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1. Introduction

After a few papers on hyperbolic partial differential equations, the first
part of the research career of Andrzej Lasota was devoted to various problems
on ordinary differential equations and systems, with a special emphasis upon
multi-point boundary value problems and periodic solutions. Many of those
contributions are joint papers with Zdzisław Opial. The first one, published
in 1961, was devoted to de La Vallée Poussin’s interpolation boundary value
problem

x(n) = f(t, x, x′, . . . , x(n−1)), x(tk) = ak (k = 1, 2, . . . , n),

where a = t1 < t2 < . . . < tn = b and a1, . . . , an ∈ R are given. When f ≡ 0,
this corresponds to interpolation by a polynomial of degree n− 1.
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The proof of this result motivated Lasota to consider the fixed point prob-
lem in a Banach space B of the form

x = A(x)x+ b(x)

when, for each x ∈ B, A(x) belongs to a suitable class of linear operators
on B and b is completely continuous and sublinear at infinity. His results
can be seen as extensions of Ivar Fredholm’s first theorem for linear integral
equations.

In 1964, Lasota and Opial considered the existence of ω-periodic solutions
for systems of the form

x′ = A(t, x)x+ b(t, x)

where A = (aij), and aij , bi : Rm+1 → R satisfy Carathéodory conditions and
are ω-periodic with respect to t.

Lasota and coworkers have also considered second order differential equa-
tions or systems

x′′ = f(t, x, x′)

with various linear two-point boundary conditions, and first order systems

x′ = f(t, x)

with fairly general linear boundary conditions.
About 40 papers on ordinary differential equations have been written by

Lasota, between 1961 and 1980, the last one dealing with the so-called ‘unique-
ness implies existence’ methodology. Most of those papers are a beautiful
blend of linear functional analysis, fixed point theory (essentially Schauder’s
theorem) and inequalities, namely ingredients which are still basic in the
present day studies of nonlinear boundary value problems for ordinary dif-
ferential equations. Many papers are joint work, first with Opial, and later
with several young collaborators. They are listed in the bibliography, but
only the ones dealing with boundary value problems and periodic solutions
are described here. Furthermore, for the sake of brevity, we have not consid-
ered, when analyzing Lasota’s legacy, the extensions of his results to difference
equations, functional differential equations and differential relations.
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2. Ordinary differential equations with interpolation conditions

2.1. Early history

Polynomial interpolation seems to have been the motivation of a paper
of Onorato Niccoletti of 1898 [82], devoted to nonlinear ordinary differential
equations with some linear boundary conditions.

The interpolation by a polynomial of degree n − 1 (n ≥ 2 an integer) of
the values a1, a2, . . . , an of a real function given at n points

a = t1 < t2 < . . . < tn = b,

can of course be written in the form of a ‘boundary value problem’ on [a, b] =
[t1, tn]

x(n) = 0, x(tk) = ak (k = 1, 2, . . . , n).(2.1)

Its unique solution (a polynomial of degree n− 1 which vanishes at n points
is identically zero), is given by the Lagrange interpolation polynomial

x(t) =

n∑
k=1

(t− t1) . . . ̂(t− tk) . . . (t− tn)

(tk − t1) . . . ̂(tk − tk) . . . (tk − tn)

where ·̂ means that the corresponding factor is missing. The quotations marks
are used because the data are not only given at the boundary of [a, b] when
n ≥ 3. But the terminology multipoint boundary value problem is standard.

Natural generalizations are the linear non-homogeneous multipoint bound-
ary value problem

(2.2) x(n) = h(t), x(tk) = ak (k = 1, 2, . . . , n),

where the integrable function h : [a, b] → R is given, and the nonlinear non-
homogeneous multipoint boundary value problem

x(n) = f(t, x, x′, . . . , x(n−1)), x(tk) = ak (k = 1, 2, . . . , n),(2.3)

where the nonlinear Carathéodory function f : [a, b]× Rn → R is given.
Such problems are special cases of those considered already by Niccoletti

in 1898, where a more general class of boundary conditions involving also the
values of some derivatives at some points is considered. Niccoletti also treated



10 Jean Mawhin

the case of systems of such equations, which contains in particular boundary
value problems for systems of first order equations of the form

x′1 = f1(t, x1, . . . , xn), . . . , x′n = fn(t, x1, . . . , xn),(2.4)

x1(t1) = a1, . . . xn(tn) = an,

now usually referred as Niccoletti’s problem. Using Émile Picard’s method
of successive approximations, Niccoletti proved existence and uniqueness, for
globally Lipschitzian functions f , when b− a is sufficiently small.

The special case where n = 2 is the well known Dirichlet or Picard
boundary-value problem

x′′ = f(t, x, x′), x(a) = a1, x(b) = a2,(2.5)

already considered by Picard [83] in 1893 by the same method.
In contrast to problems (2.1) and (2.2) which are always uniquely solvable,

either existence or uniqueness may fail for problem (2.3). For example, the
special case of (2.5)

x′′ = −x, x(0) = 0, x(π) = 1,

has no solution, and the other special case

x′′ = −x, x(0) = 0, x(π) = 0,

has infinitely many solutions. Indeed, the problem

x′′ = −x, x(a) = a1, x(b) = a2,(2.6)

has a solution if and only if one can find real numbers A and B such that

A cos a+B sin a = a1, A cos b+B sin b = a2,

which requires that cos a sin b − cos b sin a 6= 0, i.e., that b − a 6= 0 (mod π).
In particular, existence (and indeed uniqueness) is insured if b− a < π.

The question of finding estimates for b − a insuring the existence of a
solution for the two-point boundary value problem

x′′ = f(t, x, x′), x(a) = a1, x(b) = a2,

was considered by Picard [84] in 1896 when f is Lipschitzian with respect to
the last two variables. As a special case, he showed that the linear homoge-
neous problem
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x′′ + p1(t)x′ + p2(t)x = 0, x(a) = 0 = x(b),(2.7)

only has the trivial solution when

‖p2‖∞
(b− a)2

2
+ ‖p1‖∞(b− a) < 1.

In 1929, Charles J. de La Vallée Poussin [15] generalized Picard’s unique-
ness result for (2.7) by showing that the problem

x(n) + p1(t)x(n−1) + . . .+ pn−1(t)x′ + pn(t)x = 0,(2.8)

x(t0) = x(t1) = . . . = x(tn) = 0,

only has the trivial solution if

n∑
j=1

‖pj‖∞
(b− a)j

j!
< 1,

and extended the result to problem (2.3) with f such that

(2.9) |f(t, x1, . . . , xn)− f(t, y1, . . . , yn)| ≤
n∑
j=1

Lj |xj − yj |

and
n∑
j=1

Lj
(b− a)j

j!
< 1.

In Poland, linear and nonlinear boundary value of interpolation type had
been considered in 1946–47 by Jan Mikusiński [80] and Mieczysław Bier-
nacki [5],

2.2. The introduction of functional analysis

The development of linear functional analysis in the first quarter of the
XXth century as well as Stefan Banach’s fixed point theorem of 1922 [2] – an
abstract version of the method of successive approximations – made possible
to express the above results in a functional analytic way. But a more essential
step was made the same year 1922 by George D. Birkhoff and Oliver D. Kel-
logg [6], when they extended Brouwer’s fixed point theorem (any continuous
self map of a closed n-ball has at least one fixed point) to continuous self maps
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of a convex compact set of the function space Cn([a, b]) or L2([a, b]). Their
motivation was the obtention of existence of solutions of the boundary value
problem

x(n) = f(t, x, x′, . . . , x(n−1)),(2.10) ∫ b

a

n−1∑
j=0

pij(t)x
(j)(t) dt+

n−1∑
j=0

m∑
k=1

qijkx(j)(tk) = ai

(i = 1, 2, . . . , n; a ≤ t1 < t2 < . . . tm ≤ b). They proved in particular that
(2.10) has at least one solution when b− a is sufficiently small.

In a series of beautiful papers written between 1927 and 1930 [88]–[90],
Juliusz Schauder extended Birkhoff–Kellogg’s fixed point theorem to contin-
uous self maps of a convex compact set of an arbitrary Banach space, a result
referred as Schauder fixed point theorem. His motivation and applications were
essentially partial differential equations and his unique example for ordinary
differential equations was an alternative proof of Giuseppe Peano’s existence
result for Cauchy problem (for which indeed no fixed point technique is really
needed).

A paper of 1930 of Renato Caccioppoli reproduced Birkhoff–Kellogg’s fixed
point theorem for Cn([a, b] without any reference to Birkhoff, Kellogg or
Schauder. One year later, another one [10] acknowledged the work of those
authors and gave applications to problem (2.10) with b − a is arbitrary and
f is bounded everywhere or sublinear at infinity in x1, . . . , xn. Those results
stimulated a lot of activity in Italy. They were improved by Giuseppe Scorza-
Dragoni and its school at Roma and Padova, through Caccioppoli’s functional
analytic approach, and by Silvio Cinquini at Pisa, who used the shooting ap-
proach based upon the solution of the associated Cauchy problem. A side
aspect was a strong fight between Scorza-Dragoni and Cinquini lasting for
more than ten years (including the Second World War), about the “topologi-
cal or not” or “elementary or not” character of their respective approaches.

2.3. Existence results for multi-point boundary value problems
(1961–62)

The first paper of Lasota devoted to a multipoint boundary value problem,
written with Opial and published in 1961 [53], was directly motivated by de
La Vallée Poussin’s one:
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In the case where the function f(t, x0, . . . , xn−1) satisfies the Lips-
chitz condition (2.9) one knows very well the following uniqueness
theorem: in order that problem (2.3) has at most one solution, it
suffices that any function x(t) satisfying the differential inequality

|x(n)(t)| ≤
n∑

j=1

Lj |x(j)(t)|(2.11)

and such that x(ti) = 0 (i = 1, . . . , n) is identically zero.
Its aim was to obtain a more general sufficient condition for the existence

of at least one solution of (2.3). The main theorem goes as follows.

Theorem 2.1. Assume that the following conditions hold.
(1) f is continuous and satisfies the inequality

(2.12) |f(t, x0, . . . , xn1)| ≤M +

n−1∑
j=0

Li|xi| (M ≥ 0, Lj > 0).

(2) For every t1 < t2 < . . . < tn in [a, b], the only function verifying the
differential inequality (2.11) and

(2.13) x(tj) = 0 (j = 1, . . . , n)

is x(t) ≡ 0.
Then problem (2.3) has at least one solution.

The result was first proved for the linear case

(2.14) x(n) =

n−1∑
j=0

pj(t)x
(j) + q(t).

Lemma 2.2. If the pj and q are continuous and |pj(t)| ≤ Lj (t ∈ [a, b], 1 ≤
j ≤ n − 1) and if condition (2) of Theorem 2.1 holds, then equation (2.14)
with boundary conditions (2.13) has a unique solution.

To deduce the general case (and it is easy to reduce the problem to ho-
mogeneous boundary conditions (2.13)), the equation was written in the form
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(2.15) x(n) =

n−1∑
j=0

pj(t, x, x
′, . . . , x(n−1))x(j) + q(t, x, x′, . . . , x(n−1)),

where, for i = 0, . . . , n− 1,

pi(t, x0, . . . , xn−1) =
f(t, x0, . . . , xn−1)

M +
∑n−1
j=0 Lj |xj |

Liε(xi),

q(t, x0, . . . , xn−1) =
f(t, x0, . . . , xn−1)

M +
∑n−1
j=0 Lj |xj |

(
M +

n−1∑
j=0

(η(xj)− ε(xj))Ljxj
)
,

with

ε(s) =

 s if s ∈ [−1, 1],
1 if s > 1,
−1 if s < −1,

and η(s) =

{
1 if s ≥ 0,
−1 if s < 0.

Notice that η is not continuous at 0 but it only occurs as multiplied by s, so
that the product has a continuous extension. Indeed, the given definition of
q is slightly incorrect and should be replaced by

q(t, x0, . . . , xn−1) = f(t, x0, . . . , xn−1)−
n−1∑
i=0

f(t, x0, . . . , xn−1)

M +
∑n−1
j=0 Lj |xj |

Liε(xi).

Therefore

|q(t, x0, . . . , xn−1)| ≤ |f(t, x0, . . . , xn−1)|
M +

∑n−1
j=0 Lj |xj |

∣∣∣M +

n−1∑
j=0

(Lj |xj | − Ljε(xj)xj)
∣∣∣.

The function ξ(s) = |s| − ε(s)s given by

ξ(s) =


0 if s > 1,
s− s2 if s ∈ [0, 1],
−s− s2 if s ∈ [−1, 0),
0 if s < −1,

is continuous, nonnegative and bounded (by 1) on R and hence q is continuous
and bounded by M +

∑n−1
j=0 on [a, b] × Rn. On the other hand |pj | ≤ Lj

(j = 0, . . . , n− 1).
The next step consisted in introducing the Banach space E of functions

x ∈ Cn−1([a, b]) with the usual norm ‖x‖ = supt∈[a,b]

∑n−1
j=0 |x(j)(t)| and in
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introducing the mapping T : E → E which to each x ∈ E associates the
(unique) solution y of the linear multipoint boundary value problem

y(n) =

n−1∑
j=0

pj(t, x(t), . . . , x(n−1))y(j) + q(t, x(t), . . . , x(n−1)),

y(t0) = . . . = y(tn) = 0,

as it follows from Lemma 2.2.
Lasota and Opial then showed that T (E) is a compact subset of E, and

used Schauder’s fixed point theorem to obtain a fixed point z of T , i.e., of
a function z ∈ C(n)([a, b]) satisfying the boundary conditions (2.13) and the
differential equation

z(n) =

n−1∑
j=0

p(t, z, . . . , z(n−1))z(j) + q(t, z, . . . , z(n−1))

= f(t, z, . . . , z(n−1)).

This methodology, widely used by Lasota (alone or in collaboration) in
subsequent papers on similar or other problems, is reminiscent of a technique
used by Juliusz Schauder and Jean Leray in dealing with quasilinear elliptic
Dirichlet problems of the form

N∑
i,j=1

aij(x, u,∇u)uij(x) = b(x, u,∇u) in Ω, u(x) = ϕ(x) on ∂Ω,

where Ω ⊂ RN is a bounded domain. First, for v in a suitable Hölder space,
the linear Dirichlet problem

N∑
i,j=1

aij(x, v,∇v)uij(x) = b(x, v,∇v) in Ω, u(x) = ϕ(x) on ∂Ω,

is uniquely solved, namely u = T (v), and then the solution of the quasilin-
ear problem is reduced to finding a fixed point of T using some topological
fixed point theorem. As we shall see, a similar approach, sometimes called
Schauder’s linearization, had been used in 1956 by Mario Volpato [98] in a
problem of periodic solutions of second order differential equations. This ref-
erence is not quoted in [53], whose bibliography is restricted to two books
and de La Vallée Poussin’s paper [15]. In 1953, the same Volpato [97] had
obtained sufficient conditions for the existence of a solution of (2.3) under
some complicated conditions upon f listed on one page and half. In 1974,
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Anna Krakowiak [30] has obtained similar results for first order systems of
differential equations.

The same problem (2.3) was considered one year later by Lasota in [34],
where the richer bibliography refers to the earlier contributions of Caccioppoli
[10], Cinquini [12], Levine [70], Volpato [97] and Zwirner [100]. Instead of the
linear growth condition (2.12), Lasota considered the nonlinear one

|f(t, x0, . . . , xn−1)| ≤ A+B

n−1∑
j=0

|xi|α.(2.16)

The sublinear case where 0 < α < 1 had been treated by Cinquini [12].
For α ≥ 1, Lasota proved the existence of a solution when b − a ≤ c with
c sufficiently small, and gave estimates for c. His approach was still based
upon Schauder’s fixed point theorem. A map S : C([a, b]) → Cn([a, b]) was
defined which, to any h ∈ E associates the unique solution xh of the linear
interpolation problem (2.2). Now, if

Nf : E → C([a, b]), x 7→ f(·, x(·), . . . , x(n−1)(·)),

denotes the Nemitsky operator associated to f , the solutions of (2.3) are the
fixed points in E of the mapping T = S ◦Nf . Lasota showed the existence of
some closed convex set Ωf of E mapped by T into a compact subset of Ωf .
The definition of Ωf is rather general but somewhat cumbersome.

The same year, Lasota [35] considered the more general problem

x
(ni)
i = fi(t, x1, . . . , x

(ni−1)
1 , . . . , xm, . . . , x

(nm−1)
m ), i = 1, . . . ,m,(2.17)

m∑
i=1

Lνixi = rν , ν = 1, . . . , N, N =

m∑
i=1

ni,

where Lνi : Cni−1([a, b]) → R denotes a linear continuous functional. He
introduced the corresponding linear homogeneous system

x
(ni)
i =

m∑
k=1

nk−1∑
j=0

pijk(t)x
(j)
k , i = 1, . . . ,m,(2.18)

m∑
i=1

Lνixi = 0, ν = 1, . . . , N, N =

m∑
i=1

ni,

and proved the following generalization of the result of [53].
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Theorem 2.3. Assume that there exist continuous functions pijk < p̂ijk
such that the following conditions hold
(1) |fi(t, x0

1, . . . , x
nm−1
m )| ≤Mi +

∑m
k=1

∑nk−1
j=0 pijk(t)|xjl |, i = 1, . . . ,m

(2) for any system pijk of continuous functions over [a, b] such that |pijk| <
p̂ijk, system (2.17) only has the trivial solution.

Then problem (2.18) has at least one solution.

No proof was given, but it would clearly follow the same line as the one
given in [53]. Using results of Anatoly Yu. Levin [70, 71] for the linear
interpolation problem, Lasota deduced from Theorem 2.3 that when condition
(2.12) holds and

n∑
j=1

Ln−j(b− a)j

j
[
j−1

2

]
!
[
j
2

]
!
< 1

the problem

x(n) = f(t, x, . . . , x(n−1)),

x(ti) = ri (i = 1, . . . , l), x(j)(tl+j) = sj (j = 1, . . . , n− l),

has at least one solution.
From results of Marko Švec [93] for the linear problem, Lasota also deduced

from Theorem 2.3 that when

|fi(t, x1, . . . , xm)| ≤Mi +

m∑
k=1

aik|xk| (i = 1, . . . ,m)

and b− a < 1
r0

with r0 the largest eigenvalue of the matrix (ajk), the problem

x′i = fi(t, x1, . . . , xm), xi(ti) = ri (i = 1, . . . ,m),

has at least one solution.
Further results about the estimation of b−a for existence and uniqueness to

equations of order two and four have been given later by Zdzisław Denkowski
[16–18], Franciszek Hugon Szafraniec [94], Janusz Traple [95, 96] and Józef
Myjak [81].
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3. Using Pontryagin’s maximum principle (1963)

In a joint paper with Opial [36], Lasota has used Pontryagin’s maximum
principle of control theory to evaluate the maximal length h(P1, . . . , Pn) of
the interval [a, b] on which the linear boundary value problem

x(n) + p1(t)x(n−1) + . . .+ pn−1(t)x′ + pn(t)x = 0,(3.1)

x(a) = x′(a) = . . . = x(n−2)(a) = x(b) = 0,

has only the trivial solution. Here Pj denotes an upper bound of the function
|pj | on [a, b] (j = 1, . . . , n). They first proved the following

Theorem 3.1. Let u be the solution of the initial value problem

u(n) + P1|u(n−1)|+ . . .+ Pn−1|u′|+ Pn|u| = 0,

u(a) = . . . = u(n−2)(a) = 0, u(n−1)(a) = 1.

Denote by h = h(P1, . . . , Pn) the smallest positive root of equation u(t) = 0.
Then, if b − a < h(P1, . . . , Pn), problem (3.1) has only the trivial solution.
Furthermore, if the continuous function f : [a, b]× Rn → R is such that

|f(t, x0, . . . , xn−1)| ≤M +

n∑
j=1

Pj |xn−j |

then the nonlinear two-point boundary value problem

x(n) = f(t, x, x′, . . . , x(n−1)),

x(a) = r0, . . . , x
(n−2)(a) = rn−2, x(b) = c,

has at least one solution when r0, r1, . . . , rn−2, c ∈ [0, d] and

b− a < min{h(P1, . . . , Pn), a}.

Subsequent uses of this approach have been made by Yu.A. Melentsova
[76, 77], Yu.A. Melentsova and G.N. Mil’shtein [78, 79], Lloyd Jackson [24, 25],
Johnny Henderson [21], Johnny Henderson and Robert W. McGwier Jr. [22],
and Marc Henrard [23].
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4. Fixed point theory and applications

4.1. A first nonlinear version of Fredholm’s first theorem
for integral equations (1963)

Lasota’s paper [37] provided the fixed point version of the method used
in [53] for boundary value problems of interpolation type. Given a Banach
space E and the set Ls(E,E) of linear mappings with pointwise convergence,
Lasota assumed the existence of a subset Q ⊂ Ls(E,E) such that
1. Any sequence (An) in Q contains a convergent subsequence converging

pointwise to some A ∈ Q.
2. The set

⋃
A∈Q;‖x‖=1Ax is relatively compact in E.

If now A : E → Q and b : E → E are mappings, he proved the following result
for the fixed point problem in E

x = A(x)x+ b(x).(4.1)

Theorem 4.1. If the following conditions hold:
(a) For any A ∈ Q, equation x = Ax only has the trivial solution
(b) xn → x ⇒ A(xn)→ A(x) pointwise
(c) b is totally continuous
(d) lim‖x‖→∞

‖b(x)‖
‖x‖ = 0.

Then problem (4.1) has at least one solution.

Notice that when A and B are constant mappings, Theorem 4.1 corre-
sponds to Fredholm’s first theorem for linear integral equations.

As mentioned earlier, the idea of the proof is an abstraction of the one
used in [53]. Given any y ∈ E, the problem

x = A(y)x+ b(y)

has a unique solution x = Ty. The assumptions imply that T maps E into
a compact subset of E and hence has a fixed point, by Schauder’s theorem,
which is a solution of (4.1). As applications, one gets all the results given
(without proof) in [35] for multipoint boundary value problems associated to
systems of ordinary differential equations, new existence results for nonlinear
Hammerstein equations and a better evaluation of an upper bound for b − a
in the case of the planar Niccoletti problem
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x′i = fi(t, x1, x2), x1(a) = r1, x2(b) = r2,

when

|fi(t, x1, x2)| ≤Mi(t) + ki1|x1|+ ki2|x2| (i = 1, 2).

Another application of Theorem 4.1 was given by Lasota in [38] to existence
results for some boundary value problems on a bounded sufficiently regular
domain D ⊂ Rn for semilinear elliptic equations.

4.2. A second nonlinear version of Fredholm’s first theorem
for linear integral equations (1966)

In [41], Lasota gave a new generalization of Fredholm’s first theorem for
linear integral equations, stated in terms of multivalued mappings. In a Ba-
nach space E, let c(E) denote the family of nonempty convex subsets of
E. A mapping H : E 7→ c(E) is called completely continuous if ∪u∈BH(u)
is relatively compact whenever B ⊂ E is bounded and if the conditions
limun = u0, lim vn = v0 and vn ∈ H(un) for all n, entails v0 ∈ H(u0). A map-
ping h : E 7→ E is called completely continuous if the mapping u 7→ {h(u)} of
E into c(E) is completely continuous in the above sense.

Theorem 4.2. Let H be a homogeneous and completely continuous map-
ping of E into c(E), and let h be a completely continuous mapping of E into
itself such that lim{ρ(h(u), H(u))/‖u‖} = 0 as ‖u‖ → ∞. If u ∈ H(u) is
satisfied only for u = 0, then there exists at least one solution to the equation
u = h(u).

Applications were made to general existence theorem for boundary-value
problems for systems of first order differential equations with boundary con-
ditions of the form N(x) = r, where N is a continuous and homogeneous
mapping of Cn(I) into Rm.

Generalizations and further applications of Theorem 4.2 have been given
by Klaus Schmitt and Hal Smith [91]–[92], and by Mawhin and S.B. Tshi-
nanga [73].
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5. Second order nonlinear differential equations with
Sturm–Liouville boundary conditions

5.1. Bounds on the length of solubility interval (1963)

In paper [39], Lasota has considered the two-point boundary value problem

x′′ = f(t, x, x′), x′(a) = r, x(b) + hx′(b) = s,(5.1)

assuming that f(t, x, y) is Lipschitz continuous in x and y for fixed t, and
measurable in t for fixed x, y. He proved the following existence condition.

Theorem 5.1. Assume that the following conditions hold.
(1) |f(t, x, y)| ≤ L(t)+M |x|+K|y|, where L(t) is non-negative and summable

in [a, b] and M,K ≥ 0.
(2) The solution of w′ = w2 +Kw +M, w(0) = 0 is such that |h|w(t) < 1

in [a, b].
Then problem (5.1) has a solution.

This result generalized earlier work with f(t, x, y) continuous in t. Some
mild extensions and generalizations were also stated and proved. Notice
that the paper [28] of James L. Kaplan, Lasota and James A. Yorke used
Wazewski’s method to prove some standard results on lower and upper solu-
tions for second order scalar equations with Sturm–Liouville boundary condi-
tions.

5.2. Extensions of Hartman’s theorems (1972)

The joint paper [68] with Yorke is devoted to the following boundary value
problems for second order systems

(5.2) x′′ = f(t, x, x′), x(0)−A0x
′(0) = 0, x(1) +A1x

′(1) = 0,

where A0, A1 are semi-positive definite matrices and f is continuous.
For the first time, Lasota used Leray–Schauder continuation theorem [69]

to prove his existence results, motivated by earlier ones of Philip Hartman
[20]. The first theorem goes as follows.
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Theorem 5.2. Assume that there exists σ > 0 and K ≥ 0 such that for
(t, x, y) ∈ [0, 1]× Rn × Rn,

(5.3) |y|2 + x · f(t, x, y) ≥ −K(1 + |x|+ |x · y|) + σ|f(t, x, y)|.

Then (5.2) has at least one solution when A0, A1 ≥ 0.

Condition (5.3) can be weakened at the expense of another assumption.

Theorem 5.3. Assume that there exists σ > 0 and K ≥ 0 such that, for
(t, x, y) ∈ [0, 1]× Rn × Rn,

(5.4) |y|2 + x · f(t, x, y) ≥ −K(1 + |x|+ |x · y|) + σ|y|.

Assume furthermore that

(5.5) |f(t, x, y)| ≤ φ(|y|) with
∫ ∞

0

s ds

φ(s)
=∞.

Then (5.2) has at least one solution when A0, A1 ≥ 0.

Variants of this theorem have been given by Robert E. Gaines and Mawhin
in [19].

6. Periodic solutions

6.1. Extension of Volpato’s method (1964)

In this important paper [56], Lasota and Opial proved various existence
theorems for ω-periodic solutions of differential systems of the form

(6.1) x′ = A(t, x)x+ b(t, x),

where A : Rm+1 → L(Rm,Rm), b : Rm+1 → Rm satisfy Carathéodory condi-
tions and are ω-periodic with respect to t.

Such problems had already been considered in 1958 by Ioan Barbalat and
Aristide Halanay [3], who mentioned the special case of a second order equa-
tion

u′′ + p(t, u, u′)u = q(t, u, u′)
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already treated by Volpato [97] in 1956. Barbalat and Halanay assumed that
the matrix function A is such that, for any ω-periodic function y(t), the linear
equation

x′ = A(t, y(t))x

has only the trivial ω-periodic solution, and that the corresponding Green
matrix Gy(t, s) satisfies the inequality

‖Gy(t, s)‖ ≤ L

for all t, s ∈ [0, ω], all ω-periodic continuous functions y and some L > 0. An
application was given to a perturbation of a Hamiltonian system in R2m of
the form

z′ = JH(t, z)z + f(t, z),

where J is the symplectic matrix, f has at most a linear growth with suffi-
ciently small slope and H(t, z) is a symmetric matrix for each t and z and
its smallest and largest eigenvalues satisfy suitable conditions. The approach,
inspired by Volpato’s special case, consisted in denoting by U(y), for any
y ∈ Cω, the unique ω-periodic solution of the linear problem

x′ = A(t, y)x+ b(t, y),

so that the ω-periodic solutions of (6.1) are the fixed points of U in Cω, whose
existence follows from Schauder’s fixed point theorem.

Barbalat and Halanay’s paper was not quoted in [56] but was mentioned
in [57], which summarized and commented the methods and results of [56]
and related papers on interpolation problems:

see also Barbalat–Halanay [3] where one can find many ideas in
close relation with our general method.

On the other hand, the introduction of [57] nicely commented the underlying
philosophy:

The method that we use in the problem of the existence of periodic
solutions of ordinary differential equations is quite general. It ap-
plies as well to this particular problem as to many other problems
of this type (existence of solutions of the interpolation problem for
nonlinear differential equations [53, 55], the existence of solutions
to general boundary value problems for systems of differential equa-
tions [35], the existence of solutions of integral equations [37], the
existence of solutions of partial differential equations [38] etc.) This
is for this reason that the method finds its best place in the frame
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of functional analysis. But, due to lack of time, it will not be ques-
tion here of functional analysis – we restrict ourselves to present
the essential of the methof on the example of the chosen special
example.

Let Lmm be the space of all m × m matrices (aij(t)) with all entries in
L(ω), and let Cω(R) be the Banach space of continuous ω-periodic functions
of R into Rm. The main result is the following one

Theorem 6.1. Assume that the following conditions hold:
(1) there exists a subset A ⊂ Lmm(ω) bounded, weakly closed and such that

for any matrix (aij) ∈ A the linear system

(6.2) x′ = A(t)x

has only the trivial ω-periodic solution
(2) for every continuous ω-periodic function x(t), the matrices A(·, x(·)) ∈ A.

(3) lim
n→∞

1

n

∫ ω

0

sup
|y|≤n

|b(t, y)| dt = 0, where |y| =
m∑
i=1

|yi|, |b| =
m∑
i=1

|bi|.

Then there exists at least one ω-periodic solution of system (6.1).

The idea of the proof is reminiscent from the technique used for interpo-
lation boundary conditions. From the assumptions, it follows that for every
continuous ω-periodic function y, the linear system

x′i =

m∑
j=1

aij(t, y(t))x+ b(t, y(t))

has a unique ω-periodic solution x = T (y) and T : Cω(R) → Cω(R), com-
pletely continuous,maps some closed ball B ∈ Cω(R) into itself. The existence
of a fixed point of T , and hence of a ω-periodic solution of (6.1) follows from
Schauder’s theorem.

The authors then specialized this theorem to a number of particular non-
linear differential equations. For example, the version of the result for a scalar
equation of order m goes as follows.

Theorem 6.2. Assume the following conditions hold.
(1) There exists a bounded, weakly closed subset A ⊂ L1m(ω) such that for

any (a1, . . . , am) ∈ A the linear equation
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x(m) +

m∑
i=1

ai(t)x
(m−i) = 0

only has the trivial solution.
(2) For every continuous ω-periodic function (x1, . . . , xm), (ai(·, x(·))) ∈ A.

(3) lim
n→∞

1

n

∫ ω

0

sup
|xi|≤n

|b(t, x1, . . . , xm)| dt = 0.

Then equation

x(m) +

m∑
i=1

ai(t, x, . . . , x
(m−1))xi = b(t, x, x′, . . . , x(m−1))

has at least one T-periodic solution.

The still more special case of a second order equation

x′′ + P (t, x, x′)x = Q(t, x, x′)(6.3)

had already been considered in 1956 by Volpato [98] who, using (for the first
time maybe) a methodology similar to that exploited and generalized by La-
sota and Opial, had proved the existence of at least one ω-periodic solution
of (6.3) when
1. 0 ≤ p(t) ≤ P (t, x, y) ≤ P (t) for all (t, x, y) ∈ R3, where 0 ≤ p(t) ≤ P (t)

are continuous, ω-periodic and such that

(6.4) 0 <

∫ ω

0

p(t) dt, ω

∫ ω

0

P (t) dt ≤ 4,

2. Q is bounded on R3.
The second condition (6.4) had already been introduced by Alexandr M.

Lyapunov in 1892 [72], who also assumed p > 0. It was improved by Göran
Borg [7] in 1944. Those conditions imply that whenever q is continuous, ω-
periodic and such that p(t) ≤ q(t) ≤ P (t) for all t ∈ R, the linear equation

x′′ + q(t)x = 0(6.5)

has all its solutions either unbounded, or satisfying the conditions

x(ω) = e±iθx(0), x′(ω) = e±iθx′(0)

for some θ > 0. Consequently (6.5) only has the trivial ω-periodic solution.
Lasota and Opial showed the existence of at least one ω-periodic solution to
(6.3) when
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1. p(t) ≤ P (t, x, y) ≤ P (t) for all (t, x, y) ∈ R3 where p and q are ω-periodic,
continuous and such that

0 ≤ p(t) ≤ P (t), 0 < ω

∫ ω

0

p(t) dt ≤ ω
∫ ω

0

P (t) dt ≤ 16,(6.6)

2. lim
n→∞

1

n

∫ ω

0

sup
|x|+|y|≤n

|Q(t, x, y)| dt = 0,

and that 16 is the best possible constant in (6.6). Other conditions upon p
and P were given as well, and have been followed by other ones insuring the
existence of an ω-periodic solution for (6.3).

One of them, essentially due to Mawhin and James R. Ward Jr. [74],
requires that ∫ ω

0

p(t) dt > 0, P (t) ≤ 4π2

ω2
(6.7)

with strict inequality on a subset of (0, ω) of positive measure, what will be
written

P (t) .
4π2

ω2

and can be stated equivalently as

ω

∫ ω

0

P (t) dt < 4π2.

Another one requires the existence of some integer k ≥ 1 such that

(6.8)
4π2k2

ω2
. p(t) ≤ P (t) .

4π2(k + 1)2

ω2
.

Inequality (6.6) can be seen as a condition upon P in L1-norm and inequality
(6.7) as a condition upon P in L∞-norm. One can therefore think about sim-
ilar inequalities in any Lp-norm. The literature on variants and extensions of
Lyapunov inequalities, involving other norms and other boundary conditions
is very wide. One can consult the recent interesting survey of Antonio Cañada
and Salvador Villegas [11].

Notice that, as shown by Mawhin and Ward in [74] in the case of elliptic
partial differential equations, Schauder’s linearization technique followed by
Schauder’s fixed point theorem can be replaced by a direct application of
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Leray–Schauder’s method [69]. If one assumes that there exists R > 0 such
that for all λ ∈ [0, 1] and all possible ω-periodic solution of the system

x′ = A(t, λx)x+ λb(t, x)

satisfies the inequality ‖x‖∞ < R, and if the system x′ = A(0)x has only the
trivial ω-periodic solution, then by Leray–Schauder’s theorem, system (6.1)
has at least one ω-periodic solution such that maxt∈R |x| < R. This allows
generalizations of the condition upon b(t, x). The approach can also be ap-
plied to other boundary conditions.

6.2. Periodic solutions of higher order equations (1966)

In the paper [52], Lasota and Szafraniec have considered the existence of
ω-periodic solutions of higher order differential equations of the form

(6.9) Lx+ a(t, x(n−1), · · · , x)x = b(t, x(n−1), · · · , x)

where

Lx := x(n) + a1(t)x(n−1) + · · ·+ an−1(t)x′,

and have found existence conditions in terms of various norms of the coeffi-
cients aj . Letting for p ≥ 1,

‖f‖p :=

(
1

ω

∫ ω

0

|f(t)|p dt
)1/p

, ‖f‖∞ := sup
t∈[0,ω]

|f(t)|,

they first showed that if one of the following conditions

(∞)
n−1∑
i=1

‖ai‖∞
( ω

2π

)i
+ 2‖an‖∞

( ω
2π

)n
< 1

(2)
n∑
i=1

‖ai‖2
( ω

2π

)i
<

1

π

(1)
ω

2
‖a1‖1 + π2

n∑
i=1

‖ai‖1
( ω

2π

)i
< 1

is satisfied, then the linear differential equation
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Lx+ an(t)x = 0

only has the trivial ω-periodic solution. Then, using Lasota–Opial’s methodol-
ogy, they deduced from this result and Schauder’s fixed point theorem that if

1. the ai satisfy condition (∞) or (2) or (1) above,

2. lim
k→∞

1

k

∫ ω

0

b(t, x1, . . . , xn) dt = 0,

3. a(t, x1, . . . , xn)x+(t) ≥ ϕ(t) ≥ 0,

4.
∫ ω

0

ϕ(t) dt > 0,

then equation (6.9) has at least one ω-periodic solution.
More recent contributions in this directions are due to Małgorzata Wy-

pich [99] and Monika Kubicová [32].

7. First order systems with linear boundary conditions

7.1. Reduction to a nonlinear integral equation (1965)

In the paper [58], Lasota and Opial first showed that for any continuous
linear mapping of Cn onto Rn, where Cn denotes the space of continuous func-
tions x(t) from a compact real interval ∆ into Rn, with usual norm ‖x‖∞,there
exists a continuous n × n matrix A(t) defined on ∆ such that the restriction
LA of L to the subspace CnA of Cn of all solutions of the linear differential
equation

y′ = A(t)y

also maps CnA onto Rn.
This result can be applied to the solution of boundary value problems of

the type

x′ = f(t, x), Lx = r,

where f is an n-vector Carathéodory function on ∆ × Rn and r ∈ Rn. In
fact, such a problem is equivalent to the solution of a Hammerstein integral
equation

x(t) =

∫
∆

G(t, s)[f(s, x(s))−A(s)x(s)] ds+H(t)r,
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where the Green matrix G and the matrix H depend only on A,L.
For example, for the periodic problem

x′ = f(t, x), x(ω)− x(0) = 0,

if we take A(t) = Id, the system y′ = y has the set of solutions {cet : c ∈ Rn}
and, with Lx = x(ω)−x(0), we have L(ceω− c) = (eω−1)c which is onto Rn.
This periodic problem is therefore equivalent to the Hammerstein equation

x(t) =

∫ ω

0

G(t, s)[f(s, x(s))− x(s)] ds,

where G is the Green matrix associated to the linear ω-periodic problem

y′ = y + h(t), y(0) = y(ω).

7.2. Existence conditions for Niccoletti’s problem (1966)

In paper [52], Lasota and Czesław Olech have considered Niccoletti’s prob-
lem for a first order system

(B) x′ = f(t, x), xi(ti) = ci, i = 1, · · · , n,

where the ci are given and the functions f(t, x) satisfy Carathéodory condi-
tions.

They proved uniqueness for all (c1, · · · , cn) and (t1, · · · , tn) if conditions

|f(t, u)− f(t, v)| ≤ p(t)|u− v|

and

(P)
∫ h

0

p(t) dt < π/2

hold. They obtained existence if

|f(t, x)| ≤ p(t)|x|+ g(t, x),

condition (P) holds, and

lim
k→∞

1

k

∫ h

0

sup{g(t, x) : |x| ≤ k} dt = 0.
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Actually, condition (P) was shown to imply uniqueness for the problem

(C) |dx/dt| ≤ p(t)|x|, xi(ti) = 0 for i = 1, · · · , n.

This uniqueness assertion was obtained as a consequence of the following
geometrical lemma: if S = {x : |x| = 1}; ρ(x, y) is the spherical distance
between x, y ∈ S, and xi = (x1

i, · · · , xni) ∈ S with xii = 0 for i = 1, · · · , n,
then

∑
ρ(xi, xi+1) ≥ π/2.

The existence was proved using an auxiliary differential inclusion, and an
example showed that the constant π/2 in condition (P) was optimal.

7.3. The case of differential inclusions (1965)

This paper [59] starts as follows:
The role played in the existence problems of the theory of differen-
tial equations by the general topological and functional fixed point
theorems of various types is well known. Theorems of Banach,
Schauder, Leray and Schauder, Tikhonov and others are frequently
used in the proofs of the existence of solutions of initial Cauchy
problems, boundary value problems, general linear problems and,
in particular, in the proofs of the existence of periodic solutions.

In that paper, Lasota and Opial have shown that replacing Schauder’s fixed
point theorem by its Ky Fan’s extension to multi-valued mappings allowed the
study of some boundary value problems for differential inclusions

x′ ∈ F (t, x)

when F takes values in non-empty closed convex subsets of Rn. This is a pi-
oneering paper in set-valued analysis.

7.4. Existence conditions in terms of multi-valued mappings
(1966)

In paper [60], Lasota and Opial proved the existence of a unique solution
to the boundary value problem associated to the first order system

x′ = f(t, x), L[x] = r,
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where L ∈ L(C(∆,Rn),Rn), when there exists a Carathéodory upper semi
continuous map F : ∆×Rn → cf(Rn) (the closed convex subsets of Rn) such
that

f(t, x)− f(t, y) ∈ F (t, x− y)

and x ≡ 0 is the unique absolutely continuous solution of the differential
inclusion

x′ ∈ F (t, x), L[x] = 0.

The proof uses Schauder’s theorem on the invariance of domain under com-
pletely continuous perturbations of identity.

An interesting special case is that of

|f(t, x)− f(t, y)| ≤ ω(t, |x− y|)

and the problem

|x′| ≤ ω(t, |x|), L[x] = 0,

only has the trivial solution, and its consequence: if

|f(t, x)− f(t, y)| ≤ ϕ(t)|x− y|, with
∫ b

0

ϕ(t) dt < π,

then for any λ > 0 the problem

x′ = f(t, x), x(a) + λx(b) = r,

has a unique solution.
Those results will be generalized by Stanisław Kasprzyk and Józef Myjak

[29], Lasota and Shui-Nee Chow [13], Lasota [47, 49], and Krakowiak [31].
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8. Shooting methods for second order differential equations

8.1. ‘Uniqueness implies existence’ theorem (1967)

In paper [63], Lasota and Opial studied equation

x′′ = f(t, x, x′)

under the assumption of global existence and uniqueness for the Cauchy prob-
lem on [a, b], and proved the following ‘uniqueness implies existence result’.

Theorem 8.1. Assume that for any pairs (t1, r1) and (t2, r2) with a <
t1 < t2 < b and r1, r2 ∈ R the boundary value problem

x′′ = f(t, x, x′), x(t1) = r1, x(t2) = r2,

has at most one solution. Then, for each such pair, a solution exists.

They also have observed that the result does not hold for the closed in-
terval [a, b]. More general two-point boundary conditions can be considered.
The proof uses shooting arguments. This seminal paper has inspired gen-
eralizations to differential equations of order 3 by Lloyd Jackson and Keith
Schrader [26] and of order n by Philip Hartman [20].

8.2. Sturm–Liouville boundary conditions (1968–1969)

In paper [50], Lasota and Marian Luczyński have considered the nonlinear
Sturm–Liouville boundary value problem

(8.1) x′′ = f(t, x, x′), αx(c) + βx′(c) = p, γx(d) + δx′(d) = q,

where αδ − βγ 6= 0, when f is such that the local Cauchy problem has a
unique solution, and such that problem (8.1) has at most one solution for any
a < c < d < b and p, q ∈ R. The authors have proved that, under those
conditions, there is at most one solution for the problem

(8.2) x′′ = f(t, x, x′), x(c) = p, x(d) = q.

Furthermore, if all solutions exists on [a, b], problem (8.2) has exactly one
solution.
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In [51] the same authors have proved that problem

x′′ = f(t, x, x′), x(α) = p, x(β)− δx′(β)/h = q,

has a unique solution when all solutions exist on [a, b],

|fx| ≤M, fx′ ≤ K, b− a ≤
∫ +∞

−h

du

u2 +K|u|+M
,

and a ≤ α < β ≤ b, p, q ∈ R, δ = 0 or 1.

8.3. Unification through ‘condition C’ (1970)

In [45], Lasota has generalized and unified the ‘uniqueness implies exis-
tence’ results above for (8.1), by introducing the following Condition C:
1. f is continuous on (a, b)× R2.
2. For every t0 ∈ (a, b) and p, q ∈ R, the Cauchy problem x(t0) = p, x′(t0) = r

has a unique solution defined over (a, b).
Problem (8.1) is called globally unique if is has at most one solution for

any a < c < d < b and any p, q ∈ R and globally solvable if it has at least one
solution for any a < c < d < b and any p, q ∈ R. Then the following result
was proved.

Theorem 8.2. If f satisfies Conditon C and problem

x′′ = f(t, x, x′), x(c) = p, x(d) = q,

is globally unique, then it is globally solvable.

Applications were given, based upon earlier results of Lees and Levin.

9. Conclusions

The main features of Lasota’s papers on the functional analysis approach
to boundary value problems are characterized by a careful choice of underlying
function spaces to obtain maximal generality, an abundant use of Schauder’s
linearization followed by Schauder’s fixed point theorem, an elegant use of
various types of inequalities, a special care for getting sharp existence and/or
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uniqueness conditions, and a clever use of differential inclusions to state exis-
tence conditions for differential equations.

Other results of Lasota on boundary value problems are based upon shoot-
ing method, Pontryagin’s maximum principle, Brouwer’s invariance of domain
theorem, and Wazewski’s method.

Several papers of Lasota have been described or quoted in a large number
of monographs on differential equations and nonlinear analysis, like the ones of
Bailey, Shampine, Waltman [1], Bernfeld, Lakshmikantham [4], Browder [8],
Gaines, Mawhin [19], Kamenskii, Obukhovskii, Zecca [27], Piccinini, Stampac-
chia, Vidossich [85], Reissig, Sansone, Conti [86] and Rouche, Mawhin [87].

Lasota’s contributions to the methods of functional analysis in nonlinear
boundary value problems impress by their originality, number and elegance.
They fully belong to the rich functional analytic and topological tradition of
the Polish mathematical school. They have inspired many further contribu-
tions in Poland and abroad, and will continue to do so. They reflect the nice
personality of their author.
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