
 Performance Testing Microsoft .NET

Web Applications

Microsoft Application Consulting and Engineering (ACE) Team

Microsoft Press

A Division of Microsoft Corporation One Microsoft Way Redmond , Washington 98052-6399

Copyright × 2003 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced

or transmitted in any form or by any means without the written permission

of the publisher.

Library of Congress Cataloging-in-Publication Data

Performance Testing Microsoft .NET Web applications / Microsoft

ACE Team.

 p. cm.

 Includes index.

ISBN 0-7356-1538-1

1. Application software--Testing. 2. Microsoft .NET. 3. Web site development. I. Microsoft ACE

Team.

QA76.76.T48 P457 2002

005.2'76--dc21 2002026545

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 7 6 5 4 3 2

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors

worldwide. For further information about international editions, contact

your local Microsoft Corporation office or contact Microsoft Press

International directly at fax (425) 936-7329. Visit our Web site at

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

www.microsoft.com/mspress. Send comments to

<mspinput@microsoft.com>.

Application Expert is a registered trademark of Compuware Corporation.

BizTalk, JScript, Microsoft, Microsoft Press, the .NET logo, PowerPoint,

Visual Basic, Visual C++, Visual C#, Visual Studio, Windows, and

Windows NT are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries. Other product and

company names mentioned herein may be the trademarks of their

respective owners.

The example companies, organizations, products, domain names, e-mail

addresses, logos, people, places, and events depicted herein are fictitious.

No association with any real company, organization, product, domain

name, e-mail address, logo, person, place, or event is intended or should

be inferred.

Acquisitions Editor: Juliana Aldous

Project Editor: Lynn Finnel

Body Part No. X08-73309

To the team spirit at Microsoft, which gave the ACE Team the opportunity

to develop and write this book.

Acknowledgements

The Microsoft Application and Consulting Engineering (ACE) Team would

like to acknowledge a number of people for their help and support

throughout this project. First, we want to thank our managers, Mike Adams

and Tracy Shell, for trusting us to get our regular work done while we were

writing this book. Next, a number of technical editors ensured the accuracy

of the material presented in the book. Starting with Chapter 3, we want to

thank Matt Odhner for reviewing and offering insightful feedback on the

ACT material. Chapter 5 was tech-edited by Jim Pierson. Thanks go out to

Fabio Yeon and Mitica Manu for tech-editing Chapter 6. We express our

gratitude to Eric Rachner, Chad Dellinger, and Mitica Manu for their

contributions to Chapter 7. Julius Chen and Ken Henderson reviewed

Chapter 8, while Chapter 9 was reviewed by one of the patent holders of

the Transaction Cost Analysis (TCA), David Guimbellot. Others involved

with Chapter 9 include Perry Clarke, also a patent holder for TCA, and

Chris Lawson, a fine intern who was kind enough to run the TCA

verification tests. In addition, we express our gratitude to the MSN

Enterprise Tools team, specifically to Jonathan Hardwick and Stathis

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Papaefstathiou, who contributed a great deal of time and energy to

Chapter 10. We also want to acknowledge Robert Dillingham, program

manager on the ACE Team, for his help with the editing process. In

addition, we thank Juliana Aldous and Lynn Finnel of Microsoft Press for

their patience through the writing process. Lastly, we are very grateful to

Mahesh Prakriya of the .NET Framework team for helping steer the book

in the right direction.

Todd Kutzke

Todd Kutzke manages the Application Consulting and Engineering (ACE)

Team at Microsoft. When Todd isn't writing about performance-testing

Web applications, he can usually be found hanging from a rock or sailing

somewhere in the Pacific Northwest. Before coming to Microsoft, Todd

worked at Deloitte & Touche as a Senior Consultant and ABN-AMRO Bank

as a financial analyst.

William Eric Morris

William Eric Morris performance-tests Web-based applications for the

Microsoft ACE Team. Eric began his professional career in the

telecommunications industry and has a passion for technology and

gadgets, and a general curiosity about how things work. He has held many

titles and performed many roles at various companies, from Fortune 500s

to Internet start-ups, including network technical engineer, Web developer,

server administrator, Webmaster, consultant, and performance analyst.

Ultimately, he considers himself a creative problem solver. Eric holds a

Bachelor of Science degree in Psychology from the College of William and

Mary in Virginia. You can e-mail Eric at <eric@07734.org>.

Steve Lee

Steve Lee, MCDBA, MCSD, MCSE, and CCNA, is a database

administrator for the Microsoft MSN group. He focuses on performance

tuning and capacity modeling.

Brian D'Mello

Brian D'Mello is a member of the Microsoft ACE Team and does Web

performance testing for Microsoft groups. He has held several positions in

software testing and support at various companies, and is interested in

Web programming and SQL development technologies.

Khiaw Meng (K.M.) Lee

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Khiaw Meng (K.M.) Lee is a performance analyst for Microsoft. He holds a

Master of Science degree in Information Systems and a Master of

Business Administration degree in Marketing from Hawaii Pacific

University. He enjoys swimming, kayaking, movies, and stamp collecting.

Nicolaas F. Jansen

Nicolaas F. Jansen is a performance analyst at Microsoft on the Microsoft

ACE Team, and holds a Bachelor of Science degree in Computer Science.

When not occupied with performance analysis, Nicolaas enjoys fly-fishing

the abundant waters of the Pacific Northwest.

John Hopkins

John Hopkins is a senior performance analyst on the Microsoft ACE Team,

and has several years of stress and performance testing experience. John

enjoys camping and fishing with friends and family in the great outdoors of

the Northwest.

Irfan A. Chaudhry

Irfan A. Chaudhry is a program manager on the Microsoft ACE Team. He

is interested in performance analysis and application security. Irfan has

been a contributing author to three other books: MCSE Microsoft SQL

Server 2000 Administration Readiness Review Exam 70-228 (Microsoft

Press, 2001) Microsoft Windows 2000 Performance Tuning Technical

Reference (Microsoft Press, 2000), and Peter Norton's Complete Guide to

Microsoft Windows 2000 Server (Sams, 2000).

Introduction

This book was written by members of the Microsoft Application Consulting and

Engineering (ACE) Team, which provides performance analysis services for some of the

most heavily utilized Web applications and sites at Microsoft. Our responsibilities include,

but are not limited to, providing throughput or response time numbers, identifying

bottlenecks, and optimizing and tuning Web applications in an enterprise environment to

achieve required application performance.

Our mission is to drive performance improvements into Microsoft's production Web

applications. We do this by providing performance analysis leadership and world-class

tuning services. This book outlines and details our experiences and the methodology

we've developed while working in the dynamic and challenging environment of Microsoft's

corporate intranet and extranet infrastructure.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Who This Book is For

Because Web performance analysis is a relatively new field (compared to software

development and its traditional developer, test, and IT roles) it's difficult to name a

specific group of professionals for whom this book is intended, except to say that anyone

who needs to ensure that a Web application running on Microsoft technologies can

perform adequately will find this book valuable. For test teams, this book offers a full

spectrum of "how to" techniques to analyze applications for performance. For managers

who are responsible for Web application performance planning, this book offers help with

how to include performance analysis in the development life cycle, estimate hardware

capacity needs, and budget for future infrastructure needs.

About the Companion CD-ROM

The CD-ROM included with this book contains the following items:

§ An AutoRun menu for linking to the resources on the CD

§ Sample files for the book

§ Information on ASP Timers

§ System Monitor templates

§ A setup program to install the sample files

§ A Microsoft PowerPoint presentation of Compuware's Application Expert

§ An electronic version of the book (eBook)

Using the Companion CD-ROM

The StartCD program provides a graphical interface to the content on the CD-ROM. If you

have AutoRun enabled, this program will open by default when you insert the CD into

your CD-ROM drive. To use the companion CD, insert it into your CD-ROM drive. If

AutoRun is not enabled on your computer, run StartCD.exe in the root of the CD to

display the Start menu. The menu provides access to all the resources on the CD,

including links for installing the software you will need to view the files contained on the

CD and to access the Microsoft Press product support Web site.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Sample Files

ACT test scripts for the test runs discussed in the book are included on the CD-ROM in

the Sample Files folder. To copy all the sample files to your hard disk, run Setup.exe in

the Setup folder and follow the instructions that appear on the screen. The samples

require about 5 MB of hard disk space. To uninstall the sample files, open the Control

Panel, choose Add or Remove Programs, and make the appropriate selection.

ASP Timers

A Microsoft Word document that describes how to create an ASP Timer using Microsoft

Visual Basic Scripting Edition (VBScript) or JScript can be found in the Chapter05 folder

on the CD-ROM.

System Monitor Templates

System Monitor templates with pre-defined performance counters are also included on

this CD-ROM. These templates allow you to easily start monitoring the performance of

your Internet Information Services (IIS) or SQL server. The templates can be found in the

Chapter04 folder.

PowerPoint Presentation: Compuware

Application Expert

Compuware's Application Expert is covered in Chapter 5 of the book. The PowerPoint

presentation included in the Chapter05 folder on the CD-ROM illustrates some of the

common features of Application Expert.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

EBook

The complete text of the printed book is contained on the CD-ROM in a fully searchable

electronic version. To install the eBook, run Autorun.exe in the eBook folder. Microsoft

Internet Explorer 5.01 or later and the proper HTML Help components are required to

view the eBook. If your computer does not have Internet Explorer 5.01 or later, the setup

program will offer to install Internet Explorer 5.5 for you. The setup program has been

configured to install the minimum files necessary to view the eBook, and it will not change

your current settings or associations. If your computer runs on Microsoft Windows NT 4.0,

Microsoft Windows 2000, or Microsoft Windows XP, you will need administrative

privileges to install the eBook. If you do not have administrative privileges and your

system has Internet Explorer 5.01 or later, you can view the eBook by opening the

perftest.CHM file in the \eBook\Is_001 folder.

CD-ROM Requirements

§ Microsoft Windows XP or Windows 2000

§ Microsoft Visual Studio .NET, Enterprise Developer or Enterprise Architect

Editions

The following are the requirements to run Visual Studio .NET

§ Computer/Processor PC with a Pentium II-class processor, 450 MHz

§ Memory 96 MB for Windows 2000 Professional; 160 MB for Windows XP

Professional

§ Hard Disk 2.5 GB of hard disk space including a minimum of 500 MB on the

system drive

§ Drive CD-ROM or DVD-ROM

§ Display Super VGA (800 x 600) or higher resolution monitor with 256 colors

§ Operating System Windows 2000 or Windows XP

§ Peripherals Microsoft Mouse or compatible pointing device

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Chapter Overviews

The book is divided into four parts to address the differing phases of the performance

testing process, as shown in the following table.

Table I-1: Phases of Performance Testing

For this content See these chapters

Planning 1, 2

Execution 3, 4

Analysis 5, 6, 7, 8

Modeling 9, 10

Following is a brief overview of each chapter. For those of you in a hurry to skip some

chapters, we give you an idea of the concepts covered in each.

Chapter 1: Laying the Performance Analysis Ground Work Chapter 1 details where

performance testing resides in the software development life cycle and why performance

testing is as important as functional testing of the application. It describes how the results

from a performance test provide a more realistic application deployment scenario and a

substantial cost savings for the project. Additionally, it provides a background of the

performance testing methodology used in the book.

Chapter 2: Preparing and Planning for the Performance Test Before executing the

performance test, you must compile specific information regarding the application being

tested. Chapter 2 provides an overview of the information the tester is expected to gather

and the sources where they can find this data. Sources include marketing forecasts,

production IIS logs, performance logs, and functional specifications for the application.

Chapter 3: Stress Testing with Microsoft Application Center Test (ACT) Because the

book discusses Web applications built solely using Microsoft software and technologies,

the application stress tool discussed in the book is Microsoft Application Center Test

(ACT). ACT is relatively new. Chapter 3 takes a detailed look at the tool, focusing on how

to create test scripts using ACT and explaining the intricacies of scripting Web

applications.

Chapter 4: Monitoring Application Performance with System Monitor The primary

tool that you'll use when conducting Web application performance analysis is System

Monitor. Chapter 4 introduces System Monitor and explains some of the most commonly

used performance counters and how to use them when tracking down processor, disk,

and memory bottlenecks.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Chapter 5: Application Network Analysis Chapter 5 provides an overview network

performance analysis, which is targeted at identifying pages or functions that are taking

the most time to load within an application. ACE provides tips on identifying slow pages or

functions by capturing all traffic within your application using Network Monitor and then

analyzing the captured data to extrapolate end user response times, bytes transferred,

and network round trips.

Chapter 6: Analyzing and Performance Tuning the Web Tier Data collected at the IIS

tier can reveal bottlenecks within the ASP.NET code, middle tier or SQL tier. The reader

is instructed to interpret the IIS logs and performance monitor logs to find these

bottlenecks. Recommendations are included in Chapter 6 on how to address bottlenecks

at the IIS tier.

Chapter 7: Profiling Managed Code It is essential to understand how to analyze and

profile managed code to successfully performance test Microsoft .NET Web applications.

Chapter 7 details features of the .NET Framework that directly effect performance of

your .NET Web application. This chapter also provides an overview of key .NET

performance counters and two useful applications that can be used when profiling

managed code performance.

Chapter 8: Analyzing the SQL Tier Bottlenecks at the SQL tier can reduce the

performance of Web-based applications by thousands of percent. Bottlenecks at the back

end can also be extremely difficult to pinpoint and correct. It takes a high level of SQL

expertise to correctly diagnose and correct problems at the Microsoft SQL server level.

Chapter 8 shows the reader some of the more basic methods to profile SQL server

activity, detect the bottleneck, and then correct the problem by optimizing SQL Server

code and modifying the database architecture.

Chapter 9: Estimating IIS Tier Capacity with Transaction Cost Analysis Chapter 9

explains in depth Microsoft's methodology for calculating the Transaction Cost Analysis

(TCA) of a Web-based application. TCA numbers are used to measure a Web site's

capacity to host users; they can also be a means to measure performance improvements

made to the application.

Chapter 10: Performance Modeling: Tools for Predicting Performance One goal of

performance modeling is to be truly proactive in performance engineering-to examine a

proposed system in its entirety, from hardware and network resources to code

optimization, before completely building any one component. In Chapter 10, ACE covers

scenarios in which performance modeling can replace other methods of performance

assessment and engineering, different methods of modeling and when they are

appropriate for use, a brief look at currently available performance modeling tools and a

detailed look at the toolkit approach, represented by Microsoft's Indy project.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Support

Every effort has been made to ensure the accuracy of this book and the contents of the

companion CD-ROM. Microsoft Press provides corrections for books through the World

Wide Web at the following address:

§ http://www.microsoft.com/mspress/support/

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding a

question or issue that you may have, go to:

§ http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this book or the companion

CD-ROM, please send them to Microsoft Press using either of the following methods:

§ Postal Mail:

Microsoft Press

Attn: Performance Testing Microsoft .NET Web Applications Editor

One Microsoft Way

Redmond, WA 98052-6399

§ E-mail:

<MSPINPUT@MICROSOFT.COM>

Please note that product support is not offered through the above mail addresses. For

support information, please visit the Microsoft Product Support Web site at

§ http://support.microsoft.com

Chapter 1: Laying the Performance Analysis

Groundwork

Now that Microsoft's .NET strategy has made it possible for us to connect information,

devices, and people in a unified way, Web-enabling traditional desktop applications are

no longer an option but a requirement. Customers will expect to have access to their

office productivity applications from any Web-capable device, be it the browser on their

desktop, a Personal Digital Assistant (PDA) device, or a Wireless Application Protocol

(WAP) enabled phone. This drive to bring applications to the Internet will push

development teams and the software they build to their limits. The Web-enabled

application will have to perform as well and be as reliable and extensible as its desktop

counterpart. This paradigm shift away from stand-alone desktop applications will focus

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

increased attention on performance testing and tuning throughout the application

development life cycle as many more variables that could affect application performance

are introduced.

Why Is Performance Testing and Tuning Important?

When designing an application that will be accessed over the Internet, development

teams must keep in mind that hundreds of thousands of users could concurrently access

the application. This concurrent user load could place tremendous stress upon a system,

cause unexpected delays, and result in a poor user experience. However, if the

application has been adequately tested and tuned for optimal performance under stress,

managers and software developers will be confident that their code will perform at optimal

levels and have the necessary data to plan site capacity needs. The following real world

example demonstrates what can happen when adequate performance testing has not

occurred.

Real World Example-Site Traffic Spikes

On September 11, 2001, news events of attacks on the World Trade Center and the

Pentagon caused site traffic at a Microsoft Web news site to increase by threefold

compared to pre-September 11 levels. In the days following the attack, the increased

level of traffic persisted as the public demand for news persisted. This caused the page

response times on this particular site to degrade to unacceptable levels, and the Web

servers required rebooting every couple of hours as available memory became critically

low. It was subsequently determined that there was an existing memory leak associated

with this site, which was exacerbated by the sudden increase in traffic. The

methodology presented in this book is designed to proactively test and subsequently

prevent unacceptable Web site performance degradations, even in the face of

unexpectedly large traffic spikes, which can be caused by extraordinary events such as

those on September 11, 2001.

This example should lead to the question, "How does one approach the task of

accurately performance testing and tuning a Web application?" Unfortunately, there isn't

one correct answer to this question. Methodologies aimed at performance testing and

tuning Web applications are constantly evolving, and new tools for obtaining a more

accurate result set are quickly becoming available. In the case of a simple Web site, a

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

set of static stress scripts might do the job; whereas, in the case of a complex

e-commerce site, performance modeling tools and dynamic stress scripts would be

required to better predict how the application would react under a particular user load.

Because acceptable Web site performance is application dependent and Web site

architecture can vary widely from site to site, Web site performance analysis can be

viewed as more an art than a science. The goal of effective performance testing,

however, is to ensure that the site will perform within acceptable performance levels,

whatever those levels need to be.

Effects of Current and Emerging Architecture Technologies

While the focus of this book will be on performance testing applications built with the

Microsoft .NET Framework, the methodology presented also offers a backward

compatible approach for Windows Distributed interNet applications Architecture (DNA).

Given that .NET will still be relatively early in the market adoption cycle by the time this

book goes to print, many Microsoft customers will still be running traditional ASP-based

Web applications. Therefore, we present the performance analysis methodology that can

be effectively utilized by Microsoft customers running both .NET Web services as well as

Windows DNA Web applications. Where appropriate, we have included specific "how to"

methodology for Windows DNA applications. The methodology laid out in this book

focuses on identifying performance metrics that are business critical, such as response

times, throughput, and scalability. As illustrated below, setting performance goals in the

planning phase drives critical performance testing breakpoints.

Real World Example-Site Performance Goals

For Microsoft's e-commerce Internet sites, we define maximum throughput for given

user scenarios such as browsing products, adding products to a shopping basket, and

checking out. We test the throughput for these scenarios both separately and while

running in what is called a "mixed test." The former defines the maximum scalability for

each scenario individually with nothing else running on the servers. The latter (a mixed

test) more closely simulates what actually occurs on the live site with various

percentages of activity associated with a number of transaction types. Defining the

maximum throughput of Microsoft's e-commerce sites directly depends on what the

minimum performance goals are. For example, all pages must load within 10 seconds,

average CPU utilization on servers must be less than 70 percent, and available memory

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

must remain stable throughout the period of the test, all while the site is maintaining 10

customer checkouts per second. When page response times degrade to 11 seconds at

higher throughput rates, the site is considered to be performing unacceptably. At this

point, it is time to figure out what is causing and contributing to the unacceptable

response time. In this manner, performance goals set in the planning phase drive break

points during the performance-testing phase.

When performance planning is completed, our methodology focus shifts to utilizing

software load simulation tools for pushing Web applications to their performance

breakpoints. The goal during the testing phase is to define the real-world performance

limits for the Web application. Finally, the focus shifts to the methods of drilling down into

each application layer through effective analysis techniques with the goal of identifying

the bottlenecks and formulating performance-enhancing solutions.

What Is .NET?

As the purpose of this book is to explain how to performance test a .NET application, and

many of the application samples used throughout this book were built using the .NET

Framework, it is necessary to first understand what .NET is. In fact, experience has

shown us that effective performance testing is difficult, if not impossible, without an

in-depth understanding of the underlying technologies involved. The material presented

here serves only as an introduction to Microsoft's .NET initiative. For a more detailed

perspective of the .NET initiative please visit http://www.microsoft.com/net.

The .NET Platform

What is .NET? Or alternatively, what are the services that make up the .NET platform?

The .NET platform is a set of developmental tools and operational systems used to build,

expose, and consume XML Web services thereby enabling a personal, integrated Web

delivered through smart devices while using open standards. The main .NET platform

components are as follows:

§ The .NET Framework is an environment for building, deploying, and running

XML Web services and other applications. The .NET Framework has two

parts: the common language runtime (CLR) and the class libraries, which

include ASP.NET, Enterprise Services, ADO.NET, and Windows Forms.

§ Visual Studio .NET provides a complete development environment for

building on the Microsoft .NET platform.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ The Mobile Internet Toolkit is a set of programming interfaces that enable

developers to target mobile devices like smart phones, PDAs, and server

infrastructure.

§ The .NET Enterprise Servers include Application Center 2000, BizTalk

Server 2000, Commerce Server 2000, Exchange Server 2000, Internet

Security and Acceleration Server, Host Integration Server 2000, Mobile

Information 2001 Server, and SQL Server 2000.

§ .NET services is the set of core XML Web services that will be supplied by

Microsoft. However, XML Web services can be built by anyone.

Figure 1-1 illustrates how the core components of the .NET platform fit together to provide

user experiences anywhere and on any device. Developers can use the .NET Framework

to build XML Web services. The CLR is important because it is the engine at the core of

managed code execution. With the runtime engine, developers creating Web services

can integrate and execute their code in different languages. Web services that are

created with the .NET Framework run on the .NET Enterprise servers and can be

accessed anytime, anywhere, and on any device.

Figure 1-1: Core components of the .NET platform

Real World Example-.Net Cross Company Calendaring Service

Let's say you are flying home and need to schedule a meeting with vendors the next

morning. Traditionally, because your vendors are not on your company calendar system,

you cannot see their schedules to deliver a meeting request. In addition, the only way

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

you can efficiently connect to the Internet during this flight is through a cell phone or

wireless PDA. However, if both companies had calendaring systems built using XML

Web services and the programming interfaces included with the Mobile Internet Toolkit,

not only would you be able to view your suppliers' calendar, you would be able to send

the meeting request using a wireless PDA or phone utilizing the various programming

interfaces for mobile devices. .NET makes this possible because the two calendaring

systems are now compatible (that is, they integrate through various programming

interfaces), and XML calendaring Web services allow you to schedule the meeting using

any device. Features like this exist today on many Web sites, but each site has its own

solution, and these solutions do not always allow sharing information among sites.

Standard .NET Protocols

The fact that .NET is built on open Internet-based standards makes the .NET Framework

extensible and enables it to easily communicate with other Web and non-Web-based

solutions. The predominant standards that .NET employs to make Web services possible

are:

§ Extensible Markup Language (XML)

§ Simple Object Access Protocol (SOAP)

§ Hypertext Transfer Protocol (HTTP)

XML, a text-based language much like the ubiquitous HTML, is a specification that allows

for custom HTML-like tags that describe both the document (metadata) and the content

(data). The .NET vision needs XML because of the inherent problems with HTML. There

are conflicting standards with HTML, which cause different browsers to handle standard

tags in different ways. This means that Web designers need to create different versions of

the same HTML document for different browsers. To date, efforts to create international

HTML standards have not materialized. In addition, HTML has an inadequate linking

system. HTML links are hard coded into documents and must be searched and changed

for each link that changes. XML allows you to associate links to any element and to link to

multiple locations, effectively solving these HTML limitations.

Web Service Description Language (WSDL)

.NET also employs a newer XML standard formerly known as the Service Description

Language (SDL), and now known as Web Services Description Language (WSDL). As

the name implies, WSDL is a language designed for describing a Web service. It is used

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

to create or generate a .wsdl file that other services can use to determine the exposed

functionality a Web service offers. Simple Object Access Protocol (SOAP) is used as the

basic wire format for communicating between objects and solutions. Very much like

Remote Procedure Calls (RPC) in functionality, SOAP uses XML to describe its contents.

XML makes it simple, humanly interpretable, open, and extensible.

Universal Description, Discovery, and Integration (UDDI)

.NET also takes advantage of the new Universal Description, Discovery, and Integration

(UDDI) specification that is aimed at creating Web service registries. These registries will

enable companies to register information about their Web service solutions, as well as

other data, so that those who wish to use them can easily find them. Internet Native

Integration Methodology (INIM) allows for XML interaction between systems and an open

set of standards. INIM works with any operating system, programming model, or network

and can expose existing code as XML Web services, giving different systems the ability to

communicate. UDDI specifications define a standard to publish and discover information

about Web services.

What Is an XML Web Service?

Today's Internet services are mostly portals that offer services that cannot be used

anywhere else. One inconvenient result of this service is that companies cannot easily

share information. For example, even contact and other personal information has to be

entered for each site. XML Web services are units of application logic providing data and

services to other applications and users. An example of a Web service is the

authentication functionality provided by Microsoft .NET Passport service. Applications

access XML Web services via standard Web protocols and data formats (i.e. HTTP, XML,

and SOAP) independent of how each XML Web service is implemented. XML Web

services combine the benefits of component-based development and the Web, and are a

cornerstone of the Microsoft .NET programming model. XML Web services transform

read-only Web sites into computing sites that can both expose methods and read other

XML Web services. The use of XML allows for the sharing of data between any operating

system and network via XML and SOAP services which act to connect formerly

incompatible or disparate systems (i.e. accessing an application running on a Macintosh,

a Unix, or a Linux via a Windows CE device).

Web Services are software solutions delivered via the Internet to any Web-enabled

device. Today, this device is the Web browser on your computers, but the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

device-agnostic design of .NET will eliminate this limitation. XML is an industry standard,

and XML support is currently offered in all Microsoft products, including the latest

generation of servers. The .NET Framework is built into all the .NET products such as

Microsoft Visual Basic .NET, Microsoft Visual C++, and Microsoft Visual C#.

Real World Example-Microsoft .NET Passport

Some potential Web services that can be created with the .NET platform include yellow

pages, a dictionary, or an encyclopedia. An example of a Web service is Microsoft .NET

Passport. Passport is one of the ten largest Web sites in the world with more than 160

million active accounts, and it is increasing at a rate of more than 10 million accounts

per month. Though .NET Passport receives more than 1.5 billion authentications each

month, the Web site itself seldom receives visitors because it is an XML Web service.

Devices Drive Demand for Web Services

Web-enabled devices are driving the need for services provided by the .NET platform.

There is a plethora of new devices available today. These devices are mobile, small, and

smart, and all require different interconnectivity depending on the desires of their users.

Meanwhile, businesses want information from a multitude of sources, and they want it

immediately. Applications that supply information any time and from any location need to

run across multiple client platforms with widely diverse capabilities. The following

example illustrates what is possible with the .NET XML-centric programming model.

Real World Example-Pre-Heat Your Jacuzzi

Imagine that you are returning home on a long flight, and you want the water in your

Jacuzzi to be hot when you get home. With .NET Web services, this futuristic scenario

could happen automatically, provided that your Jacuzzi has a thermostat that uses XML

Web services. Through preprogrammed algorithms, the XML Web services component

could check your flight arrival time and your travel time from the airport based on

existing traffic conditions to calculate heating time for the Jacuzzi to preset

temperatures based on all the timing variables. With .NET this scenario is possible

because your home network can potentially read the airlines' current flight arrival

information in real time made compatible through XML. A refrigerator already exists that

has a built-in smart device component, which includes a bar code reader. This smart

device can keep the refrigerator stocked by automatically ordering grocery items at

intervals, which are set by the user. Traditional platforms and development

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

environments with "bolted-on" solutions cannot keep pace with this type of

phenomenon.

Web Services Will Increase Importance of Web Performance Testing

This paradigm shift in the way information is delivered to devices will require new ways to

test and tune applications for performance. Just as traditional platforms cannot keep pace

with this shift in technology, traditional functional testing methodologies cannot

adequately define application performance and identify bottlenecks associated with these

new .NET applications. A new way of approaching the traditional software development

life cycle, which includes effective performance testing throughout, is required for

the .NET world. Presenting these new requirements is the driving force behind this book.

Performance Goals

Given this general understanding of Web services based on .NET, what becomes

obvious is that the expeditious delivery of these services to devices any time and

anywhere is critical. There are many aspects to performance but the most important from

the ACE team perspective is increasing performance by reducing end user response time

bottlenecks. Optimizing user response times is our top goal because the response time is

the only performance metric to which the users are directly exposed. Scalability and

availability are important inputs to optimal response times and these will be discussed in

detail. Just because the user does not "see" them, does not diminish their importance.

Without adequate scalability and availability, the application response times will obviously

suffer. Ultimately though, application responsiveness is the critical component that will

determine success or failure with the customer in the performance game.

Computer Interaction Behavioral Patterns

Despite the relatively recent rise in Internet usage during the last decade, computer

interaction response time studies have been around since the advent of the computer.

Research indicates that users interact with a computer to perform a task. According to an

article titled "Response Time In Man-Computer Conversational Transactions," written in

1968 by R.B. Miller for the AFIPS Fall Joint Computer Conference, Vol. 33, 267-277, the

computer user will react to response time performance in predictable behavioral patterns

similar to those listed here:

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ 0.1 second is the limit for having the user feel that the system is reacting

instantaneously, meaning that no special feedback is necessary except to

display the result.

§ 1.0 second is the limit for the user's flow of thought to stay uninterrupted,

even though the user will notice the delay. Normally, no special feedback

is necessary during delays of more than 0.1 but less than 1.0 second, but

the user does lose the feeling of operating directly on the data.

§ 10 seconds is the limit for keeping user attention focused on the screen

dialogue. For longer delays, users will want to perform other tasks while

waiting for the computer to finish, so they should be given feedback

indicating when the computer is likely to be done. Feedback during the

delay is especially important if the response time is likely to be highly

variable, since users will then not know what to expect.

When measuring response times, it might become apparent that the root cause for the

high response times could be beyond your control, making it impossible to attain

one-tenth of a second times. For example, there really is not a lot that can be done about

Internet congestion or a slow client dial-up connection. Nevertheless, it is still necessary

to understand the root cause of the high response times, to make an impact wherever

possible. The goal of this book is to lay out a reliable methodology for identifying this

cause, otherwise known as the bottleneck, and subsequently addressing that bottleneck

in such a manner that it results in improved application performance. This book will

hopefully serve as proof that proper performance testing and tuning methodologies

integrated into the software development life cycle can result in sub-second response

times for the resultant .NET application.

Performance Testing Your Application

With an increased movement toward the use of Web services driving an ever-increasing

amount of traffic, the key challenge that emerges is one of ensuring optimal application

performance. This book will offer the solutions to meet this challenge by presenting an

in-depth approach for determining the following key performance-related factors:

§ Calculating maximum scalability

§ Quantifying average client response times under load

§ Identifying bottlenecks that prevent performance gains

§ Addressing these bottlenecks to tune for optimum performance

Additionally, this book will present alternative approaches for estimating Web application

capacity with a methodology developed by Microsoft. This methodology has been dubbed

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Transaction Cost Analysis (TCA). The TCA methodology assists with estimating capacity

planning needs for Web applications by associating server resource costs such as CPU

to typical user operational costs. In this manner, one can estimate and prepare for site

capacity needs prior to large traffic spikes that can occur as a direct result of large

marketing or news events.

At the 10,000-foot level, the performance testing life cycle presented in this book consist

of:

§ Planning Performance Analysis

§ Creating Effective Stress Scripts

§ Executing Stress Tests

§ Analyzing performance data to identify and address performance bottlenecks

Each of these steps will be discussed in the chapters that follow. To reiterate,

performance analysis requires an extremely in-depth approach, coupled with experience

and knowledge regarding the technologies utilized.

Figure 1-2 shows the performance analysis methodology this book will discuss.

Figure 1-2: Our performance analysis methodology cycle

Planning Performance Analysis

This step involves gathering key preliminary information that will structure and focus the

testing approach. Data collected in the planning phase should, at a minimum, provide two

things: 1) the details necessary to duplicate the production application environment as

closely as possible, and 2) an understanding of how the application is used, including

indicators of critical performance issues. Useful performance information sources can

include marketing forecasts, production IIS logs, production performance logs, and

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

functional specifications for the application. The quality of the performance data collected

in advance of the actual performance testing is critical. It will help determine the

requirements for the test environment and will be used in all phases of the analysis from

staging the environment to deciphering performance test results. We present a detailed

approach to planning in Chapter 2.

Creating Effective Stress Scripts

After gathering the required information and preparing your test environment, the next

step is to create stress scripts that accurately simulate the expected production traffic.

This is most effectively accomplished using historical data from the production site that is

combined with expected data from the marketing or business analysts. Creating

bulletproof stress scripts using Microsoft's Application Center Test (ACT) tool will be

detailed in Chapter 3.

Executing Stress Tests

After bulletproof scripts have been created to simulate peak client load, stress testing

begins. At this point, it is critical to have verified script functionality to ensure the scripts

simulate production site traffic as closely as possible as the quality of the stress test is

directly tied to the quality of the scripts. In addition, using a methodology dubbed "smoke

testing," the optimal load should be identified prior to running the actual stress tests,

which generate the performance data that will aid in pinpointing the bottlenecks. Details

for executing stress tests, including key focal elements while smoke testing, are

presented in Chapter 3.

Analyzing Performance Results

After the stress tests have been run and data generated, the analysis phase begins. The

first concern is to verify that the stress test ran through the simulation successfully

because the quality of the data is only as good as the quality of the test. The analysis

phase is the most technically in-depth step in effective performance analysis

methodology, so starting with high quality data is critical to deriving high quality results

and conclusions. The majority of time budgeted for performance analysis should be

concentrated in this phase. It is for this reason that three chapters of this book are

dedicated to analysis concepts. Chapter 6 offers an in-depth approach to analyzing the

Web tier. Chapter 7 offers an in-depth approach to profiling managed code. And finally,

Chapter 8 offers an in-depth approach to identifying bottlenecks on the data or SQL tier.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Experience has shown that the SQL tier can be a common place for bottlenecks if the

code at this tier is not designed and tuned properly. Bottlenecks on the SQL tier are

pivotal because it is more difficult to scale out databases through clustering versus the

available options for scaling out the Web tier. Of course, there are entire books written on

these technologies alone. The testing methodology in this book will focus on efficiently

identifying performance bottle-necks and strategically offering tuning approaches aimed

at achieving better performance.

Identifying Performance Bottlenecks

Bottlenecks that can affect end user response times include application and server

throughput, end-to-end Internet connection speed, and Internet congestion. Server

throughput (the rate at which the server can process client requests) should not be a

problem given that high performance hardware is a readily available commodity that is

relatively inexpensive when compared with site development costs. Like server hardware,

network bandwidth is a readily available commodity, and with adequate network

saturation monitoring, network capacity can easily be purchased prior to growth in traffic.

In the same sense, the user connection to the Internet is a commodity; however, average

connection speeds remain very low for the majority of the user community and will stay

that way until prices for broadband connections become more affordable.

Despite the fact that bandwidth, servers and Internet connectivity are commodities, it only

makes good business sense to apply these commodities efficiently and effectively after

improving application code performance not as a prelude to or substitute for performance

testing and tuning. Only after the application has been fully tuned to utilize these existing

commodity resources in the most optimal fashion, does it make sense to invest more

money in hardware and bandwidth.

Given the criteria of optimizing prior to expanding resource usage, where in the

application can the greatest performance gains be achieved using proper performance

testing and tuning techniques? The greatest impact is derived from improving the

performance of the application code itself. Why? The initial costs of the development

team, managers, and testers are significant enough to mandate the most efficient usage

of this resource time. Creating optimal, efficient code is most effectively achieved through

budgeting time and resources for performance testing and tuning during the traditional

development life cycle rather than upgrading hardware and software after release to react

to production problems. Building the code correctly the first time can save hard dollars in

support costs and soft dollars in user acceptance given an unexpected spike in traffic. In

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

the .NET world, the focus centers on the ability of an application to quickly process a

client request and return the results while simultaneously processing millions of other

requests. Here is the key area where attention to adequate application performance can

make the most impact on end-user response times, regardless of the hardware platform

and available bandwidth. With adequate performance testing techniques, application

throughput can be accurately predicted allowing site administrators to prepare for the

worst-case scenarios.

Verifying Performance Tuning Results

The final step to a performance/stress analysis is to clearly communicate your stress

results to the application stakeholders. This should be done in a manner that effectively

enables them to understand and improve performance based on the information

presented in the analysis. Proof-of-concept testing (re-running the stress tests after

analysis and tuning and comparing the performance results side by side) is the most

effective way to communicate performance improvement results. It is not sufficient to

speculate that your tuning efforts have improved performance; it has to be objectively and

conclusively proven! Have response times decreased, and scalability increased? Have

server resources required to serve the same level of client requests decreased

significantly? These are the questions that a thorough performance analysis will address.

Conclusion

Now that you understand the groundwork for .NET and our analysis methodology, we will

present an in depth approach to performance analysis planning in Chapter 2. We will

detail how to analyze site traffic in order to characterize the site average and peak loads.

This will offer the foundation for setting reasonable and attainable performance targets in

the analysis phase.

Chapter 2: Preparing and Planning for the

Performance Test

Often Web applications fail to meet their customers' needs and expectations. When a

Web application generates errors, has poor response times, or is unavailable, customers

can easily become frustrated. If your performance test procedure or methodology is not

well thought out and properly planned, the odds of a successful Web application launch

are significantly reduced. This chapter identifies the key processes and planning required

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

before you execute a single performance test. By following these steps you will enhance

your odds of executing an effective Web application performance test. These steps

include identifying performance goals, creating a user activity profile, and defining the key

metrics to monitor and analyze when creating a performance test plan.

Note We have found that many performance test projects fail because

testing begins too late in the Web application development cycle or

have requirements that are too complex to complete in the allotted

time. Focus on the key elements of your Web application and on

user scenarios that will occur most often. If time permits, you can

always go back and execute a performance test on the other

features that are rarely used.

Identifying Performance Goals

High-level performance goals are critical to ensure your Web application meets or

exceeds current or future projected requirements. The best approach is to use historical

data or extensive marketing research. Examples of poor planning are e-commerce Web

applications that can't handle the peak holiday shopping rush. Every year the media

publicizes Web applications that cannot procure all their orders, suffer from slow user

response times, Web server error messages, or system downtime. This costs not only in

terms of lost sales, but in bad press as well.

High-level performance requirements can be broken down into the following three basic

categories:

§ Response time acceptability

§ Throughput and concurrent user goals

§ Future performance growth requirements

Response Time Acceptability Goals and Targets

By researching how and where your users will connect to your Web application, you can

build a table similar to Table 2-1 to show the connection speeds and latency of your

potential customers. This can help you determine an acceptable amount of time it can

take to load each page of your Web application.

Table 2-1: Predicted Connection Speeds

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

User

Worst

Connect

ion

Average

Connect

ion

Best

Connect

ion

Line Speed 28.8-kbps

modem

256-kbps

DSL

1.5-mbps

T1

Latency 1000

millisecon

ds

100

milliseco

nds

50

milliseco

nds

Once you have identified how your user base will access your Web application, you can

determine your response time acceptability targets. These targets define how long it can

acceptably take for user scenarios or content to load on various connections. For

example, with all things being equal, a 70-kilobyte page will obviously load faster on a

256-kbps DSL connection than on a 28.8-kbps modem connection. The response time

acceptability for your 28.8-kbps modem might be 15 seconds, while the 256-kbps DSL

connection might be significantly less, at 5 seconds. Response time acceptability targets

are useful when you perform an application network analysis, which is discussed in detail

in Chapter 5. The purpose of conducting the application network analysis is to perform

response time predictions at various connection speeds and latencies, determine the

amount of data transferred between each tier, and determine how many network round

trips occur with each step of a user scenario. If you do not have historical data or

projections for potential customer connection speeds and latencies we recommend using

worst-case estimates. The data in Table 2-1 represents worst, average, and best

connections of typical end-user Internet connection speeds.

Throughput Goals and Concurrent User Targets

Answering the following questions will help to determine throughput goals and concurrent

user targets:

§ How many concurrent users do we currently sustain or expect in a given

time period?

§ What actions does a typical user perform on our Web application and which

pages receive the most page views in a given time period?

§ How many user scenarios will my Web application process in a given time

period?

The best place to gather this information is from historical data, which can be found in

Web server log files, System Monitor data, and by monitoring database activity. If you are

launching a new Web application, you may need to perform marketing research analysis

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

for anticipated throughput and concurrent user targets. Historical production data or

marketing research is useful to ensure you execute the performance tests using the right

concurrent user levels. If, after you complete your performance tests, your Web

application meets your throughput and concurrent usage requirements, you can continue

adding load until your Web application either reaches a bottleneck or achieves maximum

throughput. Table 2-2 shows predicted throughput goals and concurrent user profile

expectation for the IBuySpy sample Web application. Using the information in this table, a

performance test script can be created to mimic anticipated load on the Web application.

The ratio column represents the percentage that this particular user operation is executed

with respect to all the user operations. The anticipated load per hour is taken from

historical data, which will be illustrated in the next section of this chapter and represents

how many times per hour this particular user operation typically occurs.

Table 2-2: Throughput and Concurrent User Targets

User Operations Ratio Anticipated

Load per

hour

Basic Search 14% 1,400

Browse for Product 62% 6,200

Add to Cart 10% 1,000

Login and Checkout 7% 700

Register and Checkout 7% 700

Total 100% 10,000

Performance Growth Analysis

A performance growth analysis is required if your Web application user base is expected

to grow over a given time period. You need to account for user growth when performance

testing. Performance testing and tuning your Web application after your development

cycle is complete will cost more in time and money, when compared to fixing your

performance problems during the software development life cycle (SDLC). In the real

world example in Chapter 1, expenses incurred by finding and fixing their Web application

performance issues after the SDLC included: lost marketing revenues due to bad press,

lost users who are not patient enough to wait for slow page views, and test and

development labor costs spent troubleshooting and fixing the issue. Taking a little extra

time during the performance test cycle to populate your database with additional data to

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

see how it will perform when it is larger will save you money in the long run. Also, execute

the stress test with more load and with higher levels of concurrent users to predict future

bottlenecks. By fixing these issues ahead of your growth curve, you will reduce your

performance testing and tuning needs in the immediate future and ultimately provide your

users with a better experience.

Tip One tip for preloading your database with extra orders, baskets, and

so on is to run your performance test script for a sustained period of

time (possibly a few days) before executing your actual performance

analysis. Your Web application UI will ensure data is accurately

added to your system. The fastest way to pre-populate your

database is to have the database developer create and test data via

SQL scripts. However, one common mistake when pre-populating a

database with SQL scripts is to miss certain tables that are updated

through the UI of a Web application. The point is to ensure that you

populate your database accurately; otherwise, it will adversely affect

your performance test results.

The easiest way to determine the growth capacity of your Web application is to calculate

the increase in volume you are currently experiencing over a specific period of time. For

example, assume your user base is growing at a rate of 10 percent per month. Table 2-3

illustrates an anticipated growth plan that can be used when performing your stress tests.

This assumes your Web application is currently seeing 10,000 users per day and will

grow at a rate of 10 percent per month. When determining your growth rate, don't forget

to account for special promotions that may increase traffic to your Web application.

Table 2-3: Future Growth Profile

Time Period Users Per Day

Current 10,000 per day

Three months out 13,310 per day

Six months out 16,104 per day

Nine months out 21,434 per day

Twelve months out 28,529 per day

User Activity Profile

We use IIS logs to create user activity profiles. The IIS logs are text files that contain

information about each request and can be viewed directly with a simple text editor or

imported into a log analysis program. We recommend using a set of IIS logs covering at

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

least a week's worth of user activity from your Web application to obtain realistic averages.

Using more log files creates more reliable usage profiles and weightings. To illustrate the

process of creating a user activity profile, we imported a month of IIS log data from a

recent performance analysis on a typical e-commerce Web application into a commercial

log file analyzer. These IIS log files are comprised of shopper page views related to

Homepage, Search, Browse for Product, Add to Basket, and Checkout operations

performed on the Web application. The logfile analyzer enabled us to generate Table 2-4.

Many commercial log file analyzers that fit all budgets are available. These log analyzers

can accurately import, parse, and report on Web application traffic patterns.

Table 2-4: User Activity Profile

User Operation/Page

Name(s)

Number of Page

Views Ratio

Homepage 720,000 40%

§ default.aspx § 720,000 § 40%

Search 90,000 5%

§ search.aspx § 90,000 § 5%

Browse 450,000 25%

§ productfeatures.aspx § 216,000 § 12%

§ productoverview.aspx § 234,000 § 13%

Add to Basket 360,000 20%

§ basket.aspx § 360,000 § 20%

Checkout 180,000 10%

§ checkout.aspx § 90,000 § 5%

§ checkoutsubmit.aspx § 54,000 § 3%

§ confirmation.aspx § 36,000 § 2%

Totals 1,800,000 100%

There is a distinction between a hit and a page view. A hit is defined as a request for any

individual object or file that is on a Web application, while a page view or request is

defined as the request to retrieve an HTML, ASP or ASP.NET page from a Web

application and the transmittal of the requested page, which can contain references to

many additional page elements. The page is basically what you see after the transfer and

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

can consist of many other files. Page views do not include hits to images, component

pages of a frame, or other non-HTML files.

Tip To simplify constructing your user profile, leave Web application

traffic such as image and miscellaneous requests out of the user

profile. Also, leave out activity from monitoring tools that ping or

access various pages to verify the Web application is functioning

properly.

Backend Activity Profile

A backend activity profile is used to identify user activity and performance bottlenecks at

the database tier of an existing Web application. This information can be useful to ensure

your performance test is accurate.

Identifying a Web Application's User Activity

Existing databases contain concrete information concerning what your users are doing

with your Web application. Examples of this type of information for a typical e-commerce

application include how many baskets are being created, how many orders are processed,

how many logins occur, how many searches are taking place, and so on. This information

can be gathered using simple queries to extract the data from your existing database.

This data can assist you in creating user scenarios, user scenarios ratios, or other

marketing information that can help you make decisions from the business side. For

example, you can compare the number of baskets created to the number of checkouts to

find the abandoned basket rate. This information can be important to designing your

stress test to execute in the correct ratio. If you find that 50 percent of the baskets created

turn into actual orders processed, you can mimic this ratio when executing your

performance test.

Identifying a Web Application's Backend Performance Bottlenecks

If you are performance testing an existing Web application you can identify current

performance bottlenecks by interrogating the database server for queries that take a long

time to process, cause deadlocks, and result in high server resource utilization. This data

collection process occurs during the planning phase of the performance testing

methodology, and involves capturing SQL trace data using SQL Profiler, and

Performance Monitor logs that are comprised of Windows and SQL Server objects in a

typical Web application. In other words, the timeframe for the captured SQL trace should

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

be when application performance goes from acceptable to poor performance. The

captured information will give you a clearer picture of where the bottleneck is occurring.

Chapter 8 walks you through the process of determining the source of the SQL

performance issue. These possible causes include: blocking, locks, deadlocks,

problematic queries, or stored procedures with long execution times.

Key Performance Metrics Criteria

As a performance analyst, tester, or developer, you must produce a blueprint on how to

performance test the Web application to ensure the high-level performance goals are met.

If you don't create a performance test plan, you may find out about requirements too late

in the SDLC to properly test for them. Using the performance requirements criteria in the

section above, you now need to identify key metrics that will be monitored and analyzed

during the actual performance test.

Tip The breakpoint of your Web application can be defined in various

ways. Examples include a server that exceeds predefined resource

utilization targets, too many server errors, or unacceptable response

times due to processing delays.

Key metrics for the performance test include the following:

§ Server errors acceptability This may seem like a moot point, and no server

errors are acceptable because they result in a bad user experience.

However, during stress testing you will probably come across these errors,

so you should be prepared to understand why they are occurring and decide

whether they will happen in your live production environment, with real users

hitting your Web application. For example, often when a stress test first

begins and then again when it shuts down, errors are caused by too much

load occurring too quickly, or by uncompleted page requests. These errors

are caused by your stress test, so you can ignore them because they are

unlikely to reoccur in the production environment.

§ Server utilization acceptability This is an important aspect of performance

testing. By identifying this up front, you will be able to determine the

maximum allowable level your servers should endure. When performance

testing, this will be a key element in determining the maximum load to apply

to your Web application. This metric can differ for each Web application and

should be documented for support, development, test, and management

teams to agree on. For example, you might ramp the Web tier up until we

reach 75 percent CPU utilization. At this level we are serving approximately

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

2,000 users per server, which meets the concurrent user targets identified

by our performance requirements. With documentation of these metrics, the

support team can monitor the production Web servers looking for spikes that

meet or exceed the performance requirement. The support team can begin

to scale the Web application up or out to support the increased traffic.

§ Memory leaks or other stability issues These issues often arise when

running extended performance tests. For example, if you execute a stress

test for a short period of time you may not find the memory leak or other

stability issues that only occur after an extended period of heavy activity.

Many times multiple tests can be executed to accomplish different goals.

You may want to run a quick one-hour test to determine your Web

application's maximum throughput, and then run a weekend-long extended

stress test to determine if your Web application can sustain this maximum

load.

§ Processing delays These will occur in almost every Web application where

complex business logic requires coding. The key is to minimize process

delays to an acceptable amount of time. It's a good idea to know what's

acceptable before performance testing, so you don't waste time escalating

an issue to your development team that does not require fixing because it

meets performance goals. Examples of processing delay acceptability are

shown in Table 2-5 and include stored procedures taking more than 500

milliseconds and any Web page duration (measured by the time taken field

in your Web tier logs) taking more than one second to process. Table 2-5

shows an example of a performance metric acceptability table. Your

requirements may be different; the key point is to come up with a set of

requirements that make sense for your Web application.

Table 2-5: Performance Metrics and Acceptable Levels

Metric Location Acceptable Level

CPU utilization Performance Monitor < 75%

Memory-available MB Performance Monitor > 128 MB

Memory-pages/second Performance Monitor < 2

ASP execution time Performance Monitor < 1 second

DB processing delays SQL Profiler < 500 milliseconds

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 2-5: Performance Metrics and Acceptable Levels

Metric Location Acceptable Level

Web tier processing

delays

Time Taken field of

Web logs

< 1 second

Mirroring the Production Environment

The performance test environment should be as close to the production environment as

possible. This includes the server capacity and configuration, network environment, the

Web tier load balancing scheme, and your backend database. By mirroring your

production environment you ensure that your throughput numbers will be more accurate.

Tip If production equivalent hardware is not feasible for your

performance-testing environment, you can still uncover many

bottlenecks in the code and architecture. Even though a production

equivalent environment is optimal, performance testing is possible in

almost any environment you can scrape together.

Putting It Together in a Performance Test Plan

The performance test plan is a strategy or formal approach to allow everyone involved in

a Web application, from the development team, test team, and management team, to

understand exactly how, why, and what part of the application is being performance

tested. The following sections are found in a performance test plan:

§ Application overview This gives a brief description of the business purpose of

the Web application. This may include some marketing data stating

estimates or historical revenue produced by the Web application.

§ Architecture overview This depicts the hardware and software used for the

performance test environment, and will include any deviations from the

production environment. For example, document it if you have a Web cluster

of four Web servers in the production environment, but only two Web

servers in your performance test environment.

§ High-level goals This section illustrates what you are trying to accomplish by

performance testing your Web application. Examples include identifying

what throughput and concurrent usage levels you will be striving for as well

as the maximum acceptable response times.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ Performance test process This will include a description of your user

scenarios, tools you use to stress test, and any intricacies you will put in

your stress scripts. This section will also explain what ratios and sleep times

or user think times you will include in your test script.

§ Performance test scripts The scripts are unlikely to be completed until after

your performance analysis cycle has finished. But it is important to include

these in the test plan to make them available in the next release or phase of

the Web application test cycle. Because stress test scripts take time and

effort to create, having test scripts available as a reference for future testing

can save time.

Conclusion

Performance testing is a critical phase of any Web application's development cycle and

needs to be the critical path for release to production. By planning properly before you

start, you can ensure a successful performance test that will improve your odds of having

a high-performing Web application when your customers begin to use it.

Chapter 3: Stress Testing with Microsoft

Application Center Test (ACT)
The purpose of stress testing is to identify and isolate Web application performance

bottlenecks under load. Decreasing or eliminating these bottlenecks allows you to meet or

exceed anticipated traffic requirements. After you have identified bottlenecks, you can

tune the Web application and server to help minimize end user response times and

ultimately provide a better user experience. Stress testing involves testing an application

under load to determine maximum throughput. Throughput refers to the number of client

requests processed within a fixed amount of time. Stress testing is also commonly

referred to as load testing, performance testing, soak testing, spike testing, and Web

server testing. It is important to note that performance requirements will vary for each

application.

Getting Started

Load simulation against a Web application is usually implemented through a combination

of hardware- and software-based emulation of users executing real-world transaction

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

scenarios against an application. The hardware method usually requires several

dedicated test clients and represents one user per client. This method can be quite

expensive and time consuming to maintain, given the required hardware resources for

heavy stress testing. The hardware method is neither the most effective nor the most

efficient method of stress testing, but due to the nature of a given application,

hardware-based stress testing maybe the only choice. With the software method, user

transaction scenarios are typically recorded or captured by a software tool and converted

to test scripts during a walkthrough of the application. When playing back or executing a

test script, one machine typically acts as a controller to distribute the test script across

multiple client machines. As the test runs, the controller produces load in unison to

simulate many virtual users, and when the test is complete, it summarizes the test data

from all of the clients. These virtual users create load on the backend servers and help to

determine the stability and responsiveness of the Web application.

There are many software-based stress testing tools. While the purpose of these tools is to

produce load by simulating many users, the syntax used for creating stress scripts and

the load engine varies per tool. The stress tool discussed throughout this book is

Microsoft Application Center Test (ACT). The goal of this chapter is not necessarily to

make you an expert at using ACT but to give you a brief overview of the product and

discuss the core concepts and features we frequently use. We will also demonstrate and

explain how to create and verify dynamic test scripts using ACT to accurately simulate

load against a .NET Web application

What is ACT?

ACT is a software-based stress testing tool that applies load to Web servers, so that you

can capture performance metrics, analyze and diagnose performance problems, and

make capacity decisions about your Web applications. You apply load to a Web

application using ACT by recording or manually creating a test script, which simulates

many simultaneous browser connections requesting pages defined by a user scenario.

Installing Microsoft ACT

ACT is included with Visual Studio .NET Enterprise and Architect editions. Many different

components comprise Visual Studio .NET, but for this book, we will only select the

components necessary to run ACT as a stand-alone client.

The installation process is broken down into three major steps. Step 1 is shown in Figure

3-1.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 3-1: The Install Windows Component Update dialog box

Select Step 1: The Install Windows Component Update dialog box to update the system

components. This option is available in the Installation dialog box if the update is required

for your system. If a component update is not required, this option is not available.

Note If you are running an anti-virus program during setup, warnings

may be displayed as setup runs scripts that access the file system

object.

After updating the system components, the Installation dialog box enables Step 2: Install

Visual Studio .NET. Select Step 2 to install Visual Studio .NET. Our installation will be

very slim because we are only installing the components required to run ACT. If you

require the flexibility of creating and running projects and test scripts directly from the

integrated Visual Studio IDE, you must add additional components. Application Center

Test is located under Enterprise Development Tools in the Select Items to Install list, as

shown in Figure 3-2, and should be checked by default.

Figure 3-2: Selecting options for installation

Selecting Step 3: Service Releases Check is optional but highly recommended to ensure

that you have all of the latest patches or fixes.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Core Concepts of ACT

The purpose of this section is to explain the core details related to ACT and provide a few

tips and share experiences we have encountered to help minimize your learning curve.

Dynamic Tests

The dynamic test is a very powerful feature of ACT, which gives you the ability to record

or manually create a list of HTTP requests that are sent to the Web server concurrently.

Also, you can modify request header information such as referrer, user-agent, and query

string. Dynamic test scripts can be created using Visual Basic Script (VBScript), Jscript,

PERL, or any other COM-enabled scripting language. ACT only supports VBScript for

recording a test script.

Concurrent Users and ACT Simultaneous Browser Connections

A concurrent connection to the Web application making a single request or a series of

requests contained in a ACT test script is measured in simultaneous browser connections

(SBCs). Other stress tools use terms such as "stress threads" or "virtual users," which are

synonymous with the ACT SBC (load level). We are often asked "How do SBCs relate to

concurrent users?" Equating SBCs with concurrent users is difficult, because we do not

always know the rate at which customers will be requesting pages from the Web

application. Test scripts played back with no sleep time (the user's think time during

transaction execution) often produce a faster rate of execution and greater load against

the Web server than would be produced by the user walking through the application from

a Web browser. Therefore, you may need to include random sleep times comparable to

actual user think time in your scripts to slow the request arrival rate on the Web server,

allowing you to more closely relate one SBC to one user connection and to better

simulate real-world Web traffic arrival rates.

User Sleep Times

When creating test scripts, you will have the option of inserting user sleep times. These

sleep times help simulate realistic usage of the application as they introduce user think

times. For example, by inserting a 5-second sleep time in a script that simulates a user

filling out an online form, you simulate a typical user's actions more accurately by taking

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

into account the think time needed for the user to fill out the form. In ACT, Sleep is a

method of the Test object. When an ACT test script is recorded, the following code will be

inserted:

fEnableDelays = False

If fEnableDelays = True then Test.Sleep (0)

By default, at the top of a recorded test script the fEnableDelays variable is set to false.

To use a 5-second delay, or 5,000 milliseconds, you will need to change the following

code in the ACT test script:

fEnableDelays = True

If fEnableDelays = True then Test.Sleep (5000)

If needed, a random sleep function can be used by inserting the following snippet of code

into a test script and then calling this function between each request:

Function RandomSleep()

 Dim lMinSleep, lMaxSleep, lSleep

 lMaxSleep = 5000 ' 5 seconds

 lMinSleep = 1000 ' 1 second

 ' create a random int within our range

 Call Randomize()

 lSleep = Int((lMaxSleep - lMinSleep + 1) * Rnd(1) + lMinSleep)

 Call Test.Sleep(lSleep)

 ' return the delay time

 RandomSleep = lSleep

End Function

One negative aspect of sleep times is that they can decrease the amount of load a given

client can produce. This could prevent you from identifying the true maximum concurrent

usage. Also, if there is insufficient client capacity, you will have a much more difficult task

detecting performance bottlenecks, because bottlenecks appear when maximum load is

applied to the system. A test script with no sleep times simulates the transaction as if

users had a pre-filled form which is being submitted immediately. Utilizing sleep times

more accurately simulates production traffic and allows you to more precisely estimate

concurrent usage numbers. When random sleep times are used, the argument can be

made that one SBC equals one real-world user.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Users and Groups

Users are handled in ACT dynamically by providing a single unique user and password

for each entry located in the default user group. There is a one-to-one relationship

between SBCs and users. For example, if you set the SBC level to 25 you will need a

minimum of 25 users to run the test. If your Web application uses anonymous

authentication, by default ACT automatically generates the users required. If your Web

application requires Basic or Windows NT LAN Manager (NTLM) authentication, you

must have predefined usernames and passwords. ACT provides the ability to customize

users either by manually generating user data (from the user interface) or by importing

data from a separate input file. When executing your test, each SBC will have a unique

username and password. This data is exposed in your script by using the ACT Test

Object. The following code is an example of the Test.GetCurrentUser, which can be used

to retrieve the username and password:

Dim oUser, sUserName, sPassword

Set oUser = Test.GetCurrentUser

sUserName = oUser.Name

sPassword = oUser.Password

Cookies

For most Web applications, allowing ACT to control your HTTP cookies is the optimal

method for handling cookies. However, cookies can be set up initially when the test starts

and handled automatically by ACT thereafter. For any request that includes an HTTP

header named "Cookie," ACT will show the exact response generated by the Web server,

and it will be commented out by default when a test is recorded. The next line of code

within your script will show the same request with the value "(Automatic)." The ACT help

file covers the syntax for reading and modifying cookie information in more detail.

Headers

Headers are handled automatically, but they can be changed in your test script to modify

information such as referrer, user-agent, host, HTTP version, and other information

passed in the header.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Note If you create a test script that only contains the following syntax:

"Test.SendRequest("http://localhost/samples/browser.asp")"

ACT adds a set of default headers using "Mozilla/4.0 (compatible;

MSIE 5.01; Windows NT 5.0)" as the user agent.

For example, if your application contains logic that is dependent on multiple user-agents

(different Web Browsers), you can modify the HTTP header of a request to dynamically

change and pass a mix of user-agents:

Dim sUserAgent, sArray(3), sSeed

sArray(1) = "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"

sArray(2) = "Mozilla/4.0(compatible;MSIE 4.0;Mac PowerPC)"

sArray(3) = "Mozilla/5.0 (Windows; U; Win98; en-US; m18) Gecko/

20001108 Netscape6/6.0"

Randomize()

sSeed = Int((3 * Rnd)+1)

sUserAgent = sArray(mySeed)

Authentication and Encryption

ACT supports the most common authentication models and encryption methods that

applications use during test execution. This includes Windows NT LAN Manager (NTLM)

challenge-response Integrated Windows Authentication, Basic Authentication,

Anonymous Access, Digest Authentication, and Passport Authentication. However, the

ACT recorder does not record all of these technologies. There are workarounds for

Integrated and Passport Authentication, which are discussed in their related sections.

The following table provides a quick checklist of supported Authentication methods by

ACT Test Recorder and Test Execution:

Table 3-1: Supported Authentication Methods

Authentication Method Test Recorder Test

Execut

ion

Anonymous Authentication YES YES

Basic YES YES

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 3-1: Supported Authentication Methods

Authentication Method Test Recorder Test

Execut

ion

Integrated Windows NO YES

Passport NO YES

Digest YES YES

Integrated Windows Authentication

ACT supports the playback of Integrated Windows Authentication; however, you cannot

record a Web application that has the Integrated Authentication option enabled within the

IIS configuration. Some Web applications may still be functional with IIS set to accept

Anonymous or Basic Authentication. For such Web applications, you can use the

following workaround to record a test script with ACT:

1. Enable Basic Authentication in addition to Integrated Windows

Authentication. This will enable ACT to record while other users

browsing your Web application automatically use integrated

authentication.

2. Record the ACT test script. You will be prompted to fill out the

appropriate domain\username and password for your Web

application.

3. Change the configuration for the Web application back to Integrated

Windows Authentication.

4. Modify the ACT test script by commenting out the line of each request:

5. oHeaders.Add "Authorization", "Basic XXXXX"

6. Set up the ACT users with the proper domain\username and password

that you want to simulate.

7. Execute the ACT test script.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Basic and Digest Authentication

ACT supports the recording and execution of your script with applications using both

Basic and Digest Authentication. ACT will automatically include the following code in your

script to specify the use of Basic or Digest Authentication:

Basic and Digest Authentication.cs

'Basic Authentication Code

oHeaders.Add "Authorization", "Basic xxxxx="

'Digest Authentication Code

oHeaders.Add "Authorization", "Digest username="+chr(34)+"domain\username"+_

 chr(34)+", realm="+chr(34)+"IBUYSPY"+chr(34)+", qop="+chr(34)+"auth"+_

 chr(34)+", algorithm="+chr(34)+"MD5"+chr(34)+", uri="+chr(34)+_

 "/storevbvs/"+chr(34)+", nonce="+chr(34)+"xxxxxxxx"+chr(34)+",_

 nc=00000001, cnonce="+chr(34)+"xxxxxxx"+chr(34)+", response="_

 +chr(34)+"xxxxxx"+chr(34)

Anonymous Authentication

The most common authentication method for Web applications is anonymous. ACT fully

and automatically supports anonymous authentication for both the recording and the

execution of your test script.

Passport Authentication

Microsoft .NET Passport is a suite of Web-based services that makes using the Internet

and purchasing online easier and faster by providing users with single sign-in and fast

purchasing capability. The single username or sign-in service is designed to provide a

centralized, secure, and convenient service with which end users can complete

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

transactions. Because Passport Web applications use SSL, the ACT Recorder cannot

record when using this authentication scheme. You have to build the login portion of the

ACT test script manually or remove Passport from the testing phase. Additionally,

Passport applications may be implemented in a variety of ways, so test scripts can vary

from application to application. When new builds of Passport launch, you might need to

modify your test scripts accordingly. We provide a sample Passport Authentication test

script written by the ACT Development Team on the companion CD included with this

book.

Secure Sockets Layer (SSL)

ACT fully supports the execution of test scripts which request 40-bit or 128-bit SSL

encrypted elements. However, recording an ACT test script with an SSL-enabled Web

application is not supported, because ACT records through a proxy, and the data is

already encrypted when it reaches the proxy. The workaround for this issue is to disable

SSL during the record phase. Change the Test.CreateConnection method within your test

script to use port 443 instead of port 80 and re-enable SSL on your Web server. The

following code shows the syntax for the Test.CreateConnection method and a sample of

the Test.CreateConnection method using port 80 and port 443:

Syntax oConnect =
Test.CreateConnection(strServer,
lPort, bUseSSL)

Without SSL oConnect =
Test.CreateConnection("YourServerNam
e", 80, False)

With SSL oConnect =
Test.CreateConnection("YourServerNam
e", 443, True)

If it is not possible to disable SSL for your Web application, you can manually add the

reference to encrypted pages of the site using the syntax above.

Using SOAP with ACT

SOAP is a slim XML-based protocol for information sharing in a decentralized distributed

architecture. For more information on SOAP, visit http://msdn.microsoft.com/vstudio/.

ACT does not include native support for SOAP requests, but a workaround is available

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

that involves wrapping the SOAP body in concatenated quotes. The following code shows

an example of this approach:

SOAP Workaround Code Sample

set con = Test.CreateConnection(YourServerName, 80, false)

set req = Test.CreateRequest

set headers = req.Headers

req.Path = "/Logon.asmx"

req.Verb = "POST"

req.HTTPVersion = "HTTP/1.1"

headers.RemoveAll

headers.Add "Host", "(automatic)"

headers.Add "SOAPAction", chr(QUOTE) & _

 "http://YourServerName/LogonUser" & chr(QUOTE)

headers.Add "Content-Type", "text/xml; charset=utf-8"

headers.Add "Content-Length", "(automatic)"

body = "<?xml version="& chr(QUOTE) & "1.0" & chr(QUOTE) & " encoding="_

 & chr(QUOTE) & "utf-8" & chr(QUOTE) &"?>"

body = body & "<soap:Envelope xmlns:xsi="&chr(QUOTE)&_

 "http://www.w3.org/2001/XMLSchema-instance" &chr(QUOTE)& "_

 xmlns:xsd=" &chr(QUOTE)& "http://www.w3.org/2001/

XMLSchema" &chr(QUOTE)& "_

 xmlns:soap=" &chr(QUOTE)& "http://schemas.xmlsoap.org/soap/envelope/"_

 &chr(QUOTE)&">"

body = body & "<soap:Header>"

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

body = body & "<CorrelationHeader xmlns="&chr(QUOTE)&"http://YourServerName/"_

 &chr(QUOTE)&">"

body = body & "<Contents>string</Contents>"

body = body & " </CorrelationHeader>"

body = body & " </soap:Header>"

body = body & " <soap:Body>"

body = body & " <LogonUser xmlns="&chr(QUOTE)&"http://YourServerName/"&_

 chr(QUOTE)&">"

body = body & " <licenseeAccount>Microsoft</licenseeAccount>"

body = body & " <userName>testact</userName>"

body = body & " <userPassword>testact123</userPassword>"

body = body & " </LogonUser>"

body = body & " </soap:Body>"

body = body & "</soap:Envelope>"

req.Body = body

set res = con.Send(req)

Parsing Viewstate within ACT

Viewstate is a feature of ASP.NET implemented to maintain state by using hidden form

elements within your pages. ACT does not include native support for ASP.NET viewstate.

However, the following example shows a workaround for this by parsing and manually

encoding the viewstate:

Do Viewstate.cs

'Do VIEWSTATE parsing

If InStr(oResponse.Body, "__VIEWSTATE") Then

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 Pos1 = InStr(InStr(oResponse.Body, "__VIEWSTATE"),_

 oResponse.Body, "value=")

 Pos2 = InStr(Pos1, oResponse.Body, ">")

 res = Mid(oResponse.Body, Pos1 + 7, Pos2 - Pos1 - 8)

 viewst = res

End If

' Manually encode viewstates:

' Replace all occurrences of "+" with "%2B"

 viewst = Replace(viewst, "+", "%2B")

' Replace all occurrences of "=" with "%3D"

 viewst = Replace(viewst, "=", "%3D")

Manual encoding viewstates (or Post data in general) can be avoided by setting the

following property: oRequest.EncodeBody = True

Protecting your Web Site from Inadvertent Stress Testing

ACT supports the Robots Exclusion Standard method used by developers of automated

user-agents ("robots") and Web site administrators to determine areas of a Web

application that are accessible to particular user-agents. To prevent ACT from sending

requests to a Web server, you can create or edit a file named "robots.txt" in the server's

root directory and add the following lines to the file:

Stress Agent is the user-

agent string ACT sends when identifying itself

User-agent: Stress-Agent

/ excludes ACT from all parts of the Web site

Disallow: /

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

When a test is run against a Web site that is protected by a robots.txt file, ACT will appear

to be running but no requests will be generated. However, the status pane will state that

"Robots.txt denied access to Web server."

Note There are scenarios where checking this exclusionary protocol will

prevent you from running a test, such as when testing Passport.

So, ACT allows you to disable this check in the project Properties

dialog box. (Right-click the project name and choose Properties).

Running ACT

This section provides you with a starting point from which to gain familiarity with the ACT

stress testing tool. A brief description of the user interface is provided with a discussion

on how to create test scripts. Examples are provided for recording a test script from

scratch and for leveraging ACT to create a test harness that will directly stress the SQL

tier. Finally, this section concludes by providing guidelines on how to run a stress test

using ACT. Other topics discussed include the optimal number of scripts to create, the

appropriate number of clients to use, and the optimal amount of load to produce

(measured in SBCs).

Overview of the ACT User Interface

The ACT user interface is straightforward. After launching ACT, you will see the screen

shown in Figure 3-3.

Figure 3-3: The ACT launch screen

The window is divided into two sections-a left and right pane. The left pane is used for

navigation and the right pane is used to display details. In the left pane, the tree control

displays a root node named ACTSamples, which represents an ACT project. Only one

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

ACT project can be open at a time. By default, this project is stored in a folder with the

same name as the project under C:\Documents and Settings\<user>\My Documents\ACT

Projects. The project file with the extension .act is located in this folder and contains

pointers to all items referenced by the project such as tests and reports.

Note If you use a share to store My Documents, the ACTUser account

must have read and write permissions to this share-otherwise ACT

will not be able to run tests. It will state that "ACTUser does not

have permissions to the folder" in the status pane.

At the next level, there are three nodes: Tests, Results, and Users; these are described

below:

Tests

This node enumerates all test scripts created by a user. Selecting a test script under this

node displays the code in the right pane, where modifications can be made. Every test

script has properties, such as duration, that control how a test script will run. To see the

properties of a particular test, you simply right-click a test and choose Properties. A

properties page will appear, as shown in Figure 3-4:

Figure 3-4: Viewing the properties of a test

You can create new test scripts by right-clicking the Tests node and choosing New Test

from the context menu. You can also start and stop tests through the context menu of a

particular test. A single ACT client can run only one test at any given time.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Results

This node displays the results of each test run of every scenario on the right hand pane.

Clicking the Results node will display the screen shown in Figure 3-5.

Figure 3-5: Reviewing test results

The right side of the screen is divided into three regions. The top left region lists all tests

that previously ran. Under each test is a collection of results for every test run, listed in

descending order by timestamp. To view the test results, you simply select a particular

test run, select the type of report from the dropdown list under Report, and select the

category from the list. All of the report details will be listed in the lower region of the right

pane on the screen.

ACT provides different categories of reports such as Overview, Graphs, and Requests.

You can view information such as requests per second (RPS), Time To Last Byte (TTLB),

details on page view statistics and even performance counters through this reporting

feature. All of this information is stored on the file system as XML documents. Please

consult the ACT help file for further details.

Users

This node lists user groups that can be accessed by tests. Clicking on a user group

displays the individual users within the group in the right-hand pane. Usernames and

corresponding passwords can be added by simply selecting a blank line in the right-hand

pane and typing a value. These values can also be deleted by highlighting lines and

pressing the Delete key. Another useful feature that ACT supports is importing

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

username/password combinations from a comma delimited text file. You can use this

feature by selecting a user group and then choosing Import Users from the Actions menu.

Every browser connection initiated by ACT needs a username and password combination

to log into a Web application. If the Web application being accessed requires Basic or

NTLM authentication, this is where the users (or usernames) can be created.

Note From the perspective of manageability among different test runs,

you should create a user group and then create the required

number of users within the user group. The number of users

created within a user group has to be greater than or equal to the

number of SBCs. Alternatively, if the Web application is set for

Anonymous connections, you can let ACT generate users

automatically through the properties page (Users tab).

Creating a Test Script

To demonstrate ACT as a stress tool, we have created some test scripts that exercise the

search and browse features of the IBuySpy sample site. IBuySpy is an online store

application that is intended to showcase the .NET platform and technologies. We refer to

the IBuySpy sample .NET application throughout this book. A copy of this application is

available for viewing at http://www.ibuyspy.com/store. You can also download and install

the application from http://www.ibuyspy.com/downloads.htm.

For better manageability of the test scripts, we advise you to create a new project for each

testing initiative. By creating a separate project in its own folder, you can archive the

entire folder at the end of the testing cycle and know that all test scripts and data related

to the testing effort have been saved. To create a project, choose New Project from the

File menu. In the New Project dialog box, specify a name for the project. For simplicity we

have named the project IBuySpy, and the location has also been changed to C:\Project\.

This action causes a folder called IBuySpy to be created under C:\Project. The folder is

empty until you save the project, at which time a file by the name of IBuySpy.act is

created along with some other files which comprise the project. ACT will create separate

files for reports from each test run including test properties, project properties, user

groups and client groups, all of which are formatted in XML.

Recording a Test Script

A simple way to create a test script is by recording a walkthrough of a user scenario. To

start a recording session, right-click the Tests node and select New Test from the context

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

menu to bring up the New Test Wizard. Click Next and then select Record A New Test

from the wizard. Proceed by clicking Next, and then click the Start Recording button. The

default browser will launch at this point and you can walk through the following search

user scenario.

1. Browse to http://<YourServerName>/

2. Enter boat in the Search text box located at the top right of the Web

page.

3. Click Go to execute the search.

After completing the scenario, click the Stop Recording button. All of the requests

captured during the session are visible in the list box but cannot be modified at this point.

Click Next and specify a name for the script. Click Next one more time and then click

Finish. The newly recorded test should appear in the tree control on the left panel of the

screen.

Below is an excerpt of a script that exercises the search feature of IBuySpy:

Search.vbs

Option Explicit

Dim fEnableDelays

fEnableDelays = False

Sub SendRequest1()

 Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode

 If fEnableDelays = True then Test.Sleep (0)

 Set oConnection = Test.CreateConnection("YourServerName", 80, false)

 If (oConnection is Nothing) Then

 Test.Trace "Error: Unable to create connection to YourServerName"

 Else

 Set oRequest = Test.CreateRequest

 oRequest.Path = "/StoreVBVS/default.aspx"

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 oRequest.Verb = "GET"

 oRequest.HTTPVersion = "HTTP/1.0"

 set oHeaders = oRequest.Headers

 oHeaders.RemoveAll

 oHeaders.Add "Accept", "image/gif, image/x-xbitmap, image/jpeg,_

 image/pjpeg, application/vnd.ms-excel,_

 application/vnd.ms-powerpoint, application/msword, */*"

 oHeaders.Add "Accept-Language", "en-us"

 oHeaders.Add "User-Agent", "Mozilla/4.0 (compatible; MSIE 6.0;_

 Windows NT 5.1)"

 'oHeaders.Add "Host", "YourServerName"

 oHeaders.Add "Host", "(automatic)"

 oHeaders.Add "Cookie", "(automatic)"

 Set oResponse = oConnection.Send(oRequest)

 If (oResponse is Nothing) Then

 Test.Trace "Error: Failed to receive response for URL to " + _

 "/StoreVBVS/default.aspx"

 Else

 strStatusCode = oResponse.ResultCode

 End If

 oConnection.Close

 End If

End Sub

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Sub SendRequest2()

 Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode

 If fEnableDelays = True then Test.Sleep (130)

 Set oConnection = Test.CreateConnection("YourServerName", 80, false)

 If (oConnection is Nothing) Then

 Test.Trace "Error: Unable to create connection to YourServerName"

 Else

 Set oRequest = Test.CreateRequest

 oRequest.Path = "/StoreVBVS/IBuySpy.css"

 oRequest.Verb = "GET"

 oRequest.HTTPVersion = "HTTP/1.0"

 set oHeaders = oRequest.Headers

 oHeaders.RemoveAll

 oHeaders.Add "Accept", "*/*"

 oHeaders.Add "Referer", "http://YourServerName/StoreVBVS/default.aspx"

 oHeaders.Add "Accept-Language", "en-us"

 oHeaders.Add "User-Agent", "Mozilla/4.0 (compatible; MSIE 6.0;_

 Windows NT 5.1)"

 'oHeaders.Add "Host", "YourServerName"

 oHeaders.Add "Host", "(automatic)"

 oHeaders.Add "Cookie", "(automatic)"

 Set oResponse = oConnection.Send(oRequest)

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 If (oResponse is Nothing) Then

 Test.Trace "Error: Failed to receive response for URL to " + _

 "/StoreVBVS/IBuySpy.css"

 Else

 strStatusCode = oResponse.ResultCode

 End If

 oConnection.Close

 End If

End Sub

Sub SendRequest3()

 Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode

 If fEnableDelays = True then Test.Sleep (20)

 Set oConnection = Test.CreateConnection("YourServerName", 80, false)

 If (oConnection is Nothing) Then

 Test.Trace "Error: Unable to create connection to YourServerName"

 Else

 Set oRequest = Test.CreateRequest

 oRequest.Path = "/StoreVBVS/images/sitebkgrdnogray.gif"

 oRequest.Verb = "GET"

 oRequest.HTTPVersion = "HTTP/1.0"

 set oHeaders = oRequest.Headers

 oHeaders.RemoveAll

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 oHeaders.Add "Accept", "*/*"

 oHeaders.Add "Referer", "http://YourServerName/StoreVBVS/default.aspx"

 oHeaders.Add "Accept-Language", "en-us"

 oHeaders.Add "User-Agent", "Mozilla/4.0 (compatible; MSIE 6.0;_

 Windows NT 5.1)"

 'oHeaders.Add "Host", "YourServerName"

 oHeaders.Add "Host", "(automatic)"

 oHeaders.Add "Cookie", "(automatic)"

 Set oResponse = oConnection.Send(oRequest)

 If (oResponse is Nothing) Then

 Test.Trace "Error: Failed to receive response for URL to " + _

 "/StoreVBVS/images/sitebkgrdnogray.gif"

 Else

 strStatusCode = oResponse.ResultCode

 End If

 oConnection.Close

 End If

End Sub

�

Sub SendRequest17()

 Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode

 If fEnableDelays = True then Test.Sleep (6910)

 Set oConnection = Test.CreateConnection("YourServerName", 80, false)

 If (oConnection is Nothing) Then

 Test.Trace "Error: Unable to create connection to YourServerName"

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 Else

 Set oRequest = Test.CreateRequest

 oRequest.Path = "/StoreVBVS/SearchResults.aspx"

 oRequest.Verb = "POST"

 oRequest.HTTPVersion = "HTTP/1.0"

 oRequest.EncodeBody = False

 set oHeaders = oRequest.Headers

 oHeaders.RemoveAll

 oHeaders.Add "Accept", "image/gif, image/x-xbitmap, _

 image/jpeg, image/pjpeg, application/vnd.ms-excel,_

 application/vnd.ms-powerpoint, application/msword, */*"

 oHeaders.Add "Referer", "http://YourServerName/StoreVBVS/default.aspx"

 oHeaders.Add "Accept-Language", "en-us"

 oHeaders.Add "Content-Type", "application/x-www-form-urlencoded"

 oHeaders.Add "User-Agent", _

 "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"

 'oHeaders.Add "Host", "YourServerName"

 oHeaders.Add "Host", "(automatic)"

 oHeaders.Add "Pragma", "no-cache"

 oHeaders.Add "Cookie", "(automatic)"

 oHeaders.Add "Content-Length", "(automatic)"

 oRequest.Body = "txtSearch=boat&image1.x=13&image1.y=11"

 Set oResponse = oConnection.Send(oRequest)

 If (oResponse is Nothing) Then

 Test.Trace "Error: Failed to receive response for URL to " + _

 "/StoreVBVS/SearchResults.aspx"

 Else

 strStatusCode = oResponse.ResultCode

 End If

 oConnection.Close

 End If

End Sub

Sub Main()

 call SendRequest1()

 call SendRequest2()

 call SendRequest3()

�

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 call SendRequest17()

End Sub

Main

Analyzing a Recorded Test Script

At a high level, you can see that each request is encapsulated in a subroutine labeled

SendRequest#() where # is an ordered sequence. All calls to these subroutines are then

encapsulated within a Main() subroutine. The starting point of execution is at the top of

the test script where variables are declared and initialized. At this point, execution jumps

to the last line where Main() is called. Within the Main() subroutine, each request is called

and then the script ends. Subsequent iterations repeat all the steps described above.

The code makes use of ACT objects that facilitate connecting to a Web server and

sending requests. These objects fall into what is known as the Test Object Model. At the

root of this object model is the Test Object. This particular test script uses the Test,

Headers, and Request objects. ACT also supports an Application Model that can be

utilized to run tests programmatically. More details on the two object models can be found

in the help file installed with ACT.

The search test script that we recorded demonstrates how to issue GETs (subroutine

SendRequest1) and POSTs (SendRequest17). Additionally, you can see how to specify

request headers. For example, to get ACT to handle cookies automatically during script

playback, you can add the following line of code as illustrated in the previous recorded

test script:

oHeaders.Add "Cookie", "(automatic)"

To send content in the request body, as is the case with POST requests, ACT will

automatically determine the content length using the following line of code as also

illustrated in the previous recorded test script:

oHeaders.Add "Content-Length", "(automatic)"

By examining the search test script and test scripts included in the ACTSamples project,

which is part of Visual Studio .Net, you can gain familiarity with the object model, which

will enable you to create and modify tests effectively.

Creating a Test Script Manually

Step 2 of the New Test Wizard allows for an empty test to be created. A walkthrough with

the wizard produces the following single line script:

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Test.SendRequest("http://localhost")

The argument in the above line can be changed to exercise the task of hitting the default

page for the IBuySpy application. The line below illustrates this:

Test.SendRequest("http://YourServerName/StoreVBVS")

The left side of the default page of the IBuySpy application contains links for each of the

product categories. Moving the mouse over the product category links displays the URLs

in the status bar. By adding more lines to the test script, similar to the one to access the

default page, a test script can be created to simulate browsing through the product

categories. Additional logic can be added to randomize the selection of links between test

script iterations. An example of such a test script follows.

Browse.vbs

Option Explicit

'///

' Description: Browse different products in random order.

' Summary:

' Below is a sample ACT test script that simulates

' browsing through different product categories in

' random order.

'///

Dim i, sParams, sServerName, oUser

'///

' TODO: -Enable Integrated security only, via the Security

' -tab in IIS

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

' -Replace these sample values with your site values

' -Set the username (domain\username" and password

sServerName = "YourServerName"

'Get a reference to the current ACT generated user

Set oUser = Test.GetCurrentUser

oUser.Name = sServerName & "\USERNAME"

oUser.Password = "UserPassword1"

'///

'Generate a new seed for random numbers

Randomize()

'Generate a random number between 0 and 6

i = Cint(7 * Rnd())

'Output the random number to the trace file

Test.Trace "i="& cstr(i)

Select Case i

 Case 0

 sParams = "CategoryID=14&selection=0"

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 Case 1

 sParams = "CategoryID=15&selection=1"

 Case 2

 sParams = "CategoryID=20&selection=2"

 Case 3

 sParams = "CategoryID=18&selection=3"

 Case 4

 sParams = "CategoryID=17&selection=4"

 Case 5

 sParams = "CategoryID=19&selection=5"

 Case 6

 sParams = "CategoryID=16&selection=6"

End Select

'Request the default page

Test.SendRequest("http://" & sServerName & "/storevbvs/Default.aspx")

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

'Request a product category

Test.SendRequest("http://" & sServerName & _

 "/StoreVBVS/productslist.aspx?" & sParams)

'This Request has been added to mark the end of a user scenario

Test.SendRequest("http://" & sServerName & _

 "/storevbvs/Default.aspx?test=count")

This test script was set to generate users automatically, and the Web application was

configured to require integrated security. To allow a successful login by the test script, a

reference to the user object generated by ACT is obtained and then a username and

password are specified through the properties of the User Object. You would have to

create this username as a local account on the Web server prior to running the ACT test

script.

Note The last request in the test script demonstrates how to add a

marker to the IIS log (W3SVC format). We choose "test=count" in

our example since it is not interpreted by the Web application logic.

You can use this to count completed user scenarios (transactions)

after the test run. Another instance where this technique is useful

would be in identifying throughput for Web applications in which

you have different parameters representing different transactions

which are passed to the same page.

Creating a test script to Stress the SQL Tier

ACT can also be used to make SQL calls through ActiveX Data Objects (ADOs). This is

useful since ACT supports the creation of multiple threads and can thus simulate multiple

concurrent connections to the database. Another reason for using this method would be if

you are at a point in the development life cycle where the Web and data tiers are not

ready to be integrated.

Note You should ensure that the SQL Server User Options (that is, the

Transaction Isolation level) for the SQL connection created by the

test script and those for a connection created by the application are

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

the same.

By starting with an empty test script, you can connect to a SQL server and execute a

stored procedure or any dynamic SQL statements. For example, the search functionality

of the IBuySpy application calls the following stored procedure:

ProductSearch @Search = N'search string'

The test script that follows demonstrates connecting to a SQL server directly using the

Scripting Library and ADO and exercising the database component of the search

functionality exposed by IBuySpy. This script also shows how to retrieve input data from

an external file.

Search_SQL.vbs

Option Explicit

'///

' Description: Directly Stress SQL Tier via ADO calls

' Summary:

' Below is a sample ACT test script that be used to

' make SQL calls via ADO. This script passes

' parameters from a text file to execute a search

' stored procedure.

'///

Dim oFso, oCsvFile, oSQLConn, sConnStr, sSearchStr, sServerName

Dim sUserName, sPassword, sPath

'///

' TODO: - Set the Server Name

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

' - Create a SQL server account with dbo privileges

' to the Store database

' - Verify path to the input file search.txt

sServerName = "juaceeval5"

sUserName = "USERNAME"

sPassword = "UserPassword1"

sPath = "D:\Chapter_3\ACT_Project\search.txt"

'///

'Create an ADO Connection object

Set oSQLConn = CreateObject("ADODB.Connection")

sConnStr = "driver={SQL Server};Server=" & sServerName & "_

 ;Database=Store;uid=" & sUserName & ";pwd=" & sPassword

oSQLConn.Open sConnStr

'///

' Open a text file containing search sConnStrings

Set oFso = CreateObject("Scripting.FileSystemObject")

Set oCsvFile = oFso.OpenTextFile(sPath ,1)

'///

'Repeat until end of file is reached

Do While oCsvFile.AtEndOfStream <> True

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 'Read a sSearchString from the text file

 sSearchStr = oCsvFile.ReadLine

 'Output the search sConnString to the ACT log file

 Test.Trace sSearchStr

'///

' Execute the ProductSearch stored procedure

oSQLConn.execute "exec ProductSearch @Search = N'" &_

 trim(sSearchStr) & "'"

'///

Loop

'Close the text file

oCsvFile.Close

Set oCsvFile = Nothing

Set oFso = Nothing

'Close the database connection

oSQLConn.Close

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Set oSQLConn = Nothing

Setting Test Properties Prior to Script Playback

Before running a test, there are certain test properties that must be set to override the

default settings. These properties can be set via the test property page. The following

properties can be set:

§ Test load level (General tab). This is achieved by setting a value for

simultaneous browser connections. One browser connection can be

thought of as virtual users accessing the application. For example, if

you want to simulate 10 concurrent connections to the Web application,

set this to 10. ACT will spawn 10 SBCs, each of which will execute the

test script.

§ Test Duration (General tab). There are two choices here; either a time

can be set or a specified number of iterations can be set. It should be

noted that the number of iterations is the total number of iterations

across all connections. If the simultaneous browser connections setting

is 10 and the number of iterations setting is 100, then each connection

will execute the script such that the sum of all executions across the 10

connections does not exceed 100 iterations. For a stress test, we

typically set the duration by specifying a time value which allows

sufficient warm-up time for the load to reach a steady-state. This time

value can be determined by observing the CPU utilization or requests

per second for various sample runs of the test script against the server.

ACT allows for this transient behavior to be eliminated in its reports by

letting the user specify a warm-up time.

§ Detailed Reporting (General tab). ACT can summarize the statistics

for each request by page name, or it can simply aggregate the statistics

across all requests. To get more detailed reporting, the check box

Generate detailed test results located on the Advanced Settings dialog

box should be checked. Clicking the Advanced button on the General

tab of the test Properties dialog box brings up the Advanced Settings

window.

Note
To reduce the reports generation time and "out of memory" errors

generated from long test runs, we recommend that this setting be turned

off for tests that generate a large number of unique requests.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ Users (Users tab). ACT can generate users automatically, or you can

specify a user group which has predefined users. For Web applications

that require specific username/password combinations, users can be

created in a user group and then the group can be selected through

this tab from the properties page. The number of users defined in the

group needs to be equal to or greater than the number of simultaneous

browser connections. Note that all iterations of the script will use the

same user unless the test script programmatically calls the

GetNextUser method of the Test object. More details on the Test

object's methods are discussed in the ACT help file.

ACT can speed up the creation of users by generating users for a test. You can

invoke this feature by first creating a user group. Next, select the user group and

choose Generate Users from the Action menu. This will bring up the Generate

Users dialog box, where the number of users, username prefix, and password

are specified. The newly created user group must also be associated with a

given test for this user group to be used.

§ Counters (Counters tab). The same counters that are captured

through Performance Monitor are exposed on the Counters tab. You

can set the sampling duration by specifying a value for the Counter

interval. To add counters, click the Add button and then from the

Browse Performance Counters dialog box select the target machine

and the desired counters. Counters added will appear in the

Performance Counters list box on the Counters tab of the test property

page.

Script Modification-Avoiding "Record and

Playback"

Web applications typically have dynamic content that is generated based on user input.

These applications often have a data tier implemented using a database management

system such as SQL Server. For this reason, a simple record and playback of a test script

will not always accurately simulate real-world usage. To illustrate, a scenario may involve

exercising the search functionality of an application. Recording such a scenario will only

capture one search string that was entered during the recording session. Playing back

such a script for multiple iterations will not create realistic traffic, because the search

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

query and search results may be cached. In such a case, the test results will be skewed,

and the test will not be representative of actual user interaction with unique search

strings.

Recording is a quick and easy starting point in test script creation and can be used to

capture most, if not all, of the Web requests, such as GET and POST methods. Once a

recorded test script has been created, you may have to modify the code to allow for

dynamically changing user data. For example, a Web application may have a scenario

which involves user account registration as in an online store. Recording such a test

script will embed data like the username that was used at record time. Playing back such

a test script does not work since the user account will have already been created. This

test script has to be modified to use a different value for the user account between

successive iterations so the same account previously created will not be attempted more

than once. One approach is to modify the test script to read user account data from a text

file and supply this data as part of the Web request. You will have to create sufficient data

so that the test script can run for a desired duration or complete a desired number of

iterations.

Note To avoid having to create enormous amounts of data that can be

used for successive test runs, you should backup your application's

SQL databases before your test run and restore the database to its

previous state before each subsequent test run. This method will

allow you to use the same data file for repeated iterations of the

test.

There may be scenarios that require data generated in one step to be used in subsequent

steps, such as a GUID referencing an address. In such a case, the test script may have to

be modified to parse through the response from a request obtaining the dynamic data

which can then be assigned to a variable and subsequently used in the following steps.

Fortunately, ACT exposes a Response object for such a situation to capture the Web

response of a client request. For an example of using the Response object, see the code

sample in the section "Parsing ViewState within ACT" on page 39.

Debugging ACT Test Scripts

ACT helps with modification and debugging of test scripts by supplying a log file which

can capture messages generated during playback. The ACT log file is named

ACTTrace.log by default and is located under Program Files\Microsoft ACT. Through the

Project Property page (Debugging tab), you can change the location of this file, specify a

maximum size for this file (after which it gets recycled) and enable or disable logging

entirely. The Test object also allows for tracing to be controlled programmatically. Tracing

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

levels can be set via the TraceLevel property and user defined messages can be output

via the Trace method. You can also use the trace log file to uncover errors at runtime

during test execution. The example code that follows demonstrates setting the trace level

to log all messages and to write a custom message to the trace log file:

Test.TraceLevel = -1

' The tracelevel property can be set to one of the following values

' -1: log all information

' 0: disable logging

' 1: log internal program information only

' 2: log external information only, from the Test.Trace method.

' This is the default setting.

Test.Trace("Trace level is set to "& CStr(Test.TraceLevel))

Note Note that unless the TraceLevel is set, no data will be written to the

ACTTrace.log unless you specifically call Test.Trace.

Test Script Verification

Test scripts should always be verified for accuracy before engaging in an actual test run.

Some scenarios may only read data from a database while others may insert, update or

delete data. You should verify such data changes before a test script is considered

complete. For example, scenarios that involve data insertion can be checked by counting

rows of data within your database before and after a test run and comparing the numbers

with a walkthrough of the scenario. The number of data insertions for a single user

walkthrough and the number for a single test script execution should be the same for an

accurate test script.

Another good technique to verify test script functionality is to look at the IIS log file. By

comparing the IIS log of a walkthrough and the IIS log of a test run, you can ensure that

all the right requests are being performed in the correct order. Occasionally, applications

may perform some action via client-side script which does not get captured. By parsing

through the IIS logs you can find such omissions.

Note Note that this chapter specifically discusses Microsoft Internet

Information Server; however, ACT can be used to apply stress

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

against any Web server for performance testing.

Test script verification can include both capturing SQL calls through SQL Profiler for a

walkthrough and comparing these calls to ensure that all the necessary calls are being

generated in the correct sequence. SQL Profiler configuration is discussed in more detail

in Chapter 8.

Scripts and Load Clients

ACT Developer Edition was not designed to run on multiple machines. It is only licensed

to run on one client at a time. Depending on the application being tested, one client

machine may be inadequate to generate sufficient load to effectively stress your Web

application without the client machine itself becoming the bottleneck.

Note Client bottlenecks can be identified when the resources such as

CPU, Memory, and Network I/O are fully utilized. Another method

to check a client bottleneck, if you suspect one, is to run a test to

determine the throughput and then repeat the same test by dividing

up the SBCs across additional clients. If the throughput is much

greater when you add additional clients, then it is safe to assume

that your client was a bottleneck.

Most Web applications that we test require multiple client machines to be used in

generating sufficient load. With ACT, the only way to do this is to purchase and install

additional copies of Visual Studio .NET for each required stress client. You then must

recreate the tests, setting the properties and users individually on each machine. To aid in

this task, you can simply copy the entire project folder to each client machine, modify

input data files where necessary, open up the project and run a particular test.

Note The maximum number of browser connections in ACT is limited to

2000. This should be more than sufficient for a single client

machine. If for some reason you require more than 2000 browser

connections for a single load client, you can modify the XML test

properties directly, but you should not open the properties page in

the user interface after making the change. Alternatively, you can

double-up the connections per thread by adding another

CreateConnection within your test script.

Another possible reason for using multiple stress clients is that ACT executes one test run

per stress client at a given time. Most applications have more than one scenario and you

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

can run multiple scenarios concurrently (a mixed test) by using at least one client

machine per scenario.

This raises the question of how many test scripts need to be created. Should you use one

large test script that exercises all of the scenarios, or should you use multiple test scripts,

one for each scenario? We prefer to create multiple test scripts, because this facilitates

separate test runs for each scenario and helps us identify bottlenecks in individual

scenarios. Alternatively, you can execute multiple user scenarios with one large test script

using the following logic:

Sub main()

 WhichScenarioToRun = Int(Rnd * 100)

 Randomize

 Select Case WhichScenarioToRun

 Case 0 To 75

 Call myTest1

 Case 76 To 87

 Call myTest2

 Case 87 To 100

 Call myTest3

 End Select

End Sub

For the IBuySpy sample application, we have created separate test scripts for Browsing,

Searching, Registration, and Checkout which can be found on this book's companion CD.

Executing a Performance/Stress Test

Determining how much stress is sufficient depends on the goals outlined prior to testing.

You have to define the criteria which indicate when appropriate stress levels are reached.

To aid in this decision, some examples of possible test criteria are included:

§ Stop increasing load when an excessive number of errors occur in the event

or Web server logs.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ Increase load to a point where throughput diminishes.

§ Set a threshold on CPU utilization (for example greater than 75 percent).

§ Set a threshold on memory utilization.

§ Set a threshold on page response time.

§ Obtain a predefined number of requests per second or concurrent

connections that the Web application must be able to handle, based on

business requirements.

Once the test criteria have been defined, several test runs are required at different load

levels (simultaneous browser connections). By starting off low and letting the test execute

for a sufficient time to allow an adequate number of user scenarios to be completed, you

can determine the throughput for a particular scenario within an application. While

increasing load, you should also monitor the stress on the client machine to ensure that

the stress client is not saturated. Additional clients can be used to ensure that individual

client machines do not become a bottleneck or a source of errors during a stress test.

During these preliminary tests, which we refer to as "smoke tests," you should monitor the

application servers to ensure that all the performance criteria are being met. You can also

generate a tabulation of application throughput. By repeating these tests, you will

eventually reach a point where one or more of the threshold criteria are met. This is an

indication that the appropriate level of load has been reached. At this point, you are ready

to conduct a test run of longer duration with the appropriate load using only the necessary

monitoring tools to minimize the server's resource utilization.

Depending on the scope of testing, you may have one or more test scripts. We

recommend that separate tests be run for each scenario in addition to running all

scenarios concurrently with a specified weighting. Running scenarios separately will aid

in uncovering bottlenecks in the system or code that affect only that specific area of

application logic. These isolated bottlenecks will help you in identifying later bottlenecks

that are due to code interaction in the mixed scenario test run. The mixed scenario test

run (where all scenarios are run concurrently) helps stress the application in a more

realistic fashion, representative of actual application usage. This will help you reveal

application bottlenecks, such as blocking and timeouts, that are due to the interaction of

all scenarios.

Overall test duration is another important variable to define in the stress testing effort.

This variable really depends on how fast an application can process requests and

complete user transactions (scenarios). Other factors that can influence the length of a

test are the length of time required to reach a steady state and the amount of available

test data. Stress tests that are used to calculate throughput under load are typically run

for at a minimum of 5 to 30 minutes.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Note Total Transactions = Total successful Page View/s or SQL Row

Counts that indicate a completed scenario Transactions per minute

= Total Transactions / Test time interval Transactions per second =

Transactions per minute / 60 sec.

Extended tests can run for a minimum of eight hours under load or can last up to a week.

However, the exact length of time really depends on the application being tested. Such

tests are useful for determining the stability of the application, uncovering memory leaks

and monitoring application throughput over a longer period of sustained stress.

Create a Controlled Environment

In addition to determining the adequate number of browser connections and the optimal

number of stress client machines, we advise you to conduct testing in a controlled

environment. Controlled implies that there should be machines designated as stress

clients and others as servers which host applications. These machines should be as

close as possible in hardware specifications to your production environment. All systems

should be connected on a private network with adequate bandwidth. Test results are of

little value if performance issues cannot be reproduced. A controlled environment helps

ensure test reliability by eliminating non-test related network noise.

The absence of a controlled environment can potentially skew test results by introducing

dependencies on external servers for DNS lookups, authentication, and so on.

Depending on the time of day that the tests are conducted, network delays can change

based on network congestion, which could affect application throughput. If such

dependencies on external servers do exist, the testing schedule can be affected due to

problems with one or more of these servers, which delays the overall stress testing effort.

With a controlled environment, you can also be certain that the entire load generated on

the application servers is solely due to the stress clients.

Conclusion

ACT is a powerful tool, and you can only expect its capabilities to expand with future

releases as it changes to accommodate new technology. Given the importance of stress

testing, it behooves you to become familiar with a stress tool such as ACT. The sooner

you learn the tool, the sooner you will be able to put it to good use. We hope this chapter

helped provide a quick start to becoming productive with ACT.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Chapter 4: Monitoring Application

Performance with System Monitor

The Microsoft Windows 2000 family of servers provides a graphical

performance-monitoring tool called System Monitor, which is a Microsoft Management

Console (MMC) snap-in. (It was called Performance Monitor, or Perfmon, in previous

versions of Windows NT.) This snap-in assists you with monitoring the performance of

your Web applications, database systems, and hardware resources on Windows-based

servers. MMC has two parts: System Monitor, for monitoring your system in real time; and

Performance Logs and Alerts, for monitoring your system in logging mode.

In this chapter we discuss how to use the MMC snap-in, which resources to monitor, and

how to interpret some of the most common system counters. Performance objects and

counters specific to the .NET Framework are discussed in Chapter 7, ASP.NET and IIS

counters and objects are detailed in Chapter 6, and SQL Server-specific counters and

objects in Chapter 8. Note that we refer to the Windows 2000 server family in this chapter,

not Windows .NET Server, because at the time of this writing, Windows .NET Server is

still in beta.

Using System Monitor

The units of measurement used to monitor hardware and software resources through

System Monitor are called counters, which are then further grouped into categories called

objects. In some cases, counters also have instances. For example, when monitoring the

processor activity of a Web server, you monitor the % Processor Time counter, which is

found under the Processor object. If there is more than one processor in the server, you

can choose to monitor the total activity of all of the processors or instances for each

individual processor.

A default set of System Monitor objects and counters are made available when you install

Windows 2000 Server. If a specific application, such as SQL Server, is installed on the

server, SQL Server-specific objects and counters are also made available. In this case

System Monitor will use remote procedure calls to collect information from SQL Server.

System Monitor consumes a small amount of CPU and disk resources on the system it is

monitoring, which you should keep in mind when measuring and determining the

performance of systems and applications. If you are monitoring the machine remotely,

System Monitor will also consume bandwidth from the network card. On highly utilized

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

systems and applications hosted on the Windows 2000 platform, this overhead could be

cause for concern, especially if you're monitoring production systems, but in most

dedicated test environments it should not be a concern.

In addition to monitoring performance counters, System Monitor allows you to

§ view selected system performance objects and counters in real time.

§ log performance counter information for later analysis.

§ monitor multiple Windows 2000 servers from one instance of System Monitor.

§ create alerts to notify you when certain performance thresholds or conditions

occur. For example, when the processor time goes above 90 percent, you

can configure the alert to log an entry in the Event Viewer, send a network

message, start a performance data log file, run a program when the

condition occurs, or all of the above.

§ trace events to record data when certain activities occur for processes, threads,

disk I/O, network I/O, file details and page faults. Trace logs require a

parsing tool to interpret the output. You can create such a tool using APIs

provided at the following location: http://msdn.microsoft.com/msdn-files.

Tracing is rarely used, except by Microsoft support providers.

This chapter looks at the first two methods in detail and also provides an overview of the

fourth (creating notification alerts).

Viewing Real-Time Performance Data

In real-time mode you can view performance data in three different categories: chart,

histogram, or report. Viewing data in real time is useful if you know what you are looking

for or if you want to verify the existence of a particular bottleneck. When you have to run a

stress test overnight for a bottleneck to appear, the best approach is to log the

performance data. See the section "Logging and Viewing Logged Data" later in this

chapter for more information on this topic.

Chart View

The real-time chart view is an excellent method for identifying trends in the data over time

and comparing multiple instances of a counter such as % Processor Time. For the most

part you will find yourself using chart view for your performance tests, so it's important to

become familiar with this particular view to take full advantage of its rich feature set.

There are two views available under chart view, graph view and histogram view. An

example of the graph view is shown in Figure 4-1.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 4-1: System Monitor graph view

Graph View

1. Click Start, point to Programs, then Administrative Tools, and then

click Performance.

2. Click System Monitor in the console tree on the left to view System

Monitor in the right pane.

To explain the power of chart view for monitoring performance, we'll walk you

through an example of using the graph and histogram views. So, let's say you

want to monitor processor utilization of a multiprocessor system. First, launch

System Monitor. The performance console that contains System Monitor

opens as shown in Figure 4-2.

Figure 4-2: System Monitor console tree

Tip You can also launch System Monitor by typing perfmon in the Run

command.

3. If the monitor is not in chart view, click the View Chart button at the top

of the right pane to switch to chart view.

Counter Color Now that you have a graph view containing processor utilization

information, let's explore some of the features of System Monitor you can use to work with

the performance data you are collecting. Some of the features are specific to chart view,

while others can be used under the report and histogram views as well.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

It is important to use the colors to distinguish the data you are monitoring. You can

choose each color from a palette (in the Property Name list box of the System Monitor

Properties dialog box) or you can base the colors on system colors defined using the

Display icon in Control Panel. When using the palette, note the following:

§ BackColorCtl refers to the area surrounding the chart.

§ BackColor refers to the chart data-display area.

§ ForeColor refers to the color of the text in the display and legend.

Counter Scale Depending on the counter you are monitoring, there will be times when

you'll need to adjust the counter's scale so the counter information displayed makes more

sense. For instance, when monitoring memory-related counters, you will need to increase

the scale of the counters that deal with bytes of information. The value of a counter scale

can be changed exponentially from .0000001 to 1000000.

Counter Characteristics When you're selecting counters for data collection, note the

counter characteristics. Some counters are formulated as instantaneous and others are

averages. Instantaneous counters display the most recent measurements, while

averaging counters display the average of the last two measurements over the period

between two samples. For the processor object counters on a multiprocessor server,

each processor will be listed in the Instances selection box. System Monitor will list the

instances from zero. For example, a four-processor server will be listed from instance 0 to

3, where the third instance represents the fourth processor.

It is important that you understand the implications of the counter on the data. For

example, if transaction/sec is being monitored, be aware that the data is calculated as the

number of transactions counted for the sample time selected. The number of transactions

is divided by the number of seconds in the interval selected. Additionally, note how to

interpret a spike when working with averaging counters. For example, when you first

begin to monitor the % Processor Time counter you may see an initial spike in processor

usage. For an accurate view of processor utilization, wait until the second or third reading

for the average value for the counter.

Parent Instance Name If you are monitoring threads of the Microsoft Windows Explorer

process, track the Windows Explorer instance of the Thread object (Windows Explorer

would be the parent instance), and then each thread running Windows Explorer (these

threads are child instances). The instance index allows you to track these child instances.

The instance index for the thread you want might be 0, 1, and so on, for each thread,

preceded by the number sign (#). The operating system configures System Monitor

properties to display duplicate instances by default. Instance index 0 is hidden;

numbering of additional instances starts with 1. You cannot monitor multiple instances of

the same process unless you display instance indexes.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Computer Name Each object has counters that are used to measure various aspects of

performance, such as transfer rates for disks or the amount of processor time consumed

for processors.

Computer Name is the name of the computer that will be displayed at the bottom of the

chart view. Be careful when collecting the same objects and counters from different

servers; use the colors and different fonts to distinguish between instances on different

servers.

Value Bar The value bar under the chart contains statistical information for the currently

selected counters. The value bar can be turned on or off by right-clicking anywhere in the

chart and selecting Properties, selecting the General tab in the System Monitor Properties

dialog box and deselecting Value Bar under Display Elements.

The values displayed in the value bar are as follows:

§ Last The last value displayed for the currently selected counter.

§ Average The average value of the currently selected counter.

§ Minimum The minimum value of the currently selected counter.

§ Maximum The maximum value of the currently selected counter.

§ Duration The total elapsed time displayed in the graph, this value is

based on the interval value. The interval value you set determines how

often counter data should be collected. For more information on the

interval setting see the section "How Often Should You Collect Data?"

later in this chapter

Histogram View

The histogram view is the preferred method of viewing data when monitoring multiple

instances of the same counter. For example, you can compare the % Disk Read Time for

all of the drives in your server to understand which drive is being taxed with read requests.

You can switch to histogram view by clicking the Histogram button on the toolbar or typing

Ctrl+B. Additionally, you can select Histogram on the General tab of the System Monitor

Properties dialog box.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 4-3: Histogram view

Report View

Report view is extremely useful when monitoring counters dealing with logical and

physical I/O, such as disk or network I/O. For example, if you have to monitor all the

processes running on your Web server concurrently, doing so under chart view would

create an extremely hard-to-read graph or histogram. Instead, you can switch to report

view for an easy-to-read view of the data.

To view real-time data as a report, you can click the Report tool on the toolbar or type

Ctrl+R. Or, you can select Report on the General tab of the System Monitor Properties

dialog box.

How Often Should You Collect Data?

For both real-time performance monitoring and data logging, you can set a specific

interval for data collection. The interval you set for data collection will have a significant

impact on your ability to capture potential performance bottlenecks. For the most part, the

type of bottleneck you are investigating will determine the interval period you set. For

instance, if you are monitoring a problem that manifests itself slowly, such as a memory

leak, you should set a longer interval period. On the other hand, if the bottleneck tends to

occur frequently, set a lower interval period. When you're not sure of the bottleneck or

when it's occurring, setting the interval period to 15 minutes should be sufficient to start

with.

Also consider the overall length of time you want to monitor when choosing this interval.

Updating every 15 seconds is reasonable if you will be monitoring for no more than four

hours. If you'll be monitoring a system for eight hours or more, do not set an interval

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

shorter than 300 seconds (five minutes). Setting the update interval to a frequent rate

(that is, a low value) can cause the system to generate a large amount of data, which can

be difficult to work with especially if you're simultaneously monitoring a large number of

counters.

Monitoring many objects and counters can also generate a large amount of data and

consume disk space. Try to strike a balance between the number of objects you monitor

and the sampling frequency to keep log file size within manageable limits.

If you prefer to maintain a long update interval when logging, you can still view data

fluctuations that occur between those intervals. To do so, see the next section, "Logging

and Viewing Logged Data" for information about manipulating time ranges within logs.

Logging and Viewing Logged Data

One of the most valuable features of System Monitor is its logging capability. Regular

logging of performance data allows you to compare before and after a change to the

system's hardware, software, or application. For example, your company decides to

launch a new marketing campaign selling its most popular widgets at 50 percent off. This

sale causes a dramatic increase in traffic to the company's Web site. Logging

performance data will allow you to compare and contrast the effects of the increased user

transaction before, during, and after the sale. This information can then be analyzed to

determine whether the Web site is suffering from any bottlenecks or whether you have

adequate hardware to support future marketing campaigns.

You can capture System Monitor data for a specific period of time and then analyze and

compare the performance log files later on. This will allow you to view the system

behavior over time, which can reveal trends in system usage that you might not see when

viewing real-time data. For example, in your log files you might find that disk utilization is

typically high from 8 P.M to 10 P.M and lower for the remainder of time. You might be able

to equate this trend to heavy data entry or a database backup during these times.

Note When you use System Monitor, it is most efficient to start the log

locally on the server you want to collect data from. You can access

the log file later from a remote system if you need to. If you must

log over the network, reduce the number of objects and counters to

the most critical ones.

To start logging information on a Windows 2000 server using System Monitor, follow

these steps:

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

1. Click Start, Programs, then point to Administrative Tools, and click

Performance.

2. Expand Performance Logs And Alerts in the left pane of the

performance window.

3. Select Counter Logs in the console tree.

4. In the right pane, right-click and choose New Log Settings from the

shortcut menu as shown in Figure 4-4.

Figure 4-4: Create log

5. Enter a name to identify the log settings in the New Log Settings dialog

box as shown in Figure 4-5, and then click OK. We chose IBuyspy for

the name of this log setting.

Figure 4-5: New Log Settings

6. The name you choose for the log setting will appear as the title for the

Performance Log dialog box. Click the Add button to open the Select

Counters dialog box.

7. Add the counters that you want saved to the log file by highlighting

them and then clicking the Add button. When finished adding counters,

click Close in the Select Counters dialog box. On the General tab of the

Performance Log dialog box, you can also set the interval for sampling

data.

8. Click the Log Files tab to set log file-specific information, such as

location, file name, file type, and maximum file size limit. Use CSV files

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

for the default file type, especially if you are collecting data for a long

period of time, in order to maintain manageability. As shown in Figure

4-6, in this example we save the file locally.

Figure 4-6: Log file information

Note It is always a good idea to select a high interval for the sampling data

value when collecting performance data over a long period of time.

This is most important to note when saving data as a binary file-binary

files are always larger than CSV files.

9. Click the Schedule tab to set the schedule for logging. If you do not

enter a time for the logging to stop, it will continue until you stop it

manually.

10. Click OK. The log file name should appear in the right pane. The green

icon next to the log name shows logging has started, as shown in

Figure 4-7.

Figure 4-7: Log file started

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The icon will be red if the logging is stopped. You can start and stop logging

manually in this window by right-clicking the name of the log setting and

choosing Start or Stop from the shortcut menu.

After you have collected information and stopped the logging process, use the following

steps to load logged data into the system and view it.

1. Click System Monitor in the left pane to view System Monitor in the

right pane.

2. Click the View Log File Data button at the top of the right pane to open

the Select Log File dialog box, as shown in Figure 4-8. Navigate to the

folder and select the log file you want to view and then click open.

Figure 4-8: Log File dialog box

3. Click the Add button to add the counters you want to view from the

selected log file. When you close the Add Counters dialog box you will

see the selected counters in System Monitor, as shown in Figure 4-9.

Only the counters selected for initial logging will be available for

viewing.

Figure 4-9: Add Counters

You can narrow your view of the log file by following these additional steps:

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

1. After you have loaded your log file into System Monitor, click the

Properties button at the top of the right pane.

2. In the System Monitor Properties dialog box, click the Source tab.

3. Near the bottom of the Source tab, slide both ends of the slide window

to include the times that you want to see in the View range as shown in

Figure 4-10.

Figure 4-10: Log file information

4. (Optional) Use the other tabs in System Monitor Properties dialog box

to change the different characteristics of the output.

5. Click OK to return to System Monitor and view the selected range of

the data.

Monitoring Remote Computers

With System Monitor you can remotely collect and monitor data from multiple machines.

There could be several reasons why you would want to monitor remote machines-for

example, the server in question could be located in a lab or production environment

across the country.

Before you start monitoring remote computer performance you must have Access This

Computer from the Network rights. These rights are granted by following these steps:

1. From the Administrative Tools folder, launch the Local Security Policy

program.

2. Double-click the Local Policies folder to expand it.

3. Double-click the User Rights Assignment folder. The currently defined

list of policy rights will be displayed.

4. Find the policy Access This Computer from the Network and

double-click to open it. A list of users and groups assigned to the policy

will be displayed.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

5. To assign additional users or groups to the policy click the Add User or

Group button.

To monitor a remote computer follow these steps:

1. Start System Monitor and then press Ctrl+I to open the Add Counters

dialog box.

2. In the Select Counters From Computer list, select or type the name of

computer you want to monitor.

You should keep your connection speed in mind when monitoring computers remotely. If

you have a slow connection speed (128 Kbps or slower) you may want to switch from the

default chart view to report view. This way you'll be passing far fewer graphics over the

wire, and avoiding delays in results being displayed on your screen.

Monitoring Objects, Counters, and Instances for Performance

Bottlenecks

In this section we elaborate on some of the most commonly used performance counters.

These counters are key when you're attempting to determine processor, memory, and

disk bottlenecks. We provide some real world examples that show how to determine each

bottleneck. We do not cover all of the system counters, as they would require a book of

their own.

Note If you don't see a counter mentioned that you need information on,

you can use online help to get a description of each counter. To

access this information, open System Monitor, follow the steps to

add a counter, which are described earlier in this chapter. When

the Add Counters dialog box opens, click on the counter you want

information on and then click the Explain button.

Processor Bottlenecks

When analyzing the performance of a Web application, one of the most commonly

observed components is CPU utilization. The server's CPU is performing complex

operations and therefore is a logical place to start when observing the performance of the

Web server. The general processor information is contained in the processor object. The

primary objective of monitoring processor-specific counters is to identify any potential

processor bottlenecks on the server. As a best practice you should limit CPU utilization to

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

an average of 75 percent or below for each processor, although short bursts of 100

percent utilization could be tolerable depending on the nature and user base of the

application. High CPU utilization can lead to high context switching (discussed later in the

chapter) which causes undesirable overhead. So, though you may be running at 90

percent CPU utilization, you might not be getting optimal throughput compared to when

you're running at 70 percent or 75 percent utilization.

For a system with multiple processors, System Monitor lists an instance of each

processor in the Add Counters dialog box. You can also view the average value of all

processors by monitoring the Total instance. In a single processor system, System

Monitor lists the total and one processor instance; both refer to the single processor.

Below is a list of counters that should be monitored when investigating a processor level

bottleneck. Additionally, we describe best practices when using the Processor object

counters.

§ % Processor Time The percentage of elapsed time that the processor

spends to execute a non-idle thread. It is calculated by measuring the

duration of the idle thread that is active in the sample interval, and

subtracting that time from interval duration. (Each processor has an idle

thread that consumes cycles when no other threads are ready to run).

This counter is the primary indicator of processor activity, and displays

the average percentage of busy time observed during the sample interval.

It is calculated by monitoring the time that the service is inactive and

subtracting that value from 100 percent.

§ % Privileged Time The percentage of elapsed time that the process

threads spent executing code in privileged mode. When a Windows

system service is called, the service will often run in privileged mode to

gain access to system-private data. Such data is protected from access

by threads executing in user mode. Calls to the system can be explicit or

implicit, such as page faults or interrupts. Unlike some early operating

systems, Windows uses process boundaries for subsystem protection in

addition to the traditional protection of user and privileged modes. Some

work done by Windows on behalf of the application might appear in other

subsystem processes in addition to the privileged time in the process.

§ % User Time The percentage of time the thread is running in the code of a

user mode process or code other than the operating system's code. %

User Time should always be viewed for sanity against % Privileged Time

on System and Processor objects, as they are measures of non-idle time

and sum the total of non-idle time.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ % Interrupt Time The time the processor spends receiving and servicing

hardware interrupts during sample intervals. This value is an indirect

indicator of the activity of devices that generate interrupts, such as the

system clock, the mouse, disk drivers, data communication lines, network

interface cards and other peripheral devices. These devices normally

interrupt the processor when they have completed a task or require

attention. Normal thread execution is suspended during interrupts. Most

system clocks interrupt the processor every 10 milliseconds, creating a

background of interrupt activity. This counter displays the average busy

time as a percentage of the sample time.

§ Interrupts/sec The average rate, in incidents per second, at which the

processor received and serviced hardware interrupts. It does not include

deferred procedure calls (DPCs), which are counted separately. This

value is an indirect indicator of the activity of devices that generate

interrupts, such as the system clock, the mouse, disk drivers, data

communication lines, network interface cards, and other peripheral

devices. These devices normally interrupt the processor when they have

completed a task or require attention. Normal thread execution is

suspended. The system clock typically interrupts the processor every 10

milliseconds, creating a background of interrupt activity.

To observe the efficiency of a multiprocessor computer, use the counters listed in Table

4-1.

Table 4-1: Counters for Multiprocessor Computers

Counter Description

Process\ % Processor Time The sum of processor time on each

processor for all threads of the

process.

Processor(_Total)\ % Processor

Time
Lists activity for all processors in the

computer. It's the average non-idle

time of all processors during the time

interval divided by the number of

processors. It should be noted that

the counter will have a value of 50%

if all processors are busy for half of

the sample interval and if half of the

processors are busy for the entire

interval.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 4-1: Counters for Multiprocessor Computers

Counter Description

Process\ % Processor Time The sum of processor time on each

processor for all threads of the

process.

Typical Processor-related Problems and Solutions

A processor bottleneck occurs when the demand is overshooting supply of processor

threads of the system or applications being deployed. This is caused by processor

demands being queued and thus maintaining high CPU utilization until the queue is being

emptied, which causes the system response to degrade.

When you find that the processor utilization on a server is consistently high (90 percent or

higher) it usually leads to processes queuing up, waiting for processor time, and causing

a bottleneck. Such a sustained high level of processor usage is unacceptable for a server.

Let's discuss an example of high processor utilization. If you are monitoring an IIS server

hosting a single Web site that relies upon a legacy COM+ application written in Visual

Basic 6 to parse through extensive XML documents, you may find that the COM+

application is utilizing more than 90 percent of the processor's time. This high processor

utilization by the COM+ application affects the Web application's ability to handle new

connections to the site. If you understand the type of bottleneck (in this case, a processor

bottleneck) and the root cause of the bottleneck (processor hungry COM+ application),

you can decide how to handle the resource problem. One solution may be to physically

separate the COM+ application from the Web server, or to convert your code to more

efficient and faster performing managed code.

Note When examining processor usage, keep in mind the role of the

computer and the type of work being done. High processor values

on a SQL server are less desirable than on a Web server.

There are two methods for correcting most processor bottlenecks. The first is to add

faster or additional processors to your system. The downside to this option is that its not

cost effective and is a temporary solution. The next surge in traffic to your Web site will

cause you to scramble to add additional hardware or replace the old servers with newer

faster servers. The other and more appropriate route is to analyze the software to see

which specific process or portion of the application is causing this bottleneck. As a rule,

you should always try to performance tune your software before reverting to the more

costly route of adding additional hardware. In addition to monitoring counters found under

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

the Processor object, there are other counters found under the System object that you

should monitor when verifying the existence of a processor bottleneck.

System Object

The System object and its associated counters measure aggregate data for threads

running on the processor. They provide valuable insights into your overall system

performance. The following system counters are the most important to monitor.

§ Processor Queue Length The number of threads in the processor queue.

Unlike the disk counters (discussed later in the chapter), this counter

shows ready threads only, not threads that are running. There is a single

queue for processor time even on computers with multiple processors.

Therefore, if a computer has multiple processors, you need to divide this

value by the number of processors servicing the workload.

One way to determine if a processor bottleneck exists with your application is to

monitor the System\Processor Queue Length counter. A sustained queue length

along with an over-utilized processor (90 percent and above) is a strong indicator

of a processor bottleneck.

When monitoring the Processor Queue Length counter we generally do not want

to see a sustained processor queue length of 2 or more along with high

processor utilization. If you find that the queue length is 2 or higher, but your

processor utilization is consistently low, you may be dealing with some form of

processor blocking rather than a bottleneck.

You can also monitor Processor\ % Interrupt Time for an indirect indicator of the

activity of disk drivers, network adapters, and other devices that generate

interrupts.

§ Context Switches/sec The combined rate at which all processors on the

computer are switched from one thread to another. Context switches

occur when a running thread voluntarily relinquishes the processor, is

pre-empted by a higher priority ready thread, or switches between

user-mode and privileged (kernel) mode to use an Executive or

subsystem service. It is the sum of Thread\\Context Switches/sec for all

threads running on all processors in the computer and is measured in

numbers of switches. There are context switch counters on the System

and Thread objects. This counter displays the difference between the

values observed in the last two samples, divided by the duration of the

sample interval.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

A system that experiences excessive context switching due to inefficient

application code or poor system architecture can be extremely costly in the terms

of resource usage. Your goal should always be to decrease the amount of

context switching occurring at your application or database servers. Context

switches essentially prevent the server from getting any real work done as

valuable processor resources are taken up dealing with a thread that is no longer

able to run because it is blocked waiting for a logical or physical resource, or the

thread puts itself to sleep. Symptoms of high context switching can include lower

throughput coupled with high CPU utilization, which begins to occur at switching

levels of 15,000 or higher. You can determine whether context switching is

excessive by comparing it with the value of Processor\ % Privileged Time. If this

counter is at 40 percent or more and the context-switching rate is high, then you

should investigate the cause for the high rates of context switches.

Finally, when monitoring your system you should make sure that the

System\Context Switches/sec counter that reports system wide context switches

is close to, if not identical to, the value provided by the _Total instance of the

Thread\Context Switches/sec counter. Monitoring this over time can help you

determine the range by which the two counters' value might vary.

Disk Bottlenecks

Disk space is a recurring problem. No matter how much drive space you configure your

servers or network storage devices with, your software seems to consume it. However,

disk bottlenecks problems are related to time, not disk space. When the disk becomes the

limiting factor in your server, it is because the components involved in reading from and

writing to the disk cannot keep pace with the rest of the system.

The parts of the disk that create a time bottleneck are less familiar than the megabytes or

gigabytes of space. They include the I/O bus, the device bus, the disk controller, and the

head stack assembly. Each of these components contributes to and, in turn, limits the

performance of the disk configuration.

System Monitor measures different aspects of physical and logical disk performance. To

truly understand the state of disk resource consumption you will need to monitor several

disk counters, and in some instances you will need to monitor them for several days. On

top of this, you will probably find yourself churning through some mathematical formulas

to determine whether or not a disk bottleneck exists at your server. These formulas are

detailed in the real world example below. However, before we delve into these formulas

let's review some of the counters you will monitor when hunting down a disk bottleneck.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

These counters will allow you to troubleshoot, capacity plan and measure the activity of

your disk subsystem. In the case of some of the counters the information they provide is

required for the aforementioned disk bottleneck formulas.

§ Average Disk Queue Length The average number of both read and writes

requests that were queued for the selected disk during the sample

interval.

§ Average Disk Read Queue Length The average number of read requests

that were queued for the selected disk during the sample interval.

§ Average Disk Write Queue Length The average number of write requests

that were queued for the selected disk during the sample interval.

§ Average Disk sec/Read The average time, in seconds, of a read of data

from the disk.

§ Average Disk sec/Transfer The time, in seconds, of the average disk

transfer.

§ Disk Reads/sec The rate of read operations on the disk.

§ Disk Writes/sec The rate of write operations on the disk.

How the ACE Team Discovered a Disk Bottleneck

An internal product team at Microsoft was interested in evaluating server hardware from

two different vendors. These servers would be used to host the SQL database for a Web

application they were designing. This Web application would be accessed by several

thousand customers simultaneously; therefore, selecting the right hardware was critical

for the success of their project. The product team was interested in conducting several

stress tests and monitoring the effect these tests had on the SQL server's resources. A

stress test harness was developed that simulated production environment activity. The

stress harness was written using Visual Basic and run on client machines as a Win32

application. One hundred client machines were configured to execute the stress test

harness. The stress harness was designed to spawn instances that simulated five users

per instance, each connecting to a different database (that is, db1 through db5) on the

server. The workflow used results in each client executing a SQL batch file via ADO or an

OSQL instance for each operation. These batch files were generated using SQL Profiler

to trace manual user navigation of the site then saving the trace as a SQL batch file. The

operations performed in this manner for these tests were:

§ Load the login page

§ Select a user name and hit enter

§ Load the tasks page

§ Submit actual work times to the manager

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ Load the resource views page

§ Set and save notification reminders

§ Delegate one task to another resource

The client machines were configured so that all of the 500 databases at the SQL server

would be accessed during the tests. This helped prevent any one of the databases from

receiving a majority of the SQL transactions. After configuring the client machines, the

stress test harness was started and run for 20 minutes (15 minutes were set aside as a

warm up period). During these 20 minutes, performance data at the SQL server was

collected for benchmark purposes.

A wait time of 10 and 60 seconds was used when executing the load against the targeted

databases. Each simulated user started the test at a random offset from the global start

time of the test and performed one operation. The user would then wait either 10 or 60

seconds before beginning the next operation.

On executing both scenarios a significant disk read times and write times was noticed

which prompted an investigation as to the disk capacity of the hardware being utilized.

The calculations indicated the I/O per disk exceeded the manufacturer's specified I/O that

the disk can successfully handle.

The performance data collected during the 10 second and 60 second wait-time

benchmark indicated the existence of a disk bottleneck at Server 1. In order to verify this,

our team applied the performance data gathered from the physical disk activity to the

following formula:

I/Os per Disk = [Reads + (4à Writes)] / Number of Disks

If the calculated I/Os per disk exceeded the capacity for the server, this would verify the

existence of a disk bottleneck. The disk I/O capacity and calculated disk I/O per disk is

outlined below. It should be noted that for each of the calculations, 85 random I/Os per

disk is used as the capacity for a disk in a RAID 5 configuration.

10-Second Wait Time Test Scenario on Server 1

Disk I/O capacity = 85 random I/Os per disk

Calculated I/Os per disk = [269.7 + (4à 74.6)] / 5

Calculated I/Os per disk = 113.62 random I/Os per disk

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

At 113.62 random I/Os per disk Server1 is suffering from a disk bottleneck as the capacity

for each disk in the server was only 85 random I/Os per disk.

10-Second Wait Time Test Scenario on Server 2

Disk I/O capacity = 85 random I/Os per disk

Calculated I/Os per disk = [138.3 + (4à 43.0)] / 4

Calculated I/Os per disk = 77.7 random I/Os per disk

At 77.7 random I/Os per disk Server 2 is below the capacity of 85 random I/Os per disk,

therefore no disk bottleneck exists.

60-Second Wait Time Test Scenario on Server 1

Disk I/O capacity = 85 random I/Os per disk

Calculated I/Os per disk = [294.8 + (4à 71.8)] / 5

Calculated I/Os per disk = 116.4 random I/Os per disk

At 116.4 random I/Os per disk Server 1 is suffering from a disk bottleneck as the capacity

for each disk in the server is only 85 random I/Os per disk.

60-Second Wait Time Test Scenario on Server 2

Disk I/O capacity = 85 random I/Os per disk

Calculated I/Os per disk = [68.9 + (4à 24.0)] / 4

Calculated I/Os per disk = 41.2 random I/Os per disk

At 41.2 random I/Os per disk Server 2 is significantly below the capacity of 85 random

I/Os per disk, therefore no disk bottleneck exists. At 113.62 and 116.4 random I/Os per

disk respectively Server1 is suffering from a disk bottleneck as the capacity for each disk

in the server is only 85 random I/Os per disk thus exceeding the manufacturer's specified

number of disk I/Os the hardware can sustain.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Disk Architecture Matters to Performance

Today, many Web applications are built to interact with database server. Many if not all of

the applications we test use SQL Server 2000, and in most cases we find some

significant performance gains by tuning the SQL server. These wins come through

optimization of the SQL code, database schema, or disk utilization. When designing the

architecture of your database, you will be required to select how data and log files are

read and written from disk. For example, do you want to write your log files to a RAID

device versus a non-RAID device? If you do not make the right choices, this can lead to a

disk bottleneck. In one such case we were able to apply formulas that proved or

disproved the existence of a disk bottleneck. You will find details of the project and

formulas utilized in the real world example above.

Memory

When analyzing the performance of your Web applications, you should determine if a

system is starving for memory due to a memory leak or other application fault, or if the

system is simply over-used and requires more hardware. In this section we discuss the

counters you should monitor to determine the existence and then cause of the memory

bottleneck. (Note that there are tools available to you other than System Monitor to

analyze memory utilization of a server. It may be worth your while to investigate some of

these tools, as they can save time when monitoring the system.)

§ Page faults/sec The average number of pages faulted per second. It is

measured in number of pages faulted per second because only one page

is faulted in each fault operation; hence this is also equal to the number of

page fault operations. This counter includes both hard faults (those that

require disk access) and soft faults (where the faulted page is found

elsewhere in physical memory.) Most processors can handle large

numbers of soft faults without significant consequences. However, hard

faults, which require disk access, can cause significant delays.

§ Available Bytes Indicates how many bytes of memory are currently

available for use by processes. Pages/sec provides the number of pages

that were either retrieved from disk due to hard page faults or written to

disk to free space in the working set due to page faults.

§ Page Reads /sec The rate at which the disk was read to resolve hard page

faults. It shows the number of read operations, without regard to the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

number of pages retrieved in each operation. A hard page fault occurs

when a process references a page in virtual memory that is not in the

working set or elsewhere in physical memory, and must be retrieved from

disk. This counter is a primary indicator of the kinds of faults that cause

system-wide delays. It includes read operations to satisfy faults in the file

system cache (usually requested by applications) and in non-cached

mapped memory files. Compare the value of Memory\\Pages Reads/sec

to the value of Memory\\Pages Input/sec to determine the average

number of pages read during each operation.

§ Page writes /sec The rate at which pages are written to disk to free up

space in physical memory. Pages are written to disk only if they are

changed while in physical memory, so they are likely to hold data, not

code. This counter shows write operations, without regard to the number

of pages written in each operation. This counter displays the difference

between the values observed in the last two samples, divided by the

duration of the sample interval.

§ Pages/sec The rate at which pages are read from or written to disk to

resolve hard page faults. This counter is a primary indicator of the kinds of

faults that cause system-wide delays. It is the sum of Memory\\Pages

Input/sec and Memory\\Pages Output/sec. It is counted in numbers of

pages, so it can be compared to other counts of pages, such as

Memory\\Page Faults/sec, without conversion. It includes pages retrieved

to satisfy faults in the file system cache (usually requested by applications)

non-cached mapped memory files.

How the ACE Team Discovered a Memory Leak

In this example we discuss how we were able to determine the existence of a memory

leak in an application that was submitted to our team for performance testing.

Performance analysts on our team met with the development team to understand some of

the common user scenarios for the Web application. The analyst discussed existing

performance issues the development team was aware of. The developers were

concerned about memory usage by COM+ applications running on the Web server.

Keeping this in mind, the analyst thought the best approach in ruling out memory issues

would be to execute a series of stress tests. These tests would help to uncover memory

utilization issues at the server if they truly existed. The analyst built test scripts of the user

scenarios provided by the development team and executed a short stress test.

Performance logs recorded resource utilization at the server hosting the COM+

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

application. During this one-hour test the analyst observed a memory consumption of

approximately 20 MB. He noted that this memory was still not released three hours after

the test was stopped. These findings prompted a further investigation into the

application's memory consumption (see Table 4-2). A 12-hour continuous stress test was

conducted to analyze the applications memory behavior. At the end of the 12-hour

continuous test it was discovered that in addition to heavy CPU activity, growth in private

bytes was significant for the test period and the server was extremely low on virtual

memory (see Table 4-3). Of the 671 MB acquired by the dllhost private bytes, 640 MB

was still allocated three hours after the test ended. Virtual memory growth appeared to be

centered almost entirely on private bytes for the dllhost process. For the 1-hour test, the

memory only grew from between 38 to 58 megabytes. For the 12-hour test, this growth

was much higher, from 368 to 671 megabytes. The memory was not released until the

server was rebooted. The dllhost process was then analyzed to identify the processes

that were involved in the execution of the dllhost to narrow down the potential memory

leak to a specific process. After identifying the exact process causing the memory leak,

the code for that process was profiled and the developer was able to pinpoint exactly

where in his code memory was not being managed correctly. Of course with managed

code, you won't find yourself running into the slew of memory management issues you

did in the days of unmanaged code.

Table 4-2: Summary of 1-hour Test Results

Windows 2000 IIS 5.0

~

Average

-IIS ~Maximum/Total-IIS

System-% Total Processor Time 55% 100%

Inetinfo-% Total Processor Time .5% 1%

Dllhost-% Total Processor Time 41% 100%

Memory: Available in

Megabytes

164 MB 185 MB

Memory: Pages/sec 0 .2

Inetinfo: Private in Megabytes 14 MB 14 MB

Dllhost: Private in Megabytes 38 MB 56 MB

Table 4-3: Summary of 12-hour Test Results

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Windows 2000 IIS 5.0

~

Average

-IIS ~Maximum/Total-IIS

System-% Total Processor Time 69% 100%

Inetinfo-%Total Processor Time .6 % 1.5%

Dllhost-% Total Processor Time 71% 100%

Memory: Available in

Megabytes

56 MB 196 MB

Memory: Pages/sec 51 295

Inetinfo: Private in Megabytes 14 MB 14.4 MB

Dllhost: Private in Megabytes 368 MB 671 MB

Memory leaks should be investigated by monitoring Memory\ Available bytes, Process\

Private Bytes and Process\ Working Set. A memory leak would typically indicate Process\

Private Bytes and Process\ Working Set increasing while Memory\Available bytes would

be decreasing. This should be verified in Task Manager by identifying PID and then trace

this back to your application. Memory leaks should always be verified by running a

performance test for an extended period of time to verify the applications reaction when

all available memory is depleted.

Create and Configure Alerts

You can configure the Performance Logs and Alerts service to fire off alerts when a

specified performance event has occurred at the server. For example, if the available

memory at the Web server drops below 20 MB, an event could be trigged that satisfies

one or all of the following conditions:

§ Logs an entry to the application event log

§ Sends a network message to a specified user

§ Starts a performance data log

§ Runs a specified program

There are several instances when configuring an alert to trigger an event helps increase

your testing efficiency. One is when you are running an extended stress test. Let's say the

stress test must be run over a 24-hour period and you are particularly interested in what

happens with the Web server's memory. You could configure an alert that records an

event to the application event log each time a spike occurs with the Pages/Sec counter.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

This way, you don't have to try to count the number of spikes in an enormous log file. You

can simply sort the application event log for each instance you are most concerned with.

To create an alert follow these steps:

1. Open Performance and click Start, point to Programs, point to

Administrative Tools, and then click Performance.

2. Double-click Performance Logs and Alerts, and then click Alerts. Any

existing alerts will be listed in the details pane. A green icon indicates

that an alert is running; a red icon indicates an alert has been stopped

or is not currently active.

3. Right-click a blank area of the details pane and click New Alert

Settings.

4. In Name, type the name of the alert, and then click OK.

5. To define a comment for your alert, along with counters, alert

thresholds, and the sample interval, use the General tab. To define

actions that should occur when counter data triggers an alert, use the

Action tab, and to define when the service should begin scanning for

alerts, use the Schedule tab.

Not

e

You must have Full Control access to a subkey in the registry in order to

create or modify a log configuration. The subkey is:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Sysm

onLog\Log Queries

In general, administrators have this access by default. Administrators

can grant access to users using the Security menu in Regedt32.exe. In

addition, to run the Performance Logs and Alerts service (which is

installed by Setup and runs in the background when you configure a log

to run), you must have the right to start or otherwise configure services

on the system. Administrators have this right by default and can grant it

to users by using Group Policy.

Caution Incorrectly editing the registry may severely damage your system.

Before making changes to the registry, you should back up any

valued data on the computer.

To define counters and thresholds for an Alert, follow these steps:

1. Open Performance.

2. Double-click Performance Logs and Alerts, and then click Alerts.

3. In the details pane, double-click the alert.

4. In Comment, type a comment to describe the alert as needed.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

5. Click Add.

For each counter or group of counters that you want to add to the log, perform the

following steps:

1. To monitor counters from the computer on which the Performance

Logs and Alerts service will run, click Use Local Computer Counters.

Or, to monitor counters from a specific computer regardless of where the

service is run, click Select Counters From Computer and specify the name of

the computer you want to monitor.

2. In Performance object, click an object to monitor.

3. In Performance counters, click one or more counters to monitor.

4. To monitor all instances of the selected counters, click All Instances.

(Binary logs can include instances that are not available at log startup

but subsequently become available.)

Or, to monitor particular instances of the selected counters, click Select

Instances From List, and then click an instance or instances to monitor.

5. Click Add.

6. In Alert When The Value Is, specify Under or Over, and in Limit, specify

the value that triggers the alert.

7. In Sample Data Every, specify the amount and the unit of measure for

the update interval.

8. Complete the alert configuration using the Action and Schedule tabs.

Note When creating a monitoring console for export, be sure to select Use

Local Computer Counters. Otherwise, counter logs will obtain data

from the computer named in the text box, regardless of where the

console file is installed.

To define actions for an alert, follow these steps:

1. Open Performance.

2. Double-click Performance Logs and Alerts, and then click Alerts.

3. In the details pane, double-click the alert.

4. Click the Action tab.

5. To have the Performance Logs and Alerts service create an entry

visible in Event Viewer, select Log An Entry in the Application Event

Log.

6. To have the service trigger the messenger service to send a message,

select Send a Network Message to and type the name of the computer

on which the alert message should be displayed.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

7. To run a counter log when an alert occurs, select Start Performance

Data Log and specify the counter log you want to run.

8. To have a program run when an alert occurs, select Run This Program

and type the file path and name or click Browse to locate the file. When

an alert occurs, the service creates a process and runs the specified

command file. The service also copies any command-line arguments

you define to the command line that is used to run the file. Click

Command Line Arguments and select the appropriate check boxes for

arguments to include when the program is run.

To start or stop a counter log, trace log, or alert manually, follow these steps:

1. Open Performance.

2. Double-click Performance Logs and Alerts, and click Counter Logs,

Trace Logs, or Alerts.

3. In the details pane, right-click the name of the log or alert you want to

start or stop, and click Start to begin the logging or alert activity you

defined, or click Stop to terminate the activity.

Note There may be a slight delay before the log or alert starts or stops,

indicated when the icon changes color (from green for started to red for

stopped, and vice versa).

To remove counters from a log or alert, follow these steps:

1. Open Performance.

2. Double-click Performance Logs and Alerts, and then click Counter

Logs or Alerts.

3. In the details pane, double-click the name of the log or alert.

4. Under Counters, click the counter you want to remove, and then click

Remove.

To view or change properties of a log or alert, follow these steps:

1. Open Performance.

2. Double-click Performance Logs and Alerts.

3. Click Counter Logs, Trace Logs, or Alerts.

4. In the details pane, double-click the name of the log or alert.

5. View or change the log properties as needed.

To define start or stop parameters for a log or alert, follow these steps.

1. Open Performance.

2. Double-click Performance Logs and Alerts, and then click Counter

Logs, Trace Logs, or Alerts.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

3. In the details pane, double-click the name of the log or alert.

4. Click the Schedule tab.

5. Under Start log, click one of the following options:

§ To start the log or alert manually, click Manually. When

this option is selected, to start the log or alert, right-click

the log name in the details pane, and click Start.

§ To start the log or alert at a specific time and date, click

At, and then specify the time and date.

6. Under Stop Log, select one of the following options:

§ To stop the log or alert manually, click Manually. When

this option is selected, to stop the log or alert, right-click

the log or alert name in the details pane, and click Stop.

§ To stop the log or alert after a specified duration, click

After, and then specify the number of intervals and the

type of interval (days, hours, and so on).

§ To stop the log or alert at a specific time and date, click

At, and then specify the time and date. (The year box

accepts four characters; the others accept two

characters.)

§ To stop a log when the log file becomes full, select

options as follows:

o For counter logs, click When the Log File is

Full. The file will continue to accumulate

data according to the file-size limit you set

on the Log Files tab (in kilobytes up to two

gigabytes).

o For trace logs, click When the n-MB Log File

is Full. The file will continue to accumulate

data according to the filesize limit you set

on the Log Files tab (in megabytes).

7. Complete the properties as appropriate for logs or alerts:

When setting this option, take into consideration your available disk space and

any disk quotas that are in place. An error might occur if your disk runs out of

disk space due to logging.

§ For logs, under When a Log File Closes, select the

appropriate option:

o If you want to configure a circular

(continuous, automated) counter

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

or trace logging, select Start a

New Log File.

o If you want to run a program after

the log file stops (for example, a

copy command for transferring

completed logs to an archive site),

select Run This Command. Also

type the path and file name of the

program to run, or click Browse to

locate the program.

§ For alerts, under When An Alert Scan Finishes,

select Start a New Alert Scan if you want to

configure continuous alert scanning.

To delete a log or alert, follow these steps:

1. Open Performance.

2. Double-click Performance Logs and Alerts.

3. Click Counter Logs, Trace Logs, or Alerts.

4. In the details pane, right-click the name of the log or alert, and

click Delete.

When you schedule a log to close at a specific time and date or close the log manually,

the Start a New Log File option is unavailable.

Conclusion

This chapter discussed how to utilize System Monitor to assist you in performance testing

applications and identifying system level bottlenecks. We reviewed several sets of objects

and counters one must monitor to find these system level bottlenecks. Understanding

System Monitor is critical to successful performance testing and analys is.

Chapter 5: Application Network Analysis

The approach to performing an application network analysis of Web-based applications

remains unchanged between operating systems (Microsoft Windows NT, Windows 2000,

and Windows XP), development technologies (static HTML, ASP, Windows DNA, and

now .NET), and data access technologies (RDO, ADO and ADO.NET). This process has

remained consistent because the primary protocol used to communicate over the Internet

(TCP/IP) has not changed. With the advent of .NET and software as a service, this

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

approach can be used to identify network-related bottlenecks and improve the network

performance of both legacy applications and those built with the .NET Framework.

Conducting an Application Network Analysis

Many Internet users still use modems that connect at painfully slow speeds, and they

probably will for the foreseeable future. The goal of an application network analysis is to

identify slowly executing pages or code and fix them to provide a better end user

experience. We assume that you are familiar with networking basics, such as the Open

Systems Interconnection (OSI) model, but do not expect you to be as familiar with

conducting a network analysis. Therefore, before we delve into the process of conducting

a network analysis, it's imperative that you become familiar with the concepts and

terminology behind the application network analysis process. If there are terms discussed

in this chapter that are unfamiliar to you, please refer to the Microsoft Encyclopedia of

Networking, Second Edition written by Mitch Tullock (Microsoft Press, 2002). You should

also become familiar with the type of questions you'll be facing from the customer's

perspective. For example, questions you'll hear from application owners may include:

How does network latency impact my global users? What is a network round trip and how

does it affect my end user experience? How do I determine the amount of data

transferred for each page view and other content loaded when my customers access my

Web application? My users are complaining of long response times. What can I do? How

do I identify and avoid processing delays on my IIS server or SQL server?

As we progress through the chapter, we will answer questions such as these. We will

define these terms and provide examples that will help illustrate these concepts and their

effect on application performance. Also, we will provide an introduction to tools used to

perform an application network analysis: Microsoft Network Monitor, and Compuware's

Application Expert.

Note We use the term page view to refer to the actual page plus

elements or file types associated with it. For example, the

Default.aspx will include this file and any image files, style sheets,

java scripts, etc. that accompany it.

Network Latency

The simplest definition of network latency is the time it takes for a data packet to move

across a network connection. The lower the latency between your Web application tiers,

the faster the response times. Latency and bandwidth are two factors that determine the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

speed of a network connection. An easy way to determine the network latency between

your client and a Web application is to use the pathping utility, or other utilities such as the

Visual Trace Route feature provided in Application Expert. A PowerPoint presentation of

Compuware's Application Expert can be found on this book's companion CD.

Note The pathping utility is a command-line tool that combines features

of the ping and tracert commands. To use, open a command

prompt and type pathping servername. The output from the

pathping command will show you the hops or network routers

between the client you are using and the server you are pinging,

along with the latency or round trip time for the particular hop.

Every local area network (LAN) and wide area network (WAN) connection is constrained

by network latency. Factors that cause latency to increase are poor quality network

devices, longer distances causing communication travel through more hops or network

devices, and network congestion. For example, a typical 56-kbps local modem

connection may have 200 milliseconds of latency, while a similar connection traveling a

farther distance may pass through more network devices, which increases the latency to

500 milliseconds. In Table 5-1, we captured a trace with Network Monitor to measure the

impact of network latency when requesting the 46-kilobyte home page of IBuySpy with

our Microsoft Internet Explorer Web browser. The capture was imported into Application

Expert's Response Time Predictor, and we are able to extrapolate the response times for

both a 200-millisecond and 500-millisecond latency 56-kbps connection. We'll discuss

this Application Expert feature and others in the "Using Compuware Application Expert"

section later in this chapter.

Table 5-1: Latency and Response Time

Connection Speed Latency Response

Time

10 mbps 10

milliseco

nds

0.5

seconds

56 kbps 200

milliseco

nds

6 seconds

56 kbps 500

milliseco

nds

8.5

seconds

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The impact of the additional 300 milliseconds of latency for this particular page view and

all associated elements is 2.5 seconds, not 300 milliseconds. The reason for this is

latency affects every application round trip.

Note One way to deal with the impact of latency is to locate your Web

application closer geographically to your user base. This does not

guarantee a better connection between your user base and Web

application but will typically reduce the amount of latency.

Network Round Trips

A network round trip is a client-server request-response pair generated by an application.

A request-response pair sent from a Web browser to a Web server and back is

considered a single round trip. For example, when you type in a URL in your Web

browser, such as http://www.microsoft.com, each image, style sheet, or other page

element defined in the response to your request (from the Web server) is counted as a

separate network round trip. Additional round trips are involved in the setup of each

connection to the Web server in this example. Later in this chapter we will discuss how

Application Expert can be used to quickly obtain the number of round trips your ASP

pages are consuming. Combined with latency, round trips have a profound effect on

application response time. Imagine that your IIS servers are located on both the US East

and West Coasts. You are located in Mountain View California and viewing your IBuySpy

Login ASPX page on the West Coast IIS server takes 4 seconds while viewing it from the

East Coast IIS server takes 6.5 seconds. Further investigation shows the latency for your

connection to the East Coast server is 500 milliseconds while that to the West Coast

server is 200 milliseconds. Because every round trip is affected by network latency, the

East Coast response time is longer by approximately 2 seconds.

For most application developers, network latency on the Internet is out of their control.

This is why it is important to develop applications that use as few round trips as possible

to keep response times quick even under high network latency conditions.

Reducing Network Round Trips

The most effective method for reducing round trips is to reduce the number of objects per

page. Table 5-2 shows two home pages for major Internet search sites that many of you

have probably used before. The first home page has fewer than six objects and loads

very quickly. The second home page has approximately 15 objects and loads much more

slowly. Notice the difference in the number of round trips that are generated when each of

these home pages are loaded.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 5-2: How Objects per Page Affect Round Trips

Sites Number

of

Objects

Number

of

Round

Trips

Search Site 1 (Optimized) 6 8

Search Site 2 (Slow) 15 19

Search Site 1 used in Table 5-2 was able to limit the number of objects to six and has a

less than 10-second response time on most 56-kbps connections. They limit the number

of objects to six by creating one large graphic at the top of their home page, which

consists of eight images. Considering each object requested will create a network round

trip, they have saved seven round trips by merging their eight small graphics into a single

request.

Data Transferred

Data transferred is the amount of data moved between a client Web browser and Web

server and is often measured in kilobytes. The best approach for measuring data

transferred is to break down the scenarios within your application by page views including

their associated elements. For example, the IBuySpy home page transfers 46 kilobytes of

data non-cached the first time you access it and 24 kilobytes of data cached (subsequent

requests with many objects loaded from your Web browser cache located in the

temporary Internet folder). Based on our experience, the amount of data transferred for a

page view and associated elements of 50 kilobytes or less will give an acceptable

response time. This allows low speed Internet connections like 56-kbps modems the best

chance of having fast response times. This chapter uses several terms to quantify data,

such as kilobits per second and kilobytes of data transferred. Therefore to better illustrate

how these metrics relate, Table 5-3 shows the conversion from bits to bytes, kilobits to

kilobytes, and kilobytes to megabytes.

Table 5-3: Conversion Metrics

Measured Value Converted

Value

8 bits 1 byte

1 kilobyte 1024 bytes

1024 kilobytes 1

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 5-3: Conversion Metrics

Measured Value Converted

Value

megabyte

Reducing the Quantity of Data Transferred

There are several techniques for reducing the amount of data being transferred between

Internet Explorer and the IIS tier. These methods include IIS compression, removing

unnecessary characters and white space, reducing the number of objects on pages, and

optimizing images.

HTTP Compression is a built-in feature of IIS and Internet Explorer. This tool works well

for static content like HTM files, HTML files, CSS files, JS files, and uncompressed

images. However, with dynamic content you may run into some problems, such as pages

rendering incorrectly or becoming non-functional. There is also additional overhead

associated with resources on your IIS server if you choose to use IIS compression. By

default, HTTP Compression is disabled and can be enabled using the WWW Service

Master Properties Services tab, shown in Figure 5-1.

Figure 5-1: Enabling IIS compression

Once HTTP Compression is enabled, you must specify the file types to be compressed by

editing the metabase. The following steps show how to edit the metabase settings to

compress static TXT, JS, CSS, DOC, and XLS files:

1. Enable HTTP Compression as shown in Figure 5-1.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

2. Open a command prompt and navigate to the adminscripts folder.

3. Execute the following command: cscript.exe adsutil.vbs set W3Svc/

Filters/Compression/GZIP/HcFileExtensions "txt" "js" "css" "doc" "xls"

4. Execute the following command: cscript.exe adsutil.vbs set W3Svc/

Filters/Compression/DEFLATE/HcFileExtensions "txt" "js" "css" "doc"

"xls"

5. Execute the following command: iisreset.exe /restart

Another method to trim down the amount of data transferred between the browser and IIS

tier is to package the data more tightly by removing all unnecessary characters and white

space from your code. This is particularly useful around loops when a lot of data is

returned to the client. Also, many developers put comments into their code, which adds

additional characters and lines to the page, resulting in more data transferred.

Note If you are very conscious about reducing your page size as much

as possible, use short variable and filenames as well as a flat

directory structure. This will slightly reduce the amount of data

transferred because you are passing less text to the client.

Reducing the number of objects on your page will decrease the amount of data

transferred. Many sites use images for bullets and text instead of using formatted text. By

limiting the number of elements and using colored text and background colors to make

sections of the page stand out, you can reduce the amount of data transferred and

network round trips.

Images make a Web site or application more visually appealing but there is a significant

performance cost associated with using them. Use Graphics Interchange Format (GIF)

images whenever possible. Using optimized or compressed images will reduce the

amount of data transferred and typically does not impact the clarity of your pictures much.

Most high quality imaging software suites will include a tool to optimize and compress

your image files. Reuse images for your company logo, navigational bars or other images

that are used throughout your application. Make sure you use the exact same name and

path or Internet Explorer will treat it as a new image. After the initial fulfillment of the

request Internet Explorer will cache the images locally. Another option is to preload

images using JavaScript. This will load the images in the background while the rest of the

page loads. Subsequent requests for the cached image will appear more quickly to the

end user because the images will be cached locally in Internet Explorer.

Note Make sure you set the height and width attributes of each image. It

will load faster because the Internet Explorer client does not have

to determine the dimensions.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Processing Delay

When client requests spend unnecessary time on the middle or back-end tier of an

application, it is considered a processing delay. This can be due to poorly written code

that can take several seconds to process, or poor SQL tuning and improper indexing

causing stored procedures and other SQL commands to consume valuable time.

Processing delays directly impact response times. To get the most gain out of our tuning

efforts, we typically focus on delays longer than 1 second. However, your application may

have stricter or higher standards depending on a number of variables including type of

application and size of your user base. For example, if your application is designed to

render large reports to a small group of decision support analysts, response time may be

expected to be slower. This is because larger reports may take longer to process on your

database server, and given that your user base is small, budget constraints may limit the

amount of time you can spend optimizing this application. However, if your user base is

very large and consists of customers ordering your products, you will spend more time

optimizing the application's response time to ensure that no sales are lost because

customers are frustrated about slow response times.

Reducing Processing Delays

The most common way to speed the response time of your application is to reduce

application-processing delays. This is accomplished by speeding up slowly executing

ASPX, Managed Code, and poor SQL code. More details are available in the IIS,

Managed Code, and SQL sections of this book. As discussed earlier in the "Identifying

Application Processing Delays" section, by using Network Monitor display data view or

Application Expert bounce diagrams, you can identify whether or not your page view and

associated elements have processing delays and which tier is causing it. Next, determine

where in your application's code the processing delay is happening. There are several

methods for profiling and identifying the code causing processing delays:

§ With .NET applications you can enable tracing on your ASPX pages. After

you request an ASPX page with your browser, the statistics and timing

will be located at the bottom of your page view. To enable tracing at the

page level, add the ASPX page directive Trace="True", as shown in

Figure 5-2.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 5-2: Enabling tracing on ASPX pages

§ With standard ASP applications, you can use timers in your code to identify

problems. Simply add timing variables throughout your script and write

the values to a text file. This method of ASP profiling will allow you to

narrow processing delays to a particular function or line of code. This

book's companion CD includes examples of the ASP timing code for

VBScript and JScript, which are called ACETimerVB.doc and

ACETimerJS.doc. Many times these delays are related to a specific call

to a custom component that is inefficient or a SQL command that is taking

several hundred milliseconds or even several seconds to execute.

Note
A simple profiling approach is to insert response.end in your ASP page

where you suspect the processing is occurring. When this ASP page is

loaded, the script will exit when this command is executed, exposing your

processing delay. If no delay occurred, move the response.end command

farther down in your ASP page and load again. Eventually you will narrow

down the portion of your script causing the processing delay.

§ The easiest way to identify SQL bottlenecks and processing delays is to use

SQL Profiler. Simply create a SQL Profiler trace file while you request

your page view. Any delays caused by SQL commands or stored

procedures will show up in the Duration field of the trace file in

milliseconds. Once you have identified these poorly performing SQL

commands or stored procedures, you can work on optimizing them. For

more information on optimizing your SQL commands and stored

procedures, see Chapter 8.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Response Times

In reference to performing an application network analysis, response time refers to how

long it takes data to travel from the client's initial request to the completion of the request.

Improving performance of your application is synonymous with reducing the overall

response time for each of your application's page views including associated elements.

Some factors that constrain response times are a high number of round trips, low

bandwidth, end users with high latency connections, a large amount of data transferred,

and processing delays on the IIS code, managed code, or SQL code. We describe the

process of using Application Expert to quickly calculate response times later in this

chapter.

Response time acceptability depends on a variety of factors including the type of

application, the function of each requested page within the application, the bandwidth and

latency of your Internet connection. For instance, a requested page that has no

interaction with a back-end database (that is, a static page view) or has a small amount of

content should load faster than requested pages that are heavy in content or constantly

retrieve or update data from a database (that is, a dynamic page view) will be slower.

Table 5-4 shows the response times we consider acceptable when performing an

application network analysis. Low response times represent applications with small static

page views or very light interaction with a database. High response times represent

applications with large page views or heavy interaction with a database.

Table 5-4: Acceptable Response Times

Connection Speed

Low

Respo

nse

Time

High

Respo

nse

Time

Low speed (modems) 10

second

s

15

second

s

High speed (DSL, cable, or higher) 5

second

s

10

second

s

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

User Scenarios

User scenarios are a collection of page views, including their associated elements, that

implement business or functional processes. For example, searching the IBuySpy site

(discussed in Chapter 3) is a good example of a real-world user scenario. The search

scenario consists of several steps, such as loading the home page, entering a search

string, clicking the GO button, selecting a product from the search results and viewing the

product detail page. This scenario consists of two page views. Instead of capturing the

entire user scenario, we recommend you conduct this analysis by separating the scenario

into distinct user actions, like clicking a button or link to submit a form that makes a

request to the Web server. The reason we isolate the user scenarios into separate page

views or user actions is to help identify the exact causes of slow response times.

Identify User Scenarios

The IBuySpy .NET sample application utilizes typical e-commerce functionality. In the

following example we have broken the search user scenario into three separate page

views, including their associated elements:

§ Step 1 The user views the home page, loading the Home.aspx or

Default.aspx page.

§ Step 2 The user enters a search string in the search field and clicks

GO, loading the "SearchResults.aspx" page.

§ Step 3 The user selects or clicks a product returned by the search,

loading the ProductDetails.aspx page.

If your application is already deployed, you can identify scenarios by either focusing on

pages that users have complained about, or by walking through the application and

identifying pages that load or execute more slowly. The second method requires that

every application page is hit. In some applications this may be unreasonable. However, if

you have never performed an application network analysis on the application, this is a

good way to establish a response time baseline. Also, if you are working on a new

application, this method is more useful because you can identify and fix poorly performing

pages before going live.

Now that we have defined the terminology, the next section of this chapter describes the

tools available with which to conduct an application network analysis.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Using Microsoft Network Monitor

Network Monitor is a software-based network sniffer that can be used to analyze and

troubleshoot data transferred between nodes and devices on a network. This tool is

designed for several types of Information Technology (IT) disciplines. Network

administrators often use Network Monitor to capture and monitor overall network

utilization. Network Engineers may use Network Monitor to assist in troubleshooting

potential bottlenecks in network designs and architecture. Developers may use Network

Monitor to troubleshoot their code. In an application network analysis, Network Monitor is

primarily used to identify the amount of data transferred and count the number of round

trips used in response time calculations per page view, including associated elements or

user actions performed that generate activity to the Web server.

Network Monitor for Windows 2000 is available in two versions:

§ Network Monitor 2 Lite is available with Windows 2000 Advanced Server and

Data Center editions. This version can only sniff network traffic from the

local Network Interface Card (NIC) to other nodes communicating with it.

§ Network Monitor 2 Full is available with Microsoft System Management Server

(SMS) 2. This version allows traffic to be captured for all traffic on a network

from a single location that has the Network Monitor driver installed.

Network Monitor captures frames of network data to help you detect and analyze network

problems. It aids in tracking down problems with network applications by capturing data

transferred between application tiers, network round trips, network time, and processing

delays.

MAC Address and IP Address Setup

In preparing for your network captures, you should document all node MAC addresses

and IP addresses. To do this, open a command prompt and type ipconfig/all from each

back-end server and client. The output from this command will show the IP address

information, DNS servers, DNS suffix, physical or MAC address, and other valuable

information. This will make it easier to set up your capture filter and isolate network traffic

created by the application. Often you can use a host file entry to force nodes to

communicate with the correct NIC and IP addresses you are capturing on. The hosts file

is typically located in the C:\windows\system32\drivers\etc folder and does not have a file

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

extension. To add or change entries you can open the hosts file with Microsoft Notepad

and follow the examples provided within the file.

Note If you are using a client or server that has more than one NIC,

make sure you either disable the extra NIC or ensure all traffic

communicates on the same NIC.

Configuring Network Monitor Settings

Network Monitor needs to be properly configured before capturing data from your user

scenarios. There are three key settings-the capture filter, capture buffer, and network-that

can be adjusted to make sure you are creating a correct and complete capture.

Capture filters allow you to narrow down your network captures to the tiers or nodes that

are used by your application. This makes it easier to isolate data transferred and round

trips without analyzing unnecessary network traffic in the trace file. Figure 5-3 shows a

typical capture filter.

Figure 5-3: Network Monitor capture filter

The capture buffer is an important setting to adjust. By default the buffer is set to 1

megabyte. If a page is transferring a large amount of data you may exceed this 1

megabyte limit. Typically we adjust the capture buffer to 10 megabytes to accommodate

any large captures. Figure 5-4 shows the Network Monitor Capture Buffer Settings dialog

box.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 5-4: Network Monitor Capture Buffer Settings dialog box

It's important to make sure you capture on the correct network. With clients and servers

that have more than one NIC, you need to set which network you want to capture on. To

verify you are capturing on the correct network, start a Network Monitor trace and ping the

IP address or URL of the Web application you are testing. Next, stop your Network

Monitor trace and verify you collected the ping traffic. If not, switch Network Monitor to

capture a different network and repeat until you capture on the correct network. Figure

5-5 shows where you set Network Monitor to capture on the proper network.

Figure 5-5: The Network Monitor Select A Network dialog box

Environment Setup

The hardware used in an application network analysis includes the test client, and all of

the back-end servers that make up the application (IIS Server, SQL Server, Application

Server) and any other network devices used (switch, hub, router, bridge, load balancer,

etc.). Applications that require high availability and scalability typically use more than one

identical Web server to load balance traffic volume. If your application is load balanced,

you should ensure that only a single node (front-end Web server) is enabled during an

application network analysis. The purpose of this is to make sure you are capturing traffic

on the correct Web server. There are numerous ways to use Network Monitor to capture

traffic created by your application. Here are a few:

§ Most applications are made up of servers connected by a network switch,

because every port has dedicated bandwidth and performance is better.

Network switches isolate traffic from each port, which makes it impossible

for Network Monitor to see traffic from each application tier. However,

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

through port spanning or port mirroring you can configure most network

vendor switches to copy or mirror all traffic from each port you assign.

Consult your network hardware vendor for instructions on configuring port

spanning. By using the SMS version of Network Monitor and plugging the

network monitor capture client into this port, you can see all the traffic

from each of your application tiers. Figure 5-6 illustrates this model.

Figure 5-6: Using port spanning on your switch

§ If you do not have access to your switch configuration or if port spanning is

not an option available with your network switch, another simple approach

is to plug all back-end servers that make up your application into a hub.

Hubs share bandwidth amongst all ports; therefore, the machine you use

as your network monitor client will be able to capture traffic from all tiers.

Figure 5-7 illustrates this model.

Figure 5-7: Isolating your network with a hub

§ The full version of Network Monitor allows you to install a Remote Network

Monitor Driver on each tier of your application to capture traffic remotely.

If you choose this method, install the Remote Network Monitor driver on

each of your application tiers. From the Start menu, choose Control Panel,

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

and then choose Add/Remove Programs. In the Add/Remove Programs

dialog box, click Add New Program. Navigate to Windows Components,

then choose Management and Monitor Tools, select Network Monitor

Tools, and click OK. This method allows you to gather the captures from

all remote agents to one client. The benefit of this approach is that it's

quicker than performing separate captures to get the data from all of your

Web applications tiers. However, the disadvantage is it takes longer to

setup since you have to install an additional component on each server.

Figure 5-8 illustrates this model.

Figure 5-8: Using Network Monitor remote drivers

§ The easiest method for capturing traffic is to use the Network Monitor 2 Lite

version on the IIS tier as your capture client. The IIS tier is typically

located between the Internet Explorer client and SQL tier. Therefore,

when the network monitor client is located on your IIS server you will be

able to see all the traffic coming to and from it. Figure 5-9 illustrates this

model.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 5-9: Using the IIS tier as your Network Monitor client

Capturing Network Traffic

Now that Network Monitor is installed and configured correctly and your environment is

set up, you are ready to begin capturing network traffic. We have discovered a few tricks

that will assist you in gathering captures:

§ Because we typically break user scenarios down into individual user actions,

we recommend creating a separate capture for each page view. Using

this method easily identifies how much data is being transferred for each

page view including associated elements. If you are looking for scenarios

that are expensive in terms of data transferred or round trips you can sum

the individual page views.

§ Perform your Network Monitor captures several times to verify their integrity.

In approximately 90 percent of the network analyses we have performed,

the network capture is accurate, however, unless you do your captures a

few times to verify, you can't be sure. We re-run each capture at least

three or four times until we get consistent and repeatable results. Each

sample should be similar if not identical in terms of round trips and data

transferred.

§ Network Monitor allows you to save the captures files (CAP), which can be

used for further analysis or importing into third-party tools such as

Application Expert.

§ Save your Network Monitor filters and address database (discussed above)

in case you need to recapture. Saving your filters will save time

reconfiguring Network Monitor. Figures 5-10 and 5-11 show the Save

Capture Filter and Save Address As dialog boxes.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 5-10: The Network Monitor Save Capture Filter dialog box

Figure 5-11: The Network Monitor Save Addresses As dialog box

§ The goal of the capture is to record only pertinent application data

transferred between nodes. To achieve this, start the Network Monitor

capture, request a page by typing a URL in the address window of a

browser, then stop the Network Monitor capture as soon as the page

finishes loading. The page is considered finished when your Internet

Explorer client displays Done in the lower left-hand corner of the status

bar. This will allow you to avoid excess traffic transferred after the page

view is loaded.

Network Monitor Capture Structure

A Network Monitor capture file consists of two views, the capture window and the display

data view. As illustrated in Figure 5-12, the capture window calculates the amount of data

transferred between nodes.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 5-12: The Network Monitor capture window

The display data view contains nine columns and can contain many rows, depending on

the amount of data collected. By default the trace file will show the MAC address of the

NIC. To make the trace easier to read, edit the address to show the machine name or

machine type. Figure 5-13 illustrates a raw capture from a client browser to an IIS server

to a SQL server and back.

Figure 5-13: The Network Monitor display data view

All data in these views is important, however, the critical data to focus on identifies the

amount of data transferred, number of round trips, and total time.

Using Compuware's Application Expert

Application Expert provides advanced response time prediction capabilities and granular

application-level details for tuning distributed applications to ensure optimal network

performance. Application Expert is used as a packet sniffer or for importing binary capture

files obtained through Network Monitor. Application Expert also can be used as a fully

functional packet sniffer. We find the following features of Application Expert to be

particularly useful when performing a network analysis:

Conversation Map

Once a network capture has been imported into Application Expert, you can model the

conversation between applications tiers. Figure 5-14 shows the conversation map of

IBuySpy home page (no cache). This figure shows how quickly the conversation map is

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

used to determine the amount of data transferred and number of round trips for a page

view including its associated elements.

Figure 5-14: Application Expert conversation map

The conversation map provides a top-level view of the nodes (Client, IIS, and SQL) and

conversations associated with hitting the home page. The conversation is defined as the

data transferred or communication between the various nodes in your application. You

can view the conversations by bytes or select your choice of display metric, such as

payload bytes, frames, or application turns or round trips by right-clicking to open the

Conversation Map context menu. Referring back to Figure 5-6, we see a total of 46

kilobytes of data being transferred between the IE client and IIS server and a total of 18

round trips.

Bounce Diagram

The bounce diagram is an excellent feature that gives you the packet level view of your

application tiers and allows you to identify processing delays. Figure 5-15 shows the

IBuySpy Default.aspx bounce diagram.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 5-15: Application Expert bounce diagram

The bounce diagram is a packet flow timing diagram for client/server conversations on

the network. This view shows individual frames between nodes in the sequence in which

they occurred during the capture. In Figure 5-15, the IBuySpy login page shows a very

small processing delay of approximately 170 milliseconds between the Internet client and

Web server.

In the bounce diagram, each vertical line represents a node and the horizontal lines on

the grid represent relative time increments in seconds. The time is relative to the start of

the trace, which is designated 0.00. Within the diagram, the colored horizontal lines

represent captured frames. The size of each frame is indicated by a color described in the

legend at the bottom of the window: red for fewer than 100 bytes, yellow for up to 512

bytes, green for up to 1024 bytes, and blue for more than 1024 bytes.

Thread Analysis

It is helpful to look at the threads and thread timing using the thread analysis view in

conjunction with the bounce diagram to identify which requests are causing processing

delays. This combination view lets you focus thread-by-thread. The panes are

dynamically linked, so an action in the upper pane affects the display and data in the

lower pane to give you multiple views. For example, when you click a thread in the upper

pane, the display in the lower pane changes to show the frames associated with the

selected thread. If necessary, Application Expert automatically zooms into the bounce

diagram for you. When you click a frame displayed in the bounce diagram, you get the

detailed information on that thread. Figure 5-16 shows a thread analysis of the IBuySpy

Default.aspx page. Using the thread analysis feature in Application Expert, you can

quickly identify all 16 objects associated with this page view. Identifying this information

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

from the raw Network Monitor capture or Application Expert packet trace view takes much

longer.

Figure 5-16: Application Expert thread analysis

To analyze your capture in more detail, drill into the packet trace for a specific frame by

selecting the Drill Into Packet Trace option in the context menu or, in a bounce diagram

view, double-clicking a frame. This view is similar to the way Network Monitor displays the

raw capture. The packet trace view lists all of the packets and provides important

information about each one including the frame number, acknowledgement number,

window size, and total bytes (data transferred) versus payload bytes (total bytes minus

overhead of headers and acknowledgement frames). The bounce diagram view, thread

analysis view, and conversation map are visual representations of the raw data provided

in the packet trace view. Figure 5-17 displays a packet trace of the IBuySpy Default.aspx

page.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 5-17: Application Expert packet trace view

Response Time Predictor Tool

The Response Time Predictor allows you to predict the impact of bandwidth and latency

for overall response time. This is very useful in determining response times of your Web

pages in a pre-production test environment. Having this data you can identify and fix

performance problems before your customers begin using your application. For instance,

if you have several page views that do not meet your criteria for response time

acceptability, you have a chance to optimize them before your customers begin using

your Web application. The predicted response time depends on a number of factors,

including the number of network round trips, amount of data transferred, and processing

delays which are modeled using algorithms developed by Compuware. In the Response

Time Predictor, you specify the bandwidth and the latency parameters to characterize the

production network. The bandwidth and latency should be defined for the slowest link

between the communicating end nodes. Figure 5-18 shows a Response Time Predictor

model for IBuySpy Home page.

Figure 5-18: Application Expert Response Time Predictor

Interpreting Network Captures with Application Expert

In previous sections of this chapter we identified and defined key components that are

used throughout the application network analysis. We introduced Net-work Monitor, the

application used to capture the network traffic between application tiers. Next, we will

provide our method for analyzing applications for network efficiency and identifying

response time bottlenecks.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The capture file is in a format that can be viewed in Network Monitor or imported into

Application Expert. The capture file is not easily interpretable and can be intimidating for

novice users. By using Application Expert to interpret the capture, valuable time can be

saved. To import your Network Monitor capture files into Application Expert, follow these

steps:

1. Open Application Expert.

2. Create a new application.

3. Open Windows Explorer and browse to the location of your capture

files.

4. Drag and drop your capture files onto your newly created application.

Calculating Data Transferred

After performing the network captures, we isolate traffic between application tiers.

Calculating data transferred with Application Expert is accomplished using the

conversation map. Figure 5-19 shows there are approximately 15 kilobytes of data

transferred between the Internet Explorer client-IIS server tier and 4 kilobytes of data

transferred between the IIS server-SQL server tier for the IBuySpy Checkout.aspx page

view including their associated elements.

Figure 5-19: Calculating data transferred with Application Expert

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Counting Network Round Trips

Counting the number of network round trips is accomplished using the Application Expert

conversation map. Figure 5-20 shows there are five round trips between the Internet

Explorer Client-IIS server and 10 round trips between the IIS server-SQL server for the

IBuySpy Checkout.aspx page.

Figure 5-20: Counting round trips with Application Expert

Identifying Application Processing Delays

Processing delays on the IIS or SQL server tiers will critically impact end user response

time performance. These delays are caused by several factors such as slowly executing

scripts or components in your ASPX pages, SQL stored procedures requiring

optimization, or improper SQL indexes that add seconds to your page load time. There

are a number of tools and methods you can use to determine if your application has a

processing delay. One such tool is SQL Profiler to monitor the SQL server tier, looking at

the IIS logs "time taken" field to estimate IIS processing duration, or using the Application

Expert bounce diagram feature to identify excessive time between network frames.

Note For debugging and testing purposes we recommend enabling

logging within IIS and using the W3C Extended Log file format.

This includes enabling all of the extended properties, such as time

taken, bytes sent, and bytes received. For more information

relating to the W3C Log file format, see Chapter 6.

If you find delays of more than a second between frames, this should be flagged and

investigated for optimization. If you reduce this delay by making code changes, the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

overall response time for that particular page view will be reduced by the same amount.

Figure 5-21 shows a 1.3-second processing delay on the IIS server tier for the IBuySpy

update cart page.

Figure 5-21: Processing delay shown in Application Expert

Predicting Response Times

The Application Expert Response Time Predictor allows us to model response times

using the quantity of data transferred, round trips, and processing delays in our network

capture. These models show the response time predictions for different line speeds and

network latencies, allowing you to discover if your application will perform as you expect

before you roll it out to your customers.

Note An alternate method for predicting response times at various

connections speeds and latency is to use a hardware-based WAN

simulator. Hardware WAN simulators are located between your

Web application tiers and suppress the network signal to the

programmed specification. For example, you can place the

simulator between your test client and Web server tier and program

it to reduce your connection to 56 kbps and 500 milliseconds of

latency.

We typically use a mix of slow modem connections, high-speed broad-band connections

(DSL or cable modems), and typical office connections like T1, and LAN connections. For

each of these connections you can do a best case and worst case latency. Keep in mind,

the bandwidth and latency metrics used in these models are not set in stone. From our

experience we use the following connection speeds and latency to simulate users:

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ 56-kbps modem connections have a 200-millisecond latency best case

and a 500-millisecond latency in poor conditions.

§ 256-kbps DSL and cable modems have a 50-millisecond latency best

case and 200-milliseconds in poor conditions.

§ T1 (1.54-mbps) connections have a 50-millisecond latency best case

and 100-milliseconds in poor conditions.

§ LAN connections represent a 10- or 100-mbps connection, depending

on your network infrastructure. Commonly you will have a

10-millisecond latency or less and 50-milliseconds in poor conditions.

As shown in Figure 5-18, the Application Expert Response Time Predictor allows you to

change the line speed and latency for each of your applications tiers. The response time

formula utilizes connection speeds, data transferred, round trips, latency, and processing

delays. Table 5-5 demonstrates a typical response time model for the IBuySpy home

page (no cache page) using our model with varying connection speeds and latency

metrics.

Table 5-5: Modeling Response Times

Line

Speed

56

kbps

Modem

256

kbps

DSL

1.54

mbps T1

10 mbps

LAN

Latency 200-50

0 ms

50-20

0 ms

50-100m

s

10-50ms

Respons

e Time

6-9

second

s

2-3

secon

ds

1-1.5

seconds

.5-1secon

d

Conclusion

An application network analysis is useful for identifying performance bottlenecks and

improving end-user response time. Incorporating this into your development process

helps detect performance issues in terms of response times, processing delays, and

quantity of data transferred. Now that you have used the techniques in this chapter to

identify where your application needs to be optimized for improved response time

performance, the next three chapters will help you identify specific areas in each tier that

can be tuned for performance.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Chapter 6: Analyzing and Performance Tuning

the Web Tier
We use the term Web tier to refer to the front-end Web server used to satisfy HTTP

requests from remote browser clients, such as Internet Explorer. Many different Web

servers are available for various platforms. Microsoft's implementation of a Web server is

called Internet Information Server (IIS), and it is essentially a file and application server

for Internet and private Intranet Web sites or applications. IIS is a very powerful Web

server capable of hosting both static and dynamic content. Static content typically

consists of images or simple text files created using HTML that rarely change. To the end

user, dynamic content may appear to be static because the request that generated

server-side scripting activity is executed on the server, and only the response is returned

to the client. Dynamic content usually provides a far richer user experience than static

content. Dynamic content can be highly customizable for each request. It is usually

generated by some additional component or scripting language, which is processed by

the Web server originating from a remote request. The types of dynamic applications

discussed in this chapter are ASP.NET or traditional ASP Web applications. This chapter

refers to the sample storefront IBuySpy ASP.NET Web application coded in the VB.NET

language.

Getting Started

This chapter describes a process of identifying application bottlenecks that can occur on

the Web tier. Rather than list every possible bottleneck, an impossible task, we will show

you how to analyze your Web application. By sharing our experiences and method of

profiling ASP.NET Web applications, we hope to help you quickly identify some common

Web tier bottlenecks that may cause scalability issues with your Web application. After

you have identified a bottleneck in your Web application, it is much easier to research the

problem or seek help.

Although we began this chapter with a brief introduction to what a Web server is, we

assume you have some knowledge and experience with IIS and Web-based applications.

It is beyond the scope of this chapter to go into detail about Web server administration

and configuration, but here is a list of resources for in-depth information on each topic.

§ IIS Microsoft Internet Information Services 5.0 documentation

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ ASP.NET Microsoft ASP.NET Step by Step by G. Andrew Duthie (Microsoft

Press, 2002); Web Database Development Step by Step .NET Edition by

Jim Buyens (Microsoft Press, 2002); Professional ASP.NET (Wrox Press,

2001).

§ ADO.NET Programming Microsoft Visual Basic .NET by Francesco Balena

(Microsoft Press, 2002); Web Database Development Step by Step .NET

Edition by Jim Buyens (Microsoft Press, 2002); Professional ADO.NET

(Wrox Press, 2001).

Understanding Configuration and Performance

Before you begin performance testing it is very important you become familiar with

several performance-related configuration aspects of your Web application. Configuration

aspects such as the method of authentication and other global application settings help to

give you a quick understanding of how your Web application works.

ASP.NET and ASP Web applications, while very different, can coexist on the same Web

server because their file extensions are mapped to different DLLs within IIS. One major

difference between ASP.NET and ASP applications is how they are configured. ASP.NET

Web applications are configured by XML-based text files, where traditional ASP Web

applications have many configurable parameters located in the metabase and the

Registry. Storing configuration information in XML-based files makes it much easier to

maintain the data in a readable format and update it on the fly without restarting the Web

server.

ASP.NET File Extensions

When you first look at an ASP.NET Web application like the IBuySpy sample site you will

notice many different file extensions. Some of the new file extensions that you should be

familiar with are as follows:

§ ASPX This extension is used for Web form pages and is very similar to the

traditional ASP pages.

§ ASCX These files hold the Web forms user controls. This provides one of

the ways that ASP.NET reuses code.

§ ASMX Files with this extension are for files that implement XML Web

services.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ VB These files are for Visual Basic .NET code behind modules. When you

create a Web application using Visual Basic .NET you will have a Visual

Basic file associated with each Web form. These files allow for a

separation of user interface elements and application logic.

§ CS This extension is similar to the VB extension except that the code is

written in the new C# language. Code behind modules written in C# will

have the same name as the Web form with a CS extension.

§ Global.asax This file is used to define application-and session-level

variables and procedures when the Web application starts up or receives

a request from a new user.

Authentication in ASP.NET

The three different types of authentication to use with ASP.NET Web applications are

Windows, Passport, and Form-based. ASP.NET does not do all the authenticating; there

are two distinct layers of authentication: IIS and ASP.NET application level. ASP.NET

uses the < authentication > tag in the Web.config file to set the mode (more information

on this in the next section).

Windows-based Authentication

The first authentication mode is for Microsoft Windows-based machines, where ASP.NET

relies on IIS to authenticate the incoming requests. This form of authentication is primarily

used for Intranet applications. The three different methods available for this configuration

are Basic, Digest, and Integrated Authentication.

§ Basic Authentication This method works with most browsers, but it

sends all passwords in clear text. For Internet sites, this method is

tolerated as long as you have enabled SSL encryption, but it is not

recommended.

§ Digest Authentication This method requires Windows 2000 Domain

Controller and HTTP 1.1 (so it may not be supported by all browsers).

The password is not sent in clear text-it is a hashed value, making it a

little more secure. However, the domain controller has to store a

clear-text password so it can validate the password. Thus the domain

controller must be safe from outside attacks.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ Integrated Windows (NTLM) Authentication This method is only

available with Internet Explorer and is the most secure because it never

sends the username and password over the network. It requires all

users to have a Windows NT account on the Web server or the domain

controller.

Passport Authentication

The second authentication mode is Passport. Passport is a centralized service provided

by Microsoft which allows you to log in to any Passport-enabled site or Web application

by simply using a single username and password (that is, single sign-in, or SSI).

Form-based Authentication

The last form of authentication is called form-based. This allows developers to create

their own authentication within their Web applications. However, passwords are sent in

clear text so make sure you add a SSL layer to protect your password. You simply create

a login page and link it to ASP.NET in the Web.config file where you can set security

restrictions. You can verify that username and password against a database or Windows

2000 Active Directory.

Configuration Files

ASP.NET uses a series of XML-based files to configure the Web application. The highest

level configuration file is the machine.config file, which by default is located in [Your

system folder]\Microsoft.NET\Framework\versionx.x.x\CONFIG\. This file contains the

default settings for all ASP.NET applications on your server.

Note You must exercise great caution when editing this file because it

affects all ASP.NET Web applications on the server.

There is another configuration file named Web.config that is specific to each application

you create. Every Web application you create using Visual Studio .NET automatically

creates this file for you. Do not worry if you are not using Visual Studio .NET to create

your application. If there is no Web.config file, the application will inherit default values

from the machine.config file. We will take a quick run through some of the values

represented in these files to provide better understanding of the power of these files.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Now let's dive down into the other tags that you will find within the configuration files. If

you wish to find more information about the attributes for each of these elements please

refer to your .NET Framework documentation.

Table 6-1: Configuration File Tags

Tag Description

<trace> This element can help when you are

trying to get more information about how

your Web application is performing. It

enables you to gather information about

requests received by the Web server.

(http://<servername>/<appname>/trace.a

xd.) Be sure to set this attribute to false

when you deploy your Web application.

<globalization> Specifies how Web requests and local

searches are handled; for example, what

language the requests are handled in.

<httpRuntime> Controls parts of the ASP.NET and HTTP

runtime engine, including attributes for

number or requests before returning a

503, maximum size of incoming files and

minimum number of threads that will be

kept free for processing new requests.

<compilation> One of the most extensive elements,

which includes settings that determine

how your code is compiled, such as

debug. This will include debug

information within the compiled

assemblies. The debug attribute should

be set to false when you deploy your Web

application.

<pages> Allows ways to configure the

SessionState, ViewState and other

settings that will enable you to get more

out of your Web application.

<customErrors> This element allows you to customize

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 6-1: Configuration File Tags

Tag Description

how your Web applications respond to

errors in terms of what the user sees.

<authentication> Allows you to choose the authentication

mode you want to use.

<identity> Allows your Web application to use

impersonation.

<authorization> Specifies accounts that are authorized to

access resources.

<machinekey> Specify keys for encryption and

decryption of cookie data. However it can

not be used at the subdirectory level.

<securityPolicy> Allows the choice of several named

security policies.

<trust> Implements the security policy stated in

the securityPolicy element.

<sessionState> Used to configure the HttpModule

element, mainly the state management to

be used.

<httpHandlers> Allows you to assign certain requests to

different types of resources to handler

classes. This can be used to limit the

HTTP access to certain file types.

<processModel> This setting deals with how the Web

application is run and provides many

features such as automatic restart and

allowed memory size to help improve

performance.

<webControls> Allows the use of client-side

implementations of ASP.NET server

controls by specifying script files.

<clientTarget> Allows you to use a single alias for your

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 6-1: Configuration File Tags

Tag Description

application.

<browserCaps> Allows the application to gather

information about the user's browser.

Understanding Your Web Application

Some of the configuration settings listed above have adverse effects on your Web

application or even generate problems when you're creating test scripts for your Web

application. For example, many people might find the <custom-Errors> element in the

Web.config file useful because you can set up a custom error page to redirect to when an

error occurs. When you build a test script in ACT, by default you do not get a visual

indication of what is displayed on the page. If an error occurs in your test script while

recording, you could be redirected to the custom error page, which receives a 200 status

code (success) according to the IIS log file. The page that had the error would only show

a 302 (redirect) instead of the true error. So you must be careful and understand your

application, otherwise you could waste a lot of time trying to solve the problem.

Note If you see a large percentage of page views occurring on one page,

verify in the Webconfig file to make sure it is not the Custom Error

Handling file for your ASP.NET Web application.

Profiling a .NET Web Application

There are several tools readily available to help you monitor and identify performance

problems which occur on the Web tier. The profiling tasks discussed in this section

include analyzing IIS log files, using the new tracing feature in ASP.NET, viewing

performance data with the infamous System Monitor (which you should be very familiar

with by now).

IIS Log Files

IIS log files serve many purposes, including analyzing user behavior or traffic patterns,

monitoring activity for security exploits, and aiding in troubleshooting or identifying

problems with your Web applications. The purpose of the following IIS log file discussion

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

is to first give you a quick overview and then to demonstrate how to quickly identify

performance problems at a high level (the page level) on the Web tier. After you have

identified the poorly performing pages within your Web application, you can drill deeper to

identify the specific code that is causing the problem and fix it. Let us begin by becoming

more familiar with the log files generated by IIS in response to client activity.

Log File Formats

There are various logging modules and formats available with IIS. With the exception of

the ODBC logging module, which is written to a database, all of the other log files are

ASCII text files. The NCSA Common Log File Format and the Microsoft IIS Log Format

are both fixed ASCII formats that are not customizable. We always use the W3C

Extended Log File Format for our testing efforts because you can customize it by

selecting the fields you want to monitor. From an administrative point of view this is very

useful because you log less data, you can conserve more available disk space and keep

your log files more readable without sacrificing functionality. All of the ASCII text-based

modules discussed above can be set to create new logs when the file size reaches a

certain threshold or timeframe (hourly, daily, weekly, monthly). We are not going into

great detail about every available log file format in IIS, but we do discuss more

information relating to the W3C Extended Log File Format because we use it for

identifying problems in Web applications that we encounter.

By default the W3C Extended Log File Format uses Greenwich Mean Time (GMT) for

times listed by each request, where all of the other formats use the local time. Keep in

mind that the times listed in the log files are generated by the server after processing a

request but do not reflect network travel time to the client or cl ient processing time.

Tip If you are building a test script or debugging your Web application,

we recommend selecting every field. Otherwise, select only the

relevant fields required to profile your Web application. This will

conserve disk space and make parsing or navigating around the log

file much quicker and easier.

Below is a sample from one of our log files in the W3C Extended Log File Format. It is

worth mentioning that we did not select every available field to be logged, but only the

relevant fields for this Web application.

#Software: Microsoft Internet Information Services 5.0

#Version: 1.0

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

#Date: 2002-05-24 17:25:01

#Fields: date time c-ipcs-method cs-uri-stem cs-uri-query sc-

status sc-bytes cs-bytes time-taken

2002-05-24 17:25:01 181.39.207.242 GET /storevbvs/default.aspx -

 200 12893 373 2516

The first four lines of a properly formatted W3C Extended log, which begin with a pound

sign (#), contain directives or header information such as the version of the log file format,

the date and time the file was created, and field identifiers for various information which is

logged for each entry. The field identifiers are prefixed in Table 6-2.

Table 6-2: W3C Extended Log File Field Identifiers

Prefix Meaning

s- Server actions

c- Client actions

cs- Client-to-server actions

sc- Server-to-client actions

Table 6-3 contains a complete list of available properties, definitions, and reference

information for each field in the W3C Extended Log File Format.

Table 6-3: W3C Extended Log File Format Reference Table

Field Appears As Description

Date Date The date on which the activity

occurred.

Time Time The time the activity occurred.

Client IP

Address

c-ip The IP address of the client

that accessed your server.

User Name c-username The name of the

authenticated user who

accessed your server. This

does not include anonymous

users, who are represented

by a hyphen.

Service Name

and Instance

s-sitename The Internet service and

instance number that was

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 6-3: W3C Extended Log File Format Reference Table

Field Appears As Description

Number running on the client

computer.

Server Name s-computern

ame

The name of the server on

which the log entry was

generated.

Server IP s-ip The IP address of the server

on which the log entry was

generated.

Method cs-method The action the client was

trying to perform (for example,

a GET method).

URI Stem cs-uri-stem The resource accessed; for

example, Default.htm.

URI Query cs-uri-query The query, if any, the client

was trying to perform.

Http Status sc-status The status of the action, in

HTTP terms.

Win32 Status sc-win32-stat

us

The status of the action, in

terms used by Windows.

Bytes Sent sc-bytes The number of bytes sent by

the server.

Bytes Received cs-bytes The number of bytes received

by the server.

Server Port s-port The port number the client is

connected to.

Time Taken time-taken The length of time the action

took.

Protocol

Version

cs-protocol The protocol (HTTP, FTP)

version used by the client. For

HTTP this will be either HTTP

1.0 or HTTP 1.1.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 6-3: W3C Extended Log File Format Reference Table

Field Appears As Description

User Agent cs(User-Age

nt)

The browser used on the

client.

Cookie cs(Cookie) The content of the cookie sent

or received, if any.

Referrer cs(Referer) The previous site visited by

the user. This site provided a

link to the current site.

Logging is enabled within IIS by default and can be disabled at the site, directory, or file

level by right-clicking the element and clearing the Log Visits checkbox in the IIS MMC

snap-in Properties dialog box, as shown in Figure 6-1.

Figure 6-1: Clearing the Log Visits checkbox

Disabling logging on certain directories that contain static or rarely changing files is

another useful method of reducing your Web server log file size and saving valuable disk

space. For example just by browsing the IBuySpy Web application home page

http://localhost/storevbvs/Default.aspx, you write 16 different entries in the IIS log file for

that one request. Fourteen images, one style sheet, and the actual Default.aspx page are

referenced in the code. Keep in mind that as far as the user is concerned, it is only one

URL request, even though it's several HTTP requests to the Web server (one request for

Default.aspx, one for the style sheet, and 14 for the images). You can imagine how large

the log file can grow and how much disk space can be consumed from a stress test script

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

that requests multiple pages using several browser connections for an extended period of

time.

There are several ways to verify how many items are referenced by a page and the size

of each file. One such method useful in checking a single page is to first clear your

browser cache and then request the page from your browser. You should see all of the

different file elements referenced from the page from that one request. Add up the total

number of file elements and their file size by viewing the file properties. This is a tedious

method when you have many files to investigate. An alternative method that makes more

sense to use when you have several files is to use a log parser and view the results in a

report format. There are several commercial log parsers available today.

Identifying Problem Pages from a Log File

Now that we have presented some background information on what to look for in the log

file let's look at a somewhat real-world example of how to use the IIS log file to quickly

identify errors occurring on the Web tier. The next four steps are necessary for us to

demonstrate this example.

1. The code in the IBuySpy sample site is very efficient, so we must first

introduce a problem into the code of the ProductList.aspx page to

simulate a page delay. We mentioned above that this is a somewhat

real-world example because the code causes similar results on

many different machines. If we tried to create a demo using code

that performs poorly implemented string concatenation or some

looping logic that returns many rows from a database, the

performance and ASPX execution time from the ProductList.aspx

page would vary depending on different hardware configurations. On

the ProductList.aspx page, comment out line four as shown below.

2. <%'@ OutputCache Duration="6000"

VaryByParam="CategoryID" %>

Then insert the code below between the <% to %> on line five of the

ProductList.aspx page.

<%

'///

' TODO: -Comment out line 4 on ProductList.aspx. This will

' -disable the OutputCache so we can introduce a delay.

 System.Threading.Thread.Sleep(7000) '7 second delay

'///

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

%>

3. Next, we disabled logging on the IBuySpy.css file, the Images

subdirectory, and the ProductImages subdirectory in order to focus

on tuning the code, which occurs on the ASPX file type.

Note It is still important to optimize or reduce the size of your images and

stylesheets to ensure that this does not become the bottleneck on your

Web application.

4. Verify that you have installed the IBuySpy sample site correctly. Then,

within IIS, verify that you have selected W3C Extended Log File

Format and selected the following fields: date, time, c-ip, cs-method,

cs-uri-stem, cs-uri-query, sc-status, sc-bytes, cs-bytes, time-taken.

5. Finally, we ran the Browse test script using Microsoft ACT for one

iteration. The Browse test script is included on this book's

companion CD and is discussed in more detail in Chapter 3. This is

not really considered a stress test but more of an automated

walkthrough of our user scenario because we only ran through one

iteration with one browser connection.

The results of the script playback from the IIS log file are as follows:

#Software: Microsoft Internet Information Services 5.0

#Version: 1.0

#Date: 2002-05-30 18:36:11

#Fields: date time c-ipcs-method cs-uri-stem cs-uri-query sc-status sc-

bytes cs-bytes time-taken

2002-05-30 18:36:11 181.39.207.242 GET /storevbvs/Default.aspx - 200 0 346 15

2002-05-30 18:36:18 181.39.207.242 GET /StoreVBVS/

productslist.aspx CategoryID=20&selection=2 200 0 377 7016

2002-05-30 18:36:18 181.39.207.242 GET /storevbvs/

Default.aspx test=count 200 0 357 16

Note that there are three requests in the above log. The first thing you should look for is to

verify that the requests were successful and there were no errors generated. This is

accomplished by looking at the field labeled sc-status, also known as the status code.

Table 6-4 below is a useful table to reference HTTP status codes.

Table 6-4: HTTP Status Codes

Status Description

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 6-4: HTTP Status Codes

Status Description

2xx Success.

200 OK: The request has succeeded.

201 Created: The request has been fulfilled and resulted in a new

resource being created.

202 Accepted: The request has been accepted for processing, but the

processing has not been completed.

203 Non-authoritative Information.

204 No Content: No response-request received but no information to

send back.

3xx Redirection.

301 Moved: The data requested has a new location and the change is

permanent.

302 Found: The data requested has a different URL temporarily.

303 Method: Under discussion, a suggestion for the client to try

another location.

304 Not Modified: The document has not been modified as expected.

4xx Error seems to be in the client

400 Bad Request: Syntax problem in the request or it could not be

satisfied.

401 Unauthorized The client is not authorized to access data.

402 Payment Required: Indicates a charging scheme is in effect.

403 Forbidden: Access not required even with authorization.

404 Not Found: Server could not find the given resource.

5xx Error seems to be in the server.

500 Internal Error: The server could not fulfill the request because of

an unexpected condition.

501 Not Implemented: The server does not support the facility

requested.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 6-4: HTTP Status Codes

Status Description

502 Server Overloaded: High load (or servicing) in progress.

503 Gateway Timeout: Server waited for another service that did not

complete in time.

All three of the log entries are GET requests (indicated by the method) and they appear to

be successful with 200 status code. Also, there appears to be very little data transferred

(indicated by the Bytes Sent and Received fields). The ASPX execution time or the Time

Taken field for the Default.aspx page was quick, but the ProductList.aspx took over seven

seconds (7016 milliseconds, to be exact). Voila , we have identified a problem. The IIS

logs are very useful in helping you to identify pages that are executing slowly, transferring

a lot of data and identifying errors in your Web application. Now that we have successfully

identified a problem at the page level, we will discuss a new feature available in ASP.NET

that will help us to trace the problem down to the line of code causing the delay.

Tracing Problems to the Code Level

Tracing is a useful new feature in ASP.NET for debugging or profiling problems which

occur at the application, page, and code level of a Web application. You can print

statements during code execution to help identify exactly what is happening at a certain

point within your code. With traditional ASP pages, debugging or troubleshooting code is

accomplished by inserting text or logic with multiple Response.Write statements at

different points within the code as placeholders. To help you fully appreciate the new

tracing feature in ASP.NET, we offer a brief discussion of our method to isolating slowly

executing code within traditional ASP pages.

Tracing in Traditional ASP Pages

After the files with high execution times are identified from the IIS logs, we typically add

several timers throughout the page to pinpoint the slowly executing code. When the page

is requested the timers are written to a text file using the local file system of the Web

server. Finally, you simply open the text file to view the timer information that was written

between each block of code separated with a timer. Below is an example written in

VBScript to illustrate this point.

<% Dim t1, t2

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 'Timer 1 - start timer for section 1

 t1=Timer

%>

INSERT CODE BLOCK HERE

<% 'Timer 2 - start timer for section 1

 t2=Timer

'The following code can be placed at the end of the ASP file.

Dim fso, filename, fileref

filename = "C:\temp\" + cstr(Timer) + ".txt"

'A new file is created each time the page is executed.

SET fso = createobject("Scripting.FileSystemObject")

SET fileref = fso.createtextfile(filename)

'Write timer values to the file - time is in milliseconds.

fileref.writeline("1," + cstr(t1) + "," + cstr(t2) + "," + cstr(t2-t1))

'Close the file.

fileref.close

%>

Another method for finding slowly executing code within traditional ASP pages is to first

make a note of how long it takes the page to execute without modifying the code. Then

place the Response.End method at different places within your code and request the

page again noting the execution time. The Response.End method stops the execution of

the code so you can compare the time against the time taken from the original request.

This method often takes several tries to identify the culprit and might end up generating

errors, because you are not executing the code in its entirety.

Tracing in ASP.NET

Tracing in ASP.NET can be performed at either the page or application level. Page-level

tracing is implemented by adding Trace="True" to the @ Pagedirective at the top of an

ASPX file. The complete syntax is as follows:

<%@ Page Trace=" True"%>

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

This will append an HTML table to the browser once the original content has rendered.

The HTML table will contain detailed information on the request itself: timing information,

server control tree (with rendering viewstate size), header, cookies, querystring along

with form parameters, server variables, and of course, the ability to add custom

messages. The syntax to add custom tracking information is Trace.Write() or

Trace.Warn(). Both methods create the same output but Trace.Warn() writes the

output in red text.

Tip We want to caution you about only enabling tracing when you need

to debug your Web application. When trace was enabled on the

ProductList.aspx page, the server-to-client bytes transferred for this

page changed from 13628 bytes to 32695 bytes according to the IIS

logs. This is nearly three times the amount of data in the original

request and this can easily skew a stress test.

Enabling tracing at the application level is accomplished by adding or modifying the

following statements to the Web.config file.

<configuration>

 <system.Web>

 <trace enabled="true"

 requestlimit="15"

 pageOutput="true"

 traceMode="SortByTime"

 localOnly="true"/>

 </system.Web>

</configuration>

After trace is enabled in the Web.config file, you can view the results of various requests

by browsing to a special HttpHandler (Trace.axd) to view the output. The requestLimit

parameter will control the number of requests to log for which trace information will be

collected. You should also be aware that page-level tracing will override application-level

tracing.

Identifying Problem Code in ASPX Pages

Let's take the above example, in which we used the IIS log file to identify a slow executing

page, a step further and use the new Trace method discussed above to isolate the code

that is causing a delay in our ProductList.aspx page.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

1. Make sure you enabled tracing at the application level by adding or

modify the following syntax to the Web.config file located in the

IBuySpy Web application root directory.

2. <configuration>

3. <system.Web>

4. <trace enabled="true"

5. requestlimit="15"

6. pageOutput="true"

7. traceMode="SortByTime"

8. localOnly="true"/>

9. </system.Web>

10. </configuration>

11. Modify the following code block, which introduces the page delay by

adding both statements beginning with Trace.Warn. These

statements will write our custom messages around the suspected

problematic code.

12. <%

13. '///

14. ' TODO: -Comment out line # 4 on ProductList.aspx. This will

15. ' -disable the OutputCache so we can introduce a delay.

16. Trace.Warn("Find Delay", "Timer 1: Begin")

17. System.Threading.Thread.Sleep(7000) '7 second delay

18. Trace.Warn("Find Delay", "Timer 1: End")

19. '///

20. %>

21. Run the same Browse test script discussed above using Microsoft

ACT for one iteration. This will simulate someone walking through

our user scenario.

22. Finally, on the Web server that contains the IBuySpy sample site,

type in the following URL from within your browser:

http://localhost/StoreVBVS/trace.axd. The three requests that our

script made should be displayed as in Figure 6-2 below.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 6-2: Browse test script results

You should notice similar information displayed in the HTTP Handler (Trace.axd)

compared to what we saw previously in the IIS log file. We already identified the

ProductList.aspx page as the problematic page because it is taking more than seven

seconds to load. Now click the View Details hyperlink for the ProductList.aspx page.

Because we used Trace.Warnthe code we added should immediately stand out when

you look at it online because the syntax is in red text. In Figure 6-3 below you can identify

the code we added under the Trace Information heading and the Find Delay Category.

From the Timer 1: Begin message to the Timer 1: End, it took around seven seconds to

execute the code between the two statements we added. Voila ! Once again we

successfully pinpointed the problem causing the delay. Now, you can verify that this is the

problem by simply commenting out the suspected line of code and browsing directly to

the ProductList.aspx page. The execution time should be reduced by seven seconds,

indicating that indeed this was the problem causing the delay.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 6-3: The problem code is in red text.

System Monitor Counters

System Monitor is an essential tool that can be used for monitoring and analyzing

ASP.NET Web application performance. During performance testing, performance data

can be analyzed in real time or collected for processing at a later time using System

Monitor. Performance data is used in locating possible performance issues such as an

inefficient processor, memory usage and any other factors that prohibits the application

from performing and utilizing its targeted performance goals on the Web tier.

Performance Counters for IIS

In the following sections, we discuss the IIS counters and ASP.NET performance

counters that our team uses in performance testing.

§ Internet Information Services Global: File Cache Flushes and File

Cache Hits These counters can be compared to see the ratio of hits to

cache clean up. A flush occurs when a file is removed from the cache.

These global counters provide some indication of the rate at which

objects are being flushed from the cache. Memory is wasted when

flushes are occurring too slowly.

§ Internet Information Services Global: File Cache Hits % Displays

the ratio of cache hits to total cache requests. This should stay around

80 percent on Web sites that have mostly static content.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ Web Service: Bytes Total/sec Shows the total number of bytes sent

and received by the Web server. A low number indicates IIS is

transferring data at a low rate.

§ Web Service: Connection Refused Lower is better. High numbers

indicate network adapter card or processor bottlenecks.

§ Web Service: Not Found Errors Shows the number of requests that

could not be satisfied by service because the requested document

could not be found (HTTP status code 404).

Performance Counters for ASP.NET

There are two sets of performance counters in ASP.NET that can be used in diagnosing

and monitoring Web application performance. They reside under ASP.NET, and

ASP.NET application performance objects. If you have multiple versions of ASP.NET

installed, there may be multiple instances of these counters, each with a version stamp on

them. The names without versions will always give you performance data for the highest

version installed on the machine.

ASP.NET System Performance Counters We will not discuss all performance objects

and counters in the .NET Framework. All performance counters for ASP.NET information

are found on the Microsoft MSDN Web site, and .NET Framework help file. In this chapter,

we discuss in some detail the system performance counters, and application performance

counters that our team uses in monitoring and analyzing performance of a .NET Web

application.

§ Application Restarts Indicates the number of times and how often a

Web application has been restarted. An application restart can occur

because of changes in configuration, bin assemblies and too many

page changes. This value is reset every time to 0 when the IIS host or

w3svc restart.

§ Requests Queued The number of requests waiting for service from

the queue. When the number of requests queued starts to increment

linearly with respect to client load, this is an indication of reaching the

limit of concurrent requests processed on the Web server.

§ Requests Rejected Shows the total number of requests not executed

due to insufficient server resources to process the requests. This

counter represents the number of requests that return a 503 HTTP

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

status code "Server is too busy". The value of requests rejected

counter should ideally be 0.

§ Request Wait Time The number of milliseconds that the most recent

request waited for processing in the queue. The average request

should ideally spend very little time waiting to be processed.

ASP.NET Application Performance Counters ASP.NET supports the application

performance counters that can be used to monitor the performance of a single instance of

an ASP.NET application. A unique instance appears for these counters, named _Total_,

which aggregates counters for all applications on a Web server. The _Total_ instance is

always available. The counters will display zero when no applications are present on the

server.

§ Cache Total Turnover Rate The number of additions and removals to

the total cache per second. Large turnover indicates the cache is not

being used efficiently.

§ Errors Total The total number of parser, compilation, or runtime errors

that occur during the execution of HTTP requests. A well-functioning

Web server should not be generating errors.

§ Request Execution Time - The number of milliseconds taken to

execute the last request. The value of this counter should be stable.

§ Requests Failed The total number of requests that have timed out,

requests that are unauthorized (HTTP status code 401), requests that

are not found (HTTP status code 404 or 414), or that resulted in a

server error (HTTP status code 500).

§ Requests Not Found The number of requests that have failed due to

resources not being found (HTTP status code 404, 414).

§ Requests Not Authorized The number of requests that have failed

due to unauthorized access (HTTP status code 401).

§ Requests Timed Out The number of requests that have timed out.

§ Requests/Sec The number of requests executed per second. Under

constant load, the number of requests/sec should remain within a

certain range.

The above section covered the IIS counters, and ASP.NET performance counters that

our team regularly uses in monitoring and analyzing ASP.NET Web applications.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Performance Tuning Tips

Performance tuning involves fixing bottlenecks and tweaking code to achieve your

desired throughput rate or response time criteria while maintaining scalability. Using new

features in ASP.NET, such as caching and new data access methods, can help you

realize greater performance gains and scalability. Disabling certain default features, like

Session State and ViewState whenever they are not used can have a positive affect on

the performance of your Web application too.

Application and Session State

Maintaining state without creating performance and scalability problems in a Web

application distributed among multiple Web servers proved to be challenging in the past.

There are more options available for ASP.NET Web applications compared to traditional

ASP Web applications, but you still must be aware of the performance versus scalability

tradeoffs for each option.

Application State

Traditionally application variables were used to store information like connection strings

or as a caching mechanism for storing variables and recordsets among mult iple users

requests. They still exist in ASP.NET but many of the functions previously served in

traditional ASP have been replaced with newer more effective methods. Use the

Web.config file to store and retrieve database connection strings or use a trusted

connection with a SQL server. Utilize the new caching engine discussed below to store

frequently accessed data. Application state still has the limitation and cannot be shared

across multiple Web servers.

Session State

Session information is data stored in memory of the Web server for each user making a

request. In the past, many problems have been associated with enabling and using

session state within a Web application. The underlying protocol used in making each

request (HTTP) is stateless, so to overcome this in traditional ASP Web applications an

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

HTTP cookie was assigned to the client and would be passed back to the server for

subsequent requests within a certain time frame. For a Web application located on

multiple machines or a Web farm, the user may be redirected to a different machine

between requests and the session cookie would be lost because it could not be passed

among multiple machines.

ASP.NET addresses some of the scalability issues previously associated with using

session data in Web farms by offering the option to store it out-of-process in a Windows

service or to store it in a SQL server. Keep in mind that scalability is gained but there is a

performance hit associated with running the session out-of-process. Session state is

enabled by default in the Machine.config file and is set to run in-process. Running

Session InProc has the same limitations for ASP.NET Web applications as discussed

above for traditional Web applications, however it is the fastest most efficient method to

use if session state is required. Our recommendation is if you do not absolutely have to

use session state, then disable it in the Web.config file or at the page level. You can

disable it at the page level by using <%@ Page EnableSessionState = "False" %>.

Caching in ASP.NET

Caching has been greatly improved with ASP.NET and when used properly can boost

application performance significantly. With traditional ASP, caching was implemented by

either storing all of your data in session variables, application variables, or by using a

custom caching solution. These methods are still available in ASP.NET, but ASP.NET

has even more options available to the developer. With the new caching mechanisms the

output of entire pages can be cached via a simple directive. Additionally, there is an

advanced caching engine and a caching API that can be used to store any arbitrary piece

of information that will be reused often.

Note We recommend output caching frequently accessed pages in your

ASP.NET Web application whenever possible, but you should

always follow up your tuning efforts with testing. Be careful not to

go overboard because caching too much data can use valuable

memory resources. To ensure that your caching implementation is

effective, you can monitor the performance counter ASP.NET

Applications\Output Cache Turnover Rate\Total. This counter

should remain low or commensurate with the expiration or

invalidation rate of the cached pages.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Output Caching

The ASP.NET output cache can use memory on the server to store the output of

processed and rendered pages. If output caching is enabled, the output of a page is

saved after the first request. Subsequent requests for the same page are then retrieved

from the cache, if the output is still available, and returned to the user bypassing all the

overhead of parsing, compiling and processing. This greatly improves the response time

and reduces utilization of the server's resources.

This feature can easily be enabled for pages by including the OutputCache directive

within the page. For example, to save the output of a processed page for a maximum of

60 seconds, using the most basic syntax, you can include the following directive in the

page:

 <%@ OutputCache Duration="60" VaryByParam="None"%>

The Duration and VaryByParam attributes are required.

Note It is recommended that pages which are output cached have a

Duration of at least 60 seconds, or the turnover rate of the page

may hinder rather than benefit performance.

For pages that are short lived but have potentially expensive-to-obtain data, it may be

better to utilize the Cache object to cache and update the data as needed (see the section

on "Cache API" below). The VaryByParam attribute allows you to save multiple versions

of a page. For example, pages can be designed to produce varying output based on the

values of the parameter sent. Specifying a value of None for the VaryByParam attribute

saves the output for the page if it is accessed without any parameters. To save versions

of the page for all combinations of parameters, you can pass a value of *. You must,

however, be aware that caching multiple versions of a page will consume additional

memory. To cache output based on a specific querystring parameter or form field within

the page, you can specify the name of the parameter. Multiple parameters can be

included by separating them with a semicolon. For example, if a page has a form with

ProductCategory and Product fields, you can cache the output based on values supplied

for these parameter with the following syntax:

<%@ OutputCache Duration="10" VaryByParam="ProductCategory;Product"%>

Besides the two required attributes that are supported by the OutputCache directive,

there are three additional attributes all of which are optional; these are Location,

VaryByCustom, and VaryByHeader. The Location attribute controls where the data will be

cached (for example, the server or client). VaryBy-Header can cache based on specific

headers sent with the request, and VarybyCustom can be used to cache based on

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

browser type when specified with a value of Browser or can be used to implement custom

logic when supplied with any other value.

Fragment Caching

Fragment caching is similar to output caching in the sense that the directive is the same.

This level of caching is used to cache portions of a page that are implemented as user

controls and is also referred to as partial page caching or user controls caching. Fragment

caching should be considered whenever there is a lot of information to cache and caching

at the page level is prohibitive in terms of server memory and cache utilization. Again, as

with output caching, fragment caching is best used to cache output that does not vary

tremendously or for output that is resource intensive.

The Output directive to implement fragment caching has to be included as part of the file

implementing the control. The Duration and VaryByParam attributes are required and are

exactly the same as in output caching. Additionally, there is the VaryByControl attribute,

which is specific to fragment caching and can be included only in the user control file.

 <%@ OutputCache Duration="60" VaryByParam="None"%>

Caching API

The caching API lets you save any piece of information in server memory that you want to

reuse. For example, let us say that you need to display the product categories on a page

in addition to other information. Rather than retrieving this information from the database

with every request to the page, you can save the categories via the caching API. The

most basic syntax to cache something is:

Cache("mydata"}() = "some data"

You can store entire data sets besides just strings and numeric data. Retrieving the

cached data is just as simple:

X = Cache("mydata")

Other useful methods to be aware of are the Remove method, used to remove an item

from the cache and the Insert method to add items to the cache. The syntax for the

Remove method is:

(Cache.Remove("mydata"))

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The Insert method is an overloaded method of the Cache object and has several versions.

For example, the following version of the Insert method can be used to add an item to the

cache with no external dependency and with an absolute expiration time of 120 minutes

from the first time the page is cached:

Cache.Insert("mydata", mydata, nothing, _

 DateTime.Now.AddMinutes(120), TimeSpan.Zero)

The last parameter in the previous example is known as the sliding window and can be

used to set an expiration for a cached item relative to the time the item was first placed in

or last retrieved from the cache The sliding value parameter can be thought of as the

maximum length of time between successive calls that need to elapse before a cached

item is removed from the cache. For example, to place an item in the cache for a

maximum of 10 minutes between successive retrievals, you can use the following syntax

of the Cache object's Insert method:

Cache.Insert("mydata", mydata, nothing, DateTime.MaxValue, _

 TimeSpan.FromMinutes(10))

Disabling ViewState

ViewState saves the properties from one page (usually from a form) to the next by saving

and encoding the data for each server control to a hidden form field rendered to the

browser. The size and contents of the ViewState data can be determined by using the

Trace directive at the page or application level as discussed in the previous section,

"Profiling a .NET Web Application." If many server controls are used, the size of the

ViewState data can become quite large and hinder performance of your Web application.

As a best practice it is advisable to disable ViewState unless you absolutely need to use it.

You can disable ViewState by setting the property EnableViewState=" false" at the

page or control level.

ADO.NET Tips

Most Web applications are built with a back-end database management system.

Connecting to this data tier and manipulating the data is critical to application

performance, among other factors such as the amount of data being transferred and the

database design. This is where an understanding of the object model of ADO.NET

becomes important. Using the correct object and right method can make a difference to

application performance, especially under load. This section will highlight some of the

recommended practices for retrieving and affecting data at the data source but is by no

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

means exhaustive. The references listed at the beginning of the chapter are suggested

for more detailed information on ADO.NET.

The .NET Framework ships with two .NET data providers: The OLE DB .NET Data

Provider and the SQL Server .NET Data Provider. The OLE DB .NET Data Provider can

be used to connect to any data source for which there exists an OLE DB Provider, for

example Microsoft SQL Server or an Oracle database, but is primarily intended for

non-SQL Server databases. For applications that use Microsoft SQL Server versions 7.0

or higher, the SQL Server .NET Data Provider is the better choice. This provider has been

optimized specifically for SQL Server and implements some SQL Server-specific

functionality.

Note Use the SQL Server .NET Data Provider with SQL Server versions

7.0 and higher.

SqlConnection Object

The first step in communicating with the data tier is to establish a connection with the

database server. The SQL Server .NET Data Provider gives us the SqlConnection object

for this purpose. Creating a connection is fairly straight forward; the following VB.NET

sample code demonstrates opening a connection to the SQL server on the local machine

and connecting to the Pubs database:

Dim strCnStr As String = "Data Source =.;" _

 & "Integrated Security=SSPI;" _

 & "Initial Catalog = Pubs"

Dim objCn as New SqlConnection(strCnStr) _

 objCn.Open()

By default, this data provider takes advantage of connection pooling. This helps reduce

the overhead of establishing a connection each time it is requested because all of the

work is done up-front when the first connection is established. It is important, to

understand when this feature is taken advantage of. For a pooled connection to be

utilized, the connection strings of all new connections has to match that of the existing

pooled connections exactly. Even an extra space in the string will cause the .NET runtime

environment to create a separate pool. In fact, the .NET runtime creates a separate

connection pool for every distinct connection string. This implies that connections utilizing

different usernames and password will fail to take advantage of pooled connections.

Note It is recommended that applications either use integrated security

whenever possible or implement a common application

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

username/password that is shared by all users in order to improve

the efficiency of the connection pooling usage.

The other factor that determines whether a pooled connection is utilized is the transaction

context. A second connection will use a pooled connection as long as the transaction

context is the same as the initial connection or does not have one at all.

Controlling the size of the connection pool is affected by specifying the min and max

properties. This is important if you need to control the amount of memory utilized at the

Web tier. If all pooled connections are active, any extra connection request will be

blocked until one is relinquished or the connection time out has expired (the default is 15

seconds). The following code demonstrates setting these properties as part of the

connection string:

Dim strCnStr As String = "Data Source =.;" _

 & "Integrated Security=SSPI;" _

 & "Initial Catalog = Pubs;" _

 & "Min Pool Size=10;" _

 & "Max Pool Size =100"

Another property that can have an effect on performance is the packet size. For

applications that transfer large blob or image fields, increasing the packet size can be

beneficial. In cases where the amount of data transferred is small, a smaller value for the

packet size may be more efficient. The following code demonstrates setting this property

as part of the connection string:

Dim strCnStr As String = "Data Source =.;" _

 & "Integrated Security=SSPI;" _

 & "Initial Catalog = Pubs;" _

 & "Packet Size=32768"

SqlCommand Object

A common scenario for Web applications is the retrieval/modification of data from the

data source. The SQL Server .NET provider implements the SqlCommand/DataReader

and the DataAdapter /DataSet classes that allow the user to retrieve/modify the data. We

only briefly discuss the SqlCommand/DataReader in this book; information on the

SqlDataAdapter/DataSet classes can be obtained from other sources that deal

specifically with ADO.NET.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The SqlCommand/DataReader is connection oriented and provides certain methods that

can be leveraged to improve application performance. These methods include the

ExecuteNonQuery, ExecuteScalar and ExecuteReader. Additionally the SqlCommand

class implements the ExecuteXmlReader method for data returned in XML format. A

description of these four methods along with an example (VB.NET Console application)

for each follows. The examples make a connection to the NorthWind database, which by

default is installed with Microsoft SQL Server.

ExecuteNonQuery Method This method is typically used with Insert, Update, and Delete

operations. The only piece of information that is most useful in these cases, and that is

returned to the client, is the number of rows that are affected. This method will also work

with stored procedures that contain output/return parameters, which can be returned to

the client. The following Visual Basic .NET code demonstrates this method by calling a

stored procedure that returns a count of the number of customers in the Customer table in

the NorthWind database as a return value:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Module ExecuteNonQuery

 Sub Main()

 Dim strConnString As String = "Data Source=.;" _

 & "Initial Catalog=Northwind;" _

 & "Integrated Security=SSPI"

 Dim strSQL As String = "GetNumberOfCustomers"

 Dim sqlConn As New SqlConnection(strConnString)

 Dim sqlComd As New SqlCommand(strSQL, sqlConn)

 sqlComd.CommandType = CommandType.StoredProcedure

 sqlComd.Parameters.Add(New _

 SqlParameter("@i", SqlDbType.Int))

 sqlComd.Parameters(0).Direction = _

 ParameterDirection.ReturnValue

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 sqlConn.Open()

 sqlComd.ExecuteNonQuery()

 sqlConn.Close()

 Console.WriteLine("Number of customers = {0}", _

 CType(sqlComd.Parameters(0).Value, Integer))

 End Sub

End Module

ExecuteScalar Method This method should be used whenever you need to retrieve a

single value from the data tier, for example, if you need a count of customers or the

customer ID of a single customer. To demonstrate this method, the following Visual

Basic .NET code retrieves the count of customers from the Customers table in the

NorthWind database:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Module ExecuteScalar

 Sub Main()

 Dim strConnString As String = "Data Source=.;" _

 & "Initial Catalog=Northwind;" _

 & "Integrated Security=SSPI"

 Dim strSQL As String = "select count(*) from customers"

 Dim sqlConn As New SqlConnection(strConnString)

 Dim sqlComd As New SqlCommand(strSQL, sqlConn)

 sqlConn.Open()

 Dim o As Object= sqlComd.ExecuteScalar()

 sqlConn.Close()

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 Console.WriteLine("Number of customers = {0}", _

 CType(o, Integer))

 End Sub

End Module

ExecuteReader Method Any time you need to return a single data row or multiple data

rows containing a lot of columns, you should use this method. This method is useful for a

one-time pass of the returned data only. To demonstrate this method, the following Visual

Basic .NET code retrieves the customer ID, contact names, and phone number of

customers in the Customers table in the NorthWind database.

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports Microsoft.VisualBasic

Module ExecuteReader

 Sub Main()

 Dim strConnString As String = "Data Source=.;" _

 & "Initial Catalog=Northwind;" _

 & "Integrated Security=SSPI"

 Dim strSQL As String = _

 "select customerid,contactname,phone from customers"

 Dim sqlConn As New SqlConnection(strConnString)

 Dim sqlComd As New SqlCommand(strSQL, sqlConn)

 sqlConn.Open()

 Dim sqlDR As SqlDataReader = _

 sqlComd.ExecuteReader(CommandBehavior.CloseConnection)

 Do While sqlDR.Read()

 Console.WriteLine(sqlDR("customerid").ToString() _

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 & ControlChars.Tab _

 & sqlDR.GetSqlString(1).ToString() _

 & ControlChars.Tab _

 & sqlDR.GetSqlString(2).ToString())

 Loop

 sqlDR.Close()

 End Sub

End Module

In cases where you are sure only one row is returned to the client, you can call this

method by supplying the SingleRow value of the CommandBehavior enumeration as a

parameter. The syntax with this optional parameter is:

Dim sqlDR As SqlDataReader = _

 sqlComd.ExecuteReader(CommandBehavior.SingleRow);

Data values in each row can be referenced either by name or ordinal position as

illustrated in the example shown above. In general using the ordinal position of a data

item achieves slightly better performance. Additionally, if you know the data types being

returned, a further gain can be achieved by using the SQL Server .NET Providers

type-specific methods to return data values. There are several such methods, such as

GetSqlString and GetInt32.

Tip Try to use the type-specific methods of the SQL Server .NET

Provider whenever possible.

ExecuteXMLReader Method This method is useful when data is returned from SQL

Server in XML format. For example, to return the data in XML format, the SQL statement

can be modified to instruct SQL Server to return the data in XML format. The example

that follows demonstrates using this method:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Xml

Module ExecuteXmlReader

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 Sub Main()

 Dim strConnString As String = "Data Source=.;" _

 & "Initial Catalog=Northwind;" _

 & "Integrated Security=SSPI"

 Dim strSQL As String = "SELECT customerid," _

 & "contactname," _

 & "phone "_

 & "From customers "_

 & "FOR XML AUTO"

 Dim sqlConn As New SqlConnection(strConnString)

 Dim sqlComd As New SqlCommand(strSQL, sqlConn)

 sqlConn.Open()

 Dim xmlR As XmlReader = sqlComd.ExecuteXmlReader()

 Do While xmlR.Read()

 Console.WriteLine(xmlR.ReadOuterXml())

 Loop

 xmlR.Close()

 sqlConn.Close()

 End Sub

End Module

Common Web Tier Bottlenecks

Web tier bottlenecks can occur due to many reasons such as configuration problems,

lack of hardware resources, inefficient design, or use of code. It is always useful to

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

eliminate configuration issues by keeping your build documentation and build scripts

up-to-date and verifying your configuration, especially when major code changes occur.

Effective stress testing can assist you in determining if your Web application will scale up

or out by adding additional hardware. Assuming your Web application can scale, one

method is to throw more hardware at your application. The downside to this is that it often

requires more support hours, because there is more hardware to manage. There is a

more detailed discussion on scalability at the end of this chapter. The best method of

meeting or exceeding your performance goals is to identify the bottlenecks and fix or tune

the code. This method is a cyclical process and requires performance testing and tuning

throughout the software development life cycle. In this section we discuss some general

best practices and also share our experiences with some of the newer, more effective

coding techniques currently available.

Real World Configuration Problem

To illustrate a possible configuration problem, let's say you recently deployed a Web

application from your development environment to your production environment. Of

course you completed performance testing of your Web application in the development

environment and have benchmark results or numbers that you can compare against a

test in your production environment. In analyzing the performance data (counters and

IIS logs), you notice much more data being passed from the test conducted in your

production environment. Also, the throughput numbers for the test in your development

environment are much higher. You expected much more throughput in your production

environment because the hardware is more powerful and you used the same test

scripts and the same amount of stress clients for both tests. You then log on to your

production Web server to troubleshoot configuration differences between each

environment. Finally you discover that Trace and Debug were both enabled in the

Web.config file on your development environment just before it was copied up to the

production servers.

Limiting Page Size

One of the most common bottlenecks we often encounter from the Web tier is a result of

the dreadful never-ending page. Passing too much data per page can cause performance

issues on both the IIS server and network tier. This may seem very obvious, but many

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Web applications we analyze suffer from slow response times as a result of having pages

that are simply too large. Do not be afraid to divide up the content when necessary. This

may cost your users an additional click to get to the data they are looking for but your

content will load much quicker. Here are some other tips which can help to provide your

end users with a better experience and quicker response times:

§ If your Web application returns huge record sets, look into paging the

results.

§ Remove white space and comments from your code or HTML. This sends

less data over the wire.

§ Remove unused styles from your stylesheets.

Limiting Images

Optimize all images and use them sparingly or when they provide some kind of value to

your Web application. Reusing the same image causes less network round trips because

most browsers can cache the image on the client, and not have to go to the Web server to

get the image each time. It is more efficient to use one larger image than multiple smaller

images. Quite often images are used for advertisements and are loaded from another site

outside of your control. You should be aware that this creates a dependency on another

site that you cannot control and in extreme cases can cause your page to timeout if the

resource becomes unavailable or becomes extremely slow when loading. If your site is

very dynamic and graphically intensive, consider splitting your dynamic content and your

images to separate Web servers and tune each accordingly.

Using Naming Conventions

Come up with a naming convention that makes sense and is readable but keep the

directory structure as flat as possible. Keep file, directory, and variable names short and

sweet, and abbreviate whenever possible. By doing this you will pass less data in each

request, which can really make a difference because it is common to reference many file

types (like images, StyleSheets, client side scripts, and so on) within HTML. You should

avoid a directory structure like the following URL, which contains 68 characters:

http://yoursite/goodoldunitedstatesofamerica/northcarolina/pictures/

Just by abbreviating the directory structure you can eliminate 41 characters for just one

request.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

http://yoursite/us/nc/pics/

Disabling SSL

Use SSL only when necessary or required within your Web application. Test your pages

with and without SSL enabled to determine the impact of encrypting your data. Generally

speaking we notice a 20 to 30 percent decrease in performance by using SSL. If you

organize your content effectively you can create distinct folders which house content so

you can enable or disable SSL per directory. In most cases there is no need to enable

SSL for images, stylesheets or other file types such as client-side scripts.

Trying New Features

As new programming methods and features become available, do not be afraid to test

them out. Many new coding features are designed not only to provide additional

functionality but to gain performance over previous methods used to solve various

problems. For example, Response.Execute has been available for some time now, but

we still frequently see people using Response.Redirect within their ASP/ASPX code.

When you use Response.Redirect your users will incur an additional network round trip

for the same operation. We have also seen many .NET Web applications which suffer

major performance problems stemming from inefficient string manipulation or

concatenation within loops. Using the new .NET StringBuilder class often resolves this

problem and can add huge performance gains when concatenating many strings together

in a loop.

Scaling the Web Tier

Scalability is defined as having the ability to add resources to a system that increase its

performance (decrease response times or increase throughput). From the performance

testing perspective, this means adding more hardware or redesigning your Web

application to allow more users to access your Web application more efficiently. To cover

scalability we will focus on the Web tier and a methodology to know when and how to

scale it.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Scale Out, Scale Up, or Performance Tune?

The term scalability typically is covered by two distinct yet similar methods, scaling up and

scaling out. These methods should only be used after your Web application has been

performance tested and performance tuned. Performance testing helps you identify

bottlenecks and limitations of your current Web application. Through performance tuning

you will increase throughput, decrease your response times, or both. The following list

definitions and the pros and cons for scaling out, scaling up, and performance tuning.

Scaling Out

Scaling out your Web tier is adding extra Web servers to your application to overcome a

bottleneck or limitation caused by this tier. The benefit of scaling out your Web tier is an

increase in throughput, provided there are no network, SQL, or other bottlenecks external

to your Web server. The downside of scaling out is that it can be expensive in terms of

hardware cost, software cost, and production support cost (power, rack space, cooling,

and so on). Additionally, this puts more of a burden on support staff and deployment.

Scaling Up

Scaling up your Web tier means adding extra hardware like memory and CPU capacity to

your servers to overcome a bottleneck or limitation caused by this tier. This method is

less expensive then scaling out because memory and CPU costs are relatively

inexpensive compared to buying the whole machine. However, this approach may not

give you linear gains in performance. To justify scaling up, performance testing is

required both before and after scaling up to determine the overall impact.

Performance Tuning

Performance tuning is simply fixing bottlenecks on your application to achieve your

desired throughput rate or response time criteria. In other words, fix the code instead of

scaling your hardware. This method can be the most expensive if not performed during

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

the software development life cycle, because it involves high labor cost for software

developers, test engineers, and support engineers.

When to Scale your Web Tier?

A common mistake when building and deploying a Web application is using an

unnecessary amount of hardware to solve issues and overcome bottlenecks.

Performance tuning your application will save time and money because it can give you a

better idea of when additional hardware via scaling up or scaling out is required. By using

steps detailed in Chapter 2, you can identify the business requirements for the

approximate number of customers who will access your Web application. Then you can

run performance tests and tune your Web application to meet and exceed these

estimates. You can also perform a transaction cost analysis, which is outlined in Chapter

9, to determine the maximum number of users your Web application can handle and to

help with capacity planning

You should scale your Web tier only after all other performance constraints are identified

and resolved. For example, if your SQL tier has several performance issues that limit the

number of users to a quantity that a single IIS Server can handle you should fix your SQL

issues first. There is no point in scaling out your Web tier by adding more IIS servers or

upgrading your existing servers with more and faster CPUs and memory if your SQL tier

is at peak capacity.

How Big is Big Enough?

Say you are in the travel and cruise ship industry and you are trying to determine what is

the largest ship possible to obtain the maximum number of customers. If you scale your

ship out and up too much to accommodate as many passengers as possible, you may

not be able to travel to certain places that have size limitations, like the Panama Canal.

If you are not sold out for every trip the unnecessary space and weight may cause your

business to incur extra expenses. The best approach would be to build the ship to meet

your peak passenger and profit requirements with five percent extra capacity perhaps.

This same principle applies when you are trying to determine how much hardware is

needed to deploy a Web application.

How to Scale Out your Web Tier?

To have fault tolerance and redundancy every Web application should have a minimum of

two Web servers. You may build redundancy into a single machine but just having one

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Web server limits your application to a single point of failure. The simplest way to scale

out your Web tier is by adding additional Web servers and to use a hardware or software

based load balancing solution.

Software-based Load Balancing

Microsoft's implementation of a software-based load balancing solution is called Network

Load Balancing (NLB). Using NLB is typically the least expensive method of load

balancing and uses services bundled in Windows 2000 Advanced Server, Windows 2000

Data Center Edition, and Windows .NET Server. This method is good for most Web

applications and allows you to scale out several nodes in your Web tier. For detailed

instructions and implementation practices visit http://www.microsoft.com.

Hardware-based Load Balancing

A hardware-based load balancing solution is optimal because it is a layer separate from

your Web application's code, so it does not use resources from your Web server. Many

companies, such as Cisco, F5 Labs, and Extreme Networks, provide hardware-based

load balancing products and solutions. For detailed information on configuring and

installing a load balancing solution, visit the Web sites of the vendors listed above.

Conclusion

After you understand your Web application's configuration, you can begin to identify

bottlenecks at the Web tier. You profile your .NET Web application by monitoring the IIS

log files and System Monitor data, and pinpoint delays or other bottlenecks within the

code by using the new trace feature in ASP.NET. You can make large performance gains

by tuning your code and using new methods or features in ASP.NET, like output caching,

whenever possible and appropriate.

Chapter 7: Performance Analysis of Managed

Code

In this chapter, we will explore the performance considerations relevant to the .NET

common language runtime environment (CLR). First we will review the CLR features that

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

have the most influence on the performance of .NET Web applications, and go into detail

about specific performance counters used to analyze typical .NET Web application

behavior. Next, we will discuss two applications that Microsoft uses when profiling

managed code: Compuware's DevPartner Studio, and Xtremesoft's Appmetrics.

CLR and Performance

The common language runtime is the part of the .NET Framework that provides the

management we refer to when we speak of .NET managed code. For .NET applications,

CLR stands in for the Windows kernel, providing vital services such as loading, memory

management and protection, exception handling, and the means to easily interoperate

with other components and applications. In addition to reprising the features of a classic

runtime environment, CLR also takes on the job of compiling .NET applications on the

system where they will actually be running.

Microsoft's reasons for creating a new runtime environment go beyond the scope of this

book, but many of the particular features and trade-offs of CLR's design are of immediate

interest.

Microsoft Intermediate Language

The biggest difference between traditional applications and .NET applications is

that .NET applications are not directly compiled into native instructions for the processor

on which they will eventually run. Instead, .NET applications are compiled from any

number of .NET languages (such as Visual Basic .NET, C++ .NET, or C#) into Microsoft

Intermediate Language (MSIL), which is then packaged and distributed in the form of

assemblies. An assembly is a file or set of files containing objects compiled into MSIL and

a manifest that describes them.

Note You can browse the contents of an assembly using the tool

ildasm.exe, which Microsoft provides with the .NET Framework.

With this design, code represented as MSIL can be analyzed and managed by CLR. Its

benefits include garbage collection, whereby CLR determines which objects in memory

are no longer in use and automatically de-allocates them, and memory type safety,

meaning that CLR knows how a given object in memory is meant to be accessed and can

verify in advance that no executable code will misuse it. In addition, managed code

simplifies interoperability between applications and components written in different

languages.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The Just-in-Time Compiler

Code written in MSIL is never executed. Instead, CLR uses a built-in compiler called the

Just-in-Time Compiler (JIT) to generate native machine instructions for execution.

Code is typically compiled only as needed. When a process calls a method for the first

time, the JIT steps in and compiles the method on the spot. (If another application or

instance of the same application later calls the same method, it will have to compile its

own instance of the method as well.) One part of this process is verification, in which CLR

verifies that the code is safe, meaning it only accesses objects in memory as they are

intended to be accessed. After the code is compiled, execution proceeds from the

address where the generated native instructions are located. Finally, when the process

terminates, the native instructions that were generated are discarded.

This process provides a huge performance advantage when measured against classic

Web applications written using ASP. Until now, ASP has been an interpreted language,

meaning that it has carried the overhead cost of having to interpret code as it goes along,

never reducing that code to a more efficient compiled form the way ASP.NET does.

However, the case is not as clear cut when measured against classic compiled

applications. Compiling code at run time, instead of ahead of time, obviously incurs a

performance impact. Microsoft has taken measures to minimize the impact, and in a few

cases, JIT compiled code can even outperform its unmanaged counterpart.

One performance benefit of compiling code at run time is that so much more is known

about the operating environment at run time than the developer could possibly have

known at design time. Certain optimizations may be available to the JIT based on the

number of system processors and their individual features, as well as what other system

resources are available and how they are being used at the time.

On the other hand, only a limited amount of optimization can be done before the time

required to optimize the code has the potential to outweigh the benefit of optimization.

Recognizing this, the JIT implements certain algorithms to avoid optimizations that are

unlikely to save as much time as it costs to attempt them.

Note If you're interested in quantifying exactly how the JIT affects

performance, you'll find a number of helpful performance counters

in the .NET CLR Jit performance object.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The Pre-JIT Alternative

Included with the .NET Framework is the tool ngen.exe, used to compile assemblies from

MSIL into native instructions at the time they are installed, in a process referred to as

Pre-JIT. At first glance, Pre-JITting looks like the best of all worlds-why compile at run

time when the compiler can still benefit from knowing the details of the system at install

time?

The truth is that the impact of JITting at run time is most noticeable when the application

is first loaded. Since Web applications rarely reload, if ever, there's little reason to Pre-JIT

them. Another reason not to Pre-JIT is that you miss out on the optimizations made

available by knowing the state of the system at run time.

Note On the other hand, the JIT could afford to spend more time

computing code optimizations at install time than it can at run time.

The current version of .NET does not take advantage of this, but

future versions may do so, possibly making Pre-JIT more suitable

for Webbased applications.

The Life and Times of a .NET Web Application

Now that we've introduced JIT, we will explore some of the other ways CLR influences the

performance of an application over the course of its execution. Bear in mind that as far as

CLR is concerned, it does not matter which high-level programming languages the

application components were written in. By the time CLR encounters them, they are

either managed assemblies written in MSIL, or they are unmanaged code to be run

outside of CLR.

Load Time-AppDomains

When CLR loads a new application, applications are placed in special memory areas set

aside for them called AppDomains. Because CLR provides memory type safety, it is

possible for multiple applications to safely cohabit within the same AppDomain.

Applications in the same AppDomain function as a group in the sense that they can share

data quickly and efficiently, and if the AppDomain is unloaded, all applications and

assemblies loaded into that domain are unloaded together.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Run Time-Interoperability

As a .NET application runs, it may make calls into unmanaged code, such as COM

components or standard Windows DLLs. Whenever execution of a thread passes

between managed code and unmanaged code, a transition is said to occur. These

transitions carry certain costs.

One cost of making a transition is that the arguments and return values being passed

between the caller and callee must be marshaled. Marshaling is the process of arranging

the objects in memory according to the expectations of the code that will process them.

Naturally, data types such as strings and complex structures are more expensive to

marshal than simple types like integers.

Note In the case of strings, it is often necessary to convert them to

different formats such as ANSI and Unicode. This is an example of

an expensive marshalling operation.

Another cost of transitioning concerns CLR's memory manager, known as the garbage

collector. (The garbage collector will be discussed in more detail later in the chapter.)

Whenever a transition into unmanaged code occurs, CLR must identify all the objects

referenced by the call to unmanaged code, to ensure the garbage collector does not

move them and thereby disrupt the unmanaged thread. Objects that have been identified

as possibly in use by unmanaged code are said to be pinned.

Note Obviously, the most desirable behavior for an application is to

minimize the number of transitions needed to do a given amount of

work. When testing, use the # of marshalling counter in the .NET

CLR Interop performance object to locate areas where application

threads are repeatedly transitioning between modes and doing

only a small amount of work before transitioning back.

Run Time-Garbage Collection

One of CLR's most prominent features is automatic memory management, better known

as garbage collection. Rather than requiring developers to implement their own memory

management, CLR automatically allocates memory for objects when they are created,

and periodically checks to see which objects the application is done using. Those objects

that are no longer in use are marked as garbage and collected, meaning that the memory

they occupy is made available for use by new objects.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Generations and Promotion

Naturally, garbage collection needs to be fast, since time spent managing memory comes

at the expense of time spent letting the application do its job.

One assumption about memory management that has withstood considerable scrutiny

can be summarized by simply saying that the vast majority of objects are usually needed

for only a short amount of time. Microsoft's garbage collector (GC) makes the most of this

by sorting objects into three categories, or generations, numbered 0, 1, and 2. Each

generation has a heap size, which refers to the total number of bytes that can be

occupied by all objects in that generation. These heap sizes change over the course of an

application's execution, but their initial sizes are usually around 256 KB for generation 0,

2 MB for generation 1, and 10 MB for generation 2.

Objects in generation 0 are youngest. Any time an application creates a new object, the

object is placed in generation 0. If there is not enough room on the generation 0 heap to

accomodate the new object, then a generation 0 garbage collection occurs. During a

collection, every object in the generation is examined to see if it is still in use. Those still in

use are said to survive the collection, and are promoted to generation 1. Those no longer

in use are de-allocated. You will notice that the generation 0 heap is always empty

immediately after it is collected, so there is always room to allocate a new object-that is,

unless the system is out of memory, as we discuss below.

Note You may wonder what happens if a new object is so large that its

size exceeds the space available on the generation 0 heap all by

itself. Objects larger than 20 KB are allocated on a special heap all

their own, known as the large object heap. You'll find performance

counters to track the large object heap size in the .NET CLR

Memory performance object.

In the course of promoting objects from generation 0 to generation 1, the GC must check

to see if there is room to store the promoted objects in generation 1. If there is enough

room on the generation 1 heap to accomodate objects promoted from generaton 0 the

true GC terminates, having only collected generation 0. If, on the other hand, the capacity

of the generation 1 heap will be exceeded by promoting objects into it from generation 0,

then generation 1 is collected as well. Just as before, objects that are no longer in use are

de-allocated, while all surviving objects are promoted, this time to generation 2. You'll

notice that after generation 1 is collected, its heap is occupied only by those objects newly

promoted from generation 0.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Just as generation 1 must sometimes be collected to make room for new objects, so must

generation 2. Just as before, unused objects in generation 2 are de-allocated, but the

survivors remain in generation 2. Immediately after a collection of generation 2, its heap is

occupied by surviving as well as newly promoted objects.

Immediately following a collection, a heap's contents are re-arranged so as to be adjacent

to each other in memory, and the heap is said to be compacted.

Notice that any time generation 1 is collected, so is generation 0, and whenever

generation 2 is collected, the GC is said to be making a full pass because all three

generations are collected.

As long as only a few objects need to be promoted during a collection, then the garbage

collector is operating efficiently, making the most memory available with the least amount

of work. To optimize the likelihood that the garbage collector will operate efficiently, it is

also self-tuning, adjusting its heap sizes over time according to the rate at which objects

are promoted. If too many objects are being promoted from one heap to another, the GC

increases the size of the younger heap to reduce the frequency at which it will need to

collect that heap. If, on the other hand, objects are almost never promoted out of a heap,

this is a sign that the GC can reduce the size of the heap and improve performance by

reducing the application's working set. The exception here is generation 2: since objects

are never promoted out of generation 2, the GC's only choice is to increase the size of the

generation 2 heap when it starts getting full. If your application's generation 2 heap grows

too steadily for too long, this is probably a sign that the application should be reviewed for

opportunities to reduce the lifetime of objects. When generation 2 can no longer

accommodate promoted objects, this means the garbage collector cannot allocate space

for new objects, and attempts to create new objects will cause a

System.OutOfMemoryException.

The GC also attempts to keep the size of the generation 0 heap within the size of the

system's L2 cache. This keeps memory I/O costs to a minimum during the most frequent

collections. When monitoring your application, it may be helpful to see if it allows the GC

to take advantage of this optimization.

Pinned Objects

As mentioned earlier, pinned objects are those that have been marked as possibly in use

by threads executing unmanaged code. When the GC runs, it must ignore pinned objects.

This is because changing an object's address in memory (when compacting or promoting

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

it) would cause severe problems for the unmanaged thread. Objects therefore survive any

collection that occurs while they are pinned.

When monitoring application performance, pinned objects indicate memory that cannot

be managed or reclaimed by the garbage collector. Pinned objects are usually found in

places where the application is using significant amounts of unmanaged code.

Finalization

Some objects might store references to unmanaged resources such as network sockets

or mutexes. Since de-allocating such an object would result in loss of the reference to the

unmanaged resource, developers might specify that the GC must cause the object to

clean up after itself before it can be de-allocated, in a process called finalization.

Finalization carries several performance costs. For example, objects awaiting finalization

cannot be de-allocated by the garbage collector until they are finalized. Moreover, if an

object pending finalization references other objects, then those objects are considered to

be in use, even if they are otherwise unused. In contrast to the garbage collector, the

programmer has no way to directly control the finalization process. Since there are no

guarantees as to when finalization will occur, it is possible for large amounts of memory to

become tied up at the mercy of the finalization queue.

When a garbage collection occurs, objects pending finalization are promoted instead of

collected, and tracked by the Finalization Survivors counter in the .NET CLR Memory

performance object. Objects referenced by finalization survivors are also promoted, and

tracked by the Promoted Finalization counters in the .NET CLR Memory performance

object.

When monitoring an application that uses objects that require finalization, it is important

to watch out for excessive use of memory by objects that are pending finalization directly

or otherwise.

Differences Between Workstation and Server GC

Whenever a collection occurs, the GC must suspend execution of those threads that

access objects whose locations in memory will change as they are promoted or

compacted. Choosing the best behavior for the GC depends on the type of application.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Desktop applications that interact directly with individual users tend to allocate fewer

memory objects than Web-based applications that serve hundreds or even thousands of

users, and so minimizing the latency involved in a garbage collection is a higher priority

than optimizing the rate at which memory is reclaimed.

Therefore, Microsoft implements the GC in two different modes. Note that the best GC is

not chosen automatically - CLR will use the Workstation GC (mscorwks.dll) unless the

developer specifies that the application requires the Server GC (mscorsvr.dll) instead.

Note In our experience, with most Web application scenarios, we have

found that the Server GC out performs the Workstation GC.

Run Time-Exceptions

Whenever a method encounters a situation it can't deal with in the normal course of

execution, it creates an exception object that describes the unexpected condition (such

as out of memory or access denied). The exception is then thrown, meaning the thread

signals CLR that it is in a state of distress, and cannot continue executing until the

exception has been handled.

When an exception is thrown, the manner of its disposal will depend on whether or not the

application has code to handle the exception. Either CLR will halt the application because

it cannot handle the exception gracefully, or CLR will execute the appropriate exception

handler within the application, after which the application may continue execution. (An

application could be designed to terminate gracefully after handling certain exceptions; in

that case we would say that the application continues, if only to terminate as intended.)

Suppose method main() calls method foo(), which in turn calls method bar(), and bar()

throws a System.FileNotFoundException. The CLR suspends execution of the thread

while it looks for an exception filter that matches the thrown exception. Method bar() might

have an exception handler whose filter specifies System.DivideByZeroException. The

FileNotFoundException would not match this filter, and so CLR would continue in search

of a matching exception filter. If none of the exception filters specified by function bar()

matched the exception, the system would recurse up the call stack from bar() to the

function that called it, in this case, foo(). Now, suppose foo() has an exception handler

that specifies System.FileNotFoundException. The exception handler in foo() will execute,

thereby catching the exception.

When we speak of throw-to-catch depth, we refer to the number of layers up the call stack

CLR had to traverse to find an appropriate exception handler. As it was in our

hypothetical example, the throw-to-catch depth was 1. If bar() had caught its own

exception, the depth would have been 0. And if CLR had needed to recurse all the way up

to main(), the depth would have been 2.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Once an exception has been caught, execution of the application resumes inside a block

of code called a finally block. The purpose of a finally block is to clean up after whatever

operations might have been interrupted by the exception. Finally blocks are optional, but

every finally block that exists between the method that threw the exception and the

method that caught it will be executed before the application resumes regular execution.

Therefore, in our example above, if functions foo() and bar() each implement a finally

block, both will execute before program flow returns to normal. If the developer chose not

to write a finally block for bar(), but did write one for foo(), the finally block in foo() would

still execute.

Exceptions in Unmanaged Code

When managed code calls unmanaged code, and that unmanaged code throws an

exception which it does not catch, the exception is converted into a .NET exception, and

the CLR becomes involved in attempting to handling it. As with any other. NET exception,

CLR will halt the application if it is not handled.

Unmanaged exceptions, which do not concern CLR, won't be tabulated by any of

the .NET CLR performance counters. On the other hand, .NET exceptions which

originated in unmanaged will be tabulated by the # of Exceps Thrown counters once they

are converted. When tabulating .NET exceptions converted from unmanaged code, the

Throw to Catch Depth performance counter will only count stack frames within the .NET

environment, causing the throw-to-catch depth to appear shorter than it actually is.

Exceptions and Performance

Exception handling is expensive. Execution of the involved thread is suspended while

CLR recurses through the call stack in search of the right exception handler, and when it

is found, the exception handler and some number of finally blocks must all have their

chance to execute before regular processing can resume.

Exceptions are intended to be rare events, and it is assumed that the cost of handling

them gracefully is worth the performance hit. When monitoring application performance,

some people are tempted to hunt for the most expensive exceptions. But why tune an

application for the case that isn't supposed to happen? An application that disposes of

exceptions quickly is still just blazing through exceptions instead of doing real work.

Therefore, we recommend that you work to identify the areas where exceptions most

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

often occur, and let them take the time they need so that your application can continue

running gracefully.

.NET Performance Counters

Now that you have been introduced to those aspects of the .NET Framework that have a

direct impact on the performance of your Web application, we will discuss some of the

new .NET performance counters that allow you to measure the performance of the .NET

Framework and your managed code. This section is not intended to discuss all of the

counters; doing so would require far more than a chapter of material. Instead, we set out

to present those counters that would give you the most bang for your buck. The counters

presented below, in our opinion, are the ones that can tell the most about your application

in the shortest amount of time. Note that this subset of counters does not represent all of

the requirements for monitoring the performance of your .NET Web application.

Depending on your system architecture, you may find it necessary to monitor other .NET

related counters along with counters not specific to .NET.

Tip If you are interested in capturing performance counter data as part of

an application that you are developing, you can reference under

managed languages in the System.Diagnostics.PerformanceCounter

namespace.

.NET CLR Memory Object

All of the counters found under this object relate memory usage by the .NET framework.

No matter whether you are running a .NET Web application or .NET desktop application,

these counters will help you understand how the framework is using the system's memory

resources. It is important to note that if your application consists of both managed and

unmanaged code, these counters will only draw a partial picture of memory usage, since

they do not track memory use by unmanaged code even though it may be running as part

of the same application.

GC Handles Performance Counter

The # GC Handles performance counter displays the current number of garbage

collection handles in use. Garbage collection handles are handles to resources outside of

CLR and the managed environment. A single handle may only occupy a tiny amount of

memory in the managed heap; however, the unmanaged resource it represents could

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

actually be very expensive. You may encounter a large amount of activity with GC

handles if multiple objects were created through the use of your Web application. For

instance, if a particular user scenario required the allocation of an unmanaged resource

such as a network socket each time a user executed that scenario an object consisting of

this array would be created along with a corresponding GC handle. When under heavy

load-specifically when this scenario is called-your Web site would create a large number

of GC handles, possibly causing your application to become unstable.

Gen 0 Collections

This and the following two counters are important for understanding how efficiently

memory is being cleaned up. The # Gen 0 Collections counter displays the number of

times generation 0 objects have been garbage collected since the start of your application.

Each time an object that is still in use is garbage collected at generation 0, it is promoted

from generation 0 to generation 1. As we described earlier, one scenario in which

generation 0 promotions occur is if your Web application needs to create a new object

whose required memory resources exceed the resources available at generation 0. In

that case an object remaining in use at the generation 0 level would be promoted, freeing

the resources needed for the newest object. The rate of Gen 0 collections will usually

correspond with rate at which the application allocates memory.

Gen 1 Collections

This counter displays the number of times the Gen 1 heap has been collected since the

start of the application. You should monitor this counter in the same fashion as the # Gen

0 Collections counter. If you see numerous collections at generation 1, it is an indication

that there are not sufficient resources to allocate for objects being promoted from

generation 0 to generation 1. Thus, objects will be promoted from generation 1 to

generation 2, leading to high resource utilization at the generation 2 level.

Gen 2 Collections

This counter displays the number of times generation 2 objects have been garbage

collected since the start of the application. Of the three counters discussing

generation-level collection information (# Gen 0 Collections, # Gen 1 Collections and #

Gen 2 Collections) the # Gen 2 Collections is the most important to monitor. With Web

applications if you are seeing a high activity for this counter, the aspnet_wp process could

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

be forced to restart. The restart will occur if the amount of global memory has been fully

allocated to resources at the generation 2 level. The restart of the aspnet_wp process

forces additional memory to be allocated to the global memory.

Total Committed Bytes

This counter displays the amount of virtual memory committed by your application. It is

obviously ideal for an application to require as little memory as possible, thereby reducing

the amount of work required for the garbage collector to manage it.

% Time in GC

This counter indicates the amount of time spent by the garbage collector on behalf of an

application to collect and compact memory. If your application is not optimized, you will

see the garbage collector working constantly, promoting and deleting objects. This time

spent by the garbage collector reflects its use of critical processor and memory

resources.

Gen 0 heap size

The Gen 0 heap size counter displays the maximum bytes that can be allocated in

generation 0. The generation 0 size is dynamically tuned by the garbage collector;

therefore, the size will change during the execution of an application. A reduced heap size

reflects that the application is economizing on memory resources, thereby allowing the

GC to reduce the size of the application's working set.

Gen 0 Promoted Bytes/sec

This counter displays the amount of bytes promoted per second from generation 0 to

generation 1. Even though your application may exhibit a high number of promotions, you

may not see a high number of promoted bytes per second if the objects being promoted

are extremely small in size. You should monitor the # Gen 1 heap size counter along with

this counter in order to verify whether promotions are resulting in poor resource allocation

at the generation 1 level.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Gen 1 heap size

This counter displays the current number of bytes in generation 1. Unlike its Gen 0 heap

size counterpart, the Gen 1 heap size counter does not display the maximum size of

generation 1. Instead, it displays the current amount of memory allocated to objects at the

generation 1 level. When monitoring this counter, you will want to monitor the # Gen 0

Collections counter simultaneously. If you find a high number of generation 0 collections

occurring, you will find the generation 1 heap size increasing along with them. Eventually,

objects will need to be promoted to generation 2, leading to inefficient memory utilization.

Gen 1 Promoted Bytes/sec

Gen 1 Promoted Bytes/sec displays the number of bytes promoted per second from

generation 1 to generation 2. Similar to the approach for the Gen 0 Promoted Bytes/sec

counter, you should monitor the Gen 2 heap size counter when monitoring the Gen 1

Promoted Bytes/sec counter. The two counters will provide you with a good indication of

how much memory is being allocated for objects being promoted from generation 1 to

generation 2.

Gen 2 heap size

This counter displays the current number of bytes in generation 2. When monitoring an

application that is experiencing a high number of promotions from generation 1 to

generation 2, the generation 2 heap size will increase since objects cannot be further

promoted.

.NET CLR Loading

The following counters found under the .NET CLR Loading performance object, when

used alongside other counters such as % Processor Time, allow you to gain a more

detailed understanding of the effects on system resources through the loading of .NET

applications, AppDomains, classes and assemblies.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Total AppDomains

This counter displays the peak number of AppDomains (application domains) loaded

since the start of the application. As mentioned earlier, AppDomains are a secure and

versatile unit of processing that CLR can use to provide isolation between applications

running in the same process. AppDomains are particularly useful when you need to run

multiple applications within the same process. In the case of a Web application, you may

find yourself having to run multiple applications within the aspnet_wp process. From a

performance standpoint, understanding the number of AppDomains currently running on

the server is critical because each time you create or destroy an AppDomain system

resources are taxed. Just as important is the need to understand the type of activity

occurring between AppDomains. For example, if your applications must cross

AppDomain boundaries during execution, this will result in context switches. Context

switches (as discussed in Chapter 4) are expensive, particularly when a server is

experiencing 15,000 context switches per second or more.

Total Assemblies

This counter displays the total number of assemblies loaded since the start of the

application. Assemblies can be loaded as domain-neutral when their code can be shared

by all AppDomains, or they can be loaded as domain-specific when their code is private

to the AppDomain. If the assembly is loaded as domain-neutral from multiple

AppDomains, then this counter is incremented once only. You should be aware of the

total number of assemblies loaded on the server because of the resources needed to

create and destroy them. Sometimes developers will load assemblies that aren't really

required by the application. Alternatively, developers may not be aware of how many

assemblies they are truly loading because they are making an indirect reference.

Total Classes Loaded

This counter displays the total number of classes loaded in all of the assemblies since the

start of the application. Each class loaded is not a static class, so it has a constructor.

When calling the class the developer will have to instantiate the class, which is more

resource intensive than creating the object once and calling the object's method.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

.NET CLR LocksAndThreads

When tracking down a bottleneck that could be related to thread or process contention,

the .NET CLR LocksAndThreads performance object is the best place to start. Here, we

describe those counters under the .NET CLR LocksAndThreads performance object that

can help rule out possible contention issues quickly and efficiently.

Contention Rate/sec

This counter displays the number of times per second that threads in the run time attempt

to acquire a managed lock unsuccessfully. It should be noted that under conditions of

heavy contention, threads are not guaranteed to obtain locks in the order they've

requested them.

Total # of Contentions

This counter displays the total number of times threads in CLR have attempted to acquire

a managed lock unsuccessfully.

Current Queue Length

This counter displays the total number of threads currently waiting to acquire some

managed lock. If you see that the queue length continues to grow under constant

application load, you may be dealing with an irresolvable lock rather than a resolvable

lock. The difference between irresolvable and resolvable locks is that irresolvable locks

are caused when an error within the application code's logic makes it impossible for the

application to release a lock on an object.

.NET CLR Exceptions

Applications that throw excessive amounts of exceptions can be extremely resource

intensive. Ideally, an application should not throw any exceptions. However, many times

developers will intentionally throw exceptions as part of the error checking process. This

exception generating code should be cleaned up before taking an application into

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

production. Here we have listed two counters found under the .NET CLR Exceptions

object. If you choose to monitor only one of these, you should pay most attention to the #

of Exceps Thrown/sec counter. If you see this counter exceed 100 exceptions per second,

your application code warrants further investigation.

of Exceps Thrown

This counter displays the total number of exceptions thrown since the start of the

application. These include both .NET exceptions and unmanaged exceptions that are

converted into .NET exceptions (for example, a null pointer reference exception in

unmanaged code would get rethrown in managed code as a .NET

System.NullReferenceException), but excludes exceptions which were thrown and

caught entirely within unmanaged code. This counter includes both handled and

unhandled exceptions. Exceptions that are rethrown will be counted again. This counter is

an excellent resource when you are attempting to determine what portion of the code may

be generating a high number of exceptions. You could do this by walking through the

application while simultaneously monitoring this counter. When you find a sudden jump in

the exception count, you can go back and review the code that was executed during that

portion of the walkthrough in order to pin down where an excessive number of exceptions

are thrown.

of Exceps Thrown /sec

This counter displays the number of exceptions thrown per second. These include

both .NET exceptions and unmanaged exceptions that get converted into .NET

exceptions but excludes exceptions that were thrown and caught entirely within

unmanaged code. This counter includes both handled and unhandled exceptions. As

mentioned earlier, if you monitor a consistently high number of exceptions per second

thrown (100 or more), you will need to review the source code in order to determine why

and where these exceptions are being thrown.

.NET CLR Security

Depending on how much emphasis you place on the security of your Web application,

you will find the following set of counters to be either extremely active or hardly used.

These counters should be kept active when truly necessary. Conducting security checks

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

of your application is critical even if there is an effect upon application performance.

However, using the security features of the .NET Framework unwisely will not only create

security holes in your application, but performance issues will emerge due to poor

application design.

Link Time Checks

Many times you will monitor a counter and see excessive activity for that counter. This

activity can be deceiving unless you truly understand what is going on with the counter.

The # Link Time Checks counter is just one example. The count displayed is not

indicative of serious performance issues, but it is indicative of the security system activity.

This counter displays the total number of linktime Code Access Security (CAS) checks

since the start of the application. An example of when a linktime CAS check would occur

is when a caller makes a call to a callee demanding execution of an operation. The

linktime check is performed once per caller and at only one level, thus making it less

resource expensive than a stack walk.

% Time in RT checks

This counter displays the percentage of elapsed time spent in performing runtime Code

Access Security (CAS) checks since the last such check. CAS allows code to be trusted

to varying degrees and enforces these varying levels of trust depending on code identity.

This counter is updated at the end of a runtime security check; it represents the last

observed value and is not an average. If this counter contains in a high percentage, you

will want to revisit what is being checked and how often. Your application may be

executing unnecessary stack walk depths (the Stack Walk Depth counter is discussed

next). Another cause for a high percentage of time spent in runtime checks could be

numerous linktime checks.

Stack Walk Depth

This counter displays the depth of the stack during that last runtime CAS check. Runtime

CAS check is performed by walking the stack. An example of when the stack is walked

would be when your application calls an object that has four methods (method A-D). If

your code calls method A, a stack walk depth of 1 would occur. However, if you were to

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

call method D, which in turn calls methods C, B and A, a stalk walk of depth of 4 would

occur.

Total Runtime Checks

This counter displays the total number of runtime CAS checks performed since the start

of the application. Runtime CAS checks are performed when a caller makes a call to a

callee demanding a particular permission. The runtime check is made on every call by the

caller, and the check is done by examining the current thread stack of the caller. Utilizing

information from this counter and that of the Stack Walk Depth counter, you can gain a

good idea of the performance penalty you are paying for executing security checks. A

high number for the total runtime checks along with a high stack walk depth indicates

performance overhead.

Profiling Managed Code

In this next section we'll be discussing how to instrument and profile your managed (and

your unmanaged) code using Compuware's DevPartner Studio 7.0. There are many good

profilers available on the market, but we are using DevPartner Studio as an example

because it is the profiler of choice used by the ACE Team at Microsoft.

Using Compuware DevPartner Studio

Compuware Corporation's DevPartner Studio Professional Edition can assist you in

creating reliable, high-performance applications. The performance analysis component

makes it easy to pinpoint performance bottlenecks anywhere in your code, third party

components, or operating system, even when source code is not available. An evaluation

version of DevPartner Studio 7.0 Professional Edition can be obtained at

http://www.compuware.com/products/devpartner/.

Profiling with DevPartner Studio

In many applications, a relatively small portion of the code is responsible for much of the

application's performance. The challenge is to quickly identify which parts of the code are

the most likely candidates for changes that can improve performance, so developers can

focus their limited time on tuning efforts that have a high probability of improving overall

performance.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The performance analysis capability in DevPartner Studio measures the frequency of

execution and execution time down to the line of code for a wide variety of components:

Visual Basic, Visual C++, Visual Basic .NET, C#, Visual C, native C/C++, as well as Web

applications using ASP.NET, JScript and VBScript when using IE or IIS.

Collecting performance data is straightforward with DevPartner Studio. For managed

code, simply run your application with Performance Analysis enabled. For unmanaged

code, enable the Instrumentation Manager and rebuild. While you are exercising your

application, you can optionally use the session controls (start, stop, and clear) to focus

your data collection on areas of specific interest.

One possible methodology is to collect performance data at the method level only (rather

than the line level), avoiding the instrumentation step for the moment, assessing which

methods are most expensive, and then running linelevel data collection on the methods of

most interest. This technique points you very quickly in the direction of which subset of

methods are the most likely candidates for improvement.

Note To avoid collecting data for all system (nonsource) files, check

Exclude System Images on the DevPartner Performance and

Coverage Exclude Images options page. Once you optimize your

source code, turn off this option so you can examine how your

application uses system code, especially if you are using the .NET

Framework.

Profiling Session Window

Once you are done executing your application, performance data is displayed in a

Session window, as shown in Figure 7-1. The filter pane on the left lists the source files

and system images used during the session, along with the percentage of time spent in

each file during execution. You can quickly browse to any file and view the methods

contained within that file. In this example, note that we have an application with a mixture

of native C++ and C# code. You can also select useful collections of files or methods

(such as the Top 20 methods) in order to focus attention on which code is using the most

execution time or is called most frequently. The Session data pane on the right provides

the detailed method list and associated source code, along with overall summary

information.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 7-1: DevPartner Studio Performance Analysis Session Window

One way to proceed is to sort the session data by the average time spent in each method,

and then to begin to examine the most expensive methods for possible improvements. By

selecting a method in the Session data pane, you can examine the source code in more

detail. Figure 7-2 provides example source code, which is annotated with the number of

times each line of code has executed, the percentage of time spent in called (children)

functions, and the total time spent executing the line of code. The most expensive line is

also highlighted, which could be your starting point for candidate code to further tune.

Figure 7-2: DevPartner Studio Performance Analysis Source Code Window

Profiling Method Details

Another approach to improving performance is to explore the relationships between the

functions called in your application. By selecting a method, the details of that

method-including what other methods it calls and what methods call it-are displayed as

shown in Figure 7-3. The top section of the display identifies the selected method and

contains performance data for the method. The Parents section lists all methods that

called the selected method, and the Children section lists all methods called by the

selected method. Using the Method Details view allows you to quickly understand the

method calling relationships and costs, traverse the calling sequence to help you better

understand both how your own code is working, and understand the impact of calls to the

supporting infrastructure.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 7-3: DevPartner Studio Performance Analysis Method Details Window

Working with Distributed Applications

DevPartner Studio provides performance data gathering and reporting capabilities for the

distributed application environment, including Web-based applications. It provides

end-to-end profiling for distributed, component-based applications. For distributed

Web-based applications, DevPartner collects data for Web applications created in Visual

Studio .NET, as well as applications that use the scripting languages supported by IE and

IIS.

When you run a distributed application, DevPartner can collect data for each separate

local or remote process, including server session data, and correlate the session data.

Data correlation combines session data from multiple processes into a single session file

that you can view to analyze results for the entire application. DevPartner automatically

correlates the session data between different processes when there are

§ DCOM-based calls between methods in different processes

§ HTTP requests between IE as client and IIS as server

To preserve the relationship between the methods of DCOM objects or the relationship

between HTTP client and server (IE and IIS), DevPartner automatically correlates the

data from those sessions. It then combines the correlated data with the client session

data into a single session file. You can view the session file with the correlated data and

navigate between calling and called methods in the Method Details view. You can use the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Correlate Performance Files command by choosing DevPartner from the Tools menu to

manually combine data from different session files when there is no COM-based

relationship or client/ server relationship between IE and IIS.

Effective Performance Analysis for .NET

The .NET Framework is particularly rich and complex, and you can accomplish a lot with

a few lines of code. This offers great opportunities to developers, but can make it difficult

to tune application performance. For example, you may discover that 95 percent of your

application's execution time is spent in the .NET Framework. How do you improve

performance in that case? Here are some basics to make the performance analysis

process using DevPartner Studio more productive.

Understand What You Want to Measure Consider how your application behaves before

you begin collecting performance data. For example, if you are profiling a Web services or

ASP.NET application, think about how Web caching will affect your results. If your test run

inputs the same data repeatedly, your application will fetch pages from the cache,

skewing the performance data. In such a case, you could take pains to ensure variable

input data, or more simply, edit the machine.config file to turn off caching while you test.

Comment out the line that reads:

<add name="OutputCache" type="System.Web.Caching.OutputCacheModule"/>

Understand Start-up Costs The .NET Framework performs many one-time

initializations. To prevent these from skewing performance results, warm up the

application by exercising all the features you want to profile, and then clear the data using

the Clear button on the Session Control toolbar. Next, run a test that exercises the same

features to get a more accurate performance picture.

Understand .NET Framework Costs Use % with Children on the Method List or Source

tab to see how much time you are spending in the .NET Framework. Use the Child

Methods window in Method Details to drill into the .NET Framework to understand which

calls are expensive and why. Rework the application to do less work or to call the .NET

Framework less often.

Collect Complete Data for Distributed Applications When you analyze performance

for a Web application, a multi-tier client/server application, or an application that uses

Web services, include all remote application components in the analysis. Use DevPartner

Performance and Coverage Remote Agent to configure performance data collection on

remote systems. If your application uses native C/C++ components, instrument the

components for performance analysis before collecting data. Of course, the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

recommendations regarding awareness of application behavior, start-up costs, and .NET

Framework costs apply equally to collecting data for server-side components.

Using AppMetrics to Monitor .NET Enterprise Services Components

COM+ provides COM (unmanaged code) components with services to let applications

easily achieve higher scalability and throughput. For .NET Framework (managed code)

components, these same services are also available through Enterprise Services. These

services include transaction coordination across distributed resources, object pooling,

role-based security, etc. You can set up your managed and unmanaged code

components to use these services.

AppMetrics for Transactions (AppMetrics) is a monitoring system for Enterprise Services

applications that we use internally to profile the performance of heavily used COM+

components. Many of the application groups we deal with find themselves having to wrap

their managed code in COM+ components in order to communicate with legacy systems.

Capturing performance data produced by AppMetrics enables us to easily determine

whether or not the COM+ application may be the cause of poor application performance.

You can use AppMetrics to monitor managed and unmanaged Enterprise Services

components. It is designed to monitor applications running in either pre-production or

production environments. AppMetrics monitors applications without any code

instrumentation.

AppMetrics Manager and Agent Monitors

To reduce the effects of monitoring on system and application performance, AppMetrics

uses a Manager and Agent setup. In this arrangement, AppMetrics runs its Agent on the

application server. The Agent collects data about the Enterprise Services components

while using a minimal amount of system resources. This lets AppMetrics capture more

precise data about the applications, whether they run under simulated or real load.

The Agent sends its data to a Manager, which resides on a separate machine. Based on

this data, the Manager generates metrics about the applications and their components.

These metrics include the total number of activations for component instances, the rates

at which the instances finish, and the actual durations of individual instances. You can

use these metrics to find any bottlenecks that may occur in your applications during

runtime.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The Manager machine stores the metrics in a database. From here, you can generate

reports about the application processes and their component instances.

Setting Up AppMetrics Manager and Agent

To evaluate your managed and unmanaged code components while they run under

Enterprise Services, set up AppMetrics within your application system with the following

tasks:

1. On the AppMetrics Manager machine, add a Manager monitor.

2. Add an Agent monitor to the Manager monitor. In effect, this creates

the Agent monitor on the application server.

3. Select the application(s) to be monitored on the application server.

Figure 7-4: Diagnostics Application Configuration Panel

4. Within the selected applications, you can set up specific components

for monitoring.

Pre-Production Monitoring in AppMetrics

For pre-production monitoring, AppMetrics offers a type of analysis that it calls the

Diagnostics Monitor. The Diagnostics Monitor records details about individual component

and transaction activity in a running application.

The Diagnostics Monitor displays the metrics in a drill-down report. This report shows

durations for each active component in the application. It also shows the logical chain of

method calls between the components. This is important because merely viewing the

metrics for each component in isolation from other components does not tell the whole

story. It says nothing about how a component may make calls to other components.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

With the information about the method call chains between components in the drill-down

report, you can begin to see the relationships between components during runtime. It lets

you analyze the overall response time of a component based on its constituent parts.

From this analysis, you can determine if the bottleneck occurs either in the root

component object or somewhere further down the method call chain in a subordinate

component.

Figure 7-5 shows a snippet from an AppMetrics for Transactions report, which illustrates

the following:

§ The logical chain of method activity.

§ An FMStock7.DAL.Broker component that invokes a subordinate

FMStocks7.GAM.7 component instance.

§ The CreditAccountBalance method, which was invoked on the subordinate

component.

§ The unique naming convention for cross-application calls. When the code

makes such calls, they are preceded with the other application name plus

a colon. In this case, the FMStocks7.GAM.7 component resides in a

different application from the FMStocks7.DAL.Broker component.

Figure 7-5: Diagnostics drill-down report

Note In addition to the information shown here, the Diagnostics drilldown

report also provides actual start times, end times, and error codes

for each item.

With the information about cross-application calls in these reports, you can evaluate

whether the subordinate component deserves to be in the other application.

Cross-application calls can be expensive in terms of CPU utilization. They can also

prolong the duration of the method call itself.

If one component makes several cross-application calls during a single transaction into a

subordinate component, it may be advisable to make the subordinate component run in

the same application process with the first component. You can accomplish this in several

ways. For example, you can move the subordinate component into the same application

with the first component. Alternatively, you can move the subordinate component into a

library application.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Additional Diagnostics Information

Before an application goes to production, you will want to know its limitations. Figure 7-6

shows a snippet from an AppMetrics report that details method activity on the

FMStocks7.GAM.7 component instances during a 10-minute period of intense load.

Figure 7-6: Diagnostics report on methods

Observe that the average duration for the monitored methods is quite long and not all

method calls succeeded during the period.

Observing the performance of a component over time can be quite revealing. Figure 7-7

shows a snippet from an AppMetrics for Transactions report, which illustrates component

activity over a four-hour period of intense load.

Figure 7-7: Diagnostics report on components

Production Monitoring

To monitor Enterprise Services applications running in full production environments,

AppMetrics offers the Production Monitor. This monitor generates metrics about the

activity in Enterprise Services applications on an interval basis, but with lower overhead

and information granularity than is available in the Diagnostics Monitor. More specifically,

the Production Monitor calculates totals and rates of activity about components and their

instances, as shown in Figures 7-8, 7-9, and 7-10.

Figure 7-8: Active components chart

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 7-9: Component rate chart

Figure 7-10: Component duration chart

The Production Monitor can also generate application-process metrics, such as

application starts, stops, and crashes. The AppMetrics runtime UI shows process metrics

for each Enterprise Services application process. The following example shows resource

utilization by the process corresponding to FMStocks7.GAM.

Figure 7-11: Application Process Runtime view

The Production Monitor also offers proactive monitoring through alerts. This means that

you can set up thresholds of activity for a specific component metric, such as its average

duration. If AppMetrics detects activity above these levels in your system, it can send

alerts by email or SNMP. AppMetrics can also respond to alert conditions by invoking a

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

custom COM component, where you can program an automated response to the

condition.

The AppMetrics runtime UI shows metrics for each monitored Enterprise Services

component. Figure 7-12 shows that the FMStocks7.DAL.Broker component instances are

taking an average of over ten-seconds from creation to completion. Since such numbers

fall outside the specified thresholds, an alert will be triggered.

Figure 7-12: Application Process Runtime view

Conclusion

Understanding how to profile and interpret the performance of managed code is key to

building scalable and robust .NET Web applications. Profiling of managed code can be

done using System Monitor and the .NET performance counters. This counter information

can then be used in conjunction with any code instrumentation that you may be doing. If

you want to read more about writing high-performing scalable code, look for the upcoming

Microsoft Press book, Writing Scalable Code by Simon Meacham and Mike Parkes.

Chapter 8: Analyzing the SQL Tier

Among the most important uses of any business application are getting, saving, and

displaying data. .NET applications are no exception to this rule, and having a properly

analyzed and tuned SQL tier is critical to achieving high scalability. For applications with

bottlenecks at the SQL tier, purchasing more or better hardware generally does not fix the

problem. Before getting new hardware, you should first identify the bottlenecks affecting

the scalability. The performance issues, for example, could be excessive I/O or processor

utilization resulting from poorly chosen indexes or poorly written queries.

In this chapter, we will focus on how to detect SQL bottlenecks, and discuss some of the

typical index problems that our team encounters frequently. The primary goal of this

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

chapter is to share our experience as a performance analysis team at Microsoft. It is

beyond the scope of this chapter to list every possible performance problem that you

might encounter with the SQL tier. By sharing the methods we use to identify bottlenecks,

we hope that you will be able to pinpoint your own problems. After you've identified the

problem, it is much easier to research the issue or seek help. For the purpose of

demonstration, we will use examples based on the IBuySpy sample site; and if necessary,

we will intentionally introduce problems. The results of examples in this chapter were

obtained using a dual 1-GHZ Pentium III processor server with a 1-GB RAM system,

running Microsoft SQL Server 2000 Enterprise Edition with Service Pack 2 and Windows

2000 Advanced Server with Service Pack 2.

Getting Started

To troubleshoot performance and scalability problems, you first need to understand the

application's database design. Assuming you are using SQL Server 2000, you should

also have a good understanding of Transact-SQL (T-SQL); SQL Server internals, such as

how the Query Optimizer chooses an execution plan; how data and indexes are stored;

and how SQL Server utilizes the data and execution plan caches. To focus on identifying

the bottlenecks, we will assume that you have already worked with SQL Server 2000 and

are somewhat familiar with the built-in tools such as SQL Query Analyzer and SQL

Profiler. Fortunately, there are many great books available that treat the necessary topics

in depth. We have found the following to be good reference sources:

§ SQL Server Books Online (installed as part of SQL Server 2000)

§ Inside Microsoft SQL Server 2000 by Kalen Delaney (Microsoft Press, 2000).

§ The Guru's Guide to Transact-SQL by Ken Henderson (Addison Wesley

Longman, 2000).

§ Microsoft SQL Server 2000 Performance Tuning Technical Reference

(Microsoft Press, 2001).

In addition to learning as much as you can about SQL Server, you also need to be able to

stress the SQL server at a production equivalent load level or anticipated load level. Often,

load generated by a single user is insufficient to reveal scalability problems at the SQL

tier. This is where Chapter 3, in which we introduced Microsoft Application Center Test as

a Web stressing tool, is useful. By creating accurate stress scripts that reflect real-world

scenarios in a testing environment, you can find the bottlenecks before they occur in

production. If you determine that the solution to the problem requires index or query

tweaks, you can then test your solution in the test environment for confirmation before

applying the changes to the production environment.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Identifying Bottlenecks

In many cases, you can use simple logic to detect whether the SQL tier is a bottleneck.

For example, when you have multiple Web servers accessing data from a single SQL

server, reducing the number of Web servers should decrease the overall application

throughput. If changing the number of Web servers does not vary the throughput, the

SQL tier is probably the source of the bottleneck.

Note Frequently, the stress clients may reach a bottleneck before

enough stress has been applied on the Web servers or the SQL

servers. Therefore, it is important to periodically check the stress

clients' resource utilization during each stress test.

Finding out whether the SQL tier has a problem isn't a terribly difficult task. You can

reduce the number of Web servers as mentioned earlier, or monitor the processor

utilization at each tier. In contrast, pinpointing the problems and producing valid solutions

is not easy, and this chapter will not give you such skills instantly. Instead, we'll show you

how we discover the SQL tier bottlenecks and hope that you will learn from our

experience. We will start by discussing the tools included with SQL Server 2000.

Tools We Use

We troubleshoot most SQL related problems using only the tools included in SQL Server

2000. Slow queries can be identified using SQL Profiler; blocking can be detected using

SQL Profiler and SQL Query Analyzer; and other causes of bottlenecks, such as disk or

memory, can be identified using System Monitor. Let's look at each tool and discuss how

we use them.

SQL Profiler

SQL Profiler, if installed in the default location, can be found under

Start\Programs\Microsoft SQL Server\Profiler.

Note To run a trace, the user must have administrator rights on the SQL

server being monitored.

After launching SQL Profiler, select the server that you want to monitor and then enter

your login information. After a connection has been established, the Trace properties

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

dialog box will open. This dialog box has four tabs: General, Events, Data Columns, and

Filters, which are used to specify the trace properties.

On the General tab, you can specify the name of a trace, specify a trace template, and

choose to save the data to a trace file or a SQL table. If you choose to save to a file, you

have to specify a directory and filename; if you choose to save the data to a SQL server,

you need to specify the server, database, and table.

On the Events tab, you can select the events to monitor. The events are grouped into

collections under which individual events are listed. Selecting an event should display a

description on the bottom of the tab. Monitoring all the events might be overkill and can

put a burden on the server. Some of the events that we typically capture are:

§ Stored Procedures: SP:StmtCompleted, SP:Completed,

RPC:Completed and TSQL: SQL:StmtCompleted,

SQL:BatchCompleted These events are triggered whenever a

statement, stored procedure, RPC or batch is completed. By including

the text, reads, CPU, and duration data columns in the trace, you can

identify the slow running code and the cost in terms of CPU resources

used. It is valuable to know the reads incurred for establishing a

baseline against which you can compare optimization efforts.

§ Stored Procedures: SP:Starting, SP:StmtStarting and TSQL:

SQL:StmtStarting By including these events with the completed

events, you can profile a stored procedure down to the line of code.

This is useful for long-running stored procedures because it lets you

identify the problematic statement before the completion. Additionally,

if errors occur while running the stored procedures, you can pinpoint

the statement at which an error is occurring.

§ Sessions: Existing Connection With this event you can verify the

SQL Server options set for database connections. Session options can

affect the way queries are processed. For example, to use indexed

views, the ARITHABORT option must be set to ON, otherwise the

underlying table will be used to retrieve data instead of the clustered

index on the view.

§ Stored Procedures: SP:Recompile The steps involved in running a

stored procedure are parsing, compiling, and executing. Each of these

steps takes a finite amount of time. Ideally, code should be parsed and

compiled only once, utilizing only the server resources to execute the

query. Improperly coded stored procedures can cause a recompile

every time they are called, which has an adverse effect on the duration

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

and even can cause blocking. By including this event in your trace, you

can gauge the amount of recompiling and identify the code that needs

to be optimized by including the SP: Starting event in the same trace.

§ Lock: Timeout and Lock: Deadlock You must track this event

because it directly affects scalability of the application. A lock timeout

or a deadlock can equate to incomplete transactions and result in

errors on the client side.

§ Errors and Warnings: Attention This event is generated any time

there is a disconnect by a client or a timeout. For applications that

typically require a significant amount of time to process, you may need

to increase the timeout value to reduce the number of timeouts. For

example, in ADO.NET you may need to increase the value of the

CommandTimeOut property to more than 30 seconds (default) for

queries that have long durations.

§ Errors and Warnings: Missing Column Statistics SQL Server can

automatically create and maintain statistics on tables and indexes. This

information is merely a distribution of the values in particular data

columns of the tables or indexes and is used by the query processor to

select an execution plan. Missing or outdated statistics could cause the

query processor to pick an inefficient execution plan, which can have

an impact on the overall throughput of the application.

§ Errors and Warnings: Missing Join Predicate This event is triggered

whenever a cross join is run. Cross joins are very rarely used and could

be a potential oversight in a developer's code. Tracking this event will

let you confirm whether queries reference tables in such a manner.

§ Errors and Warnings: Exception and Error Log These events are

useful for determining if any unusual errors are occurring as a result of

stressing the application. By monitoring this event you can establish

whether these errors are a result of load. You can, for example, set the

trace flag 1204 and 3605 for all connections made to a server, and SQL

Profiler can capture information relating to deadlocks. Deadlocking is a

serious problem that will result in a poor client experience and

significantly affect your application throughput.

For more information, search under "event classes" in SQL Server Books Online.

On the Data Columns tab, you can specify the data columns that you want to capture.

There are 43 columns, of which Event Class and SPID are required. Depending on the

level of activity a given application might generate on the SQL server and how many

users are in the environment, you might end up with a huge amount of data. Keep in mind

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

that not all data columns will be populated, because every column is not meaningful for

every event. For example, duration is only meaningful for complete events such as

SP:Completed; this column will be blank for SP:Starting. Some of the data columns that

we collect are listed in Table 8-1:

Table 8-1: Typical Data Columns

Data Column Description

Event The name of the event. For example, the start of a stored

procedure, a connection established, and so on.

Text The text of the SQL command being run. This column can

be blank if it is irrelevant for a particular event.

CPU CPU resources used in milliseconds.

Reads Number of logical reads performed to execute a query.

Writes Number of physical writes performed by a SQL command.

Duration The duration of an event, such as the time to execute a

stored procedure.

StartTime Time the event was triggered.

EndTime Time the event completed. This applies to end events.

NestLevel The depth within a nesting operation. For example, if a

stored procedure calls another stored procedure, the nest

level of the calling procedure is 1 and that of the called

procedure is 2. This is equal to the @@NestValue global

variable.

Application

Name

The name of the application that has a connection to the

server.

HostName The machine name on which the application that submits

a SQL command is running.

NTUserName The Windows user that the connecting application is

running under.

LoginName Either the Windows user name or the SQL server login,

depending on the authentication method used to connect.

For more information, search under "data columns" in SQL Server Books Online.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

On the Filters tab, you can specify filters to further limit the data collected. For example, if

you are only interested in the SQL activity generated by one particular application, you

can set a filter on the application name. By default, events triggered by SQL Profiler are

excluded. You can familiarize yourself with all the filters available by examining the Filters

tab in the Trace Properties dialog box. Selecting a filter should display an explanation of

the filter at the bottom of the tab.

Now that you know what to track, you may be wondering how to analyze the trace you

have captured. SQL Profiler gives you two choices for saving the data: a trace file or a

SQL table. In fact, if you save the data to a file, you can always open the trace file and still

choose to save the data to a SQL table. The choice is yours and depends on your

preference.

Tip You can also directly query a trace file by using a system function

called fn_trace_gettable. For example, the following query returns all

events with greater than 1000 milliseconds duration from trace.trc file

in a table format:

SELECT * FROM ::fn_trace_gettable('c:\trace.trc', default) WHERE

Duration > 1000

For more information, see "fn_trace_gettable" in SQL Server Books

Online.

We find that for large amounts of data, it is easier to analyze a trace by saving the data to

a table and writing queries against this table to retrieve information such as the top few

stored procedures that had the longest duration or to get the average duration across all

instances of a stored procedure. Before you decide that some code is slow, you need to

define criteria for a slow running query.

Tip We consider any code that has a duration of a second or more while

the application is under minimal load to be an area for further

investigation and potential improvement. The logic behind this

criterion is that under load these durations will simply increase and

hence reduce application throughput.

As you run more and more traces, you will find that you always track certain events and

data columns or specify certain filters. SQL Profiler makes this task easy by letting you

create a template containing the trace properties that you most often use. This will save

you from having to define your trace properties every time you need to run a trace. The

steps to create a template are very simple: Choose New Trace Template from the File

menu to display the Trace Properties dialog box, in which you can specify events, data

columns, and filters. You can then click Save As on the General tab. Alternatively, you

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

can choose Open Trace Template from the File menu to open an existing template. You

can then customize the template and save it under a different name.

System Monitor

SQL Server exposes a number of performance objects that can be monitored with

System Monitor. Chapter 4 covers this tool in great detail and focuses on counters such

as Processor, Memory, Disk, and Network that relate to system level resources. This

section will only cover the SQL Server-specific counters that we tend to look at most often.

The reference books listed at the start of this chapter cover the other counters in more

detail. Depending on your specific needs, you may want to look at other counters. The

SQL Server-specific counters that we use most often are:

§ SQLServer:Buffer Manager

o Buffer cache hit ratio The percentage of pages that

were found in the buffer pool without having to incur a

read from disk (physical I/O). Low values might be a

symptom of low memory conditions or poor indexing.

§ SQLServer:General Statistics Object

o User Connections The number of active

SQL connections to the system. This counter

is informational and can be used in reporting

results to quantify the level of concurrency on

the system.

§ SQLServer:Locks

o Lock Requests/sec The number of lock

requested per second. Optimizing queries to

reduce the number of reads can reduce this

counter.

o Lock Timeouts/sec Number of lock requests

that time out while waiting for a lock to be

granted. Ideally this counter should be zero.

o Lock Waits/sec Number of lock requests

that could not be granted immediately. Ideally

this counter should be as close to zero as

possible.

o Number of Deadlocks/sec Number of

requests that resulted in a deadlock condition.

Deadlocks are detrimental to the scalability of

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

applications and result in a poor user

experience. This counter must be zero.

By monitoring the instances available for these counters, you can

find out what types of locks were involved and their contribution

to total values of these counters. Good indexing and possibly

lock hints should alleviate any adverse lock conditions.

§ SQLServer:Memory Manager

o Memory Grants Pending Number of

processes waiting for a workspace memory

grant. This counter should be as close to zero

as possible; otherwise it may indicate a

memory bottleneck.

§ SQLServer:SQL Statistics

o Batch Requests/sec Number of batch

requests submitted to the server per second.

This counter is used to quantify the amount of

load on a system.

o SQL Compilations/sec Number of

compilations per second. Ideally this counter

should be low. If the number of Batch

requests/sec counter is close to this counter,

there might be a lot of ad-hoc SQL calls being

made.

o SQL Re-Compilations/sec Number of

recompilations per second. This counter

should be low as well. Stored procedures

should ideally be compiled once and their

execution plans reused. A high value for this

counter might require alternative coding for

the stored procedures to minimize

recompilation.

SQL Query Analyzer

SQL Query Analyzer can be used in various ways, for example, to execute SQL scripts to

deploy new code, to count the number of records inserted or updated, to analyze query

execution plans, or to execute various system stored procedures. Among the tools

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

included with SQL Server 2000, Query Analyzer is by far the most frequently used tool in

our team. Rather than describe Query Analyzer in detail, we will show you specific

examples of how the tool can be used to analyze blocking and analyze execution plans in

the later part of this chapter.

Quick Row Count

For a scenario that inserts records into tables, counting the number of rows before and

after the stress test is useful for calculating the transaction throughput. Counting all the

rows in a very large table can be time-consuming. Instead, the sysindexes system table

in the application database can be queried to get the total row count for each table with

the following query:

SELECT o.name, rows

FROM sysobjects o INNER JOIN sysindexes i on o.id = i.id

WHERE i.indid < 2

ORDER BY o.name

Reading the sysindexes table requires less I/O compared to counting a large table with

thousands or millions of records. Therefore, the more records you have to count, the

greater will be the benefit of querying the sysindexes table. Note that it is generally not

recommended to query system tables directly. Only if the query duration of counting

records from the table is unacceptable should you consider the sysindexes table.

Blocking Problems

A blocking condition occurs whenever a connection cannot acquire a lock on a resource

because that resource is already locked by another connection. Blocking only occurs if

the requested locks from each connection are incompatible. This causes one connection

to wait until the other connection releases the locks. For instance, if Connection A

requests an exclusive lock on Table A, no other connections can place another exclusive

lock on the same table. Other connections that require an exclusive lock on Table A must

wait until the existing lock is released by Connection A.

Depending on the type of application, blocking can occur even in a highly tuned

application; however, if the blocking occurs often enough that there are long wait times, it

will lead to a performance problem. Knowing how to troubleshoot the blocking problem

can have a terrific pay off, and anyone interested in SQL Server tuning should acquire

this skill. Again, discussing every available method is beyond the scope of this book.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

However, we will show you a few methods that we use in performance testing to identify

blocking issues.

Identifying Blocking Connections

Typical symptoms of blocking bottlenecks are low system resource (CPU and disks)

utilizations while the SQL tier throughput is maxed out. If you suspect blocking is the

bottleneck, the first step towards identifying the cause is to query the sysprocesses table

in the master database. Listing 8-1 shows a script that returns information on the blocked

connections and the last statement sent by the root blocker:

Listing 8-1

-- Script returns blocking information from the sysprocesses table

SELECT spid, blocked, status, waittime,

 waittype, waitresource, db_name(dbid) DatabaseName, cmd,

 hostname, loginame

FROM master..sysprocesses

WHERE blocked != 0

DECLARE @spid int

-- Get the root blocker's spid id

SELECT @spid = A.spid

FROM master..sysprocesses A

 INNER JOIN master..sysprocesses B

 ON A.spid = B.blocked

WHERE A.blocked = 0

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

IF NOT @spid IS NULL

BEGIN

 -- Returns last statement sent from the connection

 DBCC INPUTBUFFER(@spid)

END

The IBuySpy sample site included with this book does not inherently have blocking issues

on the SQL tier. For the purpose of demonstration, we will add a new stored procedure

that recompiles each time it is executed to simulate a compile blocking. The following

script will add such a stored procedure:

CREATE PROCEDURE ProductCategoryList_Recompile

WITH RECOMPILE

AS

SELECT

 CategoryID,

 CategoryName

FROM

 dbo.Categories

ORDER BY

 CategoryName ASC

GO

To observe the compile blocking behavior, we will have to run several instances of the

recompiling stored procedure simultaneously. As discussed in Chapter 3, we can use

ACT to simulate load on the SQL server. The ACT script in Listing 8-2 can be used to

apply the required load:

Listing 8-2

-- The ACT script that can simulate simultaneous

execution of the stored procedure.

Dim oConn

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

On Error Resume Next

Set oConn = CreateObject("ADODB.Connection")

oConn.Open "driver={SQL Server};Server=SQLServer;" & _

"Database=Store;uid=user;pwd=user"

If err.Number <> 0 Then

 Test.Trace("Error Opening connection: "& _

err.number & ", " & err.description)

ELSE

 oConn.Execute("EXEC ProductCategoryList_Recompile")

 If err.Number <> 0 Then

 Test.Trace("Error Executing: " & _

err.number & ", " & err.description)

 End If

End IF

You can set the simultaneous browser connections to 10 and run a test for five minutes.

While stressing the SQL server, executing the script in Listing 8-1 will give you

information regarding the blocked connections and the last statement sent by the root

blocker. In this example, the blocked connection's waitresource column should indicate

compile blocking with the following information:

TAB: 7:1173579219 [[COMPILE]]

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Note The "7" after "TAB:" indicates the Store database, and

"1173579219" indicates the object being compiled. In our case,

"1173579219" represents ProductCategoryList_Recompile. You

can get this information by running SELECT

Object_Name(1173579219) in the Store database. Note that the

format of the waitresource field may change in the next version or

the next service pack, and the current method of retrieving the

database and stored procedure name may not be valid.

The last statement sent by the root blocker should be displayed as

ProductCategoryList_Recompile. Although we purposefully created the problem on

ProductCategoryList_Recompile, querying the sysprocesses table revealed the

recompile issue on the same stored procedure.

The occurrence of excessive compiles is just one of the numerous causes of blocking.

Long running transactions, improper Transaction Isolation Level, and inappropriate

indexes can also cause blocking. Regardless of the cause, the approach in this section

can be used to identify the blocking stored procedures or ad-hoc queries. After they are

identified, you can analyze the query further to pinpoint the problem.

Locks

In-depth knowledge of lock types used in SQL Server is essential for troubleshooting

blocking problems. We strongly recommend that you thoroughly review the lock topics in

the aforementioned reference materials. Understanding the topics will help you

troubleshoot lock timeouts as well as deadlocks.

For applications that experience SQL blocking, we typically execute sp_lock to look at the

granted or waiting locks. It's a snapshot of locks at the time of execution of the sp_lock

system store procedure; therefore, we execute it multiple times during the stress test to

see a pattern of locking behavior. The output of sp_lock is cryptic and needs to be

cross-referenced to get the table names or index names. Thus, we run a custom stored

procedure that is similar to sp_lock_verbose, included in The Guru's Guide to

Transact-SQL, to eliminate the repetitive cross-referencing task.

Again, for demonstration purposes, we will introduce a lock problem in one of the stored

procedures. The following script will add such a stored procedure:

CREATE PROCEDURE ProductCategoryList_XLOCK

AS

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

-- Use transaction to hold the exclusive lock

BEGIN TRANSACTION

SELECT

 CategoryID,

 CategoryName

FROM

 dbo.Categories (XLOCK)

ORDER BY

 CategoryName ASC

WAITFOR DELAY '00:00:01' -- Hold the lock for 1 second

COMMIT TRANSACTION

GO

Executing sp_lock while stressing the SQL server with this new stored procedure will

produce an output similar to the following:

spid dbid ObjId IndId Type Resource Mode Status

------ ------ ----------- ------ ---- ---------------- -------- ------

51 7 0 0 DB S GRANT

53 7 0 0 DB S GRANT

53 7 1977058079 0 RID 1:89:0 X WAIT

53 7 1977058079 0 PAG 1:89 IX GRANT

53 7 1977058079 0 TAB IX GRANT

54 7 1977058079 0 TAB IX GRANT

54 7 1977058079 0 RID 1:89:2 X GRANT

54 7 1977058079 0 RID 1:89:6 X GRANT

...

(Result abbreviated)

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The interesting parts of the sp_lock output are the ObjId, Type, Mode, and Status

columns. For example, the output shows exclusive mode, row identifier (RID) type locks

granted on the ObjId of "1977058079". The RID lock type is shown instead of the KEY

lock type due to the lack of a clustered index on the Categories table. In addition, an

exclusive lock is waiting to be granted, as indicated by the WAIT status. You can execute

SELECT Object_Name(<ObjId>) to get the object name, and in this case, "1977058079"

represents the Categories table. Combining the results obtained by querying the

sysprocesses table to get the blocking connection and the output of the sp_lock stored

procedure to get the lock information will make it easier to narrow the problem down to a

statement.

Deadlocks

A deadlock occurs when two or more connections block each other and each are waiting

on some resources that the other connection has locked. For instance, Connection A

holds a lock on Row A and is waiting to get a lock on Row B. Connection B holds a lock a

Row B and is waiting to get a lock on Row A. Each connection is waiting on the other, and

neither can proceed to commit or roll back the transactions. This type of deadlock is

referred as cyclical. Another possible deadlock type is a conversion deadlock. A

conversion deadlock occurs when two or more connections have shared locks on some

resources and they both want to convert their shared locks to exclusive locks. Regardless

of deadlock type, we use trace flags to troubleshoot the deadlock problems. The following

statement will write the deadlock trace report (1204) to the SQL Server error log (3605)

and set the trace flag for all connections (-1):

DBCC TRACEON(-1, 1204, 3605)

After the trace flags are turned on, you can capture the ErrorLog event using SQL Profiler

or view the error log using Enterprise Manager. For demonstration purposes, we created

the following script to add a stored procedure that forces a conversion deadlock:

CREATE CLUSTERED INDEX IXC_ModelName

 ON dbo.Products (ModelName)

GO

CREATE PROCEDURE ProductsUnitCostUpdate_DeadLock

AS

BEGIN TRANSACTION

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

SELECT *

FROM

 dbo.Products (HOLDLOCK)

WHERE ModelName = N'Bullet Proof Facial Tissue'

WAITFOR DELAY '00:00:05'

UPDATE dbo.Products

 SET UnitCost = UnitCost * 0.90

WHERE ModelName = N'Bullet Proof Facial Tissue'

COMMIT TRANSACTION

GO

You must run the deadlock stored procedure in the two separate SQL Query Analyzer

windows within a few seconds apart to produce a deadlock. The following report is a

sample produced by enabling trace flag 1204:

Deadlock encountered Printing deadlock information

Wait-for graph

Node:1

KEY: 7:2041058307:1 (a60421ba9ed3) CleanCnt:2 Mode: Range-S-S Flags: 0x0

Grant List::

Owner:0x42be1340 Mode: Range-S-S Flg:0x0 Ref:0 Life:02000000 SPID:52 ECID:0

SPID: 52 ECID: 0 Statement Type: UPDATE Line #: 12

Input Buf: Language Event: ProductsPriceUpdate_DeadLock

Requested By:

ResType:LockOwner Stype:'OR' Mode: X SPID:51 ECID:0 Ec:(0x42f77568) _

 Value:0x42be1360 Cost:(0/0)

Node:2

KEY: 7:2041058307:1 (a60421ba9ed3) CleanCnt:2 Mode: Range-S-S Flags: 0x0

Grant List::

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Owner:0x42be5240 Mode: Range-S-S Flg:0x0 Ref:0 Life:02000000 SPID:51 ECID:0

SPID: 51 ECID: 0 Statement Type: UPDATE Line #: 12

Input Buf: Language Event: ProductsPriceUpdate_DeadLock

Requested By:

ResType:LockOwner Stype:'OR' Mode: X SPID:52 ECID:0 Ec:(0x430b5568) _

 Value:0x42be1260 Cost:(0/0)

Victim Resource Owner:

ResType:LockOwner Stype:'OR' Mode: X SPID:52 ECID:0 Ec:(0x430b5568) _

 Value:0x42be1260 Cost:(0/0)

Detailed information is produced by the trace flag 1204 for each deadlock occurrence and

we usually focus our attention on a few sections. We look for the lock resource in "Key:";

check the lock mode in "Mode:"; and search for the stored procedure name or the ad-hoc

query in "Input Buf:". With this information, we can narrow our troubleshooting to a few

stored procedures or queries. More detailed information on troubleshooting deadlocks

and the trace flag 1204 report can be found in SQL Server Books Online and Inside

Microsoft SQL Server 2000.

Additional Resources

So far we discussed manual methods of troubleshooting blocking problems. Several

articles have published the blocking scripts. Using those scripts can reduce the human

error factor, and we highly recommend the following article:

§ "INF: How to Monitor SQL Server 2000 Blocking (Q271509)"

at

http://support.microsoft.com/default.aspx?scid=kb;en-us;q27

1509

In addition, the following articles are recommended:

§ "INF: SQL Blocking Due to [[COMPILE]] Locks (Q263889)" at

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q26

3889

§ "INF: Troubleshooting Application Performance with SQL

Server (Q224587)" at

http://support.microsoft.com/default.aspx?scid=kb;enus;Q22

4587

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Index Tuning

Using the methods discussed in the previous section, you should be able to narrow your

troubleshooting efforts to problematic queries or stored procedures. Identifying which

SQL calls are causing the problem is a big step towards finding a solution. Unfortunately,

it is almost impossible to list every problem that could occur using SQL Server 2000. Our

team discovers new and difficult problems every day and the more we work on SQL

Server, the more we realize books or whitepapers alone aren't enough to help us to

become expert in SQL Server performance tuning. So if you can't come up with solutions

to your current performance problem right after reading this chapter, don't be discouraged;

you should understand that you can't learn to tune your application's SQL Server issues

overnight.

Another issue that we frequently encounter is the lack of proper indexes. We usually take

a similar approach for index tuning each problematic SQL call. In the next section, we will

discuss the methods that we use to tune indexes.

Analyzing the Execution Plan

One approach to identifying the cause of long durations is to analyze the query execution

plan and check the data retrieval method chosen by the SQL Server 2000 query optimizer.

You can do this by using Query Analyzer to get a graphical view of the execution plan.

Populating Data

Before we begin, we will add 100,000 rows to the Orders table and 1,000,000 rows to the

OrderDetails table in the IBuySpy sample site database. Actual numbers of rows used for

analyzing the SQL tier will vary depending on the business requirements and the

projected database growth. We chose an arbitrary number of rows to demonstrate how to

analyze with large data sets. SQL Server behaves differently depending on the number of

rows and the uniqueness of column data; therefore, it is crucial to tune queries on the

correctly sized database. Listing 8-3 shows the T-SQL used to generate the additional

records.

Listing 8-3

-- The T-SQL used to load additional data

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

SET NOCOUNT ON -- Stop the number of rows effected messages

DECLARE @Count int

DECLARE @OrderID int

DECLARE @CustomerID int

DECLARE @DateAdd int

DECLARE @DateAdd2 int

DECLARE @Today DateTime

DECLARE @SQL nvarchar(4000)

-- Count the records before the inserts

SELECT Count(*) Orders FROM Orders

SELECT Count(*) OrderDetails FROM OrderDetails

SELECT Count(*) Customers FROM Customers

SET @Today = GetDate()

SET @Count = 1

-- Add 100000 Orders and 10000 Customer

WHILE @Count <= 100000

BEGIN

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 --Insert a new customer every 10 records

 IF @Count % 10=0OR @Count = 1

 BEGIN

 INSERT INTO Customers

 (

 FullName,

 EMailAddress,

 Password

)

 VALUES

 (

 'TestUser_' + Cast(@Count as varchar(10)),

 'TestUser_' + Cast(@Count as varchar(10)) + '@test.com',

 'password'

)

 SET @CustomerID = @@Identity

 END

 -- Vary the OrderDate and ShipDate

 SET @DateAdd = (-1 * (@Count % 365))

 SET @DateAdd2 = (-1 * (@Count % 365)) + 1

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 INSERT INTO Orders

 (

 CustomerID,

 OrderDate,

 ShipDate

)

 VALUES

 (

 @CustomerID,

 DateAdd(d, @DateAdd, @Today),

 DateAdd(d, @DateAdd2, @Today)

)

 SET @OrderID = @@Identity

 SET @SQL = N'INSERT INTO OrderDetails

 (

 OrderID,

 ProductID,

 Quantity,

 UnitCost

)

 SELECT TOP 10

 @OrderID, ProductID, 1, UnitCost

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 FROM Products '

 -- Use 4 different sorts to add different products

 IF @Count%4=1

 SET @SQL = @SQL + N'ORDER BY CategoryID'

 IF @Count%4=2

 SET @SQL = @SQL + N'ORDER BY ModelNumber'

 IF @Count%4=3

 SET @SQL = @SQL + N'ORDER BY ModelName'

 IF @Count%4=0

 SET @SQL = @SQL + N'ORDER BY UnitCost'

 EXEC sp_executesql @SQL, N'@OrderID int', @OrderID = @OrderID

 SET @Count = @Count + 1

END

-- Count after the inserts

SELECT Count(*) Orders FROM Orders

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

SELECT Count(*) OrderDetails FROM OrderDetails

SELECT Count(*) Customers FROM Customers

Viewing the Execution Plan

Now that we have loaded the data successfully, we will execute ProductsMostPopular,

one of the stored procedures that is affected adversely by an increase in the database

size. To get the execution plan, the Show Execution Plan option must be on in Query

Analyzer (press CTRL+K). Figure 8-1 shows the output of the ProductsMostPopular 's

execution plan.

Figure 8-1: The execution plan created by running the ProductsMostPopular stored procedure

In this relatively simple example, ProductsMostPopular contains the following code:

CREATE Procedure ProductsMostPopular

AS

SELECT TOP 5

 OrderDetails.ProductID,

 SUM(OrderDetails.Quantity) as TotalNum,

 Products.ModelName

FROM

 OrderDetails

INNER JOIN Products ON OrderDetails.ProductID = Products.ProductID

GROUP BY

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 OrderDetails.ProductID,

 Products.ModelName

ORDER BY

 TotalNum DESC

GO

All icons representing physical operators used to execute statements are too numerous to

list here. They are well documented in SQL Server Books Online. In addition, the SQL

Server Books Online provides details on how to interpret the graphical output. In this

section, we will focus on the things to look for that can cause long call durations.

Among the various physical operators, look for the operators that are showing a high

percentage of cost. For example, in Figure 8-1, the Hash Match/Aggregate and Table

Scan operators indicate high costs, 54 percent and 46 percent respectively. When you

pause the pointer on top of each icon in the execution plan, you will see a ToolTip appear

with detailed information. Figure 8-2 shows the ToolTip information on the Table Scan

icon.

Figure 8-2: ToolTip information appears when the pointer is above the Table Scan icon

The ToolTip shows that Query Optimizer picked a Table Scan operator to retrieve data

from the object, [store].[dbo].[OrderDetails]. In a typical execution plan, Table Scans and

Index Scans can cause longer duration compared to an execution plan that uses Index

Seeks. In our case, however, reading the entire OrderDetails table is required to

determine which top five products are the most popular. Table Scans and Index Scans on

small tables are not unusual and in such cases may be more efficient. You should not be

automatically alerted when you find such operators in the execution plan; adding more

indexes to a small table may not make any difference in terms of the query execution

duration. Therefore, you will need additional information to the physical operators to

perform an effective index tuning.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Note Table scan operator is used on tables without clustered indexes.

The lack of clustered indexes may cause poor performance. For

more details about the problem, see "PRB: Poor Performance on a

Heap (Q297861)" at

http://support.microsoft.com/default.aspx?scid=kb;enus;Q297861

Additional Tuning Information

SQL Server has useful statistic options with which you can measure the resource

utilizations, such as STATISTICS IO. A combined analysis of the query execution plan

and the I/O utilization statistics can help you discover the tables that are the source of the

performance problem. Ultimately, the goal is to reduce the execution duration of the

queries, and this is where the STATISTICS TIME option can help you measure the

durations. Turning on the STATISTICS TIME option displays the parse and compile time

for the query execution, letting you can measure how long it takes to generate the query's

execution plan.

Tip The query's durations can be captured by SQL Profiler; however,

with the STATISTICS TIME option you can view the duration from

the same window that executed the query.

In addition to the STATISTICS options, there are two DBCC commands that clear the

data buffer and procedure cache. With DBCC DROPCLEANBUFFERS you can test

queries with a cold buffer cache without restarting SQL Server, and is useful for

measuring consistent query statistics. Another helpful command is DBCC

FREEPROCCACHE. With this command you can compare the query performance with or

without the procedure cache.

Caution You should avoid the DBCC DROPCLEANBUFFERS or DBCC

FREEPROCCACHE commands in the production environment.

Now, let's take a look at the performance metrics obtained by executing the stored

procedure ProductsMostPopular via the following script in Query Analyzer:

DBCC DROPCLEANBUFFERS

DBCC FREEPROCCACHE

SET STATISTICS IO ON

SET STATISTICS TIME ON

GO

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

EXEC ProductsMostPopular

Depending on the complexity of the stored procedure, the amount of extra information

generated by the DBCC commands and the STATISTICS options will vary. In the case of

ProductsMostPopular, the following output is what we are interested in:

...

SQL Server parse and compile time:

 CPU time = 32 ms, elapsed time = 187 ms.

(5 row(s) affected)

Table 'Products'. Scan count 5, logical reads 10, _

 physical reads 4, read-ahead reads 0.

Table 'OrderDetails'. Scan count 1, logical reads 3800, _

 physical reads 0, read-ahead reads 3801.

SQL Server Execution Times:

 CPU time = 1813 ms, elapsed time = 1826 ms.

...

(Result abbreviated)

The resulting statistics will vary depending on the database size, the SQL Server version,

and the server hardware capability. The output that we obtained shows that it took 187

milliseconds to parse and compile the stored procedure ProductsMostPopular, and 1826

milliseconds to execute it. This timing information is what you obtain by enabling the

STATISTICS TIME option. The most interesting part of the output is the logical reads on

the table OrderDetails. The logical reads indicates the number of pages that were read

from the buffer; the value of "3800" that we obtained confirms that the Table Scan

operator used to retrieve the data is expensive compared to the reads on the Products

table. The scan count measure can also be useful from time to time. It represents how

many times the object was accessed. It is directly correlated with the type of join used.

For example, a query that uses a loop join and returns 100 rows may show a scan count

value of 100, while the same query using uses a merge join instead may show a scan

count value of 1. In our case, scan counts are negligible due to their low values. The

physical and read-ahead reads varies depending on whether the required data was

already in the buffer. For query tuning purposes, the two reads counters can be ignored.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

After the execution plan of a poorly performing query has been analyzed, you can decide

whether to add, drop, or modify indexes, modify queries, or make database schema

changes. The best scenario would be to pick a modification that gives the most gain, and

our team has seen the most performance gains from index tuning. Also, index

optimizations typically minimize the risk of introducing new functional bugs. In the next

section, we will show you how we go about index tuning.

Understanding Indexes

If you worked on SQL servers before reading this chapter, you probably have heard of

clustered and nonclustered indexes. Learning as much as you can about how the indexes

are stored and retrieved is critical for proper index tuning. Again, a detailed discussion of

the indexes in SQL Server is beyond the scope of this book. Instead, we will introduce

you briefly to each index type in Table 8-2.

Table 8-2: Available Indexes in SQL Server

Index Types Description

Clustered Index Physically sorts a table based on the order of indexed

column(s). This type of index contains all the table

data. Unless specified, a clustered index will be

created by default when a primary key constraint is

added.

Nonclustered

Index

Index does not contain table data; instead it contains

pointers to the location of the table data. If a column,

not included in the index, needs to be queried, a

Bookmark Lookup will be performed on a heap or on a

clustered index.

Choosing Right Indexes

In real world situations, choosing the right indexes can be a complex task. You cannot

just focus on one poorly performing query, because modifying indexes could potentially

affect other queries that rely on existing indexes. For example, if creating new indexes

decreases query duration in a SELECT query, it may increase the duration in an INSERT,

DELETE, or UPDATE query. A worse scenario would be to add an index on frequently

changing columns. Changing values will force re-positions to keep the index values in

order, and in a large table, this may cause additional delay for each transaction modifying

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

the indexed columns. The longer transaction durations will hold the exclusive locks longer,

and might cause blocking to occur to a point where it becomes the bottleneck.

Fortunately, as mentioned in Chapter 3, real-world user scenarios can be scripted and

stress tested. After the scenarios are scripted, you can easily execute multiple stress

tests to compare the results between each modification. Running the stress tests will

allow you to find the bottlenecks and will minimize the risk of creating additional problems

by verifying the validity of the index changes. Also, using the script to test each

modification allows you to measure the overall improvement for each change. For the

purpose of demonstration, all of our index tuning examples will focus on one query.

Nonclustered Index

A nonclustered index does not contain the entire table data. Instead, it contains

duplicates of chosen column data and pointers to the location of the rest of the table data.

The location may be a clustered index key or a row identifier if the table lacks a clustered

index. Such characteristics can make the nonclustered index compact, and as a result,

scanning the entire index tree will takes fewer pages to read compared to a clustered

index scan. Therefore, when you are looking for a range of data, as long as all required

columns are contained in the nonclustered index, a nonclustered index is typically faster

than a clustered index.

Our team frequently sees significant performance gains by applying appropriate

nonclustered indexes. Although we can't discuss every possible nonclustered index

usage case in this chapter, we will discuss the covering index that we encounter often.

A covering index can be created by choosing all columns that are referenced by a query

to be part of the index. Given the right situation, a covering index can greatly improve a

query's performance by eliminating bookmark lookups. Because a nonclustered index

does not contain table data other than the selected column(s), any need for column data

that is not part of the index will have to be retrieved from either a clustered index or a

heap. By adding extra column(s) not specified in the Searchable Arguments (SARG) or

join conditions, all data can be resolved from the nonclustered index and this extra lookup

can be eliminated.

Covering Index Example 1 From the earlier analysis of the execution plan generated by

the ProductsMostPopular stored procedure, we discovered that most of the logical reads

occurred on the OrderDetails table. Let's first look at the index information on

OrderDetails by executing following statement:

sp_helpindex OrderDetails

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The output shows one nonclustered index on the OrderID and ProductID columns.

Moreover, the index_description field indicated Primary Key constraint. Based on the

index information and the query used in ProductsMostPopular, we can build Table 8-3 to

help us determine which columns should be used and in what order.

Table 8-3: Column Choice and Order

OrderDetails Table Columns

Searchable Argument

(SARG)

None

GROUP BY or ORDER

BY

ProductID

JOIN ProductID

All other columns used in

the query

Sum(Quantity)

Existing Index Primary Key, Nonclustered Index on (OrderID,

ProductID)

Query Shortcuts

Stored procedures or SQL statements can be saved in the Customize window under the

Tools menu. Once configured, the stored procedure will be executed every time the

shortcut key is pressed. For example, sp_helpindex can be mapped to CTRL+F1 as

shown in Figure 8-3.

Figure 8-3: Stored procedures can be saved in the Customize window for quick execution.

Next time you need to execute sp_helpindex, simply highly the table name you are

interested in and press CTRL+F1. sp_helpindex and sp_helptext are good ones to

customize.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

As indicated in Table 8-2, creating a nonclustered index on the ProductID and Quantity

columns will cover all columns. In addition, ProductID is used in GROUP BY clause;

therefore, an index that is first sorted by ProductID should be more efficient than sorted

by Quantity. Regardless, let's create two indexes with different column orders and see

which one is more efficient. The following script creates the two indexes:

CREATE INDEX IX_OrderDetails_ProductID_Quantity

 ON OrderDetails (ProductID, Quantity)

CREATE INDEX IX_OrderDetails_Quantity_ProductID

 ON OrderDetails (Quantity, ProductID)

When we execute ProductsMostPopular again, different operators and the covering index

on ProductID and Quantity were chosen by Query Optimizer. Again, the same dual1-GHZ

Pentium processor server was used for this example. Figure 8-4 shows new execution

plan.

Figure 8-4: New execution plan after creating covering indexes on the OrderDetails table

The Table Scan operator was replaced with the Index Scan operator, and the Stream

Aggregate was chosen instead of Hash Match/Aggregate. For the second covering index

comparison, an INDEX hint was used, and the following code shows the hint usage in

bold:

SELECT TOP 5

 OrderDetails.ProductID,

 SUM(OrderDetails.Quantity) as TotalNum,

 Products.ModelName

FROM

 OrderDetails (INDEX=IX_OrderDetails_Quantity_ProductID)

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 INNER JOIN Products ON OrderDetails.ProductID = Products.ProductID

GROUP BY

 OrderDetails.ProductID,

 Products.ModelName

ORDER BY

 TotalNum DESC

Note Most of the time, Query Optimizer chooses the most efficient

indexes and operators to retrieve data. However, it is good practice

to validate the chosen plan by forcing alternate plans and

measuring the differences.

In this example, three execution plans were observed. For comparison purposes,

statistics from each plan are listed in Table 8-4.

Table 8-4: Comparing Execution Plan Queries

Original

Query

Covering

index on

ProductI

D and

Quantity

Covering

index on

Quantity

and

ProductI

D

Operator used and

cost percentage

Table Scan

(46 percent)

and Hash

Match/Aggre

gate (54

percent)

Index

Scan (51

percent)

and

Stream

Aggregat

e (49

percent)

Index

Scan and

Hash (38

percent)

Match/

Aggregat

e (61

percent)

Logical Reads on

OrderDetails

3800 2184 2370

Query Duration in

milliseconds

1826 1021 2095

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

As predicted earlier, the first covering index on ProductID and Quantity column results in

the most improvement. In fact, when order of the columns used in the covering index was

reversed, the query duration took longer than without the index. Therefore, each index

modification should be tested and validated. Without thorough testing, your index tuning

attempts may hurt the application's performance.

In this example, approximately 800 milliseconds were reduced by implementing a

covering index. Typically we would analyze the query further to see if an indexed view

can help reduce the duration even more. We will discuss indexed views in the clustered

index section.

Covering Index Example 2 In this example, we will examine the OrdersList stored

procedure. The query retrieves an order history for a customer and requires the

CustomerID as a parameter. The following code was used to execute the stored

procedure:

DBCC DROPCLEANBUFFERS

DBCC FREEPROCCACHE

GO

SET STATISTICS IO ON

SET STATISTICS TIME ON

GO

EXEC OrdersList @CustomerID = 10704

Following the same method used in example 1, we first capture the query statistics by

turning on STATISTICS IO and STATISTICS TIME and review the execution plan. By

enabling the STATISTICS TIME setting, we determine that the query takes approximately

640 milliseconds. The duration is not as severe as ProductsMostPopular; however, the

query's execution plan does reveal a Table Scan and Bookmark Lookup being performed,

which usually means that an index tuning is necessary. For demonstration purposes, we

will assume that OrdersList gets executed frequently and that it needs tuning. We should

therefore analyze the columns used in OrdersList. Running the system store procedure

sp_helptext with OrdersList as a parameter displays the following code:

CREATE Procedure OrdersList

(

 @CustomerID int

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

)

As

SELECT

 Orders.OrderID,

 Cast(sum(orderdetails.quantity*orderdetails.unitcost) as money) _

 as OrderTotal,

 Orders.OrderDate,

 Orders.ShipDate

FROM

 Orders

 INNER JOIN OrderDetails ON Orders.OrderID = OrderDetails.OrderID

GROUP BY

 CustomerID,

 Orders.OrderID,

 Orders.OrderDate,

 Orders.ShipDate

HAVING

 Orders.CustomerID = @CustomerID

Based on the T-SQL used in OrdersList, we can build the following tables similar to Table

8-5:

Table 8-5: Orders Table Columns Used in OrdersList

Orders Table Columns

Searchable Argument (SARG) CustomerID

GROUP BY or ORDER BY CustomerID,

OrderID,

OrderDate,

ShipDate

JOIN OrderID

All other columns used in the query None

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 8-5: Orders Table Columns Used in OrdersList

Orders Table Columns

Existing Index None

Tip Writing out the columns used in each table as shown in Table 8-6 is

highly recommended, especially for more complex queries.

Table 8-6: Order Details Table Columns in OrdersList

OrderDetails Table Columns

Searchable Argument

(SARG)

None

GROUP BY or ORDER BY None

JOIN OrderID

All other columns used in the

query

SUM(Quantity*Unitcost)

Existing Index Primary Key,

Nonclustered Index on

(OrderID, ProductID)

Similar to the covering index example 1 shown earlier, we can use the following script to

create the two covering indexes based on Table 8-5 and Table 8-6:

CREATE INDEX IX_Orders_CustomerID_Covered

 ON OrderDetails (CustomerID,OrderID, OrderDate, ShipDate)

CREATE INDEX IX_OrderDetails_OrderID_Quantity_UnitCost

 ON OrderDetails (OrderID, Quantity, Unitcost)

For the purpose of comparison, statistics obtained before and after adding the covering

indexes are listed in Table 8-7.

Table 8-7: Statistical Comparison of Each Execution Plan

Original

Query

After

Adding

Covering

Indexes

Operator used and cost percentage Table Scan

on Orders

(22 percent)

Index Seek

on Orders

(42 percent)

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 8-7: Statistical Comparison of Each Execution Plan

Original

Query

After

Adding

Covering

Indexes

 Bookmark

Lookup on

OrderDetails

(75 percent)

Index Seek

on

OrderDetails

(51 percent)

Logical reads Orders =

520

Orders = 3

 OrderDetails

= 160

OrderDetails

= 30

Query duration in milliseconds 644 6

As indicated in Table 8-7, OrdersList is executing almost a hundred times faster with the

new covering indexes. In our experience, it's not rare to see such dramatic improvements

by adding the appropriate covering indexes. Again, the improvement is just for one stored

procedure running in isolation. The remaining frequently used scenarios should be

thoroughly tested before implementing any new indexes to a production system to

confirm that the overall performance is improved.

Clustered Index

Since a clustered index physically sorts the table data, you can only have one clustered

index per table. Such characteristics can be beneficial in many cases. For instance,

having a clustered index on a table allows you to defragment the table. Unless there is a

good reason not to use clustered indexes, one should be created for each table. In

addition, you should consider choosing narrow columns as clustered index column since

all nonclustered indexes will contain the clustered index key. Using a wide clustered index

key will cost you in terms of extra space used by the nonclustered indexes and it wi ll also

cause additional I/O.

SQL Server makes it easy to create a clustered index on each table by making it the

default index that is created when defining a primary key constraint. The difficult part of

clustered index tuning is to pick the proper column(s) to use in the index. It is beyond the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

scope of this chapter to go over every possible clustered index usage. Instead, we will

discuss the following typically neglected areas that our team faces frequently:

§ The FILLFACTOR option

§ Clustered index on a view

Let's look at each scenario with examples.

FILLFACTOR The FILLFACTOR option determines how much extra space to reserve on

each page. For example, a FILLFACTOR option of 80 will reserve 20 percent of free

space, which is approximately 1.6 KB. It is useful on tables or indexes that are used in

many inserts or updates. The reserved extra space helps reduce page reorganizations

(page splits) caused by insert or update operations on a full page. For instance, let's say a

customer information table has an address field, and initial customer record created had

an empty address field. If the page containing the customer record is full or nearly full, an

update to the address information may require additional space and cause a page split.

Frequent page splits can lead to fragmentation and reduce the overall data density. If

pages were only 50 percent full due to the heavy page splits, it will require twice as much

I/O to get the data compared to pages that are 100 percent full. Applications that

experience heavy inserts and updates can benefit from having the free space on each

page by reducing page splits and the resulting data fragmentation. Since fillfactors

guarantee free space at creation time only, table or index fragmentation and page

densities should be monitored periodically.

The DBCC SHOWCONTIG command allows you to view the fragmentation and data

density in tables or indexes. To demonstrate fragmentation, we will slightly modify the

Orders table in the IBuySpy sample site database. The following code will add a nullable

description field and add a clustered index on the OrderID column:

ALTER TABLE Orders

 ADD OrderDesc Varchar(500) NULL

GO

CREATE CLUSTERED INDEX IXC_Orders_OrderID

 ON Orders (OrderID)

GO

Using the code in Listing 8-4 we can measure query performance at different

fragmentation levels:

Listing 8-4

-- Gathers query performance based on varying fragmentation

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

-- Clears cached data buffer and execution plans

DBCC DROPCLEANBUFFERS

DBCC FREEPROCCACHE

GO

-- Displays IO and TIME related statistics

SET STATISTICS IO ON

SET STATISTICS TIME ON

GO

-- A query on the Orders table.

SELECT TOP 10 WITH TIES CustomerID, _

 MAX(DateDiff(hh, OrderDate, ShipDate)) MaxShippingDelay

FROM Orders (INDEX=IXC_Orders_OrderID)

GROUP BY CustomerID

ORDER BY MaxShippingDelay DESC, CustomerID

GO

-- Displays Fragmentation information on the Orders table

DBCC SHOWCONTIG('Orders')

GO

The following text is an excerpt of the output generated by executing the code in Listing

8-4 script:

DBCC SHOWCONTIG scanning 'Orders' table...

Table: 'Orders' (2025058250); index ID: 1, database ID: 7

TABLE level scan performed.

- Pages Scanned................................: 418

- Extents Scanned..............................: 54

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

- Extent Switches..............................: 53

- Avg. Pages per Extent........................: 7.7

- Scan Density [Best Count:Actual Count].......: 98.15% [53:54]

- Logical Scan Fragmentation: 0.24%

- Extent Scan Fragmentation: 1.85%

- Avg. Bytes Free per Page.....................: 25.2

- Avg. Page Density (full).....................: 99.69%

DBCC execution completed. If DBCC printed error messages, _

 contact your system administrator.

...

Table 'Orders'. Scan count 1, logical reads 419, _

 physical reads 0, read-ahead reads 0.

SQL Server Execution Times:

 CPU time = 297 ms, elapsed time = 302 ms.

...

(Result abbreviated)

The output of the DBCC SHOWCONTIG execution that we are most interested in are the

scan density and avg. page density. The scan density checks the contiguousness of

extent links; a table with more fragmentation will have a scan density less than that of a

table with less fragmentation. Fewer extent switches will be required to retrieve the data

from less fragmented tables.

An average page density closer to 100 percent will require less I/O for retrieving data from

tables. This is due to the way SQL Server retrieves data from a page; regardless of how

full the page is, an entire 8-KB page will be read. In our case, both density values are

optimal. Now, let's see what happens when we modify the OrderDesc column for every

tenth row in the Orders table. We can accomplish this by executing the following

statements:

-- REPLICATE function isn't necessary here, but it can be

-- useful when you want to generate test data.

UPDATE Orders

 SET OrderDesc = 'Some description ' + REPLICATE('X', OrderID % 10)

 WHERE OrderID % 10 = 0

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

We can execute Listing 8-4 again to see the query performance and the Orders table's

fragmentation level. Output from this execution is

Table: 'Orders' (2025058250); index ID: 1, database ID: 7

TABLE level scan performed.

- Pages Scanned................................: 834

- Extents Scanned..............................: 110

- Extent Switches..............................: 833

- Avg. Pages per Extent........................: 7.6

- Scan Density [Best Count:Actual Count].......: 12.59% [105:834]

- Logical Scan Fragmentation: 50.00%

- Extent Scan Fragmentation: 36.36%

- Avg. Bytes Free per Page.....................: 3768.9

- Avg. Page Density (full).....................: 53.44%

DBCC execution completed. If DBCC printed error messages, _

 contact your system administrator.

...

Table 'Orders'. Scan count 1, logical reads 836, _

 physical reads 0, read-ahead reads 0.

SQL Server Execution Times:

 CPU time = 307 ms, elapsed time = 307 ms.

...

(Result abbreviated)

After forcing the fragmentation with the sample code, the query's duration did not change

significantly; however, the logical reads almost doubled, 836 compared to 419. This is

most mostly due to the reduced avg. page density, which went from 99 percent to 53

percent. The duration in this example is based on a single user executing the query. As

more user load is put on the server, the impact of the additional reads will be manifested

by a further increase in the duration.

The fragmentation could have been prevented if the Orders table clustered index's

FILLFACTOR was set at 90 percent. You can modified the FILLFACTOR in a few ways.

You can drop and recreate the clustered index while specifying the FILLFACTOR to be 90,

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

or you can execute DBCC REINDEX to change the FILLFACTOR. For more information,

see "DBCC DBREINDEX" and "CREATE INDEX" in SQL Books Online.

Indexed View Indexed views are a new feature in SQL Server 2000 Enterprise Edition. In

previous SQL Server versions, the server had to retrieve data from the base tables each

time a query used a view. With an indexed view, however, the results are built before a

query uses the view. Depending on a view's overhead of retrieving data from the base

table, you may find that the materialized result set can make a dramatic difference in a

query's performance. In this section, we will continue with the example used in the

nonclustered index example 1 section to demonstrate the use of an indexed view.

It has been our experience to see significant improvements with indexed views in queries

that uses aggregation functions such as SUM or COUNT. Incidentally, the

ProductsMostPopular stored procedure in the IBuySpy application uses the SUM function.

The following query is part of the stored procedure:

SELECT TOP 5

 OrderDetails.ProductID,

 SUM(OrderDetails.Quantity) as TotalNum,

 Products.ModelName

FROM

 OrderDetails

 INNER JOIN Products ON OrderDetails.ProductID = Products.ProductID

GROUP BY

 OrderDetails.ProductID,

 Products.ModelName

ORDER BY

 TotalNum DESC

Based on the query used in ProductsMostPopular, a view and a unique clustered index

can be created with the T-SQL statements in Listing 8-5:

Listing 8-5

-- User option requirements for creating an indexed view

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

SET QUOTED_IDENTIFIER ON

SET ARITHABORT ON

SET CONCAT_NULL_YIELDS_NULL ON

SET ANSI_NULLS ON

SET ANSI_PADDING ON

SET ANSI_WARNINGS ON

SET NUMERIC_ROUNDABORT OFF

GO

if exists (select * from dbo.sysobjects

 where id = object_id(N'[dbo].[ProductOrderCount]') and _

 OBJECTPROPERTY(id, N'IsView') = 1)

drop view [dbo].[ProductOrderCount]

GO

CREATE VIEWdbo.ProductOrderCount

WITH SCHEMABINDING

AS

SELECT od.productid, p.modelname, SUM(od.Quantity) OrderSum

 , COUNT_BIG(*) RecordCount

-- COUNT_BIG aggregate function is required

FROM dbo.orderdetails od

 INNER JOIN dbo.products p

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 ON od.productid = p.productid

GROUP BY od.productid, p.modelname

GO

-- The first index on the indexed view must be clustered and unique

CREATE UNIQUE CLUSTERED INDEX IXUC_ProductOrderCount

 ON dbo.ProductOrderCount (ProductID)

When you are creating an indexed view, make sure that the all of the required user

options are set correctly. The required user options are shown at the top of Listing 8-5. In

addition, the view must be created with the schema binding view attribute. Lastly, the first

index on the view must be a unique clustered index. Once the clustered index is created,

additional nonclustered indexes can be created as necessary. More information on

indexed views can be obtained from SQL Server Books Online, especially the section

outlining the requirements that have to be met. Now that the indexed view is created, we

can execute the ProductsMostPopular stored procedure again to observe the effect on

performance. Table 8-8 compares the query using the indexed view.

Table 8-8: Query Comparison of the Indexed View

Original

Query

Covering

index on

ProductI

D and

Quantity

Indexed

View

Operator used and

cost percentage

Table Scan

(46 percent)

and Hash

Match/Aggre

gate (54

percent)

Index

Scan (51

percent)

and

Stream

Aggregat

e (49

percent)

Clustered

Index

Scan (77

percent)

and Sort

(23

percent)

Logical reads on

OrderDetails

3800 2184 2

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 8-8: Query Comparison of the Indexed View

Original

Query

Covering

index on

ProductI

D and

Quantity

Indexed

View

Query duration in

milliseconds

1826 1021 20

As indicated in Table 8-8, using the ProductOrderCount indexed view significantly

reduces the query duration and logical reads. In fact, the logical reads no longer occur on

the OrderDetails table but now occur on the ProductOrderCount view. The following

output shows the STATISTICS IO results generated by running ProductsMostPopular:

...

(5 row(s) affected)

Table 'ProductOrderCount'. Scan count 1, logical reads 2, _

 physical reads 0, read-ahead reads 0.

...

(Result abbreviated)

If ProductsMostPopular was the only stored procedure that was executed by the

application, you can conclude that the indexed view is the best solution. Real-world

applications would typically execute more than just one stored procedure. Indexed views

can drastically improve the read performance, however, they can also degrade the

performance of queries that modify or update data. Therefore, before deciding to use an

indexed view, further stress testing is required to verify that the indexed view does in fact

improve overall application throughput.

SQL Server includes an Index Tuning Wizard, which can sometimes help you come up

with efficient indexes to implement. An interesting exercise would be to allow the Index

Tuning Wizard to analyze the execution of ProductsMostPopular. You can do this by

running the Index Tuning Wizard from Query Analyzer. (Press CTRL+I.) In the case of

ProductsMostPopular, the Index Tuning Wizard recommended an almost identical

indexed view. In many cases, the Index Tuning Wizard can be a time saver and give you

useful insight on indexes. If you have never used the Index Tuning Wizard before, we

highly recommend that you read the related articles in SQL Server Books Online for more

information. Microsoft TechNet also has an excellent article on the Index Tuning Wizard.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

By no means do the examples in this section cover all index tuning situations; however,

you should have a good idea on the importance of proper index tuning. A simple indexing

mistake or a lack of proper indexing in a high transaction volume server can bring

performance to its knees. Evaluating each index in a database with many objects can be

a daunting task but is worth the pain. In most cases, a properly indexed database will give

you fewer headaches in the long run. We highly recommend that you investigate indexes

in your efforts to identify and solve SQL bottlenecks before attempting to modify the

underlying queries or deciding to upgrade hardware.

Conclusion

This chapter highlights the ways to identify bottlenecks at the SQL layer. The tools used

to monitor the server and identify bottlenecks as well as ways to analyze and improve

common bottlenecks have been discussed. Learning everything there is to know about

SQL Server will certainly take time and experience. This chapter will not make you an

expert overnight but will certainly give you insight into identifying bottleneck and coming

up with quick fixes to common performance issues encountered at the SQL tier.

Chapter 9: Estimating IIS Tier Capacity with

Transaction Cost Analysis

Overview

Jonathan Swift said, "Necessity is the mother of invention;" but when you're performing

capacity planning, Mark Twain's words are more applicable: "Necessity is the mother of

taking chances." Why? Because capacity planning is the art of reducing the probability

that a Web application's performance will degrade as a result of increasing or changing

traffic patterns, while simultaneously avoiding unnecessary hardware purchases.

Microsoft's Transaction Cost Analysis (TCA) is a science-based methodology to help you

estimate Web application hardware needs. But you can never predict with 100-percent

certainty what a user population actually ends up doing with your Web application.

Prepare for surprises.

Capacity planning is not about absolutes; it is about intelligently preparing for probabilities.

For example, if your company is planning to advertise their Internet address during the

Superbowl, a TCA approach will help model hardware resource needs for the increased

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

user traffic you'd expect from such a large marketing event, reducing the need to run

performance tests for every possible traffic scenario. The TCA approach to capacity

planning is nothing new. It has been around since the advent of client-server technology.

However, the TCA methodology presented in this chapter is specifically adapted for

Microsoft Web applications and services. It was developed in 1998/1999 by a team of

Microsoft engineers including Hilal Al-Hilali, Morgan Oslake, David Guimbellot, Perry

Clarke, and David Howell. There were a few business reasons for developing a TCA

approach to capacity planning back then which are still relevant in today's .NET

environment. Firstly, TCA is a scientific approach to estimating server hardware

requirements. Secondly, as mentioned above, it enables Web application owners to

model site capacity "what if" scenarios, greatly reducing the number of performance test

iterations needed to define required hardware resources. For example, what happens to

your Web application's performance if an additional 10,000 users are browsing in

response to an e-mail marketing campaign? TCA enables you to answer that question

without the need to set up and run additional performance tests. Lastly, TCA helps focus

developers on optimizing the most costly code in terms of hardware resource

consumption, to increase application scalability on existing hardware. Our team has

successfully used the TCA methodology for Microsoft Web sites, including

http://shop.microsoft.com.

TCA defines hardware resource costs relative to user scenarios, and these costs are

used to model required growth in hardware capacity. The ultimate end product of TCA is

a set of user operation server resource costs that can be used to predict your Web

application's maximum concurrent user levels. Since the TCA defines maximum

concurrent user levels and the term concurrent user is often misunderstood, it merits a

brief discussion before we proceed in describing the TCA methodology.

Concurrent Users: A Loosely Defined Term

How many concurrent users can my site support? This question is the one most often

posed to our team in any performance planning discussion. Although the question is quite

common, the term concurrent user is an often misunderstood, loosely defined

industry-wide term. The answer to the question depends on how the word concurrent is

defined and interpreted. The HTTP protocol is inherently stateless, getting and posting

information as requested, but often remaining idle between user requests. For example,

some people define a concurrent user through the Performance Monitor counter Current

Anonymous Users. This can be misleading because one user could simply establish a

connection by making one request and dropping off, where another user could make

many requests that count as one connection.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

In another scenario, imagine a thousand users browsing the IBuySpy .NET sample Web

application. However, probably only a portion of the user requests are being concurrently

processed on the Web server. The remaining user population is engaged in what is

commonly called think time, meaning they are filling out a form or reading data before

generating additional server activity by getting or posting data to the server. In this

particular situation, there are a thousand IBuySpy users interacting with the site in the

same general timeframe, but only a subset of one thousand client requests are

concurrently processing on the server.

Concurrent Server Request Processing

When we use the term concurrent users, we assume that client requests are being

processed on the server simultaneously. Effective capacity estimation requires a close

analysis of the number of requests concurrently processed by the server relative to your

user population, not just the finite number of people simultaneously using your Web

application. The point is that you need to consider both concurrent server request

processing and your user population, because users of your Web application are not

necessarily making requests that concurrently generate server processing.

To further illustrate this important distinction, imagine 50 clients simultaneously

requesting server data. The probability of those requests arriving at the server

simultaneously in the real world can vary greatly. Variables affecting the arrival of those

requests include client connection speeds, network latency, internet congestion, and the

number of network segments the requests need to travel. If any of these variables change

across those 50 client requests, the resulting activity at the server level can change

significantly. Users requesting server data simultaneously do not necessarily produce a

one-to-one relationship between the number of users and their requests concurrently

being processed on the server. Understand the limitations of this term before committing

to capital expenditures for capacity planning purposes.

TCA Concurrent Users

We felt it critical to discuss the term concurrent users because the TCA models site

capacity by predicting the theoretical maximum level of concurrent users. TCA estimates

hardware resource costs for average users concurrently utilizing your Web application.

The user profile defines the average user for your site and is the first step in the five step

TCA methodology. TCA concurrent users represent the level of average users consuming

resources on your servers.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Benefits of Completing a TCA

Now that we have laid the groundwork for a clearer understanding of the concept of

concurrent users, the next question is: "What level of server resources does your site

require?" We find the TCA methodology provides a scientific approach to addressing this

question.

Because TCA focuses on server resource costs relative to user operations, it can be used

whether your Web application is based on the .NET architecture or Windows DNA. The

methodology is virtually the same in both cases. The only difference we have found are

some slight variations in Performance Monitor counters for Windows DNA versus .NET

Web applications. Table 9-1 outlines the performance counters and performance objects

in each case. Note that this is not a complete list of counters you will need to monitor. It is

only a list of those that have changed locations from Windows DNA to .NET.

Table 9-1: TCA Performance Counters for Windows DNA and .Net

Performance Counter

Performance

Object

under

Windows

DNA

Performance

Object

under .NET

ASP Requests/Sec Active Server

Pages

ASP.NET

Applications

ASP Execution Time Active Server

Pages

ASP.NET

ASP Wait Time Active Server

Pages

ASP.NET

Requests Queued Active Server

Pages

ASP.NET

TCA is an excellent approach for focusing development efforts on reducing hardware

resource costs for your site's most expensive user operations, thereby increasing

application scalability without increasing your hardware infrastructure.

Using TCA to reduce relatively high site operation costs will not only increase the

scalability of your site but will also go a long way toward decreasing your site's total cost

of ownership. This can be achieved by introducing a reliable method for modeling your

site hardware capacity needs as your site traffic evolves and grows. A thorough TCA

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

allows you to maximize site hardware resources already in place, to project when you will

need to add more hardware, and to predict how much extra capacity, in terms of

concurrent users, that extra hardware will adequately serve. In this manner, hardware

costs can be more accurately associated with user population levels. The following real

world example describes how a TCA approach assisted in increasing the scalability for

Microsoft's shop.microsoft.com site.

Real World Example-Shop.Microsoft.com

In the spring of 1999, the ACE Team completed a TCA for Microsoft's eCommerce site

http://shop.microsoft.com version 2.5. We found that the heavily trafficked Default

homepage and Browse operations had relatively high CPU resource costs. This

indicates that users requesting the homepage and product overview pages exacted a

higher cost in terms of server resources when compared to other operations on the site.

Identifying these high cost operations through a TCA allowed the developers to focus on

reducing the site's CPU utilization. Subsequent to completing a TCA on the

http://shop.microsoft.com version 4.5 code, we found that the shopper operational cost

decreased by 25 percent between the versions, increasing the site's concurrent shopper

capacity by the same percentage. This indicated that the shop site could adequately

serve 25 percent more shoppers using the same hardware configuration and the

version 4.5 code. The majority of the decrease in total cost could be attributed to cost

reductions in the heavily trafficked Default homepage and Browse operations that were

identified in our earlier version 2.5 TCA. These operations realized a lower cost in the

version 4.5 code because they could achieve much higher ASP request per second

throughput rates without significantly increasing the CPU utilization required to sustain

those throughput rates. Additionally, our original version 2.5 TCA model allowed the

developers to perform "what if" scenarios against subsequent versions by quickly

calculating the impact of coding decisions on overall site capacity. The lesson learned in

this TCA exercise was that if you understand your Web application's user traffic and

subsequent hardware resource consumption, optimizing high resource cost application

code will buy you more capacity without increasing your hardware budget.

TCA In Five Steps

There are five distinct steps to performing a TCA. The first critical step is to define your

Web application's usage profile. Why is the usage profile so critical? Because the

estimations that you assign to site operations in this step will ultimately weight your site's

hardware resource costs, greatly influencing the final site capacity estimations. If you put

garbage in you'll only get garbage out, so invest the time to do as thorough a user profile

analysis as possible. The second step is to actually execute discrete stress tests on the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

scenarios defined in the user profile to identify server resource costs at maximum load.

The third step is to make a set of calculations to quantify these costs. We have provided a

Microsoft Excel spreadsheet that will help streamline these calculations. The TCA

spreadsheet is included on this book's companion CD. The fourth step in this process is

to make another set of calculations that will result in the actual number of estimated

concurrent users. This calculation can also be made using the aforementioned

spreadsheet. The fifth and final step is to run verification tests on your site to confirm the

capacity numbers that you generated through the TCA model. Figure 9-1 illustrates the

five step TCA methodology.

Figure 9-1: The Five Step TCA Methodology

Step 1: Create A User Profile

The first step is to create a user profile from existing production traffic data where

available. This can be done by viewing historical data from your Web server log files

(through various log parsers) or by analyzing database activity. If production traffic data

does not exist, you can estimate user traffic loads by researching traffic patterns on

similar sites. You will use the user profile to weight specific site transaction costs based

on the ratio of specific operations to overall traffic. Our IBuySpy Web application browsing

products transaction accounts for 61 percent of the traffic.

A good source for site traffic information is production IIS logs. However, analyzing

gigabytes of IIS log data can be extremely time consuming, so automate this process

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

wherever possible. There are many log file analyzers available, so find and use the one

that suits your needs. In selecting the sampling of logs, it is better to use a set of logs

covering as long a period of time as possible (at least a week's worth of IIS logs if they are

available) to obtain realistic averages. The goal is to include as large a population of

production traffic data as possible to generate more reliable usage profile weightings.

Tip When creating your profile, exclude traffic that extraordinarily inflates

page view statistics. Ensure that page views are successful 200

code return requests and not just error pages represented as 200

code returns.

In some cases, to ensure that your Web application can meet the capacity needs

regardless of seasonal peaks, you may have to use IIS logs for key peak traffic periods

(for example, holiday shopping seasons). This will help your TCA estimates reflect your

Web application's worst case traffic scenario. If historical production data is not available

because your site is new, you can make an educated guess by reviewing publicly

available statistics for similar sites including page views, unique users, and demographic

data about their user base.

Identifying one profile that best represents your site traffic is just as critical as defining the

probability of site usage distributions to be included in the "what if" scenarios. For

example, after analyzing the IIS logs, we find that the browse operation has a normal

distribution with a mean of 60 percent and a standard deviation of 10 percent. This means

that determining the operational costs for 95 percent of the possible browse distributions

would require you to calculate browse costs for two standard deviations or from a 40

percent browse weighting on the low end to an 80 percent browse weighting on the high

end. Looking at the specific operational weightings as probability distributions rather than

discrete data points provides a statistical basis for performing your site traffic "what if"

scenarios mentioned in the beginning of this chapter. This allows you to easily model

hardware capacity estimates across a range of probable traffic patterns.

Table 9-2 shows the user profile we created for our IBuySpy TCA:

Table 9-2: IBuySpy TCA User Profile

User Operations

Mean Hit Ratio

(User Profile) Standard Deviation

Basic Search 14.14 percent 2 percent

Browse for

Product

61.49 percent 10 percent

Add to Basket 10.47 percent 1.5 percent

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 9-2: IBuySpy TCA User Profile

User Operations

Mean Hit Ratio

(User Profile) Standard Deviation

Login & Checkout 7 percent .5 percent

Registration &

Checkout

6.90 percent .5 percent

Totals 100 percent

Because this is only a sample site, we did not have production data from which to

estimate our user profile. As an alternative, we based the ecommerce IBuySpy sample

site user profile estimates on production data from the shop.microsoft.com e-commerce

Web application. You will run into the same situation if you lack production data to base

your user profile estimates on.

Another important aspect of setting up a user profile is determining the rate at which

transactions occur. To illustrate, we estimated an average session length for our IBuySpy

user to be 10 minutes. You use these transaction rates for stress script sleep times in the

verification stress tests (Step 5) that verify the estimated capacity produced by the TCA

model.

Step 2: Stress Test for User Operation Costs

After you have created the user profile, the next step is to create the transaction

performance data needed to measure each user operation resource cost. You can do this

by creating a stress script to exercise each of the identified shopper operations. The goal

is to identify server resource costs such as CPU utilization at maximum throughput load.

Microsoft ACT, a load generation/simulation tool discussed in Chapter 3, can be used for

this task and is the one we used for this TCA. A set of sample ACT scripts that we utilized

is included on this book's companion CD.

TCA Stress Test Goals and Parameters

Running a script exclusively for an individual operation loads the IIS server with as many

requests as possible in order to achieve maximum ASP requests per second for that

operation. Maximum ASP throughput occurs right before you observe a decline in ASP

requests per second, as indicated in Performance Monitor at a higher load level. You also

need to ensure that operational latency does not suddenly increase. We recommend

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

keeping your average ASP latency under 2 seconds. You can calculate operational

latency using the following formula:

Average ASP latency = (Avg. ASP execution time + Avg. ASP wait time)

Before each stress test, it's good practice to clear server level caches to restore the

system to a consistent baseline for performance data collection. Each test should run for

a duration sufficient to reach steady-state. This state is reached when resource

consumption related to test start up are completed, network connections are established,

server caches are appropriately populated, and periodic behavior such as batch jobs or

production back up processes are occurring. For the IBuySpy TCA, we ran the stress

tests for 10 minutes after allowing for a minute or two of test start up time. The resource

measurements, such as CPU utilization and ASP requests per second, should be

averaged over the length of the steady state test.

When you notice a decline in ASP request per second throughput as more load is applied,

it could be due to context switching, excessive memory paging, disk I/O, network

saturation or a stress client bottleneck. For example, in our IBuySpy TCA we monitored

context switches per second to ensure they did not exceed 15,000. A context switch

occurs when a thread no longer runs because it is blocked waiting for a logical or physical

resource, or the thread puts itself to sleep. Symptoms of high context switching can

include lower throughput coupled with high CPU utilization, which begins to occur at

switching levels of 15,000 or higher. Record maximum ASP requests per second before

your application demonstrates signs of performance degradation by closely observing

these relevant performance counters and ensuring that your client is not bottlenecking

overall throughput. More details on how to use Performance Monitor and important

counters to monitor are presented in Chapter 4.

Identifying Maximum Throughput

A TCA approach to capacity planning can be used to measure any hardware resource

costs, such as memory, disk I/O, or CPU utilization. For our IBuySpy TCA we are

measuring CPU utilization as the limiting hardware resource. Transaction costs should be

recorded, using Performance Monitor, at the point where maximum ASP requests per

second is reached. See Table 9-1 for Windows DNA versus .NET counters. Increasing

the number of users executing the script should increase the ASP requests per second

throughput. When a site has been properly developed and tuned for performance, ASP

requests per second and CPU utilization grow as the load increases. If adding more load

results in lower ASP requests per second, you know that the load level needs to be

decreased.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Tip Gradually increase the amount of load on your Web application while

monitoring ASP requests per second. If you observe that an

incremental increase in load applied does not subsequently result in

higher ASP requests per second, ensure that your client isn't the

throughput bottleneck. If your client is bottlenecking, reduce the load/

client ratio and add more clients, to ensure your measuring the

server resource cost at the true ASP request per second maximum.

In addition, monitor ASP queuing on the server. If the queue exceeds

a value of 1 then you have blocking. Reduce the load level.

If the number of ASP requests per second continues to grow until CPU utilization reaches

100 percent, the number of ASP requests per second at that point is the maximum. We

do not recommend pushing CPU utilization to 100 percent, because this can introduce

additional latency for your system and inaccuracies in TCA estimates. For IBuySpy, our

maximum allowable CPU utilization was 90 percent.

Minimizing the Number of Pages Needed per

Operation

When executing the operational cost stress tests it is important to reduce the number of

pages required to successfully execute a particular operation. When you run a stress

script to measure the Add to Cart costs including product browse pages, a portion of the

cost you record from that test will be attributable to both Browse operations as well as the

Add to Cart operations. The goal is to focus as narrowly as possible on the server

resource cost produced by the operation in question. Narrowing the number of pages

required to execute an operation down to the absolute minimum helps achieve that goal.

This may require that you include parameters for dynamic pages such as shopper IDs or

product IDs in your stress scripts to bypass pages that a user would normally be required

to hit first.

Step 3: Calculate the Cost per User Operation

The stress tests you performed in Step 2 resulted in a set of resource costs measured in

CPU cycles for each user operation. Our IBuySpy IIS server was configured with two

processors with clock speeds of 1000 MHz per processor. The CPU utilization transaction

costs were recorded when maximum ASP requests per second was achieved for the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

operation in question, while at the same time keeping the average operational latency

(ASP execution time + ASP wait time) below 2 seconds, ASP queuing below 1, context

switching per second below 15,000, and CPU utilization below a 90 percent average. The

performance metrics we observed to verify that our test was achieving maximum ASP

request per second are detailed in Table 9-3. These metrics are not used in the cost per

operation calculations but are critical to monitor to ensure you're achieving the true

maximum ASP requests per second. The results from our stress tests and subsequent

cost per operations are detailed in Table 9-4.

Table 9-3: IBuySpy Cost per Operation Test Performance Monitor Metrics

User Ops

Execution

Time (ms)

Wait

Tim

e

(ms)

Avg.

ASP

Laten

cy

Context

Switches/

Sec

Basic

Search

62 56 118 8188

Browse

for

Product

1012 3.8 1015.8 4415

Add to

Cart

350 5 355 3262

Login &

Checkout

12.5 .88 13.38 5287

Register &

Checkout

600 130 730 8355

Table 9-4: IBuySpy Cost /Operation

User

Ops

CPU

Util

@

Max

ASP

Req/

Sec

Max

ASP

Req/

Sec

Cost

(Mcycl

es)

Cost/Operation

(Mcycles)

Browse

for

Product

58.20

perce

nt

193.3 1164 6.02172

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 9-4: IBuySpy Cost /Operation

User

Ops

CPU

Util

@

Max

ASP

Req/

Sec

Max

ASP

Req/

Sec

Cost

(Mcycl

es)

Cost/Operation

(Mcycles)

Basic

Search

84

perce

nt

349.8 1680 4.80722

Add to

Cart

89.50

perce

nt

98.3 1790 18.20956

Register

&

Checkou

t

76.20

perce

nt

307.3 1524 4.95932

Login &

Checkou

t

89.00

perce

nt

279.9 1780 6.35941

The initial result of your TCA stress tests are the CPU costs per operation (last column in

Table 9-4) calculated on the basis of megacycles (Mcycles) or 1 Mhz. For our IBuySpy

TCA, we used a 1000-Mhz dual processor, which has a total capacity of 2000 Mcycles.

Using the maximum number of ASP requests per second, you can calculate the costs per

operation as follows:

Cost per Operation = CPU utilization * number of CPUs * speed of CPU (

in MHz) / ASP requests per second

To illustrate, when we stressed our IBuySpy browse operation, we achieved a maximum

of 349.8 ASP requests per second with a CPU utilization of 84 percent, the cost per ASP

page is then 84 percent * 2 * 1000 / 349.8 = 4.80274 Mcycles. Before you calculate the

cost of an operation, you need to know the number of ASP pages involved in that

operation. Checkout operations typically involve several ASP pages (personal information

page, credit card page, shipping page, confirmation page, and so on). You calculate the

cost of a shopper operation by normalizing the number of ASP pages involved.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Tip Some ASP pages, such as redirects, are not visually seen by the

clients since they contain server-side logic and redirect to a

continuing page. You must also account for these types of redirect

pages in your cost per operation calculations.

Cost Per User Operation/Sec Calculation

The behavior of user activity against a Web application can be random. But, over time

Web usage statistically evens out to average behavior. The user profile you created in

Step 1 should reflect your Web application's average user behavior. We calculated the hit

ratio means as well as standard deviations to describe user activity for site traffic "what if"

scenarios. In this fashion, you can model the effect that different site traffic distributions

have on site capacity estimates, one of TCA's principle benefits. We calculated the

number of shopper operations during the course of 10 minutes, and following that, the

number of user operations per second. We need to know the number of operations per

second because the total operation cost number is expressed in terms of clock speed per

second (1000 MHz CPU speed is 1000 Mcycles per second). The cost per user operation

per second for IBuySpy using the mean hit ratio distribution is detailed in Table 9-5:

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 9-5: IBuySpy Cost Per User Operation/Sec (Mcycles)

Ops

Mean

Hit

Ratio

(User

Profile)

Min

ASP

Pages

Norm

User

Profile

User

Profile

Ops

User

Profile

Ops/Sec Cost/Op Cost/Sec

Browse for

Products

61.49

percent

1 .61 2.18919 .00365 4.80 .01752

Basic

Search

14.14

percent

2 .28 1.00684 .00168 6.02 .01010

Add to

Basket

10.47

percent

3 .31 1.11827 .00186 18.21 .03394

Registration

& Checkout

6.90

percent

13 .90 3.19353 .00532 6.36 .03385

Login &

Checkout

7 percent 10 .70 2.49217 .00415 4.96 .02060

TOTAL 100

percent

N/A 2.81 10.00 N/A .11601

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Interpreting the Cost per User Operation

Numbers

The key number in Table 9-5 is the Total Operational Cost/Sec number (.11601 Mcycles

per user), which represents the total cost of the mean user profile. This number reflects

the cost of an average user executing operations in the manner described by our mean

user profile. This number will be used to estimate site capacity in Step 4 of the TCA

methodology. Table 9-5 not only indicates the total cost of an average user but also

provides clues regarding where to begin optimizing operations for better performance

which will lead to improved site scalability. According to Table 9-5, the Add to Basket and

Registration & Check-out operations have the highest cost per user, .03394 and .03385

respectively. In the case of the Add to Basket operation, the high cost per user operation

per second partially results from a relatively high cost per operation of 18.21 Mcycles.

This indicates that the development team should focus on reducing server CPU resource

costs needed to complete this operation in order to increase overall site scalability.

In the case of the Registration & Checkout operation, the high cost per user operation per

second results from a relatively high number of ASP pages (that is, 13) needed to

complete this operation. The high number of pages means the operation's cost (6.36

Mcycles) needs to be weighted higher than the other operational costs. Development

must focus on reducing the cost of this operation or reducing the number of pages

needed to complete Registration & Checkout. Either approach will bring the cost per user

per second for Registration & Checkout down, thereby increasing scalability.

Performing TCA "What If" Scenarios

At this stage in the methodology, we can perform the "what if" scenarios we discussed

earlier. If you want to determine the impact of increasing the number of users performing

the Add to Basket operation on your site's overall transaction cost per second and

ultimately on your site's capacity, simply adjust your user profile by 2 standard deviations

or more as needed.

In Step 1, we calculated the standard deviation for the Add to Basket operation at 1.5

percent. Therefore a 2 standard deviation increase in this operation's hit ratio means Add

to Basket now represents 10.47 percent + (2*1.5 percent) = 13.47 percent of our Web

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

application's traffic. When we increases the Add to Basket weighting, we must

correspondingly decrease weightings in other operations. For the purpose of this example,

we assumed that users increasing their Add to Basket activity were finding what they

were looking for and subsequently browsing for fewer IBuySpy products. Hence, we

reduced the browse hit ratio by 3 percent and correspondingly increased the Add to

Basket operation hit ratio. The total effect on the cost for increasing the weight of our

highest cost operation is detailed below in Table 9-6:

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 9-6: IBuySpy Cost Per User Operation/Sec (Mcycles)

Ops

Mean Hit

Ratio

(User

Profile)

Min

ASP

Pages

Norm

User

Profile

User

Profile Ops

User

Profile

Ops/Sec Cost/Op Cost/ User/ Sec

Browse for

Products

58.49

percent

1 .58 2.03883 .00340 4.80 .01632

Basic Search 14.14

percent

2 .28 1.00684 .00168 6.02 .0101

Add to Basket 13.47

percent

3 .31 1.40860 .00235 18.21 .04275

Registration &

Checkout

6.90

percent

13 .90 3.19353 .00532 6.36 .03385

Login &

Checkout

7 percent 10 .70 2.49217 .00415 4.96 .02060

TOTAL 100

percent

N/A 2.81 10 N/A .12227

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

As detailed in Table 9-6, increasing the hit ratio for the Add to Basket scenario has

resulted in a slight increase in our overall cost per user operation per second from .11601

Mcycles to .12227 Mcycles. At first glance this does not sound like much, but notice how

much this seemingly small site traffic change affects our overall site capacity in Step 4.

Step 4: Estimate Site Capacity

Step 4 of the TCA process calculates hardware resource costs (in our case CPU

utilization) relative to concurrent users levels. You can start by building a table similar to

Table 9-7. In this table, we have taken the cost per user operation per second value that

we calculated in Step 3 and multiplied it by the number of concurrent users we anticipate

accessing our Web application.

Table 9-7: IBuySpy Capacity Estimates

Concurrent Users Cost

14300 1658.94

14400 1670.54

14500 1682.15

14600 1693.75

14654 1700.01 (Maximum Available CPU Resources)

14700 1705.35

14800 1716.95

Mean User Profile Capacity Estimates

When calculating maximum capacity, assign an allowable maximum server resource (i.e.

CPU, Disk, or Memory) level. In this case we are using CPU utilization as the finite server

resource. As we mentioned in Step 2, it is not a good idea to run your server at 100

percent CPU utilization. In order to estimate site capacity, we will assume an 85 percent

CPU utilization as the maximum for a 2 processor IIS server. This leaves us with a

maximum available CPU resource of 2000Mcycles * 85 percent = 1700 Mcycles. Table

9-7 illustrates the range of concurrent user capacity for our 2 processor 1000MHz IIS

server in terms of concurrent users:

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 9-7 shows us the maximum capacity of our IBuySpy IIS Server is 14,654 users,

with a cost of 1700.01 Mcycles. This is the maximum limit, since the two processors with

a theoretical maximum of 85 percent provide the site with a budget of 1700 Mcycles of

capacity. In order to attain more capacity, given existing hardware, we will need to focus

on reducing server CPU costs for those higher cost operations, which were Add to Basket

and Register & Checkout.

Increased Add to Basket Traffic "What If"

Scenario Capacity Estimates

In Step 3 we illustrated how increasing the average users activity for the Add to Basket

operation by two standard deviations affected our overall cost per user operation per

second. The result was an increase in cost from .11601 Mcycles to .12227 Mcycles. How

much does this small 3 percent change in traffic affect the overall concurrent user

capacity for IBuySpy? Table 9-8 illustrates the capacity estimates with the higher average

user cost:

Table 9-8: IBuySpy Site Capacity Estimates

Concurrent

Users

Cost

13500 1650.65

13600 1662.87

13700 1675.10

13800 1687.33

13903 1700.04 (Maximum Available CPU Resources)

14000 1711.78

14100 1724.01

As illustrated above, increasing the average user's Add to Basket operation activity by

two standard deviations or 3 percent has resulted in a drop in our IIS servers maximum

concurrent user level from 14,654 to 13,903 users. This is a significant drop in our

server's maximum concurrent user ability from only a small shift in the allocation of

average user activity, and it only took a minor adjustment in our model to obtain this data.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The main point of this "what if" scenario is to illustrate the time saving value of TCA

modeling. Now that we have completed our TCA model, we can reallocate site user traffic

in an infinite number of distributions and immediately determine the probable effect on our

overall site capacity. When you compare the time it takes to complete one TCA to the

time it takes to run discrete stress tests to produce the same capacity data, you can

appreciate the value of a TCA. The TCA provides the ability to predict site capacity for an

infinite number of site traffic scenarios.

Step 5: Verify Site Capacity

The last step in the TCA process is to verify site capacity by running stress tests that

reflect the user profile properties, including traffic distribution and session length. You

then compare the resource utilization costs you obtain in these tests against those

predicted by the TCA model. The actual values for tested resource utilizations and the

TCA model resource predictions should fall within an acceptable margin of error. The goal

in this step is to confirm the TCA model site capacity predictions. It is not necessary to run

a verification test at every load level. After all, this would defeat the purpose of the TCA in

predicting resource usage at various concurrent user levels. Rather, a single test will

allow you to gain a desired level of confidence in the TCA model predictions.

To confirm our IBuySpy TCA model, we ran five verification tests across a wide range of

concurrent user levels. The results for our IBuySpy verification tests were obtained using

the same stress test scripts we created in Step 2. However, all scripts were run

simultaneously and distributed as defined in our user profile. Additionally, since our model

used a 10-minute user session length, our verification scripts all contained 10-minute

sleep times. This means that each script takes 10 minutes to complete the IBuySpy

operations, just as the average user would. Refer to Chapter 3 for details on sleep times

in stress scripts. Figure 9-2 illustrates our IBuySpy verification test result.

Figure 9-2: Verification test results

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

When analyzing the verification test results we are checking to make sure that the percent

difference in megacycles predicted and megacycles obtained does not exceed 10 percent.

In addition, we also verify that our ASP scripts are executing within our 2 second

maximum latency parameters. According to the results in Table 9-9, we see that for each

of the test runs we fall well within our 10-percent margin of error. When running

verification tests remember to keep an eye out for average ASP latency of greater than 2

seconds. As indicated in Table 9-9, ASP latency was not a limiting throughput factor

during our verification tests.

Table 9-9: IBuySpy Verification

Concurr

ent

Users

Mcyc

les

Predi

cted

Mcyc

les

obtai

ned

AS

P

Wai

t

Tim

e

(ms

)

ASP

Exe

cuti

on

Tim

e

(ms)

AS

P

Lat

enc

y

(ms

)

100 11.60 11.54 .238 4.06

3

4.30

1

200 23.2 23.8 .769 5.09

4

5.86

3

1000 116.0

1

120.1

9

1.9 6.09 7.99

10000 1160 1147 27.2

03

52.4

41

79.6

44

14653 1699 1661 39.9

8

72.4

7

111.

45

Our verification tests confirm the costs predicted by the TCA model and increase our

confidence in the TCA estimate's accuracy. We can now use the TCA to predict hardware

resource requirements for various traffic distribution scenarios.

Conclusion

Estimating a site's concurrent usage is part art and science. Careful analysis of server

activity that different user populations create must be performed to appreciate the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

common misconceptions associated with the term concurrent user. Nevertheless, site

owners need to estimate their maximum site capacity hardware needs to be better

prepared for extraordinary traffic spikes. The TCA is a scientific methodology for

estimating Web application hardware capacity needs. It consists of five steps:

1. Creating a user profile

2. Stress testing to define transaction hardware resource costs

3. Calculating the hardware resource cost per user operation

4. Using the transaction costs to model Web application hardware resource

needs

5. Verifying the TCA model is accurate

Using the TCA approach to better understand how varying Web application traffic affects

hardware capacity needs allows you to make more informed hardware purchase

decisions saving your company capital expenses.

Chapter 10: Performance Modeling: Tools for

Predicting Performance

Overview

TCA is the scientific method of determining server capacity-establish a hypothesis, and

then run an experiment with live hardware and real or projected usage data to determine

the validity of your expected result. Using this method, basic capacity planning and

real-time evaluation of existing systems can be done with an acceptable degree of

certainty. Provided the usage data, hardware, and network resources are available to test,

TCA can also be used to anticipate changes in load and cost, and to determine where

adjustments can be made in the name of either higher performance or lower financial

impact.

When an established server's load grows to the point where performance is reduced, the

most common solution is to add more resources, with the expectation that things like

additional processor capacity or bandwidth will have a direct impact on the performance

problem. Although this can be expensive, it is usually considered a good problem to have.

A system that has reached its critical limit for performance is probably generating revenue,

or at least experiencing high traffic. Additional hardware costs are justifiable on the

surface, and hardware installation rarely involves a major reconfiguration of the server's

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

software components. The expectation is that users will not experience an interruption in

their service-just an improvement in its response time.

The attitude that more hardware solves the problem can get software engineers and

network managers in trouble, however, because adding more physical resources does

not always address the real issue.

For example, consider an e-commerce server that is taking too long to process order

handling, and generating errors for some users who try to place an order. The IT staff

may decide that because their processor load is often near maximum, the bottleneck is

the result of a lack of hardware resources. However, this bottleneck in performance might

be caused by the server application: perhaps the order processing application is only

designed to handle a finite number of simultaneous open order input transactions. If this

aspect of the application is not anticipated in TCA evaluations, the TCA results will not

show that increasing processor speed will have no impact on the problem.

Predicting and Evaluating Performance Through TCA

TCA is greatly valuable for evaluating existing systems and gauging the improvement

caused by changes in code or upgrades in hardware. By changing the parameters within

an Excel spreadsheet, projections can easily be made. By running TCA evaluations

against old and new versions of software, as illustrated in the Chapter 9 "Real World

Example-Shop.Microsoft.com," changes are validated in a measurable way. TCA is a

significant improvement over completing an entire system, including both hardware and

software, and then attempting to make improvements to meet requirements after the fact.

However, due to its dependence on the actual or projected data and system responses, it

is a some-what reactive method of evaluating performance.

When the overall architecture of a server system requires multiple changes to improve

performance, a company's existing TCA criteria may not be designed to take all of these

elements into consideration.

What about a new business launching a new Web service? In the last chapter, we

discussed the need to have real user data in order to complete the TCA experiment. In

addition, validating the impact of more bandwidth, processor capacity, or other physical

improvements to the system can be expensive because those resources must be

physically present. The cost of having hardware for testing purposes is often hard to

justify, especially when the system being tested is not yet generating revenue.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Advanced Performance Modeling

To address this issue, a more advanced method of performance modeling is required.

The purpose of this more advanced form is to facilitate testing of multiple hardware and

network resource configurations without actually having all of the resources present. This

allows an enterprise to run extensive tests, including what-if scenarios, in order to make

informed decisions about their physical resource purchases. The difference between

these two methods is most evident in their end results: TCA tests known data and existing

resources to the point of failure, defining the physical limits of the system. Advanced

performance modeling tests possible configuration scenarios with a greater number of

variables, and can be used not only to predict the physical limits of the system, but also to

suggest possible improvements prior to those limits being reached.

Performance modeling also allows software engineers to test models of their code before

the code is complete. This can be achieved by defining the design of the software in a

language like Universal Modeling Language (UML), which is an industry-standard design

formalism. By creating code objects that encapsulate the performance characteristics of

software in terms of expected resource utilization and workflow, performance engineering

is accomplished through the creation and evaluation of performance models.

Another obvious benefit of this virtual model approach is the flexibility of testing during the

design phase. Software engineers can establish the time and resource constraints of their

system and test different architecture options before committing to writing finalized code.

Doing this reduces the chance that code will have to be massaged or rewritten a second

time to meet performance requirements-and therefore reduces both time to release and

possible introduction of errors.

Performance Modeling Technology

One goal of performance modeling is to be truly proactive in performance engineering-to

examine a proposed system in its entirety, from hardware and network resources to code

optimization, before completely building any one component. In this section, we'll discuss

the following:

§ Scenarios in which performance modeling can replace other methods of

performance assessment and engineering

§ Different methods of modeling and when they are appropriate

§ A brief look at currently available performance modeling tools

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

§ A detailed look at the toolkit approach, represented by Microsoft's Indy project

Modeling Scenarios

How can performance modeling improve business practices and efficiency, as well as the

overall performance of systems? Let's look at some of the common issues facing

client-server systems.

Capacity Planning

Anticipating the need for more resources involves both business and engineering

decisions. Once a company has determined an acceptable estimate for future growth, the

process of improving available resources follows close behind. Simply adding more

hardware, as discussed in our introductory example, can mean that the additional

resources do not equal more capacity, and performance suffers, taking company profits

along with it. Using TCA for capacity planning can be highly accurate, if the data in the

TCA structure is accurate to begin with. However, it still requires verification and, possibly,

unnecessary expenditures to verify the projected results. Through more detailed definition

of the user load, hardware, and software components of a system, performance modeling

can eliminate the verification step and suggest alternative ways to improve capacity

before the need arises.

Bottleneck Analysis

Evaluating a system that suddenly reaches a plateau and does not respond to hardware

upgrades can be a frustrating process. Using performance modeling to detail each

transaction and the associated hardware requirements for those transactions can expose

bottlenecks. In advance of an actual performance failure, it can also be used to test with

higher potential system load and predict the occurrence of a bottleneck, simultaneously

showing ways to alleviate the problem before it occurs.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Hardware Configuration

Detailed performance models can very accurately predict the behavior of proposed

hardware upgrades, using performance counters and simulating transactions against the

virtual hardware. The question of whether to spend money to upgrade from 2-CPU to

4-CPU servers can be answered in a performance model with a few clicks of a mouse,

rather than through trial and error.

Architectural Assessment

One way to assess the performance quality of two radically different architectural

structures is to build both and examine the actual results. This is hardly feasible in the real

world of software engineering or multi-client services, however. Both cost and time would

be prohibitive. TCA can be used to produce estimates regarding overall system

performance based on hardware and network architecture, but it still requires verification.

In this case, performance modeling can decrease both the time and money spent on

architectural engineering by providing varying levels of detail, depending on the

architecture questions to be answered.

User Scenarios

TCA is a simple and effective tool for examining what happens when the user load on a

given system increases. It is more difficult, however, to use TCA to track the impact of

changes in typical user behavior. Performance modeling adds the ability to test different

user habits by relying on models of user actions instead of real or borrowed user data

patterns.

Performance Modeling Methods

There are three main methods of modeling that can be used to predict, assess, and

interpret performance during system construction. These methods are analytical,

statistical, and simulation. Understanding the requirements and results of each method is

critical for making decisions about which is best used for a given task.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Analytical Modeling

The process of analytical modeling involves the use of mathematical expressions to

represent the interactions that take place on a system. In some cases mathematical

notations such as queuing networks and Petri networks are employed to represent the

architecture of a system.

Typically, each component in the model, whether it represents a hardware device,

network transaction, section of software code, or user activity, is represented in the

underlying system in mathematical terms. Complex equations, representing the

relationships between these components, are developed and then solved to determine

the projected value of a given variable in the model.

For example, if you have a Web server that only serves simple HTML pages to clients

connecting over the Internet, you would need to gather information about the server's

hardware configuration (CPU, disk speed, and memory usage), the content being served

(including file sizes for HTML, image, and other elements of the Web pages), the network

capacity at the server (the real bandwidth available to the server), and various scenarios

for client activity (including low and high load situations, average number of page views,

average amount of time between page requests, and various network connection speeds

at the client level). Given this data, you can extrapolate a control equation that accurately

relates all of the elements in terms of the time and resource utilization.

Once the control equation (which might be represented in a spreadsheet with embedded

calculations) has been established, you can change the values of different elements in

order to see how those changes impact other elements within the boundaries of the

equation.

You will recognize this as the basic methodology behind TCA. Knowing the system's

typical behavior, TCA can predict system performance based on possible changes in user

behavior, or changes in hardware configuration (provided the data values are accurately

modified to reflect the new hardware's capacity and response times).

Analytical approaches can provide an initial estimate of the performance of new systems,

but typically can produce results for only a limited set of what-if scenarios. The use of a

mathematical notation to describe the most challenging performance effects of a system,

such as queuing delays and resource contention, requires substantial expertise on the

part of the performance engineer.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Statistical Modeling

Statistical modeling in performance engineering relies on known performance metrics for

existing systems. You can use this data as a basis to predict the behavior of a new, not

yet built system. This is achieved by analyzing the measured data with techniques such

as regression analysis. Then the resulting statistical models can be used to extrapolate

the performance of the system in new configurations.

For example, a hosting company may have a number of existing e-commerce servers for

its clients already in production. To recommend hardware and network capacity for a new

client, aggregate statistical data about all of the production servers could be analyzed and

a recommendation made, either to use similar hardware and bandwidth, or to use

different elements in the new system in hopes of improving the current systems'

performance.

As with any statistical analysis, the accuracy of the resulting projections increases with

the sample size of existing data. For this reason, the hosting company in the example

would want to measure performance on several systems before arriving at an average

model. One barrier to using statistical analysis in performance engineering is the lack of

either quantity or complexity of existing data. Reviewing the published site statistics for a

comparable, competing e-commerce vendor might yield valuable statistical data about

number of visitors and those visitors' traffic patterns, but probably would not include

information about the site's hardware and network connection capacity, or the software

used to provide the site's services. In this case, a combination of statistical and analytical

models (again, similar to TCA when used to project behavior of a new service) would be

required to accurately assess performance prior to launch.

Statistical models include assumptions about the way the performance extrapolates. For

example, the performance engineer might assume that the CPU utilization is linearly

increasing with load. Although this might be true for the observed performance

measurements, the CPU utilization behavior changes when it approaches saturation.

Experience is the only way to avoid these pitfalls.

Simulation

Simulation may be done in two ways. The first involves building a proposed system and

subjecting it to simulated load patterns to assess its performance. The accuracy of

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

simulation modeling in this manner is rivaled only by realworld experience, because the

hardware and software in place are the real tools used to provide the service being tested.

Load generation can be done through the creation and automation of use cases, or by

using commercially available traffic generation tools such as ACT. Stress-testing a real

system not only exposes the performance problems, but demonstrates the aftermath of a

performance failure as well.

For example, consider a server application that processes telephone calls for an IP

telephony system. Its performance requirements run the gamut from lightning-fast CPU

response time to 100-percent bandwidth availability on the network connection, because

it must complete all of its requests to the telephone network within a 200-millisecond time

window. Such a system might perform flawlessly under minimal user load, but an

increase in the load that results in either queuing on the CPU or congestion on the

network would result in telephone service outages for its users. By simulating

call-processing load on the actual system before deployment, you could determine the

real limits of the system and avoid overuse by setting strict limits on the number of clients

who use that server for the handling of their calls.

The trade-off for accurate results in this type of simulation modeling is the fact that

improvements must be made to a complete, or nearly complete, system. In the preceding

example, the only way to avoid service failures with the existing call processing server is

to limit the potential number of simultaneous users. Alternately, the system engineers can

test alternate hardware or software configurations, but must purchase the resources or

rewrite the code to do so.

The second method of simulation modeling involves writing software that accurately

represents the behavior of hardware devices, and using another software tool to process

existing code or simulated software behavior (such as UML) through the hardware device

simulations. This eliminates the hardware costs associated with simulating only the load

on a system, but can be extremely time-consuming, if a performance engineer has to

develop the constructs and applications for processing the simulation from scratch.

Advanced Performance Modeling

Each method of modeling has advantages and disadvantages. In the real world, it is

necessary to balance the potential quality of test results with the time and money required

to run those tests. Advanced performance modeling tools, such as the Indy example later

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

in this chapter, combine these methods to provide flexibility and scalability with lower cost

and a broader learning curve.

Performance Modeling Tools

A few tools are available today that use models to evaluate and predict performance.

Most of them are customized solutions, which can be purchased either as an entire

system, or built to specification by the vendor. They typically feature very large libraries of

existing hardware models, graphical drag-and-drop interfaces, and the services of

consultants to assist engineering staff in applying the techniques provided by the

software.

The power and features of these tools come at a high price-often hundreds of thousands

of dollars in licensing, and more in training for the engineer who will ultimately be

responsible for the tool's use. More emphasis is typically placed on hardware than

software.

The direction of most performance modeling tools on the market today is toward solving

one or two specific problems, or addressing a single application's performance. For

performance modeling to be more widely used, and accessible to a larger audience, it

must be more modular and support a broader range of user skill levels.

Indy: A Performance Technology Infrastructure

In this chapter, we'll use examples from a Microsoft performance modeling project called

Indy to compare the results available through TCA (from the previous chapter) and those

available through more advanced forms of performance modeling. Indy is designed to

tackle the problem of performance engineering by creating a performance technology

infrastructure.

Performance modeling is a multidimensional space, with different modeling tools having

different requirements for level of detail, modeling technique, and target audience. No one

tool or static application can meet all these needs. However, a toolkit approach allows

construction of specialized tools from a basic infrastructure combined with customized

components. This approach also permits an infinite range of complexity in those tools and

models. Thus, a simple question can be answered quickly, or a critical system component

can be tested in great detail.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Indy Concepts

Indy uses a simulation-based approach to performance modeling with analytical shortcuts

to improve its performance. That is, it uses internal models of each of the major devices of

the system being modeled, and simulates how these devices behave and interact. After a

simulated run, the performance of each device can be examined in detail.

Indy comes with a predefined library of device models. Each model can in turn have

sub-models. Thus, the Indy model of a server farm might consist of various server models

connected by a network model. The server models can in turn contain models of their

CPUs, disks, and network interfaces. Instances of these hardware model s can then be

arranged in a system topology that matches the hardware configuration of the real server

farm.

Given a model of the system configuration, we also need to model the input load that it

will experience. The input load is referred to as its workload. For example, the Indy model

of an e-commerce site might have a workload defined in terms of how often it receives

requests for the various pages and actions on the site.

Finally, we must model how the various components in the system will react to the

workload: that is, we must define the behavior of the system. Indy provides a range of

ways to define this behavior, but here we will concentrate on an XML-based scripting

language called Transaction Modeling Language (TML). A TML script defines the

transactions that a Web site will support in terms of their component actions (such as

computation, disk operations, or network traffic), and on what devices these actions will

run.

Indy Architecture

Figure 10-1 illustrates the basic architecture of Indy and its components.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 10-1: Indy architecture

Kernel

At the heart of Indy is the kernel, which interacts with and controls the other components

via well-defined APIs. The kernel must be present in all tools produced with the Indy

toolkit. It includes the central evaluation engine that is used to produce simulation results.

As noted above, the current Indy kernel uses an event-based evaluation engine that

combines direct simulation with some hybrid shortcut techniques to improve performance.

However, for other purposes a different evaluation engine could be used: for example,

one that uses analytical or statistical modeling techniques.

Hardware DLLs

The hardware DLLs implement the models of the individual system devices, such as

CPUs and disks. A library of models is available to choose from, and additional models

can be easily added. Multiple models might be available for a particular device, differing in

the level of detail they go into to model performance. A more detailed model can give

more accurate results and allow more performance effects to be considered, but may in

turn require more information at run time and may take longer to simulate.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Workload DLLs

The workload DLLs are responsible for defining and injecting events into the kernel

representing the workload for a particular simulated run. As shown, a variety of workload

DLLs can be used. In this chapter we describe the use of a workload DLL that interprets

TML scripts to create a workload. Alternate workload DLLs could be used to interpret

UML diagrams or produce a customized workload for a specialized tool.

Interface Definitions

Information about the configuration of other components is stored by the kernel in a

metadirectory. For example, different versions of the same basic disk can use the same

hardware model, but with different performance characteristics. Similarly, performance

characteristics of a workload, such as how often a transaction occurs or how much

network traffic it causes, can be varied without having to recode the workload DLL or TML

script.

Front-end EXEs

The front-end executable combines the kernel, hardware, and workload DLLs, and the

metadirectory with an appropriate user interface for the final tool to use. In a production

environment we might choose to export data about a simulated run to an Excel

spreadsheet or a SQL database. However, in this chapter we will concentrate on a

graphical interface called IndyView. It is intended to be used by performance engineers

who require more detailed access to information about an Indy simulation. You will see

samples of its output later this chapter.

IndyView

In this section we will see some elements of the IndyView interface used to examine a

performance model of the IBuySpy sample Web site. We will also see the underlying XML

code used to represent various aspects of the model.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

System Topology

Consider a simple configuration of the IBuySpy sample Web site, as shown in Figure

10-2:

Figure 10-2: Physical topology for a typical IBuySpy sample Web site

The system consists of an IIS server and a SQL server (which together make up the

IBuySpy sample Web site), connected to one another over the LAN. The IIS server is also

connected to the Internet, and processes requests from remote clients via the Internet.

Figure 10-3 is an example of how this simple topology for the IBuySpy Web site can be

represented using the IndyView interface.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 10-3: Indy topology for the IBuySpy sample Web site

Examining this in more detail, the IIS server (iissrv) includes Network Interface Card (NIC)

devices and CPU devices. Devices that are functionally identical can be represented in

multiples, as the CPUs are shown here. The SQL server (sqlsrv) includes NIC, CPU and

disk devices. Although it is obvious that the real IIS server also has a disk, its

performance is not relevant to the model being tested, and so it has not been included.

On the sqlsrv device, below the CPU x 2 heading, there are two more devices: a CPU

performance counter, and the CpuModel:Pentium 1000MHz device, which defines the

behavior of this particular type of CPU, including how quickly it can process calculations.

Similarly, below the Disk x 1 heading, you find both a disk performance counter and a

DiskModel: HP NetRAID-4M device, which has its access speed and other hardware

performance factors predefined.

For the purposes of the performance being measured here, the client's hardware

configuration does not need to be detailed. Therefore, the client device is just a black box,

referenced in the transactions as the requester or recipient of data.

The net and lan devices, located at the same hierarchical level as the two servers,

represent the properties of the network connections for the Internet and LAN segments

respectively.

Finally, the links between each of the computer devices and the network devices are

detailed, including which interface on each computer connects to which network device.

This is so that the output of the test results will distinguish between the different devices'

activities at any point in the transaction.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

The following XML code underlies the diagram in Figure 10-3:

<?xml version="1.0" encoding="utf-8"?>

<system name="IBuySpy">

 <active_device type="computer" name="iissrv" count="1">

 <active_device type="generic" name="lan_nic_send" count="1"/>

 <active_device type="generic" name="lan_nic_recv" count="1"/>

 <active_device type="generic" name="net_nic_send" count="1"/>

 <active_device type="generic" name="net_nic_recv" count="1"/>

 <active_device type="cpu" name="cpu" count="2">

 <rct name="cpu"/>

 <use_template name="CpuModel:Pentium 1000MHz"/>

 </active_device>

 </active_device>

 <active_device type="computer" name="sqlsrv" count="1">

 <active_device type="generic" name="lan_nic_send" count="1"/>

 <active_device type="generic" name="lan_nic_recv" count="1"/>

 <active_device type="cpu" name="cpu" count="2">

 <rct name="cpu"/>

 <use_template name="CpuModel:Pentium 1000MHz"/>

 </active_device>

 <active_device type="generic" name="disk" count="1">

 <rct name="disk"/>

 <use_template name="DiskModel:HP NetRAID-4M"/>

 </active_device>

 </active_device>

 <open_device name="client"/>

 <passive_device type="network" name="net" ports="100">

 <use_template name="NetModel2:OptimumCapacity"/>

 </passive_device>

 <passive_device type="network" name="lan" ports="100">

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 <use_template name="LanModel:Ethernet"/>

 </passive_device>

 <link active="client" passive="net" fromport="0" toport="0"/>

 <link active="iissrv[?].2" passive="net" fromport="0" toport="99"/>

 <link active="iissrv[?].3" passive="net" fromport="0" toport="99"/>

 <link active="iissrv[?].0" passive="lan" fromport="0" toport="99"/>

 <link active="iissrv[?].1" passive="lan" fromport="0" toport="99"/>

 <link active="sqlsrv[?].0" passive="lan" fromport="0" toport="99"/>

 <link active="sqlsrv[?].1" passive="lan" fromport="0" toport="99"/>

</system>

The devices referenced in the TML code are defined in the metadirectory of hardware

configurations. By changing the underlying properties of one of the referenced devices,

this same script could be used to test different architectural options. Similarly, the number

of devices can be changed to examine the performance impact of factors such as number

of CPUs in a server.

IBuySpy Search Transaction

Having constructed our topology, we can now define the transactions that it will support.

Here we see a simple example of a transaction written in TML to simulate the request and

processing of a search page on IBuySpy.

<tml>

 ...

 <!-- BasicSearch

 Request the .aspx and then the two gifs

 -->

 <transaction name="BasicSearch" frequency="BasicSearchFreq">

 <include name="ChooseClientSpeed" />

 <action name="net_msg_sync_async" connection="net" service="Client"

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 saveschedule="clientstate">

 <param name="linkspeed" value="transaction.ClientSpeed" />

 <param name="msgsize" value="HttpRequestSize*3" />

 <peer name="target" service="IIS" saveschedule="iisstate" />

 </action>

 <action name="compute" service="IIS" useserver="iisstate">

 <param name="cpuops" value="BasicSearchCpu" />

 </action>

 <action name="net_msg_async_sync" connection="net" service="IIS"

 useserver="iisstate">

 <param name="linkspeed" value="transaction.ClientSpeed" />

 <param name="msgsize" value="BasicSearchSize" />

 <!-- just the .aspx page size -->

 <peer name="target" service="Client" useserver="clientstate" />

 </action>

 <fork>

 <branch>

 <action name="net_msg_sync_async" connection="net"

 service="Client" saveschedule="clientstate">

 <param name="linkspeed" value="transaction.ClientSpeed" />

 <param name="msgsize" value="HttpRequestSize" />

 <peer name="target" service="IIS" saveschedule="iisstate" />

 </action>

 <action name="net_msg_async_sync" connection="net" service="IIS"

 useserver="iisstate">

 <param name="linkspeed" value="transaction.ClientSpeed" />

 <param name="msgsize" value="0.04" /> <!-- 1x1.gif -->

 <peer name="target" service="Client" useserver="clientstate" />

 </action>

 </branch>

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

 <branch>

 <action name="net_msg_sync_async" connection="net" service="Client"

 saveschedule="clientstate">

 <param name="linkspeed" value="transaction.ClientSpeed" />

 <param name="msgsize" value="HttpRequestSize" />

 <peer name="target" service="IIS" saveschedule="iisstate" />

 </action>

 <action name="net_msg_async_sync" connection="net" service="IIS"

 useserver="iisstate">

 <param name="linkspeed" value="transaction.ClientSpeed" />

 <param name="msgsize" value="1.52" /> <!-- thumbs/image.gif -->

 <peer name="target" service="Client" useserver="clientstate" />

 </action>

 </branch>

 </fork>

 </transaction>

 ...

</tml>

The transaction definition begins with a name and a relative frequency with which the

transaction occurs. Then the actions within the transaction are listed in the order in which

they occur. In this example script, the individual actions (which each begin with action
name and end with /action) are:

1. net_msg_sync_async: Send an HTTP request message from the client

service (representing all of the possible client machines on the

Internet) to the IIS service over the Internet, using variable

parameters for the link speed and message size. This message is

sent synchronously (that is, the client waits for a response), but is

received asynchronously (the server can handle many simultaneous

requests).

2. compute: Process the HTTP request on the IIS server with the

variable parameter of how many CPU operations are required.

3. net_msg_async_sync: Send a message back from the IIS service to

the client service over the Internet, using variable parameters of link

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

speed and message size. In the comments, we see that the value

Basic-SearchSize is just the ASPX page size, meaning that the

variable Basic-SearchSize has been previously defined as a

workload parameter that contains the network size of the ASPX file.

This variable can then be easily modified from within IndyView.

4. At this point, the script dictates a fork into two branches, which will be

executed simultaneously:

The first branch, containing the actions net_msg_sync_async and

net_msg_async_sync, make up the request and response for a GIF file

(referred to in the comment as 1x1.gif) with a size of 0.04 KB.

The second branch, containing the actions net_msg_sync_async and

net_msg_async_sync, make up the request and response for a GIF file

(referred to in the comment as thumbs/image.gif) with a size of 1.52 KB.

Hard coding parameter values in this way results in a script that will require editing if any

of the values changed. For parameters whose values a user might want to change

frequently, it makes more sense to use a workload variable, as with the ASPX page size

and CPU cost.

We can drill down to another level of detail to see what information is embedded in one of

the service definitions in the script:

<service name=" IIS">

 <serverlist>

 <server name=" iissrv" />

 </serverlist>

 <actionscheduling>

 <schedule action=" compute" policy=" roundrobin">

 <target device=" cpu" />

 </schedule>

 <schedule action=" net_msg_async_sync" connection=" net"

 policy=" random">

 <target device=" nic_send" />

 </schedule>

 </actionscheduling>

</service>

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

This tells us that for the service IIS, the device iissrv (defined in the system topology) is to

be used. Actions can be scheduled on iissrv 's sub-devices. In this script, when the action

compute is required by a transaction, the target subdevice is one of the two CPUs,

chosen using a round-robin policy. When traffic must be sent out to the Internet (the net

device in the system topology script), the target device is the NIC dedicated to sending.

When processed by the Indy kernel API using the device definitions in the system

topology, IndyView can produce a number of different visual representations of the

transaction as a whole, or can focus on specific devices and how they are affected

throughout the flow of the transaction. Figures 10-4, 10-5, 10-6, and 10-7 were all

produced using a sample model of the IBuySpy sample Web site.

Figure 10-4: Control flow of Basic Search Transaction

Figure 10-5: Time-space analysis

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 10-6: Search transaction analysis

Figure 10-7: Performance counter prediction

After we have defined a transaction in TML, we can use IndyView to visualize it with a

transaction flow diagram, as shown in Figure 10-4. This simple view can be used to

inspect and debug the TML, and would typically be used by a performance engineer in

the development stage of a model.

This search flow diagram shows the order and dependencies of each action in the

transaction. The sequence of actions include: request from client to Web server,

computation on the Web server, response from the Web server to the client, and then two

image fetches in parallel being received by the client. Clicking on one of the actions in the

flow diagram opens a window that provides more information. In this figure, one is a

message from server to client (background) and the other is the computation on an iissrv

CPU (foreground).

Figure 10-5 shows the time and resource requirements of events taking place on all

system devices. This diagram can be used by a performance engineer to visualize the

level of utilization of individual devices and determine possible performance problems by

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

simple inspection of detailed events. Time goes left to right, and each line represents a

device (identified in the device list on the left side of the screen), while boxes represent

events. The color map, which corresponds to the type of event, is shown on the diagram

below the toolbar. Lines in the window connect communication events where both

partners in the communication are visible in the window. Black circles represent

communication events in which one partner of the communication is not visible. Since

clients are not shown in this view, communications with them are displayed this way. The

device numbers on the left are derived from the topology script. The most utilized

resources in the diagram are the IIS server CPUs (iissrv[0000].0004-0005) and the SQL

disk (sqlsrv[0000].0004).

Rather than looking at all of the actions taking place on the entire system, we can use the

Transaction Analysis view of IndyView to examine how long each of the individual actions

in a particular instance of a transaction take, and what resources they require, as shown

in Figure 10-6.

The top half of the screen shows the control flow of a search transaction, stretched to

represent the actual time of taken by each action. In addition, the panel to the left shows

the start time and name of each transaction in the simulated run, allowing each of them to

be examined individually.

In the lower half, the events that take place during the selected transaction are highlighted

in green. The panel to the left of this section shows just the devices involved in this

particular transaction: iissrv[0000].0002 is the sending activity on the NIC that the first IIS

server is connected to the Internet with; iis-srv[0000].0003 is the receiving activity on the

same; and iissrv[0000].0004 is the first of the CPUs.

A performance engineer can use the previous views to construct and debug a

performance model. Then, additional IndyView screens can be used to evaluate and

analyze the performance impact of various scenarios. Figure 10-7 shows a diagram

similar to that produced by the Windows monitoring tool System Monitor.

This screen shows the predicted CPU utilization for the SQL server (black line), displayed

simultaneously with the utilization of the backbone network (highlighted blue line,

averaging around 5 percent). For more information on performance counters, refer to

Chapter 4.

IndyView includes a statistics engine that allows users to examine any performance

metric of the system being modeled, using either a built-in graphing tool or by exporting

data to an Excel spreadsheet or a database. The two graphs in Figure 10-8 show the

predicted average queue size for different event types during a sample run of IBuySpy on

a particular system topology. The top graph shows event queues on the IIS server while

the bottom graph shows event queues on the SQL server. Looking at the scales on the

graphs, it is clear the system bottleneck of the system is the IIS processor since the

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

average computation queue size is 21.4. By comparison, very little queuing is taking

place on its NICs. The SQL server also has very small average queue sizes.

Figure 10-8: Predicted queue lengths

A performance engineer would typically use this view to predict possible methods of

improving overall system performance. By changing the system topology script to include

more processors or a set of load-balanced IIS servers, improvements in performance

would immediately become visible. In addition, since the overall model takes into account

the actual behavior of the other devices in the system, improving the CPU capacity of the

IIS server in the model would then show the next possible bottleneck in the system's

performance.

TCA vs. Performance Modeling Conclusions

In Chapter 9, we used verification tests to confirm the costs predicted by the TCA model

(see Figure 9-9). For purposes of comparison, we used Indy to define a performance

model of IBuySpy's concurrent user capacity, using the numbers we obtained from TCA

as event costs. The results are shown here side by side:

Table 10-1: Comparing TCA and Indy Predictions

Concurrent

Users

TCA

Predicted

Mcycles

Indy

Predicted

Mcycles

Measured

Mcycles

1000 116.0 115.8 120.2

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Table 10-1: Comparing TCA and Indy Predictions

Concurrent

Users

TCA

Predicted

Mcycles

Indy

Predicted

Mcycles

Measured

Mcycles

10000 1160.0 1166.0 1147.0

14653 1699.0 1694.0 1661.0

For this simple model, Indy accurately tracks the results of both TCA and the

measurements. This shows that two completely different performance-modeling

techniques, namely the analytical model of TCA, and the hybrid simulation approach of

Indy, can accurately model the same system. We will now explore the areas in which Indy

can extend upon the capabilities of TCA.

Building What-if Scenarios Using Indy

As we discussed earlier, one of the major advantages of performance modeling is the

ability to configure each minute element of the overall client/server interaction, in order to

test different scenarios before a particular configuration or code architecture is chosen. In

the following examples, two key performance issues-bottleneck analysis and architectural

evaluation-are evaluated using Indy.

What-if Scenario 1: Bottleneck Analysis

Figure 10-9 shows an example of the type of bottleneck analysis possible with Indy. The

graph shows the predicted performance of an e-commerce site as we change the number

of Web servers. The site is being stress-tested to show the maximum achievable

throughput for purchase transactions. As we would expect, increasing the number of Web

servers increases the total throughput of the system in terms of purchase transactions per

second. However, we reach a plateau at seven Web servers: beyond this point, adding

extra Web servers does not increase the throughput of the system. When we use Indy to

look at the simulated queuing delays in each of the active components, we see that the

SQL server has reached saturation point. After this point the system throughput will

remain the same until we increase the number of SQL servers or their performance.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

Figure 10-9: Bottleneck analysis

Given this conclusion, further tests using this existing set of transactions could be

performed to determine how much of an improvement hardware changes on the SQL

servers might provide, or how many more SQL servers could feasibly be added before

other elements like network performance were affected.

What-if Scenario 2: Architectural Improvements

Another feature of Indy is the ability to model how architectural changes will affect the

performance of a system. For example, imagine we are running IBuySpy on an

e-commerce site with only two old 450-MHz CPU Web servers with a static load-balancer.

For the standard user mix we have used in this chapter, we can use Indy to determine a

maximum throughput of 46.8 transactions per second. Christmas is coming, so we decide

to add a third server to the mix. This is a more modern Web server with a 1-GHz CPU.

Despite more than doubling the total CPU horsepower of our Web servers, Indy predicts

that they will only support a maximum throughput of 53.5 transactions per second. The

problem is that we are still using round-robin load balancing, so that only one-third of our

transactions are benefiting from the faster CPU. If we change to using a dynamic load

balancing technique that takes account of relative server load, Indy predicts our

throughput will increase to 73.4 transactions per second. This type of modeling of

dissimilar server types, combined with the dynamic runtime behavior of a load-balancing

system, would be impossible in TCA.

Conclusion

The Indy system is just one example of an advanced performance-modeling tool. The

toolkit approach, in which users can rely on an included library of hardware and network

models, expands Indy's usability to include non-experts in the area of performance

modeling. At the same time, the power of TML to infinitely customize objects related to

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

one's own code and hardware makes Indy a valuable tool for very advanced software

performance engineers.

In any engineering effort, the ability to predict success with certainty reduces the bottom

line for both time and money, and improves the confidence of system architects and

business managers alike. Using the principles discussed in this book, you should now be

able to think about your own development and production processes with an eye toward

how you can increase performance through careful consideration, rather than simply

through trial and error.

þÿu(� �P�D�F� ˆýO\]å^à� Šfu(rHg,^úzË� �P�D�Fhttp://www.fineprint.com

http://www.fineprint.com

