

Model-Based Software Performance Analysis

Vittorio Cortellessa � Antinisca Di Marco �

Paola Inverardi

Model-Based
Software Performance
Analysis

Vittorio Cortellessa
Antinisca Di Marco
Paola Inverardi
Dipartimento di Informatica
Università di L’Aquila
Via Vetoio 1
Coppito, 67010 L’Aquila
Italy
vittorio.cortellessa@univaq.it
antinisca.dimarco@univaq.it
paola.inverardi@univaq.it

ISBN 978-3-642-13620-7 e-ISBN 978-3-642-13621-4
DOI 10.1007/978-3-642-13621-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011927935

ACM Computing Classification (1998): D.2, C.4, D.4.8, I.6

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KünkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:vittorio.cortellessa@univaq.it
mailto:antinisca.dimarco@univaq.it
mailto:paola.inverardi@univaq.it
http://www.springer.com
http://www.springer.com/mycopy

This book is dedicated to the town of
L’Aquila, destroyed by an earthquake on
April 6th, 2009. L’Aquila is the locus of our
past births in life, in work, in love. As for the
future we wish to L’Aquila its own re-birth to
host again many lives, many works, many
loves.

Vittorio, Antinisca and Paola

Preface

Goal of the Book

In the last decade there has been a growing interest in the research and software
industry communities toward techniques, methods and tools that allow one to man-
age system performance concerns in the software developer domain. Poor perfor-
mance can often be the cause of software project failure, and the need to address
performance concerns during software development is fully acknowledged. One of
the main impediments to progress in this field lies in the different cultures in soft-
ware and performance and in the lack of standard practices and tool support. One
promising direction to bridge this gap is the one described in this book. Model-based
Software Performance Analysis is the research domain that introduces performance
concerns into the scope of software models, thus allowing the developer to carry out
performance analysis all along the software lifecycle.

The goal of the book is to provide the cross-knowledge that allows develop-
ers to face software performance issues since the very early phases of the soft-
ware development. On one hand, we provide the basic concepts of performance
analysis. On the other hand, we introduce the readers to the problem of making a
performance analysis a common practice in the software development process and
describe the most representative methodologies proposed to annotate and translate
software models into performance models.

For the sake of book uniformity, we do not report here applications of approaches
to case studies from the real world (except for a few cases), because the intent of
the book is to provide an introduction to this domain. We leave to possible future
editions the treatment of real case studies and the lessons learned from them.

A Bird’s-Eye View of Chapters Contents

Chapter 1 embeds the software performance analysis activity in the wider frame-
work of non-functional validation. It explains how different non-functional at-
tributes contribute to the quality of a software product. Thereafter we clarify the

vii

viii Preface

difference between software performance analysis (where static/dynamic software
models are explicitly built and play a crucial role in the analysis process) and sys-
tem performance analysis (where the software is only meant as a system synthetic
workload).

Chapter 2 gives an overview of the most widely adopted software notations, in-
cluding the techniques for extending UML. Note that this chapter does not aim at
presenting notational details, as most of the readers should be familiar with the ma-
jority of this chapter concepts.

Chapter 3 gives an overview of the most widely adopted performance notations.
The notations that will be used in the following chapters are treated to a larger extent.
The others are only briefly surveyed and mentioned for completeness purposes.

Chapter 4 focuses on the software performance process. It introduces the soft-
ware lifecycle phases outlining the distance between software artifacts and perfor-
mance models.

Chapter 5 introduces the reader to the transformation-based approaches that sup-
port the generation of performance models from software models. In particular,
it describes how software models can be annotated with performance parameters.
Then an overview of the major supporting tools for model transformations in this
domain is presented. The chapter ends with a classification and taxonomy of the
existing approaches.

Chapter 6 provides techniques and tools to solve the performance models ob-
tained through model transformations. Analytical, approximate and simulation-
based techniques are described.

In Chap. 7 the major trends that may affect the future evolution of software per-
formance analysis are presented. They address very different areas as they span from
the relation of performance and Model Driven Architecture to the need of a software
performance ontology.

In terms of novelty of contents: Chaps. 1–3 and Chap. 6 contain well assessed
notions in the field; Chap. 4 introduces a new view in the integration of performance
into a software lifecycle; Chap. 5 describes techniques and tools that have influenced
the discipline in the last decade; finally, Chap. 7 provides a glimpse to the current
research trends, thus sketching the possible evolutions of the discipline in the next
decade.

Figure 0.1 summarizes this bird’s-eye view of the chapters and their relation-
ships.

Using the Book as Teaching Text

The book is not primarily intended as a teaching text. However, it can be used
to complement more traditional Software Engineering teaching texts to provide a
deeper insight of model software performance analysis. To this extent it provides
chapters on the basic software and performance modeling notions and describes in
detail some transformational techniques. Instructors may choose their favorite trans-
formational approach and follow the detailed case study presentation as a guideline
to present the major concepts underlying this discipline.

Preface ix

Fig. 0.1 Book chapters organization

Acknowledgments

Quite a large number of people have contributed over the years to this book contents,
so it is difficult to mention all of them in a few lines.

First, thanks go to the “mother” and “father” of the software performance disci-
pline, namely Connie Smith and Murray Woodside. Without their pioneering work,
the whole community would likely not exist today.

Our earlier co-authors in this discipline have influenced, in different ways, the
content of this book and have contributed to our passion in this field. Many thanks
to Simonetta Balsamo, Giuseppe Iazeolla, Raffaela Mirandola and Vincenzo Grassi.

Special thanks go to Jane Hillston, who has allowed us to use her excellent lecture
notes, and to Ed Lazowska and his co-authors, whose book is still today a reference
point for us and our students. Also thanks to Dorina Petriu, for her extensive work in
the area of Software Performance Engineering. Part of their work has been reported
in this book.

Thanks are due to our Ph.D. students Pasqualina Potena, Catia Trubiani and Luca
Berardinelli, who, besides sustaining us with their enthusiasm and criticism, have
also concretely helped us with figures and tables. And thanks go to all our former,
current and future students that, with their daily work, represent the lymphatic sys-
tem of our working life, and contribute to our human and scientific growth.

Last but not least, we would like to thank the reviewers of this book, Andrea
Polini and Jose Merseguer, who have helped us to largely improve the book’s orga-
nization and contents. Many thanks for your deep and very useful reviews! Special
thanks go to Ralf Gerstner, our editor at Springer, for his great patience and dedica-
tion.

x Preface

Finally we would like to thank our families, because from the very beginning
they have sustained our dreams (all of a different nature) and have allowed such
dreams to become true. Every day it is clear to us that the existence of our families
is per se an immense value that cannot be replaced by any other thing.

Vittorio Cortellessa
Antinisca Di Marco

Paola Inverardi

L’Aquila, Italy

Contents

1 What Is Software Performance? . 1
1.1 Non-functional Validation of Software Systems 2
1.2 Performance as a Non-functional Attribute 4
1.3 System vs. Software Performance Analysis 6

2 Software Modeling Notations . 9
2.1 Basic Notations . 9

2.1.1 Automata . 11
2.1.2 Process Algebras . 12
2.1.3 Petri Nets . 14
2.1.4 Message Sequence Charts 15

2.2 Unified Modeling Language . 17
2.2.1 E-commerce System . 18
2.2.2 Use Case Diagram . 19
2.2.3 Component Diagram . 20
2.2.4 Interaction Diagram . 22
2.2.5 Activity Diagram . 25
2.2.6 State Machine Diagram 30
2.2.7 Deployment Diagram . 32
2.2.8 Profiling UML . 33

3 Performance Modeling Notations . 35
3.1 Markov Processes . 36
3.2 Queueing Networks . 39

3.2.1 QN Definition . 39
3.2.2 QN Parameterization . 40

3.3 Execution Graphs . 42
3.4 Layered Queueing Networks . 46
3.5 Stochastic Petri Nets . 49
3.6 Stochastic Process Algebras . 52
3.7 Simulation Models . 54

xi

xii Contents

3.8 UML Profile for Schedulability, Performance and Time 55
3.8.1 PAprofile: Stereotypes and Tagged Values 56

4 Software Lifecycle and Performance Analysis 65
4.1 Software Lifecycle . 65
4.2 Performance Analysis Within the Lifecycle 67
4.3 A Simple Application Example 74

5 From Software Models to Performance Models 79
5.1 A General Framework for Model Transformation 79
5.2 Some Transformational Approaches at Work 80

5.2.1 UML-ψ : From UML to a Simulation Model 81
5.2.2 From UML to a Layered Queueing Network 92
5.2.3 SAP•one: From UML to a Queueing Network 115

5.3 Other Transformational Approaches 131
5.3.1 Queueing Network Based Methodologies 131
5.3.2 Petri Net-Based Approaches 133
5.3.3 Methodologies Based on Simulation Methods 134

5.4 Discussion of the Approaches . 135
5.5 Desirable Attributes of Software Performance Analysis Techniques 139

6 Performance Model Solution . 141
6.1 Model Solution: Foundations and Techniques 142

6.1.1 Operational Analysis . 143
6.1.2 Solution Techniques and Related Notations 148
6.1.3 Simulation . 153

6.2 Model Solution: Tools . 154
6.2.1 SHARPE—Multiple Performance Model Notations 154
6.2.2 SPE·ED—Execution Graphs and Queueing Networks . . . 155
6.2.3 GreatSPN—Stochastic Petri Nets 156
6.2.4 TimeNET—Stochastic Petri Nets 157
6.2.5 TwoTowers—Stochastic Process Algebras 158

7 Advanced Issues in Software Performance 159
7.1 Software Performance and Model-Driven Architecture 159
7.2 Interpretation of Performance Analysis Results 164
7.3 Performance-Based Software Reconfiguration 165

7.3.1 Allowed Reconfigurations 169
7.3.2 Issues to Address . 169

7.4 A Unifying Ontology for Software Performance 171
7.4.1 Three Meta-models for Software Performance 172
7.4.2 Building an Ontology from Common Entities:

A Bottom–Up Approach 177
7.4.3 Expressiveness Issues: A Top–Down Process 180

References . 183

Index . 189

Chapter 1
What Is Software Performance?

The increasing complexity of software and its pervasiveness in everyday life has
in the last years motivated growing interest for software analysis. This has mainly
been directed to assess functional properties of the software systems (related to their
structure and their behavior) and, in the case of safety critical systems, dependability
properties. The quantitative behavior of a software system has gained relevance only
recently with the advent of software performance analysis. This kind of analysis
aims at assessing the quantitative behavior of a software system by comprehensively
analyzing its structure and its behavior, from design to code.

From a historical perspective software performance was initially addressed try-
ing to export performance modeling and measurements from the hardware domain
to the software domain. This was rather straightforward when considering the op-
erating system layer, but it has assumed a new dimension when the focus was di-
rected toward software applications. Moreover, with the increase of software com-
plexity it was recognized that software performance could not be faced locally at
the code level by using optimization techniques since performance problems often
result from early design choices. This awareness pushed the need to anticipate per-
formance analysis at earlier stages in software development [79, 106].

Earlier in the software development the information is more limited about the
system to be developed. Therefore performance analysis has to target different goals,
depending on the phase of development where it is applied. In any case the de-
velopment artifacts should be adequately enriched to apply performance analysis
techniques (e.g. stochastic data about the software behavior should be provided as
part of the operational profile). With the advent of Model Driven Engineering in the
software domain, these artifacts became models and assumed more active roles than
simple design abstractions [102]. This evolution obviously helps to make (model-
based) performance analysis a daily practice in the software development process,
as will be shown throughout the whole book.

In this chapter we introduce the concepts and definitions that will be used
throughout the entire book.

V. Cortellessa et al., Model-Based Software Performance Analysis,
DOI 10.1007/978-3-642-13621-4_1, © Springer-Verlag Berlin Heidelberg 2011

1

http://dx.doi.org/10.1007/978-3-642-13621-4_1

2 1 What Is Software Performance?

1.1 Non-functional Validation of Software Systems

Over the last decade, research has addressed the importance of integrating quantita-
tive validation in the software development process, in order to meet non-functional
requirements. Non-functional problems may be so severe that fixing them can re-
quire considerable changes at any stage of software lifecycle, notably at the soft-
ware architecture level or design phase and, in the worst cases, they can even im-
pact the requirements level. Independently of the software process, the early de-
sign phases may heavily affect the software development and the quality of the
final software product. Therefore inaccurate decisions at early phases may imply
an expensive rework, possibly involving the overall software system. Traditional
software development methods focus on software correctness, and deal with non-
functional issues later in the development process. But this development style,
called the “fix-it-later” approach, ever more frequently brings large-sized projects
to failure [65].

On the contrary, non-functional validation consists of checking at any stage of
the software lifecycle, through the analysis of the produced artifacts, whether the
system under development meets non-functional requirements. Requirements play
a key role in software validation, as they represent the target of comparison for the
work in progress. Non-functional requirements have the special features of being
expressed through software metrics that quantify certain system attributes that can
be collected in two multi-attributes: dependability and performance.

Non-functional attributes related to dependability have been defined and exten-
sively classified in [16]. The original definition of dependability is the ability to
deliver service that can justifiably be trusted. This definition stresses the need for
justification of trust. An alternate definition that provides the criterion for deciding
if the service is dependable is the dependability of a system is the ability to avoid
service failures that are more frequent and more severe than is acceptable.

Dependability is evidently made of a set of attributes that do not necessarily
have to be quantified for each software system. They can contribute to this software
property with different weights depending on the specific application domain, on
the software requirements as well as other factors that may affect the definition
of dependability for a specific software system. The same consideration holds for
performance.

In [16] the dependability is composed by1:

• availability: readiness for correct service,
• reliability: continuity of correct service,
• safety: absence of catastrophic consequences on the user(s) and the environment,

1We do not enter in specific aspects of dependability, because it is not the focus of this book,
however, we provide this definition to better place performance in the non-functional domain of
software.

1.1 Non-functional Validation of Software Systems 3

• integrity: absence of improper system alterations,
• maintainability: ability to undergo modifications and repairs.2

Performance is not included in the definition of dependability, although in some
domains performance failures are as critical as other types of failures. Performance
will be precisely defined in Sect. 1.2.

The non-functional requirements capture the quantitative characteristics of a soft-
ware system. Different software architectures/designs that are equivalent with re-
spect to functional requirements can substantially differ from a non-functional view-
point. Software development teams often have to decide among different function-
ally equivalent design alternatives relying only on their own skills and experience.
This choice should be driven by non-functional attributes such as performance, reli-
ability, and topological/economical constraints. The criticality of these attributes is
high even in software systems where non-functional requirements are not explicitly
expressed. So, if these requirements are so important for the success of a software
project, why are they usually not considered during the software lifecycle?

In software practice, it is generally acknowledged that the lack of non-functional
requirement validation during the software development process is mostly due to
the knowledge gap between software engineers/architects and quality experts that
makes difficult the usage of non-functional analysis as an integrated activity in the
software lifecycle. In addition, short time to market constraints make this situation
even more critical.

This knowledge gap is typical of non-functional requirements, because func-
tional ones refer to software properties and characteristics (e.g. architectural struc-
ture or scenario behavior) that software engineers usually deal with in their daily
practice. Instead, first-class entities of non-functional validation refer to a com-
pletely different domain, and include terms like operational profile, throughput, fail-
ure rate, etc.

For example, a functional requirement for an e-commerce software system could
claim: “The purchase operation must be executable only after the user has been
authenticated through the login operation”. For the same system a non-functional
requirement could instead claim: “The average execution time of the purchase op-
eration must be lower than 2 seconds”. But what is an execution time? What are the
parameters that contribute to it? How can it be analyzed?

As mentioned, non-functional attributes can be quantified through metrics that
represent the indices of quality of a software product. In order to express these in-
dices through their primary parameters, specific notations have been introduced,
such as Bayesian Belief Networks, Fault Trees, Queueing Networks, etc. Such nota-
tions allow one to build non-functional models that (in more or less complex ways)
express the relationships between software model characteristics and non-functional
indices.

2When addressing security, an additional attribute has great prominence, confidentiality, that is,
the absence of unauthorized disclosure of information. Security is a composite of the attributes of
confidentiality, integrity, and availability, requiring the concurrent existence of: (i) availability for
authorized actions only, (ii) confidentiality, and (iii) integrity with improper meaning unauthorized.

4 1 What Is Software Performance?

As outlined above, however, the software model characteristics that contribute to
the construction of non-functional models are not only represented by the software
structure and behavior, but also by quantified parameters (such as the operational
profile) that usually cannot be found in software models because they are not nec-
essary for the functional validation of software. This represents the gap introduced
above between software development practices and non-functional validation.

This perspective has significantly changed since the end of the 1990s, when it has
been perceived that pushing toward automation in the whole non-functional domain
would have helped to overcome the main resistances from the software develop-
ment world: (i) automation in generating and solving non-functional models from
software artifacts eliminates the need of having special skilled people working on
the hand-made construction of non-functional models, (ii) automation also allows
one to cut effort and time of non-functional validation that usually represents an
obstacle to the daily practice of this (only apparently optional) task.

As illustrated in this book, since then many approaches have been introduced
with the aim of contributing to the automation of the non-functional validation ac-
tivities. Two attributes appear crucial to make any approach acceptable by the soft-
ware community: transparency, i.e. minimal impact on the software notation and the
software process adopted, and effectiveness, i.e. minimal complexity of techniques
to annotate and transform software models into performance models.

The price to pay to automation is that software artifacts have to be annotated
with additional information that represents the parameters necessary to produce
non-functional models. Such parameters have to be somehow estimated, with a
certain level of accuracy depending on the lifecycle phase, and also for this task
well-assessed techniques have been introduced in the last few years.

1.2 Performance as a Non-functional Attribute

As a general definition, performance measures how effective is a software system
with respect to time constraints and allocation of resources. Performance is not com-
posed by a set of attributes like dependability, although it can be expressed through
multiple indices.

Traditional performance indices are response time, throughput and utilization.
Response time is the end-to-end time that a task spends to traverse a certain path
within the system. Throughput is the number of jobs that can be completed per unit
of time by a certain part of the system. Utilization is the percentage of time that a
certain part of the system is busy working.

As defined above, these indices do not refer to specific elements of a software
system because, like many non-functional attributes, they can be applied at differ-
ent levels of abstraction. For example, a response time may refer to the time that
a resource spends to process a software component service, but it may also refer
to the time that a whole platform spends to provide a response to the user invoca-
tion of a system functionality. Units of measure may change for different levels of
abstractions to represent the indices at the appropriate level of granularity.

1.2 Performance as a Non-functional Attribute 5

Beside these general purpose performance indices two categories of additional
indices can be defined, which are: (i) notation-specific indices and (ii) domain-
specific indices. The former ones are used when the notation adopted to build a per-
formance model allows us to introduce additional indices; an example is the queue
length in Queueing Network models (QN), because other models do not explicitly
represent this attribute. The latter ones are used in specific application domains,
where general purpose indices are not powerful enough to express specifics of the
domain; an example is the battery consumption in applications that are engineered
to run on devices with limited resources (e.g. palmtops).

Performance needs appropriate notations to be represented. These notations aim
at capturing static and (mostly) dynamic characteristics of the software system, as
well as the parameters that represent the stochastic behavior of the system (see
Chap. 3 for a description of the main performance modeling notations).

The performance model parameters can be partitioned in the following main cat-
egories: (i) the operational profile, (ii) the workload, (iii) the resource demands.

The operational profile is a collection of data that stochastically represent the
usage that users make of a system in a certain environment. The same system, in
fact, in different environments can be used in different ways. As an example, a
web site that allows one to organize trips can be frequently invoked for renting cars
when used in countries without acceptable public transportation services, whereas
it can be frequently invoked for booking flights in countries with largely distributed
territories.

The typical parameters that belong to the operational profiles are the probability
that a certain type of user invokes a certain software service, as well as the prob-
abilities that the available alternatives are taken in branching points of a service
behavior.

The workload represents the intensity of system invocations from users. It can
be characterized over all types of users (i.e. without distinguishing among types of
users) or it can be expressed for each type of user at a lower level of abstraction.

A workload can be open, in systems where the number of users is not pre-defined
(such as the world wide web), and it can be closed, in systems with a fixed number
of users (such as a LAN). An open workload is usually expressed as a number of
requests per unit of time, whereas a closed workload is expressed as the number of
users in the system and the average interval of time an user spends in between two
requests.

The resource demands represent the amount of (software or hardware) resources
that a piece of software (at any level of abstraction) requires to complete its task.
This parameter points out that a certain amount of information about the target hard-
ware platform is necessary in order to model and analyze software performance.

Time in software systems is determined by two contributions: the processing time
usefully spent by software within the hardware platform (e.g. CPU processing time,
disk access time, etc.), and the waiting time wasted by the software while waiting
for the access to platform resources. It is the combination of these two factors that
basically determines the software performance. Therefore the knowledge about the
usage of resources is crucial in order to determine the values of the performance

6 1 What Is Software Performance?

model parameters. Each parameter is expressed in different units depending on the
target resource. For example, the request of CPU by a software component can be
expressed as the number of elementary operations that such a component has to
execute on the CPU to be completed.

Once built, a performance model has to be solved in order to get values of perfor-
mance indices. Analytical methods and simulation techniques are used to evaluate
performance models and get values of performance indices. These can be expressed
either as mean values or as probability distribution functions or as any probabilistic
feature of the system component of interest. These values have to be compared to
performance requirements in order to validate the current software design.

As for any non-functional attribute, performance does not have to be validated all
over the system for all the system services, components, etc. Non-functional valida-
tion makes sense only when explicit non-functional requirements have been elicited
and quantified for the system under development. Performance requirements usu-
ally concern only part of the system, such as certain software subsystems or certain
behavioral scenarios, whereas other parts do not need to satisfy any performance re-
quirements. Therefore detailed performance models should be built and solved only
for critical parts of the developed system, whereas more abstract representations of
non-critical parts can suffice to obtain useful results.

1.3 System vs. Software Performance Analysis

Originally in computing environments performance was associated to the elabora-
tion capabilities of a certain hardware platform under a certain load given by the
software system. The software was considered as a numerical (even complex) pa-
rameter of a performance model. The stochastic behavior of software was simply
synthesized into a certain workload, so losing trace of its (static and dynamic) struc-
ture.

Performance validation conducted in this way was (and today still is) known as
system performance, in that the obtained indices were referring to the system as
a parameterized computing platform model. Without an explicit modeling of the
software structure and logics, once solved such a performance model, the prevalent
corrective actions that can be suggested mainly concern the hardware platform and
its load. For example, to relieve an overloaded CPU it is usually suggested to in-
crease the multiplicity of the CPU or, in the best case, to deviate part of its load
(through a load balancing system) toward less stressed CPUs.

Software performance was born as a discipline at the beginning of the 1990s,
when the complexity of software systems had dramatically increased and software
could not be any more synthesized as a numerical parameter of a performance
model. At that point software gained the dignity of a first-class entity in the field
of performance modeling and analysis, and new notations to explicitly express this
component started to be introduced.

The main effect of this explicit modeling of software structure and logics is that
new types of solutions, which could not be expressed in a system performance set-

1.3 System vs. Software Performance Analysis 7

ting, become available in the hands of performance analysts. For example, an over-
loaded CPU can also be relieved by splitting a software component that runs on the
CPU in two components and deploy one of the two components on another comput-
ing site. This is what we call a software performance solution, which differs from a
system performance solution because it introduces a change in the software rather
than the system hardware.

Nowadays a software performance approach is largely preferred to a system per-
formance one, due to the complexity of software systems. Software solutions, in
fact, contribute to effectively manage (and possibly decrease) such a complexity
by searching for software alternatives that better exploit the underlying platform.
Therefore, when a performance problem is evidenced, feasible software solutions
should always be looked for first, because they are usually less expensive and con-
tribute to act on software complexity. Moreover, such solutions survive in case of
software porting, opposite to system solutions that are linked to a specific platform.
Obviously there are situations in which no software solution effectively removes a
performance problem. In these cases, as an ultimate possibility, a system solution
must be adopted, if feasible.

At the beginning of the 1990s Connie U. Smith and other researchers intro-
duced the term Software Performance Engineering (SPE) as a systematic approach
to model and analyze software performance all along the software lifecycle.

In their seminal book [106], Smith and Williams have described their approach
to SPE, which is based on an explicit software performance model notation to take
into account the possibility of software solutions. Their methodology (further up-
dated and refined in [110]) was the first comprehensive approach to the integration
of performance analysis into the software development process, from the earliest
stages to the end. It uses two models: the software execution model and the system
execution model. The first takes the form of Execution Graphs (EG) that represent
the software execution behavior;3 the second is based on QN models and represents
the system platform, including hardware components and software deployment. The
analysis of the software model gives information on the resource requirements of the
software system. The obtained results, together with information about the hardware
devices, are the input parameters of the system execution model, which represents
the model of the whole software/hardware system. The solution of such a param-
eterized model provides insights about the performance of software and hardware
together, and the explicit modeling of software (through Execution Graphs) helps
one to find software solutions to performance problems.

The SPE definition has been a turning point in the management of performance in
computing environments. Today it still remains a reference point for practitioners in
the field. Together with the introduction, at the end of the 1990s, of approaches that
automatically generate performance models, it represents the main breakthrough
of the research in this field. Both have opened great perspectives for the software
performance to become daily practice in the software engineers’ activities.

3EGs were in fact created as a notation to model the software dynamics and the resource demands
that the software makes to the underlying platform (see Chap. 3 for a description of Execution
Graphs).

Chapter 2
Software Modeling Notations

Software engineers describe static and dynamic aspects of a software system by us-
ing ad-hoc models. The static description consists of the identification of software
modules or components, see Fig. 2.1. The dynamics of a software system concerns
its behavior at run time. There exist many notations to describe either the statics
or the dynamics of a software system. This chapter focuses on notations that al-
low for the behavior description since performance is an attribute of the system
dynamics. As discussed in Chap. 1, the system behavior is the necessary but not
sufficient condition to carry out performance analysis of a system. In fact, the be-
havioral description of the system has to be enriched by additional information such
as system operational profiles and service demands of the provided functionalities
(see Chap. 3).

This chapter is divided into two parts: (i) basic notations historically introduced
by computer scientists to model software systems, where Automata [73], Process
Algebras [84], Petri Nets [98] and Message Sequence Charts [104] are briefly re-
viewed; (ii) Unified Modeling Language [87] that has become a de facto standard in
modeling complex software systems.

Finally, examples of software system modeling by using the presented notations
are presented along all the chapter.

2.1 Basic Notations

In this section classical notations to describe software system behavior are briefly
reviewed. In particular, Automata, Process Algebras, Petri Nets and Message Se-
quence Charts are presented. All such notations are formally defined in terms of
syntax and semantics and hence they are not ambiguous. To simplify the use of
these notations in software modeling, for each of them the model of the same sim-
ple software system is presented. The chosen system is the XML Translator (XT)
described below.

XML Translator—The XML Translator (XT) automatically builds an XML
document from a text document with respect to a given XML schema [118]. The

V. Cortellessa et al., Model-Based Software Performance Analysis,
DOI 10.1007/978-3-642-13621-4_2, © Springer-Verlag Berlin Heidelberg 2011

9

http://dx.doi.org/10.1007/978-3-642-13621-4_2

10 2 Software Modeling Notations

Fig. 2.1 Static description of
XT system

Fig. 2.2 Behavioral
description of XT system

text document has a fixed structure to allow the automatic identification of its spe-
cific parts that are then emphasized by using the XML tags defined in the given
XML Schema.

The XT system reads a text document, and it creates a new XML file with the
information content of the text document suitably formatted with respect to the con-
sidered XML syntax [117] and the XML Schema. The system builds the new file
by iterative steps in which it identifies useful information and marks it up. Multiple
users can concurrently connect to the system and request its services.

From the previous description of the system two distinct software modules are
identified:

• a StructureBuilder, that preprocesses the text file to create its XML related con-
tent (i.e. XML special characters) conform to the XML syntax rules. The output
of this step is a new text file semantically equivalent to the former, but syntacti-
cally different. It also creates an XML file according with the established XML
Schema, containing only XML tags that describe the structure of the document.

• a Marker that, by using a heuristic approach, localizes useful information in the
text document, singles it out by significant tags from the XML Schema and inserts
this chunk of information in the XML file. This component works iteratively on
the XML version of the document for an unknown number of times until it does
emphasize most of the useful information under certain heuristic conditions.

A static description of XT system is shown in Fig. 2.1, whereas its behavior is
defined by means of the UML sequence diagram [86] in Fig. 2.2, which shows that
all the interactions among XT components are asynchronous.

2.1 Basic Notations 11

2.1.1 Automata

Automata [73] is a simple mathematical and expressive formalism that allows one
to model cooperation and synchronization between subsystems, concurrent and not.
By means of this formalism a system is modeled as a set of states and its behavior
is described by transitions between them, triggered by some input (named input
symbol).

Automata is the first notation introduced to model software dynamics. All the
other derived formalisms modify some of its characteristics depending on the par-
ticular modeling needs.

More formally an automaton is composed of a (possibly infinite) set of states Q,
a set of input symbols � and a function δ : Q × � → Q that defines the transitions
between states. In Q there is a special state q0 ∈ Q, the initial state, from which all
computations start, and a set of final states F ⊂ Q reached by the system at the end
of correct finite computations [73].

It is possible to associate a direct labeled graph to an automaton, called State
Transition Graph (or State Transition Diagram), where nodes represent the states
and labeled edges represent transitions of the automata triggered by the input sym-
bols associated to the edges.

The automata formalism is compositional since automata can be composed
through composition operators, notably the parallel one that composes two automata
A and B by allowing the interleaving combination of A and B transitions.

There exist many types of automata, among which we have: deterministic au-
tomata with a deterministic transition function, that is, the transition between states
is fully determined by the current state and the input symbol; non-deterministic au-
tomata with a transition function that allows more state transitions for the same in-
put symbol from a given state; and stochastic automata which are non-deterministic
automata where the next state of the system is determined by a probabilistic value
associated to each possibility.

An Automaton for the XML Translator System

The state transition graph of the XML Translator automaton is shown in Fig. 2.3(c).
States are pairs of elements that model the Structure Builder component state and
the Marker-up component state, respectively. The initial state of the automaton is
〈q0, q

′
0〉 where both components are inactive. This state is also the final one where

the system correctly terminates the computation. Since the XML Translator au-
tomaton is obtained by the parallel composition of the Structure Builder and of the
Marker-up components automata, their behavior is separately specified in Fig. 2.3(a)
and (b), respectively.

The Structure Builder component transits from the state q0 to the state q1 when
it receives a markup request and it starts the preprocessing phase. At the end of its
elaboration it sends the event markup to the Marker-up component and returns to
the initial state q0 where it waits for new requests.

12 2 Software Modeling Notations

Fig. 2.3 State transition graph for the XML Translator automaton

When the Marker-up component receives the markup event, it moves from its
initial state q ′

0 to state q ′
1, where it remains until the refinement processing has been

completed. Eventually the component moves back to its initial state.

2.1.2 Process Algebras

Process Algebras, such as CCS [84] and CSP [72], are a widely known modeling
technique for the functional analysis of concurrent systems. These are described as
collections of entities, or processes, executing atomic actions, which are used to de-
scribe concurrent behaviors which synchronize in order to communicate. Processes
can be composed by means of a set of operators, which include different forms of
parallel composition.

Process algebras provide a formal model of concurrent systems, which is abstract
(the internal behavior of the system components can be disregarded) and composi-
tional (systems can be modeled in terms of the interactions of their subsystems). The
semantics of these calculi is usually defined in terms of Labeled Transition Systems
(LTS) following the structural operating semantics approach. Moreover, the Process
Algebra formalism is used to detect undesirable properties and to derive desirable
properties of a system specification. Notably, process algebra specifications can be
used to verify that a system displays the desired external behavior, meaning that for
each input the correct output is produced.1

Process Algebras can describe systems at different levels of abstraction. Many
notations of equivalence or pre-order are defined to study the relationship between
different descriptions of the same system. Behavioral equivalences allow one to
prove that two different system specifications are equivalent when “uninteresting”

1More details of a specific class of Process Algebras, namely Stochastic Process Algebras, will be
provided in Chap. 3.

2.1 Basic Notations 13

Fig. 2.4 Process algebra model for the XML Translator

details are ignored, while pre-orders are suitable for proving that a low level speci-
fication is a satisfactory implementation of a more abstract one.

A Process Algebra Model for the XML Translator System

The process algebra model for the XML Translator system consists of two main
processes, a StructureBuilder process and a Marker process, that perform actions
to satisfy the requests. To model the asynchrony in the system two further pro-
cesses representing two queues are introduced. The first queue, Queue1, buffers
the requests from the users and generates text formatting requests for the Struc-
tureBuilder. The second queue, Queue2, models the asynchronous connection point
from the StructureBuilder to the Marker component.

The specification also defines a User process that models the user behavior.
A user does some work, then enqueues a service request in Queue1 and waits for
the results from the XML Translator.

The behavior of the whole system is specified by putting in parallel all these
processes. Figure 2.4 shows the specification of the XML Translator system with
three concurrent users and queues of capacity three, modeled by using the TIPP
Process Algebra [68]. The behavior of the StructureBuilder process is recursively
defined by a sequence of three actions: deq1, the process dequeues a request from
its buffer if any, preprocessing, the process does its work, and enq3, the process
forwards a request to the Marker process. For what concerns the Marker process,
it dequeues a request, if any, from its buffer (deq2 action), it executes the markup
action and then, in a non-deterministic way, it can decide to make a refinement or to
return the control to the User. Eventually it restarts its execution.

14 2 Software Modeling Notations

2.1.3 Petri Nets

Petri Nets (PN) are a formal modeling technique to specify synchronization behavior
of concurrent systems. A PN [98] is defined by a set of places, a set of transitions,
an input function relating places to transitions, an output function relating transition
to places, and a marking function, associating to each place a nonnegative integer
number where the sets of places and transitions are disjoint sets.2

PN have a graphical representation: places are represented by circles, transitions
by bars, input function by arcs directed from places to transitions, output function
by arcs directed from transitions to places, and marking by bullets, called tokens,
depicted inside the corresponding places. Tokens distributed among places define
the state of the net. The dynamic behavior of a PN is described by the sequence of
transition firings that change the marking of places (hence the system state). Firing
rules define whether a transition is enabled or not.

Petri nets could be considered an extension of Finite State Automata giving a
new definition of state and transition: each state in Petri Nets is a set of partial and
independent states of automata and, in general, a transition does not consider the
global state of the system, but only a part. Moreover, two events that can happen
independently are represented by two concurrent net transitions, instead in an au-
tomata a transition prevents from concurrently happening other ones. Petri Nets may
also model asynchronous systems, where events must take place under a defined fre-
quency.

The main characteristics of PN are the following: (i) causal dependencies and
interdependencies among events may be represented explicitly. A non-interleaving,
partial order relation of concurrency is introduced for events which are independent
of each other; (ii) systems may be represented at different levels of abstraction;
(iii) PN support formal verification of functional properties of systems.

A Petri Net for the XML Translator

Figure 2.5 shows the initial configuration of the PN model corresponding to the
XML Translator system. Each user is represented by a sub-net consisting of two
places and two transitions, shown as a shaded area at the top of the figure. When two
tokens are present in P2i−1, the User i is in its initial state and it is ready to produce
a request to the XT system. Moreover, the worki transition is enabled. When worki

fires, the two tokens in P2i−1 are consumed (they disappear from P2i−1) and one
token is transferred in P2i and the other is enqueued in Q1. The first indicates that
the user i is waiting for the processing result and the second represents the service
request forwarded to the StructureBuilder component. The ti transition in the user
sub-net will fire when the XT system returns the service response (one token is in
Q0) and the User i transits in its initial state.

2More details of a specific class of Petri Nets, namely Stochastic Petri Nets, will be provided in
Chap. 3.

2.1 Basic Notations 15

Fig. 2.5 Petri Net model of the XML Translator

Similarly, the two system components are modeled by the corresponding sub-
nets identified by the shaded area at the bottom of the figure. The StructureBuilder
is composed by two transitions, deq1 modeling the service request receiving and the
Preproc for its preprocessing operation, and two places SB1 and SB2. One token in
SB1 means that the StructureBuilder is waiting for a request whereas a token in the
SB2 means that the component is busy. Similarly, the Marker component has one
place M3 and two transitions refinement and back needed to model the decision to
refine or to send back to the users the result of the work. Places labeled Q0, Q1, Q2

model the queues for asynchronous communication. Dynamically, the user requests
to enter Q1 to access the Structure Builder. Then its output is enqueued in Q2 to
access Marker. Eventually the processed request returns to the User.

2.1.4 Message Sequence Charts

Message Sequence Charts (MSC) is a language specified by the International
Telecommunication Union (ITU) in [104] to describe the interaction among a num-
ber of independent message-passing instances for example components, objects or
processes, or between instances and the environment. It is a scenario language that
describes the messages sent, messages received, and the local events, together with
the ordering between them.

MSC supports complete and incomplete specifications and it can be used at dif-
ferent levels of abstraction. It allows for developing structured design since simple

16 2 Software Modeling Notations

scenarios described by basic MSC can be combined to form more complete specifi-
cations by means of high-level MSC.

MSC is also a graphical language which specifies two-dimensional diagrams,
where each instance lifetime is represented as a vertical line, while a message is
represented by a horizontal or slanted arrow from the sending process to the receiv-
ing one. Different arrow heads are used to model synchronous and asynchronous
interactions: full arrow heads model synchronous communications, whereas half ar-
row heads represent asynchronous ones.

MSC provides some other specific capabilities:

• It allows for expressing restrictions on transmitted data values and on the timing
of events.

• It allows the modeling of conditions on the state of each component, before in-
teractions occur, by means of the setting condition facility. A setting condition
sets/describes either the current system global state or the components state in
order to restrict the traces that an MSC can take. Its graphical representation is an
hexagon placed on one or more instance lifelines.

• MSC allows the representation of the interface of the modeled system with the
environment, through its gate facilities. Any message attached to the MSC frame
constitutes a gate. If the arrow starts from the MSC frame and ends in the lifetime
line of an object it will correspond to an input flow. Analogously, if the arrow
starts from the lifetime line of an object and ends into the MSC frame it will
correspond to an output flow.

In connection with other languages, MSC are used to support methodologies for
systems specification, design, simulation, testing, and documentation.

A Message Sequence Chart for the XML Translator

The dynamics of the XML Translator is very simple. Its description by MSC is given
in Fig. 2.6. In the figure, the three vertical lines represent the lifetime of the User
and of the StructureBuilder and Marker-up components. The User lifeline is outside
of the MSC frame since she is external to the system.

The user asks to mark up a text to StructureBuilder that, in turn, during its exe-
cution, invokes Marker-up. When the original text is marked-up the control returns
to the user. All the interactions in the MSC are synchronous as denoted by the full
heads of the arrows modeling the interactions.

In the figure there are two gates, In_gate and Out_gate, that refer respectively to
an input stream, the requests, and to an output stream, the elaboration results. They
model inputs and outputs of the software system: XML Translator receives service
requests from (external) users and it gives back the marked-up text.

No setting condition facilities appear in the figure since no state conditions on
XML Translator components need to be considered.

2.2 Unified Modeling Language 17

Fig. 2.6 Message sequence
chart for the XML Translator

2.2 Unified Modeling Language

All the above discussed notations are formal specification languages so they have an
exact semantics. Unfortunately, modeling real and complex software systems with
such notations turns out to be very complex. This is the main reason for abandon-
ing such notations in modern software systems modeling in favor of less precisely
defined formalisms like the Unified Modeling Language [86].

UML, specified by the Object Management Group (OMG), is a notation to de-
scribe software at different levels of abstraction. It defines several types of diagrams
that can be used to model different system views. Models are usually described in
a visual language, which makes the modeling work easier. Even if their semantics
is not formally defined, UML diagrams are well accepted because they are flexible,
easy to maintain and to use. Many of the basic notations describing software dy-
namics, such as Automata, Petri Nets, Message Sequence Charts, etc., have been
the source of inspiration for UML diagrams.

UML diagrams allow the description of systems either statically or dynamically
in an object-oriented style. The dynamics of a software system can be specified by
using interaction diagrams which describe the message exchange among instances,
or by using state diagrams to specify the internal behavior of each software entities,
or by using activity diagrams to show the flow of the activities performed by all the
components involved in the computation of interest, or by using any combinations
of the above diagrams.

The system structure, instead, can be described by component diagram and class
diagram. The first one describes a more abstract view of the software system as an
assembly of software components or subsystems; the second one provides a less
abstract view that describes how the software system will be structured in an object-
oriented paradigm identifying classes and relationships among them. The class dia-
gram imposes a structure that should be respected in the subsequent object-oriented
implementation of the system. Finally, UML allows the description of deployment

18 2 Software Modeling Notations

of software modules (components or subsystems) to hardware nodes by means of
the deployment diagram.

Recently OMG has improved the UML notation releasing a new version of the
language, UML 2.0 [87], which strengthens the expressiveness of some diagrams
(such as sequence diagrams), better specifies other ones (such as component dia-
grams) and introduces new ones (such as timing diagrams).

A complete treatment of UML is out of the scope of this book. For a detailed
presentation of UML please refer to [51, 87]. In the following, a brief description of
the diagrams commonly used in the software performance analysis field is reported.
UML-based software performance analysis approaches use both diagrams describ-
ing the statics of the analyzed software system and the ones describing its behavior.
For this reason, component and deployment diagrams are also surveyed hereafter.

To illustrate the UML 2.0 modeling diagrams, an e-commerce system is briefly
introduced in the following paragraph. In particular, the description concerns how
the system is decomposed into components and how they interact to accomplish the
system functionalities. The purpose of this modeling is twofold: on one hand it aims
at showing how to use UML 2.0 diagrams for software modeling, on the other hand
it fully present the case study that will be used in Chap. 5 to show the selected model
transformation methodologies at work.

2.2.1 E-commerce System

In the electronic commerce system [58], there is a supplier that publishes his cata-
log on the web. The catalog can be visioned by registered and unregistered users.
Registered users become customers for the supplier. The supplier accepts customer
orders and delivers the ordered items maintaining all the relevant data. He needs
to maintain information on data, on the catalog and on the orders purchased by his
customers. Each registered customer has a cart where she can insert or delete items.
The customer can order only if the cart is not empty. The system also allows the
customer to monitor the order status and to confirm the delivery in order to permit
the payment.

Figure 2.7 shows the system structure at a high level of detail. In a first anal-
ysis, some databases, Customer DB, Cart DB, Order DB, etc., and four process
type, CustomerProcess, SupplierProcess, etc., are identified. For each database in-
volved, there is a server that permits one to communicate with it. The interactions
with these servers are asynchronous. Each customer has associated an individual
CustomerProcess. If the customer is not registered, the process allows the browsing
of the catalog only, whereas if he is registered, the process activates all the func-
tionalities the system provides for him, that is cart managing, order placement, etc.
All the functionalities provided by the system to the supplier, instead, are coded in
the SupplierProcess. The DeliveryOrderProcess and InvoiceProcess are processes
that manage the activities to be executed to dispatch an order and to produce the
corresponding invoice. In the system, one DeliveryOrderProcess instance and one
InvoiceProcess instance are running, any time, for each order and for each invoice
in process, respectively.

2.2 Unified Modeling Language 19

Fig. 2.7 SA components of
the electronic commerce
system

For the sake of presentation, in this book a simplified version of this system
is considered. The focus considered is on a subset of customer functionalities. In
particular, catalog browsing, cart browsing, item insertion and deletion to/from the
cart, order placement are functionalities considered.

2.2.2 Use Case Diagram

Use case diagrams emphasize the interaction between users and the system. More
precisely it identifies the system use cases, the actors (users) using the system and
the associations between them. The system use cases is an high-level description of
the functionalities provided by the system. Actors are entities external to the system
that interacts with it; they can be either humans or other software systems. The
associations describe which system functionalities an actor can invoke.

Figure 2.8 shows the use case diagram for the e-commerce system. There are
three actors in the system: Customer, Supplier and Bank.

The e-commerce customer can browse both the cart (BrowseCart) and the
catalog (BrowseCatalog), he can insert and delete items to/from the cart
(InsertItem and DeleteItem, respectively). He can place an order and check
its status (PlaceOrder and BrowseOrderStatus), and finally he can confirm
the delivery (ConfirmDelivery) of the ordered items. The use case diagram also
specifies that both InsertItem and DeleteItem utilize the BrowseCart in
their execution.

The supplier maintains the catalog inserting new items from the catalog
(InsertNewItemInCatalogue) and deleting from it the items no more sold

20 2 Software Modeling Notations

Fig. 2.8 E-commerce functionalities

(DeleteItemFromCatalogue). Moreover, he processes the orders by deliver-
ing the items sold (DeliveryOrder) and producing the invoice after the customer
has payed (Payment&Invoice). In this last use case, the bank actor is in charge
of the money transfer from the customer bank account to the supplier one. Again,
the use case diagram specifies that both InsertNewItemInCatalogue and
DeleteItemFromCatalogue use functionalities that use the BrowseCata-
logue in their execution.

For the sake of presentation, in this book a simplified version of this system is
considered. The focus considered is on the customer view by considering only the
software system functionalities reported in the dashed box of the figure. The choice
has been driven by the fact that the focus of this book is performance aspects; hence
the customers are the system actors producing more workload to the system. Thus,
the use cases critical from a performance perspective are those accessed from them.

2.2.3 Component Diagram

Component diagrams specify the decomposition of the system in software mod-
ules/components by highlighting their dependencies in terms of required and pro-
vided interfaces. A component is a modular unit with well-defined interfaces; it can
be replaced by any module/component having compatible interfaces.

An interface defines a set of operations involving the component. Provided in-
terfaces formally define services that the component provides to other components,
while required interfaces define the services that the component requires from other
system component to properly work.

These interfaces may optionally be organized through ports. The replacement
of a component may take place at either design time or run time. The substituting

2.2 Unified Modeling Language 21

Fig. 2.9 Component diagram of the considered portion of the e-commerce system

component should be able to interact with other components or its environment
provided that the constraints of the interfaces are followed.

In UML 2.0, a component can have two different views, external view and inter-
nal view. The external view, or “black-box” view, exhibits only the public proper-
ties and operations which are encapsulated in the provided and required interfaces.
The connections between components is specified by dependencies among their in-
terfaces. The internal view, or the “white-box” view, shows how the components
realize their functionalities.

The component in UML 2.0 is represented by a rectangle while the provided
interfaces are represented by circle connected to the rectangle by a line. The required
interfaces, instead, are represented by a semi-circle. Two components are connected
together if the required interface(s) of the first one is connected to the provided
interface(s) of the second one.

Figure 2.9 shows the UML 2.0 component diagram for the considered portion of
the e-commerce system. This diagram highlights the software components and their
required and provided interfaces by showing the external view of the system. In the
diagram the component interconnections through required and provided interfaces
are represented.

The (sub)system is composed by six components. Four of them, OrderServer,
CatalogServer, CartServer, CustomerServer, interact with the corre-
sponding databases by allowing for the insertion, deletion, reading and updating
of data in the DBs. These components use asynchronous communications; hence
all the interfaces they provide contain asynchronous operations. The remaining
three components, namely CustomerInterface, CustomerProcess and
DeliveryOrderProcess, provide the customer with the GUI to interact with
the system, the back end process that manages all his requests made by the GUI and
the business process to manage the order delivery, respectively. These components
interact asynchronously with the DB servers and synchronously among them. Thus
the interfaces they provide reflect such properties.

Finally, since the component diagram in the figure only describes a portion of the
entire e-commerce system, it does not contain the components and the interfaces not

22 2 Software Modeling Notations

involved in the considered use cases. For example there is not the component that
allows the supplier to delete or insert an item in the catalog. Similarly, there is no
CatalogServer provided interfaces that manage the operations on the corre-
sponding database.

2.2.4 Interaction Diagram

Interaction diagrams are a common mechanism for describing systems, at different
levels of detail, in a way comprehensible to both software designers, potential end
users, and stakeholders of the system. Typically interaction diagrams do not describe
the whole system behavior but selected execution traces. There are normally other
legal and possible interactions that are not contained within the drawn diagrams.

Originally, interaction diagrams represented system objects and how they inter-
act. In UML 2.0, such diagrams describe the system by means of participants that
can be system modules in a different level of abstraction such as for example sub-
systems, components, objects and so on, and by how they interact with each other
to accomplish a task.

In UML terminology, interactions are units of behavior that focus on the observ-
able exchange of information between elements (such as for example objects) in
form of messages.

UML 2.0 defines four different interaction diagrams: sequence diagram, commu-
nication diagram, interaction overview diagram and timing diagram. Among these
diagrams, only sequence diagrams are well known and widely used. For this reason
in the following only sequence diagrams are detailed, while for more information
on the other diagrams, interested readers can refer to the OMG specification [87].

Analogously to MSC, sequence diagrams emphasize the lifetime of each soft-
ware modules and when interaction between them occurs. Sequence diagrams also
allow the specification of conditions on message sending, the use of iteration mark-
ing that identifies multiple sending of a message to receiver modules, and the defi-
nition of the type of communication, synchronous or asynchronous.

The main evolutions in the interaction specification that UML 2.0 introduces
are the concepts of InteractionFragment and CombinedFragment. The
former is a piece of an interaction. The latter, instead, defines an expression of inter-
action fragments. A combined fragment is defined by an interaction operator and the
corresponding interaction operands. Through the use of CombinedFragment the
user will be able to describe a number of traces in a compact and concise manner.

An interaction fragment in a sequence diagram is represented by a solid-outline
rectangle. The keyword SD, followed by the interaction name and parameters, is
in a pentagon in the upper left corner of the rectangle. Interacting elements are
represented by means of lifelines and messages through arrows. All the elements
in the rectangle are part of the modeled system. Entities external to the system can
make requests to it. The request is an interaction among the actor using the system
and the system itself, hence it is represented by an arrow. Same reasoning can be

2.2 Unified Modeling Language 23

Fig. 2.10 Browse catalog interaction

made for the message returning to the actor. The point where these arrows cross
the rectangle represents the gates that are connection points for relating a message
outside an interaction fragment with a message inside the interaction fragment.

For an example of interaction fragment described by a sequence diagram please
refer to Fig. 2.10 where is reported the sequence diagram for the BrowseCata-
logue use case.

In Fig. 2.10, the interaction fragment the diagram represents is BrowseCatalog as
indicated in the pentagon at the upper left corner of the rectangle. The sequence dia-
gram represents how the system implements the browse catalog use case in terms of
component interactions. The lifelines represent the software components identified
in the component diagram of Fig. 2.9. The customer, that is external to the system,
requests for a catalog browsing and waits for the required information. The points
of the rectangle crossed by the arrows modeling the request and the message back
to the customer defines two gates (in_gate and out_gate in the figure).

More interaction fragments can be combined by means of interaction operations.
The obtained combined interaction fragment builds up a CombinedFragment.
The semantics of a CombinedFragment depends on the semantics of its interaction
operator. The interaction operators are:

• Alternative—the combined interaction fragments represent behavior alternatives;
• Option—the combined fragment represents a choice between the sole operand

behavior or nothing;
• Break—the combined fragment designates a breaking scenario. The operand is

a scenario performed instead of the remainder of the enclosing interaction frag-
ment;

• Parallel—it represents a parallel merge between the behaviors of the combined
interaction fragments;

• Loop—it designates the interaction fragment to iterate for a number of times;

24 2 Software Modeling Notations

Fig. 2.11 Insert Item scenario

• Weak/Strict Sequencing—the combined fragment represents a weak/strict se-
quencing between the behaviors of the operands;

• Negative—it defines invalid traces;
• Critical Region—it models a critical region;
• Assertion—it represents an assertion;
• Ignore/Consider—Ignore designates that there are some message types that are

not shown within this combined fragment. These message types can be consid-
ered insignificant and are ignored if they appear in a corresponding execution.
An alternative interpretation of Ignore is that the messages that are ignored can
appear anywhere in the traces. Conversely the interaction operator Consider des-
ignates which messages should be considered within this combined fragment, that
is equivalent to specifying every other message as ignored.

How the system components interact to provide the use cases in the diagram
is described by scenarios, one for each use case. From Fig. 2.10 to Fig. 2.13 the
scenarios for the use case considered for the e-commerce system are reported. These
scenarios are modeled by means of sequence diagrams, except for the BrowseCart
use case that is modeled through an activity diagram in Fig. 2.14.

As for the sequence diagram for the BrowseCatalog use case in Fig. 2.10, in the
sequence diagrams that follow the boxes at the top of the diagram represents com-
ponent instances and the arrows among lifelines represent component interactions.

Figures 2.11 and 2.12 report the sequence diagrams modeling the system behav-
ior for the InsertItem and DeleteItem use cases. In modeling these scenarios, the
uses dependency in the use case diagram, see Fig. 2.8, must be considered. Such
dependency indicates that the InsertItem and DeleteItem use cases make use of the

2.2 Unified Modeling Language 25

Fig. 2.12 Delete Item scenario

BrowseCatalog use case in their execution. In the sequence diagrams this leads to
the use of the ref interaction operator referring to the BrowseCart scenario.

Moreover, an item can be removed from the cart only if it is in the cart, otherwise
an error occurs. To model the error, the break operator is used in the DeleteItem
sequence diagram (Fig. 2.12).

The final scenario is the PlaceOrder sequence diagram in Fig. 2.13. It is com-
posed of several (nested) combined fragments. In particular, it shows an example
of alternative behaviors by means of the alt operator. A customer asks for an or-
der placing and, first of all, the CustomerProcess reads the Cart status. If the Cart
is empty the order cannot be placed, see the second behavior alternative in the alt
combined fragment. Otherwise the CustomerProcess proceeds in collecting the cus-
tomer information, such as for example his mail address, and creates a new order
in the Order DB. Finally, it empties the customer cart. In this scenario it is assumed
that all the information the customer must provide to place an order are collected
before the PlaceOrder request that corresponds to the finally submission from the
customer. The payment procedure is encompassed in a different use case. For exam-
ple, if the customer decides to pay by a credit card, the Payment&Invoice use case,
see Fig. 2.8, will manage the bank transfer.

2.2.5 Activity Diagram

Activity modeling emphasizes the sequence and conditions for coordinating (lower-
level) behaviors. The behaviors can be an activity or an action. The diagram that
details an activity is called activity diagram and it can describe a control flow, an
object flow or both.

26 2 Software Modeling Notations

Fig. 2.13 Place Order scenario

Activities may be applied in several contexts, for example, in organizational mod-
eling for business process, workflow and in information system modeling to specify
system level processes.

In UML 2, Activities are redesigned with a Petri Net-like semantics instead of
state machines’. The semantics of activities is based on token flow. A token contains
an object, datum, or locus of control, and is present in the activity diagram at a
particular node. A node may begin execution when specified conditions on its input
tokens are satisfied; the conditions depend on the kind of node. When a node begins
execution, tokens are accepted from some or all of its input edges and a token is
placed on the node. When a node completes execution, a token is removed from the
node and tokens are offered to some or all of its output edges.

An activity specifies the coordination of executions of subordinate behaviors, us-
ing a control and data flow model. An activity execution may be initiated because
other activities in the model finish executing, because objects and data become avail-
able, or because events occur external to the flow. The flow of execution is modeled
as activity nodes connected by activity edges. A node can be the execution of a sub-
ordinate behavior or manipulation of object contents. Activity nodes also include
flow-of control constructs, such as synchronization, decision, and concurrency con-
trol. Activities may form invocation hierarchies invoking other activities, ultimately
resolving to individual actions.

2.2 Unified Modeling Language 27

Actions have no further decomposition in the activity containing them, since they
represent a single step within an activity. However, the execution of a single action
may induce the execution of many other actions. In UML 2, it is possible to specify
local pre- and post-conditions on actions that are constraints that should hold when
the execution starts and completes, respectively. They hold only at the point in the
flow where they are specified.

An activity edge is denoted by an open arrowhead line connecting two activity
nodes. If the edge has a name, it is annotated near the arrow. An object flow is
an activity edge that can have objects or data passing along it. Object flows are
introduced to model the flow of data and objects in an activity. Object flows have
been introduced in UML 2.

There are three kinds of activity node: action nodes, object nodes, and control
nodes.

An action node denotes an action or an activity in case the behavior it represents
is complex. Action nodes are represented by round-cornered rectangles. The name
of the action or other description of it may appear in the rectangle.

An object node is an abstract activity node that is part of an object flow definition
in an activity. An object node indicates an instance of a specific classifier, possibly
in a particular state, may be available at a certain point in the activity. Object nodes
can be used in a variety of ways, depending on where objects are flowing from and
to. Object nodes may only contain at run-time values that conform to the type of
the object node, in the state or states specified, if any. Object nodes are denoted by
rectangles. A name labeling the node is placed inside the symbol, where the name
indicates the type of the node, or the name and type of the node.

A control node is an activity node used to coordinate the flows between other
nodes. It can be an initial node, two types of final node, fork node, join node, deci-
sion node, and merge node.

Initial node—An initial node is a control node at which the flow starts when the
activity is invoked. An activity may have more than one initial node. An initial node
is a starting point for executing an activity. If an activity has more than one initial
node, then invoking the activity starts multiple flows, one at each initial node. Initial
nodes are represented by a solid circle.

Final node—A final node is an abstract control node at which a flow in an activ-
ity stops. There are two kinds of final node: activity final and flow final. An activity
final node stops all flows in the activity and is denoted by a solid circle with a hollow
circle. A flow final node instead terminates a particular flow. It is represented by a
circle with a cross inside.

Decision node—A decision node is a control node that chooses one among the
outgoing flows. A decision node has one incoming edge and multiple outgoing ac-
tivity edges. Most commonly, guards of the outgoing edges are evaluated to deter-
mine which edge should be traversed. The order in which guards are evaluated is not
defined. A decision node is graphically represented by a diamond-shaped symbol.

Fork node—A fork node is a control node that splits a flow into multiple con-
current flows. A fork node has one incoming edge and multiple outgoing edges. The
notation for a fork node is simply a line segment. In usage, however, the fork node
must have a single activity edge entering it, and two or more edges leaving it.

28 2 Software Modeling Notations

Join node—A join node is a control node that synchronizes multiple flows. The
notation for a join node is a line segment. The join node must have one or more
activity edges entering it, and only one edge leaving it.

Loop node—A loop node is a structured activity node that represents a loop with
setup, test, and body sections. The setup section is executed once on entry into the
loop, and the test and body sections are executed repeatedly until the test produces
a false value. The results of the final execution of the test or body are available
after completion of execution of the loop. Loop nodes are introduced in UML 2
to provide a structured way to represent iteration. They do not have a particular
graphical representation.

Merge node—A merge node is a control node that brings together multiple al-
ternative flows. It is not used to synchronize concurrent flows but to accept one
among several alternate flows. A merge node has multiple incoming edges and a
single outgoing edge. The notation for a merge node is a diamond-shaped symbol.
The functionalities of a merge node and a decision node can be combined. Merge
nodes are introduced to support bringing multiple flows together in activities. For
example, if a decision is used after a fork, the two flows coming out of the decision
need to be merged into one before going to a join; otherwise, the join will wait for
both flows, only one of which will arrive.

As already said at the beginning of this section, activity modeling emphasizes the
sequence and conditions for coordinating lower-level behaviors, rather than which
entities own those behaviors.

However, UML 2 provides mechanisms called activity partitions, that are a kind
of activity grouping for identifying actions that have some characteristic in com-
mon. Partitions often correspond to organizational units in a business model or to
software modules in a software model. In the first case the partitions indicates which
organizational unit is responsible for the enclosing activities. In the second case, in-
stead, they indicates which software system module (component, object, procedure,
etc.) has to implement the contained activities.

Activity partition are indicated with two, usually parallel lines called swim lane,
either horizontal or vertical, and a name labeling the partition. Any activity nodes
and edge placed between these lines is considered to be contained within the par-
tition. Diagrams can also be partitioned multidimensionally, where, each swim cell
is an intersection of multiple partitions. When activities are considered to occur
outside the domain of a particular model (for example outside the software system
under development in case of software development process), the partition can be
labeled with the keyword external.

In Fig. 2.14 the scenario related to BrowseCart use case is modeled through
an activity diagram. The diagram is divided into several vertical stripes one for
each software module (component) involved in the scenario. The first swim lane
is stereotyped3 with «external» indicating that Customer is an entity external to

3For stereotypes see Sect. 2.2.8.

2.2 Unified Modeling Language 29

Fig. 2.14 Browse Cart scenario modeled by using UML 2.0 activity diagram

e-commerce system.4 The ellipses in the stripes represent the activities performed
by the software module indicated at the top. The flow of execution is represented by
the arrows while the boxes on the stripes borderlines represent the data the modules
pass to each other in their communications. The scenario starts when the customer
asks for cart status by pressing the corresponding bottom, or surfing the link, in the
web page.

Hence a request of cart browsing arrives to the system. The data are processed,
the Cart status is retrieved from the DB and then formatted in the output page that
is finally displayed to the customer. The components listed at the top of the diagram
are responsible for the execution of such activities, for example the component Cus-
tomerInterface performs the action BrowseCartProcessing. Such responsibilities are
represented in the mapping between the activities and the swim lanes as shown in
the diagram.

In the diagram the activities model sub-behaviors implemented by some opera-
tions provided, in their public interface, by the software components responsible for
such activities, as the swim lanes specify.

4This modeling respects the modeling in the use case diagram where it is specified that the cus-
tomer is an actor of the e-commerce system.

30 2 Software Modeling Notations

2.2.6 State Machine Diagram

The state machine formalism described in UML 2 is an object-based variant of Harel
statecharts [64]. They can be used for modeling discrete behavior through finite
state transition systems, that is, a behavioral state machine, or to express the usage
protocol of part of a system, that is, protocol state machines.

Behavioral state machines specify the behavior of various model elements at
different level of detail. For example, they can model the dynamics of the whole
system, part of it, i.e. subsystem, or individual entities like, component instances,
class instances.

These diagrams show the state space of a given computational unit, the events
that cause a transition from one state to another, and the resulting actions. The entity
behavior is modeled as a graph of state nodes interconnected by one or more tran-
sition that are triggered by the dispatching of series of event occurrences. In each
state, the state machine can execute a series of activities associated with elements of
the state machine.

States and other types of vertices, called pseudostates, in the state machine graph
are rendered by appropriate symbols, while transitions are generally rendered by
directed arcs that connect them. A pseudostate is an abstraction that encompasses
different types of transient vertices in the state machine graph. Pseudostates are
typically used to connect multiple transitions into more complex state transitions
paths. For example, by combining a transition entering a fork pseudostate with a set
of transitions exiting the fork pseudostate, we get a compound transition that leads
to a set of orthogonal target states. The pseudostate notation depends on its type.

The commonly used (pseudo)states in a state machine diagram are:
Final state—A special kind of state signifying that the enclosing region is com-

pleted. A final state is shown as a circle surrounding a small solid filled circle.
Initial pseudostate—This represents a default vertex that is the source for a

single transition to the default state of a composite state. There can be at most one
initial vertex. The outgoing transition from the initial vertex may have a behavior,
but not a trigger or a guard. An initial pseudostate is shown as a small solid filled
circle.

Join vertices serve to merge several transitions that cannot have guards or trig-
gers.

Fork vertices serve to split an incoming transition into two or more transitions
terminating on different target vertices. The transitions outgoing a fork must not
have guards or triggers.

The notation for a fork and join is a short heavy bar. The bar has one or more
arrows from source states to the bar when representing a joint. The bar has one or
more arrows from the bar to states, when representing a fork. A transition string
may be shown near the bar.

Junction vertices are semantic-free vertices that are used to chain together multi-
ple transitions. They are used to construct compound transition paths between states.
For example, a junction can be used to converge multiple incoming transitions into
a single outgoing transition representing a shared transition path. This is known as

2.2 Unified Modeling Language 31

Fig. 2.15 State machine diagram for the CustomerInterface component

a merge. Conversely, they can be used to split an incoming transition into multiple
outgoing transition segments with different guard conditions. This realizes a static
conditional branch.

Choice vertices, when reached result in the dynamic evaluation of the guards of
the triggers of their outgoing transitions. This realizes a dynamic conditional branch.
It allows splitting transitions into multiple outgoing paths that the decision on which
path to take may be a function of the results of prior performed actions. If more than
one of the guards evaluates to true, an arbitrary one is selected. A choice pseudostate
is shown as a diamond-shaped symbol.

In UML 2 we can distinguish three kinds of states: simple state, composite state,
and submachine state. A simple state is a state that does not have substates. A com-
posite state either contains one region or is decomposed into two or more orthogonal
regions. Each region has a set of mutually exclusive disjoint subvertices and a set
of transitions. Any state enclosed within a region of a composite state is called a
substate of that composite state. A submachine state specifies the insertion of the
specification of a submachine state machine. Submachine state is a decomposition
mechanism that allows the factorization of common behaviors and their reuse.

For what concerns transitions, a transition can be external, internal or local: in-
ternal implies that the transition, if triggered, occurs without exiting or entering the
source state. Thus, it does not cause a state change. Local implies that the transition,
if triggered, will not exit the composite source state, but it will apply to any state
within the composite state, and these will be exited and entered. External implies
that the transition, if triggered, will exit the composite source state.

In Fig. 2.15 the state machine diagram for the CustomerInterface component is
shown. CustomerInterface is the component at the customer side that allows the cus-
tomer to access to e-commerce functionalities. When a CustomerInterface instance
is running, it waits for requests to be forwarded toward the e-commerce provider
side subsystem. Hence there is a transition, exiting the waitRequest state, for each

32 2 Software Modeling Notations

enabled functionality (e.g., insertItem) reaching an appropriate state (e.g., Inser-
tItemManagement state) that models the work the component must do to properly
format the data to be send (e.g., SendItemData). Then the component waits for re-
ply from the provider. If the reply from remote system comes before the timeout
finishes, the information received is displayed from the component otherwise an er-
ror page is showed to the customer. In both situations the component transits to the
waitRequest state. The instance will stop to run when the customer exit the service.

2.2.7 Deployment Diagram

A UML 2 deployment diagram depicts a static view of the run-time system config-
uration, that is, the hardware used in system implementations, the components (and
artifacts) deployed on the hardware, and the associations between them. Hence, the
elements used in deployment diagrams are nodes, components/artifacts and associ-
ations among them. To be precise, a deployment is the allocation of an artifact or
artifact instance to a deployment target. A component deployment is the deployment
of one or more artifacts or artifact instances to a deployment target.

The hardware platform is modeled as a set of nodes and associations that repre-
sent (physical) communication paths between nodes. A node, depicted as a three-
dimensional box, represents a computational unit, typically a single piece of hard-
ware (a computer, network router, sensor, or PDA). Nodes are defined in a nested
manner, and represent either hardware devices or software execution environments.
The inner nodes indicate execution environments rather than hardware.

In UML 2.0, components are not placed in nodes. Instead artifacts and nodes
are placed in nodes. An artifact may be a file, program, library, or data base. These
artifacts implement collections of components.

An artifact is a product of the software development process. That may include,
among others, process models (e.g. use case models, design models, etc.), source
files, executables, design documents, prototypes. An artifact is denoted by a rectan-
gle showing the artifact name, the artifact keyword and a document icon. A partic-
ular instance (or copy) of an artifact is deployed to a node instance. Artifacts may
have composition associations to other artifacts that are nested within it.

Communication associations, often called connections, are depicted as lines con-
necting nodes. Dependencies between components are modeled as dashed arrows.

Deployment diagrams show the allocation of Artifacts to Nodes according to
the Deployments defined between them. An alternative notation to containing the
deployed artifacts within a deployment target symbol is to use a dependency labeled
deploy that is drawn from the artifact to the deployment target.

In Fig. 2.16 we show the deployment diagram for the e-commerce application.
There are a number of remote nodes, from Remote Proc.1 to Remote Proc.R that rep-
resent the processors at the customer side. They are connected to the e-commerce
web site through Internet that for modeling purposes is modeled as a separate de-
ployment node. The access point for the customer requests at the server side is a

2.2 Unified Modeling Language 33

Fig. 2.16 Deployment diagram

CustomerProcess instance that is deployed on the Local Proc.1 node. There will
be one CustomerProcess instance for each connected costumer. The other software
component instances are deployed on four different machines (from Local Proc.2 to
Local Proc.5) to distribute the load of the computation. The nodes the e-commerce
component instances at the server side running on, are interconnected through a
LAN network that is explicitly modeled with a deployment node.

2.2.8 Profiling UML

The UML is a general purpose, tool supported, and standardized modeling language.
It is broadly applicable to different types of systems, domains, methods and pro-
cesses since it does not contain domain-specific concepts. In case domain-specific
concepts are necessary, it is possible to extend UML by introducing such concepts.
There exist two different extension techniques, called heavyweight and lightweight,
respectively.

The first one permits to add domain-specifics concepts by changing the UML def-
inition. This can lead to the addition of new concepts that can be non-conforming to
the standard UML or to incompatible changes to existing UML semantics/concepts.
The resulting language is no more supported by standard UML tools hence one
needs to re-implement them for the new language. For these reasons, this extension
technique is inconvenient.

34 2 Software Modeling Notations

The lightweight extension, instead, specializes elements already present in UML
in order to embed concepts of a specific domain. The obtained language is still
conform to standard UML and the tool compatibility is maintained. The lightweight
extension results in the definition of a UML Profile.

To specify a profile UML extensibility mechanisms are used. Such mechanisms
are stereotypes, tagged values, constraints. Stereotypes create new elements from
existing ones. A new element is an extension of an UML element having spe-
cific properties suitable for a particular domain. The specific properties are defined
through tagged values that are attribute-value pairs. When a stereotype is used in-
side a model, the designer may specify a value either for all the tagged values the
stereotype defines or for some of them. Finally, constraints are properties for speci-
fying semantics and/or conditions that must be true at all time for the elements of a
model.

At the end of the next chapter, in Sect. 3.8, some concepts of the UML Profile
for Schedulability, Performance and Time (SPT) [85] are introduced. A more exten-
sive description of SPT is provided in Sect. 7.4.1. SPT is used to annotate UML 1.x
models with information allowing quantitative (i.e. performance), possibly predic-
tive, analysis.

Chapter 3
Performance Modeling Notations

As outlined in Chap. 1, a major problem for stably embedding software performance
modeling and analysis within the software lifecycle resides in the distance between
notations for static and dynamic modeling of software (such as UML) and notations
for modeling performance (such as Queueing Networks).

In Chap. 2 we have introduced the major notations for software modeling, in
this chapter we introduce basic performance modeling notations, and in Chap. 5
we close the ideal path from software modeling to performance modeling by widely
describing the existing approaches for automated generation of performance models
from software models.

The performance indices that may be of interest for software systems mostly fall
in the classical definitions of: end-to-end response time, throughput and utilization.
However, in modern hardware/software systems new indices are emerging to model
the critical performance aspects. For example, in a mobile network domain the con-
sumption of a device battery is a major index of performance. Indeed many studies
to deploy software applications that minimize this index are ongoing. Besides, as we
will see in Chap. 5, the same performance indices may assume different meanings
and can be expressed in different units, depending on the level of abstraction of the
models.

A question may arise at this point from readers that are not familiar with per-
formance analysis: “If all the performance notations are able to provide the desired
indices, then why using different notations for performance modeling?”. Somehow,
a similar issue has been brought about some time ago: to conceive a unique language
for software modeling, that is UML. The software performance community is still
far from unifying languages and notations, although some recent efforts have been
spent in the direction of building a performance ontology as a shared vocabulary of
the domain (see Chap. 7).

Today the multiplicity of performance notations is, at the same time, a benefit and
a detriment. On the positive side, multiple notations allow performance analysts to
use the more appropriate one for each application domain and each specific model.
On the negative side, different notations, which refer to different metamodels, may
introduce different definitions (and semantics) for the same concept. Moreover, the

V. Cortellessa et al., Model-Based Software Performance Analysis,
DOI 10.1007/978-3-642-13621-4_3, © Springer-Verlag Berlin Heidelberg 2011

35

http://dx.doi.org/10.1007/978-3-642-13621-4_3

36 3 Performance Modeling Notations

model parametrization step may also depend on the specific notation adopted. This
implies that the results of performance analysis are often hard to compare if obtained
with different model notations.

However, the co-existence of performance modeling notations is today a matter
of fact; therefore, in this chapter we introduce the most common notations. Although
it is out of the scope of this chapter to compare the different notations, their specific
pros and cons will emerge within each description. In addition, note that we do not
address here model solution issues that are the topic of Chap. 6.

The performance notations that we describe in this chapter are well described in
the literature and many references can be found. In the following we provide a short
and meaningful introduction to the notations, along with most relevant references.
Although more sophisticated notations have been introduced, most of them build up
over the basic notations that are described in this chapter.

The notations presented in this chapter are: Markov processes (Sect. 3.1), Queue-
ing Networks (Sect. 3.2), Execution Graphs (Sect. 3.3), Layered Queueing Net-
works (Sect. 3.4), Stochastic Petri Nets (Sect. 3.5), Stochastic Process Algebras
(Sect. 3.6), and Simulation Models (Sect. 3.7).

This chapter ends with an additional section on the UML Profile for Schedula-
bility, Performance and Time (SPT). SPT is not an explicit performance modeling
notation, but it is an extension of the UML notation to express concepts related to
performance (and side domains). In Sect. 3.8 we only introduce the main stereotypes
that are useful to understand the techniques introduced in Chap. 5. In Sect. 7.4.1 SPT
is more extensively described (in its performance aspects) as a structured metamodel
for software performance.

3.1 Markov Processes

Markov processes are stochastic processes for which the Markov property holds.
The Markov property says that the conditional probability distribution of future
states of the process only depends on the present state and not on any past
state [113].

Markov processes play a central role in the quantitative analysis of systems. They
can be used as a primary notation for the dynamics of a software system. However,
even when they are not explicitly used as a primary notation, the analytical solu-
tions of various classes of performance models (such as Queueing Networks and
Stochastic Petri Nets) often rely on such types of stochastic process. This is the rea-
son for introducing in this chapter Markov processes before the other performance
notations.1

A stochastic process is a family of random variables X = {X(t): t ∈ T }, where
X(t) : T × � → S is defined on a probability space �, an index set T (usually

1Several seminal books have been published on stochastic and Markov processes (see, for example,
[49]). The description that follows, for sake of synthesis and readability, has been taken by Jane
Hillston’s class notes [3].

3.1 Markov Processes 37

Fig. 3.1 Example of a
Markov process transition
graph

referred as time) with state space S. Stochastic processes can be classified accord-
ing to the state space, the time parameter, and the statistical dependencies among
the variables X(t). The state space can be discrete or continuous (processes with
discrete state space are usually called chains), the time parameter can also be dis-
crete or continuous, and dependencies among variables are described by the joint
distribution function.

The state space S of the process is the set of all possible values that the random
variables X(t) can assume. Each of these values is called a state of the process. Any
set of instances of {X(t): t ∈ T } can be regarded as a path of a particle moving
randomly in the state space S, its position at time t being X(t). These paths are
called sample paths or realizations of the stochastic process.

A stochastic process is a Markov process if {X(t)} has the Markov or memoryless
property introduced above. More formally, the Markov property holds if and only if,
given the value of X(t) at some time t ∈ T , the future path X(s) for s > t does not
depend on knowledge of the past history X(u) for u < t , i.e. for t1 < · · · < tn < tn+1

Pr
(
X(tn+1) = xn+1 | X(tn) = xn, . . . ,X(t1) = x1

)

= Pr
(
X(tn+1) = xn+1 | X(tn) = xn

)
(3.1)

In other words, a stochastic process is a Markov process if the probability that the
process goes from state s(tn) to a state s(tn+1) conditioned to the previous process
history equals the probability conditioned only to the last state s(tn). This implies
that a process is fully characterized by these one-step probabilities. Moreover, a
Markov process is homogeneous when such transition probabilities are time inde-
pendent.

Various types of Markovian models have been introduced as special cases
of Markov processes (e.g. Markov Chains [113], Hidden Markov Models [50]).
A Markov process is usually represented either as a labeled graph (see Fig. 3.1)
or as a transition matrix (see Fig. 3.2).

The graph of Fig. 3.1 represents a 3-state system. Labels on state transitions rep-
resent the probabilities that transitions can be fired if the system is in a certain state.
The matrix of Fig. 3.2 represents the same system with the same transition proba-
bilities, where each row i and each columnj represent a state and A(i, j) represent
the probability for the transition from i to j to be fired. Obviously, to be consistent,
in both cases the probabilities of all transitions leaving the same state must sum up
to 1.

38 3 Performance Modeling Notations

Fig. 3.2 Example of a
Markov process transition
matrix

The primary objective of the analysis of a Markov process is to calculate the
probability distribution of the random variable X(t) over the state space S, as the
system settles into a regular pattern of behavior. This is termed the steady state
probability distribution. Performance measures based on subsets of states can be
derived from this probability distribution.

Markov processes are widely used also because well-assessed theories to solve
them have been built. The memoryless property means that once the process has
arrived at a particular state its future behavior is always the same regardless of how
it arrived in that state. The solution of Markov processes is closely related to their
representation by matrices. Finding the average behavior of the model corresponds
to solving a simple matrix equation.

The dynamic behavior of the system under modeling is represented by the tran-
sitions between states, and by the time spent in the states, i.e. sojourn times. In
general, these times represent the duration of processing occurring in the system,
the transitions represent event occurrences in the system.

If a state i ∈ S is entered at time t and the next state transition takes place at time
t +T , then T is the sojourn time in state i. By the Markov property, at any time point
τ , the distribution of the time until the next change of state is independent of the time
of the previous change of state. In other words, sojourn times are memoryless. Since
the only probability distribution function which has this property is the exponential
distribution, this means that the sojourn time in any state of a Markov process is an
exponentially distributed random variable.2

Hence at time τ , the probability that there is a state transition in the interval
(τ, τ + dt) is qidt + o(dt), where qi is the parameter of the exponential distribution
of the sojourn time in state i.

Suppose that when a transition out of state i occurs, the new state is j with
probability pij . By the Markov property, this must only depend on i and j . Thus we
have, for i �= j , i, j ∈ S,

Pr
(
X(t + dt) = j | X(t) = i

) = qij dt + o(dt) (3.2)

where qij = qipij by the decomposition property. The qij ’s are called the instanta-
neous transition rates, and if the average time delay before a transition from i to j

is exponentially distributed with parameter μ, then qij = μ.
In practice, qij is usually given because the parameter of the distribution gov-

erning the time delay associated with the event which is represented by the state
transition is known.

2This holds under the assumption of continuous time, whereas for discrete-time Markov processes
the sojourn time is geometrically distributed.

3.2 Queueing Networks 39

From qij we can derive the exit rate, qi , and the transition probabilities, pij , as
follows. The exit rate is the rate at which the system leaves state i, i.e. it is the
parameter of the exponential distribution governing the sojourn time. This will be
the minimum of the delays until any of the possible transitions occurs. Thus, by
the superposition property, it is the sum of the individual transition rates, i.e. qi =∑

j∈S qij . The transition probability pij is the probability, given that a transition out
of state i occurs, that this is a transition to state j . By the definition of conditional
probability, this is pij = qij /qi .

As we show in Chap. 6, it is easy to derive the stationary state probability for a
Markov process. The stationary solution of a Markov process has a time computa-
tional complexity of the order of the state space S cardinality.

3.2 Queueing Networks

Queueing Network (QN) models have been widely used as performance models to
represent and analyze resource sharing systems [74, 76, 79, 114]. Their popularity
in the performance evaluation domain is mostly due to the combination of a quite
satisfying accuracy in performance results and the efficiency in model analysis and
evaluation.

Informally a QN is a collection of interacting service centers representing system
resources and a set of customers representing the users that share the resources.
It can be represented as a direct graph whose nodes are service centers and edges
represent the potential paths of customers’ service requests. Several different classes
of customers can circulate over the network at the same time, each class representing
a set of customers with homogeneous behavior (i.e. paths and amounts of service
requests).

The construction of a QN can be split in two steps: definition, which includes the
representation of service centers, their number, and the interconnection topology of
the network; parameterization, which aims at defining the input parameters of the
network, that is: the arrival processes or the number of customers, the classes of
customers, the service rates or latencies, scheduling policies and queue lengths at
the service centers, and the routing probability over the network branches (given by
the customers’ behavior).

3.2.1 QN Definition

First of all, the number and types of QN service centers have to be defined. In
Fig. 3.3 the vary basic types of service centers are illustrated.

A Queued Center is a node where jobs arrive and, if the server is busy, wait
in a queue for their turn. Each service completion a new job is extracted from the
queue, following a certain scheduling strategy, to be served. Parameters needed to
define such a node are: queue length (that can also be infinite), service time (as a

40 3 Performance Modeling Notations

Fig. 3.3 Queueing Networks: basic elements

probability distribution function and related parameters like mean value), scheduling
strategy and related parameters (if any).

A Delay Center is a node that makes each job traversing it to incur in a certain
delay time. The parameter needed to define such a node is the delay time (as a
probability distribution function and related parameters like mean value).

Queueing Networks can be open or closed, as defined in Sect. 3.2.2, thus Source,
Sink and Terminals nodes will be discussed there.

Thereafter, the interconnection topology of the QN has to be built, based on the
physical interconnections among service centers in the real system.

After the definition of classes of customers (in Sect. 3.2.2), the QN chains can
also be identified. A chain represents the stochastic path of a class of jobs across
the network (that has its own routing probabilities) as long as the amount of service
requested to each service center.

3.2.2 QN Parameterization

The arrival processes and/or the number of customers represent the QN workload,
that is the amount of requests that are addressed to the QN. Two main classes of
QNs can be distinguished with respect to the type of workload: open QN and closed
QN.

The workload of an open QN is completely determined by the stochastic pro-
cesses that describe the arrivals of customer requests. One or more sources of re-
quests (see Fig. 3.3) generate arrivals to (certain service centers of) the QN. The
parameter needed to define such a node is the interarrival time (as a probability
distribution function and related parameters like mean value).

One or more sink nodes (see Fig. 3.3) absorb the jobs corresponding to requests
from (certain service centers of) the QN. No parameter is needed to define such a
node.

3.2 Queueing Networks 41

Therefore, the number of customer requests that circulate in an open QN in any
moment is not fixed.

The workload of a closed QN is instead completely determined by the fixed num-
ber of customers that circulate in the QN. The QN is meant to be closed because
there are neither entry nor exit points. A special node that represents the customers,
that is, the Terminals node of Fig. 3.3, generates requests to (certain service centers
of) the QN and, some time after a request formulation (i.e. the time needed to the
job for traversing the network and going back to Terminals), receives back responses
to its requests. A certain amount of time after the reception of a response, which is
called thinking time, a new request is generated and leaves the Terminals node.

Terminals node are said to have an Infinite Servers scheduling strategy in that,
once the number of customers in the system is fixed, when a job arrives to this node
it always will find an idle server ready to serve it. The service is here represented
by the actions that a user makes before formulating a new request. The parameters
needed to define such a node are: the number of users and the thinking time (as a
probability distribution function and related parameters like mean value).

Therefore, the number of customer requests that circulate in a closed QN at any
moment is fixed.

In both cases (i.e. open and closed QN) the classes of customers have to be de-
fined. A customer class is a set of customers that formulate the same type of requests
to the QN. In other words, a request originated by a certain class of customer obeys,
within the network, the same service rate and routing probability distributions, no
matter which specific customer of the class originates the request.

The parameterization task includes the specification of service rates, scheduling
policies and queue lengths of all the service centers. Each service center may have
different rates for different classes of jobs. Similarly, the waiting queue may be
unique or one queue per class can be devised. As a consequence, one scheduling
policy has to be associated to each queue.

To complete the QN parameterization, routing probabilities over the network
branches must be specified. They represent a stochastic description of the customer
request behavior (i.e. paths) over all the network.

In Fig. 3.4 an open QN with multiple classes of jobs is illustrated. Each class of
job is represented by a different symbol and each service center is labeled with the
following parameters: queue length, scheduling strategy, average service time for
each class of customers

Two classes of jobs (A and B) originate from source nodes; both require service
first to node S1, which has a First-Come-First-Served scheduling strategy, an infinite
queue, and two different service rates for classes of jobs. Thereafter each job can
move to server S2, S3 or S4, depending on the routing probabilities proper of the
class of jobs it belongs to. After being served from one of the latter nodes, jobs exit
the system through a sink node.

A parameterized QN can then be evaluated to compute the figures of merit (or
performance indices) that characterize the quantitative behavior of the modeled sys-
tem. Typical examples of performance indices are: utilization, throughput and re-
sponse time. Each performance index can be evaluated at different levels of abstrac-
tion that span from local indices (referred to resources) to global indices (referred

42 3 Performance Modeling Notations

Fig. 3.4 Queueing Network example with multiple classes

to the whole system), passing through indices that refer to specific model sections
(i.e. subsystems).

Product-Form QNs represent a very relevant specific class of QNs, because they
can be easily solved by efficient algorithms to evaluate performance indices. Specif-
ically, algorithms such as Convolution and Mean Value Analysis [79] have a poly-
nomial computational complexity in the number of QN components. In order to
belong to the Product Form class a QN must satisfy a set of properties on its types
of nodes, scheduling strategies and classes of customers [79].

Extensions of classical QN models, namely Extended Queueing Network (EQN)
models, have been introduced in order to represent several interesting features of
real systems, such as synchronization and concurrency constraints, finite capacity
queues, memory constraints and simultaneous resource possession [74, 79]. How-
ever, EQN cannot be solved with analytical approaches.

Examples of performance evaluation tools for QN and EQN are RESQ/IBM
[100, 101], QNAP2 [116] and HIT [29]. In Sect. 6.1.2 a solution technique for QN
is described.

3.3 Execution Graphs

Execution Graphs [110] have been basically introduced to represent, in the per-
formance domain, complex behaviors of software. As mentioned in the previous
section, Queueing Networks are suited to model computing platform characteristics
and devices, where certain workloads run on. Traditionally, workload representa-
tions were synthesized on the basis of observed system behaviors or from the expe-
rience of system developers [79]. With the quick growth of software complexity, it
has been necessary to explicitly represent the software logics with appropriate mod-
els. Nowadays Execution Graphs (EGs) appear to be the most successful formalism
that addresses this problem.

3.3 Execution Graphs 43

Table 3.1 Basic Execution Graph notation

Types of nodes Graphical notation Description

Basic node An operational step at current level of
abstraction.

Expanded node A macro-step: details are provided in an
associated sub-graph.

Repetition node The set of subsequent nodes is repeated n

times; the last node in the loop has an arc
to this node.

Case node Attached nodes are conditionally
executed with certain branching
probabilities.

Pardo node Attached nodes are executed in parallel;
all must complete (join) before
proceeding.

Split node Attached nodes represent new processing
threads; they do not need all to complete
before proceeding.

An EG cannot be properly considered as a performance modeling notation by
itself, because, as we will see later, no exhaustive performance analysis can be car-
ried out only basing on EGs. However, in modern computing systems they play the
crucial role of representing the software facet. As outlined in Chap. 1, software per-
formance analysis is primarily aimed at evidencing potential performance problems
and proposing solutions at the software level, that is: through software refactoring,
re-designing, etc. Platform upgrades shall represent the uttermost solution to per-
formance problems that has to be pursued only in cases where no action can be
performed on software to overcome the problem. Thus, having an explicit repre-
sentation of software dynamics greatly helps to work on software for addressing
performance issues.

An EG is a graph having different types of nodes. Table 3.1 represents the main
types of nodes of an Execution Graph, along with a description for each of them.
Most types of nodes have an intuitive role, because they correspond to standard
blocks used in flow graphs to describe the dynamics of software systems. The arcs
between nodes determine the flow of software execution.

A peculiar characteristic that distinguishes EG from traditional flow graphs are
the resource demands. Each basic and/or expanded node (i.e. the nodes that do not
represent control structures) can be labeled with a vector that represents its demand
of resources. Each cell of such vector represents a system resource and its value
specifies the amount of that resource necessary to execute the task corresponding
to the node. Algorithms have been introduced [110] to synthesize EG patterns and

44 3 Performance Modeling Notations

Fig. 3.5 Example of
Execution Graph

Fig. 3.6 Synthesis of the Execution Graph of Fig. 3.5

produce the (worst-case, best-case and average-case) resource demand of a set of
EG nodes.

In Fig. 3.5 an excerpt of an Execution Graph is represented. A basic node is
followed by a case node with three possible alternatives and finally another basic
node is executed. A resource demand vector is associated to each basic node and
branching probabilities are annotated on alternatives of the case node.

EGs can be used at any level of abstraction. The granularity of a basic block
is not predetermined, thus it can represent from a single low-level instruction up
to a whole software system. Software designers can arbitrarily decide the level of
abstraction at which EGs are used, depending on their own needs and knowledge.

Being representative only of the software dynamics, no numerical performance
analysis can be carried out on EGs as they are. As said above, the EG synthesis
allows one to capture the demand of resources of more or less complex EG patterns.
In Fig. 3.6 an example of EG synthesis is illustrated, where the EG of Fig. 3.5
is synthesized in an unique expanded node whose resource demands are obtained
from the elaboration of labels of nodes in the original EG.

Moreover, by making hypotheses on physical resources of the hardware platform,
a stand-alone performance analysis can be carried out under the assumption that no
other software flow shares platform resources with the considered EG.

A refined version of EGs [110] allowed one to consider virtual resources instead
of physical resources, through the introduction of an overhead matrix. An overhead
matrix plays the role of mapping high-level virtual resources over low-level physical
resources, as illustrated in Fig. 3.7.

3.3 Execution Graphs 45

Fig. 3.7 Example of
overhead matrix

Three virtual resources are represented in Fig. 3.7 in the rows and three types of
physical resources are represented in the columns. Such a matrix allows one to raise
the level of abstraction in the definition of resource demands. As shown in Fig. 3.7,
a single request of the virtual DB resource corresponds, as defined in the matrix, to
500 service units of a CPU, two service units of a disk and one service units of a
network.

This mechanism allows us to separately quantify and store, as values of the over-
head matrix, the mapping of a software application on a hardware platform. The
matrix can be modified without necessarily modifying the EG and the platform
model when models have to be used in different contexts that require different
definitions of virtual resources.3 Resource demands can be expressed in units of
virtual resources and, before mapping the EG onto a platform model, they can be
elaborated through the overhead matrix to obtain demands referred to physical re-
sources.

The major support that an EG provides to the performance analysis is twofold:
(i) it explicitly represents the software dynamics and therefore any feedback that
outcomes from an analysis step can be mapped onto the software structure; (ii) the
synthesis of each EG can be aimed at identifying a class of jobs that runs over a
Queueing Network.

With regard to issue (ii), usually an EG represents a single behavioral scenario of
the software system. It can be synthesized to obtain the complete resource demands
of that scenario that maps onto a single class of jobs running through the platform
model (typically represented by a Queueing Network). However, analyzers can de-
cide to synthesize EGs at different level of granularity, thus giving rise to lower
or higher numbers of classes of jobs. In practice, the granularity of classes of jobs
depends on the granularity of EG paths synthesis.

3Note that this is a prime example of structure that links (nowadays called) a Platform Independent
Model to a Platform Specific Model.

46 3 Performance Modeling Notations

Fig. 3.8 An example of Layered Queueing Network

3.4 Layered Queueing Networks

A traditional Queueing Network that models a software/hardware system typically
represents the hardware platform resources with a set of properly interconnected
service centers and the software workload with a more or less complex workload
made of a set of job classes sharing those resources.

This flat representation is not very suited to represent client/server systems,
where nested interactions among software components take place and at the same
time the software uses hardware resources. As shown in Sect. 3.3, Execution Graphs
help to model such complex software behaviors and interactions. However, the pro-
cess that synthesizes such a graph as a QN workload often leads to flattening of
details in the software dynamics that can be relevant for performance analysis.

Layered Queueing Networks (LQN) [52, 99, 123] have been introduced to rep-
resent systems as layered models. With LQN, in the same model it is possible to
represent the software components and their interconnections, as well as the plat-
form resources utilized from, and possibly shared among, components. Tasks rep-
resenting software components and resources representing platform devices are the
basic elements of a LQN. An LQN is hierarchically structured in layers, as illus-
trated in Fig. 3.8, where square parallelograms represent tasks and circles represent
resources.

The bottom-most layer of the hierarchy contains the platform resources, which
are the ones where time is actually spent running jobs. Hence, resources are servers
of the tasks directly connected to them in the hierarchy. In Fig. 3.8 Processors 1, 2
and 3 are the system resources, and their client tasks are connected to them through
dashed arrows.

3.4 Layered Queueing Networks 47

A task can act as a client of a resource or of another task and, in turn, it can act
as a server of another task. For example, Task 2 in Fig. 3.8 is a server of Task 1 and
a client of Task 4 and Task 5.

Each task and each resource has its own queue of requests to serve, and makes
requests to lower layer servers, like another task or a server CPU. The constraint that
no request can go towards higher layers tasks holds and represents, at the same time,
the key for easy solution of LQN, as well as their major limitation since peer-to-peer
communication patterns cannot be modeled.

A task has one or more entries, representing different operations it may perform
and it is represented as a “slice” in the parallelogram representing the task. For
example, Task 5 in Fig. 3.8 has two entries.

The topmost tasks represent the customers of the system, which are the genera-
tors of the LQN workload. They are also called reference tasks that endlessly cycle
and create requests to other tasks. Separate classes of customers are modeled by
separate reference tasks.

Calls are requests for service from one entry to an entry of another task. A call
may be synchronous (represented by a solid arrowhead), asynchronous (an open
arrowhead), or forwarding (a dashed arrow) [99], modeling a request forwarded to
another entry for later reply. This gives a rich vocabulary of parallel and concurrent
operations.

Demands are the total average amounts of host processing and average number
of calls for service operations required to complete an entry. Demands for an entry
can be specified using either phases or activities.

The phase-based method is simply a short hand notation for specifying a se-
quence of one to three activities. Phase one is a service phase and it ends after the
server sends a reply. Subsequent phases are autonomous phases, launched at the end
of phase one, that operate in parallel with the client (i.e., task or reference task)
invoking the entry.

Phases consume time on processors and make requests to entries. Hence the pa-
rameters of an entry are:

• the mean number of requests for lower entries, shown as labels in parentheses on
the request arcs, one for each modeled phase;

• the mean total host demand for the entry, in units of time, shown as a label on the
entry in brackets, one for each modeled phase.

Figure 3.8 shows the phase method for the entry demand modeling. For example,
Entry2 is modeled by two phases, requiring 1 and 0.1 time units, respectively, to the
host. At the end of the first phase (i.e. when Processor2 has spent 1 time unit), a
reply is sent to task Entry1 and, in average, 1 and 0.5 service requests are sent to
Entry4 and Entry5, respectively. The second phase of Entry2 starts and, at its end, an
average of 0.2 and 1 service requests are sent to Entry3 and to Entry5, respectively.

The activity-based method is typically used when a task has complex internal
behavior such as forks and joins, or when its behavior is specified as an activity
graph. Activities represent the lowest level of granularity in an LQN model and are
linked together in a directed graph to indicate precedences. When a request arrives at

48 3 Performance Modeling Notations

Fig. 3.9 Entry description by means of a graph of activities

an entry, it triggers the first activity of the activity graph. Subsequent activities may
follow sequentially, or may fork into multiple paths which later join. Forks may take
the form of an AND, which means that all the activities on the branch after the fork
can run in parallel, or the form of an OR which chooses one of the branches with a
specified probability.

The arcs in the graph model the calls among activities. Such calls, similar to the
entries’ ones, could be synchronous, asynchronous and forwarding. An activity has
a single demand and a request number it makes, at the end of its execution, to the
subsequent activity or entry linked by an arc.

Note that entries with different workload parameters are equivalent to separate
classes in queueing networks. The workload parameters of an entry are: its host
execution demand, its pure delay (or think time), and its calls to other entries.

In Fig. 3.9 the retrieve Cart entry of the Customer Process task is detailed
through an activity graph. Each activity shows the execution time required to the
processor the task is deployed on. As an example, RetrieveCart activity requires
from its processing host 0.5 ms to accomplish its tasks. The graph proceeds with
an “OR” fork (modeled by the “+” symbol) indicating an alternative behavior. Re-
trieve Cust and Order Info requires 1 ms, makes requests to two lower
tasks (in the figure there are two out-coming arrows) and proceeds with two parallel
behaviors (modeled by the “AND” fork syntactically indicated by the “&” symbol),
that is: Update Cart requires no processing from its host but makes a request to
a lower task, and Assembly, which does not make any request to other tasks but
requires 0.5 ms to its processing host. The parallel and alternative paths terminate
accordingly closing the activity graph.

LQN models can be solved by analytic approximation methods based on standard
methods for QNs with simultaneous resource possession and Mean Value Analysis
[79] or they can be simulated [54, 123]. Note that, if the entries are detailed by activ-
ities, the LQN model can be only simulated due to the presence of fork and join in
the model. An experiment controller is also available that can execute parameterized
experiments over parameter ranges.

3.5 Stochastic Petri Nets 49

Fig. 3.10 An simple example of Petri Net

Even though LQNs apparently do not look QN-like at all, beyond the graphical
representation of tasks and resources each layer corresponds to a canonical QN.
Each QN has a symbolic workload that comes from the upper layer and utilizes
resources that are, in practice, the lower layer tasks. The LQN solution process starts
from the bottom-most layer QN and solves it with the workload represented by the
upper layer. Then, it iteratively goes up one layer at a time and brings to the upper
layer the resulting indices of the lower layer solution. Due to the approximation
introduced by lumping the above layers as a workload for the currently processed
layer, this process brings some error on the top of the model, hence it has to be
iterated several times until the results obtained in two adjacent iterations are close
enough to claim that stability of numerical results is achieved.

3.5 Stochastic Petri Nets

Stochastic Petri Nets (SPNs) are extensions of Petri Nets (PNs) [98]. Petri Nets are
a notation suited to formally verify the correctness of synchronization between var-
ious activities of concurrent systems. A Petri Net is mainly made of: places that
represent (possibly partial) states of a system, and transitions that are fired when a
certain event occurs and make the system changing state. A certain number of to-
kens, representing jobs to be processed, circulate within the net driven by transition
firing.

In Fig. 3.10 a PN with three places, two immediate transitions and four tokens is
represented.

The transition firing in a PN is ruled as follows:

• A place may contain several tokens, which may be interpreted as resources.
• There may be several input and output arcs between a place and a transition.
• The number of these arcs is represented as the weight of a single arc.
• A transition is enabled if its each input place contains at least as many tokens as

the corresponding input arc weight indicates.
• When an enabled transition is fired, its input arc weights are subtracted from the

input place markings and its output arc weights are added to the output place
markings.

The underlying assumption in PN is that each transition takes zero time, that is:
once a transition is enabled it fires instantaneously. In order to answer performance-
related questions beside the pure behavioral ones, PNs have been extended by asso-
ciating a finite time duration with transitions and/or places, although the usual as-
sumption is that only transitions are timed [11, 17, 74]. Stochastic Timed Petri Nets

50 3 Performance Modeling Notations

Fig. 3.11 An simple example
of Stochastic Timed Petri Net

Fig. 3.12 A simple example of Generalized Stochastic Petri Net

(STPNs) are PNs where transitions have firing delays. From a graphical point of
view the difference is on the representation of transitions, as we can see in Fig. 3.11
in which a STPN with three places, two timed transitions and four tokens is shown.
In practice, timed transitions are ticker than immediate transitions, as will become
evident in the next two figures.

In the last few decades STPNs have been receiving increasing interest in the
modeling and performance analysis of discrete event systems. They are particularly
useful for modeling systems which exhibit concurrent, asynchronous or nondeter-
ministic behaviors, such as parallel and distributed systems, communication net-
works and flexible manufacturing systems.

The firing time of a transition is defined as the time taken by the activity repre-
sented by the transition: in the stochastic timed extension, firing times are expressed
by random variables. Although such variables may have an arbitrary distribution,
in practice the use of non-memoryless distributions makes the analysis unfeasible
whenever repetitive behavior is to be modeled, unless other restrictions are imposed
(e.g. only one transition is enabled at a time) to simplify the analysis.

Most literature of STPN is on Stochastic Petri Nets (SPN) and on their exten-
sions, Generalized Stochastic Petri Nets (GSPN) [12]. In SPN transition firing times
are mutually independent exponentially distributed random variables, whereas in
GSPN immediate transitions (i.e. those without firing delay) are allowed besides
timed ones. In Fig. 3.12 a GSPN with three places, one immediate transition, one
timed transition and four tokens is represented.

Immediate transition fires immediately after enabling and has strict priority over
timed transitions. The former are associated with a (normalized) weight, so that, in
case of concurrently enabled immediate transitions the choice of the firing one is
solved by a probabilistic choice.

In Fig. 3.13 we propose an example of modeling with GSPN for the e-commerce
case study.

We assume that the system workload is modeled with a specific pattern. The ar-
rivals transition is a timed one whose rate regulates the flow of requests for the ATM
central server; the assumption is that there are a number of requests which need to be
processed. These requests await to be served in the requests place. Between arrivals
and waiting requests there is a special type of arc, namely an inhibitor arc. Such arc
works with an opposite logic to a standard arc, that is: the transition will be fired

3.5 Stochastic Petri Nets 51

Fig. 3.13 E-commerce example modeled with Generalized Stochastic Petri Net

only if no tokens appear in the connected place. The maximum number of tokens in
the latter place is defined by the multiplicity of the inhibitor arc, thus requests can
be accumulated until the buffer size is achieved. Requests are admitted to the system
through the allowRequest place, which represents the scheduling of a new request,
if any.

The firing of the start transaction involves first of all the PIN validation repre-
sented by the reqPIN place. If this check is unsuccessful, i.e. PIN_ko, the entire
transaction ends. Otherwise a successful PIN validation, i.e. PIN_ok, enables the
system to recognize the ATM customer as a validUser. Thereafter, the transaction
proceeds with one of these operations: Withdraw Funds (startWF transition); Query
Account (startQA transition); Transfer Funds (startTF transition).

52 3 Performance Modeling Notations

All these operations starts with the reqOP place, where OP stands for WF, QA,
TF, depending on the customer request.4 In this place the type of operation required
is checked. Once again, we have two alternatives: if the check is unsuccessful, i.e.
checkOP_ko, the transaction ends. Otherwise a successful result, i.e. checkOP_ok,
enables the user to specify some parameters. The place answerOP gives the possi-
bility to insert appropriate values for the request. The parameter values are sent to
the ATM central server through the timed transition send_answerOP. Finally, the
waitOP place represents the waiting step for an acknowledgment from the central
server that denotes the success of the entire operation, i.e. the rcvACK_OP transi-
tion.

GSPN admit specific solution techniques [17]. In Sect. 6.1.2 we mention some
approaches for solving SPNs when they are used for performance modeling.

3.6 Stochastic Process Algebras

Stochastic Process Algebras (SPAs) represent the class of performance modeling
notations, which includes all the Process Algebras (PAs) [18] that have the addi-
tional capability of explicitly representing stochastic and time characteristics of a
system dynamics. Hence SPAs are extensions of PAs, aiming at the integration of
qualitative—functional and quantitative—temporal aspects into a single modeling
notation.

The development of SPA has been very similar to that of STPN: in both cases an
untimed formalism, used for studying the correct functional behavior of systems, is
extended by associating exponential delays with actions, and reachability analysis is
used to construct a corresponding Markov process. The advantages of SPAs are that
they incorporate the attractive features of PAs and thus bring to the area of perfor-
mance modeling several attributes which are not offered by the existing formalisms.
Perhaps the most important of such features is the inherent composability of models
that can be exploited for their analysis [3].

In practice, a SPA is obtained starting from a PA and adding in its grammar the
constructs necessary to model timed actions and stochastic behaviors. A semantics
for the additional constructs shall also be provided. It is therefore a too abstract
task to introduce SPAs in general, without reference to any specific existing algebra.
Therefore we introduce in this section some general concepts that can refer to any
SPA, whereas details of major notations can be found, among others, in [33, 67, 69].

The basic elements of a SPA are: (basic and composed) (possibly timed) actions
that model system behaviors, operators that are used to build up complex behaviors
starting from simple ones.

Temporal information is typically added to actions by means of continuous ran-
dom variables, representing activity durations. Such information makes it possible

4We describe the remainder of this model by using the OP pattern, as the internal dynamics of the
three use cases is structurally the same.

3.6 Stochastic Process Algebras 53

the evaluation of functional properties (e.g. liveness, deadlock), temporal indices
(e.g. throughput, waiting times) and combined aspects (e.g. probability of timeout,
duration of action sequences) of the modeled systems.

Almost all existing SPAs share the following basic operators [37]:

• Sequence—A behavior can be purely sequential, repeatedly undertaking one ac-
tivity after another and eventually returning to the beginning of the sequence.
A simple example is a web server, which allows one data item to transfer at a
time. Each browser requiring web pages will need to acquire access to the server
and only when the transfer is complete will the server be released and be available
again for acquisition.

• Choice—A choice between two possible behaviors is represented as the sum of
the possibilities. For example, if we consider a browser in an information system,
displaying the current data may have two possible outcomes: demand for access
to data available in the local cache (with a certain probability) or demand for ac-
cess to data stored at the remote server (with complementary probability). A race
condition is assumed to govern the behavior of simultaneously enabled actions
and the continuous nature of the probability distributions ensures that the actions
cannot occur simultaneously. Thus a sum will behave as either one summand or
the other. When an action has more than one possible outcome it is represented
by a choice of separate actions, one for each possible outcome. The rates of these
actions are chosen to reflect their relative probabilities (decomposition principle).

• Concurrency—Two behaviors can occur at the same time in a system and this may
require cooperation/synchronization among them. Therefore a specific operator is
usually provided to make the concurrency of these behaviors. When needed, the
operator can be labeled with a set of synchronizing actions. Actions in this set
require the simultaneous involvement of both behaviors. The semantics of this
operator is that both behaviors can concurrently run as long as no synchronizing
action is encountered in any of them. Before executing any synchronizing action,
a behavior has to wait until the other behavior (operand of the concurrency opera-
tor) reaches the same action. Those actions thus represent synchronization points
of parallel executions.

• Hiding—It is often convenient to hide some actions, making them private to the
behavior. For example, if a behavior is related to a certain software component,
one can make visible only component actions that allow one to interact with other
components, while hiding all the other (internal) actions. The type of the latter
action is usually said to be hidden, and they are characterized by a special symbol.
Components cannot synchronize on hidden actions. Use of the hiding operator
has two implications. Firstly, it ensures that no components added to the model at
a later stage can interact, or interfere, with the specified action. Secondly, private
actions are deemed to have no contribution to the performance measures being
calculated and this might subsequently suggest simplifications to the model.

Figure 3.14 shows a SPA model defined by using TIPP process algebra [67].
This model has been obtained from the model in Fig. 2.4, presented in Sect. 2.1.2,
by adding performance-related information to some actions. Therefore, we have

54 3 Performance Modeling Notations

Fig. 3.14 TIPP process algebra model for the XML Translator

simple actions (e.g., enq1) and rated actions, whose rates can be used to express
their execution times (e.g., (markup,mu2)) and their relative execution frequencies
(e.g., (refinement,p)).

In Sect. 6.1.2 we mention some approaches for solving SPAs.

3.7 Simulation Models

Even though simulation cannot properly be considered as a performance notation,
but rather as a solution technique, it is a matter of fact that it has been widely used
as an instrument to study software performance.

As it will be illustrated in Chap. 5, several approaches to automatically generate
simulation models from software artifacts have been recently introduced and suc-
cessfully experimented. Therefore this section is part of the chapter of performance
notations due to the fact that efficient simulation models can be built to analyze
software performance [28].

Beside this, simulation techniques can be applied to solve performance models
in canonical notations, such as Queueing Networks or Petri Nets (see Chap. 6).

A simulation model is a computer program (written either with a general purpose
language like C or with a simulation language like Simula [97]) that describes, on
the basis of a discrete or continuous time progression, the dynamic behavior of a
system. When executed, the program can produce outputs such as behavioral traces
or amounts of simulated time to perform certain tasks.

3.8 UML Profile for Schedulability, Performance and Time 55

If instrumented with appropriate probes, a simulation model can be useful to ana-
lyze different performance indices with a very high accuracy. Therefore a simulation
model can be actually considered to be the most flexible and general performance
model, since any specified behavior can be simulated. The limitations and assump-
tions that must apply to models based on other performance notations in order to be
efficiently solved (such as Product Form Queueing Networks) do not hold for sim-
ulation models. In simulation models any detailed mechanism of a system can be
described at the sole cost of correctly specifying its behavior. However, a key issue
in simulation concerns the construction of the simulation model at the appropriate
level of abstraction.

The simulation of a complex system includes the following phases [24]:

• building a simulation model (i.e., a conceptual representation of the system) using
a process oriented or an event oriented approach;

• deriving a simulation program which implements the simulation model;
• verifying the correctness of the program with respect to the model;
• validating the conceptual simulation model with respect to the system (i.e. check-

ing whether the model can be substituted to the real system for the purposes of
experimentation);

• planning the simulation experiments, e.g. length of the simulation run, number of
runs, initialization;

• running the simulation program and analyzing the results via appropriate output
analysis methods based on statistical techniques.

In order to obtain accurate and trustfulness results, all the above steps have to be
carefully carried out. Hence, the main drawback of simulation is its development and
execution costs. Existing simulation tools provide suitable specification languages
for the definition of simulation models, and simulation environments to conduct
system performance evaluation, such as CSIM [2], C++Sim [1] and JavaSim [4].

3.8 UML Profile for Schedulability, Performance and Time

The Schedulability, Performance and Time UML Profile [85] is adopted as an offi-
cial OMG standard. The main aims of this profile are to identify the requirements for
enabling performance and scheduling analysis of UML models. It defines standard
methods to model physical time, timing specifications, timing services and (logical
and physical) resources, concurrency and scheduling, software and hardware infras-
tructure and their mapping. It provides the ability to specify quantitative information
directly in UML models allowing quantitative analysis and predictive modeling. It
is founded on a domain model that defines the main entities for the considered anal-
ysis.5 The analysis methods considered in the profile are scheduling analysis and
performance analysis based on queueing theory.

5For more details on the domain model please refer to [85].

56 3 Performance Modeling Notations

In the following, we present the performance part of the profile by giving details
on the PAprofile package that contains the stereotypes and tags used to annotate the
UML diagrams. PAprofile is fully based on the General Resource Modeling (GRM).

3.8.1 PAprofile: Stereotypes and Tagged Values

In general, performance analysis is inherently instance-based and it applies to mod-
els that capture either actual or hypothetical execution runs of systems consisting of
sets of instances.

«PAcontext» Stereotype

A performance context specifies one or more scenarios useful to explore various dy-
namic situations involving a specific set of resources and whose performance could
be critical. Hence it is composed by a set of scenarios and the relative workloads,
and a set of resources. The performance values considered here are load intensity
and various measures of response delay.

«PAcontext» stereotype models a performance analysis context. The base classes
it can extend are Collaboration, CollaborationInstanceSet and ActivityGraph.

This stereotype does not present any tags, while the constraints to be satisfied
are:

• A performance analysis context must contain at least one element that is stereo-
typed as a kind of step.

• A performance analysis context based on collaborations must have exactly one
model element stereotyped as a workload.

• Only a top-level performance context can have a workload defined.

Figure 3.15 shows a top-level context where two software resources, namely the
Client and Server components, interact to provide a Browse Cart functionality when
requested by the Customers.

«PAclosedLoad» and «PAopenLoad» Stereotypes

Each scenario is executed by a job class or user class with a load intensity, and these
classes are either open or closed. We call such a class workload. The stereotypes
modeling open and closed workload can only be applied to be the first step in a
performance context.

We recall that an open workload has an infinite arrivals of requests which enter in
the system at a given rate in some predetermined pattern (such as Poisson arrivals),
and population that varies over time. Customers that have completed service leave
the model. «PAopenLoad» stereotype models an open workload.

In the following two tables (Tables 3.2 and 3.3) are reported the base classes the
stereotype can extend and the definition of the tags it could have.

3.8 UML Profile for Schedulability, Performance and Time 57

Fig. 3.15 Example of «PAcontext» annotation

Table 3.2 «PAopenLoad»
stereotype Stereotype Base class Tags

«PAopenLoad» Message PArespTime

Stimulus PApriority

Action State PAoccurrence

SubactivityState

Action

ActionExecution

Operation

Method

Reception

Table 3.3 «PAopenLoad» tags definition

Tag Type Multiplicity Domain attribute name

PArespTime PAperfValue [0..*] Workload::responseTime

PApriority Integer [0..1] Workload::priority

PAoccurrence RTarrivalPattern [0..1] OpenWorkload::population

In Fig. 3.16 an open workload is annotated on the first message of the Browse
Cart functionality using the «PAopenLoad» stereotype. The unbounded string refers

58 3 Performance Modeling Notations

Fig. 3.16 Example of «PAopenLoad» annotation

Table 3.4 «PAclosedLoad»
stereotype Stereotype Base class Tags

«PAclosedLoad» Message PArespTime

Stimulus PApriority

Action State PApopulation

SubactivityState PAextDelay

Action

ActionExecution

Operation

Method

Reception

Table 3.5 «PAclosedLoad» tags definition

Tag Type Multiplicity Domain attribute name

PArespTime PAperfValue [0..*] Workload::responseTime

PApriority Integer [0..1] Workload::priority

PApopulation Integer [0..1] ClosedWorkload::population

PAextDelay PAperfValue [0..1] ClosedWorkload::externalDelay

to a pattern whose interarrival time between two succeeding requests is specified by
a probability distribution function (e.g. exponential, with an expected value of 30).

3.8 UML Profile for Schedulability, Performance and Time 59

Fig. 3.17 Example of «PAclosedLoad» annotation

Instead, a closed workload has a fixed number of jobs (population) which
cycle between executing the scenario, and spending an external delay period (called
a Think Time) outside the system, between the end of one response and the next
request (externalDelay).

The «PAclosedLoad» stereotype models a closed workload. In Tables 3.4 and 3.5
the base classes that the stereotype can extend are reported, and the definition of the
tags it could have, respectively.

In Fig. 3.17 a closed workload is annotated on the first message of the Browse
Cart functionality using the «PAclosedLoad» stereotype. It defines a fixed number
of 3000 jobs (PApopulation tag), each spending an assumed mean external delay
period of 1 millisecond.

«PAstep» Stereotype

Scenarios are composed by (scenario) steps with predecessor–successor relation-
ships which may include forks (a step with more successors), joins (a step with
more predecessors) and loops. A step may be an elementary operation (at the
finest granularity), or it may be defined by a sub-scenario. A scenario step represents
an increment in the execution of a scenario and it may use resources to perform its
function. In general, a step takes a finite time to execute (executionTime or de-
lay), it may have a probability to be executed, a repetition number and an optional
time interval between two repetitions. Finally a scenario step may have performance
properties and may specify the resource demands to the resources involved in the
step achievement (characteristics inherited from the scenario entity).

60 3 Performance Modeling Notations

Table 3.6 «PAstep»
stereotype Stereotype Base class Tags

«PAstep» Message PAdemand

Stimulus PArespTime

Action State PAprob

SubActivityState PArep

PAdelay

PAexOp

PAinterval

Table 3.7 «PAstep» tags definition

Tag Type Multiplicity Domain attribute name

PAdemand PAperfValue [0..*] Step::hostExecutionDemand

PArespTime PAperfValue [0..*] Step::responseTime

PAprob Real [0..1] Step::probability

PArep Integer [0..1] Step::repetition

PAdelay PAperfValue [0..*] Step::delay

PAextOp PAextOpValue [0..*] Step::operations

PAinterval PAperfValue [0..*] Step::interval

Fig. 3.18 Example of «PAstep» annotation

3.8 UML Profile for Schedulability, Performance and Time 61

Table 3.8 «PAhost»
stereotype Stereotype Base class Tags

«PAhost» Classifier PAutilization

Node PAschdPolicy

ClassifierRole PArate

Instance PActxtSwT

Partition PAprioRange

PApreemptable

PAthroughput

Table 3.9 «PAhost» tags definition

Tag Type Multiplicity Domain attribute name

PAutilization Real [0..*] Resource::utilization

PAschdPolicy Enumeration:
{FIFO,HOL,PR,
PS,PPS,LIFO}

[0..1] ProcessingResource::schedulingPolicy

PArate Real [0..1] ProcessingResource::processingRate

PActxtSwT PAperfValue [0..1] ProcessingResource::contextSwitchTime

PAprioRange Integer range [0..1] ProcessingResource::priorityRange

PApreemptable Boolean [0..1] ProcessingResource::isPreemptable

PAthroughput Real [0..1] Resource::throughput

«PAstep» stereotype models a step in a performance analysis scenario.
In Tables 3.6 and 3.7 are reported the base classes the stereotype can extend and

the definition of the tags it could have, respectively.
Further attributes on the scenario entity are the hostExecutionDemand and

the responseTime, representing the total execution demand of the scenario on
its host resource, if defined.

In Fig. 3.18 the requestBrowseCart message is annotated using the «PAstep»
stereotype. The value expression assigned to the PAdemand tag represents a mea-
sured mean service time demand of 5 milliseconds.

«PAhost» and «PAresource» Stereotypes

A Resource models an abstraction view of passive or active resource, which par-
ticipates in one or more scenarios of the performance context. Resources are mod-
eled as servers and maintain information about their utilization, through-
put, and schedulingPolicy.

Active resources are the usual servers in performance models, and have service
times. A ProcessingResource is an active resource, such as a processor or a
storage device. It has a processingRate indicating its speed factor, it can be
preemptive and can require some time to switch from the execution of one scenario

62 3 Performance Modeling Notations

Table 3.10 «PAresource»
stereotype Stereotype Base class Tags

«PAresource» Classifier PAutilization

Node PAschdPolicy

ClassifierRole PAcapacity

Instance PAaxTime

Partition PArespTime

PAwaitTime

PAthroughput

Table 3.11 «PAresource» tags definition

Tag Type Multiplicity Domain attribute name

PAutilization Real [0..*] Resource::utilization

PAschdPolicy Enumeration: [0..1] PassiveResource::schedulingPolicy

{FIFO,Priority}

PAcapacity Integer [0..1] PassiveResource::capacity

PAaxTime PAperfValue [0..n] PassiveResource::accessTime

PArespTime PAperfValue [0..n] PassiveResource::responseTime

PAwaitTime PAperfValue [0..n] PassiveResource::waitTime

PAthroughput Real [0..1] Resource::throughput

to a different one (contextSwitchTime) and finally it could indicate a set of
valid priorities used to define the scheduling priorities of the resource actions.

«PAhost» stereotype models a processing resource.
In Tables 3.8 and 3.9 are reported the base classes the stereotype can extend and

the definition of the tags it could have, respectively.
Passive resources are acquired and released during scenario. Additionally to the

characteristics it inherits from the Resource entity, it has a capacity indicating
the number of concurrent users and some holding time (accessTime and wait-
ingTime).

Performance measures for a system include resource utilizations, waiting times,
execution demands and response time that is the actual or wall clock time to execute
a scenario step or scenario. For performance analyses to be meaningful, we have
to identify the semantics of the provided numerical values for performance-related
characteristics. Each measure may be: a required value, coming from the system
requirements or from a performance budget based on them (e.g., a required response
time for a scenario); an assumed value, based on experience (e.g., for an execution
demand or an external delay); an estimated value, calculated by a performance tool
and reported back into the UML model; a measured value.

Based on the modeling of the performance analysis domain identified before, we
here describe how the domain concepts can be represented in UML by introduc-

3.8 UML Profile for Schedulability, Performance and Time 63

Fig. 3.19 Example of «PAhost» and «PAresource» annotation

ing the UML extensions defined for this purpose. These extensions are defined by
stereotypes and tags.

For each stereotypes we report the base class they can extend, the list of the tags
and the constraints they must satisfy.

«PAresource» stereotype models a passive resource.
In Tables 3.10 and 3.11 are reported the base classes the stereotype can extend

and the definition of the tags it could have, respectively.
In Fig. 3.19 a CPU node is an active resource annotated with the «PAhost» stereo-

type. It applies a Preemption-Resume scheduling policy to each step executed (i.e.
PAschdPolicy tag). The estimated mean context switching time required by such
an active resource is 30 microseconds (i.e. PActxtSwT tag). The CPU communi-
cates through a BUS that represents a passive resource that dispatches messages in
100 microseconds (i.e. PArespTime tag), while applying a FIFO scheduling policy
(i.e. PAschdPolicy tag).

Chapter 4
Software Lifecycle and Performance Analysis

This chapter is aimed at illustrating performance modeling and analysis issues
within the software lifecycle. After having introduced software and performance
modeling notations, here the goal is to illustrate their role within the software de-
velopment process. In Chap. 5 we will describe in more details several approaches
that, based on model transformations, can be used to implement the integration of
software performance analysis and software development process.

After briefly introducing the most common software lifecycle stages, we present
our unifying view of software performance analysis as integrated within a software
development process (i.e. the Q-Model). Without losing generality we consider the
traditional waterfall process as a reference software process. However, many con-
siderations introduced in this chapter can be exported to other process models.

4.1 Software Lifecycle

A software process is a set of activities that are suitably combined in order to pro-
duce a software system. Different set of activities and different ways of combining
such activities lead to different software processes. However, there are some fun-
damental common stages that can be identified in every software process, where
each stage includes a set of well-defined activities. In practice such stages identify
different abstractions or maturity levels of the software under development.

Requirement specification focuses on the functionalities of the system and on
its operational constraints. At the end of this stage, all the functionalities of the
software system and the constraints on its operation are identified and specified.
In this stage customers and software engineers collaborate to produce a document
collecting all the requirements of the system. Such a document can be the basis of
a contract among customers and developers since it defines the software application
the developers have to produce for the customers.

Software design and implementation deals with the production of the software
system according to its specifications. During this stage several models (or, more

V. Cortellessa et al., Model-Based Software Performance Analysis,
DOI 10.1007/978-3-642-13621-4_4, © Springer-Verlag Berlin Heidelberg 2011

65

http://dx.doi.org/10.1007/978-3-642-13621-4_4

66 4 Software Lifecycle and Performance Analysis

Fig. 4.1 The waterfall
process model

generally, artifacts), describing the system at different levels of details, are pro-
duced. Typically they are architectural models and low level design models. The
implementation can be obtained through a refinement process of such models.

Software verification and validation is a stage aimed at (more or less formally)
proving that the software system conforms to the requirements and constraints iden-
tified in the specification stage, and at demonstrating that the system meets the cus-
tomer expectations.

Each of these stages produces one or more software artifacts that represent the
software system. Also, in each stage a set of activities that operate on the artifacts
can be devised, in order to achieve the expected development process results. In
the next section we detail these stages within the framework of a software process
model.

With the recent progresses in the software development processes, the lifecycle
time after the software has been deployed is becoming ever more crucial. Software
evolution is the stage that manages the changes to the software product. It starts after
the delivery of the software system since software is ever more subject to changes
required, for example, by evolving needs of the customers or by changes in the
running context/environment. However, for the sake of readability, we do not deal
with software evolution in this chapter.

Many software processes exist that combine such stages in different ways. Dif-
ferent types of software system may need different software processes. Moreover,
each industrial organization might have its own software process that it follows dur-
ing software development. In order to describe the software lifecycle a software
process model is used. In the following we briefly mention two of them and we re-
fer to classical software engineering books for a comprehensive presentation of the
topic [112, 56].

The waterfall process model organizes and details the lifecycle stages sequen-
tially, as shown in Fig. 4.1, where we limit the illustration to the common stages
described above.

Another popular software process model category is the iterative one. They carry
on the specification, implementation and validation activities concurrently in order

4.2 Performance Analysis Within the Lifecycle 67

Fig. 4.2 An iterative process model

to quickly produce an initial version of the software system that can then be refined
through iterations, as illustrated in Fig. 4.2. This kind of development process model
has been recently promoted by the so-called agile development community [78].

For our purposes it is important to note that, independently of the considered soft-
ware process, for each stage there can be one or more analysis tasks that concern
the software artifacts involved in the stage. These analysis tasks are either specific
tasks as part of the main stage or part of the overall software validation process.
Let us, for example, consider the requirement stage. During the requirement stage
there can be an analysis task that allows for improving the elicitation and the un-
derstanding of requirements as well as their correctness and completeness. Once the
requirements are specified there can also be an analysis task that aims at validating
the set of specified requirements with respect to the customer expectations.

4.2 Performance Analysis Within the Lifecycle

The aim of this section is to couple performance analysis with the development
lifecycle, thus sharing the classical view of Software Performance Engineering of
addressing performance concerns while developing the software system.

The starting point is the existence of a set of non-functional requirements, specif-
ically performance ones. The goal of any development process that intends to satisfy
such requirements is to start performance analysis as early as possible on the avail-
able software artifacts, possibly supported by suitable models. However, the use of

68 4 Software Lifecycle and Performance Analysis

these models for performance analysis is analogous to the use of behavioral models
for functional analysis. Namely they serve the purpose of the analysis at the con-
cerned abstraction level with no intent to be considered predictive with respect to
the performance of the final system.

Let us consider a conventional waterfall software development process. The first
stage deals with requirements specification. At this stage the non-functional require-
ments are specified together with any operational constraints. During this stage, per-
formance models can be built as any other model, mainly during the requirements
engineering stage and in order to elicit and better understand the performance re-
quirements. The same kind of reasoning applies to the architecture design and fur-
ther down to the implementation and deployment, which can represent the last step
where performance analysis reduces to simulate and/or monitor the actual behavior
of the implemented system.

In this section we tackle a more detailed level of abstraction with respect to the
description provided in the previous section. Therefore, we refine the concept of
stages introduced before as phases of the lifecycle. The refinement logic is illustrated
here below.

Taking inspiration from the familiar V-model for software validation, we cus-
tomize this view toward performance analysis, thus obtaining what we will call the
Q-model in the following. Figure 4.3 illustrates our view.

The left-hand side represents common development phases, that is: requirements
elicitation and analysis, architectural design, detailed design and implementation.
The right-hand side represents the performance analysis activities that can be carried
on at each specific development phase.

With respect to the common stages described in the previous section, here we can
consider the following mapping: (i) requirement specification stage has simply been
rephrased as the requirement elicitation and analysis phase, (ii) software design and
implementation stage has been partitioned in architectural design, low-level design
and implementation phases, (iii) software verification and validation stage is rep-
resented by the middle and right-hand side of the figure, as will be illustrated here
below.

In the middle, performance model generation activities connect each develop-
ment phase with the corresponding performance analysis activity. Basically such
intermediate activities derive from specific software artifacts the corresponding per-
formance model. For example, the architectural design phase is connected to the
performance analysis of software architecture through a performance model gen-
eration step that, starting from a software architecture specification, produces the
corresponding performance model. Feedback arrows complement each horizontal
connection and denote the feedback that the performance analysis can produce for
the corresponding software development phase.

The connecting vertical arrows along the development path (i.e. the left-hand
side) represent the successful completion of a phase and the transfer to the next
development phase. In the Q-model a phase is complete only after appropriate per-
formance analysis activities (i.e. the horizontal path for that phase). The connecting

4.2 Performance Analysis Within the Lifecycle 69

F
ig

.4
.3

Q
-m

od
el

fo
r

a
w

at
er

fa
ll

pr
oc

es
s

70 4 Software Lifecycle and Performance Analysis

Fig. 4.4 Annotated use case diagram

Fig. 4.5 Component diagram

vertical arrows along the performance analysis path (i.e. right-hand side) represents
the information that analysis activities transfer to the next phase activities. For ex-
ample, the performance bounds obtained at the architectural phase may represent
reference values for the analysis at the low-level design phase. Like in any V-model,
upstream vertical arrows appear in both paths, and they represent backward paths
that might be traversed in case of problems at lower phases that cannot be fixed
without re-executing the previous phases.

The lowest part of the Q-model deals with the implementation of the system and
with the monitoring of its actual behavior. In this case the horizontal line denotes the
process of defining suitable observation functions on the running code that may al-
low for performance indices validation. The bottom vertex is the monitoring activity
that receives information on what to monitor, on the final executing code, from the
observation definition process that also depends on the performance indices to val-
idate. The monitoring phase provides feedback to both the implementation and the

4.2 Performance Analysis Within the Lifecycle 71

F
ig

.4
.6

A
nn

ot
at

ed
co

m
po

ne
nt

di
ag

ra
m

72 4 Software Lifecycle and Performance Analysis

Fig. 4.7 Browse catalog sequence diagram

Fig. 4.8 Annotated browse catalog sequence diagram

performance validation analysis activities. The feedback can then vertically travel
along both lateral sides, thus inducing changes backwards on the software artifacts
and on the performance models, respectively. On the horizontal paths, it is worth-
while remarking that the feedback process starts from performance analysis activi-
ties; it can have effect on the generated model, and it can induce changes that must
be reflected at the corresponding development level. We will see in Chap. 7 that this
feedback process is not straightforward and still represents a challenging research
issue.

4.2 Performance Analysis Within the Lifecycle 73

F
ig

.4
.9

Q
ue

ue
in

g
N

et
w

or
k

m
od

el

74 4 Software Lifecycle and Performance Analysis

Fig. 4.10 Deployment diagram

4.3 A Simple Application Example

As an illustration of the Q-model let us consider the e-commerce example previously
introduced in Chap. 2.

The use case diagram in Fig. 4.4 represents the artifact modeling the e-commerce
system at the level of requirements specification. We have annotated the link con-
necting the Customer actor to the BrowseCatalog functionality to express a response
time requirement, that is: a Customer should not wait more than 8 seconds to access
the Catalog. From the analysis point of view we can interpret this limit either as an
average or as an upper bound.1

In this case since we are dealing with just one non-functional requirement we
are neither producing a performance model from the requirement specification nor
performing any performance analysis for consistency checking.

While proceeding in the software development process, Figs. 4.5 and 4.6 show,
respectively, a flat and an annotated UML component diagram of the example,
namely a static view of the e-commerce example software architecture. The flat
and annotated UML sequence diagrams of Figs. 4.7 and 4.8, respectively, represent
the dynamic view of the same architecture.

1The capability of annotating UML diagrams with additional information (such as performance
parameters and indices) is provided from the UML profiling technique that has been described in
Chap. 2.

4.3 A Simple Application Example 75

Fig. 4.11 Annotated deployment diagram

Annotations at the architectural phase can represent different performance-
related data. For example, in Fig. 4.6 the resource demand of the service to read
the status of a catalog is annotated on the corresponding component interface, and
yet the same component CatalogServer is annotated with its policy of scheduling
for pending requests. Similarly, in Fig. 4.8 the workload originated from triggering
the service of browsing the catalog is annotated on the first message of the scenario
represented by the UML sequence diagram.

Following the path on the right-hand side of Fig. 4.3, we notice that our initial
performance requirement on the BrowseCatalog functionality in Fig. 4.4 is reflected
in the annotation of the BrowseCatalog interface delay in Fig. 4.6. The latter anno-
tation also refines the original requirement, in that the time limit is interpreted in the
annotated component diagram as an average value.

If we focus on the architectural phase of the development process of Fig. 4.3,
and we run the horizontal path leading from the Architectural Design to a Software
Architecture Performance Model, we can generate a Queueing Network (QN) model
from the previously introduced artifacts (i.e. the set of annotated UML models of
the e-commerce example). The QN structure is shown in Fig. 4.9.

In order to perform analysis on this model, its parameterizations must be com-
pleted. As will be discussed in Chap. 6, depending on the available information
the analysis can be totally or partially symbolic and it is usually oriented, at this
development phase, at comparing alternative architectural designs.

76 4 Software Lifecycle and Performance Analysis

F
ig

.4
.1

2
L

ay
er

ed
Q

ue
ue

in
g

N
et

w
or

k
m

od
el

4.3 A Simple Application Example 77

Following the development process (i.e. the left-hand side of Fig. 4.3), the de-
tailed design of the e-commerce application is produced in terms of algorithms and
data structures of each software component. This step may terminate with the con-
struction of flat and annotated UML deployment diagrams of the software system,
as shown, respectively, in Figs. 4.10 and 4.11. Annotations here may represent the
low-level scheduling policy of a deployment host (e.g. the one of the operating sys-
tem running on the specific host).

From these additional artifacts a further (more detailed) performance model can
be generated, possibly using a different modeling notation, such as the Layered
Queueing Network shown in Fig. 4.12. This model reflects the architectural decom-
position of the system and its deployment structure. Hence it contains more infor-
mation than the Queueing Network shown above, because it has been generated
in a later development phase. The evaluation of this model produces performance
indices that should be compared with the initial performance requirement.

As illustrated above, our focus in this book is on the process of producing per-
formance models, by means of model transformations, from the software artifacts
produced during the development process. In Chap. 5 we will describe in detail
several approaches to build these model transformations.

In this chapter we have described the performance analysis in the context of a
waterfall software development process. In order to address other software process
models we need to provide an idea on how to generalize the Q-model previously
described.

Let us recall that at each phase the software artifacts represent the system at
different levels of abstraction, whereas the ultimate target of performance analysis
is always to satisfy the initially formulated performance requirements. Therefore the
performance models generated at each phase aim at the same kind of quantitative
analysis, no matter what the name is assigned to the development phase.

Hence, the quantitative analysis can be always based on model transformation
that, opportunely defined, generated the performance model at the same level of ab-
straction of the source development artifact. This amounts to saying that we need
to attach at each software artifact the missing information (i.e. the model annota-
tions illustrated above) and a corresponding model transformation that enables the
performance model generation. Then the triple <software artifact, missing infor-
mation, model transformation> can be freely embedded in different software pro-
cesses. Thus, thanks to model transformation techniques, today we can concentrate
on how to produce, for each significant software artifact of our development process,
a model that allows the quantitative analysis to be made typical of the development
activity the software artifact refers to.

Chapter 5
From Software Models to Performance Models

This chapter focuses on the transformational approaches from software system spec-
ifications to performance models. These transformations aim at filling the gap be-
tween the software development process and the performance analysis by gener-
ating performance model ready to be validated from the software models. Three
approaches will be discussed in detail presenting their foundations and their ap-
plication to the e-commerce case study. Section 5.3 briefly reviews representatives
of other transformational approaches present in the literature. The last section dis-
cusses all the presented approaches with respect to a set of relevant dimensions such
as software specification, performance model, evaluation methods and level of au-
tomated support for performance prediction.

5.1 A General Framework for Model Transformation

The majority of the existing approaches for the automated generation of a perfor-
mance model from a software model can be synthesized as in Fig. 5.1. A software
model can be represented with different notations such as UML, Message Sequence
Charts, Process Algebras, etc. Functional validation, such as deadlock detection,
can be performed on the software model as it is, because only static and/or dy-
namic aspects of the system are needed for such type of validation. Differently, in
order to validate the performance attributes, additional information shall necessarily
be introduced in the model, possibly in the form of software annotations. An ex-
ample of such a piece of information, typically missing in software models, is the
operational profile, that is: a stochastic representation of the software system usage
(e.g. probability of invocation of each system functionality). If the software model
is represented in UML then UML profiles nicely support model annotation, as new
stereotypes can be defined to represent the additional information. In the perfor-
mance domain, the UML Profile for Schedulability, Performance and Time (SPT)
[85] is the current standard that provides the necessary definitions for properly anno-
tating an UML model with data related to performance. With the advent of UML 2,

V. Cortellessa et al., Model-Based Software Performance Analysis,
DOI 10.1007/978-3-642-13621-4_5, © Springer-Verlag Berlin Heidelberg 2011

79

http://dx.doi.org/10.1007/978-3-642-13621-4_5

80 5 From Software Models to Performance Models

Fig. 5.1 General framework
for model transformation

the new UML Profile for Modeling and Analysis of Real-time and Embedded Sys-
tems (MARTE) is going to replace SPT [88]. Model transformations take place, in
the process of Fig. 5.1, between an annotated software model and a performance
model.

Note, however, that this type of transformations are not aimed at refining an ex-
isting model like, for example, in classical Platform Independent Model-to-Platform
Specific Model transformations in MDA. The transformations we focus on take
place between a source and a target model that are at the same level of abstraction,
but are represented in different notations, hence they comply with different meta-
models [42].1 The target is a performance model that is ready to be evaluated with
existing solvers. In the following, we focus only on the model generation whereas
the performance model solution is treated in the next chapter (Chap. 6).

5.2 Some Transformational Approaches at Work

In this section we review three transformational approaches by showing them at
work on the e-commerce system we presented and modeled in Chap. 2. They
are UML-ψ [26, 34, 82], the Petriu’s approach that from UML diagrams obtains
Layered Queueing Networks (LQN) [62, 63, 93, 94], and SAP•one [47, 48]. All
of them start from UML diagrams, stereotyped with SPT profile (introduced in
Sect. 3.8), and generate three different performance models: UML-ψ reaches sim-
ulation models (introduced in Sect. 3.7); the Petriu’s approach generates LQN (de-
fined in Sect. 3.4), and SAP•one obtains Queueing Networks (already presented in
Sect. 3.2).

The choice fell on them for several reasons:

• All Get in Input UML Diagrams—the use of the same notation should prevent
the reader to get lost in the software specification while studying the approaches.

1Readers that are not familiar with the basic concepts of Model-Driven Engineering, such as
model/metamodel hierarchy, can refer to [36] for an introductory reading on this topic.

5.2 Some Transformational Approaches at Work 81

Moreover, she should get through the diagrams quickly since they are already dis-
cussed in Sect. 2.2. Finally, a reader can easily understand the different, software
and performance-related, modeling information the three approaches require in
input and capture the different flavors of the methodologies.

• Different Target Models at Different Level of Details—the section reports a
significant view of performance models by providing insights on their potentiali-
ties. The performance models are used from the methodologies at different level
of details and this permits to show the application of performance models, at dif-
ferent abstraction level, since the earliest phases of the software lifecycle.

• Tool Support—the selected approaches have been implemented fully or partially
in (academic) tools to permit a mostly automated process of generation and anal-
ysis of the performance models. This aspect is very important in model-based
software performance analysis since it reduces the time and the effort required to
carry on the validation of software performance requirements.

The subsequent three sections are each one structured as follows: after a brief
introduction of the approach it is divided into five parts. (i) Software Specification
where the required software specification is described in terms of which UML dia-
grams and additional information are needed; (ii) Performance Model that specifies
in details the generated performance model giving insights on its usage and on the
meaning the methodology assigns to each performance model element; (iii) Soft-
ware to Performance Model Mapping Rules that gives details on the transforma-
tion; (iv) E-commerce System Modeling where the methodology is applied on the
e-commerce system; and (v) Tool Support that reports on the implementation state
of the approach.

5.2.1 UML-ψ: From UML to a Simulation Model

The approach proposed by Balsamo and Marzolla in [26, 34, 82] generates a
process-oriented discrete-event simulation model of software system at a high level
of abstraction. The considered software model is a UML software specification de-
scribing the software architecture of the system. The used UML 1.x diagrams are
use case, activity and deployment diagrams. The diagrams are annotated accord-
ing to a subset of the UML SPT profile. Such annotations are used to parameterize
the simulation model: the workload offered to the system, the resource consump-
tion associated to each processing steps, the characteristics of each resources. The
approach defines an (almost) one-to-one correspondence between the entities ex-
pressed in the UML model and the entities or processes in the simulation model.
Thus, the obtained simulation model has the same structure of the software model.
This correspondence allows easy visualization of the performance results back to the
software specification. The approach implements this visualization by using suitably
tag values of the SPT stereotypes. For instance, if the simulation reports that the uti-
lization of a processing node (that is a deployment node annotated with «PAhost»

82 5 From Software Models to Performance Models

stereotype) is 90%, UML-� is able to insert in the «PAhost» stereotype the PAu-
tilizzation tag value containing the calculated value, that is 90%.

The performance figures derivable by UML-� are: mean execution time of ac-
tions and use cases, utilization and throughput of resources. The system behavior
is described as a workflow of activities/actions since each use case is described as
a one or more activity diagrams. This modeling allows the designer to study via
UML-ψ the execution time of both use cases and single activities in the corre-
sponding activity diagram(s). As will be described in detail later, each activity is
associated to physical, passive and active, resources whose contribution is needed
to accomplish the activity. Thus, the approach permits one to measure the utilization
and the throughput of such resources.

With respect to the Q-model presented in Chap. 4, this approach can be basi-
cally applied to all development phases, because there are no actual limits to the
level of detail that a simulation model can describe in a software system. Therefore,
we envisage this approach as suitable for all the development phases illustrated in
Fig. 4.3.

Software Specification

UML-� requires that the software system is modeled by UML 1.x use case, de-
ployment and activity diagrams annotated with the quantitative information needed
to carry on the performance analysis.

Use case diagrams are used to model workloads applied to the system. Actors
correspond to open or closed workloads, a workload being a stream of users ac-
cessing the system. Each user executes one of the use cases associated with the
corresponding actor. Use cases Ui,j associated with Actor Ai is given probability
pi,j to be chosen. The sum of the probabilities of the use cases associated to the
same actor must be 1, that is

∑k
j=0 pi,j = 1, for each i.

Actors in the use case diagram are stereotyped with 	PAOpenWorkload
 or
	PAClosedWorkload
 denoting unlimited (open) and finite (closed) number of
users accessing the system, respectively. For actors representing open workloads
we must specify the interarrival pattern of users (RTarrivalPattern tagged
value). For closed workloads we must specify (i) the number of system users
(PApopulation tagged value) and (ii) the external delay experienced by users
(PAextDelay tag value).

For an example of the use case diagram UML-� requires, please refer to Fig. 5.6.
Deployment diagrams are used to describe the physical resources (processors)

which are available. Differently to the standard usage of such diagram, the UML-
� approach does not use this diagram to represent the deployment of the software
units over the hardware platform.

Active resources (processors) correspond to nodes stereotyped as 	PAhost
.
Each node instance can be tagged with the following attributes: PAschedPolicy
(recognized values are “FIFO”, “LIFO” and “PS”) indicating the scheduling policy
of the processor; PActxSwT representing the context switch time; PArate that

5.2 Some Transformational Approaches at Work 83

Fig. 5.2 UML-� simulation
process types

is the processing rate of the host, with respect to a reference processor. Thus, a
PArate of 2.0 means that the host is twice as fast as the reference processor.

Passive resources correspond to nodes stereotyped as 	PResource
. Passive
resources have a maximum capacity, expressed with the PAcapacity tag. Re-
quests of a resource are done by actions stereotyped as 	GRMacquire
, while
release of a resource is done by actions stereotyped as 	GRMrelease
. If the
residual capacity of a resource is less than what requested, the requesting action is
suspended until enough resource is available. Pending requests are served FIFO.

See Fig. 5.7 for an example of the deployment diagram UML-� requires.
Finally, activity diagrams show which computations are performed on the re-

sources. There must be at least one activity diagram associated to each use case.
Each action state represents a computation, that is, a request of service from one
active resource (processor).

Each step of an activity diagram is stereotyped as 	PAstep
, and can be anno-
tated with the following tagged values: PArep to express the number of times this
step has to be repeated; PAdelay to indicate an additional delay in the execution
of this step, for example to model a user interaction; PAinterval to annotate the
time between repetitions of this step, if it has to be repeated multiple times; PAde-
mand for the processing demand of the step; and PAhost for the name of the host
(deployment diagram node instance) to which the service is requested. In Fig. 5.9
we report an example of the UML-� activity diagram.

Simulation Model

Simulation processes can be divided into three families corresponding to workloads,
resources and activities. Several types of processes belong to each identified family
as reported in the table on the left side of Fig. 5.2.

84 5 From Software Models to Performance Models

The workloads family contains four different process types used to simulate both
open and closed workloads. OpenWorkload creates an infinite number of Open-
WorkloadUser processes that represent the requests arriving to the software system.
After each process creation, OpenWorkload pauses for a random amount of time to
simulate the interarrival time between two different requests. OpenWorkloadUser is
responsible for activating the system behavior that satisfies the request and then it
terminates. Such system behavior is modeled as a CompositeAction process (see Ac-
tivities family). OpenWorkload interacts with (infinite) OpenWorkloadUser, which
in turn interacts with CompositeAction.

ClosedWorkload creates a fixed population of requests by instantiating a cor-
responding number of ClosedWorkloadUser processes. When all the requests are
activated, the ClosedWorkload process terminates. Each ClosedWorkloadUser pe-
riodically triggers the (possibly different) system behavior satisfying the request it
represents by waiting a random amount of time between two subsequent activations.
As before, the activated system behavior is modeled as a CompositeAction process.
ClosedWorkload interacts with ClosedWorkloadUser, which in turn interacts with
CompositeAction.

The Activities family contains the processes that model the different types of
actions the system must execute to satisfy the arriving requests. CompositeAction
models a complex computation made of a number of sub-computations and it acti-
vates the first behavioral sub-step that can be any action listed in Fig. 5.2.

SimpleAction models a basic computational step executed by the system. This ac-
tion can be repeated a number of time and may require service to an active resource.
It interacts possibly with an ActiveResource and then with one of the subsequent
actions.

ForkAction and JoinAction represent the beginning and the end of a parallel com-
putation, respectively. ForkAction consists on activating all the parallel actions of
the parallel computation. JoinAction, instead, waits for the completion of all its pre-
ceding actions and then activates one of its successors.

The last two actions the simulation model has are the AcquireAction and Re-
leaseAction actions. The former implements the acquisition of a passive resource
and interacts with PassiveResource before activating one of the actions it precedes.
The latter, instead, represents the action releasing a passive resource previously ac-
quired. It interacts first with PassiveResource and then it activates one of the suc-
cessor actions.

Finally, the resource process family is composed by two process types: ActiveRe-
source modeling an active resource and PassiveResource representing a passive re-
source. An ActiveResource process waits for requests and satisfies them according
to its scheduling policy. Also PassiveResource waits for requests, and satisfies them
if the available amount of passive resource is sufficient for the request, otherwise it
blocks until the necessary amount of passive resource becomes available. It interacts
with AcquireAction and ReleaseAction processes.

A simplified representation of the simulation model is given in Fig. 5.3 that
shows, through a diagram (similar to a collaboration diagram), an example of how
processes of a simulation model are instantiated and activated. Nodes in the dia-
gram represent the instances of the simulation process types described above, while

5.2 Some Transformational Approaches at Work 85

Fig. 5.3 UML-� simulation
processes instantiation

the arrows and respective labels model the order in which the processes are acti-
vated and the control flow among the processes. The aim of the figure is to show
how the previous process types are combined in a model. In particular, the first in-
stantiated process is the one for the workload (in this case the OpenWorkload) and
the associated user (i.e., the OpenWorkloadUser). This last process activates the
CompositeAction process modeling a system behavior (i.e., the selected one). The
subsequent portion of the diagram describes the processes simulating the system
behavior: a SimpleAction consuming some ActiveResource, a ForkAction model-
ing the starting point of two parallel execution flows. The right side flow consumes
some PassiveResource by first acquiring it (AcquireAction process) and, when fin-
ished, releasing it (ReleaseAction process). The following JoinAction represents the
end point of the parallel executions, ending with the conclusive SimpleAction.

Software to Performance Model Mapping Rules

UML elements are mapped directly into simulation processes as illustrated in
Fig. 5.4. Actors are translated into processes generating the workload. Deploy-
ment node instances correspond to processes simulating the resource with the given
scheduling policy, processing rate and context switch time. Finally, each action state
in the activity diagrams is translated into a simulation process.

The translation algorithm is very simple and performs the following basic steps
(refer to Fig. 5.5 for details on the mapping rules):

1. Each actor is translated into the corresponding workload and workload users
process (open or closed ones) depending on its stereotype;

86 5 From Software Models to Performance Models

Fig. 5.4 UML-� mapping
rules

2. Each action in activity diagrams is translated into the related type of processing
step (fork/join action, simple/composite action, require/release action) depend-
ing on its UML type and the associated stereotype;

3. Actions are linked together according to the predecessor-successor relation that
relates them in the activity diagrams;

4. Finally, nodes in the deployment diagrams are mapped into processing or passive
resources depending on their stereotype.

When a workload user is activated, it chooses the use case to execute among
the ones it can trigger (i.e., the use cases associated to it in the use case diagram).
The activity diagram associated with the selected use case is translated into a set

Fig. 5.5 Detailed UML-� mapping rules

5.2 Some Transformational Approaches at Work 87

Fig. 5.6 Use case diagram and the generated simulation processes for the e-commerce system

of processes, one for each action state. The simulation process associated with the
starting activity is finally executed. Each step, once completed, starts the successor
step until the end of the activity diagram is reached. During each step execution,
the corresponding process consumes (active/passive) resources according to the an-
notation in the activity diagram. This means that the step process interacts with the
involved resource process/es to simulate resources consumption. At the end of the
scenario, the workload user is resumed.

UML-� Approach on E-commerce System

This section shows the application of the UML-� approach to the e-commerce sys-
tem introduced in Sect. 2.2. In particular, the presentation is organized into three
macro-steps, one for each type of the considered UML diagrams. The (incremental)
simulation models resulting from the elaboration of each UML diagram are repre-
sented by means of the simplified representation of the simulation model introduced
above.

Each macro-step description is supported by a figure, showing on the left side
the UML diagram the step deals with and, on the right side, the resulting (partial)
simulation model.

Use Case Diagram Processing—The left side of Fig. 5.6 shows the annotated
use case diagram for the UML-� approach. The diagram contains an actor, the Cus-
tomer, and two use cases, BrowseCatalog and PlaceOrder. The performance related
information is annotated in the diagram by means of the SPT Profile in a paramet-
ric way that is through variables identified by the $ symbol according to the UML
syntax.

As marked by the ClosedWorkload stereotype, the Customer represents the
source of the workload for the e-commerce system. The workload is closed, that
is the number of requests that circulate in the system is fixed and such number is
indicated by the PApopulation tagged value. In Fig. 5.6, the population is set to $R.
When the customer receives back a response to its request, she generates a new re-

88 5 From Software Models to Performance Models

Fig. 5.7 UML-� simulation processes originating from the e-commerce deployment diagram

quest. The time needed to formulate the new request is indicated via PAextDelay
tagged value. In the figure this delay is assumed to be 7.5 seconds on average.

At each time, a Customer can generate either a BrowseCatalog or a PlaceOrder
request with $p_BC or $p_PO probabilities, respectively, as indicated by the PA-
prob tagged value on the associations between the actor and the use cases.

On the right side of Fig. 5.6, the simulation processes generated from the use
case diagram are shown.

The use case diagram processing generates $R + 1 simulation processes: Cus-
tomers of the ClosedWorkload type that, in turn, creates the fixed population of
$R Customer, that are ClosedWorkloadUser processes. Each ClosedWorkloadUser
periodically triggers the (possibly different) system behavior by waiting a random
amount of time between two subsequent activations, as annotated in the PAextDe-
lay tagged value. For the process communication, ClosedWorkload interacts with
ClosedWorkloadUser, which in turn interacts with the processes modeling the use
cases the Customer can activate. Of course the Customer process will embed the
$p_BC and $p_PO probabilities to suitably model the activation of the system func-
tionalities.

Deployment Diagram Processing—On the left side of Fig. 5.7 is shown the
deployment diagram for the e-commerce system. In the diagram the nodes corre-
sponding to processors are annotated with the PAhost stereotype. Such annotation
indicates that the nodes are active resources and the tagged values show the schedul-
ing policy (i.e., PASchdPolicy tagged value), the time spent from the processor to
make a context switching (that is, the PActxSwt tagged value) and the processing
rate (in the PArate tagged value). The scheduling policy for all the hosts in the figure
is FIFO (First In First Out), while the other pieces of information are parametric, as
indicated by the $ symbol.

5.2 Some Transformational Approaches at Work 89

Fig. 5.8 BrowseCatalog activity diagrams and the corresponding UML-� simulation processes

On the right side of Fig. 5.7, the corresponding simulation processes are shown.
For each node stereotyped with PAhost, an ActiveResource process is generated
whose behavior is set according to the annotation in the tagged values of stereotype.
The Internet and LAN nodes are instead not stereotyped and hence they will not be
part of the UML-� simulation model. It is assumed that the time needed to access
these networks is split between the caller and the provider of a remote processing
step.

Activity Diagrams Processing—In Fig. 5.8, from the left side to the right side,
the annotated activity diagram and the corresponding simulation processes for the
BrowseCatalogue use case are shown. The simulation processes in gray are the ones
previously generated by processing the use case and the deployment diagrams.

In the activity diagram, the actions are annotated via the PAstep stereotype. The
used tagged values are the: PAhost indicating the active resource responsible for
the computation and the PAdemand that indicates the processing time the action re-
quires to the resource. In the figure, all the service demands are expressed in seconds
and represent the assumed mean times required to the active resource in charge of
the job.

UML-� generates a SimpleAction simulation process for each PAstep stereo-
typed activity in the diagram. In addition it generates a CompositeAction process
that represents the starting point of the BrowseCatalogue scenario. In the represen-
tation of the simulation model on the right side of Fig. 5.8, we also show a line
for the communication channels among the processes. The numbered arrows asso-
ciated with such lines represent the activation and execution of the processes when
the BrowseCatalogue scenario is activated. By following the arrows a Customer
asks the system to browse the catalogue then the CompositeAction starts to execute.
When it finishes its work, it activates the ReceiveBrowseCatalogueRequest process
that during its execution activates the RP ActiveResource asking to spend the time
specified via PAdemand in the annotation of the Receive Browse Catalogue Request
activity. When the ReceiveBrowseCatalogueRequest process terminates, the subse-
quent process starts. The process activation proceeds until the end of the scenario.

90 5 From Software Models to Performance Models

Fig. 5.9 PlaceOrder activity diagram

Figure 5.9 reports the UML-� modeling of the Place Order scenario. The sce-
nario provides two interesting behavioral patterns: the alternative and parallel exe-
cutions. The former is related to the emptiness of the cart. If the cart is empty the
scenario terminates showing an error page to the customer, otherwise it proceeds
with the placement of the order. The probability of executing one of the two alter-
native behaviors is annotated by the PAprob tagged value. The error scenario can

5.2 Some Transformational Approaches at Work 91

Fig. 5.10 UML-� model for the e-commerce system

happen with $Perror probability, whereas the order placement completes with 1-
$Perror probability. The latter corresponds to the last tasks before the order page
is displayed. In fact, the “update cart” and the “assembly data” activities are exe-
cuting in parallel to minimize the response time. Finally, note that in the activity
diagram the Create new order is a macro-activity containing three basic actions. In
the transformation toward the simulation model the basic actions are not considered,
whereas the composite one will contribute to generate a SimpleAction process since
it is the only one stereotyped by the PAstep.

Figure 5.10 shows the simulation model UML-� generates for the e-commerce
system. For the sake of presentation the target model is shown, considering only
two use cases, the place order and the browse catalogue functionalities, and the
deployment diagram of the whole system. In the center of the figure, from top to
bottom, the processes simulating the closed workload and the physical resources
are presented. The processes simulating the activities to be performed for the browse
catalogue and for the place order scenarios appear on the left and right sides of the
figure, respectively. The link among the processes represents the communication
among them whereas the numbered arrows upon the links indicate the order in which

92 5 From Software Models to Performance Models

the process interactions occur, whenever a scenario is activated by the user. The
probability the customer asks for a use case is reported on the link between the
ClosedWorkloadUser, modeling a customer, and the compositeAction modeling the
starting point of the use case.

Tool Support

The approach has been implemented in the prototype tool UML-� (UML Perfor-
mance SImulator).

The UML-� tool parses the XMI representation [89] of the annotated UML
model. Currently the XMI variant used by the ArgoUML [14] tool is supported.

While parsing the XMI representation, the UML-� tool builds an internal rep-
resentation of the UML model from which it derives a process-oriented simulation
model. The obtained simulation model is executed by using both user-supplied pa-
rameters, given as tagged values in the UML diagrams, and the parameters included
in a configuration file. Examples of simulation parameters are the repetition number
an action is executed, the service demand of actions, expressed as random variables
with a given distribution, the scheduling policies of active resources, and the confi-
dence range.

The specification of tag values is given by the Tag Value Language, which is a
subset of the Perl language [8]. This is motivated by the need to express such values
in a complex way, for example by using expressions such as arithmetic or boolean
ones. The configuration file is a Perl program which is executed before evaluating
tag values. In this way it is possible to define variables in the configuration file and
use them inside tag values.

The simulation model is implemented as a C++ program, using the facilities pro-
vided by the general-purpose simulation library. Upon execution of the simulation
model the computed results are inserted into the XMI document as tagged values
associated with the UML elements they refer to. In this way the results of perfor-
mance analysis are available to the user which can access them by opening again
the UML model by using the CASE tool. The software designer can then check
whether the software architecture meets the performance goal and can possibly it-
erate the whole specification and analysis process. Simulation results are computed
with steady state analysis and with confidence intervals.

5.2.2 From UML to a Layered Queueing Network

In [62, 63, 93–95] Petriu et al. incrementally propose a software performance engi-
neering methodology that generates a Layered Queueing Network model of a soft-
ware system at the software architecture level. The approach makes use of design
patterns that introduce abstract design artifacts describing a specific type of col-
laboration between a set of prototypical components that play well-defined roles.

5.2 Some Transformational Approaches at Work 93

The approach assumes that the software architecture is modeled by UML 1.x dia-
grams. In particular, the software architecture structure is modeled by means of a
UML collaboration diagram enriched by the indication of the design patterns the
architecture conforms to, whereas the software architecture dynamics is modeled
by means of a set of UML activity diagrams, one for each performance critical
scenario. The UML modeling is completed by a deployment diagram embedding
information about: (i) the deployment of software components over the hardware
platform, and (ii) performance characteristics of devices composing the hardware
platform. The diagrams are annotated according to the UML SPT profile. The fol-
lowing annotations are used to parameterize the LQN model: the workload offered
to the system from the external users and to the lower tasks from the upper ones, the
hardware/software resource consumption associated to each processing step (one or
a set of actions in an activity diagram), the characteristics of each hardware resource
(e.g., scheduling policy).

The transformation algorithm for the Petriu’s approach is quite complex and is
composed by two main steps:

1. Derivation of the LQN structure—In this step, only the structural aspect of the
software system is taken into account. The inputs of this step are one or more
UML collaborations representing the high-level architecture of the software sys-
tem and its architectural patterns, and the deployment diagram. Each high-level
software component instance is transformed into an LQN software task. The
connections among the tasks come from the high-level architecture and the in-
volved patterns, since they reflects the links among component instances in the
architecture. The nodes in the UML deployment diagram become devices in the
LQN. Finally, the connections between tasks and devices reflect the deployment
choices described in the UML deployment diagram.

2. Derivation of the LQN entries, phases, activities details—The inputs of such step
are represented by the LQN structure derived from the first step, the involved ar-
chitectural patterns and the activity diagrams modeling the performance critical
scenarios. For each UML activity a LQN sub-model is derived, and all the ob-
tained sub-models are merged together at the end. Each swimlane in the activity
diagram describes the actions the related component instance (LQN task) must
execute to satisfy a service request. From the swimlanes the approach derives the
entry for the corresponding tasks and its description either in terms of phases or
activity graph. From the architectural patterns, the step extracts the ways differ-
ent entries are connected, thus making consistent the inter-component communi-
cations with the pattern(s).

The obtained LQN model can be analytically solved or simulated by using the
tool set presented in [52, 53], composed by the LQNSIM simulator, and the LQNS
analytical solver. The LQNS solver makes use of specific solution techniques de-
fined for LQN models that iteratively solve each layer of the LQN, starting from
the bottom-most one. The performance figures calculated by the approach are all
the ones allowed by the LQN model and by the tools used to evaluate it. Table 5.1
summarizes the main performance indices calculated from the LQN solution. The

94 5 From Software Models to Performance Models

Table 5.1 Main LQN model results

Figure name Figure description

Mean Delay (Variance) for a
Rendezvous

It is the (variance of) queueing time for a request from a client
to a server. It does not include (the variance of) the time the
customer spends at the server.

Mean Delay for a
Send-No-Reply Request

It is the time the request spends in queue and in service in
phase one at the destination.

Mean Delay for a Join It is the maximum of the sum of the service times for each
branch of a fork. The variance of the join time is also
computed.

Service Time The service time is the total time a phase or activity uses for
processing a request.

Service Time Variance It is the variance of the service time for the phases and
activities in the model.

Throughputs and Utilizations
per Phase

They are throughputs by entry and activity, and the utilization
by phase and activity. The utilization is the task utilization,
i.e., the reciprocal of the service time for the task.

Utilization and Waiting per
Phase for Processor

They are the processor utilization and the queueing times for
every entry and activity running on the processor.

table reports in the first column the name of the figure and in the second column its
description.

With respect to the Q-model presented in Chap. 4, this approach can be applied
to several development phases, mostly the architectural and the low-level design. In
fact, LQN are a suitable notation for representing software components and platform
devices where these components run. Their capability to detail the internal structure
and behavior of a component enables the possibility of evolving the development
artifacts as long as the process evolves.

Software Specification

The high-level architecture defines the structure of the system in terms of the con-
current (distributed) component instances composing it. Moreover, it shows the ar-
chitectural patterns involved and the roles the components hold in each pattern.

A pattern introduces a higher level of abstraction design artifact as it describes
a specific type of collaboration between a set of components playing well-defined
roles (e.g., client–server, pipeline and filters, blackboard, etc.)

Each design pattern is described from two perspectives: structurally, by indicat-
ing the type of components involved and their interconnections; dynamically, by
modeling the way those components/roles interact with each other. The components
are usually concurrent entities that are executed in different threads of control, com-
pete for resources, and their interaction may require some synchronization.

The patterns are represented as UML collaborations (not to be confused with
UML collaboration diagrams that are interaction diagrams) [86]. A collaboration

5.2 Some Transformational Approaches at Work 95

Fig. 5.11 Client–Server architectural patterns

is a notation for describing “a society of classes, interfaces, and other elements that
work together to provide some cooperative behavior that is larger than the sum of all
its parts” [55]. A collaboration has two aspects: structural (usually represented by a
class/object diagram) and behavioral (represented by an interaction diagram). The
symbol for a collaboration is an ellipse with dashed lines that may have “embedded”
squares showing the roles played by different pattern participants.

96 5 From Software Models to Performance Models

An example of design pattern is the Client–Server architectural pattern shown in
Fig. 5.11. Indeed, Fig. 5.11 shows three variants of the Client–Server architectural
pattern [95]. Figure 5.11(a) shows the structural description of this pattern, identi-
fying two roles, the Client and the Server. At least one (instance of) Client is con-
nected to a single Server. Figure 5.11(b) shows a synchronous communication style
among client and server (where the client sends the request and remains blocked
until the sender replies), whereas the one in Fig. 5.11(c) describes an asynchronous
communication style among them (where the client continues its work after send-
ing the request and will accept the server’s replay later). Finally, Fig. 5.11(d) shows
the Client–Server pattern where the communication among the client and the server
is implemented by involving a forwarding broker that acts as an intermediary be-
tween them in all their interactions. Please refer to [95, 96] for a wider example of
architectural patterns definition.

The rationale behind the definition and usage of high-level architectural patterns
is that, in general, developers of software systems are mostly interested in the com-
ponents that are part of their application, and less in the details of the underly-
ing middleware, operating system or networking software. The use of architectural
patterns allows them to separate concerns in the modeling and to hide unneces-
sary details at the application level. For example, client–server applications using a
CORBA interface do not have to show explicitly the “broker” component in their
architecture (as it is not part of the software application). Instead, the apposite ar-
chitectural pattern (that is the Client–Server with forwarding broker) can be used to
indicate the type of desired client–server connection. As a result, Petriu’s approach
having in input this specific pattern generates a performance model explicitly repre-
senting the broker and its interaction with the client and server counterparts even if
these concepts are not present in the application UML design.

Activity Diagrams are used to describe the system scenarios judged as critical
for performance aspects. These diagrams are annotated by using the stereotypes of
the Schedulability Performance and Time (SPT) Profile [85].

In particular, open and closed workloads are annotated in the first activity of
the diagram by means of «PAopenLoad» and «PAclosedLoad» stereotypes,
respectively.

All the activities in the diagram are annotated by «PAstep» stereotype to indi-
cate: (i) the average service demand of the processing step on its processor (through
the PAdemand tag value); (ii) the activity execution probability in case of op-
tional/alternative execution flows (through the PAprob tag value); (iii) the name
of the device and average number of visits in case the activity makes a request to
a device (through the PAextOp tag value); and finally (iv) the average number of
visits in case the activity requires service to another task entry (through the PArep
tag value).

We recall that the authors enrich the activity diagrams with the concept of swim-
lanes in order to model the objects responsibility for the involved actions.

The Deployment Diagram provides information about the hardware platform
and the deployment of the software system on it. The annotations added by using a
SPT profile aim at identifying active and passive resources. In particular, nodes rep-
resenting processors (that is active resources) are annotated by means of «PAhost»

5.2 Some Transformational Approaches at Work 97

stereotype to specify the scheduling policy (PASchdPolicy tag value), and nodes
modeling the passive resources are annotated by means of the «PAresource»
stereotype.

Layered Queueing Network

The approach uses the LQN models with the original semantics as introduced in
Chap. 3. Indeed, it uses all the features of the LQN model since it defines trans-
formation rules that detail the entry modeling by using activity graphs, if a finer
grain of software behavior description is necessary. We recall here that if activity
graphs are used, then the LQN model can be only simulated by using the LQNSIM
simulator.

Software to Performance Model Mapping Rules

The transformation algorithm for the Petriu’s approach is quite complex and applies
many mapping rules that, for the sake of presentation, are partitioned into two dis-
tinct groups, one for each transformation core step described earlier at the beginning
of Sect. 5.2.2.

Step 1—Derivation of the LQN Structure The LQN structure is extracted by the
high-level architecture of the software system, the architectural patterns occurring
in it, and by the deployment diagram. In particular, the LQN tasks and their inter-
connections are defined from the first two elements, whereas the definition of the
LQN devices and the connections among the tasks and the devices come from the
deployment diagram.

Figure 5.12 graphically illustrates the transformation rules devised for the LQN
structure definition, by reporting on the left side a software model element and on
the right side the corresponding LQN element:

• each Component Instance or Thread in the high-level architecture that is explicitly
annotated as «PAresource» is translated into a LQN task, by preserving the
multiplicity indicated in the high-level software architecture;

• the interconnections among tasks are created following the definition of architec-
tural patterns in the software architecture (see below for specific transformation
rules);

• each node in the deployment diagram annotated as «PAHost» or «PAre-
source» is translated into a LQN device that inherits all the node characteristics
as indicated in the specific stereotype (e.g., the scheduling policy comes from the
PAschdPolicy attribute of the stereotype);

• the «deploys» associations among the component instances and the nodes are
translated into the links among the corresponding tasks and devices in the LQN
model.

98 5 From Software Models to Performance Models

Fig. 5.12 Mapping rules for the LQN structure definition

The set of transformation rules for the LQN structure is completed by the ones
that translate the architectural patterns into the interconnections among the LQN
tasks. Frequently a software system contains many components involved in various
architectural patterns, and a component may play different roles in different pat-
terns. All the task interactions must respect the component communication types
provided in the architectural patterns. Hence, the corresponding mapping rules must
be applied in a systematic way, pattern by pattern.

Depending on the specific pattern, it can happen that some of such rules intro-
duce additional LQN tasks to model software entities specific to the pattern and
not explicitly modeled in the high-level software architecture, as it happens for the
Client–Server with forwarding broker architectural pattern.

For the sake of presentation, only the transformation rules for three variants of
the Client–Server architectural pattern are here below described. More rules for the
transformation of the architectural patterns into LQN can be found in [94, 95].

5.2 Some Transformational Approaches at Work 99

Figure 5.13 graphically illustrates these rules by showing the architectural pat-
terns on the left side, and the corresponding LQN general structure the pattern in-
duces on the right side.

The first rule refers to the Client–Server with blocking client architectural pat-
tern. In this pattern, a client communicates with the server through a synchronous
communication, where the client sends a request to the server and blocks until the
server reply comes back. A server may offer a wide range of services (represented
as the server methods), each one with its own performance attributes (e.g., execution
time). A client may invoke more than one of these services at different times. The
rule specifies as synchronous the connections among the Client and the Server task
entries.

The second rule refers to the Client–Server with forwarding broker pattern. In
this variant the communication among the Client and the Server is not direct, but it
occurs by means of a broker. The forwarding broker is modeled as a LQN multi-
server with as many entries as server entries. Each task replication accepts a client’s
request, passes it to the server, then remains blocked until the server reply comes
back and is delivered to the respective client. While a broker replication is blocked,
other replications get to run on the processor on behalf of other requests.

The last rule refers to Client–Server with handle-driven broker pattern where a
client sends two kinds of messages: one to the broker for getting the handle, and
the other directly to the desired server entry. Since the broker does the same kind
of work for all the requests, no matter what server entry they need, the broker is
modeled with a single entry.

Step 2—Derivation of the LQN Entries, Phases, Activities Details The UML
activity diagrams describe how the component instances (LQN tasks) collaborate to
satisfy the requests incoming the system. From such diagrams Petriu’s approach ex-
tracts tasks’ entries details, defines the reference tasks, and identifies supplementary
LQN tasks needed to model operations external to the system (as indicated in the
UML activity diagrams through specific annotation).

We recall that the approach requires swimlanes in the UML activity diagrams.
Swimlanes are used to model the component instance (or LQN task) responsible for
the actions that must be performed to satisfy the incoming request.

As first action of Step 2, the approach parses the activity diagram to check
whether it is correct w.r.t. the architectural patterns specified in the high-level archi-
tecture. To this goal, the approach overlaps the behavior of the architectural patterns
extracted from the high-level architecture with the activity diagram, and verifies
whether the communication between concurrent components is consistent with the
pattern. Operatively, this is done by identifying the cross-transitions between swim-
lanes, and by checking if they follow the protocol defined by the pattern. Then, it
applies the transformation rule corresponding to the respective pattern to properly
define the entries and their interconnections among the LQN tasks.

The above action practically disconnects each swimlane from its neighbors (see
Fig. 5.14 for a graphical representation of the result). Each swimlane defines an
entry in details.

100 5 From Software Models to Performance Models

F
ig

.5
.1

3
T

ra
ns

fo
rm

at
io

n
ru

le
s

of
th

re
e

va
ri

an
ts

of
th

e
C

lie
nt

–S
er

ve
r

ar
ch

ite
ct

ur
al

pa
tte

rn

5.2 Some Transformational Approaches at Work 101

Fig. 5.14 Swimlane disconnection

Figure 5.15 graphically illustrates the rules to identify an entry (i.e., rule1),
and to model it through phases (that is, rule2 and rule3):
rule1: A task entry is generated for each service type offered by the corre-

sponding software component instance. The services offered by each instance (LQN
task) are identified by looking at the messages received by it (that is the arrows in-
coming the swimlane) in every activity diagram taken into account for performance
analysis. A new entry is added to the task if a new type of request is received. If a
request type is received more than once, its number of repetitions is increased by the
contribution to it provided by the current activity diagram. In Fig. 5.15-rule1, from
the four separated swimlane, the approach identifies four different entries (from e1
to e4), belonging to the involved tasks.
rule2: This rule is used to model an entry as a single phase. It is applied

when the reply to the task asking for the service occurs at the end of the swimlane,
when all its steps have been executed. In this case, the steps in the swimlane are
all collapsed in a single LQN phase. This means that the approach defines a single
service demand for the entry (in the figure, [a] for e1 entry) and the number of
requests (in the figure, [n1], . . . , [nj] on the links) the entry generates to its server
task at the end of its execution.
rule3: This rule is used when the reply to the client task occurs in the middle

of a swimlane, before the end of the entry execution. In this case, the approach di-
vides the entry modeling in two phases, the first one ending when the task replies
to its client (e2,ph1, in Fig. 5.15-rule3) and the second one modeling the remain-
ing execution (e2,ph2, in Fig. 5.15-rule3). The approach also defines two service
demands [a, b], a for the first phase and b for the second one, and the pair [ni,mi]
of mean numbers of service requests provided to the other tasks from each phase,
respectively.
rule4: This applies if a conditional or non-conditional branching state is en-

countered while parsing a swimlane. In this case the entry is modeled by means
of a LQN activity graph on the basis of the mappings illustrated in Fig. 5.16. The
approach creates:

• an activity for a set of steps sequentially executed in a swimlane, whose service
demand and service request definitions follow rule5 and rule6, respectively;

• a LQN &-fork and an &-join node (represented by an & in a circle having, in the
first case, one incoming arc and many outcoming arcs, while in the second case

102 5 From Software Models to Performance Models

Fig. 5.15 Mapping rules for the LQN entries identification and modeling by using phases

many incoming arcs and only one outcoming arc) to the fork and the correspond-
ing join node encountered in the UML activity diagram, respectively;

• an or-fork and an or-join node (represented by a + in a circle, having, in the
first case, one incoming arc and many outcoming arcs, while in the second case
many incoming arcs and only one outcoming arc) to each decision and the cor-
responding merge node encountered in the UML activity diagram, respectively.
The probabilities annotated on the UML steps following the decision node are
used to specify the probabilities of the alternative paths starting from the or-fork
in the LQN model;

5.2 Some Transformational Approaches at Work 103

Fig. 5.16 Mapping rules for the LQN entries modeling with LQN activity graph activities

• a loop node (represented by a circle with * inside) is introduced whenever a step
in the UML activity diagram must be executed several times (as indicated by the
PArep tag value in the PAstep stereotype annotating the step). The loop node will
precede the LQN activity representing the repeated step and the repetition number
(i.e., the PArep tag value) is used to label the arc connecting the loop node with
the activity.

Note that this rule does not apply whenever a fork node in the UML diagram is used
by a server for sending a reply at the end of the first phase.
rule5: This rule defines the mean service demand of a LQN phase (or activity)

obtained by using the additional information annotated by means of the «PAstep»
stereotype. The service demand S is a function of the PAdemand, and PArep tag
values of all the steps involved in the phase (or activity), defined as follows: S =∑k

j=1(dj ∗ rj) where k is the number of steps involved in the phase or activity, dj

and rj represents the PAdemand and PArep tag values, respectively, of the step j,
and rj is equal to 1 if not specified in the stereotype.

104 5 From Software Models to Performance Models

Fig. 5.17 Mapping rules for the LQN task reference modeling

rule6: An LQN request arc is generated when a communication is detected
between a phase or activity of a component playing the role of client, and the entry
of another server, according to the corresponding high-level pattern. The request
number of the arc is given by the number of repetitions (annotated in the PArep
tag value) of the scenario step originating the request multiplied, by the number of
requests made in that step. If more steps contained in the same phase are sending a
request to the same entry, then their call request numbers are added together.

Figure 5.17 shows the rules that define which identified tasks play the role of ref-
erence tasks. A reference task is a task that generates the workload to the LQN. Since
Petriu’s approach assumes that information on the workload is annotated on the first
step of the activity diagram by means of «PAclosedLoad» or «PAopenLoad»
stereotypes, these stereotypes are used to identify and specify the reference tasks.
Note that, for each workload, the approach will generate a specific reference task
that runs on a “virtual” device modeling an engine that spends the time the refer-
ence task specifies. The following rules describe the reference task parametrization
in both closed and open workload:
rule7: This rule refers to a closed workload fully defined by the population

number (indicated in the PApopulation tag value) and the think time (indicated
by PAextDelay) each element in the population needs to formulate a request.
The think time is used to define the entry service demand of the reference task; the

5.2 Some Transformational Approaches at Work 105

Fig. 5.18 Mapping rules for the LQN structure enhancement

population number is used as the reference task multiplicity, and the mean number
of requests the reference task forwards to its server tasks is calculated as specified
in rule6.
rule8: this rule refers to open workload that is fully described by the requests

arrival rate (annotated in the activity diagram by means of the PAoccurrence
tag value). In this case, the mean service demand of the reference task entries is
not determined by using rule5, but it is the inverse of the rate annotated in the
PAoccurrence tag value, while rule6 still remain valid for the quantification
of the mean number of requests the reference task entry produces to the other tasks.

Finally, Fig. 5.18 graphically illustrates rule9 that deals with the PAextOp an-
notation. In fact, it can happen that some steps in the UML activity diagram requires
some external operation to be completed as specified by the PAextOP tag value.
To execute this operation $N service requests (or visits) are necessary on the device
node2 (possibly annotated as «PAresource» in the UML deployment diagram).
In this situation, the approach enriches the LQN model with a new task (Task Node2
in the figure) offering the external operation required as an entry (op in the figure),
the first time it incurs in a new ID node. Since Task Node2 is invoked from a step
in the C1 swimlane, the approach creates an arc linking the C1 entry e1 with it. The
mean request number on this arc is exactly the number of visits $N annotated in
the PAextOp tag value. The new task is linked to the LQN device node (Node2) as
indicated in the PAextOp tag value. The op entry of the new task is modeled as a
single phase whose mean service demand is the same of the processing capabilities
of the Node2.

106 5 From Software Models to Performance Models

Fig. 5.19 High-level architecture of the e-commerce system

Petriu’s Approach to E-commerce System

The Petriu’s approach generates a LQN model by executing the two steps outlined
above. In the following the approach is applied on the e-commerce case study. For
sake of presentation, the scope of the modeling is reduced to the Browse Catalogue,
Browse Cart, and Place Order use cases.

Figure 5.19 shows the high-level software architecture of the considered e-
commerce system where architectural patterns and stereotypes for resources are rep-
resented. It is assumed that the system has $L different customers in the system. This
means that $L different instances of CustomerInterface and CustomerProcess are
running in the system every time. The high-level architecture further indicates the
architectural patterns each component instance is involved in and the corresponding
role the instance holds in it. In deed, in this example, only the Client–Server with
blocking client pattern is used. We recall that this pattern has been introduced at the
beginning of Sect. 5.2.2.2

Figure 5.20 shows the annotated UML deployment diagram for the e-commerce
system. The system is composed by five local hosts (all annotated as «PAhost»)
hosting the component instances. They all communicate by means of a Local Area
Network (LAN) annotated in the diagram as a «PAresource». Note that Proc3,
Proc4, and Proc5 are dedicated to CustomerServer, CartServer and CatalogServer,
respectively. Instead, Proc1 and Proc2 host several component instances. In partic-
ular, on Proc1 all the $L instances of CustomerProcess are deployed, while Proc2
hosts DeliveryOrderProcess and OrderServer. Finally, each of the $L users runs the

2The Client–Server with blocking client is graphically described in Fig. 5.11 and the corresponding
mapping rule is graphically illustrated in Fig. 5.13.

5.2 Some Transformational Approaches at Work 107

Fig. 5.20 Annotated deployment diagram

CustomerInterface component on their own computer (Remote Proc.) connected to
the system through Internet (annotated as «PAresource»).

Figures 5.21, 5.22 and 5.23 show the annotated UML activity diagrams for the
considered BrowseCatalog, BrowseCart and PalaceOrder use cases, respectively.
All the activity diagrams defining the system behavior report annotations for the
workload they impose to the system. The workload for each of them is closed and
is defined by the number of users (PApopulation tag value) and its think time
(PAextDelay tag value). Moreover, each step in the activity diagrams is annotated
by the «PAstep» stereotype that indicates the mean assumed service demand the
step requires to the processor running it (PAdemand tag value), possibly its proba-
bility execution (PAprob tag value in Fig. 5.23) and the additional external opera-
tion required to complete the step (PAextOP). Note that the PAextOp tag values
are always used to model the usage of the network, since they refer to either LAN or
Internet resources. This tag value appears everywhere, except for the interaction be-
tween DeliveryOrderServer and OrderServer components, since they are deployed
on the same host and all the communications among them do not involve the net-
work.

In the following, the Petriu’s approach is executed to this e-commerce system.
The presentation is divided in two parts, one for each transformation step.

108 5 From Software Models to Performance Models

Fig. 5.21 Annotated BrowseCatalog activity diagrams

Step 1—Derivation of the LQN Structure From the high-level software archi-
tecture, the Client–Server architectural pattern and the deployment diagram, Petriu’s
approach derives the LQN structure of Fig. 5.24:

• a task for each component instance in the software architecture is created, each
with the same multiplicity in the architecture. In particular, CustomerInterface

5.2 Some Transformational Approaches at Work 109

Fig. 5.22 Annotated BrowseCart activity diagrams

and CustomerProcess have the multiplicity equal to $L, whereas the other tasks
have single multiplicity;

• no additional task relative to architectural patterns is created since the Client–
Server with blocking client pattern does not specify them;

• the connections among the tasks are defined on the basis of the links in the high-
level software architecture, whereas the types of communications traversing such

110 5 From Software Models to Performance Models

Fig. 5.23 Annotated PlaceOrder activity diagram

links are all synchronous as required by the Client–Server with blocking client
pattern;

• a device is created for each node in the UML deployment diagram annotated with
either «PAhost» or «PAresource» stereotype. As a result, the step creates
a device with single multiplicity for each local processor node (from Proc1 to

5.2 Some Transformational Approaches at Work 111

Fig. 5.24 LQN structure derived for the e-commerce system

Proc5), a device with $L multiplicity for the remote host and finally two more
devices modeling the LAN and Internet.

• a link between a task and a device is created with respect to the «deploy» as-
sociation among instances and nodes in the deployment diagram. At the moment,
LAN and Internet devices are disconnected in the resulting LQN structure. This
will be managed in the second step dealing with the PAextOp tag value.

Step 2—Derivation of the LQN Entries, Phases, Activities Details The ap-
proach proceeds with processing the activity diagrams to identify and detail the
task entries and to generate the reference tasks.

Figure 5.25 shows the result (at the right side of the figure) of the application
of the approach to the activity diagram describing the scenario of the Browse Cat-
alogue use case (reported for convenience at the left side of the figure). First, the
approach generates the Browse Catalogue reference task modeling the closed work-
load indicated in the corresponding stereotype (rule7). The PApopulation tag
value is used to specify the task reference multiplicity, while the PAextDelay tag
value specifies the thinking time used as the mean service demand of the Browse
Catalogue reference task. This reference task uses the (virtual) ThTbc device to
spend its thinking time.

Then the approach identifies and details the three entries of the involved tasks
(i.e., CustomerInterface, CustomerProcess, and CatalogServer). All the entries have
a single phase. The specification of the Browse Catalog entry of the CustomerInter-
face comes from the Get BrowseCatalogue Request and the Display Page steps in
the CustomerInterface swimlane. The mean service demand of the phase is obtained
by summing the PAdemand of the two steps (rule5). The entry makes a request

112 5 From Software Models to Performance Models

Fig. 5.25 LQN sub-model derived for the BrowseCatalog scenario

to both the CustomerProcess and the Task Internet, the former modeling the control
flow in the diagram (rule6) and the latter introduced as required by the PAextOp
tag value (rule9). Similarly, the CataloguePageBuilding entry is obtained by the
GetCatalogueInfo and ReceiveInfoBuildPage steps of the CustomerProcess swim-
lane. The entry has 1 ms service demand and makes a request to the CatalogServer
and to the Task LAN, and 10 requests to the Task Internet. Finally, the ReadDB entry
details come only from the Get Info from DB action in the CatalogServer swimlane.
It has 2 ms service demand and it makes five requests to the Task LAN.

Note that, even if the activity diagram of Fig. 5.25 has some fork and merge
node, rule4 does not apply. The reason is that rule4 applies when a conditional
branching or a fork node is found. By looking at all the swimlanes in the figure, the
first non-action node is a merge node, hence this does not trigger the rule, while the
last non-action node, i.e. a fork, matches with the rule exception described above.

Since the activity diagram of the BrowseCart use case has the same structure
and complexity of the BrowseCatalog one, a detailed presentation of the approach
application on it is here skipped.

Figure 5.26 graphically illustrates the application of the approach on the Cus-
tomerProcess swimlane of the activity diagram describing the PlaceOrder use case.
Again, in the figure, an excerpt of the activity diagram is reported on the left side,
while the approach output is on the right side. This figure is reported to show the
application of rule4 that models the entry as a LQN activity graph. In deed, the
CustomerProcess swimlane is the only one in the presented e-commerce system that
requires the rule4 application. Since the swimlane presents a conditional branch-
ing (the decision node between Get Cust Info and Build error Page steps), rule4

5.2 Some Transformational Approaches at Work 113

Fig. 5.26 CustomerProcess entry modeling in the PlaceOrder scenario

must be applied. Each step in the swimlane generates a LQN activity, unless Get
Cust Info and Create New Order that together define Retrieve Cust and Order Info
activity. In the first case, the service demand of the activity is exactly the same of the
PAdemand tag value annotated on the step. In the second case, instead, the service
demand is equal to the sum of the two PAdemand. For what concerns the number
of requests each activity forwards to the other tasks, it is determined by the control
flow in the diagram and by the PAextOp. The conditional node (merge node) in
the swimlane is translated in an or-fork (or-join) whose branching probability is de-
termined by the PAprob tag value of the alternative steps following the conditional
node. The following fork (join) node is translated in an &-fork (&-join) node in the
activity graph. Again the first join node and the last fork node in the swimlane are
not considered by the approach that just ignores them.

Finally, Fig. 5.27 graphically illustrates the whole LQN model obtained execut-
ing the Petriu’s approach on the e-commerce system.

Tool Support

Three different implementations have been devised for the Petriu’s approach, which
propose systematic methods of building LQN models of complex SA based on com-
binations of the considered patterns. Such implementations are based on graph trans-
formation techniques.

114 5 From Software Models to Performance Models

Fig. 5.27 LQN model for the e-commerce system

• The approach in [94] generates the software and system execution models by
applying graph transformation techniques that are automatically executed by a
general-purpose graph rewriting tool.

• In [93] the general-purpose graph rewriting tool for the automatic construction of
the LQN model has been substituted by an ad-hoc graph transformation imple-
mented in Java.

• The third approach proposed in [62] uses the eXtensible Stylesheet Language
Transformations (XSLT) to carry out the graph transformation step.3 The input
contains UML models in XML format, according to the standard XML Metadata
Interchange (XMI) [89], and the output is a tree representing the corresponding
LQN model. The resulting LQN model can be in turn analyzed by existing LQN
solvers after an appropriate translation into textual format. The last version of
such approach [63] is implemented by an XML algebra-based model transforma-
tion.

3XSLT is a language for transforming a source document expressed in a tree format (which usually
represents the information in a XML file) into a target document expressed in a tree format.

5.2 Some Transformational Approaches at Work 115

5.2.3 SAP•one: From UML to a Queueing Network

This section presents the Software Architecture Performance analysis approach,
called SAP•one, that generates a multi-chain QN model from a software architec-
ture description based on UML 2.0 [47, 48]. It deals with the QN topology defini-
tion and parametrization and it is defined for component-based software systems.
The approach defines translation rules that map architectural interaction patterns
into QN patterns. The target model is generated by composing the identified QN
patterns suitably instantiated for the specific application.

The approach uses UML 2.0 as an Architecture Description Language (ADL) to
describe the software system architecture. Software Architecture describes the sys-
tem at a very high level of abstraction by specifying its structure and its behavior.
The required UML 2.0 diagrams are: use case diagram, component diagram and
sequence diagram. From the component diagram the approach identifies for each
software component a service center that will form the target QN and extracts the
relative parameterizations pieces of information. Moreover, from the linked inter-
faces it derives the connections among the service centers representing the software
components. From the use cases in the use case diagram SAP•one takes information
about the customer types that enter into the system. Finally, the sequence diagrams
are used to defines the customer behaviors (or chain) inside the system and the
workload provided to the system.

The UML diagrams are annotated by means of the UML Profile for the Schedu-
lability, Performance and Time (SPT) [85] to provide additional information. Such
data, used in the QN parametrization and in the workload definition, is: (i) the oper-
ational profile of the system, modeling the way the system will be used by the users;
(ii) the workload entering the system; (iii) the service demand required by a request
(job) to the system components it visits; and (iv) the performance characterization
of the system components, such as service rate, scheduling policy and waiting queue
capacity.

Differently from the existing QN-based approaches, the SAP•one methodology
does not consider hardware platform information. Indeed the QN service centers do
not represent hardware devices (such as disk and processor), rather they represent
software components. The QN topology describes how the software components
are combined to form the software system, while a chain represents how a system
service request is accomplished through the software components interactions. The
underlying assumption is that each software component is deployed on an hypo-
thetical logic device. All the logical devices have the same processing power. This
implies that the service requiring the minimum resource demand will always be
faster. However the logical devices may have different waiting queue characteris-
tics, in terms of capacity and scheduling policy. Thus, the time a request spends to
be accomplished does not depend on the device speed factor but only on the queue
characteristics. In this approach, hence, the service time is not different from the
service demand for a class of requests (or jobs).

The performance figures derivable by SAP•one are: the throughput and utiliza-
tion of service centers (i.e. software component), the waiting and response time of

116 5 From Software Models to Performance Models

each customer class in a single service center and/or for the global system (i.e. the
time spent to accomplished the software system services).

The SAP•one analysis aims at identifying (potential) performance problems due
to logical structure of the functionalities of the software system, and at identify-
ing critical software components whose design needs special attention. The analysis
is not absolute in terms of actual performance figures rather it is comparative in
between alternative designs. The comparative analysis allows to identify portions
of the software architecture that could raise performance problems. It is useful to
(i) support the designers in the software architecture development when compo-
nents are identified, in fact, in this step the analysis can suggest how to distribute
the functionalities among the components in order to have good performance, and
(ii) identify critical software components, which must be carefully developed in the
subsequent lifecycle phases.

This comparative performance analysis fails when the software components are
deployed on hardware devices showing high-variance speed factors. In this case
the assumption about the uniform processing power of the logical devices is not
valid any more and information about the hardware platform need to be taken into
account.

With respect to the Q-model presented in Chap. 4, this approach can be easily
applied to the initial development phases, such as architectural design. In fact, no
information about the hosting platform is assumed here, therefore as long as the
development process evolves, the semantics defined for the QN performance model
is not rich enough to represent more details of the software system. However, this is a
very powerful approach at the architectural level because, as shown above, it allows
one to make a performance analysis independently of the platform characteristics.

Software Specification

SAP•one requires that the software system architecture is modeled by UML 2 use
case, component and sequence diagrams. Only sequence and component diagrams
are annotated with quantitative information through the UML SPT Profile. The SPT
stereotypes are used as notes in the diagrams. The correctness of the numerical
values annotated in the diagrams is assumed and it is based on the designers’ ex-
perience. It is worth recalling that such kind of information is not available at the
software architecture level.

Use Case Diagrams describe the software system at a very high level of ab-
straction by identifying its functionalities. These functionalities correspond to the
requests (or customers) entering the system. From this type of diagram the approach
extracts the customer types entering into the system. For each use case in the dia-
gram the approach requires the definition of a set of sequence diagrams describing
the corresponding behavior inside the system. For each customer type, hence, the
approach knows which sequence diagrams describe the corresponding behavior. For
the sake of simplicity, without losing generality, the approach assumes that the be-
havior of a customer is described by a single sequence diagram. Indeed, the new

5.2 Some Transformational Approaches at Work 117

interaction operators UML 2.0 allow the modeling of a complex behavior with sev-
eral alternatives, in only one scenario. Figure 5.32 shows an example of use case
diagram for the SAP•one approach.

The Component Diagram is used to model the static structure of the system
in terms of the software component instances, that in the following are generally
named components and connectors. The annotated component diagram provides
information on the parameterizations of the service centers of the QN: the type of
the service center (e.g. servers with waiting queues or a delay center), the rates of
the services they provide and the scheduling policies they use to extract jobs from
their waiting queues.

The approach uses the «PAhost» stereotype with the PAschdPolicy tag
value to specify the scheduling policy of the component waiting queue. «PAhost»
models an active resource. Since, the approach assumes that each component is de-
ployed on its own logical active device, there is a 1-to-1 correspondence between
the software components and the active (logical) resources processing them. This as-
sumption supports the usage of the «PAhost» stereotype to annotate components.
Therefore, since SAP•one assumes that all logical devices have the same processing
power, no annotations about the processing power are required.

The interfaces in the component diagram are, instead, annotated with the execu-
tion time they require for the software component to be accomplished. This time
represents the total execution time required locally to the component in order to sat-
isfy the request. This information is specified by either the PAdemand or PAdelay
tag values of the «PAstep» stereotype. The approach associates such a stereotype
to each component interface by assuming that an interface contains just an opera-
tion from which it inherits the name. This assumption eases the annotation of the
service demands in component diagram. In general, an interface is composed by a
set of operations provided or required by a software component. Here, to simplify
the presentation of the parameterizations phase, we assume that an interface is com-
posed of a single operation from with the interface derives the name. Figure 5.33
shows the component diagram of the e-commerce system annotated following the
assumption of the SAP•one approach.

The description of the behavior of the software system is provided by the se-
quence diagrams where the lifelines represent the software component instances
and the arrows model their interactions.

We recall that the approach assumes that a sequence diagram describes the sys-
tem behavior for each use case in the use case diagram. The workload intensity,
described by the system use case (i.e., a QN customer class), is specified through
the «PAopenLoad» or «PAclosedLoad» stereotypes. The former is used when
the customer type provides an open workload, whereas the latter is used in case
of closed workload (refer to Chap. 3 for more details on the workload definition).
These stereotypes annotate the first message of the sequence diagram that describes
the system behavior, with such workloads.

In the sequence diagrams the «PAstep» stereotype is also used to annotate
the probability of execution of an alternative behavior when the sequence diagram
presents either the alt, break or option fragment operators. It annotates the

118 5 From Software Models to Performance Models

first message of all the interaction fragments that are operands of the introduced
operators. For an example of sequence diagram taken in input by the SAP•one ap-
proach please refer to Fig. 5.39.

Queueing Network

The generated QN model represents the software architecture of the system under
analysis. The approach generates a QN model with the same topology of the soft-
ware architecture, where each service center corresponds to a software component
and the connections among the service centers represent the connectors among the
software components.

Since in general, the software system provides several services to its users, as
shown by its use case diagram, the requests entering the software system are of sev-
eral types. Accordingly, the customers entering to the QN model are of different
types. Moreover, the software system has different behaviors depending on the dif-
ferent types of request specified by a set of sequence diagrams. This implies that
the QN customer types representing the users’ requests should also have different
behaviors in the QN model. The behavior of a customer in a QN model is defined
by the chain of services it requires to the service centers.

Informally, a chain in a queueing network model describes how a request type
is served by passing through the QN service centers. Hence, it defines the rout-
ing of the request (QN customer) between the service centers and the time the re-
quest spends into them. Since each component may provide different services, each
with different complexity and service time, different user’s requests (QN customers)
might require different works to a software component (QN service center). To cope
with this situation the approach uses multi-chains QN models where the service
center can be a queueing center or a delay center. Customers at a queueing center
compete for the use of the services. Thus the time spent by a customer at a queueing
center has two components: time spent waiting, and time spent receiving the ser-
vice. There is no competition for service at a delay center. Thus the residence time
of a customer at a delay center corresponds to the service demand. In the generated
QN model the queueing centers have one non-preemptive server able to do different
jobs with different service time. Also delay centers can impose different latencies to
different jobs. When a software component does not represent a shared resource but
it represents a logical resource dedicated to a system customer, the approach maps
it into a delay center.

The resulting performance model can be very complex due to the wider variety
of software behavior characteristics such as parallelism and synchronous communi-
cations. This complexity implies that more complex techniques to evaluate the new
QN model are necessary. These techniques, quite often, are not analytic. In partic-
ular, whenever there is a parallel operator in a sequence diagram, there is a fork in
the QN model. A QN with forks, namely Extended QN, can be only simulated.

There exist many algorithms and tools able to simulate and solve QN models
[100, 116]. A QN model can be solved in an exact way if it is a product-form QN [76,

5.2 Some Transformational Approaches at Work 119

Fig. 5.28 SAP•one mapping
rules (1/2)

79], otherwise several approximate solution techniques are available in the literature
[23, 25, 77, 92, 115, 123].

Software to Performance Model Mapping Rules

The SAP•one approach extracts from the annotated UML diagrams all the infor-
mation needed to generate and parameterize the QN model. The mapping rules it
implements are summarized in Figs. 5.28, 5.29, 5.30, and 5.31. These figures have
the same structure: in each box on the left-hand side there are the UML diagram
elements the rule deals with, on the right hand side there is the corresponding target
sub-model.

The approach is a three-step methodology:

1. Identification of the QN customers. Each use case in the use case diagram defines
a QN customer type entering the system, while the annotation associated to the
use case indicates the sequence diagram describing the QN chain (i.e., the QN
customer behavior). This is represented in Fig. 5.28—Use Case Diagram box.

2. Identification of the service centers and their characteristics. This information
is present in the component diagram: the approach maps each component into

120 5 From Software Models to Performance Models

Fig. 5.29 SAP•one mapping
rules (2/2)

a QN service center with either a non-preemptive server, or a delay center. The
component interfaces define the classes of job processable by the correspond-
ing service center. Since the software component can provide many interfaces
(or services), the corresponding service center may have several classes, one for
each interface in the component diagram. The service time of the identified class
(or job class) is extracted from the PAdemand or PAdelay tag value of the
«PAstep» stereotype that annotates the component interface. The center is a
waiting center if the component interfaces are annotated with the PAdemand
tag value, otherwise the center represents a delay center if the PAdelay tag
value is used. Obviously, the interfaces of a component cannot be annotated by
both tag values at the same time. Finally, from the PAschdPolicy tag value of
the «PAhost» stereotypes, the approach extracts the scheduling policy of the

5.2 Some Transformational Approaches at Work 121

Fig. 5.30 Sequence Operators translation rules (1/2)

service centers. These mapping rules are summarized in Fig. 5.28—Component
Diagram box.

3. Definition of the QN chains and the relative workloads. A sequence diagram
shows how a customer of a given type moves among the service centers ask-
ing for services when it enters in the system. From each sequence diagram the
approach generates a QN chain. The sequence diagrams indicate the workload,
open or closed, that the corresponding chains impose to the system. The chain
generation step consists of the application of three groups of mapping rules: the
rules for workload definition (see Fig. 5.29(a)); the basic interaction rules (see
Fig. 5.29(b)), and the operators rules that will be illustrated in Figs. 5.30 and 5.31.

122 5 From Software Models to Performance Models

Fig. 5.31 Sequence Operators translation rules (2/2)

By referring to the Workload Definition rules, the approach uses the gate facility
to identify the environment and the incoming and outgoing system traffic. A gate in
a sequence diagram is the point of the most external interaction fragment crossed
by an arrow. The gate is an output gate if the interaction is an outgoing arrow from
the frame. It is an input gate if the interaction is entering into the frame. The input
and output gates are translated as follows. If the first message in the sequence dia-
gram is annotated by a «PAclodedLoad» stereotype, the input gate is translated
into $N terminals by using a delay center, while the output gate is translated into a
transit back to the terminals. Instead, if the first message in the sequence diagram
is annotated by a «PAopenLoad» stereotype the input gate is translated into QN
source node, while the output gate is translate into a QN sink node.

A Basic interaction rule in Fig. 5.29 translates a components interaction into
a QN sub-model. More precisely, a software components interaction (an arrow in
the sequence diagram) is modeled as a transit in the QN topology from the service
center of the component sender to the one of the receiver. The SAP•one approach
deals with synchronous and asynchronous interaction. The service center of the re-
ceiver has an infinite (or finite with a given capacity) waiting queue if the interaction
is asynchronous, or a waiting queue with zero capacity if the interaction is syn-

5.2 Some Transformational Approaches at Work 123

chronous. In the first case the request is buffered into the queue, leaving the sender
free to continue its execution on the next request; in the second case, in order to
simulate the blocking in the sender execution until the receiver becomes free, it is
used a waiting queue with zero capacity and Blocking After Service (BAS) blocking
protocol for the sender service center [13, 22].

Figures 5.30 and 5.31 summarizes the mapping rules for the sequence operators
used to combine interaction fragments. In the following, such mapping rules are
detailed:
rule1: A reference operator, identified by the ref keyword, is used to in-

dicate that the behavior of the Scenario includes the behavior described in the se-
quence diagram Scenario2. The Reference operator models a change of chain in
a multi-chain QN. This means that the chain of the Scenario use case, has a sub-
chain corresponding to the one modeling the behavior of the Scenario2 customer
type.
rule2: An Alternative operator, identified by the alt keyword, models

several mutual exclusive alternative behaviors. The Alternative operator mod-
els a branching in a QN. The alternative behaviors in the interaction operator repre-
sent the different routings of the customers among the services of the service centers.
The routing probabilities among the alternatives are annotated in the sequence dia-
gram by the «PAstep» stereotype and their sum must be equal to 1. The alt oper-
ator has n alternatives each guarded by a condition (cond1, cond2, . . . , condn).
Each alternative behavior has a probability to be executed (P1, P2, . . . , Pn). The al-
ternative behaviors are modeled as different routing in the QN model (or sub-chains)
with the corresponding probabilities.
rule3: The interaction operator opt designates that the behavioral fragment

it delimits represents a choice of behavior where either the (sole) operand happens
or nothing happens. An option is semantically equivalent to an alternative fragment
where there is one operand with non-empty content and the second operand is empty
[87]. To be properly processed, it should have annotated the probability that it will
happen. To this aim the «PAstep» stereotype and the PAprob tag value are used.
The stereotype annotates the first interaction inside the opt frame. The correspond-
ing QN sub-model presents a branching point in correspondence of the opt operator.
A job can enter in the QN sub-model with probability P1 (that is the probability
annotates in the sequence diagram) or it cannot enter with 1-P1 probability. Either
it enters in the sub-model or it does not, it will perform according to the behavior
described in the sequence diagram subsequent the opt fragment.
rule4: The interaction operator break designates that the fragment represents

a breaking scenario in the sense that the operand is a scenario that is performed
instead of the remainder of the enclosing behavior. Thus the break operator is a
shorthand for an alt operator where one operand is given and the other assumed
to be the rest of the enclosing behavior. Break fragments must be global relative to
the enclosing scenario. The probability that it happens must be annotated on the first
message enclosed in the operator via the «PAstep» stereotype. Its similarities with
the alt interaction operator are reflected on the QN sub-model. The only difference

124 5 From Software Models to Performance Models

is that the two alternatives in the QN sub-model correspond to the break behavior
and to the remainder of the enclosing behavior, respectively.
rule5: parallel operator, identified by the par keyword, defines n parallel

behaviors. In a QN model, it represents a fork. A parallel operator with n concurrent
behaviors is translated into a QN sub-model having a fork (the triangle at the left)
with n different outcoming sub-chains that occur concurrently. A join QN feature
(the triangle at the right) is used to join the sub-chains at the end of the traces defined
in the par frame.
rule6: The loop interaction operator designates that the fragment represents

a loop whose operand will be repeated a number of times. The number of repeti-
tions is indicated by the guard of the operator that may include a lower and an upper
number of iterations as well as a boolean expression. The semantics is such that
a loop will iterate at least the minint number of times and at most the maxint
number of times. After the minimum number of iterations have executed, and the
boolean expression is false the loop will terminate. To model the repetition of such
a behavior, the SAP•one approach weights the service times of the component in-
teractions involved in it by the repetition numbers (minint, maxint) in the guard of
the loop operator. The approach can make a worst/best/mean case analysis by im-
posing a weight equal to the maxint/minint/mean value between maxint
and minint, respectively.
rule7: The interaction operator ignore designates that there are some mes-

sage types that are not shown within this combined fragment. These message types
can be considered insignificant and are intuitively ignored if they appear in a cor-
responding execution. By means of the ignore operator the simplification of the
target model can be done by reasoning at the software designer level. This is ex-
tremely useful when it is necessary to simplify the target QN model in order to
permit a reasonable performance evaluation. Quite often, in fact, the software sys-
tem model describes details that are useless for the performance analysis and that
make the target model too complex to be evaluated in an acceptable time or with a
given accuracy.

SAP•one Approach on E-commerce System

The SAP•one approach generates a QN model by executing the three steps outlined
above. In the following the approach is applied on the e-commerce case study. The
scope of the modeling is reduced to the Browse Catalogue, Browse Cart, Delete
Item and Place Order use cases as indicated in the use case diagram of Fig. 5.32.

All the sequence diagrams defining the system behavior report annotations for
the workload they impose to the system. The workload for each of them is closed
and it is defined by the number of users (PApopulation tag value) and the time
needed to generate a request (PAextDelay tag value). It is worthwhile to observe
that the number of users (PApopulation tag value) can be a function of external
variables like ($NUSER in Fig. 5.34b) and some other values suitable for the spe-
cific application like the (F_cust, P_bc values in Fig. 5.34b, which represent the

5.2 Some Transformational Approaches at Work 125

Fig. 5.32 UML use case
diagram

Fig. 5.33 Component diagram of the considered portion of the e-commerce system

probability that a customer logs in the system and the probability that a customer
requests the BrowseCart service, respectively).

Identification of the QN Customers—The use case diagram in Fig. 5.32 has
four use cases, hence the QN customers are of four different types. The behavior of
such customers are described by the corresponding sequence diagrams annotated in
the diagram. Such sequence diagrams define four different QN chains.

Identification of the Service Centers and of Their Characteristics—From the
component diagram (see Fig. 5.33) seven QN centers are identified, five are queue-
ing service centers while two, CustomerInterface and CustomerProcess, are delay
centers. All the service centers have a service type for each interface of the cor-
responding component in the component diagram. The CustomerInterface and the
CustomerProcess components, instead, are modeled by a set of delays, one for each

126 5 From Software Models to Performance Models

Fig. 5.34a Browse
Catalogue scenario

request type they are able to process. This choice conforms to the annotations in the
component diagram, where it is specified that their provided interfaces are delays.
Note that this modeling respects the architectural constraint discussed in Chap. 2
regarding the presence of a CustomerProcess and CustomerInterface instance for
each e-commerce customer.

From the annotations on the provided component interfaces SAP•one extracts
the service times or the delays of each service of the components, needed to pa-
rameterize the QN model. Finally, from the «PAhost» stereotypes the approach
extracts the scheduling policy of each centers. In Fig. 5.35 the identified service
centers are reported.

Definition of the QN Chains and the Relative Workloads—In this step, the
workloads intensity entering the system is derived by the information annotated
to the first message of the sequence diagrams. In the e-commerce system all the
workloads are closed. By applying the rule for the closed workload definition, the
approach generates a delay center for each input gate in the sequences. Such center
will produce a job/request to the e-commerce system accordingly to the annotation
in the «PAclosedWorkload» stereotypes.

The e-commerce system processes four types of requests, which are translated
into four chains in the QN. To this aim, the basic operator rules in Figs. 5.28,
5.29, 5.30, and 5.31 are applied. Since the interactions among components are asyn-
chronous, all the waiting queues of the service centers are infinite queues. A chain
is defined through the sequence diagram describing its behavior. A chain does not
necessarily involve all the service centers, but it will visit the centers corresponding
to the components involved in the sequence diagram. As an example, let us consider
the chain for the browseCart (see Fig. 5.36), it involves only the CustomerInterface,
the CustomerProcess and the CartServer, as specified in the corresponding sequence
diagram of Fig. 5.34b.

In the following, the chains of the considered use cases are presented. A chain is
defined as a graph-based object whose nodes are service centers and where arrows
represent interactions among the centers.

5.2 Some Transformational Approaches at Work 127

Fig. 5.34b Browse Cart
scenario

Fig. 5.35 Identified QN service centers for the e-commerce system

Figures 5.34a and 5.34b show the sequence diagrams for the BrowseCatalog and
BrowseCart use cases. Figure 5.36 shows the corresponding chains. These chains
are the most simple, and both of them are generated by applying three times the
mapping rule for asynchronous interactions. The chains terminate in the infinite
servers (Customers) that generate the job types, according to the closed workload
definition.

In Fig. 5.38 is reported the chain for the DeleteItem request type. To generate
this chain the translation rules defined for the reference and break operators
are applied since they appear in its sequence diagram (see Fig. 5.37). The break
operator designates a breaking scenario in the sense that the operand is a scenario
that is performed instead of the remainder of the enclosing interaction fragment.
In the DeleteItem scenario, the break operator models an error that can occur in

128 5 From Software Models to Performance Models

Fig. 5.36 Chains in the QN model corresponding to BrowseCatalog and BrowseCart scenario

Fig. 5.37 Delete Item scenario

such scenario. As described in the previous section, to model this semantics the ap-
proach introduces a branching point with two possible routes: one, with probability
Perror, that breaks the scenario by routing the customer toward the PrepareOut-
put service of the CustomerProcess. The other one, with probability 1-Perror,
models the remainder of the scenario that routes the customer toward the Browse-
Cart service of the CustomerProcess, where the change of chain is executed. The
probabilities of both routes are extracted from the sequence diagram.

5.2 Some Transformational Approaches at Work 129

Fig. 5.38 Chain in the QN model corresponding to DeleteItem scenario

Fig. 5.39 Place Order scenario

Finally, Fig. 5.40 reports the chain for the PlaceOrder request type. Here the
translation rule for the alt operator is used. As the sequence diagram in Fig. 5.39
shows, the alt operator has two alternative behaviors, one with a not empty cart
guard expression and the other with an empty cart guard expression. The alt oper-

130 5 From Software Models to Performance Models

Fig. 5.40 Chain in the QN model corresponding to PlaceOrder scenario

ator models a branching in a QN. The alternative behaviors in the operator are the
possible routings of the customers among the services of the service centers. The
routing probabilities among the alternatives are annotated in the sequence diagram.
By considering Fig. 5.40, the alt operator defines the branching point having two
alternatives one with 1-$Perror probability and the other with $Perror proba-
bility to be covered.

Tool Support

The SAP•one methodology is implemented in MOSQUITO (MOdel driven con-
Struction of QUeuIng neTwOrks) [103]. It is a model transformation tool that gener-
ates Queueing Networks starting from a UML software model that has been suitably
extended by means of a UML SPT profile [85].

MOSQUITO permits us to annotate UML software models with performance
data and finally creates an XML representation of performance models. In its cur-
rent release it can create three different models, which are: (i) Execution Graphs
and (ii) Queueing Network models based on PRIMA-UML methodology [45] and
(iii) Extended Queueing Network models based on the SAP•one methodology.

MOSQUITO has a client/server architecture. The plug-in implements the client
side that provides the functionality to invoke the web services placed at the server
side.

In particular MOSQUITO is exposed on the web as a web service. This will allow
(in next MOSQUITO releases) any user to implement an alternative client, using
the preferred languages and technologies, to use the services of MOSQUITO. The
MOSQUITO client that we provide is a plug-in of Eclipse that allows an entirely
automated process. The user must only properly create and annotate UML models
according to the selected methodology (i.e. SAP•one or PRIMA-UML). After the
creation of a model the user must only select the set of diagrams that compose the

5.3 Other Transformational Approaches 131

model and activate the desired transformation. The result of the transformation will
be shown in the xml editor of the plug-in.

5.3 Other Transformational Approaches

In this section three categories of transformation techniques are reviewed. Each cat-
egory is characterized by the produced performance model. The most representative
approaches in each category are briefly presented. Each approach is given a label,
which will be used in the following section to discuss its merits.

5.3.1 Queueing Network Based Methodologies

Besides the ones presented in Sect. 5.2, many methodologies in the literature pro-
pose transformation techniques to derive Queueing Network (QN)-based models—
possibly Extended QN (EQN) or Layered QN (LQN)—from Software Architecture
(SA) specifications or SA patterns. Most of the proposed methods are based on
the Software Performance Engineering (SPE) methodology introduced in [106] and
briefly described in Chap. 1.

M1: This approach, presented in [110, 119], uses the SPE methodology to evalu-
ate the performance characteristics of a software architecture specified by using the
Unified Modeling Language (UML). The utilized diagrams are class and deploy-
ment diagrams and sequence diagrams enriched with ITU Message Sequence Chart
(MSC) features. The emphasis of the approach is in the construction and analysis of
the software execution model, which is considered the target model of the specified
SA and is obtained from the sequence diagrams. The class and deployment dia-
grams contribute to complete the description of the SA, but are not involved in the
transformation process. This approach was initially proposed in [108] to describe a
case study that makes use of the tool SPE•ED for performance evaluation. In [121]
the approach is embedded into a general method called PASA (Performance As-
sessment of Software Architectures), which aims at giving guidelines and methods
to determine whether a SA can meet the required performance objectives.

SPE•ED is a performance modeling tool specifically designed to support the SPE
methodology. Users identify the key scenarios, describe their processing steps by
means of EG, and specify the number of software resource requests for each step.
A performance specialist provides overhead specifications, namely the computer
service requirements (e.g., CPU, I/O) for the software resource requests. SPE•ED
automatically combines the software models and generates a QN model, which can
be solved by using a combination of analytical and simulation model solutions.

SPE•ED evaluates the end-to-end response time, the elapsed time for each pro-
cessing step, the device utilization and the time spent at each computer device for
each processing step.

132 5 From Software Models to Performance Models

Another approach in this class was developed in [45]. The proposed methodol-
ogy, called PRIMA-UML, makes use of information from different UML diagrams
to incrementally generate a performance model representing the specified system.
This approach is the evolution of a previous work from the same authors that was
based on object-oriented software specifications in OMT [44].

In PRIMA-UML, SA are specified by using deployment, sequence, and use case
diagrams. The software execution model is derived from the use case and sequence
diagrams, and the system execution model from the deployment diagram. Moreover,
the deployment diagram allows for the tailoring of the software model with respect
to information concerning the overhead delay due to the communication between
software components. Both use case and deployment diagrams are enriched with
performance annotations concerning workload distribution and parameters of hard-
ware devices, respectively. In [60] the PRIMA-UML methodology was extended to
cope with mobile SA by enhancing the UML description to model mobility-based
paradigms. The approach generates the corresponding software and system execu-
tion models allowing the designer to evaluate the convenience of introducing logical
mobility with respect to communication and computation costs. The authors define
extensions of EG and EQN to model the uncertainty related to the possible adoption
of code mobility.

M2: The approaches in this group consider systems specified by architectural
patterns. This simplifies the derivation of their corresponding performance models.
Architectural patterns characterize frequently used architectural solutions. Each pat-
tern is described by its structure (what the components are) and its behavior (how
they interact). The approach described in Sect. 5.2.2 is the main representative of
this group. It is worth to recall here that in this approach SA are described by means
of architectural patterns (such as pipe and filters, client/server, broker, layers, crit-
ical section and master-slave) whose structure is specified by UML collaboration
diagrams and whose behavior is described by activity (or sequence) diagrams. The
approach proposes systematic methods of building LQN models of complex SA
based on combinations of the considered patterns.

M3: The SAP•one approach presented in Sect. 5.2.3 falls in this class because
it produces a QN model, but it differs from M1 and M2 since the approach does
not rely on hardware platform information. Hence it can be applied earlier in the
software lifecycle.

M4: In [122] a methodology to automatically derive a LQN model from a com-
mercial software design environment called ObjecTime Developer [9] by means of
an intermediate prototype tool called PAMB (Performance Analysis Model Builder)
is described. The application domain of the methodology is real-time interactive
software and it encompasses the whole development cycle, from the design stage to
the final product.

ObjecTime Developer allows the designer to describe a set of communicating
actor processes, each controlled by a state machine, plus data objects and protocols
for communications. It is possible to “execute” the design over a scenario by insert-
ing events, stepping through the state machines, and executing the defined actions.

5.3 Other Transformational Approaches 133

Moreover, the tool can generate code from the system design. This approach takes
advantage of such code generation and scenario execution capabilities for model-
building. The prototype tool PAMB, integrated with ObjecTime Developer, keeps
track of the execution traces, and captures the resource demands obtained by ex-
ecuting the generated code in different execution platforms. Essentially, the trace
analysis allows for building the various LQN sub-models (one for each scenario)
which are then merged into a global model, while the resource demand data provide
the model parameters. After solving the model through an associated model solver,
the PAMB environment reports the performance results by means of performance
annotated MSC and graphs of predictions.

M5: An automated compositional approach for component-based performance
engineering called CB-SPE is proposed in [34, 35]. This approach is applied at the
component layer and at the application layer. At the component layer the goal is to
obtain components (to be used later at the application layer) with predicted perfor-
mance properties explicitly declared in the component interfaces. This implies that
the component developer has to introduce and validate the performance require-
ments of each component in isolation. Such an analysis must be platform indepen-
dent. Later, at the application level, it will be instantiated on a specific platform.
The component developer is expected to fill a “component repository” with com-
ponents whose interface explicitly declares the component predicted performance
properties. The performance analysis of the assembled system is obtained by com-
bining the performance properties of the pre-selected components, instantiated over
a specific hardware platform.

The approach uses the UML sequence diagrams to model the SA behavior in
terms of component interactions and the UML deployment diagram to describe the
specific hardware platform where the application will run. These diagrams are an-
notated with performance information by means of the UML SPT profile. The ap-
proach, according to the SPE principles, provides two different models: a stand-
alone performance model, namely an Execution Graph derived from the sequence
diagrams, and a contention-based performance model, namely a QN model derived
from the deployment diagram. This methodology is implemented in the CB-SPE
Tool.

5.3.2 Petri Net-Based Approaches

M6: In [30] a systematic translation of state machine and sequence diagrams into
GSPN is proposed. The approach consists of translating the two types of diagram
into two separate labeled GSPN. The translation of a state machine gives rise to
one labeled GSPN per unit where a unit is a state with all its outgoing transitions.
The resulting nets are then composed over places with equal labels in order to ob-
tain a complete model. Similarly, the translation of a sequence diagram consists of
modeling each message with a labeled GSPN subsystem and then composing such
subsystems by taking into account the causal relationship between messages belong-
ing to the same interaction, and defining the initial marking of the resulting net. The

134 5 From Software Models to Performance Models

final model is obtained by building a GSPN model by means of two composition
operators. In [81] the methodology is extended by using the UML activity diagrams
to describe activities performed by the system that are usually expressed in a state
machine as doActivity. The activity diagrams are then translated into labeled GSPN.
Such target models are finally combined with the labeled GSPN modeling the state
machines that use the doActivity modeled by the activity diagrams.

The GSPN generation is tool supported [59].

5.3.3 Methodologies Based on Simulation Methods

This category of approaches is based on Simulation models. They use simulation
packages in order to define a simulation model whose structure and input parameters
are derived from UML diagrams.

M7: This approach, proposed in [46], focuses on real-time systems, and proposes
extensions to UML diagrams to express temporal requirements and resource usage.
The extension is based on the use of stereotypes, tagged values and stereotyped
constraints. SA are specified using the extended UML diagrams without restrictions
on the type of diagrams to be used. Such diagrams are then used as input for the
automatic generation of the corresponding scheduling and simulation models via
the Analysis Model Generator (AMG) and Simulation Model Generator (SMG), re-
spectively. In particular, SMG generates OPNET models [10], by first generating
one sub-model for each application element and then combining the obtained sub-
models into a unique simulation model. The approach provides a feedback mecha-
nism: after the model has been analyzed and simulated, some results are included
into the tagged values of the original UML diagrams. This is a relevant feature,
which helps the SA designer in interpreting the feedback from the performance
evaluation results.

The approach, proposed in [15], presents a simulation framework named Sim-
ulation Modeling Language (SimML) to automatically generate a simulation Java
program (by means of the JavaSim tool [4]) from the UML specification of a system
that realizes a process-oriented simulation model. SimML allows the user to draw
class and sequence diagrams and to specify the information needed for the automatic
generation of the simulation model. The approach proposes a XML translation of
the UML models, in order to store the information about the design and the simula-
tion data in a structured way.

The last approach of this category has been extensively presented in Sect. 5.2.1.
It generates a process-oriented simulation model of a UML software specification
describing the software architecture of the system. In [27] this approach has been
extended to deal with mobile systems. The main contribution is modeling physical
mobility of a user by means of UML activity diagrams called “high-level” activ-
ity diagrams. Each mobility user has associated a set of such “high-level” activity
diagrams describing their physical mobility behavior.

5.4 Discussion of the Approaches 135

Fig. 5.41 Generic software
lifecycle model

5.4 Discussion of the Approaches

In this section a discussion on the reviewed methodologies is presented. The var-
ious approaches differ with respect to several dimensions. In particular, the most
important ones are the software dynamics model, the performance model, the phase
of the software development in which the analysis is carried out, the level of detail
of the additional information needed for the analysis, and the software architecture
features of the system under analysis, e.g., specific architectural patterns such as
client–server, and others.

In this chapter the focus has been restricted on the integration of performance
analysis at the earliest stages of the software lifecycle, namely software design,
software architecture and software specification.

The approaches are discussed by considering how each one integrates into the
software lifecycle. The following discussion is highly based on [24, 47], where a
more comprehensive comparison and classification of the approaches can be found.

To carry out the discussion and classification the generic model of the software
lifecycle is considered that is presented in Chap. 4, which is re-called in Fig. 5.41.

The three indicators considered in the discussion are the integration level of
the software model with the performance model, the level of integration of per-
formance analysis in the software lifecycle and the methodology automation degree
(Fig. 5.42). The level of integration of the software and of the performance mod-
els ranges from syntactically related models to semantically related models to a
unique comprehensive model. This indicator gives a measure of the distance the
mapping that the methodologies define needs to cover to relate the software de-
sign artifacts with the performance model. A high level of integration corresponds
to a strong semantic correspondence between the performance model and the soft-
ware model. Syntactically related models permit the definition of a syntax driven
translation from the syntactic specification of software artifacts to the performance
model. The unique comprehensive model allows the integration of behavioral and
performance analysis in the same conceptual framework. The level of integration
of performance analysis in the software lifecycle identifies the development phase
at which the analysis can be carried out. The earlier the prediction process can be
applied, the better integration with the development process is obtained. This inte-
gration strongly depends on the additional information required by the approach to

136 5 From Software Models to Performance Models

Fig. 5.42 Classification dimensions of software performance approaches

Fig. 5.43 Classification of considered methodologies

carry out performance analysis. Indeed these pieces of information are available in
certain phases of the software lifecycle, typically toward the end. However, there
exist methods that assume the availability of this information at the earlier phases of
the software lifecycle to perform predictive analysis. In this case these methods as-
sume that this information is available somehow, for example through an operational

5.4 Discussion of the Approaches 137

profile extracted from similar systems or by assuming hypothetical implementation
scenarios. The last dimension refers to the degree of automation that the various
approaches can support. It indicates the potentiality of automation and characterizes
the maturity of the approach and the generality of its applicability.

The ideal methodologies are at the bottom of the two rightmost columns, since
they show high integration of the software model with the performance model, high
level of integration of performance analysis with the lifecycle, i.e., from the very
beginning, and high degree of automation.

According to the above discussion, in Fig. 5.43 we classify the methodologies
briefly reviewed in Sect. 5.3. In each internal small cube, label ordering has no
meaning.

All the considered methodologies fall in the groups of syntactically or seman-
tically related models and in the layer referring to software design. Let us recall
that the dimension concerning the integration level of software models with the
performance models refers to the way the mapping between software models and
performance models is carried out. In the group of syntactically related models we
put the methodologies that integrate the design and the performance models based
on structural-syntactical mappings.

The group of semantically related models refers to methodologies whose map-
ping between design and performance models is based on the analysis of the dy-
namic behavior of the design artifacts. For example, in M4 the mapping is based on
the analysis of the state machine model of the system design.

The last group singles out the methodologies that allow for the use of the same
model both for design description and performance analysis. Here the mapping is
the identity modulo timing information. This means that there is not a concrete
transformation between software and performance models. This ideal integration
can be obtained only if the software designer has the skill to work with sophisticated
specification tools. These approaches are out of the scope of this chapter.

The integration level of performance analysis in the software lifecycle shows that
the considered methods apply to the software design phase in which a good approx-
imation of the information needed to performance analysis is usually provided with
a certain level of accuracy. At design level many crucial design decisions of the soft-
ware architecture and programming model have already been taken, and it is thus
possible to extract accurate information for performance analysis, e.g., communica-
tion protocols and network infrastructure, process scheduling. At a higher abstrac-
tion level of the software system design there are many more degrees of freedom to
be taken into account that must be suitably approximated by the analyst, thus mak-
ing the performance analysis process more complicated. Approaches operating at
different abstraction levels can be seen as complementary since they address differ-
ent needs. Performance prediction analysis at very early stages of design allows for
choosing among different design alternatives. Later on, performance analysis serves
the purpose of validating such choices with respect to non-functional requirements.

All the three dimensions concur to define the complexity of the methods as far as
their ability to provide a performance model to be evaluated is concerned. To this
extent the complexity of the translation algorithms to build the performance model

138 5 From Software Models to Performance Models

Fig. 5.44 Tools and performance process

and the information to carry out the analysis are considered. This notion of com-
plexity does not consider the complexity of the analysis itself, although there can be
a trade-off between complexity of deriving the performance model and complexity
of evaluating the model. For example, highly parameterized models can be easily
obtained but very difficult to solve. The efficacy of a methodology, and therefore its
success also depends on the analysis process, thus this issue should be taken into
account as well. However, an accurate analysis of the complexity of the analysis
process depends on a set of parameters that require extensive experimentation in the
use of the methodologies; thus this kind of analysis is out of the scope of the present
chapter.

With respect to the three dimensions of Fig. 5.43, the methods which appear at
the bottom of the second group, on the left-most side of the automation dimension,
exhibit a high complexity. This complexity decreases when moving along any of the
three dimensions. This is due to different reasons. Toward syntactically related mod-
els or toward the same models, the mapping between behavioral and performance
models simplifies or disappears. Moving up along the integration level of perfor-
mance analysis into the software lifecycle dimension, the accuracy of the available
information increases and simplifies the production of the performance model.

The last dimension to discuss concerns the automation of the methodologies.
Figure 5.44 shows the three stages of any software performance analysis process

and highlights some automation tools that can be applied in these stages. A tool
can support one or more stages as indicated by the arrow entering the stage or the
box enclosing the set of stages. The dashed arrow going from performance model
evaluation to software specification represents the analysis of potential feedback. It
is dashed since, so far, not all the tools pointing to the largest box automatically
support this feature.

The picture shows that most of the tools apply to the whole process providing a
comprehensive environment. On the other hand there exist several tools with differ-
ent characteristics that automate single stages of the process. This might suggest the

5.5 Desirable Attributes of Software Performance Analysis Techniques 139

creation of an integration framework where the tools automating single stages of the
process can be plugged in, in order to provide a best-fit analysis framework.

Among the tools cited in Fig. 5.44, there exist commercial tools and academic
tools. In particular, most of the tools applying to the whole software performance
process have been developed by academic institutions. Some of them are just pro-
totype tools (even not available, in some cases), while others do have a commercial
version, like GreatSPN, TwoTowers, and DSPNexpress 2000. The tool SPE•ED is
the only purely commercial tool.

5.5 Desirable Attributes of Software Performance Analysis
Techniques

Summing up the discussion carried out in the previous sections, a set of attributes
that are desirable for software performance analysis techniques to be widely applied,
even in a real context, is introduced in this section. In other words, they represent
characteristics that a transformational approach should have to favor its applicabil-
ity.

• Transparency—Transparency is the property of minimal influence of the per-
formance analysis approach on the development process. It allows the software
designer to not have specific skills in performance modeling. Transparency can
be defined as a combination of the following aspects:
– Performance Model Derivation—The performance model should be easily

derived from the software specification. No additional efforts in the software
modeling should be asked to the design team for sake of performance analysis.

– Software Model Annotation—In order to obtain a performance model, it is
necessary to provide quantitative, performance-oriented information that can
be used to build the performance model. There are several ways to provide
these pieces of information. The optimal solution is to annotate them directly
on the software models by using the model extension features, if any, in order
to require less efforts to the designers. The software model annotation task, if
too complex, can delay the development process and prevent the usage of the
performance analysis. The same conclusions can be made if the amount of the
additional information needed to carry out the predictive analysis is too high
or it is difficult to estimate.

– Performance Indices—The performance indices of interest should be easily
specified without asking for the knowledge of the underlying theory. Their
specification should be as natural as possible for the software designer. Again,
the analysis should provide the accuracy level of the derived quantitative fig-
ures.

• Automation—The availability of automation can allow the application of these
methodologies on industrial products without delaying the software development
process. This aspect is fundamental today due to the short time to market the
industry has to respect. The successful integration of performance analysis in

140 5 From Software Models to Performance Models

the industrial software development process requires the use of an automated
methodology that generates a performance model of the provided specification
of the software system; specifies the performance indices of interest; resolves the
performance model to obtain values for such indices and eventually reports such
analysis results on the software models by highlighting (potential) performance
problems of the analyzed design.

• Result Interpretation and Feedback Generation—Upon performance indices
calculation, from their interpretation the designer should assess the goodness of
the design. However, the gap between the performance analysis results (i.e., mean
values, probability distribution functions, etc.) and the suggestions that the de-
signers expect (e.g., architectural alternatives that remove performance flaws) is
evidently very large. Hence, automated techniques to fill such gap would be de-
sirable in order to identify parts of the design that could lead to potential per-
formance problems and suggest design alternatives to overcome the identified
problems.

• Generality—This attribute gives information about the application domains and
architectural styles (such as client/server, layered architectures and others) an ap-
proach applies to. The more the approach is general, the more it is powerful.
This attribute indicates if the approach is able to deal with specific aspects such
as modeling fork/join systems, simultaneous resource possession, general time
distributions and arbitrary scheduling policies.

• Scalability—The selected approach should be scalable, meaning that the com-
plexity of the performance model should ideally increase linearly with the soft-
ware model size.

Chapter 6
Performance Model Solution

In the process of software performance modeling and analysis, although these two
activities do not act in a strict pipeline, once generated/built (at whatever level of
abstraction in the software lifecycle) a performance model has to be solved to get
the values of performance indices of interest. The model solution actually represents
the first step of the analysis, and its results produce a feedback on the performance
model, and also propagate up to the software artifacts of the system under develop-
ment.1

It is helpful to recall here that the main targets of a performance model solu-
tion are the values of performance indices. For several decades the metrics adopted
in software performance have been based on three major indices: response time,
throughput and utilization (as will be illustrated in Sect. 6.1.1). However, with the
evolution of software and devices, performance analysis nowadays needs to address
additional indices. A typical example is represented by the battery consumption
rate of a mobile handheld device where the battery is a type of resource with lim-
ited capacity. It has been studied that the structure and the behavior of software
on mobile devices may heavily affect this resource (e.g. repeated message sending
rapidly consumes the device battery) [80], thus a software performance analysis in
the mobile setting should consider this dimension. However, this dimension cannot
be expressed by any of the major indices indicated above, therefore it represents in
practice a new performance index.

The existing literature is rich of methodologies, techniques and tools for solv-
ing a wide variety of performance models. This is a very active research topic and,
despite the complexity of problems encountered in this direction, in the last few
decades very promising results have been obtained. Moreover, new tools have been
developed to support this key step of software performance process (see, for exam-
ple, [114]).

Therefore, the contents of this chapter are not limited to the basics of model solu-
tion techniques (Sect. 6.1). A short summary of the major tools for model solution is

1See Chap. 4 for relationships between performance modeling/analysis and software lifecycle.

V. Cortellessa et al., Model-Based Software Performance Analysis,
DOI 10.1007/978-3-642-13621-4_6, © Springer-Verlag Berlin Heidelberg 2011

141

http://dx.doi.org/10.1007/978-3-642-13621-4_6

142 6 Performance Model Solution

provided in Sect. 6.2. Then, in the next chapter (Sect. 7.2) the problem of interpret-
ing the performance analysis results and feeding back the performance model and
the software artifacts is briefly discussed in light of new approaches introduced with
this objective. Indeed a model solution is only the first step of performance analysis.
The results have to be interpreted and, if unsatisfactory, finally translated into a (set
of) model alternative(s) that may allow us to overcome the emerging weaknesses.

6.1 Model Solution: Foundations and Techniques

It would be a too ambitious task to confine in one book section all the existing
approaches for performance model solution. The characteristics of the major cate-
gories of approaches are illustrated here, and the reader can refer to the cited bibli-
ography for a deeper study of this vast topic.

In general, a performance model can be analyzed by using either exact mathe-
matical methods or approximated ones or, ultimately, by simulation. Simulation is
a widely used general technique whose main drawback is the high development and
computational cost to obtain accurate results. A potential degree of inaccuracy of
results is also a characteristic of approximate numerical solutions, although the de-
velopment and computation time is reduced if compared to simulation. On the other
hand, exact methods may have a much lower computational complexity if they rely
on closed-form expressions, but this requires that the model satisfies a (sometime
strict) set of assumptions and constraints. If instead the exact solution of the per-
formance model relays on stochastic processes (e.g. discrete-space continuous-time
homogeneous Markov chains), then the state explosion can be a problem [75].

The solution of models that correspond to complex systems can be based on
decomposition and aggregation techniques [17, 70, 75]. Such techniques are also the
basis of hierarchical modeling methodologies, which define structured and flexible
approaches to the description and evaluation of complex systems, based on stepwise
system modeling and analysis [40].

In line with hierarchical modeling in an engineering context, describing a com-
plex system with a hierarchical performance model means applying a top–down
decomposition technique: starting from an abstract model of the system, each step
defines a more refined model of the same system, which is composed of interacting
submodels that can be further refined in successive steps. The performance anal-
ysis of a hierarchical model starts from the most detailed model and requires the
application of bottom–up aggregation techniques. Roughly speaking, at each level
of abstraction the model can be analyzed by first solving all submodels, and then by
aggregating those solutions following the constraints of the model at the next higher
level.

Hierarchical performance models nicely allow the application of hybrid ap-
proaches to the solution of the various submodels, in that different modeling no-
tations and analysis methodologies can be applied to different submodels before re-
combining the results. Some attempts exist in literature that propose the combined
use of different performance models for describing submodels of a given system
[20, 21].

6.1 Model Solution: Foundations and Techniques 143

Fig. 6.1 A queued service
center system

6.1.1 Operational Analysis

In this section the major operational laws of performance analysis are presented.2

Operational laws are simple equations which may be used as an abstract repre-
sentation of the average performance behavior of almost any system. One of the
advantages of the laws is that they are very general and make very few assumptions
about the behavior of the random variables characterizing the system. Another ad-
vantage of the laws is their simplicity: this means that they can be applied quickly
and easily by anyone. Based on a few simple observations of the system the perfor-
mance analyst can, by applying these simple laws, derive more information. Using
this information as input to further laws the performance analyst gradually builds
up a more complete picture of the behavior of the system.

The foundation of the operational laws are observable variables. These are values
that we could derive from watching a system over a finite period of time. We assume
that the system receives requests from its environment. Each request generates a
job or customer within the system. When the job has been processed the system
responds to the environment with the completion of the corresponding request.

If we observe such an abstract system (see Fig. 6.1) we might measure the fol-
lowing quantities:

• T , the length of time we observe the system;
• A, the number of request arrivals we observe;
• C, the number of request completions we observe;
• B , the total amount of time during which the system is busy (B ≤ T);
• N , the average number of jobs in the system.

From these observed values we can derive the following four important quanti-
ties:

• λ = A/T , the arrival rate;
• X = C/T , the throughput or completion rate;
• U = B/T , the utilization;
• S = B/C, the mean service time per completed job.

From the above definition, the simplest algebraic relationship that can be de-
ducted is U = X · S. It is known as

2Several seminal books have been published performance operational laws (see, for example, [79]).
The description that follows has been taken from Jane Hillston’s class notes [3].

144 6 Performance Model Solution

Utilization law The utilization is equal to the product of the throughput and the
mean service time.

If we apply this law to a single resource system like the one in Fig. 6.1 then its
meaning is very relevant to figure out what can we expect from the analysis of such
a system. Note that such a system is made of a server that represents the resource
serving requests, and a queue that represents the structure where pending requests
are stored while waiting for service.

By observing that the utilization ranges from 0 to 1, we see that the following
relationship straightforwardly comes out: X ≤ 1/S. This means that the service time
S of a certain resource induces an upper bound on its throughput that is limited
by the inverse of its response time. In other words, the maximum capability of a
resource is obtained when such resource always have some job to be processed in
its queue. Under this circumstance the resource throughput achieves its maximum
that obviously is the inverse of its service time.

For example, a resource that serves every single job with an average service time
of S = 500 m sec cannot produce a throughput higher than X = 1/S = 2 jobs/sec.
Besides, if we know that this resource has a utilization U = 0.6, then its throughput
is X = 1.2 jobs/sec.

Due to its intuitive aspect, the utilization law helps to understand a basic mech-
anism of system performance. It is wishful that the utilization of a certain resource
is as high as possible, because this means that the resource has little idle time and it
is being adequately exploited. However its throughput grows at the same pace as its
utilization (because the service time is fixed). Hence, when the utilization achieves
its maximum value of 1 the throughput achieves its maximum value of 1/S. Is this
situation desirable as well? What happens beyond this point? The utilization law
helps to understand that a maximum utilization should never be achieved, because
the system tends to be instable. In fact, the potential arrival of further jobs in its
queue simply contributes to increase the queue length toward an unlimited value,
whereas the system performance cannot further improve. On the opposite, the wait-
ing time for jobs in the queue can indefinitely grow.

The best known and most commonly used operational law is Little’s law. It is
named after the researcher who published the first formal proof of the law in 1961,
although it had been widely used before that time. Little’s law is usually phrased in
terms of the jobs in a system and relates the average number of jobs in the system
N to the residence time R, that is the average time they spend in the system. Let X

be the throughput, as above. Then Little’s law states that N = X · R.

Little’s law The average number of jobs in a system is equal to the product of the
throughput of the system and the average time spent in that system by a job.

Little’s law can be easily deduced from the consideration that the response time
R represents the total average time that a job has to spend within a certain system
before completing its service. This time is simply given by the average time 1/X

that the system spends to complete one job multiplied by the number N of jobs that
are waiting to be served (including the job itself).

6.1 Model Solution: Foundations and Techniques 145

For example, if the average number of jobs in a resource is N = 8 and the re-
source is serving 32 jobs per second (i.e. X = 32 jobs/sec), then Little’s law allows
us to deduce that the average time spent within this resource by each single job is
R = N/X = 0.25 sec. If we combine this result with the information about the ser-
vice time of this resource (let us assume it is S = 0.1 sec), then we can obtain the
average time that each job spends while waiting in the resource queue W = R − S,
that in this case would be W = (0.25 − 0.1) sec = 0.15 sec.

Given a computer system, Little’s law can be applied at many different levels:
to a single resource, to a subsystem or to the system as a whole. The definitions of
the number of jobs, throughput and residence time used at the different levels must
be coherent with each other, and this also holds for the definition of request. For
example, when considering a disk, it is natural to define a request to be a disk access,
and to measure throughput and residence time on this basis. When considering an
entire transaction processing system, on the other hand, it is natural to define a
request to be a user-level transaction, and to measure throughput and residence time
on this basis. Each such transaction may generate several disk accesses.

It is often natural to regard a system as being made of a number of devices or
resources. Each of these resources may be treated as a system in its own right as
far as the operational laws are concerned, with the rest of the system forming the
environment of that resource. A request from the environment generates a job within
the system; this job may then circulate between the resources until all necessary
processing has been done; as it arrives at each resource it is treated as a request,
generating a job internal to that resource.

Suppose that during an observation interval we count not only completions of
the whole system, but also the number of completions at each resource within the
system. We define the visit count, Vi , of the ith resource to be the ratio of the number
of completions at that resource and the number of system completions Vi = Ci/C.

More intuitively, we might think of Vi as the average number of visits that a
system-level job makes to resource i. For example, if, during an observation interval,
we measure 10 system completions and 150 completions at a specific disk, then on
the average each system-level request requires 15 disk operations.

The forced flow law captures the relationship between the different components
within a system. It states that the throughputs or flows in all parts of a system must be
proportional to one another. In other words, it relates the throughput at the individual
resources (Xi = Ci/T) to the throughput at the complete system (X = C/T). It
comes straightforwardly from the above definition as follows: Xi = X · Vi .

Forced flow law The throughput at the ith resource is equal to the product of the
throughput of the system and the visit count at that resource.

An informal interpretation of this law is that, since the visit count defines the
number of visits to a resource or device that each job needs in order to complete its
processing, the resource must keep up a correspondingly scaled completion rate to
ensure that the system completion rate is maintained.

For example, let us assume that in a system made of several resources a job visits
a certain disk i in average 5 times before leaving the system (i.e. Vi = 5), and the

146 6 Performance Model Solution

disk is serving 25 jobs per second (i.e. Xi = 25 job/sec). From these data we can
deduce that the system throughput is X = Xi/Vi = 25/5 jobs/sec = 5 jobs/sec.
On the basis of this result, if we know that another resource is serving 15 jobs per
second (i.e. Xj = 15 jobs/sec), then we can assert that a job visits the latter resource
in average Vj = Xj/X = 15/5 = 3 times before leaving the system.

If we know the amount of processing time that each job requires at a resource
then we can calculate the utilization of the resource. Let us assume that each time
a job visits the ith resource the amount of processing, or service, time it requires
is Si . Note that service time is not necessarily the same as the residence time of
the job at that resource: in general a job might have to wait for some time before
processing begins. The total amount of service time that a system job generates at
the ith resource is called the service demand, Di : Di = Si · Vi .

The utilization of a resource, that is the percentage of time that the ith resource
is in use processing a job, is denoted Ui . The utilization law applied to a specific
resource in a system that is made of multiple resources states that: Ui = Xi · Si =
X · Di .

Utilization law for the ith resource The utilization of a resource is equal to the
product of the throughput of that resource and the average service required at that
resource.

This re-formulation of the utilization law for a specific resource in a system made
of multiple resources allows to introduce the concept of bottleneck. Informally, the
bottleneck of a system is the resource that more adversely affects the performance
of the system. In practice, it represents the most overloaded resource where jobs
waste most of their time (as compared to service time).

One of the primary goals of performance analysis is to find system bottlenecks
and remove them in order to improve the performance.3 The utilization law for a
resource, in practice, states a bound on the system throughput that depends on all
the system resources, as follows.

The utilization of each resource ranges from 0 to 1, so the following relation
holds: (∀i)X · Di ≤ 1, which can be re-written as (∀i)X ≤ 1/Di . If we define
Dmax = maxi{Di} then we can write the latter set of inequality as this single rela-
tionship: X ≤ 1/Dmax. This means that the system throughput X is upper bounded
from the inverse of the maximum service demand 1/Dmax among all its resources.
Dmax being the largest time spent by a job in one of the system resources, 1/Dmax is
the minimum throughput among all system resources. It is obvious that the system
throughput cannot be higher than the minimum throughput among all resources.4

The main side effect of the above consideration is that if all the service demands
Di are known in advance then it is possible to determine the system bottleneck as the

3Bottleneck analysis can be a quite complex process, based on a well-assessed theory to study
system bottlenecks. We do not report the whole theory in this chapter, but we only provide a sketch
of it. Readers interested to a simple and complete presentation of this theory can refer to [79].
4In a team race each team is as slow as its slowest runner.

6.1 Model Solution: Foundations and Techniques 147

one with maximum Di . Hence, in case of performance problems, the analysts know
where to take a corrective action on the system. But what are the potential corrective
actions? From a numerical point of view, corrective actions are all those actions that
decrease the value of Dmax. Recall that Di = Si ·Vi , hence we can define two typical
categories of actions: (i) hardware actions that decrease Si , and (ii) software actions
that decrease Vi .

In order to decrease the average service time Si of a resource, the only type of
effective action is to replace the resource with a quicker one, hence a hardware solu-
tion.5 As opposite, in order to decrease the average number Vi of visits to the same
resource the jobs should change their paths within the system. The latter improve-
ment can be only achieved by changing the logics of the software that originates
such amount of visits. For example, in order to decrease the number Vi = 10 of
accesses to disk made by a certain routine, the latter can be replaced by another (op-
timized) routine that is able to provide the same functionality with a lower number
of accesses to disk, e.g. Vi = 8.

This distinction on the type of actions that can be taken to overcome a perfor-
mance problem directly relates to the distinction that we have made in Chap. 1
between system performance and software performance. In other words, the above
formulas allows to quantitatively distinguish hardware actions form software ac-
tions. As discussed in Chap. 1, software actions should be preferred where feasible.

Along the same direction it is possible to reason on residence time and relate
the one of the whole system to the ones of the single resources. One method of
computing the mean residence or response time per job in a system is to apply
Little’s law to the system as a whole. However, if the mean number N of jobs in the
system or the system level throughput X are not known then an alternative method
can be used.

By applying Little’s law to the ith resource we see that Ni = Xi ·Ri , where Ni is
the mean number of jobs at the resource and Ri is the average response time of the
resource. From the forced flow law we know that Xi = X · Vi . Thus we can deduce
that Ni/X = Vi · Ri .

The mean number of jobs in the system is clearly the sum of the mean number
of jobs at each resource, i.e. N = N1 + · · · + NM if there are M resources in the
system. We know from Little’s law that R = N/X and from this we arrive at the
general residence time, or general response time law: R = ∑M

i=1 Vi · Ri .

General response time law The average residence time of a job in the system will
be the sum (overall resources) of the product of its average residence time at each
resource by the number of visits it makes to each resource.

In case of interactive systems the Little’s law must be adapted to the case. In-
teractive systems are those in which jobs spend time in the system not engaged in

5Note, however, that modern definitions of resources widen their scope to complex combinations
of hardware and software that provide certain services. In these cases the actions that decrease Si

may also concern the software component of a resource.

148 6 Performance Model Solution

processing, or waiting for processing: this may be because of interaction with a
human user, or may be for some other reason. In such systems the think time Z is
defined as the average time that a user spends thinking at his terminal before submit-
ting a new request after received a response to the previous request. In practice, Z is
the average time between a response and the following request from the user’s point
of view. For example, if we are observing a cluster of workstations with a central
file server to investigate the load on the file server, the think time might represent
the average time that each workstation spends processing locally without access to
the file server. At the end of this non-processing period the job generates a fresh
request.

The key feature of such a system is that the residence time can no longer be taken
as a true reflection of the response time of the system. The think time represents
the time between processing being completed and the job becoming available as a
request again. Thus the residence time of the job, as calculated by Little’s law as
the time from arrival to completion, is greater than the system’s response time. The
interactive response time law reflects this, as it calculates the response time R′ as
follows: R′ = N/X − Z.

Interactive response time law The response time in an interactive system is the
response time minus the think time.

Note that if Z = 0 then R′ = R, and the interactive response time law simply
becomes Little’s law.

An opportunely combined usage of the laws introduced in this section allows to
evaluate the performance indices of a system whose parameters are known.

6.1.2 Solution Techniques and Related Notations

In this section some existing solution techniques, based on the operational laws of
Sect. 6.1.1, are introduced. They are all related to certain modeling notations, there-
fore the section is partitioned in subsections, one for each notation. The notations
we deal with in this section are a subset of the ones described in Chap. 3, as from
these techniques it is possible to build techniques to solve models represented in the
notations excluded from this subset. Example of software tools that have been built
to implement such techniques will be presented in Sect. 6.2.

Note, however, that all techniques included in this section follow certain algorith-
mic procedures to extract values of indices from performance models. A completely
different approach, that can be considered as orthogonal to the modeling notations
is the simulation and it will be separately discussed in Sect. 6.1.3.

Markov Models

The literature on solution techniques for Markov models is very rich, and beside
classical approaches in the last few years sophisticated techniques have appeared to

6.1 Model Solution: Foundations and Techniques 149

tackle the problem of state explosion. In this section we only provide some basic no-
tions on how to calculate the steady-state probabilities of a Markov model [19]. For
all other techniques (e.g. transient-state probabilities) we direct interested readers to
classical references such as [113].

First we recall that the steady-state probabilities of a Markov model (see Chap. 3)
can be interpreted in two ways. One way is to see them as the long-run proportion
of time the model spends in the respective states. The other way is to regard them
as the probabilities that the model would be in a particular state if one would take
a snapshot after a very long time. Let us see how to obtain these probabilities from
the model parameters.

The probability of residence in state j after n steps is denoted by πj (n), and can
be obtained as follows:

πj (n) =
∑

i

πi(0)pi,j (n) (6.1)

where pi,j (n) are obtained from the state transition probability matrix P = [pij] as
the probabilities to reach state j in n steps starting from state i. Equation (6.1) can
be expressed in matrix–vector notation, with π(n) = (π0(n),π1(n), . . .), as follows:

π(n) = π(0)Pn (6.2)

Under the hypothesis that a limit exists for all the rows of matrix Pn, we define
v = (. . . , vj , . . .) as

vj = lim
n→∞πj (n) = lim

n→∞
∑

i

πi(0)pi,j (n) (6.3)

Equation (6.3) can be expressed in matrix–vector notation as follows:

v = lim
n→∞π(n) = lim

n→∞π(0)Pn (6.4)

However, we also have

v = lim
n→∞π(n + 1) = lim

n→∞π(0)Pn+1 = (
lim

n→∞π(0)Pn
)
P = vP (6.5)

Hence, whenever the limit probabilities v exist, they can be obtained by solving
the system of linear equations:

v = vP ⇒ v(I − P) = 0 (6.6)

where
∑

i vi = 1 and 0 ≤ vi ≤ 1 because v is a probability vector, and I is the
identity matrix. The vector v represents the stationary or steady-state probability
vector of the Markov model [19].

The computation of steady-state probabilities is a core step in the solution of a
Markov model. When such models are used to estimate performance, such probabil-
ities have to be combined, for example, to state rewards in order to obtain values of
performance indices. A reward can be associated to each state of a Markov model,
and rewards are accumulated each time the model transits through the state. It is
intuitive that in order to estimate the average reward of the model it is sufficient to
make a weighted sum of state rewards on the basis of the steady-state probabilities.

150 6 Performance Model Solution

Let us give an example. Assume that a Markov model represents a single queue
system, where the semantics of each state is completely described by a single at-
tribute that is the number of jobs in the queue. If a reward ri is assigned to each
state that simply corresponds to number of jobs in the queue when the system is in
state i, then by combining these rewards with the steady-state probabilities vi it is
possible to compute the average queue length ql as follows:

ql =
∑

i

vi · ri (6.7)

Rewards can be assigned to states and transitions and, if properly processed,
permit to express any performance index on a Markov model that represents the
dynamics of a performance model.

Queueing Networks

Although they can be applied to multiple performance notations, the operational
laws introduced in Sect. 6.1.1 were originated from the study and the observation
of queueing models, where servers provide services and might have queues where
jobs wait for their turn.

On the basis of those laws, several algorithms have been created to provide op-
erational procedures for Queueing Networks solution. Some approaches provide
exact solutions under certain assumptions on the model structure, whereas other ap-
proaches have an iterative behavior that, with a certain approximation, leads us to
estimate the performance indices of interest after a certain number of iterations.

For the sake of completeness we describe here only the most common algorithm
for closed queueing models, that is Mean Value Analysis (MVA), that we consider
here only for models with single class of jobs (see Sect. 3.2). However details on
other versions of this approach as well as different approaches to the algorithmic
solution of QN models can be found in literature (see, for example, [79]).

MVA applies to Product Form Queueing Networks (PFQN), that is a class of QN
that satisfies some assumptions on its topology (e.g. no fork and join nodes), on
the queue disciplines (e.g. no load dependent scheduling strategies) and on the time
distributions (e.g. only Poisson distribution for workload arrivals).

The MVA algorithm is based on three equations [79], which are

• Little’s law for interactive systems applied to the whole model. Recall that Little’s
law for interactive systems is given by R′ = N/X − Z, where all parameters are
affected by the number N of jobs in the system. Another way of expressing this
law is

X(N) = N

Z + ∑K
k=1 Rk(N)

(6.8)

where K is the number of service centers and Rk(N) is the response time of kth
center when there are N jobs in the system.

6.1 Model Solution: Foundations and Techniques 151

for k ← 1 to K do Qk ← 0
for n ← 1 to N do
begin

for k ← 1 to K do Rk ←
{

Dk (delay centers)

Dk(1 + Qk) (queueing centers)
X ← n

Z+∑K
k=1 Rk

for k ← 1 to K do Qk ← XRk

end

Fig. 6.2 Exact MVA solution technique

• Little’s law applied to a single service center. It can be expressed as Qk(N) =
X(N) · Rk(N), where Qk(N) represents the queue length of kth center when
there are N jobs in the system.

• Residence time equations for each service center. It can be expressed as Rk(N) =
Dk · (1 +Ak(N)), where Ak(N) is the average number of jobs at kth center when
a new job arrives.

Note that the key entities to compute performance measures are the Ak(N)’s.
If these are known, Rk(N) can be computed, followed by X(N) and Qk(N). In
general, the arrival instant queue lengths Ak(N) are computed at the instants that
some job is arriving to the center (and so cannot itself be in the queue there), while
the time averaged queue lengths Qk(N) are computed over randomly selected in-
stants (so all jobs potentially could be in the queue). MVA introduces a technique to
compute Ak(N) by observing that Ak(N) = Qk(N − 1).

In other words, the queue length seen at arrival to a queue when there are N jobs
in the network is equal to the time averaged queue length with one less job in the
network. This equation has an intuitive justification. At the moment a job arrives at
a center, it is certain that this job itself is not already in that queue. Thus, there are
only N −1 other jobs that could possibly interfere with the new arrival. The number
of these jobs that are in queue, on average, is simply the average number when only
those N − 1 jobs are in the network.

The MVA solution technique, shown in Fig. 6.2, involves the iterative application
of the equations above. These equations allow us to calculate the system throughput,
device residence times, and average queue lengths when there are n jobs in the
network, given the average queue lengths with n − 1 jobs. The iteration begins with
the observation that all queue lengths are zero with zero jobs in the network. From
that trivial solution, the above equations can be used to compute the solution for
one job in the network. Since the time averaged queue lengths with one job in the
network are equal to the arrival instant queue lengths with two jobs in the network,
the solution obtained for a population of one can be used to compute the solution
with a population of two. Successive applications of the equations compute solutions
for populations 3,4, . . . ,N [79].

After N iterations, when MVA terminates, the values of Rk , X, and Qk (all for
population N) are available immediately. Other model outputs are obtained by using
the operational laws.

152 6 Performance Model Solution

The last aspect that we recall in this section concerns the model parameterization
problem. As mentioned in Sect. 3.3, up to the end of the 1980s, QN were parameter-
ized on the basis of observed system behaviors or the experience of system develop-
ers. Explicit models, oriented to performance, of software behavior (that represents
the workload populating a QN) have started to appear about two decades ago. Ex-
ecution Graphs were the most promising model and still today they represent the
prevalent model notation used for this purpose [110]. In Sect. 6.2 we introduce a
tool that allows us to synthesize EGs and to parameterize QN using the result of
synthesis. However, it is out of the scope of this book to describe details of tech-
niques to model and manage EG.6

Stochastic Petri Nets and Stochastic Process Algebras

The quantitative analysis of a SPN is based on the identification and solution of its
associated Markov chain. In order to avoid the state space explosion of the Markov
chain, various authors have explored the possibility of deriving a product-form solu-
tion for special classes of SPN. Non-polynomial algorithms exist for product-form
SPN, under further structural constraints. Beside the product-form results, many ap-
proximation techniques have been defined [17]. There also exist analyses of STPNs
without Markovian assumptions. Most of them provide performance bounds, others
analyze stability conditions [17].

Although there exist various quantitative analysis techniques and some software
tools (e.g. GreatSPN [39]) for SPN, the applications of SPN are often limited to
small size problems. This is due essentially to the time and space complexity of the
numerical analysis algorithms and of simulations.7

Similar solution techniques can be applied to SPAs. The quantitative analysis can
be performed by constructing the underlying stochastic process. In particular, when
action durations are represented by exponential random variables, the underlying
stochastic process yields a Markov chain.

Various attempts have been made in order to avoid the Markov chain state space
explosion, which soon makes the performance analysis unfeasible. Some authors
propose a syntactic characterization of PA terms whose underlying Markov chain
admits a product-form solution that could allow for more efficient solution algo-
rithms [66, 71, 105].

Examples of performance evaluation tools for SPA are the TIPP tool [68], Two
Towers [31, 32], and PEPA Workbench [57].

6Readers interested to EGs can refer to Smith’s book [110].
7A database on (stochastic) Petri net tools can be found at [5].

6.1 Model Solution: Foundations and Techniques 153

6.1.3 Simulation

We recall that simulation can be viewed either as one of the available techniques to
solve performance models built in one of the canonical performance notations illus-
trated in Chap. 3, or as a specific technique for models built for sake of simulation
(i.e. simulation models) [28]. In this section we consider the latter case.8

We briefly recall the main steps, among the ones described in Chap. 3, that relate
to the solution of a simulation model9:

1 building a simulation model/program;
2 planning the simulation experiments;
3 running the simulation program and analyzing the results.

Before becoming a program coded in some (general purpose or simulation) lan-
guage, a simulation model is an abstract representation of the system that has to
be simulated. Typical activities of Step 1 are: (i) the definition of types of events
that may occur within the system; (ii) the construction of cause-effect relation-
ships among types of events; (iii) the definition and modeling of simulation compo-
nents, that are the subsystems acting as event producers/consumers in the simulation
model.

Once completed these three activities, the complexity of the translation of the
simulation model into an executable software piece of code mostly depends on the
adopted language. The executable code is made of three parts: a simulation en-
gine, that is the process that drives the execution of the simulation model; the data
structures of the model that store information related to the system; the set of event
routines, that are the procedure implementing the actions to be taken when a certain
type of event must be simulated (obviously an event routine for each type of event
must be implemented).

Quite sophisticated and integrated environments are available today to build, run
and manage a simulation model, like Simula [97]. If such a framework is adopted
then it usually provides a proprietary (graphical) language that helps designers to
build the model without the need to address model details.

If, instead, a general purpose programming language, such as C++, is adopted to
build a simulation program then all details must be explicitly implemented, in some
cases with the help of appropriate libraries of functions, because the simulation
engine and the model in this case are often embedded within the same code.

Two major types of simulation engines can be built: event-driven and time-
driven.

An event-driven engine works as follows. The engine basically manages a list of
events ordered on their timestamps, that are the virtual times at which the events

8Many excellent books have been published on (discrete event) simulation, whereas our intent here
is only to mention it as a software performance modeling and analysis approach.
9In this section we implicitly refer to Discrete Event Simulation [28], as the most widely used in
the software performance domain.

154 6 Performance Model Solution

must occur.10 The simulation time advances following the virtual time of the next
event to be executed. Once extracted from the list, the event routine corresponding
to this type of event is executed. The latter may read/write shared data structures,
local variables, and finally it may originate one or more events to be executed at a
later virtual time. These events are appropriately inserted in the event list. Hence,
the event virtual times push ahead the simulation time.

A time-driven engine works differently from an event-driven one. The engine
advances the simulation time at fixed steps, and after each increment verifies which
events may happen at the current point of time and executes them. All the remaining
mechanisms are similar to the ones of an event-driven engine.

Time-driven simulation is suitable for regular systems, where it is well-known
that some events happen at each time step (e.g. the movement of an elementary
particle). Event-driven simulation is suited, instead, for systems where events are
sparse along the timeline, because the effort to jump from an event to the next one
does not depend on their virtual time distance.

6.2 Model Solution: Tools

In this section we make a short overview of well-assessed tools that implement
solution techniques that have been illustrated in Sect. 6.1.11

6.2.1 SHARPE—Multiple Performance Model Notations

SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evalua-
tor) is a tool for specifying and analyzing performance, reliability and performabil-
ity models. It provides a specification language and solution methods for most of
the commonly used model notations for performance, reliability and performability
analysis. Notations include Fault Trees, Queueing Networks, Stochastic Petri Nets,
as well as Markov models (with rewards). Steady-state, transient and interval mea-
sures can be computed. Output measures of a model can be used as parameters of
other models. This facilitates the hierarchical combination of different model types.

SHARPE supports a variety of model notations and, for most of the model nota-
tions, provides more than one analysis algorithm from which the user can choose. It
allows the user to choose when to combine different models, which ones to combine,
and how to combine them. SHARPE models were designed to answer the question:

10We here only introduce the main mechanisms of simulation, and we assume that basic concepts
(like virtual time) are known to the reader.
11Note that most of this section contents comes from the web pages of the tools and only partially
has been re-arranged for use in this book. The URL of each tool has been reported in the respective
section for retrieving further information.

6.2 Model Solution: Tools 155

given time-dependent functions that describe the behavior of the components of a
system and a description of the structure of the system, what is the behavior of the
whole system as a function of time? The functions might be cumulative distribution
functions (CDFs) for component failure times, CDFs for task completion times, or
the probabilities that components are available at a given time.

The system structure might be specified, for example, in the form of a fault tree,
a queueing network or a Markov chain. The time-dependent functions describing
the component behavior are restricted by SHARPE to be exponential polynomial
in form. This is not a great restriction, because many of the most commonly used
distribution functions have this form and much of the work that has been done in
fitting distributions to the data has used exponential polynomials.

URL—http://people.ee.duke.edu/~kst/

6.2.2 SPE·ED—Execution Graphs and Queueing Networks

SPE·ED is a commercial tool designed specifically to support the Software Per-
formance Engineering (SPE) methods and models defined by Connie U. Smith in
[110]. The SPE techniques use performance models to provide data for the quan-
titative assessment of the performance characteristics of software systems as they
are developed. Using a small amount of data about envisioned software process-
ing, SPE·ED creates and solves performance models, and presents visual results. It
provides performance data for requirements and design choices and facilitates com-
parison of software and hardware alternatives for solving performance problems.

With SPE·ED users can create graphical models of envisioned software process-
ing and provide performance specifications by creating and specifying Execution
Graphs. Queueing network models are automatically generated from the software
model specifications. A combination of analytic and simulation model solutions
identifies potential performance problems and software processing steps that may
cause the problems.

The user’s view of the model is a scenario, that is an Execution Graph of the soft-
ware processing steps. Software scenarios are assigned to the facilities that execute
the processing steps. Models of distributed processing systems may have many sce-
narios and many facilities. Users specify software resource requirements for each
processing step. Software resources may be the number of messages transmitted,
the number of SQL queries, the number of SQL updates, etc. depending on the type
of system to be studied and the key performance drivers for that system.

A performance specialist provides overhead specifications that specify an esti-
mate of the computer resource requirements for each software resource request.
These are specified once and re-used for all software analysis that executes in that
environment.

SPE·ED produces analytic results for the software models, and an approximate,
analytic MVA solution of the generated QN model. A simulation solution is used
for QN with multiple software scenarios executing on one or more computer system

http://people.ee.duke.edu/~kst/

156 6 Performance Model Solution

facilities (i.e. multiple classes of jobs). It supports hybrid solutions, in that the user
selects the type of solution appropriate for the development lifecycle stage and thus
the precision of the data that feeds the model. There is no need for a detailed, lengthy
simulation when only rough guesses of resource requirements are specified.

The results reported by SPE·ED are the end-to-end response time, the elapsed
time for each processing step, the device utilization, and the amount of time spent
at each computer device for each processing step. This identifies both the potential
computer device bottlenecks, and the portions of the device usage by processing
step (thus the potential software processing bottlenecks).

SPE·ED is intended to model software systems under development, although it
may also be used for existing software systems. It may be any type of software:
all types of software applications including web applications, operating systems, or
database management systems.

URL—http://www.spe-ed.com/sped.htm

6.2.3 GreatSPN—Stochastic Petri Nets

GreatSPN is a software package for modeling, validation, and performance evalua-
tion of distributed systems using Generalized Stochastic Petri Nets and their colored
extension: Stochastic Well-formed Nets. The tool provides a friendly framework to
experiment with timed Petri net based modeling techniques. It implements efficient
analysis algorithms to allow its use on rather complex applications, not only toy
examples.

GreatSPN is composed of many separate programs that cooperate in the con-
struction and analysis of PN models by sharing files. Using network file system
capabilities, different analysis modules can be executed on different machines in a
distributed computing environment. The modular structure of GreatSPN makes it
open to the addition of new analysis modules as new research results become avail-
able. All solution modules use special storage techniques to save memory both for
intermediate result files and for program data structures.

Among the analysis procedures available within GreatSPN we mention Reach-
ability Graph Generator equipped with a Reachability Graph Analyzer, Markov
Chain Generator equipped with a steady-state solver and a transient solver, GSPN
simulator.

Several state-of-the-art analysis prototypes have been recently added in the pack-
age: an algorithm for the fast computation of performance bounds based on linear
programming techniques, working at a purely structural level (i.e. the computed
bounds depend only on the average firing delay of the transitions while they do not
depend on the Probability Distribution Functions of such delays); algorithms for the
analysis of Stochastic Well-formed Nets providing the user with the possibility of
designing models of complex systems in a more compact way, and allowing for a
more efficient state space analysis that automatically exploits the model symmetries.

http://www.spe-ed.com/sped.htm

6.2 Model Solution: Tools 157

The graphical interface has recently achieved high portability under different
hardware platforms.

URL—http://www.di.unito.it/~greatspn/index.html

6.2.4 TimeNET—Stochastic Petri Nets

The software package TimeNET is a graphical and interactive toolkit for model-
ing with Stochastic Petri Nets (SPNs) and Stochastic Colored Petri Nets (SCPNs).
TimeNET has been developed at the Real-Time Systems and Robotics group of
Technische Universität Berlin (Germany). TimeNET and its predecessor DSPNex-
press were influenced by experiences with other well-known Petri Net tools, like
GreatSPN and SPNP.

The project has been motivated by the need for powerful software for the efficient
evaluation of Timed Petri Nets with arbitrary (non-exponential) firing delays.

The classical main model class of TimeNET are extended Deterministic and
Stochastic Petri Nets (eDSPNs). Firing delays of transitions can either be zero (im-
mediate), exponentially distributed, deterministic, or belong to a class of general
distributions called expolynomial in an eDSPN. Such a distribution function can be
piecewise defined by exponential polynomials and has finite support. It can contain
even jumps, making it possible to mix discrete and continuous components. Many
known distributions (uniform, triangular, truncated exponential, finite discrete) be-
long to this class.

Under the restriction that all transitions with non-exponentially distributed fir-
ing times are mutually exclusive, stationary numerical analysis is possible. If the
non-exponentially timed transitions are restricted to have deterministic firing times,
transient numerical analysis is also provided. For the case of concurrently enabled
deterministically timed transitions, an approximation component based on a gener-
alized phase type distribution has been implemented. If there are only immediate
and exponentially timed transitions, the model is a GSPN and standard algorithms
for steady-state and transient numerical evaluation based on an isomorphic Markov
chain are applicable.

The tool also comprises a simulation component for eDSPN models, which is not
subject to the restriction of only one enabled non-Markovian transition per marking.
Steady-state and transient simulation algorithms are available. During the simula-
tion run, intermediate results of the performance measures are displayed graphically
together with the confidence intervals.

Simple stochastic Petri nets in TimeNET can either be interpreted in continuous
time as an eDSPN, or as a Discrete Deterministic and Stochastic Petri Net (DDSPN).
DDSPNs allow geometric distributions, deterministic times and discrete phase type
distributions as delays. Steady-state and transient numerical analysis as well as effi-
cient parallel simulation are available.

Variable-free Colored Petri Nets (VfCPNs) represent another model class of
TimeNET. Firing delays of transitions have the same range as in eDSPNs. Numer-
ical steady-state analysis, an iterative approximation method, and standard simula-
tion are available for VfCPNs.

http://www.di.unito.it/~greatspn/index.html

158 6 Performance Model Solution

Stochastic Colored Petri Nets (SCPNs) have been added recently. Due to the
inherent complexity of the considered models, a requirement of only one non-
exponential transition per marking is too restrictive. Thus a standard discrete-event
simulation has been implemented for the performance evaluation of SCPN mod-
els. A distributed simulation method has been developed and implemented for this
model class in addition, which allows for the efficient simulation of complex models
on a cluster of workstations.

URL—http://www.tu-ilmenau.de/TimeNET

6.2.5 TwoTowers—Stochastic Process Algebras

TwoTowers is a tool based on an Architectural Description Language called Æmilia
that allows to describe static and dynamic models of software architectures. In ad-
dition, Æmilia models can be annotated with rates on actions. An annotated Æmilia
model is automatically translated, through TwoTowers, in a Stochastic Process Al-
gebra notation called Æmpa. Once translated, the model is ready to be solved with
commonly adopted SPA solution techniques.

TwoTowers is able to evaluate the performance of correct Æmilia specifications
in two different ways.

In the first case instant-of-time, stationary/transient performance measures,
which are defined through state and transitions rewards, are computed by solving
the Markov chain underlying the Æmilia specification. The value of each such per-
formance measure is given by the sum of the stationary/transient state probabilities
and transition frequencies of the Markov chain, each weighed by the corresponding
state reward or transition reward, respectively. A state reward represents the rate
at which gain is cumulated while staying in a certain state, whereas a transition
reward represents the gain that is instantaneously earned when executing a certain
transition. In TwoTowers three methods are available for solving Markov chains:
Gaussian elimination, an adaptive variant of symmetric stochastic overrelaxation,
and uniformization.

In the second case the method of independent replications, based on simulation
experiments, is applied to estimate the mean, variance or distribution of performance
measures, which are specified through an extension of state and transition rewards.
The discrete event simulation can be trace driven, which means that certain values
can be taken from a file instead of being sampled from pseudo-random number gen-
erators. Unlike the Markovian performance evaluation, the simulation-based perfor-
mance evaluation can be applied to any (correct) Æmilia specification with no open
and deadlock states, thus making the estimation of the performance measures of
systems possible with generally distributed delays.

URL—http://www.sti.uniurb.it/bernardo/twotowers/

http://www.tu-ilmenau.de/TimeNET
http://www.sti.uniurb.it/bernardo/twotowers/

Chapter 7
Advanced Issues in Software Performance

In this chapter some advanced issues of software performance have been collected.
They address different aspects of this discipline, not necessarily related to each
other. The chapter is not meant to be a structured overview of the main open is-
sues in the field, rather it is an anthology of issues that we have faced in the last few
years.

Section 7.1 presents an approach to integrate performance modeling within the
Model-Driven Architecture paradigm. It is a sort of instantiation of the general ap-
proach presented in Chap. 4. Section 7.2 illustrates our recent work on the inter-
pretation of performance analysis results aimed at providing feedback to software
engineers that allow one to overcome performance problems. Section 7.3 describes
a methodology for run time using model-based performance analysis to re-configure
software systems. Finally, in Sect. 7.4 the problem of unifying the existing ap-
proaches to the software performance is faced by defining the characteristics of a
software performance ontology that may represent an unifying notation in this field.

7.1 Software Performance and Model-Driven Architecture

Model-Driven Architecture (MDA) [83] has given the opportunity to software scien-
tists and developers to converge toward a common framework that defines the theory
and practice of model-driven engineering. MDA is based on a 3-layered structure of
models, suitably related through model transformations.

The Computation Independent Model (CIM), Platform Independent Model
(PIM) and Platform Specific Model (PSM) provide good abstractions of many de-
velopment practices in model-based software engineering. Indeed, independently of
the development process, a model of requirements must be built at the beginning
of the process (Computation Independent Model); then it inputs the architectural
design phase that produces a model of the system logics (Platform Independent
Model), and finally from the latter model the implementation phase produces the
system code for a certain platform (Platform Specific Model).

V. Cortellessa et al., Model-Based Software Performance Analysis,
DOI 10.1007/978-3-642-13621-4_7, © Springer-Verlag Berlin Heidelberg 2011

159

http://dx.doi.org/10.1007/978-3-642-13621-4_7

160 7 Advanced Issues in Software Performance

Fig. 7.1 The SPMDA
framework

Although MDA nicely represents the functional aspects of a model-driven soft-
ware development process, it falls short of representing the modeling and analysis
necessary to guarantee non-functional properties of software products. Goal of this
section is to present a general way to embed the performance validation activity in
the MDA framework. This will take the form of an extension of the MDA frame-
work, namely SPMDA (Software Performance Model-Driven Architecture) which,
beside the typical MDA models and transformations, embeds new models and trans-
formations that take into account the performance validation activities.

To this end, new types of model transformation are defined, which are different
from those in MDA whose aim is to transform less refined models in more refined
ones up to the automated code generation. In a software performance analysis con-
text, instead, model transformation becomes an activity that does not necessarily
aim at producing more refined models, but also allows a change of model notation
to favor different types of analysis. Hence, in SPMDA is introduced the concept
of horizontal transformation, that is: a transformation between models represent-
ing the system at the same level of detail from different viewpoints. For example,
a horizontal transformation can be devised from a set of UML diagrams represent-
ing a software architecture annotated with performance data to a Queueing Network
representing the same software architecture in a different formalism ready to be
analyzed.

The extended performance view of the MDA approach is illustrated in Fig. 7.1.
On the left side of the figure the canonical MDA models and transformations ap-
pear: a Computation Independent Model (CIM) becomes a Platform Independent
Model (PIM) upon specifying business logics of the system; PIM becomes a Plat-
form Specific Model (PSM) once the business logics is implemented on a particular
platform. These models and transformations do not suffice to keep performance as-
pects under control during the software system development. In order to address

7.1 Software Performance and Model-Driven Architecture 161

Fig. 7.2 An example of
CIPM

this issue, in Fig. 7.1 three additional types of models and three additional types of
transformations/relationships have been introduced. The new types of models are
CIPM, PIPM, PSPM.

CIPM—A Computation Independent Performance Model represents the require-
ments and constraints related to the performance. Very often the performance re-
quirements concern the response time of some system operations under certain
workloads (e.g. the authentication service must be completed in average within
2 seconds under a workload of maximum 100 users). In the MDA framework the
UML use case diagrams are the most widely used diagrams to model system re-
quirements and their relationships. Therefore, a good example of CIPM may be a
use case diagram annotated with performance requirements. Figure 7.2 shows the
requirement formulated above.

PIPM, a Platform Independent Performance Model, is a representation of the
business logics of the system along with an estimate of the amount of resources
that such logics needs to be executed. The model must be computationally solvable,
which means it should be expressed through a notation that allows performance
analysis (e.g., Queueing Networks). In a PIPM platform characteristics (such as
network latency) are not available. Therefore, the analysis of the performance mod-
els represented in a PIPM class can only permit to discover early design bugs. At
this level of detail, given a set of resource types, any action of the business logics
can be coupled with an estimated amount of each resource type needed to execute
the action. For example, the amount of resources needed to execute the logics im-
plementing an authentication service might be as follows: N high-level statements,
K database accesses and M remote interactions. The estimates being expressed in
non-canonical units of measure, the results of the analysis of a PIPM cannot be used
as a target for comparison to the actual system performance. They are rather meant:

• to evaluate upper and lower bound in the system performance,
• to identify software performance bottleneck in the business logics (e.g. a software

component that is overloaded),

162 7 Advanced Issues in Software Performance

Fig. 7.3 An example of PIPM

• to compare the performance of different design alternatives of the business logics
(e.g. two different software architectures).

In Fig. 7.3 a PIPM is represented as an Execution Graph. Notice that the model
represents the system at the architectural level. Each block in the Execution Graph
represents an action (Service1) that is quantitatively described by its annotation. For
example, Service1 in component comp1 is invoked by a user that sends a message
whose size is 1K in t1 units of time.

PSPM, a Platform Specific Performance Model, contains the merged represen-
tations of the business logics and of the platform adopted to run the logics. In a
classical MDA approach a platform is represented by a set of subsystems and tech-
nologies that provide a coherent set of functionalities through interfaces and speci-
fied usage patterns (e.g. J2EE, CORBA, etc.). In a performance context a platform
must also include the characteristics of the underlying hardware architecture, such
as the CPU speed and the network latency. Being expressed in classical units of
measures (e.g. execution time), the results of the analysis of a PSPM can be used
as a target for comparison to the actual system performance in order to validate the
model. Such a model can then be used to explore the system behavior in extreme
real world scenarios (e.g. severely heavy workloads).

In Fig. 7.4 a PSPM model is represented as a Layered Queueing Network. In this
model the platform characteristics are specified in terms of middleware (CORBA)
and hardware characteristics (Processor1).

Behind the PIPM/PSPM duality there is the intuitive concept that the perfor-
mance analysis results can be expressed with actual time-based metrics only after a
PIM is bounded to its platform and becomes a PSM. Obviously the results coming
out of a PIPM evaluation are not useful to validate the model against the system re-
quirements, because they may take very different time values on different platforms.
However, three types of actions can originate from this analysis:

• Lower and upper bounds on the system performance can be evaluated if some
estimates of the performance of the possible target platforms are available. For
example, if the lower bound on a system response time is larger than the corre-

7.1 Software Performance and Model-Driven Architecture 163

Fig. 7.4 An example of
PSPM

sponding performance requirement, then it is useless to progress in the develop-
ment process as performance problems are intrinsic in the software architecture.
It is necessary to rework on the software models. However, even when the results
are not so pessimistic, it is possible to take decisions that improve the software
architecture.

• In order to identify the most overloaded components, the utilization and/or queue
length of each service center in the PIPM must be computed versus the system
population. An overloaded component has a very long waiting queue and repre-
sents a bottleneck in the software architecture. Some rework is necessary in the
PIM to remove the bottleneck.

• Either as a consequence of the above decisions or as a planned performance test,
different (functionally equivalent) alternative software designs can be modeled as
PIMs, and then their performance can be compared through their PIPMs in order
to select the optimal one.

The continuous arrows with single filled peak represent the typical MDA trans-
formations that permit to obtain a PIM from a CIM, and a PSM from a PIM. The
dashed arrows with single filled peak represent the additional transformations intro-
duced to tie MDA and SPMDA models.

Horizontal and vertical SPMDA transformations can be characterized as follows:
SPMDA horizontal transformation—It transforms a software model into the cor-
responding performance model at any level in the MDA hierarchy. In Fig. 7.1
CIM → CIPM, PIM → PIPM and PSM → PSPM are horizontal transformations.
The model transformations belonging to this class share a two-steps structure: the
software model is first annotated with data related to the system performance (e.g.
the operational profile), thereafter the annotated model is transformed into a per-
formance model. Many examples of such transformation have been introduced in
Chap. 5.
SPMDA vertical transformation—Even though it seems to play in the perfor-
mance domain a similar role to the MDA ones, such transformation is instead in-
tended to provide an input to the horizontal transformation. In other words, often the

164 7 Advanced Issues in Software Performance

horizontal transformations needs some input from the one-step-higher performance
model in the hierarchy, hence: CIPM → PIPM is a contribution to a PIM → PIPM
transformation and, likewise, PIPM → PSPM is a contribution to a PSM → PSPM
transformation.

Arrows with double empty peak also appear in Fig. 7.1 that represent the feed-
back paths originating from the performance analysis. They give completeness to
the software performance analysis process according to what described in Chap. 4.

For a more comprehensive presentation of the SPMDA framework, its extensions
and related approaches, please refer to [41–43].

7.2 Interpretation of Performance Analysis Results

As we have seen throughout the whole book, there are quite well-assessed tech-
niques to automatically generate performance models and solve them. As opposite,
there is still a clear lack of automation in porting the analysis results back to the
software model. In this section we briefly illustrate the open problems that are on
the ground and a possible approach to tackle part of these issues.

The performance indices obtained from the model solution, which are typically
represented by average values and/or distribution functions, have to be interpreted
in order to search, if any, performance problems. This type of search may be quite
complex and needs to be smartly driven toward the problematic areas of the model.
The complexity of this step stems from several factors: (i) performance indices are
basically numbers associated to model entities and often they have to be jointly
examined to let problems emerge; (ii) performance indices can be estimated at dif-
ferent levels of granularity and, as it is unrealistic to keep under control all indices
at all levels of abstraction, incomplete information often results from the model
evaluation; (iii) software models can be quite complex, they involve different char-
acteristics of a software system (such as static structure, dynamic behavior, etc.),
and performance problems sometimes appear only if those characteristics are cross-
checked.

Therefore the need of guidance in this searching process is clear enough. Strate-
gies to drive the search can rely on quite different elements that may depend on the
adopted model notation, on the application domain, on environmental constraints,
etc.

Once performance problems have been detected (with a certain accuracy) some-
where in the model, solutions have to be applied to remove those problems.1 Typi-
cal solutions consist in architectural alternatives, namely feedback, that modify the
original software model to achieve better performance. It is obvious that if all perfor-
mance requirements are satisfied then the feedback simply suggests that no changes
have to be made on the software model.

1Note that this task very closely corresponds to the work of a physician: observing a sick patient
(the model), studying the symptoms (some bad values of performance indices), making a diagnosis
(performance problem), prescribing a treatment (performance solution).

7.3 Performance-Based Software Reconfiguration 165

Figure 7.5 schematically represents the process executed, at a generic point of the
software lifecycle, to assess and (if needed) improve the performance of a software
system under development. Rounded boxes in the figure represent operational steps,
whereas square boxes represent input/output data. Vertical lines divide the process
in three different phases: in the modeling phase a software model is built; in the
analysis phase a performance model is obtained through model transformation, and
such a model is solved to obtain the performance indices of interest; in the refac-
toring phase the performance indices are interpreted and, if necessary, feedback is
generated as refactoring actions on the original software model.

The modeling and analysis phases represent the forward path from an (annotated)
software model to performance indices. In this path several approaches have been
introduced for model transformation (see, for example, [24]) and well-founded per-
formance model solvers have been developed (see, for example, [39]). Instead there
is a clear lack of automation in the backward path that elaborates the analysis re-
sults and brings back to the software model some form of feedback. The refactoring
phase in Fig. 7.5, whose main task is the result interpretation and feedback genera-
tion, embraces the localization of performance flaws in the software model and their
removal without violating design constraints.2 Such activities are today exclusively
based on the analysts’ experience, and therefore their effectiveness often suffers the
lack of automation.

Performance antipatterns represent a promising instrument to introduce automa-
tion in these activities. An antipattern is a well-known bad practice that should be
avoided to achieve a better design. A performance antipattern identifies a practice
that badly affects the software performance, and it may involve static and dynamic
aspects of software as well as deployment features. A performance antipattern defi-
nition includes, beside the problem description, a possible solution of the problem.
The main source of performance antipatterns is the work done over the last years by
Smith and Williams [111] that have ultimately defined a number of 14 notation- and
domain-independent antipatterns.

However, being this process unavoidably based on heuristic evaluations and de-
cisions, there is no guarantee that the feedback actually solves the problems. Hence
the analysis has to be performed again, starting from the updated software model
and ending up with new performance indices that shall confirm whether the perfor-
mance problems have been actually removed or not. Only after this validation the
software lifecycle can proceed. If the validation is unsuccessful the refactoring has
to be executed again and the whole process restarts.

7.3 Performance-Based Software Reconfiguration

Recently, growing attention focused on run-time management of Quality of Ser-
vice (QoS) of complex software systems. For software systems whose performance

2It is obvious that if all performance requirements are satisfied, then the feedback simply suggests
no change on the software model.

166 7 Advanced Issues in Software Performance

F
ig

.7
.5

So
ft

w
ar

e
pe

rf
or

m
an

ce
m

od
el

in
g

an
d

an
al

ys
is

pr
oc

es
s

7.3 Performance-Based Software Reconfiguration 167

requirements are strict, in addition to performance validation at design time, perfor-
mance attributes should be monitored during their execution, in order to react when
performance degradations are experienced.

In this context, self-adaptation of applications based on run-time monitoring and
dynamic reconfiguration is considered a useful technique to manage QoS in com-
plex systems. Many frameworks for dynamic reconfiguration have been recently
proposed for this aim (see, for example, [90]). These frameworks lay on monitoring,
reconfiguration and on-line model-based analysis to manage/negotiate QoS level of
software systems at run time. They share the idea of modifying the application con-
figuration when the threshold of a critical QoS index is crossed. The choice of the
new configuration for improving the QoS of the system is based on the current status
of the managed software application.

The automated and dynamic nature of the reconfiguration process imposes new
challenges to the decision step that aims at choosing the next system configuration
to overcome the observed problem. Most reconfiguration approaches use prefixed
strategies that are in general coded in the application or in the reconfiguration frame-
work. However, in QoS management a prefixed schema of decision can prevent the
implementation of smart alternatives more suitable to effectively overcome the ob-
served problems.

In this setting an interesting problem related to the approaches presented in the
previous chapters concerns the use of predictive analysis based on performance
models to support the decision step. These models may represent the application at
the architecture level of details. Indeed, the use of a software architecture as abstrac-
tion of the system under analysis allows avoiding unnecessary details and simplifies
the evaluation phase in terms of model complexity and resolution time.

The Performance Management Framework (PMF) is an example of system in
this category [38]. It monitors the current performance of the application and, when
some problem occurs, it chooses a new configuration based on the feedback pro-
vided by the on-line evaluation of the performance models corresponding to several
reconfiguration alternatives. The main characteristic of PMF is the mechanism to
generate such alternatives. Differently from other approaches it does not rely on a
fixed repository of predefined configurations but on a reconfiguration policy defined
as a suitable combination of basic reconfiguration rules. The reconfiguration policy
is evaluated on the data retrieved by the on-line monitoring (that represents a snap-
shot of the system current state), thus generating a number of new configurations.
Once such alternatives have been generated, the on-line evaluation is carried on to
predict which one is most suitable to solve the observed problem.

The use of predictive system performance models improves the reconfiguration
process. It allows the choice of the system reconfiguration alternative that guaran-
tees the performance constrains and shows, in the predictive analysis, better per-
formance. However, the run-time evaluation of predictive models representing the
software systems poses strong requirements on the models themselves as later dis-
cussed.

The PMF approach is based on monitoring the running system to collect data, on
dynamic reconfiguration to change the running configuration, and on model-based

168 7 Advanced Issues in Software Performance

Fig. 7.6 The performance management framework

performance analysis to decide the next system configuration among the available
ones.

Figure 7.6 outlines the PMF process and its flow of activities. PMF observes the
software application during its execution to monitor performance attributes of the
software application. Whenever the performance constraints are no longer satisfied,
the adaptation management process will start. The monitored data are evaluated in
order to identify the performance problem and the portion of the system affected
by it. Such information is used to plan changes in the system configuration in or-
der to overcome the observed problem. Whenever a new system configuration is
determined, the changes are enacted and the system configuration is modified ac-
cordingly.

In PMF the configuration alternatives are built on-the-fly by applying reconfig-
uration policies suitable for the application. The initial performance model is, in
general, specified by performance specialists. The next ones instead are generated
on-the-fly by modifying the current performance model during the evaluation of the
reconfiguration policies. Finally, the information collected during the monitoring
phase is used to evaluate the predictive performance model(s).

The description of the alternatives need to be simple in order to reduce the over-
head of the model generation and evaluation, and, hence, of the decision step. This

7.3 Performance-Based Software Reconfiguration 169

simplification may impact on the accuracy of the measured performance indices,
but the evaluation should be accurate enough for the choice of the reconfiguration
alternative. The intuition here is that all the alternatives are represented at the same
level of abstraction and the actual data are observed through the same abstractions
thus providing a uniform workbench to consistently evaluate different alternatives.
In [38] this intuition is confirmed by an empirical experimentation that showed that
the chosen alternative was indeed the best among the generated ones.

In the following some of the PMF assumptions on allowed reconfigurations and
critical issues are discussed. However, for a more comprehensive presentation of
PMF and related approaches, please refer to [38].

7.3.1 Allowed Reconfigurations

In PMF the allowed reconfigurations are of two kinds: they may change internal
parameters of software components (such as the number of threads or other features
preventively defined by the component developer); the application topology may
change by adding/removing component and/or connector instances. In contrast a
reconfiguration must not change the application functionalities (e.g. the substitution
of a component with a new one providing different services). This restriction is
necessary since a change in the application behavior would imply a re-design of the
performance model, and not only a change in its topology or in some parameters.
Consequently the reconfiguration process could not be automatically carried out.

To relax this restriction, the framework should rely on a database containing sev-
eral different implementations of a component together with their performance mod-
els. When the reconfiguration policy requires the substitution of an implementation
of a component, the adaptation of the performance model is done by replacing the
sub-model of the first implementation with the one of the new implementation re-
trieved from the database.

7.3.2 Issues to Address

PMF requires several issues to be taken into account to guarantee the correctness
of the process and its efficiency. These are related to the data to collect, the con-
dition triggering the system reconfiguration and the reconfiguration alternatives to
consider, the performance model to use, the technique for its evaluation and the
mechanism to choose the next system configuration.

Relevant Data to Collect

Performance models are parameterized by means of monitored data. Such data are
collected from the running system and are used to feed the performance model of

170 7 Advanced Issues in Software Performance

the system described at the software architecture level. This means that the collected
data are more fine-grained than the performance model parameters, thus an abstrac-
tion step is needed. The system analyst, who decides which data to monitor, has to
be able to identify the proper data abstractions to feed them back to the performance
model.

When Should the Reconfiguration Be Performed?

The condition under which the adaptation process should start is a very critical is-
sue in run-time management. It influences the execution frequency of the recon-
figuration loop. Conditions that are verified too often lead to a high overhead: the
management framework can consume more resources than the application itself.
Conversely, conditions that rarely trigger the reconfiguration can prevent a timely
management of performance problems.

The critical issue here is to determine the best tradeoff between computational
overhead and timely resolution of performance problem.

Which Performance Model to Use?

Performance models have to be modified and evaluated on-line. These characteris-
tics pose requirements on the models themselves. The choice of a suitable perfor-
mance model of the system becomes one of the most important and critical step in
the implementation of the adaptation management process. On one side (i) models
must be as flexible as possible to be automatically changed according to the recon-
figuration policy; on the other side (ii) models should allow for their analysis on-the-
fly. These two characteristics might be incompatible. As a matter of fact, (i) requires
detailed models which permit to apply changes, such as re-parameterization accord-
ing to the measurements done on the system or modification in terms of their topol-
ogy, in order to reflect the new system configuration. (ii) requires models which have
a short time of execution. This implies that only models having analytical/numerical
solution are admissible.

The challenge here is to design performance models expressive enough to de-
scribe sensible different alternatives with respect to performance behavior, but still
having numerical/analytical solution.

On-Line Evaluation

In order to control the state space explosion of the analytical/numerical solution the
model of the system should be as expressive as possible, by omitting useless details
about components behavior. The choice of the software architectural abstraction for
the application behavior description permits to address this problem. The software
architecture is the minimal detailed description of the application having all the

7.4 A Unifying Ontology for Software Performance 171

behavioral information needed to carry on a predictive performance analysis, and it
allows lightweight and fast model evaluation. Of course, there is a tradeoff between
the simplicity of the model and the support of the feedback provided for on-line
decision making.

How Is the Decision on the Next Configuration Taken?

In order to be effective, the reconfiguration process must actually improve the per-
formance of the managed system. Indeed, complex systems must address several
non-functional requirements. The risk of having a degradation of some other non-
functional property (e.g., security) related to the reconfiguration is avoided by al-
lowing only a controlled set of configuration alternatives, which are decided by the
developer according to the risks associated with the reconfiguration. Moreover, at
each reconfiguration step, the costs to place the system in the new selected config-
uration, should be considered during the selection. This can be achieved by com-
bining the result of the model evaluation provided by the solver with a coefficient
representing the cost of the reconfiguration process.

7.4 A Unifying Ontology for Software Performance

The approaches to software performance modeling and validation surveyed in
Chap. 5 share the idea of annotating software models with information related to
performance (e.g. the operational profile), and transforming the annotated model
into a performance model (e.g. a Stochastic Petri Net). Up to date, no standard has
been defined to represent the information related to performance in software arti-
facts, although clear advantages in tool interoperability and model transformations
would stem from it.

This section discusses the possibility of determining a software performance on-
tology, that is: a common set of basic recurring concepts and relations, to relate the
different vocabularies for performance data used in different approaches. The bene-
fits of having a common ontology in this field would allow for tool interoperability
in two directions: the same performance model could be much more easily solved
from different solver tools (i.e. horizontal interoperability), and the tools transform-
ing software models into performance models could rely on a common terminol-
ogy (i.e. vertical interoperability). The software performance discipline includes
additional concepts like performance measurement, monitoring, management, and
workload generation. This section focuses on software performance modeling as-
pects and does not address these concepts, even though in a broader ontological
study of performance they shall enter into the picture.

The key step to move toward the definition of an ontology is to devise the pri-
mary entities, and their relations, necessary to represent the software performance
domain. To this end, we consider three relevant experiences aimed at standardizing
the vocabulary of software performance experts, that is:

172 7 Advanced Issues in Software Performance

UML Profile for Schedulability, Performance and Time (SPT) [85], adopted from
OMG to represent in UML, among other, performance data and partially intro-
duced in Chap. 33;
Core Scenario Model (CSM) [91], that is: a meta-model developed from the
Real-Time and Distributed Systems Group at Carleton University to integrate
performance annotations into software models;
Software Performance Engineering meta-model (SPE-MM), due to the joint ef-
fort of C. Smith, L.Williams and C. Llado [107, 120], which defines entities and
relationships useful to build Software Execution Models and System Execution
Models [106].

It is interesting to observe that the SPT, CSM and SPE-MM experiences were
developed in different environments, namely a company/university consortium, a
university research group and a company. They all share the goal of defining perfor-
mance data in a standard way.

Another recent experience in this direction has been introduced in [61], where
KLAPER (Kernel LAnguage for PErformance and Reliability analysis) has been
fully described. The scope of KLAPER is even larger than the ones considered here,
but for the sake of readability we keep the discussions focused on the three above
meta-models.

In this section we first describe the three meta-models, then we introduce a
bottom–up approach to extract common knowledge from the meta-models, finally
we propose questions that should drive a top–down approach to the ontology defi-
nition.

The three meta-models described in Sect. 7.4.1 have been originated by the need
of unambiguously representing software performance concepts and relations. In this
section we move a further step in this direction. We try to both distill their common
knowledge and to identify different non-shared concepts, i.e. entities that do not ap-
pear in all the meta-models. No attempt to make a “qualitative” comparison among
the three meta-models is intended. Based on the results of this bottom–up process,
we devise some guidelines to drive a top–down process to the ontology definition
that starts from the intrinsic perception that an expert has of the software perfor-
mance domain.

7.4.1 Three Meta-models for Software Performance

SPT, CSM and SPE-MM are here described by partitioning their entities in three
areas. The entities representing the software dynamics fall into the sw-behavior area,
the ones representing resource aspects fall into the resources area, and workload
entities into the workload area. Some entities cannot be uniquely classified. They
are highlighted in the pictures in shaded areas and will be discussed in Sect. 7.4.2.

3Note that SPT profile has been replaced, in the UML 2 framework, by MARTE [88]. However,
for the sake of this section SPT remains a valid example to discuss a performance ontology.

7.4 A Unifying Ontology for Software Performance 173

Fig. 7.7 The performance domain model in SPT

The choice of these basic ontological grouping relies on two considerations:
(i) workload, software model and platform architecture have always been the found-
ing element of a software performance model, (ii) the study of the three meta-models
has confirmed such natural partition. The existence of entities in shaded areas evi-
dences that these elements are not uniquely separable in the devised areas.

SPT Profile

The UML Profile for Schedulability, Performance and Time (namely SPT) has been
adopted as a full specification in September 2003 [85].4 It is an extensive document
that introduces UML extensions for managing typical issues of real-time applica-
tions. The tags and stereotypes defined in SPT have been widely used, in the last few
years, to annotate UML models and translate them into performance models [24].

SPT is partitioned in five main sections including a Performance Modeling one.
In the latter all the entities related to performance issues are defined as stereotypes
and tags. Some of them inherit from stereotypes belonging to the General Resource
Modeling section.

Figure 7.7 shows the performance domain model of SPT, where the entities have
been grouped following the three areas introduced above.

The software dynamics (i.e. the sw-behavior area) is based on a PScenario stereo-
type, which represents the system response to a, possibly external, event. A scenario
can be described through an ordered sequence of steps. Each step is represented by
an instance of the PStep stereotype. PScenario and PStep have attributes to model
performance aspects of the software dynamics, such as step probability and scenario
response time.

4For details about specific stereotypes of SPT, please refer to Chap. 3 of this book.

174 7 Advanced Issues in Software Performance

Fig. 7.8 The CSM meta-model

The resource definition (i.e. the resources area) is based on inheritance relations
from entities in the General Resource Modeling section of the profile. All the re-
sources share attributes like utilization and scheduling policy. Processing resources
have attributes like processing rate and context switching time. Passive resources
are accessed during the execution of an operation and are protected by an access
mechanism. They have attributes like capacity and access time.

Workloads share the response time and the priority attributes, and they are split
into closed and open workloads (see the workload area).

Core Scenario Model Meta-model

The Core Scenario Model (CSM) is an effort of the Real-Time and Distributed Sys-
tems Group at Carleton University to create a standard interface between different
software specification tools and different performance models. This work is part of a
wider project aimed at developing a unified approach to building performance mod-
els from design models [6]. CSM originates from the performance domain model
of SPT. It makes explicit some information which has to be inferred from UML and
SPT data, thus extending its scope to represent models beyond UML [6, 91].

7.4 A Unifying Ontology for Software Performance 175

Figure 7.8 shows the CSM meta-model, where the entities have been grouped in
the three areas.

The roles of scenario and step within the sw-behavior area are very similar to the
ones of SPT. Start and End steps are introduced to define the limits of a scenario. The
sequencing of steps is made explicit by introducing five types of path connections
with optional attributes like a condition and the reference to a message (i.e. the
entities between Sequence and Join in the bottommost side of Fig. 7.8).

The shaded areas in sw-behavior emphasize three entities. Message, which mod-
els a potential interaction taking place between two contiguous steps, whose at-
tributes are the interaction type (i.e. none, synchronous, asynchronous, reply), the
size of message exchanged, and an optional multiplicity. Resource Acquire and Re-
source Release, which represent special types of steps modeling the acquisition and
release of both passive and active resources (i.e. they are placeholders in the step
sequence).

In the resource area, beside the classical distinction between active and passive
resources, an External Service entity has been introduced. It models service op-
erations executed by active resources (or subsystems) not included in the design
document. The shaded area emphasizes the Component class. It models the operat-
ing system process that, on one side, is the dynamic image of a specific step and, on
the other side, is hosted by a Processing Resource (see the dashed arrowed lines in
Fig. 7.8).

All the information about the system workload are lumped into the Workload
entity, which is the only one within the workload area.

Software Performance Engineering Meta-model

Software Performance Engineering has been shortly introduced in Chap. 1. The cen-
tral idea is the separation of the Software Execution Model (SoEM, i.e. the software
dynamics and load model, based on Execution Graphs) and the System Execution
Model (SyEM, i.e. the platform architecture model, based on Queueing Networks).
The population of a Queueing Network (i.e. classes and chains of jobs) is obtained
from the processing of one or more Execution Graphs.

Since then, some effort has been spent to formalize meta-models on the top of
SoEM and SyEM [107, 109, 120].5

Figures 7.9 and 7.10 represent the meta-models of SoEM and SyEM, respec-
tively, where the entities have been grouped following the three areas. It is evident
that Fig. 7.9 mostly represents the sw-behavior area, whereas Fig. 7.10 represents
the other two areas.

Figure 7.9 is the definition of a scenario through an Execution Graph. Three
types of nodes have been defined: Processing Node, which can be either a basic

5Work is still in progress in this direction, but for the sake of this section we take the Software
Execution Model meta-model in [120] and the System Execution Model meta-model in [107] as
references.

176 7 Advanced Issues in Software Performance

Fig. 7.9 SPE-MM: the software execution model definition

indivisible operation, or a sub-Execution Graph, or a link to an external scenario;
State Identification Node (shaded in the figure, and discussed in Sect. 7.4.2), used
for acquiring and releasing shared resources; Compound Node, which represents a
node ruling special sequencing of nodes, such as loop, fork, etc. The left-hand side
of the meta-model contains the entities that model the mapping of the software onto
the hardware platform. Node resource requirements are defined and then translated
(through an Overhead Matrix, shaded entity) into the actual load of the hardware
platform. A reference to the latter is given by the Device entity, listing the types
and multiplicities of devices in the hardware platform, and therefore placed in the
resources area of SoEM in Fig. 7.9.

Figure 7.10 shows the meta-model that represents a Queueing Network (QN)
and its load. The semantics given to a QN is such that a node of the network rep-
resents a device of the hardware platform where the software runs. Various types
of (QN) nodes are defined in the resources area, and arcs between nodes are also
introduced. In the workload area, besides the classical distinction between closed
and open workload, entities, in the shaded zone, are introduced to refine the concept
of service request, and they will be discussed in the next section.

7.4 A Unifying Ontology for Software Performance 177

Fig. 7.10 SPE-MM: the system execution model definition

7.4.2 Building an Ontology from Common Entities: A Bottom–Up
Approach

In this section the shared concepts among the three meta-models (i.e. SPT, CSM and
SPE-MM) are analyzed by considering the sw-behavior, resources, and workload
areas.

Sw-behavior

In this area, scenario and step, with a scenario made of a collection of steps are the
shared core entities.

Even though in different ways, in all the meta-models a scenario relates to the
workload area. In SPT multiple types of workload can be associated to a scenario,
in CSM a scenario is associated to a workload through its starting step, in SPE-MM
they are linked by a more complex mechanism.6

In SPT a scenario also relates to the resources through deployment and utilization
associations. Differently, in the other two meta-models each single step (i.e. Step
in CSM and Node in SPE-MM) relates to the resources: in CSM it is associated to
Active Resource, whereas in SPE-MM to Device through the Resource Requirement

6The synthesis of an Execution Graph, or part of it (depending on the level of detail of the analysis),
determines a workload that is assigned to the Queueing Network Model [106].

178 7 Advanced Issues in Software Performance

entity. In CSM a step is also associated to the Component entity, and this will be
discussed in Sect. 7.4.2.

CSM and SPE-MM provide a much deeper detail on the step representation than
SPT. Special types of step connections are introduced in CSM (other than Sequence)
to represent complex software behaviors: Branch, Merge, Fork and Join. Similarly,
in SPE-MM, even though each pair of nodes is connected through an arc, special
types of nodes allow complex software behaviors: Repetition, Case, Pardo, Split. In
SPE-MM two additional special types of nodes allow a node to refer to an external
scenario (i.e. Link Node) or to an internal sub-scenario (i.e. Expanded Node).

The shaded areas introduced in Figs. 7.8 and 7.9, require further comments.
The State Identification Node entity in SPE-MM represents acquire and release

operations on resources, which in CSM are represented by the pair of shaded entities
on the right-hand side of Fig. 7.8. In SPE-MM the Overhead Matrix entity has also
been shaded.

The Message entity in CSM represents the type, size and multiplicity of messages
exchanged between system nodes. This concept was formerly introduced in [45],
where arrows of UML sequence diagrams were annotated with size and type of
messages exchanged during the interactions.

This analysis of the sw-behavior areas can be summarized as follows:

• A scenario is always a collection of steps.
• A scenario is always associated to workload, sometimes to multiple workload

(i.e., SPT and SPE-MM) and sometimes to single workload (i.e., CSM).
• A step is often associated to resources (i.e., in CSM and SPE-MM), so the re-

source demand is defined at a scenario level only in SPT.
• Special steps are often defined (i.e., in CSM and SPE-MM), and the following

correspondences hold: Case Node in SPE-MM ↔ Branch and Merge in CSM,
Pardo Node in SPE-MM ↔ Fork and Join in CSM, Split Node in SPE-MM ↔
Fork (alone) in CSM.

• Expanded and Link Nodes in SPE-MM allow a wider variety of scenario nesting
with respect to SPT and CSM.

• A Message in CSM allows to describe in wider detail the characteristics of an
interaction between system nodes.

Resources

First the SPT and CSM resource areas are analyzed, then the SPE-MM one is dis-
cussed. SPE-MM gives a special organization to the resource area (see Fig. 7.10)
due to the strong relation of this meta-model with Queueing Networks.

The resource area of SPT corresponds to a subset of the CSM resource area, as
follows: PResource in SPT ↔ General Resource in CSM, PPassiveResource in SPT
↔ Passive Resource in CSM, PProcessingResource in SPT ↔ Processing Resource
in CSM. The associations do not change, except for the introduction of a placeholder
class in CSM, namely Active Resource, which allows one to distinguish between an
internal processing resource and an external processing resource represented by the

7.4 A Unifying Ontology for Software Performance 179

External Service entity. The latter represents the possibility of requiring a resource
outside the modeled system.

It has been already discussed in Sect. 7.4.2 the different relations between the
resource area and the sw-behavior area in SPT with respect to CSM and SPE-MM.
Indeed, the former meta-model acts at a scenario level, whereas the latter ones act
at a step level.

The Component entity in CSM is shaded in Fig. 7.8. In its original definition it
identifies an operating system process (or thread) that is assigned to a step to be ex-
ecuted on a processing resource. This entity can be very relevant in the performance
validation of a software system, as often the number of threads on a certain host is
one of the main parameters of the system scalability. Composition-related issues of
a software performance ontology are discussed in Sect. 7.4.3.

The resource area of SPE-MM cannot be closely compared to the ones of the
other two meta-models, as it is founded on Queueing Network principles. The en-
tities in the right-hand side of Fig. 7.10 are used to represent the topology of a
Queueing Network (i.e. through arc connections), different types of service cen-
ters (e.g. server nodes), and the routing matrix (i.e. the Transit entity over the node
connections).

The analysis of the resource areas can be summarized as follows:

• Resources are partitioned in SPT and CSM in passive resources and active re-
sources.

• External Service and Component entities in CSM are useful to represent, respec-
tively, the usage of external resources and a sort of middle layer between a pro-
cedural step and the processing resource that executes it.

• The special organization of SPE-MM allows us to provide more details of the un-
derlying platform, but it shall be generalized to represent other types of platform
models.

Workload

The definition of workload is basically the same all over the three meta-models.
A workload can be open or closed, even though this distinction is hidden in the
Workload attributes in CSM. Common attributes to describe, for example, the arrival
process and the population size of each workload type are introduced in all meta-
models. Thus, except for the different association with the sw-behavior area (see
Sect. 7.4.2), the only difference in the workload definition across the meta-models
is in the Service Request entity of SPE-MM.

The analysis of the workload areas can be summarized as follows:

• The system workload is always characterized as either close workload or open
workload (depending on whether the population size is fixed or not).

• The workload is always associated to a software scenario or sub-scenario.

180 7 Advanced Issues in Software Performance

7.4.3 Expressiveness Issues: A Top–Down Process

In this section a top–down approach to determine a “wish-list” of requirements for
a common software performance ontology is presented. Each requirement is then
considered in reference to the three considered meta-models.

A software performance ontology should be able to represent the results of the
performance analysis.

The performance results obtained from the analysis should be unambiguously
expressed, independently of the type of model and the model solution adopted to
obtain them, so that they can be reported on the software model to identify bot-
tlenecks and possible design alternatives. To (partially) address this requirement in
SPT there are entities to explicitly represent the performance indices of interest (e.g.
response time, utilization) as well as their mathematical representation (e.g. mean
value, cumulative distribution, percentile). Both CSM and SPE-MM do not cope
with the representation of performance indices, as they adopt the internal represen-
tations of their respective tools [7, 52] to handle the analysis results.

A crucial step in this direction is the “interpretation” of the performance analysis.
This leads to two questions: (i) how to relate performance results (i.e. response time,
utilization, etc.) to recommendations to provide software engineers with?; (ii) what
are the concepts (and relations) needed to express this piece of information in the
software performance ontology?

A software performance ontology should cope with as many performance for-
malisms as possible. The considered meta-models meet to a different extent this
requirement. The translation of UML models annotated with SPT tags and stereo-
types into models based on different performance notations has been extensively ex-
perimented and validated [24]; CSM-based models have appeared quite recently and
some experience has been gained to translate them into Layered Queueing Networks
and Stochastic Petri Nets [6]; SPE-MM-based models are quite strongly oriented to
represent Queueing Networks.

A software performance ontology should allow easy integration of a software
model with performance annotations. Despite the present predominance of the use
of UML software models, as described in Chap. 2 many software modeling nota-
tions can be used. Among the three meta-models probably SPT shows the main
drawbacks with regard to the ability to cope with various software notations, be-
cause it has been conceived as an UML profile. Also SPE-MM is fairly linked to
the Execution Graphs representation, so preventing from easily annotating different
types of software models. CSM is an attempt to abstract from a specific notation,
even though the usage examples provided up to now are bounded to UML models.

A software performance ontology should be compatible with the internal repre-
sentations of existing performance tools. This is a requirement aiming at reuse as
performance experts are not prone to change their consolidated practice. Two out of
three meta-models, namely CSM and SPE-MM, have been created in the same en-
vironments where performance solver tools had previously been created. Therefore
the characteristics of these tools, i.e. LQNS [52] and SPEED [7], respectively, affect

7.4 A Unifying Ontology for Software Performance 181

the choices of the authors of these meta-models. The SPT authors, instead, worked
in more freedom as no specific model solver was created for UML models.

A software performance ontology should deal with component-based software
development. This is a very important requirement in the present, component-
oriented, software world. Software composition is a well-studied aspect from a func-
tional viewpoint, whereas composition of non-functional properties, such as perfor-
mance, is still an open issue. Providing tools to represent this aspect is a subtle but
crucial characteristic of an ontology in this area. SPT suffers the fact that compo-
nents are not uniquely defined in UML 1.x. Similarly in SPE-MM Execution Graphs
are better suited to represent the functionalities of a software system rather than of
its software components. A great potential has been introduced in CSM thanks to
the Component entity. Although its scope is quite limited, it seems to be a promising
starting point to deal with questions like “Can the system performance be modeled
starting from the performance of its components?”.

References

1. C++SIM. http://cxxsim.ncl.ac.uk/
2. CSIM-performance simulator. http://www.atl.imco.com/proj/csim
3. Jane Hillston’s notes of lectures: Private communication
4. JavaSim. http://javasim.ncl.ac.uk/
5. Petri Nets tools database. http://www.daimi.aau.dk/PetriNets
6. PUMA project. www.sce.carleton.ca/rads/puma/
7. SPEED performance modeling tool. http://www.perfeng.com/sped.htm
8. The Perl programming language. http://www.perl.org/
9. ObjecTime Ltd.: Developer 5.1 Reference Manual. ObjecTime Ltd. (1998)

10. OPNET Manuals: Mil 3, Inc. (1999)
11. Ajmone, M., Balbo, G., Conte, G.: A class of generalised stochastic petri nets for the per-

formance evaluation of multiprocessor systems. ACM Transactions on Computer Systems 2,
93–122 (1984)

12. Ajmone, M., Balbo, G., Conte, G.: Performance Models of Multiprocessor Performance. The
MIT Press, Cambridge (1986)

13. Aquilani, F., Balsamo, S., Inverardi, P.: Performance analysis at the software architecture
design level. Performance Evaluation 45(4), 205–221 (2001)

14. ArgoUML: Object-oriented design tool with cognitive support
15. Arief, L.B., Speirs, N.A.: A UML tool for an automatic generation of simulation pro-

grams. In: Proceedings of the Second International Workshop on Software and Performance,
WOSP00, September 2000, pp. 71–76 (2000)

16. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Transactions on Dependable and Secure Computing
1(1), 11–33 (2004)

17. Baccelli, F., Balbo, G., Boucherie, R.J., Campos, J.J., Chiola, G.: Annotated bibliography on
stochastic petri nets. In: Tract, C. (ed.) Performance Evaluation of Parallel and Distributed
Systems-Solution Methods, Amsterdam, 1994, pp. 1–24 (1994)

18. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press, Cambridge
(1990)

19. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.): Validation of
Stochastic Systems – A Guide to Current Research. Lecture Notes in Computer Science,
vol. 2925. Springer, Berlin (2004)

20. Balbo, G., Bruell, S., Ghanta, S.: Combining queueing networks and generalized stochastic
petri nets for the solution of complex models of system behavior. IEEE Transactions on
Computers 37, 1251–1268 (1988)

21. Balsamo, S., Bernardo, M., Simeoni, M.: Combining stochastic process algebras and queue-
ing networks for software architecture analysis. In: Proceedings of the Third International
Workshop on Software and Performance, WOSP02, pp. 190–202 (2002)

V. Cortellessa et al., Model-Based Software Performance Analysis,
DOI 10.1007/978-3-642-13621-4, © Springer-Verlag Berlin Heidelberg 2011

183

http://cxxsim.ncl.ac.uk/
http://www.atl.imco.com/proj/csim
http://javasim.ncl.ac.uk/
http://www.daimi.aau.dk/PetriNets
http://www.sce.carleton.ca/rads/puma/
http://www.perfeng.com/sped.htm
http://www.perl.org/
http://dx.doi.org/10.1007/978-3-642-13621-4

184 References

22. Balsamo, S., De Nitto Persone, V., Inverardi, P.: A review on queueing network models
with finite capacity queues for software architectures performance prediction. Perform. Eval.
51(2/4), 269–288 (2003)

23. Balsamo, S., De Nitto Personé, V., Onvural, R.: Analysis of Queueing Networks with Block-
ing. Kluwer Academic Publishers, Dordrecht (2001)

24. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction
in software development: A survey. IEEE Transactions of Software Engineering 30(5), 295–
310 (2004)

25. Balsamo, S., Donatiello, L., van Dijk, N.: Bounded performance analysis of parallel process-
ing systems. IEEE Transactions on Parallel and Distributed Systems 9, 1041–1056 (1998)

26. Balsamo, S., Marzolla, M.: A simulation-based approach to software performance modeling.
In: Inverardi, P. (ed.) Proc. Joint 9th European Software Engineering Conference (ESEC) &
11th SIGSOFT Symposium on the Foundations of Software Engineering (FSE-11), Helsinki,
FI, September 1–5, 2003. ACM Press, New York (2003)

27. Balsamo, S., Marzolla, M.: Towards performance evaluation of mobile systems in UML. In:
di Martino, B., Yang, L.T., Bobenau, C. (eds.) Proc. of the European Simulation and Mod-
elling Conference (ESMc’03), EUROSIS-ETI, Naples, Italy, October 27–29, 2003, pp. 61–
68 (2003)

28. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simulation. Pear-
son Prentice Hall, Upper Saddle River (2004)

29. Beilner, H., Matter, J., Wysocki, C.: The hierarchical evaluation tool HIT. In: Proceedings of
the International Conference on Modelling Techniques and Tools for Computer Performance
Evaluation, Wien, 1994

30. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and statecharts to
analysable petri net models. In: Proceedings of the Third International Workshop on Software
and Performance (WOSP02), July 2002, pp. 35–45 (2002)

31. Bernardo, M.: TwoTowers 2.0 user manual. http://www.sti.uniurb.it/bernardo/twotowers
(2002)

32. Bernardo, M.: Twotowers 3.0: Enhancing usability. In: Proc. of the 11th IEEE/ACM Int.
Symp. on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
Orlando, FL, pp. 188–193 (2003)

33. Bernardo, M., Bravetti, M.: Performance measurement sensitive congruences for Markovian
process algebras. Theoretical Computer Science 290, 117–160 (2003)

34. Bertolino, A., Mirandola, R.: Towards component-based software performance engineering.
In: Proc. 6th Workshop on Component-Based Software Engineering: Automated Reasoning
and Prediction, ACM/IEEE 25th International Conference on Software Engineering ICSE
2003, Portland, Oregon, USA, pp. 1–6 (2003)

35. Bertolino, A., Mirandola, R.: CB-SPE tool: Putting component-based performance engineer-
ing into practice. In: CBSE, pp. 233–248 (2004)

36. Bézivin, J.: On the unification power of models. Software and System Modeling 4(2), 171–
188 (2005)

37. Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.): Lectures on Formal Methods and Per-
formance Analysis, First EEF/Euro Summer School on Trends in Computer Science, The
Netherlands, 2001. Lecture Notes in Computer Science, vol. 2090. Springer, Berlin (2001)

38. Caporuscio, M., Di Marco, A., Inverardi, P.: Model-based system reconfiguration for dy-
namic performance management. Journal of Systems and Software 80(4), 455–473 (2007)

39. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: Greatspn 1.7: Graphical editor and
analyzer for timed and stochastic petri nets. Perform. Eval. 24(1–2), 47–68 (1995)

40. Coe, P.S., Howell, F.W., Ibbett, R.N., Williams, L.M.: Technical note: a hierarchical com-
puter architecture design and simulation environment. ACM Transactions on Modelling and
Computer Simulation 8(4), 431–446 (1998)

41. Cortellessa, V., Di Marco, A., Inverardi, P.: Software performance model-driven architecture.
In: Proceedings of ACM Symposium on Applied Computing (SAC), pp. 1218–1223 (2006)

http://www.sti.uniurb.it/bernardo/twotowers

References 185

42. Cortellessa, V., Di Marco, A., Inverardi, P.: Integrating performance and reliability analysis
in a non-functional mda framework. In: Proceedings of the 10th International Conference on
Fundamental Approaches to Software Engineering (FASE 2007), pp. 57–71 (2007)

43. Cortellessa, V., Di Marco, A., Inverardi, P.: Non-functional modeling and validation in
model-driven architecture. In: Proc. of 6th Working IEEE/IFIP Conf. on Software Archi-
tecture (WICSA 2007), p. 25 (2007)

44. Cortellessa, V., Iazeolla, G., Mirandola, R.: Early generation of performance models for
object-oriented systems. IEE Proceedings-Software 147(3), 61–72 (2000)

45. Cortellessa, V., Mirandola, R.: PRIMA-UML: a performance validation incremental method-
ology on early UML diagrams. Science of Computer Programming 44(1) (2002)

46. De Miguel, M., Lambolais, T., Hannouz, M., Betgé-Brezetz, S., Piekarec, S.: UML exten-
sions for the specification and evaluation of latency constraints in architectural models. In:
Proceedings of the Second International Workshop on Software and Performance (WOSP00),
September 2000, pp. 83–880 (2000)

47. Di Marco, A.: Model-based performance analysis of software architectures. PhD thesis, Di-
partimento di Informatica, Università degli Studi de L’Aquila, L’Aquila, Italy (2005)

48. Di Marco, A., Inverardi, P.: Compositional generation of software architecture performance
qn models. In: Fourth Working IEEE/IFIP Conference on Software Architecture (WICSA),
pp. 37–46 (2004)

49. Doob, J.L.: Stochastic Processes. John Wiley and Sons, New York (1953)
50. Ephraim, Y., Merhav, N.: Hidden Markov processes. IEEE Transactions on Information The-

ory 48(6), 1518–1569 (2002)
51. Eriksson, H.E., Penker, M., Lyons, B., Fado, D.: UML 2 Toolkit. Wiley, New York (2004)
52. Franks, G., Hubbard, A., Majumdar, S., Petriu, D.C., Rolia, J., Woodside, C.M.: A toolset for

performance engineering and software design of client-server systems. Performance Evalua-
tion 24(1–2), 117–135 (1995)

53. Franks, G., Maly, P., Woodside, M., Petriu, D.C., Hubbard, A.: Layered queueing network
solver and simulator user manual. http://www.sce.carleton.ca/rads/lqns/LQNSUserMan.pdf
(2005)

54. Franks, R., Woodside, C.M.: Performance of multi-level client-server systems with parallel
service operations. In: ACM Proceedings of the First Workshop on Software and Perfor-
mance (WOSP98), Santa Fe, New Mexico, pp. 120–130 (1998)

55. Booch, G., Rumbaugh, I.J.: The Unified Modeling Language User Guide. Addison-Wesley,
Reading (1999)

56. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering. Prentice
Hall PTR, Upper Saddle River (2002).

57. Gilmore, S., Hillston, J.: The PEPA workbench: a tool to support a process algebra-based
approach to performance modelling. In: Proceedings of the 7th International Conference
on Modelling Techniques and Tools for Performance Evaluation, vol. 794, pp. 353–368.
Springer, Berlin (1994)

58. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML.
Addison-Wesley, Reading (2000)

59. Gómez-Martínez, E., Merseguer, J.: ArgoSPE: model-based software performance engineer-
ing. In: Donatelli, S., Thiagarajan, P.S. (eds.) Petri Nets and Other Models of Concurrency –
27th International Conference on Applications and Theory of Petri Nets and Other Models
of Concurrency (ICATPN 2006), Turku, Finland, 2006. Lecture Notes in Computer Science,
vol. 4024, pp. 401–410. Springer, Berlin (2006)

60. Grassi, V., Mirandola, R.: PRIMAmob-UML: A methodology for performance analysis of
mobile software architectures. In: Proceedings of the Third International Workshop on Soft-
ware and Performance (WOSP02), Rome, Italy, July 2002, pp. 262–274 (2002)

61. Grassi, V., Mirandola, R., Randazzo, E., Sabetta, A.: KLAPER: an intermediate language for
model-driven predictive analysis of performance and reliability. In: CoCoME – The Com-
mon Component Modeling Example: Comparing Software Component Models, Dagstuhl
Research Seminar for CoCoME, August 1–3, 2007. Lecture Notes in Computer Science,
vol. 5153, pp. 327–356. Springer, Berlin (2008)

http://www.sce.carleton.ca/rads/lqns/LQNSUserMan.pdf

186 References

62. Gu, G., Petriu, D.C.: XSLT transformation from UML models to LQN performance mod-
els. In: Proceedings of the Third International Workshop on Software and Performance
(WOSP02), Rome, Italy, July 2002, pp. 227–234 (2002)

63. Gu, G.P., Petriu, D.C.: From UML to LQN by XML algebra-based model transformations.
In: Proceedings of the Fifth ACM Workshop on Software and Performance (WOSP 2005),
pp. 99–110 (2005)

64. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Pro-
gramming 8(3), 231–274 (1987)

65. Harreld, H.: NASA delays satellite launch after finding bugs in software program. In: Federal
Computer Week, 1998

66. Harrison, P.G., Hillston, J.: Exploiting quasi-reversible structures in Markovian process al-
gebra models. Computer Journal 38(7), 510–520 (1995)

67. Hermanns, H., Herzog, U., Katoen, J.P.: Process algebra for performance evaluation. Theo-
retical Computer Science 274(1–2), 43–87 (2002)

68. Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M.: Compositional performance modelling
with the TIPPtool. Performance Evaluation 39(1–4), 5–35 (2000)

69. Hillston, J.: PEPA – performance enhanced process algebra. Technical report, Dept. of Com-
puter Science, University of Edinburgh (1993)

70. Hillston, J., Pooley, R.: Stochastic process algebras and their application to performance
modelling. In: Proc. of TOOLS’98 Tutorials, 1998

71. Hillston, J., Thomas, N.: Product form solution for a class of PEPA models. Performance
Evaluation 35(3), 171–192 (1999)

72. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, London
(1985)

73. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computa-
tions. Addison-Wesley, Reading (1979)

74. Kant, K.: Introduction to Computer System Performance Evaluation. McGraw-Hill, New
York (1992)

75. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, New York (1976)
76. Kleinrock, L.: Queueing Systems, vol. 1: Theory. Wiley, New York (1975)
77. Kouvatsos, D.D., Balsamo, S.: Queueing networks with blocking. Perform. Eval. 51(2/4),

79–81 (2003)
78. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley, Reading

(2004)
79. Lazowska, E.D., Kahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System Perfor-

mance: Computer System Analysis Using Queueing Network Models. Prentice-Hall, En-
glewood Cliffs (1984)

80. Liu, X., Shenoy, P.J., Corner, M.D.: Chameleon: Application-level power management. IEEE
Trans. Mob. Comput. 7(8), 995–1010 (2008)

81. López-Grao, J.P., Merseguer, J., Campos, J.: From UML activity diagrams to Stochastic Petri
nets: application to software performance engineering. In: WOSP ’04: Proceedings of the
Fourth International Workshop on Software and Performance, New York, NY, USA, 2004,
pp. 25–36. ACM Press, New York (2004). doi:10.1145/974044.974048

82. Marzolla, M.: Simulation-based performance modeling of UML software architectures. PhD
Thesis TD-2004-1, Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Mestre,
Italy (February 2004)

83. Miller, J. (ed.): Model-Driven Architecture Guide. omg/2003-06-01 (2003)
84. Milner, R.: Communication and Concurrency. International Series on Computer Science.

Prentice-Hall International, Englewood Cliffs (1989).
85. Object Management Group: UML profile, for schedulability, performance, and time. OMG

document ptc/2002-03-02. http://www.omg.org/cgi-bin/doc?ptc/2002-03-02
86. Object Management Group: Unified modeling language (UML), version 1.4, OMG docu-

mentation. http://www.omg.org/techonology/documents/formal/uml.htm
87. Object Management Group: Unified modeling language: superstructure – version 2.1.1,

formal/2007-02-05. http://www.omg.org/docs/formal/07-11-04.pdf (2007)

http://dx.doi.org/10.1145/974044.974048
http://www.omg.org/cgi-bin/doc?ptc/2002-03-02
http://www.omg.org/techonology/documents/formal/uml.htm
http://www.omg.org/docs/formal/07-11-04.pdf

References 187

88. Object Management Group: UML profile for MARTE, ptc/08-06-09. http://www.omgmarte.
org/Documents/Specifications/08-06-09.pdf (2008)

89. Object Management Group (OMG): XML metadata interchange (XMI) specification, ver-
sion 2.0, 2002

90. Perez-Palacin, D., Merseguer, J., Bernardi, S.: Performance aware open-world software in a
3-layer architecture. In: Adamson, A., Bondi, A.B., Juiz, C., Squillante, M.S. (eds.) Proceed-
ings of the First Joint WOSP/SIPEW International Conference on Performance Engineering,
San Jose, California, USA, January 28–30, 2010, pp. 49–56. ACM, New York (2010)

91. Petriu, D.B., Woodside, M.: A metamodel for generating performance models from UML
designs. In: Proceedings of UML Conference. Lecture Notes in Computer Science, vol. 3273

92. Petriu, D.C.: Approximate mean value analysis of client-server systems with multi-class re-
quests. In: Proceedings of the ACM SIGMETRICS Conference on Measurement and Mod-
eling of Computer Systems, Performance Evaluation Review, 1994

93. Petriu, D.C., Shen, H.: Applying the UML performance profile: Graph grammar-based
derivation of LQN models from UML specifications. In: Proceedings of Computer Perfor-
mance Evaluation, Modelling Techniques and Tools 12th International Conference, TOOLS
2002. London, UK, 2002. Lecture Notes in Computer Science, vol. 2324, pp. 159–177,
(2002)

94. Petriu, D.C., Wang, X.: From UML descriptions of high-level software architectures to LQN
performance models. In: Verlag, S. (ed.) Proceedings of AGTIVE’99, pp. 47–62 (1999)

95. Petriu, D.C., Wang, X.: Deriving software performance models from architectural patterns by
graph transformations. In: TAGT’98: Selected Papers from the 6th International Workshop
on Theory and Application of Graph Transformations, London, UK, 2000, pp. 475–488.
Springer, Berlin (2000)

96. Petriu, D.C., Woodside, C.M.: Software performance models from system scenarios in use
case maps. In: Proceedings of Computer Performance Evaluation, Modelling Techniques
and Tools 12th International Conference, TOOLS 2002. Lecture Notes in Computer Science,
vol. 2324, pp. 141–158 (2002)

97. Pooley, R.J.: An Introduction to Programming in SIMULA. Blackwell Scientific Publica-
tions, Oxford (1987)

98. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Computer Sci-
ence, vol. 4 (1985)

99. Rolia, J.A., Sevcik, K.C.: The method of layers. IEEE Transaction on Software Engineering
21(8), 622–688 (1995)

100. Sauer, C.H., MacNair, E.A.: Queueing network software for systems modeling. In: Research
Report RC-7143, IBM Thomas J. Watson Research Center, Yorktown Heights (1978)

101. Sauer, C.H., Reiser, M., MacNair, E.A.: RESQ – a package for solution of generalized queue-
ing networks. In: Proceedings, National Computer Conference, Dallas, TX, 1977, pp. 977–
986 (1977)

102. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Computer
39(2), 25–31 (2006)

103. SEAlab – Software Quality Group, Dipartimento di Informatica, Università dell’Aquila:
MOSQUITO 1.6 User Manual (2008).

104. Sector, I.-T.S.: Message sequence charts. ITU-T Recommendation Z. 120(11/99) (1999)
105. Sereno, M.: Towards a product form solution for stochastic process algebras. Computer Jour-

nal 38, 622–632 (1995)
106. Smith, C.U.: Performance Engineering of Software Systems. Addison-Wesley, Reading

(1990)
107. Smith, C.U., Lladó, C.M.: Performance model interchange format (PMIF 2.0): XML def-

inition and implementation. In: Proc. 1st Int. Conf. on Quantitative Evaluation of Systems
(QEST), Enschede, NL (2004)

108. Smith, C.U., Williams, L.G.: Performance engineering evaluation of object-oriented systems
with SPE•EDTM. In: Proceedings of Computer Performance Evaluation, Berlin, Germany,
1997. Lecture Notes in Computer Science, vol. 1245, pp. 135–154 (1997)

http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf
http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf

188 References

109. Smith, C.U., Williams, L.G.: A performance model interchange format. Journal of Systems
and Software 49(1) (1999)

110. Smith, C.U., Williams, L.G.: Performance Solutions: A Practical Guide to Creating Respon-
sive, Scalable Software. Addison-Wesley, Reading (2002)

111. Smith, C.U., Williams, L.G.: More new software performance antipatterns: Even more ways
to shoot yourself in the foot. In: Computer Measurement Group Conference, 2003

112. Sommerville, I.: Software Engineering, 7th edn. Addison-Wesley, Reading (2004)
113. Tijms, H.C.: Stochastic Models, An Algorithmic Approach. John Wiley and Sons Ltd, New

York (1994)
114. Trivedi, K.S.: Probability and Statistics with Reliability, Queueing and Computer Science

Applications. John Wiley and Sons, New York (2001)
115. Varki, E., Dowdy, L.W.: Analysis of balanced fork-join queueing networks. In: Proceedings

of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems (1996)

116. Veran, M., Potier, D.: QNAP 2: a portable environment for queueing systems modelling.
In: Rapport de recherche de l’INRIA-Rocquencourt. http://www.inria.fr/rrrt/rr-0314.html
(1984)

117. W3C: eXtensible Markup Language (XML) 1.0, 2nd edn. W3C recommendation 6 October
2000. http://www.w3.org/TR/2000/REC-xml-20001006

118. W3C: XML schema part 1: structures and XML schema part 2: datatypes. W3C recom-
mendation 2 May 2001. http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/, http://
www.w3.org/TR/2001/REC-xmlschema-2-20010502/

119. Williams, L.G., Smith, C.U.: Performance evaluation of software architectures. In: ACM
Proceedings of the First Workshop on Software and Performance, pp. 164–177

120. Williams, L.G., Smith, C.U.: Information requirements for software performance engineer-
ing. In: Proceedings of International Conference on Modeling Techniques and Tools for
Computer Performance Evaluation, Heidelberg, Germany, 1995. Springer, Berlin (1995)

121. Williams, L.G., Smith, C.U.: PASA: A method for the performance assessment of software
architectures. In: Proceedings of the Third International Workshop on Software and Perfor-
mance (WOSP02), Rome, Italy, July 2002, pp. 179–189 (2002)

122. Woodside, C.M., Hrischuk, C., Selic, B., Brayarov, S.: Automated performance modeling of
software generated by a design environment. Performance Evaluation 45, 107–123 (2001)

123. Woodside, C.M., Neilson, J., Petriu, S., Mjumdar, S.: The stochastic rendezvous network
model for performance of synchronous client-server-like distributed software. IEEE Trans-
action on Computer 44, 20–34 (1995)

http://www.inria.fr/rrrt/rr-0314.html
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/

Index

A
Activity Diagram, 25–29, 82–83, 85–87,

89–91, 93, 96, 99–112, 134
Analytical/Analytic, 6, 36, 42, 48, 93, 118,

131, 155, 170
Approximate/Approximation/Approximated,

48, 119, 137, 142, 150, 152, 155,
157

Architectural Pattern, 93–99, 106–109, 132,
135

Arrival/Interarrival, 39, 40, 58, 82, 84, 105,
143–148, 150–151, 179

Asynchronous, 13–16, 18, 21, 47, 50, 96, 122,
126, 175

Automata, 11

B
Bottleneck, 146, 156, 161, 163, 180

C
Chain, 37, 40, 115, 118–123, 126–130, 175
Client/Server, 46, 94–100, 106–110, 130, 132,

140
Component Diagram, 20–22, 74–75, 115–117,

119–121, 125
Core Scenario Model, CSM, 172, 174–175,

177–181

D
Delay Center, 40, 117, 118, 120, 125, 151
Demand (Service, Resource), 59–63, 83, 96,

101–105, 117, 146, 178
Deployment Diagram, 32–33, 74–77, 86, 88,

91, 93, 96–97, 105, 106–111,
131–133

E
E-commerce System, 18–19, 74–77, 87–92,

106–114, 124–130
Execution Graph, EG, 7, 42–45, 131–133, 152,

155–156, 162, 175–177

F
Forced Flow Law, 145

I
Interaction Diagram, 22–25, 94–96, 132
Iterative Process Model, 67

J
Job, Job Class, 39–41, 46, 49, 56, 59, 120–123,

126, 143–148, 151, 175

L
Layered Queuing Network, LQN, 46–49, 80,

92–114, 131–133
Little’s Law, 144, 150, 151

M
Markov

Chain, 152, 156, 157, 158
Model, 148–150, 154
Process, 36–39, 52

Mean Value Analysis, MVA, 42, 48, 150–152
Message Sequence Chart, MSC, 15–17, 131
Meta-Model, 80, 172–180
Model-Driven Architecture, MDA, 80,

159–164
Model-Driven Engineering, 1, 80
Model Transformation, 80

Automation, 4, 135, 140
Generality, 140
Result Interpretation, 140, 164–165

V. Cortellessa et al., Model-Based Software Performance Analysis,
DOI 10.1007/978-3-642-13621-4, © Springer-Verlag Berlin Heidelberg 2011

189

http://dx.doi.org/10.1007/978-3-642-13621-4

190 Index

Model Transformation (cont.)
Scalability, 140
Transparency, 4, 139

O
Ontology, 159, 171–172, 177–181
Overhead Matrix, 44–45, 176, 178

P
Performance

Antipattern, 165
Indices, 4–6, 35, 41, 55, 93–94, 139, 164,

180
Management, 165–169
Requirement, 6, 62, 75, 161, 163

Petri Net, 14–15, 133
Stochastic, 49–52, 152, 154, 156–158

Process Algebra, 12–13
Stochastic, 52–54, 158

Q
Q-Model, 65, 68–70, 74–77, 82, 94, 116
Queuing Network, QN, 39–42, 75, 115–133,

150–152, 154, 155, 176
Product Form, 42, 118, 150

R
Residence Time, 118, 144–148, 151
Response Time, 4, 35, 62, 74, 115, 131,

144–148, 150, 162, 173
Response Time Law, 147, 148

S
SAP•one, 115–131
Sequence Diagram, 22–25, 74, 115–118,

119–124, 125–130
Service Center, 39–42, 115–130, 143, 150–151
Service Time, 39–42, 61, 94, 120, 124,

143–148
Simulation, 54–55, 81–92, 134, 142, 153–158
Software

Architecture, 68, 74, 81, 93, 115, 118, 131,
135, 158, 159–164, 167

Lifecycle, 2–4, 7, 65–74, 135–138
Process, 65–67, 77

Reconfiguration, 165–171
Software Performance Engineering, SPE, 7,

67, 133
Meta-Model, SPE-MM, 172, 175–181

Solution Tool
GreatSPN, 156–157
SHARPE, 154–155
SPE•ED, 131, 155–156
TimeNET, 157–158
TwoTowers, 158

State Machine Diagram, 30–32
Synchronous, 16, 22, 47–48, 96, 99, 110, 118,

122, 175

T
Think Time, 48, 59, 104, 107, 148
Throughput, 4, 35, 61–62, 82, 94, 115,

143–148, 151
Transformation tool, 92, 113, 130

U
UML

Profile, 33–34
Schedulability Performance and Time,

SPT, 55–63, 79, 173–174, 177–181
Use Case Diagram, 19–20, 24, 74, 82, 85–88,

115–117, 124, 161
Utilization, 4, 35, 61–62, 82, 94, 115, 131,

143–148, 163, 174
Utilization Law, 144, 146

V
Validation, 2–4
Verification and Validation, 66–68

W
Waiting Time, 5, 62, 144–145
Waterfall Process Model, 66, 68–69
Workload, 5, 40–42, 46–50, 75, 81–83, 93,

104–105, 115, 121–122, 150, 161,
172–180

Closed, 58–59, 84, 87–88, 96, 107, 111,
117, 124, 126

Open, 56–57, 84, 96, 117

	Model-Based Software Performance Analysis
	Preface
	 Goal of the Book
	 A Bird's-Eye View of Chapters Contents
	 Using the Book as Teaching Text
	 Acknowledgments

	Contents

	Chapter 1: What Is Software Performance?
	1.1 Non-functional Validation of Software Systems
	1.2 Performance as a Non-functional Attribute
	1.3 System vs. Software Performance Analysis

	Chapter 2: Software Modeling Notations
	2.1 Basic Notations
	2.1.1 Automata
	An Automaton for the XML Translator System

	2.1.2 Process Algebras
	A Process Algebra Model for the XML Translator System

	2.1.3 Petri Nets
	A Petri Net for the XML Translator

	2.1.4 Message Sequence Charts
	A Message Sequence Chart for the XML Translator

	2.2 Unified Modeling Language
	2.2.1 E-commerce System
	2.2.2 Use Case Diagram
	2.2.3 Component Diagram
	2.2.4 Interaction Diagram
	2.2.5 Activity Diagram
	2.2.6 State Machine Diagram
	2.2.7 Deployment Diagram
	2.2.8 Profiling UML

	Chapter 3: Performance Modeling Notations
	3.1 Markov Processes
	3.2 Queueing Networks
	3.2.1 QN Definition
	3.2.2 QN Parameterization

	3.3 Execution Graphs
	3.4 Layered Queueing Networks
	3.5 Stochastic Petri Nets
	3.6 Stochastic Process Algebras
	3.7 Simulation Models
	3.8 UML Profile for Schedulability, Performance and Time
	3.8.1 PAprofile: Stereotypes and Tagged Values
	<<PAcontext>> Stereotype
	<<PAclosedLoad>> and <<PAopenLoad>> Stereotypes
	<<PAstep>> Stereotype
	<<PAhost>> and <<PAresource>> Stereotypes

	Chapter 4: Software Lifecycle and Performance Analysis
	4.1 Software Lifecycle
	4.2 Performance Analysis Within the Lifecycle
	4.3 A Simple Application Example

	Chapter 5: From Software Models to Performance Models
	5.1 A General Framework for Model Transformation
	5.2 Some Transformational Approaches at Work
	5.2.1 UML-psi: From UML to a Simulation Model
	Software Specification
	Simulation Model
	Software to Performance Model Mapping Rules
	UML-Psi Approach on E-commerce System
	Tool Support

	5.2.2 From UML to a Layered Queueing Network
	Software Specification
	Layered Queueing Network
	Software to Performance Model Mapping Rules
	Step 1-Derivation of the LQN Structure
	Step 2-Derivation of the LQN Entries, Phases, Activities Details

	Petriu's Approach to E-commerce System
	Step 1-Derivation of the LQN Structure
	Step 2-Derivation of the LQN Entries, Phases, Activities Details

	Tool Support

	5.2.3 SAP•one: From UML to a Queueing Network
	Software Specification
	Queueing Network
	Software to Performance Model Mapping Rules
	SAP•one Approach on E-commerce System
	Tool Support

	5.3 Other Transformational Approaches
	5.3.1 Queueing Network Based Methodologies
	5.3.2 Petri Net-Based Approaches
	5.3.3 Methodologies Based on Simulation Methods

	5.4 Discussion of the Approaches
	5.5 Desirable Attributes of Software Performance Analysis Techniques

	Chapter 6: Performance Model Solution
	6.1 Model Solution: Foundations and Techniques
	6.1.1 Operational Analysis
	6.1.2 Solution Techniques and Related Notations
	Markov Models
	Queueing Networks
	Stochastic Petri Nets and Stochastic Process Algebras

	6.1.3 Simulation

	6.2 Model Solution: Tools
	6.2.1 SHARPE-Multiple Performance Model Notations
	6.2.2 SPE·ED-Execution Graphs and Queueing Networks
	6.2.3 GreatSPN-Stochastic Petri Nets
	6.2.4 TimeNET-Stochastic Petri Nets
	6.2.5 TwoTowers-Stochastic Process Algebras

	Chapter 7: Advanced Issues in Software Performance
	7.1 Software Performance and Model-Driven Architecture
	7.2 Interpretation of Performance Analysis Results
	7.3 Performance-Based Software Reconfiguration
	7.3.1 Allowed Reconfigurations
	7.3.2 Issues to Address
	Relevant Data to Collect
	When Should the Reconfiguration Be Performed?
	Which Performance Model to Use?
	On-Line Evaluation
	How Is the Decision on the Next Configuration Taken?

	7.4 A Unifying Ontology for Software Performance
	7.4.1 Three Meta-models for Software Performance
	SPT Profile
	Core Scenario Model Meta-model
	Software Performance Engineering Meta-model

	7.4.2 Building an Ontology from Common Entities: A Bottom-Up Approach
	Sw-behavior
	Resources
	Workload

	7.4.3 Expressiveness Issues: A Top-Down Process

	References
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

