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Preface 

As is well known, the first decades of this century were a period of elaboration of 
new methods in complex analysis. This elaboration had, in particular, one char
acteristic feature, consisting in the interfusion of some concepts and methods of 
harmonic and complex analyses. That interfusion turned out to have great advan
tages and gave rise to a vast number of significant results, of which we want to 
mention especially the classical results on the theory of Fourier series in L2 ( -7r, 7r) 
and their continual analog - Plancherel's theorem on the Fourier transform in 
L2 ( -00, +00). We want to note also two important Wiener and Paley theorems 
on parametric integral representations of a subclass of entire functions of expo
nential type in the Hardy space H2 over a half-plane. 

Being under the strong influence of these results, the author began in the 
fifties a series of investigations in the theory of integral representations of analytic 
and entire functions as well as in the theory of harmonic analysis in the com
plex domain. These investigations were based on the remarkable properties of the 
asymptotics of the entire function 

(p, J1 > 0), 

which was introduced into mathematical analysis by Mittag-Leffler for the case 
J1 = 1. In the process of investigation, the scope of some classical results was 
essentially enlarged, and the results themselves were evaluated. Thus the author 
established far-reaching generalizations of Planchrel's theorem for the case of an 
arbitrary finite system of rays starting from the point z = 0 of the complex plane. 
These generalizations were further used to establish some essentially new Wiener
Paley type theorems for various classes of entire functions of finite order and for 
weighted H2 classes of analytic functions over certain corner domains. 

These and other results of the author's research were summarized in his 
monograph published in 1966. Here we present results in the theory of discrete 
generalized harmonic analysis and in the closely related theory of boundary value 
problems in the complex domain. Except for a small number of results obtained 
in publications preceding this monograph, and including solutions of certain par
ticular problems, the results given here are essentially new in their totality and 
published for the first time. 
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The contents of the book may be described briefly as follows. Chapters 1 and 2 
present some preliminaries without proofs from the above mentioned monograph of 
1966. In Chapter 3 we establish a series of auxiliary estimates for certain weighted 
classes of entire functions of exponential type. 

Further chapters of the book may be conditionally diveded into three stages. 

At the first stage, in Chapters 4, 6 and 8, using the asymptotic properties of 
the function Ep(z; J-L), we establish interpolation expansions in some Banach spaces 
of entire functions of orders p = s -1/2 and p = s, where s is any natural number. 

The second stage (Chapters 5, 7 and 9) is based mainly on Wiener-Paley type 
theorems for some Hilbert spaces of entire functions established in the monograph 
of 1966. The application of these theorems enables us to pass from the interpola
tion expansions mentioned above to an explicit construction of systems of vector 
functions (which may have both even or odd numbers of components of Ep(z; J-L) 
type) forming biorthogonal Riesz bases. 

At the third and concluding stage (Chapters lO, 11 and 12) of our investi
gation, it is established that the constructed basic biorthogonal systems of vector 
functions have very deep roots. Namely, they may be interpreted as systems of 
functions on a collection of intervals, arbitrary in number (either odd or even), 
which come out of the point Z = 0 of the Riemann surface Goo of function Lnz. 
In turn, these systems (like the classical Fourier systems) represent the systems of 
eigenfunctions and associated functions for certain non-ordinary boundary value 
problems formulated in terms of differential operators of fractional order on the 
suitable sets of intervals of the surface Goo. The solution of these boundary value 
problems is conducted up to its logical completion, i.e. to the theorems on expan
sions in terms of the mentioned eigenfunctions and associated functions and also 
to the theorems on basis properties of these systems in the Riesz sense. Finally, 
a passage is made from the surface Goo to the complex plane C, and, as a result, 
we obtain systems of entire functions similar to the Fourier systems and forming 
Riesz bases in the weighted classes L2 over the suitable sets of intervals in the 
complex plane C. 

Notes to each of the chapters of the book contain necessary references. The 
results which are proved but have no references were obtained by the author di
rectly in the process of writing the present book. 

pertain specific features of this monograph should be noted. First, the har
monic relation between the contents of all its chapters. Therefore we strongly 
recommend that the potential reader not skip over any significant fragments of 
the book. Further, the monograph may be hardly considered as a textbook. It is 
not designed for easy reading and will require a certain mathematical background. 
Finally, one should stress the deep analytic character of the applied research meth
ods. 

I am very grateful to my pupil S. G. Raphaelian (Yerevan State University) 
for his contributions in the initial stage of the present investigations. 
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1 Preliminary results. 
Integral transforms in the complex domain 

1.1 Introduction 

This chapter contains the most important properties and some of the fundamental 
applications of the classical Mittag-Leffler type function used in the construction 
of the theory of integral transforms in the complex domain. As it is well known, 
this function is defined as the sum of the power series 

(p> 0). 

It is an entire function of order p and of type 1, while the parameter Ji is assumed to 
be any complex number in general. The theorems and lemmas of this chapter, the 
proofs of most of them are omitted, will mainly be used as a base for later chapters 
of the book. The reader may find these proofs in M.M.Djrbashian's monograph 
[5]. Other necessary references will be made in suitable places. 

1.2 Some identities 

(a) This group of formulas follows at once from the definition of the function 
Ep(z;Ji): 

E1/2(Z; 1) = cosh Vz, E (. 2) _ sinh Vz 
1/2 Z, - Vz 

eZ - 1 
E l (z;2) = --, 

z 

1 
Ep(z;Ji) =r(Ji) + zEp(z;Ji+ lip), 

Ep(z; Ji) =JiEp(z; Ji + 1) + ~E~(z; Ji + 1). 
P 

(1) 

(2) 

(3) 

(4) 

Further, the termwise integration of the power expansion of the function Ep(z; Ji) 
along the interval (0, z) leads to the integral relation 

1z 
Ep (Atl/P; Ji) tl-'-l dt = zl-' Ep (AZ1/P; 1 + Ji) (Ji > 0) (5) 

and its generalization 

1 l z -- (z - t)<>-l E (At l / P• Ji) tl-'-l dt 
r( 0:) 0 P' 

= ZI-'+<>-l Ep (AZ l/P; Ji + 0:) (Ji > 0, 0: > 0). (6) 
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The following identities arise particularly from (6), when IL > 0: 

In the same way, termwise integration leads to the equality 

1a 
Ep (zt lIP ; 0:) t a- l Ep (.~«(I - t)l lp ; f3) «(I - t)f3- 1 dt 

(7) 

(8) 

(9) 

= Ep ((111 p Z; 0: + f3 - 1/ p) - Ep ((Ill p A; 0: + f3 - 1/ p) (la+ f3 -11 p-1 (10) 
Z-A 

zE ((Ill p Z· 0: + f3) - AE ((Ill p A· 0: + f3) = p , Z _ A p , (la+f3- 1 (0:,f3 > 0), 

which is true for any (I > 0 and, in general, for any complex values of the param
eters z and A. This formula remains true also when 0:, f3 ~ o. 
(b) Four identities for linear combinations of Mittag-Leffler type functions will 
also be used in the later chapters. Suppose that 8 ~ 0 is an integer, and denote 

(8 ~ 0), (8 ~ 1). (11) 

Further, we shall write k::::::: l( mod n), where k, land n are integers, if the number 
k - l is a multiple of n. Then the following relations can easily be verified 

2~1 kh = { 28 
~ f38 0 
h=O 

when k ::::::: O( mod 28 + 1) 

when k i= o( mod 28 + 1) 

when k ::::::: o( mod 28) 

when k i= o( mod 28) 
(8 ~ 1). 

(8 ~ 0), (12) 

(13) 

Now, by the use of the power expansion of the function Ep(z; IL) and (12), the 
following identities can be obtained for any 8 ~ 0: 

Z8+j E (z28+l.1L + 8 + j ) 
p , (28 + l)p 

8 

'" -(8+j)h E ( hz. ) 
28 + 1 ~ 0:8 (28+l)p 0:8 ,IL 

h=-8 

1 
(-8 5,j 5, 8), (14) 

. _ 8+j 28+1. 8+J 8 ( • ) 

E(28+l)p(Z, IL) - j~8 Z Ep Z ,IL + (28 + l)p . 
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Similarly, (13) leads to the following identities, which hold for any natural 8 ~ 1: 

( 
. ) 28-1 

j 28. J _ 1 -jh h . 
z Ep Z ,J.L+ 2 - 2" L /38 E28P (/38 Z ,J.L) , 

8p 8 h=O 
o ~ j ~ 28 -1, 

(15) 

(c) The application of identity (5) makes it possible to find the explicit solution 
of a special Volterra type integral equation. 

Theorem 1.2. If I(x) E L1 (0, l), (0 < l < +00), then the integral equation 

A r 
u(x) = I(x) + r(l/ p) 10 (x - t)I/P-1U(t) dt, xE(O,l), (16) 

where p > 0 and A is any complex parameter, has as its only solution 

u(x) = I(x) + A fox (x - t)I/P-l Ep (A(X - t)l/p; 1/ p) I(t)dt, x E (0, l) (17) 

in the class L1(0, l). 

1.3 Integral representations and asymptotic formulas 

(a) First we shall state some results relating to the function E1/2(Z; J.L). 

Theorem 1.3-1. Let. the parameter J.L satisfy the condition 

o :s; J.L < 3. 

Then the function E1/2(Z; J.L) may be represented as follows: 
10. If I arg zl < 7r, then 

E 1/ 2(Z; J.L) =~z(1-I')/2ezl/2 

+ ~ r+oo sin (y't + I(1 - J.L») t(1-I')/2 dt 
27r 10 t + z 

20 • If 0 ~ arg z ~ 7r or -7r ~ arg z :s; 0, then, correspondingly, 

E1/2(Z; J.L) =~Z(1-I')/2 { e z1 / 2 + e'fi1r(I-I')e-zl/2} 

(J.L =I 0). 

. 1+00 exp {_llitl/2} 
+ e±i1r(1+I')/4 sm 7rJ.L . v'2 t(I-I')/2 dt. 

27r 0 ±~t + z 

From this theorem follows 

(1) 

(2) 

(3) 
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Theorem 1.3-2. If condition (1) is satisfied, then the following asymptotic rela
tions are true for any natural n ? 1: 
1°. If 0 :5 argz :5 7r, or -7r:5 argz :5 0, then correspondingly 

E1/ 2(Z; J.L) =~Z<1-/L)/2 {ez1 / 2 + e=t=i7r(1-/L)e-z1 / 2 } 

n -k 

- L r( Z _ 2k) + O(lzl-n - 1), as Z --+ 00 
k=l J.L 

(4) 
(J.L ¥- 0). 

2°. Ifx E (0,+00), then 

E1/ 2( -x; J.L) =x(1-/L)/2 cos ( Vx + ~(1 - J.L)) 

n -k 

~ L( _l)k r( x _ 2k) + O(x-n - 1), as x --+ +00 
k=l J.L 

(J.L ¥- 0). 
(5) 

Note that formulas (4) and (5) remain true when J.L = 0, but in this case all terms 
of the right-hand sides of these formulas, except the first terms, vanish. 

(b) Now we shall pass to the similar results for the function Ep(z;J.L), where 
p> 1/2. To this end it is necessary to introduce some notation. Let the contour 
r( 0) (0 < 0 :5 7r) be the sum of the rays arg ( = ±o running in the direction in 
which arg ( does not decrease. Obviously, r(o) is the common boundary of two 
mutually complementary corner domains 

~a = {(: I Arg(1 < o} and ~~ = {(: 17r - Arg(1 < 7r - o} (6) 

with corresponding openings 20 and 2(7r - 0). 

Theorem 1.3-3. Let parameters p and J.L satisfy the conditions 

p> 1/2, -00 < J.L < 1 + l/p (7) 

and let 
7r/2p < 0 < min{7r;7r/p}. (8) 

Then the following integral representations are true: 

p 1 ec'P (p(l-/L) 
Ep(z; J.L) = -2 . ( de, 

7r~ r(a) - Z 
Z E ~~, (9) 

Z E ~a. (10) 
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Theorem 1.3-4. If conditions (7) and (8) are satisfied, then the following asymp
totic relations are true for any natural n 2: 1: 
1°. If Z E Do", then 

as Z ---+ 00. (11) 

2°. If Z E Do;'" then 

n -k 

Ep(z; fL) = - L f( z_ k/ ) + 0(1 Z I-n-l) 
k=l fL P 

as Z ---+ 00. (12) 

(c) Along with representations of Theorems 1.3-1 and 1.3-3, some other integral 
representations of Mittag-Leffler type functions are true. 

Theorem 1.3-5. If 

p>l and ° < fL < 1 + 1/ p, 

then the following formula is true: 

Ep (_Xl/P; fL) XJ.L-l 

_..!. r+ oo sin 7r(fL - 1/ p) + T1/P sin 7rfL T1/p-J.Le-XT dT 
-7rio 1+2Tl/PCOS~+T2/p , 

p 

Theorem 1.3-6. If 

l<p<+oo and 1/ P ::; fL < +00, 

(13) 

(14) 
x E (0,+00). 

(15) 

then the function Ep(z; fL) is representable in the whole z-plane as a Laplace inte
gral: 

1 Z 1< +00. (16) 

Here 

1 s 1< +00 

(17) 
is an entire function of order).. = p/ (p-1) > 1 and of type (J = (1- p-l). p-l/(p-l). 
In addition, 

T E [0,+00); 

A more general result is contained in the next theorem. 
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Theorem 1.3-7. Let Pj and /Lj (j = 1,2) be arbitrary parameters which satisfy 
the conditions 

o < Pl < P2 < +00 

Then the integral identity 

and 0< /Lj < +00 

E p2 (Zj/L2) = 1+00 
EPl (ZTl/P1j/Ll) TJ.Ll-lif>p,J.L(T)dT, 

is true provided 

in definition (17) of the function if> P,J.L (s). If, in addition, 

Pl 
/L2 ~ -/Ll, 

P2 

then the inequalities (18) are true again. 

(j = 1,2). (19) 

1 Z 1< +00 (20) 

(21) 

(22) 

(d) As is well known, a function if>(x), which is infinitely differentiable in [0, +00) 
(or in (0, +00)), is called completely monotonic if 

when x E [0, +00) (or x E (0,+00)) (23) 

for every integer n ~ 0. The following assertion is an immediate consequence of 
Theorems 1.3-5 and 1.3-6. 

Theorem 1.3-8. If P ~ 1 and 1/ P ~ /L < +00 (or P ~ 1 and 1/ P ~ /L ~ 1), then 
the function 

(24) 

is completely monotonic in [0, +00) (or in (0, +00)). 

1.4 Distribution of zeros 

(a) Obviously the entire function E l / 2 (Zj /L) of order P = 1/2 has an infinite 
set of zeros for any /L. Let bdf be this set enumerated in the order of non
decreasing modulus and according to multiplicities. Observe now that all zeros 
of the functions 1.2(1) are simple and are situated on the semi-axis (-00, OJ. As 
to the distribution of zeros of the function E l / 2 (Zj /L), the following assertion is 
established using Theorem 1.3-2. 

Lemma 1.4-1. 1[0 < /L < 3, then: 
10. All zeros 'Yk of the function E l / 2 (Zj /L), which have sufIiciently large modulus, 
are simple and belong to the semi-axis (-00, OJ. 
20 • The asymptotic formula 

as k -+ +00 (1) 

is true. 
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As to the distribution of zeros of the function Ep(z; J.L) when p > 1/2, it 
appears that Ep(z; J.L), in this case, always has an infinite set of zeros, except when 
p = J.L = 1 and E 1(z; 1) = eZ • 

It easily follows from the asymptotic formulas 1.3(11) and 1.3(12) of Theorem 
1.3-1, that, if condition 1.3(7) is satisfied, then all zeros of the function Ep(z; J.L), 
having sufficiently large modulus, must be situated inside the corner domains 

where b > 0 is any number from the interval (0, min{ 7f /2p; 7f - 7f /2p}). Therefore, 
Ep(z; J.L) may have only a finite number of zeros on the real axis. The non-real 
zeros of the function Ep(z; J.L), which are situated in the half-planes G± = {z : 
±I mz > O}, can be enumerated separately according to their multiplicities and 

in the order of increasing modulus. Let bk±)}l' c G± be these sequences. Then, 

obviously, 'Yk-) = 'Yk+) (1 ~ k < +00) since ImJ.L = 0, and the following assertion 
is also true. 

Lemma 1.4-2. If p > 1/2, p =I- 1 and 0 < J.L < 3, then: 
10. All zeros of the function Ep(z; J.L), having sufficiently large modulus, are simple. 
20 • The following asymptotic formula is true: 

as k ---> +00 (2) 

(b) The use of one of G. Polya's elegant results allows us to state a result con
cerning the zeros of the function E1/2(Z; /l), which says considerably more than 
Lemma 1.4-1. The mentioned result can be formulated as follows. 

Theorem 1.4-1. If the function f(t) E L1 (0,1) is positive and increasing, then: 
10. The zeros of the entire functions of exponential type 

U(Z) = 11 f(t) cos(zt)dt, V(z) = 11 f(t) sin(zt)dt (3) 

are real and simple. 
2°. U(z) is an even function having no zeros in [0,7f/2), and its positive zeros are 
situated in the intervals (7fk -7f /2, tfk +7f /2) (1 ~ k < +00), one in each. The odd 
function V(z) has only one zero z = 0 in [0,7f), and its positive zeros are situated 
in the intervals (7fk, 7f(k + 1)) (1 ~ k < +00), one in each. 

The application of this result to entire functions of exponential type a(O < 
a < +00) 

£a(Z; v) = E1/2 (-a2z; 1 + v) 

leads to the following assertion. 

(4) 
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Theorem 1.4-2. 10. If 
o ::; v < 2, (5) 

then the zeros of CO' (z2; v) are simple and real and they are symmetric with respect 
to the point z = o. 
20 • If 0 < v < 1, then all zeros of the function CO' (z2; v) are situated in the 
intervals 

(1) (7r 7r 7r 7r ) .6.k = -k - -2 ,-k + - ,k = ±1, ±2, ... , 
a a a 2a 

(6) 

one in each, and if v = 0, then the zeros of this function are the endpoints of these 
intervals. 

If 1 < v < 2, then the zeros of CO' (Z2; v) are situated in the intervals 

.6.(2) = { (~k, ~(k + 1)), 
k (~(k-1),~k), 

l::;k<+oo 

-00 < k ::; -1, 

one in each, and if v = 1, then they are the endpoints of these intervals. 

Proof. According to formulas 1.2(1) and (4), 

c ( 2. ) _ sin(az) 
00' z ,1 - . 

az 

(7) 

(8) 

Hence the desired statements follow for the cases v = 0 and v = 1. Note now that 
formula 1.2(6) may be written for p = 1/2 in the form 

E1/2 (-a2z2 ;J.l+a) = rta) 1\1- t)'J:- 1E 1/ 2 (-a2 z2t2;J.l) tiJ-- 1 dt (J.l,a > 0). 

Here we first put J.l = 1, a = v (0 < v < 1), and next J.l = 2, a = v-I (1 < v < 2), 
then, correspondingly, we obtain from definition (4) of the function ca(z; v) and 
formulas (8), that 

£0' (Z2; v) = rtv) 11 (1- tt-1 cos(azt) dt (0 < v < 1), 

azca (Z2; v) = r(v 1_ 1) 11 (1 - tt-2 sin(azt) dt (1 < v < 2). 

(9) 

But both the functions (1 - t)v-1(0 < V < 1) and (1 - t)V-2(1 < v < 2) are 
increasing when 0 < t < 1 and belong to L 1(0,1). Therefore, all the desired 
assertions follow from the integral representations (9) and Theorem 1.4-1. 

Finally, note that the first assertion of Theorem 1.4-2 is not true when v = -1 
and v = 2. Indeed, it easily follows from the corresponding power expansions that 
all zeros of the functions 

sin2 az 
CO' (Z2; -1) = -azsin(az), CO' (Z2; 2) = 2~ 

a z 
are real, but are not simple. In connection with this and with the first assertion 
of Lemma 1.4 - 1, a question arises: whether a similar theorem is true when v E 

( -1, O)? This question remains as yet open. 
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(c) The following theorem is a consequence of Theorem 1.4-2. 

Theorem 1.4-3. 1°. All zeros of the function £,,(z;lI) are simple and positive 
when 0 ::::: 1I < 2. 
2°. The sequence of zeros {A.k == A.k(a,lI)}1' (0 < A.k < A.k+l, 1::::: k < +00) of the 
function £,,(z; 1I) has the following distribution: 

When 1I = 0 or 0 < 1I < 1, then, correspondingly, 

A.k = -k - - or A.k E -k - - ,-k + -(7f 7f )2 ((7f 7f)2 (7f 7f )2) 
a 2a a 2a a 2a 

(k ;::: 1). (10) 

When 1I = 1 or 1 < 1I < 2, then, correspondingly, 

A.k = (~k r or A.k E ( (~k r ' (~k + ~) 2) (k ;::: 1). (11) 

3°. For arbitrary 1I E [0,2) 

(12) 

Here and later on, the symbol::=:: means that the quotient of the quantities, 
which are on the left and on the right-hand sides of it, varies between two positive 
constants. 

We prove also the following theorem. 

Theorem 1.4-4. 1°. If 0 < 1I < 1 or 1 < 1I < 2, then 

V>:;, = ~k + ~(1I - 1) + 0(kv- 2), 
a 2a 

k ---+ +00, (13) 

and if 1I = 0 or 1I = 1, then, correspondingly, 

/\ 7f 7f /\ 7f 
Y A.k = -k - - or y A.k = -k 

a 2a a 
(1::::: k < +00). (14) 

Proof. The equalities (14) are already proved in Theorem 1.4-3. To prove the 
asymptotic formula (13), we put x = a 2A.k, Jt = 1 + 1I (0::::: 1I < 2) in 1.3(5) and 
arrive at the equalities 

£,,(A.k; 1I) = E 1/ 2( _a2 Ak; 1 + 1I) 

= (a2Ak)-v/2cos (aV>:;, - ill) + 0(A.;;1) = 0 (1::::: k < +00), 

which, with two-sided estimates (12), imply 

cos (aV>:;, - ill) = 0(kv-2) as k ---+ +00. 

Hence the asymptotic formula (13) follows, if the distribution of zeros given by 
the relations (10) and (11) and condition 1I - 2 < 0 are taken into account. 
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1.5 Identities between some Mellin Transforms 

(a) We state first two well-known theorems on Mellin transforms in L2(0, +00) 
and their inversions. 

Theorem 1.5-1. Let f(x) E L2(0,+00). Then: 
1 0. The functions 

.1'(s;a)=ja f(x)xs-ldx (s=1/2+it,-00<t<+00) (1) 
l/a 

converge in mean on the line s = 1/2 + it (-00 < t < +00) as a -+ +00, i.e., there 
exists a function .1'(s) E L2(1/2 - ioo, 1/2 + ioo), such that 

j
l/2+ioo 

lim 1.1'(s) - .1'(s; a)12ldsl = 0. 
a->+oo l/2-ioo 

(2) 

2°. Conversely, the functions 

1 jl/2+ia 
f(x; a) = -. .1'(s)x-S ds, 

2m l/2-ia 
x E (0, +00) (3) 

converge in mean on the semi-axis (0, +00) to the function f(x), as a -+ +00, i.e., 

1+00 
lim If(x) - f(x; a)12 dx = 0. 

a->+oo 0 
(4) 

In addition, 
1 d jl/2+ioo x l - s 

f(x) = -. - .1'(s)- ds 
21ft dx 1/2-ioo 1 - s 

(5) 

almost everwhere in (0, +00). 
3°. The following equality is true: 

r+oo 1 J+oo 1 (1 ) 12 io If(xW dx = 21f -00 .1' 2 + it dt. (6) 

Theorem 1.5-2. 1°. The functions f (x; a), constructed by means of any .1'( s) E 
L2(1/2-ioo, 1/2+ioo), converge in the sense of (4) to a function f(x) E L2 (0, +00) 
which is representable in the form of (5). Further, the functions .1'(s; a) defined 
by (1) converge, in the sense of (2), to the function .1'(s), and equality (6) is true 
again. 
2°. If the functions f(x) and g(x) belong to L2(0, +00), and .1'(s) , G(s) are their 
Mellin transforms, then 

1+00 1 jl/2+ioo 
f(x)g(x) dx = -2 . .1'(s)G(l - s) ds. 

o 1ft l/2-ioo 
(7) 
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(b) Along with the well-known formula of Mellin transform 

___ x s - 1 dx = ---'-'-1+00 e±ix - 1 H(±) (s) 

o ±ix 1- s ' 
0< Res < 1, 

where 

we note the following important assertion. 

Lemma 1.5-1. If the parameters p, J.l and a satisfy the conditions 

then: 

1 
P > -- 2' 

1 1 1 7r 7r - < /I. < - + - and - < a < 27r - -
2 r' 2 p 2p - - 2p' 

10. The following formula is true: 

1 
Res = 2' 

where the left-hand side integral is convergent in the ordinary sense and 

K (s'a' J.l) = trp exp{ip(7r - a)(s + J.l- I)} 
p " r(l-s) sin7rp(s+J.l-l) 

sup IKp (-21 + it; a; J.l) I < MJ.L < +00. 
-oo<t<+oo 

11 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Formulas (8)-(9) and (11)-(12) allow us to establish the following lemmas, which 
contain three important identities between the functions H(±) (s) and Kp(s; a; J.l). 

Lemma 1.5-2. If p ~ 1/2 and 1/2 < J.l < 1/2 + 1/ p, then the following identities 
are true on the line s = 1/2 + it (-00 < t < +00): 

e-i7r(1-J.L)/2Kp (s; ~;J.l) H(-)(I- s) 

+ ei7r (1-J.L)/2 Kp (s; 27r - 2:; J.l) H(+)(1 - s) == 27rp, 

e- i7r(1-J.L)/2Kp (s, ~;J.l) H(+)(I- s) 

+ ei7r (1-J.L)/2 Kp (s; 27r - 2:; J.l) H(-)(1 - s) 

-2 sin{7r[(I-p)s+p(I-J.l)]} - () 
= trp sin7rp(s + J.l-l) = <PP,J.L s . 

(14) 

(15) 
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Besides, the following estimates are true on the same line for the function <I> p,!-, (s); 

sup e7rltll<I>p,!-, (~ + it) I ::::: 27rpPp,!-,' if p ~ 1, 
-oo<t<+oo 2 

sup e7r(2P-l)ltll<I> (~ + it) I < 27r~P if ~ < P < 1, -oo<t<+oo p,!-, 2 - p,!-,' 2 - -

where the constant Pp,!-' > 0 depends only on p and /-l. 

Lemma 1.5-3. If p ~ 1, 1/2 < /-l < 1/2 + 1/ P and 

0::::: a::::: 27r(1-1/p), 

then the following identity is true on the line s = 1/2 + it (-00 < t < +(0); 

ei7r(1-!-')/2Kp (s; ~ +a;/-l) H(+)(l- s) 

+e-i7r (1-J1.)/2Kp (s; ~ + ~ +a;/-l) H(-)(l- s) == O. 

(16) 

(17) 

(18) 

(c) Finally, note that the behavior of the function <I>p,J1.(s) on the line s = 1/2 + 
it (-00 < t < +(0) is such that the inverse Mellin transform 

1 jl/2+ioo <I> (s) 
\If (x) = - p,!-, x-sds 

p,p- 2 . , 
7rZ 1/2-ioo S 

x E (0, +(0) (19) 

also converges in the ordinary sense and may be calculated in an explicit form. 

Lemma 1.5-4. 1°. If p = 1/2 and 1/2 < /-l < 5/2, then 

{ 
-7rcos(7r/-l) +2sin(7r/-l) (v.P. Jxoo r~~~ dt), 

\lf1/2 !-,(X) = 
, 2sin(7r/-l) Jxoo r~~~ dt, 

2°. If p > 1/2 and 1/2 < /-l < 1/2 + 1/ p, then 

x E (0,1), 

x E (1,+00). 

\If (x) - 21+00 sin 7r/-l + [sin 7r(1/ p -/-l)]t1/ p t!-,-2dt 
p,!-, - x 1-2t1/pcOS7r/p+t2/p ,XE(O,+oo). 

1.6 Fourier type transforms with Mittag-Leffler kernels 

(20) 

(21) 

The identities of Lemmas 1.5-1, 1.5-2 and 1.5-3 make it possible to prove some 
general results in this section. The proofs are based on the classical Theorems 
1.5-1 and 1.5-2 on direct and inverse Mellin transforms and, particularly, on the 
equality 1.5(7). 
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(a) As in Section 1.5, we shall assume everywhere that 

1 1 1 1 
P > - and - < /I. < - + -. 
-2 2'" 2 p 

(1) 

Further, denoting by L2,JL(0, +00) the class of those complex valued functions g(y) 
for which g(y)yJL-l E L 2 (0, +00), we shall agree that the notation 

(1') 
g(y) = 1. i. m. gu(y) 

u--++oo 
(2) 

means: g(y) E L 2,JL(0,+00), and the family of functions {gu(y)} E L 2,JL(0,+00) 
depending on parameter a is such that 

(2') 

If p, = 1, then, obviously, L 2 ,1 (0, +00) = L 2 (0, +00), and convergence (2) is a 
convergence in the metric of L 2(0, +00). In this case, instead of (2) we simply 
write g(y) = Li. m· u --++oo gu (y). 

(b) Theorem 1.6-1. Let condition (1) be satisfied, also let g(y) E L2,JL(0, +00) 
be an arbitrary function, and let 

(a> 0). (3) 

Then: 
1°. There exist functions j(+) (x) and j(-)(x) in L2 (0,+00), such that 

j(±) (x) = 1.i.m. j(±)(x;a). 
u--++oo 

(4) 

Conversely, if we denote 

g(y; a) = v'~7rP {e-i~(l-P) 1u 
Ep (ei?;;yixi; p,) x JL - 1 j(-) (x)dx 

+ ei~(l-JL) loU Ep (e-i?;;yixi;p,) xp- 1l+) (x)dx } (a> 0), 

(5) 
then 

(6) 

and the following Parseval type equality is true: 

(7) 
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2°. The functions g(y) and f(±)(x) are connected by the equalities 

1 d 1+00 e±ixy - 1 
f(±) (x) = --- . g(y)yJ1.- 1dy, 

.J27fp dx 0 ±zy 

g(y) = yl-J1. {e-i~(l-J1.)!:..- [yJ1. roo E (eifpy~x~;J.l+ 1) XJ1.-1jC-) (X)dX] 
.J27fp dy Jo p 

+ei~(1-J1.) :y [yJ1.1+00 Ep(e-ifpyixi;J.l+1)XJ1.-1f(+)(X)dX]} 

which are true almost everywhere in (0, +00). 

Theorem 1.6-2. If p ~ 1 and instead of g(y; cr) the function 

g(y; 'P; cr) = .J~7fP {e-i~(l-J1.) 1u Ep (ei( fp+'P)y i xi; J.l) XJ1.-1 jC -) (x )dx 

(8) 

(9) 

+ ei~(1-J1.) 1u Ep (e-i(fp-'P)yixi; J.l) XJ1.-1 f(+) (x)dx } (cr > 0) 

(10) 
is considered, then 

when 'P = 0, ~J1.) { g(y) 
1.1. m. g(y; 'P; cr) = ° <7-++00 when 1!. < P < 27f - 1!. p - - p' 

and almost everywhere on the semi-axis (0, +00) 

(c) The following assertion is the converse to Theorem 1.6-1. 

Theorem 1.6-3. 1°. If f(x) E L2 (0,+00), then the limit in mean 

g(±)(y) = 1.i~~. _1_ r E (e±i7r/2Pyl/Pxl/P;J.l) xJ1.-1f(x)dx 
<7-++00 .J27fp Jo p 

exists on (0,+00). Conversely, if 

f(x;cr) = _l_{e-i~(l-J1.) r e-iXYg(+) (y)yJ1.- 1dy 
.J27fp Jo 

+ ei~(1-J1.) 1u eixYg(-) (y)yJ1.- 1dy } (cr>O), 

(11) 
(12) 

(14) 

(15) 



1.6 Fourier type transforms with Mittag-Leffler kernels 15 

then there exists the limit in £2 ( -00, +00) metric 

_ { f(x), 
l.i.m. f(x;a) = f(x) = 1 d fc+OO (11..) () a->+oo --- .1. - f y dy 27rp dx 0 'PP,/1- x ' 

if x E (0,+00), 

ifxE(-OO,O), 
(16) 

where 't/Jp,/1- is the same as in Lemma 1.5-4. 
2°. The functions g(±)(y) E £2,/1-(0, +00) and j(x) E £2(-00, +00) are repre
sentable almost everywhere in (0, +00) and (-00, +00) in the forms 

g(±)(y) = yl-/1- ..!!-. {y/1- [+00 E (e±ifpy*x*;J.L+ 1) X/1--1f(x)dX} (17) 
..j21fp dy Jo p 

and 

1+
00 

If(xWdx ~ £:00 lj(x)12dx 

= p-l {1+00 Ig(+) (y)1 2y2(/1--1)dy + 1+00 19H(y)1 2y2(/1--1)dY } , 

where M/1- is the constant of the estimate 1.5(13). 

(18) 

(19) 

(20) 

(d) As was already observed above, any function f(x) E £2(0, +00) has two 
transforms generated by means of Fourier kernels e±ixy and also two transforms 
generated by means of Mittag-Leffler type kernels Ep (e±i7r/2Pxl/Pyl/P; J.L). Let 
/I(x) E £2,/1-(0, +00) and h(x) E £2(0, +00) be arbitrary functions whose trans
forms are 

g(±)(y; /I; e) = --- . x/1--1/I(x)dx 
1 d 1+00 e±iyx - 1 

..j21f p dy 0 ±zx 
(21) 

and 

g(±)(y;h;Ep) = ~~~Pd~ {y/1-1+00 Ep (e±ifpy*x*;J.L+l)X/1--1h(X)dX}. 

(22) 
Then, according to Theorems 1.6-1 and 1.6-3, 

g(±)(y; /I; e) E £2(0, +00) and g(±)(y; 12; Ep) E £2,/1-(0, +00). (23) 

Moreover, the following analog of Parseval equality is true. 
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Theorem 1.6-4. The pairs off unctions h(x), h(x) and g(±)(y; h; e), satisfy the 
equality 

(e) Using Theorem 1.6-3 it is possible to generalize essentially the main Theorem 
1.6-1, that is, to construct in an explicit form an apparatus of Fourier-Plancherel 
type integral for any finite system of rays starting from a point of the complex 
plane. 

Let L{ '!91, '!92, ... , '!9 s} be the system of rays 

lk: argz='!9k (k=I,2, ... ,s; s;?:2), 

- 7r < '!91 < '!92 ... < '!9s :::; 7r 
(25) 

starting from the origin. These rays divide the z-plane to s corner domains with 
a common vertex at z = O. Further, assuming that '!9s+1 = 27r + '!91, we put 

(26) 

and observe that Ps ;?: s /2, and 7r / Ps is the size of the minimal opening of the 
mentioned corner domains. 

Theorem 1.6-5. Let p;?: Ps, and let g(z) be any function defined on the system 
of rays Ls = L{'!9l, ... ,'!9s}, such that 

(27) 

Further, let 

(0" > 0, 1 :::; k :::; s). (28) 

Then: 
1°. There exist functions fk(X) E L2(-00,+00) (1:::; k:::; s) such that 

(l:::;k:::;s). (29) 
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Conversely, the functions 

converge in mean to g(rei'P) on the system of rays L8: 

(31) 

2°. The functions g(z)(z E Ls) and h(x) (1:S; k :s; s) are connected by the 
formulas 

(32) 

. r1-1-' 8 d { {+oo. } g(re2'P) = --L - r E ((ix)1/Pr1/Pe2('P-iJk); f..L + 1) (iX)I-'-l h(x)dx 
J27fp k=l dr -00 P 

(33) 
which are true for almost every x E (-00, +00) and for almost every rei'P E Ls = 
L{ '191 , . .. ,'19 s} correspondingly. 
3°. A Parseval type equality is also true: 

s 1+00 

7.(g) = p {; -00 Ih(x)1 2 dx. (34) 

1. 7 Some consequences 

In this section some particular cases of previous general theorems are observed. 
These particular cases are directly connected with the classical results of the theory 
of Fourier transform in L 2 . 

(a) T,heorem 1.7-1. If f..L E (1/2,5/2), then: 
1 0. The relations 

(1-') irl t7 
( 7f ) f(x) = 1. i. m. - cos xy + -(1 - f..L) g(y)yl-'-ldy, 

17->+00 7f a 2 
(1) 

(2) 
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give invertible and mutually inverse transforms between the spaces of functions 
g(y) E L2,JL(0, +(0) and f(x) E L2 (0, +(0), and the following two-sided estimate 
is true: 

(3) 

2°. If any functions f(x) E L2 (0, +(0) and g(y) E L2 ,JL(0, +(0) are connected by 
relations (1) and (2), then 

() j! d 1+00 cos (xy - ~Ii) - cos ~Ii () -1 f X = - - 9 Y yJL dy 
7r dx 0 y 

(4) 

and 

g(y) = j!y1-JL :y [YJL 1+00 
El/2 (_y2x2 ; Ii + 1) x JL - 1 f(X)dX] (5) 

almost everywhere in (0,+00). 

The proof of these assertions will now be briefly outlined. 
1 0. We shall use Theorem 1.6-1, assuming p = 1/2 and Ii E (1/2,5/2). To this end 
we suppose that g(y) E L 2 ,JL(0, +(0) is an arbitrary function and introduce the 
following functions depending on x E (0, +(0): 

(a> 0), 

Then the existence of the limit function f(x) E L 2 (0, +(0) in the sense of (1) 
follows from formulas 1.6(3)-(6). It follows also that 

(6) 

Further, by 1.6(5), 

and the existence of the limit function g(y) E L 2 ,JL(0, +(0), in the sense of (2), 
follows at once. Finally, formulas 1.6(19)-(20) imply the two-sided estimates (3). 

To prove the converse statement, i.e., that formula (1) gives the inversion of 
transformation (2), we shall assume that f(x) E L2(0, +(0) is any function. Then, 
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according to 1.6(14)-(16), the limit (2) exists, g(y) = y'2g(±) (y) and it belongs to 
£2,11(0, +(0) when p = 1/2 and J1, E (1/2,5/2). Besides, it follows that 

f(x; a) = Jrr 10" cos (Xy + ~(1 - J1,») g(±) (y)yl1- 1dy, x E (0,+00), 

and hence the limit (1) exists, Le., the inversion formula of transformation (2) is 
true. 
2°. The pair of formulas (4)-(5) immediately follows, in the same way as above, 
from the corresponding relations 1.6(17)-(18) where we assume p = 1/2. 

(b) Observe that by formulas 1.2(1) 

and ( 2 2) sinxy 
El/2 -x y;2 = --. 

xy 
(7) 

Therefore, the well-known Fourier-Plancherel dual formulas of cos- and sin-trans
forms in £2(0, +(0) follow from Theorem 1.7-1 when J1, = 1 and J1, = 2. 

Theorem 1.7-2. The dual relations 

and 

gc(Y) = l.Lm. ff. r cos(xy)f(x)dx, 
0"--->+00 V;: io 

f(x) = l.Lm. ff. r cos(xy)gc(y)dy 
0"--->+00 V;: io 

gs(Y) = Li. m. ~ r sin(xy)f(x)dx, 
0"--->+00 V;: io 

f(x) = l.i.m. ff. r sin(xy)gs(y)dy 
0"--->+00 V;: io 

(8) 

(9) 

represent mappings of the whole class of functions £2(0, +(0) onto itself. And the 
Parseval equality 

(10) 

is true in both cases. 

It should be mentioned that equalities (10) follow from 1.6(7), if we take 
into account the complementary notations introduced when the proof of Theorem 
1.7-1 was briefly outlined. Further, note that the dual formulas (8) and (9) can be 
written also in the forms (4) and (5) when J1, = 1 and J1, = 2. 
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(c) Finally, note that the classical Plancherel theorem on the Fourier transform 
in L 2 ( -00, +(0), which is stated below, is contained as a very special case not only 
in the general Theorem 1.6-5 when p = J1 = 1, and we have the system of two rays 
L{ 0,11"}, but also in Theorem 1.6-3. 

Theorem 1.7-3 .. The dual formulas 

1 d J+oo e-iyx - 1 
g(y) = 'F-d . f(x)dx, 

V L.11" Y -00 -~x 

1 d J+oo eixy - 1 
f(x) = 'F-d . g(y)dy 

V L.11" x -00 zy 

(11) 

and 

( ) - 1 . 1 J<7 -iYXf( )d g y - .1. m. rn= e x x, 
<7-->+00 V 211" -<7 

f(x) = 1. i. m. ~ J<7 eixYg(y)dy 
<7-->+00 V 211" -<7 

(12) 

represent the same one-to-one mapping of the space L2 ( -00, +(0) onto itself, and 
the Parseval relation is true: 

J +OO J+oo 
-00 If(xWdx = -00 Ig(y)1 2 dy. (13) 

We shall briefly outline a proof based on Theorem 1.6-3, where we put p = 
J1 = 1 and consequently have 

In this case, formulas 1.6(17)-(18) become 

g(±)(y) = -- . f(x)dx, 
1 d 1+00 e±iyx - 1 

..fj;ff dy 0 ±~x 
Y E (0, +(0), 

f(x) = - - . g(+) (y)dy + - . gH(y)dy . - 1 {d 1+00 e-ixy - 1 d 1+00 eixy - 1 } 
..fj;ff dx 0 -~y dx 0 ~y 

x E (-00, +(0), 

But 'l/l,l(X) == 0, x E (0,+00) by formula 1.5(21) of Lemma 1.5-4. Therefore, 

j(x) = { ~(x) when x E (0, +(0), 

when x E (-00,0), 
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and, as can be easily verified, equality 1.6(20) becomes 

1+00 If(x)1 2dx = 1+00 IgC+) (yWdy + 1+00 IgC-) (yWdy. 

Further, denote g(±y) == gC~)(y) (0 < y < +00). Then it is easy to obtain the 
formulas 

1 d 1+00 e-ixy - 1 
g(y) = l2=-d . f(x)dx, 

V~7r y Q -~x 

- __ 1_~ 1+00 e ixy -1 _ { f(x) 
f(x) - 12= d . g(y)dy - 0 

V~7r X -00 ~y 

Y E (-00,+00), 

when x E (0, +00) 

when x E (-00,0) 

and equality (13), but only for a subclass of those functions of L2 ( -00, +00) which 
vanish on the semi-axis (-00,0). Similarly, we consider the case of functions van
ishing on the semi-axis (0, +00), then we obtain the desired relations (11) for the 
whole class L 2 ( -00, +00). The second pair of dual formulas (12) follows similarly 
from formulas 1.6(14)-(16) of Theorem 1.6-3. 

1.8 Notes 

1.1 The function 
00 k 

E1/p(z) = E r(l: kip) (p > 0) 
k=Q 

was first introduced by Mittag-Leffler [1-3] in connection with his new method 
of the summation of divergent series (see also Buhl [1], Hardy [1, Sec. 8.10] and 
M.M.Djrbashian [5, Theorems 3.3 and 3.4]). As the earliest investigations where 
different important properties of E1/p(z) were established, the papers of Wiman 
[1, 2] and Buhl [1] must be mentioned. The function 

00 k 

Ep(zjp,) = E r( Z kl ) (p > O,p, > 0) 
k=Q p,+ P 

called a Mittag-Leffler type function by the author is the basis of a series of in
vestigations in the 1950s (see M.M.Djrbashian [1-4]) which were improved and 
summarized in [5]. It must be mentioned that the function Ep(zjp,), which coin
cides with E1/p(z) when p, = 1, has been written in several different forms. For 
example, Cleota and Hugens [1] wrote it in the form E1/p(zjp,), and the notation 
E1/p,,.,(z), used in the reference book of Bateman [1], was introduced by Agarwal 
[1]. A series ofrelations for Ep(zjp,), where p, = 1 is assumed, can be found in Buhl 
[1], Humbert [1], Agarwal [1] and Humbert-Agarwal [1], but most of these relations 
are of a formal character. Some of these relations extended for any p, are given 
by Bateman [1]. These and other simple properties of Ep(z; p,) were improved by 
M.M.Djrbashian [5, Ch. 3, §1]. 
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1.2 Relations (1)-(9) are given in the above mentioned papers and monographs. 
Relation (10) was obtained by M.M.Djrbashian-A.B.Nersesian [1]. Identities (14) 
and (15), obtained by the author, play an important role in the establishment of 
the main results of this book. Theorem 1.2-1 was proved by Hille-Tamarkin [1] 
by a direct application of the general formulas of the theory of Volterra integral 
equations (see also V.I.Smirrrov [1, Section 48] and M.M.Djrbashian [5, Theorem 
3.1]). 

1.3 Theorems 1.3-1 and 1.3-2 were proved by M.M.Djrbashian [3], [5, Chapter 3, 
§2]. For Theorems 1.3-3 and 1.3-4 see Bateman [1, p. 210] and M.M.Djrbashian 
[5, Chapter 3, §2]. Theorem 1.3-5 was proved by M.M.Djrbashian-B.A.Saakian [1]. 
The assertions of Theorems 1.3-6 and 1.3-7, except relations (18), were established 
in essentially different ways and in different forms by Pollard [1, 2] and Winter [1, 
2], only for the special case f..L = 1. These theorems, in the way they are formulated 
here, were proved by a new method in the paper of M.M.Djrbashian-R.A.Bagian 
[1], where the entire function <Pp,,..(s) was introduced and relations (18) were estab
lished. It should be mentioned that Pollard [1, 2] had established that the function 
W p ( r) of the integral representation 

o :::; x < +00, p 2: 1, 

proved by him is absolutely continuous, and therefore <Pp,l(r) == W~(r), r E 

(0, +00). 

1.4 The problem of the distribution of zeros of the function Ep(z; 1) == E1jp(z) 
was first considered by Wiman [1, 2]. He established Lemmas 1.4-1 and 1.4-2 for 
f..L = 1. The general case when f..L #- 1 was considered by M.M.Djrbashian [5, Chapter 
3]. The resuming Theorem 1.4-1 was established by Polya [1], and its consequences 
Theorems 1.4-2, 1.4-3 and 1.4-4, relating to distribution of zeros of the function 

were proved by M.M. Djrbashian [7, §1]. 

1.5-1. 7 For Theorems 1.5-1 and 1.5-2 on Mellin transforms in L2 see Titchmarsh 
[1, §3.17] and M.M. Djrbashian [5, Chapter 1, §4.3]. Lemmas 1.5-1-1.5-4 and the 
assertions of Theorems 1.6-1-1.6-5 were proved by M.M. Djrbashian [5, Chapter 
4, §2]. The concluding Theorems 1.7-1-1.7-3 are consequences of Theorems 1.6-1-
1.6-5. 



2 Further results. 
Wiener-Paley type theorems 

2.1 Introduction 

In this chapter we present some other applications of the theory of harmonic anal
ysis in the complex domain. These applications are related to the theory of para
metric representations of various classes of entire and analytic functions restricted 
by additional conditions of weighted integrability on suita~le systems of rays. The 
main results of this chapter will be used later on, but nevertheless, we present 
them without proofs. The proofs can be found in M. M. Djrbashian's monograph 
[5]. 

2.2 Some simple generalizations of the first 
fundamental Wiener-Paley theorem. 

(a) The class of entire functions f(z) of order p = 1/2 and of type::; u, satisfying 
the condition 

(-I<w<I), (1) 

will be denoted by W;i~,,,' The parametric representation of this class is contained 
in the following theorem. 

Theorem 2.2-1. 1°. The class W;i~,,, (-1 < w < 1) coincides with the set of 
functions representable in the form 

f(z) = 1" E 1 / 2 ( -ZT2; p,)TJL-lcp(T)dT, z E C, (2) 

where p, = w + 3/2 and cp(r) E L2(0, u) are arbitrary functions. 
2°. If f (z) E W;i~,,,' then the function cp( T) of the representation (2) is unique, 
and the inversion formula of the transformation (2) 

3..~ [+00 cos(tr - p:Tr/2) - cos(p:Tr/2) f(t2)tJL-1dt == cp,,(r) 
7r dr Jo t 

= { ~(r) 

is true almost everywhere. 

when r E (0, u), 

when r E (u, +00) 

3°. The following two-sided estimates are true: 

1+00 
1 f(x) 12 xWdx;::::: 1" 1 cp(r) 12 dr. 

Here the suitable constants do not depend on f and cp. 

(3) 

(4) 
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If the particular classes of entire functions 

(5) 

are considered, then the well-known Wiener-Paley theorems on these classes follow 
from Theorem 2.2-1. Namely, the assertions of the following theorem are obtained. 

Theorem 2.2-2. 1°. The class W;i~~2 (-1 < w < 1) coincides with the set of 
functions of the form 

J(z) = 1u cos(y'Zr)cp(r)dr,cp(r) E L2 (0,a). (6) 

2°. The class W:i~~: coincides with the set of functions of the form 

1u sin(vlzr) 
J(z) = 0 viz cp(r)dr,cp(r) E L2 (0,a). (7) 

3°. The inversions of transformations (6) and (7) are given correspondingly by the 
formulas 

2 d 1+00 sin(tr) (2) d } 
-:; dr 0 -t -J t t {cp(r), r E (0, a) 

= cpu(r) = 
~~ 1+00 1 - cos(tr) J (t2) tdt 0, r E (a, +00) 
7r dr 0 t 

which are true almost everywhere in (0, +00). 
4 0 • Parseval equalities of the form 

11+00 1u - 1 J(x) 12 X'f 1/ 2dx = 1 cp(r) 12 dr 
7r 0 0 

are true for both cases. 

Indeed, if w = -1/2(J.l = 1) or w = 1/2(J.l = 2), then, by formula 1.2(1), 

2 2 sin (vlzr) 
E 1/ 2 (-zr ; 1) = cos( y'Zr), E 1/ 2 (-zr ; 2) = viz . 

zr 

(8) 

(9) 

So, assertions 1° to 3° of Theorem 2.2-2 follow from formulas (2) and (3). As to 
equalities (9), they follow from formulas (8) and 1.7(10). 

(b) The following direct generalization of the Wiener-Paley first fundamental the
orem is established for the class W[': of entire functions J(z) of order p = 1 and 
of type :::; a, which satisfy the condition 

(-l<w<l). (10) 
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Theorem 2.2-3. 1°. The class W;:: (-1 < w < 1) coincides with the set of 
functions of the form 

z E C, (11) 

where J.L = 1 + w /2 and cp( T) E L2 ( -u, u) are arbitrary functions. 
2°. If J(z) E W;':, then the function cp(T) of representation (11) is unique, and 
the inversion forlnula 

1 d 1+00 e-iTt - 1 7r } -- . exp {i-(J.L - 1) sign(Tt) J(t) 1 t 11'-1 dt 
27r dT -00 -zt 2 

= { cp(T), 
0, 

is true almost everywhere. 

T E (-u, u) 

T ¢ (-u, u) 

3°. The following two-sided estimates are true: 

If w = ° (J.L = 1), then we consider the function 

(12) 

(13) 

and the first fundamental Wiener-Paley theorem, which we give below, follows 
from Theorem 2.2-3. 

Theorem 2.2-4. 1°. The class W;'~ of entire functions J(z) of order p = 1 and 
of type ::; u, for which ' 

/

+00 

-00 1 J(x) 12 dx < +00 (14) 

coincides with the set of functions of the form 

J(z) = £: eiZTcp(T)dT, (15) 

2°. If J(z) E W;:~, then the function cp(T) of the representation (15) is unique, 
and the following inversion formula is true almost everywhere: 

1 d 1+00 e-iTt -1 {CP(T), T E (-u,u) 
-- . J(t)dt = . 
27r dT -00 -zt 0, T ¢ (-u, u) 

(16) 
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2.3 A general Wiener-Paley type theorem 
and some particular results. 

(a) First we introduce some notations. 
Let p ~ 1/2 be an arbitrary fixed number and let the integer s = s(p) ~ 0 

be such that 
s ~ [2p]-1. 

Further, let the set of numbers {-Ih < {h < . . . < '!9 8+1} satisfy the conditions 

-7r < '!91 < '!92 < ... < '!9 8 ~ 7r < '!9 8+1 = '!91 + 27r 

7r 
max {'!9k+1 - '!9k} = -. 
1~k~8 P 

(1) 

(2) 

Form the set of pairs ('!9k, '!9k+1H from {'!9kH+1 and then choose the subset of pairs 
('!9rk' '!9rk+df which have the same order of succession and for which 

(k = 1,2, ... ,p ~ s). (3) 

In addition, if p < s, then the remaining pairs ('!9/tk' '!9/tk+1 H (q = s - p) are 
supposed to be enumerated in the same order. 

Further, denote 

(k = 1,2, ... ,p) (4) 

and suppose that the parameters wE (-1,1) and 0 ~ ak ~ a (k = 1,2, ... ,p) are 
arbitrary. Then the class 

W;::({'!9d, {ak}) 

of entire functions f (z) of order p ~ 1/2 and of type ~ a, satisfying the conditions 

(k=I,2, ... ,s), (5) 

(k = 1,2, ... ,p), (6) 

where 
h( f) Ii log I f(rei'P) I 

<p, = msup 
r-+oo r P 

(7) 

is the indicator of f, will be associated with the set of numbers {'!9k H+1 . 

The following most general Wiener-Paley type theorem is true for entire 
functions of arbitrary finite order. 
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Theorem 2.3-1. 10. The class W;::( {'I?k}, {O"k}) coincides with the set of func
tions f (z) representable in the form 

z E C, (8) 

where f.1. = (l+w+p)/2p and <Pk(r) E L2(0, O"k)(1 :5 k :5 p) are arbitrary functions. 
20 • If fez) E w;::( {'I?k}, {O"k}), then the functions {<Pk(r)}i of representation (8) 
are unique and can be determined almost everywhere by formulas 

(9) 

where it is supposed that 

(k = 1,2, ... ,8) (10) 

almost everywhere in (-00,+00) and «PS+1(r) == «Pl(r). 

(b) Obviously, the general Theorem 2.3-1 may be reduced to a particular result 
for any special choice of the system of rays on which conditions (5) and (6) are 
supposed to be satisfied. For example, it is not difficult to verify that Theorem 
2.3-1 contains, as special cases, the simplest generalizations of the Wiener-Paley 
theorem given in Section 2.2. Now the parametric representations of two other 
particular classes of entire functions, which follow again from the general Theorem 
2.3-1, will be stated. 

The class of entire functions fez) of order p ~ 1/2 and oftype :5 0", satisfying 
the condition 

(11) 

for a given w E (-1,1), will be denoted by A~:~{±7l'/2p}. Then the following 
theorem is true. 

Theorem 2.3-2. 10. The class A~:~ {±7l' /2p} coincides with the set of functions 
f (z) representable in the form 

z E C, (12) 

where f.1. = (1 +w + p)/2p and <per) E L2(0,0") are arbitrary functions. 
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2°. The function!.p( T) ofrepresentation(12) is unique and can be determined almost 
everywhere by the inversion formula 

(13) 

It is easy to observe that the previous theorem is a natural generalization of 
Theorem 2.2-1, since these theorems merely coincide when we put p = 1/2 and 
replace z by - z. 

As the second particular class, we will take B~:';; - the class of entire functions 
of order p :2: 1 and of type :s: 0", satisfying the conditions 

(14) 

for a given W E (-1,1). It is important to notice that B~:';; coincides with W;:: 
when p = l. 

Theorem 2.3-3. 1°. The class B~:';; coincides with the set of functions J(z) rep
resentable in the form 

J(z) = l~p(ei-fpzTi;f.1)TJ.L-l!.pl(T)dT+ 1"Ep(e-i-fpzTi;f.1)TJ.L-l!.p2(T)dT,Z E C, 

(15) 
where f.1 = (1 + W + p)/2p and !.pk(T) E L2(0, O")(k = 1,2). 
2°. The functions !.pl,!.p2 of the representation (15) are unique and can be deter
mined almost everywhere by formulas 

1 {i1l.(l-J.L),T. ( ) -i1l.(l-J.L),T. ( )} _ {!.pl(T), T E (0,0"), -- e 2 'I!'-l -T + e 2 'l!'O T -V21fp 0, T E (0", +00), 
(16) 

1 {i1l.(l-J.L),T. ( ) -i1l.(l-J.L),T. ( )} _ {!.p2(T), T E (0,0"), -- e 2 'l!'O -T + e 2 'l!'l T -V21fp 0, T E (0", +00), 
(17) 

where 

(k=-I,o,l) (18) 

almost everywhere in (-00, +00 ). 
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2.4 Two important cases of the general Wiener-Paley type theorem. 

Here we state two important special cases of Theorem 2.3-1, where the orders of 
entire functions of considered classes are assumed to be 

Ps = s + ~ (s = 0, 1,2, ... ) or P: = s (s = 1,2, ... ). (1) 

These special cases will be used in later chapters. 

(a) Let s ~ 0 be an integer. Then the set ofrays 

arg z = 'l9j = s +'Tr1/ 2j (0 :::;1 z 1< +oo,j = 0, ±1, ... , ±s) (2) 

divides the z-plane into 2s + 1 corner domains of the same opening 'Tr/(s + 1/2). 
Thus, if s = 0, or, which is the same, P = Po = 1/2, then there exists only one ray, 
arg z = '190 = 0, the z-plane is cut along [0, +00), and the opening of the corner 
domain is 2'Tr. 

The class of entire functions <p(z) of order s + 1/2(s ~ 0) and of type:::; 0', 
satisfying the conditions 

1+00 1 <p(e-iB+~/2jt) 12 tWdt < +00 (-s:::;j:::;s) (3) 

for a fixed w ~ (-1,1), will be denoted by W;+~/2'<1' It can be observed that, in 
the case considered, '!9s+1 = 'I9- s + 27f and 

3 j = ~ ['I9 j + '!9j +1l = s +'Trl/2 (j + 1/2) (-s :::; j :::; s), (4) 

and it is easy to verify, that Theorem 2.3-1 takes the following form. 

Theorem 2.4-1. 1°. The class W;~/2'<1 (-1 < w < 1, s ~ 0) coincides with the 
set of functions representable in the form 

S (<T . j+1/2 1 

<p(z) = L io ES+1/2(e'7rS+l/2zrS+l/2jJ.L)<pj(r)rl-'-ldr, z E C, (5) 
j=-s 0 

where J.L = (3/2+s+w)/(1 +2s) and <pj(r) E L2(0, 0') (-s :::; j ::; s) is an arbitrary 
function. 
2°. If <p(z) E W;~/2'<1 ' then the functions {<pj(r)}~s of representation(5) are 
unique and can be determined by the formulas 

1 {ei~(1-I-')<PHl( -r) + e-i~(1-I-')<pj(r)} 
J27[(s + 1/2) . 

__ {<pj(r), r E (0,0') (6) 
(-s::;j:::;s), 

0, r E (0', +00) 

(7) 
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Here it may be noted that Theorem 2.4-1 contains Theorem 2.2-1 on para
metric representation of the class of entire functions w;;~,,,", if the simplest case 

8 = 0 (p = 1/2) is considered. 

(b) If 82:: 1 is any natural number, then the set of rays 

{} 7r. 
argz = j = -] 

8 
(0 ~I z 1< +oo,j = 0, 1, ... ,28 - 1) (8) 

divides the z-plane into 28 corner domains which have the same opening 7r Is. So, 
if 8 = 1, then the set of rays argz = {}j = 7rj(j = 0,1) divides the plane into 
two mutually complementary half-planes G± = {z : ±Imz > O} with the common 
boundary (-00, +00 ). 

We denote by w.?: the class of entire functions <I>(z) of order 8(8 2:: 1) and 
of type ~ O"(where 8 is ~ssumed, as before, to be a natural number), which satisfy 
the conditions roo 10 1 <I>(e-i~jt) 12 tWdt < +00 (j = 0, 1, ... ,28 - 1) (9) 

for a given wE (-1,1). 
Observe that, in the case considered, {}2s = {}o + 27r = 27r, 

_ 1 7r . 
:='j = - [{}j + {}j+ll = -(] + 1/2) (j = 0,1, ... ,28 - 1), (10) 

2 8 

and Theorem 2.3-1 takes the following form. 

Theorem 2.4-2. 1°. The class W;": (-1 < w < 1,82:: 1) coincides with the set 
of functions representable in the form 

2s-1 ("" 
<I>(z) = L 10 Es(ei~(H1/2)ZT~;J.t)T/-L-1'Pj(T)dT, 

j=O 0 

z E C, (11) 

where J.t = (1 + w + 8)/28 and 'PAT) E £2(0, O")(j = 0,1, ... ,28 - 1) are arbitrary 
functions. 
2°. If <I>(z) E W;:, then the functions {'Pj(T)}~s-l of representation (11) are 
unique and can b~ determined almost everywhere by the formulas 

vk8 {ei~(1-/-L)<I>Hl (-T) + e-i~(1-/-L)<I>j( T)} 

= {'Pj(T), T E (0,0") 
(j = 0, 1, ... ,28 - 1), 

0, T E (0",+00) 

where it is assumed 

(12) 

<I>j(T) = _1_.!!-. roo e-iTt.-l<I> (e-i~jt~) tJ.L-1dt 
v'2if dT 10 -zt 

(0~j~28-1) (13) 

and <I>2s(T) == <I>O(T). 

Finally, it should be noted that the last theorem contains the assertions of 
Theorem 2.2-3 in the particular case 8 = 1. 
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2.5 Generalizations of the second fundamental 
Wiener-Paley theorem. 
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( a) The class of functions <I> (z ), analytic in the half-plane C+ = {z : Re z > O} 
and satisfying the condition 

1+00 
sup 1 <I>(x + iy) 12 dy < +00 

o<x<oo -00 

(1) 

will be denoted by H2 (C+ ). As is well known, Wiener and Paley, along with the 
famous Theorem 2.2-4, established their second fundamental theorem stating the 
parametric representation of the class H2(C+). This theorem is given below. 

Theorem 2.5-1. 1°. The class H2(C+) coincides with the set of functions repre
sentable in the form 

[+00 
<I>(z) = io e-zTr.p(r)dr, (2) 

where r.p(r) E L2(0, +00) are arbitrary functions. 
2°. If <I>(z) E H 2 (C+), then the function r.p(r) of representation (2) is unique and 
can be determined almost everywhere by means of the Fourier· transform 

1 d 1+00 eiTY - 1. {r.p(r), r > 0, -- <I>(zy)dy = 
27r dr -00 iy 0, r < 0, 

where <I>(iy) E L 2(-00,+00) are the boundary values of <I>(z) on 
ac+ = (-ioo, +ioo). 

(3) 

(b) Theorem 2.5-1 has essential generalizations which will be stated below, but 
first it is necessary to introduce some notation. We use H 2 { a; w} (1/2 < a < 
+00, -1 < w < 1) for the class of functions <I>(z) analytic in the corner domain 

.6." = {z:1 argz 1< 7r/2a} 

and satisfying the condition 

(4) 

Then the following theorem is true. 



32 2 Further results. Wiener-Paley type theorems 

Theorem 2.5-2. 1°. The class H2{ a; w} coincides with the set of functions rep
resentable in the form 

~(z) = 1+00 
Ep (ei-!:YZTi;p,) TJl-1'P_(T)dT 

Z E ~a, (5) 

where 
all 1 l+w+p 

p> -- - = - + - p, = (6) 
- 2a - 1 ' 'Y P a ' 2p 

and 'P±(T) E L 2(0,+00) are arbitrary functions. 
2°. If~(z) E H 2{a;w} and conditions (6) are satisfied, then the equality 

Lp(z;~) == 1+00 
Ep(ei-!:y ZTi; p,)TJl-l'P_(T; ~)dT 

+ 1+00 Ep(e-i-!:YZTi;p,)TJl-l'P+(T;~)dT = ~(z), Z E ~a (7) 

is true. Here the functions 'P±(T;~) E L 2(0, +00) can be determined almost ev
erywhere by formulas 

( .~) = exp(±i~(1- p,)) d r+oo e±irt - 1 ~( ±i2"ati)tJl - 1dt 
'P± T, 27rp dT io ±it e , (8) 

where ~(e±i71"/2arl/p) E L 2,Jl(0,+00) are the boundary values of~(z) on 8~a. 
3°. The identity 

L; (ei'Prl/P; ~) == r l -I" { :r [rl" 1+ooEp (ei( f:y+'P)ri Ti; P, + 1) TI"-l'P_ (T; ~)dT] 

+! [rl" 1+00 Ep(e-i(-!:Y-'f')riTi;p,+l)TJl-l'P+(T;~)dT]} 

= ~ (ei'f'rl/P) (I 'P I~ 2:' 0< r < +00) 
(9) 

is true for all r > 0, if 1 'P 1 < 7r /2a, and for almost all r > 0, if'P = ±7r /2a (in the 
last case, the notation ~ (e±i71"/2ar l/P) means the boundary values of~). 

The following theorem is also true. 

Theorem 2.5-3. 1°. If 
2a ap 

p>--, K,= , 
2a - 1 (2a - 1) p - 2a 

(10) 

and ~(K,; 7r) = {z :1 Argz - 7r 1< 7r/2K,}, then 

Lp(z;~) == O,Z E ~(K,,7r). (11) 

2°. The identity 

L;(ei'f'rl/P;~)==O (12) 

is true for all r > 0, if 1 7r - 'P 1< 7r /2K" and for almost all r > 0, if 1 7r - 'P 1= 7r /2K,. 
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(c) The main Theorem 2.5-2 takes the following simple form in the case when 
p 2: a/(2a - 1) takes its minimal value. 

Theorem 2.5-4. 1°. The class H2{a;w}(I/2 < a < +00, -1 < w < 1) coincides 
with the set of functions representable in the form 

(13) 

where 

p = 2a ~ l' J1, = ~ + (1 + w) ( 1 - 2~) , (14) 

and <p(r) E L2(0, +00) are arbitrary functions. 
2°. If~(z) E H2{a;w} and conditions (14) are satisfied, then 

(15) 

where 

<p(r;~) = -- e .- ~(e-i2: sign tit 1*)(ei~Sign tit 1)J.t-1dt. (16) 1 d 1+00 -iTt 1 

2rrp dr -00 -zt 

3°. The representation 

is true for all r > 0, if 1 <p 1< 7r /20., and for almost all r > 0, if <p = ±7r /2a. 

(d) The following theorem is obtained from Theorem 2.5-4(1°), where we assume 
a = 1 and w = o. 

* Theorem 2.5-5. The classH2{1; O} == H2(C+) off unctions ~(z), analytic in the 
half-plane C+ and satisfying the condition 

sup {f+oo 1 ~(rei1?) 12 dr} < +00, 
1191<7r/2 Jo 

coincides with the set of functions representable by the Laplace integral 

where <p(r) E L2 (0, +00) are arbitrary functions. 

(18) 

(19) 
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The following important statement is the result of Wiener-Paley Theorem 
2.5-1 and Theorem 2.5-5. 

* Theorem 2.5-6. The classes H2(C+) and H2(C+) coincide: 

(20) 

Note that an essential generalization of the last identity is contained in The
orem 3.2-1 of the next chapter. 

(e) Now we state an additional result connected with the last two theorems. To 
this end, assume 

1 l+w+p 
p> 2' I" = 2p (-l<w<l) (21) 

and introduce the mutually complementary corner domains 

D.p = {z :1 arg z 1< rr/2p}, (22) 

Then the following theorem is true. 

Theorem 2.5-7. If cp(r) E L 2(0, +00) is any function, then the integral 

(23) 

represents a function analytic in ~; and satisfying the condition 

sup {roo 1 cI>(reit9 ) 12 rWdr} ~ MfJ. roo 1 cp(r) 12 dr, 
7r/2p<It9I::S;7r 10 10 (24) 

where the constant MfJ. > 0 depends only on 1". 

2.6 Notes 

In should be mentioned that the fundamental Theorems 2.2-4 and 2.5-1 were 
established by Wiener and Paley [1] in the 1930s. 

2.2-2.4 The results of these sections relating to parametric representations of 
different classes of entire functions of finite order are improvements of the first 
fundamental Wiener-Paley Theorem 2.2-4 (see M.M. Djrbashian [5, Chapter 6]). 

2.5 The results of this section are generalizations of the second fundamental 
Wiener-Paley Theorem 2.5-1. The first step of investigations establishing such 
generalizations was the paper of M.M. Djrbashian and A.E. A vetisian [1]. Further, 
the frames of these investigations were extended in M.M. Djrbashian [5, Chapter 
7]. More detailed notes relating to the results of these investigations are given in 
M.M. Djrbashian [5, pp. 664--665]. 



3 Some estimates in Banach spaces of 
analytic functions 

3.1 Introduction 

The series of lemmas and theorems proved in this chapter establishes some esti
mates of norms in different weighted spaces of functions analytic in a half-plane 
and also in different weighted spaces of entire functions of exponential type. Later 
chapters of the book are based on these results and the results of Chapters 1 and 2. 

3.2 Some estimates in Hardy classes over a half-plane 

First we introduce some classes of analytic functions and mention a series of their 
most important properties. 

(a) Let H~(O < p < +00) be the Hardy classes over the half-planes 

G± = {z: ±Imz > O}. (1) 

In other words, let H~ be the classes of functions w±(z) analytic in G± and 
satisfying, correspondingly, the conditions 

{l+OO }l/P 
sup I w±(x ± iy) IP dx < +00. 
y>O -00 

(2) 

The following assertions are well known. 
10. If w± (z) E H~ (0 < P < +00), then its non-tangential boundary values w± (x) 
exist for almost all x E (-00, +00). Moreover, 

lim w±(x ± iy) = w±(x) E Lp( -00, +00) 
y->+O 

(3) 

and 

{l+OO }l/P 
Ilw±llp = sup I w±(x ± iy) IP dx , 

y>O -00 

if it is assumed that 

20 • The following relations are true: 

Ilw±llp = lim Ilw±(x ± iy)llp, lim Ilw±(x) - w±(x ± iy)llp = 0, (4) 
y->+O y->+O 

Ilw±(x ± iy)llp :::; Ilw±llp(O < y < +00). (5) 
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It should be noted that if 1 ~ p < +00, then the classes H~ are Banach spaces 
with norm (2). 

* (b) It is necessary now to introduce the classes HP ± (0 < p < +(0) which are 
* more general than the classes H2 (C+) introduced by 2.5(18). We shall say that a 

* function w±(z), analytic in a half-plane G± is of class HP ± (0 < p < +(0), if 

(6) 

If z is replaced in Theorem 2.5-6 by =j=iz, then it easily follows that the classes H~ 
* and HP ± coincide when p = 2. Later a theorem will be proved where the equality 

* H~ = HP ± is stated for any p E (0, +(0). 

(c) First we prove some auxiliary assertions. 

* Lemma 3.2-1. Ifw(z) E H~ and 

roo 10 1 w(x) 12 dx ~ Ml < +00, 

then 

0<0<7L 

Proof. As it is known, the limits in the metric of L 2 (0, +(0) 

l.i.m.w(reit9 ) = w(r), 
'19 ..... 0 

* 

1. i. m. w(reit9 ) = w( -r) 
'19 ..... .".-0 

(7) 

(8) 

(9) 

exist for any function w(z) E H~ (= H~) and, what is more, w(±r) E L2(0, +(0). 
Thus, according to Theorem 1.5-1, the Mellin transforms of the functions w(±r) 
and w(reit9 ) (0 ~ iJ ~ 71") 

0±(8) = I.i.m.l
a w(±r)rS-ldr, Re8 = 1/2, 

a ..... +oo l/a 

0(8; iJ) = 1. i. m.la w(reit9 )rS- ldr, Re 8 = 1/2 (0 ~ iJ ~ 71") 
a ..... +oo l/a 

(9') 

converging in the norm of L2(1/2 - ioo, 1/2 + ioo), also exist. In addition, it is 
obvious that 

0(8;71") = 0_(8). 
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It is also known that the functions of (9' ) are connected by the equalities 

n (s; "I9 ) = ei·("-~)n_(s) = e-i'~ n+(s) (O:S"I9:S 71") (9" ) 

which are true almost everywhere on the line s = 1/ 2 + i t (- 00 < t < +00) . It 
follows that for almost all t E (-00, +00) 

in (~ +it ;"19 )12 

= e2(~-"/2)t In- (~ + it) n+ (~ + it) I, O :S"I9:S 71" . 

So, using the Parseval equality 1.5(6), we obtain 

M (D) " r Iw(,,;' )I' de ~ ;, [ ] n G +it; ~ )1' dt 

= 2~ 1:00 

e2(~-"/2 )t In- (~ +it) n+ (~+ it) l dt < +00, 0 :::; 19:::; 71" . 

(10) 
Hence, it follows, in particular, that M ("I9) is continuous on (0, 71"]. In addition, 
by ( 7), 

(ll) 

Now let t9 l and "192 be any numbers, such that 0 :S 111 < {)2 :S 1r. Then, applying 
the Schwarz inequality, it can be obtained from (10) that 

M (t9 I
; {)2 ) = 2~ 1:00 

e(~,+~~-")t IrL (~ +it) n+ (~ +it) Idt 
$ JM(~,)M(~,) , 

and it follows that the function 10g M(t9) is convex on [0,71"1. So, according t o (11), 

and 

7I" - t9 iJ 
Iog M (iJ) :::; -- logMI + - logM2 , , 

1_-'- .f. 
M (t9) :S Ml «M2- · 

Thus the estimate (8) and the lemma are proved. 

Cd) Now we prove a series of lemmas concerning a class iI~( (0 < P < +00, 
0 < f < 71"/2) rather different from H~ considered above. A function w(z) analytic 

in t he corner domain - f <Arg z < 1r + f is said to be of N".;.' , if 

{1+00 }'I' IIwll;" '== sup Iw(re i~W dr < +00. 
-,<,,<,,+< 0 

(12) 
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* Lemma 3.2-2. Ifw{z) E H~~ (O < p < +00, 0 < E < rr/2), then 

I w{z) IP~ G/I z I, (13) 

where the constant G > 0 does not depend on z. 

Proof. We shall denote the disk with its center at the point z E G + and with 
the radius I z I sinE by K{z). Further, we assume that Arg ( = a and Arg ( = f3 
(0 < f3-a < 2rr) are the rays tangent to the disk K(z), and R(z) is the intersection 
of the corner domain a <Arg ( < f3 and the domain 

r1 =1 z I (1- sinE) <I ( 1<1 z I (I + sinE) = r2· 

Then the geometric consideration obviously shows that the domains K(z) and 
R(z) are contained in the initial domain of analyticity of the function w(z). Since 
the function I w(() IP (( = ~ + iT]) is subharmonic in the disk K(z), the following 
inequalities can be obtained easily: 

Hence the estimate (13) follows at once. 

* Lemma 3.2-3. Let w(z) E H~~ (0 < p < +00,0 < E < rr/2), and let m > l/p be 
any integer. Also, let 

( 
Z )m eiliz _l 

Wli(Z) = z + i8 i8z w(z), (14) 

where 8> 0 is any number. Then Wli{Z) E H~. 

Proof. First observe that, if rr+ = {z : -1 < Rez < 1, 0 < Imz < I}, is a 
rectangle, then 

where the constants G1 > 0, G2 > 0 do not depend on z {such constants will be 
denoted further by Gk (k 2:: 1)). Hence it follows, according to (13) and (14), that 

z E rr+, 
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and, therefore, 

sup {11 I W6(X + iy) IP dX} < +00. 
O<y<l -1 

On the other hand, it is obvious that 

I z Imp I ei6z - liP -P 
Z + i8 i8z :::::: C5 Izl (0 < Imz < 1/2, IRezl ~ 1). 

Thus the estimate 

(0 < Imz < 1/2, IRezl ~ 1) 

also follows from (13) and (14). Consequently, 

J+= J+= dx 
IW6(X + iyW dx :::::: C5 ( ) +1 

1 1 x-yP (1 - y)p' 

and 

sup {J+= IW5(X + iy)IP dX} < +00. 
O<y<1/2 1 

The estimate 

sup {1-1 
IW6(X + iy)IP dX} < +00 

O<y<1/2 -= 

1 
0< Y < 2' 

can also be obtained by similar arguments. Further, it is obvious that 

I z Implei6z-1lP 
z + i8 i8z :::::: C7 Izl-P (Imz ~ 1/2). 

Consequently, 
(Imz ~ 1/2) 

and 

sup {1+= IW6(X + iy)IP dX} < +00. 
y:2:1/2 -00 

The comparison of estimates (15)-(18) gives 

i.e., W6(Z) E H~. 

sup {j+= IW6(X + iyW dX} < +00, 
y:2:0 -= 

* 
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(15) 

(16) 

(17) 

(18) 

Lemma 3.2-4. Ifw(z) E H~E (0 < p < +00,0< f < 7[/2), then w(z) E H~ and 

(19) 
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Proof. The auxiliary function 

(
X )m ei8x - 1 

W8(X) = x+i8 i8x' x E (-00,+00) 

will be considered now, along with W8(Z) introduced above, assuming again that 
m> lip is an integer and 8 > ° is any number. It is obvious that 

and 
x E (-00,0) U (0,+00). 

But w(x) E Lp(-oo,+oo), according to (12), so the relation 

lim Ilw - w811p = 0 
8-->+0 

(20) 

(21) 

(22) 

follows from (20) and (21) by the Lebesgue theorem on bounded convergence. 
Further, as is well known, the space H~ is complete. Therefore w(z) E H~ by 
Lemma 3.2-3 and (22). On the other hand, w(z) is analytic in the corner domain 
-E <Arg z < 7f + E. Thus 

for any a > 1. Adding these inequalities and letting a ---- +00, we obtain the 
estimate (19). 

(e) Now we are ready to prove the main result of this section. 

Theorem 3.2-1. Let p E (0, +00) be an arbitrary number. Then the following 
assertions are true: 

* 1°. Ifw(z) E H~ and 

1+00 Iw(xW dx ~ Ml < +00, iOoo Iw(xW dx ~ M2 < +00, 

then 

* 20 HP - HP . + - +. 
* 3°. Ifw(z) E H~ = H~ is any function, then 

r1/Pllwllp ~ Ilwll; ~ Ilwllv-

0< {} < 7f. 

(23) 

(24) 

(25) 

(26) 
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Proof. 10. As is well known, any function w( z) E H~ is representable in the form 
w(z) = B(z)w*(z), z E G+, where B(z) is the Blaschke product containing its 
zeros, and w*(z) E H~ is a non-vanishing function. Obviously, w(z) = [w*(z)]p/2 E 

* * H~ and also w( z) E H~, because the classes H~ and H~ coincide, as was men-
tioned in Section 3.2(b). On the other hand, IB(z)1 ::; 1, z E G+ and, consequently, 
Iw(zW::; Iw*(z)IP , z E G+. Hence 

* And, since w(z) E H! = H~, 

sup { r+oo Iw(reiilW dr} < +00. 
O<.?<7r io 

Thus the inclusion H~ <.;:; H1!r is proved. In addition, it is clear that 

O::;1?::;1I". 

(27) 

And the inclusion w(z) E H~, together with Lemma 3.2-1, leads to the estimate 

1+00 Iw(rei.?) 12 dr::; M;-.?/7rMg/7r, 0< 1? < 11", 

which proves, by virtue of inequality (27), assertion 1 0, but only for functions 

w(z) E H~ <.;:; H1!r. 
* 20 • The inclusion H~ <.;:; H1!r is already proved, so it remains to prove the converse 

* inclusion, i.e., if w(z) E H1!r, then w(z) E H~. To this end we note that the suitably 
selected branch of the function 

maps conformally the half-plane G+ onto the corner domain -E <Arg z < 11" + E. 

The image of the ray Arg z = 1? will be denoted by Arg w=t. Then, if'Y = 2£/11", 
the equality 
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implies that the function 

* is of class H1!t and, what is more, Ilw.II;,. = IIwll;. Thus, by Lemma 3.2-4, 

w.(w) E H~, 

or, what is the same, 

1+00 
-00 Iw.(x + iy)IP dx ~ 2 (1Iwll;)P , Y E (0, +00). 

Now note that 
lim w«w) = w(w), ...... +0 

as follows from (28). On the other hand, Fatou's lemma gives 

1+00 1+00 
liminf Iw.(x + iy)IP dx ~ liminf Iw.(x + iy)IP dx. -00 ...... +0 ...... +0 -00 

Therefore, by (29') 

1+00 
-00 Iw(x + iy)IP dx ~ 2 (lIwll;r , 

Hence the inclusion w(z) E H~ and the estimate 

IIwllp ~ 21/Pllwll; 
* 

Y E (0, +00). 

(28) 

(29) 

(29') 

follow. Thus, H~ ~ H~, and the assertion 20 is proved, and assertion 10 is com-
pletely proved. 
30. As the last estimate is proved, it remains to prove only the right-hand side 
inequality of (26). To this end, introduce the function 

and observe that 

(30) 

as follows from assertion 10. The function n( '19) is not only continuous, but it 
is also monotonic or constant on [O,7I"j. Thus n('I9) ~ max{n(0);n(7I")} ~ IIwll~, 
o ~ '19 ~ 71", and the inequality Ilwll; ~ Ilwllp follows from (30). So the proof of 
Theorem 3.2-1 is complete. 
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3.3 Some estimates in weighted Hardy classes 
over a half-plane. 
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(a) Let K(t) be an arbitrary measurable function on (-00, +00), satisfying the 
condition 

Then the integral 

K(t) 
--II E L1(-00,+00). 
1 + t 

1 1+00 K(t) { K+(z), z E G+, 
K(z)=-. -dt= 

27l"Z -00 t-z K-(Z),ZEG_, 

(1) 

(2) 

called a Cauchy type integral, uniformly converges in G+UG_, and so the functions 
K+(z) and K-(z) are analytic in the half-planes G+ and G_ correspondingly. If 
we suppose that K(t) is an arbitrary function of class Lp( -00, +00) (1 < p < 
+00), then, using Holder's inequality, it can be easily verified that K(t) satisfies 
condition (1). The well-known Riesz-Titchmarsh theorem stated below relates to 
the projection of Lp( -00, +00) onto H~, which is realized by integral (2). 

Theorem 3.3-1. Let K(t) E Lp(-oo,+oo) (1 < p < +00). Then the Cauchy 
type integral (2) satisfies the conditions 

(3) 

where the constant Ap > 0 depends only on p. 

The comparison of this theorem and Theorem 3.2-1 shows that the estimates 

are true provided that K(t) E Lp(-oo,+oo) (1 <p < +00). 

(b) Now we shall prove a weighted analog of Theorem 3.3-1. 

(4) 

Theorem 3.3-2. Let K(t) be a measurable function on (-00, +00), such that 

{1+00 }l/P 
IIKllp,1< = -00 IK(tW Itll< dt < +00 (1 < p < +00, -1 < K < P -1). (5) 

Then the Cauchy type integral (2) is analytic in half-planes G+ and G_, and, in 
addition, 

(6) 

where the constant Ap,1< > 0 depends only on p and K. 
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Proof. Using Holder's inequality we arrive at the estimate 

1
+00 IK(t)1 {1+00 Itl-I<q/p }l/q 

-00 1 + It I dt ~ IIKllp,1< -00 (1 + Itl)q < +00, 

where q = p/(p - 1) and the boundedness of the right-hand side quantity follows 
from the boundedness of the integral (5), since 1 < p < +00 and -1 < K. < p - 1. 
Thus, K(t) satisfies condition (1), and the Cauchy type integral (2) is analytic in 
both half-planes G+ and G_. Further, we denote 

1 1+00 K(t) Kl(Z) = -2 . --dt, Z E G+ u G_ 
1I"Z 0 t-z 

(7) 

and prove the inequalities 

(8) 

where the constant Bp,1< > 0 is assumed to depend only on p and K., as the first 
step of the proof of the estimate (6). To this end we denote 

Ir -tl 
H(±iJj rj r - t) = ±"t?' 

t - re • 
iJ E (0,11"), 

and introduce the operators T(±t?) by the formula 

(9) 

where K+(t) E Lp(O,+oo)" One can prove that T(±t?) are bounded operators on 
Lp(O, +00) and, moreover, if K+(t) E Lp(O, +00) is any function, and if 

then 
IIT(H)(K+)llt ~ ApIIK+llt, 

where the constant Ap > 0 depends only on p. Indeed, it is enough to put 

K(t) = { K+(t), 
0, 

t E (0, +00) 

t E (-00,0) 

in Theorem 3.3-1 and to observe that, in this case, K(z) = Kl(Z) and 

(0 < iJ < 11", 0 < r < +00). 

(10) 

(11) 

(12) 

(13) 
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Therefore, inequality (4) precisely takes the form (11). On the other hand, it is 
obvious that IH(±'!9; r; r - t)1 :::: 1(0 < '!9 < 1f, 0 < r, t < +00). Hence, a theorem 
proved by Stein [1] leads to the conclusion that the estimate 

(14) 

where the constant Bp,1< > 0 is of the same type as in (8), is true for any function 
K+(t) measurable on (0, +00). Comparing (7), (12) and (13) and using the estimate 
(14) we arrive at equality (8). Now observe that, if similar to (7), 

1 10 K(z) K2(z) = -2' --dt, 
1ft -00 t - z 

(15) 

then the same arguments evidently lead to the estimate 

(16) 

But, by (2),(7) and (15), K:(z) = K1(z) + K2 (z), 
follows from (8) and (16). 

z E G+ U G_. Thus, (6) 

(c) It is necessary now to introduce the norm 

{1+00 }l/P 
IIKllp,l<,l = -00 IK(tW (1 + t 2r/2 dt , (17) 

which differs from 11.llp,1< considered above, and to prove the following theorem, 
which is not a simple consequence of Theorems 3.2-1 and 3.3-1. 

Theorem 3.3-3. Let K(t) be a measurable function on (-00, +00), having finite 
norm IIKllp,l<,l (1 < p < +00, -1 < K < p - 1). Then the following assertions are 
true for the Cauchy type integral (2): 
10. If we single out any univalent branches of functions (z ± i)t</P(z E G±) in the 
z-plane cut along ( -ioo, -i) c G _ or (+i, +ioo) C G + correspondingly, then 

(z ± i)I</PK±(z) E H~. 

II(x ± i)I</PK±(x)llp :::: Ap,I<IIKllp,I<,l, 

where the constant Ap,1< > 0 depends only on p and K. 

Proof. First we introduce the integrals 

(18) 

(19) 

Kr(z) = ~ r1 K(t) dt, K~(z) = ~ 1+00 K(t) dt, z E G±, (20) 
21ft Jot - z 21ft 1 t - z 
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and prove the estimates 

(21) 

(22) 

which will be used later. Here and elsewhere Cn > 0 (n = 1,2, ... ) will mean 
constants depending only on p and /'1,. To this end, using Holder's inequality and 
the simple estimate 1 ~ It + il ~ Vi (0 ~ t ~ 1) we obtain 

r1 { 1 }l/P 
io IK(t)1 dt ~ l1K(tW dt 

{ 
1 }l/P 

~ C3 l1K(tW It + ill< dt ~ C3 1IKllp,I<,1. (23) 

Hence the inequalities 

(24) 

follow from Theorem 3.3-2 (where we take /'1, = 0) and from the simple estimates 
1 ~ Ire i19 + il ~ 3 (0 ~ r ~ 2, 0 ~ {) ~ ?T). Observe now that 

{l+CXl }l/P 
U1({)) = 2 IK i(rei19 )I P Irei !? + ill< dr 

{ 
/ P }l/P l +CXl (11 IK(t)llrei !? + ill< P ) 

~ I i!? I dt dr , 
2 0 t - re 

o < {) < ?T. (25) 

So, if the well-known inequality 

(26) 
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where al < b1,a2 < b2 , and the simple estimate It - re i 'l?l2: r/2 (r 2: 2,0 ~ t ~ 
1, 0 ~ f) ~ Jr) are used, then we obtain 

0< f) < Jr. 
(25') 

But, obviously, 

(r 2: 1/2, 0 ~ f) ~ Jr) (27) 

and J2+ 00 rK,-P dr < +00 since Ii < p - 1. Thus, the estimate 

(28) 

follows from (25'), (27) and (23). And the estimate (21), for j = 1, follows from 
(24) and (28). The proof of the case j = 1 of the estimate (22) is similar. So, it 
remains to prove the cases j = 2 of estimates (21) and (22). To this end, observe 
first that the estimate 

where Z E G+, Izl ::; 1/2 and q = p/(p - 1), follows directly from definition (20) of 
the function Kt(z) and Holder's inequality. But It - zl 2: t/2 and t ~ It + il ~ 2t 
when Izl ~ 1/2 and 1 ~ t < +00. On the other hand, Ii > -1. Hence it follows 
that 

{1+00 dt }l/q { 1+00 dt }l/q 
1 It - zlq It + WK,/p ~ Cs 1 t q(1+K,/p) < +00, 

so 
sup {IKt(z)l} ~ CgIIKllp,K"l. 

IzI9/2,zEG+ 

Consequently, the simple inequalities 1/2 ~ Ire i '? + il ~ 3/2 (0 ~ r ~ 1/2, 0 ~ 
f) ~ Jr) lead to the estimate 

o < f) < Jr. (29) 
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Observe also, that the estimate 

is true along with (27). Therefore, by Theorem 3.3-2, 

(30) 

and the desired estimate (21) (j = 2) follows from (29) and (30). Estimate (22) 
(j = 2) can be proved in the same way. 

So, estimates (21) and (22) are already proven, and, if the function 

1 1+00 K(t) K1(z) = Kt(z) + Kt(z) = -2 . --dt, z E G± 
7rZ 0 t-z 

is introduced, then the estimates 

(31) 

easily follow. In the same way, if 

1 1° K(t) K2(z) = -2. --dt,z E G±, 
7rZ -00 t - z 

then the estimates 

(32) 

hold, since the simple change of variables t and z transforms the integral K 2 (z) 
into an integral similar to Kl (z). However, the function K(z) ofthe theorem can be 
represented in the form K( z) = Kl (z) + K2 (z), z E G±, So the following estimates 
remain true for K(z): 

(33) 

* Consequently, (z+i)I</PK+(z) E H~, and it follows from Theorem 3.2-1 that 
(z + i)I</PK+(z) E H~. It also follows that estimate (19) is true for the function 
K+ (z). In the same way, we can conclude that assertions 1 ° and 2° are true for 
the function K-(z). This completes the proof of Theorem 3.3-3. 
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3.4 Some estimates in Banach spaces of entire functions 
of exponential type. 
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(a) First we formulate some well-known statements used throughout this section. 
1°. If cp(x) E Lp(-oo, +00) (l::;p < +00) and, as always, 

{ r+oo }l/P 
Ilcpllp = Loo Icp(xW dx , 

then Steklov's function, 

1 l x+h 
CPh(X) = -h cp(t)dt(h > 0) 

2 x-h 

is continuous and uniformly bounded on the whole axis -00 < x < +00. In 
addition, it satisfies the conditions 

2°. Let J (z) be analytic in the half-plane G + = {z : 1m z > O} and continuous up 
to its boundary. Also let J(z) be of exponential type::; a, i.e., 

limsup{r-1logM(r;J)}::; a,M(r;f) = max IJ(rew)1 (r > 0). 
r->+oo 0:'011:'0 7r 

Then the inequality 

IJ(x)1 ::; M < +00, x E (-00, +00) 

is sufficient to conclude that 

IJ(z)1 ::; Meu1rnz , 

Indeed, it is necessary to observe only that the last inequality holds, if the refined 
Phragmen-Lindelof principle is applied to the function 

and the passage to the limit f --+ +0 is done. 
3°. Let U(z) be a subharmonic function in the half-plane G+, continuous up to its 
boundary, and let 

sup {U(z)} < +00. 
zEG+ 

Then 
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if 
U(x) ~ M < +00, -00 < X < +00. 

This is the most simple form of the maximum principle for subharmonic functions. 

(b) Now we introduce some notations. Let 

W p,K = W p,,, 
1,0- - C1 (1 < p < +00, -1 < /'i, < +00) (1) 

be the class of entire functions J(z) of exponential type ~ a satisfying the condition 

IIJllp,,, = {[:oo IJ(xW Ixl K dX} l/p < +00. (2) 

Along with this, let 

(1 <p < +00,-1 < /'i, < +00,0 ~ 'Y < +00) (3) 

be the class of entire functions J(z) of exponential type ~ a, satisfying the condi
tion 

(4) 

It is easy to observe that the classes wg," and wg,Kbl coincide in spite of being 
differently normed when 'Y > 0, and it is obvious that 

(5) 

Later on, the branches of the multivalent functions ZK/p and (z ± h)"/p are 
supposed to be chosen as follows: if the function ZK/P is considered in the half
plane G + (or G _), then we choose a univalent branch analytic outside the cut 
(-ioo, -iO)(or (iO, +ioo». Further, if'Y > 0 is any number, then we suppose that 
(z + h)K/p and (z - h)"/p are some univalent branches analytic outside the cuts 
( -ioo, -i'Y) c G _ and (h, +ioo) c G + correspondingly. 

Now let J(z) E wg,K['Yl (0 ~ 'Y < +00) be any function. We associate with it 
the following group of functions: 

p±(z) = z"/p J(z), z E G±, 

P-i(z) = (z ± h)"/p J(z), z E G± 
(6) 

and note that pf(z) == p±(z), z E G±. All these functions are obviously analytic 
in corresponding half-planes and are continuous up to their common boundary 
(-00,+00) (excluding only the point x = 0 when 'Y = 0). In addition, all these 
functions are of exponential type ~ a. 

(c) Two functions associated with an arbitrary J(z) E wg'''bl (1 < p < +00, 
-1 < /'i, < +00, 0 ~ 'Y < +00) will be now introduced by the formulas 

w~(z; f) = e±i<7z(z ± h)K/p J(z), z E G±, (7) 

and the following lemma will be proved. 
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Lemma 3.4-1. If J(z) E WJ',I<b']' then 

w~(z; I) E H~, 
IIJ(x ± i'y)llp,I<,'Y ~ elT'YIIJllp,l<. 

(8) 

Proof. 1°. It suffices to prove this assertion only for w~(z; I). The proof for 
w':;-(z; I) will obviously be the same. To this end, we introduce for any h > 0 
the function 

1 l z+h 1 l z+h 
Fit(z) = 2h F:i(t)dt = 2h J(t)(t + i'y)",/Pdt, 

z-h z-h 
(9) 

Then the properties of F.:t(z), which were mentioned above, and the properties of 
the integrated functions of Section 3.4( a) 1 ° lead to the following conclusions. 

(i) The function Fit(z) is analytic in G+ and continuous up to its boundary 
(-00, +(0) where it is uniformly bounded. Besides, by (6), 

IIFit lip ~ 11F.:t lip = IIJllp,I<,'Y 
for any h > O. It should also be noticed that the inequality 

I Fit (x) I ~ (2h)-1/PIIJllp,I<,'Y' 

follows from (9) and from Holder's inequality. 
(ii) Also, it follows from (9) that 

x E (-00, +(0) 

M(r; Fit) = max IFit(z)1 ~ max IF.:t(z) I = M (r + h; F.:t) . 
izi=r izi=r+h 
zEG+ zEG+ 

Thus, the functions F.:t(z) and Fit(z) are both of exponential type ~ a in G+. 
The inequality 

(10) 

can be easily obtained from properties (i) and (ii) ofthe function Fit(z) mentioned 
above and statement 3.4(a)2°. Further, we introduce for any R > 0 the function 

Uh(z;R) = I: ieilT(z+t)Fit(z +t)r dt, z E G+. (11) 

This function is subharmonic and bounded in G+. Besides, it is continuous up to 
the boundary (-00, +(0) of G+, since Fit(z) is of the same kind. Further, 

Uh(X; R) = I: I Fit (x + T)lPdT 

= (2h)-P jR I r+r+h J(t)(t + i'y)"'/PdtI
P 

dT, 
-R }x+r-h 

x E (-00, +(0). 
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Hence it follows that for any x E (-00, +00) and R > 0 

Uh(X; R) :::; 2~ i: dT i: If(x + T + tW [(x + T + t)2 + 'lll</2dt 

1 1h l x+t+R 
= 2h dt If(7W (72 + 'Y2t/2dT :::; IIfll~,I<,1" 

-h x+t-R 

if Holder's inequality is used. Thus the function Uh(z, R) is subharmonic and 
bounded in G+, continuous up to its boundary (-00, +00) and 

Uh(X; R) :::; IIfll~,I<'-Y' 

for any x E (-00, +00). Consequently, 

Uh(Z; R) :::; IIfll~'I<,-y, Z E G+, 

R>O 

R>O, 

as it follows from 3.4(a)3°. Hence we obtain the estimate 

i:oo IF'; (x + t + iyW dt = i:oo 
IJt(x + iyW dx:::; eUPYllfll~'I<'1" y > 0, (12) 

if we use the definition (11) of Uh(Z; R) and do the passage R ---t +00. For any 
y>O 

IIP-i(x + iy)II~ = 1+
00 

liminf IF'; (x + iyW dx:::; liminf1+00 IJt(x + iyW dx 
-00 h-++O h-++O -00 

by Fatou's lemma. Therefore, the passage h ---t +0 in (12) gives i:OO 
If(x + iy)(x + iy + i'Yt/pIP dx :::; eUPYllfll~,I<,1" y > O. 

Hence, it follows that 

IIw~(x + iy; f)IIp :::; IIfllp,I<,-y, y > 0, 

since I exp{ ia( x + iy)} I = e-uy • Thus, assertion l O is proved. 
2°. Observe that 

IIf(x ± i'Y)IIp,I<,1' = IIf(x ± i'Y)(x ± i'Yt/Plip 

according to the definitions of these norms. In addition, the inclusions 

e±iuzzl</Pf(z) E H~ 

(13) 

follow particularly from the case 'Y = 0 of assertion 1°, which is already proved. 
Therefore, the properties 3.2(5) imply 

e-u-Yllf(x ± i'Y)(x ± i'Yt/Plip = IIe±iu(X±i"() f(x ± i'Y)(x ± i'Yt/Plip 

:::; IIe±iux f(x)xl</Pllp :::; IIfllp,I<' 

and assertion 2° follows from the equality (13). 



3.4 Some estimates in Banach spaces 53 

(d) Lemma 3.4-2. 1°. If J(z) E wg''''[r] (0 S "t < +00) is any function, then 

z E C, (14) 

where the constant C > 0 does not depend on J and z. 
2°. The class wg''''[''t] is a Banach space with the norm II· lip,,,,,)'· 
Proof. 1°. If G~ = {z : ±Imz ~ 2(1 + "tn, "t E [0, +00), then, clearly, 

G~+l/2 C G~ c C" = {z : Izl ~ 2(1 + "tn. 
Further, if K z = {( : I( - zl < I}, then it is easy to verify that 

Izl /2 S I( ± hi s 31z1 /2 when z E C" and ( E K z , (15) 

and, of course, when z E G~ and ( E K z . Now note that, since IJ(z)IP is a 
subharmonic function, 

z E C, (16) 

where Id(1 2 is the Lebesgue plane measure. From (15) it follows that I( ± hi'" ~ 
(1TC",)-l Izl'" (z E c", I( - zl < 1), where C", > 0 is a constant, and therefore (16) 
gives 

ZEC". (17) 

Observe now that 

(18) 

(19) 

for arbitrary.z = x + iy E C. The right-hand side integrals of (19) are finite and 
bounded in any segment [-R, R], as it follows from the inequalities 

(20) 

which are consequences of assertion 2° of Lemma 3.4-1. Further, since 
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by assertion 10 of Lemma 3.4-1, the use of inequality 3.2(5) gives 

e-CTP'1J+("I) = Ilw~(~ + i"l; f)ll~ :S Ilw~(~; f)ll~ = Ilfll~,,,,,y, if "I;:: 0, (20') 

eCTP'1J-("I) = Ilw;;-(~ + i"l; f)ll~ :S Ilw;;-(~; f)ll~ = IIfll~,,,,,"(, if"l:S O. (20") 

Using these inequalities and the inequalities of (18) we obtain 

(21) 

which together with (17) imply 

(22) 

where the constant C""p > 0 is independent of f and z. 
Now let 

II"( = {z : IImzl < 3 + 2')'} = C \ {G~+l/2 U G~+1/2} 

be a horizontal strip, with the width 2(3 + 2,),), symmetric with respect to the real 
axis; also, let 

II~ = {z: IImzl < 3 + 2,)" ±Rez;:: 2(1 + ')'n c C"( 

be half-strips, and let 

0"( = {z: IRezl:S 2(1 + ')'), IImzl < 3 + 2')'} 

be a rectangle. Then it is clear that 

II"( = II~ U II:;- U 0"(. (23) 

To prove the inequality 

sup {(I + Izl)"'/p If(z)l} < +00, 
zEIT,\, 

(24) 

first observe that obviously 

sup {(I + Izl)",/p If(z)l} < +00. 
zED,\, 

Next, it follows from the inclusions II~ C C,,(, estimates (17), the boundedness of 
functions J±("I) on any segment -R :S "I :S R (see (20'), (20")) and estimates (18) 
that 

sup {(I + Izl)",/p If(z)l} < +00. 
ZEIT~ 
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Thus (24) holds. Further, estimates (22) imply particularly 

(25) 

where all" is the boundary of the strip II", which is the sum of boundaries of the 
half-planes G~+1/2. Now denote by {z+i2(2+2,,()}I</p any univalent branch of the 

same function, chosen to be analytic outside the cut (-ioo, -i2(2+2"()) C G~+1/2' 
and introduce the function 

f,,(z) = {z + i2(2 + 2,,()}I</Pf(z). 

Evidently 

Iz + i2(2 + 2"()1 ;::::: 1 + Izl ,z E II,. (26) 

Thus, by inequalities (24) and (25), the function f,,(z) is bounded in the strip II" 
and satisfies the condition 

on its boundary. Hence, by Phragmen-Lindelof principle, 

z Ell", 

and, if we return to the function f(z), then (26) implies 

z Ell,. 

Estimate (14) follows from (22). 
2°. The completeness of the space WJ',I<["(] follows from inequality (22), which is 
already proved. 

(e) The theorem proved below shows that the classes WJ',I< and WJ',I<["(](O < "( < 
+00) not only coincide, but they also have equivalent norms. 

Theorem 3.4-1. If f(z) E WJ',I«l < p < +00, -1 < /'i, < +00) is an arbitrary 
function and "( E (0, +00) is any number, then 

Ilfllp,I<,,, ;::::: IIfllp,l<· 
Ilf(x ± h)llp,1< ;::::: Ilfllp,l<· 

(27) 

(28) 
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Proof. 10. Observe that the classes W%,I< [0] and W%,I< merely coincide and consider 
for any 'Y E (0, +00) the operator T'"'( defined in the following way: T'"'(f = f E 
W%,l<bJ, Vf E W%,I<[O]. Evidently, T:;l also exists, and it is a mapping of 
W%,l<b] onto W%,I<[O]. Two cases are possible: 

1. If Ii: ~ 0, then Ixll< :S Ix + hll<. Hence 

(29) 

and consequently 

So T:; 1 is a bounded linear operator, and the operator T'"'( is also bounded by 
Banach's theorem, i.e., 

(30) 

where A > 0 is a constant independent of f, and (29) and (30) give the two-sided 
estimates (27). 

2. If -1 < Ii: < 0, then Ix+hll<:s Ixll<. Hence 

f E W;"I< [0], (31) 

i.e., the operator T'"'( is bounded. Evidently, T:;l is also bounded, i.e., 

(32) 

where A* > 0 is a constant independent off, and (31) and (32) give the two-sided 
estimates (27). 
20 • If the function f (z) in (27) is replaced by f (z ± h), then, using the second 
estimate of (8) we conclude that 

(33) 

or, which is the same, 

(34) 

The two-sided estimate (28) follows from (33) and (34). 

(f) The sequence {Xk}~: of real numbers will be said to be of class 6.0 if 

a) Xo = 0, X-k = -Xk (1:S k < 00), Xk < Xk+1 (-00 < k < +00), 

b) IXkl:=::l+lkl (k=±1,±2, ... ), (35) 

c) 
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Theorem 3.4-2. If fez) E WJ',I< (1 < p < +00, -1 < /'t, < +00), {Xk}~~ E [j.6 
and h is any real number, then 

+00 

L If(Xk + ihW (1 + Ikl)l< ~ Cllfll~,I<' (36) 
k=-oo 

where C > ° is a constant independent of f. 
Proof. The function f(z)zl</p is analytic in the z-plane, outside the cut (-00,0). 
Therefore, If(zW Izll< is subharmonic in the half-plane Rez > 0, and 

If(XkW IXkl1< ~ -21 r 1f((W 1(11< Id(1 (k = 1,2, ... ) 
7rp J1C,-Xkl=p 

for any p E (0,8), since Xk > ° when k ::::: 1. Thus, if we multiply both sides of 
these inequalities by pdp and integrate them along (0,8/2), then we shall obtain 

If(XkW IXkl1< ~ 48-2 Jr r If((W 1(11< Id(1 2 

7r J1C,- X kl<6/2 

48-2
j

6/2 l Xk +6/ 2 
~ - dT/ If(~ + iT/W I~ + iT/II< d~ 

7r -6/2 xk-6 / 2 
(k = 1,2, ... ). 

A similar consideration for the function f( -z)zl</p leads to the same inequalities 
for k = -1, -2, ... , since -Xk = X-k. If we sum up all these inequalities, we 
obtain 

48-2j6/2 j+oo L If(XkW IXkl1< ~ ----;- dT/ If(~ + iT/)I P I~ + iT/II< d~, (37) 
l:Slkl<+oo -6/2 -00 

but assertion 2° of Lemma 3.4-1 implies 1:00 If(~ + i1])IP I~ + i1]11< d~ = Ilf(~ + i1])II~'I<,llIl ~ exp{pcr 11]1}llfll~'I<' 
Therefore, by (37), 

l:Slkl<+oo 
(38) 

where the constant Ca ,6 > ° is independent of f. Applying this estimate and 
Theorem 3.4 - 1(2°) to the function fez + ih) E WJ',I< we obtain 

(38') 
l:Slkl<+oo 

where the constant Ca ,6(h) > ° is also independent of f. And now, to complete 
the proof, it remains to observe that, by Lemma 3.4 - 2(1 0, when 'Y = 0), 

If(xo + ih)1 = If(ih)1 ~ Chllfllp,1< 

and also, that IXkl1< ~ (1 + Ikl)l< (k i= 0) by (35). Then estimate (36) follows from 
(38') and from the last inequality. 
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Theorem 3.4-3. Let w±(z) E H~ and {xd~: E A{j. Then 

+00 
L IW±(Xk ± iW :::; C{jllw±II~, (39) 

k=-oo 

where C {j > 0 is a constant independent of W±. 

Proof. The functions Iw±(zW are subharmonic in the half-planes G±. Hence 

for any p E (0,80 )(80 = min{1,8}). But, since {xd~: E A{j, the disks 
Iz - (Xk ± i) 1 < 80 /2 are situated inside the parallel strips 0 < ± 1m z < 1 + 80 /2, 
and they do not intersect. Therefore, 

by inequalities (40) and properties 3.2(5) of functions of classes H~. Thus, (39) is 
proved. 

(g) The final lemma of this chapter relating to the case of entire functions of order 
1/2 is similar to Lemma 3.4-2. Here the notation 

wp,w 
1/2,17 (1 <p < +00,-1 < w < +00,0 < a < +00) (41) 

will be used for the classes of entire functions <I>(z) of order 1/2 and of type:::; a, 
which satisfy the condition 

Lemma 3.4-3. 1°. If <I> ( z) E Wf;~'r7 is an arbitrary function, then 

where the constant A > 0 is independent of <I> and z. 
2°. The class Wf;~'r7 is a Banach space with norm (42). 

Proof. 1 0. Suppose 
z E C. 

z E C, 

(42) 

(43) 

(44) 
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Then obviously fez) is an entire function of exponential type :s; 0", and if /'i, = 1 +2w, 
then it is easy to verify that 

(45) 

Hence fez) E WJ.',/IO. Therefore, by Lemma 3.4-2 (10) (the case 'Y = 0) and by 
formulas (44) and (45) 

(46) 

where C > 0 is a constant independent of <I> and z. And, if we use the inequalities 

z E C, 

then estimate (43) follows from (46). 
2°. The completeness of the space Wi;~,a follows from the standard arguments 
based on estimate (43) and on the completeness of the space Lp(O, +(0) with the 
weight XW. Thus Wi;~,a is a Banach space, and the proof is complete. 

3.5 Notes 

3.2 For properties (3), (4) and (5) of the functions of classes H~ over the half
planes G± see, for example, Hoffman [1, Chapter 8] and Garnett [1, Chapter 2, 
Theorem 3.1]. Lemma 3.2-1 was proved by S.A. Akopian [1]. For assertions (9) and 
relations (9") see M.M. Djrbashian [5, pp. 414-415, 508]. The assertions of Lemmas 
3.2-2-3.2-4 were established by A.M. Sedletski [1]. With respect to Theorem 3.2-1, 

* it should be mentioned that the identity of the classes H~ and H~ when p = 2 
was established in M.M. Djrbashian and A.E. Avetisian [1]. For any p E (0, +(0) 
the identity of these classes was established by S.A.Akopian [1] who proved the 

* inclusion H~ ~ H~ and by A.M. Sedletski who proved the inverse inclusion. 

3.3 For Theorem 3.3-1 see Titchmarsh [1, Chapter 5]. An assertion more general 
than Theorem 3.3-2 was established by V.M. Martirosian [1]. Theorem 3.3-3 was 
proved in the papers ofM.M. Djrbashian-S.G. Raphaelian [1] and M.M. Djrbashian 
[7, Theorem 0]. For inequality (26) see Garnett [1, Chapter 1]. 

3.4 The property of integrated functions is given by I.P. Natanson [1, Chapter 18, 
Lemmas 1-4]. Lemmas 3.4-1, 3.4-2, Theorem 3.4-1 and a particular case of Theo
rem 3.4-2 were established by M.M. Djrbashian-S.G. Raphaelian [1]; see also M.M. 
Djrbashian [7]. Theorem 3.4-3 was proved in a different way by Sh.A. Grigorian 
[1]. 

Finally, note that several results of this chapter were first announced by S.G. 
Raphaelian [1, 2] in a different form. The results of this chapter were proved in §2 
and, partially, in §3 of M.M. Djrbashian [7]. 



4 Interpolation series expansions in 
spaces Wi;~,O" of entire functions 

4.1 Introduction 

In this chapter we deduce the expansions in certain interpolation series for the 
classes Wi;~,(7(l < p < +00, -1 < w < P - 1) of entire functions of order p < 1/2 
or of order p = 1/2 and of type::; a(O < a < +00), for which 

(1) 

As points of interpolation of the above mentioned interpolation series we take the 
sequence of zeros {Ak = Ak(a, v)}]'" of the Mittag-Leffler type entire function 

(0 ::; v < 2). (2) 

The distribution of its zeros was illustrated earlier in Theorems 1.4-3 and 1.4-4 of 
Chapter 1. 

4.2 Lemmas on special Mittag-Leffler type functions 

We consider here the properties of two pairs of functions. One of these pairs is 

The other pair is 

ev(z) = EI/ 2( -z; 1 + v), 

sv(z) = zEI/2 (_z2; 1 + v) = zev (Z2) . 

£(7(z;v) = EI/2 (-a2z; 1 + v) = ev (a2z) , 

S(7(z; v) = ZEI/2 (_a2 z2; 1 + v) = a-I sv(az). 

It should be noted that the function sv(z) can also be expressed as the sum 

(1) 

(2) 

(3) 

This follows strictly from definition 1.1(1) of Ep(z; /1,). In the same way, one can 
obtain that 

(3') 

(a) Let a E (7f /2, 7f) be any number. Consider the mutually complementary corner 
domains 

~a = {( : I Arg (I < a}, ~~ = {( : 17f - Arg (I < 7f - a}. (4) 
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Their common boundary is the sum of two rays, rea) = {( : arg( = ±a} directed 
negatively with respect to ~a. Further, if we use Theorem 1.3-3 relating to integral 
representations of the function Ep(z; v), then the case p = 1 gives, for any v E 
[0,2), 

(5) 

where 
1 1 e,(l-v 

Rv(z; a) = -2 . -r-d(, 
7rZ rCa) ., - Z 

(5') 

Now we are ready to prove the following lemma. 

Lemma 4.2-1. 1°. The function Bv(X)(O ~ v < 2) is representable in the form 

Bv(X) = Xl-v cos (x - ~v) + Tv(X), X E (0, +00), 

Bv(X) = _lxiI-v cos (x + ~v) + Tv(X), X E (-00,0), 
(6) 

where 

0< Ixl < +00, (6') 

and ro = r(31T/4) is the union of rays arg( = ±31T/4 directed in the suitable 
order. 
2°. The asymptotic formulas 

Bv(X) = { Xl-v cos(x - 1Tv/2) + O(X-l), 
-lxiI-v cos(x + 1Tv/2) + O(X-l), 

are true for any v E [0,2). 

x --+ +00 
(7) 

x --+ -00 

Proof. 1°. Observe that both semi-axes (iO, +ioo) and (iO, -ioo) lie in the corner 
domain ~37r/4' Thus, if Z = x(O < Ixl < +00), representations (5) and (5') of 
EI(±ix;v), where a = 31T/4, may be inserted in (3). Then we arrive at the formula 

o < Ixl < +00, (8) 

where 

Tv(X) = ;i {Rv(ix;31T/4) - Rv(-ix; 31T/4)}. 

Both the formulas (6) and (6') follow, if we observe that the first term of the 
right-hand side of (8) can be written as xl-v cos(x - 1Tv/2) when x > 0 and as 
_lxiI-v cos (x + 1Tv/2) when x < O. 
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2°. To obtain an estimate for rl/(x), note that the inequality 

I e,(l-l/ I e- rjV2r1-l/ 
(2 + x 2 ::; l=r=ir2 + x21 ' 

o < 1(1 = r < +00 

is true when x(O < Ixl < +00) is any number and ( is on rays arg( = ±37f/4 
forming the contour of integration ra in (6'). Therefore, 

0< Ixl < +00, 

and the asymptotic formulas (7) follow from (6) and (6'). 

(b) Denote by 

ll± = {z : IArg z =r= i I < ~} c G± 

two corner domains of openings 7f /2 lying correspondingly in the half-planes G± = 
{z: ±Imz > O}. Let II = ll+ ull_ be their sum. 

Lemma 4.2-2. Ifv E [0,2) is any number, then the following two-sided estimates 
are true: 

ISl/(z)1 ~ (1 + Izl)1-l/ellrnzl, 

18a (z; v)1 ~ (1 + IzI)1-l/ea llrnz l 

(z E ll, 1 ::; Izl < +00), 

where the suitable constants are independent of z. 

(9) 

Proof. The mapping w = iz transforms the domains ll± into domains III = ill,!, 
which lie correspondingly in the right (Re w > 0) and in the left (Re w < 0) 
half-planes of w-plane. And, obviously, 

(10) 

Now note that the parameter a E (7f/2,7f) is arbitrary in the representation (5)
(5') of the function E1 (z; v), so it may vary, if we desire to find an estimate for the 
integral Rl/(z;a). To this end first observe that, if a E (7f/2,37f/4), then clearly, 
I( - wi ~ Iwl sin(37f/4 - a) when w E ll:. u ll't and ( E rea). Also the estimate 

a(a) 
IRl/(W; a)1 ::; ~' wE ll* \ {O}, 

1 [ (37f )] -1 (+= a(a) =;: sin 4 - a ia e-lcosalrr1-l/dr < +00 

(11) 
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is a constant, follows easily from representation (5'). On the other hand, by (10) 
and (5), 

{ 
wl-vew + Rv(wja) when W E ~+ \ {O}, 

El(wjll) = _ 
Rv(wj a) when W E ~~ \ {O} 

and 

{ 
(_w)l-ve-w + Rv( -Wj a) when W E ~~ \ {O}, 

El(-wjll) = _ 
Rv( -Wj a) when W E ~+ \ {O}. 

Thus we have 

1 
sv(w) = 2i [El (Wj II) - El ( -Wj II)] = sv( -iw) 

{ 
~ [wl-VeW + Rv(wj a) - Rv( -Wj a)] when W E ~+ \ {O}, 

- ~[-(-w)l-Ve-w+Rv(wja)-Rv(-wja)] whenwE~~ \ {O}, 
(12) 

and the estimate 

1_ ( )1 < ~ I Il - v iRewi + a(a) 
Sv W _ 2 W e Iwl ' 

follows from representation (12) and inequality (11). But 0 ~ II < 2, and hence 
there exists a constant Cv > 0, such that 

wE ~*, Iwi 2:: 1. (13) 

The inequalities 

~ I Il - v Rew < 1- ( )1 + a(a) 
2 W e - Sv W Iwi ' wE ~+ \ {O}, 

~ I Il - v -Rew < 1- ( )1 + a(a) 
2 W e - Sv W Iwl ' wE ~~ \ {O} 

can also be obtained from representation (12) by use of (11). But Rew 2:: 0 when 
wE ~+, and Rew ~ 0 when wE ~~, thus the last two inequalities may be united 
as follows: 

1_ ( )1 > ~ I Il - v iRewi _ a(a) 
Sv W - 2 W e Iwi ' wE ~* \ {O}. 

Now the condition 0 ~ II < 2 leads to the estimate 

wE ~*, Iwl2:: 1, 

where CZ > 0 is a constant independent of w. So, by (13), 

WE ~*, Iwl2:: 1. (14) 
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Hence the first of the two-sided estimates (9) follows, if we observe that the 
inverse mapping z = -iw transforms the domains ~~ into the initial corner do
mains ~± = -i~~ of the z-plane; it also transforms the function Sl/(w) into 
sl/(z) = sl/(iz) and the two-sided estimate (14) to the first of the two-sided es
timates (9). The second two-sided estimate of (9) follows from the first one and 
from connection (2) between the functions Scr(z; v) and sl/(az). This completes 
the proof. 

The next lemma is proved in a similar way. 

Lemma 4.2-3. If 0 :S v < 2 and'Y E (0, +(0) are any numbers, then 

S (x ± i'V)} 
l/ I ~ I ±. II-v 

~ x Z'Y , 
Scr(x ± h; v) 

x E (-00,+00), (15) 

where the suitable constants depend only on v, 'Y and a. 

Proof. First observe that the mapping w = iz transforms the lines z = x ± 
h( -00 < x < +(0) into the lines w = =f'Y + ix lying correspondingly in the left 
(Re w < 0) and in the right (Re w > 0) half-planes. Then introduce the notation 

(16) 

for the pairs of rays lying on the lines ±'Y + iv (-00 < v < +(0) and also introduce 
the notation 

(17) 

for their complementary segments. Then, obviously, L±b) c ~37r/4' and it is clear 
that 

if w E L± ( 'Y)' Hence the geometric consideration gives 

Iw - (I > > - -Iwl - 'Y >-11m wi - 'Y 1 (2 ) 'Y 
- J2 - J2 v'5 - J2' 

when w E L±b) and ( E ro = r(37r/4), so the estimate 

(18) 

where 

(O:S v < 2), 
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follows from representation (5') of the function Rv(z;a), if we set a = 37r/4. On 
the other hand, (5) implies El (±w; v) = (±W)I-ve±w + Rv(±w; 37r/4) , w E L("(). 
Hence (12) passes to 

1 
sv(w) = 2i [wl-VeW - (_W)I-v e-w + Rv(w; 37r /4) - Rv( -Wi 37r /4)] ,w E L(,,(), 

(19) 
and so, by (18), 

Isv(w)1 ~ Iwl 1- v e"Y + :rs, 
21wl/ 5 - 'Y 

But 2Iwl/VS-'Y 2: 'Y and 0 ~ v < 2, and therefore, it follows from the last estimate 
that there exists a constant C~~4 > 0, independent of w, such that 

wE L("(). 

Further, if we use the representation (19) and estimate (18), we obtain 

Is (w)1 > ~ (e"Y - 1) Iwl l - V - b wE L('V). 
V - 2 2Iwl/VS-'Y' f 

Similarly, since 0 ~ v < 2, we obtain 

Isv(w)1 2: C~~~ Iwl l - V 
, wE L(,,(), 

where C~~4 > 0 is a constant independent of w. Thus the two-sided estimates 
Isv(w)1 ~ Iwl l - v (w E L("()) are true. On the other hand, according to the second 
of identities (2), to the identity sv(w) = sv( -iw) and to Theorem 1.4-2, the 
function Isv(w)w-1+vl is non-vanishing on the parallel lines Rew = ±'Y' Besides, 
this function is continuous on the segments l±("(). Therefore, Isv(w)1 ~ Iwll-v(w E 

l± ('Y)), and we come to the conclusion that the two-sided estimate 

(20) 

is true on both parallel lines w = ±'Y+iv (0 < 'Y < +00, -00 < v < +00). 
It remains to observe that the inverse mapping z = -iw transforms the lines 
w = =f'Y + ix (-00 < x < +00) into the initial lines z = x ± i"( (-00 < x < +00), 
and the function sv(w) passes to sv(z) = sv(iz), so the two-sided estimate (20) 
turns into the first estimate of (15). The second of the desired estimates (15) 
follows from the connection (2) between the functions sv(z) and Sa(z; v). 

(c) Now we return to the function 

(0 ~ v < 2) 

and note that, according to Theorem 1.4-3, its zeros are simple and positive. Let 
{Ak = Ak(a, v)}f (0 < Ak < Ak+l, 1 ~ k < +00) be the zeros of this function. 
Then the following lemma is true. 
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Lemma 4.2-4. Let 1 < p < +00 and -1 < w < p - 1. Then the following 
assertions are true: 
1°. lfv E [0,2), then 

(1::::: k < +(0), (21) 

and if 0 ::::: v < 2(1 + w)/p, then 

(22) 

2°. If2(1 + w)/p < v < 2 and we put Ao = 0, then 

(0::::: k < +(0), (23) 

and if 0 ::::: v < 2, then 
(24) 

Proof. First note that all the functions we are concerned with are obviously entire, 
of order 1/2 and of type a. 
1 0. Let v E [0,2) be any number. Then, by the asymptotic formula 1.3(5), 

x E [0,+(0), (25) 

where the constant C1 > 0 is independent of x. Hence 

11 I Ea(x; v) IP wd \ x x < +00 
o x - Ak 

(1 ::::: k < +(0). (26) 

From the estimate (25) it also follows that 

1::::: k < +00, 

where the constant C2 (k) > 0 is independent of x. But w - (1 + v/2)p < -1, since 
v ;::: 0 and -1 < w < p - 1. So we have 

j +OO I Ea(x; v) I
P 

\ xWdx < +00 
1 X - Ak 

(1::::: k < +(0). (27) 

Inclusion (21) now follows as the result of (26) and (27). 
To prove (22), first note that the asymptotic formula 1.3(5) implies 
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( ) _ { cllx-2, 
<PII X - d -1 

II X , 

if v = 0,1 

if v f:. 0,1 
(28') 

Hence, using the well-known inequality (a + b)P ~ 2P(aP + bP) (0 ~ a, b < +00), 
we obtain 

(2a")-P lR Icos (avx _ 71";) IP xW-PII/2dx 

= 2(2a")-P JVR Icos(ar - 71" V /2W dr (29) 
1 rOi. 

~ lR I£u(x; vW xWdx + lR ~(x)xWdx, R ~ 1, 

where a = pv - 2w -1 < 1, since v < 2(1 + w)/p. But w < p -1 and a < 1, so it 
follows from (28') that the last integral of (29) is bounded and the left integral of 
(29) is unbounded as R -t +00. Thus (22) is proved. 
2°. From (25) it follows that 

11 I x£u(x; v) IP wd \ x x < +00 
o x - Ak 

(0 ~ k < +00), 

and it is clear that 

I x£u(x; v) IP XW < C (k)xW- PIl /2 1 < x < +00 \ _ 3 , _ , 
x - Ak 

o ~ k < +00, 

where the constant C3(k) > 0 is independent of x. But pv/2 - w > 1 since v > 
2(1 +w)/p. Therefore, 

1+00 I x£u(x; v) IP 
--'-\----"- XW dx < +00 

o x - Ak 
(0 ~ k < +00), 

which implies inclusion (23). 
Now, to complete the proof, it remains to prove only (24). To this end we 

return to the inequality (28)-(28') which easily passes to the integral estimate 

(2a")-P lR Icos (avx _ 71";) IP xW+p(1-1I/2)dx 

= 2(2a")-P [VR I cos(ar ~ 7I"v/2)IP dr (30) 
i1 r 

~ lR Ix£u(x; vW xWdx + lR ~(x)xw+Pdx, R ~ 1, 
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where (3 = pv - 2p - 2w - 1 < -2w - 1 < 1 since v < 2 and -1 < w < p - l. 
Representation (28') of the function <Pv(x) shows that 

_jR w+p _ { 0(1), if v = 0,1 
Uv(R) - 1 ~(x)x dx - O(R1+W) , if v f 0,1 as R -+ +00. 

On the other hand, if 

D.k = {T : trk - ~ < O'T - ~v < trk + ~} 3 - 2 - 3 (1 ::; k < +00), 

then mes D.k = 27r/30' (k ~ 1), and it is clear that 

min Icos (O'T - ~v) I ~ ~ 
rE..o.k 2 2 

(1::; k < +00). 

(31) 

Next denote R~ = [(7rk±7r/3+7rv/2)/O'J2 j then, evidently, D.k coincides with the 

segment [y'R;, JRt] (1 ::; k < +00), and D.k C [1, +00) when k ~ ko. Hence 

the inequality (30) can be written down for R = R1;(n ~ ko): 

(32) 

But 

Therefore, 

( +) ~ 1 ~ 1-(3 Vv Rn > C L..J k(3 ~ n , 
k=ko 

ko ::; n < +00, (33) 

and (24) follows from (31)-(33) as n -+ +00, since 1 - (3 = 2(1 + w) + p(2 - v). 

(d) Concluding this section, we prove one more lemma. 

Lemma 4.2-5. Let v E [0,2) and let {Ak}f (0 < Ak < Ak+l, 1 ::; k < +00) 
be the sequence of zeros of the function £u(Zj v). Then the following two-sided 
estimates are true: 

(34) 
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Proof. From the power expansion 

it follows that cO'(z; II -1) = IICO'(Z; II) + 2zc~(z; II). SO, if we take Z = Ak(1 :::; k < 
+00), we obtain 

(1:::; k < +00). (35) 

Now, using the asymptotic formulas 1.3(5) and 1.4(12)-(14), which were established 
for the function E1/ 2 (_a2 Ak; v) and for its zeros {Aklf, we obtain 

2AkC~(Ak; v) = (a2Ak)<1-v)/2 cos (a~ + i(1- II)) + 0(1/Ak) 

= (a2 Ak)(1-V)/2 cos (rrk + 0(kv-2)) + 0(1/ Ak) 

as k - +00. This completes the proof since Ak ::=:: (1 + k)2 and v < 2. 

4.3 Two special interpolation series 

Bearing in mind the definition 

CO'(Z; v) = El/2 (_a2 z; 1 + II) (1) 

of the function cO'(z; v), note once again that all its zeros {Ak = Ak(a, vHf (0 < 
Ak < Ak+l, 1 :::; k < +00) are simple and positive and that their distribution is 
illustrated in Theorems 1.4-3 and 1.4-4, in the case when v E [0,2). Note also that 
the two-sided estimates 

(1:::; k < +00) (2) 

are true uniformly with respect to k. In this section we consider the following two 
series: 

( ~ cO'(z;v) 
cI> z) = L...J ak C' (A . )( _ A )' k=l 0' k,V Z k 

(3) 

( ) ( ) ( ) ~ zCO'(z;v) 
W Z = bor 1 + v Coo z; II + L...J bk A C' (A . )( _ A ). 

k=l kook, V Z k 
(4) 

Here {ak}f and {bk}OO are sequences of complex numbers, and C~(Ak; v) =I- 0 
(1 :::; k < +00) since zeros of this function are simple. Evidently, the sums of these 
series have the interpolation data 
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if they uniformly converge in C. Our aim is to find conditions in which the series 
(3) and (4) converge to entire functions il>(z) and 1J!(z) of class Wi;~,O" (1 < p < 
+00, -1 < w < p - 1). 

(a) To this end, introduce the Banach space iP'''' (1 < p < +00, -1 < K < +00) of 
sequences {cd c C for which 

(6) 

Then the following lemma is true. 

Lemma 4.3-1. Let the sequences {adl' and {bdO' belong to the class iP'''' , 
where 

1 < p < +00, -1 < w < p - 1, K = 1 + 2w. (7) 

Then series (3) and (4) converge absolutely and uniformly in any compact K c C 
to entire functions il>(z) and 1J!(z), if, correspondingly, 

0:::; v < 2(1 + w)/p or 0:::; v < 2. 

Besides, these functions have the interpolation data (5). 

Proof Consider the partial sum 

() ~ EO"(zjv) 
il>n,m Z = L....- ak E' ().. . )( _).. )' 1:::; n < m < +00. 

k=n 0" k, V Z k 

If K c C is compact, then, obviously, 

ZEK, 

where 

A1 =A1(K)= max {sUpl)..kEO"(~jV)I}<+oo. 
l:'O=k<+oo zEK Z - k 

(8) 

(9) 

(10) 

But )..kIE~()..kj v)1 ~ (1 + k)l-v (1 :::; k < +00), according to 4.2(34) and (2). 
Therefore, by estimate (10) and Holder's inequality, 

m 

k=n 

ZEK, 

(11) 
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where K, = 1 + 2w, q = p/(p -1), and the constant A2 > 0 is independent of z,n 
and m. If the first of conditions (8) is satisfied, Le. if 0 ::; v < (1 + K,) / p, then 
q(v - 1 - K,/p) < -1. Thus, a partial sum of a convergent series is written in the 
last brackets of (11) and, consequently, 

Z EK, 

where the constant A3 > 0 is also independent of z, nand m. We have also 
{ak}\'o E lP,"'. Hence the convergence of the series (3) and the desired properties 
of its sum <I>(z) hold. The assertion on convergence of the sum (4), in the case of 
the second hypothesis of (8) (Le., when 0 ::; v < 2), can be established in a similar 
way. For this purpose we consider the partial sum 

() ~ z£u(Zjv) 
'l1n,m Z = ~ bk A £1 (A . )( _ A ) k=n k uk, V Z k 

(1::; n < m < +00). (12) 

Observe that 

( ) { I AkZ£u(Zjv) I} A4 = A4 K = max sup A < +00 
l:-=;k<+oo zEK Z - k 

and, consequently, 

But A~I£~(Ak; v)1 :=: (1 + k)3-1J by 4.2(34) and (2). Thus, 

m 

l'l1n,m(z) 1 ::; A5 L Ibk l(1 + kt- 3 

k=n 

( 
m ) l/p ( m ) l/q 

::; A5 ~ Ibk lP (1 + k)'" ~(1 + k)q(IJ-3-",/p) ,Z E K. 

(13) 
We also have v < 2 and K, = 1+2w > -lj therefore, q(v-3-K,/p) < -q(I+K,/p) < 
-1, so the last brackets of (13) contain a partial sum of a convergent series. The 
desired conclusion follows, and the proof is complete. 

Below we shall see that considerably more can be said about the entire func
tions <I>(z) and 'l1(z) which are the sums of series (3) and (4), if the parameter 
v E [0,2) is restricted by conditions stronger than (8). 

(b) Now we prove the first main theorem of this type. 
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Theorem 4.3-1. Let {ad! E lp,I< (1 < p < +00, 1'1, = 1 + 2w, -1 < w < p - 1), 
and let the parameter v E [0,2) satisfy the complementary condition 

( 1+1'1, 1+1'1,) v E b.(K"p) = -p- -1, -p- n [0,2). (14) 

Then: 
1 0. The series 

~ £a(z;v) 
<I>(z) = ~ ak £~(Ak; v)(z - Ak) 

k=l 

converges in the norm 11·IIt,w (4.1(1)) to an entire function <I>(z) E Wi;~,a' 
2°. This function is such that 

(15) 

where the suitable constants of two-sided estimates are independent of the sequence 

{ad!· 
(1~n<m< 

(16) 

by 4.1(1). Hence the entire functions <I>n,m(z2) of exponential type ~ u are of class 
wg,I< for any 1 ~ n < m < +00. We now denote 

m 

" ak 'Pn,m(z) = ~ £1 (A 'v)(z2 _ A ). 
k=n a k, k 

Then, using Theorem 3.4-1, we can obtain from (16) that 

(17) 

1 ~ n < m < +00, 
(18) 

where C1 > ° is a constant independent of nand m (such constants will be denoted 
further in the proof by Cj(j 2: 2)). Now note that £a(z2; v) (UZ)-1 sv(uz) 
according to 4.2(2). Hence, by the estimates 4.2(15), 

(19) 
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and it follows from (18) that 

{11<I>n,mll:'w Y :::; C2 i:oo 
l'Pn,m(X + iW Ix + iI"'l dx 

== C2 11'Pn,m(x + i)II~'l<l,l' (19') 

where 1\;1 = I\; - I/p and -1 < 1\;1 < p - 1 by condition (14). The well-known 
Han-Banach theorem implies 

II'Pn,m(x + i)llp,l<l,l = sup 1;+00 'Pn,m(X + i)K(x) Ix + Wl/p dxl. 
IIKllq::;l -00 

Consequently, there exists a function Ko(x) such that 
Ko(x)lx + il-I<l/p E Lq( -00, +(0) (q = p/(p - 1)) and 

IIKoll q,I<2,l = {i:oo IKo(xW Ix + il1<2 dX} l/q :::; 1, 

where 1\;2 = -l\;lQ/P, -1 < 1\;2 < Q - 1 and 

II'Pn,m(x + i)llp,l<l,l :::; C31i:00 'Pn,m(x + i)Ko(X)dXI· 

Now consider the Cauchy type integral 

_ 1 ;+00 Ko(t) 
Ko (z) = -. --dt,z E G_ = {z: Imz < O}, 

211'2 -00 t - z 

and note that, by assertions 1° and 2° of Theorem 3.3-3, 

(20) 

(21) 

(z - i)1<2/qKo(z) E H'!.., II(x - i)1<2/QKo(x)llq :::; C4 11Kollq,I<2,l :::; C4 . (22) 

Further, taking Ak = x% (1 :::; k < +(0), insert representation (17) into the right
hand side integral of (20). Then, by (21), 

1

m ak ;+00 Ko(t)dt I 

II'Pn,m(x + i)llp,l<l,l :::; C3 ~ £~(Ak; 1/) -00 (t + i)2 - x% 

:::;7rC3If.;>:;; ~( . ) [KO(Xk-i)-KO(-Xk-i)JI· 
k=n Ak£a Ak,1/ 

But VXkl£~(Ak; 1/)1;:::: (l+k)-v(1 :::; k < +(0). Thus, the use of Holder's inequality 
gives 

1 :::; n < m < +00. 
(23) 
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Now observe, that, according to Theorem 1.4-4, 

V>-k = Xk = ~k + ~(ZJ - 1) + O(kv-2) as k -+ +00 
0' 20' 

for any v E [0,2). Therefore, supposing that Ao = Xo = 0, we obtain 

inf [Xk+l - Xk] > 8 > ° 
O::;k<+oo 

and IXk - 2il ;::::: 1 + k(O :.:::: k < +00). Thus, by Theorem 3.4-3 and by the first of 
relations (22), 

00 

L IKo(±Xk - iW (1 + ky<2 :.:::: C6 < +00. 
k=l 

This, together with (23) and (19'), gives 

IIIPn,m(x + i)llp,I<1,l :.:::: C711{ak}~llp,I<' II<I>n,mll:'w:':::: C811{ad~llp,I<' 
and since {ad]'" E lp,1< (I\; = 1 + 2w), assertion 10 of the theorem follows from the 
last inequality, letting n, m -+ 00. 

Let n = 1 in the last inequalities. Then the passage m -+ 00 gives 

(24) 

But, as was proved earlier, in Lemma 4.3-1, <I>(Ak) = ak (k 2: 1). 
On the other hand, if <I>(z) E Wi;~,O', then, obviously, fez) = <I>(z2) E wg,1< 

(I\; = 1 + 2w), and the inequality 

IIU(Xk)}r'llp,1< = 11{<I>(Ak)}r'llp,1< :.:::: Cgllfllp,1< = Cgll<I>ll:'w (25) 

follows from Theorem 3.4-2 (when h = 0). The two-sided estimate (15) follows 
from (24) and (25). This completes the proof. 

( c) The next theorem is similar to the previous one, but its corresponding asser
tions concern the interpolation series (4). 

Theorem 4.3-2. Let {bdO" E lp,1< (1 < p < +00, I\; = 1 + 2w, -1 < w < p - 1) 
and let the parameter ZJ E [0,2) satisfy the additional condition 

( 1+1\; 1+1\;) 
ZJE~*(I\;,p)= -p-,I+-p - n[0,2). 

Then: 
10. The series 

( ) ( ) ( ) ~ z£O'(z;ZJ) 
W z = bor 1 + ZJ £0' Z; ZJ + ~ bk A £' (A . )( _ A ) 

k=l k 0' k, ZJ Z k 

converges in the norm II ·11:'w (4.1(1)) to an entire function w(z) E Wi;~,O'. 
20 • This function satisfies the relations 

(26) 

WeAk) = bk (Ao = 0, ° :.:::: k < +00), Ilwll:'w;::::: II{bdg:'llp,I<' (27) 

where the suitable constants of the two-sided estimates do not depend on the 
sequence {bdO". 
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Proof. It is similar to one of the previous theorem. Therefore, we give only the 
most important points of it. First we introduce the partial sums 

WO,m(Z) = bor(l + I/)£O"(z; 1/) 

(1 ~ m < +00), (28) 

() ~ z£O"(z;l/) 
Wn,m Z = ~ bk >. £1 (>. . )( _ >. ) 

k=n k 0" k, 1/ Z k 
(1 ~ n < m < +00) 

(29) 

and note that all these functions are of class Wi;~,O" by Lemma 4.2-4 (2°). Further, 
we introduce the function 

(1 ~ n < m < +00). (30) 

Then, by use of Theorem 3.4-1, we obtain that 

(1 ~ n,m < +00), 

where Bl > 0 is a constant independent of nand m(such constants will be denoted 
below by Bj(j ~ 2)). Thus, by (19), 

{llwn,mll;'wY ~ B2 1:00 
l1Pn,m(X + iW Ix + W3 dx, 

where "'3 = '" + p(l - 1/), and -1 < "'3 < p - 1 by (26). But 

II1Pn,m(x + i)llp,K3,1 = sup 11+00 
1Pn,m(X + i)h(x) Ix + iI K3 /P dxl IIhll q 9 -00 

(31) 

by Han-Banach's theorem. Hence, there exists a function ho(x), such that 
ho(x)lx + il-K3 /P E Lq( -00, +00) (q = p/(p - 1)) and 

Ilhollq,K4,1 = {[:oo Iho(xW Ix + ilK4 dX} l/q ~ 1, 

where "'4 = -"'3q/p, -1 < "'4 < q - 1 (by (26)), and 

II1Pn,m(x + i)llp,K3,1 ~ B31[:00 1Pn,m(x + i)ho(x)dxl· (32) 
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Now consider the Cauchy type integral 

.r-( ) = _1 1+00 ho(t) d 
JVo Z 2· t t, 

1l"~ -00 - Z 
z E G_ = {z : Imz < O} (33) 

which, according to assertions 10 and 20 of Theorem 3.3-3, satisfies the conditions 

Denote >"k = x~ (1 ::; k < +00) and insert representation (30) of 'l/Jn,m(z) into 
(32). Then, use of (33) gives 

But >"k ::::: (1 + k)2 (1 ::; k < +00) and, according to Lemma 4.2-5, le~(>"k; v)1 ::::: 
(l+k)-l-v. Thus >"kle~(>"k; v)1 ::::: (l+k)l-v (1 ::; k < +00), and by use ofH61der's 
inequality we obtain from (35) 

(36) 

for any n, m(l ::; n < m < +00). Further, by Theorem 3.4-3 and (34), 

00 
L INo-(±Xk - iW (1 + k)K4 ::; B6 < +00. 
k=l 

Hence II'l/Jn,m(x+i)lIp,K3,1 ::; B711{bk}~llp,K' Ilwn,mllt,w ::; B811{bk}~llp,K' and, since 
{bk}O' E lp,K, it follows that the series 

() ~ zeu(z;v) 
W1,00 z = ~ bk >.. e' (>.. . )( _ >.. )' z E C k=l k u k, V Z k 

is convergent, W1,00(Z) E Wi;~,u and 

(37) 
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We also have 

W(Z) == Wo,oo(z) = bof(l + v)t'o-(z; v) + Wl,oo(Z), 

Hence 

and, using assertion 2° of Lemma 4.2-4 (the case k = 0), we easily obtain 

(38) 

The interpolation data W(Ak) = bk(O :::; k < +00) of the function w(z) E Wi;~,o
was established earlier, in Lemma 4.3-1, and the inequality converse to (38) can 
be obtained by the technique used in the proof of (25'). 

4.4 Interpolation series expansions 

In this section we establish statements converse to Theorems 4.3-1 and 4.3-2 and 
prove some corollaries. 

(a) The following is the converse of Theorem 4.3-1. 

Theorem 4.4-1. Let the parameter v E [0,2) satisfy the complementary condi
tion 

( 1+1'\; 1+1'\;) v E ~(I'\;,p) = -p- -1, -p- n [0,2), -1 < I'\; < 2p - 1. (1) 

Then any function <I>(z) E Wi;~,a (1 < p < +00, W = (I'\; - 1)/2 can be expanded 
in the interpolation series 

~ () t'a(z;v) 
<I>(Z)=L.,..<I>Akt"(A·)( -A)' 

k=l 0- k, V Z k 
(2) 

where {Adf (0 < Ak < Ak+1, 1 :::; k < +00) are the zeros of the function t'a(z; v). 
This series converges uniformly in any compact K c C and it converges also in 
the norm 11.IIt,w of the space Wi;~,o-' Besides, the following two-sided inequality is 
true: 

(2') 

where the suitable constants do not depend on <I> ( z). 
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Proof. It was established in the proof of Theorem 4.3-1 that the inequality 4.3(25), 
i.e., 

(K = 1 + 2w), (3) 

is true for any function <I>(z) E Wi;~,,,. (1 < p < +00, -1 < w < p - 1). Thus the 
series (2) converges in both senses, as it follows from Lemma 4.3-1 and Theorem 
4.3-1. Hence the function 

~ £".(z;v) 
<I>*(z) = <I>(z) - ~ <I>(Ak) £1 (A . )( _ A )' 

k=1 ". k, V Z k 

for which 
<I>*(Ak) = 0(1 ~ k < +00), 

is also of class Wi;~,,,.. Further, 

(4) 

(5) 

(6) 

is an entire function, since its only singularities {±v'Ak}1' can be removed accord
ing to (5). Besides, by a well-known theorem (see, for example, Levin [1,§9]), O(z) 
is of exponential type ~ a. To find an estimate for this function, remember that 
the two-sided estimates 4.2(9) are true by Lemma 4.2-2 in the sum ~ = ~+ U~_ 
of the corner domains ~± of openings equal to 7r /2. But, according to 4.2(2), 
£". (Z2; v) = z-1S".(z; v). Hence the two-sided estimates 

11£". (z2; v)11 ;::::: (1 + Izl)-veo-IIrnzl, z E ~, Izl 2:: 1 (7) 

follow. On the other hand, <I>*(Z2) E WJ',K (K = 1 + 2w) since <I>*(z) 
Thus by Lemma 3.4 - 2(1°) 

1<I>*(z2)1 ~ C1 (1 + Izl)-K/Pe"'IIrnzl,z E C, 

E W p,w 
1/2,0- . 

(8) 

where the constant C1 > 0 does not depend on z. Now relations (6)-(8) and (1) 
give 

z E~, Izl 2:: 1, (9) 

where the constant C2 > 0 is also independent of z. Observe that the function 
O*(z) = [O(z) - 0(0)]Z-1 is also entire and of exponential type. In addition, 

O*(z) = O(lzI 1/ P- 1), z E~, Izl 2:: 1. (10) 

Thus it is bounded on the boundaries of the corner domains ~± and C/ ~± of 
openings equal to 7r /2 and it tends to zero as Izl ----7 00. Hence it follows from 
the Phragmen-Linde16f principle that O*(z) == 0, i.e. O(z) == 0(0) = ao, z E C. 
Consequently, 

<I>*(z) == ao£".(z; v), z E C. 

But <I>*(z) E Wi;~,,,. and, on the other hand, if v < (1 + K)/p, then £o-(z; v) rt 
Wi;~,,,. according to Lemma 4.2-4 (1°). Thus the last identity does not lead to a 
contradiction only in the case when <I>*(z) == ao = 0, so the proof is now complete. 

(b) The next theorem is the converse of Theorem 4.3-2. 
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Theorem 4.4-2. Let the parameter 1/ E [0,2) satisfy the complementary condi
tion 

( 1+1\; 1+1\;) 
1/ E ~*(I\;,p) = -p-,1 + -p- n [0,2), (11) 

Then any function cJ>(z) E Wi;~,,,. (1 < p < +oo,w = (I\; -1)/2) can be expanded 
in the interpolation series 

cJ>(z) = cJ>(Ao)f(1 + I/)£".(z; 1/) + f cJ>(A",) A £' (~~(~t) _ A )' (12) 
"'=1 "'". k, 1/ Z '" 

where {AdO' (AO = ° < Ak < Ak+1' 1 :::; k < +(0) are the zeros of the func
tion z£".(z; 1/). This series is uniformly convergent in any compact K c C and it 
converges also in the norm 11.IIt,w ofthe space Wi;~,,,.. In addition, 

{ 

00 }l/P 
11cJ>IIt,w ~ (; 1cJ>(A"'W (1 + k)'" , (13) 

where the suitable constants do not depend on cJ>(z). 

Proof. An inequality similar to (3) is true again. Thus the convergence of the series 
(12) in both desired senses follows from Lemma 4.3-1 and Theorem 4.3-2. Hence 
the function 

for which 
(0:::; k < +(0), (15) 

is of class Wi;~,,,.. Now define the function 

(16) 

which is obviously entire and of exponential type. From (7) it follows that 

z E .6., (17) 

where 
(18) 
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And, since estimate (8) is true for the function <I?*(z2) E W~,I< (I\; = 1 + 2w), it 
follows from (16) and (17) that 

IO(z)1 :::; O2 (1 + Izl)v-2-I</p, z E ii, 

where the constant O2 > 0 is independent of z and 11- 2 - I\;/p < O. Therefore, the 
function O(z) is bounded on the boundaries of the corner domains A± and C/ A± 
of openings 7f /2, and it tends to zero as Izl ---+ 00. Hence the Phragmen-Linde16f 
principle gives O(z) == 0, z E C, and <I?* (z) == 0, z E C, so (12) is true. Now the 
two-sided estimates (13) follow from the inequality 

proved earlier and also from the inequality 4.3(38) established in the proof of 
Theorem 4.3-2. Thus the proof is complete. 

(c) The following uniqueness theorem is an immediate consequence of the two 
preceding theorems. 

Theorem 4.4-3. Let <I?(z) E Wi;~,.,. (1 < p < +00, -1 < w < p - 1) be an 
arbitrary function and, as everywhere, let {Adl be the sequence of zeros of the 
function 

t'.,.(z; 11) = E 1/ 2 (-a2 z; 1 + 11) , 

Then <I?(z) == 0 in each of the following cases: 
1°. 11 E A(I\;,p) and 

(1:::; k < +00). 

11 E [0,2). 

(Ao = 0, 0:::; k < +00). 

(19) 

(20) 

The next general theorem follows from Theorems 4.3-1,4.3-2 and 4.4-1,4.4-2. 

Theorem 4.4-4. If 11 E A(I\;,p) (or 11 E A*(I\;,p)), then the series 4.3(3) (or 
4.3(4)), which converges uniformly on compacts K c C and also in the norm 
11.IIt,w of the space Wi;~,.,., represents a continuous one-to-one mapping of the 
space of sequences {adl E [P,I< (or sequences {b,.j8" E [P,I<) (1 < p < +00, -1 < 
w < p - 1, I\; = 2w + 1) onto the space Wi;~,.,. of entire functions <I?(z) (or w(z)). 
These mappings correspondingly satisfy the conditions 

<I>(Ak) = ak 

WeAk) = bk 

(1:::; k < +00), 11<I>II:'w ~ II{akH'°llp,I<' 

(Ao = 0, 0:::; k < +00), Ilwll:'w ~ II{b,.jg"llp,l<. 
(21) 
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(d) Now we consider three particular choices of the parameter l/ in which the 
sequence {Adl' and also the interpolation expansions of Theorems 4.4-1 and 4.4-
2 are of the simplest types. 
1°. If -1 < w < p/2-1(1 < p < +00) and l/ = 0, then it is easy to verify that 0 E 
A(!I;,p), so Theorem 4.4-1 may be used. The sequence {Ak}l' = {[7r(k-1/2)/0'j2}l' 
(1 :s: k < +00) is the set of zeros of the function E<r(z;O) = E1/ 2(-0'2 Z ; 1) = 
cos(O'y'Z). Consequently, any function cI>(z) E Wi;~,<r can be expanded in the 
series 

cI>(Z) = 27r f( -l)kcI> ([~ (k _ ~)] 2) (k - 1/2) cos(O'y'Z) 
0'2 k=l 0' 2 Z - [7r(k - 1/2)/0']2' 

Z E C. (22) 

2°. If p/2 -1 < w < p -1 and l/ = 1, then 1 E A(!I;,p) and {Adl' = {(d/0')2}l' 
is the sequence of zeros of the function 

In this case Theorem 4.4-1 says: any function cI>(z) E Wi;~,<r can be expanded in 
the series 

( 7r)2~ k ((7r )2) k2sin(0'y'Z) 
cI>(z) = 2 -;; 6(-1) cI> -;;k O'y'Z[z _ (7rk/0')2]'z E C. (23) 

3°, If -1 < w < p/2 -1 and l/ = 1, then 1 E ~*(!I;,p), and, according to Theorem 
4.4-2, any function cI>(z) E Wi;~,<r can be expanded in the series 

cI>(Z) =cI>(0) sin (0'y'Z) 
0'y'Z 

+~ ~(-l)kcI> ((~k)2) y'Zsin(O'y'Z), 
0' L-J 0' Z - (d/0')2 

k=l 

(24) 
Z E C. 

Note finally, that the convergence of series (22) to (24), illustrated in Theorems 
4.4-1 and 4.4-2, and also the inequalities of these theorems, certainly remain true 
in the special cases discussed above. 

4.5 Notes 

The results of this chapter are proved in M.M. Djrbashian-S.G. Raphaelian [3, 
§2]. The proofs of the auxiliary lemmas and the main theorems given here are 
essentially improved. 
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5.1 Introduction 

As is well known, a function cp(T) E L 2(0, 0") (0 < 0" < +00) is the limit in mean 
of two different Fourier series constructed by the use of two different systems of 
trigonometric functions 

(1) 

which are orthonormal in L 2(0,0"). Plancherel's Theorem 1.7-2 relating to Fourier 
cos- and sin-transforms in L2 (0, +00) is actually a continual analog of the men
tioned expansions for the case when 0" = +00. This theorem is contained in the 
general Theorem 1.7-1 as the special case when the parameter J.L E (1/2,5/2) is 
equal to 1 or 2. 

In this chapter the discrete analogs of the general Theorem 1.7-1 are estab
lished for arbitrary values of J.L E (1/2,5/2). The results obtained appear to coin
cide in the cases J.L = 1 and J.L = 2 with the abovementioned classical statements of 
Fourier series theory in L 2 (0, 0"). The proofs of this chapter are based on some of 
the main results of Chapter 4, namely, on the case p = 2, -1 < w < 1, of Theorems 
4.3-1 and 4.3-2 relating to interpolation expansions of entire functions of classes 
Wi;~,a' We pass from these interpolation theorems to the results of this chapter 
mainly using Theorem 2.2-1, which establishes the parametric representations of 
the classes W~;~,a (-1 < w < 1) of entire functions. Remember that the last the
orem was the simplest generalization of the classical Wiener-Paley Theorem 2.2-2 

relating to parametric representations of the classes W:;~,~2 and W:;;~; of entire 
functions. Finally, we arrive at some biorthogonal systems of Mittag-Leffler type 
functions forming Riesz bases of L2 (0, 0") after suitable normalization. 

It should be mentioned that the basic systems of this chapter, similar to 
trigonometric systems (1), appear to be the systems of eigenfunctions of definite 
boundary value problems on (0,0"). But these new boundary value problems are 
absolutely non-ordinary, as they are formulated in terms of several model integro
differential operators of fractional orders. These results as well as more general 
ones of the same character are proved in Chapters 10, 11 and 12 of the book. 

5.2 Biorthogonal systems of Mittag-Leffler type functions 
and their completeness in L 2(0,0"). 

It is now necessary to introduce short notations for the systems of entire functions 
contained in the interpolation expansions of Theorems 4.4-1 and 4.4-2. 

Let P.k}!" (0 < Ak < Ak+l, 1 ::; k < +00) be, as in Chapters 1 and 4, the 
sequence of zeros of the entire function 

1/ E [0,2) (1) 
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(remember that its zeros are simple). We introduce the following two sequences of 
entire functions of order 1/2 and of type (J: 

(2) 

where 
( ) Eu(Zill) 

Wk Z = E~P."ki lI)(Z - Ak) (1 S; k < +(0), (3) 

Wo(Z) = r(1 + lI)Eu(Zi 1I), 

(1 S; k < +(0). 
(4) 

Note that according to Lemma 4.2-4 (the case p = 2) 

(-1 < W < 1,1 S; k < +(0), (5) 

if 1I E [0,2), and 

Wk(Z) E W;;~,u (-1 < W < 1,0 S; k < +(0), (6) 

if 1I E (1 + w, 2) C [0,2). Further, note that definitions (3) and (4) of systems (2) 
immediately give the interpolation data 

Wk(An ) = Dk,n 

Wk(An ) = Dk,n 

where Dk,n is the Kronecker's symbol. 

(1 S;; k, n < +(0), 

(0 S; k, n < +(0), 

(7) 

(8) 

Now, using the introduced notations, the last interpolation theorem of the 
preceding chapter, i.e. Theorem 4.4-4, may be formulated for p = 2 in the following 
way. 

Theorem 5.2-1. Let, as always, {Ak}l and {Ado be, respectively, the zeros of 
the functions 

( ",-1 "'+1) Eu(z; 1I), 1I E ~("" 2) = (w, W + 1) n [0,2) = -2-' -2- n [0,2) (9) 

and 

( ",+1 "'+1) ZEu(Zi ll ), lIE~*(",,2)=(w+1,w+2)n[0,2)= -2-,1+-2- n[0,2), (10) 

where '" = 2w + 1 and - 1 < W < 1. Then each of the sets of entire functions 
{wk(z)}l and {wk(z)}o is a basis of the space W;;~,u' and the two-sided inequal
ities 4.4(21) of Theorem 4.4-4 remain true. 
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(a) Remember that the points of interpolation {Adl' and {Ak}O' in Theorems 
4.4-1 and 4.4-2 (relating to interpolation expansions of functions of the class 
W;;~,O"( -1 < W < 1, K = 2w + 1)) were the zeros,respectively, of the functions 
£O"(z; v) and z£O"(z; v). Remember also that the zeros of these functions are sim
ple. 

Let -1 < W < 1, and let v E [0,2) or v E (1 + w,2) C [0,2) (so the 
assertions (5) or (6) are true correspondingly). Then, according to Theorem 2.2-1, 
the functions of the system {Wk(Z)}l' C W;;~,O" or, correspondingly, the functions 

of the system {wZ(z)}O' C W;;~,O" are representable in the forms 

Wk(Z) = 10" El/2 (-T2Z;J.L) TI-'-l rpk (T)dT 

WZ(Z) = 10" El/2 (-T2Z;J.L) TI-'-l rpZ (T)dT 

(1 S; k < +00), 

(0 S; k < +00), 

(11) 

(12) 

where J.L = 3/2+w E (1/2,5/2), and where the functions rpk(T) E L 2(0,a) and 
rpZ(T) E L 2(0, a) are unique. Note that it was tacitly supposed in the last repre
sentations that the parameters J.L and v satisfy the conditions 1/2 < J.L < 5/2, ° S; 
v < 2 and 1/2 < J.L < 5/2, J.L - 1/2 < v < 2 respectively. 

The systems of entire functions (2) are now associated respectively with the 
systems 

(13) 

offunctions of L2 (0, a). 

(b) The inversions ofrepresentations (11) and (12) can be obtained by use of the 
inversion formula 2.2(3) of Theorem 2.2-1. In this way the functions of systems (13) 
may be expressed as some improper integrals arising from formula 2.2(3), where 
fez) is replaced by wk(z)(1 S; k < +00) or WZ(Z) (0 S; k < +00). The calculation 
of these integrals apparrently is far from being simple. Fortunately, it appears 
that there exists another way in which the functions (13) of representations (11) 
and (12) can be determined in explicit forms. Together with this, the following 
lemma permits the weakening of the assumptions relating to possible values of the 
parameters J.L and v. 

Lemma 5.2-1. 1°. If 

OS; v < 2 and OS; J.L < 3 + v, (14) 

then the functions of system {Wk(Z)}l' are representable in the form of (11), where 

rpk( T) = - £~(A-: v) El/2 (-Ak(a - T)2; 3 + v - J.L) (a - Tt-I-'+2 (1 S; k < +00) 

(15) 
when T E (O,a). 
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0~1I<2 and o ~ J.L < 1 + II, (16) 

then the functions of system {wk(z)}go are representable in the form of (12), where 

when r E (0,0-). 

Proof. If the obvious equality E1/2(Z; J.L) = l/r(J.L) + zE1/2(Z; J.L + 2) is used, then 
the integral identity 1.2(10), where we assume p = 1/2, can be written down in 
both the following forms: 

Y"',i3(Z; >.) == ioU E1/2 (-zr2; a) r",-l E1/2 (->'(0- - r)2; /3) (0- - r)i3-1dr 

= E1/2 (-0-2 z; a + /3 - 2) - E 1/2 (-0-2>.; a + /3 - 2) 0-",+13-3 (18) 
z->. 

_ ZE1/2 (_0-2 z; a + /3) - >.E1/ 2 (_0-2 >.; a + /3) "'+13-1 
- \ 0-, 

Z-A 

where z, >. E IC and 0 ~ a, /3 < +00 are arbitrary numbers. 
1°. If we put a = J.L, /3 = 11- J.L + 3 and >. = >'k (1 ~ k < +00) (where >'k are the 
zeros of Eu(z; II)) in the first of the identities (18), then it follows that 

lu 
E1/2 (-zr2; J.L) r JJ - 1 E1/2 (->'k(o- - r)2; II - J.L + 3) (0- - rt-JJ+2dr 

v E1/2 (_0-2 z; 1 + II) 
= -0- (1 ~ k < +00). 

z - >'k 

Hence, in view of definition (11) of the system {rpk (r)}f, we get formulas (15). 
2°. We put a = J.L, /3 = II - J.L + 1 in the second of the identities (18) and consider 
the cases>. = >'0 = 0 and >. = >'k (1 ~ k < +00). We arrive at the two following 
identities: 

ioU El/2 (-zr2; J.L) rJJ-1(0- - rt-JJdr = o-Vr(1 + 11- J.L)E1/2 (-0-2Z; 1 + II) , 

ioU E 1/ 2 (-zr2; J.L) r JJ - 1 E1/2 (->'k{o- - r)2; 1 + II - J.L) (0- - rt-JJdr 

v zE1/2{ -0-2 z; 1 + II) 
= 0- (1 ~ k < +00). 

z - >'k 

Hence, using definition (12) of the system {rpk(r)}go, we arrive at formulas 
(17). 
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(c) Now we shall consider, together with systems (15) and (17), the pair of systems 

and (19) 

where 

It is easy to see that all the functions of systems (19) are real and, in view of the 
identities 

(1:::; k < +00), 

they are all of L1 (0, a) for any /-L ~ 0. In addition, these functions may have 
integrable singularities only at r = 0, and they are of L2 (0, a) for any /-L > 1/2. 
Further, it follows from (15) and (17) that the functions of both those systems also 
are real, that they may have integrable singularities only at r = a and that they 
are of L 1(0,a) when II and /-L satisfy conditions (14) and (16) respectively. Thus, 
as a result, we obtain the pair of inclusions 

ek(r;/-L)<Pn(r) E L 1(0,a) 

ek( r; /-L)<p~ (r) E L1 (0, a) 

(1:::; k,n < +00), 

(0:::; k,n < +00) 

which are true when the parameters /-L and II satisfy conditions (14) and (16) 
respectively. 

Now we are ready to prove the following statement. 

Lemma 5.2-2. The left-hand system of (19) and system (15) are biorthogonal 
on (0, a). Also, the right-hand system of (19) and system (17) are biorthogonal on 
(0, a). In other words, 

loU ek(r;/-L)<Pn(r)dr = Dk,n 

loU ek(r;/-L)<p~(r)dr = Dk,n 

where Dk,n is Kronecker's symbol. 

(1:::; k,n < +00), 
(20) 

(0:::; k,n < +00), 

Proof. If we put z = Ak (1 :::; k < +00) and Z = Ak (0:::; k < +00) in representa
tions (11) and (12) respectively, then the desired biorthogonality (20) immediately 
follows from (7) and (8). 

(d) Now we shall prove a theorem on completeness of both systems of (19) in 
L2(0,a). 
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Theorem 5.2-2.10. Ifv E 6.(K;,2) and JL = 3/2+w (-1 < w < 1), then the 
system offunctions {ek(r;JLnl' is complete in L2(0,a). 
20. lfv E 6.*(K;, 2) and JL = 3/2+w(-1 < w < 1), then the system of functions 
{ek( r; JLnO' is complete in L 2 (0, a). 

Proof. It is necessary to show that a function (('(r) E L2 (0, a) vanishes almost 
everywhere in (0, a), if it satisfies any of the conditions 

fo<I ({'(r)ek(r;JL)dr = 0 

fo<I ({'(r)ek(r;JL)dr = 0 

(1 :s: k < +00), 

(O:S: k < +00), 

(21) 

(22) 

in the hypothesis that the parameter v satisfies the suitable conditions. To this 
end we introduce the entire function 

(23) 

which is of class W;;~'<I' according to Theorem 2.2-1. Observe that (21) and (22) 
give respectively f",(Ak) = 0 (1 :s: k < +00) and f",(Ak) = 0 (0 :s: k < +00). 
Thus, by the uniqueness Theorem 4.4-3 proved for the classes W;;~'<I' we have 
f",(z) == O. To complete the proof, it remains to use the inversion formula 2.2(3) 
of Theorem 2.2-l. 

The following completeness theorem is also true. 

Theorem 5.2-3. 10. Ifv E 6.(K;, 2) and JL = 3/2+w (0 < w < 1), then the system 
offunctions {({'k( rnl' is complete in L 2 (0, a). 
20. If v E 6.*(K;, 2) and JL = 3/2 + w (-1 < w < 0), then the system of functions 
{({';:,( rnO' is complete in L 2 (0, a). 

Proof. We apply arguments based mainly on the preceding theorem. 
10. If we put 3-JL+v = {L = 3/2+w in representation (15) offunctions {({'k(rnl', 
then, obviously we obtain v = w + w. Hence w E (0,1), since v E 6.(K;,2) = 
(w, w + 1) n [0,2). It is easy to verify that 

(1 :s: k < +00). 

Thus the functions {({'k( rnl' differ from {ek(a-r; {Lnl' only by constant multipli
ers, and the last system is complete in L2 (0, a) by Theorem 5.2-2(1 0 ). Indeed, if we 
take;;'; = 1 +2w, then it remains only to observe that v E 6.(;;,;,2) = (w, w+ l)n [0,2) 
since 0 < w < 1. 
20 • If we put 1 + v - JL = {L = 3/2 + w in the representation (17) of functions 
{'P;:'(rnO', then we obtain v - 2 = w + W. Hence wE (-1,0) since v E 6.*(K;, 2) = 
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(w + 1, w + 2) n [0,2). It is also easy to verify that 

4'~ (1') = O"-Vf(l + lI)eo( 0" - 1'; P), 

4''k(1') = AkE~~;k;lI)ek(o"-1';P) (1:::; k < +00). 

89 

Therefore, the desired assertion follows from Theorem 5.2-2(2°). Indeed, if we put 
f;, = 1 +2w, then II E ~*(f;,,2) = (w+ 1,w+2) n [0,2) since -1 < w < O. 

Remark. It turns out that the preceding theorem remains true if the restrictions 
on the parameter ware omitted. This fact is an obvious consequence of Theorems 
5.3-1 and 5.3-2 of the next chapter. 

5.3 Fourier series type biorthogonal expansions in L2(0, 0") 

Here we shall prove the main theorems relating to expansions of functions of 
L2(0,0") in terms of the pairs of biorthogonal systems 

and 
{ek( 1'; /-t)}0', 

which were introduced in Section 5.2. 

(1) 

(2) 

(a) Theorem 5.3-1. Let {Ak}\'" be, as always, the sequence of zeros ofthe func
tion 

II E [0,2), 

and let the parameters v, wand /-t satisfy the conditions 

II E ~(I"\:,2) = (w,w+1)n[0,2), -1 < w < 1 and /-t = 3/2+w (I"\: = 1+2w). (3) 

Then: 
1 0. The series of the form 

(4) 
k=l 

converge in the norm of L2(0,0") and present a continuous one-to-one mapping of 
the space [2,,,, (I"\: = 1 + 2w) of sequences {ak}\'" for which 

(5) 

onto the space L2(0, 0") of functions 4'(1'). And the coefficients of expansion (4) of 
any function 4'(1') E L2(0, 0") can be determined by the formula 

(1 :::; k < +00). (6) 
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In addition, the the following two-sided inequalities are true: 

(7) 

2°. The series of the form 

00 

cp(r) = I)kek(r;J.t) (8) 
k=l 

converge in the norm of L2(0, 0") and present a continuous one-to-one mapping 
of the space l2,-1< of sequences {bk}f onto the space L2 (0, 0") of functions cp(r). 
And the coefficients of the expansion (8) of any function cp(r) E L2 (0,0") can be 
determined by the formula 

(1 :::; k < +00). (9) 

In addition, the following two-sided inequalities are true: 

(10) 

Proof. 1°. According to Theorem 4.4-4 (the case p = 2), the series 

00 

<t»(z) = L akwk(z), (11) 
k=l 

where {wk(z)}f is the first of the systems 5.2(2) of entire functions of W;i~,O"' 
presents a continuous, one-to-one mapping of l2,1< onto W;i~,O". By the same theo
rem, 

IIcpllt,w :=:: lI{ak}fI12,/t, CP(.Ak) = ak(1 :::; k < +00). (12) 

On the other hand, according to Theorem 2.2-1, the formula 

J.t= 3/2+w (13) 

gives a continuous one-to-one mapping of L2 (0, 0") onto W;i~,O" and 

(14) 

In addition, 5.2(11) implies 

Wk(Z) = 10" E 1/ 2 (-r2z;J.t)rJ.'-lcpk(r)dr (1:::; k < +00). 
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The two-sided inequalities (7) follow from (12) and (14). Thus the spaces [2,1< and 
L2 (0,a) are homeomorphic, and the proof of 1° will be complete, if we observe 
that (12) and (13) together with the notations 5.2(19') give 

(1::; k < +00). 

2°. We pass from the systems (1) to the systems 

(1') 

where 

(1 ::; k < +00). (15) 

It is obvious that these new systems also are biorthogonal on (0, a). Besides, they 
are complete in L2 (0, a), according to Theorem 5.2-2 and assertion 1°, which is 
already proved. 

Evidently, assertion 1 ° can be reformulated now using the systems (1'). Then, 
as a result we obtain that the series of the form 

00 

rp(T) = LakCPk(T) ( 4') 
k=l 

presents a continuous one-to-one mapping of the space [2 of sequences for which 

onto L 2 (0, a) and, instead of formula (6) and inequalities (7), we have 

(1::; k < +00), 

So, the system {CPk( T)}l', which is complete in L 2 (0, a), is a Riesz basis. Hence, 
according to a well-known result, the system {ek(T; JL)}l', which is biorthogonal 
to {CPk(T)}l' and is complete in L2 (0, a), is also a Riesz basis. Using this and 
returning to the initial system {ek( T; JL}l', we complete the proof. 

Theorem 5.3-2. All the statements of Theorem 5.3-1 remain true also for the 
systems (2) which are biorthogonal on (O,a), if only the parameters v,w and JL 
satisfy the conditions 

v E ~*(K, 2) = (w+1,w+2)n[0, 2), -1 < w < 1, JL = 3/2+w (K = 1+2w). (16) 
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Proof. It suffices just to repeat the arguments used in the proof of Theorem 5.3-1, 
but it is also necessary to apply the second parallel assertion of Theorem 4.4-4, 
again in the case p = 2. In this way we shall arrive at the biorthogonal expansions 

00 

bk = fou <p(t)<p'k(t)dt <peT) = Lbkek(T;J,t), (O:::;k<+oo), 
k=O 

(17) 
00 

ak = fou <p(t)ek(t; J,t)dt <peT) = Lak<P'k(T), (0:::; k < +(0), 
k=O 

and we shall arrive also at the following inequalities between the norms of a func
tion <peT) E L2(0,a) and the sequences of coefficients {adO'o, {bdO': 

(18) 

(b) Now we shall state some particular cases of the proved biorthogonal expan
sions, as they are of independent interest. 

Theorem 5.3-3. Let {.Ada (0 = Ao < Ak < Ak+l, 1 :::; k < +(0) be the zeros of 
the function z[u(z; v), where v E (1/2,3/2). Then, after suitable normalization, 
each system of biorthogonal pairs 

(19) 

and 

(20) 

forms a Riesz basis of L2 (0, a). 

Proof. Observe that, if we take J,t = 2 or J,t = 1, then we obtain correspondingly 

sinhy'z 
E1/2(Z; 2) = y'z and E1/2(Z; 1) = cosh Jz. 

In addition, note that hypothesis (3) of Theorem 5.3-1 and hypothesis (16) of Theo
rem 5.3-2 are satisfied in the cases J,t = 2 and J,t = 1 respectively, if v E (1/2,3/2) C 

[0,2). Therefore, the desired statements ~elating to systems (19) and (20) follow 
correspondingly from the same theorems, if we use definitions 5.2«15),(17),(19')) 
of biorthogonal systems (1) and (2) and also identity 4.2(35). 
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Remark. Obviously, the zeros of the function 

E ( 2.) _ sin(O"vz) 
1/2 -0" z,2 - vz 

coincide when v = 1 with the set of numbers >"k = (7rk/0")2(1 :s: k < +(0). 
Besides, it is easy to see that, in the case considered in the previous theorem, the 
suitable normalization transforms the systems (19) and (20) into the well-known 
trigonometric systems 5.1(1) which are orthonormal and closed in L2(0, 0"). Thus 
the aim of this chapter is attained completely. 

( c) The concluding theorem of this section is a corollary of those statements of 
Theorems 5.3-1 and 5.3-2 which relate to systems {ek(r;J.L)}i'" and {ek(r;J.L)}OO. 

Theorem 5.3-4. Let {>"k}i'" be the zeros of the function E 1/ 2 ( -0"2z; 1 +v). Then 
the following statements are true: 
1°. Ifv E ~(K, 2) = (w, 1 +w) n [0,2), -1 < w < 1, then, after suitable normaliza
tion, the system 

J.L = 3/2+w (21) 

forms a Riesz basis of the space L2,,,,(0, o")(K = 1 + 2w) offunctions rp( r) for which 

{ r }1/2 
IlrpI12,,,, = Jo 1 rp(r) 12 r"'dr < +00. (22) 

2°. If v E ~*(K, 2) = (1 + w, 2 + w) n [0,2), -1 < w < 1, then, after suitable 
normalization, the system 

(>"0 = 0), J.L = 3/2 + w (23) 

forms a Riesz basis of the space L 2 ,,,, (0, 0"). 

5.4 Notes 

The results of this chapter were established in M.M. Djrbashian-S.G. Raphae
lian [3, §3] in somewhat different forms. Here we use only one of the well-known 
equivalent definitions of the Riesz bawe use only one of the well-known equivalent 
definitions of the Riesz basis. In the proof of Theorem 5.3-1 we used the following 
well-known assertion: if one of two biorthogonal systems is a Riesz basis of a Hilbert 
space, then the other one is also a Riesz basis. A detailed account of the theory of 
Riesz bases is given, for example, in the monographs of 1. Gohberg-M.G. Krein [1, 
Chapter 7, §1,2] and S. Kaczmarz-H. Steinhaus [1, " Review" , §9]. The mentioned 
well-known assertion will also be used in later chapters of this book. 

It should be mentioned that some systems of linear combinations of Mittag
Leffler type functions Ep(z; J.L) (p ~ 1/2), which are biorthogonal on the segment 
[0, l] of the real axis, were constructed in the early paper of M.M. Djrbashian-A.B. 
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Nersesian [1]. Later it was established by M.M. Djrbashian-A.B. Nersesian [2,3] 
that the expansions in terms of these systems are equiconvergent with the ordinary 
Fourier series of any function '1'( T) E L1 (0, l). This was proved by applying the 
well-known contour integration method ascending to Cauchy. It must be noted, 
however, that these methods and results have nothing in common with the contents 
of Chapters 4 and 5 of this book. 



6 Interpolation series expansions in 
spaces W:~~/2,(T of entire functions 

6.1 Introduction 

In this chapter we establish some theorems relating to interpolation series expan
sions of entire functions <I>(z) of order s + 1/2 (where s ~ 1 is an arbitrary natural 
number) and of type::; a, which are of spaces W:~/2'lT' i.e. for which 

Li='[OO 14> (re,·j I (.+ 'I') ) I' ," d, } 'I, < +00. (1) 

It will be supposed, as always, that 

1 < p < +00 and - 1 < w < p - 1. (2) 

The expansions of this chapter are established on the base of the concluding The
orems 4.4-1 and 4.4-2 of Chapter 4, which relate to interpolation expansions of 
functions of the simplest spaces Wi;~'lT of the mentioned type. But, in contrast 
to Chapter 4, here we prefer to give the necessary notations and to formulate the 
main theorems on interpolation in classes W:+~/2'lT right in the beginning of the 
chapter, in spite of the fact that these theorems are proved only in its concluding 
section, by use of some auxiliary results which we prove in its earlier sections. 

6.2 The formulation of the main theorems 

First we have to introduce some necessary notations often used later. 

(a) Denote by 
s 

f 2s+l = U fl,j(s ~ 0) 
j=-8 

the sum of 2s + 1 rays 

fl,j = {z : z = rexp {i S :{/2} , o ::; r < +00 } . 

(1) 

(2) 

Evidently, these rays turn into the semi-axis [0, +00) when s = o. The restriction 
6.1(1), defining the Banach space W:+~/2'lT of entire functions <I>(z) of order s + 
1/2(s ~ 1) and of type::; a(which is more general than Wi;~'lT)' may now be 
written down as follows: 

11<I>;f2s+lllp ,w == {r 1<I>(zW Izlw IdZI}I/P 
Jr2S+1 

~ Lt,[OO 14> (re''&) I' ,"d, r < +00 

(3) 
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(b) Using the function cu(Zj v) defined earlier and assuming, as always, that v E 
[0,2), we introduce the entire function 

(4) 

which is of order s + 1/2 and of type a. The zeros {Ad! (0 < Ak < Ak+1, 
1 S k < +00) of cu(Zj v) are simple and positive by Theorem 1.4-3. Hence zeros 
of Cs+1/2,u(Zj v) are also simple and are situated on the sum of rays r2s+1. And, 
if we denote 

(5) 

then, evidently, 

(6) 

. is the set of zeros of Cs+1/2,u(Zj v) which are all situated on the rays r 1,j and 

1I.2s+1 - A r'j,k - k (-s S j S s, 1 S k < +00). (7) 

Obviously, we give a uniform numeration of all zeros {J-Ln}! C r 2s+1 of 
Cs+1/2,u(Zj v), if we put 

J-L(2s+1)k+j-s = J-Lj,k (-s S j S s, 1 S k < +00). (8) 

Now note that Ak ;::::: (1 + k)2(1 S k < +00) by Theorem 1.4-3. Thus (6)-(8) imply 
the two-sided inequalities 

IJ-Lj,kl ;::::: (1 + k)2/(2s+1) (-s S j S s, 1 S k < +00), 

IJ-Lnl ;::::: (1 + n)2/(2S+1) (1 S n < +00). 
(9) 

(c) Let {<I>n}~r (0 S r S s) be an arbitrary sequence of complex numbers, such 
that the quantity 

where 
1 + 2(w - s) 

"'-s = 2s + 1 ' 

(10) 

(11) 

is finite. Then we shall call this quantity the norm of the sequence {<I>n}~r and 
write 

(12) 
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One can easily be convinced that, in the considered case 1 < p < +00, the class 
Lf,L s ' defined in this way, is a Banach space. Finally, we put 

= 2(1 + w) (s> 1) 
"I p(2s + 1) - (13) 

and introduce the pair of intervals 

(14) 

(15) 

It can easily be verified that these intervals have no common points and that they 
both lie in [0,2). Thus, the function t'8+1/2,(T(Z; 1/) has in both cases 

(16) 

an infinite set of simple zeros {jln}J'° situated on the sum of rays f 2s+1 . 

(d) Now we pass to formulations of the main interpolation theorems of this chap
ter, but we shall be ready to prove these theorems only at the end of the chapter, 
after proving some necessary lemmas and propositions. 

Theorem 6.2-1. If 1/ E 6 8 (1 0 ), then the series 

<I>(z) = f(1 + 1/) (~ <I>~k zk) t'8+1/2,(T(Z; v) 
k=O 

~ Zst's+1/2,(T(Z; v) 
+ L <I>n 8' (.)( ) n=l J1nt'8+1/2,(T J1n,1/ Z - J1n 

(17) 

represents a continuous one-to-one mapping of the space L~~;!~ of sequences 
{<I>n}~(S-l) onto the space W:+~/2,(T of entire functions <I>(z). In addition, the 
following assertions are true: 
10. A series (17) converges to its sum in the norm II.; f 2s+1 1Ip,w of the space 
W:+~/2,(T and it also converges to the same limit uniformly in any disk Izl ::; R < 
+00. 
20 • The following two-sided estimates are true: 

(18) 

Here, as everywhere, the suitable constants are independent of both estimated 
elements of Banach spaces. 
30 • The function <1>( z) of (17) has the interpolation data 

<I>(k) (0) = <I>-k (0::; k::; s -1), <I>(jln) = <I>n (1::; n < +(0). (19) 
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Theorem 6.2-2. If v E ~s(2°), then the series 

(20) 

represents a continuous one-to-one mapping of the space L~~L. of sequences 
{<I>n}~s onto the space W:+~/2,0" of entire functions <I>(z). In addition, the fol
lowing assertions are true: 
1°. A series (20) converges to its sum in the norm 11.;f2s+lIip,w of the space 
W:+~/2,0", and it also converges to the same limit uniformly in any disk Izl ::::: 
R < +00. 
2°. The following two-sided inequalities are true: 

(21) 

3°. The function <I> ( z) of (20) has the interpolation data 

(e) The following uniqueness theorem is an immediate consequence of the two 
preceding theorems. 

Theorem 6.2-3. If <I>(z) E W:+~/2,0", and {J.tn}'j'° is the sequence of zeros of the 
function 

£'s+1/2,0" (z; v) = El/2 (_0'2 z2s+1; 1 + v) , 

then in both the following cases 
1° v E ~s(l°) and 

v E [0,2), 

<I>(k) (0) = 0 (0::::: k ::::: s - 1), <I>(j.tn) = 0 (1::::: n < +00), (23) 

<I>(k) (0) = 0 (0::::: k::::: s), <I>(J.tn) = 0 (1::::: n < +00) (24) 

we have 
<I>(z) == O. (25) 

The identity (25) follows in both cases 1° and 2° from the interpolation data 
(19) and (22) of functions of W:+~/2,0" which are representable in the forms (17) 
and (20) when v E ~s(l°) and v E ~s(2°) respectively. 
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6.3 Auxiliary relations and lemmas 

(a) If the power expansion 
00 

99 

(1) 

represents an entire function of a finite order, then, as is well known, the following 
relations are true for the order P and for the type a: 

1. nlnn 
P = ImBUP 1 1/ I I ' n-+oo n Cn 

a = ~limsupsupnICnIP/n. 
ep n-+oo 

(2) 

Thus, if if>(z) is an entire function of order p = 8 + 1/2 (where 8 2: 0 is a given 
integer) and of type 0'(0 < a < +(0), then the relations (2) pass to 

. nlnn 1 
li~!!,p In 1/ ICnI = 8 + 2' (3) 

We associate with such a function if>(z) a set {cpj(w)}~s of 28 + 1 entire functions 
which have the following power expansions: 

00 

CPj(w)=LCn;wn , nj=(28+1)n+8+j (-8~j~8,0~n<+00). (4) 
n=O 

If we now denote by Pj and O'j the order and the type of CPj(w) (-8 ~ j ~ 8), then 
relations (2)-(4) give 0 ~ Pi ~ 1/2 and 0 ~ O'j ~ a, if Pj = 1/2 exactly. 

(b) If we apply to the simple equalities 1.2(11)-(12), i.e., to 

as = exp {i 8 :1/2} , 
when k == O( mod 28 + 1), (5) 
when k ¢. O( mod 28 + 1), 

then the relation between the functions if>(z) and {cpj(w)}~s can be given in the 
following way. 

Lemma 6.3-1. 10. The representations 

zs+jcPj (z2s+1) = 28 ~ 1 t a;Cs+j)hif> (aZz) (-8 ~ j ~ 8) (6) 
h=-s 

and their inversions 
8 

if>(z) = L zs+jcPj (Z28+1) (7) 
j=-s 

are true. 
20 • The sequence of entire functions {cpj (w )}~8 contains at least one function of 
order 1/2 and of type o'. 
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Proof. 1°. Representations (6) and (7) follow directly from expansions (1) and (4) 
of the functions <P(z) and {rpj(w)}::,-s' if formulas (5) are used. 
2°. Contrary to our assertion, suppose Pj < 1/2 (-s ::; j ::; s) or, if Pj = 1/2 for 
some j, then OJ < (J. Then it follows from representation (7) that the order P of 
<P(z) is less than or equal to s + 1/2, and if P = s + 1/2, then its type is less than 
(J. 

Note that, if we put <P(z) = Es+1/2(Z; /-L), then formulas (6) and (7) give the 
identities 1.2(14), but only for the case when P = 1/2. Hence the following lemma 
is true. 

Lemma 6.3-2. If s 2: 0 is any integer, then 

zs+j E (z2S+l. I/. + s + j ) 
1/2 "..., S + 1/2 

_ 1 ~ -(s+j)h E ( h . ) 
- 2s + 1 ~ as s+1/2 as z, /-L 

h=-s 
(-8::; j::; 8), (8) 

s ( . ) s+· 28+1 8 + J 
ES+l/2(z;/-L)=.Lz JE1/2 z ;/-L+s+1/2. 

J=-8 
(9) 

(c) In accordance with the notations 6.2(3) and 4.1(1) denote 

{ rOO }l/P 
Ilrp;f1 1Ip,w == IIrpll:'w == 10 Irp(rWrWdr (10) 

as the norm of a function rp(w) E Wi;~,(T. Further, along with parameters 1 < p < 
+00 and -1 < W < p - 1 we consider some new ones: 

W - 28 + p(8 + j) 
Wj= 28+1 ,-1<wj<p-1 (-8::;j::;8) (11) 

and prove the following lemma. 

Lemma 6.3-3. 1°. The class W:+~/2,0" coincides with the set of those entire func
tions <P(z) which can be represented by a sum 

s 

<P(z) = L zs+jrpj (z2s+1) , (12) 
j=-8 

where 

rp.(w) E Wp,Wj and rp' (z2s+1) = _1_ ~ (ahz)-(s+j) <P (ahz). (13) 
J 1/2,0" J 2s + 1 ~ 8 S 

h=-s 

2°. The two-sided inequalities 
S S {j 

1I<P;f2S+lIl~,w::=:: L IIrpj;fll1~,wj = L {lIrpjll:'wj} (14) 
j=-s j=-s 

are true in both cases 8 = 1 and 8 = p. 
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Proof. 10 First note that a simple change of variable leads to the equalities 

(-s<.5,j<.5,s), 

if the notation (11) is taken into account. Next, observe that these equalities may 
be written down also in the form 

r I zs+jcPj(Z2s+1W Izlw Idzl = Ilcpj;rtll~'Wj (-s <.5, j <.5, s), (15) 
Jr2S+1 

if we take into account that Z2s+ 1 = r 2s+1 when z E r 2s+1, i.e. when z = ra~ 
(0 <.5, r < +00, -s <.5, j <.5, s). Now let the inclusions of (13) be true and let the 
function <I>(z) be representable in the form (12). Then, by Minkowski's inequality 
and (15), 

8 

II <I>; r 2s+1llp,w <.5, L II CPj; r t!lp,Wj . (16) 
j=-s 

Hence, it follows in particular that <I> ( z) E W:+~/2,0" . Conversely, if <I> ( z) E 

W:+~/2,0", then we determine the set of functions {cpj(w)}~s by (6), the inver
sion of which is (12). Therefore, by (15) and Minkowski's inequality, 

But a~z E r2s+1 for any z E r2s+1 and h(-s <.5, h <.5, s). Hence 

(-s <.5, j <.5, s) 

in both cases 8 = 1 and 8 = p. Thus CPj (w) E Wi;~:O" (-s <.5, j <.5, s) and 

8 

II<I>; r28+111~,w ~ (2s + 1)-1 L Ilcpj; rtll~'Wj (17) 
j=-s 

in both cases 8 = 1 and 8 = p. 
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2°. The inequalities (16) and (17) imply (14) in both cases 8 = 1 and 8 = p, as 
(16) implies the inequality 

s 

11q,;r2s+111~,w:::; (28+1)P L lI!pj;rIil~,wj· 
j=-s 

Remark 1. One may prove that, if any of the functions !pj (w) (-8 :::; j :::; 8) of the 
representation (12) of q,(z) E W:+~/2,CT is of order Pj < 1/2, then !pj(w) == o. 

Remark 2. It may be noted in connection with functions !Pj E Wi;~:CT' that (11) 
implies 

p( 8 + j) _ 1 < W. < p( 8 + j + 1) - 1 
28 + 1 ) 28 + 1 

(-8:::;j:::;8). (18) 

Thus the intervals, in which Wj (-8 :::; j :::; 8) vary, have no common points and they 
completely cover the interval (-I,p-l) (where W vary), excluding their endpoints 
p(8 + j)/(28 + 1) - 1 (-8 < j :::; 8). 

(d) If we put z = A~/(2S+1) and z = J.Lh,k = aZ A~/(2S+1) correspondingly in ex
pansions (6) and (7) of Lemma 6.3-1, then we obtain the following pair of for
mulas, which give a connection between the sequences of numbers {q,(J.Lh,k)}l" 
(-8:::; h:::; 8) and {!pj(Ak)}l" (-8:::; j:::; 8): 

() 1 ~ -(s+j) ( ) 
!pj Ak = 28 + 1 L..J J.Lh,k q, J.Lh,k 

h=-s 

(19) 

s 

q,(J.Lh,k) = L J.L~;j!pj(Ak). (20) 
j=-s 

The following lemma establishes similar invertible relations between arbitrary se
quences of complex numbers. 

Lemma 6.3-4. Let 

(-8:::;j:::;8) (21) 

be any sequences of complex numbers, such that one of the equalities 

. __ 1_ ~ -(s+j)q, 
!P),k - 28 + 1 L..J J.Lh,k h,k 

h=-s 

(-s:::;j:::; 8,1:::; k < +00), (22) 

8 

iF. '"""' 8+j 'i!h,k = L..J J.Lh,k !Pj,k (-8:::; h :::; 8,1 :::; k < 00) (23) 
j=-8 

is true. Then the other equality is also true. 
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Proof. Obviously 

s ( )S+j L J1h,k 

j=-s J1v,k 

,t a~h-v)(s+j) = { ~8 + 1 

}=-s 

Thus, if the equality (22) is true, then 

when v = h, 

when vi-h. 

s s s 
~ s+j _ 1 ~ s+j ~ -(s+j)<p 
L.J J1h,k 'Pj,k - 28 + 1 ,~ J1h,k '~ J1v ,k v,k 
}=-s }=-s v=-s 

1 t <Pv,k t (J1h,k) s+j = <Ph,k. 

28 + 1 v=-s j=-s J1v,k 

Further, obviously 

~ /1v- j = >. :z"s+i1 ~ a(v-j)h = { 28 + 1 
~ h,k k ~ s 0 

h=-s h=-s 

Therefore, equality (23) gives 

s s s 

when v = j, 
when v i- j. 

~ -(s+j)<p _ ~ -(s+j) ~ s+v 
~ J1h,k h,k - ~ J1h,k ~ J1h,k 'Pv,k 

h=-s h=-s v=~s 

s s 

= L 'Pv,k L J1~-;/ = (28 + l)'Pj,k. 
v=-s h=-s 
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(e) To prove another lemma relating to sequences of complex numbers, first ob
serve that the equalities 

(n = (2s + l)k + h - s, -s S h S s, 1 S k < +00) (24) 

identify an arbitrary sequence of form {<Ph,dl' (-8 ~ h ~ 8) with a sequence of 
form {<pn}l'. And, if the equalities (24) are true, then 

(25) 

Next, note that Lemma 6.3-4 establishes a one-to-one correspondence between 
some classes of sequences {<Ph,dl' and {'Pj,dl' (-8 ~ h,j ~ 8). Finally, remember 
that the space lP,I«l < p < +00, '" E (-1, +00)) was defined in 4.3(a) as the set of 
sequences {cnHO(k = 0, 1), for which 

(k=O,l). (26) 

Obviously, this definition can be extended on the case of any'" E (-00, +00). We 
are ready to prove the following lemma. 
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Lemma 6.3-5. lfthe sequences {q>h,dl' and {<pj,k}l' (-s ~ h,j ~ s) are con
nected by formulas (22) and (23), and {q>n}l' is the sequence (24), then the in
clusions 

(-s~j~s), (27) 

where 

2(w-s)+1 2(w-s)+2p(s+j)+1 
Ii = Ii' = -'-----'----"--'---'-'---
-s 2s + 1 'J 2s + 1 (-s ~ j ~ s) (28) 

are equivalent. And, if they are true, then 

s 

11{q>nHoll~'I'<_8 ~ L 11{<pj,kHOII~'I'<j (8 = 1,p). (29) 
j=-s 

Proof. It follows from representations (22) and (23) and from the two-sided in
equalities 6.2(9), that 

h=-s 
(30) 

where C1 and C2 are independent of {q>h,k}l' and {<pj,dl'. The constants Cm 
(m = 3,4, ... ), appearing further in the proof, will be assumed to be of the same 
kind. Observe now that (29) implies 

2p(s + j) 
lij = Ii- s + 2s + 1 

It follows from (30) that 

s 

(-s~j~s). 

I <Pj,k IP (1 + k)"'j ~ C1 L Iq>h,k IP (1 + k )",-s (-s ~ j ~ s, 1 ~ k < +00) (311) 
h=-s 

and 

s 

lq>h,kIP (1 + k)",-s ~ C2 L l<Pj,kI P (1 + k)I'<j (-s ~ h ~ s, 1 ~ k < +00). (312) 
j=-s 

But, obviously, 

1+(2s+1)k+h-s~1+k (-s~h~s,l~k<+oo), (32) 
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thus, if we take (25) into account, then the summation of inequalities (3Id gives 

00 00 s 

k=l k=l h=-s 
00 s 

::::: C3 L L l<I>h,kIP [1 + (2s + I)k + h - st-· 
k=l h=-s 

00 

= C3 L l<I>nl P (1 + nt-· (-s::::: j ::::: s). (33) 
n=l 

Finally, we sum the last inequalities over j and get 

s 

L 11{4?j,drll~'Kj ::::: C411{<I>n}rll~,K_. (8 = I,p). (29d 
j=-s 

To prove the converse inequality, we sum (312) over k and obtain 

00 S 00 8 

L l<I>h,kIP (1 + k)K_. ::::: C2 L L l4?j,kIP (1 + ktj = C2 L lI{4?j,k}rll~,Kj 
k=l j=-s k=l j=-s 

for any h (-s::::: h::::: s). Hence, by (32), 

00 s 00 

L l<I>nlP (1 + nt-· = L L l<I>h,kIP [1 + (2s + I)k + h - st-· 
n=l h=-s k=l 

s 00 s 

:::::C5 L L l<I>h,kI P (1 + k)I<-· ::::: C6 L lI{4?j,drll~'Kj' 
h=-s k=l j=-s 

i.e., 
s 

II {<I>n}r II~,I<_. ::::: C6 L II{ 4?j,dr 11~'Kj· 
j=-s 

Hence it follows that 
8 

11{<I>n}rll~'I<_. ::::: C7 L 11{<pj,k}rll~'Kj (8 = I,p), (292) 

and the proof is complete. 

Remark. The obvious estimate 

j=-s 

(t" c; r :0 (28 + I)' ;t" '!i (0 < p < +00, c; ;> 0) 

was used in the proofs of Lemmas 6.3-3 and 6.3-5. 

(f) We pass to the last lemma of this section. 
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Lemma 6.3-6. Ifcp(z) E W:+~/2'<T' and the functions {cpj(w)}':.s are defined by 
(6), then 

_ cp(s+j) (0) 
CPj,O = CPj(O) = (8 + j)! (-8 ~ j ~ 8). (34) 

Proof. It is easy to see that 

ds+j 
n ·(z) == --. {zs+jcp. (z2s+1)} s,3 dZ S +3 3 

s+j ds+j - k 
- '"' Ck ( +.) (+. k + 1) s+j-k ( 2s+1) - L...J s+j 8 J ... 8 J - Z dzs+j-k CPj Z . 

k=O 

Hence ns,j(O) = (8+j)!CPj(0) (-8 ~ j ~ 8), but it follows from (6) that 

n . (z) = _1_ ~ cp(s+j) (ah z) 
S,3 28 + 1 L...J s· 

h=-s 

Hence ns,j (0) = cp(s+j) (0) (-8 ~ j ~ 8). The comparison of the representations 
obtained for ns,j(O) gives formula (34). 

Later it will be necessary to consider the set of numbers 

cp-k == cp(k) (0) (k = 0,1,2, ... ) (35) 

along with the set of numbers {cpj,o}':.s connected with the function cp(z) E 

W:+~/2,<T. It is obvious that formulas (34) and (35) give 

-1 s-1 k 
Ps-1(Zj cp) == .L CPj,ozs+j = L cp-k ~!' 

3=-S k=O 
o s k 

Ps(Zj cp) == L CPj,ozs+j = L cp-k ~, . 
j=-s k=O· 

(36) 

6.4 Further auxiliary results 

(a) In this section we frequently use the notations of the previous ones, but we 
begin with some new notations which will also be necessary. First we introduce 
for a given natural 8 ~ 1 the following two sets of intervals: 

(-8~j~8). (1) 
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Further, if we use the definitions 6.3((11), (29)) of the numbers Wj and K,j = 1+2wj 
(-8 ~ j ~ 8), then these intervals can be expressed as follows: 

where 

~. = (1 + K,j _ 1 1 + K,j) = ( 2j - 1 2( 8 + j) ) 
3 P , P "( + 28 + 1 ' "( + 28 + 1 ' 

s~= (1+K,j 1 1+K,j) = ( 2(8+j) 2(28+ j )+I) 
3 p' + p "( + 28 + 1 ' "( + 28 + 1 ' 

2(1 + W) 
"( = p(28 + 1)' 

2 
0<,,( < 28+ 1· 

Besides, the notations of Chapter 4 lead to the equalities 

Now we suppose 
J C {j}~8 

to be arbitrary set of indices and put 

~J = n ~j and ~j = n ~;. 
jEJ jEJ 

Further, we denote by 
J* = {j}~8 \ J 

the set of remaining indices and prove the following lemma. 

(2) 

(3) 

(4) 

(5) 

(6) 

Lemma 6.4-1. The intersection of the sets of intervals ~j. and ~J is not empty, 
i.e., 

~j. n~J f 0, 

only in the following two cases: 

J* = {.}-l J -8' 

J* = {j}~8' 

And if (7) is true, then 

J = {j}o. 

J = {jH. 

d.(I") '" LB,d; } n {n d; } ++~: ~: ,~+ 2s2~ I) C [0,2), 

d,(2") '" L6, d; } n Lo' d; } ~ ( ~+ 2s2~ 1 ' ~+1) C [0, 2) 

(7) 

(8) 

(9) 

(10) 

(11) 
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Proof. First observe that if J = Cibh, ... ,jr), where -8 :::; jl < h < ... < jr :::; 
8, then, in view of (2), Llj = LlJ = 0 when jr - jl >s. 

Particularly, it is so when r > 8 + 1. Therefore, if (7) is true, then, necessarily, 
J = Cil,'" ,jr), J* = Cii, .. . j;), where r = 8+1 and r = 8, or r = 8 and r = 8+1, 
but in these cases we inevitably have jk+l = jk + 1 (1 :::; k < r) and jZ+l = jZ + 1 
(1 :::; k < r). Observe also that Llj n Ll-s = 0 and Ll: n Llj = 0 (-8 :::; j :::; 8). 
Hence we conclude that, if (7) is true, then one of the representations (8) and (9) 
is valid. As to representations (10) and (11), their validity is easy to verify, and 
we omit their proofs. One can also easily verify the inclusions Lls (I°) C [0,2) and 
Lls (2°) C [0,2). 

(b) It was established in the theorems of Chapter 4 that any entire function 
of class Wii~,u can be expanded in two different interpolation series generated 
respectively by the points of interpolation {Ak}1" and {AdO' (AO = 0) which were 
the (simple) zeros ofthe functions t:,,(z; v) and zt:O'(z; v). It was also supposed that 
v E Ll(~,p) or v E Ll*(~,p), respectively, where Ll(~,p) C [0,2) and Ll*(~,p) C 

[0,2) were definite intervals. Now we formulate two theorems which are similar 
to each other, but have also an essential difference. These theorems easily follow 
from the concluding Theorem 4.4-4 of Chapter 4, Lemma 6.4-1, definitions (10) 
and (11) of intervals Lls(I°) and Lls(2°) and from equalities (1'). Therefore we 
omit their proofs. 

Theorem 6.4-1. Ifv E Lls(I°), then the series 

~ wt:u(w;v) 
<pj(w) = <pj,or(1 + v)cu(w; v) + L.J <Pj,k A t:' (A . )( _ A ) 

k=l k u k, V W k 
(12) 

(-8:::;j:::; -1), 

() ~ t:u(w;v) ( ) 
<pj w = ~ <Pj,k t:~(Ak; v)(w _ Ak) 0:::; j :::; 8 

(13) 

represent correspondingly continuous one-to-one mappings of the spaces of se
quences 

with finite norms 11.lIp,lt; (~j = 1 +2Wj) onto the space Wii~~u (-8 :::; j :::; 8) of entire 
functions. The series (12) and (13) converge to their sums <pj(w) (-8:::; j:::; 8) in 
the norms of the spaces Wi;~;u' and they converge to the same limits uniformly in 
any disk Izl :::; R < +00. In addition, the functions <pj(w) (-8:::; j :::; 8) have the 
interpolation data 

<Pj (Ak) = <Pj,k 

<pj (Ak) = <Pj,k 

(-8:::; j:::; -1,0:::; k < +00), 

(0:::; j :::; 8,1:::; k < +00), 
(15) 
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and the following two-sided inequalities are true: 

(16) 

Theorem 6.4-2. Let v E ~8(2°). Then the assertions of Theorem 6.4-1 remain 
true, if we take -8 :S j :S 0 everywhere instead of -8 :S j :S -1 and 1 :S j :S s 
instead of 0 :S j :S s. 

The statements of Lemma 6.3-3 can be complemented on the basis of the last 
two theorems. Namely, the following lemma can be proved. 

Lemma 6.4-2. Let a function ~(z) E W:+~/2,0' be representable in the form 

8 

~(z) = 2: Z8+ j 'Pj (Z28+l), 
j=-8 

and let 8 = 1 or 8 = p. Then, in any case: 
1 ° When v E ~8(1 0), 

-1 s 

(-8 :S j :S 8) 

11<T>;r2s+111~,w::::: 2: lI{'Pj(Ak)}oll~'l<j + 2: 11{'Pj(Ak)}roll~'l<j' (17) 
j=-8 j=O 

° s 

11~;r2s+lII~,w::::: 2: 11{'Pj(Ak)}oll~'l<j + 2:11{'Pj(Ak)}roll~'l<j' (18) 
j=-s j=l 

Proof. 1°. The two-sided inequalities (17) immediately follow from Lemma 6.3 -
3(2°) and from relations (15) and (16) of Theorem 6.4 - 1. 2°. The inequalities 
(18) follow from the same lemma and relations in a similar way. 

(c) Let {'Pj,dro (-s :S j :S s) be an arbitrary set of complex numbers. We shall 
connect with such a set, as before, another set of numbers {~h,dro defined by the 
formula 

s 

~ "" 8+j h,k = ~ J.Lh,k 'Pj,k (-8:S h:S s, 1:S k < +00), (19) 
j=-8 
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where, as always, J.Lh,k = aZ A!/(2S+1). Conversely, if initially a set of numbers 
{<Ph,k}r (-8 S; h S; 8) is given, then we define the corresponding set {ipj,dr 
by the formula 

. __ 1_ ~ -(s+j)<p 
ip},k - 28 + 1 ~ J.Lh,k h,k 

h=-s 
(-8 S;j S; 8,1 S; k < +00). (20) 

Note that formulas (19) and (20) are inversions of each other, as was established 
in Lemma 6.3-4. Now we shall prove a lemma concerning the sums 

-1 s 

Rs,k(Z) = L z3S+i+1rpj,k+AkLzS+jrpj,k (lS;k<+oo), (21) 
j=-s j=O 

o s 

R:,k(Z) = L z3s+j+1ipj,k + Ak L zS+jipj,k (1 S; k < +00). (22) 
j=-s j=l 

Lemma 6.4-3. The following identities are true for any k(l S; k < +00): 

R (z) _ zS(z2s+1 - Ak) ~ <Ph,k 
s,k - 28 + 1 ~ s-l(Z _ )' 

h=-s J.Lh,k J.Lh,k 
(21') 

s+l( 2s+1 \) s n;. 
R* (z) = z z - Ak L '¥h,k . 

s,k 28 + 1 h=-s J.L'h,k(z - J.Lh,k) 
(22') 

Proof. Inserting the representations (20) of the quantities rpj,k into (21) and in
verting the order of summation, we obtain 

Hence (21') follows, when we calculate the sums over j and use the equalities 
J.L~st1 = Ak (-8 S; h S; 8). To prove (22'), we insert the representations (20) into 
(22) and again invert the order of summation. The calculation of the sum over j 
gives (22'). 

(d) Remember that formulas 6.3(24), 6.3(25) and the linear transformations 
6.3(22), 6.3(23) of Lemma 6.3-4, which are inverse to each other, can be used 
to establish a one-to-one correspondence between the following three sequences: 
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Besides, the two-sided inequalities 

00 s 00 

L l<I>nl P (1 + ny<-s ::=:: L L l<I>h,kIP (1 + ky<-s 
n=l h=-s k=l 

s 00 

::=:: L L l~j,kIP (1 + k)l<j (24) 
j=-s k=l 

were established in Lemma 6.3-5. Now we add to a given sequence {~j,k}'l (-8 :::; 
j :::; 8) an arbitrary set of numbers {~j,O} (-8 :::; j :::; 8). As a result, we obtain a 
sequence ofform {~j,k}O' (-8 :::; j :::; 8), and it is obvious that the norms 

(25) 

can be finite only simultaneously. Also, we add to the first two sequences of (23), 
i.e. to {<I>n}'l == U~=_s{<I>h,k}'l, an arbitrary set of numbers {<I>n}':.r(r ;::: 0) and 
form the sequence 

(26) 

Then, obviously, the norms 

(27) 

also can be finite only simultaneously. Finally, we suppose that the additional sets 
{ ~j,o} (-8 :::; j :::; 0) and {<I>n} ':.s are connected as follows: 

~j,O = <I>_(s+j)/(8 + j)! (-8:::; j :::; 0). (28) 

And we suppose also that these additions are done in accordance with the following 
two cases: 
10. If v E Dos (10), then we consider the sequences 

(29) 
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2°. If V E As (2°), then we consider the sequences 

(30) 

Of course, we have to suppose that in both these cases formulas (28) are true. 
Now we are ready to prove the following theorem which is based on the previous 
lemmas. 

Theorem 6.4-3. Let ~(z) E W:+~/2,0' and let 

~-n = ~(n) (0) (n = 0,1,2, ... ), 

Then the following assertions are true: 
1°. Ifv E As(l°), then 

Proof. According to (17) and (18) (where we take 0 = p), 

-1 s 00 

;:::: L l<Pj(AOW + L L l<Pj(AkW (1 + k)"'j 
j=-s j=-sk=1 

in the case when v E As(l°), and 

° s 00 

;:::: L l<Pj(AO)IP + L L l<Pj(AkW (1 + k)"'j 
j=-s j=-sk=1 

in the case when v E As(2°). But, by 6.3(34), 

(31) 

(32t) 

(33t) 
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Therefore, in view of the notations (31), the first sums of the right-hand sides of 
(331) and (332) can be written in the form 

j~S l<pj(.~oW = ~ I q>~n IP 
(r = 1,0). (34d 

Now observe that, by formulas 6.3(19)-(20) and by Lemma 6.3-5, the two-sided 
inequalities (24) are true particularly for the sequences {q>(/Ln)}f, {q>(/Lh,k)}f 
(-8:::; h:::; 8) and {<pj(>'k)}f (-8:::; j:::; 8). Therefore 

S 00 00 

L L l'Pj(Ak)IP (1 + kti ~ L 1q>(/Ln)IP (1 + n)l<-s, (342) 
j=-S k=1 n=1 

and it remains to see that the two-sided inequalities (321) and (322) follow from 
(33d, (332) and (341), (342)' 

Remark. The uniqueness Theorem 6.2-3 follows immediately from Theorem 6.4-3, 
without using expansion Theorems 6.2-1 and 6.2-2. 

6.5 Proofs of the main theorems 

The aim of this section is to prove the main Theorems 6.2-1 and 6.2-2 relating to 
expansions of entire functions of spaces W:+~/2,(7 (8 = 1,2, ... ) in terms of inter
polation series. To this end it is necessary to prove first two expansion theorems. 

(a) Theorem 6.5-1. If v E .6.s(1°), then any function q>(z) E W:+~/2,(7 can be 
expanded in the interpolation series 

q>(z) = f(l + V)Ps-1 (z; q»£s+1/2,(7(Z; v) 

+ f q>() ZS£s+1/2,(7(Z; v) 
n=1 /Ln /L:;"£~+1/2,(7(/Ln; v)(z -/Ln) 

(1) 

which converges to its sum q>(z) in the norm 1I.;f2s+Iilp,w of the space W:+~/2,(7 
and which converges to the same limit uniformly in any disk I:::; zl R < +00. Here 

and 

where 

and 

8-1 q>(k) (0) 
Ps - 1(Z; q» = L k! zk 

k=O 

2(w-s)+1 "'-s = . 28 + 1 

(2) 

(3) 

(5) 
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Proof. According to Lemma 6.3-3, 

s 

<I>(Z) = L ZS+jrpj(Z28+1), (6) 
j=-s 

where rpj(w) E Wii~:u and Wj = [w - 2s + p(s + j)](2s + 1)-1. Besides, it is easy 
to verify that 

for any j(-s $ j $ s). Hence 

zs+j(flo(z2s+1) E Wp,w (-s $ JO $ s). 
YJ 8+1/2,u (7) 

Now the use of Theorem 6.4-1 gives the expansions 

Z8+j rpj (Z28+1) = r(1 + lI)rpj(O)zs+j£u(z28+1; II) 

00 Z38+j+1£u(z28+\ II) 
+ ~ rpj(Ak) Ak£~(Ak; II) (Z28+1 - Ak) (-s$j$-I), (8) 

00 8+j co ( 2s+1. ) 
8+j o( 28+1) _" o( ) Z vu Z ,II 

Z rpJ Z - L....J rpJ Ak £' (A . 1I)(Z28+1 _ A ) 
k=l u k, k 

(O$j$s) (9) 

which converge to their sums in the norm of W:+~/2,u and which converge uni
formly in any disk Izl $ R < +00. Substituting these expansions in the right-hand 
side of (6) and inverting the order of summations over j and k, we obtain 

-1 

<I>(z) = r(1 + II){ L rpj(O)z8+j }£u(z28+1; II) 
j=-8 (10) 

where 
-1 s 

R8,k(Z) = L z3S+H 1rpj(Ak) + Ak L Z8+j rpj(Ak). (11) 
j=-8 j=O 

But, in the considered case, formula 6.4(21)-(21') gives 

(11') 
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since 

() 1 ~ -(s+j) ( ) 
<.pj Ak "" 28 + 1 ~ J.Lh,k «I> J.Lh,k , 

h=-s 

according to relations 6.3(19)-(20). Thus, by representations (10) and (11'), 

«I>(z) = r(1 + 1I)Ps- 1 (z; «I> )t'a(Z28+1; 1I) 

+ 00 z8t'a(Z2s+1j 1/) 8 «I> (J.Lh,k) . (10') 

~ (28 + 1)>'kt'~(>'ki 1/) h~S J.L~-:kl(Z - J.Lh,k) 

Now observe that, according to accepted definition, 

t's+1/2,a(Z; 1/) = t'a(z28+1; 1I), 

t'~+1/2,,,.(Zi 1/) = (28 + 1)z28t'~(Z28+1i 1I), 

and also remember that 

8 

{J.Ln}l' = U {J.Lh,dl' c r 2s+1 
h=-s 

is the set of zeros of the function t's+1/2,a(Zi 1/). So, if we take z 
aZ A~/(2S+1), then the second identity of (12) gives 

(12) 

(13) 

J..lh,k = 

Hence, if we substitute the quantity (28 + l)Akt'~(Ak; 1I) in the denominator of the 
inner sum of (10'), then (10') takes the form 

Hence the expansion (1) of the theorem follows, if we take into account definition 
(13) of the sequence {J.Ln}l° and prove that, for any fixed h (-8 S h S 8), the 
common term of the last series or, which is the same, the common term of series 
(10') tends to zero in the norm of W:+~/2,,,. as k -> +00. To this end we put 

* W + pes - r - 1) - 28 
Wr = 28 + 1 ,/'i,; = 1 + 2w; (0 S r S s - 1), 

* W + p(38 - r) - 28 
W r = 28+1 ,/'i,;=1+2w; (8SrS28) 
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and observe that -1 < w: < p - 1 for any r(O ~ r ~ 28). Further, we introduce 
the sequences 

{a{',~}~1 = {J.lt;+1cpj(Ak)}~1 (0 ~ r ~ 8 - 1, -8 ~ j, h ~ 8), 

{a~,~}~1 = {Ak1J.lt;+1cpj(Ak)}~1 (8 ~ r ~ 28, -8 ~ j, h ~ 8) 

and note that it can be easily verified that {a{',~}k"=1 E lP'K.; (0 ~ r ~ 28, -8 ~ 
j,h ~ 8), if the inclusions {cpj(Ak)}i' E lp,K.j (-8 ~ j ~ 8) (which follow from 
Theorem 6.4-1) and the equalities 6.2(9) are taken into account. Now observe that 
6.3(20) gives 

(28 + I)Ak£~(Ak; 1/)J.l~-;.1(z - J.lh,k) 

8 z8£0"(z28+1; 1/)J.l{;i.1cpj(Ak) 

= j~8 (28 + I)Ak£~(Ak; I/)(Z - J.lh,k) 
(-8~h~8). 

Hence it follows that 

Z8£0" (Z28+1; I/)CP(J.lh,k) 

since 
28 

(z I/. )" z28-r "r _ z28+1 1/.28+1 - rh,k ~ rh,k - - rh,k 
r=O 

and J.l~8:1 = Ak. Thus it suffices to prove only that , 
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when 0 ~ r ~ s - 1, and 

_ r+ CXJ I j,h &u(X; v) IP w; 
1-10 ak,r &~(Ak; v)(x _ Ak) x dx 

when s ~ r ~ 2s, the last limit is zero, if the series 

(0 ~ r ~ s - 1, -s ~ j, h ~ s), 

(s~r~2s,-s~j,h~s) 

P w· 
are convergent in the norm of W1i2~u. The last fact follows from Theorems 4.3-1 
and 4.3-2. To this end, it is necessary to take into account the inclusions 

{aj,h}CXJ E IP''''; k,r k=1 (0 ~ r ~ 2s, -s ~ j, h ~ s) 

and to observe that ~s(I°) C ~*(II:;,p)(O ~ r ~ s - 1) and ~s(1°) C ~(II:;,p) 
(s ~ r ~ 2s), as is easy to verify. So the validity of the expansion (1) is proved, 
and, since the two-sided inequalities (3) were proved earlier in Theorem 6.4-3(10 ), 

the proof of Theorem 6.5-1 is complete. 

(b) We shall call expansion (1) of preceding theorem a first type expansion. Simi
larly, we shall call the expansion of the following theorem a second type expansion 
of a function of W:+~/2,u. 

Theorem 6.5-2. If v E ~s(2°), then any function <1>(z) E W:+~/2,u can be ex
panded in the interpolation series 

<1>(z) = r(1 + v)Ps(z; <1»&s+1/2,u(Z; v) 

CXJ s+1& () + '"' <1>() Z s+1/2,u Z; v 
L..J /l-n s+1&, (.)( ) n=1 /l-n s+1/2,u /l-n, v Z - /l-n 

(15) 

which converges to its sum in the norm II.; r 2s+1 1Ip,w of the space W:+~/2,u and 
also converges to the same limit uniformly in any disk Izi ~ R < +00. Here 

s <1>(k) (0) 
P. (z· <1» = '"' Zk s, L..J k! 

k=O 
(16) 

and 
(17) 

where 

(18) 
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Proof. The arguments we use are similar to the ones used to prove Theorem 6.5-1, 
so, we shall note only the differences. If v E Lls(2°), then, according to Theorem 
6.4-2, expansions (8) and (9), which have the same character of convergence, re
main true when -8 :S j :S 0 and 1 :S j :SS respectively. Therefore, substituting 
them into representation (6) of <I>(z) and inverting the order of summations over 
j and k we obtain 

° 

j=-s 
(19) 

where 
° S 

R;,k(Z) = L z3s+H lrpj(Ak) + Ak L zs+jrpj(Ak). 
j=-s j=l 

Further, by formulas 6.4(22) - (22'), 

8+1( 28+1 \) s <I> ( ) R* (z) = z z - Ak '" Mh,k. 
8,k 28 + 1 ~ M'/. k(z - Mh k) 

h=-s' ' 

Hence, by formula (19), 

A literal repetition of the remaining arguments of the proof of Theorem 6.5-1 
proves all the desired assertions. 

(c) Finally, we can pass to the proofs of the main interpolation theorems of this 
chapter which were formulated in Section 6.2. 

Proof of Theorem 6.2-1. According to Theorem 6.5-1, any function <I>(z) 
E W:+~/2,a is representable by a series of the form 6.2(17) and the assertions 
1 0, 2°, 3° of Theorem 6.2-1 are true. Therefore, it only remains to prove the fol

lowing: if {<I>n}~(s_l) E L~:~!; is an arbitrary sequence of numbers, then there 

exists an entire function <I>(z) E W:+~/2,a' such that 

(20) 

To this end, suppose {<I>n}~(s_l) == {<I>n}~(S_l) U{<I>n}]''' E L~~~!~ is an arbitrary 

sequence. Then {<I>n}]''' == U~=-s {<I>h,dl" according to 6.3(24)-(25). Further, using 
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formulas 6.3(22) and 6.3(23), we put {<.Ph,dr (-s ::; h::; s) into correspondence 
with a new set of sequences {<pj,k}r (-s::; j::; s). Then, by 6.4(24), 

s = = L L l<Pj,kIP (1 + k)Kj ;:::: L l<.pnlP (1 + n)K-s. 
j=-s k=1 n=1 

Now we add to {<pj,dr (-s ::; j ::; s) the set of numbers 

<.P -(8+j) 
<Pj,O = (s + j)! (-s::; j::; -1). 

So, we put {<.pn}~(8_1) into correspondence with the set of numbers 

s 

{<pj,o} =~ U{ U {<pj,kHXJ}, 
j=-8 

as it was done in 6.4(29). Then, by (21), 

-1 s 

L 11{<pj,dg"llp,Kj < +00 and L 11{<pj,drllp,Kj < +00 
j=-s j=O 

(21) 

(22) 

simultaneously, since {<.Pn}~(8_1) E L1~;!l. Using Theorem 6.4-1 we construct 

the entire functions <pj(w) E Wi;~~O' (-s ::; j ::; s) by means of series 6.4(12)

(13). Then, obviously, zs+j<pj(Z28+1) (-s ::; j ::; s) are entire functions of class 
W p,w H 

s+1/2,0" ence 
8 

<.p(z) == '"""' Z8+j{() '(Z28+1) E Wp,w . L YJ s+1/2,0' (23) 
j=-s 

We have put into correspondence any sequence {<.Pn}~(8_1) of L1~;!~ with a definite 

function <.p(z) E W:+~/2,0'. Thus, it remains only to verify the validity of relations 
(20). To this end the suitable steps of the proof of Theorem 6.5-1 must be repeated. 
First we obtain that the constructed function <.p(z) is representable in the form 
(10)-(11), if only the quantities {<pj()'k)}r (-s::; j::; s) and <Pj(O) (-s::; j::; -1) 
of expansions (10)-(11) are replaced correspondingly by {<pj,k}r (-s ::; j ::; s) 
and <Pj,O (-s ::; j ::; -1). Next, we use formulas 6.4(21) - (21'). Then the suitable 
simplifications lead to the expansion (lO") of the function <.p(z), where <.P(l1h,k) is 
replaced by <.Ph,k (1 ::; k < +00, -s ::; h ::; s) and <'p(k) (0) - by <.P -k (0 ::; k ::; s -1), 
i.e. 

8-1 

<.p(z) = r(i + V)(L <.P~t zk)ES +1/2,0'(Zi v) 
k=O 

+ f zS E8+1/2,0'(Zi V) t 8' th,k. )( , 
k=l h=_8I1h,kEs+l/2,0' I1h,k, V Z - I1h,h) 
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where {JLnHo = U~=-s{JLh,k}l' are zeros of the function £s+l/2,u(Z; v). Hence the 
relations (20) can be easily deduced. Indeed, taking z = JLn (1 :::; n < +00), we 
immediately obtain iP(JLn) = iPn (1:::; n < +00), and since 

1 
£s+1/2,O'(0; v) = r(l + v)' 

and also 

dh zS£ (z· v) I 
d h { s+1/2,O',} = 0 (0 ~ h ~ s - 1, 1 ~ n < +00), 

z z - JLn z=o 

we arrive at the equalities iPh(O) = iP-h (0 ~ h ~ s - 1). 

Proof of Theorem 6.2-2. As was stated in Theorem 6.5-2, any function iP(z) E 

W:+~/2,O' is representable by a series 6.2(20) and assertions 1°, 2°, 3° are true. 
The rest of the proof is similar to the proof of Theorem 6.2-1. Namely, we put into 
correspondence a sequence {iPn}~s E L~~LB with a sequence 

s 

{<pj,o}~s U{ U {<pj,kH"'}, 
j=-s 

as was done in 6.4(30). Then 

o 8 

2: 1I{<pj,dO"llp,Kj < +00 and 2: 11{<pj,dl'llp,Kj < +00. 
j=-8 j=l 

Further, by use of Theorem 6.4-2, we obtain the functions <pj(w) E Wi;~~O' (-s ~ 
j ~ s). It is obvious that the functions {zs+j<pj(Z28+l)}~8 and their sum iP(z) are 
of class W:+~/2,O'. To complete the proof, we have to repeat the final arguments 
of the proof of Theorem 6.2-1 and obtain the equalities iPn(o) = iP-n(O ~ n ~ s) 
and iP(JLn) = iPn(l ~ n < +00). 

6.6 Notes 

The results of this chapter were obtained by M.M. Djrbashian-S.G. Raphaelian 
[4, §1-3] in the particular case s = 1, when the considered problems and their 
solutions are essentially simpler. 



7 Basic Fourier type systems in L2 spaces of 
odd-dimensional vector functions 

7.1 Introduction 

In this chapter we pass from the interpolation theorems of Chapter 6 to theo
rems on the basis property of several Fourier type biorthogonal systems of odd
dimensional vector functions. The first step to this is the construction of the men
tioned systems in explicit form. This is achieved by generalization of the methods 
developed in Chapter 5. The second step is the proof of the completeness and of the 
basis property in the Riesz sense of the constructed systems of 28 + I-dimensional 
vector functions in the space L2 of vector functions. This is established by use 
of the case p = 2 of interpolation Theorems 6.2-1 and 6.2-2 relating to classes 
W;+~/2'<T of entire functions and also by essential use of Theorem 2.4-1 on para
metric representations of these classes. As will be shown in Chapter 11, some 
simple reformulations of these results lead to an explicit and completed apparatus 
of Fourier type systems of entire functions. These systems are the bases of the 
space L2 considered over 28 + 1 (8 ~ 1) segments of equal length with a common 
endpoint at the origin and forming equal angles of opening 27r/(28 + 1) in the 
complex plane. In this chapter the main notations of Section 6.2 of Chapter 6 are 
frequently used without any special indication. 

7.2 Some identities 

(a) Note that, if p = 8 + 1/2, where 8 ~ 1 is any integer, then the first of the 
identities 1.2(10) becomes 

Ys(z; A; 'T/l; 'T/2) 

== foa E S+l / 2 (ZT2B~1;'T/l)T171-1Es+1/2 (A(U-T)2B~1;'T/2) (U-T)TJ2- l dT 
in (1) 

Es+1/2 (U2S~1 z; 'T/3) - Es+l/2 (U2S~1 A; 'T/3) 
Z _ A UTJ4 ('T/l ~ 0, 'T/2 ~ 0), 

where 
2 

'T/3 = 'T/l + 'T/2 - 28 + 1 ' 'T/4 = 'T/3 - 1. (2) 

Next note that, according to formula 6.3(8), the following identities are true for 
all j( -8::; j ::; 8): 

s+jE (2S+1. 2(8+ j )) __ 1_ ~ -(s+j)hE (h.) 
Z 1/2 Z ,JL + 28 + 1 - 28 + 1 L...- as s+1/2 as z, JL , 

h=-s 
(3) 

where 

(4) 
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Suppose j(-s $ j $ s) is any fixed integer and put in (1) 

")1 = 1]l,j = f..l, 

noting that in this Case 

1- 2j 
1]3 = 1]3,j = 1/ + 28 + 1 ' 

3 - 2j 
1]2 = 1]2,j = 2s + 1 + 1/ - f..l 

2(s + j) 
1]4 = 'r/4,j = 113,j - 1 == 1/ - 28 + '1 ' 

Then, replacing z and A respectively by aZ+1/2 z and aZ+1/2 A, we arrive at the 
identities 

U '(z' A) = Y (ah+1/ 2 z· a h+1/2 A' /I.'.... .) s,h,) , s s '8 , '--' -,2,J 

= lff Es+1/2 ( aZ+1/2 ZT$; f..l) TJ.t~l 

X Es+1/2 ( aZ+1/2 >.(0- - 1') 2s~1 ; 1]2,j ) (0- ~ 1')712,j -ld1' (6) 

E ( _2_ h+1/2. ) E' (. _2_ h+1/2 \ ) 
s+1/2 cr 2s+1 a s Z;T]3,j -8+1/2 cr 2s+1 r:ts ./\;""3,j 

z->. 

(-s$j$S), 

FUrther, replacing z by a;/2 cr2/(2s+1) Z and J1,- by 113,j in (3), for any j( -8 $ j $ S) 
We obtain 

(b) Further, we shall use only the cases j = 0 and j = 1 of the identities (6) and 
(7) assuming that the suitable parameters 'l]i,j are defined by (51) - (52)' In the 
mentioned cases these identities pass to the following ones: 
10 , If j = 0, then (6) becomes 

U;~~ (z; A) == Us,h,O(Z; A) = l lJ 
Es+i/2 (aZ+1/2 Z1'2S~1; f..l) TI-'-l 

X Es+1/2 (aZ+1/2 >.(cr - T) $; T]2,O) (cr - 1')1J2,O-ld1' 

Es+1/2 (0-$ aZ+1/2 z; '1]3,0) - Es+1/2 (cr$ aZ+1/2 >.; '173,0) 

Z-A 
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where 

3 1 28 
'rI2,0 == 28 + 1 + II - /-£, 'rI3,0 = 11+ 28 + l' 'rI4,0 = 11- 28 + l' (8t) 

and (7) becomes 

(1 + 28)ZS E 1/2 (_0'2 z2S+l; 1 + II) 

= 0'- ~nl ~ a.~{h+l/2)s E +1/2 (0'$ a.h+l/2 Z' II + _1_) L... s 8 8' 28 + 1 . 
h=-s 

2°. 1£ j == 1, then (6) becomes 

U;~~(Z;A) = Us,/t,l(ZjA) = ioU ES+l/2 (a.Z+ 1/2Z7'$;/-£) r!L-1 

x Es+1/2 (a.Z+1/2 A(O' - 7') ¢; 'rI2,1) (0' - r )1I2,1-1dr 

_ ES+l/2 (0-$ a.Z+l/2 Zj'rl3,1). - Es+1/2 (0'$ aZ+1/2 A; 'rI3,1) 

- Z-A 
X a. -(h+1/2) 0-114 ,1 

8 , 

whElre 

1 
'rI21 == _ .. _.- + 1/-/-£ 

, 28+ 1 ' 

and (7) becomes 

1 
173,1 = II - 28 + l' 

(1 + 2s)zs+lE1/2 (_0'2 z2s+l; 1 + II) 

2(8 + 1) 
'rI4,1 = II - 28 + 1 ' 

=a-2~:t~) ,",.8. a.-(h+1/2)(s+I)E / (0'2.~1a./t+1/2Z'II __ ._l_) 
L....t s s+ 1 2 s' 28 + 1 . 

h=-s 

(c) It is easy to see that the identities (61) and (62) are true for any /-£ ::::: 0 
and 712,0 ::::: 0, 'rI2,1 ::::: O. But it is necessary to obtain explicitly what conditions IL 
and II must satisfy in order to apply these identities correctly when proving the 
main results of this chapter. 'Ib this end, first note that two intervals in which the 
parameter II E [0,2) varies were defined by means of formulas 6.2(13H15). These 
intervals can be written down as follows: 
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in the case when p = 2 and -1 < W < 1. Next note that we shall suppose 
everywhere 

3/2+ 8+W 
j..L = 28+ 1 

and, consequently, we shall have 

(82:: 1, -1 < W < 1) (10) 

(11) 

Therefore, the multiplier 71'-1 in the integrals u;12 (z; A) and u;22 (z; A) is of class 
L 2 (0, a) for any a E (0, +00). And, taking into ~ccount the val~es (8d, (82) and 
(10) of parameters 'T/2,O, 'T/2,1 and j..L, we conclude that 
1 0. if 1/ E ~s(l 0), then 

3/2 - 8 - W 3/2 + 8 1 
'T/2,O = 28 + 1 + 1/ > 28 + 1 > 2 

-1/2 - 8 - W 1/2 + 8 1 
'T/2,1 = 28 + 1 + 1I > 28 + 1 = 2" 

Therefore, for any a > ° 
(a - T)112,0-1 E L2(0, a), 

(a - 7)'72,1-1 E L 2 (0, a), 

in the integrals u;~2 (z; A) and u;~2 (z; A). 

l/ E 6.8 (1°), 

1I E ~8(2°) 

According to the previous arguments, in the considered cases 1I E ~8(1 0) 
and 1I E ~8(2°), (6I) and (62) are both integrals of products of two functions of 
L 2 (0, a) which are continuous at least in (0, a). Besides, the singularities of these 
functions are at different points - 7 = ° and 7 = a" Consequently, the functions 
integrated in (6d and (62 ) are both of L 2 (0, a) C L1 (0, a). 

(d) For brevity we introduce the following notations: 

s 

1°. UP)(z; A) == L a:;(h+1/2)(8-1)U;~(z; A) 
h=-s 
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3/2 - 8 - W 

TJ2,0 = 1/ + 28 + 1 ' 

s 

2°. UP)(z;'\) == L Q;(h+1/2)SU;~~(z;'\) 
h=-s 

1/2 + 8 + W 
TJ2,1 = 1/ - 28 + 1 . 

Now we prove the following lemma, where all previous assertions concerning 
the functions integrated in (13d and (132 ) obviously remain true. 

Lemma 7.2-1. If z,'\ E IC are arbitrary numbers, then the following identities 
are true: 
1°. When 1/ E ~s(1°) 

( ) 28 + 1 
Us1 (z;,\) = Z _,\ aV {ZS El/2 (_a2z2S+1; 1 + 1/) 

_,\s El/2 (_a2 ,\2s+1; 1 + 1/)}. (14t) 

Before proving these identities, observe that the notation 

(15) 

may be used in both of them. 

Proof. 1°. We multiply identity (6t) by Q1h+1/2)(1-s) and sum up both sides over 
h( -8:::; h :::; 8). Then formula (7t) leads to identity (141). 
2°. Similarly, if we multiply both sides of the identity (62) by Q;(h+l/2)s and sum 
over h( -8:::; h :::; 8), then, using the formula (72), we obtain (142). 
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(e) Remember finally some facts relating to zeros of the function £s+1/2,0'(Zj /I), 
v E [0,2). As WaB mentioned in Section 6.2, all zeros {J.ln}1° of this function are 
simple and are situated on the set of rays 

8 

r 2,,+1 == U {Z = ro:Z : 0 :5 r < +00 } . (16) 
h=-s 

A universal numeration of these zeros WaB introduced there by the equalities 

{J.lh,kH'° = {o:ZArn} ~ (-s:5 h:5 s), 
(17) 

J.lC2s+1)k+h-" = J.lh,k (-S :5 h :5 s, 1:5 k < +(0), 

where {Akli'" (0 < Ak < Ak+1,k;:::: 1) is the set of zeros of the function 

£O'(Zj v) = E 1/2 (-0'2z; 1 + /I) , v E [0,2), (18) 

which are also simple. 

7.3 Biorthogonal systems of odd-dimensional vector functions. 

7.3 Biorthogonal systems of odd-dimensional vector functions.7.3 Biorthogonal 
systems(a) First we introduce two sequences of functions on (0,0'). For any /I E 
Lls (1 0) we denote 

-(h+1/2)(s-1) _II 

n(l) 'r' 8 = O:s 0' 
m,h( , ) - (2s+ I)JLs £' (J.l '/1) 

m 8+1/2,0' m, 

X Es+1/2 ( 0::+1/2 JLm(O' - r) r.h; 1]2,0) (0' - r)'12,o-1 

where 
3/2 - 8 -w 

1]2,0 = /I + 2s + 1 . 

For any v E Ll,,(2°) we denote 

-(h+1/2)s _II 

n(2) r' 8 = O:s 0' 
m,h ( , ) - (28 + 1) "s+l £' (1" /I) 

,-m s+1/2,0' ,-m, 

X Es+1/2 (o:Z+1/2J.lm(0' - rp.'tl; 1]2,1) (0' - r)'12,l-1 

where 
1/2+8 +w 

1]21=/1- 2 1 . , 8+ 
Recalling that 

3/2+s+w 
J.l= 28+1 (-1 < w < 1), 

we shall now prove two lemmas. 

(1:5 m < +00, 
-8:5 h :5 8) 

(1:5 m < +00, 
-8 :5 h :5 8), 

(3) 



7.3 Biorthogonal systems of odd-dimensional vector functions. 

Lemma 7.3-1. The following identities are true in the whole z-plane: 
if v E .6.s (l°), then 

(1 S; m < +(0); 

= s+1 col (.)( ) /-Lm (;.s+1/2,0- /-Lm, v Z - /-Lm 
(1 S; m < +(0). 
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Proof. If v E .6.8 (1°), then using the representations 7.2(13I) and 7.2(14t) of the 
function UP)(Z;/-Lm) (1 S; m < +(0), we arrive at the identities 

t a;(h+l!2)(S-1) l a ES+l/2 ( aZ+l/2 Z'T2'~l; /-L) T,..-l 
h=-s 0 

X Es+l/2 (aZ+ 1/2 /-Lm(0' - T) 2S~1; 7]2,0) (0' - T)'12,O-ldT (5d 

ZS E / (-0'2 z2s+l. 1 + v) 
= (28+ l)O'v 12 , (1 S; m < +(0). 

z -/-Lm 

Hence we obtain identity (4t), if we use definition (It) of the function n(1)h(T; s). m, 
If v E .6.8 (2°), then, similarly, using representations 7.2(132) and 7.2(142) of the 
function U;2)(Z;J-!m) (1 S; m < +(0), we arrive at the identity 

ht.S a;(h+l/2)S loa Es+l/2 ( aZ+l/2 ZT 2S~1 ; f..L) TI-'-l 

X Es+l/2 (aZ+l/2 /-Lm(O' - T) 2s~1 ; 7]2,1) (0' - T)'12,1 -ldr (52) 

zS+lE / (_0'2 z2S+L 1 + v) 
= (2s+ l)O'v 12 , (1 S; m < +(0). 

Z-/-Lm 

The use of definition (12) of the function n~:h (T; s) gives identities (42), so the 
lemma is proved. 

Now we add finite sets of some new functions to systems (11) and (h). We 
define these new functions as follows: 
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n(1) ( . ) = (h+1/2)m O'-Vf(l + v) 
m,h T, S -as (2s + l)f(l _ m) 

2(.+",-1) + 1 
(O'-T) 28+1 '12,0-

X~-,---'------~ 

f ( + 2(S+=-1)) 
(-(s - 1) ~ m ~ 0, -s ~ h ~ s); 

TJ2,O 2s+1 

(-s ~ m ~ 0, -s ~ h ~ s). 

Lemma 7.3-2. The following identities are true in the whole z-plane: 
if v E ~s (10), then 

(-(s - 1) :::; m :::; 0); 

Proof. Using representations 7.2(131) - (14t) of the function UP) (z; A), we obtain 

{ 

2(8+",-1) 1 } 0' - T 28+1 +'12,0-
x a(h+1/2)mf(s+m)() dT 

s f ( + 2(s+m-1)) 
TJ2,o 28+1 

(-(s - 1) ~ m ~ 0). 
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The second term of the right-hand side of 7.2(141) may be considered to be a 
function depending on). and having (if Z -I- 0) a zero of order 8 at the point). = o. 
Therefore, 

ds +m - 1 U(l)( .).) I - (28 + l)cr'T(8 + m) E (_ 2 2s+1'1 ) 
d).s+m-1 s Z, A=O - zm 1/2 cr Z ,+ v 

for any m( -(8 - 1) ::; m ::; 0). Identity (7t) follows from the representations 
(81), (9t) and from (6t). To prove identity (72), we use representations 7.2(132)
(142 ) of the function U?)(z;).) and also (62), Then the desired identity follows in 
a similar way. 

(b) Now we move to definitions of some systems of vector functions which are 
biorthogonal on (0, cr). We shall say that a 28 + I-dimensional vector function is 
of class L~s+l(O, cr), if all its components are functions of class L2(0, cr). Further, 
we define the inner product of any two vector functions 

(82:1) (10) 

of class L~S+l(O, cr) as follows: 

s r 
{Y(T),Z(T)} == {y,Z} == L in Yj(T)Zj(T)dT. 

j=-s 0 

(11) 

Then, evidently, the norm of a vector function Y(T) E L~s+l(O,cr) is the 
quantity 

(12) 

And it is obvious that Ilyll =0 if and only if Yj(T) = 0 (-8::; j ::; 8) almost 
everywhere in (0, cr). 

Note that by formulas (It), (6t} and (12 ), (62 ) we actually have defined two 
systems of 28 + I-dimensional vector functions of L~s+l(O, cr). Now, if v E ~8(1 0), 
we also introduce the system 

{ W(l) (T)}OO - {rP) (r8)}OO 
n,h -(8-1) - n,h' -(s-l) (-8::; h::; 8) (13t) 

and, if v E ~s(2°), the system 

{ W(2) (T)}OO = {n(2) (T; 8)}OO 
n,h n,h 

-8 -8 
(-8::; h ::; 8). 
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Further, we put 

Kn,h(r) == a;(h+l/2)n r(l - ~~ r-~+Jl-1 
r (/-L - 2S+l) 

(14d 

(-00 < n::; 0, -s::; h::; s), 

K her) = E (ah+1/2/1 r$· 11.) r Jl - 1 
n, - 8+1/2 S f"'n 'f'" 

(1 ::; n < +00, -s ::; h ::; s) 

and introduce the following systems of 2s + I-dimensional vector functions of 
L~S+l (0, o} 

if l/ E As (1 0 ), we introduce the system 

{Kn,h( r)} ~(S-l) 

and, if l/ E As(2°), the system 

{Kn,h(r)}~s 

(-s::; h::; s) 

(-s ::; h ::; s). 

It is useful to mention that the functions of systems (151) and (152) are of 
class L~s+l(O, 0'), and they may have singularities only at the point r = 0. This is 
in contrast to the functions of systems (13d and (132) which are also of L~s+l(O, 0') 
and which may have singularities only at the point r = 0'. Consequently, 

if l/ E As (1 0), then, for any j, h( -s ::; j, h ::; s) 

(-(8 -1) ::; n,m < +(0), 

and, if l/ E As(2°), then, for any j, h( -8::; j, h ::; 8) 

(-8::; n,m < +(0). 

Now we can prove the main theorem of this section. 

Theorem 7.3-1. 1°. If l/ E As(l°), then the systems of vector functions (131) 
and (15I) are biorthogonal in the sense of their inner product (11). In other words, 
if we denote 

Kn(r) = {Kn,h(r)}~s and w~l)(r) = {w~~~(r)}~s 

then 

(-(s-l) ::; n < +(0), (161) 

(-(8 -1)::; n,m < +(0), 

where bn,m is the Kronecker's symbol. 
2°. If l/ E As(2°), then the systems of vector functions (132) and (152) are bio
thogonal in the same sense. In other words, if we denote 

Kn(r) = {Kn,h(r)}~s and w~2)(r) = {w~~~(r)}~s 

then 
(-8::; n,m < +(0). 
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Proof. Note that the zeros of the function E8+1j2,,,(Z; v) in both cases v E .6.8 (1°) 
and v E .6.8 (2°) are simple and coincide with the sequence {J.tn HO. Besides, it is 
obvious that 

(1::::;; n,m < +00), 

zs+IE8+1 j2,,,(Z; v) I 
= 8n ,m 

J.t::lE~+1j2 ,,(J.tm; v)(z - J.tm) _ 
, Z-IJ.n 

(1::::;; n,m < +00). 

Now, if we put z = J.tn(1 ::::;; n < +00) in identities (41) and (42) of Lemma 7.3-
1, then, in view of definitions (13r) - (132), (151) - (152) and (161) - (162), the 
formulas (181) - (182 ) lead to the equalities 

{ (I)} _ { (2)} _ $; K,n,Wm - K,n,Wm - vn,m (1::::;; n,m < +00). 

So, the desired assertions (171) and (172) are proved in the case when 1 ::::;; n, m < 
+00. 

As the next step we shall extend the biorthogonality (191 ) on the cases -(s-
1) ::::;; n ::::;; ° and -s ::::;; n ::::;; 0, assuming that 1 ::::;; m < +00. To this end we again 
use identities (41) and (42) of Lemma 7.3-1 in which we replace the functions 

n~) h (T; s) and n~) h (T; s) respectively by w~) h (T) and w~) h (T) in accordance with 
(13~) - (132). The ~ight-hand sides of the ide~tities (4r) a~d (42) have zeros at the 
point z = 0, and the orders are s and s + 1 respectively. Hence their derivatives, 
of orders s - 1 and s, correspondingly, vanish at z = ° and, on the other hand, 

(20) 
-00 < n ::::;; 0, -s::::;; h ::::;; s. 

Therefore the differentiation of the mentioned identities leads to the equalities 

-(s - 1) ::::;; n ::::;; 0,1 ::::;; m < +00, 

-s ::::;; n ::::;; 0, 1::::;; m < +00. 

Thus, together with (19r), we have 

-(s - 1) ::::;; n < +00, 1::::;; m < +00, 

-s ::::;; n < +00, 1::::;; m < +00. 
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To obtain one more extension of the biorthogonality (191) - (192), we use identities 

(7d and (72) of Lemma 7.3-2, replacing the functions n~:h(T; s) and n~:h(T; s) 

correspondingly by W~)h(T) and W~)h(T). We take z = I-ln(1 ~ n < +(0) in these 
identities and, using d~finition (142 )' of "'n,h ( T), arrive at the equalities 

ht.s1CT "'n,h(T)W~;h(T)dT = {"'n,W~)} = 0, 

1 ~ n < +00, -(s - 1) ~ m ~ 0, 

ht.s1CT "'n,h(T)W~;h(T)dT = {"'n,W~)} = 0, 

1 ~ n < +00, -s ~ m ~ O. 

Finally, concluding the extension of the biorthogonality, observe that the right
hand sides of identities (7d and (72) have at z = 0 zeros of order -m, where 
-(s - 1) ~ m ~ 0 or -s ~ m ~ 0 respectively. Besides, it is easy to verify that 

d- n {r(I+V) -m (2 2s+1. )}I _ 
dz- n r(1 _ m) z E1/2 -a z ,1 + v z=o - On,m (21) 

in both considered cases 

-(s-I)~m,n~O and -s~m,n~O. (21') 

Hence the differentiation of the left-hand sides of (7d and (72) leads, in view of 
(20) and (21), to the relations 

{"'n,W~)} = 6n,m, -(s -1) ~ n,m ~ 0, 

{"'n'w~)} = 6n,m, -s ~ n, m ~ O. 

The obtained equalities (19d, (192), (193 ) and (194 ) are equivalent to the desired 
assertions (171) and (172). 

7.4 Theorems on completeness and basis property 

In the previous section two pairs of systems of 2s + I-dimensional vector functions 
biorthogonal in the sense of the inner product 7.3(11) were defined by formulas 
(11) and (6d, (b) and (62), (141) and (142), (13d and (132) and (151) and (152). 
Namely, if v E ~s(1 0), we considered the systems 

"'n(T) = {"'n,h(T)}~s' W~1)(T) = {W~~~(T)}~s, -(s - 1) ~ n < +00, (1) 

and, if v E ~s(2°), we considered the systems 

"'n(T) = {"'n,h(T)}~8' W~2)(T) = {W~~~(T)}~s, -s ~ n < +00. (2) 

(a) First we shall prove that all these systems are complete in the space L~S+l(O, a) 
of 2s + I-dimensional vector functions 

(3) 
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Theorem 7.4-1. 10. If v E ~s (10), then the systems of vector functions 

{I~n(1")}':'<S_l) and {W~l)(1")}':'<S_l) are complete in L~s+l(O, a), if w E (-1,1) or 
w E (0,1) respectively. 
20 • Ifv E ~s(2°), then the systems of vector functions {~n(1")}~s and {w~2) (1")}~s 
are complete in L~s+l(O, a), if wE (-1,1) or wE (-1,0) respectively. 

Proof. Suppose cp( 1") = {CPh (1" )}~s E L~S+l (0, a) is any vector function, and intro
duce the function 

(4) 

assuming, as everywhere, that 

{ . 211" } 
as = exp z 28 + 1 

d _ 3/2 + 8 +w 
an J.1, - 28 + 1 (-I<w<I). 

According to the Wiener-Paley type Theorem 2.4 - 1(10), iP(Zj cp) is an entire 
function of class W;+~/2,/T. What is more, by formulas 7.3(20) and 7.3(141) - (142)' 

:Z~nn iP(z; cp)iz=o = t 1/T {a;<h+l /2)n (r(l- ~~ ) 1"-2~+1 +/L-1} CPh(1")d1" 
h=-s 0 r J.1, - 2s+1 

htsl/T ~n,h(1")CPh(1")d1" = {~n'CP} = {CP,~n} (-00 < n::; 0) (5) 

and 

(1::; n < +00). 

Now suppose that the vector function cp(1") satisfies the conditions 

(-(8 -1) ::; n < +00), 

if v E ~s (10), or the conditions 

(-8::; n < +00), 

if v E ~s(2°). Then (5) and (6) imply correspondingly 
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and 

Hence, by the uniqueness Theorem 6.2-3 proved for the functions of W;+~/2'<T' we 
conclude that <I>(z; rp) == 0, but assertion 2° of Theorem 2.4-1 gives rph(T) = O( -8 :::; 

h:::; 8) almost everywhere in (0, cr), i.e., rp(T) = O. This completes the proof of both 
desired assertions relating to the systems {K,n,h(T)}~s (-(8 -1) :::; n < +00) and 
{K,n,h(T)}~s (-8 :::; n < +00). To prove that the right-hand side systems of (1) 
and (2) are also complete in L~s+1(O, cr), we return to the formulas of Section 7.3 
defining these systems. Then we conclude that: 

(i) When l/ E s (P), the functions of {w ~1 ~ ( T )} s differ from the functions of 
, -s 

{K,n,h (cr - T )}~s only by constant multipliers, if in the latter we substitute J-L = 
(3/2 + 8 + W)/(28 + 1) (-1 < W < 1) by 

3 3/2 + 8 +wo 
'r/2,O = 28 + 1 + l/ - J-L = 28 + 1 ' 

where, as is easy to observe, Wo E (0,1). Besides, it is easy to verify that 

( 28 + Wo 28 + Wo + 1) 
l/E ,-----

28 + 1 28 + 1 

when wE (0,1), i.e., l/ belongs to the interval D.s(1°) constructed by use of Wo0 

(ii) When l/ E D.s (2°), the functions of {W~~(T)}S -s differ from the functions of 

{K,n,h(cr - T)}~s only by constant multipliers, if in the latter we substitute J-L by 

1 3/2 + 8 +WI 

'r/2,I = 28 + 1 + l/ - J-L = 28 + 1 ' 

where now WI E (-1,0). Similarly, it is easy to verify that 

( 28 + WI + 1 28 + WI + 2) 
l/ E , -...,..-----=.--

28 + 1 28 + 1 

when W E (-1,0), Le., l/ belongs to the interval D.s (2°) constructed by use of 
WI. From the conclusions we made it immediately follows that the right-hand side 
systems of (1) and (2) are also complete in L~s+1(O,cr). 

Remark. We have already proved the completeness of the second systems of (1) 
and (2) in L~s+1(O, cr) assuming that W E (0,1) and wE (-1,0) respectively. This 
differs from our usual assumption that W E (-1,1). Nevertheless, we shall see in 
Theorem 7.4 - 3(1°) that the mentioned particular restrictions on W turn out not 
to be essential. 
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(b) According to Theorem 2.4-1, the space W;+~/2,(T coincides with the set of 
entire functions <I> (z) representable in the form 

(9) 

where 11 = (3/2 + s + w)/(2s + 1)( -1 < w < 1) and <p(T) = {<ph(T)}~8 is an 
arbitrary vector function of L~8+1(0, 0-). It is necessary to prove one more assertion 
on functions of this class. 

Lemma 7.4-1. If<I>(z) E W;+~/2,(T is any function and <p(T) is the vector function 
of its representation (9), then the following two-sided estimates are true: 

(10) 

where the suitable constants are independent of <I> and <po 

Proof. First we use formulas 2.4(6)-(7) of Theorem 2.4-1 which give an explicit 
form of the components of the vector function <p(T) of the representation (9). By 
these formulas, 

1 {ei~(l-I-')Wh+1(-T) + e-i~(l-I-')Wh(T)} 
J2IT(s + 1/2) 

={<Ph(T), TE(O,o-) (-s~h~s), 
0, T E (0-, +00) 

(-s ~ h ~ s) 

(-s ~ h ~ s). 

Summing these equalities over h, we get 
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To prove the converse inequality, we introduce the entire functions 

<Ph(Z) = lou E8+1/2(o:Z+1/2ZT28~1;JL)TJ1.-1<ph(T)dT (-s~h~s) (11) 

and observe that 
s 

<p(Z) = L <Ph(Z). (12) 
h=-s 

Further, introducing the set 

Dh = {( E C : 1(1 = 1, I( -o:;(h+1/2) I ~ 2 sin 2(2s7r+ I)} (-s ~ h ~ s) 

of closed arcs of the unit circle, we see that, by Theorem 2.5-7, 

sup { [+00 l<ph(r()1 2 rWdr} ~ MJ1. r l<Ph(T)1 2dT (-s ~ h ~ s). 
(EOh 10 10 

But, since n~sDh = {o:n~s, in the same way we can estimate simultaneously the 
integrals of all functions <Ph (-s ~ h ~ s) when (= o:~ (-s ~ j ~ s). Thus 

[+00 2 [U 
10 I<ph(o::!r)I rWdr ~ MJ1. 10 l<Ph(T)1 2 dT (-s ~ h,j ~ s). 

Hence, by (12), 

11<1>; r '.+111,," ~ Lt. 1+00 
1 <1>( a! r)l' r" dr fl' 

:5 (2' + 1) Lt .. t. too 1 <1>. (",r) I' r"dr r' (10,) 

:5 (2s + 1)3/' M ;1' Lt.1U I'P. (T) I' dT fl' ~ M.,.II'PII. 

The two-sided inequality (10) follows from (101 ) and (102), and the proof is com
plete. 

(c) Finally, we shall establish that each of the considered biorthogonal systems is 
a basis of L~s+l(O, a), but first we note that, similar to Section 6.2, the sequence 

of numbers {rpn}~r (0 ~ r ~ s) is of Hilbert space LtL., if 

(13) 

where 
= 1 + 2(w - s) = 2( _ 1) 

I"'-s 2s + 1 JL. (14) 
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Theorem 7.4-2. 1°. If v E Dos (1 0), then the vector series 

00 

cp(T) = L CPnw~l)(T) (15) 
n=-(s-l) 

are convergent in the norm of L~s+l (0, a) and represent continuous one-to-one 

mapping of the space L~::~~ of sequences {CPn}~(s-l) onto the space L~S+1(O,a) 
of 2s + 1 - dimensional vector functions cp( T). Besides, for every vector series of 
form (15), 

-(s - 1) :::; n < +00 

and 
Ilcpll = {cp, cP }1/2 ;;:: II{ CPn}~(s_1)iI2,,<-s' 

2°. If v E Dos (2°), then the vector series 

+00 

cp(T) = L CPnW~2)(T), 
n=-$ 

(16) 

(17) 

(18) 

which are convergent in the norm of L~S+l(O,a), represent continuous one-to-one 

mapping of the space L~:~_s of sequences {CPn}~s onto the space L~S+1 (0, a) of 
2s + 1 - dimensional vector functions cp( T). Besides, for every vector series of the 
form (18), 

-s:::; n < +00 (19) 

and 
(20) 

Proof. We shall consider the series of the form 

<J>(z) =r(1 + v) Ctr I:!!z-n) CS+1/2,0"(Z; v) 

00 r+1" () ~ _ Z '-"s+1/2,0" Z; v 
+ 6 CPn r+1 C' (.) ( ) , n=l J.ln s+1/2,0" J.ln, v Z - J.ln 

(21) 

assuming that r = s - 1, if v E .6.s (1°), and r = s, if v E .6.s (2°). Using Theorems 
6.2-1 and 6.2-2 (where we take p = 2) we can conclude that a series of the form 
(21) represents in both considered cases a continuous one-to-one mapping of the 

space L~~Ls of sequences {CPn}~r onto the space W;+~/2,0" of entire functions <J>(z). 
In addition, we can conclude that in both cases r = s - 1 and r = s 

(22) 
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and 
~(k)(O) = CP-k (0 $ k $ r), ~(J.tn) = CPn (1 $ n < +00). (23) 

On the other hand, according to Wiener-Paley type Theorem 2.4-1, the formula 

represents a one-to-one mapping of L~8+1(0, 0") onto W:+~/2,CT. And the two-sided 
estimates 

1I<I>;r"+lIl,..., " II~II ~ L~.I~h(7)I'd7} 'I' 
are true according to Lemma 7.4-1. Thus in both cases r = B-1 and r = B there 
exists a canonical homeomorphism {CPn}~r - cP between the spaces L~:~_. and 
L~8+1(0, 0"), and the two-sided inequalities (17) and (20) are true. To be convinced 
that formulas (16) and (19) are true, we note first that 

(24) 

according to (9) and to definitions 7.3(142) of functions Kn,h(T) (1 $ n < +00, 
-B $ h $ B). Hence the interpolation data (23) leads to formulas (16) and (19), 
but only for 1 $ n < +00. Next, we use formula 7.3(20), where -00 < n $ 0 and 
-B $ h $s. Then the representations (9) and (21) of ~(z) and the interpolation 
data (23) for the cases r = s - 1 and r = s lead correspondingly to formulas (16), 
where -(B-1) $ n $ 0, and (19), where -B $ n $ o. Thus, to complete the proofs 
of both assertions 10 and 20 , we have to show that the mentioned homeomorphism 
between the spaces Lt~_. and L~8+1(0, 0") (r = B-1 or r = s) can be given also 
by means of the vector series (15) and (18) converging in the norm of L~8+1 (0,0"). 
To this end, observe that, if 

m 

Pm(T) = cp(r) - L {cp,Kn}W~r)(T),m ~ 0, 
n=-r 

where ir = 1 when r = B-1 and ir = 2 when r = s, then using estimate (17) 
(when r = s - 1) and estimate (20) (when r = B), we obtain 

( 

00 ) 1/2 

Ii Pm II x nf+1 l{cp,Kn}1 2 (1+nt -· 

Obviously Ii Pm II - 0 as m - +00. Hence the vector series (15) and (18) converge 
to cp in norm of L~8+1(0, 0"), and the proof is complete. 

(d) Now we shall prove that Theorem 7.4-2 can be formulated in the following 
way. 
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Theorem 7.4-3. 10. Ifv E ~8(1°), or v E ~8(2°), then the systems 

{w~1)(T)}~(8_1) or {w~2)(T)}~8 

are correspondingly complete in the space L~8+1 (0, a) of vector functions. 
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(25) 

20 • The systems (25) become lliesz bases of L~8+1 (0, a) after the suitable normal
izations. 

Proof. Assertion 10 follows immediately from Theorem 7.4-2. 
20 • It is appropriate to move from the biorthogonal vector systems (1) to the 
systems 

where 

(26') 

These systems of vector functions are also biorthogonal, since obviously 

(-(s - 1) ::; n, m < +(0). 

Further, the series similar to (15) takes the form 

(27) 

and the estimates (17) turn into 

111'11 ~ L~t.-1) I{I',K.}I' } 1/' (28) 

since, by the notations (26'), {c,o,Kn}fi~l)(T) = {c,o'~n}W~l)(T) and !{c,o,KnW = 
!{c,o, ~n}!2(1+!nl)l<-· when -(s-l) ::; n < +00. But, ifthe biorthogonal expansion 
(27) and the two-sided estimates (28) are true for any function c,o(T) E L~8+1(0, a), 
then by the well-known definition, {fi~l) (T)}~(8_1) is a Riesz basis of L~8+1(0, a). 

When v E ~8(2°), the proof is similar. Namely, we introduce the systems 

(29) 

where 

Then, evidently, 

{Kn,n~)} = {~n,W~)} = on,m, (-s::; n,m < +(0). 
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The series similar to (18) now takes the form 

00 

(30) 
n=-s 

and the corresponding two-sided estimates are . 

(31) 

Hence we conclude that the system {n~2)(T)}~8 is a Riesz basis of L~8H(0,a), 
and this completes the proof. 

(e) Concluding this chapter, we prove a general theorem on the basis property of 
the constructed systems of vector functions. 

Theorem 7.4-4. 1 0. If v E ~s (1 0), then the systems 

and 

{ {n~~~(T)} :=-8} ~(8-1) = { {(I + Inl)-"-8/2W~~~(T)} :=-8} ~(8-1) (322 ) 

are biothogonal and both are Riesz bases of L~SH(O, a). 
2°. Ifv E ~s(2°), then the systems 

and 

{ {n~~~(T)} :=-J ~8 = { {(I + Inl)-"-8/2W~~~(T)} :=-J ~8 (332) 

are biorthogonal and both are Riesz bases of L~SH(O, a). 

Proof. 1°. As it was proved above, the systems (321) and (322 ) are biorthogonal. 
Besides, it was proved that the system (322 ) is a Riesz basis of L~sH(O, a). But the 
system (321) is complete in this space according to Theorem 7.4 - 1(1°). Hence, 
by the well-known theorem on basis property in the Riesz sense of biorthogonal 
systems, which was mentioned in the proof of Theorem 5.3-1, the system (321) is 
also a Riesz basis of L~sH (0, a). 
2°. The basis property of the systems (331) and (332 ) follows similarly from the 
corresponding assertions of Theorems 7.4-3 and 7.4-1. 

7.5 Notes 
The assertions of the main theorems of this chapter are obtained by M.M. Djrbas
hian-S.G. Raphaelian [4, §4-5] in the simplest case s = 1. 



8 Interpolation series expansions 
in spaces W.f~ of entire functions , 

8.1 Introduction 

In this chapter we establish interpolation series expansions in the Banach spaces 
W.f~ of entire functions <I>(z) of arbitrary natural order s ?: 1 and of type::; (J", 

satisfying the condition 

{ }
l~ 

28-1 +00 
~1 I <I> (ei¥r)IPrWdr <+00, (1) 

where it is assumed, as always, that 

1 < p < +00 and - 1 < w < p - 1. (2) 
As in Chapter 6, the main result is established here by use of the concluding The
orems 4.4-1 and 4.4-2 of Chapter 4 establishing in two different ways expansions 
of entire functions of Wi;~'<T in interpolation series. Thus, the auxiliary apparatus 
used here is similar to that of Chapter 6. Nevertheless, in contrast to the pair of 
essentially different Theorems 6.2-1 and 6.2-2 of Chapter 6, proved for the classes 
W:+~/2'<T' in this chapter we arrive at a single theorem on expansion in interpola
tion series in the class W.f~. Finally note, that in this chapter we use mainly the 
notations introduced in Chapter 6. 

8.2 The formulation of the main interpolation theorem 

It is necessary first to introduce some definitions and notations which we use all 
over this chapter. 

(a) We denote by 

the sum of rays 

28-1 

f28 = U fl,j 

j=O 

(s?: 1) (1) 

fl,j = {z = r exp {i~j} : 0::; r < +oo} (2) 

and observe that the set f2 (s = 1) coincides with the real axis. Further we 
introduce the Banach space WI,~ of entire functions <I>(z) of natural order s ?: 1 
and of type::; (J" as the space of those functions whose norm 

II<I>; f 28 11p,w == {h23 1<I>(zWlzlwldzl} lip 

~ {~t= I~ (,<;ir)I P rWdr r (3) 

is finite. 
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(b) Using the function eu(z; II) defined earlier we introduce the entire function 

es,u(z; II) == eu (z2s; II) = E1/2 (_a2z2s ; 1 + II) (4) 

which is obviously of order 8 and of type a. According to Theorem 1.4-3, the zeros 
{Ak}1" (0 < Ak < Ak+1, k ~ 1) of eu(z; II) are simple and positive when II E [0,2). 
Hence, if II E [0,2), all the zeros of es,u(z; II) are also simple and are situated on 
r2s . Now denoting 

(5) 

we can state that the set of zeros of es,u(z; II) situated on each ray r1,j = [0, f3~00) 
is the sequence 

{ } OO {Rj \ 1/2S} 00 r I-Lj,k 1 = fJs/\k 1 C 1,j (0 ~ j ~ 2s - 1), (6) 

and, obviously, 

I-L;~k = Ak (0 ~ j ~ 28 -1, 1 ~ k < +00). (7) 

To introduce a universal numeration for all zeros of es,u(z; II) (II E [0,2», we define 
the sequence 

1-L2s(k-1)+j+1 = I-Lj,k (0 ~ j ~ 28 - 1, 1 ~ k < +00). (8) 

Then (6) and (7) give the two-sided inequalities 

Il-Lj,kl::=::(I+k)l/s, Il-Lnl::=::(I+n)l/s (0~j~28-1,I~k,n<+00), (9) 

since Ak ::=:: (1 + k)2 (1 ~ k < +00) according to Theorem 1.4-3. 

(c) Let {41n}~(8_1) be an arbitrary sequence of complex numbers. We shall call 
the quantity 

1I{<I>n}~('-l)II,,~ " {~I <1>,;;- I' + f; 1<1>.1'(1+ n)~ r', (10) 

where "'0 = (1 + w)/s - 1, the norm of {41n}~(s_l) and say that this sequence is 

of class L~~;ol), if the mentioned quantity is finite. Further, we denote 

'Y = 1: w (0 < 'Y < ~ ~ 1) , (11) 

then introduce the interval 

6.8 = ('Y+l-~''Y+l) C(0,2) (12) 

and observe that, if II E 6.s, the function es,u(z; II) has a countable set of simple 
zeros {l-Ln}1" C r 2s • 

(d) Now we can formulate the main interpolation theorem of this chapter, which 
we prove later, in the concluding Section 8.5. 
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Theorem 8.2-1. Let {J.Ln}l)() C f2s be the zeros of the function 

Es,cr(z; //), // E .6.s, (13) 

Then the series of the form 

{
S-1} 00 ( ) <I>-n n zSEs cr z; // 

<I>(z)=f(l+//) L-, z Es,cr(z;//)+L<I>n sE' ( '.)( _ ) 
n=O n. n=1 J.Ln s,cr J.Ln, // Z J.Ln 

(14) 

represents a continuous one-to-one mapping of the space L~~;:o1) ("'0 = (1 +w) / s -1) 
of sequences {<I>n}~(s_1) onto the space Wf,: of entire functions <I>(z). In addition, 
1°. A series (14) converges to its sum <I>(z) in the norm 11.;f2s lip,w of the space 
Wf,: and it also converges uniformly to the same limit in any disk Izl :s; R < +00. 
2°. The following two-sided inequalities are true: 

(15) 

Here, as always, the suitable constants are independent of both estimated elements 
of Banach spaces. 
3°. The function <I>(z) has the interpolation data 

(16) 

The following uniqueness theorem is an immediate consequence of both ex
pansion (14) and the two-sided estimates (15) of the previous theorem. 

Theorem 8.2-2. If <I>(z) E WI: and {J.Ln}l)() C f2s is the sequence of zeros of 
the function Es,cr (z; //) (// E .6.s),' then equalities 

<I>(n) (0) = 0 (0 :s; n:S; s - 1), (17) 

imply the identity 
<I>(z) == O. (18) 

( e) Now we shall mention some particular cases and consequences of the main 
interpolation Theorem 8.2-1, which are of independent interest. 

Note that for any natural s ~ 1 

( 1+W 1 1+w ) // = 1 E .6.s = -- + 1 - -, -- + 1 
sp s sp 

(19) 

and . s 

( 2 2s) SlllCTZ Es cr(z; 1) = E1/2 -CT Z ; 2 = ---. 
, CTZ S 

(20) 
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Therefore, the sequence of zeros {t.Ln } 1" c r 28 of the last function can be expressed 
in the following explicit form: 

28-1 

{J.Ln}! = U {J.Lj,d!, (21) 
j=O 

where 

( k) 1/8 
iti 7f 

J.L"k=e 8 -J, a (05: j 5: 2s - 1,15: k < +00). (22) 

As follows from formulas (20) and (22), the following equalities are true for any j 
and k(O 5: j 5: 2s - 1,1 5: k < +00): 

II'! e' (II" ·1) = (_1)kse i1f(1-1/8)j ~ ( 
k)1-1/8 

t""'J,k 8,U t""'J,k, a' 

The first particular case we mention is when s = 1. 

Theorem 8.2-3. 10. Let lP(z) E Wf,~ and consequently 

Then this function can be expanded in the series 

lP(z) =1P(O)sinaz + ~)-ltlP (7fn) sinaz 
az nioO a az - 7fn 

+00 . 
= L (-ltlP (7fn) smaz 

a az -7fn 
n=-oo 

(23) 

(24) 

(25) 

(26) 

converging in the norm (25) and converging uniformly to the same limit in any 
disk Izl 5: R < +00. And 

+00 

IIIP;r211~,w;::: L lIP (7f;)IP (l+ Inlt· (27) 
n=-oo 
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2°. Let 11>( z) be an entire function of exponential type :S: u and also let 

1 III>(X) IP IxlWdx < +00. 
Ixl::::l x 

Then this function can be expanded in the series 

lI>(z) = 11>(0) sin uz + 11>' (0) sin uz + uz 2)-1 )nll> (1rn) sin uz 
uz u u 1rn(uz-1rn) 

n#O 

which converges uniformly in any disk Izl :S: R < +00. And 

Proof. 1°. If s = 1, then we can numerate the set of numbers (22) as follows: 

1rk 
f.J,O,k = f.J,2k-l = -, 

U 

Then (24) becomes 

Z£l,a(Z; 1) 

1rk 
f.J,l k = f.J,2k =--, u (1 :S: k < +(0). 

(-I)k sinuz 
u (z - ( -1 )j 7rak ) 

(j = 0,1; 1 :S: k < +(0). 
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(28) 

(29) 

(31) 

(32) 

Therefore, expansion (14) of Theorem 8.2-1 can be written down in the form (26), 
and the two-sided inequalities (15) in the form (27). 
2°. Consider the function 

llT(z) = - lI>(z) -11>(0)--1 { sinuz} 
z uz 

(33) 

satisfying the conditions 

1lT(0) = 11>' (0), IlT ( 1run ) = II> (1r;) / 1r; (n # 0). (34) 

Relations (33) and (28) imply 'l1(z) E Wi';. Hence, according to the assertion 1° 
which is already proved, ' 

~ {II>(Z) _1I>(O)sinuz} = I: (-It'll (1rn) sinuz . (35) 
z uz u uz - 1rn 

n=-oo 

Expansion (29) and the two-sided inequalities (30) now follow from formulas (34) 
and (35). 
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Corollary. Let <I>(z) be an entire function of exponential type :'S a and let 

<I>(x) = O(JxJ"), JxJ--> +00, (36) 

where a < 1 is a given number. Then <I>(z) can be expanded in the interpolation 
series (29). Indeed, it is enough to observe that integral (28) is finite, if (36) is true 
and wE (-l,p(l- a) -1) n (-l,p -1). 

(f) As the second particular case of the main interpolation Theorem 8.2-1 we 
consider the case s = 2. 

Theorem 8.4-2. Let <I>(z) E Wf,'; and consequently 

(37) 

Then this function can be expanded in the series 

. 2 . 2 
<I>(z) = <I> (0) sm o'z + <I>' (0) sm o'z 

O'z2 o'z 

. '" sign n <I> (V ~Signn) 
+ sm a z2 L...,. ( -1 t { --'----==---'--

n#D 2~.j(iz - ~signn (38) 

i<I> (iV~Signn) 
- .j(iz - i~Signn} 

converging to <I>(z) in the norm (37) and also uniformly in any disk JzJ :'S R < +00. 
In addition, the following two-sided inequalities are true: 

JJ<I>;r4JJ~,w:::: J<I>(O)JP + J<I>'(O)JP 

+ ~ { ~ (f?,;gnn) P + ~ ('f?,;gnn) I} (1+ Inl)"" . 
(39) 

Proof. If s = 2, then (24) implies 

Z2£ (z'l) e-i7rj / 2 sinO'z2 
2,0" , = (_l)k (40) 

J-t],k£'2,0"(J-tj,k; l)(z - J-tj,k) 2.,fik (.j(iz - ei7rj /2.,fik) 

for any j, k(j = 0,1,2,3; k :::: 1). But the sequence {J-tn}r C r 4 of zeros of the 
function 

. 2 
E ( 2 4. 2) _ smO'z 

1/2 -a z, --
O'z2 
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can be expressed in the form {P,n}l' = UJ=o{p,j,dl'. Thus expansion (14) turns 
into 

. 2 . 2 
<I>(z) =<1>(0) sm az + <1>' (0) sm (J"Z 

az2 az 

+ ~ ~ Z2£2,0"(Z; 1)<I>(P,j,k) . 
~ ~ ,,2 £' (II.. ·1)(z - 11.. ) 
k=l j=O ""j,k 2,0" ""J,k, ,...J,k 

(41) 

If we denote by Sk(Z) the sum over j(O :s: j :s: 3) and take into account formulas 
(40), then we arrive at the equality 

Now, if we insert this into (41) and do the suitable simplifications, then we obtain 
expansion (38). The two-sided inequalities (39) follow from (15). 

8.3 Auxiliary relations and lemmas 

(a) Let 
00 

n=O 
(1) 

be an entire function of natural order 8 :::=: 1 and of type a. Then the relations 
6.2(2) become 

. nlnn 
hmsup I 1/1 I = 8, limsupnlcnl s / n = ea8. 
n-too n en n-too 

(2) 

Now introduce the set {cpj(W)}~8-1 of 28 entire functions 

00 

cPj(w) = L cnjwn, nj = 28n + j (0 :s: j :s: 28 - 1, O:S: n < +00) (3) 
n=O 

and observe that, if Pj and aj correspondingly are the order and the type of cPj(w), 
then (2) and (3) imply 0 :s: Pj :s: 1/2 and 0 :s: aj :s: a when Pj = 1/2. The following 
lemma, which is based on the elementary equalities 

y=l f3:h = { 28, 

h=O 0, 

if k == O( mod 28) 

if k :t O( mod 28) 
(4) 

(see 1.2(13)), relates to the connection between the functions <I>(z) and cPj(w)(O :s: 
j :s: 28 - 1). 
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Lemma 8.3-1. 1°. The representations 

2s-1 
zj<pj{Z28) = 218 L fJ;jhrp (fJ;z) (O ::; j ::; 28 - 1) 

and their inversion 

are true. 

h=O 

28-1 

rp{z) = L zj<Pj (Z28) 
j=O 

(5) 

(6) 

2°. There exists in {<pj(W)}~S-l at least one function of order 1/2 and type CT. 

Proof. 1°. Representations (5) and (6) follow from (1) and (3) and from equalities 
(4). 
2°. If Pj < 1/2, or Pj = 1/2 and CTj < CT for all j(O::; j ::; 28 - 1), then identity (6) 
leads to a contradiction -rp(z) has either an order P < 8, or else its order is P = 8 

in which case its type is less than u. This completes the proof. 
Note that, if we take rp{z) = Es(z; J.t), then formulas (5) and (6) pass to the 

identities 1.2(15) written for P = 1/2. Hence the following lemma is true. 

Lemma 8.3-2. If 8 ~ 1 is any natural number, then 

(0 ::; j ::; 28 - 1) (7) 

and 

(8) 

(b) Remember that in 4.1(1) we had accepted the quantity 

(9) 

to be the norm of a function <p(w) E Wii~,O" (1 < p < +00, -1 < W < p - 1). 
Further, we introduce the parameters 

W - 28+pj + 1 
Wj = 

28 
(0::; j ::; 28 - 1) (10) 

and prove the following analog of Lemma 6.3-3. 
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Lemma 8.3-3. 1°. The class Wf,:' (s 2': 1) coincides with the set of functions 
representable in the form 

where 

2s-1 
<I>(z) = L zi({Ji (z2S) , 

j=O 
(11) 

2s-1 
(0 :-s; j :-s; 28 -1) and ({Jj (z2s) = 21s L f3:;jh z - j <I> (f3~z). (12) 

h=O 

2°. If (11) and (12) are true, then 

2s-1 2s-1 6 
11<I>;r2sll~,w ~ L II({Jj;rIil~,wj = L {11({Jjll:'wj} (8= l,p). (13) 

j=O j=O 

Proof 1°. It is obvious that 

(0:-S;j:-S;2s-1). 

but z2s = r2s when z E r 2s , i.e., when z = f31r (0 :-s; r < +00,0 :-s; j :-s; 28 - 1). 
Hence the last equalities can be written in the form 

If now we suppose that the inclusions of (12) and representation (ll) are true, 
then using Minkowski's inequality and equalities (14) we obtain 

2s-1 
11<I>;r2s llp,w:-S; L II({Jj;r1 1Ip,wj' 

j=O 
(15) 

Thus <I>(z) E Wr:,. Further, suppose <I>(z) E Wr:, is any function. Then, using 
formula (3), we introduce the functions ({Jj(w) (0 :-s; j :-s; 2s - 1) which can be 
represented by <I>(z) as in (5), according to Lemma 8.3-1. Using once again (14) 
and Minkowski's inequality we obtain 

(0 :-s; j :-s; 2s - 1). 
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And, since W = f3:z maps the sum ofrays r 28 into itself for any h(O ~ h ~ 28 -1), 
we arrive at the inequalities 

(0 ~ j ~ 28 - 1,6 = l,p). 

Consequently, !pj(w) E Wii~:(7 (0 ~ j ~ 28 - 1) and, besides, 

28-1 

!!<p;r2811~,w ~ (28)-1 L !!!pjjrIil~,wj(6 = l,p). 
j=O 

2°. If we observe that (15) gives 

28-1 

lI<pj r2811~,w ~ (28)P L !!!pj; r111~,wj' 
j=O 

then we conclude that the two-sided inequalities (13) are true. 

(16) 

(15') 

Remark 1. If any of the functions !pj(w) (0 ~ j ~ 28 - 1) of representation (11) 
of <p(z) E W!,~ is of order Pj < 1/2, then it turns out that !pj(w) == o. 
Remark 2. According to definitions (10), 

pj -1 < W· < p(j + 1) -1 
28 J 28 

(0 ~ j ~ 28 - 1). (17) 

Hence the intervals in which parameters Wj vary have no common points, and the 
sum of these intervals and their common endpoints pj/28 - 1 (1 ~ j ~ 28 - 1) 
coincides with the whole interval (-1, P - 1) in which the parameter W varies. 

(c) Now we put z = Ai/28 and z = /-th,k = f3:Ai/ 28 correspondingly in formulas 
(5) and (6) of Lemma 8.3-1 and obtain the following pair of relations 

2s-1 

!Pj(Ak) = ;8 L J.th,{<P(/-th,k) (0 ~ j ~ 28 - 1, 1 ~ k < +(0), (18) 
h=O 

28-1 

<P(J.th,k) = L /-t{,k!Pj(Ak) (0 ~ h ~ 28 -1, 1 ~ k < +(0) (19) 
j=O 

connecting the sequences {<P(J.th,k)}r' (0 ~ h ~ 28 - 1) and {!pj(Ak)}r' (0 ~ j ~ 
28 -1). If 

{<Ph,k}1" (0 ~ h ~ 28 -1) and {!pj,klr' (0 ~ j ~ 28 -1) (20) 

are any sequences of complex numbers, then the following analog of Lemma 6.3-4 
is true. 
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Lemma 8.3-4. If one of the equalities 
28-1 

. - ~ "'" -j <P <P),k - 28 L f1h,k h,k, 
h=O 

28-1 

<Ph,k = L f1{'k<Pj,k 
j=O 

is true, the other one is also true. 

Proof. Indeed, (22) follows from (21), since using the equalities 

L f1h,k = L f3~h-i)j = 28, 
28-1 ( )j 28-1 { 

j=O f1t,k j=o 0, 

we obtain 
28-1 28-1 28-1 

when i = h 

when i =f. h 

"'" j 1 "'" j "'" _ j L f1h,k<Pj,k = 28 L f1h,k L f1i,k <Pi,k 
j=O j=O i=O 

28-1 28-1 ( )j 
= 218 L <Pi,k L f1h,k = <Ph,k' 

i=O j=o f1t,k 

Conversely, if (22) is true, then using the equalities 

28-1 . . 28-1 { 2 
"'" /Ji-j = ,\ T. "'" f3(i- j )h = 8, L t"'h,k k L 8 0 
h=O h=O ' 

we obtain (21) in a similar way. 

(d) The relations 

when i = j 

when i =f. j 
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(21) 

(22) 

<Pn = <Ph,k, n = 28(k - 1) + h + 1 (0::; h::; 28 - 1,1::; k < +00) (23) 

enumerate the set of sequences of any complex numbers {<Ph,k}l" (0::; h ::; 28 -1). 
And, obviously, 

28-1 

{<pn }\''' = U {<Ph,k}l". (24) 
h=O 

Remember now that, as was defined earlier, a sequence of complex numbers {cn}k' 
(k = 0, 1) is of class lP'''', if 

1I{c.},lIv," ~ {t,IC.IP(1 + nJ"} 'Iv < +oc 

Further, we introduce the parameters 

1 +w +pj 
/"\,j=1+2wj= -1 (0 "5,j::;28-1), 

s 
and prove the following assertion. 

(k=0,1). 

l+w 
/"\'0=---1 

s 

(25) 

(26) 
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Lemma 8.3-5. lfthe sequences {<I>h,k}l' (0 ~ h ~ 28 -1) and {rpj,dl' (0 ~ j ~ 
28 - 1) are connected by formulas (21)-(22), and {<I>n}l' is defined by (23), then: 
1 0. The following two-sided inequalities are true: 

2s-1 

II {<I>n}j'° 11~'l<o ;:::: L II {rpj,k}f 11~'l<j (8 = 1,p). (27) 
j=O 

2°. The inclusions 

{<I>n}f E lp,l<o and {rpj,k}f E lp,l<j (0 ~ j ~ 28 - 1) (28) 

are equivalent. 

Proof. 1°. Using the relations 8.2(9) we obtain 
28-1 

IIPj,kI P ~ 0 1 L l<I>h,kI P(l + k)-pj/8 (0 ~ j ~ 28 - 1), 
h=O 

28-1 
l<I>h,kI P ~ O2 L Irpj,kIP (l + k)pj/8 (0 ~ h ~ 28 - 1), 

j=O 

(29) 

where the constants 0 1,2 > 0 depend only on p, 8, a and v (such constants, even 
if they depend also on w, will be denoted below by Om (m = 3, 4, ... )). But 
lij = lio + pj/8 (0 ~ j ~ 28 -1) by (26). So (29) implies 

28-1 

Irpj,kIP (l + k)l<j ~ 01 L l<I>h,kI P(l + kto (0 ~ j ~ 28 -1, 1 ~ k < +(0), (301) 
h=O 
28-1 

l<I>h,kI P(l + k)I<O ~ O2 L Irpj,kIP (l + k)l<j (0 ~ h ~ 28 -1, 1 ~ k < +(0). (302) 
j=O 

Further, we sum up the inequalities (30d over k(l ~ k < +(0) and, taking into 
account (24) and (23), we obtain that for any j(O ~ j ~ 28 - 1) 

00 00 28-1 

L Irpj,kIP (l +.k)l<j = lI{rpj,dfll~'l<j ~ 01 L L l<I>h,kI P (l + kto 
k=1 k=l h=O (31) 

00 28-1 00 

~ 03 L L l<I>h,kI P (1 + 28(k - 1) + h + Ito ~ 03 L l<I>nIP (l + n)l<o. 
k=l h=O n=1 

Now we sum up these inequalities over j(O ~ j ~ 28-1) and arrive at the estimates 
2s-1 

L II{rpj,dfll~'l<j ~ 0411{<I>n}fll~'l<o (8 = 1,p). 
j=O 

To be convinced that an estimate converse to the last one is also true (whence 
follows the two-sided estimate (27)), we sum up the inequalities (302) over k(l ~ 
k < +(0) and over h(O ~ h ~ 28 - 1) and use relations (23) and (24). 
2°. The equivalence of the inclusions (28) follows from the estimates (27). 

(e) The following lemma concludes this section. 
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Lemma 8.3-6. If q,( z) E WI,d', and the set of functions {<pj (w )}6S - 1 is defined 
by formula (5) of Lemma 8.3-1, then 

_ q,(j) (0) 
<Pj,O = <Pj(O) = -j-! - (0 S j S 28 - 1). (32) 

Proof. Obviously 

Os,j(Z) == ::j {zj<Pj (z2S)} 

j dj - k 
= L.: C;j(j - 1) ... (j - k + l)zj-k dzj-k {<pj (Z2S)}. 

k=O 

Hence Os,j(O) = j!<Pj(O)(O :::; j :::; 28 - 1). But by representation (5), 

2s-1 

Os,j(Z) = 218 L.: q,(j) ({3~z) . 
h=O 

This gives Os,j(O) = <j>(j)(0) (0:::; j :::; 28 - 1), whence follows formula (32). 
Later we shall associate with a given function <j>(z) E WId' not only the 

sequence {<pj,o}6S - 1 , but also the numbers ' 

(k=0,1,2, ... ). (33) 

Then formulas (32) and (33) give 

(34) 

8.4 Further auxiliary results 

Here we shall frequently use the notations introduced in the previous sections of 
this chapter. Suitable references will be given whenever necessary. 

(a) We introduce the following sets of intervals: 

Llj = (2(1 +Wj) -1, 2(1 +Wj)) 

P P (0 < . < 28 - 1) 
Ll~ = (2(I+Wj),1+ 2(I+Wj)) _J - , 

J P P 

(1) 

where Wj = (w + 1 + pj)/28 - 1 (0 :::; j :::; 28 - 1). But we had also introduced 
the parameters ri,j = 1 + 2wj = (w + 1 + pj)/8 - 1. Using them we can write 
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2(1 + Wj)/p = (1 + /'i,j)/p (0 :5 j :5 28 - 1). Thus the intervals (1) can also be 
written in the form 

D.j = (1 + Kj _ 1, 1 + /'i,j) = ('Y + ~ - 1, 'Y + ~) 
P P (0 < . < 28 - 1) (2) 

( 1 + 1 + ) (. .) - J - , 
D.":= --'2.,1+--'2. = 'Y+:Z.,I+'Y+:Z. 

J P P 8 8 

where 
l+w 1 

'Y = -- and 0 < 'Y < - :5 1 (8 = 1,2, ... ), 
p8 8 

(3) 

since -1 < W < P - 1. By the notations of Chapter 4, 

D.j n [0,2) = D.(/'i,j,p), D.; n [0,2) = D.*(/'i,j,p) (0:5 j :5 28 - 1). (I') 

Further, we suppose 
(4) 

is an arbitrary set of indices and denote 

(5) 
jEJ jEJ 

We also denote by 
(6) 

the complementary set of indices and prove an assertion which will play a role 
similar to that of Lemma 6.4-1. 

Lemma 8.4-1. The intersection of the sums of intervals D. j. and D.J is not empty, 
i.e., 

(7) 

only in the case when 

J * - { .}s-l d J - { .}2s-1 -Jo an -J s ' (8) 

and in this case 

(9) 
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Proof. If J = (j1,j2,'" ,jr), where 0 ::; j1 < j2 < ... < jr ::; 2s - 1, then, by 
(2), ~j = ~J = f/J in the case when jr - j1 > s - 1. Particularly, it is so when 
r> s. Therefore, if (7) is true, then J = (j1,j2," .j8)' J* = (ji,j2"" ,j;) and 
jk+1 = jk + l,j.\:+1 = j.\: + 1 (1::; k < s). Consequently, 

J = {j}g-1 and J* = {j};8-1 (10) 

or we shall have case (8). But (7) is not true when (10) is valid, since ~i n~; = f/J 
when 0 ::; i ::; s - 1 and s ::; j ::; 2s - 1. So only (8) remains to be true. Formula 
(9) can be easily verified. 

(b) The following theorem is an immediate consequence of the main results of 
Chapter 4 and of the preceding Lemma 8.4-1. Besides, it is similar to Theorems 
6.4-1 and 6.4-2. 

Theorem 8.4-1. Let 

Then the series 

1+w ,=-- (s 21). 
ps 

(12) 

( ( ~ w£a(w; v) . 
<pj w)=<pj,or(l+v)£a W;V)+~<Pj,kA £I(A' )( -A) (O::;J ::;s-I), (13) 

k=1 k a k,V W k 

and 
~ £a(W;V} . 

<pj(w) = ~ <Pj,k £1 (A . )( _,\) (s::; J ::; 2s - 1) 
k=1 a k, V W k 

(14) 

represent continuous one-to-one mappings of the spaces of sequences 

{<pj,k}8" E lp,Kj (0::; j ::; S - 1) and {<pj,dl E lp,Kj (s::; j ::; 2s - 1) (15) 

onto the spaces Wi;~~a (0 ::; j ::; 2s - 1) of entire functions. Each of these series 

converges to its sum <Pj (w) in the norm of the corresponding space Wi;~> and it 
also converges uniformly to the same limit in any disk Izl ::; R < +00. 

Besides, the sums of series (13) and (14) have the following interpolation 
data: 

<Pj(Ak) = <Pj,k (0::; j::; s -1,0::; k < +00), 

<Pj(Ak) = rpj,k (s::; j::; 2s -1,1::; k < +00), 

and the following two-sided inequalities are true: 

II rpj IIt,wj ~ II {rpj,k}O' IIp,Kj (0::; j ::; s - 1), 

II<pjllt,wj ~ II{rpj,k}lllp,Kj (s ~ j::; 2s -1). 

(16) 

(17) 
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Using this theorem, the assertions of Lemma 8.3-3 can be complemented in 
the following way. 

Lemma 8.4-2. If the function ~(z) E Wf,: is representable in the form 

28-1 

~(z) = L zj'Pj (Z28) , 

j=O 

(0 ~ j ~ 28 - 1), 

and v E Ll8' then the following two-sided inequalities are true: 

8-1 28-1 

II~; r2811~,w :=:: L lI{'Pj(>'k)}oll~'''j + L lI{'Pj(.Ak)}r'II~'''j (8 = 1,p). (18) 
j=O j=8 

Proof. The two-sided inequalities (18) follow immediately from Lemma 8.3-3(2°) 
by virtue of assertions (16) and (17) of Theorem 8.4-l. 

(c) Let {'Pj,dr (0 ~ j ~ 28 - 1) be a set of arbitrary sequences of complex 
numbers. We associate with it the set of sequences {~h,dr' (0 ~ h ~ 28 - 1) 
defined by the formula 

28-1 

~h,k = L f1{,k'Pj,k (0 ~ h ~ 28 - 1, 1 ~ k < +00), (19) 
j=O 

where f1h,k = fJ~ .A~/28 as always. Conversely, if we have a set of sequences {~h,dl' 
(0 ~ h ~ 28 - 1), then, according to Lemma 8.3-4 the corresponding set of se
quences {'Pj,dl' (0 ~ j ~ 28-1) connected with {~h,k}l' by (19), may be deduced 
as follows: 

28-1 

1 ""' -j iii. 
'Pj,k = 28 L...J f1h,k '¥h,k 

h=O 

Further, we introduce the sums 

(0 ~ j ~ 28 -1, 1 ~ k < +00). 

8-1 28-1 

(20) 

R8,k(Z) = LZ28+j 'Pj,k +.Ak L zj'Pj,k (1 ~ k < +00), (21) 
j=O j=8 

and prove the following analog of Lemma 6.4-3. 

Lemma 8.4-3. The following identity is true for any k(l ~ k < +00): 

(21') 
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Proof. If we insert representations (20) of CPj,k into formula (21) and change the 
order of summations over j and h, then we obtain 

R8,k(Z) = 218 L ~h,kZ28 L ~ + Ak L ~h,k L _z_ . {
28-1 8-1 ( )j 28-1 28-1 ( )j} 
h=O j=o f..Lh,k h=O j=8 f..Lh,k 

Hence, calculating the sums over j and using the equalities f..L~\ = Ak (0 ::; h ::; 
28 - 1), we arrive at the identity (21'). ' 

(d) A one-to-one correspondence between the sequences of numbers 

was mentioned in Section 8.3(d). Besides, the two-sided estimates 

00 28-1 00 

L l~nIP(1 + n)ItO x L L l~h,kIP(l + kto 

n=1 h=O k=1 
2s-1 00 

X L L Icpj,kI P(l + ktj 

j=O k=1 

(23) 

were particularly obtained in the proof of Lemma 8.3-5. Hence the estimated quan
tities may be finite only simultaneously. 

Now we add to a given set of sequences {cpj,dr (0::; j ::; 28 - 1) any set of 
numbers {cpj,o} (0::; j ::; 28 - 1). Then, obviously, the norms 

also may be finite only simultaneously. Further, we add to the first two sequences 
of (22), Le., to {~n}r = U~~(/ {~h,k}r, an arbitrary set of numbers {~n}~(s-1) 
and obtain the sequence 

(25) 

As is obvious, the norms 

(26) 
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may be finite only simultaneously. Further, assuming that 

<Pj,O = iP_j/j! (0::::: j ::::: s - 1), (27) 

we establish a correspondence between the sets of numbers {<pj,o} (0 ::::: j ::::: s - 1) 
and {iPn}~(S_1)' So, we have established a correspondence between the sequences 

and now we are ready to prove the last theorem of this section. 

Theorem 8.4-2. Let iP(z) E Wf,:, 1/ E ~8 and let also 

(28) 

iP-n = iP(n) (O)(n = 0,1,2, ... ), iPn = iP(J-ln) (n = 1,2, ... ). (29) 

Then the following two-sided inequalities are true: 

l+w 
"'0 = ---1. 

s 

Proof. The case 8 = p of inequalities (18) gives 

8-1 28-1 00 Ir liP(z)IPlzlwldzl;;( L l'Pj(Ao)IP + L L l'Pj(Ak)IP(1 + k)l<j. 
r 2 • j=O j=O k=1 

(30) 

But, according to 8.3(32), <pj(AO) = 'Pj(O) = 'Pj,O = iP(j)(O)fj! (0::::: j ::::: 2s - 1). 
Hence, by notation (29), 

(31) 

Further, by formulas 8.3(18)-(19) and by Lemma 8.3-5, the two-sided inequalities 
(23) are true particularly for the sequences {iP(J-ln)}'[, {iP(J-lh,k)}'[ (0::::: h::::: 2s-1) 
and {<pj(Ak)}'[ (0::::: j ::::: 2s -1). Therefore the inequalities 

28-1 00 00 

L L l<Pj(Ak)IP(l + ktj ;;( L liP(J-ln)IP(1 + kto 
j=O k=l n=1 

are true along with (23). Hence, by (31), the inequalities (30) follow. 
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8.5 The proof of the main interpolation theorem 

Finally we pass to the proof of the main Theorem 8.2-1 of this chapter which 
relates to the represent ability of the class Wf,: (s ~ 1) of entire functions by 
interpolation series with points of interpolation at zeros {JLnH'° C r 2s of the entire 
function 

v E [0,2). 

(a) As the first step we shall prove the following expansion theorem. 

Theorem 8.5-1. Let 

( l+W 1 l+w ) v E ll.s = -- + 1 - -, -- + 1 . 
ps s ps 

Then any function <J>(z) E w.r: can be expanded in the series , 

() ( ) ( ) ( ) ~ () ZS[s IT(z; v) 
<J> z = r 1 + v Ps-1 Z; <J> [s,lT Zi v + ~ <J> /-In S [I ( '. )( _ )' 

n=l /-In S,lT /-In, v Z /-In 

where 

(1) 

(2) 

(3) 

(4) 

This series converges to <J>(z) in the norm II.; r 2s IIp,w of the space Wf,~, and it 
converges uniformly to the same limit in any disk Izl ::; R < +00. In addition, the 
following two-sided inequalities are true: 

where 

and KO = (1 + w)/s - l. 

Proof. According to Lemma 8.3-3, 

where 

() Wp,Wj 
'Pj w E 1/2,lT' 

2s-1 
<J>(z) = L zjtpj(z2s), 

j=O 

W -2s+ 1 +pj 
Wj= 28 (0::;j::;2s-1). 

(5) 

(6) 

(7) 

(8) 
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And the equality 

(0::; j ::; 28 - 1) (9) 

obviously implies 

(0::; j ::; 28 - 1). (10) 

Now note that, according to Theorem 8.4-1, the following two expansions are true 
when v E ~s: 

zi'Pi (Z2s) =r(1 + v) 'Pi (O)zi£u (Z2s;V) 

00 Z28+i £U (Z28;V) 

+ ~ 'Pi ()..k) )..k£~()..k; V)(Z28 - )..k) (0 ::; j ::; 8 - 1), 
(11) 

(8 ::; j ::; 28 - 1), (12) 

where the series converge to their sums in the norm of the space WIt' and, also, 
they converge uniformly to their sums in any disk Izl ::; R < +00. W~ insert these 
expansions into the right-hand side of representation (7) of ~(z) and change the 
order of summations over j and k. Then we arrive at the expansion 

(13) 

where 
8-1 28-1 

Rs,k(Z) = L:>28+i 'Pi()..k) +)..k L zi'Pi()..k), (14) 
i=O i=s 

and series (13) converges in the required sense. To be convinced that expansion 
(13) coincides with expansion (3), we use formulas 8.4(21) - (21') and obtain 

s( 2s \) 2s-1 .n( ) 
R (z) = z z - /\k "'"' "'" J.Lh,k 

8,k 2 L...J s-l( ) 
8 h=O J.Lh,k Z - J.Lh,k 

(14') 

since, according to relations 8.3(18)-(19), in the considered case 

2s-1 

'Pi,k = 'Pi()..k) = 218 L J.Lh,{~(J.Lh,k). 
h=O 
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Now (13) and (14') give 

(13') 

But £ (z· v) = £' (z2s· v ) and £' (z· v) = 28Z2s- 1£' (z2s. v) according to defini-s,u , - a, s,u ,- (1" 

tion 8.2(4) of the function £S,<7(z; v). We put z = J..lh,k = f3~ ),!/2s in the second of 
these identities and obtain 

(0::; h::; 28 -1,1::; k < +(0). (15) 

Also we note that, according to 8.3(32), 

s-l . s-l cp(j)(O) . L <pj(O)Zl = L -.-, -Zl = Ps-1(Z; <I». 
j=O j=O J. 

(16) 

If we now replace the factor 2S),k£~(),k; v) of the denominator of the first sum of 
the expansion (13') to the denominator of its second sum, then, using (15) and 
(16), we arrive at the expansion of the form 

<I>(z) =r(1 + v)Ps- 1(z; cp)£S,<7(z; v) 

00 2s-1 <I> ( ) (3') 
+ L zS£s <7(z; v) L £' (J..lh,)( )" 
k=l' h=O J..l'h,k S,<7 J..lh,k; v z - J..lh,k 

Expansion (3) follows by the definition of the sequence {J..ln}l° = U~~~l {J..lh,dr c 
r 2s ' Finally, it remains to observe that the two-sided inequalities (5) were estab
lished earlier in Theorem 8.4-2. 

Remark. Of course we need an additional argument to prove that the double sum 
(3') can be represented also by the series (3) which converges in the same sense. 
We omit this, as a similar argument was fully illustrated earlier in the proof of 
Theorem 6.5-I. 

(b) Proof of Theorem 8.2-1 According to Theorem 8.5-1, any function <I>(z) E 
Wf~ is representable by a series 8.2(14), and assertions 1 °,2°,3° of Theorem 8.2-1 
are' true. Thus, to complete the proof, it remains only to show that, if {<I>n}~(S_l) 
is any sequence of L~~;;o1), then there exists an entire function <I>(z) E WI,~, such 
that 

cp(n)(o) = <I>-n (0::; n::; s -1), (17) 
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So, let {<I»n}~(S_I) == {<I»n}~(S_I) U{<I»n}1° E L1:;01) be an arbitrary sequence. 

Then {<I»n}1° == U~==~l {<I»h,k}f according to 8.3(24). Now, as always, using formu
las 8.3(21)-(22), we put {<I»h,k}f (O:=:; h :=:; 28 -1) into correspondence with a new 
set of sequences {cpj,k}f (0 :=:; j :=:; 28 - 1). Then, by Lemma 8.3-5, the two-sided 
inequalities 

2s-1 00 00 

L L Icpj,kIP (1 + k)"'j ::::: L l<I»nIP (1 + n)"'o (18) 
j=O k=l n=1 

are true. Further, we add to {cpj,k}f (0 :=:; j :=:; 28 - 1) the set of numbers CPj,O = 
<I»_j/j!(O :=:; j :=:; 8 - 1). We have put {<I»n}~(S_I) into correspondence with the 
sequence 

{"J,O }'-l U m: {"J,> W } (19) 

as was done in 8.4(28). But {<I»n}~(8_1) E L1:;01); therefore (18) gives 

s-1 28-1 

L II {cpj,k}O' IIp,Kj < +00, L lI{cpj,k}1°llp,Kj < +00. 
j=O j=s 

Now, using the series 8.4(13)-(14) of Theorem 8.4-1, we can construct for sequence 
(19) the entire functions CPj(w) E Wii~:O" (0 :=:; j :=:; 28 - 1). Then, obviously, 
zj tp j (Z2s) (0 :=:; j :=:; 28 - 1) are entire functions of the class Wr.~. Consequently, 

28-1 

<I»(z) == L zjcPj (z2s) E Wf,~. 
j=O 

(20) 

Thus we have put each sequence {<I»n}~(S_I) E L1:;01) into correspondence with a 
definite function <I» ( z) E W.r~. The further steps of the proof are similar to those 
used in the proof of Theor~m 8.5-1. Namely, first we obtain the representation 
of <I»(z) by an expansion of the form (13)-(14) in which {cpj(>'k)}f and tpj(O) 
are replaced respectively by {cpj,k}f and CPj,o. Next we use formulas 8.4(21)-(21') 
and, after suitable simplifications, we obtain for <I»(z) an expansion (3') in which 
{<I»(JLh,k)}f and <I»(j)(0) are replaced respectively by {<I»h,k}f and <I»_j. In other 
words, we arrive at the expansion 

(21) 
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where {/1n }1° = U~:"OI {Jlh,k}l' is the set of zeros of the entire function £s,O'(z; v). 
Hence relations (17) immediately follow. Indeed, if we take Z = Jln (1 ::; n < +(0) 
in expansion (21), then we obtain CJ>(Jln) = CJ>n (1::; n < +(0). And, since 

1 
£8,0'(0; v) = r(1 + v)' 

and 

dh
h {ZS£s~(z;v)}1 =0 

dz Z Jln z=O 

we obtain CJ>(h) (0) = CJ>-h (0 ::; h ::; s - 1). 

8.6 Notes 

(0 ::; h ::; s - 1) 

(0::; h::; s -1,1::; n < +(0), 

The results of this chapter were obtained by use of a different method in the 
papers of S.G. Raphaelian [1-4] considering the simple case s = 1. In these papers 
interpolation interpolation expansions in several classes of entire functions of order 
p (1 ::; p < 2) were established under a more general hypothesis relating to the 
points of interpolation. In another simple case s = 2 the results of this chapter 
were obtained by M.M. Djrbashian [7,8]. 



9 Basic Fourier type systems in L2 spaces 
of even-dimensional vector functions 

9.1 Introduction 

This chapter is similar to Chapter 7. Here we pass from the interpolation Theorem 
8.2-1 (the case p = 2), relating to the classes W;,: (82: 1) of entire functions, to 
theorems on the basis property of some systems of even-dimensional vector func
tions which are biorthogonal in a Hilbert space L~S(O, 0-) of 28-dimensional vector 
functions defined on (0,0-). First we construct the mentioned biorthogonal systems. 
Then, using Theorem 8.2-1 and Theorem 2.4-2 on parametric representations of 
the classes W;,: (8 2: 1), we establish the completeness and the basis property in 
the Riesz sense of these systems in the space L~S(O, 0-). Note that a reformulation 
of the results of this chapter leads later in Chapter 12 to an explicit and complete 
apparatus of Fourier type systems of entire functions. These systems prove to be 
bases of the weighted space L2 considered over the sum of 28 (8 2: 1) segments of 
the same length having a common endpoint at the origin and forming equal angles 
of the opening 7r / 8 in the complex plane. 

9.2 Some identities 

(a) The first of the fundamental identities 1.2(10) takes the following form when 
p = 8 and 8 ::::: 1 is assumed, as everywhere, to be an arbitrary natural number: 

JS(Z; A; T/l; T/2) == loa Es (ZTl/S; T/l) T'1 1 - l Es (A(o- - T?/s; T/2) (0- - T)'12- 1dT 

(1) 

where 
1 

T/3 = T/l + T/2 - -, T/4 = T/3 - 1. 
8 

(2) 

Further, according to formula 8.3(7), 

(O~j~28-1), (3) 

where (3s = exp{ i7r / 8 }. Besides, if in identity (1) we assume 0 ::; j ~ 28 - 1 and 

then, by (2), 

T/l = T/l,j = J1, 
8+1-j 

T/2 = T/2,j = + V - J1, 
8 

j 
T/3 = T/3,j = 1 + v - -, 

8 

j 
T/4 = T/4 J" = T/3 J" - 1 = v - -. 

" 8 
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In addition, replacing z and A in (1) by (3;+1/2 z and (3;+1/2 A respectively we arrive 
at the following identities which are true for any j (0 ::; j ::; 28 - 1): 

V(il (z· A) = J (fJh+1/2 z· fJh+1/2>.- II." '11 .) s,h , - s s 's 'I-"" ,,2,) 

= 1<7 E8 (fJ:+1/2Z71/S; J.L) 71-'-1 E8 (fJ:+1/2 >..(a - 7)1/s; "12,j) (a - 7)1}2,r1d7 

E (a1/ S(3h+1/2 Z· .) - E (a1/ 8 (3h+1/2 >... .) -(h+1/2) S S ,"13,) 8 S ,"13,) . = (3 a1}4,J (5) 
S z- >.. . 

Now in identity (3) we replace z by fJ;/2 a 1/ Sz and J.L by "13,j. Then we obtain the 
second group of identities: 

(6) 
Further we shall use identities (5) and (6) together with notations (41) and (42) 
only in the case when j = s. In this case 

where "12,8 = 1/8+ 1/ - J.L, and 

-1 28-1 

ZS E (_a2z 2S '1 + 1/) = ~ " fJ-(h+1/2)s E (al/SfJh+1/2Z'I/) 1/2 , 2s ~ 8 S S ,. 

h=O 

Obviously, identity (5J) is true, if only J.L ?: ° and "12,8 = 1/8+ 1/ - J.L ?: 0, and 
identity (61) is true for any 1/. But, as in Chapter 7, we need to indicate more 
precisely what conditions the parameters should satisfy to ensure the applicability 
of the mentioned identities. As was deduced in Chapter 8, the condition 

( I+W 1 l+w ) 
1/ E A8 = -- + 1 - -, -- + 1 C (0,2), 

8p 8 8p 

where 1 < p < +00 and -1 < W < p - 1, is sufficient for the validity of Theorem 
8.2-1 relating to expansions of the entire functions of class W.r~ in interpolation 
series whose points of interpolation are {J.Ln}l, i.e., the zeros ~f the function 

(7) 



9.2 Some identities 

We shall assume everywhere that p = 2 and -1 < w < 1. Thus, 

v E Lls = -- + 1, -- + 1 C (0,2). ( w -1 w + 1 ) 
2s 2s 

In addition, we assume everywhere 
s+w+l 

f..L= 
2s 

(s 21, -1 < w < 1). 

This implies 1/2 < f..L < 1/2 + l/s in all cases. So, if v E Ll8, then always 
1 1 l-s-w 1 

f..L > - and "12 s = - + v - f..L = + v > -. 
2 ' s 2s 2 

Therefore, for any 0" E (0, +00) 

rJ1--1 E L2(0, 0") and (0" - r)7)2,8- 1 E L2(0, 0"). 
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(8) 

(9) 

(10) 

From this it follows that the function integrated in (51) is of Ll(O,O"), if v E Ll8 • 

(b) Now we introduce the function 
28-1 

Vs(Zj A) == L ,8;(h+l/2)(s-I)Vs,h(Zj A) 

h=O 

28-1 l u 
= L ,8;(h+1/2)(S-l) Es (,8~+l/2 zrl /sj f..L) rJ1--1 

h=O 0 

(11) 

x Es (,8~+l/2 A(o" - r)I/Sj "12,8) (0" - r)7)2,s-ldr, 

where "12,8 = l/s + v - f..L. 

Lemma 9.2-1. Ifv Ells, then the identity 
2sO"v 

V8(Zj A) == Z _ A {ZS El/2 (_0"2 z2s j 1 + v) - AS E l / 2 (_0"2 A2s j 1 + v)} (12) 

is true for any z, A E C. 

Proof. We multiply identity (5d by ,8;(h+l/2)(S-I) and sum both its sides over 
h(O S h S 2s - 1). Then the use of (61) gives identity (12). 

Obviously notation (7) may be used in identity (12). Further, it is useful to 
remember that all the zeros of the function Es,u(zj v), v E [0,2) are simple and are 
situated on the sum of rays 

28-1 

r 2s = U r l ,j, r l ,j = [0,,8;00) (0 s j S 28 -1). (13) 
j=O 

Remember also that the universal numeration 

f..L2s(k-l)+j+l = f..Lj,k, f..Lj,k = ,8;A!/2s (0 s j S 28 -1, 1 S k < +00) (14) 

was introduced for the zeros {f..Ln HO c r 2s of the mentioned function. Here {Adl' 
(0 < Ak < Ak+l, k 2 1), as always, are the zeros of the function 

Eu(zj v) = E l / 2 (_0"2 Zj 1 + v) , v E [0,2), (15) 

which are also simple. 
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9.3 The construction of biorthogonal systems 
of even-dimensional vector functions. 

(a) We assume 
~ _ (28 + W - 1 28 + W + 1) 

v E s - 28 ' 28 

and introduce on (0,0-) (0 < 0- < +00) the sequence of vector functions 

{Om,h(r)}6s-1, (-(8 - 1) ~ m < +00) 

in the following way: 

o r = (hH/2)mo--Vf (1 + v) (0- - r)(s+m-1)/s+'12,.-1 
m,h( ) - f38 28f(1 - m) f (1]2,8 + ~) 

when -(8 - 1) ~ m ~ 0 and 0 ~ h ~ 28 - 1, and 

o (r) =f3(hH/2)(1-8) o--v 
m,h 8 2 8 C'I ( ) 8J.Lm"s,,, J.Lm; v 

(1) 

(2) 

x Es (f3~H/2J.Lm(0- - r)1/8; 1]2,S) (0- - r)'12,.-1 (22) 

when 1 ~ m < +00 and 0 ~ h ~ 28 - 1. Here, as before, we assume 

1 
1]2 s = - + v - J.L. (23) , 8 

Noting also that 
8+w+l 

J.L= 28 
(-I<w<I), (3) 

we prove two lemmas. 

Lemma 9.3-1. The following identities are true: 

2..f-11" E (f3hH/2 l/s. ) fL-10 ()d = ZS£s,,,(z; v) (4) 
L...., s s zr,J.L r ~Gm,hr r sc' ( .)( )' 
h=O 0 J.Lm S," J.Lm,v Z - J.Lm 

(z E C, 1 ~ m < +00). 

Proof. Using representations 9.2(11) and 9.2(12) of the function Vs(z; A), where 
we take A = J.Lm (1 ~ m < +00), we obtain the following identities which are true 
for any z E C: 

2s-1 1" L f3;(hH/2)(s-1) Es (f3~H/2zr1/S;J.L) r fL - 1 

h=O 0 

x Es (f3~H/2J.Lm(0- - r)l/s; 1]2,S) (0- - r)'12,.-ldr (5) 

ZS E / (_0-2 z2s. 1 + v) 
= 280-v 12 , (l~m<+oo). 

z-J.Lm 

The use of (22 ) now gives identities (4). 
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Lemma 9.3-2. The following identities are true: 

Proof. Using representation 9.2(11) of the function Vs(z; >.), we obtain 

Further, the second term of the right-hand side of identity 9.2(12), considered as 
a function of >., obviously has a zero of order s in the point >. = 0 when z =/:. o. 
Therefore, by representation 9.2(12), 

ds+m - 1 I -----:---::-VS(z· >.) = 2sa'T(s + m)z-m E1/2 (_a2z2s ; 1 + v) 
d>' s+m-1 ' ).=0 

for any m( -(s - 1) ~ m ~ 0). Equating the right-hand sides of (71) and (72) and 
using (21), we obtain identity (6). 

(b) If 
(8) 

is a pair of arbitrary vector functions whose components are all functions of 
L2(0, a), then we shall say that these vector functions are of class L~S(O, a). We 
define the inner product of these vector functions in the following way: 

2s-1 [U 
{y, z} = L 10 Yh (T)Zh (T)dT. 

h=O 0 

(9) 

Then, evidently, the norm of a vector-function y( T) E L~s (0, a) is the quantity 

(10) 

and Ilyll = 0 only in the case when Yh(T) = 0 (0 ~ h ~ 2s - 1) almost everywhere 
in (0, a). 
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(c) Now we introduce 

{l\;n,h(r)}~8-1 (-(8 -1) ~ n < +00) (11) 

as the second system of vector functions of L~8(0, a) setting 

I\; (r) == (./-(h+1/2)n r(1 - n) r-:;;-+J.!-l 
n,h fJ8 r(JL-;) 

(-(8 - 1) ~ n ~ 0, 0 ~ h ~ 28 - 1), 

I\;n,h(r) == E8 ({3~+1/2JLnrl/8j JL) rJ.!-1 (1 ~ n < +00, 0 ~ h ~ 28 - 1). (112) 

We also introduce the system 

{Wn,h(r)}~8-1 (-(8 -1) ~ n < +00), (12) 

where 
Wn,h(r) = On,h(r) (-(8 -1) ~ n < +00, 0 ~ h ~ 28 -1) (121) 

and prove the main theorem on biorthogonality of the introduced systems. 

Theorem 9.3-1. The systems of vector functions (11) and (12) are biorthogonal 
in L~8(0, a). In other words, if we denote 

then 
(14) 

Proof. As we have mentioned, {JLn He c r 28 is the sequence of zeros of the function 
£8,U(Zj v), and all the zeros of this function are simple. Hence 

Z8£8,U(Zj v) I 
8 £' ( . v)(Z _) = On,m (1 ~ n, m < +00). 

JLm s,u JLm, JLm Z=J.!n 
(15) 

Thus, if we put Z = JLn(1 ~ n < +00) in identity (4) of Lemma 9.3-1, then, using 
notations (121) and (111) and also (15), we obtain equalities (14), but only in the 
case when 1 ~ n, m < +00. Assuming 1 ~ m < +00, we expand the obtained 
equalities to the case when -(8 - 1) ~ n ~ O. To this end, according to (12d, 
we replace Om,h(r) in identities (4) by wm,h(r). But the right-hand sides of the 
obtained identities have at Z = 0 zeros of order s. Therefore their derivatives, up 
to the order 8 - 1, vanish at Z = o. At the same time 

(16) 
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Thus the conclusion is that 
28-11CF 

L "'n,h(r)Wm,h(r)dr = {"'n,Wm} = 0 
h=O 0 
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when -(s - 1) ~ n ~ 0 and 1 ~ m < +00. So equalities (14) are true also in this 
case. To prove (14) in the case when -(s - 1) ~ m ~ 0 and 1 ~ n < +00, we put 
Z = J.Ln in identities (6). Then we obtain 

when -(s - 1) ~ m ~ 0 and 1 ~ n < +00. Arid, according to notations (112) and 
(121), equalities (14) are true in the same case. Now it remains to prove equalities 
(14) only in the case when -(s - 1) ~ m, n ~ o. In this case the right-hand side 
of identity (6) has a zero of order -m at the point z = o. And, obviously, 

d-n {r(1 + v) -m (2 28 )} I 
dz-n r(1 _ m) z E1/2 -a z ; 1 + v z=O = on,m. (17) 

If we calculate the (-n )-th derivative of the left-hand side of (6) and use (16) 
and (17), the proof will be completed. 

9.4 Theorems on completeness and basis property 

(a) First we shall prove a theorem on completeness of the biorthogonal systems 
9.3(13) of vector functions in L~8(O, a). 

Theorem 9.4-1. The systems 9.3(13) are complete in L~8(O, a). 

Proof Suppose 
<per) = {<ph(r)}~s-l E L~S(O,a) 

is an arbitrary vector function and introduce the entire function 

where, as always, 

(1) 

(2) 

{ 7r} s+w+1 /38 = exp i; ,J.L = 2s (-1 < W < 1). (3) 

Then, by Theorem 2.4-2(1°), cp(z; cp) E W;,~. In addition, using formulas 9.3(16) 
and 9.3(l1d - (1b), we obtain from (2) 
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and also 

So, if we suppose 

{<P'~n} = 0 (-(8 -1) ~ n < +00), (5) 

then (41 ) and (42 ) yield 

4?(kl(O) = 0 (0 ~ k ~ 8 - 1) and 4?(JLn) = 0 (1 ~ n < +00). (6) 

Hence 4?(z; <p) == 0 by the uniqueness Theorem 8.2-2. And, therefore, <Ph(r) = 
o (0 ~ h ~ 28 - 1) almost everywhere in (0, a), according to Theorem 2.4 -
2(2°). Thus the first system of 9.3(13) is complete in L~S(O, a). To prove that the 
second system of 9.3(13) is also complete in L~S(O, a), observe that, according to 

-;---""""-;:7":2s-1 
definitions of Section 9.3, the functions ofthe system {wn,h(r)}o (-(8-1) ~ n < 
+00) differ from the functions of the system {~n,h(a-r)}~s-l (-(8-1) ~ n < +00) 
only by constant multipliers, if only the parameter JL = (8+w+l)/28 (-1 < W < 1) 
is replaced in the last ones by 7]2,s = 1/8 + V - JL. But 7]2,s = (8 + Wo + 1) /28, where 
Wo = 28V - 28 - wE (-1,1) since v E ~s. And, besides, one can easily verify that 
the condition 

( 28 + Wo - 1 28 + Wo + 1) 
v E 28 ' 28 

is also satisfied, i.e., v is in the interval ~s constructed by the use of woo Hence it 
follows that the second system of 9.3(13) is also complete in L~S(O, a). 

(b) To prove the second main theorem of this section, first recall the definition 
of the Hilbert space L~:;;oll of sequences {<Pn}~(s-ll of complex numbers given in 

Section 8.2. Such a sequence was said to be of L~:;;oll, if its norm 

(7) 

where ~o = (1 + W)/8 - 1 and -1 < w < 1, is finite. Next recall that, according 
to Theorem 2.4-2, the class W;~ coincides with the set of those functions 4?(z) 
which are representable in the fbrm 

2s-1 u . 
4?(z) = L { Es (fj:+1/2 zr1/S; JL) rl-'-l<ph(r)dr, (8) 

h=O 10 
where JL = (8 + W + 1)/28 (-1 < w < 1) and <p(r) = {<ph(r)}~S-l is an arbitrary 
vector function of L~8(0, a). Finally, note that the following assertion is true for 
the classes w.:'~. 
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Lemma 9.4-1. IfiJ>(z) E W;,~ is an arbitrary function, then 

(9) 

where the suitable constants are independent of iJ>( z) and <pC T). 

Proof. The proof is similar to that of Lemma 7.4-1. It is based essentially on The
orem 2.5-7, the only difference being the use of formulas 2.4(12)-(13) of Theorem 
2.4-2. 

(c) Now we are ready to prove the second main theorem of this section. 

Theorem 9.4-2. If v E ~8' then the vector series of the form 

00 

<peT) = L <PnWn(T) 
n=-(s-l) 

(10) 

are convergent in the norm of L~8 (0,0') and represent a continuous one-to-one 

mapping of the space L~:;;ol) of sequences {<Pn}~(8-1) onto the space L~S(O, 0') of 
vector functions <peT). In addition, the equalities 

(11) 

and the two-sided inequalities 

(12) 

are true. 

Proof. By Theorem 8.2-1 (where we take p = 2), the series 

iJ>(Z)=r(I+V){ t 1:!lZ-n}£S,(}"(Z;V) 
n=-(s-l) (13) 

~_ zS£s,(}"(z;v) 
+ ~ <Pn s COl ( .) ( ) 

n=l /-Lnvs,a /-Ln, v Z - /-Ln 

represents a continuous one-to-one mapping of the space L~s-:1) of sequences 
,'·0 

{<Pn}~(S-l) onto the space W;,~ of entire functions iJ>(z). At the same time the 
following two-sided estimates are true: 

(14) 
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Besides, by the interpolation data of the sum of the series (13) established in 
Theorem 8.2-1, 

q;(k)(O) = CP-k (0:::; k :::; 8 - 1) and q;(Jtn) = CPn (1:::; n < +00). (15) 

On the other hand, Wiener-Paley type Theorem 2.4-2 states that (8) represents 
a one-to-one mapping of the space L~s (0, a) onto the space W::. Besides, the 
two-sided inequalities (9) were already proved in Lemma 9.4-1. C~nsequently, this 
mapping and its inverse are both continuous. We can conclude that there ex-
ists a canonical homeomorphism {CPn}~(s-l) -+ cP between the spaces L~:;;ol) and 
L~S(O, a), and the two-sided inequalities (12) are true. To be convinced that equal
ities (11) are also true, we note first that 

as follows from representation (8) of q;(z) and from the definition 9.3(112) of the 
functions K,n,h(r) (1 :::; n < +00, 0 :::; h :::; 28 - 1). Hence the interpolation data 
(15) implies formulas (11), but only in the case when 1 :::; n < +00. As to the 
case -(8 - 1) :::; n :::; 0, the desired formulas (11) easily follow from 9.3(16), from 
representation (8) and from (15). Now, to complete the proof, we have to show 
only that the mentioned homeomorphism between L~S-:l) and L~S(O, a) can also 

,~o 

be given by means of the vector series (10) which are convergent in the norm of 
L~8(0, a). Indeed, if cp(r) E L~S(O, a) and 

m 

rm(r) = cp(r) - 2: {cp, K,n}wn(r) (m;:::: 0), 
n=-(s-l) 

then inequalities (12) obviously give 

Hence Ilrmll -+ 0 as m -+ +00, and consequently the vector series (10) converges 
to cp in the norm of L~S(O, a). Thus, the proof is complete. 

(d) Now we show that Theorem 9.4-2 can be formulated also in the following way, 
if we assume again that v E 6.s • 

Theorem 9.4-3. Ifv E 6.s , then: 
10. The system 

(16) 

is complete in L~S(O, a). 
20 • This system becomes a Riesz basis of L~s (0, a) after suitable normalization. 
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Proof. Assertion 1° is already established in Theorem 9.4-1. Besides, it follows 
immediately from Theorem 9.4-2. To prove assertion 2°, we pass to the systems 

(17) 

where 

for any nand h( -(8 - 1) s:; n < +00, 0 s:; h s:; 28 - 1). As it is easy to verify, 
these systems are also biorthogonal, i.e., 

The passage to systems (17) leads to the expansion 

00 

cp(T) = L {cp,Kn}n~(T) (20) 
n=-(s-l) 

which is similar to (10), and the estimates (12) pass to 

11'1'11 '" L~~-,) I{'I', Knll' } 'I' (21) 

Indeed, by notations (18), {cp,Kn}n~(T) = {cp,Kn}Wn(T) and l{cp,Kn}1 2 = 
I{cp, Kn}12(1 + Inl)l<o (-(8 -1) s:; n < +(0). Hence relations (20) and (21) fol
low. These relations show that, according to the well-known definition, the system 
{n~(T)}~(s_1) is a Riesz basis of L~S(O,o} 

(e) We conclude this chapter with a general theorem relating to the basis proper
ties of two last biorthogonal systems. 

Theorem 9.4-4. The systems of vector functions 

{{Kn,h(T)}~:~l} 00 = {{ (1 + Inl)l<o/2 Kn ,h(T)} 2S-1}00 , 
-(s-l) h=O -(s-l) 

{{n~,h(T)}~:l} 00 = {{ (1 + Inl)-l<o/2Wn ,h(T)} 2S-1}00 
-(s-1) h=O -(s-l) 

(22) 

are biorthogonal, and both are Riesz bases of L~S(O,a). 

Proof. Systems (22) are biorthogonal in L~S(O, a) according to (19). The second 
system of (22) is a Riesz basis of L~S(O, a), while the first system of (22) is complete 
in L~S(O, a) by Theorem 9.4-1. Hence, by the well-known theorem on the Riesz basis 
property of biorthogonal systems, the first system of (2'2) is also a Riesz basis of 
L~S(O, a). 
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9.5 Notes 

As for the results of this chapter for each of the cases s 2': 3 and s = 1,2 we can 
say nearly the same as for the results of Chapter 8, and we can refer to the same 
papers as in Notes 8.6. 



10 The simplest Cauchy type problems and the 
boundary value problems connected with them 

10.1 Introduction 

As is well known, the trigonometric systems 

(1) 

are orthogonal bases of L2 (0, a) and at the same time they are systems of eigen
functions of definite boundary value problems. These boundary value problems are 
connected with the simplest differential equation 

d2 
dx2Y(x) + )..y(x) = 0, x E (O,a) (2) 

with the suitable boundary conditions at the ends of the interval (0, a). As was 
mentioned in the introduction to Chapter 5, the basic biorthogonal systems of 
Mittag-Leffler type functions, constructed there for L 2 (0, a), also turn out to be 
systems of eigenfunctions. But in this case they are systems of eigenfunctions 
of some non-ordinary boundary value problems formulated in terms of integro
differential operators of fractional orders. 

This chapter deals with the interpretation of the biorthogonal expansions 
established in Theorems 5.3-1 and 5.3-2 as expansions in terms of eigenfunctions 
of the mentioned non-ordinary boundary value problems. Two associated non
ordinary boundary value problems on (0, a) are considered in Sections 10.3 and 
10.4. The solutions of these problems bring us to the same sequence of eigenvalues 
{)..df(O < )..1 < )..2 < ... ) and to two corresponding systems of eigenfunctions 
which are biorthogonal in L2(0, a): 

{El/2 (-)..kX2; /L) x JJ - 1};'" and {El/2 (-)..k(a - x)2; /L*) (a - X)JJ*-I} ~. (3) 

Also, we realize that the eigenfunctions 

x JJ- 1 (a - X)JJ*-1 
r(/L) and r(/L*) (4) 

must be added correspondingly to systems (3) when)..o = 0 is also an eigenvalue. In 
the concluding Section 10.5 by use of the main results of Chapter 5 we prove that, 
if the parameters /L and /L* belong to the suitable intervals, then the considered 
boundary value problems are completely solvable. This enables us to establish 
suitable eigenfunction expansion theorems. 

In this and in the following chapters we shall frequently use the main def
initions and propositions of the theory of Riemann-Liouville fractional integro
differentiation. Therefore, in the next section we give a brief survey of some fun
damental propositions of this theory together with their proofs. 
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10.2 Riemann-Liouville fractional integrals and derivatives 

(a) Let f(x) be an arbitrary function of class L1(0,0-)(0 < 0- < +00). Then the 
integral of order 0:(0 < 0: < +00) of f(x) with the origin at the point x = ° is 
taken to be the function 

1 r D-Ot f(x) == r(o:) 10 (x - t)Ot-1 f(t)dt, x E (0, oJ (1) 

Similarly, the integral of order 0:(0 < 0: < +00) of f(x) with the end at the point 
x = 0- is taken to be the function 

1 1<7 D;;Ot f(x) == r(o:) x (t - X)Ot-1 f(t)dt, x E (0,0-). (2) 

Note that 
D;;Ot f(x) = D-Ot [f(o- - t)] (y) IY=<7-X ' x E (0,0-). (3) 

Note also that, if 0: = n ~ 1 is an integer, then D-Ot f(x) is the n-th primitive of 
f(x), i.e., r tl [tn-l 

D-nf(x) = 10 dt110 dt2·.· 10 f(tn)dtn. (4) 

Hence for almost all x E (0,0-) 

dn 
-d D-n f(x) = f(x). xn (5) 

Using Fubini's well-known theorem, we arrive at the inequalities 

which imply the following proposition. 
1°. If f(x) E L1(0, 0-), then for any 0: E (0,+00) the functions D-Otf(x) and 
D;;Ot f(x) are defined almost everywhere in (0,0-) and are of L1 (0,0-). 

In connection with this proposition note that, if'Y E (-1,+00), then the 
functions x'Y /r(1 + 'Y) and (0- - x)'Y /r(1 + 'Y) are both of class L1 (0,0-) and, in 
addition, it appears that 

{ x'Y} x'Y+Ot 
D-Ot r(1+'Y) =r(1+'Y+0:)' 

D-Ot {(o- - x)'Y} _ (0- - x)'Y+Ot 
<7 r(l+'Y) - r(1+'Y+0:) 

(7) 

for any 0: E (0,+00), and these functions are also of L 1(0,0-). 
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Let f(x) E Ll(O, a) be a given function. We shall denote by Ej the set of those 
points x E (0, a), where the functions f(x) and If(x)1 are both the derivatives of 
their primitives. Then the measure of (0, a)/ Ej is zero according to the well-known 
Lebesgue theorem. In addition, note that any Lebesgue point of f(x) automatically 
belongs to Ej. Lastly, it is obvious that, if j(x) = f(a - x), then x E Ej, if and 
only if a - x E E j. 
20. If f(x) E Ll(O, a), then for any a E (0, +00) the integmls D-O f(x) and 
D;o f(x) exist in every point x E Ej and 

lim D-o f(x) = f(x), lim D;;o f(x) = f(x), x E Ej. (8) 
0--++0 0--++0 

We shall prove only the first of these relations, as the proof of the second one is 
similar. To this end, we suppose Xo E Ej is any point and denote 

Fo(t) = 1t f(xo - r)dr, iPo(t) = 1t If(xo - r)ldr, t E [0, xo]. (9) 

Then, obviously, Fo(t)/t --+ f(xo) and iPo(t)/t --+ If(xo)1 as t --+ +0. Therefore 

Fo(t) = t [f(xo) + wo(t)] , (91) 

where 
wo(t) --+ 0 and iPo(t) = OCt) (92 ) 

as t --+ +0. To be convinced that the integral 

1xO (xo - t)O-llf(t)ldt = 1xO If(xo - r)lrO- 1dr (10) 

is convergent for any a E (0, +00), we observe that for any 8 E (0, xo) 

1xO If(xo _ r)lro- 1dr = 1xO iP~(r)rO-ldr 
(ll) 

= iPo(r)rO - 1 1;0 - (a -1) 1xO iPo(r)rO- 2dr, 

where, according to (92 ), the right-hand side tends to a definite limit as 8 --+ +0. 
Hence integral (10) converges. Now we take any 10 > 0 and choose 8 == 8(10) E (0, xo) 
for which Iwo(t)1 < 10 when 0 < t < 8. Then, using (91 ) and (92), we can write the 
following equalities for any a E (0, +00) : 

1 r o 1 r o 
D-o f(xo) = rea) 10 (xo - t)o-1 f(t)dt = rea) 10 f(xo - r)rO- 1dr 

1 r o Po (r)rO - 1 IXO a-I (XO 
= rea) 10 F~(r)ro-ldr = 0 rea) 0 - rca) 10 Fo(r)ro- 2dr 

Fo(xo) 0-1 a-loa - 1 (8 0-1 
= rea) Xo - r(1 + a) f(xo)xo - rea) 10 wo(r)r dr 

a-I r o 1 
- rea) 18 wo(r)rO- dr. 
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Hence we obtain 
limsup lv-a f(xo) - f(xo)1 :::; t, 
a-++O 

and the passage t ----t +0 completes the proof. 
In view of proposition 2°, which is already established, it is reasonable to 

extend the definitions (1) and (2) of operators D-a and v;;a to the value 0: = 0, 
setting 

v-o f(x) = v;; 0 f(x) = f(x), x E (0, a). (12) 

3°. Let f(x) E L1 (0, a) and let 0:1,0:2 E [0, +00) be arbitrary numbers. Then the 
equalities 

v-a2 (V-O: l f(x)) = V- al (V- a2 f(x)) = v-(al +a2) f(x), (131) 

v;;a2 (v;;a l f(x)) = D;;al (v;;a2 f(x)) = v;;(a l +O: 2 ) f(x) (132) 

are true for almost all x E (0, a). 
Indeed, 

where all the operations are permitted for almost all x E (0, a) by Fubini's theorem. 
The proofs of the other equalities are similar. 

(b) We now pass to the definition of the derivatives of arbitrary order and some 
of their main properties. 

Assume 0: (0 < 0: < +00) to be a given number and the integer p :::: 1 to be 
defined by the inequalities 

p -1 < 0::::; p. (14) 

Assume, in addition, that f(x) E L1 (0, a) and that 

w(x) = v-(p-a) f(x), x E (O,a). (15) 

Then, according to proposition 1 ° , 

(15') 

and, if 0: = P :::: 1 is an integer, definition (12) should be used. Now formally we 
introduce the function 

dP dP { } va f(x) == -w(x) = - v-(p-a) f(x) 
dxp dxp 

(16) 
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which is called the derivative of order 0: > 0 of f(x) with the origin at the point 
x = O. According to (12), 

dP 
DQ f(x) = DP f(x) =:= -d f(x) 

xP 
(17) 

when 0: = P is an integer, so DP f(x) in this case simply coincides with the ordinary 
derivative of f(x) of order 0: = P 2': 1. From (16) it also follows that 

DQ f(x) = d~ {D-(1-Q) f(x)} (0 < 0: ::; 1). 

This formula may be extended formally to the value 0: = 0, setting 

D+O f(x) = d~ {D- 1 f(x)} = f(x), x E (0,0"). 

Further, it follows from (161 ) and (12) that for almost all x E (0,0") 

Obviously the derivative D~ of order 0: > 0 of a function f(x), with the end 
at the point x = 0", may be defined in a similar way. Specifically, it should again 
be supposed that p - 1 < 0: ::; P (p 2': 1) and taken 

DQf(x)=:= dP {D-(P-Q)f(x)} XE(O,O"). 
0" d(O"-x)p 0" , 

(18) 

Then, evidently, 

dP dP 
D~f(x) = d( ) f(x) = (-l)P-d f(x) (p 2': 1), (18d 

0" - x P xP 

DQ f(x) = d {D-(1-Q) f(x)} (0 < 0: ::; 1), (182) 
0" d(O"-x) 0" 

D;of(x) = f(x), D!f(x) = -J'(x). (183) 

In later sections formulas (7) will playa significant role. Therefore, we have to be 
convinced that these formulas remain true when 0: is replaced by -0:. Indeed, if we 
suppose that p - 1 < 0: ::; P and 'Y E (-1, +00 ), then according to the definitions 
of derivatives DQ and D~ , 
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and 

Do.{(IT-X)'Y}_ dP {D-(p-o.) (IT-x)'Y)} (0) 
0' r(I+'Y) -d(IT-x)p 0' r(I+'Y)' xE ,IT. 

Therefore, the use of (1) gives 

DO. { x"l } _ dP { x"l+p-o. } _ x"l-o. X E (O,IT) 
r(1 + 'Y) - dxp r(1 + 'Y + p - 0:) - r(1 + 'Y - 0:)' 

and 

a {(IT - x)"!} dP {(IT - x)"!+p-o.} (IT - x),,!-o. 
DO' r(I+'Y) = d(O'-x)p r(I+'Y+p-o:) = r(1+'Y-0:)' 

x E (0, IT). 

Thus the following general formulas are true for any 'Y E (-1, +00) and 0: E 
(-00, +00): 

x E (0, IT), 

x E (0, IT). 

Finally, note that the functions r-1 (1 + 'Y)x"l and r-1 (1 + 'Y)(O' - x)"! are of class 
L 1(0, 0'), but their transformations (191) and (192) are of the same class only when 
0: < 1 +'Y. 

(c) A natural question arises: is it possible to find additional conditions ensuring 
the inclusion DO. f(x) E L 1(0, IT) (0: > 0) for a function f(x) E L 1(0, IT)? It appears 
that such conditions can be found by use of the well-known functions which are 
absolutely continuous in the segment 0 = [a, bj (-00 < a < b < +00) (or, briefly, 
which are of class AC(O»). Remember that a function f(x) is said to be absolutely 
continuous in 0, if for any € > ° there exists a b == b(€) > 0, such that the 
inequality 

n 

L If(bk) - f(ak)1 < € 

k=l 

is true for any finite system {[ak' bk)}~=l C 0 of disjoint segments for which 

n 

L(bk - ak) < b. 
k=l 

It is well known that the class AC(O) coincides with the set of primitives of func
tions which are summable on 0 in the Lebesgue sense, i.e., AC(O) coincides with 
the set of functions representable in the form 

f(x) = c+ l x cp(r)dr, cp(r) E L1(a,b). (20) 
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We shall also use the following definition: ACn(n)(n ~ 1) is the set of functions 
f(x) continuously differentiable in n up to the order n-1 and such that f(n-l) (x) E 

AC(n). It is obvious that AC1(n) = AC(n) and also that, similarto (20), ACn(n) 
coincides with the set of functions representable in the form 

n-l x 

f(x) = ~ Ck(X - a)k + r(~) 1 (x - r)n-ltp(r)dr, x E n, (21) 

where {Ck}~-1 are arbitmry constants and tp(r) E L 1(a, b) is an arbitmry function. 
This assertion is an immediate consequence of representation (20) of the function 
f(n-l)(x) E AC(n) and of formula (4). Observe that in (21) 

tp(r) = f(n)(r) E Ll(a,b) and Ck = f(k) (a)jk! (0:::; k:::; n -1). (22) 

Also observe that (21) and (22) yield Maclaurin's formula 

for any function f(x) E ACn[O, a]. Hence, if we apply the opemtor D-a(O :::; 
a < +00) to both sides of (21t), then, in view of (7) and (131), we arrive at the 
representation 

Taking n = 1, we arrive at the following proposition. 
4°. If f(x) E AC[O, a], then for any a E [0,+00) 

D-a f(x) = f(O) f(lx: a) + D-(1+a) f'(x), x E [0, a], 

and 
D-a f(x) E AC[O, a]. 

(24) 

(25) 

Using the classes ACn(n) we find the desired additional conditions, which 
are given in the next proposition. 
5°. If the function f(x) E L1(0, a) satisfies the condition 

w(x) == D-(p-a) f(x) E ACP[O, a] (p - 1 < a :::; p,p ~ 1), (26) 

then the derivative 
dP 

Da f(x) = -d w(x) 
xP 

(27) 
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exists almost everywhere in (0,0-) and is of class Ll(O,o-). 

Remark 1. Let p-1 < a :<::; pep ~ 1) and let the function f(x) satisfy the conditions 

f(x) E Ll(O,o-) and w(x) = D-(p-a) f(x) E ACP[O,o-]. 

Then Da f(x) E Ll(O, 0-) and also 

Besides, 

dP- k 
Da- k f(x) = -- {D-(p-k-(a-k)) f(x)} 

dxp- k 

dP-k dP- k 
= -- {D-(p-a) f(x)} = --w(x) E ACk[O, 0-] (1:<::; k :<::; p - 1), 

dxp- k dxp- k 

(28) 

(29) 

since p - k - 1 < a - k :<::; p - k when 1 :<::; k :<::; p - 1. Now we move on to some 
propositions concerning compositions of integro-differential operators. 
6°. If f(x) E Ll(O,o-), then 

Da D-a f(x) = D~D;;a f(x) = f(x) (30) 

for any a E [0, +00) and for almost all x E (0,0-). 
Note that this proposition is trivial in the case a = 0 in view of (12), 

(162) and (183). If P - 1 < a :<::; pep ~ 1), then, by proposition 3°, D-Pf(x) = 
D-(p-a) D-a f(x) for almost all x E (0,0-). Hence 

DaD-af(x) = dP {D-(p-a)D-af(x)} = dP {D-Pf(x)} = f(x) 
dxp dxp 

almost everywhere in (0,0-), and the first of equalities (30) is proved. The proof of 
the second equality of (30) is similar. 
7°. Let p - 1 < a :<::; pcp ~ 1) and let the function f(x) E Ll(O,o-) satisfy the 
additional condition 

w(x) = D-(p-a) f(x) E ACP[O, 0-]. 

Then the following formula is true almost everywhere in (0,0-): 

(31) 
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Indeed, 

D-O: DO: f(x) = ! {D-(1+O:) DO: f(x)} 

= d~ {D-(1+O:) (w(p) (x)) } = d~ {D-(P+O:-P+1) (w(P) (x)) } . 
(32) 

And, if we replace n by p, a by a - p+ 1 and f(x) by w(x) in (23), then we obtain 

p-l (k) ( ) 
D-(o:-p+l)w(X) = " w ° xk+o:-p+l + D-(p+o:-p+1) {w(p)(x)} 

~ f(2 + a - p + k) 
k=O 

for any x E [0, aj. Thus (32) yields 

if we use notations (26) and equalities (13d. 
Particularly, if p = 1 and ° < a :s:: 1, this proposition takes the following 

form. 
8°. Let f(x) E Ll (0, a-) and let D-(1-o:) f(x) E AC[O, 0"] for some a E (0,1] then 
almost everywhere in (0,0") 

0:-1 

D-O: DO: f(x) = f(x) - {D-(1-O:) f( T)} I _x_. 
T=O f(a) 

The following generalizations of the previous assertions are also useful. 
go. If f(x) E L1(0,0"), then, almost everywhere in 0,0"), 

DO: D-(3 f(x) = D-«(3-o:) f(x), (3 2 a 2 ° 
and 

if the derivative Do:-(3 f(x) exists almost everywhere in (0,0"). 

(33) 

(34) 

(35) 

Indeed, if (3 2 a 2 0, then propositions 3° and 6° yield DO:D-f3 f(x) = 
DO: D-O: D-«(3-o:) f(x) = D-«(3-a) f(x). On the other hand, if a > {3 2 0, then we 
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assume p - 1 < a ::::: pep 2: 1) and q - 1 < a - !3 ::::: q(q 2: 1). Hence q ::::: p, and 
therefore, by proposition 3°, almost everywhere in (0, a) 

Da D-!3 f(x) = dP {D-(p-a) D-!3 f(x)} = dP {D-(p-a+!3) f(x)} 
dxp dxp 
dq dP- q 

= --- {D-(P-q)D-(q-a+!3) f(x)} 
dxq dxp- q 

= ~ {D-(q-a+!3) f(x)} = Da-!3 f(x). 
dxq 

10°. If f (x) E L1 (0, a) and, in addition, 

D-(p-!3) f(x) E ACP[O,a] (p -1 <!3::::: p,p 2: 1), 

then the equality 

is true almost everywhere in (0, a) for any a > 0. 

(36) 

Indeed, the use of proposition 3° (when !3 ::::: a), or proposition 9° (when 
!3 2: a), gives D-a D!3 f(x) = D!3-a D-!3 D!3 f(x). Hence, by (31), 

D- a Df3 f(x) = Df3- a {f(X) - t {Df3- k f(T)} I ~X_f3-::--k--:-:-} 
k=1 r=or(I+!3-k) , 

and formula (36) follows, if (19d is taken into account. 
Now we shall give a simple condition sufficient for the existence of the deriv

ative Da f(x)(a > 0) and also a representation formula for this derivative. 
11 0. Let f(x) E Acq[O, a](q 2: 1). Then the derivative Da f(x) exists almost every
where in (0, a) for any a E (0, q]. And if p - 1 < a ::::: p, then 

p-I f(k) (0) 1 l x 
Da f(x) - L x k - a = (x - tV-a - 1 f(p) (t)dt 

k=O r(1 + k - a) rep - a) 0 (37) 

= D-(p-a) f(p) (x) 

almost everywhere in (O,a). 
To prove these assertions, we observe that f(x) E ACP[O, a] since p :::::q. The 

replacement of n by p and a by p - a in formula (23) leads to the representation 

p-I f(k) (0) 
w(x) = D-(p-a) f(x) = L xp-a+k + D-(2p-a) f(p) (x). (38) 

k=O r(1 + p - a + k) 
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Using this representation we can easily verify the existence of the derivative 
DOt f(x) = (dP /dxP)(w(x)) and the validity of (37). 

Remark 2. Representation (37) shows that, if f(x) E ACq[O, a] (q ~ 1,0 < a ~ q), 
then the derivative DOt f(x) exists almost everywhere in (0, a). But in the same 
conditions, DOt f(x) is not necessarily of class Ll(O, a). 

The next helpful proposition follows from the previous one. 
12°. If f(x) E AC[O, a], then DOt f(x) ELl (0, a) for any a E (0,1] and 

DOt f(x) = f(O) x-Ot + D-(l-Ot) J'(x) a E (0,1] (39) 
r(l- a) , 

almost everywhere in (0, a). 
The following proposition will also be used later. 

13°. If f(x) E Ll(O,a) and D-(l-Ot) f(x) E AC[O,a] for a given a E (0,1] (and, 
consequently, DOtf(x) E Ll(O,a)), then D{3f(x) E Ll(O,a) for any f3 E (O,a). 

Indeed, by the given definition, 

D{3 f(x) = ~ {D-(l-{3) f(x) } , (40) 

and in addition 

D-(l-{3) f(x) = D-(Ot-{3) {D-(l-Ot) f(x)}. (41) 

But D-(l-Ot) f(x) E AC[O, a], so D-(l-{3) f(x) E AC[O, a] by proposition 4°, and 
the desired inclusion follows from (40). 

(d) We shall conclude this section with a theorem relating to the solvability of 
Abel's integral equation. 

Theorem 10.2-1. Let f(x) E Ll(O, a). Then Abel's integral equation 

1 r f(x) = D-Otg(x) = f(a) 10 (x - t)Ot-lg(t)dt (a> 0) (42) 

has a solution g(x) ELl (0, a) if and only if the following pair of conditions, where 
p ~ 1(P - 1 < a ~ p) is an integer, is satisfied: 

w(x) == D-(p-Ot) f(x) E ACP[O, a] (i.e., (dP- 1 /dxP- 1)w(x) E AC[O,a]), (i) 

w(O) = w' (0) = ... = W(p-l) (0) = O. (ii) 

If these conditions are satisfied, then the solution g(x) ELl (0, a) of equation (42) 
is unique and 

g(x) = DOt f(x) = dP {D-(P-Ot) f(x)} 
dxp 

almost everywhere in (0, a). 

(43) 
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Proof If condition (i) is satisfied, then the derivative DO. f(x) = w(p) (x) obviously 
exists almost everywhere in (0, a) and is of class L1 (0, a). Besides, it proves to be 
a solution of equation (42). Indeed, according to proposition 7°, 

P W(p-k) (0) 
D-o.g(x) = D-o. DO. f(x) = f(x) - L xo.-k 

k=1 r(l + 0: - k) 

almost everywhere in (O,a). Therefore, condition (ii) implies that g(x) is a solution 
of (42). This solution is unique since proposition 6° shows that, if D-o.g(x) = ° 
almost everywhere in (O,a), then we also have Do.D-o.g(x) = g(x) = ° almost 
everywhere in (0, a). Thus it remains to prove that conditions (i) and (ii) are 
necessary for solvability of equation (42). To this end we suppose that there exists 
a function g(x) E L1 (0, a) such that D-o.g(x) = f(x) almost everywhere in (0, a). 
Then, using proposition 3°, we obtain 

w(x) = D-(p-o.) f(x) = D-Pg(x) = - (x - t)P-1g(t)dt 1 lx 

r(p) 0 ' 
xE(O,a). 

Hence 

1 l x W(k) (x) = (p ) (x - t)p-k-lg(t)dt (k = 0,1, ... ,p - 1), 
r -k 0 

and evidently w(x) satisfies conditions (i) and (ii). 

10.3 A Cauchy type problem 

(a) Let the set of parameters 

satisfy the conditions 

1/2 < "Yo, "Y3 :::; 1, 0:::; "Y1. "Y2 :::; 1 

and 

Then, obviously, 
1 < "Yo + "Y3 :::; 2 and 1 :::; "Y1 + "Y2 < 2. 

(1) 

(2) 

(3) 

(4) 

Therefore only one of the parameters "Y1 and "Y2 may be equal to zero. And if it is 
so, then evidently 

"Yo = "Y2 = "Y3 = 1 when "Yl = 0, 

or "Yo = "Y1 = "Y3 = 1 when "Y2 = 0. 
(5) 
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We shall consider these as special cases and instead of (2) we shall suppose 
henceforth 

1/2 < ')'0, ')'3 :S 1 and ° < ')'1,')'2 :S 1. 

Observe that, together with (3), these inequalities also imply inequalities (4). 
We associate a given set of parameters (1) with a set {L j }8 of integro

differential operators of fractional orders setting 

Loy(x) =D-(l-ro )y(x), 

d L1y(x) =D-(l-rtl dx Loy(x) = D-(1-r1 ) Droy(x), 

d L2y(x) =D-(1-r2) dx LlY(x) = D-(1-r2)Dr1Droy(x), 

lL1/ 2 y( x) == L3Y( x) 

= D-(1-r3) d~ L2Y(X) = D-(1-r3) Dr2 Drl DrOy(x). 
(6) 

It is necessary to define correctly the domain of definition of the operators 
{L j }8 so that it is large enough to suit our later purposes. 

Definition 1. Denote by ACb} [0, 0'](0 < a < +00) the set offunctions y(x) satis
fying the conditions 

1) 

2) 

y(x) E L 1(0,a) 

LjY(x) E AC[O, a] (j = 0, 1,2). 
(7) 

Thus, if y(x) E ACb} [0, a], then obviously the functions Ljy(x)(j = 0,1,2) are 
continuous in [0,0'], and the function lL1/2y(X) == L3Y(X) is of class L1(0,a) since 
it is the fractional integral ofthe function (d/dx)L2 y(x) E L1(0, a) of order 1-')'3. 

(b) Let y(x) E ACb } [0, a] be a given function. We introduce the following con
stants: 

Further, we denote 

and observe that 

k 

/1k = L ')'j (k = 0,1,2) 
j=O 

/10 = ')'0 E (1/2,1]' 

/11 = ')'0 + ')'2 E bo, 2], 
/12 = ')'0 + ')'1 + ')'2 = 3 - ')'3 E [2,5/2) 

according to (2t) and (3). Besides, conditions (2t) imply 

for any pair of numbers of (1). 
Now we are ready to establish three useful lemmas. 

(8) 

(9) 

(10) 

(11) 
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Lemma 10.3-1. Ify(x) E ACh}[O,er], then 

(12) 

almost everywhere in (0, er). 

Proof. Since IL1/2y(X) E L1(0,er), using proposition 3° of Section 10.2 and formula 
10.2(7) we arrive at the following equalities which are true almost everywhere in 
(O,er): 

Further, we obtain 

D-(2-'Y3) L2y(x) = D-(2-'Y3) { D-(1-'Y2) d~ L1Y(X) } 

= D-(2-'Y2-'Ya) {D- 1 d~L1Y(X)} = D-(2-'Y2-'Ya) {L1y(x) - m1(Y)} (122) 

X2-'Y2-'Y3 
= D-(2-'Y2-'Ya) L1y(x) - m1(Y) . 

r(3 -1'2 - 1'3) 

Similarly, using relation (3) we obtain 

According to proposition 8° of Section 10.2, 

x'YO- 1 
D-'YO D'YOy(x) = y(x) - {D-(l-'Yo)y(T)}! --

r=O r(')'o) 

almost everywhere in (0, er), and therefore 

almost everywhere in (0, er). This formula, together with (12t) and (122 ) implies 
the desired representation (12), if notations (9) and relation (3) are used. 
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Lemma 10.3-2. If y(x) E ACb} [0, aj, then almost everywhere in (0, a) there 
exists the derivative y"(x) and 

(13) 

Proof.. Applying the operation D2 to both sides of identity (12) and using propo
sition 6° of Section 10.2 we arrive at formula (13). 

Consider now the Cauchy type problem 

1L1/2y(x) + AY(X) = 0, x E (0, a), 

Lky(x)lx=o = ak (k = 0,1,2), 

where {ak}5 and A are arbitrary complex numbers in general. 

(14) 

(15) 

Lemma 10.3-3. The Cauchy type problem (14)-(15) may have only a unique 
solution in the class ACb}[O,aj. 

Proof. If there exist two solutions Yj(x) E ACb} [0, aj(j = 1,2), then their dif
ference y(x) = Y1(X) - Y2(X) is of the same class, and it is a solution of the 
homogeneous Cauchy type problem 

1L1/2y(x) + AY(X) =0, xE(O,a), LkY(X)lx=o=mk(Y) =0, k=0,1,2. (16) 

By (12) and (16), D-21L1/2y(x) = y(x) = -AD-2y(x), x E (0, a). In other words, 
the function y(x) E L1(0,a) is a solution of the homogeneous integral equation of 
Volterra type 

Y(X) = -A foX (x - t)y(t)dt, x E (0, a). 

Hence directly, or by use of the main apparatus of the theory of such integral 
equations, we obtain y(x) = O(Le., Y1(X) = Y2(X)) almost everywhere in (O,a). 

(c) The next lemma deals with the function 

which obviously satisfies the conditions 

( ) { L1(0,a) when f..t 2: 0, 
Y X;A E 

J.t L2(0,a) when f..t > 1/2. 
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Lemma 10.3-4. Ifr = 0,1,2 is arbitrary and 

r 

/-tr= L"(j, 
j=O 

(18) 

then the function y(x) = Yp.r(x;)..) E L2 (0,0') is a solution of the Cauchy type 
problem 

lL1/ 2y(X) + )..y(x) = 0, x E (0,0'), 

{ I when k = r 
Lky(x)lx=o = Dk,r == ° when k =I- r 

And this solution is unique in the class AC{-y} [0, O'J. 

(k = 0,1,2). 

Proof. We start from results of some simple calculations related to Yp.(x; )..), in 
which we frequently use the general formula 10.2(191) and notation (9). We con
sider three cases. 

10. If /-t = /-to = "(0, then 

(20d 

and, in addition, (4) yields "(1 + "(2 < 2. Finally, 

and, since 3 - "(1 - "(2 - "(3 = "(0 = /-to by (3), this identity becomes 

XE(O,O'). 

Formulas (201) - (204) imply that the function Yp.o(x;)..) E AC{-y} [0, O'J is a solu
tion of equation (191), and they imply also that this function satisfies the initial 
conditions (192) for r = 0. 
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2°. If J-L = J-Ll = /0 + /ll then 

(2h) 

(2b) 

But in the considered case, 3 -/2 -/3 = /0 + /1 = J-Ll according to (3). Therefore 
the last identity may be written in the form 

By formulas (2h) - (214 ), y(x) = Yill (x; >.) E AC{-y} [0, a] and, in addition, this 
function satisfies (191 ) with initial conditions (192 ) for r = 1. 
3°. If J-L = J-L2 = /0 + /1 + /2, then 

But J-L2 = 3 -/3 according to (3), and the last identity can be written in the form 

XE(O,a). 

Formulas (22d - (224) yield y(x) = YIl2(X;>') E AC{-y} [0, a]. Using these formulas 
it is easy to verify the validity of (191) with initial conditions (192 ) for r = 2. 

In the three cases considered above we have actually proved all the assertions 
we desired to prove except the assertion on the uniqueness of the solutions of the 
corresponding Cauchy type problems, proved earlier in Lemma 10.3-3. 

Now we are ready to prove the following theorem. 
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Theorem 10.3-1. Let a> 0 be an arbitrary number. Then the function 

2 

Y(x;,x) == L ajYl1j (x;,x) E L2 (0, a) 
j=O 

(23) 

is the unique solution ofthe Cauchy type problem (14)-(15) in the class AC{-y} [0, a]. 

Proof. By Lemma 10.3-4, 

2 

lL1/ 2Y(X;,x) + ,xY(x;,x) = L aj {lL1/ 2YI1; (x;,x) + ,xYI1; (x;,x)} = 0, X E (0, a) 
j=O 

and 

LkY(Xj,x) Ix=o = t aj LkYl1j (x; ,x) I = t ajOk,j = ak (k = 0, 1,2). 
3=0 x=O 3=0 

The uniqueness of the solution is proved in Lemma 10.3-3. 

(d) Finally, we present the forms taken by the operators {Lj}~, the corresponding 
Cauchy type problems and their solutions in the special cases (5). 

In the case when 'Yl = 0 and 'Yo = 'Y2 = 'Y3 = 1, 

Loy(x) = y(x), L1y(x) = D-1 Dly(X) = y(x) - y(O), 

L2Y(X) = y'(x), lL1/ 2y(X) = L3Y(X) = y"(x), 

and we have also J.1-0 = 1, J.1-1 = 1, J.1-2 = 2. 
In the case when 'Y2 = 0 and 'Yo = 'Yl = 'Y3 = 1, 

LoY(x) = y(x), L1y(x) = y'(x), 

L2y(x) = D-1y"(x) = y'(x) - y'(O), lL1/ 2y(X) = L3Y(X) = y"(x), 

and we have also J.1-0 = 1, J.1-1 = 2, J.1-2 = 2. 
In both these cases we arrive at the same well-known Cauchy problem: 

y"(x) + ,xy(x) = 0, X E (O,a), y(O) = a, y'(O) = {3, (24) 

whose solution is 

(25) 
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and the analog of Lagrange formula. 
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In this section we suppose that the parameters {'Y} = {'Yj H satisfy the same 
conditions as in 10.3, i.e., 

which yield 

3 

1/2 < 'Yo, 'Y3 ::; 1, ° < 'Yl, 'Y2 ::; 1, L 'Yj = 3 
j=O 

I < 'Yo + 'Y3 ::; 2, 1::; 'Yl + 'Y2 < 2. 

(1) 

(2) 

(a) In the same way as we introduced {Lj}g we introduce the operators {Lng of 
integra-differentiation, but now with the end at the point x = a (0 < a < +00) 
setting 

L~z(x) = D;;(1-1'3)Z(X), 

L*z(x) = D-(I-1'2) { d L*Z(X)} = D-(I-1'2)D1'3z(x) 
1 u d(a _ x) 0 u u' 

L*z(x) = D-(I-1'll { d L*Z(X)} = D-(I-1'llD1'2D1'3 Z(X) 
2 u d( a _ x) 1 u u u , (33) 

lLi/2Z(X) = L;z(x) = D;;(1-1'O) {d(a ~ x) L;Z(X)} 
(4) 

= D-(l-1'o) D1'l D1'2 D1'3 z(x) 
U u u q • 

Now we define a domain of definition of these operators. 

Definition 2. Denote by AC{1'}[O,a](O < a < +00) the set offunctions z(x) satis
fying the conditions 

z(x) E L1 (0,a), 

Ljz(x) E AC[O, a] (j = 0, 1,2). (5) 

It is obvious that, if z(x) E AC{1'} [0, a), then the functions Ljz(x)(j = 0,1,2) 
are continuous in [O,a) and the function lLi/2Z(X), as a fractional integral of 
(d/d(a - x»L2z(x) E L1(0, a) of order 1 - 'Yo, is of class Ll (0, a). 

Further, assuming z(x) E AC{'Y} [0, a), we denote 

{Lkz(xHlx=u = mk(z) (k = 0,1,2). (6) 

We denote also 
k 

J.Lk = L 'Y3-j (k = 0,1,2) (7) 
j=O 
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JiD = /3 E (1/2,1]' f..£i = /3 + /2 E (/3,2], 

f..£; = /3 + /2 + /1 = 3 - /0 E [2,5/2). 
(8) 

One may prove the following four lemmas in the same way as the similar ones in 
Section 10.3. 

Lemma 10.4-1. If z(x) E AC{,'Y} [0, a], then the equality 

(9) 

is true almost everywhere in (0, a) . 

Lemma 10.4-2. If z(x) E AC{''Y}[O,a], then the derivative ZIl(X) exists almost 
everywhere in (0, a) and 

2 ( )1-'~-3 
* () "() '"' *()a-x 1L1/ 2 Z x = z x - ~ mk Z r( * _ 2) 

k=O f..£k 

almost everywhere in (0, a). 

Lemma 10.4-3. The Cauchy type problem 

lLi/2Z(X) + ),*z(x) = O,X E (0, a), 

Ljz(x) IX=<T = bj (j = 0,1,2), 

(10) 

where {b j }5 and ),* are arbitrary complex numbers, has a unique solution in 
AC{'Y}[O,aj. 

To state the fourth lemma, we introduce the function 

and note that 
* { Ll(O,a),whenf..£*~O, 

z • x;), E 
I-' ( ) L2 (0,a), whenf..£* > 1/2. 

(12) 
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Lemma 10.4-4. If T = 0, 1, 2 is an arbitrary number and 

r 

/1-; = L1'3-j, 
j=O 

then the Cauchy type problem 

lL~/2Z(X) + ).*z(x) = 0, x E (O,a), 

* I { 1, when k = T 
Lkz(x) x-rr = Ok,r = ° h k .../.. - ,wen IT 

(c;) 
(k = 0,1,2) 
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(13) 

(14) 

has a unique solution in AC{,,),} [0, a]. This solution is z(x) = zJ.t; (x; ).*) E L2(0, a). 

The following theorem is a consequence of the last lemma. 

Theorem 10.4-1. The Cauchy type problem 

lL~/2Z(X) +).* z(x) = 0, x E (0, a), 

Ljz(x)lx=rr = bj , (j = 0, 1,2) 

has a unique solution in AC{, ')'} [0, a]. This solution is 

2 

Z(x;).*) == LbjzJ.t;(x;).*) E L2(0, a). 
j=O 

(15) 

(16) 

(b) The operators {L;H and the corresponding Cauchy type problems take more 
simple forms in the special cases 10.3(5). Specifically, one may easily verify that 
in the case when 1'1 = ° and 1'0 = 1'2 = 1'3 = 1 

Loz(x) = z(x), Lrz(x) = D!z(x) = -z'(x), 

L2z(x) = D;;1 Z"(X) = z'(a) - z'(x), lLr/2Z(X) = L3Z(X) = z"(x), 

and in the case when 1'2 = ° and 1'0 = 1'1 = 1'3 = 1 

Loz(x) = z(x), Liz(x) = z(x) - z(a), 

L2z(x) = -z'(x), lLi/2Z(X) = L3z(x) = z"(x). 

Thus, the Cauchy type problem is the same in these two cases: 

z"(x) + ).*z(x) = 0, x E (O,a), 

z(a) = a, -z'(a) = {3. 
(17) 
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The solution of this problem can be expressed in the form 

Z(x; A*) = aE1/2 (-A*(a - x)2; 1) + f3E1/2 (-A*(a - x)2; 2) (a - x) 

r;:: sin &(a - x) (18) 
=acosvA*(a-x)+f3 & . 

A* 

(c) Remember that, ifthe parameters hj}~ are given, then we have three different 
ways of choosing J-L and J-L*: 

1 0. J-L = J-Lo = 'Yo, J-L* = J-L~ = 'Y3· (19d 

2°. J-L = J-L1 = 'Yo + 'Y1> J-L* = J-Lr = 'Y3 + 'Y2· (192 ) 

3°. J-L = J-L2 = 'Yo + 'Y1 + 'Y2, J-L* = J-L; = 'Y3 + 'Y2 + 'Y1· (193) 

Summarizing the assertions of Lemmas 10.3-4 and 10.4-4, we arrive at the fol
lowing conclusion. If r = 0, 1, 2 is arbitrary, then YI-'r(x; A) and zl-';(x; A*) are 
the corresponding unique solutions of Cauchy type problems (Cr ) and (C;) in the 
classes AC{r} [0, a] and AC{,"),}[O,a]. It is useful to recall these problems: 

lL1/2y(X) + AY(X) = 0, x E (0, a), 

Lky(x)lx=o = LkY(O) = Ok,r (k = 0, 1,2). 

lLi/2Z(X) + A*Z(X) = 0, x E (0, a), 

Lkz(x)lx=CT = Lkz(O) = Ok,r (k = 0, 1,2). 

Now note that, as follows from the definition of YI-'(x; A) and from formulas 10.3 
(20k), 10.3 (21k), 10.3 (22k) (k = 1,2,3,4), for any way of choosing p, and p,*, all 
the functions 

are continuous in [0, a], except at the point x = 0, where they may have integrable 
singularities. Similarly, the functions 

are also continuous in [0, a], except at the point x = a, where they may have 
integrable singularities. Therefore the product of any two functions of (22) and 
(23) is of class L1(0,a). 

Further, note that, if y(x) E AC{r} [0, a] and z(x) E AC{,"),} [0, a] are any 
solutions of equations (201 ) and (2h)(which do not necessarily satisfy the initial 
conditions (202 ) and (212)), and if we denote formally 

P(A; A*) == faCT {z(x)lL1/2y(X) - y(x)lLi/2Z(X)} dx, (24) 
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then obviously 
P(AiA*) = (A* - A)U(YiZ), (25) 

where 

U(Yi z) = loa y(x)z(x)dx. (26) 

The following lemma formally establishes an important integral identity 
which may be considered as a special analog for operators lL l / 2 and lLi/2 of the 
classical Lagrange formula. Of course, the mentioned identity is undoubtedly valid 
if some additional conditions are satisfied. 

Lemma 10.4-5. Let y(x) E AC{-y} [0, 0"] and z(x) E AC{'r} [0, 0"] be any solutions 
of equations (201) and (2h),then 

2 

P(Ai A*) = L {Lky(O")LLkZ(O") - Lky(O)L;_kZ(O)} . (27) 
k=O 

Proof. Using the definitions of corresponding operators and the operations of or
dinary and fractional integration by parts, we obtain the following equalities: 

loa z(x)lL1/2y(x)dx 

= loa z(x)D-(1-r3) {d~ L2Y(X) } dx = loa D;;(1-r3) z(x) {d~ L2y(x) } dx 

Loz(x)L2y(x)l~ + loa {d(0"~X)LoZ(X)}D-(1-r2){d:LIY(X)}dX 
Loz(x)L2y(x)l~ + loa Liz(x) {d:L1Y(X)} dx. 

Repeating this argument we arrive at the equality 

which coincides with formula (27). 
If y(x) E AC{-y} [0, 0"] and z(x) E AC{'r} [0, 0"] are not only solutions of equa

tions (20d and (211), but they also satisfy the initial conditions (202) and (21 2 ), 

i.e. y(x) = Y/-'r (Xi A) and z(x) = z/-'; (Xi A*) (r = 0, 1, 2), then the formal represen
tation (27) of P(Ai A*) is indeed true. Moreover, this representation takes a simple 
form given in the following lemma. 
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Lemma 10.4-6. The following representations are true when we choose J.L and 
J.L * in three different ways. 
1 0. In the case (191), when J.L = J.Lo = 'Yo and J.L* = J.La = 'Y3, 

2°, 3°. In both cases (192) and (193) when respectively, J.L = J.L1 = 'Yo + 'Y1, J.L* = 
J.Li = 'Y3 + 'Y2 and J.L = J.L2 = 'Yo + 'Y1 + 'Y2, J.L* = J.L2 = 'Y3 + 'Y2 + 'Y1, 

P(>.; >'*) = {E1/2 (_a2 >.; J.L + J.L* - 2) - E1/2 (_a2 >'*; J.L + J.L* - 2)} al-£+I-£*-3. 
(29) 

Proof. Here we use formulas obtained in the proof of Lemma 10.3-4. 
1°. From formulas 1O.3(20k)(k = 1,2,3) it follows that 

and, similarly, 
L(jz(O) = E1/2 (_a2 >'*; 1), L(jz(a) = 1. 

Further, we obtain 

and, similarly, 

Also, we obtain 

and 
Liz(O) = ->.* E1/2 (_a2>.*; 3 - 'Y1 - 'Y2) a2-'Y1 -'Y2, Liz(a) = O. 

We insert these quantities into the right-hand side of (27) and, taking into account 
that 

J.L + J.L* = 'Yo + 'Y3 = 3 - 'Y1 - 'Y2 

in the considered case, we arrive at formula (28). 
2°. From formulas 1O.3(21k)(k = 1, 2, 3) it follows that 

and 

(30) 



Further, we obtain 

Finally, we obtain 
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LIY(O) = 1, LIy(a) = E1/ 2 (_a2>.; 1), 

L;:z(O) = El/2 (_a2 >'*; 1), L;:z(a) = 1. 

L2Y(0) = 0, L2y(a) = ->.E1/ 2 (_a2 >.; 3 - /'2) a2-'Y2, 

L;z(O) = ->. * El/2 (_a2 >'*; 3 - /'1) a 2-'Yl, L;z(a) = 0 
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and insert these quantities into the right-hand side of (27). Then, taking into 
account that 

in the considered case, we arrive at formula (29). 
3°. From formulas 10.3(22k)(k = 1, 2, 3) it follows that 

LoY(O) = 0, Loy(a) = E1/ 2 (_a2 >.; 1 + /'1 + /'2) a'Yl +"12, 

Loz(O) = El/2 (_a2 >'*; 1 + /'1 + /'2) a'Yl +"12, Loz(a) = O. 

Further, we obtain 

and 

LIY(O) = 0, LIy(a) = El/2 (_a2 >.; 1 + /'2) a'Y2, 

L;:z(O) = El/2 (_a2>.*; 1 +/'1) a'Yl, L;:z(a) = 0 

L2Y(0) = 1, L2y(a) = E1/ 2 (_a2>.; 1), 

L2Z(0) = E1/ 2 (_a2 >'*; 1), L2z(a) = 1. 

(31) 

We put these quantities into the right-hand side of (27) and, taking into account 
that I-l + I-l* = 3 + /'1 + /'2 in the considered case, we arrive again at formula (29). 

Remark. From the preceding lemma it follows that 

for y(x) = y!-'(x; >'), z(x) = z!-'* (x; >'*) and for any of three ways of choosing I-l and 
I-l*. This formula can be deduced also from 1.2(10) on the basis of (25)-(26). 

The following theorem is a consequence of Lemma 10.4-6. 
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Theorem 10.4-2. Let YJ.L(x; A) and zJ.L* (x; A*) be the solutions of the Cauchy type 
problems (201) - (202) and (21r) - (212), respectively. Then the following integral 
formulas are true: 

if J.L = J.Lo, J.L* = J.Lo , then 

( . ) _ AE1/2 (-0"2 A; 1 + v) - A* E1/2 (_0"2 A*; 1 + v) v 
U YJ.L, zJ.L* - A _ A* 0" , 

where 
1 + v = J.L + J.L* = J.Lo + J.L~ = '/'0 + '/'3, 0 < V ~ 1, 

and, if J.L = J.LI, J.L* = f.li or J.L = J.L2, J.L* = J.L'2, then 

where 

1 + v = J.L + J.L* - 2 = J.L1 + J.Li - 2 = 1, v = 0, or 

1 + v = J.L + J.L* - 2 = J.L2 + J.L; - 2 = 1 + '/'1 + '/'2, 1 ~ v < 2. 

(33r) 

(d) It must be mentioned that the statements of Theorem 10.4-2 are true for 
arbitrary parameters f.l ~ 0 and J.L* ~ o. Although this general assertion follows 
immediately from identities 10.2(10), if we put p = 1/2, a = J.L, f3 = J.L*, z = -A 
and A = -A *, nevertheless, we preferr to give a proof of Theorem 10.4-2 based 
essentially on the properties of functions y,,(x; A) and ZJ.L* (x; A*) arising from the 
fact that they are solutions of Cauchy type problems formulated in terms of integro
differential operators lL1/2 and lL~/2 of fractional order. The given proof is based 
also on an analog of the classical Lagrange formula. 

10.5 Boundary value problems and eigenfunction expansions 

Later on we frequently use the notations introduced in previous sections without 
references. 

(a) First we shall state a lemma which follows immediately from the expansions 
of functions yJ.L(x; A) and zJ.L* (x; A*), if the simple formulas 1O.2(19r) - (192) are 
used. 

Lemma 10.5-1. Each of the following formulas is true if we choose appropriate 
J.L and J.L*. 

1°. Let J.L = J.Lo = '/'0, f.l* = J.L~ = "(3 and let 

Vo = J.Lo + J.L~ - 1 = '/'0 + '/'3 - 1 (0 < Vo ~ 1). (1) 

Then 
D 1- vO DJ.L°yJ.Lo(x; A) = D2-'"Yo-'"Y3 D'"YoyJ.Lo(x; A) 

= -AE1/2 (-AX2; 1 + vo) x vo , 



or 

and let 

Then 

and also 
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D1-vODI'~z '(X'A*) = D2-ro-r3D'Y3 Z .(X'A*) 
(j (j 1'0' (j (j 1'0 ' 

= -A* E1/2 (-A*(o" - x)2; 1 + vo) (0" - xto. 

* {O Vr = J1r + J1r - 3 = 
1'1 + 1'2 

when r = 1 (V1 = 0), 

when r = 2 (1 ~ V2 < 2). 

D'Y2+'Y3-1Z .(x· A*) 
(j 1'1' 

= El/2 (-A*(o" - X)2; 1 + Vl) 
when r = 1, 

D-(l-'Y3)Z .(x· A*) 
(j 1'2' 

= E1/2 (-A*(o" - x)2; 1 + V2) (0" - xt2 
when r = 2. 
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(b) Now we state four boundary value problems relating to the ways of choosing 
J1 and J1*. 
Problem I consists in finding those values of A for which the solution Yl'o (x; A) 
of the Cauchy type problem (Co) satisfies the boundary condition 

D1- VODI'°y (x'A)1 =0. fJ-o , x=a 

Problem 1* consists in finding those values of A* for which the solution zl'~ (x; A*) 
of the Cauchy type problem (Co) satisfies the boundary condition 

Problem II consists in finding those values of A for which the solution Yl'r (x; A) 
of the Cauchy type problem (Cr ) satisfies the boundary condition 

Dl'r-Vr-ly (x' A)I = 0 (r = 1 2). 
P,r , x=u ' 
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Problem 11* consists in finding those values ofA* for which the solution zp.; (Xj A*) 
of the Cauchy type problem (C;) satisfies the boundary condition 

It is natural to call the desired values of A and A * the eigenvalues of the 
boundary value problems 1-I* and II - II*. Similarly, it is natural to call the cor
responding solutions Yp.(Xj A) and zp.* (Xj A*) the eigenfunctions of these problems. 
The existence of the solutions of the considered boundary value problems is estab
lished in the following two theorems. 

Theorem 10.5-1. 1°. The set of eigenvalues of problems I and 1* coincides with 
the sequence {Ak}O' (AO = 0) of zeros of the function 

zCu(Zj v) = ZE1/2 (-CT2Zj 1 + v) (v = Vo E (0,1]). (9t) 

2°. The set of eigenvalues of problems II and II* coincides with the sequence {Ak}f 
of zeros of the function 

where v = V1 = 0 when r = 1 and v = V2 E [1,2) when r = 2. 

Proof. According to Theorem 1.4-3, all zeros {Ak = Ak(CTj v)}f(O < Ak < Ak+1, 
1 ~ k < +00) of the function cu(Zj v)(O ~ v < 2) are simple and positive. 
Therefore assertions 1° and 2° follow immediately from conditions (71 ) - (72 ) 

and (8d - (82 ) of boundary value problems I - 1* and II - II* by formulas 
(2t) - (22 ), (51) - (52) and (61) - (62) of Lemma 10.5-1. 

The next theorem easily follows from the preceding one. 

Theorem 10.5-2. 1°. The boundary value problems I and 1* have correspond
ingly the following systems of eigenfunctions: 

and 

and 

{Zp.; (Xj Ak)}~ == {E1/2 (-Ak(CT - x)2j JL;) (CT - x)P.;-1 } ~ (r = 1,2). (112) 
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(c) Now we need to pass from systems (101)-(102) and (111)-(112) to the systems 
introduced in Chapter 5. This passage makes it possible to establish at the end 
of this chapter the important fact that Theorems 5.3-1 and 5.3-2 actually state 
expansions in terms of eigenfunctions of the non-ordinary boundary value problems 
stated above. To this end, we need to recall some definitions and notations from 
Chapter 5. Assuming v E [0,2), we denoted the sequence of zeros of the function 
t'O"(z;v) == E1/2(-a2z;l+v) by {Ak}f (0 < Ak < Ak+1, 1::; k < +00). The 
systems of functions 

were defined for T E (0, a) as follows: 

<Pk(T; J.L) = - t'~~A-: v) E1/2 (-Ak(a - T)2; 3 + v - J.L) (a - Tt-I-'+2 (k:2: 1), 

(13) 
where 0 ::; J.L < 3 + v; 

r(1 + v) (f)*(T· 11.) = 17-" (a - T)"-I-' 
TO"., r(1 + v - J.L) , 

(14) 

<Pk(T; J.L) = Akt'~~;k; v) E1/2 (-Ak(a - T)2; 1 + v - J.L) (a - T)"-I-' (k:2: 1), 

where ° ::; J.L < 1 + v. We also defined the systems of functions 

(15) 

where 

Using these definitions we can easily obtain several relations between systems 
(lOd - (102), (lId - (112) and (12), (15), if we take into account that 

Vo = J.L0 + J.Lo - 1, 0::; J.L0 < 1 + vo, 

Vr = J.Lr + J.L; - 3, 0::; J.Lr < 3 + Vr (r = 1,2). 

These relations are the following: 

ek(T;J.LO)=YI-'O(T;Ak) (k:2:0), v=Vo, 

<Pk(T;J.LO) = CkZI-'~(T;Ak) (k:2: 0), v = Vo, 

where 

(k :2: 1), 

(17) 

(19) 
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and also 

ek(TjJ.Lr)=Yl'r(TjAk) (k~l), V=Vr (r=1,2), (20d 

'Pk( Tj J.Lr) = CkZI'; (Tj Ak) (k ~ 1), v = I/r (r = 1,2), (202) 

where 

(21) 

The following theorem is a consequence of the mentioned relations and of Lemma 
5.2-2. 

Theorem 10.5-3. The systems (101), (102) and (l1d, (112) are biorthogonaJ, 
i.e., 

loU Yl'o(TjAk)ZI'(j(Tj Ak)dT = 8k,n/ci. (k,n = 0, 1, 2, ... ), 

loU Yl'r (Tj Ak)ZI'; (Tj Ak)dT = 8k,n/ Ck (k, n = 1,2, ... ), r = 1,2. 
(22) 

(d) Using formulas (18d - (182) and (201) - (202) we can reformulate the main 
Theorems 5.3-1 and 5.3-2 in terms of systems (101) - (102) and (l1d - (112) and 
thus to obtain a theorem on expansions in terms of eigenfunctions of our boundary 
value problems. First it is useful to recall those conditions which the parameters 
W, J.L, K and v satisfy in the mentioned theorems. 

In Theorem 5.3-1 we assumed 

-1 < W < 1,J.L = 3/2+w, K = 1+2w and 1/ E ~(K,2) = (w,w+1)n[0,2). (23) 

In Theorem 5.3-2 we assumed 

-1 < w < 1, J.L = 3/2+w, K = 1+2w and 1/ E ~*(K,2) = (w+1,w+2)n[0,2). 
(24) 

In view of these assumptions, it becomes necessary to discuss each of three ways 
of choosing J.L and J.L* separately. 
1°. If J.Lo = /0, J.Lo = /3 and I/o = J.Lo + J.Lo - 1 = /0 + /3 - 1, then we have 
I/o E (0,1) since 1/2 < /0, /3 :::; 1. So, if we put J.Lo = 3/2 + Wo (-1 < Wo :::; -1/2), 
then we shall obtain 

I/o = 3/2 + Wo + /3 - 1 = 1/2 + Wo + /3 E (wo + 1, Wo + 3/2) C (wo + 1, Wo + 2) 

= (wo + 1,wo + 2) n [0,2) = ~*(Ko,2), 

Le., (24) is satisfied. 
2°. Let J.Ll = /0 + /1. ILi = /3 + /2,1/1 = J.Ll + J.Li - 3 = ° and let J.Ll = 
3/2 + WI (WI = /0 + /1 - 3/2). Then, since 1/2 < /0 :::; 1 and ° < /1 :::; 1, we 
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have -1 < WI ~ 1/2. And it remains to observe that, provided 1'0 + 1'1 < 3/2, we 
have 111 = ° E (W1,W1 + 1) which implies 111 = ° E (W1,W1 + 1) n [0,2) = b.(""1,2). 
Thus, (23) is satisfied if it is assumed in addition that 1'0 + 1'1 < 3/2. 
30

• If J.L2 = 1'0 + 1'1 + 1'2, J.L2 = 1'3 + 1'2 + 1'1 and 112 = J.L2 + J.L2 - 3 = 1'1 + 1'2 E [1, 2), 
then we put J.L2 = 3/2+W2(W2 = 3/2-1'3 E [1/2,1)). In this case it is easy to verify 
that 112 E (W2,W2 + 1) = (3/2 - 1'3, 5/2 - 1'3) C [0,2). Hence (23) is satisfied. 

Now Theorems 5.3-1 and 5.3-2 can be easily reformulated in the following 
way. 

Theorem 10.5-4. If it is assumed J.L1 = 1'0 + 1'1 < 3/2 when r = 1 and the 
boundary value problems II and 11* are considered, then: 
10. Any function cp(x) E £2(0, a) can be expanded in the series of eigenfunctions 
of both problems I and II : 

00 

bk = Ck!aU cp(T)Z/L~(T;Ak)dT (k::::: 0), (25d cp(x) = :~::>kY/LO(X; Ak), 
k=O 

00 

cp(X) = LbkY/Lr(X;Ak), 
k=l 

bk = ck!aU cp(T)Z/L;(T;Ak)dT (k::::: 1,r = 1,2). 
(261) 

These series converge to cp(x) in the norm of £2(0, a). Besides, 

{ 

00 }1/2 
IIcpll2 :=:: II{bk}Z"112,-I<o = ~ Ibkl2(1 + k)-I<O, (27d 

1I\p1I, ~ II {bk}:" 11,,-<, ~ {~Ib, 1'(1+ w<' r' (r ~ 1,2), (28,) 

where ""r = -2(1 - J.Lr) (r = 0, 1,2). 
2°. Any function cp( x) E £2 (0, a) can be expanded in the series of eigenfunctions 
of both boundary value problems J* and J 1* : 

cp(x) = fakZ/L~(x;Ak)' ak = ck !au cp(T)Y/Lo(T;Ak)dT (k::::: 0), (252) 
k=O 
00 

cp(X) = LakZ/L;(X;Ak), 
k=l 

These series converge to cp(x) in the norm of £2(0, a). Besides, 

1I\p11, ~ II {ak}:,'" 11,,-;;; ~ {~ la;l'(1 + W;;; }'" , 

{ 

00 }1/2 
Ilcp112:=:: II{ak}r'11 2,_,Z,. = t; lakl 2 (1 + k)-'z" , 

where K:;. = -2(1 - J.L;) (r = 0,1,2). 

(r = 1,2), 



208 10 The simplest Cauchy type problems 

Note that Lemma 4.2-5 and formulas (19) and (21) are also used to prove 
the preceding reformulation of Theorems 5.3-1 and 5.3-2. 

(e) The operators 1L1/2 and 1L~/2 and the corresponding Cauchy type problems 
may be written in simpler forms. Namely, if we introduce the notations 

(r = 0, 1, 2) (29) 

then, using Lemmas 10.3-2, 10.3-4, 10.4-2 and 10.4-4, we arrive at the following 
theorem. 

Theorem 10.5-5. 10. If r = 0, 1, 2 is arbitrary, then: 
10. The function 

YJ.£r(X; A) = E 1/ 2 (-Ax2; JLr) xJ.£r-1 

is the unique solution of the Cauchy type problem 

y"(x) - qr(x) + AY(X) = 0, x E (O,a), 

LkY(O) = 6k,r (k = 0,1,2) 

in the class AC{-y}[O,aj. 
20 • The function 

is the unique solution of the Cauchy type problem 

Z"(X) - q;(x) + A*Z(X) = 0, x E (0, a), 

Lt,z(a) = 6k,r (k = 0,1,2) 

in the class AC{'''Y}[O,aj. 

(30) 

(31) 

The boundary value problems 1-1* and II- II* also can be written in simpler 
forms. Namely, 

h y"(X)-qO(X)+AY(X) =0, xE(O,a), 
Lky(O) = 6k,0 (k = 0,1,2), (321 ) 

D1- vo DJ.£°y(a) = ° (vo = ")'0 + ")'3 - 1, JLo = ")'0); 

I{ z"(x) - qo(x) + A*Z(X) = 0, x E (O,a), 
Lt,z(a) = 6k,0 (k = 0, 1, 2), (322) 

D~-vO D~~ z(O) = ° (vo = ")'0 + ")'3 - 1, JLo = ")'3); 

III y"(x) - qr(X) + AY(X) = 0, x E (0, a) (r = 1,2), 
LkY(O) = 6k,r (k = 0,1,2; r = 1,2), (331) 

DJ.£r- vr- 1y(a) = ° (r = 1,2; JL1 = ")'0 + ")'1, 

JL2 = ")'0 + ")'1 + ")'2, VI = 0, V2 = ")'1 + ")'2); 
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II; Z"(X)-q;(X)+A*Z(X) =0, xE(O,a) (r=1,2), 
L'kz(a) = Dk,r (k = 0,1,2; r = 1,2), (332) 

D~;-vr-1 z(O) = 0 (r = 1,2; fli = 'Y3 + 'Y2, 
fl; = 'Y3 + 'Y2 + 'Y1, 111 = 0, 112 = 'Y1 + 'Y2). 

As a result, we obtain the following theorem. 

Theorem 10.5-6. The assertions of Theorems 10.5-1, 10.5.2 and 10.5-4 remain 
true for the boundary value problems It - Ii and III-IIi. 

(f) We conclude this section with two particular cases of our boundary value 
problems where we have solutions very close to the classical ones. 

First we assume that in the boundary value problems It and Ii 'Yo = 1, 'Y3 E 

(1/2,1]' 0 < 'Y1, 'Y2 :::; 1 and 'Yo + 'Y1 + 'Y2 + 'Y3 = 3. Then flo = 'Yo = 1, flo = 'Y3 
and 110 = 'Yo + 'Y3 - 1 = 'Y3. Therefore, by Theorem 10.5-6, the set of eigenvalues 
Pdo(O = Ao < Al < A2 < ... ) of both problems It and Ii coincides with the 
set of zeros of the entire function 

The eigenfunctions of these problems are correspondingly 

In addition, if we put 'Y3 = 1, then 'Y1 + 'Y2 = 1, 0 < 'Y1, 'Y2 :::; 1 and flo = flo = 
1,110 = 1. Therefore in this case Ak = (7rk/a)2(k = 0,1,2 ... ) and the systems (34) 
become 

{ cos 7r: x } ~ and {cos 7rak (a - x) } ~ (35) 

Actually these are the same systems which, after suitable normalization, pass to 
the classical Fourier system 

(36) 

Next we assume 'Y3 = 1, 'Yo E (1/2,1]' 0 < 'Y1, 'Y2 :::; 1 and 'Yo +'Y1 +'Y2 +'Y3 = 3 in 
the boundary value problems I It and IIi, where r = 2. Then fl2 = 'Yo + 'Yl + 'Y2 = 
2, fl2 = 'Y3 +'Y2 +'Yl = 1 +'Y2 +'Y1 and 112 = 'Yl +'Y2· Therefore, by Theorem 10.5-6, 
the set of eigenvalues Pdl'(O < Al < A2 < ... ) of both problems lIt and IIi 
(when r = 2) coincides with the set of zeros of the entire function 
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The eigenfunctions of these problems are correspondingly 

(37) 

In addition, if we put /'0 = 1, then /'1 + /'2 = 1, ° < /'1,/'2 :::; 1, J.l2 = J.l2 = 1 
and V2 = 1. In this case Ak = (7fk/cy)2(k = 1,2 ... ), and the systems (37) take the 
forms 

{(~:r ,in ~: { and { (~:r ffin :'Ca -x{ (38) 

Actually, these are the same systems which, after suitable normalization, pass to 
the classical Fourier system 

2 . 7fk { }

OO V! sm -;;X 1 
(39) 

10.6 Notes 

10.2 The basis of this section lies on the paper of Hille-Tamarkin [1]. Some addi
tional properties of the operators D- a (-00 < 0: < +00) were obtained in collabo
ration with A. B. Nersesian and published in M.M. Djrbashian [5, Chapter 9, §1]. 
A very detailed account of the theory of fractional integrodifferentiation is given 
in the book of S.G. Samko-A.A. Kilbas-O.I. Marichev [1]. 

10.3-10.5 These sections contain an extended and improved account of the re
sults of the paper of M.M. Djrbashian-S.G. Raphaelian [5]. We must mention 
also the papers of M.M. Djrbashian-A.B. Nersesian [1-4], as they are close to 
the considered problems. We already mentioned (see Notes 5.4) that [1] contains 
the proofs of biorthogonal expansions in [0, l] in terms of linear combinations of 
pairs of Mittag-Leffier type functions. In [2, 3] these expansions were connected 
with definite boundary value problems generated by integrodifferential operators 
of fractional orders. The boundary value problems considered in this chapter are 
essentially different from them. Moreover, in contrast to [2, 3], the solution of the 
boundary value problems considered here reaches its logical completion, i.e., we 
obtain theorems on expansions in L 2 (0, cy) in terms of eigenfunctions. Finally, the 
Cauchy type problems with an arbitrary index n which are considered in [4] are 
similar to the Cauchy type problems of this chapter in the case when n = 3. 



11 Cauchy type problems and boundary value 
problems in the complex domain 
(the case of odd segments) 

11.1 Introduction 

In this chapter we state and solve some Cauchy type problems in the complex 
domain formulated in terms of associated integra-differential operators lLs+1/2 and 
1L:+1/2 (8 = 1,2, ... ) of fractional order. We represent explicitly the solutions of 
these problems by the Mittag-Leffler type function E s+1/ 2 (Zj J..L), and we prove an 
analog of the classical Lagrange formula for these solutions. Then we state some 
special boundary value problems in the complex domain by means of the mentioned 
operators. Namely, we assume that the solutions of the mentioned Cauchy type 
problems satisfy some boundary conditions at the ends of the sum of odd segments 

s 

1'2s+1(0')= U {Z =rexp(i1l'(h+ 1/2)), O:5r:5O'} 
h=-s 

situated in the Riemann surface Goo of Ln z. 
Using the results of Chapters 6 and 7, we prove the main Theorem 11.4-1 on 

the basis property of definite systems of functions in the space L2 { 1'2s+ 1 ( 0' ) }. The 
use of this theorem gives an exhaustive solution of the considered boundary value 
problems, i.e., we arrive at Theorem 11.4-2 on expansion in terms of eigenfunctions 
and adjoint functions converging in the norm of L2b2s+1(0')}' On the other hand, 
Theorem 11.4-1 immediately implies Theorem 11.4-3, which gives an explicit ap
paratus of basic Fourier type systems of entire functions for some weighted spaces 
L2 over the sum of odd segments of the complex plain 

s { . [h + 1/2] } r2s+1(0')= U z=rexpm 8+1/2 ,0:5r:50'1/(s+1/2) . 
h=-s 

These theorems are essential generalizations of the main results of Chapter 10. 

11.2 Preliminaries 

(a) An auxiliary parameter J..L exists in Theorem 2.4-1 on parametric representation 
ofthe class W;+~/2,u(where 8 ~ 1 is an integer and -1 < W < 1) of entire functions 
of order p = 8 + 1/2 and of type :5 0'. This parameter was defined by the formula 

Therefore, 

3/2 + 8+W 

J..L = 28 + 1 . 

( 1 1 1) (1 1 1) 
J..LE 2'2+8+1/2 = 2'2+p . 

(1) 

(2) 
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Two intervals of variation of parameter v E [0,2) were defined by formulas 7.2(9). 
If we replace w in these formulas by its expression which follows from (1), then 
the mentioned intervals can be written as follows: 

o ( 8 - 3/2 8 - 1/2) 
~s(1 ) = f..L + 28 + 1 ,f..L + 28 + 1 C [0,2), (3) 

o ( 8 - 1/2 8 + 1/2) 
~s(2 ) = f..L + 28 + 1 ,f..L + 28 + 1 C [0,2). (4) 

(b) Assuming that 8 ~ 1 is any integer, we denote 

as = exp {i 8 +7rl/2 } , (5) 

as was done in Sections 6.2 and 7.2. Next, we put for any a E (0, +00) 

(6) 

or, which is the same, 

(a,h = aa~hH/2)(SH/2) = aei7r(hH/2) (-8 ~ h ~ 8). (7) 

Further, we introduce the sum of 28 + 1 segments of length a situated in the 
Riemann surface GOO: 

s 

/'2sH(a) = U [O,(O",h] 
h=-s 

(8) s 

= U {TaihH/2)(SH/2) = Tei7r(hH/2), ° ~ T ~ a} . 
h=-s 

These segments start from their common endpoint ( = ° at angles 7r(h + 1/2) 
(-8 ~ h ~ 8), so that any pair of successive segments forms an angle of opening 
7r. Note that, if we take 

W = (1/(s+1/2), _ ;-1/(sH/2) 
Wa,h - '>a,h (-8~h~8), (9) 

then the sum of segments /'2sH (a) C Goo changes to the sum of segments of the 
w-plane 

s s 

f2sH(a) = U [O,Wa,h] = U {mZH/2, ° ~ r ~ a 1/(S+1/2)}. (10) 
h=-s h=-s 
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These segments are all of length a 1/(s+I/2) and form equal angles of opening 7r /(8+ 
1/2) with a common vertex at w = O. 

(c) Chapters 6 and 7 were based on some important facts related to the character 
of distribution of zeros of the entire function 

(11) 

It is useful to remember particularly that if v E [0,2), then the zeros {lLn}f(O < 
IlLnl :::; IlLn+ll, n ~ 1) of the function (11) are simple and are situated on the sum 
of rays 

r 28+1 = U {z=rexp[i8:~/2]}' O:::;r<+oo. (12) 
h=-8 

Note also that we have given a precise order of numeration of the sequence 
{lLn}f C r 2s+1. 

(d) One can easily verify that, if the notations (6) are used, then the identities 
7.2(71) - (72 ) can be written down as follows: 

(28 + 1)a2~+1 ZS El/2 (_a2z 2s+\ 1 + v) 

_ ~ -(h+1/2)s E ( (1/(8+1/2). + 1 ) 
- L...J as s+1/2 z u,h , v 28 + 1 

h=-s 

(8 ~ 1), 
(13) 

(28 + 1)a ~:$~ zS+1 E 1/ 2 (_a2 z2s+1; 1 + v) 

= ~ a-(h+l/2)(s+l) E (Z(I/(S+1/2).v __ 1_) 
L...J s s+1/2 u,h , 28 + 1 

h=-s 

(8 ~ 1). 
(14) 

11.3 Cauchy type problems and boundary value problems containing 
the operators lLs+1/2 and lL:+1/2' 

Let 
GOO = {( : 1 Arg (I < +00,0 < 1(1 < +oo} (1) 

be the Riemann surface of the function Ln z. Assume G c Goo is any set of points 
which is star-shaped with respect to the point ( = 0 of the branching of Goo. In 
other words, we assume that G contains the whole interval (0, (0), if it contains 
the point (0. Now, if a function y«) is given on G, and (0 EGis an arbitrary 
fixed point, then the operations of fractional integration and differentiation of 
order a E (0,+00) can be formally defined on the interval (0,(0) by the following 
formulas: 

1 rt: 
D-Oty«() = r(a) 10 «( - w)Ot-ly(w)dw, (E (0,(0), 

DOty«() = :;P {D-(P-Ot)y«()} , (E (0, (0) (P - 1 < a :::; p,), 

(2) 
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where the integration and differentiation operations are assumed to be performed 
along the interval (0, (0) eG. So, we have defined the operations of integra
differentiation with the origin at ( = 0. In a similar way we can also define the 
integra-differentiation operations of order a E (0, +(0) with the end at (0 EG. To 
this end we put 

( E (0, (0), 
(3) 

(E (0,(0) (p-1 < a :Sp) 

assuming again that integrations and differentiations are performed along (0, (0). 
Of course, we must assume in addition 

D-Oy«) =- D+Oy«) =- y«), (E (0, (0), 

DZ"a°y«) =- Dto°Y«) =- y«), (E (0, (0). 

It is obvious that the propositions of Section 10.2 remain true for the introduced 
definitions (2) and (3) of fractional integra-differentiation in the complex domain 
for any set of points G e Goo star-shaped with respect to ( = 0. We shall give 
below a pair of formulas which simply follow from 10.2(19d - (192 ). To this end 
we assume I", = {( = rei'" : ° < r < +oo} (I<pl < +(0) to be an arbitrary ray of 
the Riemann surface Goo. Then 

( E I"" (4) 

(5) 

for arbitrary "y E (-1, +(0), a E (-00, +(0) and an arbitrary point (0' = aei ", E l", 
(0 < a < +(0). We shall assume a E (0, +(0) to be a given fixed number. 

(a) Now we introduce some functions which play an important role. 
Let s .::::: 1 be an integer, let ° < fL, fL* < +00. Also let A and A* be arbitrary 

complex numbers. If we set 

Y (I". A) = E (AI"1/(8+1/2). 11.) 1"1"-1 
8+1/2,1-' ,>, - 8+1/2 '> ,,- '> (6) 

and 
(7) 

for any ( E (0, (0'), then we can observe that, since the point (0' E Goo is not fixed 
for a given a E (0,+00), these formulas define the functions Y8+1/2,1-'«;A) and 
Z8+1/2,1-'*«;A*) in the whole domain G': = {( E Goo: 1(1 < a}. 
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(b) Suppose 8 2: 1 is an integer, the parameters J.L and J.L' satisfy the conditions 

2/3 ::; J.L, J.L' ::; 1, if 8 = 1, 

1/2 < J.L, J.L' < 1/2 + 1/(8 + 1/2), if 8 2: 2. 
(8) 

Further, we deal with the class AC[O, (0-] of functions which are absolutely contin
uous in the segment [0, (0-], where (0- E Goo is an arbitrary point. We shall say that 
the functions y( () and z( () are of classes AC p [0, (0-] and AC;* [0, (0-], respectively, 
if the following conditions are satisfied: 

The operators 

(i) y«() E L1(0,(0-) and z«() E L1(0,(0-), 

(ii) Loy( () == D-(l-p)y( () E AC[O, (0-], 
LoY«() == DZu(l-P*) z«() E AC[O, (0-]. 

ILs+1/2Y( () == D-(p-1/(s+1/2)) { d~ LoY( () } 

= D-(p-1/(s+1/2)) DPy«(), 

1L:+1/2Z( () == DZu(P* -1/(8+1/2)) { d((:-() Loz( () } 

= DZ}P*-1/(8+1/2)) D~: Z«() 

(9) 

(10) 

(11) 

(12) 

will be considered in the mentioned classes. Note that, as follows from (10), both 
quantities 

mo(y) = Loy«()I(=o and mo(z) = Loz«()I(=(" (13) 

are finite for any functions y«() E ACp[O, (0-] and z«() E AC;* [0, (0-]. 

( c) Now we pass to the proofs of the main results of this section. Henceforth we 
assume that 8 2: 1 is any integer and that the parameters J.L and J.L* satisfy condition 
(8). Note also that the lemmas established below are similar to those of Section 
10.3, and therefore some fragments of their proofs will be omitted. Finally, note 
that we generally omit references on propositions of theory of fractional integra
differentiation given in Section 10.2. 

Lemma 11.3-1. Let y«() E ACp[O,(o-] and z«() E AC;* [0, (0-], where (0- E Goo is 
an arbitrary point. Then the following representations are true almost everywhere 
in (0, (0-): 

(p-1-1/(8+1/2) 
1L8+1/2Y«() = D 1/(,+1/2)y«() - mo(y) f(J.L _ 1/(8 + 1/2))' (14) 

* _ 1/(8+1/2) * «(0- - ()p*-1-1/(,+1/2) 
1LS+1/2Z«() - D(u z«() - mo(z) f(J.L* _ 1/(8 + 1/2)) . (15) 
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Proof By formula (11), 

D-1/(S+1/2)lLs+1/2Y(() = D-1/(s+1/2) D-(1-'-1/(s+1/2» DI-'y(() 

= D-I-'DI-'y(() 

almost everywhere in (0, (u). But, by proposition 80 of Section 10.2, 

(1-'-1 
D-I-' DI-'y(() = y(() - mo(Y)

r(JL) 

almost everywhere in (0, (u). Hence 

(16) 

(17) 

almost everywhere. Applying the operator D 1/(s+1/2) to both sides of this formula 
and using (4), we obtain representation (14).Representation (15) is obtained in a 
similar way. 

Lemma 11.3-2. 10. The Cauchy type problem 

ILs+1/2Y(() - AY(() = 0, 

Loy(()lc=o = 1 

considered in the class ACI-'[O, (u] has the unique solution 

20 • The Cauchy type problem 

1L:+1/2Z(() - A*z(() = 0, 

L~z(()lc=c" = 1 

considered in the class AC~* [0, (u] has the unique solution 

(19) 

(21) 

Z (r. '*) - E ('*(r r)1/(S+1/2). *) (r r)I-"-l L (0 r ) s+1/2,1-'* ,>,A - s+1/2 A ,>U - '> ,JL ,>u - '> E 2 ,'>U· 

(22) 

Proof 10. Obviously 
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Hence, using (4) we easily obtain 

L OY8+1/2,1'( (; A) = E8+1/2 (A(1/(8+1/2); 1), L OY8+1/2,p( (; A) 1<=0 = 1, 

lL Y ((. ') - D-(p-1/(8+1/2» {~E (A(1/(8+1/2). 1)} 8+1/2 8+1/2,p ,1\ - d( 8+1/2 , 

= D-(1'-1/(8+1/2» {AE8+1/ 2 (A(1/(8+1/2); l/(s + 1/2)) (1/(8+1/2)-1} 

= AE8+1/2 (A(1/(8+1/2); f.t) (1'-1 = AY8+1/2,p ((; A). 

Thus function (20) of ACp[O, (0' J is a solution of Cauchy type problem (19). It is 
obvious that the uniqueness of this solution will be established as soon as we prove 
the uniqueness of the solution y( () = ° of the homogeneous Cauchy type problem 

lL8 +1/2Y( () - AY( () = 0, (E(O,(O'), (23) 

(24) 

in AC I' [0, (0' J. To this end, suppose y( () E AC p [0, (0' J is any solution of problem 
(23)-(24) and observe that condition (24) can be written in the form mo(Y) = 0. 
By (18), 

y(() = AD-1/(8+1/2)y((), 

and y( () is a solution of the Volterra homogeneous integral equation 

where a = (s + 1/2)-1 E (0, 2/3J. Hence y(() == 0, ( E (0, (0'). 
2°. This assertion can be proved in a similar way based on formula (5). 

Theorem 11.3-1. The following formula is true for the solutions Y8+1/2,p((; A) 
and Z8+1/2,p*((; A*) of Cauchy type problems (19) and (21): 

10' Y8+1/2,p( (; A)Z8+1/2,p* ((; A * )d( = 

E ( '(S+i/2. + * 1) E ('*I'S+i;2. + * 1) 8+1/2 1\ 0' ,f.t f.t - s:ti72 - 8+1/2 1\ ,>0' ,f.t f.t - s:ti72 (25) 

A - A* 
X (l'+p*-1/(8+1/2)-1. 
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Proof. Using definitions (11) and (12) of operators lLs+1/2 and lL;+1/2' formulas 
(4) and (5) and integration by parts, we obtain 

r(a 
oX io Ys+1/2,1'((; oX)Zs+1/2,1'* ((; oX*)d( 

(a 
= io [lL8+1/ 2Ys+1/2,1'((;oX)] Z8+1/2,1'*((;oX*)d( 

= l(a [D-(1'-1/(S+1/2)) dd(LoY8+1/2,1'((;oX)] Zs+1/2,1'*((;oX*)d( (26) 

= l(a {:(LoYS+1/2,1'((; oX) } DZ}I'-1/(8+1/2)) Zs+1/2,1'* ((; oX*)d( 

= l(a {:(LoYS+1/2,1'((; oX)} Zs+1/2,1'+1'*-1/(s+1/2)((; oX*)d(. 

But 

Zs+1/2,1'+1'*-1/(s+1/2)((; oX*) 

((" _ ()I'+I'* -1-1/(8+1/2) * * 
== r(J.t + J.t* - l/(s + 1/2)) + oX Z8+1/2,1'+1'* ((; oX ), 

(27) 

and consequently 

(28) 

where 

r(a d 
h = oX* io Zs+1/2,1'+1'*((; oX*) d(LoYS+1/2,1'((; oX)d(. (30) 

Further, obviously 

1 h = ---:;------7" 

r (J.t + J.t* - S+~/2) 
r(a * 1 

X io ((" - ()i'+1' -1- 8+1/2 oXYs+1/2,1/(8+1/2) ((; oX)d( (31) 

= oXDI'+I'* -1/(8+1/2) Y8+1/2,1/(s+1/2) ((; oX) I 
(=(a 

= oXYs+1/2,1'+1'* ((; oX) I (=(a = oXES+1/ 2 ( oX(~/(8+1/2); J.t + J.t*) (~+I'* -1, 
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12 = ).* [LOYs+1/2,J.L«(; ).)] Zs+1/2,J.L+J.L*«(; ).*)I~" 
r(" d 

+).* io [LOYs+1/2,J.L«(; ).)] d«(a _ () Zs+1/2,J.L+J.L*«(; )'*)d( 

= ). * Ys+1/2,1 «(; ).)Zs+1/2,J.L+J.L* «(; ). *) I~" 

+).* 1(" [D-(1-J.L)YS+1/2,J.L«(;).)] Zs+1/2,J.L+J.L*-1«(;)'*)d( 

= -). * E S+1/ 2 ( ). * (.~/(s+1/2); J.t + J.t* ) (:;+J.L*-1 

r(" 
+).* io Ys+1/2,J.L«(;).)Zs+1/2,J.L*«(;).*)d(. 

Combining formulas (28), (31) and (32), we obtain 

r(" 
(). - ).*) io Ys+1/2,J.L«(;).)Zs+1/2,J.L*«(;).*)d( 

= )'Es+1/2 ().(~/(S+1/2); J.t + J.t* ) (:;+J.L*-1 

-).* E8+1/2 ().*(~/(8+1/2);J.t + J.t*) (:;+J.L*-1. 

It remains to observe that this formula coincides with (25). 
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(32) 

(33) 

Remark. Identity (25) can be directly derived from formula 1.2(10) where we as
sume p = s + 1/2, 0: = J.t and f3 = J.t*, but we preferred to give another proof based 
on the fact that Y s+1/2,J.L«(;).) and Z8+1/2,J.L* «(; ).*) are solutions of the Cauchy 
type problems (19) and (21). 

(d) We shall now formulate two pairs of boundary value problems assuming again 
that s 2 1 is any integer, that the parameters J.t and J.t* satisfy the conditions (8) 
and that v E [0,2). 
Problem 18+1/2 consists in finding those values of ). for which the solution 
Y8+1/2,J.L«(;).) of the Cauchy type problem (19) satisfies the additional boundary 
condition 

~ 0:-v(h+1/2)(s+1/2) D-(v+1/(28+1)-J.L)Y (I'. ).)1 = 0 
~ s 8+1/2,J.L ':" 

h=-s (=(",h 

(35) 

at the endpoints (a,h (-8 ::; h ::; 8) of the sum of segments 1'28+1 (a), 
Problem 1:+1/2 consists in finding those values of ). * for which the solution 
Zs+1/2,J.L* «(; ).*) of the Cauchy type problem (21) satisfies the additional boundary 
condition 

~ 0:-v(h+l/2)(8+1/2) D-(v+l/(28+1)-J.L*) Z .(1'. ).*)1 = 0 
~ 8 (",h 8+1/2,J.L ':" 

h=-8 (=0 

(36) 

at the common endpoint ( = 0 of the segments of I'2s+ 1 (a), 
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The second pair of boundary value problems is formulated as follows. 
Problem IIs+1/2 consists in finding those values of A for which the solution 
Ys+1/2,1-'((; A) of the Cauchy type problem (19) satisfies the additional boundary 
condition 

~ a-I/(h+1/2)(s+1/2) D-(I/-1/(2s+1)-I-')Y (I'. A)I = 0 
~ s s+1/2,1-' ,>, 

h=-s (=(<7,h 

(37) 

at the endpoints (a,h (-s s:; h s:; s) of the segments of 1'2s+1 (0'). 
Problem 11;+1/2 consists in finding those values of A * for which the solution 

Zs+1/2,1-'* ((; A*) of the Cauchy type problem (21) satisfies the additional boundary 
conditions 

~ a -I/(h+1/2)(s+1/2) D-(I/-1/(2s+1)-I-'*) Z * (I'. A *) 1 = 0 
~ S (<7,h s+1/2,JL ,>, 

h=-s (=0 

(38) 

at the common endpoint (= 0 of the segments Of1'2s+1(O')' 
Later on the desired values of A and A * will be called eigenvalues of the for

mulated boundary value problems, and the corresponding solutions Ys+1/2,JL((; A) 
and Zs+1/2,JL* ((; A *) of Cauchy type problems will be called eigenfunctions of these 
problems. 

(e) Denote the sums (35) and (36) respectively by R s+1/2(A) and R;+1/2(A*), and 
the sums (37) and (38) respectively by Ss+1/2(A) and S;+1/2(A*). 

Lemma 11.3-3. The following identities are true: 

1 0. R 8+ 1/ 2 (A) = (28 + 1)0'1/ A8 El/2 (_0'2 A28+1; 1 + l/) , 
R:+l/2(A*) = Rs+1/2(A*). 

2°. S8+1/2(A) = (28 + 1)0'1/ As+1 E1/2 (_0'2 A28+\ 1 + v) , 
S;+1/2(A *) = Ss+1/2(A *) 

Proof. 10. It is easy to see that 

D-(I/+1/(2s+1)-JL) Ys+1/2,1-' ( (; A) I (=(<7,h = Ys+1/2,I/+1/(28+1) ((; A) I (=(<7,h 

= E 8+ 1/2 ( A(!:~S+1/2); v + 1/ (2s + 1») (~t1/(2S+1)-1 (-8 s:; h s:; 8). 

Thus, using the identity 11.2(13), we obtain 

Rs+1/ 2 (A) 

(39) 

(40) 

(41) 

= ~ -I/(h+1/2)(s+1/2) E (AI'1/(S+1/2). v + _1_) (1/+1/(28+1)-1 
~ as s+1/2 '>a,h ' 28 + 1 a,h 

h=-s 

= 0'I/+1/(2s+1)-1 ~ E (A(1/(S+1/2). v + _1_) a -(h+1/2)s 
~ 8+1/2 a,h , 28 + 1 s 

h=-s 

= (28 + 1)0'1/ AS E1/2 (_0'2 A2s+1; 1 + v) . 
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Thus the first of identities (39) is proved. The proof of the second is similar. 
2°. Identities (40) can be proved in the same way, but this time the proof is based 
on formula 11.2(14). 

The following theorem is an immediate consequence of the preceding lemma 
and of the formulations of boundary value problems given above. 

Theorem 11.3-2. If s ~ 1 is any integer, J.L and J.L* satisfy the conditions 

2/3 ::; J.L, J.L* ::; 1 when s = 1, 

1/2 < J.L, J.L* < 1/2 + 1/(s + 1/2) when s ~ 2 

and v E [0,2), then: 
1 0. The sets of eigenvalues of both boundary value problems Is+1/2 and 1;+1/2 
coincide with the sequence {J.Ln}O" (J.LO = 0) of zeros of the entire function 

Thus all these eigenvalues are simple with the exception of J.Lo = 0 which is of 
order s. 
2°. The sets of eigenvalues of both boundary value problems IIs+1/2 and 1-':+1/2 
coincide with the sequence {J.Ln}O" (J.Lo = 0) of zeros of the entire function 

Thus all these eigenvalues are simple with the exception of J.Lo = 0 which is of 
order s + 1. 

(f) It is useful to give explicit representations of eigenfunctions of both pairs of 
considered boundary value problems, but it is necessary first to introduce some 
notations. 

Let s ~ 1 be an integer, let 0 < J.L, J.L* < +00 and also let v E [0,2). As 
in Section 11.2(c) we shall denote by {J.Ln}]'o the sequence of zeros of the entire 
function 

Further, we denote 

8-n 

Yv,n(() == 8>.-n {Ys+1/2,/L«(; >.)} IA=O 

r(1 - n) rn/(s+1/2)+/L-1 I" (0 1") < 0 
r(J.L - n/(s + 1/2» I:. , I:. E ,1:."., n - , 

Yv,n(() == Y 8+1/2,/L((; J.Ln) 

- E (II. 1"1/(8+1/2). 11.) 1"/L-1 - 8+1/2 ,-nl:. ''- I:. , 
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( E (0, (0")' -(8 - 1) ::; n ::; 0, 

Z~~~(() == :;::n {Zs+1/2,jl' ((; A)} 1>.=0 

r(l + 8 + n) (r r)~+jl'-l () 
= r (".* +~) 1,0" - I, 8+1/2 ,( E 0, (0" ,-8 ::; n ::; 0, 

t'"' s+1/2 

Z~~~ (() == Z~~~ (() == Zs+1/2,jl' ((; Pn) 

= Es+1/2 (Pn((O" - ()1/(S+1/2);p*) ((0" - ()jl'-l, (E (0, (O"),n 2: l. 

Obviously these formulas define the introduced functions in the whole domain 
G': = {( E Goo: 1(1 < a}. 

Theorem 11.3-3. If 82: 1 is an integer, P and p* satisfy the conditions 

2/3 ::; p, p* ::; 1 when 8 = 1 

1/2 < p, p* < 1/2 + 1/(8 + 1/2) when 8 2: 2 

and v E [0,2), then: 
10. The sequence of functions 

(44) 

is a system of eigenfunctions (when n 2: 0) and adjoint functions (when 82: 2 and 
-(8 - 1) ::; n ::; -1) of the boundary value problem 1S+1/2' On the other hand, 
the sequence of functions 

{ (1) }+oo 
Zv,n (() -(s-l) (45) 

is a system of eigenfunctions (when n > 0 and n = - (8 - 1)) and adjoint functions 
(when 8 2: 2 and -(8 -1) < n::; 0) of the boundary value problem 1;+1/2' 
20 • The sequence of functions 

(46) 

is a system of eigenfunctions (when n 2: 0) and adjoint functions (when -8 ::; n ::; 
-1) of the boundary value problem IIs+1/ 2 ' On the other hand, the sequence of 
functions 

(47) 

is a system of eigenfunctions (when n > 0 and n = -8) and adjoint functions 
(when -8 < n ::; 0) of the boundary value problem II;+1/2' 
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Proof. If Theorem 11.3-2 and relations (42I) - (422), (431) - (433) are taken into 
account, then the desired assertions easily follow from the definitions of eigen
values and eigenfunctions and from the ordinary method of definition of adjoint 
functions. As we shall see later, this method is stipulated also by the explicit formu
las for biorthogonal systems of 28 + I-dimensional vector functions of L~S+1(O, 0") 
established in Chapter 7. 

11.4 Expansions in L2 b2s+ 1 (O")} in terms of Riesz bases 

It is necessary to give beforehand a summary of some notations and results of 
Chapter 7. 

(a) In Chapter 7 it was assumed 

3/2+8+W (1 1 1) 
J.L = 28 + 1 E 2' 2 + 8 + 1/2 

(1) 

for any integer 8 2:: 1 and for any W E (-1, 1). Besides, it was assumed there 

= I+2(w-8) =2( -1) 
K,-s 28 + 1 J.L, (2) 

and that the condition v E [0,2) is satisfied whenever the parameter v is present. 
In addition {J.Ln He was assumed to be the sequence of zeros of the entire function 

(3) 

The following non-intersecting intervals, in which v varies, were also introduced in 
Chapter 7: 

o ( 8 - 3/2 8 - 1/2) 
~s(1 ) = J.L + 28 + 1 ,J.L + 28 + 1 C [0,2), 

o ( 8 - 1/2 8 + 1/2) 
~s(2 ) = J.L + 28 + 1 ,J.L + 28 + 1 C [0,2). 

(b) When v E [0,2), the sequence of vector functions 

(4) 

was defined as follows: 

K,n,h(r)==a;(h+1/2)n r(I-n) r-.+1/2 +1-'-1 

r (J.L - S+~/2) 
(-8 ~ h ~ 8, n ~ 0), 

K,n,h(r) == ES+1/2 ( aZ+1/2 J.Lnr1/(S+1/2); J.L) rl-'-l (-8 ~ h ~ 8,n 2:: 1). 
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(c) When II E ~s(1°), the parameter 

3/2 - 8 - W 3 
T/2,0 = II + 28 + 1 = II + 28 + 1 - J.l (6) 

was introduced. Using this parameter, the sequence of vector functions 

{n(1)(T'8)}+OO == {{n(1) (T'8)}S __ }+oo 7 E (0,0') (7) 
m , -(s-l) m,h' h- s -(s-I)' 

was defined as follows: 

_y ( ) ( ) .-It'''' +'1/20- 1 
n(1) ( . ) _ (h+l/2)m a r 1 + II 0'-7 .+1/2, (81) 

m,h 7,8 - 0:8 (28 + l)r(l - m) r (S-l+m + '11 ) , 

s+I/2 ·/2,0 

when -(8 - 1) :::; m:::; 0, -8:::; h :::; 8 and 

-(h+1/2)(s-l) _y 
n(1) ( . ) _ O:s a 
Hm h 7,8 - (2 ) (;'/ ( ) 

, 8 + 1 J.l'inc- s+1/2,0' J.lm; II (82) 

X Es+1/2 (o:Z+1/2 J.lm (0' - 7)1/(s+1/2); T/2,0) (0' - 7)'1/2,0- 1 

when 1 :::; m < +00 and -8 :::; h :::; 8. Besides, in Chapter 7 we moved from system 
(7) to the system 

{W~)(7)}~(:'_1) == {{W~;h(7))h=-8} ::-1)' 7 E (0,0'), (9) 

where 

W~;h(7) == n~:h(7; 8), 7 E (0,0'), -8:::; h:::; 8, -(8 -1) :::; m < +00. (10) 

It was also proved that, when II E ~s (10 ), the systems of vector functions 

(11) 

are biorthogonal in L~s+1(O,a), i.e., for any nand m (-(8 -1):::; n,m < +(0) 

(12) 

(d) When II E ~s(20), we have introduced the parameter 

1/2 + 8 +w 1 
T/2,1 = II - 28 + 1 = II + 28 + 1 - J.l, (13) 
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which was used in the definition of the vector functions 

rE(O,a). (14) 

These vector functions were defined as follows: 

Vr(l ) ( )2.±.!!!:...+7J21-1 
0(2) (T" 8) _ a(h+1/2)m a- + v a - r 8+1/2, ( 151) 

m,h , - 8 (28 + l)r(l - m) r (...ti.rrL + TJ ) 
8+1/2 2,1 

when -8:S; m :s; 0, -8 :s; h :s; 8 and 

when 1 :s; m < +00 and -8 :s; h :S;s. As in the preceding case, we moved from (14) 
to the system 

where 
W(2) (r)=0(2) (r;8) (rE(0,a),-8:S;h:S;8,m"2-8). (17) m,h m,h 

In Chapter 7 it was proved that, when v E ~8(20), the systems of vector functions 

(18) 

are biorthogonal in L~s+1(O, a), i.e., 

(e) Since "'-8 = 2(J.l-1) by (2), the assertions of Theorem 7.4-4 can be formulated 
also in the following way: 
10. If v E ~s(1 0), then each of the biorthogonal systems of vector functions 

(20) 

is a Riesz basis of L~S+l(O,a). 
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2°. If V E D.s(20), then each of the biorthogonal systems of vector junctions 

is a Riesz basis of L~s+1(O,a). 

(f) Remember, that we had defined the following sum of segments of the Riemann 
surface Goo: 

s 

'Y2s+1(a) = U [0, (u,h] 
h=-s 

s 

= U {raih+l/2)(S+I/2) = rei7r(h+1/2) : r E [0, a] } , 
h=-s 

where (u,h = aa1h+1/2)(s+1/2) = aei7r(h+1/2) (-s :::; h :::; s). Now we introduce the 
Hilbert space L2b2s+1(a)} of functions ep(() having the finite norms 

(22) 

Then, evidently, the inner product of any two functions ep(() and 'I!(() of 
L2 b2s+1 (a)} is 

[ep, 'I!] == 1 ep(()ep(()ld(1 
1'28+1(U) 

(23) 

and 
(24) 

(g) Remember that, assuming s ~ 1 is an integer, ° < J.L, J.L* < +00 and v E [0,2), 
we had introduced by formulas (421) - (422 ) and (431) - (433) of Section 11.3(f) 
the systems of functions 

(25) 

It appears that functions of these systems, if considered only on 'Y2s+1 (a), are 
closely connected with vector functions of the systems 

{ ( )}+oo {n(1) ( . )}+oo 
/'i,n r -00' Urn r, s -(s-I)' (26) 
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which were considered above. Namely, the following equalities may easily be veri
fied. 

1) Let 1/2 < p, < 1/2 + 1/(8 + 1/2) and v E [0,2). Then for any r E (0, a), 
h( -8::; h ::; 8) and n( -00 < n < +00) 

") (;)1 = ") (ra(h+1/2)(S+1/2)) 
..Yv,n'" (E[O,(a,h] ..Yv,n s 

(27) 
= ai,..-I)(h+1/2)(s+1/2) I\;n,h( r). 

2) Let 1/2 < p, < 1/2+1/(8+1/2), v E ~s(10), and also let p,* be determined 
by the relation p, + p,* = v + 3/(28 + 1). Then 1/2 + 1/2(8 + 1/2) < p,* < 1/2 + 
1/(8 + 1/2) and, in addition, 1]2,0 = p,* as it follows from (6). Therefore, for any 
r E (O,a), h(-8::; h::; 8) and m(-(8 -1)::; m < +00) 

Z(1) (() I = Z(I) (ra(h+1/2)(S+I/2)) 
v,m (E[O,(a,h] v,m s 

= a(,..*-I)(h+1/2)(s+1/2)a(h+1/2)(s-I)C(1) n(l) (7" 8) 
8 8 B,v,m m,h , , 

where 

c~~2,m = { (28 + 1)a:r;8 ~ m)r(l - m)r-1(1 + v) 
(28 + l)a P,me s+1/2,u(P,m; v) 

when - (8 - 1) ::; m ::; 0, 

when 1 ::; m < +00. 
(282) 

3) Let 1/2 < p, < 1/2+1/(8+1/2), v E ~s(20) and also let p,* be determined 
by the relation p, + p,* = v + 1/(28 + 1). Then 1/2 < p,* < 1/2 + 1/2(8 + 1/2) and, 
by (13), 1]2,1 = p,*. Therefore, for any r E (0, a), h(-8::; h::; 8) and m(-8::; m < 
+00) 

Z(2) (()I = Z(2) (ra(h+l/2)(S+1/2)) 
v,m (E[O,(a,h] v,m s 

= a(,..*-I)(h+1/2)(s+I/2)a(h+1/2)sC(2) n(2) (7" 8) 
8 S s,v,m m,h , , 

where 
C(2) = { (28 + l)aV r(l + 8 + m)r(l - m)r-1(1 + v), 

B,V,m (28 + 1)av ,,8+1e, (". v) 
'-m B+1/2,0" ,-m, , 

-8 ::; m ::; 0, 

1::; m < +00. 

To prove the next lemma, we have to introduce two new systems of functions: 

{ -(I) } +00 and {-(2) } +00 
Zv,m(() -(s-l) Zv,m(() -B ' (30t) 

where 

i(j) (() = (i.) I-v zy,~(() 
V,Tn 1(1 C(j) (j = 1,2; -(8 + j - 2) ::; m < +00). (302) 

B,l/,m 

For any ( E [0, (O",h] (-8::; h ::; 8) and m( -(8 + j - 2) ::; m < +00) these equalities 
can obviously also be written in the form 

(") 
Z- (j) (I') = (l-v)(h+1/2)(s+1/2) Zv:m( () 

v,m ." a B (j) 
CS,l/,m 

(j = 1,2). (31) 
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Lemma 11.4-1. 1°. If 1/2 < fL < 1/2 + 1/(8 + 1/2), v E ~s(10) and fL* = 
v + 3/(28 + 1) - fL, then the systems of functions 

and { -(1) }+oo 
Zv,m(() -(s-1) (32d 

are biorthogonal in L2{-r2s+1(O")}, i.e., 

(-(8 - 1) ::; n, m < +00). (33d 

2°. Ifl/2 < fL < 1/2 + 1/(8 + 1/2), v E ~s(20) and fL* = v + 1/(28 + 1) - fL, then 
the systems of functions 

are biothogonal in L2{-r2s+1 (an, i.e. 

[Y . i(2) j- 6 lI,n, v,m - n,m (-8::; n, m < +00). 

Proof. If j = 1,2 and -(8 + j - 2) ::; n, m < +00, then obviously 

1 s r''''h = (J) L ai1- V )(h+1/2)(S+1/2) in Yv,n(()Z~~/n(()ld(l. 
Cs,v,m h=-s 0 

(34) 

If we use formulas (27), (281), (291) and take into account the simple relation 

(1 - v)(h + 1/2)(8 + 1/2) + (fL - 1)(h + 1/2)(8 + 1/2) 

+ (fL* - 1)(h + 1/2)(8 + 1/2) + (h + 1/2)(8 + j - 2) = 0 (j = 1,2), 
(35) 

then it will follow from (34) that 

= ""' K, h(T)W(i) (T)dT = {K, . w(i)} = 6 s 1a 
L..,,; n, m h n, m n,m· 

h=-s 0 ' 

(h) Finally, we move to the proof of the first main theorem of this chapter. 
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Theorem 11.4-1. 1°. Let 1/2 < /1 < 1/2 + l/(s+ 1/2),1/ E .6.s (10), and also let 
/1* = 1/+3/(2s+ 1) - /1. Then any function <I>(() E L2{')'28+1(a)} can be expanded 
in the series 

+00 
" -(1) <I>(() = ~ [<I>; ZlI,n]YlI,n((), ( E 1'2s+1 (a), (36) 

n=-(s-l) 

which is convergent in the norm of Ld 1'28+1 (a)}. Besides, 

+00 
11<I>112::=: L 1[<I>;i~~~]12 (1 + InI)2(1-p). (37) 

n=-(s-l) 

2°. Let 1/2 < /1 < 1/2+1/(s+1/2), 1/ E .6.s (20), and also let /1* = 1/+1/(2s+1)-/1. 
Then any function <I>(() E L2{')'28+1(a)} can be expanded in the series 

(38) 
n=-s 

which is convergent in the norm of L2{')'2s+1(a)}. Besides, 

+00 2 

11<I>112::=: L 1[<I>;i~~2]1 (1 + Inl)2(1-p). (39) 
n=-s 

Proof. We shall prove assertions 1° and 2° simultaneously. 
Let <I>(() E L2{')'2s+1 (an be any function. We associate with it the vector function 

(40) 

where 

and 

<I> ('I) - <I>(') I - <I> (Ta(h+1/2)(8+1/2)) 
h - '> (E[O,(u,h] - s , 'I E (O,a). 

Then, obviously, 

II <I> II = II'PII, (42) 

i.e., the norm of <I> in L2{')'2s+1(an is equal to the norm of'P in L~8+1(0,a). On 
the other hand, the equalities 

[<I>; iY/n] = {'P;w~;e} (j = 1,2; -(s + j - 2) ::; m < +(0) (43) 
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follow from formulas (31), (28d, (291) and relations (35), (411) - (4b). Further, 
the systems of vector functions (20) and (21) are Riesz bases of L~s+l(a) when 
suitable conditions are satisfied (see 11.4( e)). Hence the expansions 

+00 
L {'Pi (1 + Inl)l-JLw~)} (1 + Inl)JL-1I\;n,h(7) 

n=-(s+j-2) 

+00 
L {'PiW~)}l\;n,h(7) (7 E (O,a),-s:S: h:S: s) 

n=-(s+j-2) 

and the two-sided estimate 

+00 
11'P112 ::=:: L 1 { 'Pi w~) } 12 (1 + InI)2(1-JL) 

n=-(s+j-2) 

(44) 

(45) 

are true for any j = 1,2. Using relations (27), (41d - (412) and (43) we transform 
(44) into the following expansions in spaces LdO, (CT,h] (-8 :s: h :s: s): 

(j = 1,2). (46) 
n=-(s+j-2) 

It remains to observe that these expansions coincide with the desired expansions 
(36) and (38). As to estimates (37) and (39), they follow from (42), (43) and (45). 

Remark. If stated otherwise, the preceding theorem says: if J.L, J.L* and v satisfy the 
suitable conditions, then for any j = 1,2 the systems of functions 

and {(1 + Iml)l-JL Z~~fn()}+oo . 
-(8+J-2) 

(47) 

are biorthogonal Riesz bases of L2 b28+ 1 (a)}. 

(i) The following theorem, relating to expansions in terms of eigenfunc
tions of the boundary value problems I S + 1/ 2 and IIs+1/2 (s 2: 1), is an 
immediate consequence of Theorem 11.4-1. 

Theorem 11.4-2. Let 8 2: 1 be an integer and let J.L satisfy the condition 

2/3 :s: J.L :s: 1 when 8 = 1, 

1/2 < J.L < 1/2 + l/(s + 1/2) when s 2: 2. 

Then the following assertions are true: 
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1°. Ifv E ~s(10) and J.L* = v+3 (2s+I)-J.L, then any function q,(() E L2{-r28+1(a)} 
can be expanded in terms of the sequence {Yv,n(()} ~(;-1) of eigenfunctions and 
adjoint functions of the boundary value problem 1s+1/2: 

+00 

L (48 I} 
n=-(s-l) 

In addition, 
+00 

1Iq,11 2 ;:::: L I [q,; i~:~lI2 (1 + InI)2(1-/L). 
n=-(s-l) 

2°. If v E ~8(20) and J.L* = v + 1/(2s + 1) - J.L, then any function q,(() E 

L2{-r28+1(a)} can be expanded in terms of the sequence {Yv,n(()}~~ of eigen
functions and adjoint functions of the boundary value problem IIs+1/2: 

n=-s 

In addition, 
+00 2 

11q,11 2 ;:::: L I[q,;i~~~ll (1+lnI)2(1-/L). 
n=-s 

(j) As was mentioned in Section 11.2, W = (1/(8+1/2) maps the sum of segments 
1'28+1 (a) C Goo onto the sum of segments r28+1(a) of the length a1/(8+1/2) , 
situated in the w-plane and having a common endpoint at w = o. These seg
ments are at angles 7r(h + 1/2)/(s + 1/2) (-s ~ h ~ s), so they form pairwise 
equal angles of the opening 7r/(s + 1/2). Further, we assume W E (-1,1) and 
J.L = (3/2+s+w)/(2s+ 1), as everywhere. We denote by L2,w{r2s+1(a)} the space 
of functions W (w) measurable on r 28+1 (a) and having finite norms 

(50) 

In addition, we define the inner product of any two functions Wl, W2 of 
L2 {r 28+1 ( a)} in the following way: 

(51) 

Now we can observe that 

(52) 
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is a transformation of a function q>(() defined on 128+1 (0') into a function 1l1(w) de
fined on r 28+1 (0'). Moreover, a simple calculation shows that (52) represents an iso
metric isomorphism between the Hilbert spaces L 2{{2s+1(0')} and L 2,w{r2s+1(0')}, 
so it does not change the norms or the inner products. Using (52) one can eas
ily move from the main Theorem 11.4-1 to the following theorem relating to the 
expansions of functions of L 2,w {r 2s+ 1 (O')} in terms of definite systems of entire 
functions. 

Theorem 11.4-3. Let s ~ 1 be an integer, let -1 < w < 1 and let the parameter 
{L E (1/2,1/2 + l/(s + 1/2)) be defined by the equality 

3/2 + s +w 
{L = 2s + 1 . 

Then the following assertions are true: 
1°. If 1/ E ~s(1°) and {L* = 1/ + 3/(2s + 1) - {L, then any function 1l1(w) E 
L2,w{r2s+1(0')} can be expanded in the series 

1l1(w) = 

o 
"C(l) r(1 - n) w-n 
~ n r({L - niCs + 1/2)) n=-(s-l) 

+00 
(53d 

+ LC~1)E8+1/2({LnW;{L), WEr2s+1(0'), 
n=l 

which converges in the norm of L2,w{r2s+1(0')}, and 

+00 
111l111~ ;:::: L IC~l) 12(1 + InI)2(1-JL). (54d 

n=-(s-l) 

Besides, the coefficients of expansion (53d are defined by the formula 

C~l) = [1l1(w); (s + 1/2)i~~~ (W8+1/2) W(S+1/2)(1- JL)L (-(8 -1) ~ n < +(0). 
(551) 

2°. If 1/ E ~s(20) and {L* = 1/ + 1/(2s + 1) - {L, then any function 1l1(w) E 

L2,w {r 2s+1 (O')} can be expanded in the series 

o 
1l1(w) = " C(2) r(l- n) w-n 

~ n r({L - niCs + 1/2)) 
n=-s 

+00 
+ LC~2)Es+1/2({LnW;{L), WEr28+1(0'), 

n=l 
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which converges in the norm of L2,w{f2s+1(O:)}, and 

+00 
IIwll~ ~ L IC~2) 12 (1 + InI)2(1-/L). 

n=-s 

Besides, the coefficients of the expansion (532) are defined by the formula 

Remark. The expansions of the preceding theorem essentially generalize the clas
sical sin- and cos-expansions in [0,0'] by extending them to the case when there 
are an arbitrary odd number of segments in the complex plane. 

11.5 Notes 

The results of this chapter in somewhat different forms were published in the 
papers of M.M. Djrbashian [10,11] where the simplest case s = 1 was considered. 



12 Cauchy type problems and boundary value 
problems in the complex domain 
(the case of even segments) 

12.1 Introduction 

The results of this chapter are similar to those obtained in Chapter 11, but the 
problems considered here are essentially different. Namely, the Cauchy type prob
lems considered here are formulated in terms of another pair of associated in
tegrodifferential operators - 1L8 and IL: (where 8 ;::: 1 is any integer), and the 
corresponding boundary conditions are assumed to be satisfied at the endpoints 
of the sum of even (28) segments 

28-1 

')'28(a) = U {z = rexp[i7r(h + 1/2)] : O:S r :s a} 
h=O 

in the Riemann surface Goo of Lnz. Using the results of Chapters 8 and 9 we prove 
the main Theorem 12.4-1 on the basis property of certain systems of functions in 
L2h28(a)}. The consequence of this theorem is the important Theorem 12.4-2 on 
expansions of functions of L2 { ')'28 ( a )} in terms of the systems of eigenfunctions 
and adjoint functions of the first of two boundary value problems considered here. 
Another consequence of Theorem 12.4-1 is Theorem 12.4-3 containing the con
struction of some systems of entire functions which are bases of weighted spaces 
L2 over the sum of segments 

28-1 

r28(a) = U {z = rexp[i7r(h + 1/2)/8] : O:S r :s a 1/ S } C C. 
h=O 

These systems of entire functions are similar to the Fourier system {einz }:!::: on 
[-a, a]. 

12.2 Preliminaries 

(a) Theorem 2.4-2 on the parametric representation of classes W;,~ (where 8 ;::: 1 
is an integer and -1 < w < 1) of entire functions of order p = 8 and of type :s a 
contains the parameter 

_ 1 + 8 + W (~~ ~) _ (~~ ~) 
J.L - 28 E 2' 2 + 8 - 2' 2 + P (1) 

which is used in this chapter. Here we also use definition 9.2(8) of the interval 
as c [0,2) of variation of the parameter v. If we take (1) into account, then this 
interval can be written in the form 

(8 ;::: 1). (2) 
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(b) According to the notations of Sections 8.2 and 9.2, we put 

f3s = exp{i7r/s} (8 2 1). 

Further, assuming 0' E (0, +00), we introduce the notation 

(;/; = a1/sf3~H/2(0:'S; h:'S; 28 -1), , 

or, in other words, 

(u,h = af3~hH/2)s = aei7l'(hH/2) (0:'S; h :'S; 28 - 1). 

(3) 

(4) 

(5) 

Now, on the Riemann surface Goo of Lnz, we introduce the following sum of 
segments of length 0': 

2s-1 2s-1 
/'28(0') = U [0, (u,h] = U {Tf3~hH/2)8 = Tei7l'(h+1/2) : ° :'S; T :'S; a} . (6) 

h=O h=O 

Obviously these segments have a common endpoint at ( = 0, and any pair of 
successive segments forms an angle of opening 7r and, when 8 = 1, we have 

/'2s(a) == /'2(0') = [0, ia] U [0, -ia]. (6') 

Note also that the mapping 

W = r 1/ s , (l/S '> Wu,h = u,h (0 :'S; h:'S; 28 - 1) (7) 

transforms /'2s(a) into the following sum of 28 segments of the length a 1/ s: 

2s-1 2s-1 
r2s(a) = U [O,Wu,h] = U {w = rf3;+1/2: ° ~ r ~ a 1/ S}. (8) 

h=O h=O 

These new segments are all in the w-plane where they form a system of angles of 
opening 7r / 8 with a common vertex at the origin. 

(c) The results of Chapters 8 and 9 were obtained using the distribution of zeros 
of the entire function 

£s,u(z; v) == E1/2 (_a2z 2s ; 1 + v) (8:::: 1 is an integer). (9) 

Remember that, if v E [0,2), then the zeros {J.tn}]'o (0 < lJ.tnl :s; lJ.tnHI, n:::: 1) of 
this function are simple and are situated on the sum of rays 

2s-1 { ( h) } f2s = ~O Z = rexp i 7r8 : 0 :'S; r < +00 . (10) 

Besides, we gave an explicit order of numeration of these zeros earlier. 

( (d) Using notation (4) one can easily write the identity 9.2(6d in the form 

2s-1 
2sazsE (_a2z 2s'1+v) = "'"" f3-(h+1/2)sE (zr1/S·v) 1/2 , L s s '>u,h' (8 :::: 1). (11) 

h=O 
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12.3 Cauchy type problems and boundary value problems containing 
the operators lLs and lL:. 

In this section we use the operators D-O!., DO!. and DZoO!., D,o (0 :::; a < +00, (0 E 

GOO) defined on the Riemann surface Goo in the beginning of Section 11.3. Be
sides, here, as in Section 11.3, we do some calculations on the base of the sim
ple formulas 11.3(4)-(5) which are true for arbitrary points (0- = aeicp E Goo 
(0 < a < +00, -00 < cp < +00). Henceforth we assume a E (0, +00) to be a 
preassigned number. 

(a) First we introduce some notations. Assuming s 2': 1 is an integer, ° < JL,JL* < 
+00, and that >., >. * are arbitrary complex numbers, we put 

Ys,I-'«; >.) == Es (>.(1/S; JL) (1-'-1, ( E (0, (0-), 

ZS,I-'* «; >. *) == Es (>. * «0- - ()1/S; JL*) «0- - ()I-'*-1, (E (0,(0-) 

(1) 

(2) 

and observe that these functions are defined in the domain G':' = {( E Goo : 1(1 < 
a}, since (0- E Goo is not a fixed point. 

(b) Now assume that the parameters JL and JL* satisfy the conditions 

JL = JL* = 1 when s = 1, 

1/2 < JL, JL* < 1/2 + 1/ s when s 2': 2. 
(3) 

Then, as in Section 11.3, denote by AC[O,(o-] (where (0- E Goo is an arbitrary 
point) the class of functions absolutely continuous in [0, (0-]. Further, the functions 
y«) and z«) are said to be of classes ACI-'[O,(o-] and AC;*[O,(o-] respectively, if 
they satisfy the following conditions: 

(i) y«) E L1(0,(0-) and z«) E L1(0,(0-), 

.. LoY«) == D-(1-I-')y«) E AC[O,(o-], 

(11) L(jz«) == DZ,?-I-'*)z«) E AC[O,(o-]. 

(4) 

(5) 

Now introduce the following operators respectively in AC I-' [0, (0-] and AC; * [0, (0-]: 

lLsY«) == D-(1-'-1/s) {~LOY«) } = D-{1-'-1/s) DI-'y«), ( E (0, (0-), (6) 

lL*z(t') = D-{I-'*-1/s) { d L*Z(t')} = D-{I-'*-1/s) DI-'* z(t') t' E (0 t') (7) 
s .. - (,. d( (0- _ () 0" (,. (,. ." ., '''0- . 

Observe that the functions lLsY«) and lL:z«) are of L1(O, (0-), since they are 
fractional integrals of functions summable on (0, (0-). Note also that, if s = 1 and 
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consequently p, = p,* = 1, then the classes ACp.[O, (0'] and AC;. [0, (0'] coincide 
with AC[O, (0'], and the operators lLs and lL: take the following simple forms: 

Finally, it follows from (5) that the quantities 

(9) 

are finite for any integer s 2: 1, provided y() E ACp.[O, (0'] and z() E AC;. [0, (0']. 

(c) Henceforth, unless otherwise stated, we assume that s 2: 1 is an integer, and 
the parameters p, and p,* satisfy the condition (3). The following two lemmas are 
similar to Lemmas 11.3-1 and 11.3-2. 

Lemma 12.3-1. Let y() E ACp.[O, (0'] and z() E AC;. [0, (0'], where (0' E Goo 
is a fixed point. Then the following representations are true almost everywhere in 
the interval (0, (0') c Goo: 

Proof. When s = 1, these representations pass to formulas (8). Thus, it remains 
to prove representations (10) and (11) for the case s 2: 2. In this case (3) obviously 
implies 1/2 < p" p,* < 1, p, - 1/ s > 0 and p,* - 1/ s > O. Therefore, using (6) we 
obtain 

D-1/slLsY() = D-1/s D-(p.-l/s) DP.y() = D-P. DP.y(). (12) 

Further, as in the proof of Lemma 11.3-1, we obtain that 

(13) 

almost everywhere in (0, (0')' Finally, applying the operator Dl/s to both sides of 
(12), and using (13), we easily arrive at representation (10). Representation (11) 
is proved in a similar way. 

Lemma 12.3-2.. 10. The Cauchy type problem 

lLsY() - >.y() = 0, 

LO'y()I,=o = 1 
(14) 
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has the unique solution 

in the class AC/L[O, (O'j. 
2°. The Cauchy type problem 

lL:z(() - A*Z(() = 0, 

L~z(()I(=(" = 1 

has the unique solution 

in the class AC;. [0, (O'j. 

239 

(15) 

(16) 

Proof. If s = 1 and p, = p,* = 1, then, according to (8), the Cauchy type problems 
(14) and (16) become respectively 

and 

d 
d(Y(() - AY(() = 0, 

y(()I(=o = 1 

- :(Z(() - A*Z(() = 0, 

z(()I(=(" = 1. 

Besides, one can easily verify that the functions 

Ys,/L((; A) == Y1,1((; A) = exp{A(}, 

ZS,/L* ((; A*) = Z1,1((; A*) = exp{A*((O' - ()}, 

(14') 

(16') 

(15') 

(17') 

are indeed the unique solutions of these problems in the class AC[O, (0' j. If s 2:: 2, 
then the proof is the same as that of Lemma 11.3-2. The only difference is that 
s + 1/2 is replaced by s. 

Theorem 12.3-1. The following formulas are true for the solutions Ys,/L((; A) 
and ZS,/L* ((; A*) of Cauchy type problems (14) and (16): 

(18) 
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Proof. If 8 = 1 and J.t = J.t* = 1, then using (15') and (17') we obtain 

f'u Y (I'. )')Z (I'. ). * )dl' = exp( ).(0') - exp(). * (0' ) (18') 
101,1'>, 1,1,>, '> )._).* ' 

which obviously coincides with (18). So, it remains to prove (18) for 8 ~ 2. In the 
proof we use the operations of ordinary and fractional integration by parts. 

First note that, by Lemma 12.3 - 2(1°) and by definition (6) of the operator 

(19) 

Next, observe that for any ( E (0, (0') 

Consequently, 

(21) 

where 

I - 1 f'u(1' _1')P,+P,*-l/S-l.!!:...L Y (I'. )')dl' (22) 
1 - r(J.t + J.t* -1/8) 10 '>0' '> d( 0 s,P, ,>, ,>, 

To calculate h, we use the simple relation 

(24) 
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We obtain 

It = r(p, + p,~ _ l/s) 1(" ((0" - ()JL+JL"-l/s-lYs,l/S((; )")d( 

= )..D-(JL+JL" -l/s) Ys,l/s( (; )..) I (25) 
(=(" 

= )..Ys,JL+JL" ((; )..)1(=(" = )"Es ()..(,;/s; p, + p,*) (::+1'"-1. 

As to h, integration by parts gives 

(26) 

Finally, combining formulas (21), (25) and (26), we obtain 

(27) 

It remains to observe that the last formula coincides with (18). 

Remark. Identity (18) can be directly derived also from formula 1.2(10), if we 
assume p = s, a = p, and f3 = p,*. 

(d) Now we shall formulate two boundary value problems assuming again that 
S 2 1 is any integer, and that the parameters p, and p,* satisfy conditions (3). We 
assume also v E [0,2). 
Problem Is consists in finding those values of ).. for which the solution 
YS,JL((; A) of the Cauchy type problem (14) satisfies the additional boundary con
dition 

28-1 

L f3;v(h+1/ 2)s D-(v-JL)Ys,JL((; A) = 0 (29) 
h=O (=(",h 

at the endpoints (O",h (O:S: h :s: 2s - 1) of the sum of segments 12s(0"). 
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Problem I; consists in finding those values of A* for which the solution 
ZS,I-'*«(; A*) of the Cauchy type problem (16) satisfies the additional boundary 
condition 

2~1 f3- v(hH/2)s D-(v-I-'*) Z * (I". A*) I = 0 
~ S (".,h s,1-' ,>, 

h=O (=0 

(30) 

at the common endpoint ( = 0 of the segments of 12s (a). 
In this chapter we use the results of Chapters 8 and 9 which assume that the 

parameter v varies only in one interval, namely in ~s = (J1 + 1/2 - 1/ s, J1 + 1/2), 
This is the reason why we consider only one pair of boundary value problems. 
Further, we have already mentioned that, when s = 1 and J1 = J1* = 1, the Cauchy 
type problems (14) and (16) take simpler forms (see (14') and (16')). If we assume, 
in addition, v = 1, then the boundary value problems Is = h and I; = Ii also take 
simpler forms. Indeed, when v = 1, boundary conditions (29) and (30) become 

Y1,1((; A) 1 (=io- = Y1,1((; A)I(=_io-' 

Zl,l((; A*)I(=OE[O,iO-] = Zl,l((; >'*)I(=OE[O,-io-] , 

(29') 

(30') 

where the functions Yl,l((; >.) and Zl,l((; >.*) are determined by formulas (15') and 
(17'). Finally, we further assume the notions of eigenvalues and eigenfunctions of 
the boundary value problems Is and I; (s ~ 1) to be defined in the same way as 
those of the boundary value problems of Section 11.3. 

(e) Denoting the sums (29) and (30) respectively by Rs(>') and R;(>'*), we prove 
the following lemma. 

Lemma 12.3-3. The following identities are true for any s :::: 1: 

Rs(>') = 2sav >.S E1/2 (_a2 >.2s; 1 + v) , 
(31) 

Proof. We shall prove only the first of these identities, since the proof of the second 
one is similar. As 

D-(v-I-')Ys,I-'((; >.)1 = Ys,v((; >')1(=( h 
(=(".,h "., (32) 

(0::; h < 2s -1), 

identities 12.2(11) imply 

2s-1 
Rs(>') = L f3;v(h+1/2)S Es (>.(;;;; v) av- 1 f3~V-1)(hH/2)s 

h=O 
2s-1 

= av- 1 L f3;(h+1/2)S Es (>.(;;;; v) = 2sav >.S E1/2 (_a2 >.2s; 1 + v) , 
h=O 

The following theorem is an immediate consequence of the preceding lemma and 
of the formulations of the boundary value problems Is and I; given above. 
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Theorem 12.3-2. If 8 2: 1 is any integer, J.t and J.t* satisfy the conditions 

J.t = J.t* = 1 when 8 = 1, 

1/2 < J.t,J.t* < 1/2 + 1/8 when 82:2 

and v E [0,2), then the sets of eigenvalues of both boundary value problems Is 
and I; coincide with the sequence {J.tn}O' (J.to = 0) of zeros of the entire function 

,xS£8,0' (,x; v) ==,xs El/2 (_0'2 ,x2s; 1 + v) . 

Thus, all these eigenvalues are simple with the exception of J.to = 0, which is of 
order 8. 

Remark. If v = 1, then the sets of eigenvalues of both boundary value problems 
Is and I; coincide with the sequence {J.tn}O' (J.to = 0) of zeros of the function 
sin (0' ,x S). This sequence can be expressed in the following explicit form: 

(33) 

(f) It is useful to give the explicit representations of eigenfunctions and adjoint 
functions of both considered boundary value problems. To this end it is first nec
essary to introduce some general notations. 

Let 8 2: 1 be an integer, 0 < J.t, J.t* < +00 and also let v E [0,2). As in Section 
12.2(c), we denote by {J.tn}j''' the sequence of zeros of the entire function 

£s,O'(z; v) == E1/ 2 (_0'2 Z 2S; 1 + v) . 

Next we introduce in (0, (0') the functions 

r(1 - n) Cn/s+",-l (n ~ 0), 
r(J.t - n/8) 

Yv,n«() == Ys,,,,«(; J.tn) = Es (J.tn(l/S; J.t) (",-1 (n 2: 1), 

8s - 1+n I 
Zv,n«() == 8,\s-l+n Zs,,,,- «(;,x) 

A=O 

r(8+n) (I' _1')8-~±n+"'-_1 (-(8-1)~n~0), 
r (J.t* + s-~+n) ,>0' '> 

Zv,n«() == Zs,,,,- «(; J.tn) = Es (J.tn«(O' - ()l/S; J.t*) «(0' - ()",--l (n 2: 1). 

(34d 

These formulas obviously define the introduced functions in the whole domain 
GO; = {( E Goo : 1(1 < O'}. Using these functions and Theorem 12.3-2 we easily 
obtain the following assertion. 
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Theorem 12.3-3. If 8 ~ 1 is an integer, J-l and J-l* satisfy the conditions 

J-L = J-L* = 1 when 8 = 1, 

1/2 < J-L,J-L* < 1/2 + 1/8 when 8 ~ 2 

and II E [0,2), then the sequence of functions 

(36) 

is a system of eigenfunctions (when n ~ 0) and adjoint functions (when 8 ~ 2 and 
- (8 - 1) ::; n ::; -1) of the boundary value problem Is. On the other hand, the 
sequence of functions 

(37) 

is a system of eigenfunctions (when n > 0 and n = - (8 - 1)) and adjoint functions 
(when 8 ~ 2 and - (8 - 1) < n ::; 0) of the boundary value problem I;. 
Remark. If 8 = 1 (and consequently J-L = J-L* = 1) and II = 1, then all the eigen
values of the boundary value problems Is = h and I; = Ii are simple, and they 
coincide with the sequence of zeros {7fk/(T}~: of the function sin«TA). Moreover, 
in this case the systems of eigenfunctions of the boundary value problems hand 
Ii can be expressed respectively in the forms 

12.4 Expansions in L 2{'}'2s«T)} in terms of Riesz bases 

It is first necessary to give a summary of some notations and results of Chapter 9. 

(a) For any integer 8 ~ 1 and for any wE (-1,1) 

8+w+1 
J-L = E (1/2,1/2 + l/s). 

28 
(1) 

Besides, we assumed 

1+w-8 
11:0 = = 2(J-L - 1). 

8 
(2) 

Further, the condition II E [0,2) was assumed to be satisfied, provided the param
eter 1I was present, and {J-Ln}1' was assumed to be the sequence of zeros of the 
entire function 

(3) 
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and the interval /).S = (J-L + 1/2 - 1/ s, J-L + 1/2) C [0,2) of variation of v was 
considered. 

(b) When v E [0,2), the sequence of vector functions 

7 E (0,0') (4) 

was defined by the formulas 

Kn h(7) = (j-(h+1/2)n r(I- n) 7-n/s+I-'-1 (0::; h::; 2s -1, (5d 
, s r(p,-n/s) -00 <n::;O), 

K (7) = E (II. 71/sa.h+1/2. II) 71-'-1 (0::; h::; 2s -1, (52) 
n,h 1/2,..n I-'s".. 1 ::; n < +(0). 

When v E /).s, the parameter 

I-s-w 1 
'TJ2s=V+ 2 =v+--p, , s s (6) 

was considered, and by use of it the sequence of vector functions 

(7) 

was defined on (0,0') in the following way: 

-lIr(I ) ( ) s-l±m +'72 -1 n () = {j(h+1/2)m 0' + V 0' - 7' ,. (8 ) 
m,h 7 s 2sr(I _ m) r (S-1s+m + 'TJ2,s) 1 

when 0 ::; h::; 2s - 1 and -(s - 1) ::; m ::; 0, and 

when 0 ::; h ::; 2s - 1 and 1 ::; m < +00. Also, a passage was done from system (7) 
to the system 

7 E (0,0'), (9) 

where 

(0::; h::; 2s - 1, -(s -1) ::; m < +(0). (10) 
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(c) We shall also use the following results of Chapter 9. 
10. If v E 6.8 , then the systems of vector functions 

(11) 

are biorthogonal in the space L~8(O, a) of 28-dimensional vector functions, Le., 

(-(8 -1) ::; n,m < +00). (12) 

20. If v E 6.8 , then each of the biorthogonal systems of vector functions 

is a Riesz basis of L~8(O, a). 

(d) Now we introduce on the sum of segments 1'2s(a) (see formulas 12.2(5)-(6)) 
the Hilbert space L2h28(a)} of measurable functions cI>() having finite norms 

(14) 

Observe that the inner product of any two functions cI>() and 111() of L2h28 (a)} 
is naturally the integral 

(15) 

and obviously 
(16) 

(e) Assuming that 8 2: 1 is an integer, 0 < J,.L,J,.L* < +00 and v E {O,2), we 
introduced, by formulas (341) - (342) and (351) - (352 ) of Section 12.3(f), the 
systems of functions 

(17) 

It appears that the values of functions of these systems on 1'28 (a) are closely 
connected with the vector functions of the systems 

(18) 
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which were considered above. Indeed, one can easily verify the validity of the 
following formulas. 

(i) Let 1/2 < fJ < 1/2 + 1/ s and let 1/ E [0,2). Then for any T E (0, a) and 
h,n (0::; h::; 2s -1, -00 < n < +(0) 

Y (r)1 = Y (T(.I(h+1/2)S) = (.I(1-'-1)(h+l/2).", (T). v,n ':0 (E[O,(u,hl v,n fJ. fJs n,h (19) 

(ii) Let 1/2 < fJ < 1/2 + l/s, 1/ E ~s, and also let fJ* be determined by the 
relation fJ+fJ* = 1/+1/s. Then 1/2 < fJ* < 1/2+1/s and, in addition 1/2,s = fJ*, as 
follows from (6). Therefore, for any T E (0, a) and h, m (0 ::; h ::; 2s -1, -(s -1) ::; 
m < +(0) 

Zv,m () I(E[o,(u,hl = Zv,m (T(3ih+1/2)S) 
= (.I(JL*-1)(h+1/2)sf-/(h+l/2)(s-I)C n (T) 

fJs fJs s,v,m m,h , 

(20) 

where 

C _ { 2saV r(s + m)r(1 - m)r- 1 (1 + 1/) when - (s - 1) ::; m ::; 0, 
s,v,m - 2 v s C'I ( ) (21) 

sa fJm0 s,a fJm; 1/ when 1 ::; m < +00. 

We introduce a new system of functions 

{ Zv,m()}+OO 
-(s-l) 

(22) 

setting 

Zv,m() = (~) I-v ~,m() (-(s _ 1) ::; m < +(0). (23) 
1(1 s,v,m 

Then obviously 

Zv,m() = (3~1-V)(h+1/2)S~,m() (-(s -1) ::; m < +(0) (24) 
B,V,m 

for any ( E [0, (a,h] (0::; h ::; 2s - 1). Besides, the following lemma is true for the 
introduced system. 

Lemma 12.4-1. If 1/2 < fJ < 1/2 + 1/ s, 1/ E ~s and fJ* = 1/ + 1/ s - fJ, tben tbe 
systems of functions 

(25) 

are biortbogonal in L2h2s(a)}, i.e., 

[Y 'Z ]-0 v,n, v,m - n,m (-(s -1)::; n,m < +(0). (26) 
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Proof. Indeed, if -(8 - 1) :S n, m < +00, then we have 

2s-1 (" h 

[Yv,n;Zv,m] = L 10 ' Yv,n«()Zv,m«()ld(1 
h=O 0 

2s-1 (",h 

= ~ L ,8~I-v)(h+1/2)S r Yv,n«()Zv,m«()ld(l. 
s,v,m h=O 10 

(27) 

If we use formulas (19), (20) and the simple relation 

(I-v) (h+~) 8+(JL-l) (h+~) 8+(JL*-I) (h+~) 8+ (h+~) (8-1) = 0, 

(28) 
then from (27) it will follow that 

(f) Now we are ready to prove one of the main theorems of this section. 

Theorem 12.4-1. Let 1/2 < JL < 1/2 + 1/8, V E D..s and let JL* = v + 1/8 - JL. 
Then any function cp(() of the space L2b2s(0')} can be expanded in the series 

+00 
cp(() = L [cp; Zv,n]Yv,n«(), ( E 72s(0') 

n=-(s-l) 

which is convergent in the norm of this space. Besides, 

+00 
IIcpl12 :=:: L I [cp; Zv,n] 12 (1 + InI)2(I- tt). 

n=-(s-l) 

(29) 

(30) 

Proof. Let cp(() E L2b2s(0')} be an arbitrary function. We associate with it the 
vector function 

(31) 

where 

and 
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Obviously 
11«1>11 = 1I<p11, (33) 

Le., the norm of «I> in L2 {'Y28 (a)} is equal to the norm of <p in L~s (0, a). In addition, 
the equalities 

(-(8 -1) :5 m < +00) (34) 

follow from formulas (24), (20) and from relations (28), (32d - (322)' Further, 
the systems of vector functions (13) are biorthogonal Riesz bases of L~S(O, a). 
Therefore, the expansions 

+00 
<Ph(r) = L {<p; (1 + Inl)l-I'wn} (1 + Inl)l'-l~n,h(r) 

n=-(s-l) 
+00 
L {<P;Wn}~n,h(r), 

n=-(s-l) 

and the two-sided estimate 

+00 

r E (0, a), 0:5 h:5 28 - 1 

11<p112::::: L 1{<p;wn }1 2 (1 + InI)2(1-1') 
n=-(s-1) 

(35) 

(36) 

are true. Using relations (19), (321) - (322) and (34) we can write (35) in the form 
of the following expansions in spaces L 2[0, (u,h] (0:5 h :5 28 - 1): 

+00 
«I>«()I'E[O"",h] = L [«I>; Zv,n]Yv,n«() (37) 

n=-(s-1) 

Finally, it remains to observe that these expansions imply (29). As to estimate 
(30), it follows from (33), (34) and (36). 

Remark. If stated in another way, the preceding theorem says that if the param
eters JL, JL* and v satisfy the suitable conditions, then the systems of functions 

(38) 

are biorthogonal Riesz bases of the space L2 { 'Y2s ( a ) }. 

(g) The following theorem, relating to expansions in terms of eigenfunctions and 
adjoint functions of the boundary value problem Is, is a consequence of Theorem 
12.4-1. 
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Theorem 12.4-2. Let 8 2: 1 be an integer and let p, satisfy the conditions 

p, = 1 when 8 = 1, 

1/2 < p, < 1/2 + 1/8 when 82:2. 

Further, let v E Dos and let p,* = v+1/8-p,. Then any function <I>(() of L2b2s(0")} 
can be expanded in terms of eigenfunctions and adjoint functions {Yv,n(()} :::~-1) 
of the boundary value problem Is: 

+00 

<I>(() = L [<I>; Zv,n]Yv,n((), ( E I'2s ( 0" ) . (39) 
n=-(s-l) 

In addition, 
+txJ 

11<I>112 ~ L 1[<I>;Zv,nW(1 + Inl)2(1- JL ). (40) 
n=-(s-l) 

Remark. If we take into account the remark to Theorem 12.3-3, then in the case 
when 8 = 1 and v = 1 (and consequently p, = 1) we can express one of the asser
tions of the preceding theorem in the following way: any function <I>(() of L2b2(0")} 
(where 1'2(0") = [0, iO"] U [0, -iO"] = [-iO", iO"]) can be expanded in terms of func
tions {exp( 7rk(/ O")} ~~. Obviously this assertion is equivalent to the well-known 
theorem of classical analysis relating to the expansions of functions of L2( -0",0") 
in terms of the Fourier system 

{ . }+oo e""kx/a -00. ( 41) 

(h) As was mentioned in Section 12.2, w = (l/s maps the sum of segments I'2s(0") C 
Goo onto the sum of segments f2s(0") situated in the w-plane. The segments of 
f2s(0") are all of length O"l/s and have a common endpoint at w = O. In addition, 
these segments are at angles 7r(h + 1/2)/8 (0:::; h :::; 28 -1), so they form pairwise 
equal angles of opening 7r / 8. Further, we assume that W E (-1, 1) and p, = (1 + 
s + w)/2s, as always. We denote by L2,w{r2s (0")} the space of functions w(w) 
measurable on f2s(0") and having finite norms 

(42) 

Then evidently 

(43) 
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is the inner product of arbitrary two functions 'l11' 'l12 E L 2,w{f2s (0")}' Now observe 
that 

(44) 

is a transformation of a function iJ>() defined in '/'2s(0") into a function 'l1(w) 
defined in f2s(0").A simple calculation shows that (44) represents an isometric 
isomorphism between the Hilbert spaces L 2{'}'2s(0")} and L2,w{f2s(0")}' Therefore, 
using this transformation we can easily move from Theorem 12.4-1 to the following 
theorem on expansions of functions of L 2,w{f2s (0")} in terms of definite systems 
of entire functions. 

Theorem 12.4-3. Let 8 ~ 1 be an integer, -1 < W < 1 and let the parameter 
fJ E (1/2,1/2 + 1/8) be defined by the equality 

1+8+w 
fJ= 28 

Further, let 1/ E ~s and fJ* = 1/+ 1/8 - fJ. Then any function 'l1( w) of L 2,w{f2s (0")} 
can be expanded in the series 

which converges in the norm of L2,w{f2s (0")}, and 

+= 
11'l111~:=:: L ICn 12(1 + InI)2(1-/L). (46) 

n=-(s-l) 

In addition, the following formulas are true for the coefficients of expansion (45): 

-(8 - 1) ::::; n < +00. 

12.5 Notes 

The results of this chapter were established in somewhat different forms in the pa
pers of S.G. Raphaelian [4, §3] and M.M. Djrbashian [7,8] considering the simplest 
cases 8 = 1 and 8 = 2. 
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