratings

Connection Speed Users
14.4 Kilo baud or less 3.2%
28.8-33.6 Kilo baud 9.3%
56.6 Kilo baud 51.6%
High speed 128 Kilo baud or more 35.9%

Note: The data presented here primarily pertains to the USA and Canada. The Nielsen/NetRatings
further estimated the relationship between the number of pages accessed via connecting speed as
shown in Table 1.8. High speed connections provide better page access than low speed modems.

Table1.8. Percentage of page accesses observed in accordance

Connection Speed Page accesses
14.4 Kilobaud or less 0.7%
28.8-33.6 Kilobaud 2.0%
56.6 Kilobaud 10.9%
High speed 128 Kilobaud or
more

86.5%

Web-Based Systems and Peformance Testing 9

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition, following news snippets emphasizes the importance of Web site perfor-
mance:

“Google is a little unusual among dot coms because it competes based on performance,
not glitter”, says David C. Croson, professor of operations and information. “It’s simply
the best at search, period. It finds pages that other search engines can’t find. And when
you search 30 times a day, as I do, performance is what matters.” (see Google success,
2003, http://news.com)

“These days, online shopping sites are straining under the holiday load”, says Keynote
Systems. The company’s e-Commerce Transaction Performance Index shows major
online shopping sites experienced performance problems during the week beginning
December 1. The index — which measures the response time and success rate for
executing a typical multistep online retail transaction on 13 of the most active e-
commerce sites (such as Amazon, Best Buy, Target, and Wal-Mart) — dipped at times
during the week to as low as 80% success rate, meaning that consumers could complete
only 8 out of 10 transactions, says ARM Research Group. (see Reports Keynote, 2004)

“We always knew we had a bottleneck”, says David Hayne, a marketing coordinator
at Urban Outfitters who is responsible for the retailer’s Web site technology. “The
company’s Web application servers have to refer to a back end product database —
which was not designed to handle Web processing — to display pages, Hayne says. The
process slowed Web page views considerably.” (see Web shops fight fraud, 2004)

“If a site is always available but slow, a company is not achieving its objectives from
a customer standpoint,” says Jeff Banker, vice president of Gomez Networks, one of the
many firms that monitor site performance. “If a site is fast yet unavailable infrequently,
it’s still meeting expectations.” Banker points to eBay — which has experienced
infrequent but prolonged outages — to support his assertion that users will stick with
sites they find valuable.

“Availability is assumed at this point, like the dial tone on a phone,” Banker says. “But
performance is often lousy, and that affects business.”

“We don’t have downtime, but if we have performance problems, we get a lot of heat,”
Dodge says. (see Zimmerman, 2003)

User tolerance for slow performance varies by site and the importance of the information
they’re seeking, says Bruce Linton, president of performance monitor WebHancer.

These snippets demonstrate the need for effective and efficient PT on Web sites before
deployment.

10 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

When to Detect Performance Bottlenecks

Detecting a bottleneck (see Barber, 2004) in the Web site does not call for a super human
effort, nor is it an art restricted to a few. On the other hand, the cause for the occurrence
of a bottleneck in the Web may be outside the scope of many users. When a user accesses
the Web site for the first time, the user may be expecting the display of the requested Web
page. Instead, more often than not, the user may be confounded with the display of an
error message as shown in Figure 1.1. The display of error message can be construed as
an indication for a possible bottleneck in Web architecture.
There may be several causes for creeping of errors or bottlenecks in displaying the
desired page. For instance, it may be due to malfunction of any of the components in the
Web architecture. It may be on account of the operating system, browser settings,
browser version, or due to the add on components. Problems relating to server or client
resources, third party components, and also configuration of the Web, application or
database servers, bandwidth, and traffic complicate the generation of bottlenecks in the
Web. To illustrate, when a person tries to access a Web-based application using 28.8
Kilobytes per second dial-up connection, the person may fail to download a page. But
the same page can be downloaded successfully by using T1 lines. Here the main
bottleneck is bandwidth. What is important to know is that by just looking at an error
message, it is impossible to identify the area and root cause of the bottleneck except for
the fact that there is a bottleneck that needs to be addressed.

Figure 1.1. Web page with an error

Web-Based Systems and Peformance Testing 11

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Like bandwidth, server configuration may lead to a bottleneck in the Web. If the virtual
directory of Web/application server is not properly configured, the requested scripts,
data, or file will not be serviced properly. Similarly, the issues of compatibility — between
the Web and application servers — do play a role in optimizing the response time. To
illustrate, if the application server is configured to execute the scripts in a certain
directory and the Web server is configured in such a way that the directory does not allow
executing the scripts in that directory, the requested application would suffer from the
issue of compatibility leading to bottleneck in the system. In the same way, the browser
settings, like the issue of compatibility between the servers, may be a root cause for a
bottleneck, if it is disabled to execute certain scripts like Java scripts.
The foregoing paragraphs very clearly bring out the fact that the cause for a bottleneck
in the Web system may be due to several factors. It need not necessarily be due to slow
response of the network or the down time of the server, though many times, the users
complain about the poor performance of the Web site due to these two factors alone. It
is in this context that testing the performance of the Web system gains significance so
that the true cause for the poor response can be identified. In fact, this forms the core
objective for PT and, needless to say, in the absence of it, the real cause will be
camouflaged, much to the chagrin of stakeholders, in the cloak of user’s perception
without any antidote for poor performance.
One of the effective techniques often used in pedagogy to find the extent of understand-
ing by the student is the questionnaire method. The application of the same in the domain
of PT will help in finding out the real cause for poor performance of the Web system. Some
of the questions that need to be addressed are:

• Is it the problem of slow response time?

• Is it the problem of unavailability?

• Is it the problem of frequent time outs?

• Is it the problem of unexpected page display?

• Is it the problem of irritating pop up advertisements?

• Is it the problem of bad organization of the content?

• Is the entire Web site slow or just a particular transaction?

• Is the site slow for the entire user base or to certain groups of users?

• Does a set of users report the same problem frequently?

If so, analyze by:

• Investigating their location of use;

• Investigating their link speed;

12 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Investigating their type of connection;

• Investigating the specific interactivity.

PT helps in finding answers for questions like:

• Will the system be able to handle increases in Web traffic without compromising
system response time, security, reliability, and accuracy?

• At what point will the performance degrade, and which component will be respon-
sible for the degradation?

• What impact will performance degradation have on company sales and technical
support costs?

• What could be the problem? Is it due to the server, network, database, or the
application itself?

• How to predict the performance problem before hand. How to resolve the matter
before that could occur.

• If the predicted problem cannot be resolved within time, what could be the
alternative?

• Is it necessary to monitor all the hardware components such as router, firewall,
servers, network links, or is just the end to end monitoring sufficient?

PT helps, in general, to build confidence of the owners of the Web site to attract more
customers.

General Perception about
Performance Testing

PT is viewed in different ways based on the goals set for performance measurements. If
the requirement is concentrated on specific characteristics of the system such as
response time, throughput, capacity, resource utilization, and so forth, then the percep-
tion on PT also differs.

Response Time Testing

Response time (see Response times: The three important limits, 2003) represents the
user’s perception of how fast the system reacts for a user request or query. The reaction
may be slow or fast based on the type of activity and time required to process the request.

Web-Based Systems and Peformance Testing 13

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Response time testing is conducted to know how long the system takes to complete a
requested task or group of tasks.
Acceptance of a particular response time, as said earlier, is a factor related to human
psychology. Expectations differ from user to user. A user who has worked with 5 seconds
response time will get frustrated with 10 seconds response time. Though, the reasonable
response time differs from application to application and user to user, but industry norms
are as follows:

• For a multimedia interactive system, response time should be 0.1 second or less,
90% of the time.

• For online systems where tasks are interrelated, response time should be less than
0.5 second, 90% of the time.

• For an online system where users do multiple tasks simultaneously, response time
should be 1 second or less, 90% of the time.

The consistency of response time is measured in several test runs if the performance is
calculated specifically in terms of response time.

Throughput Testing

Throughput testing measures the throughput of a server in the Web-based system. It is
a measure of number of bytes serviced per unit time. Throughput of various servers in
the system architecture can be measured as kilobits/second, database queries/minute,
transactions/hour, or any other time bound characteristics.

Capacity Testing

Capacity testing (see Miller, 2005) measures the overall capacity of the system and
determines at what point response time and throughput become unacceptable. Capacity
testing is conducted with normal load to determine the extra capacity where stress
capacity is determined by overloading the system until it fails, which is also called a stress
load to determine the maximum capacity of a system.

Myths on Performance Testing

Perception on PT differs from user to user, designer to designer, and system to system.
However, due to lack of knowledge, people understand PT in many ways leading to
confusion among the user as well as developer community. Some of the myths on PT are:

14 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Client server performance problems can usually be fixed by simply plugging in a
more powerful processor.

• If features work correctly, users do not mind a somewhat slow response.

• No elaborate plans are required for testing; it is intuitively obvious how to measure
the system’s performance.

• Needs just a few hours to check performance before deployment.

• PT does not require expensive tools.

• Anyone can measure and analyze the performance; it does not require any
specialized skills.

However, the real picture on PT is entirely different. It is a complex and time consuming
task. Testing on only a few parameters on performance do not yield proper results.
Complex parameters and different approaches are required to test the system properly.

Performance Testing: “LESS” Approach

Performance of Web applications must be viewed from different objectives: fast response
against a query, optimal utilization of resources, all time availability, future scalability,
stability, and reliability. However, most of the time, one or few objectives are addressed
while conducting performance testing. While conducting PT with any objective in mind,
the ingredients to the testing system are the same. The ingredients could be number of
concurrent users, business pattern, hardware and software resources, test duration, and
volume of data. The result from such performance tests could be response time,
throughput, and resource utilization. Based on these results, some of the indirect results
like reliability, capacity, and scalability of the system are measured. These results help
in drawing a conclusion or making a logical judgment on the basis of circumstantial
evidence and prior conclusions rather than just on the basis of direct observation. Such
reasoning is required to justify whether the system is stable/unstable, available/
unavailable, or reliable/unreliable. This can be achieved by conducting the LESS (Load,
Endurance, Stress, and Spike) (see Menascé, 2003; Anwar & Saleem, 2004) testing
approach.

Load Testing

Load testing (see Menascé, 2003) is a term which finds a wide usage in industry circles
for performance testing. Here, load means the number of concurrent users or the traffic
in the system. Load testing is used to determine whether the system is capable of handling
various anticipated activities performed concurrently by different users. This is done by
using a test tool to map different types of activities; then through simulation, different
real life conditions are created and in each of these simulated situations, the mapped

Web-Based Systems and Peformance Testing 15

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

activities are performed concurrently by a set of simulated users. Users’ thinking time
during input to the system is also captured. All normal scenarios are simulated and
subjected to testing. Load testing is performed to justify whether the system is
performing well for the specified limit of load.
To illustrate this, consider a Web-based application for online shopping which is to be
load tested for a duration of 12 hours. The anticipated user base for the application is 1,000
concurrent users during peak hours. A typical transaction would be that of a user who
connects to the site, looks around for something to buy, completes the purchase (or does
not purchase anything), and then disconnects from the site.
Load testing for the application needs to be carried out for various loads of such
transactions. This can be done in steps of 50, 100, 250, and 500 concurrent users and so
on till the anticipated limit of 1,000 concurrent users is reached. Figure 1.2 depicts a
system being tested for 10 and 100 constant load of users for a period of 12 hours. The
graph indicates that during these 12 hours there is a constant of 10 or 100 active
transactions. For load testing, the inputs to the system have to be maintained so that
there are a constant number of active users. During the execution of the load test, the goal
is to check whether the system is performing well for the specified load or not. To achieve
this, system performance should be captured at periodic intervals of the load test.
Performance parameters like response time, throughput, memory usage, and so forth
should be measured and recorded. This will give a clear picture of the health of the system.
The system may be capable of accommodating more than 1,000 concurrent users. But,
verifying that is not under the scope of load testing. Load testing ensures the level of
confidence with which the customer uses the system efficiently under normal conditions.

Endurance Testing

Endurance testing deals with the reliability of the system. This type of testing is
conducted for different durations to find out the health of the system in terms of its
consistent performance. Endurance testing is conducted either on a normal load or on
a stress load. However, the duration of the test is the focus of the test. Tests are executed
for hours or sometimes even days. A system may be able to handle the surge in number
of transactions, but if the surge continues for some hours, then the system may
breakdown. Endurance testing can reveal system defects such as slow memory leaks or
the accrual of uncommitted database transactions in a rollback buffer which impact
system resources.
When an online application is subjected to endurance testing, the system is tested for
a longer duration than the usual testing duration. Unlike other testing where the
execution is held for a lesser duration, endurance testing is conducted for long duration
sometimes more than 36 hours. Figure 1.3 depicts the endurance test on a system with
different loads of 10 active users and also a peak load of 1,000 active users running for
a duration of 48 hours. This attempt can make the system become unreliable and can lead
to problems such as memory leaks. Stressing the system for an extended period reveals
the tolerance level of the system. Again, system performance should be captured at
periodic intervals of the test. Performance parameters like response time, throughput,
memory usage, and so forth should be measured and recorded.

16 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Stress Testing

Though load testing and stress testing (see Anwar & Saleem, 2004) are used synony-
mously for performance related efforts, their goals are different. Load testing is con-
ducted to check whether the system is capable of handling an anticipated load where as
stress testing helps to identify the load that the system can handle before breaking down
or degrading drastically. Stress testing goes one step beyond the load testing and
identifies the system’s capability to handle the peak load. In stress testing, think time
is not important as the system is stressed with more concurrent users beyond the
expected load.

Figure 1.2. Load vs. time during load testing

Time (Hrs)

10

0
12

Users

100

Figure 1.3. Load vs. time during endurance testing

Time (Hrs)

1000

0 48

Users

10

Web-Based Systems and Peformance Testing 17

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Let us take the same example of an online shopping application which needs to undergo
stress testing. Here, unlike load testing where testing was conducted for specified user
load, stress testing is conducted for a number of concurrent users beyond the specified
limit. It determines the maximum number of concurrent users an online system can service
without degrading beyond the anticipated limit of 1,000 concurrent users. However, there
is a possibility that the maximum load that can be handled by the system may be found
to be same as the anticipated limit.
Figure 1.4 depicts a scenario where the stable load of the system is a load of 1,000 active
users. In this stable state, the system is continuously introduced with a surge of 200
users. System performance should be captured at periodic intervals. The performance
should be monitored to see if there is any degradation.
If the test completes successfully, then the system should be load tested for 1,200
concurrent users. System performance should be monitored to see if all parameters are
stable. If it is not stable, then we understand that the load of 1,200 is not the stable
condition for the system. It could be 1,000 or between 1,000 and 1,200, which has to be
determined. If it is stable at 1,200, then we move on to the next level of stress testing.
The next level will have a higher surge of users, maybe a surge of 500 more continuous
users. This should be introduced keeping 1,200 as the stable condition for the system;
again the performance of the system is monitored. This procedure is carried on, and at
some increased stress, the system will show signs of degradation. This clearly shows the
amount of stress the system can take under the conditions that the system was set up
for. System degradation can also be understood here. A system can degrade gracefully
and stop or maintain its stable state; on the other hand, it can instantly crash, bringing
down the complete system. Stress testing determines the behavior of the system as user
load increases (Figure 1.5). It checks whether the system is going to degrade gracefully
(Figure 1.5A) or crash (Figure 1.5B) when it goes beyond the acceptable limit.

Figure 1.4. Stress testing during a stable state

1200

1000

Time (Hrs)

Users

0

18 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Spike Testing

Spike testing is conducted to test the system suddenly for a short duration. Each surge
the system has to face is called a spike.
This can be done with a constant level of spikes over the system’s stable load of users
as shown in Figure 1.4, that is, spikes of 200 users over the stable state of 1,000 users.
On the other hand, it can be tested for the system for variable spikes as shown in Figure
1.6. This testing ensures whether the system will be stable and responsive under
unexpected variations in load. If an unexpected surge appears in the user base, the
performance of the system should degrade gracefully rather than come crashing down
all of a sudden.
In the online shopping application example, there could be variable level of activities
throughout the day (24 hours). We can anticipate that the activities will be at a peak
during midday as compared to the rest of the day. Figure 1.6 depicts the different spikes
when the system is tested across 24 hours with a surge in activities during midday.
A spike is an unexpected load which stresses the system. Unlike increasing the load
incrementally and going beyond the specified limit gradually as in case of stress testing,
spike testing starts with a less number of users, say one user and then 50 concurrent users
and then suddenly the user base is increased. This can make the system become unstable
since the system might not be prepared to service a sudden surge of concurrent users.
In this case, the possibility of system crashing is very high.
LESS is a comprehensive approach to address the challenges discussed so far in
performance testing. While individual tests may satisfy a particular user expectation, this
approach provides a multidimensional view about the performance of the system as a
whole in terms of response time, optimal resource utilization, and scaling up of more
users. Table 1.9 highlights how the LESS approach slowly ramps up concurrent users and
duration to address all performance issues.

Difference between the
Components of LESS

The LESS approach ensures complete performance testing, but the process comprises
more resources and time. The other approach, in terms of cost advantage, is to conduct
individual tests instead of conducting all the tests envisaged in the LESS approach. The
serious drawback in restricting performance evaluation to individual tests is that each
one of them provides only one dimension of performance, ignoring the rest. Each test is
performed by a black box method; that is, they accept inputs and produce outputs
without knowing the internal structure of the system under test (SUT). On the other hand,
each component in LESS addresses different goals. This means load testing is to check
the system with an expected load, stress testing to check the maximum load that the
system can support, spike testing to determine how the system behaves at sudden load

Web-Based Systems and Peformance Testing 19

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

surge, and endurance testing to ensure how the system behaves if the stress load is
exerted on a system for a longer time. Table 1.10 provides the basic objectives of these
testing efforts. Each test targets different goals.
Another important difference among these components is in terms of inputs to the system
during the testing period. Table 1.11 highlights the variation in inputs for various types
of performance related testing. Load and stress testing differ in number of concurrent
users. Load testing is performed for a constant number of users where as stress testing
is carried out with a variable number of concurrent users.
Stress testing provides two scenarios. In the first scenario, the variable factor is the
number of users within the bandwidth to check the capacity of the system, keeping other
inputs constant. In another scenario, hardware/software resources are varied to stress
the system, keeping other inputs constant.
Spike testing deals with the surge in the load for short duration with uncertainty in input
business pattern. The uncertainty in the business pattern depends on external factors
to the system like sudden change in business, political change affecting the business,
or any other unforeseen circumstances.
In endurance testing, load is increased beyond the expectation for a long duration of time,
and the SUT is observed for its reliability. Here there is a need to choose the specific
business pattern which may impact the performance during the endurance testing.
By adopting the LESS approach, it is easy to understand the performance behavior of
the system from different points of view. The inference drawn from such tests will help
to verify the availability, stability, and reliability of the system. Table 1.12 provides the
inferences drawn from the LESS approach which indicates that LESS ensures complete
performance testing.

Figure 1.5. System degradation during stress testing

Figure 1.5b. Instant degradationFigure 1.5a. Graceful degradation

20 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Although LESS provides a comprehensive approach for performance testing, some more
additional tests needs to be performed.
Additional testing efforts are required to integrate with PT to enhance user satisfaction
and add more value to user requirements. The following section briefly explains configu-
ration testing and scalability testing as additional testing efforts along with a note on
contention and security testing.

Configuration Testing

Configuration testing is integrated with PT to identify how the response time and
throughput vary as the configuration of infrastructure varies and to determine the
reliability and failure rates.
Configuration tests are conducted to determine the impact of adding or modifying
resources. This process verifies whether a system works the same, or at least in a similar
manner, across different platforms, Database Management Systems (DBMS), Network
Operating Systems (NOS), network cards, disk drives, memory and central processing
unit (CPU) settings, and execution or running of other applications concurrently.

0

U s e rs

Time (hrs)

Figure 1.6. Load vs. spike testing

Table 1.9. LESS with ramp up of concurrent users

Type s of te sting

Number of concurrent users
and ramping up

Duration

Load Testing 1 User � 50 Users �100 Users �250 Users
�500 Users…………. �1000Users

12 Hours

Stress Testing 1 User � 50 Users �100 Users �250 Users
�500Users…………. �1000Users �Beyond
1000Users……….. �Maximum Users

12 Hours

Spike Testing 1 User� 50Users� Beyond 1000 Users 12 Hours � 10 Hours
� 8 Hours…
Hour….Minutes

Endurance
Testing

Maximum Users 12 Hours -> …..Longer
duration(days)

Web-Based Systems and Peformance Testing 21

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Compatibility testing is a term which is used synonymously with configuration testing
since compatibility issues are the matter of interest here.

Scalability Testing

Scalability testing integrates very well with PT. The purpose of scalability testing is to
determine whether the application automatically scales to meet the growing user load.
To illustrate, in a typical practical situation, the Web master may expect a five-fold load

Table 1.10. Perfomance testing goals of LESS components

Load testing • Testing for anticipated user base
• Verifies whether system is capable of handling load under

specified limit
Stress testing • Testing beyond the anticipated user base, i.e., unreasonable

load
• Identifies the maximum load a system can handle
• Checks whether the system degrades gracefully or crashes

suddenly
Spike testing • Testing for unexpected user base

• Verifies stability of the system
Endurance testing • Testing for stress load for longer duration

• Verifies reliability and sustainability of the system

Table 1.11. LESS components and input variations

Type s of
Testing

Number of
Users

Business
Pattern

Hardware/Software
Resources

Duration Volume
of Data

Load Testing Constant Constant Constant Constant Constant
Stress Testing Variable Constant Constant/variable Constant Constant
Spike Testing Variable Variable Constant Variable Constant
Endurance
Testing

Constant Variable Constant Variable Constant

Table 1.12. Inference from LESS approach

LESS Components Inference drawn after the test
Load Testing Whether the Web system is available?

If yes, is the available system stable?
Stress Testing Whether the Web system is available?

If yes, is the available system is stable?
If Yes, is it moving towards unstable state?

Spike Testing Whether the Web system is available?
If Yes, whether available system is unstable?

Endurance Testing Whether the Web system is available?
If Yes, is the available system is stable?
If Yes, is it reliable and sustainable?

22 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

increase on the server in the next two years. Using scalability testing will enable the Web
master to know whether the existing resources will suffice to maintain the same level of
performance or if it is necessary to upgrade the server. Suppose through scalability
testing it is revealed that increased gradation is required; then resource planning may
be initiated for increasing the CPU frequency or to add more RAM to maintain the same
performance with increase in loads as the case may be.
Thus scalability testing enables simulation of the use of resource variables such as the
CPU frequency, number and type of servers, and size of available RAM to determine when
it becomes necessary to introduce additional servers to handle the increasing load.
Contention testing can also be considered as an additional test which integrates with PT
effort. This process deals with evaluating complex problems such as deadlock condi-
tions, concurrency problems at kernel level. Additionally, security testing can also be
considered as an additional test along with PT for mission critical Web sites. It is worth
noting that the discussion of these two testing efforts is beyond the scope of this book.

Performance Testing Life Cycle

Software Development Life Cycle (SDLC) (see Drake, 2004) is a well known terminology
in software engineering wherein we study mainly the different phases of development
of software by using different methods/frameworks. Similarly, functional testing life
cycle, a subset of SDLC, is also a well proven process and known among testing
communities. However, PT Life Cycle (PTLC) is a new term, which is relevant for testing
Web-based systems. PTLC is an indispensable part of SDLC. Since performance issues
must be addressed at each level of SDLC, there is a need to relook into the SDLC and how
performance issues are addressed. This helps in promoting allocation of more time and
effort for performance testing.

Performance Testing in Traditional Development Life
Cycle

The traditional SDLC defines testing phase as one of its sub activity and the scope is
limited. Testing itself is a late activity in SDLC as shown in Figure 1.7. This activity
consists of many sub activities. One such activity is system testing which in turn drives
the performance testing. Thus PT is isolated as a single phase with in testing as illustrated
in Figure 1.7. Like in functional testing, PT is also a late activity and causes many
problems. For instance, performance problems in the requirements and design phase may
incur outrageous costs. These problems are noticed late; hence a new approach is
needed.

Web-Based Systems and Peformance Testing 23

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance Testing in Modern Development Life Cycle

The traditional SDLC has undergone many changes based on users needs. Most of the
users want the system development to be completed with in a short time. Many users
expect them to be part of the system development and want to see the system as it evolves.
In such cases, PT activity must be initiated along with SDLC and Software Testing Life
Cycle (STLC). Figure 1.8 shows the different phases of STLC along with PTLC. A typical
PTLC consists of analyzing service level agreement, defining performance requirements,
creating test design, building performance test scripts, how these test scripts are
executed, and finally the analysis phase. Each phase in SDLC has a component of PTLC.
The following chapters in this book elaborate the concept of adopting PT throughout
the development life cycle.

Performance Testing vs.
Functional Testing

Functionality and performance are two different entities which drive the success of a
system. Though both types of testing aim at the same goal of satisfying the requirement,
they differ in the objectives, expectations, and method of conducting the test.
Functional testing is conducted to verify the correctness of the operations of the
software. The features and functions are tested before performance testing. The purpose
is to verify that the internal operations of the product are working according to desired

Planning Analysis Design Implementation Testing Maintainance

Unit testing
acceptance

testing
System testingIntegration testing

Requirements
testing

Usability testing Security testing
Performance

testing
Documentation

testing

Figure 1.7. Scope for performance testing in traditional development life cycle(s)

24 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specifications. Functional testing typically tests accuracy of the application and how it
behaves with different operating systems. Testing objectives are well defined and
straightforward. To illustrate, if an application has a feature to open a file, expected
outcome is clear. If the file opens successfully and correctly, it passes the test. If the file
does not open correctly, it fails.
PT is relatively complex because the performance of the system itself is subjective. What
one user might perceive as slow might be good enough for another user. Unlike the
functional testing, PT objectives are quite straightforward and they vary widely depend-
ing on business conditions. Software that is functionally correct but is not in compliance
to performance requirements is unacceptable to the users. PT is designed to test the
overall performance of the system at high load and stress conditions. PT occurs through
out the software development life cycle to isolate performance related constraints. Even
at unit level, the performance of the individual module may be assessed as the internal
logic of software that is being tested.
However, the true performance of the system is identified when the software is fully
integrated and ready for production. Performance test requires both hardware and
software environment to measure the resource utilization. By capturing the resource
utilization statistics, the performance tester can uncover situations that lead to degra-
dation and possible system failure.
Performance of a system is generally measured in terms of response time for the user
activity. To illustrate, a customer likes to withdraw money from an Automated Teller
Machine (ATM) counter of a specific bank. Customer inserts debit/credit card and waits
for the response. If the system takes more than 5 minutes (say) to deliver the cash,
customer may not appreciate the system. In this situation, though, the system is
functioning (delivering cash) according to requirements. It fails in terms of performance
(takes more than 5 minutes to complete the transaction).

Test Requirements
Specification Test Planning

Building Test
Cases Test Execution

Analysis of
Service Level
Agreement

Perfomance
Test Result

Analysis

Performance
Test Definition

Phase

Performance Test
Design Phase

Performance
Test Build

Phase

Performance
Test

Execution

Fixing Residual
Defects

Figure 1.8. Different phases of STLC and PTLC

Web-Based Systems and Peformance Testing 25

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Which Systems are Vulnerable to Performance
Problems?

Both client-server and Web-based applications are vulnerable to performance problems
but in varying degrees of intensity. However, the risks involved with a poor performance
are too high in the case of Web-based applications.

Client Server Applications

Client-server architectures represent a significant challenge for software testers. The
distributed nature of client/server environments, the performance issues associated with
transaction processing, the potential presence of a number of different hardware
platforms, the complexities of network communication, the need to service multiple
clients from a centralized database, and coordination requirements imposed on the server
all combine to make testing of client-server architectures and the software that resides
within them considerably more difficult than stand alone applications. In fact, recent
industry studies indicate a significant increase in testing time and cost when client-
server environments are developed.

Web-Based Applications

Web-based applications have evolved from the client-server applications. The client-
server concepts are maintained through a Web-client and a Web server. These are
software applications which interact with users or other systems using Hyper Text
Transfer Protocol (HTTP). For a user, Web client is a browser such as Internet Explorer
or Netscape Navigator; for another software application it is an HTTP user agent which
acts as an automated browser.
The use of Web applications can range from simple to highly complex tasks. With the
advent of e-commerce practice, business enterprises are simplifying the processes and
speeding up the transactions using Web as an effective medium. Web-based applica-
tions are extensively used for both B2B and B2C e-commerce. The e-commerce technol-
ogy used for Web applications is developing rapidly. More open system culture is
followed and systems are vulnerable to performance problems. Simple applications are
being developed with a Common Gateway Interface (CGI) typically running on the Web
server itself and often connecting to a database which is again on the same server.
Modern Web applications are mounted on complex business logic tiers such as Web
server, application server, database server, firewall, router, and switches. Each tier is
exposed and vulnerable to performance problems.

26 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Benefits from Performance Testing

PT provides a mechanism to study the behavior of the system. It builds up a confidence
to host Web system commercially. Robustness of the system is studied which is useful
for maintaining the sustainability of the system. Some of the other benefits are:

• Improved quality from a user’s perspective;

• Reduced cost of change;

• Reduced system costs;

• Increased profits;

• Early identification of major application defects and architectural issues;

• Guaranteed customer satisfaction;

• Clarity on resource utilization;

• PT also removes many myths associated with the users and builds confidence.

Constraints of Performance Testing

PT is a complex and time consuming activity. The testing process should start from the
requirements collection phase itself. PT requires simulating several hundred concurrent
users. This requires automated tools that are expensive. A proper environment like
bandwidth, system configuration, and concurrent users hinders in providing adequate
performance results. Production environment cannot be simulated as it requires invest-
ments. A subdued environment may not produce the relevant results. Skill set to plan and
conduct PT is not adequately available. It is a late activity, and duration available for
testing is not adequate. However, testing the system for an optimal performance is a
challenge and an opportunity.

Summary

The World Wide Web is an irresistible entity when it comes to business and information
access in the modern world. All business systems utilize WWW to perform effectively
in their own domains of business. A world wide survey shows that business systems are
unacceptable if the system is not high performance conscious. Ensuring high perfor-
mance is the main criteria for Web users to repeatedly use the same site for their business.
The performance of any system is attributed to many parameters like response time to
a user query, high throughput from the system and availability at all times. To ensure this,
each system must undergo performance testing before its deployment. PT could be
conducted in many ways such as in load, endurance, stress, and spike testing. All

Web-Based Systems and Peformance Testing 27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

applications must follow their own life cycles like functional testing. If the PT life cycle
is followed systematically, one can ensure the performance of the Web site that satisfies
the customer.

References

The 8 second rule by submit corner. (2003). Retrieved December 13, 2003, from http://
www.submitcorner.com/Guide/Bandwidth/001.shtml

Anwar, K., & Saleem, A. (2004). Web application stress test & data analysis. Retrieved
November 15, 2004, from http://www.webstar.co.uk/Stress.pdf

Barber, S. (2004). Identifying the critical failure or bottleneck. Retrieved November 15,
2004, from http://www-128.ibm.com/developerworks/rational/library/4259.html

Chen, B. (2003). The 30-second rule. Network World, 7/22/02. Retrieved December 26,
2003, from http://www.nwfusion.com/columnists/2002/0722chen.html

Drake, T. (2004). Testing software based systems: The final frontier. Retrieved December
8, 2004, from http://www.softwaretechnews.com/stn3-3/final-frontier.html

Ecommerce definition. (2003). Retrieved June 20, 2003, from http://www.web-design-
uk.biz/ecommerce/ecommerce_definition.htm

Google success. (2003). Retrieved June 14, 2004, from http://news.com.com/
Searching+for+Google’s+success/2009-1023_3-273704.html

High speed connections. (2003). Retrieved December 13, 2003, fromhttp://
www.compar.com/infopool/articles/news1vs14.html

Ho, J. (2003). Evaluating the World Wide Web: A global study of commercial sites.
Retrieved August 20, 2003, from http://www.ascusc.org/jcmc/vol3/issue1/ho.html

Menascé, D. A. (2003). Load testing of Web sites. George Mason University. Retrieved
August 17, 2003, from http://cs.gmu.edu/~menasce/papers/IEEE-IC-LoadTesting-
July-2002.pdf

Miller, E. (2005). Website loading and capacity analysis. Software Research Inc., CA.
Retrieved January 5, 2005, from http://www.soft.com/eValid/Technology/
White.Papers/wpaper.loading.pdf

Online holiday shopping sites still straining under the load. (2004). Reports Keynote.
Retrieved June 14, 2003, from http://www.keynote.com/news_events/re-
leases_2003/03dec10.html

Patton, S. (2004). The ABCs of B2C. Retrieved November 16, 2004, from http://www.cio.com/
ec/edit/b2cabc.html

Response times: The three important limits. (2003). Retrieved December 10, 2003,
fromhttp://www3.sympatico.ca/bkeevil/onlinesig/map.html

Sherman, C. (2004). Jupiter Media Metrix releases new search specific traffic figures.
Retrieved June 17, 2004, from http://searchenginewatch.com/searchday/article.php/
2159341

28 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To be successful, a Web site must be effective. (2003). Retrieved August 20, 2003, from
http://www.orion-hitek.com/Tips.htm

Upsdell, C. A. (2003). Resources: Load times. Retrieved November 15, 2003, fromhttp:/
/www.upsdell.com/BrowserNews/res_load.htm

Varon, H. (2004). The ABCs of B2B. Retrieved November 14, 2004, from http://www.cio.com/
research/ec/edit/b2babc.html

Web shops fight fraud. (2004). Retrieved June 14, 2004, from http://www.pcworld.com/
news/article/0,aid,113875,00.asp

Zimmerman, C. (2003). Performance vs. uptime: Sites see need for speed. Retrieved
February 19, 2003, from http://www.internetweek.com/newslead01/lead043001.htm

Zimmerman, C. (2003). Performance vs. uptime. Retrieved December 15, 2003, from http:/
/www.varbiz.com/sections/university/web_integration/seminar.jhtml;jsessionid=
PHH1EWBL5HLPWQSNDBCSKH0CJUMEKJVN?articleId= 18835826&_requestid
=409533

Zona Research, Inc. (2003). The economic impacts of unacceptable Web site download
speeds. Retrieved November 15, 2003, from http://also.co.uk/docs/speed.pdf

Additional Sources

Menasc’e, D., Almeida, V. A. F. (1998). Capacity planning for Web performance:
Metrics, models, & methods. Prentice Hall.

Pierre, J. M. (n.d.). On the automated classification of Web sites. Retrieved June 17, 2004,
from http://www.sukidog.com/jpierre/etai.pdf

Towards the measurement of public Web sites: A tool for classification. (n.d.). Retrieved
October 17, 2004, from http://www.singstat.gov.sg/conferences/ec/f114.pdf

Ware, S., Tracy, M., Slothouber, L., & Barker, R. (1997). Professional Web site optimi-
zation. Wrox Press Inc.

Performance Testing 29

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 2

Performance Testing:
Factors that

Impact Performance

It is an accepted fact that no system is perfect from the viewpoint of performance.
Problems pertaining to performance affect all types of systems, regardless as to whether
they are client/server or Web application systems. It is imperative to understand the
factors affecting performance of the system before embarking on the task of tackling
them. The constraints affecting the performance may be many but can be broadly
classified into (i) technical and (ii) project related factors. The former is very much
pronounced in the case of Web-based systems, as the relevant technology has not
attained the stage of maturity to address the issues on its own. On the other hand, the
project managers struggle to develop an optimal system within the existing technology
framework. This in turn, generates many project related factors sub optimizing the
performance. Likewise, many factors affecting the performance of the system are
discussed in this chapter. The subsequent chapters deal at length with the methods and
strategies to tackle these factors.

Project Peculiarities

Management of projects broadly encompasses planning activities during the phases of
development and implementation of a system. For instance, the planning at the systems
development stage calls for selection of appropriate technology, skill sets, and software.

30 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Defective planning at this stage would have a severe impact on the performance of the
final product. The planning stage includes understanding various techniques available
for development, skill sets required as well as the use of effective software tools.
Therefore, the sooner these peculiarities are understood and addressed, the lesser the
possibility of severe performance problems.

Rapid Application Development Approach

The fast changing technology coupled with ever increasing competition had a radical
change in the perception of customers toward the product under development. They
want to have a feel of the product as it evolves during the development. They would like
to be involved in the development phases, and more importantly, they desire to launch
the product in the market at an earliest point in time. This, in turn, leads to a pressure on
the software development team to reduce the development cycle time for the product.
Rapid Application Development (RAD) approach is now increasingly applied for rapid
prototyping. Although RAD is based on the typical classic life cycle model of software
engineering, its emphasis is more on prototyping and involves iterative design and
development phases.
RAD approach follows traditional SDLC steps, but the phases are combined. Since the
product has to be released in a tight time interval, thorough involvement of dedicated
and well trained developers is required. Some of the issues that need to be addressed in
RAD approach, particularly from the angles of performance, are (see Ames, 2005):

• Shorter development time in development may lead to release of low quality product
due to lack of concentration on performance.

• Chances of missing information due to the rapid approach may disqualify the
performance objectives.

• Inconsistent internal designs like too much of cluttering of objects, sequence of
screen navigation (for instance, navigating from one screen to another screen, out
of which one screen may be having connections with a database and another screen
may contain the presentation of data which is retrieved from the database[filling
a combo box, etc.]) may be observed over time, after the product is deployed.

• High possibility of violating coding standards, and unoptimized code may con-
sume too many resources.

• Module reuse for future projects may not be possible due to the project specific
design.

• Module may not be flexible for graceful scaling.

• System may collapse for sudden surge in user base.

In RAD, the importance is given to the functionality of the system, rather than to its
performance, presumably due to the short development cycle time (see Software

Performance Testing 31

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

lifecycles, 2004). There may be instances wherein the product may be released without
testing for its performance. In some cases, the projects may be subjected to the testing
of performance, but a compromise may be made regarding the methodology to be
adopted.

Technical Peculiarities

Technical peculiarities have a severe impact on the overall performance of the system.
Choice of technology platform for the product plays an important role in its performance.
To illustrate, developing the product on a new and untried technology with the belief that
it would boost the performance may lead to other contraindications in terms of other
quality attributes such as security, consistency, compatibility, and integrity. As an
example, client side scripting is a new technology which can be used to reduce the number
of interactions with the server. But the browser level scripting does not ensure total
security. This may result in a possibility of exposing sensitive data to malicious access.
Likewise, many challenges have to be faced by the development team on the technology
front. These are described in the following sections.

Security Threat

Security threats to Web applications can make users worry about online transactions.
Their privileged information may be leaked to the outside world. They may lose their
credit card information to others and lose money.
While developing Web applications, the major focus is on the functionality rather than
on security. If the Web users are able to see a security lapse in the system, then the
product loses its market in spite of other interesting features because users no longer
trust the Web site. Thus, a significant impact on performance of the site is directly related
to the security of the applications. Threats such as SQL injection, cross browser
scripting, sniffing can access the valuable, sensitive information of the user. Security
and performance are usually at odds with each other. Current implementations of security
on the Web have been adopted at the extreme end of the spectrum, where strong
cryptographic protocols (see Paulson, 2004) are employed at the expense of performance.
The SSL protocol is not only computationally intensive, but it makes Web caching
impossible, thus misses out on potential performance gains.

Developer’s Negligence on Performance

It is a common practice among many developers not to optimize the code at the
development stage. To illustrate, a developer may use more buffer space against a
variable in the program than is actually required. This additional reserved space may later
impact the performance of the system by denying space for others. Since both optimized

32 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and unoptimized code exhibit the same functional behavior, an optimized code is
preferred for better performance of the system.
Unoptimized code may utilize scarce system resources such as memory and processor
unnecessarily. Such coding practice may lead to severe performance bottlenecks such
as memory leaks, array bound errors, inefficient buffering, too many processing cycles,
larger number of HTTP transactions, too many file transfers between memory and disk,
and so on. These problems are difficult to trace once the code is packaged for deployment.

Complex User Interface

Web users appreciate an elegant, simple user interface. A complex interface would
promote a user to abandon the site due to the difficulties in interacting with the site. More
complexity also impacts the performance of the site. Only the necessary user identifica-
tion information should be made mandatory, and all other fields should be optional. Users
do not like lengthy, complex interfaces which are irritating to use.

Web Site Contents

In the early days of Internet evolution, Web contents were static information and online
traffic was comparatively light. Now, Web contents are dynamic, warranting powerful
Web servers and robust techniques to handle data transfer. Database driven Web sites
such as e-commerce applications typically display dynamic contents. The visual appear-
ance of the Web page depends on the code executed, which in turn is based on the data
stored in the tables. These dynamic Web pages require more processing power that puts
stress on the server.

Hyper Text Markup Language (HTML)/Text

Plain HTML/Text (see WHL2004) has negligible impact on the performance of the Web
application. Storing them does not require too much space compared to other contents
of the site. The organization of the text and the font may have some effect on the quality
of the site. Displaying large text pages on Web sites is not good from the user point of

Table 2.0. HTML/Text type contents in a Web page

HTML/Text
JS JavaScript
HTML Hyper text markup language
XML eXtensible Markup Language
VB Script Visual Basic Script
CSS Cascading Style Sheets

Performance Testing 33

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

view. Overall, HTML/Text does not impact much on the server resources. Table 2.0 shows
the HTML/Text type of contents available in a Web page.

Images

Images (see Image file formats, 2004) require more network bandwidth, storage, and CPU
power than the text information. Using too many colors in images requires more storage
and bandwidth. Inappropriate file formats of images can impair performance. Various
performance aware techniques for the storage of images are available which require a
proper evaluation for an optimized Web site. Table 2.1 shows the type of images that a
Web page may contain.

Multimedia

Multimedia (see Lemay, 2004) components such as audio and video applications
embedded in Web pages will have an impact on the performance of the Web site. Sound,
bounded with text, takes significantly more time to download than the plain text pages.
The type of encoding techniques used to store the audio and video files will have an
impact on the quality and the size of the page. Proper selection of encoding techniques
depending on the multimedia data can exhibit optimized Web pages. The performance of
the multimedia embedded pages depends on the playback applications supported by the
browsers. Table 2.2 gives sample multimedia files that a Web page may contain.

Executable Applications

The executable applications embedded in HTML pages, documents present in a Web site,
also impact the overall performance of the site. Appropriate storage format and an

Table 2.1. Images that Web page may contain

Images
JPG/JPEG Joint Photographic Experts Group
GIF Graphic Interchange Format
PNG Portable Network Graphics
BMP Bitmap

Table 2.2. Multimedia files that a Web page may contain

MPG Moving Pictures Expert Group (MPEG
SWF Flash Files
AVI Video files

34 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

appropriate display format are needed to ensure the quality and size of the pages. Some
of the executable files associated with the Web page are shown in Table 2.3.

Client Environment

The environment of the client system has a significant bearing on the performance of the
product. Though the contents are stored at the server end, users always closely interact
with client systems to get the required information. Clients must be properly configured
and connected. They must have required hardware resources with the necessary
operating system. Since a designer of Web applications has no control over the client
system and its resources, Web applications must work with heterogeneous clients. Thus
the client’s environment may consist of different browsers, divergent platforms, and
different types of security settings, multisize caching, different communication proto-
cols, and different network topology, all having a significant influence on the perfor-
mance of the product.

Different Browsers and Their Impact

Recent years have witnessed an in break in the number of browsers (see People use
different browsers, 2004). Unfortunately, a majority of them are not conforming to the
WWW standards. Even the population of available standard browsers in the Internet is
sizable. The architecture underlying the browser and the security issues to be addressed
vary from browser to browser. Due to these constraints, it is a difficult task to develop
a Web product which is compatible with all standard browsers. The best example is that
of the compatibility problems observed in 2000 by the Web users who have Internet
Explorer (IE) and Netscape Navigator as their browsers. Users browsing with Netscape
were safe from malicious access whereas users browsing with IE and Netscape installed
on their machines were exposed to security threats. This happened due to the privileges
granted by Microsoft’s IE browser to run a script placed on the Web user’s machine by
Netscape Communicator. Due to the browser security issues, the number of online
transactions drastically decreased on the Internet.
Sometimes problems arising due to usage of multiple browsers may have an impact on
performance. The scripts running on one browser may not run on another browser. These
browser problems can be eliminated by writing two different pages for the same

Table 2.3. Executable files that Web page may contain

PDF Portable Document Format
XIP Executable in Place
ZIP WinZip Compressed files
TAR Tape Archive

Performance Testing 35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

functionality. Browser redirect script could be used depending on the browser privileges.
One more option is to use server scripting to understand the type of browser and display
the page accordingly. Incomplete scripts on the browser may impact the performance.

A browser is an important tool to access Web sites and resides on the client machine.
As already said, not all the browsers available on the Internet are in conformance with
WWW standards. A nonstandard browser may not be compatible for accessing all Web
sites. A typical browser could be configured in many ways for optimal performance.
Client machines can also be set up with different browsers to simulate the operating
environment. A typical testing environment will have clients with multiple browsers. For
instance, if the load has to be tested for 2,000 users, then simulation may be made for 1,000
users browsing through IE, 500 users with Netscape Navigator, and balance 500 with
Java. Multiple versions could also be simulated. This is required as different versions
of the browsers display the screen differently. Not just the browser, client machines can
also be set with a mix of hardware and software components. It is difficult to predict the
client environment for Web applications. Users of Web applications are unknown and
can access from different geographical locations with different hardware and software
setups. Therefore setting up an environment with a thorough mix of clients is advisable.

Different Platforms

Configuring clients across different platforms such as Windows 2000, Windows NT,
Windows 98, and Linux are needed for a typical test environment. These operating
systems contain the TCP/IP stack and the information required to communicate with the
Internet. Each operating system implements the stack differently.

Protocol’s Impact on Performance

TCP/IP is the basic protocol needed for communicating with the Internet. It is a point to
point protocol which allows the client to communicate across the Internet to different
types of systems and computers. SMTP (Simple Mail Transfer Protocol) and POP (Post
Office Protocol) can be used to send and receive mails in some clients. The rest can be
set with IMAP (Internet Mail Access Protocol) for remote mail access activities.

Variants of protocols (see Protocol, 2003) like TCP and HTTP affect performance. Main
TCP variants are Reno, NewReno, and Tahoe, which have negligible impact on perfor-
mance. Throughput of the TCP connection is reduced when maximum segment size of a
TCP is increased. This is because the average value of the congestion window of the
sender will decrease, which in turn increases the probability of a packet loss. Network
traffic can be stopped because of the Initial Congestion Window (ICW) size of a TCP
sender. ICW is the amount of the data the sender is allowed to send at the beginning of
the connection.

HTTP parameters include parallel or simple connections, persistent connections, and
pipelining. An HTTP persistent connection allows the already established connection
to stay open beyond a single request response exchange. Persistent connections reduce
the need for multiple TCP connections to be set up and separate down, avoiding the high

36 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

overhead for the typically short Web transaction or downloads. By sending multiple
requests on the same persistent connection without waiting for other individual re-
sponses from the server, performance bottleneck can be further reduced; this type of
connection management by pipelining avoids the roundtrip delay of waiting for each of
the responses before sending additional requests. For larger transfers, Selective
ACKnowledgment (SACK) could be useful with HTTP 1.1. Web performances are
improved and hence reduce page download time by this type of connection management
(see Farkas & Huang, 2003).

Server Environment

Server and network setup of a Web-based system plays a major role in performance
testing. Since all the applications are hosted in servers and the output of the applications
are transferred to the clients via network, these form the heart of the functioning as well
as performance of the system.

Servers are the repository of the services which are needed by the clients. These servers
can have files, Structured Query Language (SQL) information, objects, data, information
about work, and HTTP services. Different types of servers are shown in Table 2.4
designed for specific services. For instance all transaction services execute SQL requests
at the server side.

Server environment plays a dominant role in performance. Setting up a proper server
environment for PT is as important as in the production site.

Table 2.4. Types of servers and their services

Type of Server Services
File Server Provides file sharing services which is requested by client over a

network. They are useful for sharing repositories like
documents, images and other large data objects.

Database Server Client passes SQL requests as message to the database server.
The results of each SQL command are returned over the
network. The code that processes the SQL request and the data
reside on the same server.

Transaction Server Transaction server and the client invoke remote procedures that
are residing on the server with SQL database engine. These
remote procedures on the server execute a group of SQL
statements called transactions. The network exchange consists
of a single requests/reply message.

Object Server The client Server application is written as a set of
communicating objects. Client and server communicate by
means of objects using Object Request Broker(ORB)

Groupware Server This addresses the management of semi structured information
such as text ,image mail, bulletin

Web Server The client and server talks using Remote Procedure Call (RPC)
like HTTP. This Protocol defines a simple set of commands;
parameters are passed as strings, with no provision for typed
data.

Performance Testing 37

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Server Farm

The ever increasing traffic in the Web and the complexity of Web applications have
warranted a need for multiple servers. A server farm is a group of networked servers that
are housed in one location. A server farm streamlines internal processes by distributing
the workload between the individual components of the farm and expedites computing
processes by harnessing the power of multiple servers. The farms rely on load balancing
software that accomplishes such tasks as tracking demand for processing power from
different machines, prioritizing the tasks, and scheduling and rescheduling them depend-
ing on priority and demand that users put on the network. When one server in the farm
fails, another can step in as a backup.

As the performance of a Web site soars due to the increase in user base, the system
architects encounter the need for more servers. They realize that a single server is not
sufficient to handle the increasing load. The obvious alternative is to deploy multiple
servers or server farms to serve the same content. Thus, identical applications are run
on a handful of servers to handle the increasing Web traffic.

However, the need for multiple servers can be due to another issue such as the application
becoming too complex to handle with a single server. The limited resources of the single
server becomes a bottleneck, and the solution is to either upgrade the server, to introduce
a super server, or to introduce a few more servers which can share the increased
complexity.

New generation super servers are fully loaded machines with greater processing power
and scalability. These include multiprocessors, high speed disk arrays for intensive I/
O operations, and fault tolerant features. Multiprocessors improve throughput and
application speed of the server. Increasing the number of processors improves the
scalability. The use of multiple servers helps in increasing the processing power and also
in adding more services to the client.

Load Balancing at Server Farm

A server farm is referred to as a server cluster, computer farm, or ranch. A server farm (see
EWP2004) is a group of networked servers that are housed in one location. A server farm
streamlines internal processes by distributing the workload between the individual
components of the farm and expedites computing processes by harnessing the power of
multiple servers. The farms rely on load balancing software that accomplishes such tasks
as tracking demand for processing power from different machines, prioritizing the tasks,
and scheduling and rescheduling them depending on priority and demand that users put
on the network. When one server in the farm fails, another can step in as a backup.

When the load balancer (see Bourke, 2003) receives requests from users, it redirects the
requests to the appropriate server. The selection of the server depends on many factors
like traffic on the server, capability, and ease of management. Also, with the use of load
balancer, the service can be kept up as long as there is at least a single server active in
the server farm.

38 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Load balancer is configured to probe the servers at regular intervals to detect and remove
the inactive server from server farm and adds the server as soon as the server is up again.
Load balancer can be used to detect temporary failures such as network issues, system
crashes, server overload, and technical intervention. It removes the faulty server from
the server farm and redirects the request to another server hosting the same content.

Performance is a key feature to look for in a load balancer, and significant improvements
can be observed by adding a load balancer into the Web architecture. Along with
performance, many more benefits could be derived like:

• Availability of Web site is enhanced.

• Improves accessibility to Web site and becomes faster.

• Traffic management is easier.

• Application level routing is possible.

• Content management is made easier.

• System becomes more robust and secured.

• Improves the overall Web server performance.

• Improves the reliability and scalability of the Web-based systems.

• Monitors response time and number of current connections to the specific server.

• Automatic fail over: If a server fails, automatic switch over is easier.

• Fault tolerant pairs can be deployed.

File Transfer Between Servers

Maintaining the same data across multiple servers is an important task. All servers should
have identical latest versions of Web pages. To make this happen, Web designers
traditionally rely on File Transfer Protocol (FTP) to copy entire files and directories from
one server to another. With Web contents becoming more advanced in presentation,
extensive use of multimedia files and graphics, transfer of large files is becoming more
complex and time consuming. Such transfer of large files via FTP when users are
accessing the site will slow down the response time. Also, it consumes a lot of network
bandwidth and other network resources resulting in negative impacts on performance.

Location of the Server

Location of the server in the Web architecture also has an impact on the performance of
the Web application. The Web server can be connected to LAN or to a subnet, placed
inside a firewall. Finally, it has to be balanced between security and performance.

Performance Testing 39

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Web Server Connected to LAN

The Internet is directly connected to a corporate Local Area Network (LAN) (see Local
area network, 2004) through a router which may employ packet filtering capabilities. Here
the Web server may be a part of LAN, directly connected to the Internet Service Provider
(ISP), which is providing Internet connection as depicted in Figure 2.1.

The architecture is quite simple but not convenient from the performance point of view.
The LAN traffic and Web traffic share the same network, and there is a possibility of
congestion. The total bandwidth available for the Web server is limited, and if the server
is busy, Web traffic will block the entire segment and disturb the corporate activities. This
kind of architecture suits less loaded LAN such as implemented in educational organi-
zations.

Web Server Connected to a Subnet

When the server is connected to a subnet (see Cooney, 2004) shown in Figure 2.2, traffic
on LAN and the Web are separated. The switch acts as a bridge between subnet and LAN.
This architecture shows an improvement compared to the architecture where the server
is placed in the corporate LAN. Although the separation of corporate traffic and Web
traffic brings a boost in performance, bandwidth is still limited.

Web Server Placed in a LAN Inside a Firewall

When the server is located in the LAN behind a firewall as shown in Figure 2.3, the
architecture will have some performance degradation. This degradation results because
of the introduction of a layer in the communication path. Also we have a Web server
which is a fat server within the LAN. This issue might be negligible and is accepted in
lieu of the level of security that the firewall provides to the LAN.

Web Server Placed in a LAN Outside a Firewall

Here we can see considerable improvement in performance on the LAN because the Web
server, which is a fat server, resides outside the firewall as shown in Figure 2.4. The traffic
is also reduced. But on the other side of the firewall, there will be a security issue which
is a major concern.

Renting Server Space

The simplest and least expensive method of obtaining an Internet presence may be
renting a space on a server of an ISP. This eliminates the responsibility of hardware and

40 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

software configuration and maintenance. Renting space is not suitable for dynamic sites
since they interact with the corporate database. Renting space on a server at an ISP is
a less flexible method and more suitable for Web sites with static content. It is Important
to evaluate the capacity of the rental server.

Remote Hosting a Server

Some ISPs allow organizations to physically locate their servers. This is more flexible than
renting the space. This technique is more inexpensive than owning a server and suitable
to the organization that wants to have more control over the server than is possible with
rental space. Hosting a site at a remote server keeps the public traffic separate from LAN
traffic. It is important to know that the ISP’s Internet connection and LAN should be
studied before hosting the server. Configuring remote administration services allows a
control on the server hosted from a remote location.

Network Operating Systems (NOS)

Network Operating System (see Network operating system, 2004) is middleware which
creates a single system image out of different entities in the architecture. NOS makes the
network transparent to the users. The types of transparency include location transpar-
ency, namespace transparency, logon transparency, replication transparency, local/
remote access transparency, distributed time transparency, failure transparency, and
administration transparency. This high level of exposure to different types of services
introduces a different challenge to performance testing.

Router
Internet

Figure 2.1 : Webserver connected to a LAN

Networked systems / LAN

Hub

IDC

Web Server

Figure 2.1. Webserver connected to a LAN

Performance Testing 41

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Storage Area Networks (SAN)

SAN is a dedicated network to connect storage related resources. These storage
resources are connected to servers which in turn are connected to the network.
Implementation of SAN in the Web architecture impacts performance of the system.

These SAN systems may be RAID (Redundant Array of Independent Disks) arrays, tape
backups, tape or CD-ROM libraries and are connected by a hub or switch to bus adapters
or storage controllers on hosts. A SAN assumes storage processes such as I/O and
backups, freeing network bandwidth for applications and thus enhancing network
performance.

A Storage Operating System (SOS) allows users to view and share all storage devices
without corruption risks. Effective SOS software permits backups and data recovery in

Networked systems / LAN

hub
Router Switch

Figure 2.2 : Webserver connected to subnet

Internet

IDC

Web Server

Figure 2.2. Webserver connected to subnet

Networked Systems / LAN

hubRouter

Firewall

Internet

Hub

IDC

Web Server

Figure 2.3. Webserver placed in a LAN inside a firewall

42 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a multiplatform environment and permits storage management via multiple protocols for
remote services.

SAN accelerates I/O performance helping to reduce the burden from servers in tiered
client server architecture; SAN enables advanced storage management features like high
speed remote backup and mirroring. Some of the characteristics of SAN are (see http:/
/www.breocade.com/san/pdf/whitepapers/Architecture.pdf):

• SAN is known for high interconnection data rates.

• Storage limitation is eliminated due to high scalability of SAN.

• Centralized data storage operations make the storage management easier.

• The improper configuring and monitoring can give negative impact on performance
of the system.

• SANs provide high bandwidth with zero latency.

• It eliminates I/O bottlenecks from networks.

• It allows all servers in a network to access all storage devices.

• It provides high reliability through the dual port redundancy inherent in optical
fiber channel.

• Disk I/O is a limiting factor in Web server performance. Since SAN technology
streamlines disk I/O, Web servers become more efficient.

N e tw o rke d sys te m s

hubR o u te r

F irew a ll

In te rn e t

H u b

IDC

W eb S erver

Figure 2.4. Webserver placed outside a firewall

Performance Testing 43

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technology Dependency

The server technology selected to develop the Web pages has a tremendous impact on
the performance of the site. Since the server technology mainly interacts with the servers
in the architecture, such as Web server, application server, and database server,
compatibility of software systems that are used among different servers become major
factors affecting performance. To illustrate, in Apache Server, PHP applications run
faster than Active Server Pages (ASP) applications. However, ASP based applications
run faster in IIS than on any other servers.

Network Environment

Network environment is an indispensable part of Internet and Web systems, without
which e-business is a dream. In such situation, it is necessary to analyze the performance
of each component constituting the network environment. The following section
explains briefly the network components and their respective influence on overall
performance of the system. Further, the ISPs and all connection standards will have
different levels of influence over the performance.

Internet Service Providers (ISP)

ISP have a major impact on Web performance. Their geographical location, type of
networks owned, and speed play a role in assessing their performance. Performance
impact on ISPs depends on the following factors:

• Knowing their network topology and how they have been implemented;

• Knowing their external links helps to analyze multiple connections;

• Knowing their routers and redundant equipment;

• Knowing their link speed;

• Knowing their network operations center.

Selecting an ISP with a good backbone network minimizes the number of node hops,
which in turn improves performance.

44 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Leased Phone Lines/Dialup

Leased phone lines or dialup connections are most commonly in use by Internet seekers.
The bandwidth provided by this connection standard varies depending on the modem
capacity. A sophisticated and established telephone network has 64 Kilobits/second
(Kbps) of bandwidth whereas other setups have either 28.8 Kbps or 33.6 Kbps through-
put modem connection. Dialup connections work on the basis of analog to digital
conversion upstream and digital to analog conversion downstream. Both leased analog
phone lines and continuously open dialup connections are expensive since users are
billed for unacceptable performance too.

Cable Modem

Cable modems (see What is a cable modem?, 2004), another type of connection, are better
than analog telephone lines. The general speed expected from cable modems is 30 Mbps.
If the cable operator is an ISP, the Web user will get greater bandwidth. If the cable
operator is not an ISP, then there is a possibility of cross talk and noise problems, which
have an impact on performance.

ISDN

The Integrated Services Digital Network (ISDN) (see Becker, 2004) is a digital data
transmitting connection standard which propagates with high bandwidth. ISDN uses a
standard for transmitting voice, video, and data at the same time over fiber optic
telephone lines known as B channels. It is a 64 Kbps channel used for transmitting data.
There are two classes in this with an identical bandwidth and distinct number of channels
to transfer the data. Basic Rate Interface (BRI) ISDN has two B channels of 64 Kbps
whereas Primary Rate Interface (PRI) ISDN has 24 B channels of 64 Kbps. Cost of B
channels increases with the number, but performance increases linearly with the increase
in number of B channels.

Leased Lines (T1, T3)

The leased lines (see Leased lines (T1 and T3), 2004) are dedicated to carry traffic
between two specific points. The T1 leased lines (E1 in Europe) are suitable for
organizations needing more bandwidth for short live time. These are based on digital
point to point data transfer where cable length is limited to n3 miles. Among the popular
leased lines T1/DS1 has a bandwidth of 1.544 Mbps and E1 of 2.048 Mbps. There is also
a flexible leased line connection standard referred to as Fractional DS1 which operates
with a range of 64 Kbps to 1.544 Mbps bandwidth. High bandwidth lines such as T3/DS3
operate at 44.736 Mbps bandwidth. Though they promise good performance, employing
such leased line is an expensive proposition. Thus, the bandwidth definitely impacts
performance.

Performance Testing 45

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Frame Relay

Frame relay (see Cisco Systems, 2004) is a competitive technology which provides
adequate performance for light to heavy Web traffic. The ISPs and the organization that
needs the Internet should connect to frame relay network. Once they are connected, a
Permanent Virtual Circuit (PVC) is established between frame ISP and organization. Here
the Information is broken into small variable sized frames and transmitted over PVC. There
is another form of frame relay, which promises better performance than the PVC based
connection, that is, Switched Virtual Circuit (SVC). The SVC does not establish a
permanent connection between frame ISP and organization; instead it works with a switch
which disconnects the circuit when the Internet is not needed. Frame relay networks
operate at a bandwidth of 64 kilobits to 536 Megabits/sec. Minimum allocated bandwidth
for PVC or SVC is known as committed information rate.

Asynchronous Transfer Mode (ATM)

In recent years, high speed ATM (see Hyper Learning Center, 2004) connections have
proven to be cost effective for high traffic Web servers. ATM connection is a packet
switched network with a fixed size; small packets called CELLs carry the data. A typical
ATM CELL contains 48 bytes of data and 5 bytes of header information. The total fixed
size of a CELL is 53 bytes with header containing information about whether the data are
sensitive to delay or errors. To illustrate, voice traffic is sensitive to delay but can tolerate
errors whereas data traffic is more sensitive to errors than delay. Additionally, the header
contains information about network congestion which helps in moderating network
traffic. ATM connection standard has data rate ranging from 1.5 Mbps (T1 level) to 622
Mbps (SONET OC 12) and above. It is a fact that high performance switches for ATM
traffic eliminate performance loss of store forward devices.

Switched Multimegabit Data Service (SMDS)

SMDS (see Cisco Systems, 2004) is an Internet connection standard wherein variable
length frames are physically transmitted over an ATM-like cell layer. This type of
connection gives much variety of different bandwidths from 56 Kbps to 34 Mbps. It has
been observed that performance is superior over frame relay with a high quality
connection link and low retransmission. Unlike frame relay, there is no concept of
permanent virtual circuit, and here connections are made and broken according to the
requirement.

Web Caching

Caching (see Nottingham, 2004) is the temporary storage of frequently accessed data in
higher speed media (typically SRAM or RAM) used for more efficient retrieval. Web

46 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

caching stores frequently used objects closer to the client through browser, proxy, or
server caches. Storing “fresh” objects closer to users avoids round trips to the origin
server, reducing bandwidth consumption, server load, and most importantly, latency.

Caching is not just for static sites; even dynamic sites can benefit from caching. Graphics
and multimedia typically do not change as frequently as (X)HTML files. Graphics that
seldom change, like logos, headers, and navigation bars, can be given longer expiration
times while resources that change more frequently, like XHTML and XML files, can be
given shorter expiration times. Designing a site with caching in mind targets different
classes of resources to give them different expiration times with only a few lines of code.

A Web cache sits between one or more Web servers (also known as origin servers) and
a client or many clients, and watches requests received, saving copies of the responses
like HTML pages, images, and files (collectively known as representations) for itself.
Then, if there is another request received for the same URL, it can use the already stored
response in the cache, instead of asking the origin of the server for fresh retrieval.

There are two main reasons Web caches are used: to reduce latency and to reduce
network traffic. According to Internet research specialists, one of the common and major
performance problems observed by Web users is “slow response time”. Further research
on the cause of this problem shows that high network traffic has been found to be the
culprit. This congestion has been observed more and more in the current graphic and
multimedia enriched sites.

Caching is implemented by storing data at three different locations in the following ways:

• User cache or browser caching at client side (see Nottingham, 2004);

• Proxy cache (see Nottingham, 2004) or just a cache at a dedicated server which
exists between client and main server;

• Server cache (see Nottingham, 2004) or site caching at server side.

Client Caching

The browser cache works according to fairly simple rules. It will check to make sure that
the representations are fresh, usually once a session (that is, once in the current
invocation of the browser).

This cache is especially useful when users hit the “back” button or click a link to see a
page they have just looked at. Also, if the same navigation images are used throughout
the site, they will be served from browser caches almost instantaneously.

Almost all of the browsers support client side caching. Here the client system normally
stores the Web pages on a time basis. Recently accessed pages are available in the
content of the client cache. This technique may not result in great performance improve-
ment. The overheads observed in client caching are:

Performance Testing 47

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The chances of the user accessing the same pages are quite slim.

• Most of the time, a significant amount of duplicate information is found on the client
side.

• Chances of accessing outdated information are always high.

In general, the client may not result in great performance improvement.

Proxy Caching

A dedicated server called “proxy server” is placed in between the client and the main
server. Frequently accessed Web pages are stored at the proxy server. When a client
requests a page, the proxy server services the request if the requested page is in the
cache, or else it forwards the request to the main server. When the page is retrieved from
the main server, the proxy server first caches the page and sends the same page to the
user.

The overheads due to proxy caching are attributed to:

• Generally proxy is integrated with the firewall. A significant delay can occur due
to the presence of a firewall between the client and the proxy server.

• Cache validation and expiration model have to be implemented to get rid of outdated
information.

• Many browsers do not allow automatic redirection to the main server if proxy fails.

Compared to client caching, proxy caching improves the performance, but overheads on
the server are greater.

Server Caching

To provide fast access to users, many organizations have adopted caching on multiple
servers. Server caching is a technique of introducing a fast memory wherein set of library
files; such as, HTML documents are stored so that access becomes fast and easy. These
files are designed and optimized for fast read and write access, and data are short lived.

Users can retrieve frequently used static pages much faster if they are cached. This allows
files to be quickly located in the cache rather than downloading them from memory of the
server each time. The same technique can be used for dynamic pages if the request for
a particular page displays the same results every time, or the data do not change
frequently. Rather than locating and executing the code and reproducing the result in an
HTML version, the server can send the page from its cache, which avoids repetitive work
and also results in faster access.

48 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Server side caching improves performance by executing only necessary code on the
server. The server cache stores the output of frequent dynamic requests. Once the HTML
contents are saved in cache, a filter detects frequent requests to the same dynamic page,
intercepts the requests, and responds with a cached output, enabling faster access. This
caching technique saves performance oriented entities such as bandwidth, server load,
page load time, and processing cycles. Caching at the server side helps in:

• Less bandwidth consumption as fewer requests and responses are passed through
the network;

• Less server load as the server handles fewer requests;

• Less page load time since pages are accessed from faster cache;

• Less processing cycles because the need for accessing database and applying
business logic is eliminated;

• Some server caching techniques are enhanced with page compression which
removes blank space inside HTML and enables files to be zipped to a smaller size.
Such compressed pages download much faster;

• Incorporating prediction techniques on ability to cache for the server cache can
also improve Web accessibility. This technique helps in identifying uncached
contents at earlier stages and avoids Web caches from spending a significant
amount of time on processing uncacheable contents.

In general, caching is a powerful technique to increase the performance of the system (see
King, 2004).

The main server is enabled with a set of cache servers. These cache servers are used to
manage frequently accessed data/Web pages. While using server cache, some overheads
like load balancing between the servers of a generic host name and chances of outdated
information at some server caches need to be addressed.

Apart from the basic caching techniques, a rapid research and improvement (see King,
2004) in caching have been observed in recent years. Once the page resides inside the
cache, it loses its security context and compromises any sensitive information stored
inside the page. Caching secured sites is a real challenge.

Challenges Ahead

Though this chapter highlighted the various factors that impact performance testing,
many challenges need to be addressed during PT. Some of the challenges are:

• Unoptimized Web content leads to poor performance;

Performance Testing 49

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Improper process for software development which suffers in quality of the Web site
and hence poor performance;

• Unrealistic deadlines lead to poor design and implementation;

• Slow connections of Web sites lead to network traffic and hence poor response
time;

• Imbalanced load on servers affecting the performance;

• Using improper technology leads to poor architecture and response time.

Most of the above topics will be discussed in subsequent chapters.

Summary

Chapter 1 emphasizes the need for performance testing whereas various factors impact-
ing system performance were discussed more elaborately in this chapter. The affective
factors differ from client server technology to Internet technology. Since Web systems
work on Internet technology, the impact is based on networks, servers, and technology
in which the system is subjected to be implemented. However, apart from these, certain
peculiarities like project as well technical will impact more on performance. This is
because the technology as well as skill sets available have not reached the maturity level
for optimized design and implementation. Knowledge on these topics is a must for testers
and development teams to implement a high performing system. Conducting performance
testing on such a system is a challenge and an opportunity.

References

Ames, A. K. (2005). A review of coding standards and related. Retrieved January 15,
2005, from http://www.soe.ucsc.edu/~sasha/proj/codestand.pdf

Becker, R. (2004). ISDN tutorial. Retrieved November 11, 2004, from http://www.ralphb.net/
ISDN/

Bourke, T. (2003). It’s always the load balancer. Retrieved March 16, 2003, from http:/
/sysadmin.oreilly.com/news/slb_0301.html

Cisco Systems. (2004). Frame relay. Retrieved November 25, 2004, from http://
www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/frame.htm

Cisco Systems. (2004). Switched Multimegabit Data Service (SMDS) tutorial. Re-
trieved November 17, 2004, from http://www.cisco.com/univercd/cc/td/doc/
cisintwk/ito_doc/smds.pdf

50 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cooney, R. (2004). Subnet addressing. Retrieved November 11, 2004, from http://
www.nwc.com/unixworld/tutorial/001.html

The essential elements of storage networking. (2004). Architecture. Retrieved Novem-
ber 20, 2004, from http://www.brocade.com/san/pdf/whitepapers/Architecture.pdf

Farkas, K., & Huang, P. (2003). Impact of TCP variants on HTTP performance. Retrieved
June 13, 2003, from http://www.tik.ee.ethz.ch/~farkas/publications/
hot_HSNWKS2002.pdf.

Hyper Learning Center. (2004). Asynchronous Transfer Mode (ATM) tutorial. Retrieved
September 14, 2004, from http://www.cne.gmu.edu/modules/atm/Texttut.html

HyperText Markup Language (HTML) Home Page. (2004). Retrieved August 20, 2004,
from http://www.w3.org/MarkUp/

Image file formats. (2004). Retrieved August 20, 2004, from http://dx.sheridan.com/
advisor/file_formats.html

King, A. (2004). Use server cache control to improve performance. Retrieved November
25, 2004, from http://www.websiteoptimization.com/speed/tweak/cache/

Leased lines (T1 and T3). (2004). Retrieved December 15, 2004, from http://
compnetworking.about.com/cs/t1t3/

Lemay, L. (2004). Multimedia on the Web. Retrieved August 21, 2004, from http://
www.ucl.ac.uk/calt/vdml/help/mmediaonweb.do

Local area network. (2004). Retrieved December 14, 2004, from http://
searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212495,00.html

Network operating system. (2004). Retrieved December 15, 2004, from http://e-
comm.webopedia.com/TERM/N/network_operating_system_NOS.html

Nottingham, M. (2004). Caching tutorial. Retrieved November 20, 2004, from http://
www.mnot.net/cache_docs/

Paulson, L. C. (2004). The inductive approach to verifying cryptographic protocols.
Retrieved June 11, 2004, from http://www.cl.cam.ac.uk/users/lcp/papers/Auth/
jcs.pdf

People use different browsers. (2004). Retrieved September 15, 2004, from http://
www.netmechanic.com/browser-photo/tour/BrowserList.htm

Protocol. (2003). Retrieved June 13, 2003, from http://searchnetworking.techtarget.com/
sDefinition/0,,sid7_gci212839,00.html

Software lifecycles. (2004). Retrieved June 11, 2004, from http://www2.umassd.edu/
CISW3/coursepages/pages/cis311/LectureMat/process/lifecycles/lifecycles.html

What is a cable modem? (2004). Retrieved June 11, 2004, from http://www.cable-
modems.org/tutorial/

Wikipedia. (2004). Server farm. Retrieved November 17, 2004, from http://en.wikipedia.org/
wiki/Server_farm

Performance Testing 51

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Additional Sources

Anderson, P., & James, G. (2004). Performance soars, features vary. Network World, 1999.
Retrieved June 11, 2004, from http://www.nwfusion.com/reviews/0614rev.html

Engalschall, R. S., Ware, M. Tracy, L. Slothouber, & R. Barker (1997). Website balancing:
Practical approaches for distributing HTTP traffic. Professional Web site Opti-
mization, Wrox Press Inc.

Hall, R. (2002). Comprehensive analysis of FTSE 100 websites reveals alarming
performance assues. Retrieved June 11, 2004, from http://www.parallel.ltd.uk/
documents/ pr_ftse100_sites_020502.pdf

Killelea, P. (2002). Web performance tuning. O’Reilly and Associates.

Load balancing. (n.d.). Retrieved December 15, 2003, from http://www.webopedia.com/
TERM/L/load_balancing.html

Menansce, D. A., & Almeida, V. A. F. (1998). Capacity planning for Web performance:
Metrics, models, and methods.

Mills, W. N., Krueger III, L., Chiu, W., Halim, N., Hellerstein, J. L., & Squillante, M. S.
(2001). Metrics for W.N. Serdar Yegulalp. Website Stress-Testing.

Mulzer, M. (2001). Using server-side caching to increase Web site performance and
scalability.

Performance tuning of Web-based applications. (2004). Retrieved November 20, 2004,
from http:// www.research.ibm.com/PM/cmg2kmetric.doc

Sarangi, A., & Agarwal, R. (2003). Capacity planning for testing Web sites. Retrieved
August 12, 2003, from http://www.softwaredioxide.com/Channels/events/test-
ing2001/Proceedings/ajit_infosys.pdf

WWW standards. (n.d.). Retrieved July 12, 2004, from http://www.w3.org/

52 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 3

Performance Testing:
Reference Technology

and Languages

Performance testing (PT) is not to be construed as features testing even though it has
a definite link with the latter. In fact, PT begins from where the feature testing ends. It
presupposes successful completion of features testing, meaning that all the desired
functional requirements expected from the system are fully met. However, it is worth
noting that conducting PT without features testing is often fraught with great difficulties.
This is because the residual defects in the system, which otherwise would have been
known in features testing, would give misleading results about the performance.
Previous chapters emphasized the need for PT and various factors that have impact the
performance of Web-based applications. This chapter provides an insight about the
technology aspects, including the software languages, necessary for Web development.
Needless to add, that technology as well as software languages have a critical impact on
the performance of the system.

Client Server and
Web-Based Technology

The evolution of networking in recent decades has set an interesting challenge for the
growth of software science. This evolution is the result of fomenting many new as well
as radical ideas over a period of time and manifesting them into invention of new

Performance Testing: Reference Technology and Languages 53

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

technologies. The ensuing section emphasizes the evolution of Web-based technology
as a successor to client-server technology.

Client Server Technology

Client server technology (see Client/server software architectures – An overview, 2004)
is the combination of two simple but distinct processes, that is, client and server process
as shown in Figure 3.1. It works on the principle of the request-response mechanism
wherein the client process requests a specific service from the server and the server
process responds to the client by servicing the request. Client programs usually manage
the user interface of the application. The client also manages the local resources such
as the monitor, keyboard, workstation, and CPU. A significant volume of processing is
done locally at the client side. A server fulfills the client’s request by performing the
desired task. Such tasks include database retrieval and updates, servicing file requests,
managing data integrity, and sending responses to client requests. The server process
may run on another machine on the network.

In a broader vision, a server process acts as a software engine that manages shared
resources such as databases, printers, modems, or high-powered processors. Client and
server have fundamentally different requirements for computing resources such as
processor speeds, memory, disk speeds and capacities, and input/output devices.

In such an environment, the performance of the overall system is the function of the
performance of both client and server processes. Testing the performance of the system
calls for testing not only the client and server but also the network connecting both the
entities. The hardware platform and operating system of a client and server are not usually
the same. Generally, their environment is heterogeneous and multivendor based. Client
and server processes communicate through a well-defined set of standard application
program interfaces (APIs) and Remote Procedure Calls (RPCs) (see Marshall, 2004),
which enable smooth and interoperable data transfer.

C lient

C lient

C lient

C lient

S e rver

C lient

Figure 3.1. Simple client-server technology

54 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An important characteristic of a client-server system is scalability, and it provides for
horizontal as well as vertical scaling. Horizontal scaling means adding or removing client
workstations from the network. Vertical scaling means migrating to a larger and faster
server machine or multiservers. Horizontal scaling has less impact on performance than
vertical scaling.

Following are the typical servers employed in the architecture to serve specified clients.

• File Servers: A repository of documents, images, engineering drawings and other
large data objects. With a file server, the client sends requests for files or file records
over a network to the file server. This form of data service requires large bandwidth.

• Database Servers: In database servers, clients send requests created by Struc-
tured Query Language (SQL) as messages to the server, and the results of the query
are returned over the network. The SQL instructions are processed at the server
level as the data are also available. Only the results are transferred to the client.

• Transaction Servers: In transaction servers, clients invoke remote procedures
that reside on servers which may also contain an SQL database engine. The
applications based on transaction servers are called Online Transaction Process-
ing (OLTP) and tend to be mission-critical applications with response time of one
to three seconds and require tight controls over the security and integrity of the
database.

• Groupware Servers: A server containing facilities to manage semi-structured
information such as text, images, mail, bulletin boards, and the flow of work.

• Object Servers: A server for which the client-server applications are written as
different sets of communication objects, thereby client objects communicate with
server objects using an Object Request Broker (ORB) (CORBA BASICS, 2003).

• IRC Servers: An option for those seeking real-time discussion capabilities,
Internet Relay Chat (IRC) consists of various separate networks (or “nets”) of
servers that allow users to connect to each other through an IRC network.

• Proxy Servers: Proxy server is placed between a client program (typically a Web
browser) and an external server (typically another server on the Web) to filter
requests, improve performance, and share connections in Web-based technology.

Web-based technology is an extension of client-server technology. This is similar to
client-server technology and based on a request-response mechanism between clients
and servers as shown in Figure 3.2.

Client machines employ browser interfaces such as Netscape Navigator or Internet
Explorer to facilitate users to interact with servers. They also contain the presentation
components like HTML pages. Clients manage local resources like monitor, keyboard,
workstation, and CPU. It is not mandatory that all the client machines should have the
same hardware environment.

Performance Testing: Reference Technology and Languages 55

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Typical Web architecture involves Web Server, Application Server, and Database
Server. All these servers could be employed in a single machine or established in different
machines. There could be a presence of load balancer to distribute and balance the
incoming load for Web servers.

Web servers act as interfaces between client and application servers. They understand
customer usage patterns, build communities among members, and control access to
application content and user information. The popular Web servers are Apache Tomcat
Server (see Tomcat site, 2004) and Microsoft Internet Information Server (IIS) (see
Internet Information Services, 2004).

The application server acts as an interface between the Web server and the database
server. The server side executables run at the application server. The popular application
servers are Oracle 9i Application Server, BEA’s Web Logic, and IBM’s WebSphere (see
Application Server Matrix, 2004).

Database servers provide storage space for all Web applications. Stand alone queries
can run these database servers which help in maintaining the data properly. The popular
databases are DB2 (see DB2 product family, 2004), Oracle (see Oracle, 2003), Sybase (see
Sybase, 2003), and SQL Server (see SQL Server, 2004).

Difference Between Wired Client Server Technology and
Web Technology

Web is a relatively advanced and complex technology compared to wired client-server
technology. So there is a significant difference between testing wired client-server and
Web applications. Automated testing of wired client-server as well as Web applications
is both an opportunity and a challenge.

In wired client-server applications, design uncertainties are greater: architecture is
specific and customized; client is fixed; design must be client specific; drivers are custom
specific. In Web applications, uncertainties are greater at run time: clients are unknown;
client can use any browser or platform.

In wired client-server applications, both the client and the server are the critical items for
testing. Fine-tuning needs to be done at both ends, even though network is not an issue,

C lien t

C lien t

C lien t

C lien t

C lien t

C lien t
A pp lication

S erver
D atabase

S erver
 W eb S erver

 farm

Figure 3.2. Clients and servers in Web technology

56 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 3.0. Difference between client-server and Web technology

Wired Client–Server Technology Web-Based Technology
Number of clients is predictable or known
(normally less than 100 clients)

Number of clients is difficult to predict (millions of
clients)

Client and server are the entities to be tested Client, server, and network are the entities to be
tested

Both server and client locations are fixed and
known to the user

Server location is certain; client locations are
uncertain

Designed and implemented on intranet
environment

Designed and implemented for Internet environment

Server-to-server interaction is prohibited Server-to-server interaction is normal
Low multimedia type of data transaction Rich multimedia type of data transaction

as it is an intranet environment. In the case of Web-based applications, the network
(Internet, routers, ISPs, etc.) is also to be tuned along with the server. Server side tuning
is more complex, as multiple types of servers are involved (Web server, application
servers, etc.). Each server exhibits its own properties Table 3.0 provides the major
differences between the two technologies.

Both technologies are used for e-commerce applications based on customer require-
ments.

Web Server and Application Server

Today’s business environment demands Web and e-commerce applications that accel-
erate entry into new markets, help find new ways to reach and retain customers, and allow
the introduction of new products and services quickly. To build and deploy these new
solutions, we need a proven, reliable e-commerce platform that can connect and empower
all types of users while integrating corporate data, mainframe applications, and other
enterprise applications in a powerful, flexible, end-to-end e-commerce solution. The
solution must provide the performance, scalability, and high availability needed to
handle the most critical enterprise applications. A good Web and application server
environment provides suitable solutions.

Web Server

A Web server is a server that serves pages for viewing in a Web browser. A Web server
typically communicates through HTTP protocol. When the Web server receives an HTTP
request, the server responds by sending back an HTML page. When a request comes to
the Web server, the Web server simply passes the request to the concerned program. The
Web servers do not provide any functionality beyond simply providing an environment
in which the server side program can execute and pass back the generated responses.

Performance Testing: Reference Technology and Languages 57

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The server side programs usually provide functions such as transaction processing,
database connectivity, and messaging. To process a request, a Web server may respond
with a static HTML page or image, send a redirect, or delegate the dynamic response
generation to some other program such as Common Gateway Interface (CGI) scripts, Java
Server Pages (JSP), Servlets, ASPs (Active Server Pages), or some other server side
technology. Such server side programs generate a response, most often in HTML, for
viewing in a Web browser.

While a Web server may not support transactions or database connection pooling, it may
employ various strategies for fault tolerance and scalability such as load balancing,
caching, and clustering features often present in application servers. Most of the servers
provide these functions.

Microsoft Internet Information Server (IIS)

MS IIS for Windows is designed for users developing a Web service. IIS replaces the
former default Web service, the MS Personal Web Service (PWS), on home and
professional versions of Windows (see Information Server Overview and Architecture,
2005). IIS runs in Windows XP, Windows Server OS like Microsoft Windows NT, and
Microsoft Windows 2000 series.

As there is an explosive growth of the Internet and an increasing interest in the usage
of TCP/IP based information protocols. The software components of IIS are mostly
contained in the Application Layer of TCP/IP. The Inetinfo.exe process is the main IIS
process; all of the other Internet processes run inside the memory allocated by this
process by default. However, it is possible to separate processes from the Inetinfo.exe
memory space via the Internet Service Manager as show in Figure 3.3.

Infocomm.dll and Isatq.dll run inside the Inetinfo.exe space and provide many essential
services for all the Internet server processes. For example, Infocom.dll provides security,
SSL authentication, and caching services. The Isatq.dll (Internet Server Asynchronous
Thread Queue Dynamic Link Library) provides TCP port monitoring, bandwidth throt-
tling, and thread queue management services for the Internet server.

Several other services run inside the memory space of the Inetinfo.exe process. They are
HTTP, SMTP, NNTP, and FTP services. In addition, the Internet server administration
(Isadmin) process runs in the application layer, providing an interface for the adminis-
tration of the Internet services. Isadmin includes the Distributed Component Object
Model (DCOM) facility for the metabase, which allows remote management of the
Internet server via command-line scripts.

Internet Server Application Programming Interface (ISAPI) extensions, ISAPI filters, and
Common Gateway Interface (CGI) scripts run via the Web (HTTP) service. ISAPI and CGI
scripts provide services (and a scripting interface) to animate and automate Web pages.
In addition, these scripts can implement additional security measures for the Web server
or individual Web pages. We cover scripts in greater detail in later sections.

The interface to the rest of the TCP/IP stack is the Windows Sockets Layer, which is a
programming interface separating the protocol from the Internet server applications. Just
below the Windows Sockets is the Transport Layer. Inside the Transport Layer is TCP,

58 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

which provides reliable data transmission services for the Internet server. All IIS 4.0
applications send their communications over TCP. The Internet Layer houses the IP,
which provides the addressing scheme for communications on the Internet or the internal
network. The bottom layer of TCP/IP is the Network Interface Layer, which includes both
the hardware and software responsible for transmitting the data to the wire or electronic
transfer medium.

For more information on IIS, see http://microsoft.com/iis.

Apache Web Server

In the early days of the Web, the National Center for Super Computing Applications
(NCSA) created a Web server that became the number one Web server in early 1995.
However, the primary developer of the NCSA Web server left NCSA about the same time,
and the server project began to stall. In the meantime, people who were using the NCSA
Web server began to exchange their own patches for the server and soon realized that
a forum to manage the patches was necessary. The Apache Group was born. The group
used the NCSA Web server code and gave birth to a new Web server called Apache.
Originally derived from the core code of the NCSA Web server and a bunch of patches,
the Apache server is now the talk of the Web server community (see Apache: The number
one Web server, 2005).

Figure 3.3. IIS architecture

Performance Testing: Reference Technology and Languages 59

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Some of the Apache features are:

• Apache not only runs on most flavors of Unix, but it also runs on Windows 2000/
NT/9x and many other desktop and server-class operating systems such as Amiga
OS 3.x and OS/2;

• Support for the latest HTTP 1.1 protocol;

• Support for CGI (Common Gateway Interface);

• Support for HTTP authentication;

• Support for PHP scripting;

• Java Servlet support;

• Integrated Proxy server;

• Support for Server-Side Includes (SSI);

• Support for Secured Socket Layer (SSL).

For more information, see http://apache.org.

These Web servers are popular and provide optimal solutions for Web-based application
development.

Application Server

While a Web server mainly deals with sending HTML for display in a Web browser, an
application server provides access to business logic by client application programs.

Application servers provide the platforms for the execution of transactional, server-side
applications in the online world. They are the modern cousins of traditional Transaction
Processing Monitors (TPMs) like CICS. Application servers play a central role in
enabling electronic commerce in the Web context. They are built on the basis of more
standardized protocols and APIs than were the traditional TPMs. The emergence of Java,
XML, and OMG standards has played a significant role in this regard. One of the most
important features of application servers is their ability to integrate the modern applica-
tion environments with legacy data sources like IMS, CICS, VSAM, and so forth. They
provide a number of connectors for this purpose, typically using asynchronous trans-
actional messaging technologies like MQ Series and JMS. Traditional TPM-style
requirements for industrial strength features like scalability, availability, reliability, and
high performance are equally important for application servers also. Security and
authentication issues are additional important requirements in the web context. Appli-
cation servers support DBMS not only as storage engines for user data but also as
repositories for tracking their own state.

An application server (see Application Server Matrix, 2004) exposes business logic to
client applications through various protocols, possibly including HTTP. The application

60 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

program in turn uses this logic in the same way, as it would call a method or a function.
This function does not say anything about display or how the client must use the
information. Such application server clients can include GUIs (Graphical User Interface)
running on a PC, a Web server, or even other application servers. The information
traveling back and forth between an application server and its client is not restricted to
simple display markup. Instead, the information could be any program logic. Since the
logic takes the form of data and method calls and not static HTML, the client can employ
the exposed business logic.

In most cases, the server exposes this business logic through a component Application
Program Interface (API), such as the Enterprise Java Bean (EJB) component model found
on J2EE (Java 2 Enterprise Edition) application servers. Moreover, the application server
manages its own resources. Such gate-keeping duties include security, transaction
processing, and resource pooling and messaging. Like a Web server, an application
server may also employ various scalability and fault-tolerance techniques. Some of the
popular application servers are:

Web Logic Application Server (BEA)

Web Logic from BEA (see BEA Weblogic platform, 2004) works at the middle tier with
client tier at front end and supported with DBMS, enterprise application, and mainframe
applications as backend tier. The client tier is supported with Web browser, java client,
and so on. Web logic is an industry leading e-commerce transaction platform. It allows
the practitioners to quickly develop and deploy reliable, secure, scalable, and manage-
able applications. It manages system level details so that application developer can
concentrate on business logic and presentation.

WebSphere® Application Server

WebSphere® Application Server from IBM (see IBM WebSphere, 2004) is the industry’s
premier Java™ based application platform, integrating enterprise data and transactions
for the dynamic e-business world. Each configuration (version V6.0 and above) available
delivers a rich application deployment environment with application services that
provide enhanced capabilities for transaction management as well as the security,
performance, availability, connectivity, and scalability expected from the WebSphere
family of products.

It provides full J2EE V1.4 compatibility as well as Web services support. It also provides
rapid development and deployment features that reduce development cycle time and
maximize the ability to use existing skills and resources.

Oracle9i Application Server

Oracle9i Application Server (see Oracle Application Server, 2004) makes it easy to
consolidate multiple Web sites and applications into portals. It provides performance

Performance Testing: Reference Technology and Languages 61

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

enhancing caching technology for turbo-charging Web sites. There are two types of
caching in the new application server namely:

• Web Caching: Web caching allows site managers to store frequently accessed
static and dynamic pages in a buffer in front of the application server, reducing
response times. It also provides load-balancing and a patent-pending surge-
protection feature to ensure reliability and performance during peak site activity.

• Database Caching: Database caching replicates frequently accessed tables from
the back-end database to a relational cache in Oracle9i application servers’ middle
tier, reducing access times. If the Web cache does not have the requested
information, it can quickly access it from the database cache without contacting
the original database.

Oracle9i application server supports wireless access to Web applications. It provides
business intelligence to Web sites and application servers for more efficient resource
management. Oracle9i application server supports application and business process
integration using the Oracle Integration Server, which supports a JDBC interface, Java
Messaging Services (JMS), and workflow automation. It also provides access to legacy
applications. It includes Oracle Forms Server for developing and deploying forms-based
back-office applications. The Oracle Mod PL/SQL Cartridge lets developers run existing
Oracle PL/SQL applications without modification. And for simplified file management,
Oracle9iAS’s Internet File System provides a unified file system across diverse server
hardware and operating systems. It also supports Real Application Clusters and Cache
Fusion Technology.

Sun ONE Application Server

The Sun ONE Application Server from Sun Microsystems (see Sun ONE Application
Framework, 2004) provides a robust, J2EE technology-based platform for the develop-
ment, deployment, and management of e-commerce application services to a broad range
of servers, clients, and devices. The Sun ONE Application Server is compliant with J2EE
1.3 technology. Scalability (horizontal and vertical), high availability, reliability, perfor-
mance, and standards compliance are the key goals of this architecture. Because it
combines existing Sun ONE products and technologies with the J2EE 1.3 Reference
Implementation (J2EE 1.3 RI), the Sun ONE Application Server architecture is built upon
proven technologies.

Orion Application Server

Orion Application Server from Evermind (see Orion Application Server, 2005), in the
current version 1.2.9, supports parts of the future EJB2 standard, including Message
Driven Beans. The Orion application server comes with its own Web server, but it can

62 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

also be persuaded to work with Apache. It is free for development and noncommercial
use.

Many application servers have built-in features of Web servers. Such servers exhibit
features of both application and Web servers. While application servers contain Web
server functionality, developers rarely deploy separate application servers. Instead,
when needed, they often deploy stand-alone Web servers along with application
servers. Such a separation of functionality aids performance because simple Web
requests have no impact on application server performance.

Evolution of Multi-Tier Architecture

Multi-tiered architecture (Smith, 2004) involves client-server technology. There are
several architectures involved with a client-server technology such as two-tier and three-
tier architectures. However, there are some legacy systems which still run on single-tier
architecture.

A multi-tiered architecture is one where the functionality of the application is spread
across multiple layers or tiers, each typically executing in its own server.

Multi-tier architecture breaks applications into various layers such as:

• User Interface which bridges the communication between the user and the appli-
cation;

• Business Layer associated with all business rules necessary to run the application;

• Data layer addresses the data required for managing business transaction;

• Stored Procedures provide efficient mechanism to speed up the application;

• Data Services help to streamline the data which will be used for business;

• Message Queues formalize the message before getting processed.

These layers help to run the applications efficiently.

Single-Tier Architecture

Typical single-tier architecture of the client-server technology is shown in Figure 3.4. In
the legacy single-tier architecture, applications run on a single layer; that is, the user
interface, business rules, and database are maintained and executed together at a single
server. Here, a single machine is designed to take two logical roles: server and client.

An example could be the Oracle® configuration where users at dumb terminals interact
with the SQL*Plus (see SQL *Plus Quick Reference, 2003) command line interface. In this
example, the application is coded in PL/SQL, and all of the application resides together
in the Oracle RDBMS.

Performance Testing: Reference Technology and Languages 63

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Two-Tier Architecture

Two-tier architecture of the client-server technology is modeled as shown in Figure 3.5
where UI is separated. In this architecture, both business logic and database systems are
at server end. Client makes a request for a service such as file transfer or transaction
processing. Server lookup for the service requested processes the requests and re-
sponds back to the client. This type of architecture burdens the server.

Two-tier architecture is normally adopted for a system with a low user base, typically used
in small environments (less than 50 users). A common approach in the client-server
environment is to prototype the application in a small, two-tier environment, and then
scale up by simply adding more users to the server. This approach will usually result in
an ineffective application system, due to the overloading of the server. To properly scale
up to hundreds or thousands of users, it is usually necessary to move to three-tier
architecture.

Client -server

Database

B us iness Logic

User Interfac e

Figure 3.4. Single-tier architecture

Client Server

R e qu e st

R e sp on se

D atabase

B us iness LogicU ser Interface

Figure 3.5. Two-tier architecture

64 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

First generation client-server systems were on two-tier architectures. In this architecture,
the client using a Personal Computer (PC) or a workstation interacts with the RDBMS
through a client program. Similarly, many first generation Web-based systems were also
two-tiered. Here also, the Web server connects to an RDBMS, and the code on the Web
server executes queries, updates, and database manipulation functions with RDBMS.

Three-Tier Architecture

Three-tier architecture isolates server from processing the business logic as shown in
Figure 3.6. Business logic is present at server agent. A server agent acts like a server as
well as a client and interacts both with the client and server. A middleware situated
between client and server. Server manages the database system.

The role of server agent is many and varied. Some of its important functions are:

• Providing translation services (as in adapting a legacy application on a mainframe
to a client-server environment);

• Metering services (acting as a transaction monitor to limit the number of simulta-
neous requests to a given server); and

• Providing intelligent agent services (mapping a request to a number of different
servers, collating the results, and returning a single response to the client).

Finally, large scale Web sites and internal applications are moving to a three-tiered
architecture. In this architecture, the Web server or client program makes requests to a
server that executes the application logic (often referred to as “business logic”). The

Client ServerServer Agent

R eques t

R es pons eR es pons e

R eques t

D atabas e
Business log icUser

Interface

Figure 3.6. Three-tier architecture

Performance Testing: Reference Technology and Languages 65

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

intermediate server executes operations like queries, inserts, deletes associated with the
database. Using an application server allows a developer to concentrate on the “business
logic” rather than all of the housekeeping details involved in that intermediate server.

Web-Based Thin Client

This architecture is very similar to the two-tier architecture of client-server technology.
The basic Web architecture shown in Figure 3.7 is characterized by a Web client that
displays information content and a Web server that transfers information to the client.
Here all the processing is carried out at server end, and a thin client application performs
data presentation task for the user over an HTTP connection via a universal interface:
the Web browser.

The application itself resides and is executed on a Web server. The application code
contains all the business logic including any code used to access databases. Hence, a
Web-based thin client application works without having to install any new software on
a client machine.

Web-Based Thick Client

This model is an extended version of the thin client model where clients were exempted
from processing any task. However, in this model, processing can be done locally on the
client with scripts (Jscript and/or VB Script) to relieve the server of the most mundane
tasks such as data validation and to avoid wasting bandwidth. In Figure 3.8, both client
and server support scripts, which help to distribute the execution of components. Client
processing should only occur after verifying that the client indeed has the capability to
perform such tasks.

S c r ip ts

W e b S erv er

W e b Brow s e r

S erv ic es

C om pon ents

D a tabas e

R eq ues t

R es pon s e

Client Server

Figure 3.7. Web-based thin client

66 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Three-Tiered Web-Based System

This basic Web architecture is fast evolving to serve a wider variety of needs beyond
static document access and browsing. The Common Gateway Interface (CGI) extends the
architecture to three tiers (http://www2003.org/cdrom/papers/poster/p274/p274-
iijima.html) by adding a back-end server that provides services to the Web server on
behalf of the Web client, permitting dynamic composition of Web pages. It may be seen
in Figure 3.9, that the business logic is processed separately whereas data required for
business processing are stored independently. This data are accessed through database
connectivity drivers like Java Database Connectivity (JDBC) in case of Java technology
or Open Database Connectivity (ODBC) in case of Microsoft technologies.

Advantages of Multi-Tier Architecture

The multi-tiered approach has several advantages. To begin with, the client application
is smaller. This is due to the fact that most of the application resides on the application
server. Secondly, because the application is located on the server, code changes can be
made once on the server side rather than several times on the client’s side. Thirdly, it
provides better database security since the client does not directly communicate with the
database.

Scalability

In a single-tiered application, RDBMS server processes the business logic. The server
memory or the capacity needs an increase with the growing complexity of the application
logic, even if the number of actual database operations does not grow. In a two-tiered
application, more of the processing can, no doubt, be pushed out to the client machines
but they have no facility to share the information. Also updating the Software on all the
client machines is a difficult and tedious task.

Separation of Functionality

The three-tiered model allows the data access logic (talking to the database) to be distinct
from the business logic. The presentation logic, which interacts with the user, is also
independent of the first two functions. This allows for splitting the project across
multiple groups. Thus, proper separation of functions will enable reducing the risk of
making changes to the code. In a one- or two-tiered application, changing the “presen-
tation logic” (the part that formats data for the user and interacts with the user) runs the
risk of breaking the core components because the presentation logic and the application
logic are interwoven. This is obviated in the three-tier system.

Performance Testing: Reference Technology and Languages 67

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Security

From the angles of security, it is not advisable to connect the Web server directly to the
database. Placing an application logic server in between them adds a security dimension
to the architecture. Designing an API to the application logic properly (narrow range of
functions, without passing SQL code through the API) and placing each tier onto its own
network separated by firewalls ensures an architecture protecting layers from invalid
access.

Scrip ts

W eb Se rve rW eb Brow se r

Se rvices

C o mp one n ts

Scrip ts

C o mp one n ts

R eques t

R es pons e

Client Server

Figure 3.8. Web-based thick client

Scr ip ts Scr ip ts

Co mponen ts

C o m p o n e n ts

Serv ices

W e b Brow se r W e b Brow se r

ADO

JDBC

User In terface Bu sin ess Lo g ic Datab ase

Figure 3.9. Three-tier Web architecture

68 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Flexibility

It is possible to develop multiple clients for the application logic. One could be a GUI
interface for internal users, another the Web-based interface, and a third could be
applications that do automated tasks. Having multiple interfaces establishes more
independent functioning of the system.

Lower Development and Maintenance Costs

Building three-tier applications reduces the overall costs, as it enables reuse of compo-
nents from one application to another. As business rules are scripted and stored
separately within frequent updating resulting in lower incidence of maintenance cost.

Better Quality and Reusability

As the discreet units form the basic building blocks of a three-tier system, it is easy to
test the individual components. In addition, the architecture of this system provides for
reusability of the objects, thereby enhancing its applicability.

Scripting Languages for
Web-Based Applications

There are many scripting languages available for Web applications akin to procedural
languages available for development of software. Needless to add, the ineffective use
of these languages have a profound impact on the performance of the systems.

Basic Web Page Development Languages

World Wide Web Consortium (W3C) is an organization with a mandate to set standards
for Web development. W3C recommends Hyper Text Markup Language (HTML),
Extensible Markup Language (XML), Extensible Hypertext Markup Language (XHTML),
and Cascading Style Sheets (CSS) languages for Web page development. However,
these languages are not standardized by the browsers.

Hyper Text Markup Language (HTML)

HTML (see HyperText Markup Language (HTML), 2004) is a Web page development
language which mainly focuses on how the data look and how they should be displayed

Performance Testing: Reference Technology and Languages 69

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in a browser. An HTML file is a text file containing small markup tags which tell the
browser how to display the page. An HTML file must have an htm or html file extension
and can be created using a simple text editor.

Extensible Markup Language (XML)

XML (see Extensible Markup Language (XML), 2004) is another Web page development
language which focuses on what the data are and deals with the description of the data.
This language is much like HTML, but not a replacement for HTML. XML can be
integrated with HTML for developing quality Web pages. XML was designed to describe
data, and XML tags are not predefined. It allows users to define their own tags. XML uses
a Document Type Definition (DTD) or an XML Schema to describe the data, and the data
are designed to be self descriptive.

Extensible Hypertext Markup Language (XHTML)

XHTML (see XHTML2.0 W3C, 2004) is a reformulation of HTML in XML. XHTML is
a replacement for HTML and is almost identical to HTML 4.01. This language is a stricter
and cleaner version of HTML. XHTML is HTML defined as an XML application.

Cascading Style Sheets (CSS)

CSS (see Cascading Style Sheets, 2004) defines how to display HTML elements, and this
information is normally stored in Style Sheets. Styles were added to HTML 4.0 and above
to solve a problem of layout and display pattern of the data. External Style Sheets can
save a lot of work, and these are stored in CSS files. Multiple style definitions will cascade
into one for effective presentation of Web information.

Python

Python (see What is Python?, 2004) is a Web page development language which comes
with a standard library which handles protocols such as HTTP, FTP, SMTP, XML RPC,
POP, IMAP, CGI Programming, and operating interfaces such as system calls, TCP/IP
sockets, file systems. Python is an interpreted language, which can save considerable
time during program development as it demands no compilation and linking procedures.

Virtual Reality Modeling Language (VRML)

VRML (see VRML History – Introduction, 2004) is another Web page development
language which focuses on describing and displaying three dimensional (3D) pictures.
This language is quite helpful to design 3D pictures and provides easy navigation for

70 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the user through the browser. VRML pages can be displayed on a special VRML browser
which is a plugin for Netscape Navigator and Internet Explorer.

Common Gateway Interface (CGI)

CGI (see Common gateway interface an overview, 2004) applications are server executed
programs used to dynamically create HTML documents. Many World Wide Web sites
use CGI applications for dynamic Web page creation, for parsing forms, and for providing
a Web-based interface to other applications, such as databases. Application of CGI calls
for addressing many issues like:

• Languages used to create the CGI applications;

• Whether the applications should be compiled or interpreted;

• The performance of the CGI applications and their impact on the server;

• The portability of the applications, should a new server or operating system be
chosen for the site.

Writing the Web pages according to Web standards will improve the quality of the Web
site. Some of the best practices followed are:

• Using XHTML for Web page development allows cleaner presentation of the
information and flexible developing environment.

• Using cascading style sheets, all the information about the style of Web contents
can be stored in a single file. Using CSS will improve the quality of the Web site
and reduce development cost.

• Using Web validator will check the Web page against Web standard. The validator
will throw errors if any nonstandardized information or the style is used in Web
pages. Validating the Web page before publishing is always better from a perfor-
mance point of view.

• Using Web Accessibility Initiative (WAI) guidelines of W3C, the quality of the
Web site can be improved and can make the information available to a greater
number of users.

CGI applications are critical and must be quality conscious.

Client Side Scripting

Browser level script execution will reduce the number of interactions with the server and
enable faster response time to the Web user. These scripts are integrated with static Web

Performance Testing: Reference Technology and Languages 71

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

development languages to make the Web pages dynamic and more interactive. Client side
scripting are the lightweight languages which could be directly embedded into static
HTML pages. These are the lines of executable codes, which are handled at client side
to eliminate the computational stress and load on the server.

JavaScript

JavaScript (see JavaScript Tutorial, 2004) is used to add interactivity to static pages,
improve the design, and validate forms of Web pages. JavaScript was developed by
Netscape and is the most popular scripting language on the Internet. It works on all major
browsers like Netscape and Internet Explorer.

Jscript

Jscript (see Jscript, 2004) is the Microsoft version of JavaScript. This client side scripting
language is embedded in static HTML pages for user input validation and browser level
layout designing. It is a lightweight object oriented programming language with sophis-
ticated syntax of high level programming languages.

Visual Basic (VB) Script

Visual Basic script (see VBScript Tutorial, 2004) from Microsoft technology works on
Microsoft’s IE Web browser. VBScript is a client side scripting language and is a light
version of Microsoft’s programming language Visual Basic. When a VBScript is inserted
into an HTML document, the Internet browser will read the HTML and interpret the
VBScript. This technology is quite useful for user input validation.

Server Side Scripting

For the development of a static Web site, only HTML programming could be used.
However, for the dynamic and interactive Web sites, some server side technologies need
to be embedded with HTML. Server side technologies enable the client to receive
dynamic responses. With these server technologies, it has become easier to maintain
Web pages, especially on a large and complex site.

Java Server Pages (JSP)

JSP (see Java Server Pages Technology, 2004) is developed by Sun Microsystems where
Java is extensively used. Java is a very powerful, object oriented language. Many
platform dependency issues have been ironed out with the advent of Java. Thus, Java
programs for, say Unix, can be made to run on Windows or the Mac system with little or

72 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

no effort. Much development is taking place on the Java front with new arrivals like Java
Beans, Extended Java Beans, and Java applications for various databases and XML.
Using the Java Server, one can also develop dynamic Java Server Pages.

Active Server Pages (ASP)

ASP is promoted by Microsoft technology (see Active Server Pages, 2003). The ASP
utilizes some special tags, which can be embedded in the HTML code to generate dynamic
Web pages. ASP scripts run on the server, typically, the IIS on Windows NT. ASP pages
carry the .asp extension that differentiates them from plain HTML pages and instructs
the Web server to pass the pages through the ASP interpreter. It is possible to use
VBScript, Java script/Jscript or a combination of the two to write ASP pages. The great
advantage in using ASP is the ease of maintenance of the Web site. However, the
disadvantage is that the user becomes too dependent on Microsoft technologies.

Microsoft .NET

Microsoft’s Dotnet (.NET) (McMullan, 2004) is a new environment for developing and
running software applications, featuring ease of development of Web-based services,
rich standard run time services available to components written in a variety of program-
ming languages, and interlanguage and intermachine operability. .NET depends on four
Internet standards, namely, Hyper Text Transfer Protocol (HTTP), Extensible Markup
Language (XML), Simple Object Access Protocol (SOAP), and Universal Description
Discovery and Integration (UDDI). Microsoft views this new technology as revolution-
ary, enabling Internet users to do things that were never before possible, such as
integrate fax, e-mail, and phone services; centralize data storage; and synchronize all user
computing devices to be automatically updated.

Hypertext Preprocessor (PHP)

PHP (see Hypertext Preprocessor, 2004) was created sometime in 1994 by Rasmus Lerdorf.
During mid-1997, PHP development entered the hands of other contributors. Two of
them, Zeev Suraski and Andi Gutmans, rewrote the parser from scratch to create PHP
version 3 (PHP3). PHP is an open source technology. A PHP page will either have .php
or .php3 (depending on how the server has been configured) extension. This is used in
open source programmers compared to ASP from Microsoft. PHP not only carries all the
goodness of ASP but is also more secure and handles databases more easily. It is a known
fact that PHP on Apache Web server runs faster than ASP. PHP code is embedded inside
the HTML page and can link to databases to generate dynamic HTML content.

Performance Testing: Reference Technology and Languages 73

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Server Side Includes (SSI)

SSI (see Server Side Includes (SSI), 2004) involves the embedding of small code snippets
inside the HTML page. An SSI page has .shtml as its extension.

Technologies described in Table 3.1 enable an addition of programming code inside the
HTML page. This code is passed to the appropriate interpreter which processes these
instructions and generates the final HTML displayed by the browser. The embedded
code is thus not visible to the client. For instance, a request sent for a PHP page from a
client is passed to the PHP interpreter by the server along with various program variables.
The interpreter then processes the PHP code and generates a dynamic HTML output.
This is sent to the server, which in turn redirects it to the client. The browser is not aware
of the functioning of the server. The Web client (browser) just receives the HTML code,
parses and formats the content appropriately, and displays on the computer.

Meeting the Challenges

Chapter 3 prepares the reader to qualify to understand the next chapters. Readers must
know the basic concept of PT and various views on PT. Also, distinction between various
types of PT is also discussed with examples in these chapters. Without understanding
the technology, working on PT is not possible. Hence, the topic on reference technology
will help readers understand and appreciate the PT discussed in later chapters. This
chapter also discusses various issues like network performance, technology, and user’s
perception on performance.

Summary

Before involving PT activities, one should understand the basic concepts of different
technologies, particularly client server and Web technology. Addressing performance
issues in both technologies is different. In both technologies, understanding different
tiered architectures provides in-depth knowledge on how the system works and what
challenges need to be faced during PT. Technology alone does not help, but various

Server Technology Characteristics
Active Server Pages • Microsoft technology

• Embedded with HTML and have .asp extension
Hypertext Preprocessor • Open source technology

• Embedded with HTML and have .php or .php3 extension
• More secure and easier handling of database connectivity

Java Server Pages • Java based technology from Sun Microsystems
• Embedded with HTML and have .jsp extension
• Platform independent

Table 3.1. Server side technologies

74 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

languages used for developing systems also make an impact on the performance. Hence,
understanding tiered technology and languages is of paramount importance before one
gets into addressing the performance of any system.

References

Active Server Pages. (2003). Retrieved December 16, 2003, from http://msdn.microsoft.com/
library/default.asp?url=/library/en-s/

An alternate three-tiered architecture for improving interoperability for software
components. (2003). Curtin University of Technology. Retrieved September 30,
2004, from http://www2003.org/cdrom/papers/poster/p274/p274-iijima.html

Apache: The number one web server. (2005). Retrieved May 17, 2005, from http://
media.wiley.com/product_data/ excerpt/12/07645482/0764548212.pdf

Application Server Matrix. (2004). Retrieved December 16, 2004, from http://
www.theserverside.com/reviews/matrix.tss

BEA Weblogic platform. (2004). Retrieved December 17, 2004, from http://www.bea.com/
framework.jsp?CNT=index.htm&FP=/content/products/platform

Cascading Style Sheets (2004). Retrieved September 12, 2004, from http://www.w3.org/
Style/CSS/

Client/server software architectures — An overview. (2004). Carnegie Mellon Univer-
sity. Retrieved September 30, 2004, from http://www.sei.cmu.edu/str/descriptions/
clientserver_body.html

Common gateway interface an overview. (2004). Retrieved September 15, 2004, from
http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

CORBA® BASICS. (2003). Retrieved December 16, 2004, from http://www.omg.org/
gettingstarted/corbafaq.htm

DB2 product family. (2004). Retrieved January 16, 2004, from http://www-306.ibm.com/
software/data/db2/

Extensible Markup Language (XML). (2004). Retrieved August 20, 2004, from http://
www.w3.org/XML/

Hypertext Preprocessor. (2004). Retrieved December 16, 2004, from http://www.php.net/

HyperText Markup Language (HTML). (2004). Retrieved August 20, 2004, from http://
www.w3.org/MarkUp/

IBM WebSphere. (2004). Retrieved December 17, 2004, from http://www-306.ibm.com/
software/Websphere/

Information Server Overview and Architecture. (2005). Retrieved May 17, 2005, from
http://www.windowsitlibrary.com/Content/141/01/2.html?Ad=1&

Internet Information Services. (2004). Retrieved December 17, 2004, from http://
www.microsoft.com/WindowsServer2003/iis/default.mspx

Performance Testing: Reference Technology and Languages 75

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Java Server Pages Techonology. (2004). Retrieved December 16, 2004, from http://
java.sun.com/products/jsp/

JavaScript Tutorial. (2004). Retrieved November 11, 2004, from http://www.w3schools.com/
js/default.asp

Jscript. (2004). Retrieved November 11, 2004, from http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/script56/html/js56jsoriJScript.asp

Marshall, D. (2004). Remote Procedure Calls (RPC). Retrieved September 22, 2004, from
http://www.cs.cf.ac.uk/Dave/C/node33.html

McMullan, A. (2004). .NET framework FAQ. Retrieved September 17, 2004, from http:/
/www.andymcm.com/dotnetfaq.htm#1.1

Oracle. (2003). Retrieved December 16, 2003, from http://www.oracle.com/index.html

Oracle Application Server. (2004). Retrieved December 16, 2004, from http://
www.oracle.com/appserver/index.html

Orion Application Server. (2005). Retrieved January 21, 2005, from http://
www.orionserver.com/

Server Side Includes (SSI). (2004). Retrieved September 15, 2004, from http://
hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html

Smith, D. (2004). Multi tiered architectures and applications servers. Retrieved Septem-
ber 15, 2004, from http://www.tokyopc.org/newsletter/2003/01/arch_n_app_
servers.html

SQL Server. (2004). Retrieved January 16, 2004, from http://www.microsoft.com/sql/
default.mspx

SQL *PLUS Quick Reference. (2003). Retrieved September 22, 2004, from http://
www.csee.umbc.edu/help/oracle8/server.815/a66735.pdf

Sun ONE Application Framework. (2004). Retrieved December 17, 2004, from http://
www.sun.com/software/products/application_framework/home_app_framework.
xml

SyBase. (2003). Retrieved December 17, 2004, from http://www.sybase.com/

Tomcat site. (2004). Retrieved December 17, 2004, from http://jakarta.apache.org/tomcat/

What is Python? (2004). Retrieved September 21, 2004, from Executive Summary at http:/
/www.python.org/doc/essays/blurb.html

VBScript Tutorial. (2004). Retrieved November 11, 2004, from http://www.w3schools.com/
vbscript/default.asp

VRML History — Introduction. (2004). Retrieved November 11, 2004, from http://www-
winfo.uni-siegen.de/vrmlHistory/docs/partVH/introduction.html

XHTML™2.0 W3C. (2004). Working Draft 22 July 2004. Retrieved August 20, 2004, from
http://www.w3.org/TR/2004/WD-xhtml2-20040722/

76 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Additional Sources

Orfali, R., Harkey, D., & Edwards, J. (2002). Client/server software architectures.

Sadoski, D. (2004). Client/server survival guide (3rd ed.).

Test Preparation Phase I 77

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 4

Test Preparation
Phase I:

Test Definition

The core theme of the previous chapters is that a methodical and structured approach
to PT is rather necessary right from the early phases of the development cycle. This will
ensure predictability and controllability of application performance in practice. The
preparatory activities associated with PT (Figure 4.1) are of great importance and are
distributed over the life cycle phases of requirement elicitation and analysis, High Level
Design (HLD), Detail Level Design (DLD), and several sets of system builds. These
activities help define and provide continuity between the high level requirements for
application performance, strategies for testing, a framework for designing the tests (see
Barber, 2004), and artifacts used to plan and carry out tests. This chapter contains a
detailed consideration of the definition phase while Chapters 5 and 6 highlight issues
related to the design and build phases associated with the preparatory activities as
shown in Figure 4.1.

Need for Test Definition Phase

Customarily, designers address performance issues close to the end of the project life
cycle, when the system is available for testing in its entirety or in significantly large
modular chunks. This, however, poses a difficult problem, since it exposes the project
to a potentially large risk related to the effort involved in both identifying as well as
rectifying possible problems in the system at a very late stage in the life cycle. (Refer to

78 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 1 and Chapter 2 on the problems of debugging.) A more balanced approach would
tend to distribute such risks by addressing these issues at different levels of abstraction
(intended to result in increased clarity with time), multiple times (leading to greater
effectiveness and comprehensiveness in testing application performance), and at differ-
ent stages during the life cycle. The very first component of activities related to
preparation for such testing is in collecting and analyzing requirements related to the
performance of the system alongside those related to its features and functions. Hence,
this activity would have to take place during the requirement study of business functions
and is termed the test definition phase. The main objectives of this phase are to:

• Define goals of PT;

• Remove ambiguities in performance goals;

• Determine the complexity involved in PT;

• Define performance metrics to measure the performance;

• List risk factors involved in PT;

• Define the strategy for PT.

Although most of these activities are carried out during the requirement study phase,
some of these have to be revisited for further tuning and clarification during the design
phase.

While requirements for modeling business functions and those for performance comple-
ment each other, their gathering, as well as analysis, need to be treated as different
activities. The performance requirements must be well defined before the design phase,
as shown in Figure 4.2, so as to facilitate a more precise design of tests of critical
performance parameters.

Collection of performance requirements is a difficult and complex task due to a variety
of reasons. It is often easier to elicit requirements associated with business functionality

Performance Test Preparation

Definition Phase

Performance Requirement Document

Test Strategy Document

Design Phase Build Phase

Benchmark Design

Operation Profile

Workload Design

Tools Selection

Test Plan

Test Environment
Test Scripts

Test Schedule

Testing Process

Figure 4.1. Prepartory phases of performance testing

Test Preparation Phase I 79

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

than those related to performance of a system developed to cater to the functionality.
In addition, performance parameters are influenced by multiple factors such as:

• The business background and objectives of the organization;

• Information related to current operations of the organization;

• Business growth strategies of the organization;

• User or customer base associated with the organization;

• Operational and deployment logistics as envisaged by the organization;

• Existing and prospective technical infrastructure for the automated system;

• Network environment, hardware and software systems required to run the busi-
ness.

Typically, most of these factors are not directly available for analysis during the initial
stages and/or are implicit and therefore need to be derived from other information. In the
following sections, a detailed description and approach is provided to understand the
various activities related to performance requirement elicitation, analysis, structuring,
and documentation. Figure 4.2 provides the process flow to generate a performance
requirement document wherein business requirements, customer interaction, and infor-
mation on infrastructure are the main inputs.

Performance Requirements and
Their Importance

Performance is one of the nonfunctional requirements and has a severe impact on the
success of the project. Since designers are not bothered about the performance during
the requirements gathering, the real impact will be known only when it fails to meet the
users’ expectations. If the system fails during its live operation, rectification is a very
expensive activity, which may lead to loss of customers. To avoid such implications, treat
the performance elicitation activity much in the same way as functional requirements.
Broadly, the activities in this phase can be divided into three categories, as related to:

Performance
Requirement

Analysis

Performance
Requirement

Document

Business Req Doc
Customer
Interaction

Infrastructure

Figure 4.2. Preparing a performance requirement document

80 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Business functions related performance requirement;

• Infrastructure and network environment;

• Explicitly specified requirements for performance.

In each category, intensive performance requirement elicitation must be carried out as
discussed in the following sections.

Business Functions Related
Performance Requirement

Functional requirements gathering is the first step in SDLC. This process is well
understood. However, nonfunctional requirements like performance may not be col-
lected during the requirements study due to uncertainties of the expectations on
performance. However, it is possible to collect performance requirements based on many
business related functions like:

• Business context;

• Business events;

• Business operations;

• Business objectives of the system;

• Logistics of the operations;

• User base.

These functions are explained in the following sections:

Business Context

Many of the detailed plans and processes employed by organizations to achieve
business goals can have a significant impact on performance. The business context
diagram normally available with the organization provides the in-depth details.

The following questionnaire will help to collect information related to a business context.

• What is the uniqueness in the business as relevant to the performance?

The idea is to find out how the business uniqueness impacts the performance of
the system. To illustrate, providing mobile commerce (m-commerce) for the custom-

Test Preparation Phase I 81

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ers of a bank is unique compared to other banks but requires the system to be
performance conscious.

• What are the business functions that are critical for a company’s survival?

Some of the business functions are critical and must be given top priority while
handling the performance. These functions are important to the company’s
survival in order to stay ahead of their competitors. Identify those functions critical
to performance with no scope for compromise.

• What is the organizational structure?

Organizational structure always helps to determine the stakeholders of the perfor-
mance results. Different groups at different levels in the organization will demand
different types of performance results.

• What are the business goals? List the business goals per the organizational
structure.

Knowing the organizational structure helps in formulating the performance goals
to suit the different levels. For instance, in any organization, senior managers may
have different goals compared to marketing or information system (IS) groups.
Senior managers may be looking at the growth projection, in terms of increase in
number of users, for the next five years whereas the marketing and information
system (IS) groups may be working on how efficiently services can be offered to
existing customers. In the former, the user base increases whereas the latter
addresses the response time of various activities. However, both of them will have
an impact on the performance of the system.

• What is the overall structure of the system?

Knowing the structure of the overall system helps in planning the performance. Part
of the system may be used internally, and performance may not be the criterion for
its function. For instance, executing batch processing could be done during
nonprime time so that the impact on the performance is reduced.

Business Events

Many business operations are triggered by various events. These events may originate
within the system or driven by the external system. The dependency of operation on an
event definitely affects the performance. Events may be triggered manually or automati-
cally. These events are categorized as follows:

External Events

These events are triggered by external entities, which depend on many factors like
communications, infrastructure, and people. For instance, fund transfer in a banking
system is allowed through a customer’s mobile phone. To complete the transaction, the
event depends on the health of the mobile phone, features enabled on the mobile phone,
and the service provider. The banking system does not have any control over these

82 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

external events. The performance of the complete transaction depends on the perfor-
mance of these external entities.

Temporal Events

On occasion, some of the business events are triggered in real time. To illustrate, the
purchase order for a specific material is triggered only during the first week of every
month. In such cases, there will be an additional load on the system during the specified
period, which must be accounted for by measuring the performance of the system.

Business Operations

Different groups within the organization manage business operations, and typically, the
objectives of each group are different from one group to another. In some cases, the
organizational structure and business operation group may be the same. The intention
of making groups according to the business operations is to ensure that the stakeholders,
involved in appreciating performance results, will define the performance requirements
correctly. To illustrate, in the banking industry, the groups may be categorized broadly
into:

• Senior management to plan the business growth of the bank;

• Customer division to manage the customers efficiently and build customer confi-
dence;

• Middle management to strategize the business of the bank for efficient operation
and building more profit;

• Information system groups to maintain and monitor the various automated sys-
tems.

The objectives and operations of each group must be known so that the performance
analyst can assess the impact on performance of the system due to the groups operations.
This helps to define the performance objectives at the group level.

Another significant impact on the performance is altering the existing system by:

Introducing the New Business Operation

Based on the business growth and plan, demand may arise to start a new business
operation. Depending on the complexity of the new operation, the performance of the
system may vary. In-depth study and investigation on new operations must be carried
out during this phase. For instance, the service of fund transfer through a mobile phone,
if introduced to bank customers at a later stage, will impact the performance of the system.

Test Preparation Phase I 83

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Enhancing the Existing Operation

The existing business operation may not always be effective and requires modifications
that include enhancements. Such modifications may impact the performance of the
system.

To illustrate, a money withdrawal facility is available through ATM in a banking system.
The authentication procedure used to withdraw money is the ATM card PIN. However,
due to business compulsion, management decided to enhance the authentication
procedure by introducing the voice recognition of the card holder. This requires
upgrading the system using emerging technology and implementing the speech synthe-
sis technique within the system.

Table 4.0 provides the proposed checklist, which highlights various activities involved
to carry the business operation and the corresponding outputs for each activity.

Each operation helps in capturing performance requirements.

Business Objectives of the System

Though the overall business objectives of the system are listed as part of the business
context, it is necessary to define operation-wise business goals. Many of the business
functions are known during the systems requirements study phase. However, those
functional requirements (see Robertson, 2005) that impact performance must be revisited
and defined properly. Business plans must be explored properly from the angles of
scalability testing. Proposed guidelines that may help in obtaining information on
business objectives would be:

• List the objectives of the system and categorize them according to business
operations.

• What are the business plans for next Y years? Quantify, if possible.

• What are the growth projections for the coming years? Quantify, if possible.

• Identify the parameters that impact growth projections of the organization.

Activity Output of the activity
Identify different working groups with in the
organization

 A list of stakeholders

List the operations of each working group.
Determine the complexity of each operation.

 A list of operations

Determine how each operations impacts
their business growth

 Scalability information

Identify any business process in place. Nil
Determine the critical operations, if any, of
the group.

Identify possible bottlenecks for
performance.

Table 4.0. Checklist for business operation

84 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Are there any specific performance based goals defined by management? If so, list
all the goals.

Logistics of Operations

If the business activities are distributed at many places, modeling the logistics of
operation is of paramount importance. This is because performance of the system
depends on the bandwidth available at the place of operation and vicinity of ISP
providers. Volume and type of transactions also vary from place to place which impacts
performance. The following guidelines provide an overview on logistics of operations.

• List different places of operations.

• List the complete set of business operations at different places.

• Identify type and volume of transactions at each place.

• Identify the topology of networking and ISP providers place-wise.

• Determine the expectations at each place of operation.

• If you think the priority of objectives changes at different places, list them properly.

User Base

User-wise information on the user base at different locations of operation and type of
operations are required. The user base may be broadly categorized into user groups, and
each user group can be identified with a set of operations. There may be different groups
such as internal and external users. Internal users may be employees. If their base is

U s er

Internal

S enior M anagem ent

M iddle M anagem ent

E x ternal

A d-H oc U s er
(W eb S urfer)

C us tom er

IS G roup C us tom er S uppor t G roup

C r itic al
C us tom er

R are
C us tom er

Mo st Fre q u e n t
V isito r

Figure 4.3. Typical user base for a bank

Test Preparation Phase I 85

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

considerably high, create subgroups based on their activities. Similarly, external users
may be customers who undertake different activities with the Web site. They may just
surf the Web site as a Web surfer, or some customers may transact through the Web site.
Activities vary with customers’ requirement, and the number of customer visiting the
Web site varies with time.
Proposed guidelines to be used to collect information on user bases would be:

• Identify the user base and its growth potential;

• Differentiate internal and external users;

• Determine different groups based on operations;

• Determine different groups based on logistics;

• Prioritize the user group based on their requirements;

• Frequency of accessing the Web site by each user group.

Figure 4.3 provides a possible user base for a typical industry. Observe that internal users
are also contributing to performance requirements like external users are. Subsequent
categorization depends on the specific industry. User groups will help in planning reload
on the system during PT.

Infrastructure and
Network Environment

Infrastructure available for the proposed system must be studied exhaustively. Infra-
structure mainly involves the computer hardware and software systems. If the proposed
system is to be developed from the ground up, the infrastructure recommended for the
system must be accounted for in the study. If the proposed system is a reengineered
system, existing and new infrastructure must be accounted for in the study. Infrastruc-
ture requirements are divided into (1) network environment and (2) hardware/software
system.

Network Environment

Evaluate the network environment in terms of Local Area Network (LAN) and Wide Area
Network (WAN). If the organization is using LAN, it may be composed of several servers
working in a C/S environment connected by fast Ethernet using the 100 BaseT standard
(see Guide to using fast enthernet, 2005) and rated at 100 Mbps. If the performance result
identifies LAN as the bottleneck, the speed of the LAN could be increased to gigabit per
second using gigabit Ethernet. Also, T1 lines may be shared between the Web and
telephone traffic.

86 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Domain 6

Domain3

Domain 1

Domain 2

Domain 5

Domain 4

 Workstation 5

Workstation 3

Workstation 2

Workstation2

Workstation1 Workstation3

Workstation 1

Workstation 3

Workstation 2 Workstation 2

Workstation 1
Workstation 4Remote Application

/Web Server

 Local Server 2

Local Server 3

Workstation 4Workstation 1

Workstation 4

Workstation 3Local Server

 Local Server 1

Remote Data Server

INTERNET

Figure 4.4. Typical computer network (WAN)

If the organization is using WAN, different offices might be connected through dedicated
T1 lines. To illustrate, a typical networking environment for the banking project could
be as shown in Figure 4.4.

The system will operate in a client-server network as well as be supported by Web. There
will be a cluster of LAN situated at different places. Some of the clusters may have their
own Web server and remote data server. All clusters are linked to the headquarters by
a WAN. The client-server network will include approximately 2,000 users, with one client
workstation per user. A complete topology of the network environment is available with
the IS department of the bank.

Hardware/Software System

The proposed/existing application system requires proper hardware/software infra-
structures to work efficiently. The organization may procure the relevant ones or may also
be in excess. These resources may be utilized exclusively for the proposed system or in
addition to the system; they may be used for other activities. In such cases, careful
examination is required, as other systems will be considered noises during PT. Table 4.1
provides the checklist for the basic infrastructure required for a typical Web system.

Test Preparation Phase I 87

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Though the hardware/software is used for the proposed system, there may be other
applications running on the system. These applications impact performance by unnec-
essarily loading the system and network. If these applications are required to run along
with the proposed system, the implication of these applications on the performance must
be studied.
Other important issues to be noted are the people issues. Management may not be
knowledgeable enough to understand the performance issues. The IS department may
be very stringent on certain issues related to performance results requirements. All users
may not have full knowledge about the expectations on performance of the Web site they
are going to use. All these issues must be carefully handled during the performance
requirement study.

Sl.
No.

Hardware/Software
Types

Descriptions

1 Web Servers Web servers (see Brain, 2004) are connected to routers,
which in turn connected to the Internet through multiple
T1 lines. If there are host of web servers, load balancers
are used to balance. The load on these load balancers
impacts the performance. Web servers may have its own
databases but not all data are available in the local
database.

2 Application Servers Application servers may be installed on a single machine
along with the web servers or may be in different
machine also. Application server is connected to a web
server.

3 Database Servers The database servers may be centralized or distributed.
If it is distributed, list all the servers and its profiles. If
database servers used for mirroring, it must be
described separately. Taking backup during peak hours
should be avoided as it will be a background process
effecting the other process and hence degrading the
performance.

4 Print Servers Print servers are connected to the LAN and used by
many users. Description of each print server is required
as it may impact on the performance.

5 Voice Telephone
Servers

These servers are used to service and coordinate
incoming calls with customers’ profiles. The voice
telephone service will be supported by call center
software. The software will reside on voice response
server. The voice service is handled by the same set of
T1 lines, which is used for web services.

6 Modems Modems are part of the network accessories. Users may
access the Web site through modems. Specification of
each modem available on the network must be known.

7 External Interfaces Routers and Bridges are few important components that
impacts on the performance. Their structures must be
known.

8 Platforms

Platforms like Java or Microsoft will also impacts on the
performance of the system.

9 Software

List is endless but those software that are useful to
Internet applications.

Table 4.1. Checklist for basic infrastructure

88 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Explicitly Specified Requirements
for Performance

Performance specific requirements are based on the behavior of the proposed system,
shown in Figure 4.5, and are viewed in two ways:

1. Implementation of the business function and representing the functionality of the
system

2. Ensuring performance of the proposed business functions

The business functions are mapped to a set of use cases, which will be used to model
the functional behavior of the system. However, while modeling the functional behavior,
much emphasis will not be given on performance of the system during the functional
design. Even though performance issues are addressed during functional design, they
will be on a low key only. Hence, performance requirement elicitation needs to be carried
out separately and comprehensively.
Business functions of the proposed system are captured at the requirements gathering
stage of the software engineering life cycle. This phase is well defined, and many
processes are available to capture the requirements of the system. Based on the
requirements, the architectural plan is proposed, and the design starts from there. The
user understands the proposed system through an acceptance test, which will be
deployed later.

Interfacing System (If Any)

Some of the organizations want to interconnect their system with the external system
through a proper channel. This needs a study of the details of linking with the other

System Behaviour

Functionality Performance

Figure 4.5. Proposed system behavior

Test Preparation Phase I 89

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

systems. For instance, a typical banking system wants to interact with another banking
system to transfer funds across banks. The performance of interbanking funds transfer
depends on the performance of the target bank also.

Responsibilities

Proper teams must be identified for testing, and responsibilities must be assigned
appropriately. The main responsibilities include testing the performance of the new
system for response time, throughput, scalability, and ability to handle peak loads. The
team’s immediate requirement may be to prepare a high level strategy document to
describe these tasks.
The requirement for better performance is multifaceted. Studying the usage pattern of
the system brings out much information and will help in PT. Therefore, the operation
profile, in general, must be developed for every system before the beginning of PT.

Operation Profile

The operation profile provides the usage pattern of the proposed system. It tries to list
the major demands or the likely demands of the system actually occurring in live
operation. It is also known as the usage model of the system, as the dynamic behavior
of the system is addressed. The dynamic behavior depends on the types of transaction
the system supports. Once the types of transaction are identified, the system’s usage
and behavior are also known. The behavior means the system’s operations and interac-
tions with other transactions, complexity, and usefulness. The usage means frequency
of utilization at different intervals like peak or normal hours and criticality of the
transaction. The frequency of utilization can be expressed in terms of transactions per
hour/second. The operation profile normally does not include overheads and back-
ground transactions, if any.

Table 4.2. Template for operation profile

User Group Identify the user group thru a name. If necessary, list the
sub user groups also.

Priority of user groups The importance of each user/sub user groups must be
specified. Use your own scale to specify the priority

Feature/Business
Functions

Describe the set of transactions/activities performed in
the planned system. If necessary, describe the sub
activity also.

Frequency of utilization List in number of transactions per hour/sec utilization of
those transactions selected earlier. Consider different
time intervals like peak, normal, etc.

Set Priority

Set the priority of each type of transaction in your own
scale.

90 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

How to Prepare an Operation Profile

System developers may not be interested in preparing an operation profile for perfor-
mance testers. In such cases, there is a risk of avoiding the real environment. Though
the preparation of an operation profile may consume time and might be difficult, as the
live operation may not be known at this stage, it is still a worthwhile proposition. Even
if it is difficult to collect the data, there should be a serious effort to “guestimate” and
verify the same with knowledgeable professionals.
Prepare a good operation profile requires complete knowledge of the proposed system.
The system’s behavior at different time intervals, different days and months, must be
known. User groups must be defined and prioritized properly. A user group is a set of
users who operates on similar transactions. To illustrate, the IS group is a valid user group
who operates on system related transactions. It may not be of much importance for
performance when considering priority. In such cases, the IS group will be valued at a
lower rate compared to other groups. Table 4.2 will help in preparing the operation profile.
The frequency of utilization can be determined by many ways and requires knowledge
of the business domain. The time intervals must be properly defined. However, the main
issue lies in deciding the span of the time intervals and number of transactions within
each interval. For instance, if the peak time is defined as two hours every business day,
the pattern of distribution of transactions within two hours will not be uniform. It is not
correct to take the worst case scenario, as there may be a surge which may not reflect the
real distribution. Therefore, selection of the distribution as well as the time interval is
difficult. The time interval is important because it is not proper to consider the entire two
hours as peak time load test during PT. This is not economical, either.
An operation profile of the typical banking application is given in a case study (Appendix
D).
The main features of the system are highlighted in the business requirements document.
The frequency of utilization for each group is listed in Table 4.3. For instance, on average,
there are 9,300 transactions (main page access) per hour on Monday. Similarly, 700
transactions/hour related to deposit reported on Wednesday.

Service Level Agreements (SLA)

A service level agreement is a document signed by both consultant and client of the
proposed system, which depicts the formal agreement on the performance of the
proposed system. It is the binding document between the two parties, which means that
both parties have agreed to the performance requirements of the systems and expected
results during PT. Sometimes, if the project is large, a separate SLA has to be developed
for each operational group, and the agreement has to be signed separately by each
manager of those groups.

Test Preparation Phase I 91

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Miscellaneous

Occasionally, organizations would like to know what happens if a new change has to be
introduced on the proposed system. This is because taking a risk may not be conducive
to the interests of the development of the system, but they would like to know the impact.
For instance, top management would like to know the impact on performance if the Web
site generates dynamic content.

Management Conditions and Constraints

Sometimes, management will put forth a lot of constraints in terms of resources, budget,
and duration of the project. Probably, the resources are not matching the expected
performance requirements. The duration of the completion of the project may be too short
to implement all the requirements. The organization may insist on conducting the
performance test at the customer place itself, or the IS team of the organization may
conduct the test.

Table 4.3. Operation profile of business functions for one week during peak hours

User
Group

Transactions
Type
 Days

Mon Tue Wed Thu Fri Sat Sun Priority

Main Page
access

9300 8300 8800 8500 8200 8000 7000 High

Deposit
Amount

900 800 700 800 700 500 300 High

Withdraw
Amount

950 850 800 850 850 850 800 High

Request for
new A/Cs

350 250 200 350 350 0 0 Low

Customer
Group

Bill Payment 200 100 75 100 250 212 200 Medium

Daily Report
Generation

6 8 2 3 5 6 2 Medium

Fund Transfer 450 350 400 300 350 300 250 Medium

Creation of
new A/Cs

50 25 32 28 30 0 0 Low
Administrative

Group

Deletion of
A/Cs

10 30 20 22 18 0 0 Low

Banking
features query

620 740 743 851 723 613 541 High Senior
Management

Group Ad-hoc query 25 32 23 20 23 0 0 Medium

 Note:
• Frequency of utilization is expressed in terms of transactions per hour.
• Normal load is obtained during the routine business hours of transaction observed over a week.
• A peak hour of transaction represents the expected load during the worst case hour in a typical

week.
• The operation profile does not include overhead and background transactions, if any.

92 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance requirement is a new grey area where no process or methodology is
available. The conventional requirements gathering process will not capture the entire
performance requirement. Therefore, for a project that is performance sensitive, the
performance requirements must be collected separately and analyzed before the system
design so that any bottleneck could be addressed before deployment. Once the perfor-
mance requirements are gathered, a proper test strategy must be developed, which helps
during the performance test.

Developing Performance
Test Strategy Document

An exhaustive elicitation and recording of requirements would be a precondition for the
satisfactory conduction of performance tests. Yet, in practice, it must be appreciated that
it is not possible to begin testing for performance until the application in whole, or a
number of critical modules, are available in an executable form at various points in the
developmental cycle. Furthermore, budgetary, time, and other resource allocations in a
project scenario may in turn constrain the quantum of requirements tested, the duration,
environment, and locations available for testing. Therefore, to obtain optimal results, it
is necessary to develop a strategy that will help designers as well as test executors to
unambiguously understand, plan, schedule, and conduct PT within the constraints of
time and budget. Accordingly, the strategy would address the relevant choices to be
made, given these constraints, on the methodology used, test cases to be identified, time
allocated for testing and analysis, target user numbers, locations, and profiles. The
corresponding risk factors (Bach, 2004) related to the choices made would also be
highlighted in the PT strategy document.

Performance Testing Objectives

The primary goal of the testing activity is to provide sufficient information to the
development team about the likelihood that the system will perform adequately in actual
operation. The development team always concentrates on functional aspects of the
system and ignores the performance requirements. The first step toward performance
testing is to determine the objectives that will benefit both the development and
performance test team. These include information about the capability of the system to
handle the following:

a. Daily business workloads as anticipated by the organization. Business workloads
could be classified into critical, routine, and exceptional. The critical workloads
address the success of the system whereas routine workload gives the performance
requirements to handle day-to-day business.

Test Preparation Phase I 93

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

b. Daily, weekly, or monthly periods of peak demand of the system. These demands
are required to know the system’s capability to manage the business at all times.
The peak demand helps in load testing as well as stress testing. These requirements
will address resource sufficiency also.

c. Specialized needs such as those related to batch processing of volumes of
interbanking transactions, documents transfer, fund transfer, exceptional reports
generation, and so forth.

d. Ad hoc demands like burst loads in an unexpected situation. An example could be
withdrawal of money from the bank due to unfavorable political interference
suddenly.

e. Likely future growth anticipated over a specified period of time. This is important
because, as the user base increases, the load on the system also increases, and the
performance testing process must analyze the impact on the system.

Some of the questions that typically arise during objective setting are:

• Is the response time acceptable when the system is operating under a realistic load?
The acceptable response time varies and depends on the load also. It could be the
range with minimum and maximum acceptable response time. Normally, acceptable
response time will be elaborated more in the Service Level Agreement.

• Is the system capable of handling peak load? If so, what is the response time during
the peak load? The response time at the peak load is critical because most of the
users expect their queries to be answered immediately.

• Is the system reliable when accessed simultaneously by multiple users? The
system should not envisage any errors related to business functions, database
optimization, resource contention, and transaction priorities.

• Is the system scalable at all times? Scalability is referred to as the architecture and
capability to handle peak load as the user base increases.

• Does the system provide consistency in performance? Performance consistency
helps in assuring the users the same response for repeated action on a specific
transaction.

• Is the system reliable? Reliability is addressed both in functional and performance
testing.

• Is the system available? Performance testing must ensure the availability of the
system on a 24X7 basis.

• Is the entire system tuned optimally? Optimal tuning must be defined properly. It
is not just getting the better response time but other factors like throughput,
availability, and reliability must also be considered and balanced.

• Does the system degrade gracefully or fail abruptly when the load is pushed
beyond its limit?

94 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

These questions, once debated with the designers and customers, will remove many
confusions and will help in creating proper PT objectives. However, PT objectives differ
based on stakeholders.

Stakeholders

Once the performance test is conducted, the results must be compiled and presented to
stakeholders. The stakeholders differ within the organization itself. Each one of them
expects a different kind of results. For instance, the IS department may require perfor-
mance results for their day to day running of the system whereas top management needs
to know the results for the projection of their business in the future. Some stakeholders
like team members of an IS department of the bank and accounts department of the bank
may require similar reports. The strategy must be to satisfy all groups.
To illustrate, the following groups in a typical banking project are crucial for the success
of the project.

• Senior managers of the bank are the major stakeholders.

• The customer group needs to have sufficient confidence that the system will be
able to support the load of their department.

• The IS group within the bank needs information about the levels of compliance with
the SLA, which are likely to be achievable in live system operation.

• The clients expect the bank to be performance conscious and have a robust system.

Freezing Project Scope

While working out a strategy, one must be clear about the scope of PT. Normally, the
scope includes load, stress, spike, and endurance testing. The PT team may have to
analyze the results and suggest solutions if there is a bottleneck in fulfilling the SLA. Test
environments must be defined in the scope itself. A test environment may be a production
environment or an isolated test lab.
Functional testing and related problems will not be part of the scope. This is because it
is assumed that the system is functionally correct before getting handed over to the
performance test team. Activities, which are outside the scope of PT, must be elaborated
explicitly.

System Acceptance Criteria

The Service Level Agreement (SLA) has to be met first, in all respects. SLAs may not be
defined properly during the performance requirements study whereas they will be fine
tuned during developing the strategy. The main areas in which the system acceptance
criteria must be addressed are:

Test Preparation Phase I 95

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Type of test that has to be performed like load, stress, endurance, or spike test.
Which test produces results that satisfy most, if not all, of the performance
requirements? The strategy that needs to be followed must be described explicitly.
All types of tests may not be possible to complete due to resources and time. Each
type of test may have to be run multiple times, which may or may not produce the
required results. A strategy document must explore these aspects explicitly.

• Measurement criteria and parameters must be finalized. Performance parameters
help to evaluate the performance objectives whereas measurement criteria quantify
whether objectives are met per the requirements.

• Measuring all the parameters may not be feasible and may be time consuming.
Identifying the right parameters is of paramount importance.

• How many virtual users must be simulated? Here, the number of virtual users may
be fixed or variable.

• How many times must each test be executed? Since the investment on the
environment and resources are greater, each test run costs more, and it is necessary
to limit the test run time.

The system acceptance criteria provide a direction to the testers to prepare a detailed plan
for performance test execution.

Early Component Level Performance Testing

Most of the large scale applications use various components developed by a third party
or in-house. Usage of these components reduces the development time and increases the
efficiency, as these are tested and proved at the production environment. Every
component used in the system will be tested early before actual PT of the system begins.
To test such components, a similar performance study must be carried out. These
components must be tuned for optimal performance.

Performance Measurements

Performance measurements, as indicated in the SLA, must be defined explicitly. Perfor-
mance is measured based on many performance parameters. Some parameters are simple
to understand by users, and other parameters are used to achieve the higher level
measurement criteria. In most of the projects, the following performance measurement
data are collected to study the performance of the application:

• Response time of transactions per the workloads defined in the design. This data
at transaction level provide information on which business function takes more
time to process and respond to the user query. The response time for each
transaction must be measured in seconds.

96 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Consistency of responses must be maintained. When the same test is executed
multiple times, each test run may provide different response times. The difference
in response time should not be too variant, and consistency must be maintained.
This means, for different test runs, the measured responses for the same load must
be consistent.

• Throughput of the system is measured in transactions per second at the server end.

• Resource utilization during testing must be measured such as:

� Server and client processor utilization;
� Memory utilization (RAM and disks);
� Network utilization (LAN and T1 lines);
� Thread utilization (number of concurrent users of critical hardware and

software components).

• Availability of the Web site, on a 24X7 basis, is measured by conducting the load
test for long hours. Mainly memory leaks are measured here.

• Ability to access the system resources such as databases, printers, and the Internet
while the system is running.

• Bottleneck related measurements are:

� High resource consumption by each software and hardware component
during testing;

� Network collision rates;
� Page in page out rates;
� Number of hits blocked (blocking the Web site visitors);
� Number of threads blocked;
� Buffer and queue length overflows.

These measurement parameters (see IDEMA Standards, 2004) may vary depending on
the project requirements and ability to measure by using the tool.

Test Execution Methodology

The main objective here is to ensure smooth conduct of the test runs and provide
customer based reports within the stipulated time. The customer always expects the test
execution to complete with minimum time and effort. In order to ensure this, a proper test
strategy must be evolved. As a first step, one has to work out a plan to ensure the
following:

Test Preparation Phase I 97

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Skilled resources are available to conduct the test;

• Mechanism to ensure the functional correctness of the application;

• The proper environment at the right time;

• Developing and monitoring a proper test schedule;

• Process to maintain the configuration control during the test run;

• Availability of proper automated tools during the test.

Once the basic work plan is ready, develop a test execution process to implement the plan.
The test execution process for a testing project could be defined as a strategy. To
illustrate, the strategy is to have two different teams:

1. Functional testing team, which conducts testing and interacts with the develop-
ment team and conforms to the correctness of business functions of the system.

2. Performance testing team, which plans and conducts the PT in cooperation with
the functional testing team. However, there may be a few members overlapping in
both teams.

Each team will use their own test plans and strategies to conduct the test. A separate
environment is created for both teams. If it is too expensive, the environment could be
the same with additional hardware/software support for the performance testing.

Test Loads Considering Transaction Volumes and
Variety

In order that the transactions chosen for testing in the simulated environment are as close
as possible to those in the field, an appropriate choice of volumes and mix of transactions
(workload) needs to be arrived at. This in turn would provide performance characteristics
proximal to that of the application in a real production environment. The load used for
measuring the performance is based on:

• Typical daily average business workloads, measured over a period of time;

• Daily peak demand of the business requirements, measured over a period of time;

• Weekly and monthly peak demands, measured over a period of time;

• Ad hoc demands, if any;

• Future demands determined from the projected growth over a defined number of
years (this could be arrived based on daily, weekly, and monthly business workload
collected already);

98 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Quarterly, half yearly, and yearly demands;

• Spike test demands, if any (This load depends on what type of spike is expected.
This requires business domain knowledge and experience);

• Self created workloads to test the system for a specific purpose. An example could
be to create a workload which tests the capability of the architecture.

The accuracy of the load depends on the customer who provides the data. The whole test
results depend on the accuracy of the data collected.

Test Environment

An isolated and dedicated test environment is most useful for PT. One should have the
availability of the network, servers, flexibility to set up the bandwidth, firewalls, and
minimal external noises. However, setting up a separate environment involves additional
cost. To minimize the cost, the production environment may be used, but the results may
not be accurate.
Several issues (see Subraya, 2004) must be addressed while creating the test environ-
ment. Some of them are:

• What if the exact operation environment is not matching the simulated environ-
ment?

• What if the operation environment uses 12 processor systems whereas only dual
processors are used in the simulated environment?

• What if the operation environment uses a different operating system than the
simulated environment?

• What if the firewall used in the operation environment is not used in the test
environment?

• What if the operation environment uses a different load balancer compared to the
simulated environment?

• What if the size of the database available at the operation environment is not
available in the simulated environment?

These issues are critical and must be addressed in the strategy document before the
beginning of the test.

Test Data Sources/Test Data Bed

Though a good environment with a good mix of transaction is available, the test may not
be effective because the test data available may not be sufficient. If the production data

Test Preparation Phase I 99

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are available, use them; otherwise, creating a test bed may require an enormous amount
of effort. Data generator tools may help to generate a good test bed.

User Think Time

Performance of an application in an Internet environment mainly based on the number
of concurrent users mapped on to a particular transaction at any instant, for instance,
stock trading through a Web site. The number of concurrent users may vary at different
time intervals. However, the number of concurrent users depends on the session time.
The session time depends on many factors. One such factor is the user think time. This
is the time that a person takes to respond to a system while handling a particular situation.
For instance, when a user is entering into an order entry form, the user may think for a
while and enter a specific entry. This can have a significant impact on its performance.
Therefore, how much think time must be used needs to be ascertained in the strategy
document.

Stress and Endurance Testing

After the load testing, a final stress (see Wilkinson, 2004) and endurance test will be
executed. In order to execute a stress and endurance test, a different workload may have
to be selected. The test might be run for more than 24 hours or weeks depending on the
project. Response time, throughput, and resource utilization will be measured continually
during the test. The strategy should be to reduce the time and resources without diluting
the performance test results.

Project Activities and Schedule

The strategy document must explicitly address the various project activities, which
includes the project schedule. A proper time plan with team description and responsi-
bility must be described elaborately. Various constraints, if any, must be explicitly
described. A proper monitoring process of the project activities must be included in the
document.

Project Risks

Project risks are a major concern for the smooth running of test scenarios. Risk must be
elaborated, and the mitigation process must also be highlighted. Risks may be from the
customer side or may be from the designers. For instance, a typical performance based
project may face the following identified risks before completion:

• Unavailability of the proper testing tools during the test;

100 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Unavailability of the skill set required for testing and analyzing results;

• Cost involved in setting up of the testing environment;

• Untimely submission of the final product for PT;

• Unavailability of database network administrators during the proper test.

Apart from the above risks, there may be many unforeseen risks that may arise during
the execution of the test.
Defining a proper performance strategy is one of the major activities of test designers.
Though the strategy is comprehensive, senior management may not be interested in
microscopic details of the strategy but only brief information. In such cases, an abstract
report may have to be prepared. The strategy document in PT plays a dominant role, as
the success of testing in an optimized fashion depends on the strategy.

Summary

Performance requirements elicitation is an important task in the PT life cycle. This phase
of activity must be carried out along with the functional requirement phase. Once the
requirements are gathered, a detailed operation profile is prepared. The operation profile
provides the transactional behavior of the business system. Based on the operation
profile, workloads are designed. Once the workload is known, test strategies are studied
that help the test analyst prepare for test plan and estimation. Without performance
requirements elicitation, jumping into PT does not yield good results.
The performance test strategy must be carefully planned because performance strategy
impacts the resources and time required for PT. Project risks are identified in advance,
and suitable mitigation plans need to be worked out proactively.

References

Bach, J. (2004). Risk and requirements-based testing. Retrieved June 12, 2004, from http:/
/www.satisfice.com/articles/requirements_based_testing.pdf

Barber, S. (2004). Designing performance tests to accurately predict true user experi-
ence. Retrieved June 15, 2004, from www.perftestplus.com/presentations/
Perf_Design.pdf

Brain, M. (2004). How Web servers work. Retrieved June 20, 2004, from http://
computer.howstuffworks.com/web-server3.htm

Guide to using fast enthernet. (2005). Retrieved January 21, 2005, from http://
www.lantronix.com/learning/net-tutor-fastetnt.html

Test Preparation Phase I 101

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IDEMA Standards. (2004). Retrieved December 21, 2004, from http://www.idema.org/
_smartsite/modules/local/data_file/show_fileRajaram, A., & Desai, A. (2004). End-
to-end performance in Web applications. Retrieved July 21, 2004, from http://
www.stickyminds.com/sitewide.asp?ObjectId=6221&Function=DETAILBROWSE
&ObjectType=ART

Robertson, S. (2005). Requirements testing - Creating an effective feedback loop.
Retrieved from January 12, 2005, from http://www.systemsguild.com/GuildSite/
SQR/testingloop.html

Subraya, B. M. (2004). Web PT & issues. Retrieved May 15, 2004, from http://www.soft.com/
QualWeek/QW2002/papers/W3.html

Wilkinson, C. (2004). Stress testing Web services: Some tips and guidelines for testers.
Retrieved April 10, 2004, from http://www-106.ibm.com/developerworks/
webservices/library/ws-tip-strstest.html

Additional Sources

Emmerich, W. (n.d.). Communications software engineering. Retrieved June 20, 2004,
from http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/Z01-99-00/z01_day1.pdf

Skinne, N. (n.d.). Avoiding performance downtime and system outages through goals-
based testing. Retrieved January 16, 2005, from http://www.embarcadero.com/
resources/tech_papers/Goals_Based_Testing.pdf

Subraya, B. M., & Subramanya, S. V. (n.d.). Web testing and performance issues. In F.
Marinescu (Ed.), Tips on performance testing and optimization. Retrieved Decem-
ber 24, 2004, from http://www.theserverside.com/articles/article.tss?l=Tips-On-
Performance-Testing-And-Optimization

Validation of BEA WebLogic server in the hp-ux 11i virtual server environment. (n.d.).
Retrieved January 16, 2004, from http://www.hp.com/products1/unix/operating/
docs/wlm.weblogic.validation.pdf

102 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 5

Test Preparation
Phase II:

Test Design

The focus of Chapter 4 was on the planning and definition phase of PT while this chapter
provides an in-depth view of the test design phase. All the necessary inputs for PT are
captured under the test definition phase. These inputs are the building blocks for the
design phase of PT.

Importance of Test Design Phase

The complete performance requirement document depicts the user’s expectations and
underlines the need for such expectations. Using these expectations, testing the system
directly without a proper design becomes a layman’s job, and the results from such an
activity will lead to disaster. Therefore, the design phase is an important activity for PT.
The first activity in the design phase is benchmark design (see The benchmark
handbook, 2003), which is the backbone for designing the workload.

Benchmark Design

Real performance test runs depend on how accurately the testers simulate the production
environment. To simulate such behavior of the Web site accurately, benchmarks are
used. The benchmark is a standard representation of an application’s expected behavior

 Test Preparation Phase II: Test Design 103

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

or likely real world working conditions. Benchmark is a distillation of the essential
attributes of a workload, which will be used for the test run. It is essential to know how
the users are using the Web sites and what the users are doing for conducting a
performance test. The behavior of the Web site varies with time, peak or normal, and
hence the benchmarks also vary. This means there is no single metric possible. The
benchmark should not be too general as it may not be useful in particular. The accuracy
of the benchmark drives the effectiveness of the PT. Benchmark is domain specific. There
is no point in comparing the benchmarks of one domain to another. To design bench-
marks, one should have specific domain knowledge apart from knowing the application.

What Are the Desirable Attributes of a Benchmark?

Any benchmark considered must be defined formally. A benchmark defined formally will
have a set of attributes. These attributes, once collated properly, help the designer in
understanding the benchmark. Table 5.0 provides the basic attributes of a good
benchmark.
These attributes may vary from one to another benchmark. Those transactions which are
considered for benchmarks must be relevant to the performance of the system.

How to Design a Good Benchmark

To design a good benchmark, performance testers need to understand the behavior of
the proposed system under different conditions. The conditions may be the load on the
system at different times like peak, normal, and average. The benchmarks may be different
at different times and need not be the same at all times. It is not sufficient to test just under
average conditions but at different times. In any conditions, it is highly desirable to
determine the duration in which the benchmark has to be developed. For instance, the
peak time may span from 30 minutes to 2 hours. It does not mean one has to consider either
30 minutes or 2 hours duration to decide the kind of mix of transactions. It may be different
at different time intervals. A good realistic mix of transactions determines the better
benchmark. The mix of transactions may vary at different time intervals. Therefore, it is

Table 5.0. Basic attributes of a good benchmark

Attribute type Description of the attribute
Realistic Must be meaningful within the target domain. It should be

close to the real environment; otherwise the results will not be
meaningful.

Understandable Should be easy to understand.
Good metric(s) Should be linear and orthogonal.
Scalable Applicable to a broad spectrum of hardware/architecture.
Coverage Does not oversimpli fy the typical environment.
Acceptance Vendors and users must accept it.
Manageable Possible to conduct the test.

104 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of paramount importance to study the planned behavior of the system including the
frequency of operations before designing the benchmark. The systems behavior de-
pends on the behavior of the transactions associated with the system. Different types
of transactions may produce different types of behavior.
Some transactions generate more threads; some may be more concurrent; some may be
involved in computation and hidden transaction where less user interaction is required.
These types of transaction behavior help to design a proper benchmark for PT.
To illustrate, Table D4.1 in Appendix D4 provides a typical transaction behavior of a
banking system. The frequency of operation will be known by the operation profile.

Benchmark Requirements

A benchmark must be precise and accurate. In order to design a good benchmark, proper
requirements must be captured accurately, and the designer must be equipped with the
following tools:

Operation Profile

The operation profile is another input to the benchmark design discussed in Chapter 4.
The operation profile lists all transactions required and addresses the behavior of the
system. It simulates different types of user activities and indicates the priorities of each
activity. Some of the activities may not be relevant to performance but part of the
business functions. The operation profile represents the entire behavior of the system.
This has to be fine tuned, and a planned behavior of the system for the performance must
be generated.

Planned Behavior of the System

The designer must know the expected overall projected behavior of the system. The
behavior is derived from the set of activities. The activities are composed of many
transactions as shown in Figure 5.1. Thus, the behavior of the system is determined by
the set of transactions. The behavior may be complex, and all behavioral components may
not be useful while conducting the performance as represented in the operation profile.
Certain behavior may be important from the business point of view but may not be
relevant to address the performance issues. These activities must be eliminated from the
operation profile. On the other hand, certain behaviors may not be part of the business
but impact the performance. These activities must be added to the operation profile. The
planned behavior must address those components that determine the performance more
realistically and are useful in PT. The following tips could be used to generate the planned
behavior:

 Test Preparation Phase II: Test Design 105

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Define the activity at the user level which impacts the behavior of the system.
Initially, list all the activities with the operation profile.

• Identify those activities which are not business specific but participate during the
execution of the system. An example could be sending an e-mail during the
execution of the system.

• Eliminate those activities that will not impact the performance. Proper judgment and
domain expertise help to eliminate unwanted activities from the operation profile.

• Then for each activity, conduct the survey to capture the transactions per hour
during different times of operation as stipulated by the designer. The time period
may be peak time, slack time, or normal hours.

• Analyze the transactions and determine whether the fine tuned operation profile
represents the expected behavior that will impact the performance of the system.

Figure 5.1. Planned behavior of the system

106 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The categorization of behavior provides a structured way of thinking about the overall
behavior of the system. These structured behaviors provide direction to plan the proper
operation profile that helps to determine the performance of the system. The proper
operation profile must have a mix of different types of transactions.

Types of Transactions

As described in the previous section, transactions determine the behavior of the system.
There are different types of transactions that determine the different behaviors of the
system. Some of these transactions may not participate in the main business functions
of the system.

Transactions with More Concurrency

Performance of the system is mostly impacted by many concurrent users simultaneously
expecting a response for a similar kind of activity. All those transactions which are
processed concurrently impact resources, throughput, and response time. These trans-
actions are critical for performance testing.

Transactions with More Interactions

Most of the transactions that interact with the user interfaces require more time to
complete the processing. These transactions not only interact with the user interfaces
but may interact with other types of transactions. For instance, while logging into
secured Web sites, the system expects multiple answers from the user through interac-
tions.

Transactions with More Computational Activity

Some of the business applications may be involved in number crunching and computa-
tions. In such cases, the processor is engaged most of the time. Such transactions
consume more time of the processor than the I/O devices. Most of the scientific analysis
falls under this category.

Transactions with More Resource Hunger

Those transactions that always depend on resources to complete their processing fall
under this category. These transactions always wait for the resource to be available to
complete their processing. The wait time will impact performance, provided the required
resource is not available at the right time. Typical data entry in a batch processing always

 Test Preparation Phase II: Test Design 107

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

requires I/O devices. If transactions are more computation related, it always waits for the
processor to be released by the operating system in the multiprocessor environment.

Transactions with More Read/Write

Transactions involved in disk read/write fall under this category. Since disk I/O is slow
compared to processor speed, I/O based transactions adversely impact the performance
of the system. For instance, a Web user files a query which in turn requires multiple I/
O operations on databases in a database server.

Transactions which Generate More Threads

These transactions create subprocesses to speed up the processing thereby helping to
improve the performance of the system. A thread is a process inherited by its parent
process. If more threads are generated, then managing these threads becomes an
overhead which impacts performance. Thus, proper balancing is required to achieve
optimum balance.

Transactions which Exhibits Noises

In most of the performance testing, we forget to simulate those transactions which are
not part of the system’s execution but run during the execution in an isolated fashion.
A printer process is active when a Web system is running. This printer process has
nothing to do with the Web application. A firewall used in all major corporate sectors is
a security monitor applications, also called a daemon (background) process, which
affects the performance while surfing the Internet. This may be considered as one of the
noise factors while conducting PT. These transactions are called noises and impact the
performance of the system.

Guidelines for Designing a Benchmark

Standard benchmarks are available in the market. Most of the benchmarks available in
the market address the vendor’s product with a set of predefined transactions. This will
not help in determining the benchmarks where the system is new and not standard. Hence,
a new set of guidelines needs to be derived, which will be useful if one desires to design
a business benchmark for a typical project. Some of the tips to derive a proper benchmark
are:

• More than one benchmark is required for presenting better performance results.
This will help the analyst to determine the performance of the system from different

108 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

perspectives. Also, one can compare and correlate the performance for its effec-
tiveness.

• Identify the demands of the system in the form of transactions and transaction
mixes. The demands could be many and different for different stakeholders. These
demands are derived from transactions. Sometimes, transaction mixes help to
derive proper demands of the system.

• Design a simple to complex benchmark. The complexity depends on the size of the
benchmark.

• Determine all types of transactions and transaction mix at different time intervals.
The time interval could be days, weeks, and even months. All types of transaction
data must be collected at different time intervals.

• Identify critical transactions and prioritize them. Prioritization helps in identifying
the critical business and, hence, in designing critical workloads.

• While selecting transactions:

� Select transactions with more concurrency;
� Select transactions with more interactions;
� Select transactions with more computational activity;
� Select transactions with read/write on the database;
� Select transactions that generate more threads;
� Select transactions that are more resource hungry;
� Select transactions that generate noises.

• Plan transactions based on time zones if the system caters to multiple time zones.
If the system caters to different time zones, the priority of transactions may vary
depending on the organization’s business plans. Identify probable day, week, and
month for planned activity. Segregate the time interval as peak, normal, and
average. Define time intervals properly. This is necessary to study the performance
behavior of the system at different time intervals.

• Plan user groups and map transactions to each user group. Based on the transac-
tion mix and usage planned, identify the probable user groups and tag these user
groups with transactions. User groups decide the planned usage patterns of the
proposed Web site.

The above guidelines could be supplemented with the project experience of the person
who is involved in benchmark design.

How Many Benchmarks Are Required?

Separate benchmarks are required for each significant and distinct workload. Though the
number of benchmarks depends on the planned activities of the system, a typical project
may employ the following five benchmarks:

 Test Preparation Phase II: Test Design 109

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Routine business demands;

• Routine peak demands;

• Specialized requirements, if any;

• Top management’s special demands, if any;

• System growth based on demands.

These five benchmarks are just guidelines, but based on the performance requirements
and complexity of the project, the number of benchmarks could vary.

A Sample Benchmark

To illustrate, consider the banking system and sample activities highlighting the
transactions survey taken on a typical week. The result of the survey result is shown in
Table 5.1. This table represents the operations as perceived by the user on a typical day.
There are 50 accounts per hour created on Monday whereas no operations take place on
Saturday and Sunday.
Table 5.1 represents the behavior of the entire system. Some of the activities may not
affect the performance of the system. If one considers these nonrequired transactions,
overheads on the testing activity will be greater. Thus, the operation profile, as shown
in Table 5.1, needs to be fine tuned.

Fine Tune the Operation Profile

Though the operation profile is described during requirements gathering (see Chapter
4: Explicitly Specified Requirements for Performance), it has to be fine tuned during the
design phase. Some of the attributes like frequency of utilization may vary. The user
groups may be added or deleted based on relevance. The importance of each user group
will be defined properly; that is, the priority of each user group will be defined at this
stage. Some of the functions, which are collected during the requirements stage, will be
fine tuned here. Again, some functions, if found irrelevant, may be deleted.
A sample fine tuned operation profile is shown in Table 5.2, which is derived from the
Table 5.1. Observe that in Table 5.2, the transaction, Request for new A/Cs, is deleted
because it is irrelevant and will not impact performance.

110 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 5.2. Fine tuned operation profile

User
Group

Transactions
Type

 Days

Mon Tue Wed Thu Fri Sat Sun Priority

Main Page Access 9300 8300 8800 8500 8200 8000 7000 High

Deposit Amount 900 800 700 800 700 500 300 High

Withdraw Amount 950 850 800 850 850 850 800 High

Bill Payment 200 100 75 100 250 212 200 Medium

Customer
Group

Customer Queries 400 300 400 350 400 290 300 Medium

Fund Transfer 450 350 400 300 350 300 250 Medium

Creation of New
A/Cs

50 25 32 28 30 0 0 Low Administrative
Group

 Deletion of
Accounts

10 30 20 22 18 0 0 Low

Ad-hoc Query 700 650 645 625 590 450 550 Medium Senior
Management

Group
Banking Features
Query

6200 7400 7430 8510 72300 6130 5410 High

Table 5.1. Operation profile of business functions for one week during peak hours

User
Group

Transactions
Type
 Days Mon Tue Wed Thu Fri Sat Sun Priority

Main Page
Access

9300 8300 8800 8500 8200 8000 7000

High

Deposit
Amount

900 800 700 800 700 500 300 High

Withdraw
Amount

950 850 800 850 850 850 800 High

Request for
New A/Cs

350 250 200 350 350 0 0 Low

Customer
Group

Bill Payment 200 100 75 100 250 212 200 Medium

Daily Report
Generation

6 8 2 3 5 6 2 Medium

Fund Transfer 450 350 400 300 350 300 250 Medium

Creation of
Accounts

50 25 32 28 30 0 0

Low

Administrative
Group

Deletion of
Accounts

10 30 20 22 18 0 0 Low

Banking
Features
Query

620 740 743 851 723 613 541
High Senior

Management
Group Ad-hoc Query 25 32 23 20 23 0 0 Medium

 Test Preparation Phase II: Test Design 111

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Developing a Workload

Workload (see Application Workload Load Testing (simulation), 2003) is an instrument
simulating the real world environment. It is an integrated part of the test execution
process. Once the benchmark and the operation profile are known, a detailed workload
can be planned. The workload provides indepth knowledge of the behavior of the
proposed system. It explains how typical users will use the system once it is deployed.
In addition, the workload helps in understanding the requirements in a structured way.
Because the system performance capability is viewed from different perspectives, like
meeting the goals set by the users, impact on the architecture, and growth potential of
the system and so on, the workload could be designed in many ways as shown in Figure
5.2.

Goal Oriented

Every system, when developed, will have definite goals; performance based require-
ments are driven by them. These goals are used to design the workload for PT. A goal
oriented workload is derived from the goals set for the whole system.
To illustrate, the broad goals of a banking system could be:

• The system must be available on a 24X7 basis for the customer

• The response time must be less than 8 seconds for any query

• The existing architecture must be scalable for the growth projections as envisaged

• No failure of transaction during peak hours or very minimal down time

• Graceful transition to backup/mirrors in case of failures at any time

In the above example, the goals are defined from a user perspective and requirement
points of view. These goals must be analyzed and converted into possible inputs to
design a workload.

Workload

Goal
oriented

Transaction
based

Architecture
based

Growth
based

Figure 5.2. Design of workload

112 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Consider the goal, “No failure of transaction during peak hours or very minimal down
time.”
First, it is necessary to analyze the probable cause for the failure. The failure could be
due to:

• Functional errors which might have escaped during functionality testing;

• Lack of hardware resources and incorrect configuration of the software;

• Network failure during execution of the system;

• Bandwidth soaked during peak hours of operation;

• Unexpected errors during executions.

Most of the causes are not related to the system performance except the following:

• Lack of hardware resources and incorrect configuration of the software;

• Bandwidth soaked during peak hours of operation.

The problem of resource crunch could be identified during PT by selecting proper
transactions in the workload which impact various resources like CPU, memory, disk, and
so forth. These transactions may be either normal business transactions or any other
computation based transactions. Some of the transactions considered may not be
relevant to the user. Similarly, to test the bandwidth, simple transactions that create
multiple requests and increase the traffic on the network should be considered during
workload design.
In the above example, two different goals are identified with probable causes. To test such
requirements, it is necessary to design two different workloads which are goal specific.

Transaction Oriented

The objective of PT in a transaction oriented workload is to examine the performance of
the system for all business transactions that are relevant to day-to-day business. All
identified transactions must be used while designing the workload. The performance goal
for these transactions must be to verify the resource efficiency for an acceptable
response and throughput.
Transactions are categorized into different types based on business and usage. There
are some transactions that are critical from a business perspective. The performance of
these transactions is of paramount importance. A separate workload must be defined to
assess the performance behavior of these transactions. The usage pattern must be
studied for these transactions before designing the workload.

 Test Preparation Phase II: Test Design 113

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To illustrate, withdrawal and deposit are two critical transactions (refer to case study in
Appendix D) from the business perspective of the banking system. These transactions
may activate internally with many other transactions. Since these transactions predomi-
nantly impact business and hence performance, the workload needs to be developed
surrounding these two transactions.

Architecture Oriented

The system architecture needs to be carefully considered when designing the workload.
The trends in business and technology that will affect the architecture need to be
considered. The architecture might have to be scaled up or may be scaled down
depending upon the change in future requirements. The architecture has to be consistent
and reliable in the event of any changes. Serious thoughts should be given to check if
there are any bottlenecks in the architecture or if there are any redundancies that can be
done away with. The workload needs to be designed keeping in mind these factors that
are very much part of the real world scenario.
As an illustration, most of the complex queries in the banking system will impact the
architecture. Because complex queries always need more resources, as most of the time
they involve many SQL joins on different tables, which certainly needs better resources
to perform efficiently, this is an uncertainty of the capability of the architecture to handle
concurrent users. The workload must be developed surrounding these complexities to
test the architecture properly.

Growth Oriented

Once the business grows, the system requires changes in its complexion on functionality,
performance, and reliability. If the system is not developed keeping the growth in view,
modifications become more costly and time consuming. As the business grows, the
performance of the system also changes. The changes in performance must be gauged
properly; otherwise customer dissatisfaction may increase. The growth projection is
normally carried out during the requirement study. The customer provides the overall
growth projections for the next set of years. Based on the projected requirements, the
performance expectations are worked out. Once the projected performance growth plan
is known, a detailed workload will be designed to verify the system’s performance claims.
To design such a workload, the following parameters must be considered.

• Transactions that impact the growth must be identified. Growth of resource usage
(like memory) with increased transactions must be formulated properly. After
identifying the required transactions, the growth profile must be worked out by
using the following parameters:

114 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

� Determine users growth based on the transactions;

� Logistics for the growth recorded;

� Pattern of growth analyzed.

• Transactions that impact the architecture also need to be identified. To illustrate,
most of the operations at peak hours in a typical banking system impact perfor-
mance of the system for more concurrent users. Growth of the business depends
on these operation capabilities to handle more concurrent users.

It is obvious that one could get carried away and lose focus; hence, there should be a
well planned review process in place. The review should be done periodically and by
domain experts keeping in mind the typical real world scenarios. A good workload can
be designed when it is oriented to all these points and is attributed to having an
exhaustive consideration of them all.

What Are the Characteristics of a Workload?

The essence of the workload is to study the performance behavior of the proposed
system before deployment. Hence, the behavior of the proposed system must be
expressed as accurately as possible compared to the real world environment. However,
it is difficult to express the real world environment before deployment, as the intricacies
of the system, once deployed, are complex. In order to consider the behavior of the system
completely and comprehensively, care must be taken to select the type of transactions
and assign them to a proper user group. One should consider a good mix of transactions
which impact concurrency, resources, and so forth. Characteristics for the requirement
of a good workload are explained below.

Categorization of Transactions

Performance related transactions must be identified carefully. Some transactions may be
defined in functional requirements, and some may not be defined but are needed for the
test. Careful identification and classification will help in designing the workloads (see
Types of Transactions earlier in this chapter).

Business Domain Specific

Identify routine and critical transactions based on the use cases. Use cases are derived
during the functional design of the system. These use cases help in identifying business
related transactions.

 Test Preparation Phase II: Test Design 115

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

These transactions are used to study the behavior of the system under routine business
operation. A typical business benchmark will provide this information. Business domain
specific workload helps to build confidence with the users because the performance
testing conducted under this workload provides the daily pattern of performance.
To illustrate, some of the typical business transactions in the banking system are:

• Deposit amount in the bank;

• Withdraw money from the bank;

• Enquiring about the features of the bank;

• Requesting a new account.

This will meet the daily user requirements of the banking system.

Resource Hungry

Identify those transactions that require more system resources like memory, processor,
and so on. Computation of complex transactions will require more processor time and
memory. Sometimes, batch processing jobs also require significant system resources.
For instance, some of the resource hungry transactions are:

• Preparing the annual balance sheet of a bank;

• Fund transfer from one bank to another;

• Generating monthly reports at a bank.

Concurrency

Identify those transactions that concurrently access the same record in a database. This
will test the effective implementation of the database locks and impact the performance
of the system. To illustrate, two or more users attempt to access the same record to update
at the same time will be associated with a database lock. In a banking application, consider
a scenario where a bank manager is crediting the interest amount to a particular account.
During this time, the account holder withdraws the money from the same account.

Interacting

Identifying those transactions that put more load on common resources like printer,
network (sending mail by many users), telephone lines, VOIP, and so forth. Most of the
testers ignore these types of transactions during PT. As an illustration, a bank might have

116 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

80% of its customers subscribed for mobile alerts and e-mail alerts for transactions that
happen on their account.

Infrastructure Related

Identify those transactions that affect the bandwidth, connection at the server, browser
dependency, and so on.
In any Web-based system, accessing the home page by all users will impact the available
bandwidth of the system. If some of the transaction types are not derived from the
selected benchmarks, it is necessary to revisit the benchmark design to select appropriate
transactions to cover all types. In this way, all possible types of transactions that impact
the transactions are addressed.

How to Develop a Workload

Workload development starts with the selection of proper user groups and follows the
process shown in Figure 5.3. For each group, set of transactions are mapped so that each
group’s behavior is defined properly which is close to the reality. If there is more than
one group representing the overall behavior of the system, priority of each group must
be defined by assigning weights to each group. Similarly, if there is more than one
transaction with in the group, priority of each transaction must be defined by assigning
weights to each transaction. Figure 5.3 defines the overall process to be followed during
development of the workload.

Selection of User Groups

In a real world scenario, different users will access the Web site with different purposes;
this means several transactions are initiated simultaneously by different users. To
simulate such an environment, one needs to create different sets of user groups. A user
group is a collection of users that executes a similar task and generates the same basic
workload. The size of the user group may be fixed or variable.
To illustrate, three different user groups with a set of activities are considered for the bank
system. They are:

1. Customer Group
• Deposit money
• Withdraw money
• Enquiring about the features of the bank

 Test Preparation Phase II: Test Design 117

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. Administrative Group
• Preparing the annual balance sheet of a bank
• Daily online status report
• Generating monthly reports at a bank

3. Senior Management Group
• Ad-hoc query
• Daily online status report

A specific transaction, namely, “Daily online status report”, is overlapping under two
user groups. This means each group may have different types of transactions, and the
same transaction may overlap different user groups.

Start

Select User Groups

Assign Weights

User Groups Tranactions

End

Identify Transactions and Sub
Transactions

Figure 5.3. Process to develop a workload

118 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Assigning Weights

Once the user groups and transaction types within the user group are identified, the
number of users initiating each type of transaction must be mapped to each group. This
is done by assigning weights to transactions. A weight represents the activation level
of a particular transaction type. A transaction having a weight of 70% means that, out
of 100 users, 70 users are accessing the transaction concurrently. There are two ways in
which weights can be assigned, namely, weights to user groups and weights to
transaction type.

Weights to User Groups

Before assigning weights to transactions and if there is more than one group, weights
must be assigned first to the user groups. These weights are based on the usage profile
derived from the benchmark. The number of users simulated group-wide during the test
is proportional to the weights mapped to each user group.
In the above three user groups, we assign the following weights:

1. Customer Group 60%
2. Administrative Group 20%
3. Senior Management Group 20%

If there are 100 concurrent users accessing the banking Web site, 60 users are mapped
to the customer group, 30 users to the administrative group, and 10 users to senior
management group. Because of the assignment of weights to a user group as percentage,
the workload is scalable dynamically. It can also be expressed in terms of fixed number
of users assign to each user group, provided distributions of users are known in advance.

Weights to Transaction Type

Within the user group, weights must be assigned to each transaction type similarly to
the user groups. During simulation, the number of users initiating each type of transac-
tion will be proportional to the weights assigned to it.
Out of three user groups, consider any one of the user groups, say customer group with
weight of 60%. This group has three different types of transactions, and each type may
have different weights.

1. Customer Group 60%
• Deposit money 40%
• Withdraw money 40%
• Enquiring about features of the bank 20%

 Test Preparation Phase II: Test Design 119

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Here different types of transactions are initiated based on the weights assigned to each.
If 60 concurrent users were mapped on the customer group (40% of 60), 24 users will
deposit money, 24 users will withdraw money, and 12 users will enquire about the features
of the bank, all simultaneously. Here also fixed weights can be assigned provided they
are known in advance.

Sample Workload

Based on the process defined above, a typical workload for a banking system for a
specific behavior is defined as shown in Figure 5.4.

Sequencing Transactions

Once the user groups are identified along with the functions or transactions within the
group, sequencing of these transactions within the group is important. In a real world
environment, all users may initiate the transactions at once or at various points of time.
Some transactions may take more time to execute compared to others, though started
simultaneously. Some transactions may begin after an event is completed. Such sce-
narios have to be expressed while designing the workload. Broadly, four different types
of sequencing transactions can be considered as explained below.
Consider the above three types of transactions in the customer group. All the three types
of transactions either start in sequence as they appear or in random. However, if one
considers one type of transaction, say, “Deposit money”, there will be many concurrent
users who will execute it repeatedly in a fixed interval. The pattern of dynamic flow of
these transactions may be characterized as follows:

Continuous

Out of 60 concurrent users in the customer group, 24 users will execute the transaction
“Deposit Money”. All of them (u1, u2…u24) will start simultaneously at T0 but finish at
different times due to resource availability. In the next run, each user will start at a
different time as shown in Figure 5.5. Transactions U1 will start the next run at T6 whereas
U3 starts at T7. This process continues until the end of the time interval as decided in the
run schedule.
In Figure 5.5, the transaction initiated by the user U2 starts at T0 and ends at time T5. In
the second run, T5 becomes the start of the transaction. Similarly, other transactions end
at different times.

120 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

M
A
I
N

P
A
G
E

E
X
I
T

Customer
Group

Administrative
Group

Senior
Management

Group

60%

20%

20%

Deposit Money (40 percentile)

Withdraw Money (40 percentile)

Enquiring the Features of the Bank (20 percentile)

Daily Online Status Report (50 percentile)

Generating Monthly Report (25 percentile)

Preparing Annual Balance Sheet (25 percentile)

Ad-hoc Query (50 percentile)

Daily Online Status Report (50 percentile)

General (50 percentile)

Account (50 percentile)

Figure 5.4. Sample workload

Wait Until All Complete

Though some of the users complete the job earlier, they have to wait until the remaining
users complete their jobs. The new run will start simultaneously at T4 as shown in Figure
5.6. Here some of the users may have to wait for a long time before their next run begins.
The average response time may be long compare to the previous one. There may be a
starvation because even if one transaction takes a long time to complete, all other
transactions have to unnecessarily wait.

 Test Preparation Phase II: Test Design 121

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Wait for Min or Max Time before Next Iteration

Though a user completes the first execution at a different time, all of them will not start
at the same time in the next run. Transactions wait for a fixed minimum or maximum time
interval, during which, if synchronization of transactions is not possible, those transac-
tions that have finished execution will enter into the next cycle. Compared to the previous
one, all users may not start the next run simultaneously. Some of the users may start the
next run at T4 after waiting a minimum time interval, known as wait time. Some more users
may start at different times but not later than T6 which is the maximum wait time as shown
in Figure 5.7.
To illustrate, transactions U2 and U24 (Figure 5.7) complete early and wait for other
transactions to complete before T4, which is the minimum wait time. Since more transac-

Figure 5.6. Timing diagram: synchronous transaction

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

U24

U4
U3
U2
U1

Figure 5.5. Timing diagram: Continuous transaction

122 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tions still need to complete, these transactions start the next run at T4. Remaining
transactions wait till T6, which is the maximum wait time before starting the next run. This
process continues and provides flexibility for synchronization. The minimum and
maximum time can be configured to study the performance behavior of the system more
precisely.
Here the average response time is improved compared to the previous one, and starvation
is avoided.

Wait for an Event

Though all the transactions started at the same time, these transactions may have to wait
for an external event to trigger before completion. The external event may take its own
time to respond, and until then, the transaction has to wait. In Figure 5.6, an event may
happen at T4 for the next run. This event could happen any time. For instance, during fund
transfer between two banks, the receiving bank, which is an external event, must respond
to the request. The successful completion of the transaction depends on the receiving
bank to respond and act per the transaction requirement. Hence, the response time may
vary.

Selection of Tools

The tools should meet the general requirements. First, they should have clear descriptive
documentation, an online tutorial, and an extensive online help facility. Second, they
should have good vendor technical support. Third, they should be provided with good

Figure 5.7. Timing diagram: asynchronous transaction

 Test Preparation Phase II: Test Design 123

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

performance at a reasonable price. Fourth, they should be hardware/software platform
independent (granted, no tool really fills this requirement as yet) (see Selecting an
automated client-server testing tool suite, 2003). Appendix B elaborates general guide-
lines for selecting a tool.

Summary

The design of various benchmarks is an important task before conducting PT. Bench-
marks are abstracts of real world scenarios. These benchmarks are further elaborated with
more intricate details by designing and understanding workloads. A workload provides
a detailed view of the test environment. Having clearly understood the blueprint of the
PT to be done, in the next chapters, we look at creating a plan, the environment, and also
the processes and schedules. The next phase is test build.

References

Application workload load testing (simulation). (2003). Retrieved April 23, 2003, from
http://www.perftuning.com/workload_testing.html

The benchmark handbook. (2003). Retrieved April 12, 2003, from http://
www.benchmarkresources.com/handbook/1-8.asp

Selecting an automated client-server testing tool suite. (2003). Retrieved November 23,
2003, from http://www.csst-technologies.com/Chapter11.htm

Additional Sources

Customer transaction behavior on the Internet: An empirical study. (2003). Retrieved
April 14, 2003, from http://is-2.stern.nyu.edu/~wise98/pdf/five_a.pdf

Geretz, J. (2002). Scalable architectural guidelines: Designing for flexibility. Retrieved
April 19, 2003, from http://www.devx.com/vb2themax/Article/19885

Mixed workload verification program can maximize consolidation efficiency. (2003).
Retrieved April 23, 2003, from http://www.veritest.com/solutions/consolidation/
workload.asp

Mosley, D. J., & Posey, B. A. (2002, June). Just enough software test automation.

124 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 6

Test Preparation
Phase III:
Test Build

The next phase, that is, the build phase, commences after the completion of the design
phase. Design provides the guidelines, but the build phase really implements the design
so that execution of the test can be carried out later. The first activity in the build phase
is to plan the various activities for testing. However, building a comprehensive test plan
is as important as executing the test itself. Apart from the test plan, testing the build phase
also focuses on setting up a proper test environment, test schedule, and testing
processes.

Developing the Performance Test Plan

The test plan is an integral part of any testing activity, either functional or performance.
The test plan provides insight on PT. It provides information like details of the system
to be tested, objectives of PT, testing processes, and details on workloads. A compre-
hensive test plan is an instrument for the designer to enforce the direction in which the
test is to be conducted. The project manager can use the test plan as a tool for completing
and monitoring the testing life cycle. The testers can refer to the test plan as a guide and
monitor throughout the testing activity.

Test Preparation Phase III: Test Build 125

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The test designers develop test plans. They must be involved in the performance
requirement analysis phase wherein the test objectives are defined properly. Typically,
the test plan is developed during the design phase of the life cycle.

What Are the Contents of a Typical Performance Test
Plan Document?

Though the test plan varies from project to project, the checklists shown in Table 6.0
identify the requirements to prepare a typical performance test plan. The test plan
prepared for PT is different from the functional test plan. Test plan objectives must be
clearly specified. This includes the intended audience, type of workload model used,
expected test outputs, and resource utilization. The set of objectives will directly affect
the environment and hence also the estimation. The plan must highlight the usage model
in detail. Each usage model depends on the type and number of workloads designed for
the proposed test.
Though the checklist provides the guidelines, the actual test plan may not follow the
exact sequence and details. A test plan should give a complete picture about the test
requirements, testing processes, respective constraints, and above all, it should give
details of expected results. A thorough test plan is the work product of the test definition
and design phases of test preparation.
A sample test plan template is given in Appendix C2.

Table 6.0. Checklist to prepare a typical performance test plan

Sl No Requirements of the plan Descriptions
1

Test Plan Profile • Plan name, ID# and version number
• Date of test plan version
• Target audience for the plan
• System Name, ID# Author(s) of the plan and how
 to contact them

2 System Description • Description of the system under test
• Project acceptance criteria
• Identification & analysis of risks

3 Performance
Test Objectives

• Classify intended audience (clients,users,marketers,other
interested parties in the test results)

• Define and classify expectations according to audience
 Group
• Highlight success criteria of the project

4 Expected Outputs • Test log file containing various test runs
• Test results in table as well as graph formats
• OS monitoring logs, if required
• Results Analysis Report

5 Performance
Measurements Matrix

• Response Time
• Throughput including page views, number of hits, user

sessions
• Resource utilization both server (CPU, Memory, Disk)

and Network (bandwidth, throughput)
• Reliability measurements

126 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Working with the
Proper Testing Environment

Setting a test environment for PT is an important aspect of the build phase. Establishing
a proper environment to conduct PT requires a lot of planning and coordination. Planning
is required in identifying the hardware and software resources, setting up the network,

Table 6.0. cont.

Sl No Requirements of the plan Descriptions
6 Usage Model

• Identify user groups of the system under test
• Determine the operation profile (set of user action)

for each user group
• Identify test Scenarios for each operations
• Develop required workloads based on user group and

 test Scenarios.
• Develop data pools and test cases based on the

requirement for each workload
• Identify background noises

7 Test Environment • Describe the operational Environment
• Describe the Test Environment
• List the major differences

8 Configuration
Management

• Identify the storage locations and organization of the
 test artifacts

• Proper naming conventions for all artifacts to be decided.
• Explain the versioning conventions and plan
• Explain the monitoring and maintenance of

test scripts, workloads and the results
• Explain the backup plan

9 Interface with
third party system

• List any external link to be included during the test
• List all third party components that are interfaced with the

system
• Identify third party system, if any, that drives the

inputs to the system under test
10 Prerequisite • The system under test must be functionally error free

• The system development must be completed totally
11 Test Schedule • Prepare the test schedule and resource requirement for

running the tests
12 Testing Process • Customize the testing process
13 Exit Criteria • The number of runs planned

• In each run, once a specified duration reaches
• When it reaches the required number of virtual users
• When the performance measurement matrix is satisfied

14 Assumptions • If the input data is generated from external system,
 specify it.
• If driver and stubs to be written, specify the same

15 Constraints

• If functional test is not completed, specify those modules
• If required data is not available, elaborate under

what constraint test has to be conducted
• Limitation on entry criteria
• Date of system release
• Exit criteria/stopping rule
• Budget constraints

16 Risk Factors • Evaluate the risk factor if the operational and
test environment are different

• Analyze the risk while extrapolating the results
• People resources availability
• Time deadlines

Test Preparation Phase III: Test Build 127

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

identifying people, and scheduling the test. Any performance test requires a lot of
coordination among the system developers, testers, network and database administra-
tors, and performance analysts. Proper tools must be available and configured for the
environment. Availability of proper licenses for the testing tools also needs to be
planned.

Operational Environment

Real life problems will be known only when the system is deployed in its operational
environment, that is, when the system is in the habitat it was designed to be in. The best
place to address performance issues accurately is in the system’s habitat. Here the
system is operational and working correctly but might not satisfy performance expecta-
tions. In this case, either system might not have been tested for performance before
launching, or the system needs tuning to improve performance. Since real data are used
as inputs, results obtained are quite accurate. However, testing in this environment has
its own intrinsic problems.
Some of the problems of testing in the operational environment are:

• Availability of the environment is difficult as it may be in an active state and could
be vulnerable;

• Likelihood of damaging other legacy systems or applications running in that
environment which are not in the scope of PT;

• Some functionality of the application might get affected due to performance tuning
measures that need to be adopted;

Figure 6.1. Typical simulated test environment

M aster client

Application
server(s)

W eb
server(s)

Database
server(s)

SSL,
D igital

certificates,
NTLM proxy

Internet
Explorer

Java C lient

Netscape
Navigator

W AN

M ainfram e

Client
Environment

Server
EnvironmentNetwork

Environment

M ainfram e
Environment

iMac

Test Script
Repositry

F ire w a ll

Mainframe

128 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Conducting a performance test when the system is operational will make the
response slow for potential users;

• A lot of monitoring is required to test the system in its operational environment.

Therefore, a dedicated simulated environment similar to operation environment is
suggested for effective performance testing.

Simulated Environment

An ideal choice for PT is the operational environment wherein tests could be done in a
realistic manner. However, availability and usage of such an environment is very difficult
or next to impossible. An alternative choice is to go for a simulated environment. A
simulating test environment requires investment on hardware and software. If the system
has to be deployed in a complex environment, such an environment might be too
expensive and cannot be reused once the testing is complete. A simulated environment
is normally an isolated network with its own security and servers. Though it may not be
possible to simulate the operational environment, a sincere attempt must be made to come
as close as possible to the operational environment. A typical simulated environment for
PT is shown in Figure 6.1. This simulation environment consists of an underlying network
environment, a server environment, a client environment, and may be a mainframe
environment. A server environment may have clusters of servers like Web servers,
application servers, and database servers. The client environment consists of multiple
clients with different browsers and a repository to store test scripts. The network
environment is associated with firewalls, WAN, and proper authentication. The simu-
lated environment could be centralized or distributed.
If a test lab already exists, then the information about the operational environment has
to be gathered. Set up and configure the computers to match the configuration of the
operational environment. If a dedicated test lab is not present for testing, then start
identifying a location where the environment can be simulated. Start assessing hardware
and software requirements; make sure to document them in the test plan.

Hardware and Software Requirements

Replicating the real world operational environment requires meticulous planning and
perseverance. Simulating the system’s habitat is as important as conducting the test. To
illustrate, workstation response time measured right next to the server may not be the
same as the response time of a remotely located workstation somewhere on the network.
This means that an important early step in planning a performance test is to understand
specifically what equipment, networks, and software comprise the operational environ-
ments.
If multiple environments are to be simulated, then the configurations need to be carefully
handled for multiple environments. The domain architecture, services, business appli-

Test Preparation Phase III: Test Build 129

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cations, and administrative expectations have to be carefully studied to simulate the
security model, application deployment, and server storage methods.
The general hardware and software requirements of a typical test environment can be
divided into four subdivisions as shown in Figure 6.1. They are client, server, network,
and mainframe environment. Some of them may have to be hired from vendors, as setting
up them may not be economically feasible.

Requirements to Set Up the Client Environment

The client environment must be as close as possible to the user environment so that all
user actions can be simulated. Simulation at the client side is normally done by test scripts
wherein actions are captured and replayed during the test. These test scripts must be
stored in one place and controlled by a client known as master client (Figure 6.1). Master
client is responsible for creating the required number of virtual users and managing the
entire test execution. Master client also controls the remaining clients used for the
execution. The client environment must also provide facilities to simulate different roles
of users based on the user community. To illustrate, a Web site requires several
thousands of users to log in with five different roles. This means that five test cases are
required to simulate five roles, say, correct log in action and a few more roles to handle
invalid logins and related activities. These actions, in the form of test scripts, must be
stored in the repository controlled by the master client.
To illustrate, in a typical banking application, the tester has to initiate the roles of the
customer, administration, and senior management groups. The tester should follow the
test cases written for all the three user communities. The scripts generated are stored in
the test script repository, and they are distributed among the client machines. Each user
community may have several users according to the distribution represented in the
workload. Accordingly, the tester is going to generate virtual users of a specified
community. Similarly, many issues have to be addressed while setting up the client
environment. Some of the challenges to be addressed during the environment setup are:

• Multiple browsers at different client machines to simulate heterogeneous clients;

• Different hardware configurations (memory, processor, etc.) for different clients;

• Managing cache at each client;

• Managing multiple platforms;

• Configuring protocols at each client;

• Distribution of test scripts across all clients;

• Limitation of simulating the number of virtual users at different clients;

• Monitoring the user actions during the test execution.

130 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Apart from this, some of the clients may have to be used to manage the tools requirement
like a dedicated controller and storage of test scripts. Addressing these issues is a
challenge for the testers.

Testing with Different Browsers

Client machines can be set up with different browsers to map the operating environment
(Figure 6.1). To illustrate, if the load has to be tested for 2,000 users, then 1,000 users
browsing through Internet Explorer, 500 users with Netscape Navigator, and 500 Java
clients can be simulated. The application should be previewed with different versions too
since different versions of the browsers display the screen differently. Not just the
browser, client machines can be set up with a mix of hardware and software components.
It is difficult to predict the client environment for Web applications. Users of Web
applications are unknown and can access from different geographical locations with
different hardware and software setups. Therefore, setting up an environment with a
thorough mix of clients is advisable.

Testing with Different Operating Systems

Configuring clients across different platforms such as Windows 2000, Windows NT,
Windows 98, Linux, and others are needed for a typical test environment. These
operating systems contain the TCP/IP stack and the information required to communicate
with the Internet. Each operating system implements the stack differently.

Client Caching

Caching the pages at client side allows the pages to be loaded quicker the next time when
the same page is loaded. Caching graphics and other Internet medias should be
incorporated in some of the client machines.

Different Protocol Setups

TCP/IP is the basic protocol needed for communicating with the Internet. It is a point to
point protocol, which allows client to communicate across the Internet to different types
of systems and computers. SMTP (Simple Mail Transfer Protocol) (http://
www.freesoft.org/CIE/Topics/94.htm) and POP (Post Office Protocol) can be used to
send and receive mail in some clients. The rest can be set with IMAP (Internet Mail
Access Protocol) for remote mail access activities. It is probable that due to budget
limitations, these multiple environments have to be set up with the same networks and
platforms. Some of the ways of maintaining the multiple configurations are to have
mirrored hard disks or replaceable zip drives that are bootable.

Test Preparation Phase III: Test Build 131

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Requirements to Set Up Server Environment

Server environment includes mainly setting up of Web servers, application servers, and
database servers (Figure 6.1). The type of servers needed varies from project to project.
Some projects may require an additional proxy server to be set up; another may require
a file server to be set up; yet another may require a transaction server to be set up and
installed. The disk space, memory space, processor type and speed, and caching ability
should be studied carefully to create a realistic server environment. Server drivers used
or planned to be used should be the same as the servers in the operational environment.
Remote access protocols like Serial Line Internet Protocol (SLIP), Point to Point Protocol
(PPP), and Point to Point Tunneling Protocol (PPTP) (see Protocols, 2004) must be set
up, which allow remote servers to connect to the Internet. Server caching can also be
incorporated. Proxy caching is typically performed on a corporate LAN.

Requirements to Set Up Network Environment

To set up the network for the test environment, the initial information that one would
require is the network architecture that will be used in the system’s habitat. Once the
architecture is understood, then the same has to be simulated for the test scenario. In case
of a distributed network, the same has to be replicated with simulated network delays and
various network equipment. Network connection at the server end as well as client end
impacts PT.
In a typical Web based application scenario, the server side network architecture can be
simulated, but the client side simulation is not as easy. One of the reasons is that it is
difficult to predict the client’s environment and also the number of clients. The applica-
tion should be tested with various connections like dialup modem, DSL (Digital Sub-
scriber Line), cable modem, ISDN, T1, and optical fibers. Bandwidth available per user
depends on the type of connection at the client site. It may not be possible to simulate
all the connections in the test environment. It is observed that the majority of Web users
connect through Internet Service Providers (ISPs) via a modem connection. Therefore,
generally, a modem of 56 Kb/s is used in the test environment to connect the client and
server setups.
Firewalls are required to manage security issues. One needs to consider configuring of
the network to handle other features such as caching and access control. Network
sniffers (Mitchell, 2004) can be used to probe and diagnose the flow of data on the
network.
If the test environment is connected to a WAN, routers are used for testing the network
latency and testing domain controller. A multiple environment can be set up to study the
network latency across WAN. A secondary environment can be placed at different
geographical locations for more realistic PT.

132 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Requirements to Set Up Mainframe Environment

Mainframes used to be defined by their large size and support of thousands of users.
Mainframes are best defined by their operating systems: UNIX and Linux, and IBM’s z/
OS, OS/390, MVS, VM, and VSE (see Operating Systems, 2004). Mainframes provide huge
disks for storage and management of the bulk of data.
Since mainframes often allow for “graceful degradation” and service while the system is
running, performance issues do not occur. Mainframes cost millions of dollars, and they
can occupy a room. But now a mainframe can also run on a laptop and support multiple
users. A huge investment is required to set up a mainframe environment. The above
simulated environment, once set up, must be close to the operational environment.

Mapping the Simulated Environment to the Operational
Environment

Testing the system for performance in a simulated environment before deploying in the
operational environment reduces the risk of performance problems and minimizes
downtime of the operational site. The simulated environment could be created by one of
the following techniques:

• Simulated environment is exactly equal to operational environment.

• Simulated environment is less equipped than operational environment.

• Simulated environment is more equipped than operational environment.

The real test bed can be used in the test environment if the testing is done after the
deployment of the project. However, for predeployment scenarios, as it is difficult to
obtain real data, expected data can be simulated to make the test environment equivalent
or close to the operational environment.
Though the servers, network, and legacy systems can be simulated according to the
operational environment, the client environment is not known in the case of Web
applications. Hence, it may not be possible to simulate the diversity of the client
environment in the following cases.

Simulated Environment is Exactly Equal to Operational
Environment

When one says the simulation environment is exactly equal to operational environment,
it means equivalent in every respect. The environments should be equal in terms of
servers, network, legacy systems, as well as test bed.

Test Preparation Phase III: Test Build 133

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Servers: The number of servers present in an operational environment should be
maintained at the simulated test environment too. To illustrate, if the operational site is
equipped with three Web servers, one application server, and one database server, then
the same number of servers is used for testing in the simulated environment. In addition,
if any proxy server or file server or any other type of server is present at the operational
site, it should also be available at the test environment.

Not just the number of systems, even the make, model, memory capacity, disk capacity,
and processor speed of the servers should be configured in a simulated environment. To
illustrate, if the operational site has IIS 4.0 as the Web application server, that is, the
server which serves as both Web server and as application server, then the test
environment must also be configured with the same.

Network: The simulated environment is designed to handle the same type of network
adopted in the operational environment such as the layout of the computers, cables,
switches, routers, and other components of the network. The network architecture with
details of the use of Ethernet, Token bus, Token ring, or Dual bus architecture is also
maintained in the test environment.

The simulated environment should be established with the same client side connectivity,
such as cable modem, DSL, ISDN, or a T1 or partial T1, as the networks used in operational
site. The topology used to set up the network, such as Bus, Ring, Star, or Mesh topology
should also be maintained in the simulated test environment.

Legacy Systems: If the system under test is servicing some legacy operations, even that
background process is simulated in the test environment. To illustrate, if the system has
a mainframe environment to handle huge database operations or if the system is equipped
with Storage Area Network (SAN) to handle huge storage, then a similar setup is
established at the testing site.

Challenges: If the organization is already equipped with a sophisticated test lab, then
the environment can be upgraded to meet the current project needs. Upgrade the servers
so that they all have the same amount of memory and disk capacity and use the same
processor type and speed as the servers at the operational site or the same as planned
to deploy at the operational site if the testing is for a postlaunch project.

If upgrading is not feasible or the test lab does not exist, then a new test environment
has to be established. A suitably equipped test lab leads to clear implementations and
gives accurate results. Simulating separate environments for each project is difficult, and
the associated cost is high.
A possible solution is to share the test environment for several projects. However, to do
so, the project should require a similar environment, and the schedule must be compat-
ible. Another possible solution to handle the budget issues is to take the required

134 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

components for lease from a vendor and return them once the project is over. Another
solution could be to purchase a hardware or software component for a specific project
that can be used in the operational environment itself.
Overall, the cost of replicating the operational environment exactly with the simulated
environment is quite high. However, this cost is lower than costs of fixing problems in
the system’s habitat or operational environment.

Simulated Environment is Less Equipped Than
Operational Environment

An important step to notice in the test environment is to determine whether it is feasible
to establish the exact version of the operational environment for testing purposes. If not,
then performance must be measured in a smaller or less equipped simulated environment.

Servers: Generally, the simulated environment will compromise the number of servers.
If the operational site has a cluster of Web servers and budget constraints do not allow
for the same set up in the test environment, then a lesser number of Web servers may be
used for testing. Sometimes, we may have the same number of servers as that of the
operational environment, but these servers could have less capacity.

Network: As in servers, the testing team may have to compromise load balancer, the
number of routers, and the number of switches. To illustrate, if a load balancer is used
to manage load on a cluster of Web servers in the operational environment, it may not
be seen in the test environment if a single Web server is used.

Table 6.1. Template for a likely investment on test environment

Hardware/Software
components

Name(sample) Cost/Item Quantity Total cost

Web server Apache
Application server IIS
Database server Oracle
Client machine DELL
Client machine COMPAQ
Mainframe IBM
Browser Netscape

Navigator
IE 4.0

Operating system Windows 98
Network connection 56.6 Modem
Automated tool Rational’s Test manager
Firewall
Other security
Components

128-bit digital key

Any other

Test Preparation Phase III: Test Build 135

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Legacy Systems: The simulated environment may not include legacy systems, which are
present at the operational site. Since legacy systems have comparatively less impact on
performance, the simulation of them is often ignored in the test environment.

Challenges: When the simulated environment is less equipped than the operational
environment, the results are extrapolated to produce the likely performance in the real
environment. It is dangerous to assume equivalence between the operational environ-
ment and the test environment while extrapolating results. This extrapolation is not easy
and presents surprises when the system fails to deliver the expected performance in the
operational environment.

To illustrate, performance experts of Hewlett Packard (see Hewlett-Packard, 2004)
conducted a performance test with a configuration of 50 machines and observed
adequate performance. They extrapolated the results and deployed the product in an
operational environment, which was quite similar to the test environment. In the
operational environment, performance of the product degraded drastically with 51 or
more machines.
Therefore, one should remember that perception may not be the same as reality.
Expectations and perceived performance may give different results in the operational
environment. Therefore, PT requires a test environment that can reasonably accurately
simulate the real world operating conditions and real world workloads. These are difficult
to achieve in a test environment, which has limited capabilities.
Even if the test environment can model the operational environment adequately, there
is always a question of predictability. It is important to note the variation between the
expected results vis à vis what is obtained from the test environment and with what
criteria these results are extrapolated.
Designing a correct benchmark to handle this predictability is a difficult task. Using the
wrong benchmark will lead to misleading results. If realistic growth projections are
incorporated in the benchmark design, then the extrapolation results based on them can
give justifiable results.

Simulated Environment is More Equipped Than
Operational Environment

If a permanent test lab already exists, then the problem of establishing a new environment
is eliminated. Sometimes, an existing test environment may be more equipped than the
operational environment. Then, the results obtained at the test environment have less
reliability than the ones true for the operational environment.
A simple solution to adjust the test environment is to scale down the configurations to
map the configurations of the operational site. Scaling down the configuration is a major
issue, which makes the test environment change for every project. The environment often
has to contract and expand to provide acceptable service that is to handle large as well
as small networks.

136 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Investment on Environment

Based on the type of environment decided by the test team, one can plan the investment.
The likely investment on a test environment is attributed to computing systems as given
in Table 6.1. It provides a template to arrive at the total cost.
Table 6.1 can be updated based on the cost matrix needed for the simulated environment.
The major share of investment in setting up the environment lies in purchasing automated
tools and installing a mainframe.

Challenges in Creating a
Simulated Environment

Once the requirements to simulate the environment are known, apart from investment on
hardware and software, one needs to address many other challenges before the environ-
ment can actually be used for testing.

Identifying Noises

Once the environment is ready and running, there may be many unknown and unwanted
tasks that get executed along with the scheduled workload. Such tasks are known as
noises. These tasks contribute to poor performance during simulation, provided they are
not accounted for in the workload itself. The following tasks could be categorized as
noises.

• Operating system processes are running along with the application.

• Some background process that needs to be started before the test.

• Some additional process, like printing a document, needs to be initiated during the
test.

• Identify those processes that will be running apart from the SUPT in the operational
environment. These processes have to be simulated in the test environment also.

• The network bandwidth might be shared by many applications. To illustrate, the
network might also be used for VOIP in the operational environment. The same
process has to be simulated during the test run also.

• Taking backups or running virus checks is an important activity in the operational
environment. Normally, these activities are missed when the simulated environ-
ment is designed.

• Plan for unforeseen activities or worst case scenarios, which may affect the
performance and try to simulate the same in the test run.

Test Preparation Phase III: Test Build 137

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Some noises are part of the testing process, but others must be simulated properly in order
to replicate the operational environment. These noises related processes must be
planned in advance to achieve better results.

Scalability Issues

The simplest approach to establish a simulated environment is to handle the scalability
extremes, which the system is expected to encounter. But this approach is difficult to
implement when scalability expectation is high.
To illustrate, the Bank of New York (see Bank of New York, 2004) tested for database
performance with a relatively small test database in the test lab. Later, the system did not
give the expected database performance in the operational environment, with a real
database much larger than the one which was tested.
A more complex example of scalability issues is the one where the server’s capacity is
increased simultaneously along with higher loads than scheduled. Also, increase the
RAM size; add the number of network interface cards, the number of switches on the
network, and so on. In such situations, servers that perform well at lower loads sometimes
may not maintain their level of performance at higher user levels, in spite of increasing
the capacity of the server. Poor performance will lead to loss from the customer base.
Gradually increasing the load on the system and carefully monitoring the changes in each
cycle is important. Scalability can be viewed in two different dimensions.

• Gradually increasing the load, keeping the system resources constant;

• Gradually decreasing the system resources, keeping the load constant.

In the first case, the capacity is checked for the existing resource at maximum load while
a sufficiency check on the resource for the required load is the main objective in the
second case.

Resource and Budget Limitations

In most cases, simulating the operational environment is impossible, but a likely
operational environment can be simulated. This requires extra investment and resources.
Sometimes, a hired testing environment could be used for a specified duration. There are
many organizations that will provide such facilities, but they are expensive. Some of them
are given in Table 6.2.
These organizations provides necessary infrastructure to conduct PT. This list is not
exhaustive, and readers are requested to explore further, based on their requirements.

138 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Isolated Environment

A test environment could be isolated from the corporate network of the organization. An
isolated environment is situated at a single site. All the resources are dedicated to the
environment. The environment is equipped with network infrastructure, server setup,
and client computers. Creating an isolated environment depends on the size of the budget
and availability of physical space. If a connection is needed to generate background
noise, a thorough plan to regulate and control the connection is an overhead. Make sure
to terminate the connection, which is used to generate noise as quickly as possible to
protect the system under test.
The physical hardware device used to connect to the Internet will not be the same for all
users. Different users may use different types of hardware. It may be a desktop computer,
a laptop, a Web access device such as Web TV, a cellular phone, or any other handheld
device which is designed to access the Internet. Using all hardware devices for testing
is not possible due to budget limitations and availability problems.

Developing Test Scripts

Test scripts are the replication of transactions identified for developing a workload but
represented in a language. Different tools represent the test script in different formats.
Test scripts can be generated in two ways: manual scripting and automated scripting.
Test scripts generated manually are cumbersome, time consuming, and expensive.

Table 6.2. Sample outsourcing organization for test environment

Test outsourcers Location
Benchmark Labs Edina,MN (www.benchlabs.com)

(Accessed on 15th - Dec – 2003)
Berlitz Translation services New york,Dublin (www.berlitz.com)

(Accessed on 20th – Feb – 2004)
National Software Testing L NTSL,Conshocken,PA(www.nstl.com)

(Accessed on 18th – Dec – 2003)
ProSoft Engineering Inc Pleasonton,CA (http://www.prosofteng.com/)

(Accessed on 14th –Feb – 2004)
QALabs Vancouver,BC (www.qalabs.com)

(Accessed on 16th – Dec – 2003)
ReVision Labs Redmond,WA (www.nwhtweb.com/sic.php?sic=8734)

(Accessed on 14th _Feb – 2004) (Requires subscription)
AC Labs Burlington,MA (www.sqp.com)

(Accessed on 17th –Sep – 2004)
ST Labs(Software Testing L Seattle,WA (www.stlabs.com)

(Accessed on 17th – sep – 2004)
Testware associates Piscataway,NJ (www.testware-assoc.com)

(Accessed on 16th – Dec – 2004)
VeriTest Santa Monica,CA (www.veritest.com)

(Accessed on 17th – Sep – 2004)

Test Preparation Phase III: Test Build 139

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

However, automatically generated scripts may not be ready for test execution due to
interfacing dynamic data within the script. These scripts have to be edited to include
additional requirements that are not generated automatically.

Guidelines to Develop Test Scripts

Most test script development follows normal coding standards. Every tool provides its
own language to develop test scripts. If the language is known, test scripts could be
developed manually also. Otherwise, a record and play facility should be used to develop
the test scripts. The following checklist provides the guidelines for writing scripts:

• Once the workload is defined, identify the set of transactions or test scenarios to
write the scripts.

• Verify whether the system under test is working or not with those transactions
identified for scripting.

• Install the tool and configure with the operating system of the client.

• Using the tool in record and play mode, capture the test script by playing as if the
user is using the system and complete the activity for which the script needs to be
captured.

• Play back the script and verify the correctness of the script.

• Edit the test script for:

� Modifying think time, if necessary;
� Handling dynamic sessions, if required;
� Accessing the data pool, if required;
� Any other items relevant to the recorded script.

The above guidelines are general in nature; each tool provides different facilities to
capture the test scripts. Refer to the tool documentation for further explanation.

Issues in Recorded Scripts

In most of the cases, the scripts generated by using the tools need to be modified to
customize to a particular environment.

• If the application generates the dynamic data during the execution, the script will
not run subsequently. The recorded script will have hard coded data. When the
script runs for the second time, the application will generate new data and scripts

140 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

fail. This could be rectified by editing the script and adding new clauses provided
by the tool.

• Some of the tools may have problems in handling data in XML format. All servers
typically accept the data in a specific format. However, each client or load generator
will create its own XML format and send the data to the server and vice versa. In
order for the server to a handle common format, the script must be edited.

Table 6.4. Activity template for a test schedule

Sl
No.

Date Duration to
complete the
activity

Activity in test
schedule

Sub Activities

1 TBD (To
Be
Decided)

Project
dependent

Requirements • Validate Requirements
• Validate usage models
• Validate Test strategy
• Validate workload designs

2 TBD Project
dependent

Test Environment • Determine Test environment
• Determine dates and locations

of testing
• Install and configure test

environment
• Validate connectivity

3 TBD Project
dependent

Tools& Training • Skill set development on tools
• Installation and configuration of

automated tools.
4 TBD Project

dependent
Development • Develop a workload using the

tool from the designs
• Develop test scripts for the

workload
5 TBD Project

dependent
Maintenance of
Scripts

• Edit scripts to include data pool
• Edit scripts include think time
• Validate edited scripts
• Map the generated scripts to

scenarios
• Execute the test

6 TBD Project
dependent

Test Execution • Capture results of the test
• Check for pass/fail criteria
• Repeat the test run number of

times as specified in the
Strategy document

• Repeat from serial#4 to serial#6
with different workload till all the
designed workloads are
implemented

7 TBD Project
dependent

Test Analysis • Analyze the results, identify for
which workload test cycle has
failed

• Modify the workload, repeat
from serial#4 to serial #6

• Analyze results, if results are
not according to the acceptance
criteria or any bottleneck is
identified, follow tuning
guidelines and act accordingly

• Analyze the test results
obtained after performance
tuning.

• If acceptance criteria are met,
present results to the client.

Test Preparation Phase III: Test Build 141

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• If applications use applets, the script generated may not work during the testing.
To run the script effectively, all the applet clauses must be installed at the client
machines.

• If a data pool is used during the test, the scripts must be appropriately edited to
accommodate the data files.

• An important issue to be addressed in any of the script is to handle repeated login/
logout. The recorded script creates new login/logout sessions for every thread,
and if every thread runs multiple times, a similar number of sessions will be created.
These sessions will become overheads on the server. To solve such problems, most
of the tools support INIT and TERMINATE options wherein one can specify it as
a one-time activity.

• Often when a new tool is used for the first time on a testing program, more time is
spent on automated test scripts than on actual testing. Test engineers may be eager
to automate elaborate scripts, but may lose sight of the real goal, which is to test
the application.

Most of the tools provide record and play methods to capture the scripts. However, each
script generated must be suitably edited to accommodate the necessary changes
required to run the test.

Preparing the Test Schedule

The main objective of preparing a complete test schedule is to plan a comprehensive
utilization of all types of resources, which could be ensured at an appropriate time. To
plan such a schedule, we need to know the type of activities and duration required to
handle the activities as well as the resources used during these activities. Table 6.4
provides a template which covers the activities that need to be scheduled and the
projected duration. The duration of each activity depends on the complexity of the
project. The test team normally prepares the test schedule. While preparing the schedule,
the availability of resources must be ensured, particularly relating to those used in the
operational environment. If the testing is scheduled in a simulated environment, make
sure that resources are dedicated and not getting shared by other applications.
The template shown in Table 6.4 provides guidelines for test engineers to plan the test
schedule properly.

Defining the Testing Process

For any project to be successful, a formal testing process must be defined. In the case
of PT, the testing process is defined in three phases: planning; design and implement;

142 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6.2. Testing process

and execution and analysis. Each phase, as shown in Figure 6.2, describes various
activities that need to be addressed before moving to the next phase.
In the planning phase, preparing the test plan, setting up the test environment, and
selection of tools are addressed. The design and implement phase involves developing
workloads, generating test scripts using automation tools, setting performance param-
eters, verifying those parameters, and related activities. Performance parameters must be
defined at the operating system level and must be application specific. The final phase,
namely, execution and analysis phase (Figure 6.2), defines the process involved in
executing the test as well as presenting and analyzing the test results. Before starting
execution of the test, the stress level must be set. The stress level could be in terms of
number of concurrent users or fixing the resource constraints for a definite number of

Test Preparation Phase III: Test Build 143

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

concurrent users. For each stress level, a set of scenarios is executed until satisfactory
results are reached. Likewise, all sets of scenarios are tested for satisfactory results.

Analysis of Risk Factors

Since PT is a high investment and a skilled activity, the testing team must be ready to face
uncertainties and risks. The risks come at any stage of the test execution. They could be
functional defects noticed during the test or involvement of unskilled testers or
architectural problems or managerial aspects of the entire testing project itself. The
probable risks could be classified as follows:

Testing Started before a System Architecture Studied

It is advisable to test a new tool upgrade in an isolated environment to verify its
compatibility with the currently existing system architecture, before rolling out any new
tool upgrade on a project. For most of the project, the architecture is studied and
implemented from the functional aspect whereas the same may not be studied from the
performance point of view. Some of the tools may not work with the architecture or may
require some add-on utilities. A mainframe system supports a few testing tools. In such
situations, realizing the nonfunctioning of the tool at a late project life cycle may cost
the project expensively.

Lack of Test Development Guidelines

If the test team has several test engineers, each using a different style for creating test
scripts, maintaining such scripts is a nightmare. Test engineers are advised to follow
guidelines used for development projects to increase the readability and maintainability
of developed test scripts. Every test script development must follow normal coding
standards like followed in development of programs. Proper training must be given before
the development of test scripts.

Integration Problems with Various Tools in SDLC and
STLC

If different tools are used for each phase of the testing life cycle, they may not integrate
due to the protocol they conformed to. For metrics purposes and to enforce consistency
among the elements and tractability between phases, output of one tool should be an
input of another tool. To illustrate, output of the performance requirements capturing tool
can be an input of the design tool. Output of the design tool can be an input of the testing

144 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tool and so on. If the tools are from different vendors, they do not integrate easily. Trying
to consider them as a challenge and making them integrate may require a separate plugin,
and this is a time consuming task. Even if one goes for elaborate programming techniques
and generates a code to integrate, the tools may not be reusable later. This is not an
efficient approach. Purchasing tools that are already integrated into a unified suite may
be a better solution. A cost/benefit analysis has to be carried out before buying an
integrated suite.

Redundant Information Kept in Multiple Repositories

Proper configuration management tools and policies have to be in place to ensure that
information is managed effectively. In several instances, the implementation of more
tools can result in less productivity. One should be careful about choosing tools.
Requirement management tools and test management tools exhibit the same functional-
ity. If any management tool already exists, we can use it for other purposes too. To
illustrate, if the requirements management tool is already purchased, then buying a tool
for test management is not necessary. Using many tools with the same functionalities
results in duplicate information kept in multiple repositories, and this is difficult to
maintain.

The Cumbersome Process of Generating Automated Test
Scripts

It is important that all the members of the team should understand that test script
automation does not happen automatically, no matter what the vendor claims. In a
project, test engineers with experience in manual testing will be involved in creating the
automated scripts. Though tool vendors claim the operation of a tool is easy, the test
engineers may complain that the creation of automated scripts took longer than expected
and that too many workaround solutions had to be found. It is important to understand
that tools are not necessarily as easy to use as the vendors claim. It is also beneficial to
include one person on the testing personnel who has programming knowledge and
appropriate tool training.

Lack of Knowledge on Testing Tools

Sometimes, tool training is initiated too late in the project, resulting in tools not getting
used correctly. Often, only the capture/playback portion of the testing tool is used, and
scripts had to be repeatedly recreated, causing frustration. When introducing an
automated tool, it is important that tool training be a part of the test schedule. Since PT
activities need to be involved throughout the project life cycle, tool training should
happen early in the life cycle for it to be useful and to ensure that tool issues can be
brought up and resolved early. Proper budget allocation must be done at the beginning
of the project.

Test Preparation Phase III: Test Build 145

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Late Introduction of Testing Tools

Sometimes, test management introduces a new testing tool in the hopes of speeding up
the testing effort. If no test automation expert is on the test team, automated tools should
not be introduced late in the life cycle. The tool’s learning curve may not have allowed
the gain of any benefits from incorporating it late in the testing life cycle. Project
management must ensure that adequate tool experts are available before the usage of the
tools in the project.

Early Expectations of Payback

Often when a new tool is introduced to a project, the expectations for the return on
investment are very high. Project members anticipate that the tool will immediately narrow
down the testing scope, meaning reduced cost and schedule. An automated testing tool
does not replace manual testing completely, nor does it replace the test engineer. Initially,
the testing effort in automation will increase, but when automation is done correctly, it
will decrease in subsequent stages.

Tool’s Problem in Recognizing Third Party Controls

Another aspect of managing expectations is to understand tools’ capabilities. In some
projects, the test engineers were surprised to find out that a specific tool could not be
used for some parts of the application. During evaluation of a tool, it is important to verify
whether third party controls are compatible with the automated testing tool’s capabili-
ties.

Usage of Multiple Versions of a Tool

If one project has multitool licenses, numerous versions of the tool will be in use. This
means scripts created in one version of the tool may not be compatible in another version,
causing significant compatibility problems and requiring many workaround solutions.
Project management must ensure that the proper configuration and version of the tool
must be in use throughout the project.
Risk factors in performance testing projects are many. Since it is a late and last activity
in the project life cycle, confusion and uncertainties always prevail. Even in the last phase
of testing, there could be a requirement modification envisaged by the customer which
jeopardizes the entire project management, including the performance testing. In such
situations, the testing team must be ready to face uncertainties and strategize to provide
optimum solutions.

146 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary

Test build is an important activity, and many test analysts have not understood it
properly. They ignore intricacies of various aspects of the test build phase. Though they
meticulously prepare the test plan, they may fail to maintain the same aggression to create
the test environment and test scripts. Several options are available for simulating a test
environment, but one needs to be careful about the investments that have to be made.
The test environment must be as close as possible to the operation environment. Instead
of creating a company-owned testing environment, a hired or leased testing environment
could be considered.
Test script generation may be simple by using a tool, but its direct applicability on testing
may not always be possible. Test scripts may have to be modified manually. They must
be tested with sample runs, and proper coding standards must be followed.
Finally, knowing the risks involved and planning for risk mitigation at all levels of the test
build phase will enhance the effectiveness of performance testing.

References

Bank of New York. (2004). Retrieved December 21, 2004, from http://www.bankofny.com/
htmlpages/index.htm

Hewlett-Packard. (2004). Retrieved December 21, 2004, from http://www.hp.com/
Mitchell, B. (2004). Network sniffers. Retrieved October 10, 2004, from http://

compnetworking.about.com/od/networksecurityprivacy/g/bldef_sniffer.htm
Operating systems. (2004). Retrieved October 10, 2004, from http://

www.knowledgehound.com/topics/OSs.htm
Protocols. (2004). Protocols. Retrieved December 21, 2004, from http://

www.protocols.com/
SMTP overview. (2003). Retrieved September 14, 2003, from http://www.freesoft.org/

CIE/Topics/94.htm

Additional Sources

Carson, M. (1997). Application and protocol testing through network emulation.
Internetworking Technologies Group, NIST. Retrieved from June 10, 2004, from
http://snad.ncsl.nist.gov/itg/nistnet/slides

Chengie & Cao, P. (n.d.). Maintaining strong cache consistency for WWW. Retrieved
October 1, 2004, from http://www.cs.wisc.edu/~cao/talks/icache/sld001.htm

Test Preparation Phase III: Test Build 147

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Gerrard, P., & O’Brient, A. (1995, November). Systeme Evolutif Ltd. 7. London: Hanover
Square. Retrieved October 10, 2004, from http://www.evolutif.co.uk/CSPerftest/
CSTPAPER.html

Q.A. Labs (n.d.). Benefits of test planning – A cost-benefits. White paper. Retrieved
February 18, 2003, from www.qalabs.com/resources/articles/
testplanningbenefits.pdf

Subraya, B. M. (2002, September 6). Web performance testing & issues. Infosys
Technologies. Internet & Software Quality Week, San Francisco.

Subraya, B. M., & Subrahmanya, S. V. (2004). Design for performance using PePPeR
model. Retrieved October 10, 2004, from www.softwaredioxide.com/Channels/
Content/Infosys_Design_Performance_PePPeR.pdf

Weyuke, E. J., & Vokolos, F. I. (2000, December). Experience with performance testing
of software systems: Issues, an approach, and case study. Retrieved October 10,
2004, from http://www.cs.drexel.edu/~filip/TSEperformance.pdf

148 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 7

Performance Test
Execution Phase

The focus of this chapter is toward the factors needing attention while conducting the
tests of performance. Chapters 5 and 6 discuss in detail the test plan as well as the test
scripts required for conducting the performance tests. The successful execution of PT
calls for coordination of a complex set of activities such as management of personnel,
scheduling the tests at an appropriate time, configuring tools for various performance
parameters, verification of application readiness for the test, and, above all, management
of multiple test runs versus cost of resources. Conducting the tests may spread over a
number of days, and it may also warrant customization of the operating system. The team
responsible for carrying out the tests must be well aware of these factors.
Typical test execution (see Test execution, 2004) phases are shown in Figure 7.1. Each
phase must be planned carefully. If these phases are followed in sequence, the probabil-
ity of test execution errors could be reduced. The main reason behind introducing these
phases is to reduce the cost. To illustrate, if we directly run tests without passing through
initial phases like elaboration test (say) and an error creeps in later, it will result in
unnecessary investment of effort on test runs, which is very expensive. Specialized skills
are required to run tests. Sometimes, the test environment (including tools) has to be
taken on hire during the test runs. All these involve effort and time, which will go to waste
if the tests are not executed properly. Each phase is explained in Figure 7.1.

Entry Criteria

Performance testing is the last activity in the performance test life cycle. Before this, the
application is subjected to functional and other related testing. If defects are found, they

Performance Test Execution Phase 149

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are corrected and tested again. This process continues until the application is free of
defects. After this process, the application is ready for performance testing. The process
takes more time, but in reality, time is limited, and the delivery of the application must be
done per the schedule. Therefore, the applications readiness for PT is questioned and
requires various conditions that need to be followed before it is ready for the PT.
One of the cardinal principles is to ensure that any application must, before undergoing
the test of performance, satisfy all its business and design requirements. Along with the
business functions, the test bed required for PT must also be ready. The process to be
adhered to before starting the performance test is shown in Figure 7.2.

Freezing of All Major Business Functions

It is not uncommon to find changes in business requirements even at the final stages of
system deployment. Minor business requirements may not affect the performance of the
system, but great restraint needs to be shown for a change in requirements. If major
business requirement changes are not accounted for in the performance expectations,
the tests may not give the desired results.
During the design of workloads, we have considered various transactions which are
required to conduct PT. Some of them are critical, and others are noncritical. The scope
of these critical transactions must have been frozen before the design. Any changes in
these transactions may impact the design and coding. Such changes adversely affect the
performance of the system. Great restrain must be shown for any changes at the last
moment. However, many customers demand changes at the last moment. Care must be
taken to maintain proper versioning of the application and corresponding performance
test results.

Working of All Major Business Functions and Features

Though the functional tests are conducted correctly, it is necessary to thoroughly test
all major business functions before the beginning PT. To illustrate, functional test teams
have tested an application through regression testing and certify it. Later, how do we
ensure that the testing has been done correctly and all business functions are covered?
In view of the delivery deadline, they may skip some of the functions which may not be
critical for them but may be critical from the performance point of view. Hence, the

Identify Entry

and Exit
Criteria

 Elaboration
 Test

Multiple
Runs

Self
Satisfaction

Test

Figure 7.1. Different phases of test execution

150 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7.2. Process for entry criteria

Performance Test Execution Phase 151

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

performance test team must have its own process to test, most if not all, critical business
functions just before the PT process begins. This is an additional effort but is worth doing
to ensure effective PT. Here, the major challenges faced by practitioners are coordination
between the functional and performance test teams. It must be ensured that the
performance and functional teams deploy the same version of the application to mitigate
otherwise avoidable pitfalls.

Fixing and Retesting of All Major Defects

It is a common practice among some developers, although unhealthy, to test the defects
but not fix the same on the grounds that they have no impact on the function of the system.
It may be true that such defects have no impact on the functions but would greatly
undermine the performance of the system. It is a good practice to fix all the defects and
recheck the system or application again, after fixing the defects before embarking on the
exercise of testing the performance of the system or application.

Availability of Proper Test Bed

It is essential to have a test bed for PT as required for functional testing. The testing can
be done either by use of live or simulated data. Care must be taken, in the use of live data,
about their location. Remotely connecting to the live database may not produce accurate
result. Simulated data, though, provide flexibility but do not reflect the real business
scenario.
Some of organizations may provide access to their live test bed which is currently in use.
Although operational data is available, for these types of test beds, simulating to a real-
time business environment may be difficult to produce correct results as day-to-day
interaction of business activity is interfaced during the PT. If the test bed is simulated,
the size of the database must be ensured with the operation database. Records complexity
must be similar to the complexity of operation data.

Ensure the Availability of the Test Team

A test team comprises test analyst, test script specialist, business domain specialist,
network specialist, database administrators, and personnel from various departments
involved in the test. Coordination and synchronization of all activities of the team
members is the key factor for success of the performance test. The main risk could be
if a skilled team member is not available at the time of testing, it would be difficult to
reschedule the training because the investment will be high. A proper risk mitigation
process must be evolved.

152 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Right Environment for Testing

Performance testing requires the proper environment with proper tools. The hardware
and software should be tested after setting up the test environment; this is a prerequisite
to ensure that while conducting a PT system, the test should not fail. The application must
be executed once before the beginning of the test. Enough disk space must be ensured.
A proper network environment (see Joung, 2004) must be available, and it must be tested.
Sometimes, network engineers modify the configurations at the last moment, introduce
the new plug-in components, and even change the server setup altogether. Hence,
evolve a simple testing process to ensure that the correct environment is available for
PT.

Right Version of the Tool

Many tools are used for PT. These tools could be related to monitoring, testing,
configuration, and project management. Ensure that right versions of the tools are used
for PT. Configuration of tools and testing them before PT should be followed as a
mandatory procedure. The right plug-in components must be ensured. Some tools do not
support all protocols. Care must be taken to test the type of protocols supported.
Installation must be done properly. Sometimes, some component of the tool may not be
installed at all. If the operating system for client and server are different while installing
any tool, a proper agent must be installed at the server end. Otherwise, the tool may
behave differently during the testing, impacting the results. All tools must be tested with
sample applications and configured accordingly. A tools expert must be available during
the testing. Ensure the maintenance contract is active during the testing.

Exit Criteria

In functional testing, the popular question asked by practitioners is when to stop testing.
If there is a defect, it needs to be corrected and again subjected to the testing process.
If this repeated process takes more time, the application delivery to the customer may be
delayed. On the other hand, if the delivery deadline is the criteria for stopping the test,
all defects may not be corrected. Hence, it is difficult to set proper conditions for stopping
the testing. However, some organization may set its own guidelines for stopping the
functional testing. Likewise, similar exit criteria must be defined in performance testing
also.
The outcome of the performance testing, in general, is either that the application is
exhibiting poor performance or good performance. This is a relative decision and hence
adheres to a set of conditions defined in the SLA. These conditions are mapped into
response time, throughput, resource utilization, and so on. Though the objective of
running the tests is to get the results as defined, multiple runs may have to be made, and
each run must satisfy certain conditions. The exit criteria must be set to accommodate

Performance Test Execution Phase 153

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the results as well as when to stop the test runs irrespective of the results obtained.
It is worth defining the exit criteria before the beginning of the tests. This includes
defining well in advance all parameters and expected results. Initiating the trial runs will
help in arriving at the base value of important parameters. Any violation of exit or other
conditions must result in the repetition of the test itself.

Successful Completion of Tests Runs

The first condition for any application undergoing performance testing is that the test
run should complete successfully. This means that all tests defined in the script must be
successfully completed without fail. The system should not crash or enter into a
deadlock. Monitoring from the master control must be successful. All system logs and
reports for each run must be generated. An application should not crash due to the
function defect. In the event of failure, the defects noticed have to be corrected and rerun
to be ensured.

Generation of Result Data

The second criterion is that the result data must be generated as envisaged. The results
may be useful or not which needs to be decided in the analysis. For instance, log files
during the execution are used to verify the healthy states of execution but are rarely
useful for analysis. For every test, there are multiple test reports that may be generated.
Some may be related systems, logs, and others may be related to application performance.
One should have a broad idea about the type of results and its pattern. All test runs must
generate the same type of test reports. However, the data could be different.

No Functional Defects during Test Runs

Though the application is successfully tested for functional defects, sometimes the
functional defects may arise during performance testing. If functional defects report, the
test run must be stopped because the results may not be as expected. The functional
defects discovered during the performance test have to be resolved immediately. The
functional defects may or may not affect the performance test. However, it is good
practice to resolve such defects because they may influence the performance of the
system indirectly in spite of the fact that the performance test has been completed
successfully.

Setting Performance Parameters

As it has been noticed by several researchers, the design of test suites for PT is radically
different from functional testing. In PT, the functional details of the test cases, or the

154 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

actual values of the inputs, are generally of limited importance. The important concerns
are traditionally associated with workloads and physical resources. For instance, the
number of users, the frequency of inputs, the duration of tests, the characteristics of the
disks, the network bandwidth, and the number and speed of CPUs are the key resources
which impact on the performance of any system. These resources could be measured by
setting appropriate parameters either at the operating system level or by using perfor-
mance tools.
Most of the modern testing tools provide a large number of parameters related to the
operating system, specific scripting language, browsers, and networks to find the
probable impact on performance. Depending on the performance requirements, param-
eters must be set. These parameters vary from tool to tool and specific operating system.
Some of the common parameters needed for every test run are illustrated here.

Response Time

When a user accesses any Web site for a specific purpose, the user expects the system
to respond immediately. The system response to any query is measured by the time or
duration. The response time is the time interval or period between the time a transaction
is submitted and the response of the system to the transaction. It is also known as elapsed
time. It is the measure of user productivity. An example could be when a customer
performs a query to find out the balance from a bank account and the system takes 3
seconds to respond. The response time is 3 seconds. This will impact the user’s feelings
while using the application.

Throughput

This is an important parameter and provides the average number of transactions or jobs
executed per unit time. The unit time could be seconds or minutes. It is a measure of the
capacity of the system used for running the application. This parameter is used by the
Web administrator to assess the efficiency of the system.

Utilization

Efficient usage of resources of the system is measured by this parameter. This parameter
provides the percentage occupancy of the resources like CPU, disk, network, and
memory. A specific value could be set for the exit criteria. If utilization is provisioned for
70%, the basic principle is to achieve 70% utilization of all resources.
The tools may provide multiple parameters to measure the utilization. One should see
specific tool details. For each parameter, a specific value should be set for the exit criteria.
Another important set of parameters is in terms of middleware configuration. For
instance, the use of J2EE middleware components in the application may require the
setting up of the following parameters:

Performance Test Execution Phase 155

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Thread Pool Size. Choosing the right number of threads in the pool helps in utilizing
the CPU effectively by the J2EE server. The thread pool size can be computed as
a factor of the hardware specification (CPU speed, number of CPUs, etc.) and the
number of concurrent processing performed by the server. Most J2EE application
servers come with details on how to configure the thread pool size. Increasing the
thread pool size beyond the threshold limit of the physical machine may result in
poor performance.

• Database Connection Pool Size. One of the biggest performance benefits in the
J2EE server is obtained by connection pooling. Connection pooling reduces the
overhead of connecting/disconnecting to the database on each client request. In
a typical production setup, the database is running on a different physical machine
and the application server on a different machine. This parameter again is a factor
based on the number of concurrent requests the server is expected to handle. Unlike
thread pool size, connection pools do not have CPU utilization overhead. So even
if the connection pool size is kept slightly higher than the optimal requirement, it
may not be a burden for the system. However, the limiting factor here could be the
database’s own limits on the number of connections.

• Application Component Cache Size. Most J2EE application servers use a cache of
components in memory in order to remove the overhead of object creation and
deletion. In a typical EJB application, entity EJBs are created in memory and kept
ready to be populated with requested data. The EJB container manages this
transparently. The factors deciding this parameter are physical memory available
in the server and the number of concurrent EJB requests that may be required in
the system.

• JVM Heap Size. Increasing the heap size helps in keeping the overhead of garbage
collection low. This parameter is a factor of physical memory available in the
system.

• Message Queue Buffer Size. Optimization of this parameter helps in increasing the
number of concurrent requests that can be handled. Usually an optimal setting is
created by the default configuration of most application servers. However, if the
available CPU power and physical memory capacity is high on the server, this can
be increased to an extent.

When the middleware interacts with the database, performance will differ based on how
frequently or rarely the application accesses the database. A given middleware may
perform adequately for applications that stress persistence and quite badly for transac-
tions. In some cases, a middleware may perform well or badly for different usage patterns
of the same service. Hence, it is necessary to set database related parameters (refer to
Appendix A3) before starting the performance test.
In general, the performance of a particular application will be largely dependent on how
the middleware primitives are being used to implement the application’s functionality.
By setting the exit condition by various methods, one can ensure that the test runs are
conducted smoothly and the output is ensured. Further, the test runs should not enter
into an indefinite loop and avoid uncertainty.

156 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Once the entry and exit criteria are set, then the application is ready for testing. However,
in the entry criteria, the conditions are set and one of the conditions is that all business
functions must work correctly. Apart from the business functions, we need to ensure that
performance testing also goes smoothly. To ensure some of the performance test related
activities like balancing the workload, defining user groups should be done before the
real test begins. Without this, if the real test starts and, at the middle of the runs, the
system fails due to performance test cases, the investment is high not economical. In
order to avoid these issues during the run, it is better to understand how the application
behaves by conducting elaboration testing.

Elaboration Testing

The aim of elaboration testing (see From inception to elaboration, 2004) is to establish
that the system behaves as expected under the performance test. This means that
important business functions work correctly, central software architecture is working
efficiently, databases are properly set, the platform is configured to suit the system, all
performance parameters are set, all user interfaces are working properly to ensure the
system is ready for deployment. Elaboration phase testing is important to obtain
feedback, adapt, and prove that the core application engine is robust. This phase also
helps optimize the cost. The elaboration test helps to:

• Understand the system’s behavior when subjected to PT.
The system need not be tested for all business functions. Only those functions
which are critical and decide behavior need to be tested.

• Establish a proof of concept for the PT.
The proof of concept ideally speaks about the feel of the product. Since PT is
expensive and time consuming, the proof of concept is required. The application
is subjected to PT for a set of workloads. Each workload will not be tested
exhaustively, but systems behavior during the PT is studied. With the proof of
concept, the testers will know how the system behaves during PT, and everything
needs to be done proactively.

• Improve the confidence level of the testers during the final testing phase
• Partially eliminates the nonperformance related problems early.

During elaboration testing, if some of the functions do not work, they will be
reported early. System and tool configuration issues, wrong parameter settings,
correct working of the test bed, network issues, and test script related issues are
reported early so that corrective actions could be taken proactively.

• Conduct one-time testing of all business functions used for PT

• Verify the authenticity of the database.

Selective database queries through workload present the issues in database
authenticity early.

Performance Test Execution Phase 157

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Validate all protocols working correctly or not

• Verify whether the servers are configured properly and working correctly or not

• Verify the capability of handling the maximum number of virtual users.

This is important because if the stress test is planned for a set of concurrent users
and if the tool does not support that number of concurrent users, testers can plan
to tackle these situations in advance.

• Understand the complexity of the PT in advance.

PT is a complex activity, and testers may have to face many uncertainties during
the test runs. During the elaboration test, we know in advance various issues and
how to address these issues.

In addition to the above, elaboration testing also ensures the correctness of all functions
used for PT.

How to Conduct Elaboration Testing

Elaboration testing is conducted for one or two virtual users. The number of virtual users
depends on the complexity of the system under PT. If the objective of the elaboration test
is to examine the number of maximum concurrent users, then the workload must be simple.
The proper test plan for elaboration testing must be available, and the entire test team,
as in the final test, must be involved in the testing. Test runs must be conducted per the
test plan. It is a normal tendency that testers skip steps in elaboration testing with a
presumption that they are not important and the system will be tested anyway in the final
test run. Databases must be tuned properly. Tools must be configured, and the workload
must be used as in the final test run.

Self Satisfaction Test (SST)

Like the elaboration test, SST is a type of performance test which works on gut feeling.
Many times, the experience counts a lot compared to process orientation. Experienced
testers rightly identify the test cases and judge whether the test plan is ready for the final
test run or not. Experienced test tool experts examine whether the tool is properly
configured or not, what the parameters are that must be set as default values, and whether
the elaboration test must be conducted or not. If the elaboration test must be conducted,
how should one optimize the elaboration test to save effort and time? An experienced
domain specialist identifies the common defects and advises the team accordingly. Other
major areas where SST helps are:

158 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Test scripts must be reviewed by experienced testers. Normally, the peer tester
reviews the test script. This is not efficient. There are specialized test script
reviewers who specialize in specific tools and can review and use their gut feelings
and experience to find out whether the test script works or not.

• Conducting elaboration testing by experts who have sufficient experience in the
business domain and the testing process.

• In the case of using a testing environment, experts’ opinions always help in fine
tuning it.

• Before the beginning of the real PT, a business domain expert must be consulted
about overall functioning of the system. There are unattended issues in the
development phase, which will be scrutinized and audited before the final PT.

SST will also address the presentation style of various results to stakeholders. Experi-
enced testers will help to present the results to different departments. SST is mainly for
building more confidence and assessing the system for readiness for final PT.

Multiple Test Runs

When the test runs are conducted, the main question that often arises with everyone is
how many times PT must be conducted. What are test cycles and test runs? What is the
maximum number of test cycles that must be conducted in a typical test run? Multiple test
runs are not the same as regression testing used in functional testing. In regression
testing, the same test cases are tested for multiple versions of the application whereas
performance test runs are based on workloads. The results in PT are either satisfied or
not satisfied. Here there is no pass or fail like in functional testing. The result may be poor
response time or satisfied response time.
A test cycle consists of many test runs. A test cycle can have one or many test runs. A
test run consists of many workloads, which will be executed one by one. In a typical PT,
there must be at least one test cycle. More test cycles provide better results.
A completed test cycle does not mean one can assume that the PT is completed. Based
on test results, the test cycle may have to be altered, or a new test cycle may have to be
created. The new test cycle may be either modification of the existing test cycle or a newly
designed one. The design of a new test cycle is normally based on:

• Change in the existing workload based on the feedback from the first test run;

• The feedback could be that a specific transaction may not impact the performance
test results and requires a new type of transaction. It could be that the sequencing
of transactions may have to be modified;

Performance Test Execution Phase 159

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Various performance parameters must have been tuned after the previous test runs,
and hence there is a need for a new test cycle;

• Based on the test results, the environment must have changed, which may demand
a new test cycle;

• Sometimes, test duration might span to many days or even months. In such
situations, the test environment might undergo changes due to many reasons.
Accordingly, we have to introduce a new test cycle based on the environment;

• Change in functionality due to the feedback given during the testing.

Though modifications in business functions are not encouraged during PT, it may be
necessary with extreme conditions. In such situations, a new test cycle may have to be
introduced.
The new test cycle, once subjected to PT, again may undergo changes as discussed
above.
A typical test cycle for multiple workloads is given in Table 7.1. It represents a typical
test cycle with multiple test runs for each workload. Let W1, W2… be different workloads.
Four test runs are considered. To illustrate multiple runs and their impact, consider the
following cases with reference to Table 7.1.

Case 1: W1 failed in Test Run #2 of test cycle 1 whereas it has passed in test cycle 2.
However, W1 has passed two test runs in test cycle 1, and therefore we assume that the
workload W1 has passed. If the exit criteria states that all three runs must pass, then W1
must be run in the second cycle also. In test cycle 2, W1 passed the test run.

Case 2: The workload W2 in test cycle 1 has passed the first three test runs. There is no
need to consider Test Run #4. W2 is again considered in test cycle 2 to ensure
consistency.

Case 3: Workloads W3 and W4 are considered for all test runs because of more than one
failure in test cycle 1.

Case 4: The workload W5 in test cycle 1 failed in all test runs. This means the design of
the workload W5 is not correct. It has been modified and called W6 in test cycle 2. W6
passed the test runs and is considered for the final outputs.

Observe that all workloads are considered in both of the test cycles to maintain
consistency. Finally, it is the responsibility of the testers to ensure proper test runs,
which passed correctly and are considered for outputs.

160 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Managing the test execution cycle and test runs is a complex job, as it demands
maintenance of proper configurations for test cycles. Apart from this, there are many
challenges one has to face during test execution.

Challenges in Test Execution

Running performance tests is more complex than functional test runs. Investments on
functional testing are less when compared to that of PT. The regression test is most
appropriate for functional testing whereas the performance test provides results in which
the response time is adequate or inadequate for a preset number of virtual users. The
system under the performance test requires 100% bug-free functionality to avoid huge
loss on testing time and effort. If the system is not complete in all respects, the following
challenges may have to be addressed during performance test execution:

Functional Defects in the Application

Although the application is tested multiple times, defects in the application may still be
skipped which will report during PT. Hence, if the system is subjected to a performance

Workloads

Test Run #1

Test Run #2

Test Run #3

Test Run #4

W1

Pass

Fail

Pass

W2

Pass

Pass

Pass

W3

Fail

Fail

Pass

Pass

W4

Pass

Fail

Fail

Pass

W5

Fail

Fail

Fail

Fail

Table 7.1. Test cycle 1

Table 7.2. Test cycle 2 (after tuning and change in workload)

Workloads

Test Run #1

Test Run #2

Test Run #3

Test Run #4

W1

Pass

Pass

Pass

 W2

Pass

Pass

Pass

 W3

Fail

Fail

Pass

Pass
 W4

Pass

Fail

Fail

Pass
 W6

Pass

Pass

Fail

Performance Test Execution Phase 161

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

test where there is a functional defect and is not addressed properly, the result obtained
may not be correct. The defect may impact the performance test itself and the results also.
The impacts on the performance test are mainly cost and time. Highest attention must be
given to ensure that functional defects are removed before the application is subjected
to performance testing.

Problems in Database Connection Pooling

Connection pooling (see Khanine, 2004) problems occur by a “connection leak”, a
condition where the application does not close its database connections correctly and
consistently. Once the connection leak occurs, it remains open until the memory is
deallocated. Most of the time, one needs to know whether the application manages to
stay within the size of its connection pool or not. If the load does not change but the
number of connections constantly creeps even after the initial “warm up” period, the
application gets into a connection leak.

Managing Heap Size

During the execution of the application, there may be a possibility of memory shortage,
which slows down the execution. This is due to the deallocation process in memory
management, which consumes more time. This process affects the performance because
server side activity cannot proceed during memory deallocation.
If a large heap size is set, full deallocation becomes slower, but it occurs less frequently.
If the heap size is set in accordance with memory needs, full deallocation becomes faster
but occurs more frequently. The goal of tuning the heap size is to minimize the time spent
in garbage collection (deallocation) while maximizing the number of clients that can be
handled at a given time.
Make sure the heap size is not larger than the available free Random Access Memory
(RAM) on the system.
Use as large a heap size as possible without causing the system to “swap” pages to disk.
The amount of free RAM on the system depends on hardware configuration and the
memory requirements of running processes on the machine.
If the system is spending too much time collecting garbage (allocated “virtual” memory
is a greater size than RAM can handle), reduce the heap size. Typically, one should ensure
80% of the available RAM (not taken by the operating system or other processes) for the
application.

Session Tracking in Test Scripts

Session tracking can be accomplished in several ways, including the following common
methods:

162 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Storing unique session information in a client side cookie;

• Appending a unique session ID to the URL;

• Passing unique session information in a hidden field.

Any of these session tracking methods can be either static or dynamic. Static methods
assign the user a single session ID for the entire session, while dynamic methods assign
a new session ID with every activity the user performs. Test scripts should be written
to handle both static and dynamic sessions.
Since session tracking is critical for most nontrivial Web applications, selecting the right
session tracking mechanism is an important decision. Key factors to consider are
security, ease of use, and how well the technique melds with the overall system
architecture. It is necessary to carefully examine the advantages and disadvantages of
each method when building session tracking capability into a Web site. The following
are the guidelines observed for session tracking (Kim, 2004):

• Use cookies only for user identification.

• Do not store any data beside a user’s identification in cookies.

• Use the HTTP Session tracking mechanism if a servlet (not EJB) implementation is
used.

• Save any data that need to be persistent for an indefinite time period to a backend
database.

User authorization may be used for simple applications. URL rewriting and hidden form
field techniques should be avoided.

Issues in Creating a Test Datapool

A test datapool is a collection of values. It is used by test components as a source of
values for the execution of test cases. Datapools can be represented by utility parts or
be logically described by constraints. The following precautions must be followed while
creating a datapool:

• Ensure that the data in the datapool are correct.

• Ensure that in the datapool section of the script, the variables the tester wants to
be read from the datapool are included or excluded per script language (http://
www.softpanorama.org/scripting/index.shtml). This is a common mistake normally
occurring in the application.

Performance Test Execution Phase 163

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Ensure enough data or configure the system to consider duplicate data if it is a
potential issue. Remember always to check the request or requests before the first
identified failure to verify input data.

Test datapools always help to test the system in an automated environment.

Issues with Application Server

Once the application server is running, it should run until the end of the execution.
Sometimes, changes in security, application, and OS configuration cause the server to
need to be restarted. If two or more applications share an application server (see Alcott,
2003), this can lead to conflicting needs. In addition, all applications on the same
application server run under the same OS identity. This has security implications since
file permissions associated with the applications on an application server are owned by
that OS identity. In this case, the files associated with one application cannot be
protected from access by other applications which are running on the same application
server. This is because they share the same operating system privileges. If this is not
acceptable, separate application servers for each application must be provided in order
to provide security protection.

Network May Choke Due to Wrong Configuration

The most commonly encountered host configuration errors to date have been the
enabling of the User Datagram Protocol (UDP) services (UDP ports 7, 13, 19, and 37 which
correspond to echo, daytime, chargen, and time) (Netcraft Ltd., 2004) especially on
routers. Even otherwise well protected networks often have this vulnerability like Cisco
routers. The impact is that someone who takes a disliking to a site can use up its
bandwidth by sending a packet on a specific port on their router with the source port and
source address set to the echo port on someone else’s router. This will likely cause both
routers to loop sending packets to each other and use up a substantial portion of the sites
available bandwidth.

Guidelines for Test Execution

Performance test execution is a complex job. Experience and gut feeling play a major role
during test execution. Performance test execution is not like functional testing execution.
In functional test execution, setting pass/fail criteria is easy. Defects are easy to detect
and analyze. In performance testing execution, setting performance parameters and
monitoring are complex jobs. Here setting pass/fail criteria is difficult because the defect
is the bottleneck for better performance and identifying the bottleneck takes a long time.

164 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Complete test execution must be completed before attempting to identify the bottleneck.
Test execution is completed only when all exit criteria are passed. However, a meticu-
lously planned test execution yields more returns than an unplanned test execution. The
following guidelines provide direction to plan a proper test execution:

• Define explicitly the testing team, roles and responsibilities starting from planning
to execution phase.

• Estimate test execution effort before the beginning of the test.

• Configure the tools properly and check version compatibility.

• Check all additional tools used in testing for version and compatibility.

• Resources from all the different groups (such as network specialist, database
specialist, domain specialist, etc.) must be synchronized.

• Run PT more than once with different levels of background activity (noise) to get
the true picture.

• Conduct PT with production sized databases for a real life simulation.

• Do not conduct PT in a development environment which leads to inaccurate results.

• Monitor performance counters continuously and take action suitably.

• Monitor test duration continuously and take action suitably.

• Avoid external interference during test execution.

• Monitor the test execution by probing the client to check whether the system under
test behaves properly or not.

• Log the results with timings for further analysis.

The above guidelines provide direction for a tester to plan and conduct the test properly.
However, each organization may adopt their own methods to test the system effectively.
Finally, though test execution is a complex activity, a methodical approach simplifies the
job more comprehensively.

Summary

Test execution is an important activity in the PT life cycle and needs the same attention
as that of other activities. Normally, testers do not plan the activities of test execution
because this results in poor utilization of resources and time. To avoid such problems,
it is suggested that meticulous planning is required during test execution.

Performance Test Execution Phase 165

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For any test to be successful, entry and exit criteria must be defined properly. These
criteria must be followed strictly during execution. Next, an elaboration test must be
conducted to find in advance the various issues that may creep in during the final test
execution. The Elaboration test provides indepth information about the complexity of the
system under test. Based on the complexity of the system, one can plan the test execution
properly to optimize resources and time.
The self satisfaction test provides the rich experience of professionals who have
addressed similar projects previously. Their experience on planning, scheduling tests,
and analyzing results always helps to complete the performance testing effectively. It
also helps in assessing the possible bottlenecks during execution.
PT must be carried out multiple times as one test may not give proper results. To run
multiple tests, proper test execution guidelines must be followed. Finally, meticulous
planning and skilled resources ensure the success of the performance tests.

References

A slightly skeptical view on scripting languages. (2004). Retrieved November 22, 2004,
from http://www.softpanorama.org/Scripting/index.shtml

Alcott, T. (2003). One or many applications per application server? Retrieved June 19,
2003, from http://www-106.ibm.com/developerworks/Websphere/techjournal/
0211_alcott/alcott.html

From inception to elaboration. (2003). The Metropolitan State College of Denver.
Retrieved August 11, 2003, from http://clem.mscd.edu/~hasze/csi3280/notes/
Chapter8.html

Incremental testing. (2004). Retrieved June 12, 2004, from http://homepages.nildram.co.uk/
~worrelli/cont343.htm

Joung, P. (2004). General network performance testing methodology. Retrieved Septem-
ber 21, 2004, from http://www.spirentcom.com/documents/1065.pdf

Khanine, D. (2004). Tuning up ADO.NET connection pooling in ASP.NET applications.
Retrieved May 6, 2004, from http://www.15seconds.com/issue/040830.htm

Kim, S. (2004). Safe session tracking. Retrieved November 2, 2004, from http://
www.sdmagazine.com/documents/s=818/sdm0103h/

Netcraft Ltd. (2004). UDP denial of services. Retrieved November 21, 2004, from http:/
/www.netcraft.com/presentations/interop/dos.html

Test execution. (2004). Retrieved June 17, 2004, from http://www.donald-firesmith.com/
Components/WorkUnits/Tasks/Testing/TestExecution.html

166 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Additional Sources

Adirake, P. (2004, August). Research on software configuration management in
middleware systems. Retrieved January 17, 2005, from http://www.jaist.ac.jp/
library/thesis/is-master-2005/paper/p-adirak/abstract.pdf

Applying eXtreme Programming Techniques to Automated Testing. (2004). Retrieved
January 17, 2005, from http://www.bjss.co.uk/press/BJSS_Applying_XP_
To_Automated_Testing.pdf

Department of Defense (2003, November). Testing guide. Retrieved November 22, 2004,
from http://www.eitoolkit.com/tools/implementation/build/testing_guide.doc

Mar, W. (2004). Performance testing and planning. Retrieved November 21, 2004, from
http://www.wilsonmar.com/perftest.htm

Marick, B. (2004). Classic testing mistakes. Retrieved June 19, 2004, from http://
www.testing.com/writings/classic/mistakes.pdf

Pauli, K. (2003). Pattern your way to automated regression testing. Retrieved January
7, 2003, from http://www.javaworld.com/javaworld/jw-09-2001/jw-0921-test.html

Test guidelines. (n.d.). Retrieved January 17, 2005, from http://www.w3.org/QA/WG/
2003/10/TestGL-20031020.html

Post Test Execution Phase 167

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 8

Post Test
Execution Phase

The phase pertaining to post test execution comprises not only multifaceted activities
but is also a tedious task. It is not uncommon to find many testers who normally
underestimate the complexity involved in this phase and face an uphill task later, while
fine tuning the system for optimum performance. This chapter discusses points arising
in the post execution phase by considering:

• Specific test execution scenarios through logs;

• Method/strategy for analysis;

• Results with standard benchmarks;

• Areas for improvement.

Apart from these, the chapter also provides guidelines for performance tuning with a view
it will be of help to practitioners who are keen on execution of tests and analyses of
results.
The contemporary conventional methodologies overlook the importance of the post
execution phase. In the esteemed view of the author, the subject of post execution is as
important a phase as any other and demands a skilled person to analyze the results.

168 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Objectives of the Analysis Phase

The importance of the analysis phase is to ensure that the basic criteria of test executions
are met. Some of the objectives of the analysis phase are to:

• Check whether all test cycles are executed and conforming according to the test
plan.

• Identify script level problems and ensure the script is not a bottleneck for smooth
running of the tests.

• Know request/response time of a specific user for a specific query in a normal load.

• Interpret Web server logs, application server logs, and database logs for better
understanding of the test runs.

• Identify resource utilization and bottlenecks in resources, if any.

• Isolate excess queue lengths at the server end to assess bottlenecks early.

• Diagnose network traffic, its impact on performance, and find solutions, if required.

• Address code level optimization based on analysis at the end.

• Check whether performance acceptance criteria are met or not by the system.

Setting objectives for the analysis gives proper direction to the test analyst to plan and
provide correct solutions on time. The above said objectives could be modified based
on the project requirements.

Analysis Process

A well laid out process to validate test results can correctly flush out performance
bottlenecks. A well organized analysis helps in justifying the test results and the areas
for future performance enhancements. The main outputs of the execution phase are test
logs and reports. These are analyzed to isolate bottlenecks based on the strategy and
guidelines as shown in Figure 8.1. Test logs play a major role in the analysis. All the test
logs must be captured during the execution. Having analyzed test logs, proper strategy
must be defined to analyze test results to find bottlenecks and provide solutions.
Following proper guidelines helps to analyze faster and arrive at a solution. Various test
reports may be required for analysis. Most of the performance test tools provide a large
number of test result data. These result data need to be presented properly for better
analysis.

Post Test Execution Phase 169

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Analyze Test Logs

Test logs are the basic outputs of the execution phase. The test log records all the events
during a test script generation. A typical test log is shown in Figure 8.2.
The test log records every virtual test action, unless it is specially turned off by the user.
Test logs have record and playback details, complete information about the test cycle,
test runs, and result status of all the commands. From this log, one can infer whether test
runs are properly executed or not. This ensures the successful completion of a test run.
Further data of the test log can be filtered, and results are analyzed using the verification
point comparator to determine the reason for test failure at a verification point. Once the
test defect is submitted, it will be identified by a defect number for further analysis.

Figure 8.1. Test analysis process

170 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Contents of Test Log

Contents of a typical test log include the details of the log, execution results, log event,
configuration, and virtual associated data as shown in Table 8.0. The test log provides
the summary of execution results, log event, configuration details, and result related
information (Table 8.0).

Need for Test Logs

Test logs are necessary as they not only confirm the correctness of the executed test
scripts but also provide an insight into the script failures. The presence of log files helps
in isolating the first level of bottlenecks. This is particularly true in the case of
reengineering projects where PT is done, but the system is not performing satisfactorily.
In such cases, use of test log helps in analyzing the problems. Similarly, in situations
wherein the client is requesting guidelines to tune the performance affected areas, the
test log reveals the areas affecting performance. The test log also gives a fair idea about
the methodology of the test as well as the comparative analysis of the results with respect
to the corresponding previous test results. This in turn assists gaining knowledge about
the limitations of the previous PT.

Use of Test Logs

Test logs are useful to:

• View results:

Figure 8.2. A sample test log

Defect number

Post Test Execution Phase 171

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

� Filter the data to view only the information needed;

� Sort the events by results or time or failure reasons to make it easy for analysis.

• Submit a defect report for failed log event which will help to correct it in the next
test run.

• Preview or print data displayed in the active test log.

• View test logs in multiple windows for better analysis (depends on the features of
the tool).

• Diagnose a failure scenario in case of an endurance test and to check the status
of the system at the time of failure.

Table 8.0. Contents of a typical test log and details

Contents of Typical Test Log Description
Log summary • Test suite name

• Build, log folder
• Number of iterations
• Date and time of start and end of testing

Summary of execution results • Type of log event
• Result status
• Date and time of event occurred
• Failure reason
• Computer name
• Associated defects

Summary of log event • Type of event
• Date and time of event started
• Date and time of event ended
• Result status of event
• If failed, failure reason, failure description
• Name &line number of failed script
• Script verification point name and type
• Baseline and actual results file
• Additional output defects and information

Summary of configuration • Memory size and usage
• Type, service pack, and version of

operating system
• Type and number of processor

Virtual tester associated data
(if the result is passed)

• Type, status, and protocol of connection
• Name of URL and port number
• Whether the event is a request or

response
• Computer name and configuration

compatibility
• Host name and cookie
• Expected and actual HTTP return code
• Name and other details of server
• Content type and trans fer encoding
• Date & time of failure
• Cookie type if any and status of

connection

172 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One precaution to be taken note of is to analyze the test logs before starting to look at
the test results.

Verifying Pass or Fail Criteria

Verifying the test log for pass or fail criteria reflects the healthiness of test runs, as it
builds confidence in test runs and proves useful for future runs. Further, test logs are
the starting point for analyzing the correctness of testing. The log files give insight into
the real traffic that has occurred or was expected to occur after deployment of software.
From the test logs, one can analyze:

• The start and end of test runs;

• Hyper Text Transfer Protocols (HTTP) return codes;

• File contents and size;

• Errors on HTML pages;

• Sequence of command IDs;

• The effects of background activities.

It is essential to analyze the log for such symptoms. Instances have come to notice
wherein logs have given false negative results. For instance, the mismatch in HTTP return
code may give the result as failed commands. In a record session, the loading of a Web
page may be from the Web server, so the HTTP return code is 200 (okay, loaded from
server) (see 10 Status code definition, 2004). However, during playback, the loading of
the same page may be from cache, and due to this factor, the HTTP code may be 304 (not
modified, loaded from cache). The log, due to the mismatch in HTTP return code may
exhibit a fail status even though the correct page is loaded in the system. Thus, it is
necessary to analyze a test log for such mistakes and reexecute the scripts by adjusting
the HTTP return codes.
Another example worth noting, in this regard, is about the case wherein the loading of
page contents is proper during record, and the HTTP return code received is also 200
(HTML page with error message), but playback may generate unexpected contents like
“Server is down for 4 hours due to maintenance” in spite of the HTTP return code being
200. These sorts of problems need analysis during the post execution phase.
The mismatching file sizes may lead to a possibility of observing the wrong result status.
The number of bytes downloaded during recording and the number of bytes downloaded
during playback may not match for dynamic HTML pages since the dynamic data can
change the file size during playback. Allowing partial responses may minimize the
occurrence of such errors.

Post Test Execution Phase 173

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Another case of a false positive in the log may arise when some Web servers return an
HTML page giving details as to why the page requested cannot be serviced. However,
the HTTP return code would be 200 (HTML page with error message) in both record and
playback sessions instead of 404 (page not found) or 403, giving rise to a pass in the test
log.
A thorough analyses of logs can isolate some of the script failure problems such as
generation of split scripts wherein ensuring the sequence of command IDs is essential
to validate the correct navigation of the virtual user. The presence of a data correlation
issue does not make the script pass, even with a single virtual user.
The background activities could make the difference between the record and playback
environment, which can lead to wrong results. For instance, if a Word file is created while
recoding the script, the same is not created in the playback environment since the file
already exists. This can make the log show failure, which has no relation with the
application problems.
Though it is true that analysis of some of the data in the log file is possible for their
correctness, the bulk of the data in the log would be in assembly language, warranting
further processing for converting them into readable format. However, this is not an
insurmountable task, as there are quite a number of log analyzers available in the market
to serve this purpose. However, the test team should carefully choose an analyzer that
best suits their requirement as well as budget.

Test Reports

Presentation of results is the most critical phase of PT. Automated tools generate several
results based on different parameters. Results could be presented in many ways. The
commonly accepted method is to present the results in terms of tables and graphs.
However, this depends on the parameters chosen for the presentation and also the target
audience. Hence, it is essential to discuss these factors before proceeding with the
methodology of presentation.

Target Audience for the Results

Presentation of results depends on the target audience and a number of parameters. The
target audience for the performance test results could be senior management, business
managers, performance analysts, or other members of the organization and the team.
The number of parameters to be considered for presentation depends on the interests
of the target audience. Performance analysts and other members of the test team always
expect a detailed report of the results. Since they are responsible for justifying system
performance, they want to make sure that the system is performing according to the
specifications. They are interested in knowing of the potential bottlenecks. The results

174 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

presented to them should include all possible parameters to ensure that all bottlenecks
are fixed.
Business managers and senior management would be interested in knowing the end
results. They are neither interested in knowing about the identification of bottlenecks
nor about the method to fix such bottlenecks. In fact, they are interested in confirming
whether the results presented to them validate the acceptance criteria. So the number of
parameters considered for presenting results would be comparatively less. If a post-
launch project is under test, they may be interested in knowing what made the system
go down. They may demand the comparison of results before testing and the results after
tuning the system for performance improvement. Performance parameters compared to
other competitors might also be required.

Tables and Graphs

Presentation of test results can be in the form of tables and graphs. This format is ideal
since, with very little explanation, even stakeholders with little technical background can
understand the results. Tables are the most basic form of presentation. These are used
when a large amount of parameters has to be compared and organized. Each column in
the table represents different parameters, and the columns (parameters) can be inserted
depending on the requirements of the target audience.
The graphs can be either simple or complicated. A result in the form of graphs gives a
visual evaluation of the test related data. This type of presentation can greatly reduce
the time in searching for bottlenecks, which need experience and skill to analyze. By
adjusting the parameters, graphs can be modified to flush out the area of the problem.
Several permutations and combinations of the parameters help in observing the multi-
faceted nature of the results.

Bar Charts

Results can be represented in many ways. Bar chart representation is an effective way
of understanding and analyzing results. To illustrate, results obtained for a single user,
for 100 users, or for 1,000 users can be captured separately and represented in bar charts.
This helps in analyzing the behavior of the system.

Scatter Charts

Scatter charts give an idea about the latency between loading a static page and a dynamic
page. To illustrate, in the banking system, the main page is a static page whereas other
pages such as facilitating deposit and withdrawing transactions are dynamic pages. The
difference in time taken to load a main page and to load other pages can be identified.
The charts are overlaid with resource measurements to determine the bottlenecks
occurring at the architecture level. The utilization of memory and CPU at various points

Post Test Execution Phase 175

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the system architecture are separately captured and examined for the presence of
bottlenecks. Excess queue length at various servers is also identified by setting the
resource parameter.
Superimposing the various graphs gives an idea on the location of bottlenecks. Table
8.1 gives a summary of the different types of sample test reports. Each report represents
a different type of information, represented in different ways.
These reports are sample ones and generated using the Rational Test Suite; for more
information see Rational TestManager User’s guide Version: 2002.05.00. Different tools
provide their own format to present the results. These reports give an idea for testers on
how to present various reports for different stakeholders.

Performance Reports

Performance reports, as shown in Figure 8.3, are the foundation of reporting performance
related results in TestManager. They can show whether an application meets the criteria
in the test plan or test case. As an example, a performance report can tell you whether
95% of virtual testers received responses from the test system in eight seconds or less,
or what percentage of virtual testers did not receive responses from the system in that
time.
Performance reports can be used to display the response times recorded during the suite
run for selected commands. Performance reports also provide the mean, standard
deviation, and percentiles for response times.
Performance reports use the same input data as response vs. time reports, and they sort
and filter data accordingly. However, performance reports group the responses with the
same command ID.
Performance reports give the following information:

Table 8.1. Types of sample test reports

Reports Outcome
Performance Report (Figure 8.3) Response times, Standard Deviation, Mean and

Percentiles for each command
Compare Performance Report Compare the response times of multiple runs with

increasing number of concurrent users
Response vs Time (Figure 8.4) Individual response times and whether the

response is passed or failed
Command Status Report (Figure 8.5) Quick summary of which commands passed or

failed
Command Usage Report (Figure 8.6) Cumulative response time and summary statistics,

as well as throughput info for emulation
commands

Command Trace Report (Figure 8.7) Examine failures in detail from the raw data
obtained from the test logs

176 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Cmd ID – The command ID associated with the response. A typical command is the
scenario captured in a workload.

• NUM – The number of responses for each command ID (the number of times each
command ID appeared in the test log). In this example, each command ID has 10
responses.

• MEAN – The arithmetic mean of the response times of all commands and responses
for each command ID.

• STD DEV – The standard deviation of the response times of all commands and
responses for each command ID.

• MIN – The minimum response time for each command ID. In this example, the
minimum response times range from 0.00 second (meaning that the command took
less than a hundredth of a second to complete) to 1.69 seconds.

• 50th, 70th, 80th, 90th, 95th – The percentiles of the response times for each
command ID.

The percentiles compare the response times of each command ID. As an example, the 50th
column shows the 50th percentile of time for each command ID. This means that half of
the commands had a shorter response time and half had a longer response time.

Figure 8.3. Performance report

Post Test Execution Phase 177

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this example, the 50th percentile of Calcula~7.002 is 0.69. This means that 50% of the
response times are less than 0.69 seconds. The 95th percentile of Calcula~7.002 is 0.92.
This means that 95% of the response times are less than 0.92 seconds.

• MAX – The maximum response time of all responses for each command ID. In this
example, they range from 0.01 second to 3.43 seconds. The total response time is
listed in the table but is not displayed in the graph because, to a casual onlooker,
a graph that includes this total might appear skewed. However, one can display the
total response time.

Compare Performance Reports

The compare performance report compares response times measured by Performance
reports. After generating several performance reports, use a compare performance report
to compare the values of a specific field in each of those reports. One can also compare
reports that show different numbers of virtual testers or compare reports from runs on
different system configurations. Compare performance reports allow one to see how
benchmark information differs for various workloads. As an example, one can run the
same test with increasing workloads and then compare the performance reports of the
test runs to see how performance changes under an ever increasing workload. When the
tester runs a compare performance report, the tester should specify the base performance
report and up to six other performance reports.

Response vs. Time Reports

Response vs. time reports, shown in Figure 8.4, display individual response times.
Response vs. time reports use the same input data as performance reports and sort and
filter data similarly. However, response vs. time reports show each command ID individu-
ally whereas performance reports group responses with the same command ID. Response
vs. time reports are useful to check the trend in the response time. The response vs. time
report shows the response time vs. the elapsed time of the suite run.
The response time should be clustered around one point rather than getting progres-
sively longer or shorter. If the trend changes, it has to be checked that the tester has
excluded logon and setup time in the results. The worst case is that one might need to
change the test design. If the response time is relatively flat except for one or two spikes,
one might want to investigate the cause of the spikes. Filtering the data so that they
contains only one command ID and then graphing that command ID as a histogram.
The graph shown in Figure 8.4 plots each virtual tester vs. the response time in
milliseconds. The graph contains many short lines that resemble dots. The lines indicate
that the response times for all the virtual testers are quite short. The longer a line is on
the X axis, the longer the response time because the X axis represents the response time.

178 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Command Status Reports

The command status report, shown in Figure 8.5, provides the total number of times a
command has run, how many times the command has passed, and how many times it has
failed. If the response of one received is the same or is expected, TestManager considers
the command has passed; otherwise, TestManager considers it has failed.
Command status reports reflect the overall health of a test suite run. They are similar to
performance reports, but they focus on the number of commands run in the suite.
Command status reports are useful for debugging because one can see which commands
fail repeatedly and then examine the related test script.
The graph plots the command number against the number of times the test. Command
status reports contain the following information:

• Cmd ID – The command ID associated with the response.

• NUM – The number of responses corresponding to each command ID. This number
is the sum of the numbers in the Passed and Failed columns.

• Passed – The number of passed responses for each command ID (that is, those that
did not time out).

• Failed – The number of failed responses for each command ID that timed out (that
is, the expected response was not received).

Figure 8.4. Response vs. time

Post Test Execution Phase 179

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• % Passed – The percentage of responses that passed for that command ID.

• % Failed – The percentage of responses that failed for that command ID.

Command Usage Reports

Command usage reports, shown in Figure 8.6, display data on all emulation commands
and responses. The report describes throughput and virtual tester characteristics during
the suite run. The summary information in the command usage report gives a high-level
view of the division of activity in a test run. The cumulative time spent by virtual testers
executing commands, thinking, or waiting for a response can tell quickly where the
bottlenecks are. The command usage report can also provide summary information for
protocols.
Command usage reports contain a section on cumulative statistics and a section on
summary statistics.

Cumulative Statistics

• Active Time – It represents the sum of the active time of all virtual testers. The active
time of a virtual tester is the time that the virtual tester spent thinking (including

Figure 8.5. Command status report

180 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

delays after the virtual tester’s first recorded command), executing commands, and
waiting for responses.

• Inactive Time – The sum of the inactive time of all virtual testers and test scripts.
The inactive time of a virtual tester is the time before the virtual tester’s first
emulation command (including the overhead time needed to set up and initialize the
run), and possibly interscript delay (the time between the last emulation command
of the previous test script and the beginning of the current test script).

• Passed Commands – The total number of passed send commands, that is, com-
mands that send virtual tester input to the server.

• Failed Commands – The total number of failed send commands, that is, commands
that send virtual tester input to the server.

• Passed Responses – The total number of responses to send commands that were
matched by passing receive commands. This is not the same as the total number
of expected receive commands because a response may be matched by an arbitrary
number of receive commands. A response is considered expected if all receive
commands used to match it have an expected status.

• Failed Responses – The total number of responses that were matched by failing
receive commands. This is not the same as the total number of unexpected receive
commands because a response may be received by an arbitrary number of receive
commands. A response is considered unexpected if any receive commands used
to match it have an unexpected status because send commands and responses in
a test script do not necessarily have a one-to-one correspondence. To illustrate,
an HTTP script may issue one send command. The total of passed commands plus
failed commands often does not equal the total of passed responses plus failed

Figure 8.6. Command usage report

Post Test Execution Phase 181

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

responses (http_request) and receive multiple responses to the send
(http_header_recv and one or more http_nrecv commands).

• Average Throughput – Four measurements of average throughput are provided:
passed command throughput, failed command throughput, passed response
throughput, and failed response throughput. This represents the throughput of an
average virtual tester.

• Time Spent Waiting – The total time spent waiting for responses, given both in
seconds and as a percentage of active time. The time spent waiting is the elapsed
time from when the send command is submitted to the server until the server
receives the complete response. The time that an http_request spends waiting for
a connection to be established is counted as time spent waiting.

• Time Executing Commands – The total time spent in executing commands on the
agent computer. This measurement is provided both in seconds and as a percent-
age of active time. The time spent executing VU emulation commands that access
an SQL server is defined as the elapsed time from when the SQL statements are
submitted to the server until these statements have completed.

• Time Spent Thinking – The total time spent thinking, both in seconds and as a
percentage of active time. The time spent thinking for a given command is the
elapsed time from the end of the preceding command until the current command is
submitted to the server. This definition of think time corresponds to that used
during the run only if the Test Script Services (TSS) environment variable Think_def
in the test script has the default LR (last received), which assumes that think time
starts at the last received data time stamp of the previous response. If any VU
emulation commands are executed that access an SQL server, the command usage
report includes:

• Rows Received – Number of rows received by all reported sqlnrecv commands.

• Received Rows/Sec – Average number of rows received per second. Derived by
dividing the number of rows received by the active time.

• Average Rows/Response – Average number of rows in the passed and failed
responses. Derived by dividing the number of rows received by the number of
passed and failed responses.

• Average Think Time – Average think time in seconds for sqlexec and sqlprepare
statements only.

• Avg Execution Time – Average time in milliseconds to execute an sqlexec or DCOM
method call command. Derived by dividing the time spent on sqlexec commands by
the number of sqlexec commands.

• Avg Preparation Time – Average time in milliseconds to execute an sqlprepare
command. Derived by dividing the time spent on sqlprepare commands by the
number of sqlprepare commands.

If any HTTP emulation commands are executed that access a Web server, the command
usage report includes:

182 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Passed HTTP Connections – Number of successful HTTP connections established
by all reported http_request commands.

• Failed HTTP Connections – Number of HTTP connection attempts that failed to
establish a connection for all reported http_request commands.

• HTTP Sent Kbytes – Kilobytes of data sent by reported http_request commands.

• HTTP Received Kbytes – Kilobytes of data received by reported http_nrecv and
http_recv commands.

• HTTP Sent Kbytes/Sec – Kilobytes of data sent per second. Derived by dividing
the kilobytes of data sent by all recorded http_request commands by the active
time.

• HTTP Recv Kbytes/Sec – Kilobytes of data received per second. Derived by
dividing the kilobytes of data received by all recorded http_nrecv and http_recv
commands by the active time.

Summary Statistics

• Duration of Run – Elapsed time from the beginning to the end of the run. The
beginning of the run is the time of the first emulation activity among all virtual
testers and test scripts, not just the ones filtered for this report. Similarly, the end
of the run is the time of the last emulation activity among all virtual testers and test
scripts. The elapsed time does not include the process time.

• Total Throughput – Four measurements of total throughput are provided: passed
command throughput, failed command throughput, passed response throughput,
and failed response throughput. The total throughput of passed commands is
obtained by dividing the number of passed commands by the run’s duration, with
the appropriate conversion of seconds into minutes. Thus, it represents the total
passed command throughput by all selected virtual testers at the applied workload,
as opposed to the throughput of the average virtual tester. The total failed
command and the total passed and failed response throughputs are calculated
analogously. These throughput measurements, as well as the test script through-
put, depend upon the virtual tester and test script selections. The summary
throughput measurements are most meaningful when all virtual testers and test
scripts are selected. To illustrate, if only three virtual testers from a ten-virtual-
tester run are selected, the throughput does not represent the server throughput
at a ten-virtual-tester workload, but rather the throughput of three selected virtual
testers as part of a ten-virtual-tester workload.

• Number of Completed Scripts – Test scripts are considered complete if all
associated activities are completed before the run ends.

• Number of Uncompleted Scripts – Number of test scripts that have not finished
executing when a run is halted. Test scripts can be incomplete if the run is halted
or the suite is set to terminate after a certain number of virtual testers or test scripts.

Post Test Execution Phase 183

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Average Number of Scripts Completed per Virtual Tester – Calculated by dividing
the number of completed test scripts by the number of virtual testers.

• Average Script Duration for Completed Scripts – Average elapsed time of a
completed test script. Calculated by dividing the cumulative active time of all virtual
testers and test scripts by the number of completed test scripts.

• Script Throughput for Completed Scripts – Number of test scripts per hour
completed by the server during the run. Calculated by dividing the number of
completed test scripts by the duration of the run, with the conversion of seconds
into hours. This value changes if you have filtered virtual testers and test scripts.

If any timers are executed, the command usage report includes:

• Passed Testcase Commands – Number of testcase commands that report a passed
status.

• Failed Testcase Commands – Number of testcase commands that report a failed
status.

Command Trace Reports

Command trace reports, shown in Figure 8.7, list the activity of a run and enable a detailed
examination. Command trace reports list the activity of a run and enable a detailed
examination of unusual or unexpected events. This report formats raw data from the suite
run without performing statistical analysis.
Command trace reports display the actual timestamps from the emulation, the counts of
data sent and received, and the TSS environment variable settings (if recorded).
Command trace reports contain the following information:

• Total Number of Virtual Testers Emulated – The number of virtual testers in the
suite run.

• Number of Virtual Testers in Report – The number of virtual testers that appear.
If filtered virtual testers are present, this number is different from the total number
of virtual testers emulated.

• Time of Suite Run – The time that the suite started to run.

• Time of Day Reference for Timestamps – The time the suite started to run, given
as the number of seconds since 00:00:00 GMT, January 1, 1970. To convert these
timestamps into time-of-date format, use the UNIX ctime(3) library routine or the
Windows localtime() library function.

184 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For each virtual tester, the command trace report lists the following information:

A line showing the virtual tester that is being reported. In this example, the tester is
Data_Entry[1] or the first virtual tester in the Data Entry group.
Default TSS environment variable values and environment variable changes taking place
on each virtual tester during playback. The changes correspond to environment control
commands executed during the suite run.
The command trace report lists the following information:

A test script header, which lists the virtual tester, the release, and the name of the test
script.

• Beginning Timestamp – The time, in milliseconds (since the beginning of the suite
run), at the start of execution of each test script.

• Login Timestamp – Recorded for each virtual tester. This corresponds to the time
when the virtual tester’s logon status changed to ON.

Emulation commands executed during the suite run. A three-line heading appears if any
emulation commands are included.

Figure 8.7. Command trace report

Post Test Execution Phase 185

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The command trace report gives the following information for each emulation command:

• Src Line – The line number of the command in the source file, if available (Java and
Visual Basic test scripts do not make this value available; therefore, the command
trace report displays N/A).

• Cmd Count – A running tally of the number of emulation commands executed in a
test script. This tally includes http_request commands that are read from the cache.
The report shows 0 for SQABasic timers.

• Clnt – The value of the Server_connection environment variable associated with
each SQL, HTTP, or socket emulation command. If your test script has multiple
connections, this value shows which receive command corresponds to which
request. The command trace report leaves this column blank for other commands.

• Command – The emulation command that was executed. If an HTTP response was
read from cache (rather than from the network), the report shows http_nrecv(c)
(rather than http_nrecv).

• Command ID – The command ID associated with the command.

• Count – These values depend on the type of emulation command. This is the
number of bytes of data written to the test log. For SQL emulation commands, this
is the number of rows of data written to the test log.

• First Timestamp – The time, in milliseconds, the command started executing,
relative to the beginning of the suite run.

• Last Timestamp – The time, in milliseconds, the command stopped executing,
relative to the beginning of the suite run.

• Stat – Whether the emulation command passed or failed.

• Ending Timestamp – The time, in milliseconds, the test script stopped executing,
relative to the beginning of the suite run. This value is reported for each test script.
The duration of the test script is also reported.

• Logout Timestamp – The time, in milliseconds, the virtual tester’s logon status
changed from ON to OFF.

Areas of Improvement

In many Web sites, symptoms like No response, Response is low, Download time is high,
Availability of Web site is not guaranteed, and so forth are common. These symptoms
indicate problems relating to performance. However, in conventional methodologies,
these symptoms are taken as those related with database issues. The correctness of this
assumption is always open to question. It is likely that a bottleneck may reside at different
locations such as the Web server, application server, and security settings and not

186 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

necessarily at the database. Therefore, without identifying the bottleneck, fine tuning
the database may be an exercise in futility in terms of time and resources. Identifying an
area of improvement goes hand in hand with performance indicators. In order to do that,
it is necessary to define a set of indicators, which provide a good measure of PT and thus
the performance behavior of the Web site. One can categorize these indicators from the
client and server sides. Though these indicators provide basic information about the
performance, they do not provide a true picture of the real environment. Some of the
indicators are:

Processor

The processor is an important resource, which affects the performance of the application.
It is necessary to measure the amount of time spent in processing the threads by one or
many CPUs. If the usage is consistently above 90% for a processor, it indicates that the
test is too intense for the hardware. This indicator is applicable only when the system
has multiple processors.

Physical Disk

Since the disk is a slow device with more storage capacity, the parameters, like latency
and elapsed time, provide information regarding improving performance. Performance of
the system depends on disk queue length also. It shows the number of outstanding
requests on the disk. Sustained queue length indicates a disk or memory problem.

Memory

Memory in any computer system is an integral part of the hardware system. More memory
will speed up the I/O process during execution but burdens the cost parameter. All data
and instructions to be executed must be available on the memory comprised on pages.
If more pages are available, the faster the execution will be. The observation on number
of page faults will give information related to the performance. It is worth considering
how many pages are being moved to and from the disk to satisfy virtual memory
requirements.

Network Traffic

It is not possible to directly analyze the network traffic on the Internet, as it depends on
the bandwidth, type of network connection, and other overheads. However, it is possible
to find out the time taken for number of bytes reaching the client from the server. The
bandwidth problem will also affect the performance as the type of connections vary from
client to client.

Post Test Execution Phase 187

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance indicators provide the basis for performance tuning, and in each category,
different types of counters can be set. The values provided by these counters will greatly
help in analyzing performance.

Architecture Design and Coding

Improper architecture can cause a heavy penalty for performance like improper design
of the database, for example, improper indexing of tables normalization factors. When
looking into an object oriented connection, memory management should be considered
for maximum extent; for instance, importance should be given to the factors like garbage
collection (GC), that is automatic memory management database connectivity drivers,
and their usage should be studied. As an example, there are four types of drivers in Java
Database Connections (JDBC) to interface Java applets or Java applications with a
database. Choose the best of the four methods as per the application.

Tuning Process

Performance tuning is primarily a matter of resource management and correcting resource
parameter settings. If the bottleneck observed is not present at the resource level, tuning
should be proceeded toward workload design. It is essential to tune for correct workload
or else performance will be suboptimum for a higher workload. If the validation of the
workload against the user profile is free of bottlenecks, the next level of observation
should be toward code. A performance tuning process deals with several stages, as
shown in Figure 8.8.

Start Tuning Process

Before commencing the process of start tuning (Figure 8.8), it is worthwhile to bear in
mind the goals of performance. As a next step, it is necessary to have the performance
reports and correctly analyze them. A difference between the expected results as per
goals and the actual results as per the reports forms the baseline for tuning. Before start
tuning, one should know the reasons for achieving the performance goals.

Identify the Bottleneck

Before proceeding to know the type of bottlenecks (Figure 8.8) observed during PT of
Web applications, it is essential to know the meaning of the term bottleneck. In a typical
interpretation, a bottleneck is a narrowing that slows the flow through a channel. In the
context of Web architecture, flow refers to the dataflow, and channel refers to the network

188 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

pipe. A bottleneck is a hindrance which slows down or impedes the flow of data due to
an obstruction. Bottlenecks are the constriction or squeeze and are the symptoms of
performance problems. Often there is confusion between bottlenecks and the causes of
bottlenecks.

Bottlenecks

Bottlenecks are the performance problems observed during system operation. The
presence of bottlenecks makes system unacceptable. They can be observed by any
person who operates the system, that is, the end user or Webmaster. Bottlenecks could
be observed at any stage of system operation.

Causes of Bottlenecks

The presence of a bottleneck is an indication that the system is not efficient and
unsatisfactory to the users of the system. There are a number of bottlenecks that can
occur during PT of Web applications. Some of the bottlenecks are visible to both end user
and Webmaster; some of the bottlenecks are visible to Webmasters only, for example,
resource intensive bottlenecks.

N

Ident if y t he bot t lenec k

F ind the root c aus e of
bot t lenec k s

R em ov e bot t lenec k by
at tac k ing root c aus e

 Perform anc e goals m et?

S top

Y

Start t un ing proc es s

Figure 8.8. Tuning process

Post Test Execution Phase 189

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The most frequently observed bottlenecks during PT are:

• Downloading pages is too slow and takes more time.

The cause of this bottleneck can be due to page/graphic size, server-task prioritization,
and incremental page presentation, which are in the hands of the production team. Other
important factors can be the modem and type of network.

• Response is too slow for a query.

This could be an issue caused by database design or middleware like Java Database
Connectivity (JDBC), Open Database Connectivity (ODBC), or ADO. Poor logic in-
volved, that is, improper usage of SQL, is discussed in Appendix A2.

• Particular page loads slowly

• Unable to connect to Web site

• Erroneous data returned

• Page not available

• Broken pages or error pages

• Response freezes up for quite a long time

• CPU usage is high

• Disk usage is high

• Memory usage is greater

• Number of dynamic pages/second is less

• Lengthy queue for end user requests

• Packet loss during transmission

• Too many open connections between the server and end users

• Memory leaks

A memory leak is a program error that consists of repeatedly allocating memory, using
it, and then neglecting to free it. A memory leak in a long-running program, such as an
interactive application, is a serious problem because it can result in memory fragmenta-
tion and the accumulation of large numbers of mostly garbage-filled pages in real memory
and page space. Systems have been known to run out of page space because of a memory
leak in a single program (see Performance Management Guide, 2005).

190 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Database deadlocks

This can be because of database server load, which is one of the problems with
concurrency. Deadlock occurs when some combination of locking, coding, or transaction
management goes wrong. Deadlocks come in two flavors: cycle deadlocks and conver-
sion deadlocks. Both types arise when processes contend for the same resources. Cycle
deadlocks arise in contention for data, either a row or a table. Conversion deadlocks occur
over contention for lock escalation, where two processes are in competition for exclu-
sivity (see Avoid database deadlocks with planning, 2005).

• High network traffic

• Capacity exceeds at low traffic

• Application does not allow too many users to perform a task concurrently

• Application load time at Web server is slow

These bottlenecks vary from system to system. Most of the PT tools provide facilities
to identify these bottlenecks.

Find the Root Cause of Bottlenecks

A bottleneck can occur in any segment of the architecture. In a complex architecture, as
shown in Figure 8.9, * (star) represents the possible performance bottleneck.
As shown in Figure 8.9, bottlenecks can occur at different tiers such as end user
connection points, Internet connection points at ISPs, hardware/software of ISPs, load
balancer, Web server farm, application server, server hardware and operating systems,
and database server.
By looking into different segments of the architecture, bottlenecks are comprehensively
identified as:

Computer
Application

Server

Router

Firewall

Database
server

Hub

Router

Router

Router Webserver farm

Hub

Load balancer

Figure 8.9. Areas of bottleneck

Post Test Execution Phase 191

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Database server

• Web server

• Application server

• Network

• Any other external system

Front End Monitoring

Testers can easily detect some of the bottlenecks at the front end (observation made at
front end), while others only through the generation of the reports. The following list
gives the probable bottlenecks observed by front end monitoring:

• Downloading pages is too slow

• Response is too slow for a query

• Unable to connect to Web site

• Erroneous data returned

• Page not available

• Broken pages

• Response freezes up for quite a long time

These bottlenecks are experienced by users at the front end and easy to locate. Hence,
testers can easily monitor these bottlenecks and report to the analyst.

Table 8.2. Type of server counters and location

Type of Server Counters Location
CPU utilization Web server, application server, database server
Memory utilization Web server, application server, database server
Throughput Web server
Current user connections Web server
Disk IO Web server, application server, database server
Formation of queue and queue wait time Application server
Database connection pool Application server
Number of table scans Database server
Table locks Database server
Cache hit ratio Web server, application server, database server
Page size Web server
Page hit ratio Web server
Database parsing ratio Application server

192 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Server Monitoring

Server monitoring is very necessary to capture the performance data with respect to
server hardware and software. Server counters are collected by the testing tool which
helps in identifying the bottlenecks at the Web server, application server, and database
server. Table 8.2 shows some of the generic counters adopted by several industry
standard automated tools.

Network Monitoring

Network monitoring reveals the amount of load on the system and the connections.
Network details are observed by analyzing the counters at load balancers and firewalls.
Table 8.3 shows some of the counters collected by tools at the network level.
Though an experience of several testing projects gives fair knowledge about the common
areas of bottlenecks, it is difficult to determine which area is more prone to performance
problems. According to the professionals of Mercury Interactive Corp. (see http://
www.mercury.com/), database servers are more prone to performance bottlenecks than
the network resources, application servers, and Web servers. The causes of bottlenecks
as per Mercury Interactive Corp. are given in Figure 8.10.
Alternatively, according to Empirix Inc. (see http://www.empirix.com/), the application
server is more prone to bottlenecks than the database server, network resources, and
Web server. This is shown in Figure 8.11.
Real bottlenecks will depend on the type of the application and the technology used.
Identifying the bottleneck is relatively simple and straight forward. Determining the
cause behind that bottleneck is often difficult and time consuming. Causes of bottleneck
are identified based on the following factors:

• Type of bottleneck

• Area of bottleneck

Once the type of the bottleneck is identified, the area of bottleneck can be identified by
analyzing the performance monitors set by the tool. The data collected in the counters
ensure the presence of a bottleneck in a particular area. The next step is to explore the

Table 8.3. Type of network counters and location

Type of network counters Location
Number of current user connections Firewall, load balancer
Number of SSL connections Firewall
CPU utilization Firewall, load balancer
Throughput Firewall, load balancer
Load balancing split Load balancer

Post Test Execution Phase 193

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

area thoroughly and isolate the root cause of the bottleneck. As explained in the previous
sections, areas are broadly divided into Web server, application server, database server,
network, and external systems.
Each area is associated with a set of real and logical resources, which can contribute to
performance problems quite often. The real resources affecting the performance more
often are CPU cycles, memory, I/O bus, various adapters, disk arms, disk space, and
network access. Logical resources are generally programming abstractions that are part
of real resources. This partitioning is done to share and manage the real resource. Logical
resources are less readily identified. Table 8.4 shows the types of real and logical
resources.

Figure 8.10. Database servers prone more to performance bottlenecks

Figure 8.11. Application servers prone more to performance bottlenecks

Database
Other

20%

Application
Web
Network

27%

25%

5%

23%

Web Server 10%
Network 20%

Database Server
30%

Application Server
40%

194 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It is important to be aware of logical resources as well as real resources. Deadlocks can
occur due to the lack of logical resources, which are mapped as real resources. Expanding
the real resource does not necessarily ensure that additional logical resources are
created. Their existence may not be appreciated until a specific performance problem
occurs which is related to logical resources.
Based on type of servers and networks, one can identify common causes for bottlenecks
for performance. This is highlighted in Table 8.5.
Since servers and networks play a major role in Web application, understanding the type
of bottlenecks and their causes is of paramount importance.

Remove Bottleneck by Attacking the Root Cause

A truth of performance tuning is that there is always a possibility of another bottleneck
popping up due to the tuning process. Reducing the use of one resource means that
another resource is overutilized, which limits throughput and response time. Care must
be taken while selecting the candidate for tuning. Major problems, if any, must be
addressed first before tackling the minor problems.

Stop Tuning Process

The testing team can improve the performance indefinitely by monitoring and adjusting
various parameters. By doing this, performance may be improved drastically. Sometimes,
tuning may not produce effective improvement, but the team may not stop the tuning
process. In such a situation, when to stop tuning is a question to be addressed carefully.
Normally, when all the bottlenecks are successfully fixed, the tuning process is termi-
nated. The efforts and costs of improving performance start to increase considerably as
the system becomes more and more optimally tuned, so it is important to know when to
stop tuning.

Performance Tuning at Workload Level

If the bottleneck is not identified at the resource level, the cause of the problem should
be investigated by examining workloads. To illustrate, if a resource hungry workload is
designed, wherein the distribution of resources is CPU: 90%, Disk: 70%, and Memory:
60%, this workload is CPU intensive. If the workload is tuned successfully so that the
CPU load is reduced from 90% to 45%, then there might be improvement in performance
due to a tuned workload structure like CPU: 45%, Disk: 90%, and Memory: 60%.
Unfortunately, the workload is now I/O intrinsic. The improved CPU utilization allows the
programs to submit disk requests sooner, but then the limitation imposed by the disk
drive’s capacity is overreached. Thus, this performance tuning invokes a new problem.
Care should be taken to tune the system constructively; unstructured performance
tuning may result in unexpected system behavior like degraded application performance
or a system hang.

Post Test Execution Phase 195

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Guidelines for Performance Tuning

Performance tuning of an application involves tuning of many components, which
participate in the success of the application running. Components like database server,
application server, Web server, technology environment, and network are part of the
application. Tuning at the component level definitely helps to improve the performance
of the application. All components are of different types and from different vendors. Each

Table 8.4. Examples of real resources and the logical resources

Real resource Logical resource
CPU • Processor time slice
Memory

• Page frames
Virtual-memory segments are partitioned into
fixed-size units called pages. The default page
size is 4096 bytes. Each page in a segment
can be in primary memory (RAM), or stored on
secondary memory disk until it is needed.
Similarly, primary memory is divided into 4096-
byte page frames. The role of the VMM is to
manage the allocation of real-memory page
frames and to resolve references by the
program to virtual-memory pages that are not
currently in real memory or do not yet exist.

From the performance standpoint, the VMM
has two, somewhat opposed, objectives:

1.Minimize the overall processor-time and disk-
bandwidth cost of the use of virtual memory

2.Minimize the response-time cost of page
faults

In pursuit of these objectives, the VMM
maintains a free list of page frames that are
available to satisfy a page fault. The VMM uses
a page-replacement algorithm to determine
which virtual-memory pages currently in
memory will have their page frames reassigned
to the free list.

• Stacks
• Buffers
• Queues
• Tables
• Locks and semaphores

A Lock is used to maintain exclusive access to
a certain resource.
Semaphore extends the functionality of a Lock
by manipulating an internal integer variable.

Disk Space

• Logical volumes
• File systems
• Files
• Partitions

Network Access

• Sessions
• Packets
• Channels

196 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

vendor provides its own guidelines to tune the component to optimize the performance.
An attempt is made to provide general guidelines, which help testers tune each
component for better performance.

Application Server

Application server, also called an appserver, a program that handles all application
operations between users and an organization’s backend business applications or
databases. Application servers are typically used for complex transaction-based appli-
cations. To support high-end needs, an application server has to have built-in redun-
dancy, monitors for high availability, high performance distributed application services,

Table 8.5. Resources and factors causing performance bottleneck

Resource Factors Causing Performance Bottleneck

Database
Server

• Insufficient Indexing
• Large number of temporary tables
• Too much of interaction between database server and application

server
• Fragmented database
• Large number of queued requests
• Unnecessary triggers
• Use of inline SQL code insufficient disk
• Insufficient memory
• Insufficient cache
• Locked tables
• Use of ODBC
• Poor configuration of server
• Out of date statistics

Application
Server

• Un optimized code
• Insufficient disk
• Insufficient memory
• Mismanaged cache
• Insufficient disk
• Memory leaks
• Too much of interaction with database
• Enough threads are not available to handle requests
• Execution of concurrent transactions at a set time
• Improper database connection pooling
• Mismanaged sessions

Queue length and wait time are more

Web Server

• Too much of SSL traffic
• Number of requests is more
• Page size is more
• Source files are stored in disk than in main memory
• Too much of file sharing
• Unbalanced load on server
• Insufficient cache or memory
• Insufficient Disk
• Poor Web server design
• Poorly written DLLs
• One or more process consumes too much of processor time

Network

• LAN bandwidth not sufficient
• Un segmented networks

Poor configuration

Post Test Execution Phase 197

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and support for complex database access. Appserver stores business logic and the
business model classes of applications, and serves requests for dynamic HTTP Web
pages from Web servers. Table 8.6 highlights performance issues and possible solutions
for the application server.
We know that any computer can be turned into a Web server by installing server software
and connecting the machine to the Internet. There are many Web server software
applications, including public domain software from the National Center for Super
Computing Applications (NCSA) (see http://www.ncsa.uiuc.edu) and Apache, and
commercial packages from Microsoft, Netscape, and others.

Web Server

Once the Web server software is installed on the computer, it renders the Web services
or delivers Web pages. Every Web server that is configured has an IP address and
possibly a domain name. Since it is like any other computer, the computer or server can
have the performance problems as depicted in Table 8.7.

Database Server

A database server is specifically configured to run database software like Oracle and
Sybase. Typically, an industry will use a database server combined with other servers

Table 8.6. Performance issues and solutions for application server

Performance Issues Solutions
High CPU usage is observed • Optimize application code

• Tune application server according to
manufacturer’s specification

Low memory is observed • Add memory
• Check for memory leaks
• Introduce cache

Number of dynamic pages/sec is less • Check for possibility of converting to static
pages

• Optimize application code
• Tune application server according to

manufacturer’s specification
• Make less interaction with database

Response time is high • Check threading issues in code
• Check server set up
• Check total number of transactions
• Execute several number of concurrent

transactions at a time
• Check server queue length

Database usage is poor • Verify connection pooling
High disk usage • Verify server logging level
Particular page load slowly • Verify the amount of data accessed from

the database

198 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to run a powerful Web application such as e-commerce. Table 8.8 highlights performance
issues and possible solutions for the database server.

Network

As we know the computer network is the backbone infrastructure required for commu-
nication, the communication may be through modem or T1 lines. Apart from these, there
are many other factors which cause performance issues in computer networks. Most
common among them is given as a checklist in Table 8.9.
The above tables provide high level guidelines, and practitioners are advised to look into
tuning guidelines provided by the manufacturer of each component. Specific tuning
parameters and the corresponding solutions for a set of sample components is given in
Appendix A1.

Summary

The post execution phase provides the details on representing the test results and how
to identify the bottlenecks. Bottleneck correction should be done step by step. A formal
approach to identify bottlenecks and address solutions is of paramount importance in
PT. Several tools provide various parameters to help in identifying bottlenecks. Care
must be taken to choose proper parameters which help in identifying the bottlenecks.
Having identified the bottlenecks, the tuning process must be initiated, and the proper
resource tuning must be taken up on a priority basis. In general, tuning is an art- and skill-
oriented task and requires experience.

Performance Issue s Solutions
High CPU usage • Verify whether server is overloaded or not

• Add more servers, if feasible
• Introduce SSL accelerator to handle SSL

traffic
High disk usage • Verify whether all source files are stored in

physical drives than in disk files
High network activity • Avoid file sharing, store Web files locally

• Use Storage Area Network devices for
common storage

Page download is slow • Check overall page sizes

Table 8.7. Performance issues and solutions for Web server

Post Test Execution Phase 199

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

10 Status code definition. (2004). Retrieved June 10, 2004, from http://www.w3.org/
Protocols/rfc2616/rfc2616-sec10.html

Aikat, K. J., & Donelson Smith, F. (n.d.). Retrieved September 14, 2004, from http://
www.cs.unc.edu/~jeffay/papers/ToN-04-Version.pdf

Avoid database deadlocks with planning. (2005). Retrieved May 12, 2005, from http:/
/www.devx.com/getHelpOn/10MinuteSolution/16488/1954?pf=true

Performance management guide. (2005). Retrieved May 12, 2005, from http://
publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/memperf2.htm#i46342

Table 8.8. Performance issues and solutions for database server

Performance Issues Solutions
Large number of queued requests • Increase the number of connections to

handle excess requests
• Verify whether the server is tuned to

manufacturer’s specs
Slow query response • Optimize query by minimizing sorting

• Eliminate unnecessary triggers
• Minimize the use of temporary tables
• Use parameter based stored procedure
• Find and add missing indexes

CPU usage is high • Minimize the interaction between application
server and database server

• Use stored procedure instead inline SQL
Disk usage is high • Store logs, data, and indexes on separate

disks
• Use RAID configurations
• Make sure server has sufficient memory and

cache

Table 8.9. Performance issues and solutions for network environment

Network Related Performance Issue Solution
Packet loss • Check the configuration network devices

• Verify network capacity
Lost connections • Verify network hardware configuration

(firewalls, load balancers, routers, switches
etc...)

• Verify whether LAN is exceeding rated
capacity

• Use segmented internal and external
networks

Capacity exceeds at low traffic • Use an int ranet for internal traffic
Getting timeout errors or firewall sends
errors about no connections

• Verify firewall licensing and configuration
• Make sure that number of connections are not

exceeding the specified rate
Load balancer is not distributing load
properly among Web servers

Verify load balancer configurations

200 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Additional Sources

Aritt, M. F., & Williamson, C. L. (n.d.). Internet Web servers: Workload characterization
and performance implications. Retrieved September 14, 2004, from http://
www.cc.gatech.edu/classes/AY2005/cs4803enc_fall/papers/InternetWeb
Servers.pdf

Barber, S. (n.d.). Effective performance testing (beyond performance testing). Retrieved
November 27, 2004, from http://www.perftestplus.com/articles/bpt1.pdf

Hava-Muntean, C., McManis, J., Murphy, J., & Murphy, L. (n.d.). A new dynamic Web
server. Retrieved September 14, 2004, from http://www.eeng.dcu.ie/~murphyj/
publ/c19.pdf

HTTP return codes. (n.d.). Retrieved November 21, 2004, from http://www.w3.org/
Protocols/rfc2616/rfc2616-sec10.html

Kelly, M. (n.d). Updated: Using IBM rational robot to run your first performance test.
Software Engineer, QA, Liberty Mutual. Retrieved August 25, 2004, from http://
www-128.ibm.com/developerworks/rational/library/5623.html

Killelea, S. (2002, March). Web performance tuning (2nd ed.). Speeding up the Web.
Titchkosky, L., Arlitt, M., & Williamson, C. (n.d.). Performance benchmarking of

dynamic Web technologies. Retrieved September 14, 2004, from http://
pages.cpsc.ucalgary.ca/~carey/papers/DynamicContent.pdf

Performance Test Automation 201

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 9

Performance Test
Automation

This chapter delves on the automation aspects connected with performance issues.
Adopting a manual method of testing the performance is neither desirable nor feasible.
Automating the testing mode is an inevitable necessity. The strategy lies in choosing
not only the best of the available tools but also to blend their productivity with human
analytical skills. In this regard, it is important to bear in mind that use of tools as such
does not amount to automating the entire testing process. This chapter addresses the
task of setting up a process for automating the tests and highlights various issues
involved in it. It also discusses some of the strategies for success in the automation of
performance testing and concludes with a survey on tools currently available for testing
in automation mode.
Automation tools do not perform magic, and the deployment of such tools demands not
only time but also resources in terms of preparation, planning, and training. This is so
because automated testing is a human assisted process. In order to automate testing, the
following operations require human interaction.
First of all, one has to analyze the performance requirement specifications, and based on
these performance requirement specifications, the performance test objectives have to

202 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be set. Then the workload has to be designed based on the operation profile, and the
number of workloads for successful test execution has to be decided. The next step would
be to design the test cases for each workload, identify and to create the test data bed.
The other operations which involve human interaction is to build the traceability matrix
(tracing test cases back to the performance requirement specification) and analysis of
the test results and identifying bottlenecks.
The various operations in automation mode include setting the parameters per the
performance requirements, building the test scripts, executing the test runs, recording
and generating test results, and evaluating the results. The automation tools provide a
feature to evaluate the results, but if there is an apparent failure, then the reevaluation
of the test results has to be done manually. Thus, successful test automation involves
both human interaction and the automation process.
This chapter recollects some of the topics discussed already in an earlier chapter for easy
understanding of the P.T. automation.

Performance Test Automation Process

Test automation, in general, involves both manual and tool aided activities. Tools will
not help without proper inputs for performance testing and exhaustive planning. The
complete automation process starts with the preparation phase and ends with the
postexecution phase as shown in Figure 9.1.
The preparation phase mainly deals with gathering data related to performance require-
ments, analysis, and developing a good testing strategy. The planning phase, which is
subsequent to the preparation phase, involves development of a workload profile
including the hardware and the software environment. The execution phase succeeds the
planning phase. The test execution is a complex activity in PT. A proper framework for
execution is necessary for smooth conduction of tests. This phase addresses issues like
scheduling, correctness of the application, and acceptance criteria. The postexecution
phase mainly focuses on identifying the bottlenecks and aspects related to fine tuning
the process. A detailed step-by-step process is given in Figure 9.2.

Figure 9.1. Overview of test automation process

Performance Test Automation 203

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Preparation Phase

Performance test automation is a complex process compared to functional test automa-
tion. It involves the understanding of all those elements that have an impact on the
performance of the system. Before analyzing these elements, the very purpose of
performance test automation must be understood properly. Some of the systems might
not be ready for performance test automation. Hence, the first step before starting the
process of performance test automation is to check into when would be the appropriate
time for performance test automation.

Why and When to Automate

Since test automation involves more cost and time, organizations debate on every step
in the automation process. The first step is to appraise the management on the need for
automation and when to automate for better results. Some of the salient points to be
considered for automation of performance testing are as follows:

It is next to impossible to manually do performance testing. Also, in similar lines of
functional regression testing, one has to emphasize the need for regression performance
testing so as to ensure the repeatability of testing for better results. It has to be

Figure 9.2. Step-by-step process in performance test automation

204 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

emphasized that automation of performance testing will strengthen the quality process.
One has to study and analyze the performance results in multiple permutations and
combinations for effective performance testing. The reduction in testing cycle time due
to the automation of performance testing is one of the main advantages of automation
of performance testing. For a successful automation of performance testing, one has to
test multiple workloads with different combinations of transactions. A successful
automation of performance testing should provide instant performance results and
should reduce human errors by isolating human interventions as much as possible. Also,
the performance test should be automated in such a way that it should be possible to run
the test by a novice or a less skilled person. One of the other main advantages of
automation of performance testing is the possibility of scheduling the tests at nonprime
time.
Once the confidence is built up, the next step is to find out whether all systems can be
automated or not and, if so, when to automate. The following points would help in finding
out as to when one should automate performance testing.
One would look for automating performance testing when stability of the system is
required. Also, whenever the scope of the system is fully defined and finalized and when
the performance requirement study is complete, one would look for automating perfor-
mance testing. Whenever the right tool is decided and evaluated and when sufficient test
data are available, then one would go for automation of performance testing. Availability
of the release version of the software for testing is one of the key points which would
indicate the right time for automation of performance testing.
Not all of the above criteria may be effectively addressed for automation by the
organization. For instance, the production ready test bed may not be available at the time
of testing. In such circumstances, a proper test bed must be generated. For all these, the
commitment of management is of paramount importance before automating the testing
process. Once management is convinced about the automation, the next step is to
understand the architectural setup support for the application.

Understanding Architecture

Web architecture plays a dominant role in Web PT. The Web architecture may be simple
or complex, and it needs to be simulated during the testing. The complexity is based on
many factors which include the type of the architecture. The complexity of the Web
architecture varies based on whether it is a two-tier or three-/multitier architecture. The
different types of servers used (like Web server, application server, and database server)
and various kinds of browsers (like Internet Explorer, Netscape, AOL) used on the client
side add to the complexity of the Web architecture. Further, the various platforms used
(which include Mainframe, UNIX, Windows, etc.) and the different types of connectivity
used (like dialup, T1/E1, cable, modems) to access the Web application add to the
complexity of the Web architecture. Finally, one more dimension is added to the
complexity of the Web architecture by the inseparable security requirements and the
corresponding protocols like firewalls (Yerxa, 2004), SSL, HTTP, and so forth.

Performance Test Automation 205

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9.3 provides a schematic representation of a typical Web architecture which needs
to be simulated during PT.
The Web architecture consists of various servers such as application servers, database
servers, Web servers, load balancers (see Yerxa, 2004), network layer devices such as
routers, data link layer devices such as switches, security components like firewalls, and
so on. A complete understanding of the entire architecture is necessary to plan for a
proper test environment during the period of fine tuning of the Web application.
Some of the issues which need special attention are compatibility issues, which might
arise when the architecture is built with multivendor support. These compatibility issues
might have an impact on performance if they are not attended to. Also, issues related to
performance are dependent upon the configuration of the operating system, databases,
Web servers, and on the various applications.

Develop and Analyze Performance Requirements

Similar to functional requirements, performance requirements are also important for the
successful completion of PT. Performance requirements are captured during the func-
tional requirement study and are used to model the operation profile and workload. The
important step in the performance requirement phase is to develop an unambiguous
Performance Requirement Document (PRD). The PRD mainly deals with the following:

Figure 9.3. Example of complex Web architecture

206 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance Testing Goals

For effective test automation, performance testing goals and objectives must be defined
properly. Some of the important aspects which need attention regarding performance
testing goals are as follows:

The response time for the application should not be more than t1 seconds, where t1 is
defined by the user, and the download time should not be more than t2 seconds, where
t2 is defined by the user. Also, the system should service X number of concurrent users
at a given time. The system should not crash momentarily when the predicted user level
exceeds expectations. Instead, the system should scale down gracefully; that is, there
should be a gradual degradation of performance with sudden increase in user level. Also,
the performance of the system should not degrade drastically whenever there is a change
in the hardware/software, and moreover, the system must be upgradeable to support a
specific growth rate determined every year. Many more such goals can be added to the
performance testing goals.

Test Objectives and Success Criteria

Explicitly defined requirements of the customer available in the form of goals are
transferred into objectives of PT. For instance, the response time can be split into
response time of transactions, activities, and subactivities. Response time of a deposit
transaction could be an integration of elapsed time for logging in, response time for
authentication, response time for upgrading the database, and elapsed time for logout.
Here logging in and logging out are the activities. Authenticating and upgrading the
database are the subactivities completing the transaction. Some of the objectives derived
from the goals are as follows:

The performance test should be able to assess the performance of the current configu-
ration of the system, and it should aim at servicing up to a peak of X customers an hour
without losing customers due to performance issues. The performance testing should
aim at evolving a system that is stable and fully functional even under stressful
conditions. The performance testing should aim at ensuring a proper environment. Note
that the test environment cannot be an exact replica of the operational environment, but
one needs to take into consideration some points while doing performance automation.
To illustrate, if the production environment has three application servers, one database
server, and one Web server and the test environment has one application server, one
database server, and one Web server, then the issues that occur due to insufficient
infrastructure should be analyzed to map to the operational environment. One of the
objectives of PT would be to ensure that the system supports a maximum number of
concurrent users (with the proposed configurations for acceptable performance). As
infinite scalability is not practically feasible, the testers, by using feedback from the
owners of the system, must come up with a criteria that will allow them to evaluate and
define when the system under test has or has not met the performance expectations. The

Performance Test Automation 207

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

objectives of performance testing would be to identify the bottlenecks within the
application architecture and also to ensure that the software or hardware changes would
not crash the system. Once the objectives are finalized, the system must be described
comprehensively.

Description of the System to be Tested

Each system subjected to PT needs to be documented. The details of how the system
works have to be documented. The description of the system to be tested should also
identify the potential users of the system and must specify how the users are distributed
across the day/week/month. The activities and transactions carried out by different user
groups and the details of external system interaction with the system to be tested have
to be described. The description of the system must also include the acceptance rate for
the user community, the most system intensive activity/transaction, and must document
the complete infrastructure of the system. Some of the data, like acceptance rate, are
difficult to collect, but they are required during the analysis.

Constraints on Test Automation

Test automation in a complex job requires attention from all directions. Some of the major
constraints in test automation are the budget for automation, time required to complete
the test, unavailability of a sophisticated test lab, and unavailability of sufficient
infrastructure for realistic testing. Apart from these, there are other aspects to be
considered which are project and customer specific.

Scope of the System

Clearly define the scope by determining what needs to be tested during the PT phase.
The Performance Requirement Document (PRD) reflects what is to be done and not how
it should be done. The “how” part is a complex task, and before addressing it, PRD must
be analyzed for its feasibility and for its modeling. The analysis helps in designing and
implementation. The analysis of PRD is done based on the following guidelines.
Review the PRD and remove ambiguities, if any. Analyze the document for correct
interpretation of the customer’s specification and also check for completeness of the
document. The document should give complete details of the system under performance
testing. Assess whether the document is prepared keeping the architecture in mind and
make sure that critical quality factors are addressed with high priority. Further analyze
whether the goals specified by the customer and the objectives prepared by the test team
synchronize. Ensure that the objectives are realistic and the constraints, if any, are clearly
documented. The document should reflect both the immediate performance requirements
and the growth performance requirements and also ensure that the scope is properly
defined.

208 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Based on the analysis made on the PRD, the operation profile is revisited and fine tuned.
The importance and the need for the operation profile is discussed in Chapter 5 of this
book.
The operation profile provides a pattern of the business scenario at a particular instance
but does not reflect the real user’s behavior. Hence, the analysis phase addresses the
issues related to modeling the real users.

Model the Real Users

Since the users of a Web application are heterogeneous in many aspects, modeling the
users for Web application is the most difficult part of planning. No two users are the same.
Their behaviors are different. Their actions with the system are different. Their locations
of operation may be different. Therefore, simulation of user actions is a tedious task and
requires broad vision and care. While modeling real users, the following points need to
be taken into consideration.
Group the users based on the type of actions they do and always address the users with
respect to their user community. To illustrate, in a typical banking application, customers,
managers, and senior managers form different user groups. Each user group is associated
with a set of transactions/activities/subactivities. An example could be that customers
carry out typical transactions such as deposit and withdrawal, as well as activities like
login and logout whereas managers carry out transactions such as opening an account,
closing an account, and so forth, and senior managers carry out transactions such as ad
hoc queries, managing monthly reports, and so on.
The users belonging to different groups can do the same set of transactions/activities/
subactivities. For instance, a manager can have an account in the bank for which he
works. Then, the customers and managers can carry out the same transactions such as
deposit and withdrawal. Also, the duration to accomplish a particular transaction/
activity/subactivity differs from user to user (random simulation of time is advisable) and
the input data and quantity differ from activity to activity. For instance, input data may
be username and password for login, or account number and deposit amount for a
different activity. Also, the input data differ from user to user.
The user possesses a private password and an account number which are unique, and
the transaction sequencing differs from user to user. To illustrate, the first time the
customer will follow a typical sequencing such as login, opening an account, deposit,
and logout whereas a frequently visiting customer need not go for opening an account
and can directly login, deposit/withdraw, and logout. Hence, the transaction sequence
may vary from user to user.
Noise level management plays a major role in simulating users. Users can run other
software in the background while operating the Web application. Some of the other
points to be considered while modeling the real users are that all users are not allowed
to carry out all activities; users of a Web site think, read, and type at different speeds;
and no two users are alike and their actions are also not alike. It is always better to do
random simulation of users with different simulated users operating on different brows-

Performance Test Automation 209

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ers and on different platforms. Also, the end users are exposed to different types of
security settings, and they have different IP addresses.
Out of the many factors, modeling user “think time” is difficult. This involves user’s
psychology and actions, which are difficult to model. The user normally thinks and enters
input data. The duration of thinking and rate at which the data are entered differ from user
to user. Some users may copy and paste the input data; some may recall and input the
data; and some users may go to canteen in the middle of the data entry. Therefore,
adopting a realistic approach to measure think time is difficult. However, the following
points will help the analyst to model the think time of the user.
If the Web site is already deployed, actual user delays are determined by reviewing the
log file or extractions from Web traffic monitoring tools. If the log file is not maintained,
then metrics and statistics collected from external agencies may have to be referred and
assumed as first approximation. If the log file is not present and the metrics collected by
other companies are not relevant to the system under test, then simple in-house
experiments, like clipboard and stop watch methods, can lead to firsthand approximations
about user think time. As a last resort, use intuition or best guess to estimate the range
for these delays. Generate random delays (range for the delays, bounded with max and
min think time) then static delays. The distribution among this delay range can be set as
normal distribution, uniform distribution, and negative exponential distribution.
Assume 500 users access a typical Web site, and their think time varies from one user
to another in the range of one second to nine seconds. In such situations, the distribution
of the think time vs. number of users can be analyzed as discussed here.

Uniform Distribution of Think Time
Uniform distribution is easier and simpler to model than any other methods. In the
illustrated graph shown in Figure 9.4, users are distributed uniformly across the range
of think time from one to nine seconds.
About 30 users takes maximum think time (9 seconds) whereas 40 users consume minimum
think time (1 second). In this case, one can ignore minimum and maximum think time and
consider the average think time for the rest.

Normal Distribution of Think Time
Normal distribution is no doubt accurate but difficult to model. From Figure 9.5, most of
the users are accessing the Web site with a think time of 5 to 6 seconds. According to
the illustrated graph, 127 users are having a think time of 5 seconds. For simulation
purposes, one can consider the average of five and six seconds, as the maximum
distribution lies in this range.

Negative Exponential Distribution of Think Time
Negative exponential distribution is rarely needed where all the users have to pass
through a set of mandatory activities before switching to other transactions. To

210 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

illustrate, in a banking application, before making transactions, users have to login. If the
time taken to validate the authentication is one second, then all users will have the same
think time for login activity. The think time taken for other activities gets distributed in
different fashions as shown in Figure 9.6.
The user may not always enter data correctly. Therefore, it is necessary to simulate wrong
data also.

Figure 9.4. Users distributed uniformly with respect to user think time

Figure 9.5. Users distributed normally with respect to user think time

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

Think tim e (in se conds)

N
u

m
b

e
r

o
f

u
s

e

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

Think tim e (in se conds)

N
u

m
b

er
 o

f
u

se
rs

Performance Test Automation 211

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Preparing and finalizing PRD is the first step in performance test automation. Unambigu-
ous and complete PRD increases the accuracy of P.T. automation. Detailed study on
performance elicitation is given in Chapter IV. A template of typical PRD is presented in
Appendix C1.

Develop Test Strategy

Performance requirements, once captured and analyzed, provide more in-depth informa-
tion on how to conduct PT. Exhaustive PT may not be possible due to time and cost.
Sometimes, it may not be feasible to conduct exhaustive testing. In such circumstances,
the need for developing a test strategy is required. The main objectives of the test
strategy are to reduce the overall cost of the project, reduce the cycle time of the testing,
and to reduce the resource requirement during the project cycle. The test strategy should
also look at increasing the accuracy of testing and providing good results. The test
strategy should also look at ease in running the test. While developing a good test
strategy, the following factors need consideration.

Defining Performance Pass/Fail Criteria

To determine the success of the PT activity, it is of paramount importance to determine
pass/fail criteria for each of the key performance goals. This calls for the need to define
what constitutes passing the goal and what constitutes falling short of achieving it. The
pass/fail criteria should be unambiguous so that they are measurable in absolute terms.
Otherwise, the possibility of clients challenging the pass/fail criteria later may not be fully
ruled out.

Figure 9.6. Users distributed exponentially negative with respect to user think time

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9

Think tim e (in se c)

N
u

m
b

e
r

o
f

u
s

212 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Identifying the Measurement Criteria

Once the performance objectives and pass/fail criteria for each of them are successfully
established, the next step is the measurement of each of these criteria. Performance must
be measured in absolute terms so that it can be easily compared with the pass/fail criteria.
In order to establish proper measurements, it may be necessary to fine tune or reexamine
the goal as well as pass/fail criteria. An example might be the following: instead of
providing overall response time for an event, it may be required to determine the split
response times among various hardware’s devices that are associated with the execution
of the event.

Selection of Tools

The main objective of this activity is to determine a better automation tool for PT. Since
the cost of any performance automation tool is high, more attention must be given before
finalizing the tool. One needs to strike a balance between the cost of the tool vs. its
efficiency. The following points would help in the selection process of tools.
The tool must support all measurements that have been envisaged. The selected tool
must be cost effective, and it must have the ability to use virtual database users. The most
significant of this is the database connectivity method or methods, such as ODBC or
other RDBMS specific methods like DBLIB, ADO, and so forth. Appendix B2 provides
a list of tools available on the market.

Performance Measurements

A performance measurements matrix needs to be finalized before the beginning of the
test. While testing, it is proposed to collect the following performance measurement data
to get the complete picture of the behavior of the system.
The response time of the transactions per the workloads defined is to be collected. The
consistency of responses among different test runs has to be measured, and the
throughput (measured in transactions per second) is calculated. Also, the resource
utilization during testing and the server and client processor utilization are measured
during testing. Some of the other utilization parameters that need to be measured during
testing are memory utilization (RAM and disks), network utilization (LAN and T1 lines),
and thread utilization (the number of concurrent users of critical hardware and software
components). Data regarding the availability of the system, that is, the ability to access
the system resources such as databases, printers, and the Internet while the system is
running, are also collected during testing. Bottleneck related parameters like high
resource consumption by each software and hardware component during the testing,
network collision rates, page-in page-out rates, number of hits blocked (blocking the
Web site visitors), number of threads blocked, and buffer and queue length overflows
are also monitored and measured during testing.

Performance Test Automation 213

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A set of performance measurements matrix to be captured during PT is given in Table 9.0.
The above matrix could be expanded to many more parameters. This depends on the type
of tool used and the operating system environment.

Virtual Users

Decision on the maximum number of virtual users depends on the anticipated load for the
system as specified in the performance requirement document. The growth rate of the
system should be studied carefully to make a decision on the number of virtual users. The
number of virtual users will have a direct impact on the tool as it requires procurement
of an equal number of licenses.
Consider an example where the current Web users for a typical banking system (refer to
case study in Appendix D) are around 30,000. According to a growth rate specified by
bank management, the user base will increase up to 54,000 users after 5 years. Based on
these statistics, even if it is considered that 10% of them are accessing concurrently, it
will be 54,000 virtual users. The automated tool should be licensed to facilitate the
generation of 54,000 virtual users for load testing. Load testing alone does not complete
the PT. As specified earlier, PT includes stress testing also. Therefore, it is advisable to

Table 9.0. Performance parameter matrix

Primary Parameters Secondary Parameters

% CPU Usage • Percentage of interrupts per second
• Number of threads
• Percentage of CPU usage by user (loading machine)
• Context switches per second

Memory Usage • Total available bytes in RAM
• Disk free space
• Cache hits per second
• Cache faults per second

Network Usage • LAN
• T1 Lines

Failed and Successful Transactions
(Hits)

• Socket errors

Response Time

• Output request queue length for network
• Time to first byte/time to last byte
• (TTFB/TTLB)

Total Disk Operations (Read/Write)

• Disk read/write bytes per second
• Page faults per second
• Output disk queue length

Throughput

• Byte per second
• Connections per second
• Requests per second

214 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

take license for more than 54,000 virtual users, as this facilitates testing the capability of
the system to handle the load beyond the specified level.

Acceptance Criteria

Another important strategy plan is to determine the conditions for acceptance of the
performance test results. Acceptance criteria provide the essentials to be satisfied for
the acceptance of application by the end user. Performance efforts are associated with
two sets of acceptance criteria. The first are requirements and objectives; the second are
engagement criteria.
Requirements and objectives can be expressed in absolute terms or can be in terms of
range, if the requirements are in measurable units. The acceptance criteria, in general, are
satisfied if all the requirements, objectives, and engagements are met.
Acceptance criteria can be incorporated as part of the Service Level Agreement (SLA)
that can be justified by the performance team. To illustrate, one way of expressing the
acceptance criteria for the banking case study can be as given in Table 9.1.
More stringent acceptance criteria could also be defined by the customer.

Test Runs and Test Cycles

As specified earlier, the main objective of adopting a strategy is to reduce the duration
of the test cycle. How many test cycles having to be executed to ensure the correctness
of results is specified in the strategy document, and this is a question that requires careful
analysis.
A test cycle comprises several test runs based on the strategy adopted by the test team.
A typical test cycle consists of many test runs for each workload. A test run is a test
execution process wherein the test run result is expressed in terms of pass or fail. A pass
is one in which the test execution is completed successfully as planned, and results are
obtained. A fail criterion is one in which the test execution has failed with no desired
results. The failure may be due to many reasons like script failure, functional bugs during
the execution, server crash, and so forth. More elaboration on this is given in Chapter
8.

Test Duration

It is mandatory to explicitly state the duration of tests; otherwise, the tests may never
stop. The following termination options may be useful in this regard.

Terminated Explicitly Using Stop Option
The test can be controlled explicitly using the stop (interruption) option available with
most of the tools. A planned test can be run without specifying the termination timing.

Performance Test Automation 215

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This is an ad hoc method and needs supervision throughout the execution period. This
approach is not advisable for large datasets and for complicated workloads.

Set by Tester Using the Tool
Every automated tool comes with an option to set the duration for testing. It has to be
set with a valid time format and executed. The test terminates once the time specified is
reached. This approach requires no continuous monitoring throughout the execution
period and is best suited for endurance testing.

Set Based on Some Conditions
Duration of the test can also be set based on some specified termination conditions. Test
execution terminates on the fulfillment of these specified conditions. This approach also
needs no continuous supervision and is best suited for stress and spike testing.
However, if the execution has not reached the termination condition, then the test should
be controlled manually.

Minimizing Risk Factors

The risks can be minimized to a large extent if PT is conducted based on a proper
methodology. The areas of risk and the related help to minimize these risks are mentioned
below.
The preparation and planning phase should be handled carefully to avoid early mistakes
which can lead to greater problems. The problems that occurred at early stages due to
negligence are not easy to fix. The entry (http://www.chambers.com/au/glossary/
entrycri.htm) and exit (http://www.chambers.com/au/glossary/exit_cri.htm) criteria for
the execution phase are the most neglected areas in PT. A thorough analysis of the entry
and exit criteria can cut down the cost and effort involved in testing. An automated tool
should be selected by mapping the performance requirements to the features of the tool.
Looking at the budget constraints before deciding to buy the tool is also equally

Table 9.1. Sample acceptance criteria for the banking case study

Parameter Acceptance Criteria
Response time for a query 1.5-2.5 sec

Download time of a page Not more than 8.5 sec
Availability of the Web site 24X7 basis, 365 days
Memory problems Nil
Scalability Scales gracefully as load increases
Load 54,000 Web users (as per the growth rate of

20% every year for the next 5 years)
Response at peak time Do not exceed 2.5 sec
Resource utilization Monitored carefully

216 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

important. In order to avoid the risks of scalability, conducting load testing, stress
testing, spike testing, and endurance testing are necessary. Also, the lack of guidelines
for the testing process can maximize the rate of risks. The risks can be avoided, provided
comprehensive guidelines and checklists are available for each critical stage of PT.

Planning Phase

Planning is an important phase for automation of any project. Planning must be carried
out immediately after the analysis of performance requirements. The important activities
in the planning phase include design of workload, planning operations, and managing
resources. The goals must be defined unambiguously in the planning phase.

Overview Phase

The performance test plan must be identified uniquely among all projects. It must start
with detailed testing goals, objectives, and success criteria. PT goals are explicit
requirements of the customer. These goals are microscopically defined in the form of
objectives. These objectives are subsequently addressed in the design phase. The
planning document must contain PT goals as discussed in earlier.
Similarly, the test objectives and success criteria (see preparation phase) must also be
documented in the planning phase.

Design Phase

The input for the design activity is the clear understanding of the objectives and
requirements. The design team first designs the workload, and the automation process
uses the design to build the script. There may be more than one workload to be used for
a set of performance requirements. The complete discussion is available in Chapter 5 of
this book. The salient features of the workload are mentioned below.
The workload represents the user groups and activity types. A benchmark of typical
business is required to formulate a workload. There may be several workloads for a
project. One has to identify a representative subset of users in these workloads and
develop the activities/scripts (test cases). Also, workload has to taken into consider-
ation, specifically, whether any batch jobs need to be started manually in the background.
Once the workload is defined, any PT tool can automate it.

Operation Phase

Based on the planning phase, the entire plan has to be implemented in the operation
phase. The operation phase is a complex process and involves coordination from many

Performance Test Automation 217

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

segments. The operation phase mainly deals with the selection of tools, their implemen-
tation, resource management, development of workload and test scripts, and test
environment management.
The tool is an important aid for automation. Selection of the right tool at the right time
is as important as selecting the vendor and vendor’s credibility. Since performance tools
are expensive, a proper analysis and study of each tool is very important. Some of the
general information that needs to be considered while selecting the right kind of tool is
as follows.
One has to take into consideration the vendor characteristics, the market share of the tool,
and its position in the market to ensure proper support and effectiveness for the tool
purchased. The number of virtual users, number of other products, and the quality of
customer service is also one of the parameters used while selecting the tool for
automating PT. Proactive publication of information about tool bugs and workaround by
the vendor are other criteria that can be considered while selecting the right kind of tool.
Some of the other points to be taken into consideration while selecting the right kind of
tool are the frequency of news releases, sound history of the vendor standing behind
these products, financial stability of the vendor and its likelihood of continuing to be in
business, geographical proximity of the vendor support personnel to work locations,
training and consulting assistance from the vendor, and facilities for the test tool
evaluation team. Finally, analyze the standard tools in the market and, if possible, consult
the people who are already using these tools for PT to know about their experience while
using them for automation.

Tools Analysis and Usage

Many of the performance tools support basic functions required for PT. However, each
tool is different in its own way. The differentiation may be in terms of providing additional
features, supporting protocols, and the way of measuring the performance parameters,
as well as presentation of results.
To illustrate, if a user places a request with the Web site, the request is processed at
different levels. It may be at the Web server, application server, or database server. Based
on the processing time at each level, the response time is determined. In such circum-
stances, the response time may have to be measured at each level. Many tools provide
different mechanisms to solve this problem.
Mercury’s PT tool (see Mercury, 2004) provides a feature to capture response time at
each level, that is, at the Web server, application server, and database server level. This
feature helps in identifying the location for performance problems due to response time.
Rational’s Performance Studio (see IBM Software Quality, 2004) provides a different
mechanism to capture the response time. A separate script must be written to capture the
response time. Each tool provides a set of features. Some of the points to be considered
before purchasing a tool would be to check the characteristics of the tool and to map the
characteristics of the tool with the documented performance requirements. Do not make
the tool shelfware. Always study the growth stats of the system before selecting a tool
and understand the constraints specified by the vendor. Make sure that demos, training,

218 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and timely assistance are provided by the vendor. Purchase the add-ins from the same
vendor to avoid interoperability problems.

Guidelines for Selecting Tools

Many tools are available on the market. Selecting a good tool requires an indepth study
and analysis of the available testing tools. Many tools do not work well or do not work
at all on different platforms or in various configurations. Sometimes, the offered features
may not be feasible for the project. Some of the points to be considered in these regards
are given below.
Always look for the cost of a tool and analyze its needs vs. features. Enquire about the
kind of postdelivery service offered and check the platform dependency characteristic
of the tool. Also check the protocols supported by the tool and ensure version
compatibility of the tool. One of the other important points to be considered is to check
for the constraints on number of concurrent users. For detailed characteristics of a good
tool, refer to Appendix B1.

Develop Workloads

Once the number of workloads and their structures are known, each workload must be
developed using the tool that is already selected. Workload development is split into two
parts. One is development of workload structure, that is, user groups, transactions,
scenarios, and weightage, and the other is development of test scripts for each scenario.
To develop a good workload, one has to consider the following points.
Identify the various user groups and the scenarios under each user group. Map the test
scripts, which are generated/developed and have a mix of test scenarios in a workload.
Determine the proper sequence for the scripts and plan properly so as to distribute the
scripts across many clients. Also, document all the workloads that are developed.
A snapshot of a workload is given in Figure 9.7. This is developed using Rational
Performance Tool. At this stage, no test scripts are available. Test scripts are developed
in the build phase; however, testers can sit and develop both in a single session.

Develop or Generate Test Scripts

Based on the structure of various scenarios (Figure 9.7), test scripts are developed. The
following guidelines help to develop a good test script.
Develop test scripts for each scenario as described in the workload. Build the test scripts
using the play and record method. Ensure the use of different browsers while scripting
and edit the scripts based on the requirements. Follow proper coding standards for
developing test scripts and execute the script and verify its correctness. Document the

Performance Test Automation 219

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

scripts properly and identify common steps and convert them into functions. Provide
room for extensibility and also provide the facility to generate proper logs.
Though scripts are developed for workloads designed, separate scripts may have to be
developed for specific activity/page. Some of the activities, which require the script by
default, are mentioned below.
It is required to have a script to test the pages on the site that gets the most hits (or that
is estimated to get the most hits) and also a script to test the home page. Though it may
not be one of among the busiest pages, it should be fast. Also, scripts are required to
test the most commonly used business transactions on the site (deposit, withdraw, etc.),
to test the most critical business functions on the site (ad hoc query by senior manager),
and to test pages that developers may suspect to have a bottleneck.
Most of the tools provide a record and play option to generate the test scripts for various
scenarios defined in the workload. Different tools follow different formats, but all tools
follow the same process.

Set Up Test Environment

As discussed in Chapter 6 of this book, the environment must be ready before the testing.
All servers should be configured and set up, as they would be in the production
environment. Databases should be loaded with production data or the data that are sized
appropriately for production. Some of the important points to be considered for setting
up the test environment are as follows:

Figure 9.7. Developed workload for a sample banking application

220 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Replicate the operation environment as much as possible, in cases where replication is
not feasible or possible; take great care in making assumptions about the scalability of
the hardware components. It is not correct to assume that a system with two servers will
perform doubly better in comparison to a system with one server. One can generally
assume that the system with two servers will perform better, but by how much is really
difficult to gauge without benchmarking. Check whether multiple environments are
possible; one way is to have two identical architectures with identical software installed
but keep the number of servers different. By this multiple environment setup, it is possible
to generalize how the number of servers affects performance, provided all other factors
remain identical for both environments. Choose the appropriate configuration for PT and
avoid a shared environment as much as possible. Ensure optimization of investment on
the test environment, and follow a detailed description of the test and operational
environments.
Figure 9.8 represents a typical test environment used for PT. Master client in the client
environment controls the test run with the available script stored in a test script
repository. Multiple clients with different browsers could be simulated. The network
environment provides all necessary security features and supports the required proto-
cols. The server environment supports all servers whereas the mainframe environment
supports the mainframe database.
Some of the issues that need to be addressed in setting up a test environment are given
below.
Hidden costs, if any, must be looked into and links across different testing centers must
be managed. Ensure the accuracy of the functionality of the application and the
availability of a domain specialist during testing. Check if there are any other applica-

Master client

Applicatio

n
server(s)

Web
server(s)

Database
server(s)

SSL,
Digital

certificates,
NTLM proxy

Internet
Explorer

Java Client

Netscape
Navigator

WAN

Mainframe

Client
Environment

Server
EnvironmentNetwork

Environment

Mainframe
Environment

iMac

Test Script
Repositry

Firewall

Figure 9.8. Typical performance test environment

Performance Test Automation 221

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tions/services running on the systems to be tested and also evaluate the associated risks
with shared environments (if used) like memory, disk I/O, and drive space.
Setting up of the test environment is an important task in performance automation, as it
involves cost, resources, and time. Careful planning is always advised.

Resource Planning

After the test environment is ready, the resource issues required for the test are to be
addressed. The important resources are test team (Mar, 2004), test bed, and any external
resources, if any.

Test Team

Composition of a team for testing is complex. It requires meticulous planning and a
suitable strategy before the actual starting of the test. Since PT requires knowledge of
the business domain as well as technical domain, identifying a suitable resource person
is difficult. PT requires people from multiple disciplines which include networking,
databases, domain specialists, and a host of tool specialists. A typical test automation
team would consist of:

• Project manager: The person who coordinates, motivates, and drives the PT
activities. The project manager has the complete responsibility to manage the
testing team to carry out their testing activities.

• Scripter/scheduler: Scripter must know the tool syntax and knowledge to change
the program as and when it is required.

• Real users: Sometime, real users help is sought for recording filed level actions to
simulate production like actions.

• Database administrator (DBA): DBAs main task involves maintaining the user
profiles, password management, taking backups, and restoring the system imme-
diately in case the system stops. A database expert is required during the test run
to help spot and optimize database performance problems.

• System administrator: The system administrator mainly helps in installing prod-
ucts and maintaining the system under test. They help in restore and backup
activities also.

• Network administrator: A network administrator’s task is to manage the network
during PT. A network expert can help spot configuration problems at the network
level, including problems with firewalls, hubs, switches, routers, load balancers,
and SSL accelerators and the network itself.

222 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Plan Test Bed

The test bed must be comprehensive and exhaustive. If live data are available, the test
bed would be better, and results will be accurate. While creating a data bed, some of the
questions that need to be answered are mentioned below.
How many data are required? Which data are to be considered for testing? How do we
generate data? How does one reset data? Is there enough disk space available on the
machines?
Several tools are available to generate data used for testing. Care must be taken to ensure
all business transactions are represented while generating simulated data.

Strategize Run

Sometimes smartness gives more efficient results than the routine and time consuming
process management. The best way to get an optimal result is to plan various strategies
to run PT. The main purpose of the strategy is to optimize the time, resources, and
utilization of the team during the execution.
The following guidelines would help the planning team to define a good strategy for their
system under test:

Run Elaboration Test

Plan to run the elaboration test (refer to Chapter VII) first before actually running the
whole system. This helps in finding initial bugs, if any, in the application and also
provides knowledge about the smoothness of the test run.

Decide Number of Test Runs Required

How many test runs to be conducted is the main question that always worries the test
manager. Since each run accounts for extra costs, more attention must be drawn to decide
the number of test runs. In the typical environment, the number of test runs would be
three, and out of these, at least two test runs must successfully complete the pass criteria.
However, use project experience to decide on duration and number of test runs.

Ensure the Presence of Test Bed and Number of Users

The test bed and the number of virtual users are other issues which worry the test
manager. Though the test bed is identified and decided, how many data within the test
bed must be used during the test run is a real issue to be addressed. If you use the entire

Performance Test Automation 223

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

test bed in the first run, the test may fail in between, and the entire effort may go to waste.
To avoid such issues, try the test bed with 30%, 70%, and 100% for three runs,
respectively. Here, the test bed is gradually increasing to reach the maximum.

Allocate More Time for Critical Workload

Critical workloads must always be tested for their accuracy and result sustenance. More
time allocation for such workloads is always recommended.

Select Minimum Set of Parameters

Before the beginning of the performance test, parameters must be set at server end.
Depending on the project, parameters must be selected. There may be system specific
parameters which need to be set as required by the test goals. Parameters can be
categorized as base parameters and optional parameters. The base parameters are
mandatory and must be set during PT for all systems whereas optional parameters may
be set based on the systems test requirements. All parameters must be set at server end
using the tool. Some of the parameters that need to be set are number of requests per
second, percentage of memory utilized by servers (application server, Web server, and
database server), percentage CPU utilization (application server, Web server, and
database server), minimum response time, maximum response time, and average response
time. These parameters could vary based on the type of tools used for automation.

Test Scenarios

Last but not least of the activities that are to be performed in the planning phase is to
create various test scenarios based on the test design. To create such scenarios, proper
tools must be selected. While creating scenarios, the following points need to be
observed:
Identify all those activities carried out by the users which are needed for a specific
workload, and capture each activity in the form of scripts by the play and record method
in the form of scenarios. Ensure that any manual changes made to scripts are reflected
back on the test scenario and create larger scenarios by sequencing many transactions
created earlier.
Thus, the planning phase plays a dominant role in test automation. The success of test
automation depends on how meticulously planning is done and documented.

224 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Execution Phase

Once the plan is ready and the environment is set up, the system is ready for testing.
However, before executing the test, some of the preexecution tests must be carried out.
In a complex project, though the meticulous planning is done, there may still be chances
of slippage in certain areas. There could be an identified functional bug which is not
rectified, or a partial system may be ready or not confident to run the test completely in
one shot. To avoid such problems, follow the procedures discussed below, which
recheck the system for test execution.

Entry/Exit Criteria

Before every cycle of a test run, the system must be verified for entry and exit criteria.
For the entry criteria, ensure that the scope of all the major business functions is finalized
and all major business functions and features are working properly. Check if all major
defects have been fixed and retested. A proper test bed must be available during the test
run and also ensure the availability of the test team.
For the exit criteria, ensure that the result data are generated and various test logs are
made available. All test runs must be completed successfully, and no functional bugs
should be reported during the testing.
More discussion on entry/exit criteria is available in Chapter VII.

Elaboration Test

Building confidence during PT is a difficult task. For instance, running the test for the
duration specified and number of virtual users as planned in the first instance, probability
of generating the results is difficult and risky. Instead, the alternative is to look for short
duration of the test with less number of virtual users and run the elaboration test. This
will enable knowing all problems early so that problems, if any, could be corrected, and
time can be saved.
The elaboration test is carried out with minimal users before the actual test to build
confidence. The elaboration test helps in Proof Of Concept (POC) for PT and builds
confidence during final testing. It eliminates nonperformance related problems early and
is normally carried out for one or two virtual users. It tests for correctness of all those
functions used for PT and verifies the authenticity of the database. The elaboration test
validates all protocols to check if they are working correctly; it verifies whether the
servers are configured properly and working correctly or not, and it also verifies the
capability of handling the maximum number of virtual users.
The elaboration test is an important activity in test automation, and it must be carried out
compulsorily. It is a normal tendency to skip the elaboration test to save time. This is an
important task as well as milestone for the preexecution phase.

Performance Test Automation 225

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Multiple Runs

When the test execution starts, there may be many uncertainties like how many times each
test run must be conducted. What is the guarantee that each test run provides the correct
result? What if a particular test run fails? Do we start the same test again or do we accept
the fail case as it is? If we have different workloads, how do we sequence each workload
during execution?
To answer these questions, we need to define a test cycle and test run. A test cycle is
a complete set of test runs with all workloads tested for multiple test runs. A test run is
a typical test execution of a specific workload within the test cycle. Tables 9.4 and 9.5
show two test cycles consisting of many test runs for different workloads. The fail/pass
in the table represents whether each test has passed or failed. To summarize, a test cycle
consists of many test runs, and a test run consists of many workloads which will be
executed one by one. The minimum number of test cycles must be one, and the maximum
number of test cycles may be one or more. Also, a new test cycle is created which is based
on the change in workload, the change in various parameters that must be tuned, change
in environment, and change in functionality.
In Table 9.5, a new workload W6 is introduced, as W5 in Table 9.4 failed in all test runs.
There may be an error in the design of the workload W5 itself. The fail cases during the
test runs are due to many reasons. However, some common errors during the execution
are due to functional bugs in the application, problems in database connection pooling,
nonavailability of enough heap size, problems in handling dynamic sessions during test
execution, problems in creating a data pool, and nonindexing of tables.
The failure in the test runs may be due to the external factors also. Some of the common
failures that could attribute during the execution are due to an application server crash,

Table 9.4. Test cycle 1 with multiple test runs

Workload Test Run#1 Test Run#2 Test Run#3 Test Run#4
W1 Pass Fail Pass
W2 Pass Pass Pass
W3 Fail Fail Pass Pass
W4 Pass Fail Fail Pass
W5 Fail Fail Fail Fail

Table 9.5. Test cycle 2 after tuning and change in workload

Workload Test Run#1 Test Run#2 Test Run#3 Test Run#4
W1 Pass Pass Pass
W2 Pass Pass Pass
W3 Fail Fail Pass Pass
W4 Pass Fail Fail Pass
W6 Pass Pass Fail

226 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

network congestion due to wrong configuration, and OS level errors that may lead to
failure. For instance, one processor may fail in a multiprocessor environment.
Performance test execution is a complex job. It has to be monitored from multiple
directions. In order to run the test executions effectively, the following points must be
considered mandatory during execution:

Run the PT more than once with different levels of background activity (noise) to get
the true picture and monitor all performance counters continuously. Also monitor test
duration always and avoid external interference. Do monitor the test execution by
probing client and log the results with timings.

Most of the tools provide facilities to monitor and manage various performance param-
eters.

Postexecution Phase

Once the test execution is completed, the next step is to examine the postexecution
scenario. This includes review of logs generated and examination of the result data
output. Do not analyze the result without analyzing the logs. Logs provide insight into
the execution process. The main task that needs to be carried out in postexecution phase
is shown in Figure 9.9. Observe that before the analysis of result data for possible
bottlenecks, result data must be presented properly, so the analyst could examine
correctly and easily. However, the first step in this phase is the review of logs.

Review of Logs

Confidence building is an important activity in performance test execution. Nothing
provides more confidence about the successful execution of the test than reviewing the
logs. Execution logs provide transparency in test execution and determine how healthy
the execution is. Observation of execution logs gives the status on the test script failure
during execution, duration of the test runs, OS level failure, if any, and application level
failures, if any. Chapter 8 provides more information on this phase of activity.

Presentation of Results

Based on the parameters set during execution, the output would be several hundreds of
pages of results. These result data would be available in the form of tables, graphs, and
such. The main objective of the result data is to convince the customer of the performance
and use it for bottleneck identifications. Sometimes, none of the result data may be useful

Performance Test Automation 227

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and would be difficult to study. In these circumstances, presenting the result is itself is
a major task. While presenting the results, the following points must be considered:
Identify the target users of the results (business managers, marketers, Sr. management,
etc.) and decide the presentation formats based on users (graphs, tables, abstracts,
bottlenecks isolation, etc.). Decide the number of parameters to be presented and overlap
different results, if necessary, for easy understanding. Always maintain configuration
management in all results and show summarized data validating requirements. Also, be
prepared to deliver formatted raw data as backup.
Detailed discussion on presentation of results is available in Chapter VIII of this book.
Most of the automation tools support different ways of presenting results. Proper
presentation of results always helps in analysis.

Analysis of Results

Once the results are presented properly, analysis becomes easier. Analysis of results
does not mean identifying the bottlenecks only. It provides a healthy picture of the
system. Management may be satisfied with the results but analysis may still be required
to understand more on resource utilization for optimal response of the system. Analyzing
the results mainly helps in determining resource utilization so that bottlenecks in
resources can be found. It would help to identify script level problems, if any, and also
to determine script level response time and resource usage. Analysis of the results would
further help to isolate excess queue lengths at the server (if any), address code level
optimization at the end, and check for script failures like scripts pass.
For a complete discussion on this, refer to Chapter 8 of this book.

Identifying and Fixing Bottlenecks

Bottlenecks exist within the system for a number of reasons such as inadequate server
hardware to support the projected system load, inadequate network capacity, poor
architectural design decisions, databases that are incorrectly implemented or tuned,
developers not being mindful of performance considerations during development, and
absence of in-house expertise on system performance. Tight deadlines and changing
requirements can also be a cause of bottlenecks.

Figure 9.9. Postexecution process

228 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Even the best designed and implemented systems will have some performance problems
such as memory leaks, dangling memory references, and array bound errors which are
difficult to be identified at the stage of unit testing or by system testing. A well planned
PT is the only way to isolate, identify, and resolve those issues before launching the
system to potential users.
Bottlenecks can reside at any place within the architecture of the application. There may
be one or more bottlenecks in the applications that have not yet been tuned. Since only
one bottleneck is identified at a time, it is necessary to iteratively test and fix the
bottlenecks. Some of the points to be noted here are mentioned below:
Fix the Bottlenecks at web server, application server level, database server level, and
communication links level. Check iteratively whether all bottlenecks are resolved or not
and continue tuning until goals are met or until the bottlenecks are deemed to be
“unfixable” for the current release. Identify areas for potential improvement in the future
that are out of scope currently and also summarize results with the tuning details/
settings/configurations, if it adds value. An expert is always required to address the
bottlenecks and tune the system during PT.
In postexecution activities, fixing bottlenecks and tuning the system is important, as the
whole process of PT culminates at tuning the system for better performance. Tuning is
a complex job and requires proper guidelines to be followed for easy and better results.

Guidelines for Performance Tuning

Most Web applications involve many transactions occurring at the same time. With
multiple scripts running at the same time, producing multiple hundreds or thousands of
transactions and spotting the problematic transaction is very challenging.

Application/System Tuning

There are several ways in which the system could be tuned. Some of the tips to tune to
the system are to address code level tuning and to verify the control level statements and
optimize them. To illustrate, if there are multiple nested IF-ELSEIF clauses, change them
to CASE statements. This is because the last ELSEIF is processed only after all IF clauses
are processed. Ensure optimization of the loop constructs by removing the dead codes,
reducing the buffers, and so forth. Also optimize the size of server side files by reducing
unnecessary spaces (asp, applets, servlets, etc.) and optimize the buffer space declared
in the code. Most of the language manuals provide more information on code level tuning.

Infrastructure Level Tuning

Infrastructures are classified into Web servers, application servers, database servers,
CPU, and memory. Each server needs tuning based on the testing results and type of
bottleneck found. Some of the tuning tips for these systems are given below.

Performance Test Automation 229

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Web Servers

Most of the Web servers, once installed, will have their own memory management
systems. Plan proper memory management based on the file size, cache size, and RAM
size.
As an example, in the IPLANET Web server, configuration for better performance can be
done as follows:

The cache is divided into three regions:

Small: 3KB (default)
Medium: 30Kb
High: 100KB

These memory regions can be tuned to the required size. Further, the Web server has its
own storage area within the RAM. Corresponding regions are:

Small: 20MB
Medium: 30MB
High: 30MB

These parameters can also be tuned to the required values. In order to get the optimum
performance, do the following:

Organize files into three categories based on the sizes closest to the cache size. If that
is not possible, determine the three types of files based on size and use the best fit
concept. For instance, assume that there are 1,000 files which need allocation:

Small: 600 files belong to the size between 3KB to 8KB,
Medium: 350 files belongs to the size between 9KB to 50KB, and
High: remaining 50 files come under the 100KB range.

Once analysis is completed, modify the parameters to 8KB, 50KB, and 100KB, which
provides the optimal performance. Thus, a simple configuration of cache provides better
performance.

230 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CPU
In an ideal situation, CPU utilization must be 90% including all processes (targeted + any
other application + OS processes). Sometimes, CPU may be underutilized, say 40%. In
such situations, to increase the CPU utilization, the number of threads parameter must
be increased. If the number of threads by default is 128, changing it to higher values will
increase the CPU utilization and performance of the system as more threads are processed
simultaneously.

Application Servers
Normally, when the number of threads at the Web server level is increased, the
corresponding parameter at the application server level also must be tuned. In the case
of the IPLANET application server, this can be achieved by increasing the JVM (2 JVMs).
Sometimes, proper session management must be maintained. Availability of API drivers
and application prototypes to drive API must be in test mode. Ensure that the return
codes from interfaces are routinely checked by the application, and if the return code has
an invalid value such as a null value, the application should be designed to take corrective
action.

Database Servers
Tuning database servers provides maximum yield because many queries take more time.
One can either optimize query scripts or tune the parameter of the database itself.
Some of tuning tips for the database servers are given below:

Check the use of memory and disk space required by SQL statements, as well as their
access time and rate of throughput. To improve performance, increase buffer sizes and
use of fast cached memory. Increase the number of access keys and the number of index
keys, and update the indexes more often. Use static instead of dynamic queries because
dynamic SQL is a lot trickier to program than static SQL and would probably have more
bugs. The performance of static query is easier to predict and optimize than a dynamic
one because the processing of the static one can be determined at compile time. Joins
are easier to predict and may execute faster if performed one at a time in sequence, rather
than in one compound multijoin SQL statement. The database performance monitoring
tools can be used to understand the working of the queries and updates, the execution
time, and the database bottlenecks, if any.
Beware of the performance implications of tools that automatically generate SQL
statements. Often, these tools are accurate but inefficient. They generate SQL queries
to bring data from the database on the server down to the client PC and perform a join
there, rather than joining on the server. This strains both the client and the network
bandwidth. These tools can leave the users helpless in dealing with inefficiencies. In
heterogeneous database environments, check for compatibility and consistent re-
sponses across the different databases. Though database products have been consid-
ered as sophisticated backend software, incompatibilities persist. SQL 2 conformed to
the ISO standard in 1992 but has not yet been implemented by all DBMS product vendors.

Performance Test Automation 231

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Stabilize the database structure during the testing and keep the data contents under
version control to a possible degree and make a note to revise the SQL statements when
the database structure changes, and in this case, an overhead of rewriting SQL test cases
appears.

Firewalls
Make sure that the total number of current established connections does not exceed the
limitations set by the license of the firewall. If the rate of SSL connections is greater than
100/sec/Web server, then the system might be running into SSL bottlenecks, and the
system administrator should consider using SSL accelerators. The CPU utilization allows
a check to see if the load is actually causing the firewall to reach its maximum capacity
rating. Make sure that the throughput required does not exceed the firewall’s rating.

Load Balancers
Make sure that total number of current established connections does not exceed the
limitations set by the license of the load balancer. Load balancing split verifies that the
load balancer is properly spreading the load across all available servers. Check the CPU
utilization to see if the load is causing the load balancer to exceed its capacity rating and
make sure the throughput does not exceed the load balancer’s rating.

External Systems
Make sure there are enough connections to handle the requests to the external systems.
Verify that bandwidth to the external system providers is sufficient and make sure that
queue wait time is not excessive.

Installation Level Tuning
Uninstall any applications that are no longer needed and restart the OS to completely
remove uninstalled applications. Identify the software which conflicts with each other
and check and compact the registry and, if necessary, clean the registry. Defragment the
hard drives if necessary and check the consistency of device driver interfaces and so
forth.
Tuning is an important activity and must be done carefully. Several tools are also
available for tuning. In spite of standard guidelines available, it is always recommended
to refer to concerned hardware/software manuals for optimal results.

Summary

Automation is a must for any application which undergoes rigorous PT. Before beginning
PT, meticulous planning is required. Planning in preparing the workloads, generating
scripts, setting up of an environment, creating the resources, preparing the test bed,

232 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

selecting tools, and executing multiple tests are required. Automation provides flexibil-
ity, consistency, and uniformity in executing tests. Though initial investments are high,
regression activities could be completed with the same efficiency and robustness.
Analysis of results is time consuming but provides more in-depth information on
behavior of the system. Several tools can be used for analysis thereby reducing the
analysis time. Effort and time must always be properly analyzed before one starts to
automate any testing activities.

References

Entry criteria. (2003). Retrieved August 11, 2003, from http://www.chambers.com.au/
glossary/entrycri.htm

Exit criteria. (2003). Retrieved August 11, 2003, from http://www.chambers.com.au/
glossary/exit_cri.htm

IBM software quality. (2004). Retrieved November 17, 2004, from http://www-306.ibm.com/
software/rational/offerings/testing.html

Mar, W. (2004). Roles in a performance project. Retrieved November 21, 2004, from http:/
/www.wilsonmar.com/perftest.htm

Mercury. (2004). Retrieved November 17, 2004, from http://www.mercury.com/
Yerxa, G. (2004). Firewall & load-balancer: Perfect union? Retrieved November 17,

2004, from http://www.networkcomputing.com/1102/1102ws1.html

Additional Sources

Barber, S. (n.d.). Beyond performance testing (effective performance testing). Retrieved
November 17, 2004, from http://www.perftestplus.com/articles/bpt1.pdf

Bourke, T. (n.d.). Load balancers as firewalls. O’Reilly Media, Inc. Retrieved November
22, 2004, from http://sysadmin.oreilly.com/news/loadbalancing_0801.html

Denaro, G. (n.d.). Early performance testing of distributed software applications.
Firesmith, D. (n.d.). Test execution. Open Process Framework. Retrieved June 17, 2004,

from http://www.donald-firesmith.com/Components/WorkUnits/Tasks/Testing/
TestExecution.html

Hava-Muntean, C., McManis, J., Murphy, J., & Murphy, L. (n.d.). A new dynamic Web
server. Retrieved September 14, 2004, from http://www.eeng.dcu.ie/~murphyj/
publ/c19.pdf

Incremental Testing. Retrieved June 12, 2004, from http://homepages.nildram.co.uk/
~worrelli/cont343.htm

Performance Test Automation 233

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jeffay, K., & Donelson Smith, J. (n.d.). Retrieved September 14, 2004, from http://
www.cs.unc.edu/~jeffay/papers/ToN-04-Version.pdf

Joung, P. (n.d.). General network performance testing methodology. Retrieved Septem-
ber 21, 2004, from http://www.spirentcom.com/documents/1065.pdf

Kelly, M. (n.d.). Updated: Using IBM Rational Robot to run your first performance test.
Software Engineer, QA, Liberty Mutual. Retrieved August 25, 2004, from http://
www-128.ibm.com/developerworks/rational/library/5623.html

Khanine, D. (n.d.). Tuning up ADO.NET connection pooling in ASP.NET applications.
Retrieved May 6, 2004, from http://www.15seconds.com/issue/040830.htm

Killelea, P. (2002, March). Web performance tuning (2nd ed.). Speeding up the Web.
Kim, S. (n.d.). Safe session tracking. Retrieved November 22, 2004, from http://

www.sdmagazine.com/documents/s=818/sdm0103h/
Le, L., & Aikat, J. (n.d.). The effects of active queue management on Web performance.
Mercury Interactive. (n.d.). Tune IT systems to efficiently meet business objectives.

Retrieved November 27, 2004, from http://www.mercury.com/us/pdf/products/
tuningoverview.pdf

Pauli, K. (n.d.). Pattern your way to automated regression testing. Retrieved January 7,
2003, from http://www.javaworld.com/javaworld/jw-09-2001/jw-0921-test.html

Polini, A., & Wolfgang, E. (n.d.). Retrieved April 11, 2004, from http://www.cs.ucl.ac.uk/
staff/w.emmerich/publications/WOSP04/paper.pdf

Titchkosky, L., & Arlitt, M. (n.d.). Performance benchmarking of dynamic Web tech-
nologies.

Williamson, C. (n.d.). Retrieved September 14, 2004, from http://pages.cpsc.ucalgary.ca/
~carey/papers/DynamicContent.pdf

234 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter 10

Introduction to
Performance

Monitoring and Tuning:
Java and .NET

For any applications to be performance conscious, its performance must be monitored
continuously. Monitoring performance is a necessary part of the preventive mainte-
nance of the application. By monitoring, we obtain performance data which are useful in
diagnosing performance problems under operational conditions. Based on data collected
through monitoring, one can define a baseline — a range of measurements that represent
acceptable performance under typical operating conditions. This baseline provides a
reference point that makes it easier to spot problems when they occur. In addition, during
troubleshooting system problems, performance data give information about the behavior
of system resources at the time the problem occurs, which is useful in pinpointing the
cause. In order to monitor the system, the operational environment provides various
parameters implemented through counters for collection of performance data.
Applications developed must ultimately be installed and run on a specific operating
system. Hence, applications performance also depends on factors that govern the
operating system. Each operating system has its own set of performance parameters to
monitor and tune for better performance. Performance of applications also depends on
the architectural level monitoring and tuning. However, architectural design depends on
specific technology. Hence, technology level monitoring and tuning must be addressed
for better results. To achieve all these, proper guidelines must be enforced at various
stages for monitoring and tuning.

Introduction to Performance Monitoring and Tuning 235

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

All the previous chapters, together, described the performance testing from concept to
reality whereas this chapter highlights aspects of monitoring and tuning to specific
technologies. This chapter provides an overview of monitoring and tuning applications
with frameworks in Java and Microsoft .NET technologies. Before addressing the
technology specific performance issues, we need to know the overall bottlenecks that
arise in Web applications.

Areas of Bottlenecks in
Web-Based Applications

Web applications are developed in a multi-operating system (OS) environment. Server
modules may run in Unix OS whereas client modules may run in Windows OS. The overall
design of architecture includes Web server, application server, network environment,
firewalls, and so on. When a Web server is installed on the system (Figure 10.1), there
are many aspects that need to be addressed which can impact performance of the system
by blocking the throughput. Obviously, the network is one of the factors but so are all
the other servers that are being accessed. It is important to understand how the Web
applications are developed, what optimization flags have been used, how many servers
are in place as well as how performance is being measured. Several of the parameters
chosen in the Web may cause performance issues. Causes could be because of server
resources like CPU, memory, disk I/O, and network bandwidth. As shown in Figure 10.1,
there could be performance bottlenecks at server side, introduction of firewall and
routers, slowness of load balancers, and could be due to poor performance of database
servers. Server configuration can have a serious impact on performance and may need
to be reevaluated.
Other possible bottlenecks in a Web application could be in the different application
layers like:

• Poor database design during the application development;

• Poor standards followed in table design;

Computer

Application
Server

Router

Firewall

Database
server

Hub

Router

Router

Router Webserver farm

Hub

Load balancer

Figure 10.1. Anticipated bottleneck in Web application system

236 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Poor indexing of databases;

• Poor partitioned data across tables;

• Poor logic used in queries;

• Inappropriate stored procedure.

Other common causes of bottlenecks on the application server or Web server side would
be:

• Inefficient session state management;

• Thread contention due to maximum concurrent users.

Chapters 2 and 3 discuss various possible bottlenecks in more detail.
These areas of bottlenecks described previously, in general, vary from one technology
to another. However, some of the common bottlenecks could be identified at the OS level
itself and can be rectified. In order to determine the bottlenecks, each OS provides various
performance counters which need to be monitored during the execution of the system.

Performance Counters in
the Operating System

The operating system provides a platform to host Web-based applications wherein
servers and various tools are installed. The OS supports its own processes which always
run in the background along with the applications. Specific technology platforms (like
Java or Microsoft) must be created before running the application. This depends on the
application in which it has been developed. When such applications are running, OS
provides various parameters which can be set to specific values for optimal performance.
Such parameters are monitored and measured by various counters. Knowing those
counters that help in tuning OS from a performance point of view is of paramount
importance for all test analysts. We mainly discuss important counters related to the
Windows 2000 system and the UNIX system as most of the applications are run under
these two OSs.

Introduction to Performance Monitoring and Tuning 237

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance Monitoring and
Tuning in UNIX

In UNIX, the major resource types that need to be monitored and tuned are the CPU,
memory, disk space, communication lines, I/O time, network time, and application
programs.
The UNIX OS maintains several counters which keep track of the system resources and
their utilization. Some of these counters are the CPU utilization, buffer usage, disk I/O
activity, tape I/O activity, terminal activity, system call activity, context switching
activity, file access utilization, queue activity, interprocess communication (IPC), paging
activity, free memory and swap space, kernel memory allocation (KMA), and so forth.

UNIX Tools for Monitoring the Performance of the
System

UNIX provides various commands and tools to monitor the system performance. These
include commands like uptime, sar, ps, vmstat, iostat, netstat, nfsstat, and so on. Some
of these commands and their usage is discussed below (Lynch, 2005).

• Uptime: The uptime command is one of the most simple commands that can be used
to monitor the UNIX system performance. This command tells how long the system
has been running. It gives a one-line report which contains the current time, how
long the system has been running, how many users are currently logged in, and the
system load averages for the past 1, 5, and 15 minutes. One such report provided
by the uptime command is given here:

$uptime

10:47am up 37 days, 25 min, 1 user, load average: 0.00, 0.00, 0.00

• Sar: The sar command is used to monitor the system utilization over a period of
time. The sar command gives a high level report of the system utilization. The sar
command, in its simplest form, can also be used to generate a report similar to that
of the uptime command; that is, the sar command can be used instead of the uptime
command. The sar command provides other advanced reports which provide
details of the system utilization and its performance over a specified period of time.
There are various options that can be specified with the sar command. Two such
examples of the sar command with different options are given below:

238 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 10.0. Performance counters in UNIX: sar –q options

Performance Counter Description
runq –sz This is the length of the run queue during the interval.
plist –sz This is the number of processes in the process list.

ldavg -1 and ldavg -5 These counters give the system load average for the last minute
and the past five minutes respectively.

%run occ This is the percentage of time that the run queue is occupied.
swpq-sz This is the average length of the swap queue during the interval.

It includes processes which are sleeping.
%swpocc This is the percentage of time that there are swapped jobs or

threads.

� The sar command with the –q option provides statistics on the average length
of the run queue, the percentage of time the run queue is occupied, the average
length of the swap queue, and the percentage of time the swap queue is
occupied. One such report provided by the sar command using the –q option
is given below:

$sar –q 3 2

10:08:31 AM runq-sz plist-sz ldavg-1 ldavg-5
10:08:34 AM 0 39 0.00 0.00
10:08:37 AM 0 39 0.00 0.00
Average: 0 39 0.00 0.00

The options 3 and 2 in the above example refer to the interval (in seconds) and count.
So the above report is generated 2 times each after a time interval of 3 seconds. There
are various performance counters which are measured by the sar command when used
with the –q option. Some of these performance counters and their description are given
in Table 10.0.
The sar command with the –u option provides statistics on the CPU utilization. One such
report provided by the sar command using the –u option is given next:

$sar –u 3 2

10:32:31 AM CPU %user %nice %system %idle
10:32:34 AM all 0.00 0.00 0.00 100.00
10:32:37 AM all 0.00 0.00 0.00 100.00
Average: all 0.00 0.00 0.00 100.00

The options 3 and 2 in the above example refer to the time interval and the count. Some
of the performance counters measured by the sar command when used with the –u option
are given in Table 10.1.

Introduction to Performance Monitoring and Tuning 239

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are various other performance counters which could be measured, and some of
these important performance counters are provided in Table 10.2.
These performance counters can also be measured using various other commands and
tools which UNIX provides. Some of the commonly used such commands and tools are
described in Table 10.3 along with a brief description of these commands and tools.
When one takes a structured approach to diagnose the performance issues in a system,
then it is definitely possible to rapidly isolate the problem area. Also one has to do this
performance monitoring even when the system is healthy and behaving normally as this
will help in creating a baseline for future measurements.
Performance bottlenecks in a system could be due to a CPU problem, I/O problem, paging
problem, or network problem. These bottlenecks could be because of the processes that
are CPU bound or I/O bound. In order to identify these problems and fix them, one has
to follow the structured approach as described in Figure 10.2.
First, run the basic commands like iostat, sar, and uptime to find out where exactly the
performance bottleneck is. From the reports generated from the above mentioned
commands, one can find out if the performance bottleneck is because of CPU bound, I/

Table 10.1. Performance counters in UNIX: sar –u options

Performance Counter Description
%usr This is the percentage of time the CPU is in user mode.
%sys This is the percentage of time the CPU is in system mode

(kernel mode).
%idle This is the percentage of time the CPU is idle. If the

percentage is high and the system is heavily loaded, there
is probably a memory or an I/O problem.

%nice This is the percentage of CPU utilization that occurred while
executing at the user mode with nice priority.

%wio This is the percentage of time the CPU is waiting on
completion of I/O from disk, NFS, or RFS. If the percentage
is regularly high, then one has to check the I/O systems for
inefficiencies and bottlenecks.

Table 10.2. Additional performance counters in UNIX

Performance Counter Description
I/O Time and Network Time The amount of time spent moving data and servicing I/O

requests.
Virtual Memory Performance Includes context switching and swapping.
Time Spent Time spent running other programs – i.e., when the system

is not servicing this application because another application
currently has the CPU time.

User-state CPU The time spent by the CPU executing library calls,
excluding time spent in the kernel on its behalf. This value
can be greatly affected by the use of optimization at
compile time and by writing efficient code.

System-state CPU The amount of time the CPU spends in the system state on
behalf of this program. All I/O routines require kernel
services. The programmer can affect this value by the use
of blocking for I/O trans fers.

240 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 10.3. Commonly used commands in UNIX

 Tools/Commands Description
Cron It is a deamon to execute scheduled

commands. It aids in process scheduling.
Nice/renice Prints/modifies the scheduling priority of

a job.
setpri Sets priorities for the jobs.

netstat Prints network statistics like network
connections, routing tables, etc.

nfsstat Prints Network File System statistics.

uptime System load average.

ps Reports the process statistics.

iostat Reports the I/O statistics.

vmstat Reports virtual memory statistics.

gprof Displays call graph profiling for data.

Prof Displays process profiling.

O bound, or other problems. One such example is the following: If the percentage
utilization of usr + sys > 80%, then there is a good chance the system is CPU constrained.
In similar lines, one can figure out other bottlenecks too.
If there is a performance bottleneck because of the CPU, then one can try fixing this
(Figure 10.2) by using the other tools and commands like profiling, time, optimization,
priority changing, and so forth to fix this bottleneck. Also one can upgrade the CPU so
as to get better performance.
If the performance bottleneck is due to I/O, then one can fix this bottleneck as described
in Figure 10.2 by monitoring the files using filemon command or by looking at the physical
or logical volume using the lspv and lslv commands. One can also fix this bottleneck by
increasing the disk space and reorganizing the file systems.
If the bottleneck is due to paging, then one can take corrective measures as shown in
Figure 10.2 by using commands like svmon and pstat and also by adding more memory
and disk. Note that the syntax for the usage of some of these commands might vary based
on the flavor of UNIX system used.
Finally, if the performance bottleneck is due to network congestion, then one could use
commands line nfsstat, netstat, and so on to get the report on network utilization and its
statistics and can take appropriate corrective measures to overcome this bottleneck as
shown in Figure 10.2. Also one can use the trace command to go deep into any of these
performance measures and get detailed statistics of the system’s performance and its
bottlenecks. This would also help in fixing the performance related issues in the system.
The workflow of this structured approach is also shown in Figure 10.2.

Introduction to Performance Monitoring and Tuning 241

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance Monitoring and
Tuning in Windows 2000

Windows 2000 is a “self-tuning” operating system. This means that in most cases,
Windows 2000 automatically adapts to perform optimally depending on the environment
in which it is running, assuming the hardware is properly configured. For instance, when

Figure 10.2. Workflow for the structured approach

Run iostat, sar and
uptime

 CPU problem

profiling

IO problem

Paging
Problem

Network
Problem

Run trace

time/timex

Optimization

Priority Changing

CPU Upgrade

filemon

lsvg

lsdev

lsattr

lspv

lslv

Add Disk Space

Reorganize filesystem

svmon

lsps or pstat

Add memory

Add disk

nfsstat

netpmon

netstat

Exit

Yes

No

No

Ye
s No

Ye
s

Yes

No

242 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Windows 2000 is deployed as a Web server, other services that are also present but not
used are put into a state where they occupy very few system resources such as CPU and
memory. However, like many other operating systems, performance depends on many
outside factors such as hardware, device drivers, applications, workload, network, and
so forth. In addition, there are certain practices and tuning guidelines that can be followed
to optimize the performance of Windows 2000 in certain environments.
Windows 2000 defines the performance data it collects in terms of objects, counters, and
instances. A performance object is any resource, application, or service that can be
measured. Using System Monitor and Performance Logs and Alerts, one can select
performance objects, counters, and instances to collect and present data about the
performance of system components or installed software.
Each object has performance counters that are used to measure various aspects of
performance such as transfer rates for disks or, for processors, the amount of processor
time consumed, total elapsed time consumed, number of page faults in unit seconds, and
so on. The object may also have an instance that is a unique copy of a particular object
type; not all object types support multiple instances.
Each counter is assigned a counter type. The counter type determines how the counter
data are calculated, averaged, and displayed. The performance console supports more
than 30 counter types, although many of the available counter types are not implemented
in the counters installed with Windows 2000. Some of the performance counters are
described in Table 10.4 (see http://msdn.microsoft.com). These performance counters
are used to monitor the performance of the system and also to tune its performance.
Windows 2000 supports a tool called PERFMON (see http://www.microsoft.com/technet/
prodtechnol/Windows2000Pro/reskit/part6/proch27.mspx) which supports all the
counters and counter types described in Table 10.4. Using this tool, one can easily
monitor various parameters and their values during the test execution.
Most of the applications are developed either in Java or Microsoft technology. Both the
technologies require the application architecture to be defined in advance before the
development of the application. These technologies support their own frameworks for
defining the architecture. However, there are certain architectural similarities between
these technologies to define the system. These similarities help us to define common
guidelines for monitoring performance counters and tuning applications.

Architectural Similarities
between Java and .NET

J2EE and Microsoft’s .NET technology share a broad common foundation of standards,
and they both have adopted the multitiered architecture approach that typically imple-
ments applications in different logical layers, which separate presentation from internal
structure (business logic and data management) (see xTier Java and .NETMiddleware
Components Overview, 2005).

Introduction to Performance Monitoring and Tuning 243

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 10.4. Performance counters in Windows 2000

Counter Name Counter Type Description
% Privileged Time PERF_100NSEC_TIMER Shows the percentage of elapsed time the

process threads have spent executing code in
privileged mode.

% Processor Time PERF_100NSEC_TIMER Shows the percentage of elapsed time all of
the process threads used the processor to
execute instructions.

% User Time PERF_100NSEC_TIMER Shows the percentage of elapsed time the
process threads spent executing code in user
mode.

Creating Process
ID

PERF_COUNTER_LARGE_RAWCOU
NT

Shows the Process ID of the process that
created the process. The creating process
may have terminated, so this value may no
longer identify a running process.

Elapsed Time PERF_ELAPSED_TIME Shows the time, in seconds, this process has
been running.

Handle Count PERF_COUNTER_RAWCOUNT Shows the total number of handles currently
open by this process. This is the sum of the
handles currently open by each thread in this
process.

ID Process PERF_COUNTER_LARGE_RAWCOU
NT

Shows the unique identifier of this process. ID
Process numbers are reused, so they only
identify a process for the lifetime of that
process.

IO Data Bytes/sec PERF_COUNTER_BULK_COUNT Shows the rate that the process is reading and
writing bytes in I/O operations.

IO Data
Operations/sec

PERF_COUNTER_BULK_COUNT Shows the rate at which the process is issuing
read and write I/O operations. This counter
counts all I/O activity generated by the process
to include file, network, and device I/Os.

IO Other
Bytes/sec

PERF_COUNTER_BULK_COUNT Shows the rate at which the process is issuing
bytes to I/O operations that do not involve data
such as control operations. It counts all I/O
activity generated by the process to include
file, network, and device I/Os.

IO Other
Operations/sec

PERF_COUNTER_BULK_COUNT Shows the rate at which the process is issuing
I/O operations that are neither read nor write
operations. It counts all I/O activity generated
by the process to include file, network, and
device I/Os.

IO Read Bytes/sec PERF_COUNTER_BULK_COUNT Shows the rate at which the process is reading
bytes from I/O operations. It counts all I/O
activity generated by the process to include
file, network, and device I/Os.

IO Read
Operations/sec

PERF_COUNTER_BULK_COUNT Shows the rate at which the process is issuing
read I/O operations. It counts all I/O activity
generated by the process to include file,
network, and device I/Os.

IO Write Bytes/sec PERF_COUNTER_BULK_COUNT Shows the rate at which the process is writing
bytes to I/O operations. It counts all I/O activity
generated by the process to include file,
network, and device I/Os.

IO Write
Operations/sec

PERF_COUNTER_BULK_COUNT Shows the rate at which the process is issuing
write I/O operations. It counts all I/O activity
generated by the process to include file,
network, and device I/Os.

Page Faults/sec PERF_COUNTER_COUNTER Shows the rate of page faults by the threads
executing in this process. A page fault occurs
when a thread refers to a virtual memory page
that is not in its working set in main memory.

244 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The most common similarities of the two technologies are given Figure 10.3.

• Both J2EE and .NET architecture models use the Object Oriented (OO) approach
for mainstream enterprise computing, with powerful OO frameworks (class librar-
ies) for services such as enterprise components management, object persistence,
transactions, Web services, asynchronous communication, loosely coupled event
services, messaging, and more.

• The use of virtual machine (VM) architecture is common to J2EE and .NET.
Application development tools produce intermediate level code instead of plat-
form-specific binary code, which means the VM interprets that code in real time or
performs Just-In-Time (JIT) compilation.

Counter Name Counter Type Description
Page File Bytes PERF_COUNTER_LARGE_RAWCOU

NT
Shows the current number of bytes this
process has used in the paging file(s).

Page File Bytes
Peak

PERF_COUNTER_LARGE_RAWCOU
NT

Shows the maximum number of bytes this
process has used in the paging file(s).

Pool Nonpaged
Bytes

PERF_COUNTER_RAWCOUNT Shows the size, in bytes, in the nonpaged
pool, an area of system memory. For objects
that cannot be written to disk but must remain
in physical memory as long as they are
allocated.

Pool Paged Bytes PERF_COUNTER_RAWCOUNT Shows the size, in bytes, in the paged pool.
Memory/Pool Paged Bytes are calculated
differently than Process/Pool Paged Bytes, so
it might not equal Process (_Total)/Pool Paged
Bytes. This counter displays the last observed
value only; it is not an average.

Priority Base PERF_COUNTER_RAWCOUNT Shows the current base priority of this process.
Threads within a process can raise and lower
their own base priority relative to the base
priority of the priority.

Private Bytes PERF_COUNTER_LARGE_RAWCOU
NT

Shows the current size, in bytes, this process
has allocated that cannot be shared with other
processes.

Thread Count PERF_COUNTER_RAWCOUNT Shows the number of threads currently active
in this process. An instruction is the basic unit
of execution in a processor, and a thread is the
object that executes instructions. Every
running process has at least one thread.

Virtual Bytes PERF_COUNTER_LARGE_RAWCOU
NT

Shows the current size, in bytes, of the virtual
address space the process is using. Virtual
space is finite, and by using too much, the
process can limit its ability to load libraries.

Virtual Bytes Peak PERF_COUNTER_LARGE_RAWCOU
NT

Shows the maximum number of bytes of virtual
address space the process has used at any
one time.

Working Set PERF_COUNTER_RAWCOUNT The set of memory pages touched recently by
the threads in the process. Shows the current
size, in bytes, in the Working Set of this
process.

Working Set Peak PERF_COUNTER_RAWCOUNT Shows the maximum size, in bytes, in the
Working Set of this process at any point in
time.

Table 10.4. cont.

Introduction to Performance Monitoring and Tuning 245

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• J2EE and .NET share a broad common foundation that implements the multitiered
approach. The high level conceptual architecture models for both platforms look
similar to those shown in Figure 10.3.

Once the architectural similarities between two technologies are known, it is easy to
define general guidelines for performance monitoring.

General Guidelines for
Performance Monitoring

Applications developed either in Java or Microsoft technology must be performance
conscious. The performance must be monitored continuously so that tuning becomes
easy. In order to ensure better performance monitoring of the system, practitioners need
to follow general guidelines.

Figure 10.3. Architectural similarities between .NET and Java

ADO+ and SOAP-based Web
Services

Windows

Windows, Solaris,
Linux, Others

Common Language

ADO.NET

Java Virtual Machine

.Net Framework Class

Standard Java

JDBC

ENTERPRISE JAVA BEANS

SWING / JAVA SERVER PAGES

WINDOWS FORMS / ASP.NET

246 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For routine monitoring, always start by logging activity over 15-minute intervals. If the
problem is very specific, then it is to be monitored by varying the interval and by setting
frequent update intervals. If the monitoring of the problem itself manifests slowly, such
as a memory leak, then use a longer interval.
Consider the overall length of time needed to monitor when choosing this interval.
Updating every 20 seconds would be realistic only if it is monitored for less than 4 hours.
An interval shorter than 300 seconds is preferred if the system is monitored for 8 hours
or more.
Try to balance the number of objects that are monitored and the sampling frequency to
keep the log file size within manageable limits.
If the tester prefers to maintain a long update interval when logging, the tester can still
view data fluctuations that occur between those intervals (see http://msdn.microsoft.com).
When monitoring computers remotely, the tester has two options to collect data.

• Log performance data on the administrator’s computer by collecting data continu-
ously from each remote computer.

• The tester can initiate a service on each remote computer to collect data at regular
intervals. Later, the tester can run a batch program to transfer data from remote
computers to the administrator’s computer for analysis and arching.

Collection on a local computer from remote computers that are monitored is simple to
implement because only one logging service would be running. Data can be collected
from multiple systems into a single log file. However, it causes additional network traffic
and might be restricted by available memory on the administrator’s computer. Select
appropriate counters when the data are collected centrally.
Data collection that occurs on remote computers that are monitored does not incur the
memory and network traffic problems of centralized collection. However, it does result
in delayed availability of the data, requiring the collected data to be transferred to the
administrator’s computer for review. For a distributed data collection, use computer
management on a local computer to select a remote computer from which to collect the
data.
When monitoring remote computers, note that the remote computer will only allow access
to user accounts that have permission to access it.
Testing the application requires choosing the parameters that will monitor the most
worthwhile activity of the application. The best parameters for the purposes of this
project — performance analysis — should retrieve the most valuable data for analyzing
where bottlenecks may occur. These chosen parameters should reflect the performance
related to the server (memory, CPU, disk) and the Web site (application throughput,
requests/sec, etc.).
Once the general guidelines are followed for monitoring, the next step would be to monitor
various counters on technology like Java or Microsoft technology.

Introduction to Performance Monitoring and Tuning 247

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance Monitoring
and Tuning: Java

Applications developed in Java technology are subjected to performance monitoring
during execution. Various performance counters could be used in JVM for monitoring and
tuning. Proper coding guidelines need to be followed for better performance. JVM
supports various counters to monitor performance of the application.

Performance Counters in JVM

One of the most annoying experiences for users with less than ideal memory configura-
tions is garbage collection (GC) pauses. There are a number of settings that affect the
way the JVM allocates memory and the behavior of garbage collection in J2SE 1.4.1.
The main purpose of monitoring GC and hence tuning is to reduce the frequency of major
garbage collection events without increasing their accumulating duration. NetBeans as
a GUI application produces and accumulates a considerable large number of objects.
In order to measure the performance of the JVM, one has to know the performance metrics
which are explained in the following sections.

Time in Seconds Spent in Garbage Collection

This is the total number of seconds that the process spends in doing garbage collection,
including:

• Number of GC events during the run;

• Average garbage cycle duration;

• Session duration.

The frequency of the above GC events should be minimized to achieve better perfor-
mance.

Events Monitoring

The events that can be monitored are:

• Thread synchronization or contention;

248 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Thread cooperation; this event describes the occurrences of cooperation between
threads in Java;

• Process scheduling information;

• Method invocation;

• Object allocation and deallocation.

The above JVM counters help to measure performance as well as monitoring. Java
technology provides a good tool known as Jconsole to monitor the performance of the
application.

Performance Monitoring Tool: Jconsole

Jconsole (see Using Jconsole, 2005) is a Java management extension (JMX)-compliant
monitoring tool. It uses the extensive JMX instrumentation of the Java virtual machine
to provide information on performance and resource consumption of applications
running on the Java platform.

Figure 10.4. Snapshot of Jconsole monitoring tool

Introduction to Performance Monitoring and Tuning 249

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Jconsole executable is in JDK_HOME/bin, where JDK_HOME is the directory where
the JDK is installed. If this directory is on the system path, one can start the tool by simply
typing Jconsole in the command (shell) prompt.
Performance counters that can be monitored using Jconsole are given in Figure 10.4.
These counters are:

• Summary

• Threads

• Memory

• MBeans

• VM

• Classes

Summary Tab

This tab gives information regarding the following metrics:

• Uptime: how long the JVM has been running.

• Total compile time: the amount of time spent in just-in-time (JIT) compilation.

• Process CPU time: the total amount of CPU time consumed by the JVM.

Threads Tab

This tab gives information regarding the following metrics:

• Live threads: current number of live daemon threads plus nondaemon threads.

• Peak: highest number of live threads since JVM started.
• Daemon threads: current number of live daemon threads.
• Total started: total number of threads started since JVM started (including daemon,

nondaemon, and terminated).

Memory Tab

This tab gives information regarding the following metrics:

250 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Current heap size: number of Kbytes currently occupied by the heap.

• Committed memory: total amount of memory allocated for use by the heap.

• Maximum heap size: maximum number of Kbytes occupied by the heap.

• Objects pending for finalization: number of objects pending for finalization.

• Garbage collector information: information on GC, including the garbage collector
names, number of collections performed, and total time spent performing GC.

The memory pools available depend on the JVM used. For the HotSpot JVM (see Java
HotSpot Technology, 2005), the pools are:

• Eden Space (heap): pool from which memory is initially allocated for most objects.

• Survivor Space (heap): pool containing objects that have survived GC of eden
space.

• Tenured Generation (heap): pool containing objects that have existed for some
time in the survivor space.

• Permanent Generation (non-heap): holds all the reflective data of the virtual
machine itself, such as class and method objects. With JVMs that use class data
sharing, this generation is divided into read-only and read-write areas.

• Code Cache (non-heap): HotSpot JVM also includes a “code cache” containing
memory used for compilation and storage of native code.

The Details frame shown in Figure 10.4 presents several current memory metrics:

• Used: the amount of memory currently used. Memory used includes the memory
occupied by all objects including both reachable and unreachable objects.

• Committed: the amount of memory guaranteed to be available for use by the JVM.
The amount of committed memory may change over time. The Java Virtual Machine
may release memory to the system, and committed memory could be less than the
amount of memory initially allocated at startup. Committed will always be greater
than or equal to used.

• Max: the maximum amount of memory that can be used for memory management.
Its value may change or be undefined. A memory allocation may fail if the JVM
attempts to increase the used memory to be greater than committed memory or even
in some cases wherein the amount used is less than or equal to max (for example,
when the system is low on virtual memory).

The bar chart at the lower right in Figure 10.4 shows memory consumed by the memory
pools in heap and non-heap memory. The bar will turn red when the memory used exceeds

Introduction to Performance Monitoring and Tuning 251

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the memory usage threshold. One can set the memory usage threshold through an
attribute of the MemoryMXBean.

Heap and Non-Heap Memory

The JVM manages two kinds of memory: heap and non-heap memory, both created when
it starts.

• Heap memory is the runtime data area from which the JVM allocates memory for all
class instances and arrays. The heap may be of a fixed or variable size. The garbage
collector is an automatic memory management system that reclaims heap memory
for objects.

• Non-heap memory includes a method area shared among all threads and memory
required for the internal processing or optimization for the JVM. It stores per-class
structures such as a runtime constant pool, field and method data, and the code for
methods and constructors. The method area is logically part of the heap, but
depending on implementation, a JVM may not garbage collect or compact it. Like
the heap, the method area may be of fixed or variable size. The memory for the
method area does not need to be contiguous.

In addition to the method area, a JVM implementation may require memory for internal
processing or optimization which also belongs to non-heap memory. An example could
be the JIT compiler requires memory for storing the native machine code translated from
the JVM code for high performance.

Memory Pools and Memory Managers

Memory pools and memory managers are key aspects of the JVM memory system.
A memory pool represents a memory area that the JVM manages. The JVM has at least
one memory pool, and it may create or remove memory pools during execution. A memory
pool can belong to either heap or non-heap memory.
A memory manager manages one or more memory pools. The garbage collector is a type
of memory manager responsible for reclaiming memory used by unreachable objects. A
JVM may have one or more memory managers. It may add or remove memory managers
during execution. A memory pool can be managed by more than one memory manager.

MBean Tab

The MBean tab displays information on all the MBeans registered with the platform
MBean server.

252 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The tree on the left shows all the MBeans arranged according to their objectNames. When
Bean is selected in the tree, its attributes, operations, notifications, and other information
are displayed on the right. The tester can set the value of attributes can be, if they are
writeable.

VM Tab

The Virtual Memory (VM) tab provides information on the JVM which includes the
following:

• Uptime: Total amount of time since the JVM was started.
• Process CPU Time: Total amount of CPU time that the JVM has consumed since

it was started.
• Total Compile Time: Total accumulated time spent in just-in-time (JIT) compilation.

Garbage Collection

Garbage collection is how the JVM frees memory occupied by objects that are no longer
referenced. It is common to think of objects that have active references as being “alive”
and unreferenced (or unreachable) objects as “dead”. Garbage collection is the process
of releasing memory used by the dead objects. The algorithms and parameters used by
GC can have dramatic effects on performance.
The HotSpot VM garbage collector (see Java HotSpot Technology, 2005) uses genera-
tional garbage collection. Generational GC divides memory into several generations
and assigns each a memory pool. When a generation uses up its allotted memory, the VM
performs a partial garbage collection (also called a minor collection) on that memory pool
to reclaim memory used by dead objects. This partial GC is usually much faster than a full
GC.
The HotSpot VM defines two generations: the young generation and the old generation.
The young generation consists of an “eden space” and two “survivor spaces”. The VM
initially assigns all objects to the eden space, and most objects die there. When it
performs a minor GC, the VM moves any remaining objects from the eden space to one
of the survivor spaces. The VM moves objects that live long enough in the survivor
spaces to the “tenured” space in the old generation. When the tenured generation fills
up, there is a full GC that is often much slower because it involves all live objects. The
permanent generation holds all the reflective data of the virtual machine itself, such as
class and method objects.

Classes Tab

This tab gives information regarding the following metrics:

Introduction to Performance Monitoring and Tuning 253

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Current classes loaded: number of classes currently loaded into memory.
• Total classes loaded: total number of classes loaded into memory since the JVM

started, including those subsequently unloaded.
• Total classes unloaded: number of classes unloaded from memory since the JVM

started.

Jconsole is a powerful tool used in the development of Java based applications.

Java Coding Guidelines

Java technology is most commonly used in present day development of Web applica-
tions.
Some of the broad guidelines (see HBS2005) are given below:

• Appropriate string manipulation code should be used.

• Choose appropriate database drivers.

• Avoid returning a collection (Vector or Hashtable). It is always better to return a
class which hides the real collection and better to return an interface, as this will
allow refactoring of the code if performance issues are found.

• A good code is always a small code which has clarity and follows coding standards.

• Follow naming conventions properly.

• Use a logging framework.

• Use a loosely coupled system or process. An example could be to create
metadescriptions data storage if there are a lot of layers in the system, or use Web
services.

Appendix A4 provides detailed coding guidelines.

Performance Monitoring
and Tuning: .NET

Most of the applications developed in Microsoft technology are in the .NET framework.
This framework provides a good platform for both development and running of applica-
tions. Like in Java, it provides counters to measure and monitor performance of the
applications.

254 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance Counters

Performance counters are used to monitor the utilization of the processors, the memory,
the network, and the I/O devices. Performance counters are organized and grouped into
performance counter categories. For instance, the processor category contains all
counters related to the operation of the processor such as the processor time, idle time,
interrupt time, and so forth.
Windows provides many predefined performance counters that can be retrieved pro-
grammatically or displayed using the Performance Monitor. As said earlier, these
counters are used to monitor the usage of the operating system resources. In .NET the
Common Language Runtime (CLR) exposes its own set of performance counters. These
performance counters cover every aspect of the CLR operations ranging from exception
processing to security checking.

CLR Performance Counters

The .NETCLR provides nine important performance counter categories to help the tester
monitor and tune the application’s performance. These counters provide information
about security, memory management, networking, compilation, and interactions with
other COM objects. This information helps in tuning the application.
Table 10.5 provides a list of these categories along with a brief description.
There are several other categories of counters which are not highlighted here, as they
are not important. Along with these counters, .NET provides counters on its framework
to monitor performance of the application.

Performance Counter
Category

Description

Exceptions Provide information about the exceptions thrown by the application.
Interop Provides information about the application’s interaction with COM

components, COM+ services, and type libraries.
JIT Provides information about code that has been compiled by the Just In

Time compiler.
Loading Provides information about assemblies, classes, and AppDomains that

have been loaded.
Locks and Threads Provide information about managed locks and threads used by the

application.
Memory Provides information about the garbage collector.
Networking Provides information about the data sent and received over the network by

the application.
Remoting Provides information about remote objects used by the application.
Security Gives a description about the security checks the CLR performs on the

application.

Table 10.5. CLR performance counters

Introduction to Performance Monitoring and Tuning 255

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

.NET Framework Performance Counters

Like in JVM, the .NET framework provides a set of performance counters which are
described in Table 10.6. Wide range of counters varying from measuring the memory,
processor utilization, time taken for waiting, execution of various requests can be
monitored. For instance, the counter %Processor time gives an indicator of the total
processor utilization in the system. The value range must be lower than 80-85% for
optimal results.

Table 10.6. Important .NET framework performance counters

Performance Counter Description Comments
Processor (_Total)/%
Processor Time

Gives an indicator of the total
processor utilization in the machine.

80-85% is acceptable; the
lower the better

.NETCLR Exception/# of
Excep Thrown/sec
(_Global_)

This is the number of managed code
exceptions thrown per second.

This has to be 0 under
normal circumstances

.NETCLR
Loading/Current
Assemblies (_Global_)

Indicates and records the number of
assemblies that are loaded in the
process.

None

.NETCLR Loading/Rate
of Assemblies

Rate at which assemblies are loaded
into the memory per second.

None

.NETCLR Loading/Bytes
in Loader Heap

Indicates the number of bytes
committed by the class loader across
all AppDomain.
.

This counter has to be in a
steady state, or else large
fluctuations in this counter
would indicate that there are
too many assemblies loaded
per AppDomain

.NETCLR Memory/#
Bytes in all Heaps

This counter indicates the current
memory allocated for the Garbage
Collector heap.
While using large data sets in
memory, excess cache entries, using
reg-ex and string parsing, excess
view-state or excessive session
objects contribute to the heavy
memory requirement. Hence, this
counter is used to start the diagnostic.

This has to be less than the
Process\Private Bytes
counter

.NETCLR Memory/%
Time in GC

This indicates the percentage of time
spent performing the last GC. If there
are any spikes in this counter, then
those are accepted.
Allocating large strings to cache,
heavy string operations, etc. leave a
lot of memory spaces the GC has to
clean up.

Lower value, in the range of
5-10%, is an acceptable
value

.NETData Provider for
SQLServer/NumberOfAc
tiveConnections

Number of active connections in the
pool in-use presently.

None

ASP.NET/Request
Execution Time

Time in milliseconds to execute the
last request.

None

ASP.NET/Request Wait
Time

Time in milliseconds to wait before
the request got executed.

None

ASP.NET/Requests
Current

Indicates the total number of requests
handled by the ASP.NETISAPI.
Beyond this, the requests are
rejected.

This counter needs to be
lesser than the
requestQueueLimit defined
at the process Model
configuration

256 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The suggested value in Table 10.6 is an indicator, and practitioners can use their
experience and judgment to arrive at a proper value. Only important counters are listed
here, and testers are advised to refer to the MSDN manual for more details.
Once the performance counters and their possible values are known, the system is now
ready for tuning. This technology provides a tool known as PERFMON which will be used
for monitoring as well as tuning the framework.

Performance Monitoring Tool: PERFMON

The performance monitor, PERFMON, is a system performance viewer that comes with
Windows NT, Windows 2000, Windows 2003, and Windows XP. PERFMON allows the
user to select counters from a list of available performance counter categories and display
them either in graph, histogram, or report format. The tool provides a provision to collect
data from a remote computer. It also provides selection of the required performance
object. The performance object could be any resources like processor, memory, or any
other objects related to the framework. The procedure to execute and monitor usage of
PERFMON is given in Appendix A6.

Performance Counter Description Comments
ASP.NET
Applications/Cache Total
Hit Ratio

This is the total hit-to-miss ratio of all
cache requests .

This needs to be as high as
possible

ASP.NET
Applications/Errors
during Execution

The total number of run-time errors. This needs to be as low as
possible

ASP.NET
Applications/Requests/s
ec

This is the total number of requests
executed per second

None

Process/% Processor
Time (aspnet_wp and
inetinfo)

The percentage of time the threads of
these processes spend using the
processor.

This has to less than 70%;
this counter allows us to
eliminate the effect of OS
requirement and other
external factors

Process/Handle Count
(aspnet_wp and inetinfo)

This is the total number of handles
open by these processes. This has to
be on an acceptable value.

A value less than 10,000 and
more than 2,000 is
acceptable; a value very high
can mean there are large
request hits being made

Process/Virtual Bytes Virtual Bytes is the current size in
bytes of the virtual address space the
process is using.

None

Memory/Available
Mbytes

The amount of physical RAM
available in the system.

This has to be at least 10-
15% of the physical RAM
available

Table 10.6. cont.

Introduction to Performance Monitoring and Tuning 257

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 10.7. Important performance counters used to identify CLR bottlenecks

Area Counter Description
Large Object Heap Size This counter displays the current size of the Large

Object Heap in bytes. Objects greater than 20 KBytes
are treated as large objects by the Garbage Collector
and are directly allocated in a special heap; they are
not promoted through the generations. This counter is
updated at the end of a GC; it is not updated on every
allocation.

% Time in GC Time in GC is the percentage of elapsed time that was
spent in performing a garbage collection (GC) since
the last GC cycle. This counter is usually an indicator
of the work done by the Garbage Collector on behalf
of the application to collect and compact memory. This
counter is updated only at the end of every GC, and
the counter value reflects the last observed value; it is
not an average.

Bytes in all Heaps This counter is the sum of four other counters; Gen 0
Heap Size; Gen 1 Heap Size; Gen 2 Heap Size; and
the Large Object Heap Size. This counter indicates
the current memory allocated in bytes on the GC
heaps.

Gen 0 Collections The youngest, most recently allocated are garbage
collected (Gen 0 GC) since the start of the application.
Gen 0 GC occurs when the available memory in
generation 0 is not sufficient to satisfy an allocation
request. This counter is incremented at the end of a
Gen 0 GC. Higher generation GCs include all lower
generation GCs. This counter is explicitly incremented
when a higher generation (Gen 1 or Gen 2) GC
occurs. _Global_ counter value is not accurate and
should be ignored. This counter displays the last
observed value.

Gen 1 Collections This counter displays the number of times the
generation 1 objects are garbage collected since the
start of the application. The counter is incremented at
the end of a Gen 1 GC. Higher generation GCs
include all lower generation GCs. This counter is
explicitly incremented when a higher generation (Gen
2) GC occurs. _Global_ counter value is not accurate
and should be ignored. This counter displays the last
observed value.

Gen 2 Collections This counter displays the number of times the
generation 2 objects (older) are garbage collected
since the start of the application. The counter is
incremented at the end of a Gen 2 GC (also called full
GC). _Global_ counter value is not accurate and
should be ignored. This counter displays the last
observed value.

Memory

of Pinned Objects This counter displays the number of pinned objects
encountered in the last GC. This counter tracks the
pinned objects only in the heaps that were garbage
collected; e.g., a Gen 0 GC would cause enumeration
of pinned objects in the generation 0 heap only. A
pinned object is one that the Garbage Collector cannot
move in memory.

258 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 10.7. cont.

Area Counter Description
of Exceps Thrown/Sec This counter displays the number of exceptions thrown

per second. These include both .NET exceptions and
unmanaged exceptions that get converted into .NET
exceptions; e.g., null pointer reference exception in
unmanaged code would get rethrown in managed
code as a .NET System.NullReferenceException; this
counter includes both handled and unhandled
exceptions. Exceptions should only occur in rare
situations and not in the normal control flow of the
program; this counter was designed as an indicator of
potential performance problems due to large (>100s)
rate of exceptions thrown. This counter is not an
average over time; it displays the difference between
the values observed in the last two samples divided by
the duration of the sample interval.

Exceptions

Throw to Catch Depth/Sec This counter displays the number of stack frames
traversed from the frame that threw the .NET
exception to the frame that handled the exception per
second. This counter resets to 0 when an exception
handler is entered; so nested exceptions would show
the handler to handler stack depth. This counter is not
an average over time; it displays the difference
between the values observed in the last two samples
divided by the duration of the sample interval.

Contention Rate/Sec Rate at which threads in the runtime attempt to
acquire a managed lock unsuccessfully. Managed
locks can be acquired in many ways:
by the "lock" statement in C# or by calling
System.Monitor.Enter or by using
MethodImplOptions.Synchronized custom attribute.

of Current Logical
Threads

This counter displays the number of current .NET
thread objects in the application. A .NET thread object
is created either by new System.Threading.Thread or
when an unmanaged thread enters the managed
environment. This counter maintains the count of both
running and stopped threads. This counter is not an
average over time; it just displays the last observed
value.

of Current Physical
Threads

This counter displays the number of native OS threads
created and owned by the CLR to act as underlying
threads for .NET thread objects. This counter’s value
does not include the threads used by the CLR in its
internal operations; it is a subset of the threads in the
OS process.

Locking and
Threading

of Current Recognized
Threads

This counter displays the number of threads currently
recognized by the CLR; they have a corresponding
.NET thread object associated with them. These
threads are not created by the CLR; they are created
outside the CLR but have since run inside the CLR at
least once. Only unique threads are tracked; threads
with the same thread ID reentering the CLR or
recreated after thread exit are not counted twice.

Introduction to Performance Monitoring and Tuning 259

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 10.7. cont.

Area Counter Description

of Total Recognized
Threads

This counter displays the total number of threads
recognized by the CLR since the start of this
application; these threads have a corresponding
.NETthread object associated with them. These
threads are not created by the CLR; they are created
outside the CLR but have since run inside the CLR at
least once. Only unique threads are tracked; threads
with the same thread ID reentering the CLR or
recreated after thread exit are not counted twice.

 Total Runtime Checks This counter displays the percentage of elapsed time
spent in performing runtime Code Access Security
(CAS) checks since the last such check. CAS allows
code to be trusted to varying degrees and enforces
these varying levels of trust depending on code
identity. This counter is updated at the end of a
runtime security check; it represents the last observed
value; it is not an average.

Security

Stack Walk Depth This counter displays the depth of the stack during
that last runtime Code Access Security check. The
Runtime Code Access Security check is performed by
crawling the stack. This counter is not an average; it
just displays the last observed value.

.NET Framework Tuning

After monitoring various performance counters, the .NET framework is ready for tuning.
First, it is required to tune the CLR. Tuning CLR affects all managed code regardless of
the implementation technology. Then, other technology like ASP.NET applications or
Web services and ADO.NET code needs to be tuned.

CLR Tuning

CLR tuning is mostly achieved by class designing and then optimizing the code. To
enable the CLR to perform its tasks efficiently, the design needs to enable efficient
garbage collection. The main CLR related bottlenecks are because of the contention for
resources, inefficient resource cleanup, misuse of the thread pool, and resource leaks.
The few important performance counters shown in Table 10.7 would give an idea of how
to identify CLR bottlenecks. Counters can be added to monitor and analyze using
PERFMON depending on the requirements.
CLR counters provide first level indication for possible bottlenecks. The system
counters also provide next level bottlenecks which are described.

260 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 10.8. Common bottlenecks identified using system counters

Bottlenecks Counter Comments
Excessive memory
consumption

Process/Private Bytes
.NETCLR Memory/# Bytes in All
Heaps
Process/Working Set
.NETCLR Memory/Large Object
Heap Size

An increase in Private Bytes
while the # of Bytes in all
heaps counter remains the
same indicates unmanaged
memory consumption. An
increase in both counters
indicates managed memory
consumption.

Large working set size Process/Working Set The working set is the set of
memory pages currently
loaded in RAM. A high value
might indicate that a number of
assemblies are loaded.

Fragmented large object
heap

.NETCLR Memory/Large Object
Heap Size

Objects greater than 83 KB in
size are allocated in the large
object heap, which is
measured by High CPU
utilization.

High CPU utilization % Time in GC
.NETCLR Exceptions/# of
Exception Thrown/Sec
Thread\Context Switches/Sec

None

Thread contention .NETCLR
LocksAndThreads/Contention
Rate/Sec
.NETCLR LocksAndThreads/Total
of Contentions

None

Bottlenecks Identified Using System Counters

Some of the common bottlenecks that occur in applications developed using managed
code are identified using system counters as given in Table 10.8.
An increase in the contention rate or a significant increase in the total number of
contentions is a strong indication that an application is encountering thread contention.
To resolve this issue, one has to identify code that accesses shared resources or uses
synchronization mechanisms.
The next set of tuning activities must be considered with ASP.NET tuning.

ASP.NET Application: Identifying Bottlenecks and
Tuning

ASP.NET is a technology from Microsoft for building Web applications and XML Web
services. ASP.NET pages employ a compiled, event-driven programming model that
enables the separation of application logic and user interface. ASP.NET pages and
ASP.NETXML Web services files contain server side logic. During the process of Web
application development, developers normally get performance issues that need to be
addressed.

Introduction to Performance Monitoring and Tuning 261

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The following sections highlight different areas that are causing the bottleneck and how
to tune them optimally.

ASP.NET Performance Counters

First, we need to identify the counters that are required in the ASP.NET application to
detect the bottleneck. The performance counters shown in Table 10.9 help to identify
ASP.NET bottlenecks.

ASP.NET Application Bottlenecks

The following list describes several common bottlenecks that occur in ASP.NET
applications and explains how to identify them using the system counters listed in Table
10.9.

• Thread pool starvation. Thread pool bottlenecks can occur when ASP.NET runs
out of worker and I/O threads to process incoming requests or perform I/O work.
To identify this symptom, observe the following performance counters:

� ASP.NET/Requests Queued
� Process/% Processor Time (aspnet_wp.exe or w3wp.exe)

If requests are being queued with low processor utilization levels, this is a strong
indication that ASP.NET is performing non-CPU bound work. If the application
makes calls to remote or local Web services, then the thread pool can be tuned to
resolve the issue.
As an alternative, custom performance counters could be used to monitor the
thread pool to investigate the available I/O and worker threads further.

• Thread contention. Thread contention occurs when multiple threads try to gain
access to a shared resource.

• Memory bottlenecks. These can result from memory leaks, fragmentation issues,
inefficient resource cleanup, or simply allocating too much or too little memory for
the worker process.
To identify this symptom, the following performance counters are observed in
addition to the system level memory related counters.

� Process/Private Bytes (aspnet_wp.exe or w3wp.exe)
� Process/Virtual Bytes (aspnet_wp.exe or w3wp.exe)
� .NETCLR Memory/# Bytes in all Heaps (aspnet_wp.exe or w3wp.exe)

262 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Worker Process Restarts. Restarting the ASP.NET worker process takes time and
consumes resources. The following factors can contribute to recycling causing
performance bottlenecks.

• Changes to a configuration file (Note that these changes are not logged to the
Application Log)

• Deadlocks

• Exceeding memory limits (<processModel memory Limit= />)

• Request and timeout limits specified in Machine.config

Table 10.9. Performance counters used to identify ASP.NET bottlenecks

Area Performance Object Performance Counter Description
Worker
Process

ASP.NET Worker Process
Restarts

Number of times a worker process
has restarted on the machine.

ASP.NET Applications Requests Timed Out The number of requests that timed
out.

ASP.NET Applications Requests/Sec

The number of requests executed
per second.

Web Service ISAPI Extension
Requests/Sec

The rate of ISAPI Extension
requests that are simultaneously
being processed by the Web
service.

ASP.NET Requests Current

The current number of requests,
including those that are queued,
currently executing, or waiting to
be written to the client. Under the
ASP.NET process model, when
this counter exceeds the
requestQueueLimit defined in the
processModel configuration
section, ASP.NET will begin
rejecting requests.

Throughput

ASP.NET Applications Requests Executing

The number of requests currently
executing.

Response
Time/Latency

ASP.NET Request Execution
Time

The number of milliseconds it took
to execute the most recent
request.

ASP.NET Applications Cache Total Entries

Total number of entries within the
cache (both internal and user
added).

ASP.NET Applications Cache Total Hit Ratio

Ratio of hits from all cache calls.

ASP.NET Applications Cache Total Turnover
Rate

Number of additions and removals
to the total cache per second.

ASP.NET Applications Cache API Hit Ratio

Ratio of hits called from user
code.

ASP.NET Applications Cache API Turnover
Rate

Number of additions and removals
to the API cache per second.

ASP.NET Applications Output Cache Entries

Current number of entries in the
output cache.

ASP.NET Applications Output Cache Hit Ratio

Ratio of hits to requests for output
cacheable requests.

Cache

ASP.NET Applications Output Cache
Turnover Rate

Number of additions and removals
to the output cache per second.

Introduction to Performance Monitoring and Tuning 263

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ASP.NET Application Performance Tuning

When tuning the performance of an ASP.NET application, the factors required to be
considered are:

• The client’s interaction with ASP.NET
• The worker process itself. (i.e., aspnet_wp.exe)
• Remote or local Web service calls from ASP.NET

Most ASP.NET tuning is performed by modifying the configuration parameters in the
system-wide Machine.config file and the application.
There are a number of options for tuning ASP.NET applications, most of which involve
tuning the settings in Machine.config file. This configuration file has many sections, but
the following sections are most critical from the performance point of view (see
Marquardt, 2005).

• <httpRuntime>

The <httpRuntime> element configures the ASP.NET runtime settings. One can specify
these at the machine, site, application, and subdirectory levels. The default settings from
Machine.config are

<httpRuntime executionTimeout=�90" maxRequestLength=�4096"
useFullyQualifiedRedirectUrl=�false� minFreeThreads=�8"
minLocalRequestFreeThreads=�4" appRequestQueueLimit=�100"
enableVersionHeader=�true�/>

For a detailed description of each attribute, see “<httpRuntime> Element” in the .NET
Framework documentation (see .NET framework general reference, 2005).

• <process Model>

The attributes on the <processModel> element apply to the ASP.NET worker process
(aspnet_wp.exe) and to all applications hosted in the worker process on an IIS 5 or 6 Web
server. Many of the settings are tuned by default and do not require further changes. The
default settings are as follows:

264 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 10.10. Key attributes in <processModel> and <httpRuntime>

Attribute s Description Comments
Maxconnection If an application makes calls to a

remote a Web service and the
requests are waiting for the call to
complete, one can increase the
CPU utilization and the application
performance by changing the
maxconnection attribute on the
<ConnectionManagement>
element in Machine.config.

Increasing maxconnection also can lead
to an increase in CPU utilization. This
increase in CPU utilization is caused by
the fact that more incoming requests
can be processed by ASP.NET instead
of having the incoming requests wait for
their turn to call the Web service. The
tester needs to balance the
maxconnection with the other attributes
discussed in this list and the actual CPU
utilization.

maxWorkerThreads
and maxIOThreads

These attributes define the
maximum number of worker and
I/O threads the ASP.NET worker
process is allowed to create.
These values do not reflect the
actual number of threads created
by the worker process

The maximum value for these attributes
is 100 per processor.

maxconnection and
minFreeThreads

This attribute defines the number
of threads that can be used for
work other than processing
incoming requests to the worker
process. This attribute prevents
the ASP.NET process from using
a thread from the thread pool to
handle a new HTTP request if this
would mean that the free thread
count drops below this limit.

The attribute is specified on the
<httpRuntime> element and has a
default value of 8.

minFreeThreads One can use this attribute to help
prevent deadlocks by ensuring
that a thread is available to handle
callbacks from pending
asynchronous requests. A
deadlock can occur i f all of the
threads in the thread pool are
currently in use handling incoming
HTTP requests, and one or more
of those requests are waiting for
asynchronous callbacks. In this
situation, there are no available
threads to service the callback.

One can set minFreeThreads to ensure
that some free threads are available to
process the callbacks.

<processModel enable=�true� timeout=�Infinite� idleTimeout=�Infinite�
shutdownTimeout=�0:00:05" requestLimit=�Infinite�
requestQueueLimit=�5000" restartQueueLimit=�10" memoryLimit=�60"
WebGarden=�false� cpuMask=�0xffffffff� userName=�machine�
password=�AutoGenerate� logLevel=�Errors�
clientConnectedCheck=�0:00:05" comAuthenticationLevel=�Connect�
comImpersonationLevel=�Impersonate�responseDeadlockInterval=�00:03:00"
MaxWorkerThreads=�20" maxIoThreads=�20"/>

Introduction to Performance Monitoring and Tuning 265

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For a detailed description of each attribute, see “<processModel> Element” in the.NET
Framework documentation (see http://msdn.microsoft.com/library/default.asp?url=/li-
brary/en-us/cpgenref/html/gngrfProcessmodelSection.asp).

• Thread Pool Attributes

Throughput can be improved by making effective use of threads. Tune the thread pool
to reduce connections and to avoid blocking threads because blocking threads reduces
the number of available worker threads.
Table 10.10 describes the key attributes (in <processModel> and <httpRuntime>) in the
Machine.config file related to ASP.NET ThreadPool.
Once the key attributes of <processModel> and <httpRuntime> in Machine.config file
are tuned to appropriate values, the system is ready for tuning the ASP.NET thread pool.

Tuning the Thread Pool in the ASP.NET Application

Tune the thread pool using the formula for reducing contention. The formula for reducing
contention can give a good empirical start for tuning the ASP.NET thread pool.
Microsoft’s recommended settings (see Bromberg, 2005) are shown in Table 10.11.
The above section shows how to identify the most commonly faced bottlenecks while
developing ASP.NET Web applications and the steps that need to be taken to avoid and
overcome performance issues so that one can build good ASP.NET.

Attributes Description Comments
minLocalRequestFree
Threads

Increasing minFreeThreads
means that one can reserve more
threads to make remote calls.

In all cases, one should ensure that
maxWorkerThreads – minFreeThreads
>=12. Twelve is the optimum number of
threads that should be made available
to the ASP.NET worker process to
service requests. This value means that
ASP.NET cannot execute more than
twelve requests concurrently. This limit
is based on a series of performance
tests, which demonstrate that normally
the worker process uses four of these
threads. If the processor is fully utilized
(greater than 95% utilization) and the
application makes long running calls,
the worker process is likely to use all
twelve threads.

Table 10.10. cont.

266 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 10.11. Microsoft’s recommended threading settings for reducing contention

Configuration setting Default (.NET1.1) Recommended
value

Purpose

Maxconnection 2 12 * #CPUs This setting controls the
maximum number of outgoing
HTTP connections allowed by
the client.

maxIOThreads 20 100 Cont rols the maximum number
of I/O threads in the CLR
thread pool.

maxWorkerThreads 20 100 Cont rols the maximum number
of worker threads in the CLR
thread pool.
This number is automatically
multiplied by the number of
CPUs by the worker processor.

minFreeThreads 8 88 * #CPUs Used by the worker process to
queue all of the incoming
requests if the number of
available threads in the thread
pool falls below the value for
this setting.

minLocalRequestFreeTh
reads

4 76 * #CPUs Used by the worker process to
queue requests from localhost
if the number of available
threads in the thread pool falls
below this number. This setting
is similar to minFreeThreads,
but it only applies to requests
originating on the local server.

Coding Guidelines

The concept of Object Oriented Programming using C# in the .NET framework calls for
a different environment programming. The CLR provides many features such as auto-
matic memory management, type safety, and exception handling as part of the framework.
Apart from this, there could be some coding pitfalls like any other programming
languages. Necessary coding guidelines for the following implementation need to be
followed in order to achieve better performance.

• Garbage Collection
• Finalize and Dispose Method
• Asynchronous Execution
• Locking and Synchronization
• Exception Management
• Iterating and Looping
• String Operations

Introduction to Performance Monitoring and Tuning 267

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Arrays and Collections
• Reflection and Late Binding
• Data Access

Along with implementation of the above, care should be taken while designing both
application as well as class design. For more details on coding guidelines, see Appendix
A5.

Summary

Web-based applications require a proper operating environment to run efficiently. The
operating environment includes a specific operating system, hardware/software re-
quired, and technology specific resources. The operating system plays a major role in
managing the performance of the system. In order to manage efficiently, each operating
system provides a mechanism to monitor and measure the performance parameters. The
values of these parameters will help tune the system for optimal performance at the
operating system level.
Applications have to be developed specific to a technology like Java or .NET. The
architecture design also depends on these technologies. While designing the architec-
ture, care must be taken to improve the performance. For this, the designers must follow
general guidelines so that the implementation of the application is better and performance
may improve.
Finally, technology specific aspects must be addressed to improve the performance.
Both Java and .NET provides various parameters at different levels to monitor and tune
performances. These parameters are measured through various counters. Monitoring
these counters provides performance related data which can be used to tune the system.
Finally, practitioners need to follow various guidelines for monitoring and tuning the
system, in general.

References

Bromberg, P. A. (2005). IIS 6.0 tuning for performance. Retrieved October 14, 2005, from
http://www.eggheadcafe.com/articles/20050613.asp

Lynch, J. (2005). UNIX and Web performance. Retrieved May 14, 2005, from http://
www.circle4.com/jaqui/papers/Webunuk.html

Marquardt, T. (2005). ASP.NET performance monitoring, and when to alert administra-
tors. Retrieved May 18, 2005, from at http://msdn.microsoft.com/library/en-us/
dnaspp/html/monitor_perf.asp

268 Subraya

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

.NET framework general reference. (2005). Retrieved May 18, 2005, from http://
msdn.microsoft.com/library/en-us/cpgenref/html/gngrfHttp RuntimeSection.asp

Java HotSpot Technology. (2005). Retrieved March 5, 2005, from http://java.sun.com/
products/hotspot/

Java language coding guidelines (2005). Retrieved May 17, 2005, from http://
www.horstmann.com/bigj/style.html

Using Jconsole. (2005). Retrieved May 26, 2005, from http://java.sun.com/j2se/1.5.0/
docs/guide/management/jconsole.html

xTier™ Java and .NETMiddleware components overview. (2005). Technical whitepaper.
Retrieved May 17, 2005, from http://www.fitechlabs.com/articles/
xtier_overview_article.pdf

Additional Sources

(2005). Retrieved May 17, 2005, from http://www.microsoft.com/resources/documenta-
tion/windows/2000/professional/reskit/en-us/part6/proch27.mspx

(2005). Retrieved May 17, 2005, from http://msdn.microsoft.com/library/en-us/cpgenref/
html/gngrfProcessmodelSection.asp

(2005). MSDN Home Page. Retrieved May 25, 2005, from http://msdn.microsoft.com/
At your service: Performance considerations for making Web service calls from ASPX

pages (n.d.). Retrieved May 13, 2005, from http://msdn.microsoft.com/library/en-
us/dnservice/html/service07222003.asp

Burk, R., & Horvath, D. B. (n.d.). UNIX Unuleashed, system administrator’s edition. The
main pages in the UNIX system trouble-shooting and diagnostic guide. Retrieved
May 18, 2005, from http://java.sun.com/j2se/1.5/pdf/jdk50_ts_guide.pdf

FIX: SetMinThreads and GetMinThreads API Added to Common Language Runtime
ThreadPool Class. Retrieved May 11, 2005, from http://support.microsoft.com/
default.aspx?scid=kb;en-us;810259

Microsoft Windows 2000 Professional Resource Kit- Overview of Performance Monitor-
ing. (n.d.). Retrieved May 14, 2005, from http://www.microsoft.com/resources/
documentation/windows/2000/professional/reskit/en-us/part6/proch27.mspx

Microsoft Support WebCast. Microsoft ASP.NET Threading. Retrieved May 20, 2005,
from http://support.microsoft.com/default.aspx?scid=%2f servicedesks%2f
Webcasts%2fen%2ftranscripts%2fwct060503.asp

PRB: Contention, poor performance, and deadlocks when you make Web service
requests from ASP.NET applications. (2005). Retrieved May 13, 2005, from http:/
/support.microsoft.com/default.aspx?scid=kb;en-us;821268

Introduction to Performance Monitoring and Tuning 269

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PRB: Sudden Requirement for a Larger Number of Threads from the ThreadPool Class
May Result in Slow Computer Response Time. Retrieved May 20, 2005, from http:/
/support.microsoft.com/default.aspx?scid=kb;en-us;827419

270 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Appendix Section

Appendix A:
Performance Tuning Guidelines

Performance tuning guidelines for a Web server (Apache), a database (Oracle), and an
object oriented technology (Java) are presented here. The guidelines are not standards
in themselves, but care has been taken to make it a reliable set of guidelines.

A.1. Apache Web Server

Concerns with Hardware and Operating Systems

One of the major issues affecting Web server performance is Random Access Memory
(RAM). A Web server should never have to swap, as swapping increases the latency of
each request. This causes users to hit refresh, which further increases the load. It is
necessary to control the maximum number of clients so that your server does not spawn
many child processes. This can be done by determining the size of average process list
and dividing this into the total available memory, leaving some room for other processes.
Next get CPU, a network card, and the disks, where the speed of each has to be determined
by experimentation.

Tuning Apache http(s) d.conf

Once compilation and installation of Apache is behind us, the tuning of the server is done
via the file httpd.conf (or httpsd.conf if you have included SSL).

Appendix Section 271

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Parameter Description
MaxClients When Apache starts up, it creates a number of HTTPD processes to handle

requests for Web pages. The creation and deletion of these are controlled by
the root httpd process and are dependent on the load on the Web server and
other parameters in httpd.conf. MaxClients sets the limit on the number of httpd
processes that a machine can create. This is to stop a heavily loaded Web
server from taking up more and more resources from the host machine. The
MaxClients directive sets the limit on the number of simultaneous requests that
can be supported; no more than this number of child server processes will be
created. To configure more than 256 clients, the HARD_SERVER_LIMIT ent ry
must be edited in httpd.h and recompiled.

MaxRequestsPerChild

When there are more requests than processes, the server will spawn new child
processes to handle the requests (assuming, of course the hard limit of
MaxClients has not been reached). After MaxRequestsPerChild requests, the
child process will die. If MaxRequestsPerChild is 0, then the process will never
expire. Setting MaxRequestsPerChild to a non-zero limit has beneficial effects;
it limits the amount of memory that the process can consume by memory
leakage and by giving processes a finite li fetime, it helps reduce the number of
processes when the server load reduces.

MinSpareServers

The MinSpareServers�set the minimum number of idle child server processes.
An idle process is one which is not handling a request. If there are fewer than
MinSpareServers idle, then the parent process creates new children at a
maximum rate of 1 per second. Tuning of this parameter should only be
necessary on very active sites. Setting this parameter to a very large number is
almost always a bad idea. This directive has no effect on Microsoft Windows.

StartServers

The StartServers set the number of child processes on the server which are
created at startup. As the number of processes is dynamically controlled
depending on the load, there is usually little reason to adjust this parameter.
When running under Microsoft Windows, this directive has no effect. There is
always one child which handles all requests. Within the child, requests are
handled by separate threads. The ThreadsPerChild (the maximum number of
connections the server can handle at once) controls the maximum number of
child threads handling requests, which will have a similar effect on the setting
of StartServers on UNIX.

MaxKeepAliveRequests

The MaxKeepAliveRequests limits the number of requests allowed per
connection when KeepAlive (enables HTTP persistent connections) is on. If it
is set to 0, unlimited requests will be allowed. It is recommended that this
setting be kept to a high value for best server performance (Liam Holohan).

Additional Sources

Dean Gaudet of apache software foundation. Retrieved October 15, 2004, from
httpd.apache.org/docs/misc/perf-tuning.html

Liam Holohan. Retrieved October 12, 2004, from http://www.smartframeworks.com/qt-
apache-perf.html

A2. Structured Query Language (SQL)

The purpose of this document is to provide valuable tips pertaining to writing SQL
queries and to make them work more efficiently and enhance performance. This is
applicable to all commonly available databases.

272 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Structure of Tables Used in this Document

The two tables that have been used to prepare this document are:

Table 1. dwtable1 (This table contains 2, 00,000 rows as test data)

Field Name Data Type
IDNO NUMBER(6)
IDNAME VARCHAR2(20)
PARTNUM VARCHAR2(10)
SPECNUM VARCHAR2(10)

Table 2. dwtable2 (This table contains 1,00,000 rows as test data)

 Name Data Type
EMPNO NUMBER(6)
ENAME VARCHAR2(10)
SAL NUMBER(6)
LOC VARCHAR2(10)

Hardware Specifications

The configuration of the Oracle Server is:

Processor Type: P4 (1.6 GHz)
Operating System: Microsoft Windows 2000
RAM: 256MB

SQL Tuning Examples

The following examples have been executed using Oracle 8i. The term “Elapsed” in the
examples below indicate the time taken by the query to execute and is displayed in the
clock format (Hours: Minutes: Seconds). The time taken by the query to execute is
dependent on many factors like query complexity, table structure, system load, database
used, and so forth.

1. Concatenation of Different Data Types
An SQL query involving concatenation of different datatypes takes more time to execute.

Appendix Section 273

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example:

SELECT * FROM dwtable2 WHERE empno||ename=�1234name1234’;

Elapsed: 00:00:00.66

The same query can be effectively written as:

SELECT * FROM dwtable2 WHERE empno=1234 AND ename=�name1234’;

Elapsed: 00:00:00.19

2. Usage of “WHERE” Instead of “HAVING”
Using a “where” clause in place of “having” is often effective, in group by statements.
The where clause is applied before selecting the data, whereas the having clause is
applied after data retrieval.

Example:

SELECT count(*) FROM dwtable2 GROUP BY empno HAVING empno=7890;

Elapsed: 00:00:01.59

The same query can be effectively written as:

SELECT count(*) FROM dwtable2 WHERE empno=7890 GROUP BY empno;

Elapsed: 00:00:00.03

3. Position of Table with Fewer Rows in the “SELECT…FROM” Query
It is advisable to put the table that returns the fewest rows at the end of the from list.

Example:

SELECT count(*) FROM dwtable2,dwtable1 WHERE rownum<=10

Elapsed: 00:00:04.53

274 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The same query can be effectively written as:

SELECT count(*) FROM dwtable1,dwtable2 WHERE rownum<=10;

Elapsed: 00:00:01.81

4. Usage of “BETWEEN” in Place of Comparison Operators
If a query involves a range of values to be searched on, then usage of “between” is
advisable over the comparison operators.

Example:

SELECT * FROM dwtable1 WHERE idno >= 200 AND idno<=300

101 rows selected.
Elapsed: 00:00:01.84

The same query could be more effectively written as:

SELECT * from dwtable1 WHERE idno BETWEEN 200 AND 300;

101 rows selected.
Elapsed: 00:00:01.10

5. Usage of Table Aliases
If more than one table is used in a query, then it is advisable to use table aliases, as they
would enhance the speed of the parse phase of the query.

Example:

SELECT idno, empno FROM dwtable1,dwtable2 WHERE table1.idno = dwtable2.empno AND
dwtable2.empno<=100;

99 rows selected.
Elapsed: 00:00:01.62

Appendix Section 275

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The same query can be written more efficiently as:

SELECT idno,empno FROM dwtable1 dt, dwtable2 ds WHERE dt.idno=ds.empno AND ds.empno<=100;

99 rows selected.
Elapsed: 00:00:01.18

6. Usage of NOT or != Operators
Unless it is absolutely necessary, one should avoid the usage of != or NOT operators
in SQL queries.
Whenever these operators are used, a FTS (Full Table Scan) is done.

7. Usage of Index or Indexes
Index enables faster retrieval of data, but is an overhead when insertion, updating, and
deletion processes are involved.
The index is a separate structure attached to a table. This structure holds the indexed
column value and a pointer to the physical data.
Hence, any query which involves searching based on indexes would first access the index
structure and then would retrieve the data from the respective table.
But if the table contains more than 4 to 5 indexes, then the performance comes down.
The selectivity for index is determined by the ratio of unique values in a given column
to the total number of values.
If the value is nearer to 0, then usage of index is not advisable.
If the value is nearer to 1, then usage of index would enhance the performance of the
system.

8. Materialized Views
A view is a window to the table. The view does not store data.
Whenever an operation involving a view is performed, two queries would be executed.
The first query would be the query involving the view, and the second one is the query
contained in the view.

Example:

CREATE view view1 AS SELECT * FROM dwtable1;

View Created.

276 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SELECT * FROM view1;

The above query, when executed, would further execute the query “select * from
dwtable1” contained in the view.
Views are not meant for performance, as they degrade performance.
Hence, for performance, it is advisable to use Materialized Views.

9. Usage of NULL
Null values are never stored in index structure.
Any query using the clause “IS NULL”, does not make use of index and does a FTS (Full
Table Scan), thereby taking more time to execute.

10. Queries Using OR Clause
If two or more expressions use OR, put the least restrictive (which returns the most rows)
expression first.
Oracle follows short circuit mode of evaluation in the case of conditional expressions.
In case of queries with the OR clause, if the first condition is satisfied, then it does not
check the second condition.

11. Resource Intensive Operations
Avoid using resource intensive operations like UNION, MINUS, DISTINCT, INTER-
SECT, ORDER BY, and GROUP BY. DISTINCT uses one sort whereas other operators use
two sorts or more.

12. Usage of “ORDER BY”
Avoid “ORDER BY” wherever possible as it works on output of the query and hence
involves double processing. The exception is if any of the columns to be sorted in DESC
order are wanted.

13. Usage of “EXISTS” and “NOT EXISTS” Clauses
Wherever it is possible,”EXISTS” or “NOT EXISTS” should be used. Using the
“EXISTS” clause may eliminate unnecessary table accesses.

14. Usage of Functions
Using functions in the where clause suppresses the use of indexes.

Example:

Appendix Section 277

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SELECT * FROM dwtable2 WHERE to_number(empno)=783;

Elapsed: 00:00:00.15This query could be written more efficiently as:

SELECT * FROM dwtable2 WHERE empno=783;
Elapsed: 00:00:00.01

References

Guidelines and Good Practice Guide for Developing SQL by Tina London.

A3. Performance Tuning Parameters for Oracle DBA

The Oracle database is commonly used in most of the application. The following table
provides tuning guidelines for various parameters. The guidelines also provide sug-
gested values for certain parameters, which help the designer during testing.

Parameter Default Value Range Description Significance Suggested value

DB_BLOCK_BUFFER
/DB_CACHE_SIZE

48M OS Dependent Size of the buffer
cache in the Sy stem
Global Area (SGA)

Make sure cache-miss
ratio is low

Ty pical v alues are in the
range of 20 to 50 per
user session. More of ten,
this v alue is set too high
than too low. Hav ing an
insufficient number of
block buff ers results in
higher than normal I/O
rates and possibly an I/O
bottleneck

 The ratio of
PHYSICAL READS to
DB BLOCK GETS and
CONSISTENT GETS
is the cache-miss ratio

DB_BLOCK_SIZE 2048 2048 to 32768 Specif ies the size (in
bytes) of Oracle
database blocks

As OLTP transactions
are small in nature
and simultaneous 2k
is sufficient

4

DB_FILE_MULTIBLO
CK_READ_COUNT

8 OS Dependent It specif ies the
maximum number of
blocks read in one I/O
operation during a
sequential scan

Used to minimize I/O
during table scans

4 to 16

DISK_ASYNCH_IO

TRUE True/False These parameters
enable or disable the
operating sy stem's
asy nchronous I/O
f acility

It allows query serv er
processes to ov erlap
I/O requests with
processing when
perf orming table
scans

TRUE

DB_WRITER_PROCE
SSES
(see PBM2004)

1 1 to 10 It specif ies the initial
number of database
writer processes f or
an instance

It is usef ul for systems
that modify data
heav ily

The v alue should be set
to high f or applications
that require f requent and
heavy updates to
database

DML_LOCKS (4 *
TRANSACTIONS)

20 to unlimited; a
setting of 0
disables enqueues

DML_LOCKS
specif ies the
maximum number of
DML locks

One f or each table
modif ied in a
transaction

For the v alue of 0,
enqueues are disabled
and perf ormance is
slightly increased

278 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Parameter Default Value Range Description Significance Suggested value

ENQUEUE_RESOUR
CES

Deriv ed from
SESSIONS
parameter

10 to unlimited This one sets the
number of resources
that can be
concurrently locked by
the lock manager

 If sessions <= 3

 Database f iles + 20

 If Sessions <> 4 to10

 Database f iles +
((SESSIONS - 3) * 5) +
20

 If sessions > 10

 Database f iles +
((SESSIONS - 10) * 2) +
55

DISTRIBUTED_TRAN
SACTIONS

0.25 *
TRANSACTIONS

0 to the v alue of
the
TRANSACTIONS
parameter

It specif ies the
maximum number of
distributed
transactions in which
this database can
participate at one time

The v alue of this
parameter

Cannot exceed the v alue
of the parameter
TRANSACTIONS

Parameter Default Value Range Description Significance Suggested value

MAX_DU MP_FILE_SI
ZE
(see LLA2004))

UNLIMITED 0 to unlimited, or
UNLIMITED

Specif ies the
maximum size of trace
f iles (excluding alert
f iles)

The dump f iles could
be as large as OS
permits

Change this limit if trace
f iles use too much space

OPEN_CURSORS 50 1 to 4294967295 (4
GB -1)

It specif ies the
maximum number of
open cursors a
session can hav e at
once

Can use this
parameter to prev ent
a session f rom
opening an excessiv e
number of cursors.
Application dependent

Set the v alue of
OPEN_CURSORS high
enough

OPTI MIZER_MODE choose Rule/choose/
f irst_rows_n/
f irst_rows/ all_rows

It establishes the
def ault behav ior f or
choosing an
optimization approach
f or the instance

PARALLEL_ADAPTIV
E_MULTI_USER

Deriv ed from the
v alue of
PARALLEL_AUTO
MATIC_TUNING

True/False When set to true,
enables an adaptiv e
algorithm designed to
improv e perf ormance
in multiuser
env ironments that use
parallel execution

The algor ithm
automatically reduces
the requested degree
of parallelism based
on the sy stem load at
query startup time.
The eff ective degree
of parallelism is based
on the def ault degree
of parallelism, or the
degree f rom the table
or hints, div ided by a
reduction f actor

TRUE

PARALLEL_BROADC
AST_ENABLED

FALSE TRUE/FALSE PARALLEL_BROADC
AST_ENABLED lets
improv e perf ormance
of hash and merge
join operations

 Set it to True f or Joins

PARALLEL_MAX_SE
RVERS

Deriv ed from the
v alues of
CPU_COUNT,
PARALLEL_AUTO
MATIC_TUNING,
and
PARALLEL_ADAP
TIVE_MULTI_USE
R

0 to 3599 It specif ies the
maximum number of
parallel execution
processes and parallel
recov ery processes
f or an instance

As demand increases,
Oracle increases the
number of processes
f rom the number
created at instance
startup up to this
v alue

If set, this parameter is
set to v ery low value;
some queries may not
hav e a parallel execution
process av ailable to
them during query
processing. If set to a
v ery high v alue, memory
resource shortages may
occur during peak
periods, which can
degrade perf ormance

PARALLEL_MIN_SE
RVERS
(see CUE2004)

0 0 to v alue of
PARALLEL_MAX_
SERVERS

It specif ies the
minimum number of
parallel execution
processes f or the
instance

This v alue is the
number of parallel
execution processes
Oracle creates when
the instance is started

Recommended v alue is 0

PARTITION_VIEW_E
NABLED
(see OBO2004)

FALSE True/False Specif ies whether the
optimizer uses
partition v iews or not

If set to True, the
Optimizer skips
unnecessary table
access in a partition
v iew

Appendix Section 279

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Parameter Default Value Range Description Significance Suggested value

PROCESSES
(see CUD2004)

Deriv ed from
PARALLEL_MAX_
SERVERS

6 to OS Dependent It specif ies the
maximum number of
operating sy stem user
processes that can
simultaneously
connect to Oracle

Depending
Parameters

Application requirement

 Sessions

 Transactions

SESSIONS
(see CUO2004)

(1.1 *
PROCESSES) + 5

1 to 231 It specif ies the
maximum number of
sessions that can be
created in the system

Depending
Parameters:
ENQUEUE_RESOUR
CES and
TRANSACTIONS

Set this parameter
explicitly to a v alue
equiv alent to the
estimated maximum
number of concurrent
users, plus the number of
background processes,
plus approximately 10%
f or recursiv e sessions

SHARED_POOL_SIZ
E
(see CUS2004)

For 64-bit platf orm,
64 MB, 32-bit
platf orm, 8MB

300 KB to OS
Dependent

It contains shared
cursors, stored
procedures, control
structures, and other
structures

When "Misses Ratio"
is greater than 1% or
"Hit Ratio" is less than
99% or Dictionary
cache "Ratio" is
greater than 10%,
increase this v alue

Larger v alues improv e
perf ormance in multiuser
sy stems. Smaller v alues
use less memory.

SORT_AREA_SIZE 65536 6 Database blocks
to OS dependent

Specif ies in by tes the
maximum amount of
memory Oracle will
use f or a sort

Increasing
SORT_AREA_SIZE
Size improv es the
efficiency of large
sorts

Application dependent

Parameter Default Value Range Description Significance Suggested value

TRANSACTIONS_PE
R_ROLLBACK_SEG
MENT
(see CID2004)

5 1 to OS Dependant It specif ies the
number of concurrent
transactions that
each rollback segment
to hav e to handle

Check f or Rollback
contention by
observ ing
V$WAITSTAT table

Can acquire more
rollback segments by
naming them in the
parameter
ROLLBACK_SEGMENT
S

 Segment to have
handle

 Adjust this v alue
accordingly

STAR_TRANSFORM
ATION_ENABLED
(see CSU2004)

FALSE TEMP_DISABLE/T
RUE/FALSE

It determines whether
a cost-based query
transf ormation will be
applied to star queries

If v alue is True, the
optimizer will consider
perf orming a cost-
based query
transf ormation on the
star query

PGA_AGGREGATE_
TARGET
(see CHD2004)

0 10 MB to 4096 GB
-1

It specif ies the target
aggregate PGA
memory av ailable to
all serv er processes
attached to the
instance

Increasing the v alue
of this parameter,
indirectly increases
the memory allotted to
work areas

While setting this
parameter, examine the
total memory of the
sy stem that is av ailable
to the Oracle instance
and subtract the SGA.
Then assign the
remaining memory to
PGA_AGGREGATE_TA
RGET

 Consequently , more
memory -intensiv e
operations are able to
run f ully in memory
and less will work their
way ov er to disk

PARALLEL_AUTOMA
TIC_TUNING
(see CFD2004)

FALSE FALSE/TRUE When set to TRUE,
Oracle determines the
def ault values f or
parameters that
control parallel
execution

In addition to setting
this parameter,
specify the
PARALLEL clause f or
the target tables in the
sy stem

280 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Parameter Default Value Range Description Significance Suggested value

CURSOR_SPACE_F
OR_TIME

FALSE FALSE/TRUE Allows usage of more
space f or cursors in
order to sav e time

Able to access the
shared SQL areas
f aster

When the shared pool is
large enough to hold all
open cursors
simultaneously, set this
v alue to TRUE

 It affects both the
shared SQL area and
the client's priv ate
SQL area

ROLLBACK_SEGME
NTS

Public rollback
segments

Any rollback
segment names
listed in
DBA_ROLLBACK_
SEGS except
SYSTEM

While setting this
parameter, the
instance acquires all
of the rollback
segments named in
this parameter, ev en if
the number of rollback
segments exceeds the
minimum number
required by the
instance

Cannot change the
v alue of this
parameter
dy namically, but can
change its v alue and
then restart the
instance

 When
UNDO_MANAGEME
NT is set to AUTO,
ROLLBACK_SEGME
NTS is ignored

MAX_ROLLBACK_SE
GMEN TS
(see CEE2004)

MAX(30,
TRANSACTIONS/T
RANSACTIONS_P
ER_ROLLBACK_S
EGMEN T)

2 to 65535 MAX_ROLLBACK_SE
GMEN TS specif ies
the maximum size of
the rollback segment
cache in the SGA

The number specif ied
signif ies the maximum
number of rollback
segments that can be
kept online (that is,
status of ONLINE)
simultaneously by one
instance

Keep it high

LOG_SMALL_ENT
RY_MAX_SIZE
(see PIO2004)

80 LOG_SMALL_ENT
RY_MAX_SIZE
specif ies the size in
bytes of the largest
copy to the log
buffers that can
occur under the
REDO allocation
latch.

Look for the ratio of
MISSES to GETS
in V$LATCH.

If miss ratio is high,
minimize the value of
this parameter

UNDO_MANAGEME
NT

MANUAL MANUAL/AUTO UNDO_MANAGEMENT
specif ies which undo
space management
mode the system should
use

When set to AUTO,
the instance starts
in automatic undo
management
mode. In manual
undo management
mode, undo space
is allocated
externally as
rollback segments.

AUTO

UNDO_RETENTION
(see CSL2004)

900Seconds 0 to 232-1 (max
value
represented by
32 bits)

It specif ies (in seconds)
the amount of committed
undo information to
retain in the database

Use
UNDO_RETENTIO
N to satisfy queries
that require old
undo information to
rollback changes to
produce older
images of data
blocks

Set it to the
duration of the
longest running
query

 Allocate
suff icient space
for the Undo
tablespace

CURSOR_SHARING EXACT FORCE/SIMILA
R/EXACT

It determines w hat kind
of SQL statements can
share the same cursors

For large
applications that do
not use bind
variables, cursor
sharing can be
enforced by setting
the initialization
parameter
CURSOR_SHARIN
G=FORCE.

FORCE

Appendix Section 281

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

(CEE2004). Retrieved December 17, 2004, from http://www.cise.ufl.edu/help/database/
oracle-docs/server.920/a96536/ch1111.htm

(CFD2004). Retrieved December 17, 2004, from http://www.cise.ufl.edu/help/database/
oracle-docs/server.920/a96536/ch1150.htm

(CHD2004). Retrieved December 17, 2004, from http://www.cise.ufl.edu/help/database/
oracle-docs/server.920/a96536/ch1158.htm

(CID2004). Retrieved December 17, 2004, from http://www.cise.ufl.edu/help/database/
oracle-docs/server.920/a96536/ch1214.htm

(CSL2004). Retrieved December 17, 2004, from http://www.cise.ufl.edu/help/database/
oracle-docs/server.920/a96536/ch1216.htm

(CSU2004). Retrieved December 17, 2004, from http://www.cise.ufl.edu/help/database/
oracle-docs/server.920/a96536/ch1204.htm

(CUD2004). Retrieved December 17, 2004, from http://www.cise.ufl.edu/help/database/
oracle-docs/server.920/a96536/ch1158.htm

(CUE2004). Retrieved December 17, 2004, from http://www.csee.umbc.edu/help/oracle8/
server.815/a67775/ch24_pex.htm#43059

(CUO2004). Retrieved December 17, 2004, from http://www.cise.ufl.edu/help/database/
oracle-docs/server.920/a96536/ch1189.htm

(CUS2004). Retrieved December 17, 2004, from http://www.cise.ufl.edu/help/database/
oracle-docs/server.920/a96536/ch1194.htm

(LLA2004). Retrieved December 17, 2004, from http://www.lc.leidenuniv.nl/awcourse/
oracle/server.920/a96536/ch1109.htm

(OBO2004). Retrieved December 17, 2004, from http://oracle.basisconsultant.com/
oracle_tuning_parameters.htm

(PBM2004). Retrieved December 17, 2004, from http://publib.boulder.ibm.com/tividd/td/
tec/SC32-1233-00/en_US/HTML/ecoimst96.html

(PIO2004). Retrieved December 17, 2004, from http://www.performance-insight.com/
html/ora3/back/REDOlog_14.html

A4. Java Technology

Java Technology is most commonly used in present day development of Web applica-
tions. Here an attempt has been made to provide a set of guidelines while writing Java
code during development.

282 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A4.1. Guidelines for Writing Java Code

1. Wherever possible, use local variables in preference to class variables.
2. Recycling of objects is one of the best ways to improve the performance (Object

Pooling).
3. While performing arithmetic operations in Java,

a. Compound assignment operators such as n += 4; these are faster than n = n
+ 4 because fewer bytecodes are generated. But this will be at the cost of
readability.

b. Multiplication is faster than exponential calculation.

4. Avoid premature flushing of buffers as it reduces performance.
5. Usage of StringBuffer is better when dealing with changing strings, especially

when there are string concatenations. Always initialize the StringBuffer with
proper size.

6. Performance is reduced if there is any premature object creation, so create the
required object as and when required.

7. Thread usage should try to match the resources available to the system. One CPU-
intensive thread per CPU is probably optimal (non-CPU intensive threads do not
count in this scenario).

8. Four types of drivers that are supported by JDBC are:

Type 1: JDBC-ODBC Bridge
Type 2: Native-API/partly Java driver
Type 3: Net-protocol/all-Java driver
Type 4: Native-protocol/all-Java driver
Type 2 and Type 4 Drivers are most used for software development because of their
performance.

9. Usage of JDBC Connection Pool in J2EE applications is a must. When connection
pooling is used, a set of connections are kept open by the server for the application
to use, which in turn increases the performance.

10. Must close the connection once the usage is complete or else connections that are
not closed can lead to multiple unused connections (Connection leak) to the
database server and will reduce the performance.

11. When it comes to performance issues concerning JDBC programming, there are two
major factors to consider: performance of the database structure and the SQL
statements used against it.

Appendix Section 283

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

12. For relative efficiency of the different methods, one can use the JDBC interfaces
to manipulate a database.

13. By default, JDBC’s auto-commit feature is set on; a small performance increase can
be achieved by turning off auto-commit. This way one can ensure that the commit
occurs after all the transactions are complete, instead of doing it after every
statement.

14. Use prepared statements.
15. A prepared statement object has to verify its metadata against the database once,

while a statement has to do it every time. The fact is that statement takes about 65
iterations of a prepared statement before its total time for execution catches up with
a statement. This will have performance implications for the application. Hence,
using a Prepared Statement object is advisable as it is faster than using a Statement
object.

16. SQL is always sent to the database server as a character string, for example, “{call
getempNumber (5467)}”. In this case, even though the application programmer
might assume that the only argument to getempNumber is an integer, the argument
is actually passed inside a character string to the server. The database server would
parse the SQL query, consult database metadata to determine the parameter
contract of the procedure, isolate the single argument value 12345, then convert
the string ‘5467’ into an integer value before finally executing the procedure as an
SQL language event.

17. Use stored procedures.
18. Cache data to avoid repeated queries.

A4.2. Performance Guidelines for EJB and Servlet Based Application
Development

1. Using large objects will produce large serialization overhead. For instance, we
should not store large object graphs in javax.servlet.http.HttpSession. Servlets
may need to serialize and deserialize HttpSession objects for persistent sessions.

2. Use the tag “<%@ page session=”false”%>” to avoid creating HttpSessions in
JSPs.

3. Synchronization in Servlets should be minimal; this is to avoid multiple execution
threads becoming effectively single-threaded.

4. Avoid the use of javax.servlet.SingleThreadModel if the intended users are many.
The Web server servlet engine handles the servlet’s reentrance problem by
creating separate servlet instances for each user. This causes a great amount of
system overhead and hence SingleThreadModel should be avoided. Developers
typically use javax.servlet.SingleThreadModel (deprecated in latest API) to pro-
tect updateable servlet instances in a multithreaded environment. A much better
approach would be to avoid using servlet instance variables that are updated from
the servlet service method.

284 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. Use the HttpServlet’s init method to perform expensive operations that have to be
done only once.

6. Access entity beans from session beans, not from client or servlet code.
7. Use Read-Only methods where appropriate in entity-beans to avoid unnecessary

invocations to store.
8. The EJB “remote programming” model always assumes EJB calls are remote, even

where this is not so. Where calls are actually local to the same JVM, try to use calling
mechanisms that avoid the remote call.

9. Remove stateful session beans (and any other unneeded objects) when finished
to avoid extra overhead in case the container needs to be passivated.

10. Beans.instantiate() incurs a file system check to create new bean instances. Use
“new” to avoid this overhead.

Additional Sources

Harvey W. Gunther. Retrieved October 15, 2004, from http://
www.javaperformancetuning.com/tips/j2ee.shtml

Patrik. Retrieved October 15, 2004, from http://patrick.net/jpt
Performance Guidelines while using Java Database Connectivity (JDBC). Retrieved

November 15, 2004, from http:// www .oreilly .com/ catalog/jorajdbc/chapter/
ch19.html

A5: .NET Coding Guidelines

The concept of Object Oriented Programming using C# in the .NET framework calls for
a different environment programming. The CLR provides many features such as auto-
matic memory management, type safety, and exception handling as part of the framework.
Apart from this, there could be some coding pitfalls like any other programming
languages. Some of these are addressed in the following sections with possible coding
guidelines for the same.

Guidelines for Garbage Collection

Garbage collection (GC) is how the Common Language Runtime (CLR) frees memory
occupied by objects that are no longer referenced. It is common to think of objects that
have active references as being “alive” and unreferenced (or unreachable) objects as
“dead.” Garbage collection is the process of releasing memory used by the dead objects.
This section provides recommendations to help improve garbage collection (see DJG2005)
performance.

Appendix Section 285

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Identify and Analyze the Application’s Allocation Profile
Object size, number of objects, and object lifetime are all factors that impact the
application’s allocation profile.
To identify when allocations occur and which generations they occur in,
application’s allocation patterns are to be observed by using an allocation profiler
such as the CLR Profiler.

• Avoid Calling GC.Collect
The default GC.Collect method causes a full collection of all generations. Full
collections are expensive because literally every live object in the system must be
visited to ensure complete collection. As a result, do not call GC.Collect directly
and let the garbage collector determine when it needs to run.
The garbage collector is designed to be self-tuning. Programmatically forcing
collection can hinder tuning and operation of the garbage collector.
If GC.Collect is to be called at all, it is called in the following way:
Call GC.WaitForPendingFinalizers after GC.Collect is called. This ensures that the
current thread waits until finalizers for all objects are called.
After the finalizers run, there are more dead objects (those that were just finalized)
that need to be collected. One more call to GC.Collect collects the remaining dead
objects.

• Using Weak References
Use weak references mostly for objects that are not small in size because the weak
referencing itself involves some overhead. They are suitable for medium to large
sized objects stored in a collection.
Consider using weak references when there is a need to work with cached data, so
that cached objects can be reused again easily if needed or released by garbage
collection when there is memory pressure.

• Prevent the Promotion of Short Lived Objects
Objects that are allocated and collected before leaving Gen 0 are referred as short
lived objects.
The following principles help ensure that short lived objects are not promoted:

� Do not reference short lived objects from long lived objects

Example: Assigning a local object to a class level object reference.

� Avoid implementing a Finalize method

The garbage collector must promote finalizable objects to older generations to
facilitate finalization, which makes them long lived objects.

286 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

� Avoid having finalizable objects refer to anything

This can cause the referenced object(s) to become long-lived.

• Set Unneeded Member Variables to Null before Making Long Running Calls

� If there is no need for a static variable in a class, or some other class, set it to
null.

� If there are any objects that could be disposed before the long running call,
set those to null.

� Do not set local variables to null (C#) because the JIT compiler can statically
determine that the variable is no longer referenced and there is no need to
explicitly set it to null. The following code shows an example using local
variables.

void func(�)
{
String str1;
str1=�abc�;
// Avoid this
str1=null;
}

• Minimize Hidden Allocations
Memory allocation is extremely quick because it involves only a pointer relocation
to create space for the new object. However, the memory has to be garbage
collected at some point and that can affect the performance.

• Avoid or Minimize Complex Object Graphs
Avoid using complex data structures or objects that contain a lot of references to
other objects. These can be expensive to allocate and create additional work for the
garbage collector. A common mistake is to make the graphs too general.

• Avoid Preallocating and Chunking Memory
If memory is preallocated, it may cause more allocations than needed; this could
result in unnecessary garbage collections (see MMS2005).

Guidelines for Finalize and Dispose

Finalization is a service used to clean the processing by the GC. This is often used for
releasing unmanaged resources like filehandles, database connections, and COM
interfaces. Finalize is a method used to implement the finalization service.

Appendix Section 287

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The dispose method is used for types that contain references to external resources like
bitmap or databases that need to be explicitly freed by the calling code.
This section suggests recommendations in usage of Finalize and Dispose.

• Call Close or Dispose on Classes that Support It
If the managed class uses Close or Dispose, then one of these methods is called
as soon as it is finished with the object.

Some of the common disposable resources for the corresponding classes are given in
Table A5.1.

Table A5.1. Classes and disposable resources

Classes Disposable Resources
Database related Connection, Data Reader, and

Transaction.

File based FileStream and BinaryWriter.
Stream based StreamReader, TextReader, TextWriter,

BinaryReader, and TextWriter.
Network based Socket, UdpClient, and TcpClient.

• The Using Statement in C#
The using statement in C# automatically generates a try and finally block at compile
time that calls Dispose on the object allocated inside the using block.

• Do Not Implement Finalize Unless Required
Implementing a finalizer on classes that do not require it adds to the finalizer thread
and the garbage collector. Avoid implementing a finalizer or destructor unless
finalization is required.

• Implement Finalize Only If there Is Unmanaged Resources across Client Calls
Use a finalizer only on objects that hold unmanaged resources across client calls.
For instance, if an object has only one method named GetData, that opens a
connection, fetches data from an unmanaged resource, closes the connection, and
returns data; there is no need to implement a finalizer.

• Move the Finalization Burden to the Leaves of Object Graphs
If an object graph with an object referencing other objects (leaves) holds unmanaged
resources, finalizers should be implemented in the leaf objects instead of in the root
object.
Moving the finalization burden to leaf objects results in the promotion of only the
relevant ones to the finalization queue, which helps in optimizing the finalization
process.
IDisposable should be implemented if the finalizer is implemented. In this way, the
calling code has an explicit way to free resources by calling the Dispose method.

288 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The finalizer should be implemented along with the Dispose because one cannot
assume that the calling code always calls Dispose. Although costly, the finalizer
implementation ensures that resources are released.

• Suppress Finalization in Dispose Method
The purpose of providing a Dispose method is to allow the calling code to release
unmanaged resources as soon as possible and to prevent two cycles being taken
for the object’s cleanup.

• Allow Dispose to Be Called Multiple Times
Calling code should be able to safely call Dispose multiple times without causing
exceptions.

• Call Dispose on Base Classes and on IDisposable Members
If the class inherits from a disposable class, then make sure that it calls the base
class’s Dispose.

• Provide Thread Safe Cleanup Code Only if User Type is Thread Safe
If user type is thread safe, make sure user cleanup code is also thread safe. One must
be ensured to synchronize threads calling Close and Dispose simultaneously.

Guidelines for Asynchronous Execution

Asynchronous calls provide a mechanism for increasing the concurrency of the appli-
cation. Asynchronous calls are nonblocking and occur when a method is called asyn-
chronously. This section suggests guidelines for optimized performance during asyn-
chronous execution.

• Consider Client Side Asynchronous Calls for UI Responsiveness
Asynchronous calls can be used to increase the responsiveness of client applica-
tions. Because asynchronous calls introduce additional programming complexity
and hence require careful synchronization logic to be added to the application’s
graphical interface code.

• Use Asynchronous Methods on the Server for I/O Bound Operations
Performance of the application is increased by executing multiple operations at the
same time whenever the operations are not dependent on each other.

• Avoid Asynchronous Calls That Do Not Add Parallelism
Since the calling code blocks while waiting for the Web service call to complete,
avoid asynchronous calls that do not add parallelism.

Appendix Section 289

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Guidelines for Locking and Synchronization

Locking and synchronization provide a method to grant exclusive access to data or code
to avoid concurrent execution. This section provides guidelines to consider when
developing multithreaded code that requires locks and synchronization:

• Acquire Locks Late and Release Them Early
Acquire a lock on the resource just before it is needed to access it and release the
lock immediately after one is finished with it.

• Avoid Locking and Synchronization Unless Required
Synchronization requires extra processing by the CLR to grant exclusive access to
resources. If there is no multithreaded access to data or require thread synchroni-
zation, do not implement it.

• Use Granular Locks to Reduce Contention
When used properly and at the appropriate level of granularity, locks provide
greater concurrency by reducing contention.

• Avoid Excessive Fine Grained Locks
Fine grained locks protect either a small amount of data or a small amount of code.
When used properly, they provide greater concurrency by reducing lock conten-
tion. Used improperly, they can add to the complexity of the application and may
also decrease the performance and concurrency.

• Avoid Making Thread Safety the Default for User Type
When a specific class is designed, the proper level of atomicity may not be known
to the class designer, especially for lower level classes. Thread safety is required
at the higher layer of the software architecture and not always at an individual class
level.

Guidelines for Exception Management

This section provides recommendations which aid in the usage of Exception Manage-
ment for performance. Exceptions add significant overhead to an application. If the
application does not handle an exception, it propagates up the stack. If it is an ASP.NET
application exception, it will be handled by the ASP.NET exception handler. When
handling exception, consider the following:

• Do Not Use Exceptions to Control Application Flow
Throwing exceptions is expensive. Do not use exceptions to control application
flow. If one can reasonably expect a sequence of events to happen in the normal
course of running code, then one probably should not throw any exceptions in that
scenario.

290 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Use Validation Code to Reduce Unnecessary Exceptions
If it is known that a specific avoidable condition can happen, proactively write code
to avoid it.

• Use the Finally Block to Ensure Resources are Released
For both correctness and performance reasons, it is good practice to make sure all
expensive resources are released in a suitable finally block. The reason for this is
a performance issue as well as a correctness issue as timely release of expensive
resources is often critical to meet performance objectives.

• Do Not Catch Exceptions That Cannot Be Handled
Exceptions are not caught unless they are specifically required to record and log
the exception details.

• Be Aware That Rethrowing is Expensive
The cost of using throw to rethrow an existing exception is approximately the same
as throwing a new exception.

Guidelines for Iterating and Looping

Iteration and Looping, if not used properly or not optimized, there would be increased
memory consumption resulting in exhausting CPU. The following guidelines give an idea
to utilize the looping statement and iterative constructs for better performance.

• Avoid Repetitive Field or Property Access
If one uses the data that is static for the duration of the loop, it should be obtained
before the loop instead of repeatedly accessing a field or property.

• Optimize or Avoid Expensive Operations within Loops
Identify operations in the loop code that can be optimized. Look for code that
causes boxing or allocations as a side effect.

• Copy Frequently Called Code into the Loop
Instead of repeating the code at several points in the program, put it in the loop and
execute. This is normally used in database applications.

• Consider Replacing Recursion with Looping
Recursion may impact the stack overflow and hence the program may crash.
Therefore, replace recursion with looping which has a definite end point for
execution.

• Use “for” Instead of “for each” in Performance Critical Code Paths
Tuning Guidelines for String Operations

This section summarizes recommendations to help improve the usage of string and string
functions.

Appendix Section 291

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Avoid Inefficient String Concatenation

� Excessive string concatenation results in many allocation and deallocation
operations because each time an operation is performed to change the string,
a new one is created and the old one is subsequently collected by the garbage
collector

� Concatenation of nonliteral strings is done by the CLR at run time. So using
the + operator creates multiple strings objects in the managed heap

� Note that concatenation of string literals is done by compiler at compile time
� Use StringBuilder for complex string manipulations and when it is needed to

concatenate strings multiple times
� Use + When the Number of Appends Is Known
� Do Not use + on strings inside a loop or for multiple iterations. Use StringBuilder

instead
� Treat StringBuilder as an Accumulator
� Use the Overloaded Compare Method for case insensitive string Comparisons
� Avoid using ToLower because one could end up creating temporary string

objects. The String.Compare method uses the info in the CultureInfo.Compare
Info property to compare culture sensitive strings

Arrays and Collection Performance Guidelines

This section provides recommendations to help improve the usage of Arrays and
Collections.

• Prefer Arrays to Collections Unless Needed for Functionality
Arrays perform faster than collections, and Arrays also avoid the boxing and
unboxing overhead.

• Use Strongly Typed Arrays
Avoid using object arrays to store types; instead use strongly typed arrays for
maximum extent, which results in avoiding type conversion or boxing, depending
upon the type stored in the array.

• Use Jagged Arrays Instead of Multidimensional Arrays

� A jagged array is a single dimensional array of arrays. The elements of a jagged
array can be of different dimensions and sizes. Use jagged arrays instead of
multidimensional arrays to benefit from Microsoft Intermediate Language
(MSIL) performance optimizations.

292 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• While sorting the collection, the following are to be considered:

� Use ArrayList to bind the read only sorted data to a data grid as a data source.
This is better than using a SortedList if it is required to bind read-only data
using the indexes in the ArrayList. The data are retrieved in an ArrayList and
sorted for display.

� Use SortedList for sorting data that is mostly static and needs to be updated
only infrequently.

� Use NameValueCollection for sorting strings.
� SortedList presorts the data while constructing the collection. This results in

a comparatively expensive creation process for the sorted list, but all updates
to the existing data and any small additions to the list are automatically and
efficiently reported as the changes are made. Sortedlist is suitable for mostly
static data with minor updates.

� If it is required to search the collection, do the following:

� Use Hashtable if the search is on collection randomly based on a key/
value pair

� Use StringDictionary for random searches on string data
� Use ListDictionary for sizes less than 10

� If it is needed to access each element by index, do the following:

� Use ArrayList and StringCollection for zero based index access to the
data

� Use Hashtable, SortedList, ListDictionary, and StringDictionary to access
elements by specifying the name of the key.

� Use NameValueCollection to access elements, either by using a zero-based
index or specifying the key of the element.

While developing a user defined (custom) collection, the following guidelines are
followed:

� Since all standard collections are passed by value, it is better to develop user
defined (custom) collection in order to marshal (pack and send) by reference

� Create a strongly typed collection for user defined custom object to avoid the
costs of upcasting or downcasting, or both (custom collections are needed,
if one requires a read only collection. One can have it as a separate point)

Appendix Section 293

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

� Strongly typed collection should have custom serializing behavior
� Cost of enumeration is to be reduced

• Initialize Collections to the Right Size Whenever Possible

� Initialize collections to the right size if it is known exactly, or even approxi-
mately, how many items needed to store in the collection; most collection
types allow specification of the size with the constructor

� Even if the collection is able to be dynamically resized, it is more efficient to
allocate the collection with the correct or approximate initial capacity

• Consider “for” Instead of “foreach”

� Use for instead of foreach (C#) to iterate the contents of arrays or collections
in performance critical code, particularly if there is no need to have the
protections offered by foreach

� foreach, in C#, uses an enumerator to provide enhanced navigation through
arrays and collections

� If one can use the for statement to iterate over the collection, consider doing
so in performance sensitive code to avoid that overhead

• Implement Strongly Typed Collections to Prevent Casting Overhead

� Implement strongly typed collections to prevent upcasting or downcasting
overhead

� StringCollection and StringDictionary are examples of strongly typed collec-
tions for strings

Reflection and Late Binding

Reflection provides the ability to examine and compare types, enumerate methods and
fields, and dynamically create and execute types at runtime. Even though all reflection
costs are high, some reflection operations cost much more than others. The first
(comparing types) is the least expensive, while the last (dynamically creating and
executing) is the most expensive. This is accomplished by examining the metadata
contained in assemblies. Many reflection APIs need to search and parse the metadata.
This requires extra processing that should be avoided in performance critical code.
The late binding technique uses reflection internally and is an expensive operation that
should be avoided in performance critical code.

294 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This section provides recommendations to minimize the performance impact of reflection
or late binding code.

• Prefer Early Binding and Explicit Types Rather Than Reflection
In C#, reflection is used explicitly. Avoid reflection wherever possible by using
early binding and declaring types explicitly.

The following operations are some examples that are performed when reflection in C# are
used explicitly:

� Type comparisons using TypeOf, GetType, and IsInstanceOfType
� Late bound enumeration using Type.GetFields
� Late bound execution using Type.InvokeMember

• Avoid Late Binding
Early binding allows the compiler to identify the specific type required and perform
optimizations that are used at runtime. Late binding defers the type identification
process until runtime and requires extra processing instructions to allow type
identification and initialization. The following code loads a type at runtime.

Assembly asm = System.Reflection.Assembly.LoadFrom(�C:\\myAssembly.dll�);
Type myType = asm.GetType(�myAssembly.MyTypeName�);
Object myinstance = Activator.CreateInstance(myType);
The above code can be modified as:
MyTypeName myinstance = new MyTypeName();

In some cases, it is required to have dynamic execution of types, but when performance
is critical, avoid late binding.

Data Access

The following are to be considered during the database related project.
Connections are used efficiently by following the below guidelines:

• Open and close the connection within the method
• Explicitly close connections using a finally or using block
• When using DataReaders, specify CommandBehavior.CloseConnection

Appendix Section 295

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• If using Fill or Update with a DataSet, do not explicitly open the connection. The
Fill and Update methods automatically open and close the connection

• Creating database connections is expensive. It is reduced by pooling the database
connections

• Pooling the connections are done by connecting to a database as a single identity
rather than flowing the identity of original caller to the database. Flowing the
caller’s identity results in a separate connection pool for each user

• Changing the connection string even by adding an empty space creates a separate
pool for that connection string

• To ensure that connection is promptly returned to the pool, Close or Dispose
method should be called

• Ensure the pool size is set appropriately.

� It is important to optimize the maximum and minimum levels of the pool size
to maximize the throughput for the application. If it is set to the maximum levels
to values that are too high, it may end up creating deadlocks and heavy
resource utilization on the database. If too low values are used, then there
would be a risk of underutilizing the database and queuing up the requests

� Determine appropriate maximum and minimum values for the pool during
performance testing and performance tuning

• Make sure that the code uses the correct data provider.

� Each database has a specific provider which is optimized for a particular
database as shown in the Table A5.2

Table A5.2. Database provider with specific database

Database Provider Database
System.Data.SqlClient SQL Server 7.0 and later
System.Data.OleDb SQL Server 6.5 or OLE DB

providers
System.Data.ODBC ODBC data sources
System.Data.Oracle.Client Oracle
SQLXML managed classes XML data and SQL Server 2000

Even though the database can be linked using compatible providers, it should be chosen
appropriately depending on the database used in an application for better performance.

296 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design Considerations

One key factor affecting application performance is the application architecture and
design. This section describes some design aspects of .NET applications for better
performance.

General Design Considerations

This section describes the major design considerations to be considered when one
designs managed code solutions.

• Design for Efficient Resource Management
• Avoid allocating objects and the resources they encapsulate before they are

needed, and ensure they are released when the processing is complete.
• This is applicable to all resource types including database connections, data

readers, files, streams, network connections, and COM objects.
• Use finally blocks or using statements to ensure resources are closed or released

in a timely fashion, even in the event of an exception.
• The C# using statement is used only for resources that implement IDisposable;

whereas finally blocks can be used for any type of cleanup operation.
• Reduce Boundary Crossings

Plan to reduce the number of method calls that cross remoting boundaries as this
introduces marshaling and potential thread switching overheads.
With managed code, boundaries to be considered are:

� Cross application domain: This is the most efficient boundary to cross
because it is within the context of a single process.

� Cross process: Crossing a process boundary significantly impacts perfor-
mance. It should be done only when it is absolutely necessary.

� Cross machine: Crossing a machine boundary is the most expensive bound-
ary to cross, due to network latency and marshaling overheads

• Before introducing a remote server into one’s design, it is required to consider the
relative tradeoffs, including performance, security, and administration.

� Unmanaged code: Calls to unmanaged code can introduce marshaling and
potential thread switching overheads.

� The Platform Invoke (P/Invoke) and COM: These interop layers of the CLR
are very efficient, but performance can vary considerably depending on the

Appendix Section 297

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

type and size of data that need to be marshaled between the managed and
unmanaged code.

• Prefer Single Large Assemblies Rather Than Multiple Smaller Assemblies: To help
reduce the application’s working set, it is preferred to have single large assemblies
rather than multiple smaller assemblies. If there are several assemblies that are
always loaded together, they should be combined to create a single assembly. The
overhead associated with having multiple smaller assemblies is:

� The cost of loading metadata for smaller assemblies
� Touching various memory pages in precompiled images in the CLR in order

to load the assembly (if it is precompiled with Ngen.exe)
� JIT compiler time
� Security checks

• Factor Code by Logical Layers: When code is well factored, it becomes easier to
tune to improve performance, maintain, and add new functionality. However, there
needs to be a balance between functionality and performance. While clearly
factored code can improve maintainability, simple designs can be effective and
efficient.

� Treat Threads as a Shared Resource:
Do not create threads on a per-request basis because this can severely impact
scalability.
Creating new threads is also a fairly expensive operation that should be
minimized
Treat threads as a shared resource and use the optimized .NET thread pool

� Design for Efficient Exception Management:
The performance cost of throwing an exception is significant
Although structured exception handling is the recommended way of handling
error conditions, avoid usage of exceptions for regular control flow

Class Design Considerations

Class design choices can affect system performance and scalability. This section
summarizes guidelines for designing managed classes:

298 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Do Not Make Classes Thread Safe by Default

� Careful consideration is needed to make an individual class thread safe
� Thread control is needed at a higher level
� The overhead from the thread-safety features that the class offers remains

even though features are not required
� The collection class likely had a more complex design in the first place to offer

those thread-safety services, which would be expensive whenever the class
is used

� In contrast to regular classes, static classes should be thread safe by default.
Static classes have only global state and generally offer services to initialize
and manage that shared state for a whole process. This requires proper thread
safety

• Consider Using the Sealed Keyword

� Utilize sealed keyword at the class and method level
� If it is not required to extend the base classes by other developers, it should

be marked with the sealed keyword
� Before using the sealed keyword at the class level, extensibility requirements

should be carefully looked upon

• Consider the Tradeoffs of Virtual Members

� Use virtual members to provide extensibility
� If there is no need to extend class design, virtual members need to be avoided

because they are more expensive to call due to a virtual table lookup, and they
defeat certain runtime performance optimizations

• Consider Overriding the Equals Method for Value Types
Override the Equals method for value types to improve performance of the Equals
method. However, the overhead associated with the conversions and reflections
can easily be greater than the cost of the actual comparison that needs to be
performed. As a result, an Equals method that is specific to the value type can do
the required comparison significantly more cheaply.

• Know the Cost of Accessing a Property

� The use of properties represents good object-oriented programming practice
because it allows to encapsulate validation and security checks and to ensure
they are executed when the property is accessed, but their field-like appear-
ance can cause them to be misused

Appendix Section 299

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

� Be aware that if a property is accessed, additional code, such as validation
logic, might be executed

� This means that accessing a property might be slower than directly accessing
a field. However, the additional code is generally there for good reason, to
ensure that only valid data are accepted

� For simple properties, there is no performance difference compared to access-
ing a public field because the compiler can inline the property code

� If the object is designed for remote access, it should use methods with multiple
parameters instead of requiring the client to set multiple properties or fields.
This reduces round trips

� Do not use properties to hide complex business rules or other costly opera-
tions because there is a strong expectation by callers that properties are
inexpensive

• Limit the Use of Volatile Fields

� Limit the use of the volatile keyword because volatile fields restrict the way
the compiler reads and writes the contents of the field

� Accessing volatile fields is slower than nonvolatile ones because the system
is forced to use memory addresses rather than registers

In spite of following the above guidelines, designers should adhere to the company
coding standards. The class designer has to balance the above guidelines and
coding standards to achieve better performance.

References

(DJG2005). Garbage Collection in the Java HotSpot Virtual Machine. Retrieved May 18,
2005, from http://www.devx.com/Java/Article/2197

(MMS2005). Improving Managed Code Performance. Retrieved May 15, 2005, from http:/
/msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag/html/
scalenetchapt05.asp

A6: Performance Monitoring Tool: PERFMON

1. To launch PERFMON, type perfmon on the command prompt and click ENTER. The
application is displayed as shown in Figure A6.1.

300 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure A6.1. Perfmon screenshot

2. To add a counter to the Performance Monitor, right click the mouse anywhere within
the right pane. A context menu will display with the Add Counters... menu item.

3. Selecting Add Counters... will display the Add Counters dialog.

Appendix Section 301

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4. In this dialog, the computer from which performance data are to be captured is
specified. This can be the local machine or a machine on the network. Note that to
capture the performance data for a machine in the network, it is necessary for the
server process to be running on the remote machine.

5. The desired counters for measurements are categorized based on the performance
object and are displayed as shown in the figure above.

6. Select the specific instances of the performance object to monitor. One can choose
all instances or select from a list of available instances.
Note: Some performance objects can have, at most, one instance associated with
them while others may have multiple instances. Selecting counter from list and then
clicking on Explain button will give a description for that counter.
.NET uses the term category while the Performance Monitor uses the term
performance object.

8. Select a package of .NET Framework SDK and select the required performance
counter for that package and run it by selecting the .NET CLR Memory performance
counter category.

After the counters are added by clicking the Add button and closing the Add
Counters dialog box, one gets the Performance Monitor as shown in the figure
below.

9. The performance monitor will now begin capturing the selected performance
counter information.

302 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

10. Start to monitor the state of the CLR, for example, using the predefined performance
counters.

Additional features: With Performance logs and alerts, one can collect performance data
automatically from the local or the remote computers. One can view logged counter data
using System Monitor or export the data to spreadsheet programs or databases for
analysis and report generation (see MTP2005).

References

(MTP2005). Microsoft Tech Net. Retrieved May 18, 2005, from http://www.microsoft.com/
technet/prodtechnol/windowsserver2003/library/ServerHelp/b3d458a8-7d62-4f2a-
80bb-c16e75994b1d.mspx

B: Testing Tools

Characteristics of a good performance testing tool and a comparative study of various
tools are presented in this appendix.

B1. Desirable Characteristics of a Good Performance
Testing Tool

The following characteristics would be desirable when selecting a tool for PT:

Appendix Section 303

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Supports standard database software such as DB, Sybase, and Oracle
2. Supports standard protocols such as HTTP, IIOP, and SOAP
3. Supports distributed technologies such as DCOM, RMI, and CORBA
4. Supports Automated Cookie/Dynamic Cookie
5. Has high-level, easy-to-use test scripting language
6. Incorporates a powerful, easy-to-use recording capability
7. Allows sophisticated users to directly access, read, modify, and control the

automated test scripts
8. Allows writing high-level test scripts early, and then later adding more detailed test

cases for those scripts, as the application design evolves and stabilizes
9. Provides features to easily edit and convert the raw script as captured into a

reusable test case or a template for future test cases
10. Facilitates generation of multiple test cases
11. Allows test data to be stored separately from test scripts for easier maintenance

and reuse
12. Allows all test suites to be recorded and executed stand-alone and also to be

coordinated in intra- and intertest libraries
13. Provides compiled test cases or interpreted test cases or the choice of either
14. Provides the ability to quickly execute “dry runs” in order to check out whether the

tests have been constructed correctly
15. Provides test script debuggers
16. Has capabilities to organize a library of test cases
17. Provides a useful novice-level help facility and effective online tutorials
18. Provides built-in templates of test scripts and test cases
19. Comes with usable documentation
20. Installs easily on the tester’s workstations and in the test lab environment
21. Allows simultaneous, multiworkstation capture of test cases
22. Allows dependencies among test cases to be captured, maintained, and reviewed
23. Concatenates test components and provides steps to create multistep test cases
24. Allows test cases to be executed randomly or in predefined sequence
25. Provides tutorials and demos to show how to develop automated test cases
26. Provides enough functionality to keep the automated test repository up to date

with changes to the application under test
27. Provides an interface for test cases written in C, Perl, Visual Basic, or any other

language of choice
28. Provides the facility to easily browse and navigate around the repository of test

cases
29. Has the ability to make changes to groups of test cases

304 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

30. Provides the capability to update old expected results by the new actual test results
31. Provides facilities to migrate tests across platforms
32. Maintains consistency of related test cases while migrating across platforms
33. Develops test cases that can rerun without modification, after migrating across

platforms
34. Provides a version control capability on test cases and related test data
35. Enables test cases to be selectively activated and deactivated
36. Allows test cases to be added easily to test suites, or inherited, modified or

replicated
37. Provides the capability to add multiple tags for a test case so that it can easily be

selected in a subset of all test cases which share a common characteristic

B2. Web Performance Testing Tools

Tool name

Vendor name

Supported
protocols

Characteristics

Loadrunner
(Free Trial)

Mercury
www.mercuryinteractive.com
/products/

SNMP,
HTTP/HTTPS,
SOAP, WAP

Web load testing capabilities such
as a “Web Transaction Breakdown
Monitor” to isolate performance
problems more efficiently, a “Data
Wizard”, XML support, “AutoLoad”
technology for predefining tests.

Astra Loadtest
(Free Trial)

Mercury
www.mercuryinteractive.com

HTTP/HTTPS,
SNMP

Web load/stress testing tool; can
support Broadvision, ColdFusion,
SilverStream, WebLogic, and IBM
WebSphere; includes
record/playback capabilities; allows
breakpoints for debugging;
functional and content verification
checkpoints; integrated
spreadsheet parameterizes
recorded input to exercise
application with a wide variety of
data. Creates unique IP address for
each virtual user; “Scenario
Builder” visually combines virtual
users and host machines for tests
representing real user traffic.
“Content Check” checks for failures
under heavy load; supports various
security features.

TestManager Rational
www.rational.com

HTTP, HTTPS,
IIOP

Runs on Windows 95, 98, or NT
workstations. Executes multiple
test types at once. Links test cases
to requirements. Generates
meaningful reports.

NetPressure Synthetic Networks HTTP, FTP, Unlimited scalability; GUI-driven

Appendix Section 305

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Tool name

Vendor name

Supported
protocols

Characteristics

NetPressure Synthetic Networks
www.syntheticnets.com

HTTP, FTP,
NNTP, POP3,
SMTP, SSL,
DHCP, PPPOE

Unlimited scalability; GUI-driven
management station; no scripting;
open API. Errors isolated and
identified in real-time; traffic
monitored at every step in a
protocol exchange (such as time of
DNS lookup, time to logon to
server, etc.). All transactions
logged, and detailed reporting
available.

WAPT
(Free Trial)

Novosoft Inc
www.loadtestingtool.com

HTTPS/SSL Web load and stress testing tool.
Handles dynamic content; easy to
use; support for redirects and all
types of proxies; clear reports and
graphs.

Microsoft
Application
Center Test

Microsoft
www.msdn.microsoft.com/lib
rary

SSL Tool for stressing Web servers and
analyzing performance and
scalability; problems including ASP,
and the components they use.
Supports several authentication
schemes. The programmable
dynamic tests can also be used for
functional testing. Visual Studio
.NET Edition.

SiteStress WebmasterSolutions
www.Webmastersolutions.c
om

HTTPS(SSL) Remote load test and consulting
service where hundreds or
thousands of virtual users are
generated to simulate interaction
with a site generated from global
server network. Service includes
recommendations to boost
performance and reduce failure
rates.

e-Load Expert Empirix
www.empirix.com

HTTP,
HTTPS(SSL)

Virtual Users have small memory
footprints and make efficient use of
CPU resources, thus facilitating
large load tests with minimal
hardware. Accurately emulates
multi-threaded browser requests
and automatically validates server.
responses and page content for
accurate test results that closely
correlate with real user load. Virtual
users can be simulated by a single
server or distributed among
multiple servers located anywhere
on a LAN or WAN. Windows NT,
Windows 2000, and Unix platforms
can be used to generate load.

WebServer
Stress Tool

Paessler GmbH,
www.paessler.com

HTTP,HTTPS Web stress test tool handles
proxies, passwords, user agents,
cookies and ASP-session IDs.
Shareware. For Windows.

WebSpray CAI Networks,
www.redhillnetworks.com

HTTP Low-cost load testing tool includes
link testing capabilities; can
simulate up to 1,000 clients from a
single IP address; also supports
multiple IP addresses with or
without aliases. For Win
98/2000/NT

eValid Software Research Inc, HTTP,HTTPS Web test tool that uses a 'Test

306 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Tool name

Vendor name

Supported
protocols

Characteristics

eValid Software Research Inc,
www.soft.com

HTTP,HTTPS Web test tool that uses a 'Test
Enabled Web Browser' test engine
that provides browser based 100%
client side quality checking,
dynamic testing, content validation,
page performance tuning, and Web
server loading and capacity
analysis.

WebPerformanc
e Trainer
(Free Trial)

www.Webperformanceinc.co
m

HTTPS(SSL) Load test tool emphasizing ease-
of-use. Supports all browsers and
Web servers; simulates up to 400
users per playback machine at
various connection speeds; records
and allows viewing of exact bytes
flowing between browser and
server; no scripting required.
Modem simulation allows each
virtual user to be bandwidth limited.
Can automatically handle variations
in session-specific items such as
cookies, usernames, passwords,
and any other parameter to
simulate multiple virtual users. For
NT, Linux, Solaris, most UNIX
variants.

e-Load Empirix,
www.empirix.com

HTTPS,SSL Load test tool for use in conjunction
with test scripts from their e-Tester
functional test tool. Allows on-the-
fly changes and has real-time
reporting capabilities.

QALoad Compuware,
www.compuware.com/produ
cts/qacenter/

HTTP,SSL,IIOP,
FTP

Load/stress testing of database,
Web, and char-based systems.
Integration with EcoTOOLS test
tool provides an in-depth view by
monitoring its operating system,
database and network
components, as well as the
application itself. Works with a
variety of databases, middleware,
ERP.

Microsoft WCAT
load test tool
(Free
download)

Microsoft,
www.support.microsoft.com

SSL Web load test tool for load testing
of MS IIS on NT; other MS stress
tools also listed.

SilkPerformer Segue,
www.segue.com

HTTP Load and performance testing
component of testing toolset. Can
work with their SilkTest functional
testing product.

Radview’s
WebLOAD
(Evaluation
copy)

Radview Software,
www.radview.com

WAP,HTTP,SNM
P,

Web load testing tool .Capabilities
includes over 75 Performance
Metrics, can incorporate any data
from Windows NT Performance
Monitor or UNIX RSTATD directly
into the test metrics; can view
global or detailed account of
transaction successes and failures
on an individual Virtual Client level,
assisting in capturing intermittent
errors; allows comparing of running
test vs. past test metrics.

QuotiumPro Quotium Technologies, HTTP,HTTPS Cookies managed natively, making

Appendix Section 307

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

C: Templates

Templates for capturing the performance requirements and for test plans are presented
here. These templates provide basic guidelines to prepare performance requirements and
test plan documents.

C1. Template for Performance Requirement Document

1 Introduction
 <Brief details of the system>
2 Business related

2.1 Business background
 <Objective and goals>

2.2 Business operations
 <Organization structure>

2.3 Business objectives of the system
 <The overall business goals of the system >
 <And specific business objectives for the new proposed system if it is a new system>
3 Logistics of operations
 <Distribution of operation of organization>

4 User base
4.1 Internal users

Tool name

Vendor name

Supported
protocols

Characteristics

QuotiumPro
(Free Trial)

Quotium Technologies,
www.quotium.com

HTTP,HTTPS Cookies managed natively, making
the script modeling phase shorter;
HTML and XML parser, allowing
display and retrieval of any element
from a HTML page or an XML flux
in test scripts; option of developing
custom monitors using supplied
APIs; more.

smartest interNetwork Inc,
www.inw.com

HTTP,HTTPS(S
SL/TLS),
FTP,NNTP,POP
3,SMTP,
RSTP,DHCP

Creates real traffic across OSI
layer’s 2-7 to identify
application/device weakness,
assesses scalability limits

EasyWebLoad
(Free Trial)

PrimeMail Inc,
www.easyWebload.com

HTTP, Does not
support
HTTPS(SSL)

Easy-to-use Web site load testing
tool For Windows.

308 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 <User category within organization like Managers, Accountants, etc.>
4.2 External users

 <Like customers, vendors, and/or partners>
5 Business growth projections
 <Growth rate projection of the system in next n years>
6 Infrastructure

6.1 Network environment
<Complete details of N/W Topology ISP and all technical specification with respect
to network>
6.2 The backend servers
<Backend servers (DB servers) and their functional details>
6.3 The Web servers
<Backend servers (DB servers) and their functional details>
6.4 Software
<Software like OS and other related application details>

7 Proposed functions of the system
<The major proposed functions of the organization>

8 Interfacing system (if any)
<External Sources, if any, which are dependent on current system or vice versa>

9 Responsibilities
<Prepare high-level strategy document to describe main responsibilities including
testing the performance of the new system for response time, throughput, scalability,
and ability to handle peak loads>

10 Performance test objectives
<List all the objectives of the performance test>

11 User profile
<Tabulate the frequency of utilization of the system with priority>

12 Testing methodology
12.1 Identify team
12.2 Automated testing facilities
<Identify the tool used to test performance>

12.2.1Service level agreements (SLA)
<Prepare SLA as per specification given by customer>

12.2.2Miscellaneous
<Other customized requirements to be added>

12.2.3Management conditions and constraints
<Conditions and constraints as expressed by management>

Appendix Section 309

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

C2. Template for Performance Test Plan

1. Plan Identification
 <Test plan name, ID# with version number, name, system details, date, intended

audience(s) for this document, author(s) of this test plan, and how to contact them>
2. System Description

<Brief description, project acceptance criteria, identification and analysis of
performance-related risks>

3. Goals of the System
<Customer expectations, marketing requirements>

4. Performance Test Objectives
4.1 Target audience
<Users/clients, marketers interested in performance test results>
4.2 Expected end products of testing
<Test environment doc, Test logs, Abstract test results, detailed test results, Test
schedule, Evaluation of test data: Presentation of results, analyze data and
verify whether the performance goals have been met or not>
4.3 Success criteria

• Measure responses of Activity, Subactivity, Transactions (SQL, HTTP, Tux calls,
ODBC, JDBC, etc.)

• Identify and record acceptable response time in percentiles

5. Test Constraints
<Identify people resources availability, test facilities availability, Time deadlines,
Entry criteria (readiness for testing), and budget constraint, Constraints on test
completion, Criteria for Pass/fail, and suspension/resumption criteria>
6. Performance Measurements
<Response time, Throughput, Resource utilization (CPU, memory, disk, etc.)>
<Operation profiles: Workload(s), user groups, source of the operational profile>

7. Test Environment
<Test hardware/software, networks, Tools, OS with proper configurations, Creat-
ing concurrent workload during testing (background noise), etc.>

8. Test Schedule
<Specify the detailed time schedule for the following>

• Learning the tool
• Creating and validating test scripts

310 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Collecting the test data
• Executing each scenario
• Problem resolution
• Meeting schedule for both pre- and postexecution of test

9. Test Execution Process

<Sequencing of tests based on criticality, duration of the test, parameter setting
during the testing, and monitoring the tests>

10. Plan Test Bed
<Determine how much data required. Which data to be considered for testing. How
to generate and store it>

11. Plan Team
 <Identify team and responsibility and tabulate as follows>

Sl No. Member of Team Responsibility
1 Project manager Problem resolution
2 Real users for recording
3 Scripter/Scheduler Should be technical with the ability to change a program
4 DBA should be available Need passwords

Restore/backup
5 System Administrator Install products

Restore/backup
Monitor the execution of application

6 Network Administrator Monitoring and troubleshooting the network

12. Develop Test Scripts
<Develop test scripts by following the below guidelines>

Identify Test Scenarios Using Various Transactions

• Build Test Scripts using Play and Record method
• Use different browsers while scripting
• Edit the scripts based on the requirements
• Follow proper coding standards for test scripts
• Execute the script and verify for its correctness
• Document the scripts properly
• Identify common steps and convert them into functions
• Provide room for extensibility
• Facilitate to generate proper logs
• Independence of selective execution
• Clean exit on abrupt termination

Appendix Section 311

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Self-sufficiency in individual test cases
• Inclusion of dynamism
• Incorporating user-friendliness
• Provision for efficient error recovery during execution

13. Develop Workload

<Based on the operation profile, build the workload structure>
14. Entry Criteria

<Give preconditions for testing>
15. Exit Criteria

<Give accepted results which could be measurable>

D: Case Study

D1. Business Function Requirments Document

INFYNITY BANKING CORPORATION (IBC) is a global banking organization that
provides standard banking services to its customers spread across the globe. The vision
of the bank is anywhere, anytime banking. The head office is located in Chicago with
several hundred centers situated outside of the United States. The aim of this proposed
banking system is to create a paperless bank. The bank employees as well as the account
holders will use the proposed system through the Web-based interface. The bank has
several branches in different cities; each branch is identified by a unique code.
Business requirements are described as follows:

Types of Accounts:
1. The bank provides multiple types of accounts to its customer for managing cash,

savings, and loans.
2. The bank internally maintains office accounts using a double book entry system

of accounting.
3. Interbank and foreign bank accounts are maintained by the bank to facilitate

clearing of bills/checks of different banks, countries, and currencies.

Creating an Account:
1. Account Number should be generated by the system in ascending order and must

be unique.

312 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. The system must record the name and address of the account holder.
3. The minimum opening balance of an account is $500.
4. Each user gets a user name and password that the user can use to login from the

Web.

Operating an Account:
Deposits:
1. The minimum deposit amount is $100.
2. Any amount greater than or equal to $100 is valid.
3. Whenever a deposit is made, the final balance should be made known to the account

holder.
4. The account may be operated using a Web interface.
5. Fund transfers, demand draft requests, password changes, account statements,

request for checks/bill books may be obtained using the Web interface.

Withdrawals:
1. The minimum withdrawal limit is $100.
2. Account balance should never be less than $100.
3. Whenever a withdrawal is made, the final balance should be made known to the

account holder.
4. Withdrawals may be made from any of the branches or through ATM outlets as

designated by the bank.
5. Using ATMs should be possible, irrespective of a centralized or distributed

database.
6. The ATMs must be immune to link failures and should be able to operate in both

online and off-line modes.

Loans:
1. Bank provides loans to its account holders, charging a higher rate of interest in

comparison to the interest provided by the bank on saving and current account.
2. Loans that are not cleared per the schedule are subjected to penalty.

Deleting an Account:
1. The account holder information will be deleted permanently from the bank database

on closure of the account.
2. All accounts that have not been operated within 10 years and above are considered

dormant accounts.

Appendix Section 313

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Other Details:
1. It should not be possible to modify the account number at any stage.
2. An enquiry option should be provided, so those users (bank employees) can see

the account number, name, and balance sorted either by account number or by
account holder’s name.

The proposed banking system is divided into four modules:
1. Account Maintenance: This module is used to perform the operations on accounts

such as opening an account, closing of an existing account, and navigation
through accounts. Some of the characteristics of this module are:

• The user interface for this module is account maintenance Web form
• When the form is loaded, it displays the first account number and its details
• Four navigational buttons are used to move across accounts

� MoveFirst: Navigates to the first record
� MovePrevious: Navigates to the previous record
� MoveNext: Navigates to the next record
� MoveLast: Navigates to the last record

• Insert and Commit: Allows the user to insert a new account in the Accounts table.
It clears all the text fields on the screen except the Account Number text box which
is generated automatically by the system. The user has to fill up all the remaining
fields legibly and click commit to insert the record

• Delete: Allows the user to delete the current record. Upon selection of Delete the
system confirms the same by displaying a message box “Are you sure you want
to delete?” If the user selects “Yes”, it will delete the record or else it will undo the
operation

Validations:
• The initial deposit amount should not be less than $500. Otherwise, error message

“Invalid Amount Enter Number Greater Than or Equal To $500” is displayed
• The date should be a valid date; otherwise it will display an error message “Invalid

Date”

2. Transactions Maintenance: This module provides facilities to perform different
transactions on accounts such as deposits, withdrawals, bill payments, fund
transfers, and so forth.

314 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• New: Allows a choice for a new transaction
• Commit: Allows saving the transaction
• Offers choice of either withdraw or deposit in the transaction

Validations:
• If the withdrawal transaction results in a balance amount less than $100, then the

system will prompt the message “Balance less than $100”
• If the user enters any non-numeric data or number less than 100 for amount, then

the system will prompt an error message “Amount should not be less than $100”
• If the date given is not a valid date, then there will be an error message “Invalid

Date”
• If the user clicks Commit without selecting any transaction, then the system will

prompt an error message “Select type of Transaction (deposit/withdraw)”

3. Accounts Enquiry Details: This module helps in enquiring about the account
details (account number, account holder’s name, address, and balance) sorted
either by account number or by account holder’s name.

• If a user selects sorting by account number, the user has to select the Account
Number radio button. The user may choose an account number prefixed with 1001.
In that case, details of all accounts whose account number has the starting digits
1001 will be displayed in the ascending order of account numbers on a separate
page.

• Similarly, the user may choose a listing of details sorted by name by selecting the
Name radio button. If the name field is populated with “Ra” (say), the system
displays all the records sorted by name in the ascending order whose name has the
characters “Ra”. If the name field is not populated, a listing of all account holders
is displayed in the ascending order by names.

4. Transaction Enquiry Details: This module facilitates the customer to generate the
reports and statements of a particular account in the specified range of dates.

• By default, the system displays the screen with all existing account numbers using
combo box. The user has to select one Account Number, the type of transaction
(withdraw or deposit), and the range of dates between which the transactions are
committed. After clicking Retrieve, it will display all the transactions of the
specified account.

Appendix Section 315

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Validations:
• The user has to select either Deposit or Withdraw or both. If user selects neither

of them, then the error message “Select type of Transaction (Deposit/Withdraw)”
will be displayed

• The user has to enter the start date in such a way that it should be a valid date. The
valid date must be greater than the date of accounts creation. If it fails to show the
proper date, an error message “Invalid Date” will appear. The same message will
appear if the user selects the end date that is greater than the current date or less
than the accounts open date.

NOTE: A brief functional requirements document is prepared. The main objective is to
use the document to highlight the performance testing rather than the business problem.
Hence, more emphasis has been given to performance than business function in the case
study.

D2. Performance Requirements Document for IBC

IBC is a global banking organization that provides standard banking services to its
customers spread across the globe. The vision of the bank is anywhere, anytime banking.
The head office is located in Chicago with several hundred centers situated outside of
the United States. The proposed system supports both Client/Server and Web platforms.
A detailed specification on business functions is available in a separate document (see
business requirements documentation). In this document, we capture the details required
for performance testing.
Requirements are gathered in three different categories, namely:

A. Business related
B. Proposed system related
C. Performance test related, if any

A. Business Related
1. Business contents and events
To create a unique banking system through automation of all its services like customer
service, managerial operations, and interbanking transactions at more competitive
prices, IBC is in the process of building a comprehensive new information system. It
added a new feature to provide fund transfers with all standard banks across the globe.

2. Business operations
IBC is organized into four main groups:

316 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a. Senior Management to plan business growth
b. Customer Group to manage customers efficiently
c. Administration Group to strategize the business of the bank
d. The Information System Groups to maintain and monitor the various automated

systems

The function of each group is not highlighted in this document. Each group has its own
team to manage its functions.

3. Business objectives of the system
The overall business objectives of the system are as follows:

a. Grow business at the rate of 20% every year
b. Improve profitability
c. Increase customer satisfaction

The specific business objectives for the new proposed system are as follows:

a. Fulfill all requirements listed in the requirements document
b. Improve the productivity in the customer service by 30%
c. Maintain the highest level of security for all accounts
d. Ensure the system performance from the customer perspective
e. Ensure 100% uptime for the system

The customer is not in a position to give more accurate than the stated objectives.

4. Logistics of operations
The operations of the bank are distributed across the globe since senior management
believes in the anywhere banking concept. However, the major business activities are
concentrated in and around the US with the headquarters located in Chicago. Most of
the customer oriented business is carried out through the Internet which in turn depends
on ISP providers and the quality of connection to the system at the customer place. A
set of in-house operations are carried out in a C/S environment.

5. User base
The user base is split into two categories:

Appendix Section 317

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a. Internal users: Most of the administrative functions are performed by internal users
(employees of the bank) in a C/S environment. The current internal user base is
around 2,000 which will grow at the rate of 20% every year.

b. Customers: Customers are not only the account holders but also the prospective
customers who want to start business with the bank in due course. All customers
are Web clients who will be using the system via Internet. The current Web client
base is around 30,000, and the growth projection is given in the following section.

6. Business growth projections
The system must be scalable to support the growth rate of 20% per year for the next 5
years. The growth depends on providing Internet based banking and percentage of
change over from traditional banking to Internet banking. The traditional banking is
carried out in a C/S environment. The growth rate depends on customer satisfaction,
which is of paramount importance to the business. One such illustration for customer
satisfaction is the quick response time for any query. The change over from traditional
banking to Internet banking is proposed in Table D2.1.

7. Infrastructure
The infrastructure proposed/available for IBC is outlined below:

Network Environment:
The system operates in a traditional C/S network as well as accessed from the Internet.
There will be a cluster of LAN situated at different places. Some of the clusters may have
their own Web server. All clusters are linked to the headquarters by a Wide Area Network
(WAN) situated in India. The C/S network will include approximately 2,000 users, with
one client workstation per user. A complete topology of the network environment is
available with the IS Department of the bank.

The Backend Servers:
The system will have centralized database servers situated at the head office. There will
be a set of database servers, which are used for database mirroring. In other words, all
updates will be made concurrently to all of the copies of the databases, and these updates
will be periodically monitored by the database management system (DBMS).
A complete backup copy of the database will be taken in certain intervals. The process
takes approximately 30 minutes. During this time, the user response time may be slow.
No guarantee will be given to the user about the amount of slowness, that is, worst-case
performance of the system. However, the managers would like to know the complete
details, which is within the scope of the performance objectives.

The Web Servers:
There will be a host of Web servers connected to routers, which in turn connect to the
Internet through multiple T1 lines. Each T1 line has sufficient capacity to accommodate

318 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

required sessions using 56 Kbps modems. Firewalls are provided on the Web servers,
which may slow down the overall performance.
Though the Web servers will have their own databases, they will not contain all the data
needed to answer queries or process the requests, as they need to access the database
servers.

Software:
Standard software like Windows 2000, MS Access, and Apache software are used.

B. Proposed System Related

Based on the business process and requirements, the proposed system is viewed from
two perspectives:

i. Business functionality
ii. Performance of the system

The business functions are mapped to a set of use cases, which are used to design the
system. While modeling the system, performance issues are also considered. The
following sections provide information on both functionality and performance issues.

8. Proposed functions of the system
The major functions of the banking system are:

a. Creation and maintenance of accounts
b. Providing fast queries
c. Routine banking transactions
d. Faster transactions through ATMs
e. Overall maintenance of the system

The proposed system must comply with the W3C standards. The detailed functions are
available in the business requirements document.

9. Interfacing system, if any
IBC is planning to connect with other global banking systems for interbanking transac-
tions. It is proposed to automate all interbanking transactions in the coming days.

Appendix Section 319

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

C. Performance Test Related
In order to ensure the performance of the system, it is necessary to conduct performance
testing in an isolated environment with automated tools. To use the automated tools, we
need to define the objectives and responsibilities before starting the performance
testing. The following sections provide brief information on requirements for conducting
performance testing.

10. Responsibilities
The main responsibilities include testing the performance of the new system for response
time, throughput, scalability, and ability to handle peak loads. The immediate requirement
is to prepare a high-level strategy to describe the above task.

11. Performance test objectives

a. Working out a satisfactory response time of the system under a realistic load.
Response time consistency has to be worked out in consultation with the IS team
(say 25%). This means, if the average response time for a transaction is expected
to be 2 seconds, then 90% or more of the measured response time should fall within
the range of 1.5 and 2.5 seconds.

b. Reliability of the system (checking memory leaks, etc.)
c. Capability of handling peak load
d. Understanding of the system’s capability to handle load beyond its planned

capacity
e. Scalability

12. Operation profile
The features of the system are highlighted in the business requirements document. Based
on the business operation, we have identified the set of transactions which are active
during the business hours. These transactions are tabulated, and their frequency of
operations are also collected in two phases under normal and peak business hours over
a period of one week.
Table D2.2 provides the frequency of utilization of various transactions for normal hours.
To illustrate, on Monday, an average 6,000 transactions per hour are active during access
of the main page. Similarly, about 350 concurrent users withdraw money in an hour on
Wednesday. This is a high priority transaction as the impact is more on the performance.
Similarly, the Table D2.3 provides active transactions distribution over a period of one
week for peak hours. The peak hour is defined based on the inputs received from
management. The peak could vary from one day to another day. Observe that most of the
frequency utilization in Table D2.3 is more than the normal hours shown in Table D2.2.
The data are collected for each day during peak hours. The duration of the peak hours
could be different for each day. The average is calculated per hour based on these data
for each transaction.

320 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We have considered two operation profiles for this case study.

13. Testing methodology
It is proposed to have two different teams:

a. Functional testing team, which interacts with the development team and conforms
to the correctness of business functions of the system.

b. Performance testing team, which plans and conducts the performance testing in
cooperation with the functional testing team. Each team will use its own test plans
and strategies.

14. Automated testing facilities
The team will use appropriate testing tools for functional and performance testing. They
will use Rational Robot for functional and WAS (from Microsoft) for performance testing.

15. Service Level Agreement (SLA)
A separate SLA has been developed for each operational group, and the agreement has
been signed by the manager of the bank and the IS Department.

16. Miscellaneous
Senior management would like to know the impact on performance if the Web site
generates dynamic contents.

17. Management conditions and constraints
There is no deadline on the schedule. However, once the strategy document is prepared
and presented, cost and deadline will be determined. In case of testing tools, the
management has recommended to use only freeware tools available in the market.

D3. Test Strategy Document for IBC

This document provides high-level strategies for the smooth conduction of performance
testing of the proposed banking system before deployment. The exhaustive list of
strategies to achieve optimal results will not be presented to senior management, but it
has been prepared as a necessary document before taking their approval to proceed with
the project.

1. Identifying the Performance Testing Objectives
The primary goal of this system is to provide adequate information to the senior managers
about the likelihood that the system will perform adequately in actual operation. This

Appendix Section 321

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

includes information about the capability of the system to handle: (a) typical daily
business loads of IBC; (b) daily and weekly peak demand; (c) specialized needs such as
the need to generate volumes of interbanking transactions, fund transfers, and so forth;
(d) ad hoc demands like bursting loads unexpectedly; and (e) likely future growth over
the next 5 years.

2. Defining Performance Pass/Fail Criteria
We need to define what constitutes passing the goal and what constitutes falling short
of achieving it. The pass/fail criteria should be unambiguous so that they are measurable
in absolute terms. Otherwise, the clients may challenge the pass/fail criteria later. The
strategy for IBC is to achieve step by step the goals set.

Step 1: Derive benchmark for: (i). Routine business demands, (ii) Routine peak
demands (iii) Specialized requirement to handle unforeseen circumstances (data must
be provided by IBC), and (iv) Top management’s special demands, if any.
Step 2: Design workloads for each category of Step 1.
Step 3: Define Entry/Exit criteria for each workload separately.
Step 4: Define proper measurement criteria for each workload.
Step 5: Set the pass/fail criteria for each test run with each workload.

Performance parameters and pass/fail criteria may overlap for a set of workloads.

3. Identifying the Measurement Criteria
Once the performance objectives and pass/fail criteria for each of them is successfully
established, then we can start determining how each will be measured. Performance must
be measured in absolute terms so that it can be easily compared with the pass/fail criteria.
In order to establish proper measurements, it may be necessary to fine tune or reexamine
the goal as well as pass/fail criteria. Broadly, it is decided to measure the response time,
throughput, memory leaks, if any, and availability. Since the IBC system is developed in
ASP, performance monitors related to ASP objects, OS related objects, and resource
related objects are also considered for the measurement matrix.

4. Stakeholders
Expectations on performance among many groups within the organization are different,
and it is difficult to satisfy all. For instance, senior management may expect the results
at the abstract level whereas middle management wants more microscopic level details.
The stakeholders considered for IBC are:

• Customer group needs to have sufficient confidence the system will be able to
support the workload of their department.

322 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table D2.1. Transformation from traditional to Internet banking

Percentage of Banking
Time frame

By Traditional Banking By Internet Banking

Current Year 90 % 10 %
2 years ahead 40 % 60 %

4 years ahead 70 % 30 %

5 years ahead 10 % 90 %

• The Administrator group of IBC needs information about the levels of compliance
with the SLAs which are likely to be achievable in live system operation.

• Customers who expect the system to be performance conscious and robust.

5. Project Scope
The scope of performance testing will include load, stress, spike, and endurance testing
in client server and Web environments. The performance testing team must also analyze
the results and suggest solutions to bottlenecks (if any) in fulfilling the SLA.

Note: Functional testing and related problems will not be part of the scope. It is assumed
that the system is functionally correct before handing it over to the performance test
team.

6. Benchmarking
Based on the requirements document and discussion with the customer group, the
following business benchmark is finalized for the proposed performance testing:

• Features query

� Display the home page
� Enter features page and read all the information available
� Enter a request for a new account using the request Web page

• Money transaction

� Deposit

Appendix Section 323

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

� Log in through the home page
� Deposit the money through the deposit page
� Log out and exit

� Withdraw

� Log in through the home page
� Enquire of the balance
� Withdraw the money through the withdraw page
� Log out and exit

• Administration

� Account creation

� Log in as Administrator
� Check the request for the new account
� Check whether the required criteria are satisfied or not
� Create a new account
� Inform the account holder about the new account
� Log out

The above benchmarks may vary as we go along with the design and execution of the
test.

7. Identifying the Key Transactions
This activity is aimed at gaining more indepth understanding of the system and how it
is expected to be used in real-world operations. This is another key area that is critical
to the success of client server and Web applications. Identify the applications’ real life
use and capture this information in operational scenarios. There may be different sets
of customers, each with its own distinct operational scenarios. Once the operational
scenarios have been clearly identified, then we can determine the key transactions or the
mixture of transactions generated by each operational scenario. This activity helps in
understanding the technical details of the product’s design when each operational
scenario is executed, such as objects invoked, interaction with outside object, calling
ODBC/SQL drivers, and so forth. These operational scenarios represent business
transactions of some kind, not necessarily SQL transactions processed on the server’s
database.

324 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

It is essential to identify the proper operational scenarios that generate the correct
percentage of transactions and the correct mixture for each operational scenario. For
instance, the baseline for a performance goal on the IBC banking system could be 10
concurrent connections doing simultaneous database synchronization, each with unique
object instances, broken down as follows:

• 2 clients creating new customer accounts (20% of the transaction mix)
• 3 clients creating new deposits incident objects (30% of the transaction mix)
• 3 clients creating new withdraw incident objects (30% of the transaction mix)
• 2 clients creating new customer queries (20% of the transaction mix)

If the next performance measurement was scaling from 10 to 20 concurrent connections,
the new test cases would reflect:

• 4 clients creating new customer accounts (20% of the transaction mix)
• 6 clients creating new deposits incident objects (30% of the transaction mix)
• 6 clients creating new debit incident objects (30% of the transaction mix)
• 4 clients creating new customer queries (20% of the transaction mix)

Table D2.2. Operation profile of business functions for one week during normal hours

User
Group

Transactions
Type
 Days

Mon Tue Wed Thu Fri Sat Sun Priority

Main Page
Access

6000 5300 5800 6500 5200 5000 4500 High

Deposit
Amount

400 350 300 350 250 200 150 High

Withdraw
Amount

250 400 350 450 500 400 350 High

Request for
New A/Cs

30 25 0 35 10 0 0 Low

Customer
Group

Bill Payment 100 50 40 45 15 100 75 Medium

Daily Report
Generation

3 4 2 3 5 6 0 Medium

Fund Transfer 150 100 200 125 200 100 50 Medium

Creation of
New A/Cs

10 5 0 10 10 0 0 Low
Administrative

Group

Deletion of
A/Cs

5 10 0 7 10 0 0 Low

Banking
Features
Query

400 340 350 451 347 332 273
High Senior

Management
Group Ad-Hoc Query 10 15 13 11 17 0 0 Medium

Appendix Section 325

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This must be the pattern for any number of concurrent users for the given key
transactions and transaction mix. These transaction mixes may vary based on the
benchmarks and final workloads.

8. System Acceptance Criteria
The Service Level Agreement (SLA) has to be met in all respects.

9. Early Component-Level Performance Testing
No third party component is used in the application.

10. Performance Measurements
While testing, it is proposed to collect the following performance measurement data to
get the complete picture:

• Response times of transactions per the workloads defined
• Consistency of responses
• Throughput (measured in transactions per second)
• Resource utilization during testing

User
Group

Transactions
Type
 Days

Mon Tue Wed Thu Fri Sat Sun Priority

Main Page
Access

9300 8300 8800 8500 8200 8000 7000 High

Deposit
Amount

900 800 700 800 700 500 300 High

Withdraw
Amount

950 850 800 850 850 850 800 High

Request for
New A/Cs

350 250 200 350 350 0 0 Low

Customer
Group

Bill Payment 200 100 75 100 250 212 200 Medium

Daily Report
Generation

6 8 2 3 5 6 2 Medium

Fund Transfer 450 350 400 300 350 300 250 Medium

Creation of
New A/Cs

50 25 32 28 30 0 0 Low
Administrative

Group

Deletion of
A/Cs

10 30 20 22 18 0 0 Low

Banking
Features
Query

620 740 743 851 723 613 541
High Senior

Management
Group Ad-Hoc Query 25 32 23 20 23 0 0 Medium

Note: Frequency of utilization is expressed in terms of transactions/hour.

Table D2.3. Operation profile of business functions for one week during peak hours

326 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

� Server and client processor utilization
� Memory utilization (RAM and Disks)
� Network utilization (LAN and T1 lines)
� Thread utilization (the number of concurrent users of critical hardware and

software components)

• Bottleneck related

� High resource consumption by each software and hardware component
during the testing

� Network collision rates
� Page-in page-out rates
� Number of hits blocked (blocking the Web site visitors)
� Number of threads blocked
� Buffer and queue length overflows

The above measurements may marginally vary during the testing because they depend
on the type of tool used for the test.

11. Test Load – Volume and Mix
The load used for measuring the performance is based on:

• Typical daily business workloads
• Daily peak demand
• Weekly peak demand
• Ad hoc demands, if any

We have considered only one test load which is weekly peak demand in this case study.

12. Test Environment
The real environment is ideal to conduct load testing but difficult to obtain. In such
circumstances, the better option is to have a subset of the real environment. We have
considered a two-tier architecture which is explained in design document (see Appendix
D4).

13. Selection of Proper Test Automation Tool
The main objective of this activity is to determine a better automation tool for perfor-
mance testing. Since the cost of any performance automation tool is high, more attention

Appendix Section 327

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

must be given before finalizing the tool. For simplicity and cost effectiveness, we have
used freeware tool Microsoft Web application stress tool (WAS) (http://
Webtool.rte.microsoft.com) for performance testing.

14. Test Data Sources
The main database will be updated with the real environment database. The test scripts
captured in functional testing will be modified and used for performance testing. A test
data generator will be used to create test data wherever necessary.

15. User Think Time
The strategy is to use a few customers and ask them to use the system with all possible
transactions considered in the workload.

16. Project Activities and Schedule
A detailed schedule will be prepared in consultation with the administrator group. The
approximate duration for the entire test is 4 weeks.

17. Project Risks
The major risks identified in this project are:

• Unavailability of the proper testing tools which may result in having to use the
freeware tool

• Proper skill set required for testing and analyzing results
• Timely availability of functionally correct application for the performance testing
• Unavailability of database network administrators on time

18. Conclusion
Since senior management is not interested in microscopic details of the strategy, only
brief details have been highlighted. A detailed comprehensive document based on this
report and feedback from the management may have to be prepared.

D4. Test Design Document for IBC

This document describes the analysis and design of the IBC Web application. It begins
with a description of benchmark and operation profile of the system tested. The
application is kept simple so that the focus of the project is on performance testing. The
design document mainly focuses on benchmark design to arrive at an accurate workload.

328 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Architecture

Two implementations of the application were developed. The first implementation was
two-tier architecture and the second was three-tier architecture.
The main difference between the two implementations was the database subsystem. The
two-tier implementation used Microsoft Access, and the three-tier architecture was
implemented by developing some of the commonly identified COM components.
The application is divided into client and server components as shown in Figure D4.1.
The client has a Web browser (Internet Explorer 6.0). The server is running Windows
NT® Server, an Active Server Page (ASP) server (Microsoft Internet Information Server),
and a database (Microsoft Access).

Benchmark for IBC

For the IBC banking system, a snapshot of transaction behavior is given in Table D4.1.
Different types of behavior can be seen in this system. Some examples generate more
threads, some may be more concurrent, some may be involved in computation and hidden
transactions where less user interaction is required. These types of transaction behavior
help to design a proper benchmark for performance testing. Here transaction behavior
is studied from the performance point of view. Observe that in Table D4.1, some of the
transaction types may repeat with multiple transaction behaviors. For instance, with-
drawals and deposits are more concurrent transactions and affect the bandwidth.

Benchmarking the System

Separate benchmarks are required for each significant and distinct workload. Though the
number of benchmarks depends on the planned activities of the system, benchmarks
considered in the IBC application are:
1. Routine business demands
2. Routine peak demands
3. Specialized requirements, if any
4. Top management’s special demands, if any

These four benchmarks are identified based on the performance requirements and
complexity of the project. The number of benchmarks could be varied in other applica-
tions.

Sample Benchmarks

Consider the banking system and sample activities highlighting the transactions survey
taken on a typical week. The result of the survey result is shown in Table D4.2. This table

Appendix Section 329

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

represents the operations as perceived by the user on a typical day. For instance, there
are 50 accounts created on Monday whereas no operations on Saturday and Sunday.
Some of the nonbusiness activities like e-mail chatting are considered as these transac-
tions impact the performance of the system.
Based on the behavior of the transactions, we are illustrating two benchmarks which will
be used for the performance testing. These two benchmarks are related to normal and peak

Figure D4.1. Application architecture

Web

Browser

IIS

Web server

+

Banking
Application

HTTP Request

HTTP
Response

Request

Response

 Database

Table D4.1. Transactions identified with respect to transaction behavior for IBC Bank

 Transaction Behavior Transaction Types

More concurrent
Main Page Access
Withdrawals
Deposits

Applications interacting with each other

Billing
Fund transfer
Chatting
Customer Queries

Involves more computation
Interest Calculation
Collections for Relief Fund
Fund Transfer

Involves read/write operation

Creation of Account
Deletion of Account
Database Backup
Daily Report
File Download

Generating more threads
Ad-hoc Queries
Fund Transfer
Bill Payment

More interactive with users

Banking Features Query
Creation of Accounts
Request for New Accounts
Ad-hoc Query
E-mail
Chatting

Less interactive with users Backup of Database
Printing

Transaction affecting bandwidth

Chatting
E-mail
Withdrawals
Deposits

330 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hours. For each transaction, weekly data are collected on the basis of frequency
utilization per hour. The total number of transactions considered for both benchmarks
are the same.

Normal Hours

Table D4.2 provides the distribution of all transactions over a week. The data are
collected for several weeks and later, the average is computed. To illustrate, there are 250
concurrent users who withdraw amounts on Monday. Similarly, the transaction Main
Page access is active 5,200 times simultaneously on Friday. Likewise, all transactions
listed in Table D4.1 are considered for deriving the benchmark.

Table D4.2. Sample benchmarking considering all types of transactions for normal
hours

Sl
No

Transactions
Type
 Days

Mon Tue Wed Thu Fri Sat Sun Priority

1 Main Page Access 6000 5300 5800 6500 5200 4500 4500 High

2 Deposit Amount 400 350 300 350 250 200 150 High

3 Withdraw Amount 250 400 350 450 500 400 350 High

4 Request for New A/Cs 30 25 0 35 10 0 0 Low

5 Bill Payment 100 50 40 45 15 100 75 Medium

6 Ad-hoc Query 10 15 13 11 17 0 0 Medium

7 Fund Transfer 150 100 200 125 200 100 50 Medium

8 Creation of New A/Cs 10 5 0 10 10 0 0 Low

9 Deletion of A/Cs 5 10 0 7 10 0 0 Low

10 Banking Features Query 400 340 350 451 347 332 273 Medium

11 Daily Report Generation 3 4 2 3 5 6 0 Low

12 E-mail 100 125 100 130 251 30 25 Low

13 Downloading Page 75 75 80 60 55 5 2 Low

14 Chatting 75 85 90 105 95 80 85 Low

15 Printing 30 25 20 22 34 30 0 Low

16 Collections for Relief
Fund

15 20 25 25 22 15 10 Low

17 Customer Queries 300 200 350 250 350 190 150 Medium

Table D4.3. Distribution of transactions into different categories of benchmarks for
normal hours

 Planned Activities for Benchmarking Transaction Types
(Sl No. of Table D4.2)

Routine business demands 1,2,3,4,5,8,9,10,11,17
Routine peak demands 1,2,3,5,6,7,8,10,17
Specialized requirements 1,7,3
Top management specialized requirements 1,15,16,6

Appendix Section 331

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

These transactions are categorized into four types of planned activities shown in Table
D4.3. These planned activities are derived based on the business domain knowledge and
considering the impact on the performance of the system. Some of the transactions may
not figure into any of the categories as these transactions may not impact much on the

Table D4.4. Fine tuned operation profile for routine business demands for normal hours

User
Group

Transactions
Type

 Days

Mon Tue Wed Thu Fri Sat Sun Priority

Main Page
Access

6000 5300 5800 6500 5200 4500 4500 High

Deposit Amount 400 350 300 350 250 200 150 High

Withdraw
Amount

250 400 350 450 500 400 350 High

Bill Payment 100 50 40 45 15 100 75 Medium

Customer
Queries

300 200 350 250 350 190 150 Medium

Customer
Group

Request for New
A/Cs

30 25 0 35 10 0 0 Low

Fund Transfer 150 100 200 125 200 100 100 Medium

Creation of New
A/Cs

10 5 5 10 10 0 0 Low

Deletion of A/Cs 5 10 5 7 10 0 0 Low

Administrative
Group

Daily Report
Generation

6 8 2 3 5 6 2 Low

Ad-hoc Query 10 15 13 11 17 0 0 Medium Senior
Management

Group
Banking
Features Query

400 340 350 451 347 332 273 Medium

Table D4.5. Fine tuned operation profile for routine peak demands for normal hours

User
Group

Transactions
Type

 Days

Mon Tue Wed Thu Fri Sat Sun Priority

Main Page
Access

6000 5300 5800 6500 5200 4500 4500 High

Deposit Amount 400 350 300 350 250 200 150 High

Withdraw
Amount

250 400 350 450 500 400 350 High

Bill Payment 100 50 40 45 15 100 75 Medium

Customer
Group

Customer
Queries

300 200 350 250 350 190 150 Medium

Fund Transfer 150 100 200 125 200 100 100 Medium

Creation of New
A/Cs

10 5 5 10 10 0 0 Low
Administrative

Group

Deletion of A/Cs 5 10 5 7 10 0 0 Low

Ad-hoc Query 10 15 13 11 17 0 0 Medium Senior
Management

Group
Banking
Features Query

400 340 350 451 347 332 273 Medium

332 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

performance. The transaction Chatting in Table D4.2 is totally omitted in any of the
categories because it will not impact the performance.
Based on the distribution, the new sets of fine tuned operation profiles are created. Table
D4.4 and Table D4.5 represent the fine tuned operation profile for Routine Business
Demands and Routine Peak Demand under normal hours. Observe that now there are two
operation profiles, and many transactions are overlapping. The process for creating a
new set of operation profiles is:

• Create the operation profile consisting of all transactions. These transactions
include business function related, noise related, and other transactions which are
active during the running of the system. There could be more than one operation
profile depending on the test needs.

Table D4.6. Sample benchmarking considering all types of transactions for peak hours

Sl
No

Transactions
Type
 Days

Mon Tue Wed Thu Fri Sat Sun Priority

1 Main Page Access 9300 8300 8800 8500 8200 8000 7000 High

2 Deposit Amount 900 800 700 800 700 600 400 High

3 Withdraw Amount 950 850 800 850 850 850 800 High
4 Request for New A/Cs 350 250 200 350 350 0 0 Low

5 Bill Payment 200 100 75 100 250 212 200 Medium

6 Ad-hoc Query 700 650 645 625 590 450 550 Medium

7 Fund Transfer 450 350 400 300 350 300 250 Medium

8 Creation of New A/Cs 50 25 32 28 30 0 0 Low

9 Deletion of A/Cs 10 30 20 22 18 10 5 Low
10 Banking Features Query 620 740 745 850 730 630 540 Medium

11 Daily Report Generation 25 32 23 20 23 20 0 Low

12 E-mail 200 225 200 230 451 40 45 Low

13 Downloading Page 150 100 120 100 102 10 5 Low

14 Chatting 105 110 120 150 125 130 115 Low

15 Printing 40 35 20 22 44 30 0 Low

16 Collections for Relief
Fund

15 20 25 25 22 15 10 Low

17 Customer Queries 400 300 400 350 400 290 300 Medium

Table D4.7. Distribution of transactions into different categories of benchmarks

 Planned Activities for Benchmarking Transaction Type s
(Sl No. of Table D4.6)

Routine business demands 1,2,3,4,5,8,9,10,11,17
Routine peak demands 1,2,3,5,6,7,8,10,17
Specialized requirements 1,7,3
Top management specialized requirements 1,15,16,6

Appendix Section 333

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Considering all transactions, create planned activities by grouping sets of
transctions from the operation profile.

• For each planned activity, create a new operation profile which may or may not
contain all transactions. This operation profile is known as the fine tuned operation
profile.

Peak Hours

Similar to the transaction survey conducted for normal hours, the IBC system is subjected
to the peak hour’s survey. The behavior of the system during peak hours is different from
the normal hours. Table D4.6 provides the survey of transactions conducted over a
period of one week.
Four categories of benchmarks are considered for IBC. From Table D4.6, distribute all
transactions into these four categories based on the business domain expertise available.
These categorized transactions are given in Table D4.7. Based on these categories, now
the operation profile needs to be fine tuned.
Out of four categories of benchmarks, we have considered one benchmark, namely,
routine peak demands. This has many benchmarked transactions. Using these transac-
tions, the operation profile defined in the performance requirement document (Table
D2.3) needs to be fine tuned. Thus, the operation profile undergoes a transformation with
more or less transactions compared to the original one. The fine tuned operation profile
is given in Table D4.8.

Table D4.8. Fine tuned operation profile for routine peak demands for peak hours

User
Group

Transactions
Type

 Days

Mon Tue Wed Thu Fri Sat Sun Priority

Main Page
Access

9300 8300 8800 8500 8200 8000 7000 High

Deposit Amount 900 800 700 800 700 500 300 High

Withdraw Amount 950 850 800 850 850 850 800 High

Bill Payment 200 100 75 100 250 212 200 Medium

Customer
Group

Customer
Queries

400 300 400 350 400 290 300 Medium

Fund Transfer 450 350 400 300 350 300 250 Medium

Creation of New
A/Cs

50 25 32 28 30 0 0 Low
Administrative

Group

Deletion of A/Cs 10 30 20 22 18 0 0 Low

Ad-hoc Query 700 650 645 625 590 450 550 Medium Senior
Management

Group
Banking Features
Query

6200 7400 7430 8510 72300 6130 5410 High

334 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design of Workload

The workload pattern model captures the various workloads the system is subjected to.
A workload is made up of workload components. A workload component defines the load
caused by instances of a transaction requested by initiators of the transaction in an
operating window and the growth of the load over a range of time.
The essence of the workload is to study the performance behavior of the proposed
system before deployment. One should consider a good mix of transactions which impact
concurrency, resources, and so forth.

Workload for Routine Peak Demands for Normal Hours

The workload is derived from the fine tuned operation profile. The average load over a
week is considered for transactions with minor variations. Group weights have been
calculated based on business requirements and performance goals. The customers group
carries the maximum weight as 60 whereas other groups carry equal weights. Similarly,
weights for each transaction are also given. For every fine tuned operation profile, there
exists a workload. However, we have considered only two workloads.
The final workload is given in Table D4.9. This workload is derived from the fine tuned
operation profile described in Table D4.6. Weights are calculated based on priority and
business domain experts.

Table D4.9. Workload transactions derived for IBC for routine peak demands in normal
hours

User
Group

Weights for
Group

Transactions

Type

Peak
(Average)

Transactions
Priority

Weight for
Transactions

Deposit Amount 300 High 20

Withdraw Amount 380 High 20

Bill Payment 60 Medium 5

Customer
Group

60

Customer Queries 250 Medium 15

Fund Transfer 125 Medium 10

Creation of New A/Cs 5 Low 5
Administrative

Group

20

Deletion of A/Cs 4 Low 5

Ad-hoc Query 10 Low 10
Senior

Management
Group

20
Banking Features
Query

350 High 10

Appendix Section 335

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Workload for Routine Peak Demands for Peak Hours

The workload shown in Table D4.10 is derived from the fine tuned operation profile shown
in Table D4.8.

Tool Selection

The performance-testing tool chosen for the project was Microsoft’s Web Application
Stress Tool (WAS). It was chosen because of its ability to test ASP products, which is
a necessary requirement for testing the application (information about this tool can be
found at http://Webtool.rte.microsoft.com).

Test Plan

Testing of the application was to carry out in a black box fashion, as there is little or no
knowledge of the actual code or design of the application. Criteria for selecting how to
test the application are based upon knowledge of the application behavior and some
logical assumptions. For IBC application testing, the following test plan was considered:

Table D4.10. Workload transactions derived for IBC for routine peak demands in peak
hours

User
Group

Weights
for Group

Transactions

Type

Peak
(Average)

Transactions
Priority

Weight for
Transactions

Deposit Amount 700 High 20

Withdraw Amount 800 High 20

Bill Payment 200 Medium 5

Customer
Group

60

Customer Queries 349 Medium 15

Fund Transfer 250 Medium 10

Creation of New A/Cs 24 Low 5
Administrative

Group

20

Deletion of A/Cs 16 Low 5

Ad-hoc Query 601 Low 10
Senior

Management
Group

20
Banking Features Query 694 High 10

Note: Main Page is not considered for the workload as it is common to all groups.

336 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Defining Entry and Exit Criteria
Entry Criteria
• Should be functionally correct
• Proper test bed should be present during testing
• Ensuring the availability of the test team given in Table D4.11

Exit Criteria
• All tests runs must be completed successfully
• Result data must be generated
• No functional bug should be reported during testing

Setting Performance Parameters
Performance Monitors
Testing the application requires choosing the parameters that will monitor the most
worthwhile activity of the application. The best parameters for the purposes of this
project – performance analysis – should retrieve the most valuable data for analyzing
where bottlenecks may occur. They should reflect the performance related to the server
(memory, CPU, disk) and the Web site (ASP throughput, requests/sec, etc.). The
parameters that were chosen are limited to those available by the Microsoft Web
Application Stress Tool. Table D4.12 explains the monitors selected and why they were
selected.

D5. Analysis of Test Results for IBC

The test is executed in steps by assigning weight per the workload model derived in the
design document and by giving valid inputs as mentioned in the business function

Table D4.11. Test team for IBC

Sl No. Member of Team Responsibility
1 Project manager Problem resolution
2 Testers and test script writer For conducting test, tester

should be technical with the
ability to change a program

3 DBA Passwords management
Restore/backup

4 System Administrator Install products
Restore/backup
Monitor the execution of
application

6 Network Administrator Monitoring and troubleshooting
the network

Appendix Section 337

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

requirement document. Several results data have been taken for analysis. The following
sections highlight the analysis done on the IBC system.

Test Results and Analysis

The bottlenecks of the Web application are found by profiling the Web requests using
TTFB data as shown in Figure D5.1. These data indicate the amount of time it took for
the user to receive a response to a request. A Web request is considered a bottleneck
if it took a significantly longer time than other requests.
Looking at the test using 500 threads as the thread level, we can see that the fifteenth
and sixteenth requests become time hogs. These are ASP requests for the Transactions
Maintenance page and the Next button of the IBC system.
Other performance problems are encountered for the fourth, fifth, eleventh, twelfth, and
fourteenth requests. These are the background image, the Accounts Maintenance page,
the Next button, the Last button, and the Delete button.
Repeating this method for other transactions as mentioned in the business function
requirement document, bottlenecks of the application and their impact are determined as
shown in Figure D5.2.

System Bottlenecks

The other types of bottlenecks that affect the performance of a Web application are those
caused by the system. Bottlenecks in the system are often caused by insufficient

Performance Monitors

Description

ASP Objects

The ASP monitors are important for giving an indication of how
heavy the ASP pages stress the resources of the computer. They
serve little purpose for evaluating a site by itself with only one
version and no changes.
By looking at the ASP monitors for different implementations of the
same site, both hardware and software, there is an indication of
whether certain changes have improved or diminished the
performance of the site.
Since ASP pages are executed on the server side, unlike most
Web content, which is processed on the client side by the browser,
it should play a significant role in the performance of a Web server.
Each ASP counter chosen for this project should be used in any
Web application that is implemented with ASP.

Active Server Pages/Request
Execution Time

This shows how long it takes for each ASP page to get executed.
An average of different ASP pages may give distorted results since
one ASP may be a resource hog.
The percentiles will indicate how long it takes for a page to get
executed in a certain quartile.
If there is a large discrepancy between the median and the
average, then perhaps one page that gets executed is excessively
hogging the resources or one page requires very little resource
usage.

Table D4.12. Performance monitors for IBC application testing

338 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table D4.12. cont.

Performance Monitors

Description

Active Server Pages/Requests
Queued

This gives an indication of the ASP throughput. If the queue gets
too large, some requests in the back of the queue may time-out.
The queue for IIS is limited to a size of 490, so if this monitor
reaches that number, the rest of the requests will be rejected.
By increasing computing resources or making the ASP pages more
efficient, the queue should get smaller.
If an excessive amount of errors are received, then perhaps the
queue is full and this monitor will be helpful in evaluating that.

Total of Active Server
Pages/Requests Succeeded and
Active Server Pages/Requests

These monitors make sure that the ASP requests are successful. If
the number of successful requests is significantly less than the
total number, then there are problems with servicing ASP requests.

Active Server Pages/Requests/Sec This monitor gives an indication of ASP throughput. It tells how
many ASP requests are serviced per second. By increasing
computing resources or making the ASP pages more efficient, the
throughput should increase.

Memory Related Objects

These objects were selected to show the efficiency of the server’s
memory system. However, determining the bottleneck within the
memory is difficult and requires much more analysis.
All of the memory system performance counters for this project,
with the exceptions of Read and Write Operations/Sec, were
chosen as generic memory counters, and thus are suggested for
any type of Web site. If it were expected that the hard drive might
be used excessively to modify files on the server, it should be
necessary to include specific disk counters like Read and Write
Operations/Sec.

Internet Information Services
Global/Cache Hits %

This monitor indicates the efficiency of the Web server’s caching
system. For a small Web site, this should be near perfect, 99.0% or
higher, and may not provide much useful information. However, it
will eliminate any questions regarding the Web server’s efficiency
of caching Web objects.

Memory/Cache Faults/sec

Unlike the previous counter, which indicates the caching of objects
in the server, this indicates the caching of the whole computer. If
there are a lot of faults, then the memory system may be inefficient
or there is poor locality of reference.

Memory/Committed Bytes

This is the size of virtual memory that is being used and includes
all processes. If the size of committed bytes is larger than RAM
and there are many page faults, then the system probably needs
more RAM.

Memory/Page Faults/Sec

A Page Fault occurs when a process refers to a virtual memory
page that is not in its working set in main memory. A Page Fault
will not cause the page to be fetched from disk, if that page is in
use by another process, with whom the page is shared. Again,
this is helpful for indicating if more RAM is needed.

Memory/Pages/Sec

Pages/sec is the number of pages read from the disk or written to
the disk to resolve memory references to pages that were not in
memory at the time of the reference.
This is the sum of Pages Input/sec and Pages Output/sec. This
counter includes paging traffic on behalf of the system Cache to
access file data for applications. This value also includes the pages
to/from noncached mapped memory files. This is the primary
counter to observe if concerns arise about excessive memory
pressure (that is, thrashing) and the excessive paging that may
result. This may be considered redundant with committed bytes
and page faults/sec.

Appendix Section 339

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Performance Monitors

Description

Physical Disk(_Total)% Disk Read
Time,
Physical Disk(_Total)/% Disk Time, &
Physical Disk(_Total)/% Disk Write
Time

These monitors indicate the amount of disk usage. If the % Disk
Time was to be considered abnormally high, then it could be
contributed to either reading or writing. Excessive use of the
physical disk may be due to a poor paging system or inefficient
disk operations invoked by a program.

System/File Read Operations/Sec &
System/File Write Operations/Sec

These monitors indicate how many disk operations are being
serviced by the system. These should be used in conjunction with
the % Disk monitors. Together, they can show if an application is
making too many Read/Write operations and how much of an
effect it has on the overall disk usage.
These were selected for this project because it was expected that
the MS Access implementation of the server would use the disk
heavily while accessing the database.

Miscellaneous System Counters

Each of these serves a specific purpose in validating the results of
a test and/or helping find bottlenecks and should be used for any
generic Web site.

Server/Bytes Total/Sec

The number of bytes the server has sent to and received from the
network. This value provides an overall indication of how busy the
server is.

Thread(_Total/_Total)/Context
Switches/sec

This indicates how often the processor is switching between
threads. If this number gets excessive, around 2,000, the
processor may be spending more time switching between threads
than executing them.

Processor(0)/% Processor Time

This monitor is both important for the client and the server. If the
client machine is consistently above 90%, then more client
machines should be added. It also indicates the load on the
server’s processor.

Web Site and Web Page Objects

These monitors are helpful for understanding how the Web site is
working as a whole, from the user’s perspective, and can profile
pages to see which individual Web page objects are taking the
most time to request. These are also generic counters and should
be used for any Web site to profile performance characteristics.

Number of Hits

Since all tests are for the same period of time, this statistic, used
over different implementations of the same site, indicates how
many hits the server received. If the site has become more
efficient, this number should increase.

Requests/Sec

This gives an indication of the throughput of the server for all types
of requests. Should this number decrease over higher thread
levels, then perhaps errors are being encountered or the site is
becoming inefficient.

TTLB/TTFB
(Time To Last Byte and Time To First
Byte)

These statistics are generated for the request of individual Web
objects within a Web site, not just pages but also pictures and
other media. This can be used to profile the objects requested in a
script to see where the bottlenecks are in Web pages.

Table D4.12. cont.

340 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hardware resources or improper software configuration. For instance, the system can
have too little RAM, which is a hardware resource, or the server may be improperly
configured, which is a software-related problem.

Hardware Problems

The hardware of an ordinary PC running NT Server has three components: the network,
the main system, and the memory. The network should consist of a network card and
connection, for instance, a 3COM 10Mbs card running on a T1 connection. The main
system should consist of a CPU, like a PIII-450, and the motherboard. The memory
consists of all the elements of a virtual memory system (cache, RAM, and the physical
disk drive).

Network

The network is costly to replace and while changing it may increase the throughput of
the server, it should not be the bottleneck. The network used in the test is an Ethernet-
based LAN and should be more than sufficient. If we look at the plot of number of threads
vs. server (Figure D5.3), we see that the server, which was erring at a load level of 700
threads, did not maximize the use of the network.
The graph of Figure D5.3 demonstrates that the server erred without reaching more than
one-third the transfer rate that it had attained in the earlier test run. This should
sufficiently show the network is not the bottleneck.

Figure D5.1. Bottleneck due to Web request

60000

50000

40000

30000

20000

10000

0

1 2 3 4 5 6 7 8 9 11 1210
13 14 15 16Sequence of Requirements 1817

Thread
Level

150

5

5
25
75
150
300
500

Appendix Section 341

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Memory

The virtual memory system in most NT systems has three components: cache, RAM, and
physical disk. Since the cache would never realistically be changed, it serves no purpose
to analyze this portion of the memory system. So the RAM and the physical disk are
analyzed in an attempt to find a bottleneck.

Figure D5.3. Number of threads vs. server bytes/sec

Figure D5.2. Bottleneck determined for IBC

60000

50000

40000

30000

20000

10000

00

1 2 3 4 5 6 7 8 9 11 1210 13 14 15 16 17 18 20 2119 22 23
5

150

Thread
Level

5
25

75

150

300

500

S
er

ve
r B

yt
es

/s
ec

2550

2500

2450

2400

2350

2300
0 200 400 600 800 1000

Number of Threads

Sequence of Requirements

342 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are also software components that may be considered when determining the
bottlenecks of the memory system. This would include the size of the virtual memory,
which is a configurable option on Windows NT.

RAM

Pages/sec was the first counter examined to ensure the system had sufficient RAM. This
counter would be the most important because there is a concrete number to examine which
indicates whether the system needs more physical memory.
The indicator values for this counter are mentioned in an NT server reference book,
“Normal rate for this value is less than 5...if the system begins to sustain a value of 10
or greater, the system is thrashing” (see CMK1998). Using this guideline, it is obvious
that the system is not in need of more RAM. In the plot of Pages/Sec (Figure D5.4), none
of the scripts reached above 5 Pages/Sec, so it can be concluded that the amount of
physical memory was more than adequate.

Other Memory Considerations

Although the analysis shows that the physical disk and the main memory should not be
the bottleneck, there are some observations to note about the memory system.

Figure D5.4. Number of threads vs. pages/sec

 Number of Threads

0

0 50 100 150 200 250 300 350 450 500400

P
a

g
e

s
/s

e
c

6

5

4

2

1

0

3

Appendix Section 343

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure D5.5. Number of threads vs. page faults/sec

Page Faults/Sec

In each of the three tests, the Page Faults/Sec reached high levels (Figure D5.5). When
a page fault occurs, it can be for one of three reasons: the page does not exist in main
memory, the page is on a standby list, or the page is in use by another process. Since we
already examined the Pages/Sec (Figure D5.4) and realized that the virtual memory system
is not using the physical disk, we know that a page fault cannot be due to a page missing
in main memory. Thus, the page faults are due to another process using a given page or
the page queuing on a standby list.

Software Configuration

In Windows NT, the size of the virtual memory is configurable through the system
properties dialog box. If the virtual memory size was not large enough, the server would
have given server side errors indicating that Windows NT was low on memory and
applications should be shut down. It also would have been noticeable in several of the
logical memory counters, which were not used for this test. Since the regular memory tests
gave no indication of poor virtual memory performance, further investigation on the
software settings was not done.

CPU

CPU was chosen to look at last. The rationale for looking at the CPU last is that the
symptoms of a CPU bottleneck may be caused by a different component of the system.
It is very easy to say the CPU is the bottleneck without it being the source of the
performance problem.

Number of Threads

0 50 100 150 200 250 300 350 450 500400

1000

800

400

200

0

600

1200

344 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

% Processor Time (Server)

The first counter observed for the CPU is % Processor Time. The average % Processor
Time may give misleading results regarding consistent CPU usage due to peaks and
minimums in the data, so look at the median CPU usage. Should this reach levels above
90%, then it is almost certain that the CPU is the bottleneck.
From the graph of CPU usage (Figure D5.6), it is not possible to immediately determine
that the CPU is a hardware bottleneck since the CPU does not reach above 80% usage,
but one can tell that the CPU is heavily used.

Context Switches/Sec

The rate of context switches is important in determining how much the CPU has to handle
thread switching. A thread switch occurs when a thread asks another for information or
the CPU gives control to higher priority threads. A rate of 2,000-3,000 switches/sec is high
and may cause the CPU to spend more time switching between threads than running (see
WMC2003). Although the CPU is never the source for high rates of context switching
and would not alleviate such a problem, it may be the only hardware resource to indirectly
improve performance.
Figure D5.7 shows that for all three test executions, once the load level is over 100 threads,
the rate of context switching is excessive. This is indicative of a bottleneck. Since the CPU
usage is low enough that the CPU could be stressed more, the CPU is not the simple
answer for a bottleneck. As shown above, the context-switching rate indicates that the

Figure D5.6. CPU usage of the server (median values)

0 100 200 300 400 500 600

50

40

20

10

0

30

60

70

80

90

100
%

 P
ro

ce
ss

o
r T

im
e

Appendix Section 345

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

CPU is spending a large amount of time switching threads. Also, previous analysis shows
that other hardware components are not the bottleneck, and thus not the cause of the
high rate of context switching. Thus, the CPU is the only hardware resource, if improved,
that would correlate to better application performance by reducing the overhead of
thread switching.

Analysis

From the Web request profiling, it is clear to see what functionality or objects in the
application can be improved. Simple fixes include optimizing the speed of execution for
the ASP files and reducing the resolution of an image to reduce the image size. However,
the analysis of the system hardware resources was less conclusive since the application
started failing before a single resource was completely stressed.
Improvements to the network and memory system would provide marginal performance
gains, if any, because they were never stressed. A better CPU is the only hardware
enhancement that would provide significant improvement in application performance,
but this does not solve the real bottleneck. Determining the bottleneck in the tested Web
application required more complex analysis than was originally expected.
It was concluded that the bottleneck is in the application and the way it accesses the
database. Either the application architecture is not designed to support a large amount
of concurrent users or the coding of the application was not meant to support an intensive
multithreading environment. A problem with the application architecture may result from
the MS Access database not being able to support a large amount of concurrent
connections. A problem due to the coding of the application may be due to inefficient
use of locks.

Figure D5.7. Rate of context switching

100 200 300 400 500

C
o

n
te

xt
 S

w
it

ch
es

/s
ec

0

2500

2000

1000

500

0

1500

3000

3500

Number of Threads

346 Appendix Section

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Going forward because of the trends observed earlier in both Pages/Sec and Context
Switches/Sec, in both graphs, there is a strong correlation in the significant increase
between the stress levels of 5 and 150 threads. Since all of the threads should be the same
priority, the high rate of context switching is probably due to one thread asking another
for information and not thread preemption. Also, the heavy rate of Pages/Sec cannot be
contributed to the virtual memory system. As discussed earlier, it is either due to a page
used by another process or a page that is on a standby list.
Combining these observation results lead us to believe that a shared resource is locked
in memory related to the application and has caused the high rate of page faults and thread
switching. This means the application needs to be more efficient with the way it handles
shared data. Of course, the only means to improve this would be to change the
architecture that supports the handling of shared data or make the code that controls the
locks of shared data more efficient.

References

Goncalves, M., & Spencer, K. (CMK1998). Windows NT server management and control.
Prentice Hall.

Chang, C. (WMC2003). Web application stress test and data analysis. Unisys electronic
document distributed at http://webtool.rte.microsoft.com (Accessed on Septem-
ber 17, 2003.)

Glossary 347

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Glossary

A

Active Server Pages (ASP) – A Microsoft Technology that helps in producing dynamic
HTML Reponses based on the user query. ASP is essentially a program that runs
inside the web server of Microsoft Operating systems listening to the Web
requests. Based on the request, this program dynamically generates the content
and returns the response to the user.

ADO – Microsoft ADO (ActiveX Data Objects) is a Component object model object for
accessing data sources. It provides a layer between programming languages and
databases, which allows a developer to write programs which access data, without
knowing how the database is implemented. No knowledge of SQL is required to
access a database when using ADO, although one can use ADO to execute arbitrary
SQL commands. The disadvantage of this is that this introduces a dependency
upon the database.

ASP.NET – Similar to Microsoft’s ASP. ASP.NET is rewritten to fit into a larger .NET
framework. Unlike ASP, ASP.NET supports code written in complied languages
such as VB, C#, C++, and Perl.

Asynchronous Transfer Mode (ATM) – International standard for cell relay in which
multiple service types (such as voice, video, or data) are conveyed in fixed-length
(53-byte) cells. Fixed-length cells allow cell processing to occur in hardware,
thereby reducing transit delays. ATM is designed to take advantage of high-speed
transmission media such as E3, SONET, and T3.

ActiveX – A set of technologies that allows software components to interact with one
another in a networked environment, regardless of the language in which the
components were created.

348 Glossary

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Application Server – A server program in a computer within a distributed network that
provides the business logic for an application program. The application server is
frequently viewed as part of a three-tier application, consisting of a graphical user
interface (GUI) server, an application (business logic) server, and a database and
transaction server.

Authentication – The process for verifying an entity or object is who or what it claims
to be. Examples include confirming the source and integrity of information, such
as verifying a digital signature or verifying the identity of a user or computer.

B

Bandwidth – The data transfer capacity of a transmission medium. In digital communi-
cations, the transfer capacity expressed in bits per second (bps) or megabits per
second (Mbps).

BEA WebLogic – A J2EE application server and also an HTTP Web server by BEA
Systems of San Jose, California, for Unix, Linux, Solaris, Microsoft Windows, and
other platforms. WebLogic supports Oracle, DB2, Microsoft SQL Server, and other
JDBC-compliant databases. WebLogic Server supports WS-Security and is com-
pliant with J2EE 1.3.

Browser – Software that interprets the markup of files in HTML, formats them into Web
pages, and displays them to the end user. Some browsers also permit end users to
send and receive e-mail, read newsgroups, and play sound or video files embedded
in Web documents.

Business-to-Business (B2B) – Is also referred to as Business Automation or e-
business. This term is applied to the electronic transaction taking place among the
related partners and collaborators in an enterprise scenario.

Business-to-Customer (B2C) – Corresponds to the retailing part of electronic commerce
that takes place on the Internet. In B2C, the interchange of services, products, or
information takes place between the business and consumer directly.

C

Cable Modem – A device that enables hook up of a PC to a local cable TV line and receive
data at about 1.5 Mbps. This data rate far exceeds that of the prevalent 28.8 and 56
Kbps telephone modems and the up to 128 Kbps of Integrated Services Digital
Network (ISDN) and is about the same as the data rate available to subscribers of
Digital Subscriber Line (DSL) telephone service. A cable modem can be added to
or integrated with a set-top box that provides your TV set with channels for Internet
access.

Cache – A special memory subsystem in which frequently used data values are
duplicated for quick access.

Glossary 349

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cascading Style Sheet (CSS) – Set of overlay rules that are read by your HTML browser,
which uses these rules for displaying, layout, and formatting of the XML-generated
HTML file(s). CSS allows for fast changes in look and feel without having to plunge
into the HTML file(s).

Client – The requesting program or user in a client/server relationship. For example, the
user of a Web browser is effectively making client requests for pages from servers
all over the Web. The browser itself is a client in its relationship with the computer
that is getting and returning the requested HTML file.

CLR – The type, metadata, and execution systems provided by the .NET Framework,
which supply managed code and data with services such as cross-language
integration, code access security, object lifetime management, and debugging and
profiling support. By targeting the CLR, compilers and other tools can offer these
services to developers.

Common Gateway Interface (CGI) – A standard way of extending Web server function-
ality by executing programs or scripts on a Web server in response to Web browser
requests.

COM – Stands for Component Object Model. It is the component technology that works
on Microsoft’s operating system.

Connection Leak – Is a situation when connection from the pool was not closed
explicitly.

Connection Pooling – A technique used for establishing a pool of resource connections
that applications can share on an application server.

Cross Site Scripting – Often attackers will inject JavaScript, VBScript, ActiveX, HTML,
or Flash into a vulnerable application to fool a user in order to gather data from
users.

D

DataBase Management System (DBMS) – A set of computer programs for organizing
the information in a database. A DBMS supports the structuring of the database
in a standard format and provides tools for data input, verification, storage,
retrieval, query, and manipulation.

DB2 – An RDBMS product suite from IBM. DB2 is available on almost all operating
environments.

Deadlock – When two or more transactions conflict in such a way that each is waiting
for the other before they proceed. For instance, Transaction A might have a lock
on Record 1 while trying to write to Record 2, while Transaction B has a lock on

350 Glossary

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Record 2 while trying to write to Record 1. The two transactions will wait for each
other forever unless the deadlock is somehow resolved.

DSL – Acronym for Digital Subscriber Line which is a family of digital telecommunica-
tions protocols designed to allow high speed data communication over the existing
copper telephone lines between end-users and telephone companies. (From
www.adaptivedigital.com/services/serv_definitions.htm).

E

E-Commerce – (Electronic commerce or EC) is the buying and selling of goods and
services on the Internet, especially the World Wide Web. In practice, this term and
a newer term, e-business, are often used interchangeably. For online retail selling,
the term e-tailing is sometimes used.

Enterprise Java Beans (EJB) – A component as well as specification proposed by Sun
Microsystems. These components are deployed on the business tier of application
servers. They are responsible for business logic and they often execute the
business logic in a secure, reliable, and transaction environment. There are three
types of EJBs: Session Bean, Entity Bean, and Message Driven Beans.

Exception – Handling is a programming language mechanism designed to handle runtime
errors or other problems (exceptions) inside a computer program.

F

Fat server – In a client/server architecture, a server that performs most of the processing,
with the client performing little or no processing.

File Transfer Protocol (FTP) – An Internet tool/software utility which allows the
transfering of files between two computers that are connected to the Internet.
Anonymous FTP allows connection to remote computers and to transfer publicly
available computer files or programs.

Firewall – A security feature in the intranet of a company that ensures a secure
environment for the organization. A firewall forms an entry point for the requests
coming from the outside environment. Likewise, a firewall acts as the exit point for
the requests that are going out of the organization into intranet. A firewall system
can be configured to provide security environment at one of these three levels via
Packet Filtering, Circuit relay, or Application level Gateway. While packet filtering
provides the basic screening of source and destination IP address and/or port
along with the protocol, Application Gateway acts as a proxy that controls the
requests and responses along with authentication, authorization as well as an
access control mechanism.

Glossary 351

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

G

Gateway – A dedicated device that routes network traffic and enables communication
between different networking protocols.

GUI – Software designed to make applications easier to use by giving them all the same
look and feel, usually involving a mouse to move a pointer on the computer screen,
menus to select actions, and a variety of buttons or sliders which can be used to
perform tasks or manipulate the screen.

H

HTML – Stands for Hyper Text Markup Language. It is used to design and develop Web
pages.

HTTP – HyperText Transfer Protocol. A team led by Dr. Tim Berners-Lee at CERN
designed this protocol. This protocol helps in the transport of hypertext across the
networks in request-response behavior.

Hub – The master station through which all communications to, from, and between
microterminals must flow. In the future, satellites with on-board processing will
allow hubs to be eliminated, as MESH networks are able to connect all points in a
network together.

Hypertext Preprocessor (PHP) – A scripting language that is available on the Linux
systems. PHP helps in the creation of dynamic Web pages similar to Microsoft’s
ASP or Sun’s JSP. The PHP files carry an extension of .php, .php3, or .phtml. When
a user requests this page, the contents of the PHP pages are interpreted to generate
the dynamic contents to produce the HTML content to the end user.

I

Inter Process Communication (IPC) – A capability supported by some operating
systems that allows one process to communicate with another process. The
processes can be running on the same computer or on different computers
connected through a network.

Internet – Defined as the network of networks that spans the entire globe. No one owns
it and controls it. However, it is useful to every individual as well as organizations.
The Internet popularized the TCP/IP protocol, and TCP/IP has become the de facto
business protocol among enterprise users. The Internet can be credited with the
enormous success of B2C businesses. E-mail and IRC, the applications that work
on the Internet, have shrunk communication time enormously. In fact, e-mail and
IRC can be considered as new communication for individuals as well as businesses.
The World Wide Web (WWW) is the most frequently and widely used part of the
Internet.

352 Glossary

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Internet Mail Accessing Protocol (IMAP) – A protocol for retrieving e-mail messages.
The latest version, IMAP4, is similar to POP3 but supports some additional
features. For example, with IMAP4, users can search through e-mail messages for
keywords while the messages are still on the mail server. Users can then choose
which messages to download to their machines.

Internet Service Providers (ISP) – A business or organization that offers users access
to the Internet and related services. Most telecommunications operators are ISPs.
They provide services such as Internet transit, domain name registration and
hosting, dialup access, leased line access, and collocation.

Intranet – A private network of various computers within an organization. An Intranet
is used to share company information and computing resources among employees.
An intranet uses regular Internet protocols and, in general, looks like a private
version of the Internet.

IP Address – An identifier for a computer or device on a TCP/IP network. Networks using
the TCP/IP protocol route messages based on the IP address of the destination. The
format of an IP address is a 32-bit numeric address written as four numbers
separated by periods. Each number can be zero to 255. For example, 1.160.10.240
could be an IP address. Within an isolated network, IP addresses can be assigned
at random as long as each one is unique. However, connecting a private network
to the Internet requires using registered IP addresses (called Internet addresses)
to avoid duplicates.

ISDN – (Integrated Services Digital Network) is a set of CCITT/ITU standards for digital
transmission over ordinary telephone copper wire as well as over other media.
Home and business users who install an ISDN adapter (in place of a telephone
modem) receive Web pages at up to 128 Kbps compared with the maximum 56 Kbps
rate of a modem connection. ISDN requires adapters at both ends of the transmis-
sion, so the access provider also needs an ISDN adapter.

J

J2EE – A platform-independent, Java-centric environment from Sun for developing,
building, and deploying Web-based enterprise applications online. The J2EE
platform consists of a set of services, APIs, and protocols that provide the
functionality for developing multitiered, Web-based applications.

Java – A simple, object oriented, multi-threaded, robust, secure, platform independent
programming language created by Sun Microsystems. Java was initially called Oak.
Dr. James Gosling created this language sometime in the middle of 1995. Over the
years, Java has witnessed tremendous growth in terms of acceptance and applica-
bility in the client/server, distributed and intranet, extranet, and Internet environ-
ments. Java is not only thriving on computer systems, but also driving devices such
as PDA, mobile phones, set top boxes, buttons, cards, etc.

Glossary 353

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Java Beans – An object model being developed by SunSoft that is targeted to interoperate
with a variety of other object models, including COM and CORBA.

JavaScript – A scripting language developed by Netscape to enable Web authors to
design interactive sites. Although it shares many of the features and structures of
the full Java language, it was developed independently. JavaScript can interact
with HTML source code, enabling Web authors to spice up their sites with dynamic
content. JavaScript is endorsed by a number of software companies and is an open
language that anyone can use without purchasing a license. It is supported by
recent browsers from Netscape and Microsoft, though Internet Explorer supports
only a subset, which Microsoft calls Jscript.

Java Server Pages (JSP) – Popularly called JSP, are the presentation components on
the Web tier. JSP technology, introduced by Sun Microsystems, allows encoding
Java Programming language into the HTML pages. These JSP pages are identified
by a .jsp extension.

JIT Complier – In computing, just-in-time compilation (JIT), also known as dynamic
translation, is a technique for improving the performance of interpreted programs,
by allowing parts of a program to be partially compiled. This represents a kind of
hybrid approach between compiled and interpreted languages.

JVM – A crucial component of the Java platform. The availability of JVMs on almost all
types of hardware and software platforms enables Java to function both as
middleware and a platform in its own right.

K

Kernel – The fundamental part of an operating system. It is a piece of software
responsible for providing secure access to the machine’s hardware to various
computer programs. Since there are many programs, and access to the hardware is
limited, the kernel is also responsible for deciding when and how long a program
should be able to make use of a piece of hardware, in a technique called multiplexing.
Accessing the hardware directly could also be very complex.

L

Legacy Systems – Hardware and software applications in which a company has already
invested considerable time and money. Legacy systems have typically performed
critical operations in companies for many years even though they may no longer
use state-of-the-art technology. Replacing legacy systems can be disruptive and
therefore requires careful planning and appropriate migration support from the
manufacturer.

Load Balancing – A technique with the help of which incoming request to a system can
be evenly distributed among the several systems and system software so that the
accessibility of the systems for the users is addressed properly. Load balance can

354 Glossary

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be implemented in software or hardware or a combination of the two. Web servers
and application servers of enterprises that are exposed to Internet and intranet
usually require load balancing.

Load Testing – The testing of a system that attempts to cause failures involving how the
performance of a system varies under normal conditions of utilization (e.g., as the
load increases and becomes heavy). Load testing can identify failures involving
scalability requirements as well as distribution and load balancing mechanisms in
distributed, scalable systems. Contrast with stress testing.

Local Area Network (LAN) – A computer network that spans a relatively small area. Most
LANs are confined to a single building or group of buildings. However, one LAN
can be connected to other LANs over any distance via telephone lines and radio
waves.

M

M-Commerce (mobile commerce) – The buying and selling of goods and services
through wireless handheld devices such as cellular telephones and personal digital
assistants (PDAs). Known as next-generation e-commerce, m-commerce enables
users to access the Internet without needing to find a place to plug in. The emerging
technology behind m-commerce is based on the Wireless Application Protocol
(WAP), (From http://searchmobilecomputing.techtarget.com/sDefinition/
0,,sid40_gci214590,00.html).

Managed Code – Code that is executed by the CLR. Managed code provides information
(i.e., metadata) to allow the CLR to locate methods encoded in assembly modules,
store and retrieve security information, handle exceptions, and walk the program
stack. Managed code can access both managed data and unmanaged data.

Memory pool – A private free store from which related memory allocations occur. Memory
pools permit memory to be partitioned for different uses. Such partitioning
improves locality, which, in turn, reduces swapping. The allocations from a given
SmartHeap pool may be fixed size or variable size. SmartHeap permits controlling
how much memory is retained in the private free store of a given pool and controlling
when such free memory is returned to the operating system for others to use.

Modem –Short for modulator-demodulator device. Modems allow computers to transmit
information to one another via an ordinary telephone line.

Multi-Processor – A Central Processing Unit (CPU) which has more than one processor.

Multimedia – Human-computer interaction involving text, graphics, voice, and video.
Often also includes concepts from hypertext. This term has come to be almost
synonymous with CD-ROM in the personal computer world because the large
amounts of data involved are currently best supplied on CD-ROM.

Glossary 355

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Multithreading – Running several processes in rapid sequence within a single program,
regardless of which logical method of multitasking is being used by the operating
system.

N

Network Operating System (NOS) – Designed to pass information and communicate
between more than one computer. Examples include AppleShare, Novell NetWare,
and Windows NT Server.

O

Object Request Broker (ORB) – A component in the CORBA programming model that
acts as the middleware between clients and servers. In the CORBA model, a client
can request a service without knowing anything about what servers are attached
to the network. The various ORBs receive the requests, forward them to the
appropriate servers, and then hand the results back to the client.

ODBC – Open DataBase Connectivity, a standard database access method, was
developed by the SQL Access group in 1992. The goal of ODBC is to make it
possible to access any data from any application, regardless of which database
management system (DBMS) is handling the data. ODBC manages this by inserting
a middle layer, called a database driver, between an application and the DBMS. The
purpose of this layer is to translate the application’s data queries into commands
that the DBMS understands.

Operating System (OS) – The most important program that runs on a computer. Every
general-purpose computer must have an operating system to run other programs.
Operating systems perform basic tasks, such as recognizing input from the
keyboard, sending output to the display screen, keeping track of files and
directories on the disk, and controlling peripheral devices such as disk drives and
printers.

Oracle – A relational database management system (RDBMS) developed and copy-
righted by the Oracle Corporation.

P

Performance Testing (PT) – In software engineering, performance testing is testing that
is performed to determine how fast some aspect of a system performs under a
particular workload.

Post Office Protocol (POP) – Used to retrieve e-mail from a mail server. Most e-mail
applications (sometimes called an e-mail client) use the POP protocol, although
some can use the newer IMAP (Internet Message Access Protocol).

356 Glossary

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Process – A program that is running. A process is the active element in a computer.
Terminals, files, and other I/O devices communicate with each other through
processes. Thus, network communications are interprocess communications (that
is, communication between processes).

Processor – Also known as the CPU (central processing unit). The CPU is the brains of
the computer because it performs most of the calculations to run programs and
allows the performance work on the machine. In terms of computing power, the CPU
is the most important element of a computer system.

Q

Quality – The totality of features and characteristics of a product or service that bear
on its ability to satisfy stated or implied needs.

Queue – A list that allows additions at one end and deletions at the opposite end. Items
in a queue are usually processed on the first in, first out (FIFO) principle, in that
the first item entered is the first item to be processed.

R

Redundant Array of Independent Disks (RAID) – A data storage method in which data,
along with information used for error correction such as parity bits, is distributed
among two or more hard disk drives to improve performance and reliability. The
hard disk array is governed by array management software and a disk controller,
which handles the error correction. RAID is generally used on network servers.

Regression Testing – The selective retesting of a software system that has been
modified to ensure that any bugs have been fixed and that no other previously-
working functions have failed as a result of the reparations and that newly added
features have not created problems with previous versions of the software. Also
referred to as verification testing, regression testing is initiated after a programmer
has attempted to fix a recognized problem or has added source code to a program
that may have inadvertently introduced errors.

Remote Procedural Call (RPC) – A mechanism to allow the execution of individual
routines on remote computers across a network. Communication to these routines
is via passing arguments so that, in contrast to using Sockets, the communication
itself is hidden from the application. The programming model is that of the clients-
servers.

Routers – A device that determines the next network point to which a data packet should
be forwarded enroute toward its destination. The router is connected to at least two
networks and determines which way to send each data packet based on its current
understanding of the state of the networks it is connected to. Routers create or
maintain a table of the available routes and use this information to determine the
best route for a given data packet.

Glossary 357

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

RAM – Random Access Memory is the most common computer memory which can be
used by programs to perform necessary tasks while the computer is on. An
integrated circuit memory chip allows information to be stored or accessed in any
order, and all storage locations are equally accessible.

S

Secured Socket Layer (SSL) – A protocol developed by Netscape for transmitting
private documents via the Internet. SSL works by using a private key to encrypt
data that are transferred over the SSL connection. Both Netscape Navigator and
Internet Explorer support SSL, and many Web sites use the protocol to obtain
confidential user information such as credit card numbers.

Server – In the client/server programming model, a server is a program that awaits and
fulfills requests from client programs in the same or other computers. A given
application in a computer may function as a client with requests for services from
other programs and also as a server of requests from other programs.

Servlet – Java programs that can be run dynamically from a Web server. Servlets are a
server-side technology. A servlet is an intermediating layer between an HTTP
request of a client and the Web server.

Simple Mail Transfer Protocol (SMTP) – A protocol for sending e-mail messages
between servers. Most e-mail systems that send mail over the Internet use SMTP
to send messages from one server to another; the messages can then be retrieved
with an e-mail client using either POP or IMAP. In addition, SMTP is generally used
to send messages from a mail client to a mail server. This is why the POP or IMAP
server and the SMTP server need to be specified when users configure their e-mail
applications.

Sniffer – An application or device that can read, monitor, and capture network data
exchanges and read network packets. If the packets are not encrypted, a sniffer
provides a full view of the data inside the packet.

Sniffing – Method of hacking using some scripting languages or technology.

Software Development Life Cycle – A process of developing a software system in an
organized, controlled, and predictable way. The process starts at the conception
of the project to its termination with the company, sometime called a cradle-to-grave
process.

SQL injection – As the name suggests, an SQL injection attach “injects” or manipulates
SQL code. By adding unexpected SQL to a query, it is possible to manipulate a
database in many unanticipated ways.

358 Glossary

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Storage Area Network (SAN) – Collections of initiators, such as servers or individual
“workstations,” and storage devices, typically disk- or tape-based, that are
connected over a specialized or private LAN.

Structured Query Language (SQL) – Pronounced as either see-kwell or as separate
letters. SQL is a standardized query language for requesting information from a
database. The original version called SEQUEL (structured English query language)
was designed by an IBM research center in 1974 and 1975. SQL was first introduced
as a commercial database system in 1979 by Oracle Corporation.

Subnet – A portion of a network, which may be a physically independent network, which
shares a network address with other portions of the network and is distinguished
by a subnet number. A subnet is to a network what a network is to an internet.

T

T-1 – A leased-line connection capable of carrying data at 1,544,000 bits-per-second.
At maximum theoretical capacity, a T-1 line could move a megabyte in less than 10
seconds. That is still not fast enough for full-screen, full-motion video, for which
at least 10,000,000 bits-per-second is needed. T-1 lines are commonly used to
connect large LANs to the Internet.

TCP/IP (Transmission Control Protocol/Internet Protocol) – This is the suite of
protocols that defines the Internet. Originally designed for the UNIX operating
system, TCP/IP software is now included with every major kind of computer
operating system. To be truly on the Internet, a computer must have TCP/IP
software.

Test Bed – An execution environment configured for testing. May consist of specific
hardware, OS, network topology, configuration of the product under test, other
application or system software, etc. The Test Plan for a project should enumerate
the test beds to be used.

Threads – Similar to processes, in that both represent a single sequence of instructions
executed in parallel with other sequences, either by time slicing or multiprocessing.
Threads are a way for a program to split itself into two or more simultaneously
running tasks.

U

User Datagram Protocol (UDP) – Connectionless transport-layer protocol; part of the
TCP/IP protocol stack. Exchanges datagrams/packets without guaranteed delivery
or acknowledgments. Error processing and retransmission is handled by other
protocols. Sometimes used in place of TCP where transaction-based application
programs communicate; normally carries non-critical network information.

Glossary 359

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

V

VBScript – Short for Visual Basic Scripting Edition, a scripting language developed by
Microsoft and supported by Microsoft’s Internet Explorer Web browser. VBScript
is based on the Visual Basic programming language, but is much simpler. In many
ways, it is similar to JavaScript. It enables Web authors to include interactive
controls, such as buttons and scrollbars, on their Web pages

Virtual user – A software entity, internal to Web Performance Trainer and Trade, that
simulates a real user by repeatedly performing a Business Case during a load test.

W

Web Application – A software program that uses Hypertext Transfer Protocol (HTTP)
for its core communication protocol and that delivers Web-based information to
the user in the Hypertext Markup Language (HTML) language.

Wide Area Network (WAN) – A computer network that spans a relatively large
geographical area. Typically, a WAN consists of two or more local-area networks
(LANs).

X

XML – Short for Extensible Markup Language, a specification developed by the W3C.
XML is a pared-down version of SGML, designed especially for Web documents.
It allows designers to create their own customized tags, enabling the definition,
transmission, validation, and interpretation of data between applications and
between organizations.

360 About the Author

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Author

Dr. Subraya (subraya@infosys.com), BM, Associative Vice President, currently works
as a principal researcher for the Education and Research Department and as the head of
the Global Education Center (GEC), Infosys Technologies Limited, Mysore, India. He is
also responsible for the foundation level training at Global Education Center (GEC),
Mysore. His areas of interest are Web performance, software engineering, and software
testing. He has offered tutorials in Web performance testing in many preconference
tutorials, including QAI, SEPG, and PSQT international conferences. He has published
many papers in international conferences in the area of performance testing of Web
applications.
Before he came to Infosys, he worked 18 years as a professor and head of the Computer
Centre at S.J. College of Engineering, an affiliate college of the University of Mysore, a
reputed engineering college in southern India.
Dr. Subraya holds a PhD from the Indian Institute of Technology, Delhi, Computer
Science and Engineering Department, in the area of hardware verification.

Index 361

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

Symbols

.NET 72, 234
8 second rule 5

A

acceptance criteria 174
acceptance test 88
accuracy 2, 12
active server pages (ASP) 43, 72
active time 180
ad hoc queries 208
ADO 212
advertisements 11
allocation 248
AltaVista 7
ambiguities 78
analysis phase 125
analyzing requirements 78
AOL 7
Apache server 43
Apache Tomcat server 55
application server logs 168
application servers 205
application throughput 246
architectural level monitoring 234

architectural plan 88
architecture 3, 110, 175, 204
architecture level 175
array bound errors 31
asynchronous transfer mode 45
audience 173
authentication 83, 210
authenticity 156
automated system 79
automated testing 55
automation 203

B

B2B 1
B2C 1
background activities 172
bandwidth 4, 235
bandwidth soaked 112
bar charts 174
batch processing 81
behavior 105
benchmark design 102
black box method 19
bottleneck 174, 212, 235
broadband connection 8
broken page 189

362 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

browser 10, 34
buffer 31, 155, 212, 237
bugs 214
build phase 77
business applications 106
business context 80
business demands 109
business domain expert 158
business events 80
business functions 78
business logic 60, 244
business objectives 80
business operations 80
business to business (B2B) 1
business to customer (B2C) 1

C

cable modem 44
cache 130, 155, 172
cached download time 8
capacity testing 13
cascading style sheets (CSS) 69
central processing unit (CPU) 21
CGI 25, 57
client 34, 130
client caching 130
client environment 129
client program 53
client server 52
client side cookie 162
client side scripting 31, 70
client-server technology 53
clustering 57
coding 187
command ID (Cmd ID) 172
command usage reports 179
common gateway interface (CGI)

25, 57, 70
common language runtime (CLR) 254
community 208
comparative analysis 170
compare performance report 177
compatibility 218
complex benchmark 108
complex environment 128
complexity 78

computation based transaction 112
computational activity 108
computer 246
concept 156
concurrency 108
configuration testing 21
congestion window 35
connection leak 161
connection pooling 161
connections 35
content management 38
contention testing 21
context switching activity 237
cookie 162
cooperation 247
CPU 4, 21, 53, 154
critical performance parameters 78
critical quality factor 207
cross browser scripting 31
cryptographic protocol 31
cumulative statistics 180
customer loyalty 2
customers 208

D

data collection 246
data integrity 53
data link layer 205
data management 244
database connection 161
database connectivity 57
database design 235
database logs 168
database management system (DBMS) 21
database retrieval 53
database server 10, 54, 205
databases 53
DBLIB 212
DBMS 21
deallocation 161, 248
definition phase 77
delays 209
design phase 77, 216
designer 2
detail level design (DLD) 77
dialup 44

Index 363

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

disk usage 189
distributed data collection 246
distribution 209
domain specific 103
downloading 189
DSL (digital subscriber line) 131
dual port redundancy 42
dynamic behavior 89
dynamic link Library 57
dynamic page 174
dynamic pages 189
dynamic Web site 4

E

e-auctioning 1
e-commerce 1
eBay 7
efficiency 154
elaboration testing 156
electronic commerce 1
end results 174
end user requests 189
endurance test 15, 172
enterprise application 56
Enterprise Java Bean (EJB) 60
environment 206
error pages 189
ethernet 85
execution 153
exit criteria 152
expected behavior 105
extensible hypertext markup language

(XHTML) 69
extensible markup language (XML) 69
external events 81

F

failed commands 180
fat server 39
fault tolerance 57
features testing 52
file access utilization 237
file requests 53
file servers 54
file transfer 38
file transfer protocol (FTP) 38

firewall 12, 192, 235
flexibility 68
front end monitoring 191
functional behavior 88
functional defect 153
functional design 88
functional regression testing 203
functional requirements 52
functional test automation 203
functionality 66

G

garbage collection (GC) 161, 187, 247, 252
goal oriented 110
goals 78
Google 9
graceful degradation 132
groupware server 54
GUIs (graphical user interface) 60

H

healthy state 153
heap memory 251
heap size 155, 161
heterogeneous 53
heterogeneous client 34
high level design (HLD) 77
horizontal scaling 54
HTML 32
HTTP 25
HTTP return code 172
hyper text markup language (HTML)

32, 68
hyper text transfer protocol (HTTP) 25,

172
hypertext preprocessor (PHP) 72

I

IMAP (Internet mail access protocol) 35
inactive time 180
incorrect configuration 112
information system (IS) 81
initial congestion window (ICW) 35
integrated services digital network (ISDN)

44

364 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

integrity 53
interactions 108
interactive Web site 4
interfacing system 89
Internet 3, 35, 187
Internet relay chat (IRC) 54
Internet server application programming

interface 57
Internet service provider (ISP) 43, 131
intranet 56
invocation 248
IP address 209
IRC servers 54
ISAPI 57

J

Java 130, 234, 253
Java database connectivity (JDBC) 189
Java management extension (JMX) 248
Java scripts 11
Java server pages (JSP) 57, 71
JavaScript 71
Jconsole 248
JDBC connection 187
Jscript 71
just-in-time (JIT) 244
JVM 155

K

kernel memory allocation (KMA) 237
keyboard 53
knowledge 3

L

language 52, 68
latency 174
leased phone lines 44
LESS (load, endurance, stress, and spike)

14
licenses 127
Linux 130
live operation 79
load balancers 205
load balancing 37
load, endurance, stress, and spike (LESS)

14
load testing 15
local area network (LAN) 85
log 167, 219, 246
log file 153, 246
log performance 246
logging service 246
logistics 80

M

m-commerce 80
mainframe application 56
mainframe environment 132
maintenance 68
master client 129
memory 154, 161, 175, 189, 237, 246
memory leak 15, 190
memory usage 4
Mercury 217
message queue 155
messaging 57
method invocation 248
metrics 209
Microsoft .NET 72
Microsoft Internet information server (IIS)

55
middleware 154
mirroring 42
mobile commerce 80
modems 53
monitor 53
MSN 7
multi-tier architecture 62
multimedia 33
multimedia interactive system 13
multiple configurations 130

N

negative exponential distribution 209
Netscape Navigator 130
network 34, 43, 154
network architecture 131
network bandwidth 235
network environment 79, 131
network link 12
network monitoring 192

Index 365

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

network operating systems (NOS) 21, 40
network topology 34
network traffic 168, 187, 246
networks 4
NewReno 35
noise level 208
non-heap memory 251
normal distribution 209
NOS 21

O

object allocation 248
object oriented (OO) 244
object request broker (ORB) 54
object servers 54
occupancy 154
online system 13
online transaction processing (OLTP) 54
open database connectivity (ODBC) 189
operating system (OS) 235
operation phase 216
operation profile 104
operational environment 127, 132, 206
optimum balance 107
optimum performance 167
Oracle 55
organizational structure 81
overview phase 216

P

packet loss 189
page faults 186
page load 189
parameters 174
parent process 107
partitioned data 236
passed commands 180
passed responses 180
password 31
peak demands 109
pedagogy 11
peer tester review 157
PERFMON 242
performance 54
performance analyst 82
performance counters 247

performance metrics 78
performance monitoring 234
performance object 242
performance objective 82
performance parameters 79, 153
performance requirement document (PRD)

207
performance requirement specification 202
performance requirements 79
performance result 82
performance test automation 201
performance testing (PT) 1, 5, 29, 52
performance tuning 127, 196
permanent virtual circuit (PVC) 45
persistent connection 35
personal Web service (PWS) 57
PIN 83
pipelining 35
planned behavior 104
planning phase 216
point to point protocol (PPP) 130
point to point tunneling protocol (PPTP)

131
pooling 161
POP (post office protocol) 35
pop up advertisements 11
post execution phase 167
preparation phase 202
printers 53
process scheduling 247
project manager 124
prototyping 30
proxy servers 54
PT (performance testing) 2
PT life cycle (PTLC) 22
PTLC 22
Python 69

Q

quality process 204
query 4
queue 189
queue length 212

R

RAD 30

366 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

RAID (redundant array of independent
disks) 41

RAM 161, 212
random access memory (RAM) 161, 212
random delays 209
random simulation 208
rapid application development (RAD) 30
rational test suite 175
record session 172
redundancy 42
reference technology 52
regression 203
reliability 12
remote computer 246
Reno 35
request response 35
requirement study 78
resource crunch 112
resource management 187
resource measurements 175
resource parameter 175
resource pooling 60
resource utilization 2
response time 2, 177
response time testing 13
retesting 151
return code 172
reusability 68
risk factors 78, 215
robustness 26
rollback buffer 15
router 12

S

sample benchmark 109
Sar 237
scalability 14, 66
scalability testing 21
scatter charts 174
scheduling 202
script failure 173, 214
scripting languages 68
scripts 57
SDLC 21
security 12, 60, 131, 205
security model 129

selective acknowledgment (SACK) 36
self satisfaction test (SST) 157
self-tuning 241
serial line Internet protocol (SLIP) 131
server crash 214
server environment 131
server farm 37
server monitoring 192
server side includes (SSI) 73
server side program 56
server side scripting 71
servers 54
session state management 236
session tracking 161
shared resources 53
simple connection 35
simulated data 151
simulated environment 132
single-tier architecture 62
SMTP (simple mail transfer protocol) 35
sniffing 31
software development life cycle (SDLC) 21
software engine 53
special demand 109
specialized requirement 109
speech synthesis 83
speed 2
spike testing 18
SQL injection 31
SQL server 55
stability 14
stakeholders 81
standard deviation (STD DEV) 176
static page 174
static Web site 4
statistics 209
storage area network (SAN) 41, 133
storage operating system (SOS) 41
strategy 78
stress testing 17
structured query language (SQL) 36, 54
subnet 38
superimposing 175
SUT (system under test) 19
swap space 237
switched virtual circuit (SVC) 45

Index 367

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sybase 55
system developer 4
system under test (SUT) 19

T

Tahoe 35
technical infrastructure 79
technology framework 29
temporal events 82
test analyst 236
test automation 202
test bed 151
test cycle 158, 168, 214
test data bed 202
test design phase 102
test designers 125
test environment 206
test execution 160
test execution errors 148
test log 170
test log records 169
test preparation 125
test reports 173
test runs 158, 214
test script 129, 218
test script service (TSS) 183
test script specialist 151
test team 151
testing activity 124
testing process 5
thick client 65
thin client 65
think time 209
thread contention 236
thread pool 155
thread synchronization 247
threads 104
three-tier architecture 64
three-tiered Web-based system 66
throughput testing 13
tiers 191
time reports 177
Timestamp 185
tolerance 16, 57
tools analysis 217
traceability matrix 202

traffic 38
transaction density per second 4
transaction mix 108
transaction processing 57
transaction Server 54
transactions 4, 104
tuning 234
tuning process 187
two-tier architecture 63

U

uniform distributio 209
uptime 237, 252
usage pattern 89, 155
user identification 162

V

vertical scaling 54
virtual database user 212
virtual machine (VM) 244
virtual reality modeling language (VRML)

69
virtual tester 182
virtual users 213
visual basic (VB) script 71
voice recognition 83

W

Web administrator 154
Web architecture 204
Web logic 55
Web page 2, 172
Web page development languages 68
Web server 133, 168, 205
Web server log 168
Web site 2, 32, 189, 209, 246
Web technology 55
Web traffic 12
Web-based applications 235
Web-based system 1
Web-based technology 53
WebSphere 55
wide area network (WAN) 85
Windows 2000 130, 241
Windows NT 130

368 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

wired client server technology 55
workload 103, 110, 202
workstation 53
World Wide Web (Web) 1

Y

Yahoo 7

Z

zero latency 42
zip drive 130

InfoSci-Online
Experience the latest full-text research in the fields
of Information Science, Technology & Management

infosci-online.comA PRODUCT OF

Publishers of Idea Group Publishing, Information Science Publishing, CyberTech Publishing, and IRM Press

“…The theoretical bent
of many of the titles
covered, and the ease
of adding chapters to
reading lists, makes it
particularly good for
institutions with strong
information science
curricula.”

— Issues in Science and
Technology Librarianship

To receive your free 30-day trial access subscription contact:
Andrew Bundy

Email: abundy@idea-group.com • Phone: 717/533-8845 x29
Web Address: www.infosci-online.com

InfoSci-Online is available to libraries to help keep students,
faculty and researchers up-to-date with the latest research in
the ever-growing field of information science, technology, and
management.

The InfoSci-Online collection includes:
� Scholarly and scientific book chapters
� Peer-reviewed journal articles
� Comprehensive teaching cases
� Conference proceeding papers
� All entries have abstracts and citation information
� The full text of every entry is downloadable in .pdf format

Some topics covered:
� Business Management
� Computer Science
� Education Technologies
� Electronic Commerce
� Environmental IS
� Healthcare Information Systems
� Information Systems
� Library Science
� Multimedia Information Systems
� Public Information Systems
� Social Science and Technologies

InfoSci-Online
features:
� Easy-to-use
� 6,000+ full-text

entries
� Aggregated
� Multi-user access

Single Journal Articles and Case Studies Are

Now Right at Your Fingertips!

www.idea-group.com

Business Process Reengineering Data and Database Management
Distance Learning E-commerce
Emerging and Innovative Technologies End User Computing
Healthcare Human Side of IT
Information Resource Management Internet-Based Technologies
IS/IT Planning IT Education
IT Management Knowledge Management
Organization Politics and Culture Software Engineering Tools
Systems Planning Decision Support Systems
Telecommunication and Networking Virtual Offices
Client Server Technology Strategic Information Systems
 Design, Implementation

You can now view the table of contents for each journal so it is easier to
locate and purchase one specific article from the journal of your choice.

Case studies are also available through XanEdu, to start building your
perfect coursepack, please visit www.xanedu.com.

For more information, contact cust@idea-group.com or 717-533-8845
ext. 10.

Purchase any single journal article or
teaching case for only $18.00!

 Idea Group Publishing offers an extensive collection of research articles and
teaching cases that are available for electronic purchase by visiting
www.idea-group.com/articles. You will find over 980 journal articles and
over 275 case studies from over 20 journals available for only $18.00. The
website also offers a new capability of searching journal articles and case
studies by category. To take advantage of this new feature, please use the
link above to search within these available categories:

	Cover
	Web-Based Systems and Performance Testing
	Web Systems and Poor Performance
	Classification of Web Sties
	The Need for Performance Testing
	General Perception about Performance Testing
	Performance Testing: “LESS” Approach
	Difference between the Components of LESS
	Performance Testing Life Cycle
	Performance Testing vs. Functional Testing
	Summary
	References
	Additional Sources

	Performance Testing: Factors that Impact Performance
	Project Peculiarities
	Technical Peculiarities
	Web Site Contents
	Client Environment
	Infrastructure and Network Environment
	Explicitly Specified Requirements for Performance
	Developing Performance Test Strategy Document
	Summary
	References
	Additional Sources

	Test Preparation Phase II: Test Design
	Importance of Test Design Phase
	Benchmark Requirements
	Developing a Workload
	Sequencing Transactions
	Selection of Tools
	Summary
	References
	Additional Sources

	Test Preparation Phase III: Test Build
	Developing the Performance Test Plan
	Working with the
	Proper Testing Environment
	Challenges in Creating a Simulated Environment
	Developing Test Scripts
	Preparing the Test Schedule
	Defining the Testing Process
	Analysis of Risk Factors
	Summary
	References
	Additional Sources

	Performance Test Execution Phase
	Entry Criteria
	Exit Criteria
	Elaboration Testing
	Self Satisfaction Test (SST)
	Multiple Test Runs
	Challenges in Test Execution
	Guidelines for Test Execution
	Summary
	References
	Additional Sources

	Post Test Execution Phase
	Objectives of the Analysis Phase
	Analysis Process
	Analyze Test Logs
	Verifying Pass or Fail Criteria
	Test Reports
	Areas of Improvement
	Tuning Process
	Guidelines for Performance Tuning
	Summary
	References
	Additional Sources

	Performance Test Automation
	Performance Test Automation Process
	Preparation Phase
	Planning Phase
	Execution Phase
	Postexecution Phase
	Summary
	References
	Additional Sources

	Introduction to Performance Monitoring and Tuning: Java and .NET
	Areas of Bottlenecks in Web-Based Applications
	Performance Counters in the Operating System
	Performance Monitoring and Tuning in UNIX
	Performance Monitoring and Tuning in Windows 2000
	Architectural Similarities between Java and .NET
	General Guidelines for Performance Monitoring
	Performance Monitoring and Tuning: Java
	Performance Monitoring and Tuning: .NET
	.NET Framework Tuning
	Coding Guidelines
	Summary
	References
	Additional Sources

	Appendix Section
	Appendix A: Performance Tuning Guidelines
	B: Testing Tools
	C: Templates
	D: Case Study

	Glossary
	About the Author
	Index

