Praise for Practical
Common Lisp

“Finally, a Lisp book for the rest of us. If you want to learn how to write a factorial

function, this is not your book. Seibel writes for the practical programmer,
emphasizing the engineer/artist over the scientist and subtly and gracefully
implying the power of the language while solving understandable real-world
problems.

“In most chapters, the reading of the chapter feels just like the experience of
writing a program, starting with a little understanding and then having that
understanding grow, like building the shoulders upon which you can then
stand. When Seibel introduced macros as an aside while building a test frame-
work, I was shocked at how such a simple example made me really ‘get’ them.
Narrative context is extremely powerful, and the technical books that use it are
a cut above. Congrats!” —Keith Irwin, Lisp programmer

“While learning Lisp, one is often referred to the CL HyperSpec if they do not
know what a particular function does; however, I found that I often did not ‘get it’
just by reading the HyperSpec. When I had a problem of this manner, I turned
to Practical Common Lisp every single time—it is by far the most readable
source on the subject that shows you how to program, not just tells you.”
—Philip Haddad, Lisp programmer

“With the IT world evolving at an ever-increasing pace, professionals need the
most powerful tools available. This is why Common Lisp—the most powerful,
flexible, and stable programming language ever—is seeing such a rise in popu-
larity. Practical Common Lisp is the long-awaited book that will help you
harness the power of Common Lisp to tackle today’s complex real-world prob-
lems.” —Marc Battyani, author of CL-PDF, CL-TYPESETTING, and mod_lisp

“Please don’t assume Common Lisp is useful only for databases, unit test
frameworks, spam filters, ID3 parsers, Web programming, Shoutcast servers,
HTML generation interpreters, and HTML generation compilers just because
these are the only things that happen to be implemented in the book Practical
Common Lisp.” —Tobias C. Rittweiler, Lisp programmer



“When I met Peter, who just started writing this book, I asked myself (not him,
of course), Why yet another book on Common Lisp, when there are many nice
introductory books?’ One year later, I found a draft of the new book and recog-
nized I was wrong. This book is not ‘yet another’ one. The author focuses on
practical aspects rather than on technical details of the language. When I first
studied Lisp by reading an introductory book, I felt I understood the language,
but I also had the impression, ‘so what?—meaning I had no idea about how to
use it. In contrast, this book leaps into a ‘practical’ chapter after the first few
chapters that explains the very basic notions of the language. Then the readers
are expected to learn more about the language while they are following the
‘practical’ projects, which are combined to form a product of significant size.
After reading this book, the readers will feel they are expert programmers on
Common Lisp since they have ‘finished’ a big project already. I think Lisp is the
only language that allows this type of practical introduction. Peter makes use
of this feature of the language in building up a fancy introduction to Common
Lisp.” —Taiichi Yuasa, Professor, Department of Communications and
Computer Engineering, Kyoto University



Practical Common Lisp

PETER SEIBEL

Apress-



Practical Common Lisp
Copyright © 2005 by Peter Seibel

Lead Editor: Gary Cornell

Technical Reviewers: Mikel Evins, Steven Haflich, Barry Margolin

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Assistant Publisher: Grace Wong

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Production Manager: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Susan Glinert

Proofreaders: Katie Stence, Liz Welch

Indexer: Kevin Broccoli

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Library of Congress Cataloging-in-Publication Data
Seibel, Peter.
Practical COMMON LISP / Peter Seibel.
p.cm.
Includes index.
ISBN 1-59059-239-5 (hc. : alk. paper)
1. COMMON LISP (Computer program language) I. Title.

QA76.73.1.23545 2005
005.13'3--dc22

2005005859

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.
The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section
and also at http://www.gigamonkeys.com/book/.



For Lily, Mom, and Dad






Contents at a Glance

About the AULNOT . . ... e Xix
About the Technical ReVIEWET . . ... ..o e i i aae XXi
ACKNOWIBAgMENTS ...t e e Xxiii
Typographical Conventions . ...... ...ttt i i i et i ieanns XXV
CHAPTER 1 Introduction: Why Lisp? ...t 1
CHAPTER 2 Lather, Rinse, Repeat: A Tour ofthe REPL ...................... 9
CHAPTER 3 Practical: A Simple Database ....................ccovvivin.n. 19
CHAPTER 4 Syntax and Semantics ................ .o 37
CHAPTER 5 Functions ... 51
CHAPTER 6 Variables ... 65
CHAPTER 7 Macros: Standard Control Constructs ......................... 79
CHAPTER 8 Macros: Defining Your Own ..., 89
CHAPTER 9 Practical: Building a Unit Test Framework .................... 103
CHAPTER 10 Numbers, Characters, and Strings ........................... 115
CHAPTER 11 Collections .........ccciiiii 127
CHAPTER 12 They Called It LISP for a Reason: List Processing ............. 141
CHAPTER 13 Beyond Lists: Other Uses for Cons Cells ...................... 153
CHAPTER 14 FilesandFile I/0 ........ ..o, 163
CHAPTER 15 Practical: A Portable Pathname Library ...................... 179
CHAPTER 16 Object Reorientation: Generic Functions ..................... 189
CHAPTER 17 Object Reorientation: Classes .................ccovvvvivinnnt. 203
CHAPTER 18 A Few FORMAT RECIPES . ...\ vveiii i 219
CHAPTER 19 Beyond Exception Handling: Conditions and Restarts ......... 233
CHAPTER 20 The Special Operators ..............ccooviiiiiiiiiinn.n. 245
CHAPTER 21 Programming in the Large: Packages and Symbols ........... 263
CHAPTER 22 LOOP forBlackBelts ..............cooviiiiiii i, 277

vii



viii

CONTENTS AT A GLANCE

CHAPTER 23
CHAPTER 24
CHAPTER 25
CHAPTER 26
CHAPTER 27
CHAPTER 28
CHAPTER 29
CHAPTER 30
CHAPTER 31
CHAPTER 32

Practical: ASpam Filter ....................cco it 291
Practical: Parsing Binary Files ..........................ot 311
Practical: AnID3 Parser ............coviiiiiiiiiiii 335
Practical: Web Programming with AllegroServe ............... 363
Practical: An MP3 Database .......................ooiiit. 385
Practical: A Shoutcast Server ....................cooiiinnn. 401
Practical: An MP3 Browser ...............coovviiiiiiniinennn. 411
Practical: An HTML Generation Library, the Interpreter ........ 431
Practical: An HTML Generation Library, the Compiler .......... 449
Conclusion: What's Next? ..., 465



Contents

ADOULThe AUTNOT . ..o Xix
About the Technical ReVIEWEr . ........ccoiiii i e e et i aae XXi
ACKNOWIBAgMENTS ...t e Xxiii
Typographical ConveNntions . ........ovutie i i i it ie i aeaaes XXV
CHAPTER 1  Introduction: Why Lisp? .....................cooiiiiii... 1
WY ISP ? ettt e e e 2

Where ltBegan. ...... ..ot e 4

Who This Book ISFor. ... ... e 7

CHAPTER 2 Lather, Rinse, Repeat: A Tour of the REPL ................ 9
Choosing a Lisp Implementation .....................ccooiiintt. 9

Getting Up and Running with LispinaBox......................... 11

Free Your Mind: Interactive Programming ......................... 12
Experimentinginthe REPL . ....... ... i 12

“Hello, World,” Lisp Style . . ... oo i 13

Saving Your Work. . ... e e 15

CHAPTER 3 Practical: A Simple Database ............................ 19
CDSand ReCOMdS . ..o e ittt it et aee 19

FIING CDS . vttt e et et et 21

Looking at the Database Contents..............cciviiiiiinns. 21

Improving the User Interaction. ...t 23

Saving and Loadingthe Database ................ccovvvivin..t. 25

Queryingthe Database .............ccooiiiiiiiii i 27

Updating Existing Records—Another Use for WHERE................ 31

Removing Duplication and WinningBig ........................... 32

Wrapping Up. .o e 36



CONTENTS

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

Syntax and Semantics .................................... 37
What's with All the Parentheses? .................ccoiiiiitL. 37
Breaking Openthe Black BoX...........ccovviiiiiiiiiinenn.. 38
S BXPIESSIONS. . v vttt i e 39
S-expressions ASLiSpFOrms. ... M
Function Calls. ........ovori e 42
Special Operators. . ... e e 43
MaCI0S ..ottt e 44
Truth, Falsehood, and Equality................coooeiiii ., 45
Formatting LispCode .........ccoiiiii e 47
Functions ............ ... ...l 51
Defining New Functions ........... ...t 51
Function Parameter Lists ..o 53
Optional Parameters ..o e e 53
Rest Parameters. ..o e 55
Keyword Parameters. . ...t 56
Mixing Different Parameter Types...........ccoviiiiiiieiin . 57
FunctionReturnValues. ...t 58
Functions As Data, a.k.a. Higher-Order Functions................... 59
Anonymous FUNClionS. ... e 61
Variables ..................... 65
Variable Basics. ...t e 65
Lexical Variables and Closures. . ..........ccooviiiiiiiiinninnnn.. 68
Dynamic, a.k.a. Special, Variables. ................cooiiiiii. 69
CONStaNtS ... e 74
ASSIgNMENE. . 74
Generalized ASSIgNMENt . ... .ot e 75
Other Ways to Modify Places ...............coiiiiiiiiinin..t. 76
Macros: Standard Control Constructs .................... 79
WHEN and UNLESS ... ..o 80
COND. .ot 82



CHAPTER 8

CHAPTER 9

CHAPTER 10

CONTENTS
00 o] 1T 83
DOLISTand DOTIMES . . ..ot 84
DO . 85
The Mighty LOOP. ... e 87
Macros: Defining YourOwn .............................. 89
The Story of Mac: AJust-So Story. ..........civiiiiii i 89
Macro Expansion Time vs. Runtime. . ................ ..ot 90
DEFMACROD . .. e 91
A Sample Macro: do-primes. ........cooveeiiiii i 92
Macro Parameters. ... 93
Generating the Expansion. ..., 95
Pluggingthe Leaks ..........ccoeiiiiii e 96
Macro-Writing Macros. .. ..o e e 100
Beyond Simple Macros. ..o e 102
Practical: Building a Unit Test Framework .............. 103
TWO FIrSt THES ..o e ot e e e e 103
Refactoring . ..o 105
Fixingthe ReturnValue............ ... 106
Better Result Reporting. .........ccoiiiiii i 108
An Abstraction EMerges ........coovieiiii i 109
AHierarchy of TESES . ..o i 110
Wrapping Up. ..o e 112
Numbers, Characters, and Strings ...................... 115
NUMDBIS . . e e e e 116
Numeric Literals. .. ...t e e 117
BasicMath ... 119
Numeric Comparisons. . ... .c.vvrt ittt cii i eie e 121
HigherMath .. ... ... i e i 122
Characters .......ccoeiii i e e e 122
Character Comparisons. . .......ovvviee it iie i eneenns 122
SHMNGS. . oot e e 123

String ComParisons . . ... oottt i i e 124

Xi



Xii

CONTENTS

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

Collections ..., 127
VBCIOrS . e 127
Subtypes of VeCtor. .. ..o 129
VeCtors AS SEQUENCES. .. .o ovt it i i 130
Sequence lterating Functions. ............. ... 130
Higher-Order Function Variants .................ccooviiinnoan.. 133
Whole Sequence Manipulations...................ccoooiiiiat. 134
Sortingand Merging . ......o.oirvii i 135
Subsequence Manipulations. .............cocii i 136
Sequence Predicates. ... e 137
Sequence Mapping Functions ................ oo, 137
HashTables ....... ..o e 138
Hash Table lteration............... ... 140
They Called It LISP for a Reason: List Processing ...... 141
“ThereIs No List” ... .o i 141
Functional Programmingand Lists .............. ...t 144
“Destructive” Operations ........c.oveiir it 145
Combining Recycling with Shared Structure ...................... 147
List-Manipulation Functions. ...t 149
MaPPINg ..o e e 151
Other StruCtUreS. . ..o e e 152
Beyond Lists: Other Uses for Cons Cells ................ 153
TrBBS .ottt e 153
SOl i 155
Lookup Tables: Alistsand Plists. ...............cciiiiiiiaa.. 157
DESTRUCTURING-BIND . .. ...t 161
FilesandFilel/O ......................................... 163
Reading FileData. ..............coi i e 163
ReadingBinaryData ................ccciiiiiiiiii i 165
BulkReads ... e 165
File OUtpUL .o 165

CloSiNG FIlES . .o oot e e e 167



CHAPTER 15

CHAPTER 16

CHAPTER 17

CONTENTS
Filenames. ... ..o e 168

How Pathnames Represent Filenames ........................... 169

Constructing New Pathnames ..............ccoiii i, 171

Two Representations of Directory Names......................... 173

Interacting with the File System............. ... ... ... .o il 173

OtherKinds of /0. .. ..o oi i e 175

Practical: A Portable Pathname Library ................. 179
The APl L. 179
*FEATURES* and Read-Time Conditionalization.................... 180
Listinga Directory ..o e e 182
Testinga File'sExistence ...t 185
Walking a Directory Tree. . ..o ovv v 187
Object Reorientation: Generic Functions ................ 189
Generic Functions and Classes .............ccoviviivinennnnns. 190
Generic Functionsand Methods. ...t 191

DEFGENERIC. . . ..ottt e et 193
DEFMETHOD. . ..ot e et 194
Method Combination.............ccoiiiiiiiiii i 196
The Standard Method Combination.............................. 197
Other Method Combinations................. ..ot 198
Multimethods . ... e e 200
ToBeContinued ... ......c.ovviiriii e i 202
Object Reorientation: Classes ........................... 203
DEFCLASS. ..t e 203
SIot SPECIfIBrS .« ottt e e 205
Object Initialization ... 206
Accessor FUNCtions .. ... e e 209
WITH-SLOTS and WITH-ACCESSORS ...ttt 212
Class-Allocated SIOtS. . .. ..o voe i e 213
Slots and Inheritance. .............c i 214
Multiple Inheritance. ... e 215

Good Object-Oriented Design. . ..ot 218

Xiii



Xiv

CONTENTS

CHAPTER 18

CHAPTER 19

CHAPTER 20

CHAPTER 21

A Few FORMATRecipes ................ccoviiiiiiiaiin, 219
The FORMAT Function. ... e 220
FORMAT DireCtives . .....oovvnei i 221
Basic Formatting ... 222
Character and Integer Directives . ...........ccoviiiiiivienn.... 223
Floating-Point Directives. ...........cooviiiii e 225
English-Language Directives ..ot 226
Conditional Formatting ... 227
eration. .. ..o e 228
Hop, SKip, JUMp. ... e 230
ANd MOre ... e 231

Beyond Exception Handling: Conditions and Restarts .. 233

The LispWay . ... e e e 234
Conditions. . ... 235
Condition Handlers. . ........ccoiiiii i 235
ReStamS. ...t 238
Providing Multiple Restarts. ...............ccoiii ... 240
Other Uses for Conditions. ... 241
The SpecialOperators ................................... 245
Controlling Evaluation ... 245
Manipulating the Lexical Environment ........................... 246
Local Flow of Control. ... 248
Unwindingthe Stack . ... 252
Multiple Values. . . ... e e 256
EVAL-WHEN .. ..o et 258
Other Special Operators ...t 260

Programming in the Large: Packages and Symbols .... 263

How the Reader Uses Packages.................ccooviiinennn... 263
A Bit of Package and Symbol Vocabulary ......................... 265
Three Standard Packages. .............ccovviiiiii ... 266
Defining Your Own Packages..........ovvvieiviiiineineennnnnn. 267

Packaging Reusable Libraries ... 270



CHAPTER 22

CHAPTER 23

CHAPTER 24

CONTENTS
Importing Individual Names ... 271
Packaging Mechanics . ... 272
Package GOtChas . . ... vt e i i 273
LOOP forBlackBelts ..................................... 277
The Parts of aLOOP. ... ..o i 277
[teration Control ... e 278
Counting LOOPS vt vttt e e 278
Looping Over Collections and Packages.......................... 280
Equals-Then lteration ............. ..ot 281
Local Variables. ..o e e 282
Destructuring Variables. ... 282
Value Accumulation. ... 283
Unconditional Execution ... 285
Conditional Execution ...t 285
Setting Up and Tearing Down. ...........coiiiiiiiiii it 287
Termination TestS ......cvvri v e e e 288
Putting It All Together ... 290
Practical: ASpamFilter ................................. 291
The HeartofaSpam Filter ............... ...t 291
Trainingthe Filter. . ... e 295
Per-Word Statistics . ... 297
Combining Probabilities ..............coiiiiiiii 299
Inverse Chi SQUAare. .......ooevii it it ie e 301
Trainingthe Filter. . ... 302
Testingthe Filter ... 303
A Couple of Utility Functions. ...........ccoii it 305
Analyzingthe Results ... 306
What's Next ... e e e 309
Practical: Parsing Binary Files .......................... 31
Binary Files. ... e e 311
Binary Format Basics. . ... e 312
StringsinBinary Files ... 314

Composite Structures . .....coov i e 316

Xv



XVi

CONTENTS

CHAPTER 25

CHAPTER 26

Designingthe Macros . ..........ccoiiiiiiii i 317
Making the Dream aReality . ..., 318
Reading Binary Objects. .......ovvviiiii i 320
Writing Binary Objects. ... 322
Adding Inheritance and Tagged Structures. ....................... 323
Keeping Track of Inherited Slots ...............ccoiiiiiiniat. 325
Tagged Structures. ... e 327
Primitive Binary TYpes. .. ....ovier e e 329
The Current Object Stack .........covii i 332
Practical: AnID3 Parser ................................. 335
Structure of an ID3v2Tag. ......ccovii i i 336
DefiningaPackage ..........covvvieviiiii i 337
INtEger TYPS . ot ettt e e e 338
SHNG TYPES . et e 339
ID3TagHeader .........ccoiiiii e 343
D3 FramMeS . .ottt 344
Detecting TagPadding ..........ccoiiiiiii i 346
Supporting Multiple Versionsof ID3...............cciiiiiiit. 348
Versioned Frame Base Classes ..............c.coovivvivinennn... 350
Versioned Concrete Frame Classes.............ccovvvviivennnnn.. 351
What Frames Do You Actually Need? ..........................t. 352
Text Information Frames. . ... 354
CommentFrames ..........oiiiiiii i i 356
Extracting Information fromanID3Tag ....................cott 357
Practical: Web Programming with AllegroServe ........ 363
A 30-Second Intro to Server-Side Web Programming............... 363
AllBgrOSBIVE . . ottt e 365
Generating Dynamic Content with AllegroServe. ................... 368
Generating HTML . .. ... or i i 370
HTML MaCroS . . ..o vt et 373
Query Parameters ...t 374
CO0KIBS . vt e et e 377
A Small Application Framework............coovvi i, 379

The Implementation............. ... i 380



CHAPTER 27

CHAPTER 28

CHAPTER 29

CHAPTER 30

CONTENTS
Practical: An MP3 Database ............................. 385
TheDatabase. ... e e e 385
DefiningaSchema ...t e 388
Inserting Values ... e 390
Queryingthe Database .............ccoviiiiiii e 392
Matching Functions. ... 394
Gettingatthe Results ... 397
Other Database Operations. ..., 398
Practical: A Shoutcast Server ........................... 401
The Shoutcast Protocol ... 401
SONG SOUMCES . v v vttt et et i et e i 402
Implementing Shoutcast................ccciiiiiiii i 405
Practical: An MP3 Browser .............................. 41
PlayliStS. . .o e e 411
Playlists AS SONQ SOUMCES. . ..o vt cie i 413
Manipulating the Playlist. ... 417
Query Parameter TYpeS. . ..o e vt 420
Boilerplate HTML . . ... ..o e 422
The Browse Page. ..........ccoiiiiiiii i i eee 423
The Playlist. ... e 426
FindingaPlaylist ... s 429
Running the App. ... 430
Practical: An HTML Generation Library,

theinterpreter ......... ... ...l 431
Designing a Domain-Specific Language...............covvvvennn. 431
The FOO Language ........oovvnviii i i 433
Character ESCaping . ....ovvvee it i i 435
Indenting Printer. . ... e 437
HTML Processor Interface. ...t 438
The Pretty Printer Backend. ............ ..., 439
The Basic EvaluationRule. ...t 443

What' s NEXE? .. e 447

Xvii



xvili

CONTENTS

CHAPTER 31

CHAPTER 32

Practical: An HTML Generation Library,

the Compiler ..................... ...l 449
The Compiler . ... e e e 449
FOO Special Operators ..........c.cooiiiiiiii i 454
FOOMACIOS ..ottt e e et 459
The Public APl .. ... 462
The EndoftheLing ........covieiiriii e 463
Conclusion: What’s Next? ............................... 465
Finding Lisp Libraries ...........cco i 465
Interfacing with Other Languages ...........covvviiiineennnn.. 467
Make It Work, Make It Right, Make It Fast ........................ 467
Delivering Applications ... 475
Whereto GONEXt. ... e e i 477



About the Author

Peter Seibel is either a writer-turned-programmer or a programmer-
turned-writer. After picking up an undergraduate degree in English
and working briefly as a journalist, he was seduced by the Web. In the
early '90s he hacked Perl for Mother Jones magazine and Organic Online.
He participated in the Java revolution as an early employee at WebLogic
and later taught Java programming at the University of California—
Berkeley Extension. He’s also one of the few second-generation Lisp
programmers on the planet and was a childhood shareholder in
Symbolics. He lives in Oakland with his wife, Lily, and their dog, Mahlanie.

Xix






About the Technical Reviewer

Barry Margolin taught himself computer programming in high school in the late '70s, first on
DEC PDP-8 time-sharing systems and then on Radio Shack TRS-80 personal computers, and he
learned operating system design by reverse engineering these systems. He went to M.I.T.,
where he learned Lisp programming from Bernie Greenberg, author of the Multics MacLisp
Compiler and Multics Emacs (the first Emacs clone to be written in Lisp); David Moon (one of
the implementers of ITS Maclisp and a founder of Symbolics); and Alan Bawden (perhaps one
of the best Lisp macrologists). After getting his computer science degree, he went to work for
the Honeywell Multics development group, maintaining Emacs. When Honeywell discontinued
Multics development, he went to Thinking Machines Corporation to maintain their Lisp Machine
development environment. Since then, he has worked for Bolt, Beranek, and Newman—which
became BBN Planet, then GTE Internetworking, and then Genuity, until being acquired by
Level(3)—providing technical support for their Internet services. He’s now working for Symantec
providing level-two customer technical support for its enterprise firewall products.

XXi






Acknowledgments

This book wouldn’t have been written, at least not by me, if not for a few happy coincidences. So,
I have to start by thanking Steven Haflich of Franz, who, after we met at a get-together of Bay
Area Lispniks, invited me to lunch with some Franz salespeople where, among other things, we
discussed the need for a new Lisp book. Then I have to thank Steve Sears, one of the sales guys
at that lunch, who put me in touch with Franz’s president, Fritz Kunze, after Fritz mentioned he
was looking for someone to write a Lisp book. And, of course, many thanks to Fritz for convincing
Apress to publish a new Lisp book, for deciding I was the right guy to write it, and for providing
encouragement and assistance along the way. Thanks also to Sheng-Chuang Wu of Franz, the
instrument of much of that assistance.

One of my most indispensable resources while working on the book was the newsgroup
comp.lang.lisp. The comp.lang.lisp regulars answered what must have seemed to them an
endless stream of questions about various aspects of Lisp and its history. I also turned frequently
to the Google archives for the group, a treasure trove of technical expertise. So, thanks to Google for
making them available and to all comp.lang.lisp participants past and present for providing
the content. In particular, I'd like to recognize two long-time comp.lang.lisp contributors—
Barry Margolin, who has been providing tidbits of Lisp history and his own brand of quiet
wisdom for as long as I've been reading the group; and Kent Pitman, who, in addition to having
been one of the principal technical editors of the language standard and the author of the
Common Lisp HyperSpec, has written hundreds of thousands, if not millions, of words in
comp.lang.lisp postings elucidating various aspects of the language and how it came to be.

Other indispensable resources while working on the book were the Common Lisp libraries
for PDF generation and typesetting, CL-PDF and CL-TYPESETTING, written by Marc Battyani.
I used CL-TYPESETTING to generate handsome PDFs for my own red-pen editing and CL-PDF
as the basis for the Common Lisp program I used to generate the line art that appears in this book.

I also want to thank the many people who reviewed draft chapters on the Web and sent me
e-mails pointing out typos, asking questions, or simply wishing me well. While there were too
many to mention them all by name, a few deserve special mention for their extensive feedback:
J. P. Massar (a fellow Bay Area Lispnik who also bucked up my spirits several times with well-
timed pizza lunches), Gareth McCaughan, Chris Riesbeck, Bulent Murtezaoglu, Emre Sevinc,
Chris Perkins, and Tayssir John Gabbour. Several of my non-Lisping buddies also got roped
into looking at some chapters: thanks to Marc Hedlund, Jolly Chen, Steve Harris, Sam Pullara,
Sriram Srinivasan, and William Grosso for their feedback. Thanks also to Scott Whitten for
permission to use the photo that appears in Figure 26-1.

My technical reviewers, Steven Haflich, Mikel Evins, and Barry Margolin, and my copy
editor, Kim Wimpsett, improved this book in innumerable ways. Any errors that remain are, of
course, my own. And thanks to everyone else at Apress who participated in getting this book out
the door.

Finally, and most of all, I want to thank my family: Mom and Dad, for everything, and Lily,
for always believing I could do it.

XXiii






Typographical Conventions

Inline text set 1ike this is code, usually the names of functions, variables, classes, and so on,
that either I've just introduced or I'm about to introduce. Names defined by the language stan-
dard are set like this: DEFUN. Larger bits of example code are set like this:

(defun foo (x y 2z)
(+xyz))

Since Common Lisp’s syntax is notable for its regularity and simplicity, I use simple templates
to describe the syntax of various Lisp forms. For instance, the following describes the syntax of
DEFUN, the standard function-defining macro:

(defun name (parameter*)
[ documentation-string |
body- form*)

Names in italic in those templates are meant to be filled in with specific names or forms
that I'll describe in the text. An italicized name followed by an asterisk (*) represents zero or
more occurrences of whatever the name represents, and a name enclosed in brackets ([ ])
represents an optional element. Occasionally, alternatives will be separated by a bar (|). Every-
thing else in the template—usually just some names and parentheses—is literal text that will
appear in the form.

Finally, because much of your interaction with Common Lisp happens at the interactive
read-eval-print loop, or REPL, I'll frequently show the result of evaluating Lisp forms at the
REPL like this:

CL-USER> (+ 1 2)
3

The CL-USER> is the Lisp prompt and is always followed by the expression to be evaluated,
(+ 1 2), in this case. The result and any other output generated are shown on the following
lines. I'll also sometimes show the result of evaluating an expression by writing the expression
followed by an —, which is followed by the result, like this:

(+12) >3

Occasionally, I'll use an equivalence sign (=) to express that two Lisp forms are equivalent,
like this:

(+123)=(+(+12)3)
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CHAPTER 1

Introduction: Why Lisp?

If you think the greatest pleasure in programming comes from getting a lot done with code
that simply and clearly expresses your intention, then programming in Common Lisp is likely
to be about the most fun you can have with a computer. You'll get more done, faster, using it
than you would using pretty much any other language.

That’s a bold claim. Can I justify it? Not in a just a few pages in this chapter—you’re going
to have to learn some Lisp and see for yourself—thus the rest of this book. For now, let me start
with some anecdotal evidence, the story of my own road to Lisp. Then, in the next section, I'll
explain the payoff I think you'll get from learning Common Lisp.

I'm one of what must be a fairly small number of second-generation Lisp hackers. My
father got his start in computers writing an operating system in assembly for the machine he
used to gather data for his doctoral dissertation in physics. After running computer systems at
various physics labs, by the 1980s he had left physics altogether and was working at a large
pharmaceutical company. That company had a project under way to develop software to model
production processes in its chemical plants—if you increase the size of this vessel, how does it
affect annual production? The original team, writing in FORTRAN, had burned through half
the money and almost all the time allotted to the project with nothing to show for their efforts.
This being the 1980s and the middle of the artificial intelligence (AI) boom, Lisp was in the air.
So my dad—at that point not a Lisper—went to Carnegie Mellon University (CMU) to talk to
some of the folks working on what was to become Common Lisp about whether Lisp might be
a good language for this project.

The CMU folks showed him some demos of stuff they were working on, and he was convinced.
He in turn convinced his bosses to let his team take over the failing project and do it in Lisp.
Ayear later, and using only what was left of the original budget, his team delivered a working
application with features that the original team had given up any hope of delivering. My dad
credits his team’s success to their decision to use Lisp.

Now, that’s just one anecdote. And maybe my dad is wrong about why they succeeded. Or
maybe Lisp was better only in comparison to other languages of the day. These days we have
lots of fancy new languages, many of which have incorporated features from Lisp. Am I really
saying Lisp can offer you the same benefits today as it offered my dad in the 1980s? Read on.

Despite my father’s best efforts, I didn’t learn any Lisp in high school. After a college career
that didn’t involve much programming in any language, I was seduced by the Web and back
into computers. I worked first in Perl, learning enough to be dangerous while building an
online discussion forum for Mother Jones magazine’s Web site and then moving to a Web shop,
Organic Online, where I worked on big—for the time—Web sites such as the one Nike put up
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during the 1996 Olympics. Later l moved onto Java as an early developer at WebLogic, now part
of BEA. After WebLogic, I joined another startup where I was the lead programmer on a team
building a transactional messaging system in Java. Along the way, my general interest in
programming languages led me to explore such mainstream languages as C, C++, and Python,
as well as less well-known ones such as Smalltalk, Eiffel, and Beta.

So I knew two languages inside and out and was familiar with another half dozen. Eventually,
however, I realized my interest in programming languages was really rooted in the idea planted
by my father’s tales of Lisp—that different languages really are different, and that, despite the
formal Turing equivalence of all programming languages, you really can get more done more
quickly in some languages than others and have more fun doing it. Yet, ironically, I had never
spent that much time with Lisp itself. So, I started doing some Lisp hacking in my free time.
And whenever I did, it was exhilarating how quickly I was able to go from idea to working code.

For example, one vacation, having a week or so to hack Lisp, I decided to try writing a
version of a program—a system for breeding genetic algorithms to play the game of Go—that
I had written early in my career as a Java programmer. Even handicapped by my then rudimen-
tary knowledge of Common Lisp and having to look up even basic functions, it still felt more
productive than it would have been to rewrite the same program in Java, even with several
extra years of Java experience acquired since writing the first version.

A similar experiment led to the library I'll discuss in Chapter 24. Early in my time at WebLogic
I'had written a library, in Java, for taking apart Java class files. It worked, but the code was a bit
of a mess and hard to modify or extend. [ had tried several times, over the years, to rewrite that
library, thinking that with my ever-improving Java chops I'd find some way to do it that didn’t
bog down in piles of duplicated code. I never found a way. But when I tried to do it in Common
Lisp, it took me only two days, and I ended up not only with a Java class file parser but with a
general-purpose library for taking apart any kind of binary file. You'll see how that library works
in Chapter 24 and use it in Chapter 25 to write a parser for the ID3 tags embedded in MP3 files.

Why Lisp?

It’s hard, in only a few pages of an introductory chapter, to explain why users of a language like
it, and it’s even harder to make the case for why you should invest your time in learning a certain
language. Personal history only gets us so far. Perhaps I like Lisp because of some quirk in the
way my brain is wired. It could even be genetic, since my dad has it too. So before you dive into
learning Lisp, it’s reasonable to want to know what the payoff is going to be.

For some languages, the payoff is relatively obvious. For instance, if you want to write low-
level code on Unix, you should learn C. Or if you want to write certain kinds of cross-platform
applications, you should learn Java. And any of a number companies still use a lot of C++, so if
you want to get a job at one of them, you should learn C++.

For most languages, however, they payoff isn’t so easily categorized; it has to do with
subjective criteria such as how it feels to use the language. Perl advocates like to say that Perl
“makes easy things easy and hard things possible” and revel in the fact that, as the Perl motto
has it, “There’s more than one way to do it.”1 Python’s fans, on the other hand, think Python is
clean and simple and think Python code is easier to understand because, as their motto says,
“There’s only one way to do it.”

1. Perlis also worth learning as “the duct tape of the Internet.”
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So, why Common Lisp? There’s no immediately obvious payoff for adopting Common Lisp
the way there is for C, Java, and C++ (unless, of course, you happen to own a Lisp Machine). The
benefits of using Lisp have much more to do with the experience of using it. I'll spend the rest
of this book showing you the specific features of Common Lisp and how to use them so you can
see for yourself what it’s like. For now I'll try to give you a sense of Lisp’s philosophy.

The nearest thing Common Lisp has to a motto is the koan-like description, “the program-
mable programming language.” While cryptic, that description gets at the root of the biggest
advantage Common Lisp still has over other languages. More than any other language, Common
Lisp follows the philosophy that what'’s good for the language’s designer is good for the language’s
users. Thus, when you're programming in Common Lisp, you almost never find yourself wishing
the language supported some feature that would make your program easier to write, because,
as you'll see throughout this book, you can just add the feature yourself.

Consequently, a Common Lisp program tends to provide a much clearer mapping between
your ideas about how the program works and the code you actually write. Your ideas aren’t
obscured by boilerplate code and endlessly repeated idioms. This makes your code easier to
maintain because you don’t have to wade through reams of code every time you need to make
a change. Even systemic changes to a program’s behavior can often be achieved with relatively
small changes to the actual code. This also means you’ll develop code more quickly; there’s
less code to write, and you don’t waste time thrashing around trying to find a clean way to
express yourself within the limitations of the language.?

Common Lisp is also an excellent language for exploratory programming—if you don’t
know exactly how your program is going to work when you first sit down to write it, Common
Lisp provides several features to help you develop your code incrementally and interactively.

For starters, the interactive read-eval-print loop, which I'll introduce in the next chapter,
lets you continually interact with your program as you develop it. Write a new function. Test it.
Change it. Try a different approach. You never have to stop for a lengthy compilation cycle.3

2. Unfortunately, there’s little actual research on the productivity of different languages. One report
that shows Lisp coming out well compared to C++ and Java in the combination of programmer
and program efficiency is discussed at http://www.norvig.com/java-1lisp.html.

3. Psychologists have identified a state of mind called flow in which we're capable of incredible
concentration and productivity. The importance of flow to programming has been recognized for
nearly two decades since it was discussed in the classic book about human factors in programming
Peopleware: Productive Projects and Teams by Tom DeMarco and Timothy Lister (Dorset House,
1987). The two key facts about flow are that it takes around 15 minutes to get into a state of flow
and that even brief interruptions can break you right out of it, requiring another 15-minute
immersion to reenter. DeMarco and Lister, like most subsequent authors, concerned themselves
mostly with flow-destroying interruptions such as ringing telephones and inopportune visits
from the boss. Less frequently considered but probably just as important to programmers are the
interruptions caused by our tools. Languages that require, for instance, a lengthy compilation
before you can try your latest code can be just as inimical to flow as a noisy phone or a nosy boss.
So, one way to look at Lisp is as a language designed to keep you in a state of flow.
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Other features that support a flowing, interactive programming style are Lisp’s dynamic
typing and the Common Lisp condition system. Because of the former, you spend less time
convincing the compiler you should be allowed to run your code and more time actually
running it and working on it,* and the latter lets you develop even your error handling code
interactively.

Another consequence of being “a programmable programming language” is that Common
Lisp, in addition to incorporating small changes that make particular programs easier to write,
can easily adopt big new ideas about how programming languages should work. For instance,
the original implementation of the Common Lisp Object System (CLOS), Common Lisp’s
powerful object system, was as a library written in portable Common Lisp. This allowed Lisp
programmers to gain actual experience with the facilities it provided before it was officially
incorporated into the language.

Whatever new paradigm comes down the pike next, it’s extremely likely that Common
Lisp will be able to absorb it without requiring any changes to the core language. For example,
a Lisper has recently written a library, AspectL, that adds support for aspect-oriented program-
ming (AOP) to Common Lisp.® If AOP turns out to be the next big thing, Common Lisp will be
able to support it without any changes to the base language and without extra preprocessors
and extra compilers.6

Where It Began

Common Lisp is the modern descendant of the Lisp language first conceived by John McCarthy
in 1956. Lisp circa 1956 was designed for “symbolic data processing”” and derived its name

from one of the things it was quite good at: LISt Processing. We’ve come a long way since then:
Common Lisp sports as fine an array of modern data types as you can ask for: a condition system

4. This point is bound to be somewhat controversial, at least with some folks. Static versus dynamic
typing is one of the classic religious wars in programming. If you're coming from C++ and Java (or
from statically typed functional languages such as Haskel and ML) and refuse to consider living
without static type checks, you might as well put this book down now. However, before you do,
you might first want to check out what self-described “statically typed bigot” Robert Martin
(author of Designing Object Oriented C++ Applications Using the Booch Method [Prentice Hall,
1995]) and C++ and Java author Bruce Eckel (author of Thinking in C++ [Prentice Hall, 1995] and
Thinking in Java [Prentice Hall, 1998]) have had to say about dynamic typing on their weblogs
(http://www.artima.com/weblogs/viewpost.jsp?thread=4639 and http://www.mindview.net/
WebLog/1log-0025). On the other hand, folks coming from Smalltalk, Python, Perl, or Ruby should
feel right at home with this aspect of Common Lisp.

5. AspectL is an interesting project insofar as Aspect], its Java-based predecessor, was written by
Gregor Kiczales, one of the designers of Common Lisp’s object and metaobject systems. To many
Lispers, Aspect] seems like Kiczales’s attempt to backport his ideas from Common Lisp into Java.
However, Pascal Costanza, the author of AspectL, thinks there are interesting ideas in AOP that
could be useful in Common Lisp. Of course, the reason he’s able to implement AspectL as a library
is because of the incredible flexibility of the Common Lisp Meta Object Protocol Kiczales designed.
To implement Aspect], Kiczales had to write what was essentially a separate compiler that compiles
anew language into Java source code. The AspectL project page is at http://common-1isp.net/
project/aspectl/.

6. Ortolook at it another, more technically accurate, way, Common Lisp comes with a built-in
facility for integrating compilers for embedded languages.

7. Lisp 1.5 Programmer’s Manual (M.L.T. Press, 1962)
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that, as you'll see in Chapter 19, provides a whole level of flexibility missing from the exception
systems of languages such as Java, Python, and C++; powerful facilities for doing object-oriented
programming; and several language facilities that just don’t exist in other programming
languages. How is this possible? What on Earth would provoke the evolution of such a well-
equipped language?

Well, McCarthy was (and still is) an artificial intelligence (AI) researcher, and many of the
features he built into his initial version of the language made it an excellent language for Al
programming. During the Al boom of the 1980s, Lisp remained a favorite tool for programmers
writing software to solve hard problems such as automated theorem proving, planning and
scheduling, and computer vision. These were problems that required a lot of hard-to-write
software; to make a dent in them, Al programmers needed a powerful language, and they grew
Lisp into the language they needed. And the Cold War helped—as the Pentagon poured money
into the Defense Advanced Research Projects Agency (DARPA), a lot of it went to folks working
on problems such as large-scale battlefield simulations, automated planning, and natural
language interfaces. These folks also used Lisp and continued pushing it to do what they needed.

The same forces that drove Lisp’s feature evolution also pushed the envelope along other
dimensions—big Al problems eat up alot of computing resources however you code them, and
if you run Moore’s law in reverse for 20 years, you can imagine how scarce computing resources
were on circa-80s hardware. The Lisp guys had to find all kinds of ways to squeeze performance
out of their implementations. Modern Common Lisp implementations are the heirs to those
early efforts and often include quite sophisticated, native machine code-generating compilers.
While today, thanks to Moore’s law, it’s possible to get usable performance from a purely inter-
preted language, that’s no longer an issue for Common Lisp. As I'll show in Chapter 32, with
proper (optional) declarations, a good Lisp compiler can generate machine code quite similar
to what might be generated by a C compiler.

The 1980s were also the era of the Lisp Machines, with several companies, most famously
Symbolics, producing computers that ran Lisp natively from the chips up. Thus, Lisp became a
systems programming language, used for writing the operating system, editors, compilers, and
pretty much everything else that ran on the Lisp Machines.

In fact, by the early 1980s, with various Al labs and the Lisp machine vendors all providing
their own Lisp implementations, there was such a proliferation of Lisp systems and dialects
that the folks at DARPA began to express concern about the Lisp community splintering. To
address this concern, a grassroots group of Lisp hackers got together in 1981 and began the
process of standardizing a new language called Common Lisp that combined the best features
from the existing Lisp dialects. Their work was documented in the book Common Lisp the
Language by Guy Steele (Digital Press, 1984)—CLtL to the Lisp-cognoscenti.

By 1986 the first Common Lisp implementations were available, and the writing was on
the wall for the dialects it was intended to replace. In 1996, the American National Standards
Institute (ANSI) released a standard for Common Lisp that built on and extended the language
specified in CLtL, adding some major new features such as the CLOS and the condition system.
And even that wasn’t the last word: like CLtL before it, the ANSI standard intentionally leaves
room for implementers to experiment with the best way to do things: a full Lisp implementation
provides a rich runtime environment with access to GUI widgets, multiple threads of control,
TCP/IP sockets, and more. These days Common Lisp is evolving much like other open-source
languages—the folks who use it write the libraries they need and often make them available to
others. In the last few years, in particular, there has been a spurt of activity in open-source Lisp
libraries.
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So, on one hand, Lisp is one of computer science’s “classical” languages, based on ideas
that have stood the test of time.2 On the other, it’s a thoroughly modern, general-purpose
language whose design reflects a deeply pragmatic approach to solving real problems as effi-
ciently and robustly as possible. The only downside of Lisp’s “classical” heritage is that lots of
folks are still walking around with ideas about Lisp based on some particular flavor of Lisp they
were exposed to at some particular time in the nearly half century since McCarthy invented
Lisp. If someone tells you Lisp is only interpreted, that it’s slow, or that you have to use recur-
sion for everything, ask them what dialect of Lisp they’re talking about and whether people

were wearing bell-bottoms when they learned it.%

BUT | LEARNED LISP ONCE, AND IT WASN'T LIKE WHAT YOU'RE DESCRIBING

If you've used Lisp in the past, you may have ideas about what “Lisp” is that have little to do with Common
Lisp. While Common Lisp supplanted most of the dialects it's descended from, it isn’t the only remaining Lisp
dialect, and depending on where and when you were exposed to Lisp, you may very well have learned one of
these other dialects.

Other than Common Lisp, the one general-purpose Lisp dialect that still has an active user community is
Scheme. Common Lisp borrowed a few important features from Scheme but never intended to replace it.

Originally designed at M.L.T., where it was quickly put to use as a teaching language for undergraduate
computer science courses, Scheme has always been aimed at a different language niche than Common Lisp.
In particular, Scheme’s designers have focused on keeping the core language as small and as simple as
possible. This has obvious benefits for a teaching language and also for programming language researchers
who like to be able to formally prove things about languages.

It also has the benefit of making it relatively easy to understand the whole language as specified in the
standard. But, it does so at the cost of omitting many useful features that are standardized in Common Lisp.
Individual Scheme implementations may provide these features in implementation-specific ways, but their
omission from the standard makes it harder to write portable Scheme code than to write portable Common
Lisp code.

Continued

8. Ideas first introduced in Lisp include the if/then/else construct, recursive function calls, dynamic
memory allocation, garbage collection, first-class functions, lexical closures, interactive
programming, incremental compilation, and dynamic typing.

9. One of the most commonly repeated myths about Lisp is that it's “dead.” While it’s true that Common
Lisp isn't as widely used as, say, Visual Basic or Java, it seems strange to describe a language that
continues to be used for new development and that continues to attract new users as “dead.”
Some recent Lisp success stories include Paul Graham’s Viaweb, which became Yahoo Store
when Yahoo bought his company; ITA Software’s airfare pricing and shopping system, QPX, used
by the online ticket seller Orbitz and others; Naughty Dog’s game for the PlayStation 2, Jak and
Daxter, which is largely written in a domain-specific Lisp dialect Naughty Dog invented called
GOAL, whose compiler is itself written in Common Lisp; and the Roomba, the autonomous robotic
vacuum cleaner, whose software is written in L, a downwardly compatible subset of Common Lisp.
Perhaps even more telling is the growth of the Common-Lisp.net Web site, which hosts open-
source Common Lisp projects, and the number of local Lisp user groups that have sprung up in
the past couple of years.
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Scheme also emphasizes a functional programming style and the use of recursion much more than Common
Lisp does. If you studied Lisp in college and came away with the impression that it was only an academic
language with no real-world application, chances are you learned Scheme. This isn’t to say that’s a particularly
fair characterization of Scheme, but it’s even less applicable to Common Lisp, which was expressly designed
to be a real-world engineering language rather than a theoretically “pure” language.

If you've learned Scheme, you should also be aware that a number of subtle differences between
Scheme and Common Lisp may trip you up. These differences are also the basis for several perennial religious
wars between the hotheads in the Common Lisp and Scheme communities. I'll try to point out some of the
more important differences as we go along.

Two other Lisp dialects still in widespread use are Elisp, the extension language for the Emacs editor, and
Autolisp, the extension language for Autodesk’s AutoCAD computer-aided design tool. Although it’s possible
more lines of Elisp and Autolisp have been written than of any other dialect of Lisp, neither can be used outside
their host application, and both are quite old-fashioned Lisps compared to either Scheme or Common Lisp. If
you’ve used one of these dialects, prepare to hop in the Lisp time machine and jump forward several decades.

Who This Book Is For

This book is for you if you're curious about Common Lisp, regardless of whether you're already
convinced you want to use it or if you just want to know what all the fuss is about.

If you've learned some Lisp already but have had trouble making the leap from academic
exercises to real programs, this book should get you on your way. On the other hand, you don’t
have to be already convinced that you want to use Lisp to get something out of this book.

If you're a hard-nosed pragmatist who wants to know what advantages Common Lisp has
over languages such as Perl, Python, Java, C, or C#, this book should give you some ideas. Or
maybe you don’t even care about using Lisp—maybe you're already sure Lisp isn’t really any
better than other languages you know but are annoyed by some Lisper telling you that’s because
you just don’t “get it.” If so, this book will give you a straight-to-the-point introduction to
Common Lisp. If, after reading this book, you still think Common Lisp is no better than your
current favorite languages, you'll be in an excellent position to explain exactly why.

I cover not only the syntax and semantics of the language but also how you can use it to
write software that does useful stuff. In the first part of the book, I'll cover the language itself,
mixing in a few “practical” chapters, where I'll show you how to write real code. Then, after I've
covered most of the language, including several parts that other books leave for you to figure
out on your own, the remainder of the book consists of nine more practical chapters where I'll
help you write several medium-sized programs that actually do things you might find useful:
filter spam, parse binary files, catalog MP3s, stream MP3s over a network, and provide a Web
interface for the MP3 catalog and server.

After you finish this book, you’ll be familiar with all the most important features of the
language and how they fit together, you'll have used Common Lisp to write several nontrivial
programs, and you'll be well prepared to continue exploring the language on your own.
While everyone’s road to Lisp is different, I hope this book will help smooth the way for you.
So, let’s begin.






CHAPTER 2

Lather, Rinse, Repeat:
A Tour of the REPL

In this chapter you’ll set up your programming environment and write your first Common
Lisp programs. We'll use the easy-to-install Lisp in a Box developed by Matthew Danish and
Mikel Evins, which packages a Common Lisp implementation with Emacs, a powerful Lisp-
aware text editor, and SLIME,! a Common Lisp development environment built on top of Emacs.
This combo provides a state-of-the-art Common Lisp development environment that
supports the incremental, interactive development style that characterizes Lisp programming.
The SLIME environment has the added advantage of providing a fairly uniform user interface
regardless of the operating system and Common Lisp implementation you choose. I'll use the
Lisp in a Box environment in order to have a specific development environment to talk about;
folks who want to explore other development environments such as the graphical integrated
development environments (IDEs) provided by some of the commercial Lisp vendors or envi-
ronments based on other editors shouldn’t have too much trouble translating the basics.?

Choosing a Lisp Implementation

The first thing you have to do is to choose a Lisp implementation. This may seem like a strange
thing to have to do for folks used to languages such as Perl, Python, Visual Basic (VB), C#, and
Java. The difference between Common Lisp and these languages is that Common Lisp is defined by
its standard—there is neither a single implementation controlled by a benevolent dictator, as
with Perl and Python, nor a canonical implementation controlled by a single company, as with

Superior Lisp Interaction Mode for Emacs

2. Ifyou've had a bad experience with Emacs previously, you should treat Lisp in a Box as an IDE
that happens to use an Emacs-like editor as its text editor; there will be no need to become an
Emacs guru to program Lisp. It is, however, orders of magnitude more enjoyable to program Lisp
with an editor that has some basic Lisp awareness. At a minimum, you’ll want an editor that can
automatically match ()s for you and knows how to automatically indent Lisp code. Because
Emacs is itself largely written in a Lisp dialect, Elisp, it has quite a bit of support for editing Lisp
code. Emacs is also deeply embedded into the history of Lisp and the culture of Lisp hackers: the
original Emacs and its immediate predecessors, TECMACS and TMACS, were written by Lispers at
the Massachusetts Institute of Technology (MIT). The editors on the Lisp Machines were versions
of Emacs written entirely in Lisp. The first two Lisp Machine Emacs, following the hacker tradition
of recursive acronyms, were EINE and ZWEI, which stood for EINE Is Not Emacs and ZWEI Was
EINE Initially. Later ones used a descendant of ZWEI, named, more prosaically, ZMACS.
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VB, C#, and Java. Anyone who wants to read the standard and implement the language is free
to do so. Furthermore, changes to the standard have to be made in accordance with a process
controlled by the standards body American National Standards Institute (ANSI). That process
is designed to keep any one entity, such as a single vendor, from being able to arbitrarily change
the standard.3 Thus, the Common Lisp standard is a contract between any Common Lisp
vendor and Common Lisp programmers. The contract tells you that if you write a program that
uses the features of the language the way they’re described in the standard, you can count on
your program behaving the same in any conforming implementation.

On the other hand, the standard may not cover everything you may want to do in your
programs—some things were intentionally left unspecified in order to allow continuing exper-
imentation by implementers in areas where there wasn’t consensus about the best way for the
language to support certain features. So every implementation offers some features above and
beyond what'’s specified in the standard. Depending on what kind of programming you're going
to be doing, it may make sense to just pick one implementation that has the extra features you
need and use that. On the other hand, if we’re delivering Lisp source to be used by others, such
as libraries, you'll want—as far as possible—to write portable Common Lisp. For writing code
that should be mostly portable but that needs facilities not defined by the standard, Common
Lisp provides a flexible way to write code “conditionalized” on the features available in a
particular implementation. You’ll see an example of this kind of code in Chapter 15 when we
develop a simple library that smoothes over some differences between how different Lisp
implementations deal with filenames.

For the moment, however, the most important characteristic of an implementation is
whether it runs on our favorite operating system. The folks at Franz, makers of Allegro Common
Lisp, are making available a trial version of their product for use with this book that runs on
Linux, Windows, and OS X. Folks looking for an open-source implementation have several
options. SBCL* is a high-quality open-source implementation that compiles to native code and
runs on a wide variety of Unixes, including Linux and OS X. SBCL is derived from CMUCL,>
which is a Common Lisp developed at Carnegie Mellon University, and, like CMUCL, is largely
in the public domain, except a few sections licensed under Berkeley Software Distribution
(BSD) style licenses. CMUCL itself is another fine choice, though SBCL tends to be easier to
install and now supports 21-bit Unicode.? For OS X users, OpenMCL is an excellent choice—
it compiles to machine code, supports threads, and has quite good integration with OS X’s

3. Practically speaking, there’s very little likelihood of the language standard itself being revised—
while there are a small handful of warts that folks might like to clean up, the ANSI process isn’'t
amenable to opening an existing standard for minor tweaks, and none of the warts that might be
cleaned up actually cause anyone any serious difficulty. The future of Common Lisp standardization
is likely to proceed via de facto standards, much like the “standardization” of Perl and Python—as
different implementers experiment with application programming interfaces (APIs) and libraries
for doing things not specified in the language standard, other implementers may adopt them or
people will develop portability libraries to smooth over the differences between implementations for
features not specified in the language standard.

. Steel Bank Common Lisp

5. CMU Common Lisp

SBCL forked from CMUCL in order to focus on cleaning up the internals and making it easier to
maintain. But the fork has been amiable; bug fixes tend to propagate between the two projects,
and there’s talk that someday they will merge back together.
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Carbon and Cocoa toolkits. Other open-source and commercial implementations are available.
See Chapter 32 for resources from which you can get more information.

All the Lisp code in this book should work in any conforming Common Lisp implementa-
tion unless otherwise noted, and SLIME will smooth out some of the differences between
implementations by providing us with a common interface for interacting with Lisp. The output
shown in this book is from Allegro running on GNU/Linux; in some cases, other Lisp’s may
generate slightly different error messages or debugger output.

Getting Up and Running with Lisp in a Box

Since the Lisp in a Box packaging is designed to get new Lispers up and running in a first-rate
Lisp development environment with minimum hassle, all you need to do to get it running is to
grab the appropriate package for your operating system and the preferred Lisp from the Lisp in
a Box Web site listed in Chapter 32 and then follow the installation instructions.

Since Lisp in a Box uses Emacs as its editor, you'll need to know at least a bit about how to
use it. Perhaps the best way to get started with Emacs is to work through its built-in tutorial. To
start the tutorial, select the first item of the Help menu, Emacs tutorial. Or press the Ctrl key,
type h, release the Ctrl key, and then press t. Most Emacs commands are accessible via such
key combinations; because key combinations are so common, Emacs users have a notation for
describing key combinations that avoids having to constantly write out combinations such as
“Press the Ctrl key, type h, release the Ctrl key, and then press t.” Keys to be pressed together—
a so-called key chord—are written together and separated by a hyphen. Keys, or key chords, to
be pressed in sequence are separated by spaces. In a key chord, C represents the Ctrl key and M
represents the Meta key (also known as Alt). Thus, we could write the key combination we just
described that starts the tutorial like so: C-h t.

The tutorial describes other useful commands and the key combinations that invoke them.
Emacs also comes with extensive online documentation using its own built-in hypertext docu-
mentation browser, Info. To read the manual, type C-h i. The Info system comes with its own
tutorial, accessible simply by pressing h while reading the manual. Finally, Emacs provides
quite a few ways to get help, all bound to key combos starting with C-h. Typing C-h ? brings up
a complete list. Two of the most useful, besides the tutorial, are C-h k, which lets us type any
key combo and tells us what command it invokes, and C-h w, which lets us enter the name of a
command and tells us what key combination invokes it.

The other crucial bit of Emacs terminology, for folks who refuse to work through the tuto-
rial, is the notion of a buffer. While working in Emacs, each file you edit will be represented by
a different buffer, only one of which is “current” at any given time. The current buffer receives
all input—whatever you type and any commands you invoke. Buffers are also used to represent
interactions with programs such as Common Lisp. Thus, one common action you'll take is to
“switch buffers,” which means to make a different buffer the current buffer so you can edit a
particular file or interact with a particular program. The command switch-to-buffer, bound to
the key combination C-x b, prompts for the name of a buffer in the area at the bottom of the
Emacs frame. When entering a buffer name, hitting Tab will complete the name based on the
characters typed so far or will show a list of possible completions. The prompt also suggests a
default buffer, which you can accept just by hitting Return. You can also switch buffers by
selecting a buffer from the Buffers menu.

11
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In certain contexts, other key combinations may be available for switching to certain
buffers. For instance, when editing Lisp source files, the key combo C-c C-z switches to the
buffer where you interact with Lisp.

Free Your Mind: Interactive Programming

When you start Lisp in a Box, you should see a buffer containing a prompt that looks like this:
CL-USER>

This is the Lisp prompt. Like a Unix or DOS shell prompt, the Lisp prompt is a place where
you can type expressions that will cause things to happen. However, instead of reading and
interpreting a line of shell commands, Lisp reads Lisp expressions, evaluates them according
to the rules of Lisp, and prints the result. Then it does it again with the next expression you type.
That endless cycle of reading, evaluating, and printing is why it’s called the read-eval-print loop,
or REPL for short. It’s also referred to as the top-level, the top-level listener, or the Lisp listener.

From within the environment provided by the REPL, you can define and redefine program
elements such as variables, functions, classes, and methods; evaluate any Lisp expression; load
files containing Lisp source code or compiled code; compile whole files or individual functions;
enter the debugger; step through code; and inspect the state of individual Lisp objects.

All those facilities are built into the language, accessible via functions defined in the language
standard. If you had to, you could build a pretty reasonable programming environment out of
just the REPL and any text editor that knows how to properly indent Lisp code. But for the true
Lisp programming experience, you need an environment, such as SLIME, that lets you interact
with Lisp both via the REPL and while editing source files. For instance, you don’t want to have
to cut and paste a function definition from a source file to the REPL or have to load a whole file
just because you changed one function; your Lisp environment should let us evaluate or compile
both individual expressions and whole files directly from your editor.

Experimenting in the REPL

To try the REPL, you need a Lisp expression that can be read, evaluated, and printed. One of the
simplest kinds of Lisp expressions is a number. At the Lisp prompt, you can type 10 followed by
Return and should see something like this:

CL-USER> 10
10

The first 10 is the one you typed. The Lisp reader, the R in REPL, reads the text “10” and
creates a Lisp object representing the number 10. This object is a self-evaluating object, which
means that when given to the evaluator, the E in REPL, it evaluates to itself. This value is then
given to the printer, which prints the 10 on the line by itself. While that may seem like a lot of
work just to get back to where you started, things get a bit more interesting when you give Lisp
something meatier to chew on. For instance, you can type (+ 2 3) at the Lisp prompt.

CL-USER> (+ 2 3)
5
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Anything in parentheses is a list, in this case alist of three elements, the symbol +, and the
numbers 2 and 3. Lisp, in general, evaluates lists by treating the first element as the name of a
function and the rest of the elements as expressions to be evaluated to yield the arguments to
the function. In this case, the symbol + names a function that performs addition. 2 and 3 eval-
uate to themselves and are then passed to the addition function, which returns 5. The value 5 is
passed to the printer, which prints it. Lisp can evaluate a list expression in other ways, but we
needn’t get into them right away. First we have to write. . .

“Hello, World,” Lisp Style

No programming book is complete without a “hello, world”? program. As it turns out, it’s trivially
easy to get the REPL to print “hello, world.”

CL-USER> "hello, world"
"hello, world"

This works because strings, like numbers, have a literal syntax that’s understood by the Lisp
reader and are self-evaluating objects: Lisp reads the double-quoted string and instantiates a
string object in memory that, when evaluated, evaluates to itself and is then printed in the
same literal syntax. The quotation marks aren’t part of the string object in memory—they’re
just the syntax that tells the reader to read a string. The printer puts them back on when it
prints the string because it tries to print objects in the same syntax the reader understands.

However, this may not really qualify as a “hello, world” program. It’s more like the “hello,
world” value.

You can take a step toward a real program by writing some code that as a side effect prints
the string “hello, world” to standard output. Common Lisp provides a couple ways to emit
output, but the most flexible is the FORMAT function. FORMAT takes a variable number of argu-
ments, but the only two required arguments are the place to send the output and a string. You’ll
see in the next chapter how the string can contain embedded directives that allow you to inter-
polate subsequent arguments into the string, a la printf or Python’s string-%. As long as the
string doesn’t contain an ~, it will be emitted as-is. If you pass t as its first argument, it sends its
output to standard output. So a FORMAT expression that will print “hello, world” looks like this:®

CL-USER> (format t "hello, world")
hello, world
NIL

7. Thevenerable “hello, world” predates even the classic Kernighan and Ritchie C book that played a big
role in its popularization. The original “hello, world” seems to have come from Brian Kernighan’s “A
Tutorial Introduction to the Language B” that was part of the Bell Laboratories Computing Science
Technical Report #8: The Programming Language B published in January 1973. (It's available online at
http://cm.bell-labs.com/cm/cs/who/dmr/bintro.html.)

8. These are some other expressions that also print the string “hello, world”:
(write-line "hello, world")
or this:
(print "hello, world")

13
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One thing to note about the result of the FORMAT expression is the NIL on the line after the
“hello, world” output. That NILis the result of evaluating the FORMAT expression, printed by the
REPL. (NILis Lisp’s version of false and/or null. More on that in Chapter 4.) Unlike the other
expressions we’ve seen so far, a FORMAT expression is more interesting for its side effect—
printing to standard output in this case—than for its return value. But every expression in Lisp
evaluates to some result.?

However, it’s still arguable whether you've yet written a true “program.” But you're getting
there. And you're seeing the bottom-up style of programming supported by the REPL: you can
experiment with different approaches and build a solution from parts you've already tested.
Now that you have a simple expression that does what you want, you just need to package it in
a function. Functions are one of the basic program building blocks in Lisp and can be defined
with a DEFUN expression such as this:

CL-USER> (defun hello-world () (format t "hello, world"))
HELLO-WORLD

The hello-world after the D E FUN is the name of the function. In Chapter 4 we’ll look at exactly
what characters can be used in a name, but for now suffice it to say that lots of characters, such
as -, that are illegal in names in other languages are legal in Common Lisp. It’s standard Lisp
style—not to mention more in line with normal English typography—to form compound
names with hyphens, such as hello-world, rather than with underscores, as in hello _world, or
with inner caps such as helloWorld. The ()s after the name delimit the parameter list, which is
empty in this case because the function takes no arguments. The rest is the body of the function.

At one level, this expression, like all the others you've seen, is just another expression to be
read, evaluated, and printed by the REPL. The return value in this case is the name of the func-
tion you just defined.1? But like the FORMAT expression, this expression is more interesting for
the side effects it has than for its return value. Unlike the FORMAT expression, however, the side
effects are invisible: when this expression is evaluated, a new function that takes no arguments
and with the body (format t "hello, world") is created and given the name HELLO-WORLD.

Once you've defined the function, you can call it like this:

CL-USER> (hello-world)
hello, world
NIL

You can see that the output is just the same as when you evaluated the FORMAT expression
directly, including the NI L value printed by the REPL. Functions in Common Lisp automatically
return the value of the last expression evaluated.

9. Well, as you'll see when I discuss returning multiple values, it's technically possible to write
expressions that evaluate to no value, but even such expressions are treated as returning NIL
when evaluated in a context that expects a value.

10. I'll discuss in Chapter 4 why the name has been converted to all uppercase.
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Saving Your Work

You could argue that this is a complete “hello, world” program of sorts. However, it still has a
problem. If you exit Lisp and restart, the function definition will be gone. Having written such
a fine function, you’ll want to save your work.

Easy enough. You just need to create a file in which to save the definition. In Emacs you
can create a new file by typing C-x C-f and then, when Emacs prompts you, entering the name
of the file you want to create. It doesn’t matter particularly where you put the file. It’s customary to
name Common Lisp source files with a .1isp extension, though some folks use .cl instead.

Once you've created the file, you can type the definition you previously entered at the
REPL. Some things to note are that after you type the opening parenthesis and the word DEFUN,
at the bottom of the Emacs window, SLIME will tell you the arguments expected. The exact
form will depend somewhat on what Common Lisp implementation you're using, but it’ll
probably look something like this:

(defun name varlist 8rest body)

The message will disappear as you start to type each new element but will reappear each
time you enter a space. When you're entering the definition in the file, you might choose to
break the definition across two lines after the parameter list. If you hit Return and then Tab,
SLIME will automatically indent the second line appropriately, like this:1!

(defun hello-world ()
(format t "hello, world"))

SLIME will also help match up the parentheses—as you type a closing parenthesis, it will
flash the corresponding opening parenthesis. Or you can just type C-c C-q to invoke the command
slime-close-parens-at-point, which will insert as many closing parentheses as necessary to
match all the currently open parentheses.

Now you can get this definition into your Lisp environment in several ways. The easiest is
to type C-c C-c with the cursor anywhere in or immediately after the DEFUN form, which runs
the command slime-compile-defun, which in turn sends the definition to Lisp to be evaluated
and compiled. To make sure this is working, you can make some change to hello-world, recompile
it, and then go back to the REPL, using C-c C-z or C-x b, and call it again. For instance, you
could make it a bit more grammatical.

(defun hello-world ()
(format t "Hello, world!"))

Next, recompile with C-c C-c and then type C-c C-z to switch to the REPL to try the
new version.

CL-USER> (hello-world)
Hello, world!
NIL

11. You could also have entered the definition as two lines at the REPL, as the REPL reads whole
expressions, not lines.

15
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You'll also probably want to save the file you’ve been working on; in the hello.1isp buffer, type
C-x C-s to invoke the Emacs command save-buffer.

Now to try reloading this function from the source file, you'll need to quit Lisp and restart.
To quit you can use a SLIME shortcut: at the REPL, type a comma. At the bottom of the Emacs
window, you will be prompted for a command. Type quit (or sayoonara), and then hit Enter.
This will quit Lisp and close all the buffers created by SLIME such as the REPL buffer.!2 Now
restart SLIME by typing M-x slime.

Just for grins, you can try to invoke hello-world.

CL-USER> (hello-world)
At that point SLIME will pop up a new buffer that starts with something that looks like this:

attempt to call 'HELLO-WORLD' which is an undefined function.
[Condition of type UNDEFINED-FUNCTION]

Restarts:

0: [TRY-AGAIN] Try calling HELLO-WORLD again.
RETURN-VALUE] Return a value instead of calling HELLO-WORLD.
USE-VALUE] Try calling a function other than HELLO-WORLD.
STORE-VALUE] Setf the symbol-function of HELLO-WORLD and call it again.
ABORT] Abort handling SLIME request.

5: [ABORT] Abort entirely from this process.
Backtrace:

0: (SWANK: :DEBUG-IN-EMACS #<UNDEFINED-FUNCTION @ #x716b082a>)

1: ((FLET SWANK:SWANK-DEBUGGER-HOOK SWANK::DEBUG-IT))

2: (SWANK:SWANK-DEBUGGER-HOOK #<UNDEFINED-FUNCTION @ #x716b082a> w»
#<Function SWANK-DEBUGGER-HOOK>)

3: (ERROR #<UNDEFINED-FUNCTION @ #x716b082a>)

4: (EVAL (HELLO-WORLD))

5: (SWANK: :EVAL-REGION "(hello-world)
" Ty

M w N R
— —— —

Blammo! What happened? Well, you tried to invoke a function that doesn’t exist. But
despite the burst of output, Lisp is actually handling this situation gracefully. Unlike Java or
Python, Common Lisp doesn’t just bail—throwing an exception and unwinding the stack. And
it definitely doesn’t dump core just because you tried to invoke a missing function. Instead Lisp
drops you into the debugger.

While you're in the debugger you still have full access to Lisp, so you can evaluate expres-
sions to examine the state of our program and maybe even fix things. For now don’t worry
about that; just type q to exit the debugger and get back to the REPL. The debugger buffer will
go away, and the REPL will show this:

CL-USER> (hello-world)
; Evaluation aborted
CL-USER>

12. SLIME shortcuts aren’t part of Common Lisp—they’re commands to SLIME.
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There’s obviously more that can be done from within the debugger than just abort—we’ll
see, for instance, in Chapter 19 how the debugger integrates with the error handling system.
For now, however, the important thing to know is that you can always get out of it, and back to
the REPL, by typing q.

Back at the REPL you can try again. Things blew up because Lisp didn’t know the defini-
tion of hello-world. So you need to let Lisp know about the definition we saved in the file
hello.lisp. You have several ways you could do this. You could switch back to the buffer
containing the file (type C-x b and then enter hello.lisp when prompted) and recompile the
definition as you did before with C-c C-c. Or you can load the whole file, which would be a
more convenient approach if the file contained a bunch of definitions, using the LOAD function
at the REPL like this:

CL-USER> (load "hello.lisp")
; Loading /home/peter/my-lisp-programs/hello.lisp
-

The T means everything loaded correctly.!3 Loading a file with LOAD is essentially equivalent to
typing each of the expressions in the file at the REPL in the order they appear in the file, so after
the call to LOAD, hello-world should be defined:

CL-USER> (hello-world)
Hello, world!
NIL

Another way to load a file’s worth of definitions is to compile the file first with
COMPILE-FILE and then LOAD the resulting compiled file, called a FASL file, which is short for
fast-load file. COMPILE-FILE returns the name of the FASL file, so we can compile and load
from the REPL like this:

CL-USER> (load (compile-file "hello.lisp"))

555 Compiling file hello.lisp

555 Writing fasl file hello.fasl

555 Fasl write complete

; Fast loading /home/peter/my-lisp-programs/hello.fasl
-

SLIME also provides support for loading and compiling files without using the REPL.
When you're in a source code buffer, you can use C-c C-1toload the file with slime-load-file.
Emacs will prompt for the name of a file to load with the name of the current file already filled in;
you can just hit Enter. Or you can type C-c C-k to compile and load the file represented by the
current buffer. In some Common Lisp implementations, compiling code this way will make it
quite a bit faster; in others, it won't, typically because they always compile everything.

13. If for some reason the LOAD doesn’t go cleanly, you'll get another error and drop back into the
debugger. If this happens, the most likely reason is that Lisp can't find the file, probably because
its idea of the current working directory isn’t the same as where the file is located. In that case,
you can quit the debugger by typing q and then use the SLIME shortcut cd to change Lisp’s idea of
the current directory—type a comma and then cd when prompted for a command and then the
name of the directory where hello.1isp was saved.



18

CHAPTER 2 LATHER, RINSE, REPEAT: A TOUR OF THE REPL

This should be enough to give you a flavor of how Lisp programming works. Of course
I haven’t covered all the tricks and techniques yet, but you’ve seen the essential elements—
interacting with the REPL trying things out, loading and testing new code, tweaking and
debugging. Serious Lisp hackers often keep a Lisp image running for days on end, adding,
redefining, and testing bits of their program incrementally.

Also, even when the Lisp app is deployed, there’s often still a way to get to a REPL. You’ll
see in Chapter 26 how you can use the REPL and SLIME to interact with the Lisp that’s running
a Web server at the same time as it’s serving up Web pages. It’s even possible to use SLIME to
connect to a Lisp running on a different machine, allowing you—for instance—to debug a
remote server just like a local one.

An even more impressive instance of remote debugging occurred on NASA’s 1998 Deep
Space 1 mission. A half year after the space craft launched, a bit of Lisp code was going to
control the spacecraft for two days while conducting a sequence of experiments. Unfortunately, a
subtle race condition in the code had escaped detection during ground testing and was already
in space. When the bug manifested in the wild—100 million miles away from Earth—the team
was able to diagnose and fix the running code, allowing the experiments to complete.!4 One of
the programmers described it as follows:

Debugging a program running on a $100M piece of hardware that is

100 million miles away is an interesting experience. Having a read-eval-print
loop running on the spacecraft proved invaluable in finding and fixing

the problem.

You're not quite ready to send any Lisp code into deep space, but in the next chapter you'll
take a crack at writing a program a bit more interesting than “hello, world.”

14. http://www.flownet.com/gat/jpl-lisp.html



CHAPTER 3

Practical: A Simple Database

Obviously, before you can start building real software in Lisp, you'll have to learn the language.
But let’s face it—you may be thinking, “‘Practical Common Lisp,’ isn’t that an oxymoron? Why
should you be expected to bother learning all the details of a language unless it’s actually good
for something you care about?” So I'll start by giving you a small example of what you can do
with Common Lisp. In this chapter you'll write a simple database for keeping track of CDs.
You'll use similar techniques in Chapter 27 when you build a database of MP3s for our streaming
MP3 server. In fact, you could think of this as part of the MP3 software project—after all, in
order to have a bunch of MP3s to listen to, it might be helpful to be able to keep track of which
CDs you have and which ones you need to rip.

In this chapter, I'll cover just enough Lisp as we go along for you to understand how the
code works. But I'll gloss over quite a few details. For now you needn’t sweat the small stuff—
the next several chapters will cover all the Common Lisp constructs used here, and more, in a
much more systematic way.

One terminology note: I'll discuss a handful of Lisp operators in this chapter. In Chapter 4,
you'll learn that Common Lisp provides three distinct kinds of operators: functions, macros,
and special operators. For the purposes of this chapter, you don’t really need to know the differ-
ence. I will, however, refer to different operators as functions or macros or special operators as
appropriate, rather than trying to hide the details behind the word operator. For now you can
treat function, macro, and special operator as all more or less equivalent.!

Also, keep in mind that I won’t bust out all the most sophisticated Common Lisp techniques
for your very first post—“hello, world” program. The point of this chapter isn’t that this is how
you would write a database in Lisp; rather, the point is for you to get an idea of what program-
ming in Lisp is like and to see how even a relatively simple Lisp program can be quite featureful.

CDs and Records

To keep track of CDs that need to be ripped to MP3s and which CDs should be ripped first, each
record in the database will contain the title and artist of the CD, a rating of how much the user
likes it, and a flag saying whether it has been ripped. So, to start with, you’ll need a way to repre-
sent a single database record (in other words, one CD). Common Lisp gives you lots of choices

1. Before I proceed, however, it’s crucially important that you forget anything you may know about
#define-style “macros” as implemented in the C pre-processor. Lisp macros are a totally different
beast.

19
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of data structures from a simple four-item list to a user-defined class, using the Common Lisp
Object System (CLOS).

For now you can stay at the simple end of the spectrum and use a list. You can make a list
with the LIST function, which, appropriately enough, returns a list of its arguments.

CL-USER> (list 1 2 3)
(123)

You could use a four-item list, mapping a given position in the list to a given field in the
record. However, another flavor of list—called a property list, or plist for short—is even more
convenient. A plist is a list where every other element, starting with the first, is a symbol that
describes what the next element in the list is. I won’t get into all the details of exactly what a
symbol is right now; basically it’s a name. For the symbols that name the fields in the CD data-
base, you can use a particular kind of symbol, called a keyword symbol. A keyword is any name
that starts with a colon (:), for instance, : foo. Here’s an example of a plist using the keyword
symbols :a, :b, and :c as property names:

CL-USER> (list :a 1 :b 2 :c 3)
(:A1:B2:C3)

Note that you can create a property list with the same LIST function as you use to create
other lists; it’s the contents that make it a plist.

The thing that makes plists a convenient way to represent the records in a database is the
function GETF, which takes a plist and a symbol and returns the value in the plist following the
symbol, making a plist a sort of poor man’s hash table. Lisp has real hash tables too, but plists
are sufficient for your needs here and can more easily be saved to a file, which will come in
handy later.

CL-USER> (getf (list :a 1 :b 2 :c 3) :a)
1
CL-USER> (getf (list :a 1 :b 2 :c 3) :c)
3

Given all that, you can easily enough write a function make-cd that will take the four fields
as arguments and return a plist representing that CD.

(defun make-cd (title artist rating ripped)
(list :title title :artist artist :rating rating :ripped ripped))

The word DEFUN tells us that this form is defining a new function. The name of the function
is make-cd. After the name comes the parameter list. This function has four parameters: title,
artist, rating, and ripped. Everything after the parameter list is the body of the function. In
this case the body is just one form, a call to LIST. When make-cd is called, the arguments passed
to the call will be bound to the variables in the parameter list. For instance, to make a record for
the CD Roses by Kathy Mattea, you might call make-cd like this:

CL-USER> (make-cd "Roses" "Kathy Mattea" 7 t)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T)
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Filing CDs

A single record, however, does not a database make. You need some larger construct to hold
the records. Again, for simplicity’s sake, a list seems like a good choice. Also for simplicity you
can use a global variable, *db*, which you can define with the DEFVAR macro. The asterisks (*)
in the name are a Lisp naming convention for global variables.

(defvar *db* nil)

You can use the PUSH macro to add items to *db*. But it’s probably a good idea to abstract
things a tiny bit, so you should define a function add-record that adds a record to the database.

(defun add-record (cd) (push cd *db*))
Now you can use add-record and make-cd together to add CDs to the database.

CL-USER> (add-record (make-cd "Roses" "Kathy Mattea" 7 t))
((:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T))
CL-USER> (add-record (make-cd "Fly" "Dixie Chicks" 8 t))
((:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T))
CL-USER> (add-record (make-cd "Home" "Dixie Chicks" 9 t))
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T))

The stuff printed by the REPL after each call to add-record is the return value, which is the
value returned by the last expression in the function body, the PUSH. And PUSH returns the new
value of the variable it's modifying. So what you're actually seeing is the value of the database
after the record has been added.

Looking at the Database Contents

You can also see the current value of *db* whenever you want by typing *db* at the REPL.

CL-USER> *db*

((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 7 :RIPPED T))

However, that’s not a very satisfying way of looking at the output. You can write a dump-db
function that dumps out the database in a more human-readable format, like this:

2. Using a global variable also has some drawbacks—for instance, you can have only one database
at a time. In Chapter 27, with more of the language under your belt, you'll be ready to build a more
flexible database. You'll also see, in Chapter 6, how even using a global variable is more flexible in
Common Lisp than it may be in other languages.
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TITLE:  Home
ARTIST:  Dixie Chicks
RATING: 9

RIPPED: T

TITLE:  Fly

ARTIST:  Dixie Chicks
RATING: 8

RIPPED: T

TITLE: Roses
ARTIST:  Kathy Mattea
RATING: 7

RIPPED: T

The function looks like this:

(defun dump-db ()
(dolist (cd *db*)
(format t "~{~a:~10t~a~%~}~%" cd)))

This function works by looping over all the elements of *db* with the DOLIST macro,
binding each element to the variable cd in turn. For each value of cd, you use the FORMAT
function to print it.

Admittedly, the FORMAT call is a little cryptic. However, FORMAT isn’t particularly more
complicated than C or Perl’s printf function or Python’s string-% operator. In Chapter 18 I'll
discuss FORMAT in greater detail. For now we can take this call bit by bit. As you saw in Chapter 2,
FORMAT takes at least two arguments, the first being the stream where it sends its output; t is
shorthand for the stream *standard-output*.

The second argument to FORMAT is a format string that can contain both literal text and
directives telling FORMAT things such as how to interpolate the rest of its arguments. Format
directives start with ~ (much the way printf’s directives start with %). FORMAT understands
dozens of directives, each with their own set of options.3 However, for now I'll justfocus on the
ones you need to write dump-db.

The ~a directive is the aesthetic directive; it means to consume one argument and output
itin a human-readable form. This will render keywords without the leading : and strings without
quotation marks. For instance:

3. One of the coolest FORMAT directives is the ~R directive. Ever want to know how to say a really big
number in English words? Lisp knows. Evaluate this:

(format nil "~r" 1606938044258990275541962092)
and you should get back the following (wrapped for legibility):
one octillion six hundred six septillion nine hundred thirty-eight sextillion forty-four quintillion

two hundred fifty-eight quadrillion nine hundred ninety trillion two hundred seventy-five billion
five hundred forty-one million nine hundred sixty-two thousand ninety-two
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CL-USER> (format t "~a" "Dixie Chicks")
Dixie Chicks
NIL

or:

CL-USER> (format t "~a" :title)
TITLE
NIL

The ~t directive is for tabulating. The ~10t tells FORMAT to emit enough spaces to move to
the tenth column before processing the next ~a. A ~t doesn’t consume any arguments.

CL-USER> (format t "~a:~10t~a" :artist "Dixie Chicks")
ARTIST: Dixie Chicks
NIL

Now things get slightly more complicated. When FORMAT sees ~{ the next argument to be
consumed must be a list. FORMAT loops over that list, processing the directives between the ~{
and ~}, consuming as many elements of the list as needed each time through the list. In dump-db,
the FORMAT loop will consume one keyword and one value from the list each time through the
loop. The ~% directive doesn’t consume any arguments but tells FORMAT to emit a newline. Then
after the ~} ends the loop, the last ~% tells FORMAT to emit one more newline to put a blank
line between each CD.

Technically, you could have also used FORMAT to loop over the database itself, turning our
dump-db function into a one-liner.

(defun dump-db ()
(format t "~{~{~a:~10t~a~%~}~%~}" *db*))

That'’s either very cool or very scary depending on your point of view.

Improving the User Interaction

While our add-record function works fine for adding records, it’s a bit Lispy for the casual user.
And if they want to add a bunch of records, it’s not very convenient. So you may want to write
a function to prompt the user for information about a set of CDs. Right away you know you’ll

need some way to prompt the user for a piece of information and read it. So let’s write that.

(defun prompt-read (prompt)
format *query-io* "~a: " prompt
query promp
force-output *query-io*
P query
(read-line *query-io*))

You use your old friend FORMAT to emit a prompt. Note that there’s no ~% in the format
string, so the cursor will stay on the same line. The call to FORCE-OUTPUT is necessary in some
implementations to ensure that Lisp doesn’t wait for a newline before it prints the prompt.

Then you can read a single line of text with the aptly named READ-LINE function. The
variable *query-io*is a global variable (which you can tell because of the * naming convention
for global variables) that contains the input stream connected to the terminal. The return value
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of prompt-read will be the value of the last form, the call to READ-LINE, which returns the string
it read (without the trailing newline.)

You can combine your existing make-cd function with prompt-read to build a function that
makes a new CD record from data it gets by prompting for each value in turn.

(defun prompt-for-cd ()
(make-cd
(prompt-read "Title")
(prompt-read "Artist")
(prompt-read "Rating")
(prompt-read "Ripped [y/n]")))

That’s almost right. Except prompt-read returns a string, which, while fine for the Title and
Artist fields, isn’t so great for the Rating and Ripped fields, which should be a number and a
boolean. Depending on how sophisticated a user interface you want, you can go to arbitrary
lengths to validate the data the user enters. For now let’s lean toward the quick and dirty: you
can wrap the prompt-read for the rating in a call to Lisp’s PARSE-INTEGER function, like this:

(parse-integer (prompt-read "Rating"))

Unfortunately, the default behavior of PARSE-INTEGER is to signal an error if it can’t parse
an integer out of the string or if there’s any non-numeric junk in the string. However, it takes an
optional keyword argument : junk-allowed, which tells it to relax a bit.

(parse-integer (prompt-read "Rating") :junk-allowed t)

But there’s still one problem: if it can’t find an integer amidst all the junk, PARSE-INTEGER
will return NIL rather than a number. In keeping with the quick-and-dirty approach, you may
just want to call that 0 and continue. Lisp’s ORmacro is just the thing you need here. It’s similar
to the “short-circuiting” | | in Perl, Python, Java, and C; it takes a series of expressions, evalu-
ates them one at a time, and returns the first non-nil value (or NILif they’re all NIL). So you can
use the following:

(or (parse-integer (prompt-read "Rating") :junk-allowed t) 0)

to get a default value of 0.
Fixing the code to prompt for Ripped is quite a bit simpler. You can just use the Common
Lisp function Y-OR-N-P.

(y-or-n-p "Ripped [y/n]: ")

In fact, this will be the most robust part of prompt-for-cd, as Y-0R-N-P will reprompt the
user if they enter something that doesn’t start with y, Y, n, or N.
Putting those pieces together you get a reasonably robust prompt-for-cd function.

(defun prompt-for-cd ()
(make-cd
(prompt-read "Title")
(prompt-read "Artist")
(or (parse-integer (prompt-read "Rating") :junk-allowed t) 0)
(y-or-n-p "Ripped [y/n]: ")))
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Finally, you can finish the “add a bunch of CDs” interface by wrapping prompt-for-cdina
function that loops until the user is done. You can use the simple form of the L00P macro, which
repeatedly executes a body of expressions until it’s exited by a call to RETURN. For example:

(defun add-cds ()
(loop (add-record (prompt-for-cd))
(if (not (y-or-n-p "Another? [y/n]: ")) (return))))

Now you can use add-cds to add some more CDs to the database.

CL-USER> (add-cds)
Title: Rockin' the Suburbs
Artist: Ben Folds
Rating: 6

Ripped [y/n]:y
Another? [y/n]:y
Title: Give Us a Break
Artist: Limpopo
Rating: 10

Ripped [y/n]:y
Another? [y/n]:y
Title: Lyle Lovett
Artist: Lyle Lovett
Rating: 9

Ripped [y/n]:y
Another? [y/n]: n

NIL

Saving and Loading the Database

Having a convenient way to add records to the database is nice. But it’s not so nice that the user
is going to be very happy if they have to reenter all the records every time they quit and restart
Lisp. Luckily, with the data structures you're using to represent the data, it’s trivially easy to
save the data to a file and reload it later. Here’s a save-db function that takes a filename as an
argument and saves the current state of the database:

(defun save-db (filename)
(with-open-file (out filename
:direction :output
:if-exists :supersede)
(with-standard-io-syntax
(print *db* out))))

The WITH-OPEN-FILE macro opens a file, binds the stream to a variable, executes a set of
expressions, and then closes the file. It also makes sure the file is closed even if something goes
wrong while evaluating the body. The list directly after WITH-OPEN-FILE isn’t a function call
but rather part of the syntax defined by WITH-OPEN-FILE. It contains the name of the variable
that will hold the file stream to which you’ll write within the body of WITH-OPEN-FILE, a value
that must be a file name, and then some options that control how the file is opened. Here you
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specify that you're opening the file for writing with :direction :output and that you want to
overwrite an existing file of the same name if it exists with :if-exists :supersede.

Once you have the file open, all you have to do is print the contents of the database with
(print *db* out). Unlike FORMAT, PRINT prints Lisp objects in a form that can be read back in
by the Lisp reader. The macro WITH-STANDARD-IO-SYNTAX ensures that certain variables that
affect the behavior of PRINT are set to their standard values. You’ll use the same macro when
you read the data back in to make sure the Lisp reader and printer are operating compatibly.

The argument to save-db should be a string containing the name of the file where the user
wants to save the database. The exact form of the string will depend on what operating system
they’re using. For instance, on a Unix box they should be able to call save-db like this:

CL-USER> (save-db "~/my-cds.db")

((:TITLE "Lyle Lovett" :ARTIST "Lyle Lovett" :RATING 9 :RIPPED T)
(:TITLE "Give Us a Break" :ARTIST "Limpopo" :RATING 10 :RIPPED T)
(:TITLE "Rockin' the Suburbs" :ARTIST "Ben Folds" :RATING 6 :RIPPED
T)

(:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T)
(:TITLE "Roses" :ARTIST "Kathy Mattea" :RATING 9 :RIPPED T))

On Windows, the filename might be something like “c: /my-cds.db” or “c:\\my-cds.db.”*

You can open this file in any text editor to see what it looks like. You should see something
a lot like what the REPL prints if you type *db*.

The function to load the database back in is similar.

(defun load-db (filename)
(with-open-file (in filename)
(with-standard-io-syntax

(setf *db* (read in)))))

This time you don’t need to specify :direction in the options to WITH-OPEN-FILE, since
you want the default of : input. And instead of printing, you use the function READ to read from
the stream in. This is the same reader used by the REPL and can read any Lisp expression you
could type at the REPL prompt. However, in this case, you're just reading and saving the expres-
sion, not evaluating it. Again, the WITH-STANDARD-I0-SYNTAX macro ensures that READ is using
the same basic syntax that save-db did when it PRINTed the data.

The SETF macro is Common Lisp’s main assignment operator. It sets its first argument to
the result of evaluating its second argument. So in load-db the *db* variable will contain the
object read from the file, namely, the list of lists written by save-db. You do need to be careful
about one thing—load-db clobbers whatever was in *db* before the call. So if you've added
records with add-record or add-cds that haven’t been saved with save-db, you'll lose them.

4. Windows actually understands forward slashes in filenames even though it normally uses a backslash
as the directory separator. This is convenient since otherwise you have to write double backslashes
because backslash is the escape character in Lisp strings.
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Querying the Database

Now that you have a way to save and reload the database to go along with a convenient user
interface for adding new records, you soon may have enough records that you won’t want to be
dumping out the whole database just to look at what’s in it. What you need is a way to query the
database. You might like, for instance, to be able to write something like this:

(select :artist "Dixie Chicks")

and get a list of all the records where the artist is the Dixie Chicks. Again, it turns out that the
choice of saving the records in a list will pay off.

The function REMOVE-IF-NOT takes a predicate and a list and returns a list containing only
the elements of the original list that match the predicate. In other words, it has removed all the
elements that don’t match the predicate. However, REMOVE-IF-NOT doesn’t really remove
anything—it creates a new list, leaving the original list untouched. It’s like running grep over a
file. The predicate argument can be any function that accepts a single argument and returns a
boolean value—NIL for false and anything else for true.

For instance, if you wanted to extract all the even elements from a list of numbers, you
could use REMOVE-IF-NOT as follows:

CL-USER> (remove-if-not #'evenp '(1 23 456 7 8 9 10))
(2 4 6 8 10)

In this case, the predicate is the function EVENP, which returns true if its argument is an
even number. The funny notation #' is shorthand for “Get me the function with the following
name.” Without the #', Lisp would treat evenp as the name of a variable and look up the value
of the variable, not the function.

You can also pass REMOVE-IF-NOT an anonymous function. For instance, if EVENP didn’t
exist, you could write the previous expression as the following:

CL-USER> (remove-if-not #'(lambda (x) (= 0 (mod x 2))) '"(1 234567 89 10))
(2 4 6 8 10)

In this case, the predicate is this anonymous function:
(lambda (x) (= 0 (mod x 2)))

which checks that its argument is equal to 0 modulus 2 (in other words, is even). If you wanted
to extract only the odd numbers using an anonymous function, you’d write this:

CL-USER> (remove-if-not #'(lambda (x) (= 1 (mod x 2))) '(1 234567 89 10))
(135709)

Note that 1ambda isn’t the name of the function—it’s the indicator you're defining an anony-
mous function.® Other than the lack of a name, however, a LAMBDA expression looks a lot like a
DEFUN: the word lambda is followed by a parameter list, which is followed by the body of the
function.

To select all the Dixie Chicks’ albums in the database using REMOVE-IF-NOT, you need a
function that returns true when the artist field of arecord is "Dixie Chicks".Remember that we

5. The word lambda is used in Lisp because of an early connection to the lambda calculus, a math-
ematical formalism invented for studying mathematical functions.
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chose the plist representation for the database records because the function GETF can extract
named fields from a plist. So assuming cd is the name of a variable holding a single database
record, you can use the expression (getf cd :artist) to extract the name of the artist. The
function EQUAL, when given string arguments, compares them character by character. So
(equal (getf cd :artist) "Dixie Chicks") will test whether the artist field of a given CD is
equal to "Dixie Chicks". All you need to do is wrap that expression in a LAMBDA form to make
an anonymous function and pass it to REMOVE-IF-NOT.

CL-USER> (remove-if-not

#'(lambda (cd) (equal (getf cd :artist) "Dixie Chicks")) *db*)
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T))

Now suppose you want to wrap that whole expression in a function that takes the name of
the artist as an argument. You can write that like this:

(defun select-by-artist (artist)
(remove-if-not
#'(lambda (cd) (equal (getf cd :artist) artist))
*db*))

Note how the anonymous function, which contains code that won'’t run until it’s invoked
in REMOVE-IF-NOT, can nonetheless refer to the variable artist. In this case the anonymous
function doesn’t just save you from having to write a regular function—it lets you write a function
that derives part of its meaning—the value of artist—from the context in which it's embedded.

So that’s select-by-artist. However, selecting by artist is only one of the kinds of queries
you might like to support. You could write several more functions, such as select-by-title,
select-by-rating, select-by-title-and-artist, and so on. But they’d all be about the same
except for the contents of the anonymous function. You can instead make a more general
select function that takes a function as an argument.

(defun select (selector-fn)
(remove-if-not selector-fn *db*))

So what happened to the #'? Well, in this case you don’t want REMOVE-IF-NOT to use the
function named selector-fn. You want it to use the anonymous function that was passed as
an argument to select in the variable selector-fn. Though, the #' comes back in the call
to select.

CL-USER> (select #'(lambda (cd) (equal (getf cd :artist) "Dixie Chicks")))
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T))

But that’s really quite gross-looking. Luckily, you can wrap up the creation of the anony-
mous function.

(defun artist-selector (artist)
#'(lambda (cd) (equal (getf cd :artist) artist)))
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This is a function that returns a function and one that references a variable that—it seems—
won’t exist after artist-selector returns. It may seem odd now, but it actually works just the
way you'd want—if you call artist-selector with an argument of "Dixie Chicks", you get an
anonymous function that matches CDs whose :artist field is "Dixie Chicks", and if you callit
with "Lyle Lovett", you get a different function that will match against an :artist field of
"Lyle Lovett".Sonow you can rewrite the call to select like this:

CL-USER> (select (artist-selector "Dixie Chicks"))
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 9 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 8 :RIPPED T))

Now you just need some more functions to generate selectors. But just as you don’t want
to have to write select-by-title, select-by-rating, and so on, because they would all be quite
similar, you're not going to want to write a bunch of nearly identical selector-function generators,
one for each field. Why not write one general-purpose selector-function generator, a function
that, depending on what arguments you pass it, will generate a selector function for different
fields or maybe even a combination of fields? You can write such a function, but first you need
a crash course in a feature called keyword parameters.

In the functions you've written so far, you've specified a simple list of parameters, which
are bound to the corresponding arguments in the call to the function. For instance, the following
function:

(defun foo (a b ¢) (list a b c))

has three parameters, a, b, and ¢, and must be called with three arguments. But sometimes you
may want to write a function that can be called with varying numbers of arguments. Keyword
parameters are one way to achieve this. A version of foo that uses keyword parameters might
look like this:

(defun foo (&ey a b c) (list a b c))

The only difference is the &key at the beginning of the argument list. However, the calls
to this new foo will look quite different. These are all legal calls with the result to the right of
the —>:

(foo :ta 1 :b2:c3) > (123)

(foo :c 3 :b2:a1) > (123)

(foo :a 1 :c 3) —> (1 NIL 3)
(foo) — (NIL NIL NIL)

As these examples show, the value of the variables a, b, and c are bound to the values that
follow the corresponding keyword. And if a particular keyword isn’t present in the call, the corre-
sponding variable is set to NIL.I'm glossing over a bunch of details of how keyword parameters
are specified and how they relate to other kinds of parameters, but you need to know one more
detail.

Normally if a function is called with no argument for a particular keyword parameter, the
parameter will have the value NIL. However, sometimes you'll want to be able to distinguish
between a NI L that was explicitly passed as the argument to a keyword parameter and the default

6. The technical term for a function that references a variable in its enclosing scope is a closure
because the function “closes over” the variable. I'll discuss closures in more detail in Chapter 6.

29
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value NIL. To allow this, when you specify a keyword parameter you can replace the simple name
with a list consisting of the name of the parameter, a default value, and another parameter
name, called a supplied-p parameter. The supplied-p parameter will be set to true or false
depending on whether an argument was actually passed for that keyword parameter in a
particular call to the function. Here’s a version of foo that uses this feature:

(defun foo (&ey a (b 20) (c 30 c-p)) (list a b c c-p))

Now the same calls from eatrlier yield these results:

(foo ta1:b2:c3) —>(123T7)
(foo :c3:b2:a1) > (123T)
(foo :a 1 :c 3) —> (12037)
(foo) — (NIL 20 30 NIL)

The general selector-function generator, which you can call where for reasons that will
soon become apparent if you're familiar with SQL databases, is a function that takes four
keyword parameters corresponding to the fields in our CD records and generates a selector
function that selects any CDs that match all the values given to where. For instance, it will let
you say things like this:

(select (where :artist "Dixie Chicks"))

or this:

(select (where :rating 10 :ripped nil))
The function looks like this:

(defun where (8key title artist rating (ripped nil ripped-p))
#'(lambda (cd)
(and
(if title (equal (getf cd :title) title) t)
(if artist (equal (getf cd :artist) artist) t)
(if rating (equal (getf cd :rating) rating) t)
(if ripped-p (equal (getf cd :ripped) ripped) t))))

This function returns an anonymous function that returns the logical AND of one clause per
field in our CD records. Each clause checks if the appropriate argument was passed in and then
either compares it to the value in the corresponding field in the CD record or returns t, Lisp’s
version of truth, if the parameter wasn’t passed in. Thus, the selector function will return t only
for CDs that match all the arguments passed to where.” Note that you need to use a three-item list
to specify the keyword parameter ripped because you need to know whether the caller actually

7. Note that in Lisp, an IF form, like everything else, is an expression that returns a value. It's actually
more like the ternary operator (?:) in Perl, Java, and C in that this is legal in those languages:

some_var = some_boolean ? valuel : value2;
while this isn't:
some_var = if (some_boolean) valuel; else value2;

because in those languages, if is a statement, not an expression.
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passed :ripped nil, meaning, “Select CDs whose ripped field is nil,” or whether they left out
:ripped altogether, meaning “I don’t care what the value of the ripped field is.”

Updating Existing Records—
Another Use for WHERE

Now that you’ve got nice generalized select and where functions, you're in a good position to
write the next feature that every database needs—a way to update particular records. In SQL
the update command is used to update a set of records matching a particular where clause. That
seems like a good model, especially since you've already got a where-clause generator. In fact,
the update function is mostly just the application of a few ideas you've already seen: using a
passed-in selector function to choose the records to update and using keyword arguments to
specify the values to change. The main new bit is the use of a function MAPCAR that maps over
alist, *db* in this case, and returns a new list containing the results of calling a function on each
item in the original list.

(defun update (selector-fn &key title artist rating (ripped nil ripped-p))
(setf *db*
(mapcar
#'(lambda (row)
(when (funcall selector-fn row)
(if title (setf (getf row :title) title))
(if artist  (setf (getf row :artist) artist))
(if rating (setf (getf row :rating) rating))
(if ripped-p (setf (getf row :ripped) ripped)))
row) *db*)))

One other new bit here is the use of SETF on a complex form such as (getf row :title).
I'll discuss SETF in greater detail in Chapter 6, but for now you just need to know that it’s a
general assignment operator that can be used to assign lots of “places” other than just vari-
ables. (It’s a coincidence that SETF and GETF have such similar names—they don’t have any
special relationship.) For now it’s enough to know that after (setf (getf row :title) title),
the plist referenced by row will have the value of the variable title following the property
name :title. With this update function if you decide that you really dig the Dixie Chicks and
that all their albums should go to 11, you can evaluate the following form:

CL-USER> (update (where :artist "Dixie Chicks") :rating 11)
NIL

And itis so.

CL-USER> (select (where :artist "Dixie Chicks"))
((:TITLE "Home" :ARTIST "Dixie Chicks" :RATING 11 :RIPPED T)
(:TITLE "Fly" :ARTIST "Dixie Chicks" :RATING 11 :RIPPED T))

You can even more easily add a function to delete rows from the database.

(defun delete-rows (selector-fn)
(setf *db* (remove-if selector-fn *db*)))
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The function REMOVE-IF is the complement of REMOVE-IF-NOT; it returns a list with all the
elements that do match the predicate removed. Like REMOVE-IF-NOT, it doesn’t actually affect
the list it’s passed but by saving the result back into *db*, delete-rows® actually changes the
contents of the database.?

Removing Duplication and Winning Big

So far all the database code supporting insert, select, update, and delete, not to mention a
command-line user interface for adding new records and dumping out the contents, is just a
little more than 50 lines. Total.!?

Yet there’s still some annoying code duplication. And it turns out you can remove the
duplication and make the code more flexible at the same time. The duplication I'm thinking
of is in the where function. The body of the where function is a bunch of clauses like this, one
per field:

(if title (equal (getf cd :title) title) t)

Right now it’s not so bad, but like all code duplication it has the same cost: if you want to
change how it works, you have to change multiple copies. And if you change the fields in a CD,
you'll have to add or remove clauses to where. And update suffers from the same kind of dupli-
cation. It’s doubly annoying since the whole point of the where function is to dynamically
generate a bit of code that checks the values you care about; why should it have to do work at
runtime checking whether title was even passed in?

Imagine that you were trying to optimize this code and discovered that it was spending too
much time checking whether title and the rest of the keyword parameters to where were even
set?!1 If you really wanted to remove all those runtime checks, you could go through a program
and find all the places you call where and look at exactly what arguments you're passing. Then
you could replace each call to where with an anonymous function that does only the computa-
tion necessary. For instance, if you found this snippet of code:

(select (where :title "Give Us a Break" :ripped t))

8. You need to use the name delete-rows rather than the more obvious delete because there’s
already a function in Common Lisp called DELETE. The Lisp package system gives you a way to
deal with such naming conflicts, so you could have a function named delete if you wanted. But I'm
not ready to explain packages just yet.

9. Ifyoure worried that this code creates a memory leak, rest assured: Lisp was the language that
invented garbage collection (and heap allocation for that matter). The memory used by the old
value of *db* will be automatically reclaimed, assuming no one else is holding on to a reference
to it, which none of this code is.

10. A friend of mine was once interviewing an engineer for a programming job and asked him a typical
interview question: how do you know when a function or method is too big? Well, said the candi-
date, I don’t like any method to be bigger than my head. You mean you can't keep all the details in
your head? No, I mean I put my head up against my monitor, and the code shouldn’t be bigger
than my head.

11. It's unlikely that the cost of checking whether keyword parameters had been passed would be a
detectible drag on performance since checking whether a variable is NIL is going to be pretty
cheap. On the other hand, these functions returned by where are going to be right in the middle of
the inner loop of any select, update, or delete-rows call, as they have to be called once per entry
in the database. Anyway, for illustrative purposes, this will have to do.
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you could change it to this:

(select
#'(lambda (cd)
(and (equal (getf cd :title) "Give Us a Break")
(equal (getf cd :ripped) t))))

Note that the anonymous function is different from the one that where would have returned;
you're not trying to save the call to where but rather to provide a more efficient selector function.
This anonymous function has clauses only for the fields that you actually care about at this call
site, so it doesn’t do any extra work the way a function returned by where might.

You can probably imagine going through all your source code and fixing up all the calls to
where in this way. But you can probably also imagine that it would be a huge pain. If there were
enough of them, and it was important enough, it might even be worthwhile to write some kind
of preprocessor that converts where calls to the code you’d write by hand.

The Lisp feature that makes this trivially easy is its macro system. I can’t emphasize enough
that the Common Lisp macro shares essentially nothing but the name with the text-based
macros found in C and C++. Where the C pre-processor operates by textual substitution and
understands almost nothing of the structure of C and C++, a Lisp macro is essentially a code
generator that gets run for you automatically by the compiler.!2 When a Lisp expression
contains a call to a macro, instead of evaluating the arguments and passing them to the function,
the Lisp compiler passes the arguments, unevaluated, to the macro code, which returns a new
Lisp expression that is then evaluated in place of the original macro call.

I'll start with a simple, and silly, example and then show how you can replace the where
function with awhere macro. Before I can write this example macro, I need to quickly introduce
one new function: REVERSE takes a list as an argument and returns a new list that is its reverse.
So (reverse '(1 2 3)) evaluates to (3 2 1). Now let’s create a macro.

(defmacro backwards (expr) (reverse expr))

The main syntactic difference between a function and a macro is that you define a macro
with DEFMACRO instead of DEFUN. After that a macro definition consists of a name, just like a func-
tion, a parameter list, and a body of expressions, both also like a function. However, a macro
has a totally different effect. You can use this macro as follows:

CL-USER> (backwards ("hello, world" t format))
hello, world
NIL

How did that work? When the REPL started to evaluate the backwards expression, it recognized
that backwards is the name of a macro. So it left the expression ("hello, world" t format)
unevaluated, which is good because it isn’t a legal Lisp form. It then passed that list to the
backwards code. The code in backwards passed the list to REVERSE, which returned the list
(format t "hello, world").backwards then passed that value back out to the REPL, which then
evaluated it in place of the original expression.

12. Macros are also run by the interpreter—however, it’s easier to understand the point of macros
when you think about compiled code. As with everything else in this chapter, I'll cover this in
greater detail in future chapters.
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The backwards macro thus defines a new language that’s a lot like Lisp—just backward—
that you can drop into anytime simply by wrapping a backward Lisp expression in a call to the
backwards macro. And, in a compiled Lisp program, that new language is just as efficient as
normal Lisp because all the macro code—the code that generates the new expression—runs at
compile time. In other words, the compiler will generate exactly the same code whether you
write (backwards ("hello, world" t format)) or (format t "hello, world").

So how does that help with the code duplication in where? Well, you can write a macro that
generates exactly the code you need for each particular call to where. Again, the best approach
is to build our code bottom up. In the hand-optimized selector function, you had an expression
of the following form for each actual field referred to in the original call to where:

(equal (getf cd field) value)

So let’s write a function that, given the name of a field and a value, returns such an expres-
sion. Since an expression is just a list, you might think you could write something like this:

(defun make-comparison-expr (field value) ; wrong
(list equal (list getf cd field) value))

However, there’s one trick here: as you know, when Lisp sees a simple name such as
field or value other than as the first element of a list, it assumes it’s the name of a variable
and looks up its value. That’s fine for field and value; it’s exactly what you want. But it will
treat equal, getf, and cd the same way, which isn’t what you want. However, you also know
how to stop Lisp from evaluating a form: stick a single forward quote (') in front of it. So if you
write make-comparison-expr like this, it will do what you want:

(defun make-comparison-expr ('FlE].d value)
P p
list 'equal (list 'getf 'cd 'FlE].d) value)
q 8

You can test it out in the REPL.

CL-USER> (make-comparison-expr :rating 10)

(EQUAL (GETF CD :RATING) 10)

CL-USER> (make-comparison-expr :title "Give Us a Break")
(EQUAL (GETF CD :TITLE) "Give Us a Break")

It turns out that there’s an even better way to do it. What you’d really like is a way to write
an expression that’s mostly not evaluated and then have some way to pick out a few expressions
that you do want evaluated. And, of course, there’s just such a mechanism. A back quote ()
before an expression stops evaluation just like a forward quote.

CL-USER> (1 2 3)
(123)
CL-USER> '(1 2 3)
(123)

However, in a back-quoted expression, any subexpression that’s preceded by a comma is
evaluated. Notice the effect of the comma in the second expression:

(12 (+12) — (12 (+12)
(12 ,(+12)) — (123)
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Using a back quote, you can write make-comparison-expr like this:

(defun make-comparison-expr (field value)
“(equal (getf cd ,field) ,value))

Now if youlook back to the hand-optimized selector function, you can see that the body of
the function consisted of one comparison expression per field/value pair, all wrapped in an
AND expression. Assume for the moment that you'll arrange for the arguments to the where
macro to be passed as a single list. You'll need a function that can take the elements of such a
list pairwise and collect the results of calling make-comparison-expr on each pair. To implement
that function, you can dip into the bag of advanced Lisp tricks and pull out the mighty and
powerful LOOP macro.

(defun make-comparisons-1list (fields)
(loop while fields
collecting (make-comparison-expr (pop fields) (pop fields))))

A full discussion of LOOP will have to wait until Chapter 22; for now just note that this LOOP
expression does exactly what you need: it loops while there are elements left in the fields list,
popping off two at a time, passing them to make-comparison-expr, and collecting the results to
be returned at the end of the loop. The POP macro performs the inverse operation of the PUSH
macro you used to add records to *db*.

Now you just need to wrap up the list returned by make-comparison-1ist in an AND and an
anonymous function, which you can do in the where macro itself. Using a back quote to make
a template that you fill in by interpolating the value of make-comparisons-1list, it’s trivial.

(defmacro where (&rest clauses)
“#'(lambda (cd) (and ,@(make-comparisons-list clauses))))

This macro uses a variant of , (namely, the ,®) before the call to make-comparisons-list.
The ,@ “splices” the value of the following expression—which must evaluate to a list—into the
enclosing list. You can see the difference between , and , @ in the following two expressions:

“(and ,(list 1 2 3)) —> (AND (1 2 3))
“(and ,@(list 1 2 3)) — (AND 1 2 3)

You can also use , @ to splice into the middle of a list.
“(and ,@(list 12 3) 4) —> (AND 1 2 3 4)

The other important feature of the where macro is the use of 8rest in the argument list.
Like &key, 8rest modifies the way arguments are parsed. With a 8rest in its parameter list, a func-
tion or macro can take an arbitrary number of arguments, which are collected into a single list
that becomes the value of the variable whose name follows the &rest. So if you call where like this:

(where :title "Give Us a Break" :ripped t)
the variable clauses will contain the list.
(:title "Give Us a Break" :ripped t)

This list is passed to make-comparisons-1ist, which returns a list of comparison expressions.
You can see exactly what code a call to where will generate using the function MACROEXPAND-1.
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If you pass MACROEXPAND-1, a form representing a macro call, it will call the macro code with
appropriate arguments and return the expansion. So you can check out the previous where call
like this:

CL-USER> (macroexpand-1 '(where :title "Give Us a Break" :ripped t))
#' (LAMBDA (CD)
(AND (EQUAL (GETF CD :TITLE) "Give Us a Break")
(EQUAL (GETF CD :RIPPED) T)))

Looks good. Let’s try it for real.

CL-USER> (select (where :title "Give Us a Break" :ripped t))
((:TITLE "Give Us a Break" :ARTIST "Limpopo" :RATING 10 :RIPPED T))

It works. And the where macro with its two helper functions is actually one line shorter
than the old where function. And it’s more general in that it’s no longer tied to the specific fields
in our CD records.

Wrapping Up

Now, an interesting thing has happened. You removed duplication and made the code more
efficient and more general at the same time. That’s often the way it goes with a well-chosen
macro. This makes sense because a macro is just another mechanism for creating abstractions—
abstraction at the syntactic level, and abstractions are by definition more concise ways of
expressing underlying generalities. Now the only code in the mini-database that’s specific to
CDs and the fields in them is in the make-cd, prompt-for-cd, and add-cd functions. In fact, our
new where macro would work with any plist-based database.

However, this is still far from being a complete database. You can probably think of plenty
of features to add, such as supporting multiple tables or more elaborate queries. In Chapter 27
we’ll build an MP3 database that incorporates some of those features.

The point of this chapter was to give you a quick introduction to just a handful of Lisp’s
features and show how they’re used to write code that’s a bit more interesting than “hello,
world.” In the next chapter we’ll begin a more systematic overview of Lisp.



CHAPTER 4

Syntax and Semantics

After that whirlwind tour, we’ll settle down for a few chapters to take a more systematic look
at the features you've used so far. I'll start with an overview of the basic elements of Lisp’s
syntax and semantics, which means, of course, that I must first address that burning question. . .

What’s with All the Parentheses?

Lisp’s syntax is quite a bit different from the syntax of languages descended from Algol. The two
most immediately obvious characteristics are the extensive use of parentheses and prefix
notation. For whatever reason, a lot of folks are put off by this syntax. Lisp’s detractors tend to
describe the syntax as “weird” and “annoying.” Lisp, they say, must stand for Lots of Irritating
Superfluous Parentheses. Lisp folks, on the other hand, tend to consider Lisp’s syntax one of its
great virtues. How is it that what'’s so off-putting to one group is a source of delight to another?

I can’t really make the complete case for Lisp’s syntax until I've explained Lisp’s macros a
bit more thoroughly, butI can start with an historical tidbit that suggests it may be worth
keeping an open mind: when John McCarthy first invented Lisp, he intended to implement a
more Algol-like syntax, which he called M-expressions. However, he never got around to it. He
explained why not in his article “History of Lisp.”!

The project of defining M-expressions precisely and compiling them or at least
translating them into S-expressions was neither finalized nor explicitly aban-
doned. It just receded into the indefinite future, and a new generation of
programmers appeared who preferred [S-expressions] to any FORTRAN-like or
ALGOL-like notation that could be devised.

In other words, the people who have actually used Lisp over the past 45 years have liked
the syntax and have found that it makes the language more powerful. In the next few chapters,
you'll begin to see why.

1. http://www-formal.stanford.edu/jmc/history/lisp/node3.html
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Breaking Open the Black Box

Before we look at the specifics of Lisp’s syntax and semantics, it’s worth taking a moment to
look at how they’re defined and how this differs from many other languages.

In most programming languages, the language processor—whether an interpreter or a
compiler—operates as a black box: you shove a sequence of characters representing the text of
a program into the black box, and it—depending on whether it’s an interpreter or a compiler—
either executes the behaviors indicated or produces a compiled version of the program that
will execute the behaviors when it’s run.

Inside the black box, of course, language processors are usually divided into subsystems
that are each responsible for one part of the task of translating a program text into behavior or
object code. A typical division is to split the processor into three phases, each of which feeds
into the next: a lexical analyzer breaks up the stream of characters into tokens and feeds them
to a parser that builds a tree representing the expressions in the program, according to the
language’s grammar. This tree—called an abstract syntax tree—is then fed to an evaluator that
either interprets it directly or compiles it into some other language such as machine code.
Because the language processor is a black box, the data structures used by the processor, such
as the tokens and abstract syntax trees, are of interest only to the language implementer.

In Common Lisp things are sliced up a bit differently, with consequences for both the
implementer and for how the language is defined. Instead of a single black box that goes from
text to program behavior in one step, Common Lisp defines fwo black boxes, one that trans-
lates text into Lisp objects and another that implements the semantics of the language in terms
of those objects. The first box is called the reader, and the second is called the evaluator.?

Each black box defines one level of syntax. The reader defines how strings of characters
can be translated into Lisp objects called s-expressions.3 Since the s-expression syntax includes
syntax for lists of arbitrary objects, including other lists, s-expressions can represent arbitrary
tree expressions, much like the abstract syntax tree generated by the parsers for non-Lisp
languages.

The evaluator then defines a syntax of Lisp forms that can be built out of s-expressions.
Not all s-expressions are legal Lisp forms any more than all sequences of characters are legal
s-expressions. For instance, both (foo 1 2) and ("foo" 1 2) are s-expressions, but only the
former can be a Lisp form since a list that starts with a string has no meaning as a Lisp form.

This split of the black box has a couple of consequences. One is that you can use s-expressions,
as you saw in Chapter 3, as an externalizable data format for data other than source code, using
READ to read it and PRINT to print it.# The other consequence is that since the semantics of the
language are defined in terms of trees of objects rather than strings of characters, it’s easier to

2. Lisp implementers, like implementers of any language, have many ways they can implement an
evaluator, ranging from a “pure” interpreter that interprets the objects given to the evaluator
directly to a compiler that translates the objects into machine code that it then runs. In the
middle are implementations that compile the input into an intermediate form such as bytecodes
for a virtual machine and then interprets the bytecodes. Most Common Lisp implementations
these days use some form of compilation even when evaluating code at run time.

3. Sometimes the phrase s-expression refers to the textual representation and sometimes to the
objects that result from reading the textual representation. Usually either it’s clear from context
which is meant or the distinction isn’t that important.

4. Notall Lisp objects can be written out in a way that can be read back in. But anything you can
READ can be printed back out “readably” with PRINT.
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generate code within the language than it would be if you had to generate code as text. Gener-
ating code completely from scratch is only marginally easier—building up lists vs. building up
strings is about the same amount of work. The real win, however, is that you can generate code
by manipulating existing data. This is the basis for Lisp’s macros, which I'll discuss in much
more detail in future chapters. For now I'll focus on the two levels of syntax defined by
Common Lisp: the syntax of s-expressions understood by the reader and the syntax of Lisp
forms understood by the evaluator.

S-expressions

The basic elements of s-expressions are lists and atoms. Lists are delimited by parentheses and
can contain any number of whitespace-separated elements. Atoms are everything else.” The
elements of lists are themselves s-expressions (in other words, atoms or nested lists). Comments—
which aren’t, technically speaking, s-expressions—start with a semicolon, extend to the end of
aline, and are treated essentially like whitespace.

And that’s pretty much it. Since lists are syntactically so trivial, the only remaining syntactic
rules you need to know are those governing the form of different kinds of atoms. In this section
I'll describe the rules for the most commonly used kinds of atoms: numbers, strings, and
names. After that, I'll cover how s-expressions composed of these elements can be evaluated as
Lisp forms.

Numbers are fairly straightforward: any sequence of digits—possibly prefaced with a sign
(+ or -), containing a decimal point (.) or a solidus (/), or ending with an exponent marker—
is read as a number. For example:

123 ; the integer one hundred twenty-three

3/7 ; the ratio three-sevenths

1.0 ; the floating-point number one in default precision
1.0e0 ; another way to write the same floating-point number
1.0do ; the floating-point number one in "double" precision
1.0e-4 ; the floating-point equivalent to one-ten-thousandth
+42 ; the integer forty-two

-42 ; the integer negative forty-two

-1/4 ; the ratio negative one-quarter

-2/8 ; another way to write negative one-quarter

246/2 ; another way to write the integer one hundred twenty-three

These different forms represent different kinds of numbers: integers, ratios, and floating
point. Lisp also supports complex numbers, which have their own notation and which I'll
discuss in Chapter 10.

As some of these examples suggest, you can notate the same number in many ways. But
regardless of how you write them, all rationals—integers and ratios—are represented internally
in “simplified” form. In other words, the objects that represent -2/8 or 246/2 aren’t distinct from
the objects that represent -1/4 and 123. Similarly, 1.0 and 1.0e0 are just different ways of
writing the same number. On the other hand, 1.0, 1.0d0, and 1 can all denote different objects

5. The empty list, (), which can also be written NIL, is both an atom and a list.



40

CHAPTER 4 " SYNTAX AND SEMANTICS

because the different floating-point representations and integers are different types. We’'ll save
the details about the characteristics of different kinds of numbers for Chapter 10.

Strings literals, as you saw in the previous chapter, are enclosed in double quotes. Within
a string a backslash (\) escapes the next character, causing it to be included in the string
regardless of what it is. The only two characters that must be escaped within a string are double
quotes and the backslash itself. All other characters can be included in a string literal without
escaping, regardless of their meaning outside a string. Some example string literals are as follows:

"foo" ; the string containing the characters f, o, and o.
"fo\o" ; the same string

"fo\\o" ; the string containing the characters f, o, \, and o.
"fo\"o" ; the string containing the characters f, o, ", and o.

Names used in Lisp programs, such as FORMAT and hello-world, and *db* are represented
by objects called symbols. The reader knows nothing about how a given name is going to be used—
whether it’s the name of a variable, a function, or something else. It just reads a sequence of
characters and builds an object to represent the name.® Almost any character can appear in a
name. Whitespace characters can’t, though, because the elements of lists are separated by
whitespace. Digits can appear in names as long as the name as a whole can’t be interpreted as
anumber. Similarly, names can contain periods, but the reader can’t read a name that consists
only of periods. Ten characters that serve other syntactic purposes can’t appear in names: open
and close parentheses, double and single quotes, backtick, comma, colon, semicolon, backslash,
and vertical bar. And even those characters can, if you're willing to escape them by preceding
the character to be escaped with a backslash or by surrounding the part of the name containing
characters that need escaping with vertical bars.

Two important characteristics of the way the reader translates names to symbol objects
have to do with how it treats the case of letters in names and how it ensures that the same name
is always read as the same symbol. While reading names, the reader converts all unescaped
characters in a name to their uppercase equivalents. Thus, the reader will read foo, Foo, and FOO
as the same symbol: FO0. However, \f\o\o and | foo| will both be read as foo, which is a different
object than the symbol FOO. This is why when you define a function at the REPL and it prints the
name of the function, it’s been converted to uppercase. Standard style, these days, is to write
code in all lowercase and let the reader change names to uppercase.”

To ensure that the same textual name is always read as the same symbol, the reader interns
symbols—after it has read the name and converted it to all uppercase, the reader looks in a
table called a package for an existing symbol with the same name. If it can’t find one, it creates
anew symbol and adds it to the table. Otherwise, it returns the symbol already in the table.
Thus, anywhere the same name appears in any s-expression, the same object will be used to
represent it.8

6. Infact, as you'll see later, names aren't intrinsically tied to any one kind of thing. You can use the
same name, depending on context, to refer to both a variable and a function, not to mention
several other possibilities.

7. The case-converting behavior of the reader can, in fact, be customized, but understanding when
and how to change it requires a much deeper discussion of the relation between names, symbols,
and other program elements than I'm ready to get into just yet.

8. Tlldiscuss the relation between symbols and packages in more detail in Chapter 21.
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Because names can contain many more characters in Lisp than they can in Algol-derived
languages, certain naming conventions are distinct to Lisp, such as the use of hyphenated
names like hello-world. Another important convention is that global variables are given names
that start and end with *. Similarly, constants are given names starting and ending in +. And
some programmers will name particularly low-level functions with names that start with % or
even %%. The names defined in the language standard use only the alphabetic characters (A-Z)
plus *, +,-,/,1,2,<, =, >, and &.

The syntax for lists, numbers, strings, and symbols can describe a good percentage of Lisp
programs. Other rules describe notations for literal vectors, individual characters, and arrays,
which I'll cover when I talk about the associated data types in Chapters 10 and 11. For now the
key thing to understand is how you can combine numbers, strings, and symbols with parentheses-
delimited lists to build s-expressions representing arbitrary trees of objects. Some simple
examples look like this:

X ; the symbol X

O ; the empty list

(123) ; a list of three numbers
("foo" "bar") ; a list of two strings

list of three symbols
list of a symbol, a number, and a string
list of a symbol, a list, and a number.

(xy z) ;
(x 1 "foo")
(+ (*23)4);

[SS I <V IR D V)

An only slightly more complex example is the following four-item list that contains two
symbols, the empty list, and another list, itself containing two symbols and a string:

(defun hello-world ()
(format t "hello, world"))

S-expressions As Lisp Forms

After the reader has translated a bunch of text into s-expressions, the s-expressions can then be
evaluated as Lisp code. Or some of them can—not every s-expressions that the reader can read
can necessarily be evaluated as Lisp code. Common Lisp’s evaluation rule defines a second
level of syntax that determines which s-expressions can be treated as Lisp forms.? The syntactic
rules at this level are quite simple. Any atom—any nonlist or the empty list—is a legal Lisp form
as is any list that has a symbol as its first element.10

Of course, the interesting thing about Lisp forms isn’t their syntax but how they’re evalu-
ated. For purposes of discussion, you can think of the evaluator as a function that takes as an
argument a syntactically well-formed Lisp form and returns a value, which we can call the
value of the form. Of course, when the evaluator is a compiler, this is a bit of a simplification—
in that case, the evaluator is given an expression and generates code that will compute the

9. Of course, other levels of correctness exist in Lisp, as in other languages. For instance, the
s-expression that results from reading (foo 1 2) is syntactically well-formed but can be
evaluated only if foo is the name of a function or macro.

10. One other rarely used kind of Lisp form is a list whose first element is a lambda form. I'll discuss
this kind of form in Chapter 5.
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appropriate value when it’s run. But this simplification lets me describe the semantics of Common
Lisp in terms of how the different kinds of Lisp forms are evaluated by this notional function.

The simplest Lisp forms, atoms, can be divided into two categories: symbols and every-
thing else. A symbol, evaluated as a form, is considered the name of a variable and evaluates to
the current value of the variable.!! I'll discuss in Chapter 6 how variables get their values in the
first place. You should also note that certain “variables” are that old oxymoron of programming:
“constant variables.” For instance, the symbol PI names a constant variable whose value is the
best possible floating-point approximation to the mathematical constant =.

All other atoms—numbers and strings are the kinds you've seen so far—are self-evaluating
objects. This means when such an expression is passed to the notional evaluation function, it’s
simply returned. You saw examples of self-evaluating objects in Chapter 2 when you typed 10
and "hello, world" at the REPL.

It’s also possible for symbols to be self-evaluating in the sense that the variables they name
can be assigned the value of the symbol itself. Two important constants that are defined this
way are T and NIL, the canonical true and false values. I'll discuss their role as booleans in the
section “Truth, Falsehood, and Equality.”

Another class of self-evaluating symbols are the keyword symbols—symbols whose names
start with :. When the reader interns such a name, it automatically defines a constant variable
with the name and with the symbol as the value.

Things get more interesting when we consider how lists are evaluated. All legal list forms
start with a symbol, but three kinds of list forms are evaluated in three quite different ways. To
determine what kind of form a given list is, the evaluator must determine whether the symbol
that starts the list is the name of a function, a macro, or a special operator. If the symbol hasn’t
been defined yet—as may be the case if you're compiling code that contains references to
functions that will be defined later—it’s assumed to be a function name.!2 I'll refer to the three
kinds of forms as function call forms, macro forms, and special forms.

Function Calls

The evaluation rule for function call forms is simple: evaluate the remaining elements of the list
as Lisp forms and pass the resulting values to the named function. This rule obviously places
some additional syntactic constraints on a function call form: all the elements of the list after
the first must themselves be well-formed Lisp forms. In other words, the basic syntax of a function
call form is as follows, where each of the arguments is itself a Lisp form:

(function-name argument*)

11. One other possibility exists—it’s possible to define symbol macros that are evaluated slightly
differently. We won't worry about them.

12. In Common Lisp a symbol can name both an operator—function, macro, or special operator—
and a variable. This is one of the major differences between Common Lisp and Scheme. The
difference is sometimes described as Common Lisp being a Lisp-2 vs. Scheme being a Lisp-1—
a Lisp-2 has two namespaces, one for operators and one for variables, but a Lisp-1 uses a single
namespace. Both choices have advantages, and partisans can debate endlessly which is better.
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Thus, the following expression is evaluated by first evaluating 1, then evaluating 2, and
then passing the resulting values to the +function, which returns 3:

(+12)

A more complex expression such as the following is evaluated in similar fashion except
that evaluating the arguments (+ 1 2) and (- 3 4) entails first evaluating their arguments and
applying the appropriate functions to them:

(* (+12) (-34)

Eventually, the values 3 and -1 are passed to the * function, which returns -3.
As these examples show, functions are used for many of the things that require special
syntax in other languages. This helps keep Lisp’s syntax regular.

Special Operators

That said, not all operations can be defined as functions. Because all the arguments to a function
are evaluated before the function is called, there’s no way to write a function that behaves like
the IF operator you used in Chapter 3. To see why, consider this form:

(if x (format t "yes") (format t "no"))

If IF were a function, the evaluator would evaluate the argument expressions from left to
right. The symbol x would be evaluated as a variable yielding some value; then (format t "yes")
would be evaluated as a function call, yielding NIL after printing “yes” to standard output.
Then (format t "no") would be evaluated, printing “no” and also yielding NIL. Only after all
three expressions were evaluated would the resulting values be passed to IF, too late for it to
control which of the two FORMAT expressions gets evaluated.

To solve this problem, Common Lisp defines a couple dozen so-called special operators,
IF being one, that do things that functions can’t do. There are 25 in all, but only a small handful
are used directly in day-to-day programming.!3

When the first element of a list is a symbol naming a special operator, the rest of the
expressions are evaluated according to the rule for that operator.

The rule for IF is pretty easy: evaluate the first expression. If it evaluates to non-NIL, then
evaluate the next expression and return its value. Otherwise, return the value of evaluating the
third expression or NIL if the third expression is omitted. In other words, the basic form of an
IF expression is as follows:

(if test-form then-form [ else-form ])

The test-form will always be evaluated and then one or the other of the then-form or else-form.

An even simpler special operator is QUO T E, which takes a single expression as its “argument”
and simply returns it, unevaluated. For instance, the following evaluates to the list (+ 1 2), not
the value 3:

(quote (+ 1 2))

13. The others provide useful, but somewhat esoteric, features. I'll discuss them as the features they
support come up.
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There’s nothing special about this list; you can manipulate it just like any list you could
create with the LIST function.!

QUOTE is used commonly enough that a special syntax for it is built into the reader. Instead
of writing the following:

(quote (+ 1 2))
you can write this:
"(+12)

This syntax is a small extension of the s-expression syntax understood by the reader. From
the point of view of the evaluator, both those expressions will look the same: a list whose first
element is the symbol QUOTE and whose second element is the list (+ 1 2).1°

In general, the special operators implement features of the language that require some
special processing by the evaluator. For instance, several special operators manipulate the
environment in which other forms will be evaluated. One of these, which I'll discuss in detail in
Chapter 6, is LET, which is used to create new variable bindings. The following form evaluates
to 10 because the second x is evaluated in an environment where it's the name of a variable
established by the LET with the value 10:

(let ((x 10)) x)

Macros

While special operators extend the syntax of Common Lisp beyond what can be expressed with
just function calls, the set of special operators is fixed by the language standard. Macros, on the
other hand, give users of the language a way to extend its syntax. As you saw in Chapter 3, a macro
is a function that takes s-expressions as arguments and returns a Lisp form that’s then evalu-
ated in place of the macro form. The evaluation of a macro form proceeds in two phases: First,
the elements of the macro form are passed, unevaluated, to the macro function. Second, the
form returned by the macro function—called its expansion—is evaluated according to the
normal evaluation rules.

It’s important to keep the two phases of evaluating a macro form clear in your mind. It’s
easy to lose track when you're typing expressions at the REPL because the two phases happen
one after another and the value of the second phase is immediately returned. But when Lisp
code is compiled, the two phases happen at completely different times, so it’s important to
keep clear what’s happening when. For instance, when you compile a whole file of source code
with the function COMPILE-FILE, all the macro forms in the file are recursively expanded until
the code consists of nothing but function call forms and special forms. This macroless code is
then compiled into a FASL file that the LOAD function knows how to load. The compiled code,

14. Well, one difference exists—literal objects such as quoted lists, but also including double-quoted
strings, literal arrays, and vectors (whose syntax you'll see later), must not be modified.
Consequently, any lists you plan to manipulate you should create with LIST.

15. This syntax is an example of a reader macro. Reader macros modify the syntax the reader uses to
translate text into Lisp objects. It is, in fact, possible to define your own reader macros, but that’s
ararely used facility of the language. When most Lispers talk about “extending the syntax” of the
language, they're talking about regular macros, as I'll discuss in a moment.
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however, isn’t executed until the file is loaded. Because macros generate their expansion at
compile time, they can do relatively large amounts of work generating their expansion without
having to pay for it when the file is loaded or the functions defined in the file are called.

Since the evaluator doesn’t evaluate the elements of the macro form before passing them
to the macro function, they don’t need to be well-formed Lisp forms. Each macro assigns a
meaning to the s-expressions in the macro form by virtue of how it uses them to generate its
expansion. In other words, each macro defines its own local syntax. For instance, the backwards
macro from Chapter 3 defines a syntax in which an expression is a legal backwards form if it’s a
list that’s the reverse of a legal Lisp form.

I'll talk quite a bit more about macros throughout this book. For now the important thing
for you to realize is that macros—while syntactically similar to function calls—serve quite a
different purpose, providing a hook into the compiler.!6

Truth, Falsehood, and Equality

Two last bits of basic knowledge you need to get under your belt are Common Lisp’s notion of truth
and falsehood and what it means for two Lisp objects to be “equal.” Truth and falsehood are—in
this realm—straightforward: the symbol NI L is the only false value, and everything else is true. The
symbol T is the canonical true value and can be used when you need to return anon-N I L value and
don’t have anything else handy. The only tricky thing about NI L is that it’s the only object that’s
both an atom and a list: in addition to falsehood, it’s also used to represent the empty list.17 This
equivalence between NIL and the empty list is built into the reader: if the reader sees (),

16. People without experience using Lisp’s macros or, worse yet, bearing the scars of C preprocessor—
inflicted wounds, tend to get nervous when they realize that macro calls look like regular function
calls. This turns out not to be a problem in practice for several reasons. One is that macro forms
are usually formatted differently than function calls. For instance, you write the following:

(dolist (x foo)
(print x))

rather than this:
(dolist (x foo) (print x))
or this:

(dolist (x foo)
(print x))

the way you would if DOLIST was a function. A good Lisp environment will automatically format
macro calls correctly, even for user-defined macros.

And even if a DOLIST form was written on a single line, there are several clues that it’s a macro.
For one, the expression (x foo) is meaningful by itself only if x is the name of a function or
macro. Combine that with the later occurrence of x as a variable, and it’s pretty suggestive that
DOLIST isamacro that’s creating a binding for a variable named x. Naming conventions also help—
looping constructs, which are invariably macros, are frequently given names starting with do.

17. Using the empty list as false is a reflection of Lisp’s heritage as a list-processing language much as
the use of the integer 0 as false in C is a reflection of its heritage as a bit-twiddling language. Not
all Lisps handle boolean values the same way. Another of the many subtle differences upon
which a good Common Lisp vs. Scheme flame war can rage for days is Scheme’s use of a distinct
false value #f, which isn’t the same value as either the symbol nil or the empty list, which are also
distinct from each other.
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it reads it as the symbol NIL. They're completely interchangeable. And because NIL, asI
mentioned previously, is the name of a constant variable with the symbol NIL as its value, the
expressions nil, (), 'nil, and ' () all evaluate to the same thing—the unquoted forms are eval-
uated as a reference to the constant variable whose value is the symbol NIL, but in the quoted
forms the QUOTE special operator evaluates to the symbol directly. For the same reason, both t
and 't will evaluate to the same thing: the symbol T.

Using phrases such as “the same thing” of course begs the question of what it means for
two values to be “the same.” As you'll see in future chapters, Common Lisp provides a number
of type-specific equality predicates: = is used to compare numbers, CHAR = to compare characters,
and so on. In this section I'll discuss the four “generic” equality predicates—functions that can
be passed any two Lisp objects and will return true if they’re equivalent and false otherwise.
They are, in order of discrimination, EQ, EQL, EQUAL, and EQUALP.

EQ tests for “object identity”—two objects are EQif they're identical. Unfortunately, the
object identity of numbers and characters depends on how those data types are implemented
in a particular Lisp. Thus, EQ may consider two numbers or two characters with the same value
to be equivalent, or it may not. Implementations have enough leeway that the expression
(eq 3 3) can legally evaluate to either true or false. More to the point, (eq x x) can evaluate
to either true or false if the value of x happens to be a number or character.

Thus, you should never use EQ to compare values that may be numbers or characters. It
may seem to work in a predictable way for certain values in a particular implementation, but
you have no guarantee that it will work the same way if you switch implementations. And
switching implementations may mean simply upgrading your implementation to a new version—
if your Lisp implementer changes how they represent numbers or characters, the behavior of
EQ could very well change as well.

Thus, Common Lisp defines EQL to behave like EQ except that it also is guaranteed to
consider two objects of the same class representing the same numeric or character value to be
equivalent. Thus, (eql 1 1) is guaranteed to be true. And (eql 1 1.0) is guaranteed to be false
since the integer value 1 and the floating-point value are instances of different classes.

There are two schools of thought about when to use EQ and when to use EQL: The “use EQ
when possible” camp argues you should use EQ when you know you aren’t going to be com-
paring numbers or characters because (a) it’s a way to indicate that you aren’t going to be
comparing numbers or characters and (b) it will be marginally more efficient since EQ doesn’t
have to check whether its arguments are numbers or characters.

The “always use EQL” camp says you should never use EQ because (a) the potential gain in
clarity is lost because every time someone reading your code—including you—sees an EQ, they
have to stop and check whether it’s being used correctly (in other words, that it’s never going
to be called upon to compare numbers or characters) and (b) that the efficiency difference
between EQ and EQL is in the noise compared to real performance bottlenecks.

The code in this book is written in the “always use EQL” style.18

The other two equality predicates, EQUAL and EQUALP, are general in the sense that
they can operate on all types of objects, but they’re much less fundamental than EQ or EQL.

18. Even the language standard is a bit ambivalent about which of EQ or EQL should be preferred.
Object identity is defined by EQ, but the standard defines the phrase the same when talking about
objects to mean EQL unless another predicate is explicitly mentioned. Thus, if you want to be
100 percent technically correct, you can say that (- 3 2) and (- 4 3) evaluate to “the same”
object but not that they evaluate to “identical” objects. This is, admittedly, a bit of an angels-on-
pinheads kind of issue.
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They each define a slightly less discriminating notion of equivalence than EQL, allowing
different objects to be considered equivalent. There’s nothing special about the particular
notions of equivalence these functions implement except that they’ve been found to be handy
by Lisp programmers in the past. If these predicates don’t suit your needs, you can always
define your own predicate function that compares different types of objects in the way you need.

EQUAL loosens the discrimination of EQL to consider lists equivalent if they have the same
structure and contents, recursively, according to EQUAL. EQUAL also considers strings equiva-
lent if they contain the same characters. It also defines a looser definition of equivalence than
EQL for bit vectors and pathnames, two data types I'll discuss in future chapters. For all other
types, it falls back on EQL.

EQUALP is similar to EQUAL except it’s even less discriminating. It considers two strings
equivalent if they contain the same characters, ignoring differences in case. It also considers
two characters equivalent if they differ only in case. Numbers are equivalent under EQUALP if
they represent the same mathematical value. Thus, (equalp 1 1.0) is true. Lists with EQUALP
elements are EQUALP; likewise, arrays with EQUALP elements are EQUALP. As with EQUAL, there
are a few other data types that  haven’t covered yet for which EQUALP can consider two objects
equivalent that neither EQL nor EQUAL will. For all other data types, EQUALP falls back on EQL.

Formatting Lisp Code

While code formatting is, strictly speaking, neither a syntactic nor a semantic matter, proper
formatting is important to reading and writing code fluently and idiomatically. The key to
formatting Lisp code is to indent it properly. The indentation should reflect the structure of the
code so that you don’t need to count parentheses to see what goes with what. In general, each
new level of nesting gets indented a bit more, and, if line breaks are necessary, items at the
same level of nesting are lined up. Thus, a function call that needs to be broken up across
multiple lines might be written like this:

(some-function arg-with-a-long-name
another-arg-with-an-even-longer-name)

Macro and special forms that implement control constructs are typically indented a little
differently: the “body” elements are indented two spaces relative to the opening parenthesis
of the form. Thus:

(defun print-list (list)
(dolist (i list)
(format t "item: ~a~%" i)))

However, you don’t need to worry too much about these rules because a proper Lisp envi-
ronment such as SLIME will take care of it for you. In fact, one of the advantages of Lisp’s regular
syntax is that it’s fairly easy for software such as editors to know how to indent it. Since the
indentation is supposed to reflect the structure of the code and the structure is marked by
parentheses, it’s easy to let the editor indent your code for you.

In SLIME, hitting Tab at the beginning of each line will cause it to be indented appropriately,
or you can re-indent a whole expression by positioning the cursor on the opening parenthesis
and typing C-M-q. Or you can re-indent the whole body of a function from anywhere within it by
typing C-c M-q.
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Indeed, experienced Lisp programmers tend to rely on their editor handling indenting
automatically, not just to make their code look nice but to detect typos: once you get used to
how code is supposed to be indented, a misplaced parenthesis will be instantly recognizable by
the weird indentation your editor gives you. For example, suppose you were writing a function
that was supposed to look like this:

(defun foo ()
(if (test)
(do-one-thing)
(do-another-thing)))

Now suppose you accidentally left off the closing parenthesis after test. Because youdon’t
bother counting parentheses, you quite likely would have added an extra parenthesis at the
end of the DEFUN form, giving you this code:

(defun foo ()
(if (test
(do-one-thing)
(do-another-thing))))

However, if you had been indenting by hitting Tab at the beginning of each line, you
wouldn’t have code like that. Instead you'd have this:

(defun foo ()
(if (test
(do-one-thing)
(do-another-thing))))

Seeing the then and else clauses indented way out under the condition rather than just
indented slightly relative to the IF shows you immediately that something is awry.

Another important formatting rule is that closing parentheses are always put on the same
line as the last element of the list they’re closing. That is, don’t write this:

(defun foo ()
(dotimes (i 10)
(format t "~d. hello~%" i)
)
)

but instead write this:

(defun foo ()
(dotimes (i 10)
(format t "~d. hello~%" 1)))

The string of ) ) )s at the end may seem forbidding, but as long your code is properly
indented the parentheses should fade away—no need to give them undue prominence by
spreading them across several lines.
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Finally, comments should be prefaced with one to four semicolons depending on the
scope of the comment as follows:

553 Four semicolons are used for a file header comment.

555 A comment with three semicolons will usually be a paragraph
;55 comment that applies to a large section of code that follows,

(defun foo (x)
(dotimes (i x)
;5 Two semicolons indicate this comment applies to the code
;; that follows. Note that this comment is indented the same
;; as the code that follows.
(some-function-call)

(another i) ; this comment applies to this line only
(and-another) ; and this is for this line
(baz)))

Now you're ready to start looking in greater detail at the major building blocks of Lisp
programs, functions, variables, and macros. Up next: functions.






CHAPTER 5

Functions

After the rules of syntax and semantics, the three most basic components of all Lisp programs
are functions, variables and macros. You used all three while building the database in Chapter 3,
but I glossed over a lot of the details of how they work and how to best use them. I'll devote the
next few chapters to these three topics, starting with functions, which—like their counterparts
in other languages—provide the basic mechanism for abstracting, well, functionality.

The bulk of Lisp itself consists of functions. More than three quarters of the names defined
in the language standard name functions. All the built-in data types are defined purely in terms
of what functions operate on them. Even Lisp’s powerful object system is built upon a concep-
tual extension to functions, generic functions, which I'll cover in Chapter 16.

And, despite the importance of macros to The Lisp Way, in the end all real functionality is
provided by functions. Macros run at compile time, so the code they generate—the code that
will actually make up the program after all the macros are expanded—will consist entirely of
calls to functions and special operators. Not to mention, macros themselves are also functions,
albeit functions that are used to generate code rather than to perform the actions of the program.!

Defining New Functions

Normally functions are defined using the DEFUNmacro. The basic skeleton of a DEFUNlooks like
this:

(defun name (parameter*)
"Optional documentation string."”
body- form*)

1. Despite the importance of functions in Common Lisp, it isn't really accurate to describe it as a
functionallanguage. It’s true some of Common Lisp’s features, such as its list manipulation
functions, are designed to be used in a body-form* style and that Lisp has a prominent place
in the history of functional programming—McCarthy introduced many ideas that are now
considered important in functional programming—but Common Lisp was intentionally
designed to support many different styles of programming. In the Lisp family, Scheme is the
nearest thing to a “pure” functional language, and even it has several features that disqualify it

from absolute purity compared to languages such as Haskell and ML. 51
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Any symbol can be used as a function name.2 Usually function names contain only alpha-
betic characters and hyphens, but other characters are allowed and are used in certain naming
conventions. For instance, functions that convert one kind of value to another sometimes use -> in
the name. For example, a function to convert strings to widgets might be called string->widget.
The most important naming convention is the one mentioned in Chapter 2, which is that you
construct compound names with hyphens rather than underscores or inner caps. Thus,
frob-widget is better Lisp style than either frob_widget or frobWidget.

A function’s parameter list defines the variables that will be used to hold the arguments
passed to the function when it’s called.3 If the function takes no arguments, the list is empty,
written as (). Different flavors of parameters handle required, optional, multiple, and keyword
arguments. I'll discuss the details in the next section.

Ifastringliteral follows the parameter list, it's a documentation string that should describe
the purpose of the function. When the function is defined, the documentation string will be
associated with the name of the function and can later be obtained using the DOCUMENTATION
function.*

Finally, the body of a DEFUN consists of any number of Lisp expressions. They will be eval-
uated in order when the function is called and the value of the last expression is returned as the
value of the function. Or the RETURN-FROM special operator can be used to return immediately
from anywhere in a function, as I'll discuss in a moment.

In Chapter 2 we wrote a hello-world function, which looked like this:

(defun hello-world () (format t "hello, world"))

You can now analyze the parts of this function. Its name is hello-world, its parameter list
is empty so it takes no arguments, it has no documentation string, and its body consists of one
expression.

(format t "hello, world")
The following is a slightly more complex function:

(defun verbose-sum (x y)
"Sum any two numbers after printing a message."
(format t "Summing ~d and ~d.~%" x y)

(+xy))

2. Well, almost any symbol. It's undefined what happens if you use any of the names defined in the
language standard as a name for one of your own functions. However, as you'll see in Chapter 21, the
Lisp package system allows you to create names in different namespaces, so this isn't really an issue.

3. Parameter lists are sometimes also called lambda lists because of the historical relationship
between Lisp’s notion of functions and the lambda calculus.

4. For example, the following:
(documentation 'foo 'function)

returns the documentation string for the function foo. Note, however, that documentation
strings are intended for human consumption, not programmatic access. A Lisp implementation
isn't required to store them and is allowed to discard them at any time, so portable programs
shouldn’t depend on their presence. In some implementations an implementation-defined
variable needs to be set before it will store documentation strings.
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This function is named verbose-sum, takes two arguments that will be bound to the param-
eters x and y, has a documentation string, and has a body consisting of two expressions. The
value returned by the call to + becomes the return value of verbose-sum.

Function Parameter Lists

There’s not a lot more to say about function names or documentation strings, and it will take a
good portion of the rest of this book to describe all the things you can do in the body of a function,
which leaves us with the parameter list.

The basic purpose of a parameter list is, of course, to declare the variables that will receive
the arguments passed to the function. When a parameter list is a simple list of variable names—
as in verbose-sum—the parameters are called required parameters. When a function is called, it
must be supplied with one argument for every required parameter. Each parameter is bound to
the corresponding argument. If a function is called with too few or too many arguments, Lisp will
signal an error.

However, Common Lisp’s parameter lists also give you more flexible ways of mapping the
arguments in a function call to the function’s parameters. In addition to required parameters,
a function can have optional parameters. Or a function can have a single parameter that’s
bound to a list containing any extra arguments. And, finally, arguments can be mapped to
parameters using keywords rather than position. Thus, Common Lisp’s parameter lists provide
a convenient solution to several common coding problems.

Optional Parameters

While many functions, like verbose-sum, need only required parameters, not all functions are
quite so simple. Sometimes a function will have a parameter that only certain callers will care
about, perhaps because there’s a reasonable default value. An example is a function that
creates a data structure that can grow as needed. Since the data structure can grow, it doesn’t
matter—from a correctness point of view—what the initial size is. But callers who have a good
idea how many items they’re going to put into the data structure may be able to improve
performance by specifying a specific initial size. Most callers, though, would probably rather
let the code that implements the data structure pick a good general-purpose value. In Common
Lisp you can accommodate both kinds of callers by using an optional parameter; callers who
don’t care will get a reasonable default, and other callers can provide a specific value.>

5. Inlanguages that don't support optional parameters directly, programmers typically find ways to
simulate them. One technique is to use distinguished “no-value” values that the caller can pass to
indicate they want the default value of a given parameter. In C, for example, it’s common to use
NULL as such a distinguished value. However, such a protocol between the function and its callers
is ad hoc—in some functions or for some arguments NULL may be the distinguished value while
in other functions or for other arguments the magic value may be -1 or some #defined constant.

Inlanguages such as Java that support overloading a single method name with multiple definitions,
optional parameters can also be simulated by providing methods with the same name but
different numbers of arguments and having the methods with fewer arguments call the “real”
method with default values for the missing arguments.

53
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To define a function with optional parameters, after the names of any required parameters,
place the symbol &optional followed by the names of the optional parameters. A simple
example looks like this:

(defun foo (a b &optional c d) (list a b c d))

When the function is called, arguments are first bound to the required parameters. After
all the required parameters have been given values, if there are any arguments left, their values
are assigned to the optional parameters. If the arguments run out before the optional parameters
do, the remaining optional parameters are bound to the value NIL. Thus, the function defined
previously gives the following results:

(foo 1 2) —> (1 2 NIL NIL)
(foo 1 23) —> (12 3 NIL)
(foo1234) = (123 4)

Lisp will still check that an appropriate number of arguments are passed to the function—
in this case between two and four, inclusive—and will signal an error if the function is called
with too few or too many.

Of course, you'll often want a different default value than NIL. You can specify the default
value by replacing the parameter name with a list containing a name and an expression. The
expression will be evaluated only if the caller doesn’t pass enough arguments to provide a value
for the optional parameter. The common case is simply to provide a value as the expression.

(defun foo (a 8optional (b 10)) (list a b))

This function requires one argument that will be bound to the parameter a. The second
parameter, b, will take either the value of the second argument, if there is one, or 10.

(foo 1 2) = (1 2)
(foo 1) — (1 10)

Sometimes, however, you may need more flexibility in choosing the default value. You
may want to compute a default value based on other parameters. And you can—the default-
value expression can refer to parameters that occur earlier in the parameter list. If you were
writing a function that returned some sort of representation of a rectangle and you wanted to
make it especially convenient to make squares, you might use an argument list like this:

(defun make-rectangle (width &optional (height width)) ...)

which would cause the height parameter to take the same value as the width parameter unless
explicitly specified.

Occasionally, it’s useful to know whether the value of an optional argument was supplied
by the caller or is the default value. Rather than writing code to check whether the value of the
parameter is the default (which doesn’t work anyway, if the caller happens to explicitly pass the
default value), you can add another variable name to the parameter specifier after the default-
value expression. This variable will be bound to true if the caller actually supplied an argument
for this parameter and NIL otherwise. By convention, these variables are usually named the
same as the actual parameter with a “-supplied-p” on the end. For example:

(defun foo (a b 8optional (c 3 c-supplied-p)
P pp p
(list a b ¢ c-supplied-p))
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This gives results like this:

(foo12) — (123 NIL)
(foo123) > (1237)
(foo124) > (1247)

Rest Parameters

Optional parameters are just the thing when you have discrete parameters for which the caller
may or may not want to provide values. But some functions need to take a variable number of
arguments. Several of the built-in functions you've seen already work this way. FORMAT has two
required arguments, the stream and the control string. But after that it needs a variable number
of arguments depending on how many values need to be interpolated into the control string.
The +function also takes a variable number of arguments—there’s no particular reason to limit
it to summing just two numbers; it will sum any number of values. (It even works with zero
arguments, returning 0, the identity under addition.) The following are all legal calls of those
two functions:

(format t "hello, world")
(format t "hello, ~a" name)
(format t "x: ~d y: ~d" x y)
(+)

(+1)

(+12)

(+123)

Obviously, you could write functions taking a variable number of arguments by simply
giving them a lot of optional parameters. But that would be incredibly painful—just writing the
parameter list would be bad enough, and that doesn’t get into dealing with all the parameters
in the body of the function. To do it properly, you’d have to have as many optional parameters
as the number of arguments that can legally be passed in a function call. This number is imple-
mentation dependent but guaranteed to be at least 50. And in current implementations it
ranges from 4,096 to 536,870,911 .6 Blech. That kind of mind-bending tedium is definitely not
The Lisp Way.

Instead, Lisp lets you include a catchall parameter after the symbol &rest. If a function
includes a &rest parameter, any arguments remaining after values have been doled out to all
the required and optional parameters are gathered up into a list that becomes the value of the
&rest parameter. Thus, the parameter lists for FORMAT and + probably look something like this:

(defun format (stream string 8rest values) ...)
(defun + (&rest numbers) ...)

6. The constant CALL-ARGUMENTS-LIMIT tells you the implementation-specific value.
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Keyword Parameters

Optional and rest parameters give you quite a bit of flexibility, but neither is going to help you
out much in the following situation: Suppose you have a function that takes four optional
parameters. Now suppose that most of the places the function is called, the caller wants to
provide a value for only one of the four parameters and, further, that the callers are evenly
divided as to which parameter they will use.

The callers who want to provide a value for the first parameter are fine—they just pass the
one optional argument and leave off the rest. But all the other callers have to pass some value
for between one and three arguments they don’t care about. Isn’t that exactly the problem
optional parameters were designed to solve?

Of course it is. The problem is that optional parameters are still positional—if the caller
wants to pass an explicit value for the fourth optional parameter, it turns the first three optional
parameters into required parameters for that caller. Luckily, another parameter flavor, keyword
parameters, allow the caller to specify which values go with which parameters.

To give a function keyword parameters, after any required, &optional, and &rest parame-
ters you include the symbol &k ey and then any number of keyword parameter specifiers, which
work like optional parameter specifiers. Here’s a function that has only keyword parameters:

(defun foo (&key a b c) (list a b c))

When this function is called, each keyword parameters is bound to the value immediately
following a keyword of the same name. Recall from Chapter 4 that keywords are names that
start with a colon and that they're automatically defined as self-evaluating constants.

If a given keyword doesn’t appear in the argument list, then the corresponding parameter
is assigned its default value, just like an optional parameter. Because the keyword arguments
are labeled, they can be passed in any order as long as they follow any required arguments. For
instance, foo can be invoked as follows:

(foo) —> (NIL NIL NIL)
(foo :a 1) —> (1 NIL NIL)
(foo :b 1) — (NIL 1 NIL)
(foo :c 1) —> (NIL NIL 1)
(foo :a 1 :c 3) —> (1 NIL 3)
(foo :ta 1 :b2:c3)—> (123)

(foo :ta 1 :c3:b2) > (123)

As with optional parameters, keyword parameters can provide a default value form and
the name of a supplied-p variable. In both keyword and optional parameters, the default value
form can refer to parameters that appear earlier in the parameter list.

(defun foo (8key (a 0) (b 0 b-supplied-p) (c (+ a b)))
(list a b ¢ b-supplied-p))

(foo :a 1) —> (1 0 1 NIL)
(foo :b 1) —> (0117)
(foo :b 1 :c 4) —> (0147)
(foo :ta2 :b1:c4) > (2147)

Also, if for some reason you want the keyword the caller uses to specify the parameter to
be different from the name of the actual parameter, you can replace the parameter name with
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another list containing the keyword to use when calling the function and the name to be used
for the parameter. The following definition of foo:

(defun foo (&key ((:apple a)) ((:box b) 0) ((:charlie c) 0 c-supplied-p))
(1ist a b ¢ c-supplied-p))

lets the caller call it like this:
(foo :apple 10 :box 20 :charlie 30) — (10 20 30 T)

This style is mostly useful if you want to completely decouple the public API of the function
from the internal details, usually because you want to use short variable names internally but
descriptive keywords in the API. It’s not, however, very frequently used.

Mixing Different Parameter Types

It’s possible, but rare, to use all four flavors of parameters in a single function. Whenever more
than one flavor of parameter is used, they must be declared in the order I've discussed them:
first the names of the required parameters, then the optional parameters, then the rest parameter,
and finally the keyword parameters. Typically, however, in functions that use multiple flavors
of parameters, you'll combine required parameters with one other flavor or possibly combine
&optional and &rest parameters. The other two combinations, either &ptional or &rest
parameters combined with &k ey parameters, can lead to somewhat surprising behavior.

Combining &optional and &key parameters yields surprising enough results that you
should probably avoid it altogether. The problem is that if a caller doesn’t supply values for all
the optional parameters, then those parameters will eat up the keywords and values intended
for the keyword parameters. For instance, this function unwisely mixes &optional and &key
parameters:

(defun foo (x 8optional y &key z) (list x y z))
If called like this, it works fine:

(foo 12 :z23) > (123)

And this is also fine:

(foo 1) —> (1 nil nil)

But this will signal an error:

(foo 1 :z 3) —> ERROR

This is because the keyword :z is taken as a value to fill the optional y parameter, leaving only
the argument 3 to be processed. At that point, Lisp will be expecting either a keyword/value
pair or nothing and will complain. Perhaps even worse, if the function had had two &optional
parameters, this last call would have resulted in the values :z and 3 being bound to the two
&optional parameters and the &k ey parameter z getting the default value NI L with no indication
that anything was amiss.

In general, if you find yourself writing a function that uses both &optional and &key
parameters, you should probably just change it to use all & ey parameters—they’re more
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flexible, and you can always add new keyword parameters without disturbing existing callers of the
function. You can also remove keyword parameters, as long as no one is using them.” In general,
using keyword parameters helps make code much easier to maintain and evolve—if you need
to add some new behavior to a function that requires new parameters, you can add keyword
parameters without having to touch, or even recompile, any existing code that calls the function.

You can safely combine &rest and &k ey parameters, but the behavior may be a bit surprising
initially. Normally the presence of either &rest or &ey in a parameter list causes all the values
remaining after the required and &optional parameters have been filled in to be processed in
a particular way—either gathered into a list for a &rest parameter or assigned to the appro-
priate &key parameters based on the keywords. If both &rest and &key appear in a parameter
list, then both things happen—all the remaining values, which include the keywords themselves,
are gathered into a list that’s bound to the &rest parameter, and the appropriate values are
also bound to the &key parameters. So, given this function:

(defun foo (&rest rest 8key a b ¢) (list rest a b c))
you get this result:

(foo :ta 1 :b2:c3) —> ((:A1:B2:C3)123)

Function Return Values

All the functions you’ve written so far have used the default behavior of returning the value of
the last expression evaluated as their own return value. This is the most common way to return
a value from a function.

However, sometimes it’s convenient to be able to return from the middle of a function
such as when you want to break out of nested control constructs. In such cases you can use the
RETURN-FROM special operator to immediately return any value from the function.

You'll see in Chapter 20 that RETURN-FROMis actually not tied to functions at all; it’s used
to return from a block of code defined with the BLOCK special operator. However, DEFUN auto-
matically wraps the whole function body in a block with the same name as the function. So,
evaluating a RETURN-FROM with the name of the function and the value you want to return will
cause the function to immediately exit with that value. RETURN-FROM is a special operator
whose first “argument” is the name of the block from which to return. This name isn’t evalu-
ated and thus isn’t quoted.

The following function uses nested loops to find the first pair of numbers, each less than
10, whose product is greater than the argument, and it uses RETURN-FROM to return the pair as
soon as it finds it:

7. Four standard functions take both &optional and &ey arguments—READ-FROM-STRING,
PARSE-NAMESTRING, WRITE-LINE, and WRITE-STRING. They were left that way during
standardization for backward compatibility with earlier Lisp dialects. READ-FROM-STRING
tends to be the one that catches new Lisp programmers most frequently—a call such as
(read-from-string s :start 10) seems to ignore the :start keyword argument, reading from
index 0 instead of 10. That’s because READ-FROM-STRING also has two &optional parameters
that swallowed up the arguments :start and 10.
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(defun foo (n)
(dotimes (i 10)
(dotimes (j 10)
(when (> (* 1 j) n)
(return-from foo (list i j))))))

Admittedly, having to specify the name of the function you're returning from is a bit of a
pain—for one thing, if you change the function’s name, you'll need to change the name used
in the RETURN-FROM as well.8 But it’s also the case that explicit RETURN-FROMs are used much
less frequently in Lisp than return statements in C-derived languages, because all Lisp expressions,
including control constructs such as loops and conditionals, evaluate to a value. So it’s not
much of a problem in practice.

Functions As Data, a.k.a. Higher-Order Functions

While the main way you use functions is to call them by name, a number of situations exist
where it’s useful to be able treat functions as data. For instance, if you can pass one function as
an argument to another, you can write a general-purpose sorting function while allowing the
caller to provide a function that’s responsible for comparing any two elements. Then the same
underlying algorithm can be used with many different comparison functions. Similarly, call-
backs and hooks depend on being able to store references to code in order to run it later. Since
functions are already the standard way to abstract bits of code, it makes sense to allow functions to
be treated as data.?

In Lisp, functions are just another kind of object. When you define a function with DEFUN,
you're really doing two things: creating a new function object and giving it a name. It’s also
possible, as you saw in Chapter 3, to use LAMBDA expressions to create a function without giving
it a name. The actual representation of a function object, whether named or anonymous, is
opaque—in a native-compiling Lisp, it probably consists mostly of machine code. The only
things you need to know are how to get hold of it and how to invoke it once you’ve got it.

The special operator FUNCTION provides the mechanism for getting at a function object. It
takes a single argument and returns the function with that name. The name isn’t quoted. Thus,
if you've defined a function foo, like so:

CL-USER> (defun foo (x) (* 2 x))
FOO

you can get the function object like this:10

8. Another macro, RETURN, doesn’t require a name. However, you can’t use it instead of
RETURN-FROMto avoid having to specify the function name; it’s syntactic sugar for returning from
a block named NIL. I'll cover it, along with the details of BLOCK and RETURN-FROM, in Chapter 20.

9. Lisp, of course, isn't the only language to treat functions as data. C uses function pointers, Perl
uses subroutine references, Python uses a scheme similar to Lisp, and C# introduces delegates,
essentially typed function pointers, as an improvement over Java’s rather clunky reflection and
anonymous class mechanisms.

10. The exact printed representation of a function object will differ from implementation to
implementation.
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CL-USER> (function foo)
#<Interpreted Function F00>

In fact, you've already used FUNCTION, but it was in disguise. The syntax #', which you
used in Chapter 3, is syntactic sugar for FUNCTION, just the way ' is syntactic sugar for QUOTE.!!
Thus, you can also get the function object for foo like this:

CL-USER> #'foo
#<Interpreted Function F00>

Once you've got the function object, there’s really only one thing you can do with it—
invoke it. Common Lisp provides two functions for invoking a function through a function
object: FUNCALL and APPLY.12 They differ only in how they obtain the arguments to pass to
the function.

FUNCALL is the one to use when you know the number of arguments you're going to pass
to the function at the time you write the code. The first argument to FUNCALL is the function
object to be invoked, and the rest of the arguments are passed onto that function. Thus, the
following two expressions are equivalent:

(foo 1 2 3) = (funcall #'foo 1 2 3)

However, there’s little point in using FUNCALL to call a function whose name you know
when you write the code. In fact, the previous two expressions will quite likely compile to
exactly the same machine instructions.

The following function demonstrates a more apt use of FUNCALL. It accepts a function
object as an argument and plots a simple ASCII-art histogram of the values returned by the
argument function when it’s invoked on the values from min to max, stepping by step.

(defun plot (fn min max step)
(loop for i from min to max by step do
(loop repeat (funcall fn i) do (format t "*"))
(format t "~%")))

The FUNCALL expression computes the value of the function for each value of i. The inner
LOOP uses that computed value to determine how many times to print an asterisk to standard
output.

Note that youdon’t use FUNCTIONor #' to get the function value of n; you want it to be
interpreted as a variable because it’s the variable’s value that will be the function object. You
can call plot with any function that takes a single numeric argument, such as the built-in function
E XP that returns the value of e raised to the power of its argument.

11. The best way to think of FUNCTION s as a special kind of quotation. QUOTEing a symbol prevents it
from being evaluated at all, resulting in the symbol itself rather than the value of the variable
named by that symbol. FUNCTION also circumvents the normal evaluation rule but, instead of
preventing the symbol from being evaluated at all, causes it to be evaluated as the name of a
function, just the way it would if it were used as the function name in a function call expression.

12. There’s actually a third, the special operator MULTIPLE-VALUE-CALL, but I'll save that for when I
discuss expressions that return multiple values in Chapter 20.
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CL-USER> (plot #'exp 0 4 1/2)
*

*
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NIL

FUNCALL, however, doesn’t do you any good when the argument list is known only at
runtime. For instance, to stick with the plot function for another moment, suppose you've
obtained alist containing a function object, a minimum and maximum value, and a step value.
In other words, the list contains the values you want to pass as arguments to plot. Suppose this
list is in the variable plot-data. You could invoke plot on the values in that list like this:

(plot (first plot-data) (second plot-data) (third plot-data) (fourth plot-data))

This works fine, but it’s pretty annoying to have to explicitly unpack the arguments just so
you can pass them to plot.

That’s where APPLY comes in. Like FUNCALL, the first argument to APPLY is a function
object. But after the function object, instead of individual arguments, it expects a list. It then
applies the function to the values in the list. This allows you to write the following instead:

(apply #'plot plot-data)

As a further convenience, APPLY can also accept “loose” arguments as long as the last
argument is a list. Thus, if plot-data contained just the min, max, and step values, you could
still use APPLY like this to plot the EXP function over that range:

(apply #'plot #'exp plot-data)

APPLY doesn’t care about whether the function being applied takes &optional, &rest, or
&key arguments—the argument list produced by combining any loose arguments with the
final list must be alegal argumentlist for the function with enough arguments for all the required
parameters and only appropriate keyword parameters.

Anonymous Functions

Once you start writing, or even simply using, functions that accept other functions as argu-
ments, you're bound to discover that sometimes it's annoying to have to define and name a
whole separate function that’s used in only one place, especially when you never call it by name.

When it seems like overkill to define a new function with DE FUN, you can create an
“anonymous” function using a LAMBDA expression. As discussed in Chapter 3, a LAMBDA expres-
sion looks like this:

(lambda (parameters) body)
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One way to think of LAMBDA expressions is as a special kind of function name where the
name itself directly describes what the function does. This explains why you can use a
LAMBDA expression in the place of a function name with #"'.

(funcall #'(lambda (x y) (+ xy)) 23) = 5

You can even use a LAMBDA expression as the “name” of a function in a function call
expression. If you wanted, you could write the previous FUNCALL expression more concisely.

((lambda (x y) (+ x y)) 23) = 5

But this is almost never done; it’s merely worth noting that it’s legal in order to emphasize that
LAMBDA expressions can be used anywhere a normal function name can be.!3

Anonymous functions can be useful when you need to pass a function as an argument to
another function and the function you need to pass is simple enough to express inline. For
instance, suppose you wanted to plot the function 2x. You could define the following function:

(defun double (x) (* 2 x))

which you could then pass to plot.

13. In Common Lisp it’s also possible to use a LAMBDA expression as an argument to FUNCALL
(or some other function that takes a function argument such as SORT or MAPCAR) with no #'
before it, like this:

(funcall (lambda (x y) (+ x y)) 2 3)

This is legal and is equivalent to the version with the #' but for a tricky reason. Historically, LAMBDA
expressions by themselves weren't expressions that could be evaluated. That is, LAMBDA wasn’t
the name of a function, macro, or special operator. Rather, a list starting with the symbol LAMBDA
was a special syntactic construct that Lisp recognized as a kind of function name.

But if that were still true, then (funcall (lambda (...) ...)) would be illegal because FUNCALL
is a function and the normal evaluation rule for a function call would require that the LAMBDA
expression be evaluated. However, late in the ANSI standardization process, in order to make it
possible to implement ISLISP, another Lisp dialect being standardized at the same time, strictly
as a user-level compatibility layer on top of Common Lisp, a LAMBDA macro was defined that
expands into a call to FUNCTION wrapped around the LAMBDA expression. In other words, the
following LAMBDA expression:

(lambda () 42)
expands into the following when it occurs in a context where it’s evaluated:
(function (lambda () 42)) ; or #'(lambda () 42)

This makes its use in a value position, such as an argument to FUNCALL, legal. In other words, it’s
pure syntactic sugar. Most folks either always use #' before LAMBDA expressions in value positions or
never do. In this book, I always use #".
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CL-USER> (plot #'double 0 10 1)
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NIL
But it’s easier, and arguably clearer, to write this:

CL-USER> (plot #'(lambda (x) (* 2 x)) 0 10 1)
ko
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NIL

The other important use of LAMBDA expressions is in making closures, functions that
capture part of the environment where they’re created. You used closures a bit in Chapter 3,
but the details of how closures work and what they’re used for is really more about how variables
work than functions, so I'll save that discussion for the next chapter.






CHAPTER 6

Variables

The next basic building block we need to look at are variables. Common Lisp supports two
kinds of variables: lexical and dynamic.! These two types correspond roughly to “local” and
“global” variables in other languages. However, the correspondence is only approximate. On
one hand, some languages’ “local” variables are in fact much like Common Lisp’s dynamic
variables.? And on the other, some languages’ local variables are lexically scoped without
providing all the capabilities provided by Common Lisp’s lexical variables. In particular, not all
languages that provide lexically scoped variables support closures.

To make matters a bit more confusing, many of the forms that deal with variables can be
used with both lexical and dynamic variables. So I'll start by discussing a few aspects of Lisp’s
variables that apply to both kinds and then cover the specific characteristics of lexical and
dynamic variables. Then I'll discuss Common Lisp’s general-purpose assignment operator,
SETF, which is used to assign new values to variables and just about every other place that can
hold a value.

Variable Basics

Asin other languages, in Common Lisp variables are named places that can hold a value. However,
in Common Lisp, variables aren’t typed the way they are in languages such as Java or C++. That
is, you don’t need to declare the type of object that each variable can hold. Instead, a variable
can hold values of any type and the values carry type information that can be used to check
types at runtime. Thus, Common Lisp is dynamically typed—type errors are detected dynami-
cally. For instance, if you pass something other than a number to the + function, Common Lisp
will signal a type error. On the other hand, Common Lisp is a strongly typed language in the

1. Dynamic variables are also sometimes called special variables for reasons you'll see later in this
chapter. It's important to be aware of this synonym, as some folks (and Lisp implementations)
use one term while others use the other.

2. Early Lisps tended to use dynamic variables for local variables, at least when interpreted. Elisp,
the Lisp dialect used in Emacs, is a bit of a throwback in this respect, continuing to support only
dynamic variables. Other languages have recapitulated this transition from dynamic to lexical
variables—Perl’s local variables, for instance, are dynamic while its my variables, introduced in
Perl 5, are lexical. Python never had true dynamic variables but only introduced true lexical
scoping in version 2.2. (Python’s lexical variables are still somewhat limited compared to Lisp’s
because of the conflation of assignment and binding in the language’s syntax.)
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sense that all type errors will be detected—there’s no way to treat an object as an instance of a
class that it’s not.3

Allvalues in Common Lisp are, conceptually at least, references to objects.4 Consequently,
assigning a variable a new value changes what object the variable refers to but has no effect on
the previously referenced object. However, if a variable holds a reference to a mutable object,
you can use that reference to modify the object, and the modification will be visible to any code
that has a reference to the same object.

One way to introduce new variables you've already used is to define function parameters.
As you saw in the previous chapter, when you define a function with DEFUN, the parameter list
defines the variables that will hold the function’s arguments when it’s called. For example, this
function defines three variables—x, y, and z—to hold its arguments.

(defun foo (xy z) (+ xy z))

Each time a function is called, Lisp creates new bindings to hold the arguments passed by
the function’s caller. A binding is the runtime manifestation of a variable. A single variable—
the thing you can point to in the program’s source code—can have many different bindings
during a run of the program. A single variable can even have multiple bindings at the same
time; parameters to a recursive function, for example, are rebound for each call to the function.

As with all Common Lisp variables, function parameters hold object references.® Thus,
you can assign a new value to a function parameter within the body of the function, and it will
not affect the bindings created for another call to the same function. But if the object passed to
a function is mutable and you change it in the function, the changes will be visible to the caller
since both the caller and the callee will be referencing the same object.

Another form that introduces new variables is the LET special operator. The skeleton of a
LET form looks like this:

(let (variable*)
body- form*)

where each variable is a variable initialization form. Each initialization form is either a list
containing a variable name and an initial value form or—as a shorthand for initializing the
variable to NIL—a plain variable name. The following LET form, for example, binds the three
variables x, y, and z with initial values 10, 20, and NIL:

(let ((x 10) (y 20) z)
2)

3. Actually, it'’s not quite true to say that all type errors will always be detected—it’s possible to use
optional declarations to tell the compiler that certain variables will always contain objects of
a particular type and to turn off runtime type checking in certain regions of code. However,
declarations of this sort are used to optimize code after it has been developed and debugged, not
during normal development.

4. Asan optimization certain kinds of objects, such as integers below a certain size and characters,
may be represented directly in memory where other objects would be represented by a pointer to
the actual object. However, since integers and characters are immutable, it doesn’t matter that
there may be multiple copies of “the same” object in different variables. This is the root of the
difference between EQ and EQL discussed in Chapter 4.

5. In compiler-writer terms Common Lisp functions are “pass-by-value.” However, the values that
are passed are references to objects. This is similar to how Java and Python work.
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When the LET form is evaluated, all the initial value forms are first evaluated. Then new
bindings are created and initialized to the appropriate initial values before the body forms are
executed. Within the body of the LET, the variable names refer to the newly created bindings.
After the LET, the names refer to whatever, if anything, they referred to before the LET.

The value of the last expression in the body is returned as the value of the LET expression.
Like function parameters, variables introduced with LET are rebound each time the LET is
entered.5

The scope of function parameters and LET variables—the area of the program where the
variable name can be used to refer to the variable’s binding—is delimited by the form that
introduces the variable. This form—the function definition or the LET—is called the binding
form. As you'll see in a bit, the two types of variables—lexical and dynamic—use two slightly
different scoping mechanisms, but in both cases the scope is delimited by the binding form.

If you nest binding forms that introduce variables with the same name, then the bindings
of the innermost variable shadows the outer bindings. For instance, when the following function is
called, a binding is created for the parameter x to hold the function’s argument. Then the first
LET creates anew binding with the initial value 2, and the inner LE T creates yet another binding,
this one with the initial value 3. The bars on the right mark the scope of each binding.

(defun foo (x)

(format t "Parameter: ~a~%" x) «—— x is argument
(let ((x 2))
(format t "Outer LET: ~a~%" x) x is 2
(let ((x 3))
(format t "Inner LET: ~a~%" x)) ’4_ x is 3
(format t "Outer LET: ~a~%" x))
(format t "Parameter: ~a~%" x))

Each reference to x will refer to the binding with the smallest enclosing scope. Once
control leaves the scope of one binding form, the binding from the immediately enclosing
scope is unshadowed and x refers to it instead. Thus, calling foo results in this output:

CL-USER> (foo 1)
Parameter: 1

Outer LET: 2
Inner LET: 3
Outer LET: 2
Parameter: 1
NIL

In future chapters I'll discuss other constructs that also serve as binding forms—any construct
that introduces a new variable name that’s usable only within the construct is a binding form.

6. The variables in LET forms and function parameters are created by exactly the same mechanism.
In fact, in some Lisp dialects—though not Common Lisp—LET is simply a macro that expands
into a call to an anonymous function. That is, in those dialects, the following:

(let ((x 10)) (format t "~a" x))
is a macro form that expands into this:
((lambda (x) (format t "~a" x)) 10)
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For instance, in Chapter 7 you'll meet the DOTIMES loop, a basic counting loop. It intro-
duces a variable that holds the value of a counter that’s incremented each time through the
loop. The following loop, for example, which prints the numbers from 0 to 9, binds the variable x:

(dotimes (x 10) (format t "~d " x))

Another binding form is a variant of LET, LET*. The difference is thatin a LET, the variable
names can be used only in the body of the LET—the part of the LET after the variables list—but
in a LET*, the initial value forms for each variable can refer to variables introduced earlier in the
variables list. Thus, you can write the following:

(let* ((x 10)

(y (+x 10)))
(list x y))

but not this:

(let ((x 10)

(y (+ x10)))
(list x y))

However, you could achieve the same result with nested LETs.

(let ((x 10))
(let ((y (+ x 10)))
(list x y)))

Lexical Variables and Closures

By default all binding forms in Common Lisp introduce lexically scoped variables. Lexically
scoped variables can be referred to only by code that’s textually within the binding form.
Lexical scoping should be familiar to anyone who has programmed in Java, C, Perl, or Python
since they all provide lexically scoped “local” variables. For that matter, Algol programmers
should also feel right at home, as Algol first introduced lexical scoping in the 1960s.

However, Common Lisp’s lexical variables are lexical variables with a twist, at least compared
to the original Algol model. The twist is provided by the combination of lexical scoping with
nested functions. By the rules of lexical scoping, only code textually within the binding form
can refer to a lexical variable. But what happens when an anonymous function contains a
reference to a lexical variable from an enclosing scope? For instance, in this expression:

(let ((count 0)) #'(lambda () (setf count (1+ count))))

the reference to count inside the LAMBDA form should be legal according to the rules of lexical
scoping. Yet the anonymous function containing the reference will be returned as the value of
the LET form and can be invoked, via FUNCALL, by code that’s not in the scope of the LET. So
what happens? As it turns out, when count is a lexical variable, it just works. The binding of
count created when the flow of control entered the LET form will stick around for as long as
needed, in this case for as long as someone holds onto a reference to the function object
returned by the LET form. The anonymous function is called a closure because it “closes over”
the binding created by the LET.
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The key thing to understand about closures is that it’s the binding, not the value of the
variable, that’s captured. Thus, a closure can not only access the value of the variables it closes
over but can also assign new values that will persist between calls to the closure. For instance,
you can capture the closure created by the previous expression in a global variable like this:

(defparameter *fn* (let ((count 0)) #'(lambda () (setf count (1+ count)))))
Then each time you invoke it, the value of count will increase by one.

CL-USER> (funcall *fn*)
1
CL-USER> (funcall *fn*)
2
CL-USER> (funcall *fn*)
3

A single closure can close over many variable bindings simply by referring to them. Or
multiple closures can capture the same binding. For instance, the following expression returns
alist of three closures, one that increments the value of the closed over count binding, one that
decrements it, and one that returns the current value:

(let ((count 0))
(list
#'(lambda () (incf count))
#'(lambda () (decf count))
#'(lambda () count)))

Dynamic, a.k.a. Special, Variables

Lexically scoped bindings help keep code understandable by limiting the scope, literally, in
which a given name has meaning. This is why most modern languages use lexical scoping for
local variables. Sometimes, however, you really want a global variable—a variable that you can
refer to from anywhere in your program. While it’s true that indiscriminate use of global variables
can turn code into spaghetti nearly as quickly as unrestrained use of goto, global variables do
have legitimate uses and exist in one form or another in almost every programming language.’
And as you’ll see in a moment, Lisp’s version of global variables, dynamic variables, are both
more useful and more manageable.

Common Lisp provides two ways to create global variables: DEFVAR and DEFPARAMETER.
Both forms take a variable name, an initial value, and an optional documentation string. After
it has been DEFVARed or DEFPARAMETERed, the name can be used anywhere to refer to the
current binding of the global variable. As you've seen in previous chapters, global variables are
conventionally named with names that start and end with *. You'll see later in this section why
it’s quite important to follow that naming convention. Examples of DEFVAR and DEFPARAMETER
look like this:

7. Java disguises global variables as public static fields, C uses extern variables, and Python’s
module-level and Perl’s package-level variables can likewise be accessed from anywhere.
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(defvar *count* 0
"Count of widgets made so far.")

(defparameter *gap-tolerance* 0.001
"Tolerance to be allowed in widget gaps.")

The difference between the two forms is that DEFPARAMETER always assigns the initial
value to the named variable while DEFVAR does so only if the variable is undefined. A DEFVAR
form can also be used with no initial value to define a global variable without giving it a value.
Such a variable is said to be unbound.

Practically speaking, you should use DEFVAR to define variables that will contain data
you'd want to keep even if you made a change to the source code that uses the variable. For
instance, suppose the two variables defined previously are part of an application for control-
ling a widget factory. It’s appropriate to define the *count* variable with DEFVAR because the
number of widgets made so far isn’t invalidated just because you make some changes to the
widget-making code.?

On the other hand, the variable *gap-tolerance* presumably has some effect on the
behavior of the widget-making code itself. If you decide you need a tighter or looser tolerance
and change the value in the DEFPARAMETER form, you’d like the change to take effect when you
recompile and reload the file.

After defining a variable with DEFVAR or DEFPARAMETER, you can refer to it from anywhere.
For instance, you might define this function to increment the count of widgets made:

(defun increment-widget-count () (incf *count*))

The advantage of global variables is that you don’t have to pass them around. Most languages
store the standard input and output streams in global variables for exactly this reason—you
never know when you're going to want to print something to standard out, and you don’t want
every function to have to accept and pass on arguments containing those streams just in case
someone further down the line needs them.

However, once a value, such as the standard output stream, is stored in a global variable
and you have written code that references that global variable, it’s tempting to try to temporarily
modify the behavior of that code by changing the variable’s value.

For instance, suppose you're working on a program that contains some low-level logging
functions that print to the stream in the global variable *standard-output*. Now suppose that
in part of the program you want to capture all the output generated by those functions into a
file. You might open a file and assign the resulting stream to *standard-output*. Now the low-
level functions will send their output to the file.

8. Ifyou specifically want to reset a DEFVARed variable, you can either set it directly with SETF or
make it unbound using MAKUNBOUND and then reevaluate the DEFVAR form.
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This works fine until you forget to set *standard-output* back to the original stream when

you're done. If you forget to reset *standard-output*, all the other code in the program that
uses *standard-output* will also send its output to the file.?

What you really want, it seems, is a way to wrap a piece of code in something that says,

“All code below here—all the functions it calls, all the functions they call, and so on, down to
the lowest-level functions—should use this value for the global variable *standard-output*.”
Then when the high-level function returns, the old value of *standard-output* should be auto-
matically restored.

It turns out that that’s exactly what Common Lisp’s other kind of variable—dynamic vari-

ables—let you do. When you bind a dynamic variable—for example, with a LET variable or a
function parameter—the binding that’s created on entry to the binding form replaces the
global binding for the duration of the binding form. Unlike a lexical binding, which can be
referenced by code only within the lexical scope of the binding form, a dynamic binding can be
referenced by any code that’s invoked during the execution of the binding form.19 And it turns
out that all global variables are, in fact, dynamic variables.

Thus, if you want to temporarily redefine *standard-output*, the way to do it is simply to

rebind it, say, with a LET.

(let ((*standard-output* *some-other-stream*))

(stuff))

In any code that runs as a result of the call to stuff, references to *standard-output* will

use the binding established by the LET. And when stuff returns and control leaves the LET, the
new binding of *standard-output* will go away and subsequent references to *standard-output*
will see the binding that was current before the LET. At any given time, the most recently estab-
lished binding shadows all other bindings. Conceptually, each new binding for a given dynamic
variable is pushed onto a stack of bindings for that variable, and references to the variable
always use the most recent binding. As binding forms return, the bindings they created are
popped off the stack, exposing previous bindings.!!

10.

11.

The strategy of temporarily reassigning *standard-output* also breaks if the system is
multithreaded—if there are multiple threads of control trying to print to different streams at

the same time, they’ll all try to set the global variable to the stream they want to use, stomping
all over each other. You could use a lock to control access to the global variable, but then you're
not really getting the benefit of multiple concurrent threads, since whatever thread is printing
has to lock out all the other threads until it's done even if they want to print to a different stream.

The technical term for the interval during which references may be made to a binding is its
extent. Thus, scope and extent are complementary notions—scope refers to space while extent
refers to time. Lexical variables have lexical scope but indefinite extent, meaning they stick
around for an indefinite interval, determined by how long they’re needed. Dynamic variables, by
contrast, have indefinite scope since they can be referred to from anywhere but dynamic extent.
To further confuse matters, the combination of indefinite scope and dynamic extent is frequently
referred to by the misnomer dynamic scope.

Though the standard doesn'’t specify how to incorporate multithreading into Common Lisp,
implementations that provide multithreading follow the practice established on the Lisp
machines and create dynamic bindings on a per-thread basis. A reference to a global variable
will find the binding most recently established in the current thread, or the global binding.
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A simple example shows how this works.

(defvar *x* 10)
(defun foo () (format t "X: ~d~%" *x*))

The DEFVAR creates a global binding for the variable *x* with the value 10. The reference to
*x* in foo will look up the current binding dynamically. If you call foo from the top level, the
global binding created by the DEFVAR is the only binding available, so it prints 10.

CL-USER> (foo)
X: 10
NIL

Butyou can use LET to create a new binding that temporarily shadows the global binding,
and foo will print a different value.

CL-USER> (let ((*x* 20)) (foo))
X: 20
NIL

Now call foo again, with no LET, and it again sees the global binding.

CL-USER> (foo0)
X: 10
NIL

Now define another function.

(defun bar ()
(foo)
(let ((*x* 20)) (foo))
(fo0))

Note that the middle call to foo is wrapped in a LET that binds *x* to the new value 20.
When you run bar, you get this result:

CL-USER> (bar)

X: 10
X: 20
X: 10
NIL

As you can see, the first call to foo sees the global binding, with its value of 10. The middle
call, however, sees the new binding, with the value 20. But after the LET, foo once again sees the
global binding.

As with lexical bindings, assigning a new value affects only the current binding. To see this,
you can redefine foo to include an assignment to *x*.

(defun foo ()
(format t "Before assignment~18tX: ~d~%" *x*)
(setf *x* (+ 1 *x*))
(format t "After assignment~18tX: ~d~%" *x*))
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Now foo prints the value of *x*, increments it, and prints it again. If you just run foo, you’ll
see this:

CL-USER> (foo)

Before assignment X: 10
After assignment X: 11
NIL

Not too surprising. Now run bar.

CL-USER> (bar)

Before assignment X: 11
After assignment X: 12
Before assignment X: 20
After assignment X: 21
Before assignment X: 12
After assignment X: 13
NIL

Notice that *x* started at 11—the earlier call to foo really did change the global value. The
first call to foo from bar increments the global binding to 12. The middle call doesn’t see the
global binding because of the LET. Then the last call can see the global binding again and incre-
ments it from 12 to 13.

So how does this work? How does LET know that when it binds *x* it’s supposed to create
a dynamic binding rather than a normal lexical binding? It knows because the name has been
declared special.'? The name of every variable defined with DEFVAR and DEFPARAMETER is auto-
matically declared globally special. This means whenever you use such a name in a binding
form—in a LET or as a function parameter or any other construct that creates a new variable
binding—the binding that’s created will be a dynamic binding. This is why the *naming*
*convention* is so important—it'd be bad news if you used a name for what you thought was a
lexical variable and that variable happened to be globally special. On the one hand, code you
call could change the value of the binding out from under you; on the other, you might be shad-
owing a binding established by code higher up on the stack. If you always name global variables
according to the * naming convention, you'll never accidentally use a dynamic binding where
you intend to establish a lexical binding.

It’s also possible to declare a name locally special. If, in a binding form, you declare a name
special, then the binding created for that variable will be dynamic rather than lexical. Other
code can locally declare a name special in order to refer to the dynamic binding. However,
locally special variables are relatively rare, so you needn’t worry about them.13

Dynamic bindings make global variables much more manageable, but it’s important to
notice they still allow action at a distance. Binding a global variable has two at a distance
effects—it can change the behavior of downstream code, and it also opens the possibility that
downstream code will assign a new value to a binding established higher up on the stack. You
should use dynamic variables only when you need to take advantage of one or both of these
characteristics.

12. This is why dynamic variables are also sometimes called special variables.
13. If you must know, you can look up DECLARE, SPECIAL, and LOCALLY in the HyperSpec.
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Constants

One other kind of variable I haven’t mentioned at all is the oxymoronic “constant variable.” All
constants are global and are defined with DEFCONSTANT. The basic form of DEFCONSTANT is like
DEFPARAMETER.

(defconstant name initial-value-form [ documentation-string ])

As with DEFVAR and DEFPARAMETER, DEFCONSTANT has a global effect on the name used—
thereafter the name can be used only to refer to the constant; it can’t be used as a function param-
eter or rebound with any other binding form. Thus, many Lisp programmers follow a naming
convention of using names starting and ending with + for constants. This convention is some-
what less universally followed than the *-naming convention for globally special names but is
a good idea for the same reason.!4

Another thing to note about DEFCONSTANT is that while the language allows you to redefine
a constant by reevaluating a DEFCONSTANT with a different initial-value-form, what exactly
happens after the redefinition isn’t defined. In practice, most implementations will require
you to reevaluate any code that refers to the constant in order to see the new value since the old
value may well have been inlined. Consequently, it’s a good idea to use DEFCONSTANT only to
define things that are really constant, such as the value of n. For things you might ever want to
change, you should use DEFPARAMETER instead.

Assignment

Once you've created a binding, you can do two things with it: get the current value and set it to
anew value. As you saw in Chapter 4, a symbol evaluates to the value of the variable it names,
so you can get the current value simply by referring to the variable. To assign a new value to a
binding, you use the SETF macro, Common Lisp’s general-purpose assignment operator. The
basic form of SETF is as follows:

(setf place value)

Because SETF is a macro, it can examine the form of the place it’s assigning to and expand
into appropriate lower-level operations to manipulate that place. When the place is a variable,
it expands into a call to the special operator SETQ, which, as a special operator, has access to
both lexical and dynamic bindings.1® For instance, to assign the value 10 to the variable x, you
can write this:

(setf x 10)

14. Several key constants defined by the language itself don't follow this convention—not least of
which are T and NIL. This is occasionally annoying when one wants to use t as a local variable
name. Another is PI, which holds the best long-float approximation of the mathematical
constant .

15. Some old-school Lispers prefer to use SETQwith variables, but modern style tends to use SETF for
all assignments.
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AsIdiscussed earlier, assigning a new value to a binding has no effect on any other bindings of
that variable. And it doesn’t have any effect on the value that was stored in the binding prior to
the assignment. Thus, the SETF in this function:

(defun foo (x) (setf x 10))

will have no effect on any value outside of foo. The binding that was created when foo was called
is set to 10, immediately replacing whatever value was passed as an argument. In particular,
a form such as the following:

(let ((y 20))
(foo y)
(print y))

will print 20, not 10, as it’s the value of y that’s passed to foo where it’s briefly the value of the
variable x before the SETF gives x a new value.
SETF can also assign to multiple places in sequence. For instance, instead of the following:

(setf x 1)
(setfy 2)

you can write this:
(setf x 1y 2)

SETF returns the newly assigned value, so you can also nest calls to SETF as in the following
expression, which assigns both x and y the same random value:

(setf x (setf y (random 10)))

Generalized Assignment

Variable bindings, of course, aren’t the only places that can hold values. Common Lisp supports
composite data structures such as arrays, hash tables, and lists, as well as user-defined data
structures, all of which consist of multiple places that can each hold a value.

I'll cover those data structures in future chapters, but while we’re on the topic of assign-
ment, you should note that SETF can assign any place a value. As I cover the different composite
data structures, I'll point out which functions can serve as “SETFable places.” The short version,
however, is if you need to assign a value to a place, SETF is almost certainly the tool to use.
It’s even possible to extend SETF to allow it to assign to user-defined places though I won’t
cover that.16

In this regard SETF is no different from the = assignment operator in most C-derived
languages. In those languages, the = operator assigns new values to variables, array elements,
and fields of classes. In languages such as Perl and Python that support hash tables as a built-in

16. Look up DEFSETF, DEFINE-SETF-EXPANDER for more information.
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data type, = can also set the values of individual hash table entries. Table 6-1 summarizes the
various ways = is used in those languages.

Table 6-1. Assignment with = in Other Languages

Assigning to. . . Java, C, C++ Perl Python

.. .variable X = 10; $x = 10; X = 10

.. .array element alo] = 10; $afo0] = 10; a[o] = 10
...hash table entry $hash{'key'} = 10; hash['key'] = 10
.. field in object o.field = 10; $o->{'field'} = 10; o.field = 10

SETF works the same way—the first “argument” to SETF is a place to store the value, and
the second argument provides the value. As with the = operator in these languages, you use the
same form to express the place as you’d normally use to fetch the value.l” Thus, the Lisp equiv-
alents of the assignments in Table 6-1—given that AREF is the array access function, GETHASH
does a hash table lookup, and field might be a function that accesses a slot named field of a
user-defined object—are as follows:

Simple variable: (setf x 10)
Array: (setf (aref a 0) 10)
Hash table: (setf (gethash 'key hash) 10)

Slot named 'field': (setf (field o) 10)

Note that SETFing a place that’s part of a larger object has the same semantics as SETFing
a variable: the place is modified without any effect on the object that was previously stored in
the place. Again, this is similar to how =behaves in Java, Perl, and Python.!8

Other Ways to Modify Places

While all assignments can be expressed with SETF, certain patterns involving assigning a new
value based on the current value are sufficiently common to warrant their own operators. For
instance, while you could increment a number with SETF, like this:

(setf x (+ x 1))

17. The prevalence of Algol-derived syntax for assignment with the “place” on the left side of the =
and the new value on the right side has spawned the terminology lvalue, short for “left value,”
meaning something that can be assigned to, and rvalue, meaning something that provides a
value. A compiler hacker would say, “SETF treats its first argument as an lvalue.”

18. C programmers may want to think of variables and other places as holding a pointer to the real
object; assigning to a variable simply changes what object it points to while assigning to a part
of a composite object is similar to indirecting through the pointer to the actual object. C++
programmers should note that the behavior of = in C++ when dealing with objects—namely, a
memberwise copy—is quite idiosyncratic.
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or decrement it with this:
(setf x (- x 1))

it’s a bit tedious, compared to the C-style ++x and --x. Instead, you can use the macros INCF
and DECF, which increment and decrement a place by a certain amount that defaults to 1.

(incf x) = (setf x (+ x 1))
(decf x) = (setf x (- x 1))
(incf x 10) = (setf x (+ x 10))

INCF and DECF are examples of a kind of macro called modify macros. Modify macros are
macros built on top of SETF that modify places by assigning a new value based on the current
value of the place. The main benefit of modify macros is that they’re more concise than the
same modification written out using SETF. Additionally, modify macros are defined in a way
that makes them safe to use with places where the place expression must be evaluated only
once. A silly example is this expression, which increments the value of an arbitrary element of
an array:

(incf (aref *array* (random (length *array*))))
A naive translation of that into a SETF expression might look like this:

(setf (aref *array* (random (length *array*)))
(1+ (aref *array* (random (length *array*)))))

However, that doesn’t work because the two calls to RANDOM won't necessarily return the
same value—this expression will likely grab the value of one element of the array, increment it,
and then store it back as the new value of a different element. The INCF expression, however,
does the right thing because it knows how to take apart this expression:

(aref *array* (random (length *array*)))

to pull out the parts that could possibly have side effects to make sure they're evaluated only
once. In this case, it would probably expand into something more or less equivalent to this:

(let ((tmp (random (length *array*))))
(setf (aref *array* tmp) (1+ (aref *array* tmp))))

In general, modify macros are guaranteed to evaluate both their arguments and the subforms
of the place form exactly once each, in left-to-right order.

The macro PUSH, which you used in the mini-database to add elements to the *db* variable, is
another modify macro. You'll take a closer look at how it and its counterparts POP and PUSHNEW
work in Chapter 12 when I talk about how lists are represented in Lisp.

Finally, two slightly esoteric but useful modify macros are ROTATEF and SHIFTF. ROTATEF
rotates values between places. For instance, if you have two variables, a and b, this call:

(rotatef a b)

swaps the values of the two variables and returns NIL. Since a and b are variables and you don'’t
have to worry about side effects, the previous ROTATEF expression is equivalent to this:

(let ((tmp a)) (setf a b b tmp) nil)
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With other kinds of places, the equivalent expression using SETF would be quite a bit more
complex.

SHIFTF is similar except instead of rotating values it shifts them to the left—the last argu-
ment provides a value that’s moved to the second-to-last argument while the rest of the values
are moved one to the left. The original value of the first argument is simply returned. Thus, the
following:

(shiftf a b 10)
is equivalent—again, since you don’t have to worry about side effects—to this:
(let ((tmp a)) (setf a b b 10) tmp)

Both ROTATEF and SHIFTF can be used with any number of arguments and, like all modify
macros, are guaranteed to evaluate them exactly once, in left to right order.

With the basics of Common Lisp’s functions and variables under your belt, now you're
ready to move onto the feature that continues to differentiate Lisp from other languages: macros.



CHAPTER 7

Macros: Standard Control
Constructs

While many of the ideas that originated in Lisp, from the conditional expression to garbage
collection, have been incorporated into other languages, the one language feature that continues
to set Common Lisp apart is its macro system. Unfortunately, the word macro describes a lot of
things in computing to which Common Lisp’s macros bear only a vague and metaphorical
similarity. This causes no end of misunderstanding when Lispers try to explain to non-Lispers
what a great feature macros are.! To understand Lisp’s macros, you really need to come at
them fresh, without preconceptions based on other things that also happen to be called macros.
So let’s start our discussion of Lisp’s macros by taking a step back and looking at various ways
languages support extensibility.

All programmers should be used to the idea that the definition of a language can include
a standard library of functionality that’s implemented in terms of the “core” language—
functionality that could have been implemented by any programmer on top of the language if
ithadn’t been defined as part of the standard library. C’s standard library, for instance, can be
implemented almost entirely in portable C. Similarly, most of the ever-growing set of classes
and interfaces that ship with Java’s standard Java Development Kit (JDK) are written in
“pure” Java.

One advantage of defining languages in terms of a core plus a standard library is it makes
them easier to understand and implement. But the real benefit is in terms of expressiveness—
since much of what you think of as “the language” is really just a library—the language is easy
to extend. If C doesn’t have a function to do some thing or another that you need, you can write
that function, and now you have a slightly richer version of C. Similarly, in a language such as
Java or Smalltalk where almost all the interesting parts of the “language” are defined in terms
of classes, by defining new classes you extend the language, making it more suited for writing
programs to do whatever it is you're trying to do.

While Common Lisp supports both these methods of extending the language, macros give
Common Lisp yet another way. As I discussed briefly in Chapter 4, each macro defines its own

1. To see what this misunderstanding looks like, find any longish Usenet thread cross-posted between
comp.lang.lisp and any other comp.lang.* group with macro in the subject. A rough paraphrase
goes like this:

Lispnik: “Lisp is the best because of its macros!”
Othernik: “You think Lisp is good because of macros?! But macros are horrible and evil; Lisp must
be horrible and evil.”

79
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syntax, determining how the s-expressions it’s passed are turned into Lisp forms. With macros
as part of the core language it’s possible to build new syntax—control constructs such as WHEN,
DOLIST, and LOOP as well as definitional forms such as DEFUN and DEFPARAMETER—as part of
the “standard library” rather than having to hardwire them into the core. This has implications
for how the language itself is implemented, but as a Lisp programmer you'll care more that it
gives you another way to extend the language, making it a better language for expressing solutions
to your particular programming problems.

Now, it may seem that the benefits of having another way to extend the language would be
easy to recognize. But for some reason a lot of folks who haven’t actually used Lisp macros—
folks who think nothing of spending their days creating new functional abstractions or defining
hierarchies of classes to solve their programming problems—get spooked by the idea of being
able to define new syntactic abstractions. The most common cause of macrophobia seems to
be bad experiences with other “macro” systems. Simple fear of the unknown no doubt plays a
role, too. To avoid triggering any macrophobic reactions, I'll ease into the subject by discussing
several of the standard control-construct macros defined by Common Lisp. These are some of
the things that, if Lisp didn’t have macros, would have to be built into the language core. When
you use them, you don’t have to care that they’re implemented as macros, but they provide a
good example of some of the things you can do with macros.? In the next chapter, I'll show you
how you can define your own macros.

WHEN and UNLESS

As you've already seen, the most basic form of conditional execution—if x, do y; otherwise do
z—is provided by the IF special operator, which has this basic form:

(if condition then-form [else-form])

The condition is evaluated and, if its value is non-NIL, the then-form is evaluated and the
resulting value returned. Otherwise, the else-form, if any, is evaluated and its value returned.
If condition is NIL and there’s no else-form, then the IF returns NIL.

(if (> 2 3) "Yup" "Nope") —> "Nope"
(if (> 2 3) "Yup") —> NIL
(if (> 3 2) "Yup" "Nope") —> "Yup"

However, IFisn’t actually such a great syntactic construct because the then-form and
else-form are each restricted to being a single Lisp form. This means if you want to perform a
sequence of actions in either clause, you need to wrap them in some other syntax. For instance,
suppose in the middle of a spam-filtering program you wanted to both file a message as spam
and update the spam database when a message is spam. You can’t write this:

(if (spam-p current-message)
(file-in-spam-folder current-message)
(update-spam-database current-message))

2. Another important class of language constructs that are defined using macros are all the definitional
constructs such as DEFUN, DEFPARAMETER, DEFVAR, and others. In Chapter 24 you'll define your
own definitional macros that will allow you to concisely write code for reading and writing binary data.
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because the call to update-spam-database will be treated as the else clause, not as part of the
then clause. Another special operator, PROGN, executes any number of forms in order and
returns the value of the last form. So you could get the desired behavior by writing the following:

(if (spam-p current-message)
(progn
(file-in-spam-folder current-message)
(update-spam-database current-message)))

That’s not too horrible. But given the number of times you'll likely have to use this idiom,
it’'s not hard to imagine that you'd get tired of it after a while. “Why,” you might ask yourself,
“doesn’t Lisp provide a way to say what I really want, namely, ‘When x is true, do this, that, and
the other thing’?” In other words, after a while you’d notice the pattern of an IF plus a PROGN
and wish for a way to abstract away the details rather than writing them out every time.

This is exactly what macros provide. In this case, Common Lisp comes with a standard
macro, WHEN, which lets you write this:

(when (spam-p current-message)
(file-in-spam-folder current-message)
(update-spam-database current-message))

But if it wasn’t built into the standard library, you could define WHEN yourself with a macro
such as this, using the backquote notation I discussed in Chapter 3:3

(defmacro when (condition &rest body)
“(if ,condition (progn ,@body)))

A counterpart to the WHEN macro is UNLESS, which reverses the condition, evaluating its
body forms only if the condition is false. In other words:

(defmacro unless (condition &rest body)
“(if (not ,condition) (progn ,@body)))

Admittedly, these are pretty trivial macros. There’s no deep black magic here; they just
abstract away a few language-level bookkeeping details, allowing you to express your true intent
abit more clearly. But their very triviality makes an important point: because the macro system
is built right into the language, you can write trivial macros like WHEN and UNLESS that give you
small but real gains in clarity that are then multiplied by the thousands of times you use them.
In Chapters 24, 26, and 31 you'll see how macros can also be used on a larger scale, creating
whole domain-specific embedded languages. But first let’s finish our discussion of the standard
control-construct macros.

3. You can't actually feed this definition to Lisp because it’s illegal to redefine names in the COMMON-LISP
package where WHEN comes from. If you really want to try writing such a macro, youd need to change
the name to something else, such as my-when.
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COND

Another time raw IF expressions can get ugly is when you have a multibranch conditional:
ifa do x, else if b do y; else do z. There’s no logical problem writing such a chain of conditional
expressions with just IF, but it’s not pretty.

(if a
(do-x)
(if b
(do-y)
(do-2)))

And it would be even worse if you needed to include multiple forms in the then clauses,
requiring PROGNS. So, not surprisingly, Common Lisp provides a macro for expressing multi-
branch conditionals: COND. This is the basic skeleton:

(cond
(test-1 form*)

(tes’;—N form*))

Each element of the body represents one branch of the conditional and consists of a list
containing a condition form and zero or more forms to be evaluated if that branch is chosen.
The conditions are evaluated in the order the branches appear in the body until one of them
evaluates to true. At that point, the remaining forms in that branch are evaluated, and the value
of the last form in the branch is returned as the value of the COND as a whole. If the branch contains
no forms after the condition, the value of the condition is returned instead. By convention, the
branch representing the final else clause in an if/else-if chain is written with a condition of T.
Any non-NIL value will work, but a T serves as a useful landmark when reading the code. Thus,
you can write the previous nested IF expression using COND like this:

(cond (a (do-x))
(b (do-y))
(t (do-2)))

AND, OR, and NOT

When writing the conditions in IF, WHEN, UNLESS, and COND forms, three operators that will
come in handy are the boolean logic operators, AND, OR, and NOT.

NOT is a function so strictly speaking doesn’t belong in this chapter, but it’s closely tied to
AND and OR. It takes a single argument and inverts its truth value, returning T if the argument is
NIL and NIL otherwise.
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AND and OR, however, are macros. They implement logical conjunction and disjunction of
any number of subforms and are defined as macros so they can short-circuit. That is, they evaluate
only as many of their subforms—in left-to-right order—as necessary to determine the overall
truth value. Thus, AND stops and returns NIL as soon as one of its subforms evaluates to
NI L.]If all the subforms evaluate to non-NIL, it returns the value of the last subform. OR, on the
other hand, stops as soon as one of its subforms evaluates to non-NIL and returns the resulting
value. If none of the subforms evaluate to true, OR returns NIL. Here are some examples:

(not nil) > T
(not (=1 1)) —> NIL
(and (= 12) (=3 3)) = NIL
(or (=12) (=33)) =T

Looping

Control constructs are the other main kind of looping constructs. Common Lisp’s looping
facilities are—in addition to being quite powerful and flexible—an interesting lesson in the
have-your-cake-and-eat-it-too style of programming that macros provide.

As it turns out, none of Lisp’s 25 special operators directly support structured looping. All
of Lisp’s looping control constructs are macros built on top of a pair of special operators that
provide a primitive goto facility.* Like many good abstractions, syntactic or otherwise, Lisp’s
looping macros are built as a set of layered abstractions starting from the base provided by
those two special operators.

At the bottom (leaving aside the special operators) is a very general looping construct, DO.
While very powerful, DO suffers, as do many general-purpose abstractions, from being overkill
for simple situations. So Lisp also provides two other macros, DOLIST and DOTIMES, that are
less flexible than DO but provide convenient support for the common cases of looping over the
elements of a list and counting loops. While an implementation can implement these macros
however it wants, they’re typically implemented as macros that expand into an equivalent DO
loop. Thus, D0 provides a basic structured looping construct on top of the underlying primitives
provided by Common Lisp’s special operators, and DOLIST and DOTIMES provide two easier-
to-use, if less general, constructs. And, as you'll see in the next chapter, you can build your own
looping constructs on top of D 0 for situations where DOLIST and DOTIMES don’t meet your needs.

Finally, the LOOP macro provides a full-blown mini-language for expressing looping
constructs in a non-Lispy, English-like (or atleast Algol-like) language. Some Lisp hackers love
LOOP; others hate it. LOOP’s fans like it because it provides a concise way to express certain
commonly needed looping constructs. Its detractors dislike it because it’s not Lispy enough.
But whichever side one comes down on, it’s a remarkable example of the power of macros to
add new constructs to the language.

4. The special operators, if you must know, are TAGBODY and GO. There’s no need to discuss them
now, but I'll cover them in Chapter 20.
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DOLIST and DOTIMES

I'll start with the easy-to-use DOLIST and DOTIMES macros.

DOLISTloops across the items of a list, executing the loop body with a variable holding the
successive items of the list.? This is the basic skeleton (leaving out some of the more esoteric
options):

(dolist (var list-form)
body- form*)

When the loop starts, the list-form is evaluated once to produce a list. Then the body of the
loop is evaluated once for each item in the list with the variable var holding the value of the
item. For instance:

CL-USER> (dolist (x '(1 2 3)) (print x))
1

2

3

NIL

Used this way, the DOLIST form as a whole evaluates to NIL.
If you want to break out of a DOLIST loop before the end of the list, you can use RETURN.

CL-USER> (dolist (x '(1 2 3)) (print x) (if (evenp x) (return)))
1

2

NIL

DOTIMES is the high-level looping construct for counting loops. The basic template is
much the same as DOLIST's.

(dotimes (var count-form)
body- form*)

The count-form must evaluate to an integer. Each time through the loop var holds successive
integers from 0 to one less than that number. For instance:

5. DOLISTis similar to Perl’s foreach or Python’s for. Java added a similar kind of loop construct
with the “enhanced” for loop in Java 1.5, as part of JSR-201. Notice what a difference macros
make. A Lisp programmer who notices a common pattern in their code can write a macro to give
themselves a source-level abstraction of that pattern. A Java programmer who notices the same
pattern has to convince Sun that this particular abstraction is worth adding to the language.
Then Sun has to publish a JSR and convene an industry-wide “expert group” to hash everything
out. That process—according to Sun—takes an average of 18 months. After that, the compiler
writers all have to go upgrade their compilers to support the new feature. And even once the Java
programmer’s favorite compiler supports the new version of Java, they probably still can’t use the
new feature until they’re allowed to break source compatibility with older versions of Java. So an
annoyance that Common Lisp programmers can resolve for themselves within five minutes plagues
Java programmers for years.
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CL-USER> (dotimes (i 4) (print i))
0

1

2

3

NIL

As with DOLIST, you can use RETURN to break out of the loop early.

Because the body of both DOLIST and DOTIMES loops can contain any kind of expressions,
you can also nest loops. For example, to print out the times tables from1 x 1 = 1t020 x 20 = 400,
you can write this pair of nested DOTIMES loops:

(dotimes (x 20)
(dotimes (y 20)
(format t "~3d " (* (1+ x) (1+y))))
(format t "~%"))

DO

While DOLIST and DOTIMES are convenient and easy to use, they aren’t flexible enough to use
for all loops. For instance, what if you want to step multiple variables in parallel? Or use an arbi-
trary expression to test for the end of the loop? If neither DOLIST nor DOTIMES meet your needs,
you still have access to the more general DO loop.

Where DOLIST and DOTIMES provide only one loop variable, DO lets you bind any number
of variables and gives you complete control over how they change on each step through the
loop. You also get to define the test that determines when to end the loop and can provide a
form to evaluate at the end of the loop to generate a return value for the DO expression as a
whole. The basic template looks like this:

(do (variable-definition*)
(end-test-form result-form*)
statement*)

Each variable-definition introduces a variable that will be in scope in the body of the loop.
The full form of a single variable definition is a list containing three elements.

(var init-form step-form)

The init-form will be evaluated at the beginning of the loop and the resulting values bound
to the variable var. Before each subsequent iteration of the loop, the step-form will be evaluated
and the new value assigned to var. The step-form is optional; if it’s left out, the variable will
keep its value from iteration to iteration unless you explicitly assign it a new value in the loop
body. As with the variable definitions in a LET, if the init-form is left out, the variable is bound
to NIL. Also as with LET, you can use a plain variable name as shorthand for a list containing
just the name.

At the beginning of each iteration, after all the loop variables have been given their new
values, the end-test-form is evaluated. As long as it evaluates to NIL, the iteration proceeds,
evaluating the statements in order.
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When the end-test-form evaluates to true, the result-forms are evaluated, and the value of
the last result form is returned as the value of the DO expression.

At each step of the iteration the step forms for all the variables are evaluated before assigning
any of the values to the variables. This means you can refer to any of the other loop variables in
the step forms.® That is, in a loop like this:

(do ((n 0 (1+ n))
(cur 0 next)
(next 1 (+ cur next)))
((= 10 n) cur))

the step forms (1+ n), next, and (+ cur next) are all evaluated using the old values of n, cur,
and next. Only after all the step forms have been evaluated are the variables given their new
values. (Mathematically inclined readers may notice that this is a particularly efficient way of
computing the eleventh Fibonacci number.)

This example also illustrates another characteristic of DO—because you can step multiple
variables, you often don’t need a body at all. Other times, you may leave out the result form,
particularly if you're just using the loop as a control construct. This flexibility, however, is the
reason that DO expressions can be a bit cryptic. Where exactly do all the parentheses go? The
best way to understand a DO expression is to keep in mind the basic template.

(do (variable-definition*)
(end-test-form result-form*)
statement*)

The six parentheses in that template are the only ones required by the DO itself. You need
one pair to enclose the variable declarations, one pair to enclose the end test and result forms,
and one pair to enclose the whole expression. Other forms within the DO may require their own
parentheses—variable definitions are usually lists, for instance. And the test form is often a
function call. But the skeleton of a D0 loop will always be the same. Here are some example DO
loops with the skeleton in bold:

(do ((i 0 (2+ 1)))
((>=14))
(print 1))

Notice that the result form has been omitted. This is, however, not a particularly idiomatic
use of DO, as this loop is much more simply written using DOTIMES.”

(dotimes (i 4) (print 1))

As another example, here’s the bodiless Fibonacci-computing loop:

6. Avariant of DO, DO*, assigns each variable its value before evaluating the step form for subsequent
variables. For more details, consult your favorite Common Lisp reference.

7. The DOTIMES is also preferred because the macro expansion will likely include declarations that
allow the compiler to generate more efficient code.
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(do ((n 0 (2+ n))
(cur 0 next)
(next 1 (+ cur next)))
((= 10 n) cur))

Finally, the next loop demonstrates a D0 loop that binds no variables. It loops while the
current time is less than the value of a global variable, printing “Waiting” once a minute. Note
that even with no loop variables, you still need the empty variables list.

(do ()
((> (get-universal-time) *some-future-date*))
(format t "Waiting~%")
(sleep 60))

The Mighty LOOP

For the simple cases you have DOLIST and DOTIMES. And if they don’t suit your needs, you can
fall back on the completely general D0. What more could you want?

Well, it turns out a handful of looping idioms come up over and over again, such as looping
over various data structures: lists, vectors, hash tables, and packages. Or accumulating values
in various ways while looping: collecting, counting, summing, minimizing, or maximizing. If
you need a loop to do one of these things (or several at the same time), the LOOP macro may
give you an easier way to express it.

The LOOP macro actually comes in two flavors—simple and extended. The simple version
is as simple as can be—an infinite loop that doesn’t bind any variables. The skeleton looks
like this:

(loop
body-form*)

The forms in body are evaluated each time through the loop, which will iterate forever
unless you use RETURN to break out. For example, you could write the previous DO loop with
a simple LOOP.

(loop
(when (> (get-universal-time) *some-future-date*)
(return))
(format t "Waiting ...~%")
(sleep 1))

The extended LOOP is quite a different beast. It’s distinguished by the use of certain loop
keywords that implement a special-purpose language for expressing looping idioms. It’s worth
noting that not all Lispers love the extended LOOP language. At least one of Common Lisp’s
original designers hated it. LOOP’s detractors complain that its syntax is totally un-Lispy (in other
words, not enough parentheses). LOOP’s fans counter that that’s the point: complicated looping
constructs are hard enough to understand without wrapping them up in D0’s cryptic syntax.
It’s better, they say, to have a slightly more verbose syntax that gives you some clues what the
heck is going on.
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For instance, here’s an idiomatic DO loop that collects the numbers from 1 to 10 into a list:

(do ((nums nil) (i 1 (2+ i)))
((> i 10) (nreverse nums))
(push i nums)) = (123456789 10)

A seasoned Lisper won’t have any trouble understanding that code—it’s just a matter of
understanding the basic form of a DOloop and recognizing the PUSH/NREVERSE idiom for
building up a list. But it’s not exactly transparent. The LOOP version, on the other hand, is
almost understandable as an English sentence.

(loop for i from 1 to 10 collecting i) — (123456 7 8 9 10)

The following are some more examples of simple uses of LOOP. This sums the first ten
squares:

(loop for x from 1 to 10 summing (expt x 2)) —> 385
This counts the number of vowels in a string:

(loop for x across "the quick brown fox jumps over the lazy dog"
counting (find x "aeiou")) — 11

This computes the eleventh Fibonacci number, similar to the DO loop used earlier:

(loop for i below 10
and a = 0 then b
and b = 1 then (+ b a)
finally (return a))

The symbols across, and, below, collecting, counting, finally, for, from, summing, then,
and to are some of the loop keywords whose presence identifies these as instances of the
extended LOOP. 8

I'll save the details of LOOP for Chapter 22, but it’s worth noting here as another example of
the way macros can be used to extend the base language. While LOOP provides its own language
for expressing looping constructs, it doesn’t cut you off from the rest of Lisp. The loop keywords are
parsed according to loop’s grammar, but the rest of the code in a LOOP is regular Lisp code.

And it’s worth pointing out one more time that while the LOOP macro is quite a bit more
complicated than macros such as WHEN or UNLESS, it is just another macro. If it hadn’t been
included in the standard library, you could implement it yourself or get a third-party library
that does.

With that I'll conclude our tour of the basic control-construct macros. Now you're ready to
take a closer look at how to define your own macros.

8. Loop keywords is a bit of a misnomer since they aren’'t keyword symbols. In fact, LOOP doesn’t care
what package the symbols are from. When the LOOP macro parses its body, it considers any
appropriately named symbols equivalent. You could even use true keywords if you wanted—
:for, :across, and so on—because they also have the correct name. But most folks just use plain
symbols. Because the loop keywords are used only as syntactic markers, it doesn’t matter if
they're used for other purposes—as function or variable names.



CHAPTER 8

Macros: Defining Your Own

Now it’s time to start writing your own macros. The standard macros I covered in the previous
chapter hint at some of the things you can do with macros, but that’s just the beginning.
Common Lisp doesn’t support macros so every Lisp programmer can create their own variants
of standard control constructs any more than C supports functions so every C programmer can
write trivial variants of the functions in the C standard library. Macros are part of the language
to allow you to create abstractions on top of the core language and standard library that move
you closer toward being able to directly express the things you want to express.

Perhaps the biggest barrier to a proper understanding of macros is, ironically, that they’re
so well integrated into the language. In many ways they seem like just a funny kind of function—
they’re written in Lisp, they take arguments and return results, and they allow you to abstract
away distracting details. Yet despite these many similarities, macros operate at a different level
than functions and create a totally different kind of abstraction.

Once you understand the difference between macros and functions, the tight integration
of macros in the language will be a huge benefit. But in the meantime, it’s a frequent source of
confusion for new Lispers. The following story, while not true in a historical or technical sense,
tries to alleviate the confusion by giving you a way to think about how macros work.

The Story of Mac: A Just-So Story

Once upon a time, long ago, there was a company of Lisp programmers. It was so long ago, in
fact, that Lisp had no macros. Anything that couldn’t be defined with a function or done with a
special operator had to be written in full every time, which was rather a drag. Unfortunately,
the programmers in this company—though brilliant—were also quite lazy. Often in the middle
of their programs—when the tedium of writing a bunch of code got to be too much—they would
instead write a note describing the code they needed to write at that place in the program. Even
more unfortunately, because they were lazy, the programmers also hated to go back and actu-
ally write the code described by the notes. Soon the company had a big stack of programs that
nobody could run because they were full of notes about code that still needed to be written.

In desperation, the big bosses hired a junior programmer, Mac, whose job was to find the
notes, write the required code, and insert it into the program in place of the notes. Mac never
ran the programs—they weren’t done yet, of course, so he couldn’t. But even if they had been
completed, Mac wouldn’t have known what inputs to feed them. So he just wrote his code
based on the contents of the notes and sent it back to the original programmer.
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With Mac’s help, all the programs were soon completed, and the company made a ton of
money selling them—so much money that the company could double the size of its program-
ming staff. But for some reason no one thought to hire anyone to help Mac; soon he was single-
handedly assisting several dozen programmers. To avoid spending all his time searching for
notes in source code, Mac made a small modification to the compiler the programmers used.
Thereafter, whenever the compiler hit a note, it would e-mail him the note and wait for him to
e-mail back the replacement code. Unfortunately, even with this change, Mac had a hard time
keeping up with the programmers. He worked as carefully as he could, but sometimes—
especially when the notes weren’t clear—he would make mistakes.

The programmers noticed, however, that the more precisely they wrote their notes, the
more likely it was that Mac would send back correct code. One day, one of the programmers,
having a hard time describing in words the code he wanted, included in one of his notes a Lisp
program that would generate the code he wanted. That was fine by Mac; he just ran the program
and sent the result to the compiler.

The next innovation came when a programmer put a note at the top of one of his programs
containing a function definition and a comment that said, “Mac, don’t write any code here, but
keep this function for later; I'm going to use it in some of my other notes.” Other notes in the
same program said things such as, “Mac, replace this note with the result of running that other
function with the symbols x and y as arguments.”

This technique caught on so quickly that within a few days, most programs contained
dozens of notes defining functions that were only used by code in other notes. To make it easy
for Mac to pick out the notes containing only definitions that didn’t require any immediate
response, the programmers tagged them with the standard preface: “Definition for Mac, Read
Only.” This—as the programmers were still quite lazy—was quickly shortened to “DEF. MAC.
R/0” and then “DEFMACRO.”

Pretty soon, there was no actual English left in the notes for Mac. All he did all day was read
and respond to e-mails from the compiler containing DEFMACRO notes and calls to the func-
tions defined in the DEFMACROs. Since the Lisp programs in the notes did all the real work,
keeping up with the e-mails was no problem. Mac suddenly had a lot of time on his hands and
would sit in his office daydreaming about white-sand beaches, clear blue ocean water, and
drinks with little paper umbrellas in them.

Several months later the programmers realized nobody had seen Mac for quite some time.
When they went to his office, they found a thin layer of dust over everything, a desk littered
with travel brochures for various tropical locations, and the computer off. But the compiler still
worked—how could it be? It turned out Mac had made one last change to the compiler: instead
of e-mailing notes to Mac, the compiler now saved the functions defined by DEFMACRO notes
and ran them when called for by the other notes. The programmers decided there was no reason
to tell the big bosses Mac wasn’t coming to the office anymore. So to this day, Mac draws a salary
and from time to time sends the programmers a postcard from one tropical locale or another.

Macro Expansion Time vs. Runtime

The key to understanding macros is to be quite clear about the distinction between the code
that generates code (macros) and the code that eventually makes up the program (everything
else). When you write macros, you're writing programs that will be used by the compiler to
generate the code that will then be compiled. Only after all the macros have been fully expanded
and the resulting code compiled can the program actually be run. The time when macros run
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is called macro expansion time; this is distinct from runtime, when regular code, including the
code generated by macros, runs.

It’s important to keep this distinction firmly in mind because code running at macro
expansion time runs in a very different environment than code running at runtime. Namely,
at macro expansion time, there’s no way to access the data that will exist at runtime. Like Mac,
who couldn’t run the programs he was working on because he didn’t know what the correct
inputs were, code running at macro expansion time can deal only with the data that’s inherent
in the source code. For instance, suppose the following source code appears somewhere in a
program:

(defun foo (x)
(when (> x 10) (print 'big)))

Normally you’d think of x as a variable that will hold the argument passed in a call to foo.
But at macro expansion time, such as when the compiler is running the WHEN macro, the only
data available is the source code. Since the program isn’t running yet, there’s no call to foo and
thus no value associated with x. Instead, the values the compiler passes to WHEN are the Lisp
lists representing the source code, namely, (> x 10) and (print 'big). Suppose that WHEN is
defined, as you saw in the previous chapter, with something like the following macro:

(defmacro when (condition &rest body)
“(if ,condition (progn ,@body)))

When the code in foo is compiled, the WHEN macro will be run with those two forms as
arguments. The parameter condition will be bound to the form (> x 10), and the form
(print 'big) will be collected into alist that will become the value of the &rest body parameter.
The backquote expression will then generate this code:

(if (> x 10) (progn (print 'big)))

by interpolating in the value of condition and splicing the value of body into the PROGN.

When Lisp is interpreted, rather than compiled, the distinction between macro expansion
time and runtime is less clear because they’re temporally intertwined. Also, the language stan-
dard doesn’t specify exactly how an interpreter must handle macros—it could expand all the
macros in the form being interpreted and then interpret the resulting code, or it could start right
in on interpreting the form and expand macros when it hits them. In either case, macros are
always passed the unevaluated Lisp objects representing the subforms of the macro form, and
the job of the macro is still to produce code that will do something rather than to do anything
directly.

DEFMACRO

As you saw in Chapter 3, macros really are defined with DEFMACRO forms, though it stands—
of course—for DEFine MACRO, not Definition for Mac. The basic skeleton of a DEFMACRO is
quite similar to the skeleton of a DEFUN.

(defmacro name (parameter*)
"Optional documentation string."
body-form*)
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Like a function, a macro consists of a name, a parameter list, an optional documentation
string, and a body of Lisp expressions.! However, as I just discussed, the job of a macro isn’t to
do anything directly—its job is to generate code that will later do what you want.

Macros can use the full power of Lisp to generate their expansion, which means in this chapter
I can only scratch the surface of what you can do with macros. I can, however, describe a general
process for writing macros that works for all macros from the simplest to the most complex.

The job of a macro is to translate a macro form—in other words, a Lisp form whose first
element is the name of the macro—into code that does a particular thing. Sometimes you write
a macro starting with the code you’d like to be able to write, that is, with an example macro
form. Other times you decide to write a macro after you've written the same pattern of code
several times and realize you can make your code clearer by abstracting the pattern.

Regardless of which end you start from, you need to figure out the other end before you
can start writing a macro: you need to know both where you're coming from and where you're
going before you can hope to write code to do it automatically. Thus, the first step of writing a
macro is to write at least one example of a call to the macro and the code into which that call
should expand.

Once you have an example call and the desired expansion, you're ready for the second
step: writing the actual macro code. For simple macros this will be a trivial matter of writing
a backquoted template with the macro parameters plugged into the right places. Complex
macros will be significant programs in their own right, complete with helper functions and
data structures.

After you've written code to translate the example call to the appropriate expansion, you
need to make sure the abstraction the macro provides doesn’t “leak” details of its implementa-
tion. Leaky macro abstractions will work fine for certain arguments but not others or will interact
with code in the calling environment in undesirable ways. As it turns out, macros can leak in a
small handful of ways, all of which are easily avoided as long as you know to check for them. I'll
discuss how in the section “Plugging the Leaks.”

To sum up, the steps to writing a macro are as follows:

1. Write a sample call to the macro and the code it should expand into, or vice versa.

2. Write code that generates the handwritten expansion from the arguments in the
sample call.

3. Make sure the macro abstraction doesn’t “leak.”

A Sample Macro: do-primes

To see how this three-step process works, you'll write a macro do-primes that provides a looping
construct similar to DOTIMES and DOLIST except that instead of iterating over integers or
elements of a list, it iterates over successive prime numbers. This isn’t meant to be an example
of a particularly useful macro—it’s just a vehicle for demonstrating the process.

1. Aswith functions, macros can also contain declarations, but you don’t need to worry about those
for now.
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First, you’ll need two utility functions, one to test whether a given number is prime and
another that returns the next prime number greater or equal to its argument. In both cases you
can use a simple, but inefficient, brute-force approach.

defun primep (number
p P
(when (> number 1)
(loop for fac from 2 to (isqrt number) never (zerop (mod number fac)))))

defun next-prime (number
p
(loop for n from number when (primep n) return n))

Now you can write the macro. Following the procedure outlined previously, you need at
least one example of a call to the macro and the code into which it should expand. Suppose you
start with the idea that you want to be able to write this:

(do-primes (p 0 19)
(format t "~d " p))

to express a loop that executes the body once each for each prime number greater or equal to
0 and less than or equal to 19, with the variable p holding the prime number. It makes sense to
model this macro on the form of the standard DOLIST and DOTIMES macros; macros that follow
the pattern of existing macros are easier to understand and use than macros that introduce
gratuitously novel syntax.

Without the do-primes macro, you could write such a loop with DO (and the two utility
functions defined previously) like this:

(do ((p (next-prime 0) (next-prime (1+ p))))

((> p 19))
(format t "~d " p))

Now you're ready to start writing the macro code that will translate from the former to
the latter.

Macro Parameters

Since the arguments passed to a macro are Lisp objects representing the source code of the
macro call, the first step in any macro is to extract whatever parts of those objects are needed
to compute the expansion. For macros that simply interpolate their arguments directly into a
template, this step is trivial: simply defining the right parameters to hold the different arguments
is sufficient.

But this approach, it seems, will not suffice for do-primes. The first argument to the do-primes
call is a list containing the name of the loop variable, p; the lower bound, 0; and the upper
bound, 19. But if you look at the expansion, the list as a whole doesn’t appear in the expansion;
the three element are split up and put in different places.

You could define do-primes with two parameters, one to hold the list and a &rest parameter
to hold the body forms, and then take apart the list by hand, something like this:
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(defmacro do-primes (var-and-range &rest body)
(let ((var (first var-and-range))
(start (second var-and-range))
(end (third var-and-range)))
“(do ((,var (next-prime ,start) (next-prime (1+ ,var))))
((> ,var ,end))
,@body)))

In a moment I'll explain how the body generates the correct expansion; for now you can
justnote that the variables var, start, and end each hold a value, extracted from var-and-range,
that’s then interpolated into the backquote expression that generates do-primes’s expansion.

However, you don’t need to take apart var-and-range “by hand” because macro parameter
lists are what are called destructuring parameter lists. Destructuring, as the name suggests,
involves taking apart a structure—in this case the list structure of the forms passed to a macro.

Within a destructuring parameter list, a simple parameter name can be replaced with a
nested parameter list. The parameters in the nested parameter list will take their values from
the elements of the expression that would have been bound to the parameter the list replaced.
For instance, you can replace var-and-range with alist (var start end), and the three elements
of the list will automatically be destructured into those three parameters.

Another special feature of macro parameter lists is that you can use &body as a synonym
for &rest. Semantically &body and &rest are equivalent, but many development environments
will use the presence of a &body parameter to modify how they indent uses of the macro—
typically &body parameters are used to hold a list of forms that make up the body of the macro.

So you can streamline the definition of do-primes and give a hint to both human readers
and your development tools about its intended use by defining it like this:

(defmacro do-primes ((var start end) 8body body)
“(do ((,var (next-prime ,start) (next-prime (1+ ,var))))
((> ,var ,end))
,@body))

In addition to being more concise, destructuring parameter lists also give you automatic
error checking—with do-primes defined this way, Lisp will be able to detect a call whose first
argument isn’t a three-element list and will give you a meaningful error message just as if you
had called a function with too few or too many arguments. Also, in development environments
such as SLIME that indicate what arguments are expected as soon as you type the name of a
function or macro, if you use a destructuring parameter list, the environment will be able to tell
you more specifically the syntax of the macro call. With the original definition, SLIME would
tell you do-primes is called like this:

(do-primes var-and-range &rest body)
But with the new definition, it can tell you that a call should look like this:
(do-primes (var start end) &body body)

Destructuring parameter lists can contain &optional, &ey, and &rest parameters and
can contain nested destructuring lists. However, you don’t need any of those options to write
do-primes.
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Generating the Expansion

Because do-primes is a fairly simple macro, after you've destructured the arguments, all that’s
left is to interpolate them into a template to get the expansion.

For simple macros like do-primes, the special backquote syntax is perfect. To review, a
backquoted expression is similar to a quoted expression except you can “unquote” particular
subexpressions by preceding them with a comma, possibly followed by an at (@) sign. Without
an at sign, the comma causes the value of the subexpression to be included as is. With an at
sign, the value—which must be a list—is “spliced” into the enclosing list.

Another useful way to think about the backquote syntax is as a particularly concise way of
writing code that generates lists. This way of thinking about it has the benefit of being pretty
much exactly what’s happening under the covers—when the reader reads a backquoted
expression, it translates it into code that generates the appropriate list structure. For instance,
"(,a b) mightbereadas (1ist a 'b).Thelanguage standard doesn’t specify exactly what code
the reader must produce as long as it generates the right list structure.

Table 8-1 shows some examples of backquoted expressions along with equivalent list-
building code and the result you'd get if you evaluated either the backquoted expression or
the equivalent code.?

Table 8-1. Backquote Examples

Backquote Syntax Equivalent List-Building Code Result

“(a (+12)0) (list 'a "(+ 1 2) ') (a (+12)0)
“(a,(+12)0) (list 'a (+ 1 2) '©) (a3 c¢)

“(a (list 1 2) <) (list 'a "(list 1 2) 'c) (a (list 1 2) ¢)
“(a ,(list 1 2) <) (list 'a (list 1 2) 'c) (a(12) 0

“(a ,@(list 1 2) ¢) (append (list 'a) (list 1 2) (list 'c)) (a12¢0)

It’s important to note that backquote is just a convenience. But it’s a big convenience. To
appreciate how big, compare the backquoted version of do-primes to the following version,
which uses explicit list-building code:

(defmacro do-primes-a ((var start end) &body body)
(append ' (do)
(list (list (list var
(list 'next-prime start)
(list 'next-prime (list '1+ var)))))
(list (1list (list '> var end)))
body))

2. APPEND, which I haven't discussed yet, is a function that takes any number of list arguments and
returns the result of splicing them together into a single list.
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Asyou'll see in a moment, the current implementation of do-primes doesn’t handle certain
edge cases correctly. But first you should verify that it at least works for the original example.
You can test it in two ways. You can test it indirectly by simply using it—presumably, if the
resulting behavior is correct, the expansion is correct. For instance, you can type the original
example’s use of do-primes to the REPL and see that it indeed prints the right series of prime
numbers.

CL-USER> (do-primes (p 0 19) (format t "~d " p))
2357111317 19
NIL

Or you can check the macro directly by looking at the expansion of a particular call. The
function MACROEXPAND-1 takes any Lisp expression as an argument and returns the result of
doing one level of macro expansion.3 Because MACROEXPAND-1 is a function, to pass it a literal
macro form you must quote it. You can use it to see the expansion of the previous call.

CL-USER> (macroexpand-1 '(do-primes (p 0 19) (format t "~d " p)))
(DO ((P (NEXT-PRIME 0) (NEXT-PRIME (1+ P))))
((> P 19))
(FORMAT T "~d " P))
T

Or, more conveniently, in SLIME you can check a macro’s expansion by placing the cursor
on the opening parenthesis of a macro form in your source code and typing C-c RET to invoke
the Emacs function slime-macroexpand-1, which will pass the macro form to MACROEXPAND-1
and “pretty print” the result in a temporary buffer.

However you get to it, you can see that the result of macro expansion is the same as the
original handwritten expansion, so it seems that do-primes works.

Plugging the Leaks

In his essay “The Law of Leaky Abstractions,” Joel Spolsky coined the term leaky abstraction to
describe an abstraction that “leaks” details it’s supposed to be abstracting away. Since writing
amacro is a way of creating an abstraction, you need to make sure your macros don’t leak
needlessly.?

3. Another function, MACROEXPAND, keeps expanding the result as long as the first element of the
resulting expansion is the name of the macro. However, this will often show you a much lower-
level view of what the code is doing than you want, since basic control constructs such as DO are
also implemented as macros. In other words, while it can be educational to see what your macro
ultimately expands into, it isn’t a very useful view into what your own macros are doing.

4. If the macro expansion is shown all on one line, it’s probably because the variable
*PRINT-PRETTY*is NIL.Ifitis, evaluating (setf *print-pretty* t) should make the
macro expansion easier to read.

5. This is from Joel on Software by Joel Spolsky, also available at http://www.joelonsoftware.com/
articles/LeakyAbstractions.html. Spolsky’s point in the essay is that all abstractions leak to
some extent; that is, there are no perfect abstractions. But that doesn’'t mean you should tolerate
leaks you can easily plug.
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As it turns out, a macro can leak details of its inner workings in three ways. Luckily, it’s
pretty easy to tell whether a given macro suffers from any of those leaks and to fix them.

The current definition suffers from one of the three possible macro leaks: namely, it evaluates
the end subform too many times. Suppose you were to call do-primes with, instead of a literal
number such as 19, an expression such as (random 100) in the end position.

(do-primes (p 0 (random 100))
(format t "~d " p))

Presumably the intent here is to loop over the primes from zero to whatever random
number is returned by (random 100). However, this isn’t what the current implementation
does, as MACROEXPAND-1 shows.

CL-USER> (macroexpand-1 '(do-primes (p 0 (random 100)) (format t "~d " p)))
(D0 ((P (NEXT-PRIME 0) (NEXT-PRIME (1+ P))))
((> P (RANDOM 100)))
(FORMAT T "~d " P))
T

When this expansion code is run, RANDOM will be called each time the end test for the loop
is evaluated. Thus, instead of looping until p is greater than an initially chosen random number,
this loop will iterate until it happens to draw a random number less than or equal to the current
value of p. While the total number of iterations will still be random, it will be drawn from a
much different distribution than the uniform distribution RANDOM returns.

This is a leak in the abstraction because, to use the macro correctly, the caller needs to be
aware that the end form is going to be evaluated more than once. One way to plug this leak
would be to simply define this as the behavior of do-primes. But that’s not very satisfactory—
you should try to observe the Principle of Least Astonishment when implementing macros.
And programmers will typically expect the forms they pass to macros to be evaluated no more
times than absolutely necessary.® Furthermore, since do-primes is built on the model of the
standard macros, DOTIMES and DOLIST, neither of which causes any of the forms except those
in the body to be evaluated more than once, most programmers will expect do-primes to
behave similarly.

You can fix the multiple evaluation easily enough; you just need to generate code that eval-
uates end once and saves the value in a variable to be used later. Recall that in a DO loop,
variables defined with an initialization form and no step form don’t change from iteration to
iteration. So you can fix the multiple evaluation problem with this definition:

(defmacro do-primes ((var start end) 8body body)
“(do ((ending-value ,end)
(,var (next-prime ,start) (next-prime (1+ ,var))))
((> ,var ending-value))
,@body))

Unfortunately, this fix introduces two new leaks to the macro abstraction.

6. Of course, certain forms are supposed to be evaluated more than once, such as the forms in the
body of a do-primes loop.
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One new leak is similar to the multiple-evaluation leak you just fixed. Because the initial-
ization forms for variables in a DO loop are evaluated in the order the variables are defined,
when the macro expansion is evaluated, the expression passed as end will be evaluated before
the expression passed as start, opposite to the order they appear in the macro call. This leak
doesn’t cause any problems when start and end are literal values like 0 and 19. But when they’re
forms that can have side effects, evaluating them out of order can once again run afoul of the
Principle of Least Astonishment.

This leak is trivially plugged by swapping the order of the two variable definitions.

(defmacro do-primes ((var start end) 8body body)
“(do ((,var (next-prime ,start) (next-prime (1+ ,var)))
(ending-value ,end))
((> ,var ending-value))
J@bOdY))

The last leak you need to plug was created by using the variable name ending-value. The
problem is that the name, which ought to be a purely internal detail of the macro implementa-
tion, can end up interacting with code passed to the macro or in the context where the macro
is called. The following seemingly innocent call to do-primes doesn’t work correctly because of
this leak:

(do-primes (ending-value 0 10)
(print ending-value))

Neither does this one:

(let ((ending-value 0))
(do-primes (p 0 10)
(incf ending-value p))
ending-value)

Again, MACROEXPAND-1 can show you the problem. The first call expands to this:

(do ((ending-value (next-prime 0) (next-prime (1+ ending-value)))
(ending-value 10))
((> ending-value ending-value))
(print ending-value))

Some Lisps may reject this code because ending-value is used twice as a variable name in
the same DO loop. If not rejected outright, the code will loop forever since ending-value will
never be greater than itself.

The second problem call expands to the following:

(let ((ending-value 0))
(do ((p (next-prime 0) (next-prime (1+ p)))
(ending-value 10))
((> p ending-value))
(incf ending-value p))
ending-value)
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In this case the generated code is perfectly legal, but the behavior isn’t at all what you want.
Because the binding of ending-value established by the LET outside the loop is shadowed by
the variable with the same name inside the DO, the form (incf ending-value p) increments
the loop variable ending-value instead of the outer variable with the same name, creating
another infinite loop.”

Clearly, what you need to patch this leak is a symbol that will never be used outside the
code generated by the macro. You could try using a really unlikely name, but that’s no guarantee.
You could also protect yourself to some extent by using packages, as described in Chapter 21.
But there’s a better solution.

The function GENSYMreturns a unique symbol each time it’s called. This is a symbol that
has never been read by the Lisp reader and never will be because it isn’t interned in any package.
Thus, instead of using a literal name like ending-value, you can generate a new symbol each
time do-primes is expanded.

efmacro do-primes ((var start en 0 0
def do-pri ( d) &body body
(let ((ending-value-name (gensym)))
“(do ((,var (next-prime ,start) (next-prime (1+ ,var)))
(,ending-value-name ,end))
((> ,var ,ending-value-name))
,@body)))

Note that the code that calls GENSYMisn’t part of the expansion; it runs as part of the macro
expander and thus creates a new symbol each time the macro is expanded. This may seem a bit
strange at first—ending-value-name is a variable whose value is the name of another variable.
But really it’s no different from the parameter var whose value is the name of a variable—the
difference is the value of var was created by the reader when the macro form was read, and the
value of ending-value-name is generated programmatically when the macro code runs.

With this definition the two previously problematic forms expand into code that works the
way you want. The first form:

(do-primes (ending-value 0 10)
(print ending-value))

expands into the following:

(do ((ending-value (next-prime 0) (next-prime (1+ ending-value)))
(#:g2141 10))
((> ending-value #:g2141))
(print ending-value))

Now the variable used to hold the ending value is the gensymed symbol, #:g2141. The
name of the symbol, G2141, was generated by GENSYMbut isn’t significant; the thing that
matters is the object identity of the symbol. Gensymed symbols are printed in the normal
syntax for uninterned symbols, with a leading #:.

7. It may not be obvious that this loop is necessarily infinite given the nonuniform occurrences of
prime numbers. The starting point for a proof that it is in fact infinite is Bertrand’s postulate,
which says for any n > 1, there exists a prime p, n < p < 2n. From there you can prove that for any
prime number, P less than the sum of the preceding prime numbers, the next prime, P, is also
smaller than the original sum plus P.
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The other previously problematic form:

(let ((ending-value 0))
(do-primes (p 0 10)
(incf ending-value p))
ending-value)

looks like this if you replace the do-primes form with its expansion:

(let ((ending-value 0))
(do ((p (next-prime 0) (next-prime (1+ p)))
(#:g2140 10))
((> p #:g2140))
(incf ending-value p))
ending-value)

Again, there’s no leak since the ending-value variable bound by the LET surrounding the
do-primes loop is no longer shadowed by any variables introduced in the expanded code.

Not all literal names used in a macro expansion will necessarily cause a problem—as you
get more experience with the various binding forms, you’ll be able to determine whether a
given name is being used in a position that could cause a leak in a macro abstraction. But there’s
no real downside to using a gensymed name just to be safe.

With that fix, you've plugged all the leaks in the implementation of do-primes. Once you've
gotten a bit of macro-writing experience under your belt, you'll learn to write macros with
these kinds of leaks preplugged. It’s actually fairly simple if you follow these rules of thumb:

* Unless there’s a particular reason to do otherwise, include any subforms in the expansion in
positions that will be evaluated in the same order as the subforms appear in the macro call.

¢ Unless there’s a particular reason to do otherwise, make sure subforms are evaluated
only once by creating a variable in the expansion to hold the value of evaluating the
argument form and then using that variable anywhere else the value is needed in the
expansion.

¢ Use GENSYM at macro expansion time to create variable names used in the expansion.

Macro-Writing Macros

Of course, there’s no reason you should be able to take advantage of macros only when writing
functions. The job of macros is to abstract away common syntactic patterns, and certain patterns
come up again and again in writing macros that can also benefit from being abstracted away.

In fact, you've already seen one such pattern—many macros will, like the last version of
do-primes, start with a LET that introduces a few variables holding gensymed symbols to be
used in the macro’s expansion. Since this is such a common pattern, why not abstract it away
with its own macro?

In this section you'll write a macro, with-gensyms, that does just that. In other words, you’ll
write a macro-writing macro: a macro that generates code that generates code. While complex
macro-writing macros can be a bit confusing until you get used to keeping the various levels of
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code clear in your mind, with-gensyms is fairly straightforward and will serve as a useful but not
too strenuous mental limbering exercise.
You want to be able to write something like this:

(defmacro do-primes ((var start end) 8body body)
(with-gensyms (ending-value-name)
“(do ((,var (next-prime ,start) (next-prime (1+ ,var)))
(,ending-value-name ,end))
((> ,var ,ending-value-name))
,@body)))

and have it be equivalent to the previous version of do-primes. In other words, the with-gensyms
needs to expand into a LET that binds each named variable, ending-value-name in this case, to
a gensymed symbol. That’s easy enough to write with a simple backquote template.

(defmacro with-gensyms ((8rest names) 8body body)
“(let ,(loop for n in names collect ~(,n (gensym)))
,@body))

Note how you can use a comma to interpolate the value of the LOOP expression. The loop
generates a list of binding forms where each binding form consists of a list containing one of
the names given towith-gensyms and the literal code (gensym). You can test what code the LOOP
expression would generate at the REPL by replacing names with a list of symbols.

CL-USER> (loop for n in '(a b c) collect “(,n (gensym)))
((A (GENSYM)) (B (GENSYM)) (C (GENSYM)))

After the list of binding forms, the body argument to with-gensyms is spliced in as the body
of the LET. Thus, in the code you wrap in a with-gensyms you can refer to any of the variables
named in the list of variables passed to with-gensyms.

If youmacro-expand the with-gensyms form in the new definition of do-primes, you should
see something like this:

(let ((ending-value-name (gensym)))
“(do ((,var (next-prime ,start) (next-prime (1+ ,var)))
(,ending-value-name ,end))
((> ,var ,ending-value-name))
,@body))

Looks good. While this macro is fairly trivial, it’s important to keep clear about when the
different macros are expanded: when you compile the DEFMACRO of do-primes, the with-gensyms
form is expanded into the code just shown and compiled. Thus, the compiled version of do-primes
is just the same as if you had written the outer LET by hand. When you compile a function that
uses do-primes, the code generated by with-gensyms runs generating the do-primes expansion,
butwith-gensyms itself isn’t needed to compile a do-primes form since it has already been
expanded, back when do-primes was compiled.
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ANOTHER CLASSIC MACRO-WRITING MACRO: ONCE-ONLY

Another classic macro-writing macro is once-only, which is used to generate code that evaluates certain
macro arguments once only and in a particular order. Using once-only, you could write do-primes almost
as simply as the original leaky version, like this:

(defmacro do-primes ((var start end) 8body body)
(once-only (start end)
“(do ((,var (next-prime ,start) (next-prime (1+ ,var))))
((> ,var ,end))
,@body)))

However, the implementation of once-only is a bit too involved for a blow-by-blow explanation, as it
relies on multiple levels of backquoting and unquoting. If you really want to sharpen your macro chops, you
can try to figure out how it works. It looks like this:

(defmacro once-only ((8rest names) 8body body)
(let ((gensyms (loop for n in names collect (gensym))))
“(let (,@(loop for g in gensyms collect ~(,g (gensym))))
“(let (,,@(loop for g in gensyms for n in names collect “~(,,g ,,n)))
,(let (,@(loop for n in names for g in gensyms collect ~(,n ,g)))

»@body)))))

Beyond Simple Macros

I could, of course, say a lot more about macros. All the macros you've seen so far have been
fairly simple examples that save you a bit of typing but don’t provide radical new ways of
expressing things. In upcoming chapters you'll see examples of macros that allow you to express
things in ways that would be virtually impossible without macros. You'll start in the very next
chapter, in which you’ll build a simple but effective unit test framework.



CHAPTER 9

Practical: Building a Unit
Test Framework

In this chapter you’'ll return to cutting code and develop a simple unit testing framework for
Lisp. This will give you a chance to use some of the features you've learned about since Chapter 3,
including macros and dynamic variables, in real code.

The main design goal of the test framework will be to make it as easy as possible to add
new tests, to run various suites of tests, and to track down test failures. For now you'll focus on
designing a framework you can use during interactive development.

The key feature of an automated testing framework is that the framework is responsible for
telling you whether all the tests passed. You don’t want to spend your time slogging through
test output checking answers when the computer can do it much more quickly and accurately.
Consequently, each test case must be an expression that yields a boolean value—true or false,
pass or fail. For instance, if you were writing tests for the built-in + function, these might be
reasonable test cases:!

(= (+12)3)
(= (+123)6)
(= (+ -1 -3) -4)

Functions that have side effects will be tested slightly differently—you’ll have to call the
function and then check for evidence of the expected side effects.2 But in the end, every test
case has to boil down to a boolean expression, thumbs up or thumbs down.

Two First Tries

If you were doing ad hoc testing, you could enter these expressions at the REPL and check that
they return T. But you want a framework that makes it easy to organize and run these test cases

1. This is for illustrative purposes only—obviously, writing test cases for built-in functions such as +
is a bit silly, since if such basic things aren’t working, the chances the tests will be running the way
you expect is pretty slim. On the other hand, most Common Lisps are implemented largely in
Common Lisp, so it’s not crazy to imagine writing test suites in Common Lisp to test the standard
library functions.

2. Side effects can include such things as signaling errors; I'll discuss Common Lisp’s error handling
system in Chapter 19. You may;, after reading that chapter, want to think about how to incorporate

tests that check whether a function does or does not signal a particular error in certain situations. 103
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whenever you want. If you want to start with the simplest thing that could possibly work, you
can just write a function that evaluates the test cases and ANDs the results together.

(defun test-+ ()
(and
(= (+12)3)
(= (+123)6)
(= (+ -1 -3) -4)))

Whenever you want to run this set of test cases, you can call test-+.

CL-USER> (test-+)
.

Aslong as it returns T, you know the test cases are passing. This way of organizing tests is also
pleasantly concise—you don’t have to write a bunch of test bookkeeping code. However, as
you'll discover the first time a test case fails, the result reporting leaves something to be desired.
When test-+returns NIL, you'll know something failed, but you'll have no idea which test case
it was.

So let’s try another simple—even simpleminded—approach. To find out what happens to
each test case, you could write something like this:

(defun test-+ ()
(format t "~:[FAIL~;pass™] ... ~a~%" (= (+ 12) 3) '(= (+ 1 2) 3))
(format t "~:[FAIL~;pass™] ... ~a%" (= (+ 123)6) '(= (+123)6))
(format t "~:[FAIL~;pass™] ... ~a™%" (= (+ -1 -3) -4) '(= (+ -1 -3) -4)))

Now each test case will be reported individually. The ~: [ FAIL~;pass~] part of the FORMAT
directive causes FORMAT to print “FAIL” if the first format argument is false and “pass” other-
wise.3 Then you label the result with the test expression itself. Now running test-+ shows you
exactly what’s going on.

CL-USER> (test-+)

pass ... (= (+ 12) 3)
pass ... (= (+ 12 3) 6)
pass ... (= (+ -1 -3) -4)
NIL

This time the result reporting is more like what you want, but the code itself is pretty gross.
The repeated calls to FORMAT as well as the tedious duplication of the test expression cry out to
be refactored. The duplication of the test expression is particularly grating because if you mistype
it, the test results will be mislabeled.

Another problem is that you don’t get a single indicator whether all the test cases passed.
It’s easy enough, with only three test cases, to scan the output looking for “FAIL”; however,
when you have hundreds of test cases, it'll be more of a hassle.

3. Tlldiscuss this and other FORMAT directives in more detail in Chapter 18.
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Refactoring

What you’d really like is a way to write test functions as streamlined as the first test-+ that
return a single T or NIL value but that also report on the results of individual test cases like the
second version. Since the second version is close to what you want in terms of functionality,
your best bet is to see if you can factor out some of the annoying duplication.

The simplest way to get rid of the repeated similar calls to FORMAT is to create a new function.

(defun report-result (result form)
(format t "~:[FAIL~;pass™] ... ~a~%" result form))

Now you can write test-+ with calls to report-result instead of FORMAT. It’s not a huge
improvement, but at least now if you decide to change the way you report results, there’s only
one place you have to change.

(defun test-+ ()
(report-result (= (+ 12) 3) "(= (+ 1 2) 3))
(report-result (= (+ 123)6) "(= (+123)6))
(report-result (= (+ -1 -3) -4) '(= (+ -1 -3) -4)))

Next you need to get rid of the duplication of the test case expression, with its attendant
risk of mislabeling of results. What you'd really like is to be able to treat the expression as both
code (to get the result) and data (to use as the label). Whenever you want to treat code as data,
that’s a sure sign you need a macro. Or, to look at it another way, what you need is a way to
automate writing the error-prone report-result calls. You'd like to be able to say something
like this:

(check (= (+ 1 2) 3))

and have it mean the following:

(report-result (= (+ 1 2) 3) "(= (+ 1 2) 3))
Writing a macro to do this translation is trivial.

(defmacro check (form)
*(report-result ,form ',form))

Now you can change test-+ to use check.

(defun test-+ ()
(check (= (+ 1 2) 3))
(check (= (+ 1 2 3) 6))
(check (= (+ -1 -3) -4)))

Since you're on the hunt for duplication, why not get rid of those repeated calls to check?
You can define check to take an arbitrary number of forms and wrap them each in a call to
report-result.

(defmacro check (&body forms)
* (progn
,@(loop for f in forms collect " (report-result ,f ',f))))
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This definition uses a common macro idiom of wrapping a PROGN around a series of forms
in order to turn them into a single form. Notice also how you can use , @ to splice in the result
of an expression that returns a list of expressions that are themselves generated with a back-
quote template.

With the new version of check you can write a new version of test-+ like this:

(defun test-+ ()
(check
(= (+12)3)
(= (+123) 6)
(= (+ -1 -3) -4))

that is equivalent to the following code:

(defun test-+ ()
(progn
(report-result (= (+ 12) 3) "(= (+ 1 2) 3))
(report-result (= (+ 12 3) 6) "(= (+123)6))
(report-result (= (+ -1 -3) -4) '"(= (+ -1 -3) -4))))

Thanks to check, this version is as concise as the first version of test-+ but expands into
code that does the same thing as the second version. And now any changes you want to make
to how test-+ behaves, you can make by changing check.

Fixing the Return Value

You can start with fixing test-+ so its return value indicates whether all the test cases passed.
Since check is responsible for generating the code that ultimately runs the test cases, you just
need to change it to generate code that also keeps track of the results.

As afirst step, you can make a small change to report-result so it returns the result of the
test case it’s reporting.

(defun report-result (result form)
(format t "~:[FAIL~;pass~] ... ~a~%" result form)
result)

Now that report-result returns the result of its test case, it might seem you could just
change the PROGN to an AND to combine the results. Unfortunately, AND doesn’t do quite what
you want in this case because of its short-circuiting behavior: as soon as one test case fails, AND
will skip the rest. On the other hand, if you had a construct that worked like AND without the
short-circuiting, you could use it in the place of PROGN, and you’d be done. Common Lisp
doesn’t provide such a construct, but that’s no reason you can’t use it: it’s a trivial matter to
write a macro to provide it yourself.

Leaving test cases aside for a moment, what you want is a macro—let’s call it
combine-results—that will let you say this:

(combine-results
(foo)
(bar)
(baz))
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and have it mean something like this:

(let ((result t))
(unless (foo) (setf result nil))
(unless (bar) (setf result nil))
(unless (baz) (setf result nil))
result)

The only tricky bit to writing this macro is that you need to introduce a variable—result in
the previous code—in the expansion. As you saw in the previous chapter, using a literal name
for variables in macro expansions can introduce a leak in your macro abstraction, so you’ll
need to create a unique name. This is a job for with-gensyms. You can define combine-results
like this:

(defmacro combine-results (&body forms)
(with-gensyms (result)
“(let ((,result t))
,@(loop for f in forms collect "(unless ,f (setf ,result nil)))
,result)))

Now you can fix check by simply changing the expansion to use combine-results instead
of PROGN.

(defmacro check (&body forms)
" (combine-results
,@(loop for f in forms collect " (report-result ,f ',f))))

With that version of check, test-+ should emit the results of its three test expressions and
then return T to indicate that everything passed.*

CL-USER> (test-+)

pass ... (= (+ 12) 3)
pass ... (= (+ 12 3) 6)
pass ... (= (+ -1 -3) -4)
T

And if you change one of the test cases so it fails,” the final return value changes to NIL.

CL-USER> (test-+)

pass ... (= (+ 12) 3)
pass ... (= (+ 12 3) 6)
FAIL ... (= (+ -1 -3) -5)
NIL

4. Iftest-+has been compiled—which may happen implicitly in certain Lisp implementations—
you may need to reevaluate the definition of test-+ to get the changed definition of check to
affect the behavior of test-+. Interpreted code, on the other hand, typically expands macros
anew each time the code is interpreted, allowing the effects of macro redefinitions to be seen
immediately.

5. You have to change the test to make it fail since you can’t change the behavior of +.
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Better Result Reporting

As long as you have only one test function, the current result reporting is pretty clear. If a
particular test case fails, all you have to do is find the test case in the check form and figure out
why it’s failing. But if you write a lot of tests, you'll probably want to organize them somehow,
rather than shoving them all into one function. For instance, suppose you wanted to add some
test cases for the * function. You might write a new test function.

(defun test-* ()
(check
(=(*22)4)
(= (*35) 15)))

Now that you have two test functions, you’ll probably want another function that runs all
the tests. That’s easy enough.

(defun test-arithmetic ()
(combine-results
(test-+)
(test-*)))

In this function you use combine-results instead of check since both test-+ and test-*
will take care of reporting their own results. When you run test-arithmetic, you'll get the
following results:

CL-USER> (test-arithmetic)
pass ... (= (+ 1 2) 3)
pass ... (= (+ 12 3) 6)
pass ... (= (+ -1 -3) -4)
pass ... (= (* 2 2) 4)
pass ... (= (* 3 5) 15)

T

Now imagine that one of the test cases failed and you need to track down the problem.
With only five test cases and two test functions, it won’t be too hard to find the code of the
failing test case. But suppose you had 500 test cases spread across 20 functions. It might be nice
if the results told you what function each test case came from.

Since the code that prints the results is centralized in report-result, you need a way to
pass information about what test function you're in to report-result. You could add a parameter
to report-result to pass this information, but check, which generates the calls to report-result,
doesn’t know what function it’s being called from, which means you’d also have to change the
way you call check, passing it an argument that it simply passes onto report-result.

This is exactly the kind of problem dynamic variables were designed to solve. If you create
a dynamic variable that each test function binds to the name of the function before calling
check, then report-result can use it without check having to know anything about it.

Step one is to declare the variable at the top level.

(defvar *test-name* nil)
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Now you need to make another tiny change to report-result toinclude *test-name* in the
FORMAT output.

(format t "~:[FAIL~;pass~] ... ~a: ~a~%" result *test-name* form)

With those changes, the test functions will still work but will produce the following output
because *test-name* is never rebound:

CL-USER> (test-arithmetic)
pass ... NIL: (= (+ 1 2) 3)
pass ... NIL: (= (+ 12 3) 6)
pass ... NIL: (= (+ -1 -3) -4)
pass ... NIL: (= (* 2 2) 4)
pass ... NIL: (= (* 3 5) 15)
T

For the name to be reported properly, you need to change the two test functions.

(defun test-+ ()
(let ((*test-name* 'test-+))
(check
(= (+12)3)
(= (+123) 6)
(= (+ -1-3) -4))))

(defun test-* ()
(let ((*test-name* 'test-*))
(check
(=(*22)4)
(= (*35) 15))))

Now the results are properly labeled.

CL-USER> (test-arithmetic)
pass ... TEST-+: (= (+ 1 2) 3)

pass ... TEST-+: (= (+ 1 2 3) 6)
pass ... TEST-+: (= (+ -1 -3) -4)
pass ... TEST-*: (= (* 2 2) 4)
pass ... TEST-*: (= (* 3 5) 15)

T

An Abstraction Emerges

In fixing the test functions, you've introduced several new bits of duplication. Not only does
each function have to include the name of the function twice—once as the name in the DEFUN
and once in the binding of *test-name*—but the same three-line code pattern is duplicated
between the two functions. You could remove the duplication simply on the grounds that
duplication is bad. But if you look more closely at the root cause of the duplication, you can
learn an important lesson about how to use macros.
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The reason both these functions start the same way is because they’re both test functions.
The duplication arises because, at the moment, test function is only half an abstraction. The
abstraction exists in your mind, but in the code there’s no way to express “this is a test function”
other than to write code that follows a particular pattern.

Unfortunately, partial abstractions are a crummy tool for building software. Because a half
abstraction is expressed in code by a manifestation of the pattern, you’re guaranteed to have
massive code duplication with all the normal bad consequences that implies for maintain-
ability. More subtly, because the abstraction exists only in the minds of programmers, there’s
no mechanism to make sure different programmers (or even the same programmer working at
different times) actually understand the abstraction the same way. To make a complete
abstraction, you need a way to express “this is a test function” and have all the code required
by the pattern be generated for you. In other words, you need a macro.

Because the pattern you're trying to capture is a DEFUN plus some boilerplate code, you
need to write a macro that will expand into a DEFUN. You'll then use this macro, instead of a
plain DEFUN to define test functions, so it makes sense to call it deftest.

(defmacro deftest (name parameters &body body)
“(defun ,name ,parameters
(let ((*test-name* ', name))
,@body)))

With this macro you can rewrite test-+ as follows:

(deftest test-+ ()
(check
(= (+12)3)
(= (+123) 6)
(= (+ -1 -3) -4))

A Hierarchy of Tests

Now that you've established test functions as first-class citizens, the question might arise,
should test-arithmetic be a test function? As things stand, it doesn’t really matter—if you
did define it with deftest, its binding of *test-name* would be shadowed by the bindings in
test-+ and test-* before any results are reported.

But now imagine you've got thousands of test cases to organize. The first level of organization
is provided by test functions such as test-+ and test-* that directly call check. But with thousands
of test cases, you'll likely need other levels of organization. Functions such as test-arithmetic
can group related test functions into test suites. Now suppose some low-level test functions are
called from multiple test suites. It's not unheard of for a test case to pass in one context but fail
in another. If that happens, you’ll probably want to know more than just what low-level test
function contains the test case.

If you define the test suite functions such as test-arithmetic with deftest and make a
small change to the *test-name* bookkeeping, you can have results reported with a “fully qual-
ified” path to the test case, something like this:

pass ... (TEST-ARITHMETIC TEST-+): (= (+ 1 2) 3)



CHAPTER 9 PRACTICAL: BUILDING A UNIT TEST FRAMEWORK 1

Because you've already abstracted the process of defining a test function, you can change
the bookkeeping details without modifying the code of the test functions.® To make *test-name*
hold a list of test function names instead of just the name of the most recently entered test
function, you just need to change this binding form:

(let ((*test-name* ', name))
to the following:
(let ((*test-name* (append *test-name* (list ',name))))

Since APPEND returns a new list made up of the elements of its arguments, this version will
bind *test-name* to alist containing the old contents of *test-name* with the new name tacked
onto the end.” When each test function returns, the old value of *test-name* will be restored.

Now you can redefine test-arithmetic with deftest instead of DEFUN.

(deftest test-arithmetic ()
(combine-results
(test-+)
(test-*)))

The results now show exactly how you got to each test expression.

CL-USER> (test-arithmetic)

pass ... (TEST-ARITHMETIC TEST-+): (= (+ 1 2) 3)
pass ... (TEST-ARITHMETIC TEST-+): (= (+ 1 2 3) 6)
pass ... (TEST-ARITHMETIC TEST-+): (= (+ -1 -3) -4)
pass ... (TEST-ARITHMETIC TEST-*): (= (* 2 2) 4)
pass ... (TEST-ARITHMETIC TEST-*): (= (* 3 5) 15)
T

Asyour test suite grows, you can add new layers of test functions; as long as they’re defined
with deftest, the results will be reported correctly. For instance, the following:

(deftest test-math ()
(test-arithmetic))

would generate these results:

CL-USER> (test-math)

pass ... (TEST-MATH TEST-ARITHMETIC TEST-+): (= (+ 1 2) 3)
pass ... (TEST-MATH TEST-ARITHMETIC TEST-+): (= (+ 1 2 3) 6)
pass ... (TEST-MATH TEST-ARITHMETIC TEST-+): (= (+ -1 -3) -4)
pass ... (TEST-MATH TEST-ARITHMETIC TEST-*): (= (* 2 2) 4)
pass ... (TEST-MATH TEST-ARITHMETIC TEST-*): (= (* 3 5) 15)
T

6. Though, again, if the test functions have been compiled, you'll have to recompile them after
changing the macro.

7. Asyou'll see in Chapter 12, APPENDIng to the end of a list isn’t the most efficient way to build a list.
But for now this is sufficient—as long as the test hierarchies aren’t too deep, it should be fine. And
if it becomes a problem, all you'll have to do is change the definition of deftest.
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Wrapping Up

You could keep going, adding more features to this test framework. But as a framework for
writing tests with a minimum of busywork and easily running them from the REPL, this is a
reasonable start. Here’s the complete code, all 26 lines of it:

(defvar *test-name* nil)

(defmacro deftest (name parameters &body body)

"Define a test function. Within a test function we can call
other test functions or use 'check' to run individual test
cases."

" (defun ,name ,parameters

(let ((*test-name* (append *test-name* (list ',name))))

»@body)))

(defmacro check (&body forms)
"Run each expression in 'forms' as a test case.”
" (combine-results
,@(loop for f in forms collect ~(report-result ,f ',f))))

(defmacro combine-results (8body forms)
"Combine the results (as booleans) of evaluating 'forms' in order."”
(with-gensyms (result)
“(let ((,result t))
,@(loop for f in forms collect ~(unless ,f (setf ,result nil)))
,result)))

(defun report-result (result form)
"Report the results of a single test case. Called by 'check'."
(format t "~:[FAIL~;pass~] ... ~a: ~a~%" result *test-name* form)
result)

It’s worth reviewing how you got here because it’s illustrative of how programming in Lisp
often goes.

You started by defining a simple version of your problem—how to evaluate a bunch of
boolean expressions and find out if they all returned true. Just ANDing them together worked
and was syntactically clean but revealed the need for better result reporting. So you wrote some
really simpleminded code, chock-full of duplication and error-prone idioms that reported the
results the way you wanted.

The next step was to see if you could refactor the second version into something as clean
as the former. You started with a standard refactoring technique of extracting some code into a
function, report-result. Unfortunately, you could see that using report-result was going to
be tedious and error-prone since you had to pass the test expression twice, once for the value
and once as quoted data. So you wrote the check macro to automate the details of calling
report-result correctly.
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While writing check, you realized as long as you were generating code, you could make a
single call to check to generate multiple calls to report-result, getting you back to a version of
test-+ about as concise as the original AND version.

At that point you had the check API nailed down, which allowed you to start mucking with
how it worked on the inside. The next task was to fix check so the code it generated would return a
boolean indicating whether all the test cases had passed. Rather than immediately hacking
away at check, you paused to indulge in a little language design by fantasy. What if—you
fantasized—there was already a non-short-circuiting AND construct. Then fixing check would
be trivial. Returning from fantasyland you realized there was no such construct but that you
could write one in a few lines. After writing combine-results, the fix to check was indeed trivial.

At that point all that was left was to make a few more improvements to the way you reported
test results. Once you started making changes to the test functions, you realized those functions
represented a special category of function that deserved its own abstraction. So you wrote
deftest to abstract the pattern of code that turns a regular function into a test function.

With deftest providing an abstraction barrier between the test definitions and the under-
lying machinery, you were able to enhance the result reporting without touching the test functions.

Now, with the basics of functions, variables, and macros mastered, and a little practical
experience using them, you're ready to start exploring Common Lisp’s rich standard library of
functions and data types.
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CHAPTER 10

Numbers, Characters,
and Strings

While functions, variables, macros, and 25 special operators provide the basic building
blocks of the language itself, the building blocks of your programs will be the data structures
you use. As Fred Brooks observed in The Mythical Man-Month, “Representation is the essence
of programming.”?

Common Lisp provides built-in support for most of the data types typically found in
modern languages: numbers (integer, floating point, and complex), characters, strings, arrays
(including multidimensional arrays), lists, hash tables, input and output streams, and an
abstraction for portably representing filenames. Functions are also a first-class data type in
Lisp—they can be stored in variables, passed as arguments, returned as return values, and
created at runtime.

And these built-in types are just the beginning. They're defined in the language standard
so programmers can count on them being available and because they tend to be easier to
implement efficiently when tightly integrated with the rest of the implementation. But, as
you'll see in later chapters, Common Lisp also provides several ways for you to define new data
types, define operations on them, and integrate them with the built-in data types.

For now, however, you can start with the built-in data types. Because Lisp is a high-level
language, the details of exactly how different data types are implemented are largely hidden.
From your point of view as a user of the language, the built-in data types are defined by the
functions that operate on them. So to learn a data type, you just have to learn about the func-
tions you can use with it. Additionally, most of the built-in data types have a special syntax that
the Lisp reader understands and that the Lisp printer uses. That’s why, for instance, you can
write strings as "foo"; numbers as 123, 1/23, and 1.23; and lists as (a b c). I'll describe the
syntax for different kinds of objects when I describe the functions for manipulating them.

In this chapter, I'll cover the built-in “scalar” data types: numbers, characters, and strings.
Technically, strings aren’t true scalars—a string is a sequence of characters, and you can access
individual characters and manipulate strings with a function that operates on sequences. But
I'll discuss strings here because most of the string-specific functions manipulate them as single
values and also because of the close relation between several of the string functions and their
character counterparts.

1. Fred Brooks, The Mythical Man-Month, 20th Anniversary Edition (Boston: Addison-Wesley,

1995), p. 103. Emphasis in original. 115
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Numbers

Math, as Barbie says, is hard.2 Common Lisp can’t make the math part any easier, but it does
tend to get in the way a lot less than other programming languages. That’s not surprising given
its mathematical heritage. Lisp was originally designed by a mathematician as a tool for studying
mathematical functions. And one of the main projects of the MAC project at MIT was the Macsyma
symbolic algebra system, written in Maclisp, one of Common Lisp’s immediate predecessors.
Additionally, Lisp has been used as a teaching language at places such as MIT where even the
computer science professors cringe at the thought of telling their students that 10/4 = 2, leading
to Lisp’s support for exact ratios. And at various times Lisp has been called upon to compete
with FORTRAN in the high-performance numeric computing arena.

One of the reasons Lisp is a nice language for math is its numbers behave more like true
mathematical numbers than the approximations of numbers that are easy to implement in
finite computer hardware. For instance, integers in Common Lisp can be almost arbitrarily
large rather than being limited by the size of a machine word.3 And dividing two integers
results in an exact ratio, not a truncated value. And since ratios are represented as pairs of arbi-
trarily sized integers, ratios can represent arbitrarily precise fractions.*

On the other hand, for high-performance numeric programming, you may be willing to
trade the exactitude of rationals for the speed offered by using the hardware’s underlying
floating-point operations. So, Common Lisp also offers several types of floating-point numbers,
which are mapped by the implementation to the appropriate hardware-supported floating-
point representations.® Floats are also used to represent the results of a computation whose
true mathematical value would be an irrational number.

Finally, Common Lisp supports complex numbers—the numbers that result from doing
things such as taking square roots and logarithms of negative numbers. The Common Lisp
standard even goes so far as to specify the principal values and branch cuts for irrational and
transcendental functions on the complex domain.

Mattel’s Teen Talk Barbie

Obviously, the size of a number that can be represented on a computer with finite memory is still
limited in practice; furthermore, the actual representation of bignums used in a particular Common
Lisp implementation may place other limits on the size of number that can be represented. But
these limits are going to be well beyond “astronomically” large numbers. For instance, the number of
atoms in the universe is estimated to be less than 226%; current Common Lisp implementations
can easily handle numbers up to and beyond 2262144,

4. Folks interested in using Common Lisp for intensive numeric computation should note that a
naive comparison of the performance of numeric code in Common Lisp and languages such as C
or FORTRAN will probably show Common Lisp to be much slower. This is because something as
simple as (+ a b) in Common Lisp is doing a lot more than the seemingly equivalenta + bin one
of those languages. Because of Lisp’s dynamic typing and support for things such as arbitrary
precision rationals and complex numbers, a seemingly simple addition is doing a lot more than
an addition of two numbers that are known to be represented by machine words. However, you
can use declarations to give Common Lisp information about the types of numbers you're using
that will enable it to generate code that does only as much work as the code that would be generated
by a C or FORTRAN compiler. Tuning numeric code for this kind of performance is beyond the
scope of this book, but it’s certainly possible.

5. While the standard doesn'’t require it, many Common Lisp implementations support the IEEE
standard for floating-point arithmetic, IEEE Standard for Binary Floating-Point Arithmetic, ANSI/
IEEE Std 754-1985 (Institute of Electrical and Electronics Engineers, 1985).
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Numeric Literals

You can write numeric literals in a variety of ways; you saw a few examples in Chapter 4. However,
it’s important to keep in mind the division of labor between the Lisp reader and the Lisp
evaluator—the reader is responsible for translating text into Lisp objects, and the Lisp evalu-
ator then deals only with those objects. For a given number of a given type, there can be many
different textual representations, all of which will be translated to the same object representa-
tion by the Lisp reader. For instance, you can write the integer 10 as 10, 20/2, #xA, or any of a
number of other ways, but the reader will translate all these to the same object. When numbers
are printed back out—say, at the REPL—they’re printed in a canonical textual syntax that may
be different from the syntax used to enter the number. For example:

CL-USER> 10
10

CL-USER> 20/2
10

CL-USER> #xa
10

The syntax for integer values is an optional sign (+ or -) followed by one or more digits.
Ratios are written as an optional sign and a sequence of digits, representing the numerator, a
slash (/), and another sequence of digits representing the denominator. All rational numbers
are “canonicalized” as they're read—that’s why 10 and 20/2 are both read as the same number,
as are 3/4 and 6/8. Rationals are printed in “reduced” form—integer values are printed in integer
syntax and ratios with the numerator and denominator reduced to lowest terms.

It’s also possible to write rationals in bases other than 10. If preceded by #B or #b, a rational
literal is read as a binary number with 0 and 1 as the only legal digits. An #0 or #o indicates an
octal number (legal digits 0-7), and #X or #x indicates hexadecimal (legal digits 0-F or 0-f). You
can write rationals in other bases from 2 to 36 with #nR where 7 is the base (always written in
decimal). Additional “digits” beyond 9 are taken from the letters A-Z or a—z. Note that these
radix indicators apply to the whole rational—it’s not possible to write a ratio with the numer-
ator in one base and denominator in another. Also, you can write integer values, but not ratios,
as decimal digits terminated with a decimal point.® Some examples of rationals, with their
canonical, decimal representation are as follows:

123 —> 123
+123 —> 123
-123 —> -123
123. —> 123
2/3 —> 2/3
-2/3 —> -2/3
4/6 —> 2/3
6/3 —> 2

#b10101 — 21

6. It’s also possible to change the default base the reader uses for numbers without a specific radix
marker by changing the value of the global variable *READ-BASE*. However, it’s not clear that’s
the path to anything other than complete insanity.
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#b1010/1011 —> 10/11
#0777 —> 511
#xDADA —> 56026

#36TABCDEFGHIJKLMNOPQRSTUVWXYZ —> 8337503854730415241050377135811259267835

You can also write floating-point numbers in a variety of ways. Unlike rational numbers,
the syntax used to notate a floating-point number can affect the actual type of number read.
Common Lisp defines four subtypes of floating-point number: short, single, double, and long.
Each subtype can use a different number of bits in its representation, which means each
subtype can represent values spanning a different range and with different precision. More bits
gives a wider range and more precision.”

The basic format for floating-point numbers is an optional sign followed by a nonempty
sequence of decimal digits possibly with an embedded decimal point. This sequence can be
followed by an exponent marker for “computerized scientific notation.”® The exponent marker
consists of a single letter followed by an optional sign and a sequence of digits, which are inter-
preted as the power of ten by which the number before the exponent marker should be multiplied.
The letter does double duty: it marks the beginning of the exponent and indicates what floating-
point representation should be used for the number. The exponent markers s, f, d, I (and their
uppercase equivalents) indicate short, single, double, and long floats, respectively. The letter e
indicates that the default representation (initially single-float) should be used.

Numbers with no exponent marker are read in the default representation and must contain a
decimal point followed by at least one digit to distinguish them from integers. The digits in a
floating-point number are always treated as base 10 digits—the #B, #X, #0, and #R syntaxes work
only with rationals. The following are some example floating-point numbers along with their
canonical representation:

1.0 — 1.0

1e0 — 1.0

1do —> 1.0d0
123.0 —> 123.0
123e0 —> 123.0
0.123 —> 0.123
.123 —> 0.123
123e-3  —> 0.123
123E-3 —> 0.123
0.123e20 —> 1.23e+19
123d23  —> 1.23d+25

7. Since the purpose of floating-point numbers is to make efficient use of floating-point hardware,
each Lisp implementation is allowed to map these four subtypes onto the native floating-point
types as appropriate. If the hardware supports fewer than four distinct representations, one or
more of the types may be equivalent.

8. “Computerized scientific notation” is in scare quotes because, while commonly used in computer
languages since the days of FORTRAN, it’s actually quite different from real scientific notation.
In particular, something like 1.0e4 means 10000.0, but in true scientific notation that would be
written as 1.0 x 104. And to further confuse matters, in true scientific notation the letter e stands
for the base of the natural logarithm, so something like 1.0 x e*, while superficially similar to
1.0e4, is a completely different value, approximately 54.6.
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Finally, complex numbers are written in their own syntax, namely, #C or #c followed by a
list of two real numbers representing the real and imaginary part of the complex number. There are
actually five kinds of complex numbers because the real and imaginary parts must either both
be rational or both be the same kind of floating-point number.

But you can write them however you want—if a complex is written with one rational and
one floating-point part, the rational is converted to a float of the appropriate representation.
Similarly, if the real and imaginary parts are both floats of different representations, the one in
the smaller representation will be upgraded.

However, no complex numbers have a rational real component and a zero imaginary part—
since such values are, mathematically speaking, rational, they're represented by the appropriate
rational value. The same mathematical argument could be made for complex numbers with
floating-point components, but for those complex types a number with a zero imaginary part
is always a different object than the floating-point number representing the real component.
Here are some examples of numbers written the complex number syntax:

#c(2 1)  — #c(2 1)

#c(2/3 3/4)  —> #c(2/3 3/4)
#c(2 1.0) —> #c(2.0 1.0)
#c(2.0 1.0d0) —> #c(2.0do 1.0do)
#c(1/2 1.0) —> #c(0.5 1.0)
#c(3 0) —3

#c(3.0 0.0) — #c(3.0 0.0)
#c(1/2 0) — 1/2

#c(-6/3 0) — -2

Basic Math

The basic arithmetic operations—addition, subtraction, multiplication, and division—are
supported for all the different kinds of Lisp numbers with the functions +, -, *, and /. Calling
any of these functions with more than two arguments is equivalent to calling the same function
on the first two arguments and then calling it again on the resulting value and the rest of the
arguments. For example, (+ 1 2 3) isequivalentto (+ (+ 1 2) 3).With only one argument, +
and * return the value; - returns its negation and / its reciprocal.?

(+12) — 3
(+123) —> 6

(+ 10.0 3.0) —> 13.0
(+ #c(1 2) #c(3 4)) — #c(4 6)
(- 54) —>1

(- 2) — -2

(- 10 3 5) —> 2

(* 2 3) —> 6
(*234) — 24

(/ 10 5) —> 2

9. For mathematical consistency, + and * can also be called with no arguments, in which case they
return the appropriate identity: 0 for +and 1 for *.
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(/ 10 5 2) —>1
(/23) — 2/3
(/ 4) — 1/4

If all the arguments are the same type of number (rational, floating point, or complex), the
result will be the same type except in the case where the result of an operation on complex
numbers with rational components yields a number with a zero imaginary part, in which case
the result will be a rational. However, floating-point and complex numbers are contagious—if all
the arguments are reals but one or more are floating-point numbers, the other arguments are
converted to the nearest floating-point value in a “largest” floating-point representation of the
actual floating-point arguments. Floating-point numbers in a “smaller” representation are
also converted to the larger representation. Similarly, if any of the arguments are complex, any
real arguments are converted to the complex equivalents.

(+ 1 2.0) — 3.0

(/2 3.0) —> 0.6666667
(+ #c(1 2) 3) —> #c(4 2)
(+ #c(1 2) 3/2) —> #c(5/2 2)
(+ #c(1 1) #c(2 -1)) = 3

Because / doesn’t truncate, Common Lisp provides four flavors of truncating and rounding
for converting a real number (rational or floating point) to an integer: FLOOR truncates toward
negative infinity, returning the largest integer less than or equal to the argument. CEILING
truncates toward positive infinity, returning the smallest integer greater than or equal to the
argument. TRUNCATE truncates toward zero, making it equivalent to FLOOR for positive arguments
and to CEILING for negative arguments. And ROUND rounds to the nearest integer. If the argu-
ment is exactly halfway between two integers, it rounds to the nearest even integer.

Two related functions are MOD and REM, which return the modulus and remainder of a
truncating division on real numbers. These two functions are related to the FLOOR and
TRUNCATE functions as follows:

(+ (* (floor  (/ xy)) y) (mod x y)) =
(+ (* (truncate (/ x y)) y) (rem x y))

|
x X

Thus, for positive quotients they’re equivalent, but for negative quotients they produce
different results.!0

The functions 1+ and 1- provide a shorthand way to express adding and subtracting one
from a number. Note that these are different from the macros INCF and DECF. 1+and 1-are just
functions that return a new value, but INCF and DECF modify a place. The following equiva-
lences show the relation between INCF/DECF, 1+/1-, and +/-:

(incf x) = (setf x (1+ x)) = (setf x (+ x 1))
(decf x) (setf x (1- x)) = (setf x (- x 1))
(incf x 10) = (setf x (+ x 10))
(decf x 10) = (setf x (- x 10))

10. Roughly speaking, MOD is equivalent to the % operator in Perl and Python, and REMis equivalent to
the % in C and Java. (Technically, the exact behavior of % in C wasn't specified until the C99 standard.)
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Numeric Comparisons

The function =is the numeric equality predicate. It compares numbers by mathematical value,
ignoring differences in type. Thus, = will consider mathematically equivalent values of different
types equivalent while the generic equality predicate EQL would consider them inequivalent
because of the difference in type. (The generic equality predicate EQUALP, however, uses =to
compare numbers.) If it’s called with more than two arguments, it returns true only if they all
have the same value. Thus:

(= 1 1) —> T
(= 10 20/2) —> T
(=1 1.0 #c(1.0 0.0) #c(1 0)) > T

The /= function, conversely, returns true only if all its arguments are different values.

(/=11) —> NIL
(/=1 2) —> T
(/=123) —> T
(/=1231) —>NIL
(/=123 1.0) > NIL

The functions <, >, <=, and >= order rationals and floating-point numbers (in other words,
the real numbers.) Like = and /=, these functions can be called with more than two arguments,
in which case each argument is compared to the argument to its right.

(< 2 3) - T
(> 23) — NIL
(> 32) - T

(< 234) T
(< 233) —> NIL
(<=233) —>T
(<=2334) >T
(<=2343) > NIL

To pick out the smallest or largest of several numbers, you can use the function MINor MAX,
which takes any number of real number arguments and returns the minimum or maximum value.

(max 10 11) —> 11
(min -12 -10) — -12
(max -1 2 -3) —> 2

Some other handy functions are ZEROP, MINUSP, and PLUSP, which test whether a single
real number is equal to, less than, or greater than zero. Two other predicates, EVENP and ODDP,
test whether a single integer argument is even or odd. The P suffix on the names of these functions
is a standard naming convention for predicate functions, functions that test some condition
and return a boolean.
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Higher Math

The functions you've seen so far are the beginning of the built-in mathematical functions. Lisp
also supports logarithms: LOG; exponentiation: EXP and EXPT; the basic trigonometric functions:
SIN, COS, and TAN; their inverses: ASIN, ACOS, and ATAN; hyperbolic functions: SINH, COSH, and
TANH; and their inverses: ASINH, ACOSH, and ATANH. It also provides functions to get at the indi-
vidual bits of an integer and to extract the parts of a ratio or a complex number. For a complete
list, see any Common Lisp reference.

Characters

Common Lisp characters are a distinct type of object from numbers. That’s as it should be—
characters are not numbers, and languages that treat them as if they are tend to run into prob-
lems when character encodings change, say, from 8-bit ASCII to 21-bit Unicode.!! Because the
Common Lisp standard didn’t mandate a particular representation for characters, today several
Lisp implementations use Unicode as their “native” character encoding despite Unicode being
only a gleam in a standards body’s eye at the time Common Lisp’s own standardization was
being wrapped up.

The read syntax for characters objects is simple: #\ followed by the desired character. Thus,
#\x is the character x. Any character can be used after the #\, including otherwise special char-
acters such as ", (, and whitespace. However, writing whitespace characters this way isn’t very
(human) readable; an alternative syntax for certain characters is #\ followed by the character’s
name. Exactly what names are supported depends on the character set and on the Lisp imple-
mentation, but all implementations support the names Space and Newline. Thus, you should
write #\Space instead of #\ , though the latter is technically legal. Other semistandard names
(that implementations must use if the character set has the appropriate characters) are Tab,
Page, Rubout, Linefeed, Return, and Backspace.

Character Comparisons

The main thing you can do with characters, other than putting them into strings (which I'll get
to later in this chapter), is to compare them with other characters. Since characters aren’t
numbers, you can’t use the numeric comparison functions, such as <and >. Instead, two sets
of functions provide character-specific analogs to the numeric comparators; one set is case-
sensitive and the other case-insensitive.

The case-sensitive analog to the numeric =is the function CHAR=. Like =, CHAR= can take
any number of arguments and returns true only if they’re all the same character. The case-
insensitive version is CHAR-EQUAL.

11. Even Java, which was designed from the beginning to use Unicode characters on the theory that
Unicode was the going to be the character encoding of the future, has run into trouble since Java
characters are defined to be a 16-bit quantity and the Unicode 3.1 standard extended the range of
the Unicode character set to require a 21-bit representation. Ooops.
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The rest of the character comparators follow this same naming scheme: the case-sensitive
comparators are named by prepending the analogous numeric comparator with CHAR; the case-
insensitive versions spell out the comparator name, separated from the CHAR with a hyphen.
Note, however, that <= and >= are “spelled out” with the logical equivalents NOT-GREATERP and
NOT-LESSP rather than the more verbose LESSP-OR-EQUALP and GREATERP-OR-EQUALP. Like their
numeric counterparts, all these functions can take one or more arguments. Table 10-1 summarizes
the relation between the numeric and character comparison functions.

Table 10-1. Character Comparison Functions

Numeric Analog Case-Sensitive Case-Insensitive

= CHAR= CHAR-EQUAL

/= CHAR/= CHAR-NOT-EQUAL

< CHARK CHAR-LESSP

> CHAR> CHAR-GREATERP

<= CHAR<= CHAR-NOT-GREATERP
>= CHAR>= CHAR-NOT-LESSP

Other functions that deal with characters provide functions for, among other things, testing
whether given character is alphabetic or a digit character, testing the case of a character, obtaining
a corresponding character in a different case, and translating between numeric values repre-
senting character codes and actual character objects. Again, for complete details, see your
favorite Common Lisp reference.

Strings

As mentioned earlier, strings in Common Lisp are really a composite data type, namely, a one-
dimensional array of characters. Consequently, I'll cover many of the things you can do with
strings in the next chapter when I discuss the many functions for manipulating sequences, of
which strings are just one type. But strings also have their own literal syntax and a library of
functions for performing string-specific operations. I'll discuss these aspects of strings in this
chapter and leave the others for Chapter 11.

As you've seen, literal strings are written enclosed in double quotes. You can include any
character supported by the character set in a literal string except double quote (") and back-
slash (\). And you can include these two as well if you escape them with a backslash. In fact,
backslash always escapes the next character, whatever it is, though this isn’t necessary for any
character except for " and \ itself. Table 10-2 shows how various literal strings will be read by
the Lisp reader.
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Table 10-2. Literal Strings

Literal Contents Comment

"foobar" foobar Plain string.

"foo\"bar" foo"bar The backslash escapes quote.

"foo\\bar" foo\bar The first backslash escapes second backslash.
"\"foobar\"" "foobar" The backslashes escape quotes.

"foo\bar" foobar The backslash “escapes” b.

Note that the REPL will ordinarily print strings in readable form, adding the enclosing
quotation marks and any necessary escaping backslashes, so if you want to see the actual
contents of a string, you need to use function such as FORMAT designed to print human-readable
output. For example, here’s what you see if you type a string containing an embedded quotation
mark at the REPL:

CL-USER> "foo\"bar"
"foo\"bar"

FORMAT, on the other hand, will show you the actual string contents:!2

CL-USER> (format t "foo\"bar")
foo"bar
NIL

String Comparisons

You can compare strings using a set of functions that follow the same naming convention as the
character comparison functions except with STRING as the prefix rather than CHAR (see Table 10-3).

Table 10-3. String Comparison Functions

Numeric Analog Case-Sensitive Case-Insensitive

= STRING= STRING-EQUAL

/= STRING/= STRING-NOT-EQUAL

< STRING< STRING-LESSP

> STRING> STRING-GREATERP

<= STRING<L= STRING-NOT-GREATERP
>= STRING>= STRING-NOT-LESSP

12. Note, however, that not all literal strings can be printed by passing them as the second argument
to FORMAT since certain sequences of characters have a special meaning to FORMAT. To safely print
an arbitrary string—say, the value of a variable s—with FORMAT you should write (format t "~a" s).
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However, unlike the character and number comparators, the string comparators can
compare only two strings. That’s because they also take keyword arguments that allow you to
restrict the comparison to a substring of either or both strings. The arguments—:start1i, :end1,
:start2, and :end2—specify the starting (inclusive) and ending (exclusive) indices of substrings
in the first and second string arguments. Thus, the following:

(string= "foobarbaz" "quuxbarfoo" :starti 3 :endl 6 :start2 4 :end2 7)

compares the substring “bar” in the two arguments and returns true. The :end1 and :end2
arguments can be NIL (or the keyword argument omitted altogether) to indicate that the corre-
sponding substring extends to the end of the string.

The comparators that return true when their arguments differ—that is, all of them except
STRING=and STRING-EQUAL—return the index in the first string where the mismatch was
detected.

(string/= "lisp" "lissome") — 3

If the first string is a prefix of the second, the return value will be the length of the first
string, that is, one greater than the largest valid index into the string.

(string< "lisp" "lisper") — 4

When comparing substrings, the resulting value is still an index into the string as a whole.
For instance, the following compares the substrings “bar” and “baz” but returns 5 because
that’s the index of the r in the first string:

(string< "foobar" "abaz" :starti 3 :start2 1) — 5 ; N.B. not 2

Other string functions allow you to convert the case of strings and trim characters from
one or both ends of a string. And, as I mentioned previously, since strings are really a kind of
sequence, all the sequence functions I'll discuss in the next chapter can be used with strings.
For instance, you can discover the length of a string with the LENGTH function and can get and
set individual characters of a string with the generic sequence element accessor function, ELT,
or the generic array element accessor function, ARE F. Or you can use the string-specific accessor,
CHAR. But those functions, and others, are the topic of the next chapter, so let’s move on.






CHAPTER 11

Collections

Like most programming languages, Common Lisp provides standard data types that collect
multiple values into a single object. Every language slices up the collection problem a little bit
differently, but the basic collection types usually boil down to an integer-indexed array type
and a table type that can be used to map more or less arbitrary keys to values. The former are
variously called arrays, lists, or tuples; the latter go by the names hash tables, associative arrays,
maps, and dictionaries.

Lisp is, of course, famous for its list data structure, and most Lisp books, following the
ontogeny-recapitulates-phylogeny principle of language instruction, start their discussion
of Lisp’s collections with lists. However, that approach often leads readers to the mistaken
conclusion that lists are Lisp’s only collection type. To make matters worse, because Lisp’s lists
are such a flexible data structure, it is possible to use them for many of the things arrays and
hash tables are used for in other languages. But it’s a mistake to focus too much on lists; while
they’re a crucial data structure for representing Lisp code as Lisp data, in many situations other
data structures are more appropriate.

To keep lists from stealing the show, in this chapter I'll focus on Common Lisp’s other
collection types: vectors and hash tables.! However, vectors and lists share enough characteristics
that Common Lisp treats them both as subtypes of a more general abstraction, the sequence.
Thus, you can use many of the functions I'll discuss in this chapter with both vectors and lists.

Vectors

Vectors are Common Lisp’s basic integer-indexed collection, and they come in two flavors.
Fixed-size vectors are a lot like arrays in a language such as Java: a thin veneer over a chunk of
contiguous memory that holds the vector’s elements.? Resizable vectors, on the other hand,
are more like arrays in Perl or Ruby, lists in Python, or the ArrayList class in Java: they abstract
the actual storage, allowing the vector to grow and shrink as elements are added and removed.

1. Once you're familiar with all the data types Common Lisp offers, you'll also see that lists can be
useful for prototyping data structures that will later be replaced with something more efficient
once it becomes clear how exactly the data is to be used.

2. Vectors are called vectors, not arrays as their analogs in other languages are, because Common
Lisp supports true multidimensional arrays. It’s equally correct, though more cumbersome, to

refer to them as one-dimensional arrays. 127
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You can make fixed-size vectors containing specific values with the function VECTOR, which
takes any number of arguments and returns a freshly allocated fixed-size vector containing
those arguments.

(vector) — #()
(vector 1) — #(1)
(vector 1 2) — #(1 2)

The #(. .. ) syntax is the literal notation for vectors used by the Lisp printer and reader.
This syntax allows you to save and restore vectors by PRINTing them out and READing them
back in. You can use the #(. . .) syntax to include literal vectors in your code, but as the effects
of modifying literal objects aren’t defined, you should always use VECTOR or the more general
function MAKE-ARRAY to create vectors you plan to modify.

MAKE-ARRAY is more general than VECTOR since you can use it to create arrays of any
dimensionality as well as both fixed-size and resizable vectors. The one required argument to
MAKE-ARRAY is a list containing the dimensions of the array. Since a vector is a one-dimensional
array, this list will contain one number, the size of the vector. As a convenience, MAKE-ARRAY
will also accept a plain number in the place of a one-item list. With no other arguments,
MAKE-ARRAY will create a vector with uninitialized elements that must be set before they can be
accessed.3 To create a vector with the elements all set to a particular value, you can pass an
:initial-element argument. Thus, to make a five-element vector with its elements initialized
to NIL, you can write the following:

(make-array 5 :initial-element nil) —> #(NIL NIL NIL NIL NIL)

MAKE-ARRAY is also the function to use to make a resizable vector. A resizable vector is a
slightly more complicated object than a fixed-size vector; in addition to keeping track of the
memory used to hold the elements and the number of slots available, a resizable vector also
keeps track of the number of elements actually stored in the vector. This number is stored in
the vector’s fill pointer, so called because it’s the index of the next position to be filled when
you add an element to the vector.

To make a vector with a fill pointer, you pass MAKE-ARRAY a : fill-pointer argument. For
instance, the following call to MAKE-ARRAY makes a vector with room for five elements; but it
looks empty because the fill pointer is zero:

(make-array 5 :fill-pointer 0) — #()

To add an element to the end of a resizable vector, you can use the function VECTOR-PUSH.
It adds the element at the current value of the fill pointer and then increments the fill pointer
by one, returning the index where the new element was added. The function VECTOR-POP
returns the most recently pushed item, decrementing the fill pointer in the process.

(defparameter *x* (make-array 5 :fill-pointer 0))
(vector-push 'a *x*) — 0

kg — #(A)
(vector-push 'b *x*) — 1

3. Array elements “must” be set before they're accessed in the sense that the behavior is undefined;
Lisp won't necessarily stop you.
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Kk — #(A B)
(vector-push 'c *x*) — 2

Kk — #(A B C)
(vector-pop *x*) —>C

Kk — #(A B)
(vector-pop *x*) —> B

*yk — #(A)
(vector-pop *x*) —> A

*xk — #()

However, even a vector with a fill pointer isn’t completely resizable. The vector *x* can hold
at most five elements. To make an arbitrarily resizable vector, you need to pass MAKE-ARRAY
another keyword argument: :adjustable.

(make-array 5 :fill-pointer 0 :adjustable t) — #()

This call makes an adjustable vector whose underlying memory can be resized as needed.
To add elements to an adjustable vector, you use VECTOR-PUSH-EXTEND, which works just like
VECTOR-PUSH except it will automatically expand the array if you try to push an element onto a
full vector—one whose fill pointer is equal to the size of the underlying storage.*

Subtypes of Vector

All the vectors you’ve dealt with so far have been general vectors that can hold any type of object.
It’s also possible to create specialized vectors that are restricted to holding certain types of
elements. One reason to use specialized vectors is they may be stored more compactly and can
provide slightly faster access to their elements than general vectors. However, for the momentlet’s
focus on a couple kinds of specialized vectors that are important data types in their own right.

One of these you've seen already—strings are vectors specialized to hold characters.
Strings are important enough to get their own read/print syntax (double quotes) and the set of
string-specific functions I discussed in the previous chapter. But because they’re also vectors,
all the functions I'll discuss in the next few sections that take vector arguments can also be used
with strings. These functions will fill out the string library with functions for things such as
searching a string for a substring, finding occurrences of a character within a string, and more.

Literal strings, such as "foo", are like literal vectors written with the #() syntax—their size
is fixed, and they must not be modified. However, you can use MAKE-ARRAY to make resizable
strings by adding another keyword argument, :element-type. This argument takes a type
descriptor.1won’t discuss all the possible type descriptors you can use here; for now it’s enough
to know you can create a string by passing the symbol CHARACTER as the :element-type argument.
Note that you need to quote the symbol to prevent it from being treated as a variable name. For
example, to make an initially empty but resizable string, you can write this:

4. While frequently used together, the : fill-pointer and :adjustable arguments are independent—
you can make an adjustable array without a fill pointer. However, you can use VECTOR-PUSH and
VECTOR-POP only with vectors that have a fill pointer and VECTOR-PUSH-EXTEND only with vectors
that have a fill pointer and are adjustable. You can also use the function ADJUST=ARRAY to modify
adjustable arrays in a variety of ways beyond just extending the length of a vector.
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(make-array 5 :fill-pointer 0 :adjustable t :element-type 'character) — ""

Bit vectors—vectors whose elements are all zeros or ones—also get some special treatment.
They have a special read/print syntax that looks like #*00001111 and a fairly large library of
functions, which I won’t discuss, for performing bit-twiddling operations such as “anding”
together two bit arrays. The type descriptor to pass as the :element-type to create a bit vector
is the symbol BIT.

Vectors As Sequences

As mentioned earlier, vectors and lists are the two concrete subtypes of the abstract type sequence.
All the functions I'll discuss in the next few sections are sequence functions; in addition to
being applicable to vectors—both general and specialized—they can also be used with lists.
The two most basic sequence functions are LENGTH, which returns the length of a sequence,
and ELT, which allows you to access individual elements via an integer index. LENGTH takes a
sequence as its only argument and returns the number of elements it contains. For vectors with
a fill pointer, this will be the value of the fill pointer. ELT, short for element, takes a sequence
and an integer index between zero (inclusive) and the length of the sequence (exclusive) and
returns the corresponding element. ELT will signal an error if the index is out of bounds. Like
LENGTH, ELT treats a vector with a fill pointer as having the length specified by the fill pointer.

(defparameter *x* (vector 1 2 3))

(length *x*) — 3
(elt *x* 0) —> 1
(elt *x* 1) —> 2
(elt *x* 2) — 3
(elt *x* 3) —> error

ELTis also a SETFable place, so you can set the value of a particular element like this:

(setf (elt *x* 0) 10)

*xk —> #(10 2 3)

Sequence Iterating Functions

While in theory all operations on sequences boil down to some combination of LENGTH, ELT,
and SETF of ELT operations, Common Lisp provides a large library of sequence functions.

One group of sequence functions allows you to express certain operations on sequences
such as finding or filtering specific elements without writing explicit loops. Table 11-1
summarizes them.
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Table 11-1. Basic Sequence Functions

Name Required Arguments Returns

COUNT Item and sequence Number of times item appears
in sequence

FIND Item and sequence Item or NIL

POSITION Item and sequence Index into sequence or NIL

REMOVE Item and sequence Sequence with instances of item
removed

SUBSTITUTE New item, item, and sequence Sequence with instances of item

replaced with new item

Here are some simple examples of how to use these functions:

(count 1 #(1 2123123 4)) 3

(remove 1 #(1 212312 3 4)) #(223234)
(remove 1 '(1 2123123 4)) (2232314)
(remove #\a "foobarbaz") "foobrbz"

(substitute 10 1 #(1 2123 12 3 4))
(substitute 10 1 '(1 212312 3 4))

#(10 2 10 2 3 10 2 3 4)
(102 10 2 3 10 2 3 4)

VILILLLLil

(substitute #\x #\b "foobarbaz") "fooxarxaz"
(find 1 #(1 2123123 4)) 1

(find 10 #(21 2122312 3 4)) NIL
(position 1 #(1 2123123 4)) 0

Note how REMOVE and SUBSTITUTE always return a sequence of the same type as their
sequence argument.

You can modify the behavior of these five functions in a variety of ways using keyword
arguments. For instance, these functions, by default, look for elements in the sequence that are
the same object as the item argument. You can change this in two ways: First, you can use the
:test keyword to pass a function that accepts two arguments and returns a boolean. If provided,
it will be used to compare item to each element instead of the default object equality test, EQL.?
Second, with the :key keyword you can pass a one-argument function to be called on each
element of the sequence to extract a key value, which will then be compared to the item in the
place of the element itself. Note, however, that functions such as FIND that return elements of
the sequence continue to return the actual element, not just the extracted key.

5. Another parameter, :test-not parameter, specifies a two-argument predicate to be used like a
:test argument except with the boolean result logically reversed. This parameter is deprecated,
however, in preference for using the COMPLEMENT function. COMPLEMENT takes a function argu-
ment and returns a function that takes the same number of arguments as the original and returns
the logical complement of the original function. Thus, you can, and should, write this:

(count x sequence :test (complement #'some-test))
rather than the following:

(count x sequence :test-not #'some-test)
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(count "foo" #("foo" "bar" "baz") :test #'string=) -1
(find 'c #((a 10) (b 20) (c 30) (d 40)) :key #'first) — (C 30)

To limit the effects of these functions to a particular subsequence of the sequence argument,
you can provide bounding indices with :start and :end arguments. Passing NIL for :end or
omitting it is the same as specifying the length of the sequence.®

If anon-NIL :from-end argument is provided, then the elements of the sequence will be
examined in reverse order. By itself : from-end can affect the results of only FIND and POSITION.
For instance:

(find 'a #((a 10) (b 20) (a 30) (b 40)) :key #'first) — (A 10)
(find 'a #((a 10) (b 20) (a 30) (b 40)) :key #'first :from-end t) —> (A 30)

However, the : from-end argument can affect REMOVE and SUBSTITUTE in conjunction with
another keyword parameter, : count, that’s used to specify how many elements to remove or
substitute. If you specify a : count lower than the number of matching elements, then it obviously
matters which end you start from:

(remove #\a "foobarbaz" :count 1) — "foobrbaz"
(remove #\a "foobarbaz" :count 1 :from-end t) —>"foobarbz"

And while : from-end can’t change the results of the COUNT function, it does affect the order
the elements are passed to any :test and :key functions, which could possibly have side effects.
For example:

CL-USER> (defparameter *v* #((a 10) (b 20) (a 30) (b 40)))

*V*

CL-USER> (defun verbose-first (x) (format t "Looking at ~s~%" x) (first x))
VERBOSE-FIRST

CL-USER> (count 'a *v* :key #'verbose-first)

Looking at (A 10)

Looking at (B 20)
Looking at (A 30)
Looking at (B 40)
2

CL-USER> (count 'a *v* :key #'verbose-first :from-end t)
Looking at (B 40)

Looking at (A 30)
Looking at (B 20)
Looking at (A 10)
2

Table 11-2 summarizes these arguments.

6. Note, however, that the effect of :start and :end on REMOVE and SUBSTITUTE is only to limit the
elements they consider for removal or substitution; elements before :start and after :end will be
passed through untouched.
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Table 11-2. Standard Sequence Function Keyword Arguments

Argument Meaning Default

:test Two-argument function used to compare item (or value extracted  EQL
by :key function) to element.

tkey One-argument function to extract key value from actual sequence ~ NIL
element. NIL means use element as is.

:start Starting index (inclusive) of subsequence. 0

tend Ending index (exclusive) of subsequence. NIL indicates end NIL
of sequence.

:from-end If true, the sequence will be traversed in reverse order, from NIL

end to start.

:count Number indicating the number of elements to remove or NIL
substitute or NIL to indicate all (REMOVE and SUBSTITUTE only).

Higher-Order Function Variants

For each of the functions just discussed, Common Lisp provides two higher-order function
variants that, in the place of the item argument, take a function to be called on each element of
the sequence. One set of variants are named the same as the basic function with an -IF appended.
These functions count, find, remove, and substitute elements of the sequence for which the
function argument returns true. The other set of variants are named with an - IF-NOT suffix and
count, find, remove, and substitute elements for which the function argument does not return
true.

(count-if #'evenp #(1 2 3 4 5)) — 2
(count-if-not #'evenp #(1 2 3 4 5)) — 3
(position-if #'digit-char-p "abcdooo1") — 4

(remove-if-not #'(lambda (x) (char= (elt x 0) #\f))
#(II_FOOII Ilbarll Ilbazll llfoomll)) % #(II_FOOII II_FOOmII)

According to the language standard, the -I1F-NOT variants are deprecated. However, that
deprecation is generally considered to have itself been ill-advised. If the standard is ever
revised, it’s more likely the deprecation will be removed than the ~IF-NOT functions. For one
thing, the REMOVE-IF-NOT variant is probably used more often than REMOVE-IF. Despite its
negative-sounding name, REMOVE-IF-NOT is actually the positive variant—it returns the
elements that do satisfy the predicate. 7

7. This same functionality goes by the name grep in Perl and filter in Python.
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The -IF and -IF-NOT variants accept all the same keyword arguments as their vanilla coun-
terparts except for :test, which isn’t needed since the main argument is already a function.?
With a :key argument, the value extracted by the : key function is passed to the function instead
of the actual element.

(count-if #'evenp #((1 a) (2 b) (3 c) (4 d) (5 e)) :key #'first) -2
(count-if-not #'evenp #((1 a) (2 b) (3 c) (4 d) (5e)) :key #'first) — 3

(remove-if-not #'alpha-char-p
#("foo" "bar" "1ibaz") :key #'(lambda (x) (elt x 0))) —> #("foo" "bar")

The REMOVE family of functions also support a fourth variant, REMOVE-DUPLICATES, that
has only one required argument, a sequence, from which it removes all but one instance of
each duplicated element. It takes the same keyword arguments as REMOVE, except for : count,
since it always removes all duplicates.

(remove-duplicates #(1 2123123 4)) = #(1 23 4)

Whole Sequence Manipulations

Ahandful of functions perform operations on a whole sequence (or sequences) at a time. These
tend to be simpler than the other functions I've described so far. For instance, COPY-SEQ and
REVERSE each take a single argument, a sequence, and each returns a new sequence of the
same type. The sequence returned by COPY-SEQ contains the same elements as its argument
while the sequence returned by REVERSE contains the same elements but in reverse order.
Note that neither function copies the elements themselves—only the returned sequence is a
new object.

The CONCATENATE function creates a new sequence containing the concatenation of any
number of sequences. However, unlike REVERSE and COPY-SEQ, which simply return a sequence
of the same type as their single argument, CONCATENATE must be told explicitly what kind of
sequence to produce in case the arguments are of different types. Its first argument is a type
descriptor, like the :element-type argument to MAKE-ARRAY. In this case, the type descriptors
you’ll most likely use are the symbols VECTOR, LIST, or STRING.? For example:

8. The difference between the predicates passed as :test arguments and as the function arguments
to the -IF and -IF-NOT functions is that the :test predicates are two-argument predicates used to
compare the elements of the sequence to the specific item while the -IF and -IF-NOT predicates
are one-argument functions that simply test the individual elements of the sequence. If the vanilla
variants didn't exist, you could implement them in terms of the - IF versions by embedding a specific
item in the test function.

(count char string) =
(count-if #'(lambda (c) (egl char c)) string)
(count char string :test #'CHAR-EQUAL) =
(count-if #'(lambda (c) (char-equal char c)) string)

9. Ifyoutell CONCATENATE to return a specialized vector, such as a string, all the elements of the
argument sequences must be instances of the vector’s element type.
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(concatenate 'vector #(123) '(456)) —>#(1234506)
(concatenate 'list #(1 2 3) '(4 5 6)) —> (123456)
(concatenate 'string "abc" '(#\d #\e #\f)) —> "abcdef"

Sorting and Merging

The functions SORT and STABLE-SORT provide two ways of sorting a sequence. They both take
a sequence and a two-argument predicate and return a sorted version of the sequence.

(sort (vector "foo" "bar" "baz") #'string<) —> #("bar" "baz" "foo")

The difference is that STABLE-SORT is guaranteed to not reorder any elements considered
equivalent by the predicate while SORT guarantees only that the result is sorted and may reorder
equivalent elements.

Both these functions are examples of what are called destructive functions. Destructive
functions are allowed—typically for reasons of efficiency—to modify their arguments in more
or less arbitrary ways. This has two implications: one, you should always do something with the
return value of these functions (such as assign it to a variable or pass it to another function),
and, two, unless you're done with the object you're passing to the destructive function, you
should pass a copy instead. I'll say more about destructive functions in the next chapter.

Typically you won’t care about the unsorted version of a sequence after you've sorted it, so
it makes sense to allow SORT and STABLE-SORT to destroy the sequence in the course of sorting
it. But it does mean you need to remember to write the following:!°

(setf my-sequence (sort my-sequence #'string<))
rather than just this:
(sort my-sequence #'string<)

Both these functions also take a keyword argument, :key, which, like the : key argument in
other sequence functions, should be a function and will be used to extract the values to be
passed to the sorting predicate in the place of the actual elements. The extracted keys are used
only to determine the ordering of elements; the sequence returned will contain the actual
elements of the argument sequence.

The MERGE function takes two sequences and a predicate and returns a sequence produced
by merging the two sequences, according to the predicate. It’s related to the two sorting func-
tions in that if each sequence is already sorted by the same predicate, then the sequence returned
by MERGE will also be sorted. Like the sorting functions, MERGE takes a :key argument. Like
CONCATENATE, and for the same reason, the first argument to MERGE must be a type descriptor
specifying the type of sequence to produce.

(merge 'vector #(1 3 5) #(2 4 6) #'<) —> #(1 23 45 6)
(merge 'list #(1 3 5) #(2 46) #'<) —>(1234506)

10. When the sequence passed to the sorting functions is a vector, the “destruction” is actually
guaranteed to entail permuting the elements in place, so you could get away without saving the
returned value. However, it’s good style to always do something with the return value since the
sorting functions can modify lists in much more arbitrary ways.
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Subsequence Manipulations

Another set of functions allows you to manipulate subsequences of existing sequences. The
most basic of these is SUBSEQ, which extracts a subsequence starting at a particular index and
continuing to a particular ending index or the end of the sequence. For instance:

(subseq "foobarbaz" 3) —> "barbaz"
(subseq "foobarbaz" 3 6) —> "bar"

SUBSEQis also SETFable, but it won’t extend or shrink a sequence; if the new value and the
subsequence to be replaced are different lengths, the shorter of the two determines how many
characters are actually changed.

(defparameter *x* (copy-seq "foobarbaz"))

(setf (subseq *x* 3 6) "xxx") ; subsequence and new value are same length
*x* —> "fooxxxbaz"

(setf (subseq *x* 3 6) "abcd") ; new value too long, extra character ignored.
*x* — "fooabcbaz"

(setf (subseq *x* 3 6) "xx" ; new value too short, only two characters changed
*x* — "fooxxcbaz"

You can use the FILL function to set multiple elements of a sequence to a single value. The
required arguments are a sequence and the value with which to fill it. By default every element
of the sequence is set to the value; :start and :end keyword arguments can limit the effects to
a given subsequence.

If you need to find a subsequence within a sequence, the SEARCH function works like
POSITION except the first argument is a sequence rather than a single item.

(position #\b "foobarbaz") — 3
(search "bar" "foobarbaz") — 3

On the other hand, to find where two sequences with a common prefix first diverge, you
can use the MISMATCH function. It takes two sequences and returns the index of the first pair of
mismatched elements.

(mismatch "foobarbaz" "foom") —> 3

It returns NIL if the strings match. MISMATCH also takes many of the standard keyword
arguments: a :key argument for specifying a function to use to extract the values to be
compared; a : test argument to specify the comparison function; and :starti, :end1, :start2,
and :end2 arguments to specify subsequences within the two sequences. And a : from-end
argument of T specifies the sequences should be searched in reverse order, causing MISMATCH
to return the index, in the first sequence, where whatever common suffix the two sequences
share begins.

(mismatch "foobar" "bar" :from-end t) —> 3



CHAPTER 11 COLLECTIONS

Sequence Predicates

Four other handy functions are EVERY, SOME, NOTANY, and NOTEVERY, which iterate over
sequences testing a boolean predicate. The first argument to all these functions is the predicate,
and the remaining arguments are sequences. The predicate should take as many arguments as
the number of sequences passed. The elements of the sequences are passed to the predicate—
one element from each sequence—until one of the sequences runs out of elements or the
overall termination test is met: EVERY terminates, returning false, as soon as the predicate fails.
If the predicate is always satisfied, it returns true. SOME returns the first non-NIL value returned
by the predicate or returns false if the predicate is never satisfied. NOTANY returns false as soon
as the predicate is satisfied or true if it never is. And NOTEVERY returns true as soon as the pred-
icate fails or false if the predicate is always satisfied. Here are some examples of testing just one
sequence:

(every #'evenp #(1 23 45)) —> NIL
(some #'evenp #(1 2 3 4 5)) —> T
(notany #'evenp #(1 2 3 4 5)) — NIL
(notevery #'evenp #(1 23 45)) > T

These calls compare elements of two sequences pairwise:

(every #'> #(1 2 3 4) #(5 4 3 2)) —> NIL
(some #'> #(1 2 3 4) #(5 4 3 2)) —> T
(notany #'> #(1 2 3 4) #(5 4 32)) — NIL
(notevery #'> #(1 23 4) #(5432)) > T

Sequence Mapping Functions

Finally, the last of the sequence functions are the generic mapping functions. MAP, like the
sequence predicate functions, takes a n-argument function and n sequences. But instead of a
boolean value, MAP returns a new sequence containing the result of applying the function to
subsequent elements of the sequences. Like CONCATENATE and MERGE, MAP needs to be told
what kind of sequence to create.

(map 'vector #'* #(1 2 3 4 5) #(10 9 8 7 6)) — #(10 18 24 28 30)

MAP-INTOis like MAP except instead of producing a new sequence of a given type, it places
the results into a sequence passed as the first argument. This sequence can be the same as one
of the sequences providing values for the function. For instance, to sum several vectors—a, b,
and c—into one, you could write this:

(map-into a #'+ a b )

Ifthe sequences are differentlengths, MAP - INT0 affects only as many elements as are present
in the shortest sequence, including the sequence being mapped into. However, if the sequence
being mapped into is a vector with a fill pointer, the number of elements affected isn’t limited
by the fill pointer but rather by the actual size of the vector. After a call to MAP-INTO, the fill
pointer will be set to the number of elements mapped. MAP-INTO won’t, however, extend an
adjustable vector.
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The last sequence function is REDUCE, which does another kind of mapping: it maps over a
single sequence, applying a two-argument function first to the first two elements of the sequence
and then to the value returned by the function and subsequent elements of the sequence. Thus, the
following expression sums the numbers from one to ten:

(reduce #'+ #(1 234567 89 10)) —> 55

REDUCE is a surprisingly useful function—whenever you need to distill a sequence down to
asingle value, chances are you can write it with REDUCE, and it will often be quite a concise way
to express what you want. For instance, to find the maximum value in a sequence of numbers,
you can write (reduce #'max numbers). REDUCE also takes a full complement of keyword argu-
ments (:key, :from-end, :start, and :end) and one unique to REDUCE (:initial-value). The
latter specifies a value that’s logically placed before the first element of the sequence (or after
the last if you also specify a true : from-end argument).

Hash Tables

The other general-purpose collection provided by Common Lisp is the hash table. Where
vectors provide an integer-indexed data structure, hash tables allow you to use arbitrary objects
as the indexes, or keys. When you add a value to a hash table, you store it under a particular key.
Later you can use the same key to retrieve the value. Or you can associate a new value with the
same key—each key maps to a single value.

With no arguments MAKE-HASH-TABLE makes a hash table that considers two keys equiva-
lent if they’re the same object according to EQL. This is a good default unless you want to use
strings as keys, since two strings with the same contents aren’t necessarily EQL. In that case
you’'ll want a so-called EQUAL hash table, which you can get by passing the symbol EQUAL as the
:test keyword argument to MAKE-HASH-TABLE. Two other possible values for the :test argu-
ment are the symbols EQ and EQUALP. These are, of course, the names of the standard object
comparison functions, which I discussed in Chapter 4. However, unlike the :test argument
passed to sequence functions, MAKE-HASH-TABLE’s :test can’t be used to specify an arbitrary
function—only the values EQ, EQL, EQUAL, and EQUALP. This is because hash tables actually
need two functions, an equivalence function and a hash function that computes a numerical
hash code from the key in a way compatible with how the equivalence function will ultimately
compare two keys. However, although the language standard provides only for hash tables that
use the standard equivalence functions, most implementations provide some mechanism for
defining custom hash tables.

The GETHASH function provides access to the elements of a hash table. It takes two
arguments—a key and the hash table—and returns the value, if any, stored in the hash table
under that key or NIL.1! For example:

11. By an accident of history, the order of arguments to GETHASH is the opposite of ELT—ELT takes
the collection first and then the index while GETHASH takes the key first and then the collection.
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(defparameter *h* (make-hash-table))
(gethash 'foo *h*) — NIL
(setf (gethash 'foo *h*) 'quux)

(gethash 'foo *h*) — QUUX

Since GETHASH returns NIL if the key isn’t present in the table, there’s no way to tell from
the return value the difference between a key not being in a hash table at all and being in the
table with the value NIL. GETHASH solves this problem with a feature I haven’t discussed yet—
multiple return values. GETHASH actually returns two values; the primary value is the value stored
under the given key or NIL. The secondary value is a boolean indicating whether the key is
present in the hash table. Because of the way multiple values work, the extra return value is
silently discarded unless the caller explicitly handles it with a form that can “see” multiple values.

I'll discuss multiple return values in greater detail in Chapter 20, but for now I'll give you a
sneak preview of how to use the MULTIPLE-VALUE-BIND macro to take advantage of GETHASH’s
extrareturn value. MULTIPLE-VALUE-BIND creates variable bindings like LET does, filling them
with the multiple values returned by a form.

The following function shows how you might use MULTIPLE-VALUE-BIND; the variables it
binds are value and present:

(defun show-value (key hash-table)
(multiple-value-bind (value present) (gethash key hash-table)
(if present
(format nil "Value ~a actually present." value)
(format nil "Value ~a because key not found." value))))

(setf (gethash 'bar *h*) nil) ; provide an explicit value of NIL

(show-value 'foo *h*) —> "Value QUUX actually present.”
(show-value 'bar *h*) —> "Value NIL actually present."
(show-value 'baz *h*) —> "Value NIL because key not found."

Since setting the value under a key to NILleaves the key in the table, you’ll need another
function to completely remove a key/value pair. REMHASH takes the same arguments as
GETHASH and removes the specified entry. You can also completely clear a hash table of all its
key/value pairs with CLRHASH.
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Hash Table Iteration

Common Lisp provides a couple ways to iterate over the entries in a hash table. The simplest of
these is via the function MAPHASH. Analogous to the MAP function, MAPHASH takes a two-argument
function and a hash table and invokes the function once for each key/value pair in the hash

table. For instance, to print all the key/value pairs in a hash table, you could use MAPHASH like this:

(maphash #'(lambda (k v) (format t "~a => ~a~%" k v)) *h*)

The consequences of adding or removing elements from a hash table while iterating over
it aren’t specified (and are likely to be bad) with two exceptions: you can use SETF with
GETHASH to change the value of the current entry, and you can use REMHASH to remove the
current entry. For instance, to remove all the entries whose value is less than ten, you could
write this:

(maphash #'(lambda (k v) (when (< v 10) (remhash k *h*))) *h*)

The other way to iterate over a hash table is with the extended LOOP macro, which I'll
discuss in Chapter 22.12 The LOOP equivalent of the first MAPHASH expression would look like this:

(loop for k being the hash-keys in *h* using (hash-value v)
do (format t "~a => ~a~%" k v))

I could say a lot more about the nonlist collections supported by Common Lisp. For
instance, I haven’t discussed multidimensional arrays at all or the library of functions for
manipulating bit arrays. However, what I've covered in this chapter should suffice for most of
your general-purpose programming needs. Now it’s finally time to look at Lisp’s eponymous
data structure: lists.

12. LOOP’s hash table iteration is typically implemented on top of a more primitive form,
WITH-HASH-TABLE-ITERATOR, that you don't need to worry about; it was added to the language
specifically to support implementing things such as LOOP and is of little use unless you need to
write completely new control constructs for iterating over hash tables.
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They Called It LISP for a Reason:
List Processing

Lists play an important role in Lisp—for reasons both historical and practical. Historically,
lists were Lisp’s original composite data type, though it has been decades since they were its
only such data type. These days, a Common Lisp programmer is as likely to use a vector, a hash
table, or a user-defined class or structure as to use a list.

Practically speaking, lists remain in the language because they’re an excellent solution to
certain problems. One such problem—how to represent code as data in order to support code-
transforming and code-generating macros—is particular to Lisp, which may explain why other
languages don't feel the lack of Lisp-style lists. More generally, lists are an excellent data struc-
ture for representing any kind of heterogeneous and/or hierarchical data. They’re also quite
lightweight and support a functional style of programming that’s another important part of
Lisp’s heritage.

Thus, you need to understand lists on their own terms; as you gain a better understanding
of how lists work, you’ll be in a better position to appreciate when you should and shouldn’t
use them.

“There Is No List”

Spoon Boy: Do not try and bend the list. That’s impossible. Instead . . . only try
to realize the truth.

Neo: What truth?
Spoon Boy: There is no list.
Neo: There is no list?

Spoon Boy: Then you'll see that it is not the list that bends; it is only yourself.!

1. Adapted from The Matrix (http://us.imdb.com/Quotes?0133093) 141
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The key to understanding lists is to understand that they’re largely an illusion built on top of
objects that are instances of a more primitive data type. Those simpler objects are pairs of
values called cons cells, after the function CONS used to create them.

CONS takes two arguments and returns a new cons cell containing the two values.? These
values can be references to any kind of object. Unless the second value is NIL or another cons
cell, a cons is printed as the two values in parentheses separated by a dot, a so-called dotted pair.

(cons 12) = (1. 2)

The two values in a cons cell are called the CARand the CDR after the names of the functions
used to access them. At the dawn of time, these names were mnemonic, at least to the folks
implementing the first Lisp on an IBM 704. But even then they were just lifted from the assembly
mnemonics used to implement the operations. However, it’s not all bad that these names are
somewhat meaningless—when considering individual cons cells, it’s best to think of them
simply as an arbitrary pair of values without any particular semantics. Thus:

(car (cons 12)) =1
(cdr (cons 1 2)) = 2

Both CAR and CDR are also SETFable places—given an existing cons cell, it’s possible to
assign a new value to either of its values.3

(defparameter *cons* (cons 1 2))

*cons* —> (1.2
(setf (car *cons*) 10) — 10
*cons* — (10 . 2)
(setf (cdr *cons*) 20) — 20
*cons* — (10 . 20)

Because the values in a cons cell can be references to any kind of object, you can build
larger structures out of cons cells by linking them together. Lists are built by linking together
cons cellsin a chain. The elements of the list are held in the CARs of the cons cells while the links
to subsequent cons cells are held in the CDRs. The last cell in the chain hasa CDR of NIL, which—
as I mentioned in Chapter 4—represents the empty list as well as the boolean value false.

This arrangement is by no means unique to Lisp; it’s called a singly linked list. However,
few languages outside the Lisp family provide such extensive support for this humble data type.

So when I say a particular value is a list, what I really mean is it’s either NIL or a reference
to a cons cell. The CAR of the cons cell is the first item of the list, and the CDRis a reference to
another list, that is, another cons cell or NIL, containing the remaining elements. The Lisp
printer understands this convention and prints such chains of cons cells as parenthesized lists
rather than as dotted pairs.

(cons 1 nil) — (1)
(cons 1 (cons 2 nil)) — (1 2)
(cons 1 (cons 2 (cons 3 nil))) —> (1 2 3)

CONS was originally short for the verb construct.

When the place given to SETF is a CAR or CDR, it expands into a call to the function RPLACA or RPLACD;
some old-school Lispers—the same ones who still use SET@&—will still use RPLACA and RPLACD directly,
but modern style is to use SETF of CAR or CDR.
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When talking about structures built out of cons cells, a few diagrams can be a big help.
Box-and-arrow diagrams represent cons cells as a pair of boxes like this:

The box on the left represents the CAR, and the box on the right is the CDR. The values
stored in a particular cons cell are either drawn in the appropriate box or represented by an
arrow from the box to a representation of the referenced value.* For instance, the list (1 2 3),
which consists of three cons cells linked together by their CDRs, would be diagrammed like this:

A 4

—
A 4

2 3 |NIL

However, most of the time you work with lists you won’t have to deal with individual cons
cells—the functions that create and manipulate lists take care of that for you. For example, the
LIST function builds a cons cells under the covers for you and links them together; the following
LIST expressions are equivalent to the previous CONS expressions:

(list 1) — (1)
(list 12) — (12)
(list 1 2 3) = (1 2 3)

Similarly, when you're thinking in terms of lists, you don’t have to use the meaningless
names CAR and CDR; FIRST and REST are synonyms for CAR and CDR that you should use when
you're dealing with cons cells as lists.

(defparameter *1list* (list 1 2 3 4))
(first *1list*) —> 1

(rest *list*) — (234)
(first (rest *1list*)) — 2

Because cons cells can hold any kind of values, so can lists. And a single list can hold
objects of different types.

(list "foo" (list 1 2) 10) — ("foo" (1 2) 10)

The structure of that list would look like this:

4. Typically, simple objects such as numbers are drawn within the appropriate box, and more complex
objects will be drawn outside the box with an arrow from the box indicating the reference. This
actually corresponds well with how many Common Lisp implementations work—although all
objects are conceptually stored by reference, certain simple immutable objects can be stored
directly in a cons cell.
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Because lists can have other lists as elements, you can also use them to represent trees of
arbitrary depth and complexity. As such, they make excellent representations for any heteroge-
neous, hierarchical data. Lisp-based XML processors, for instance, usually represent XML
documents internally as lists. Another obvious example of tree-structured data is Lisp code
itself. In Chapters 30 and 31 you’ll write an HTML generation library that uses lists of lists to
represent the HTML to be generated. I'll talk more next chapter about using cons cells to repre-
sent other data structures.

Common Lisp provides quite a large library of functions for manipulating lists. In the sections
“List-Manipulation Functions” and “Mapping,” you'll look at some of the more important of
these functions. However, they will be easier to understand in the context of a few ideas
borrowed from functional programming.

Functional Programming and Lists

The essence of functional programming is that programs are built entirely of functions with no
side effects that compute their results based solely on the values of their arguments. The advan-
tage of the functional style is that it makes programs easier to understand. Eliminating side
effects eliminates almost all possibilities for action at a distance. And since the result of a func-
tion is determined only by the values of its arguments, its behavior is easier to understand and
test. For instance, when you see an expression such as (+ 3 4), you know the result is uniquely
determined by the definition of the + function and the values 3 and 4. You don’t have to worry
about what may have happened earlier in the execution of the program since there’s nothing
that can change the result of evaluating that expression.

Functions that deal with numbers are naturally functional since numbers are immutable.
Alist, on the other hand, can be mutated, as you’ve just seen, by SETFing the CARs and CDRs of
the cons cells that make up its backbone. However, lists can be treated as a functional data type
if you consider their value to be determined by the elements they contain. Thus, any list of the
form (1 2 3 4) is functionally equivalent to any other list containing those four values, regard-
less of what cons cells are actually used to represent the list. And any function that takes a list
as an argument and returns a value based solely on the contents of the list can likewise be
considered functional. For instance, the REVERSE sequence function, given the list (1 2 3 4),
always returns a list (4 3 2 1). Different calls to REVERSE with functionally equivalent lists as
the argument will return functionally equivalent result lists. Another aspect of functional
programming, which I'll discuss in the section “Mapping,” is the use of higher-order functions:
functions that treat other functions as data, taking them as arguments or returning them as results.

Most of Common Lisp’s list-manipulation functions are written in a functional style. I'll
discuss later how to mix functional and other coding styles, but first you should understand a
few subtleties of the functional style as applied to lists.
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The reason most list functions are written functionally is it allows them to return results
that share cons cells with their arguments. To take a concrete example, the function APPEND
takes any number of list arguments and returns a new list containing the elements of all its
arguments. For instance:

(append (list 1 2) (list 3 4)) — (12 3 4)

From a functional point of view, APPEND’s job is to return the list (1 2 3 4) without modi-
fying any of the cons cells in the lists (1 2) and (3 4). One obvious way to achieve that goal is
to create a completely new list consisting of four new cons cells. However, that’s more work
than is necessary. Instead, APPEND actually makes only two new cons cells to hold the values 1
and 2, linking them together and pointing the CDR of the second cons cell at the head of the last
argument, the list (3 4). It then returns the cons cell containing the 1. None of the original cons
cells has been modified, and the result is indeed the list (1 2 3 4). The only wrinkle is that the
list returned by APPEND shares some cons cells with the list (3 4). The resulting structure
looks like this:

new cells

A 4
N

A 4

—
A 4

2 NIL

3 4 |NIL

In general, APPEND must copy all but its last argument, but it can always return a result that
shares structure with the last argument.

Other functions take similar advantage of lists’ ability to share structure. Some, like
APPEND, are specified to always return results that share structure in a particular way. Others
are simply allowed to return shared structure at the discretion of the implementation.

“Destructive” Operations

If Common Lisp were a purely functional language, that would be the end of the story. However,
because it’s possible to modify a cons cell after it has been created by SETFing its CAR or CDR,
you need to think a bit about how side effects and structure sharing mix.

Because of Lisp’s functional heritage, operations that modify existing objects are called
destructive—in functional programming, changing an object’s state “destroys” it since it no
longer represents the same value. However, using the same term to describe all state-modifying
operations leads to a certain amount of confusion since there are two very different kinds of
destructive operations, for-side-effect operations and recycling operations.?

5. The phrase for-side-effect is used in the language standard, but recycling is my own invention;
most Lisp literature simply uses the term destructive for both kinds of operations, leading to the
confusion I'm trying to dispel.
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For-side-effect operations are those used specifically for their side effects. All uses of SETF
are destructive in this sense, as are functions that use SETF under the covers to change the state
of an existing object such as VECTOR-PUSH or VECTOR-POP. But it’s a bit unfair to describe these
operations as destructive—they're not intended to be used in code written in a functional style,
so they shouldn’t be described using functional terminology. However, if you mix nonfunctional,
for-side-effect operations with functions that return structure-sharing results, then you need
to be careful not to inadvertently modify the shared structure. For instance, consider these
three definitions:

(defparameter *1ist-1* (list 1 2))
(defparameter *list-2* (list 3 4))
(defparameter *list-3* (append *1list-1* *1list-2%*))

After evaluating these forms, you have three lists, but *1ist-3* and *1ist-2* share structure
just like the lists in the previous diagram.

*list-1% — (12)
*list-2% — (3 4)
*list-3* — (123 4)

Now consider what happens when you modify *1ist-2%*.

(setf (first *list-2*) 0) — 0
*1ist-2% — (0 4) ; as expected
*list-3%* —> (1 2 0 4) ; maybe not what you wanted

The change to *1ist-2* also changes *1ist-3* because of the shared structure: the first
cons cell in *1ist-2* is also the third cons cell in *1ist-3*. SETFing the FIRST of *list-2*
changes the value in the CAR of that cons cell, affecting both lists.

On the other hand, the other kind of destructive operations, recycling operations, areintended
to be used in functional code. They use side effects only as an optimization. In particular, they
reuse certain cons cells from their arguments when building their result. However, unlike functions
such as APPEND that reuse cons cells by including them, unmodified, in the list they return,
recycling functions reuse cons cells as raw material, modifying the CAR and CDR as necessary to
build the desired result. Thus, recycling functions can be used safely only when the original
lists aren’t going to be needed after the call to the recycling function.

To see how a recycling function works, let’s compare REVERSE, the nondestructive function
that returns a reversed version of a sequence, to NREVERSE, a recycling version of the same
function. Because REVERSE doesn’t modify its argument, it must allocate a new cons cell for
each element in the list being reversed. But suppose you write something like this:

(setf *list* (reverse *list*))

By assigning the result of REVERSE back to *1ist*, you've removed the reference to the
original value of *1ist*. Assuming the cons cells in the original list aren’t referenced anywhere
else, they’'re now eligible to be garbage collected. However, in many Lisp implementations it'd
be more efficient to immediately reuse the existing cons cells rather than allocating new ones
and letting the old ones become garbage.

NREVERSE allows you to do exactly that. The N stands for non-consing, meaning it doesn’t
need to allocate any new cons cells. The exact side effects of NREVERSE are intentionally not
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specified—it’s allowed to modify any CARor CDR of any cons cell in the list—but a typical imple-
mentation might walk down the list changing the CDR of each cons cell to point to the previous
cons cell, eventually returning the cons cell that was previously the last cons cell in the old list
and is now the head of the reversed list. No new cons cells need to be allocated, and no garbage
is created.

Most recycling functions, like NREVERSE, have nondestructive counterparts that compute
the same result. In general, the recycling functions have names that are the same as their non-
destructive counterparts except with a leading N. However, not all do, including several of the
more commonly used recycling functions such as NCONC, the recycling version of APPEND, and
DELETE, DELETE-IF, DELETE-IF-NOT, and DELETE-DUPLICATES, the recycling versions of the
REMOVE family of sequence functions.

In general, you use recycling functions in the same way you use their nondestructive
counterparts except it’s safe to use them only when you know the arguments aren’t going to be
used after the function returns. The side effects of most recycling functions aren’t specified
tightly enough to be relied upon.

However, the waters are further muddied by a handful of recycling functions with specified
side effects that can be relied upon. They are NCONC, the recycling version of APPEND, and
NSUBSTITUTE andits -IF and - IF-NOT variants, the recycling versions of the sequence functions
SUBSTITUTE and friends.

Like APPEND, NCONC returns a concatenation of its list arguments, but it builds its result in
the following way: for each nonempty list it’s passed, NCONC sets the CDR of the list’s last cons
cell to point to the first cons cell of the next nonempty list. It then returns the first list, which is
now the head of the spliced-together result. Thus:

(defparameter *x* (list 1 2 3))
(nconc *x* (list 4 56)) —> (12345 6)

*xk —> (12345 6)

NSUBSTITUTE and variants can be relied on to walk down the list structure of the list argu-
ment and to SETF the CARs of any cons cells holding the old value to the new value and to
otherwise leave the list intact. It then returns the original list, which now has the same value
as would’ve been computed by SUBSTITUTE. 6

The key thing to remember about NCONC and NSUBSTITUTE is that they're the exceptions to
the rule that you can’t rely on the side effects of recycling functions. It’s perfectly acceptable—
and arguably good style—to ignore the reliability of their side effects and use them, like any
other recycling function, only for the value they return.

Combining Recycling with Shared Structure

Although you can use recycling functions whenever the arguments to the recycling function
won'’t be used after the function call, it's worth noting that each recycling function is a loaded

6. The string functions NSTRING-CAPITALIZE, NSTRING-DOWNCASE, and NSTRING-UPCASE are
similar—they return the same results as their N-less counterparts but are specified to modify
their string argument in place.
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gun pointed footward: if you accidentally use a recycling function on an argument that is used
later, you're liable to lose some toes.

To make matters worse, shared structure and recycling functions tend to work at cross-
purposes. Nondestructive list functions return lists that share structure under the assumption
that cons cells are never modified, but recycling functions work by violating that assumption.
Or, put another way, sharing structure is based on the premise that you don’t care exactly what
cons cells make up a list while using recycling functions requires that you know exactly what
cons cells are referenced from where.

In practice, recycling functions tend to be used in a few idiomatic ways. By far the most
common recycling idiom is to build up a list to be returned from a function by “consing” onto
the front of a list, usually by PUSHing elements onto a list stored in a local variable and then
returning the result of NREVERSEing it.”

This is an efficient way to build a list because each PUSH has to create only one cons cell
and modify alocal variable and the NREVERSE just has to zip down the list reassigning the CDRs.
Because the list is created entirely within the function, there’s no danger any code outside the
function has a reference to any of its cons cells. Here’s a function that uses this idiom to build
a list of the first 7 numbers, starting at zero:8

(defun upto (max)
(let ((result nil))
(dotimes (i max)
(push i result))
(nreverse result)))

(upto 10) —> (01234567 809)

The next most common recycling idiom? is to immediately reassign the value returned by
the recycling function back to the place containing the potentially recycled value. For instance,
you'll often see expressions like the following, using DELETE, the recycling version of REMOVE:

(setf foo (delete nil foo))

This sets the value of foo to its old value except with all the NILs removed. However, even
this idiom must be used with some care—if foo shares structure with lists referenced elsewhere,
using DELETE instead of REMOVE can destroy the structure of those other lists. For example,
consider the two lists *1ist-2* and *1ist-3* from earlier that share their last two cons cells.

7. For example, in an examination of all uses of recycling functions in the Common Lisp Open
Code Collection (CLOCC), a diverse set of libraries written by various authors, instances of the
PUSH/NREVERSE idiom accounted for nearly half of all uses of recycling functions.

8. There are, of course, other ways to do this same thing. The extended LOOP macro, for instance,
makes it particularly easy and likely generates code that’s even more efficient than the PUSH/
NREVERSE version.

(defun upto (max)
(loop for i below max collect i))
Nonetheless, it’s important to be able to recognize the PUSH/NREVERSE idiom because it’s
quite common.
9. This idiom accounts for 30 percent of uses of recycling in the CLOCC code base.
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*1ist-2% — (0 4)
*1ist-3* — (1 2 0 4)

You can delete 4 from *1ist-3* like this:
(setf *1list-3* (delete 4 *1ist-3*)) — (1 2 0)

However, DELETE will likely perform the necessary deletion by setting the CDR of the third
cons cell to NIL, disconnecting the fourth cons cell, the one holding the 4, from the list. Because
the third cons cell of *1ist-3* is also the first cons cell in *1ist-2%*, the following modifies
*1ist-2* as well:

*list-2* — (0)

If you had used REMOVE instead of DELETE, it would’ve built a list containing the values 1,
2, and 0, creating new cons cells as necessary rather than modifying any of the cons cells in
*1ist-3*. In that case, *1ist-2* wouldn’t have been affected.

The PUSH/NREVERSE and SETF/DELETE idioms probably account for 80 percent of the uses
of recycling functions. Other uses are possible but require keeping careful track of which func-
tions return shared structure and which do not.

In general, when manipulating lists, it’s best to write your own code in a functional style—
your functions should depend only on the contents of their list arguments and shouldn’t
modify them. Following that rule will, of course, rule out using any destructive functions, recy-
cling or otherwise. Once you have your code working, if profiling shows you need to optimize,
you can replace nondestructive list operations with their recycling counterparts but only if
you're certain the argument lists aren’t referenced from anywhere else.

One last gotcha to watch out for is that the sorting functions SORT, STABLE-SORT, and
MERGE mentioned in Chapter 11 are also recycling functions when applied to lists.!? However,
these functions don’t have nondestructive counterparts, so if you need to sort a list without
destroying it, you need to pass the sorting function a copy made with COPY-LIST. In either case
you need to be sure to save the result of the sorting function because the original argument is
likely to be in tatters. For instance:

CL-USER> (defparameter *1ist* (list 4 3 2 1))

*¥LIST*

CL-USER> (sort *1list* #'<)

(123 4) ; looks good
CL-USER> *list*

(4) ; whoops!

List-Manipulation Functions

With that background out of the way, you're ready to look at the library of functions Common
Lisp provides for manipulating lists.

10. SORT and STABLE-SORT can be used as for-side-effect operations on vectors, but since they still
return the sorted vector, you should ignore that fact and use them for return values for the sake
of consistency.
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You've already seen the basic functions for getting at the elements of a list: FIRST and
REST. Although you can get at any element of a list by combining enough calls to REST (to move
down the list) with a FIRST (to extract the element), that can be a bit tedious. So Common Lisp
provides functions named for the other ordinals from SECOND to TENTH that return the appro-
priate element. More generally, the function NTH takes two arguments, an index and a list, and
returns the nth (zero-based) element of the list. Similarly, NTHCDR takes an index and a list and
returns the result of calling CDR n times. (Thus, (nthcdr 0 ...) simply returns the original list,
and (nthcdr 1 ...) is equivalent to REST.) Note, however, that none of these functions is any
more efficient, in terms of work done by the computer, than the equivalent combinations of
FIRSTs and RESTs—there’s no way to get to the nth element of a list without following n CDR
references.!!

The 28 composite CAR/ CDR functions are another family of functions you may see used
from time to time. Each function is named by placing a sequence of up to four As and Ds between
a Cand R, with each Arepresenting a call to CAR and each D a call to CDR. Thus:

(caar list) = (car (car list))
(cadr list) = (car (cdr list))
(cadadr list) = (car (cdr (car (cdr list))))

Note, however, that many of these functions make sense only when applied to lists that
contain other lists. For instance, CAAR extracts the CAR of the CAR of the list it’s given; thus, the
list it’s passed must contain another list as its first element. In other words, these are really
functions on trees rather than lists:

(caar (list 1 2 3)) —> error
(caar (list (list 1 2) 3)) —>1
(cadr (list (list 1 2) (list 3 4))) — (3 4)
(caadr (list (list 1 2) (list 3 4))) — 3

These functions aren’t used as often now as in the old days. And even the most die-hard
old-school Lisp hackers tend to avoid the longer combinations. However, they're used quite a
bit in older Lisp code, so it’s worth at least understanding how they work.12

The FIRST-TENTH and CAR, CADR, and so on, functions can also be used as SETFable places
if you're using lists nonfunctionally.

11. NTHis roughly equivalent to the sequence function ELT but works only with lists. Also, confusingly,
NTH takes the index as the first argument, the opposite of ELT. Another difference is that ELT will
signal an error if you try to access an element at an index greater than or equal to the length of the
list, but NTHwill return NIL.

12. In particular, they used to be used to extract the various parts of expressions passed to macros
before the invention of destructuring parameter lists. For example, you could take apart the
following expression:

(when (> x 10) (print x))

like this:
;; the condition
(cadr '(when (> x 10) (print x))) — (> X 10)
;5 the body, as a list
(cddr '(when (> x 10) (print x))) — ((PRINT X))



CHAPTER 12 THEY CALLED IT LISP FOR A REASON: LIST PROCESSING 151

Table 12-1 summarizes some other list functions that I won’t cover in detail.

Table 12-1. Other List Functions

Function Description

LAST Returns the last cons cell in a list. With an integer, argument returns the
last n cons cells.

BUTLAST Returns a copy of the list, excluding the last cons cell. With an integer
argument, excludes the last n cells.

NBUTLAST The recycling version of BUTLAST; may modify and return the argument
list but has no reliable side effects.

LDIFF Returns a copy of a list up to a given cons cell.

TAILP Returns true if a given object is a cons cell that’s part of the structure of
alist.

LIST* Builds a list to hold all but the last of its arguments and then makes the

last argument the CDR of the last cell in the list. In other words, a cross
between LIST and APPEND.

MAKE-LIST Builds an n item list. The initial elements of the list are NIL or the value
specified with the :initial-element keyword argument.

REVAPPEND Combination of REVERSE and APPEND; reverses first argument as with
REVERSE and then appends the second argument.

NRECONC Recycling version of REVAPPEND; reverses first argument as if by NREVERSE
and then appends the second argument. No reliable side effects.

CONSP Predicate to test whether an object is a cons cell.

ATOM Predicate to test whether an object is not a cons cell.

LISTP Predicate to test whether an object is either a cons cell or NIL.

NULL Predicate to test whether an object is NIL. Functionally equivalent to NOT

but stylistically preferable when testing for an empty list as opposed to
boolean false.

Mapping

Another important aspect of the functional style is the use of higher-order functions, functions
that take other functions as arguments or return functions as values. You saw several examples
of higher-order functions, such as MAP, in the previous chapter. Although MAP can be used with
both lists and vectors (that is, with any kind of sequence), Common Lisp also provides six mapping
functions specifically for lists. The differences between the six functions have to do with how
they build up their result and whether they apply the function to the elements of the list or to
the cons cells of the list structure.

MAPCAR is the function most like MAP. Because it always returns a list, it doesn’t require the
result-type argument MAP does. Instead, its first argument is the function to apply, and subse-
quent arguments are the lists whose elements will provide the arguments to the function.
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Otherwise, it behaves like MAP: the function is applied to successive elements of the list argu-
ments, taking one element from each list per application of the function. The results of each
function call are collected into a new list. For example:

(mapcar #'(lambda (x) (* 2 x)) (list 1 2 3)) — (2 4 6)
(mapcar #'+ (list 1 2 3) (list 10 20 30)) — (11 22 33)

MAPLISTis justlike MAPCAR except instead of passing the elements of the list to the function,
it passes the actual cons cells.!? Thus, the function has access not only to the value of each
element of the list (via the CAR of the cons cell) but also to the rest of the list (via the CDR).

MAPCAN and MAPCON work like MAPCAR and MAPLIST except for the way they build up their
result. While MAPCAR and MAPLIST build a completely new list to hold the results of the function
calls, MAPCAN and MAPCON build their result by splicing together the results—which must be
lists—as if by NCONC. Thus, each function invocation can provide any number of elements to be
included in the result.}* MAPCAN, like MAPCAR, passes the elements of the list to the mapped
function while MAPCON, like MAPLIST, passes the cons cells.

Finally, the functions MAPC and MAPL are control constructs disguised as functions—they
simply return their first list argument, so they’re useful only when the side effects of the mapped
function do something interesting. MAPC is the cousin of MAPCAR and MAPCAN while MAPL is in
the MAPLIST/MAPCON family.

Other Structures

While cons cells and lists are typically considered to be synonymous, that’s not quite right—as
I mentioned earlier, you can use lists of lists to represent trees. Just as the functions discussed
in this chapter allow you to treat structures built out of cons cells as lists, other functions allow
you to use cons cells to represent trees, sets, and two kinds of key/value maps. I'll discuss some
of those functions in the next chapter.

13. Thus, MAPLIST is the more primitive of the two functions—if you had only MAPLIST, you could
build MAPCAR on top of it, but you couldn’t build MAPLIST on top of MAPCAR.

14. In Lisp dialects that didn’t have filtering functions like REMOVE, the idiomatic way to filter a list
was with MAPCAN.

(mapcan #'(lambda (x) (if (= x 10) nil (list x))) list) = (remove 10 list)



CHAPTER 13

Beyond Lists: Other Uses
for Cons Cells

As you saw in the previous chapter, the list data type is an illusion created by a set of functions
that manipulate cons cells. Common Lisp also provides functions that let you treat data structures
built out of cons cells as trees, sets, and lookup tables. In this chapter I'll give you a quick tour
of some of these other data structures and the functions for manipulating them. As with the
list-manipulation functions, many of these functions will be useful when you start writing
more complicated macros and need to manipulate Lisp code as data.

Trees

Treating structures built from cons cells as trees is just about as natural as treating them as lists.
What is a list of lists, after all, but another way of thinking of a tree? The difference between a
function that treats a bunch of cons cells as a list and a function that treats the same bunch of
cons cells as a tree has to do with which cons cells the functions traverse to find the values of
the list or tree. The cons cells traversed by a list function, called the list structure, are found by
starting at the first cons cell and following CDR references until reaching a NIL. The elements of
the list are the objects referenced by the CARs of the cons cells in the list structure. If a cons cell
in the list structure has a CAR that references another cons cell, the referenced cons cell is
considered to be the head of a list that’s an element of the outer list.! Tree structure, on the other
hand, is traversed by following both CAR and CDR references for as long as they point to other
cons cells. The values in a tree are thus the atomic—non-cons-cell-values referenced by either
the CARs or the CDRs of the cons cells in the tree structure.

1. It’s possible to build a chain of cons cells where the CDR of the last cons cell isn’'t NIL but some
other atom. This is called a dotted list because the last cons is a dotted pair.

(cons 1 (cons 2 (cons 3 4))) = (123 . 4)

A nondotted list—one whose last CDR is NIL—is called a proper list. 153



154 CHAPTER 13 BEYOND LISTS: OTHER USES FOR CONS CELLS

For instance, the following box-and-arrow diagram shows the cons cells that make up the
list of lists: ((1 2) (3 4) (5 6)). Thelist structure includes only the three cons cells inside the
dashed box while the tree structure includes all the cons cells.

6 [NIL

4 [NIL

NIL

To see the difference between alist function and a tree function, you can consider how the
functions COPY-LIST and COPY-TREE will copy this bunch of cons cells. COPY-LIST, as a list
function, copies the cons cells that make up the list structure. That is, it makes a new cons cell
corresponding to each of the cons cells inside the dashed box. The CARs of each of these new
cons cells reference the same object as the CARs of the original cons cells in the list structure.
Thus, COPY-LIST doesn’t copy the sublists (1 2), (3 4), or (5 6), as shown in this diagram:

\ ~J{NIL

1 2 [NIL 3 4 |NIL 5 6 [NIL
/ “INIL
""""""""""""""""""""""" new cells

COPY-TREE, on the other hand, makes a new cons cell for each of the cons cells in the
diagram and links them together in the same structure, as shown in this diagram:
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_ _ 5 | A—f N
\ T 1\ 1L \ \
\5 ——1 6 NIL|} \5 ——6 [NIL|!
3 4 INIL 3 4 |NIL
1| = 2 [NIL (] 2

new cells

Where a cons cell in the original referenced an atomic value, the corresponding cons cell
in the copy will reference the same value. Thus, the only objects referenced in common by the
original tree and the copy produced by COPY-TREE are the numbers 5, 6, and the symbol NIL.

Another function that walks both the CARs and the CDRs of a tree of cons cells is TREE-EQUAL,
which compares two trees, considering them equal if the tree structure is the same shape and
if the leaves are EQL (or if they satisfy the test supplied with the :test keyword argument).

Some other tree-centric functions are the tree analogs to the SUBSTITUTE and NSUBSTITUTE
sequence functions and their -IF and -IF-NOT variants. The function SUBST, like SUBSTITUTE,
takes a new item, an old item, and a tree (as opposed to a sequence), along with :key and :test
keyword arguments, and it returns a new tree with the same shape as the original tree but with
all instances of the old item replaced with the new item. For example:

CL-USER> (subst 10 1 "(2 2 (3 2 1) ((2 1) (2 2))))
(10 2 (3 2 10) ((10 10) (2 2)))

SUBST-IFis analogous to SUBSTITUTE-IF. Instead of an old item, it takes a one-argument
function—the function is called with each atomic value in the tree, and whenever it returns
true, the position in the new tree is filled with the new value. SUBST-IF-NOT is the same except
the values where the test returns NIL are replaced. NSUBST, NSUBST-IF, and NSUBST-IF-NOT
are the recycling versions of the SUBST functions. As with most other recycling functions, you
should use these functions only as drop-in replacements for their nondestructive counterparts
in situations where you know there’s no danger of modifying a shared structure. In particular,
you must continue to save the return value of these functions since you have no guarantee that
the result will be EQ to the original tree.?

Sets

Sets can also be implemented in terms of cons cells. In fact, you can treat any list as a set—
Common Lisp provides several functions for performing set-theoretic operations on lists.
However, you should bear in mind that because of the way lists are structured, these opera-
tions get less and less efficient the bigger the sets get.

2. Itmay seem that the NSUBST family of functions can and in fact does modify the tree in place.
However, there’s one edge case: when the “tree” passed is, in fact, an atom, it can’t be modified in
place, so the result of NSUBST will be a different object than the argument: (nsubst 'x 'y 'y) —> X.

155
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That said, using the built-in set functions makes it easy to write set-manipulation code.
And for small sets they may well be more efficient than the alternatives. If profiling shows you
that these functions are a performance bottleneck in your code, you can always replace the lists
with sets built on top of hash tables or bit vectors.

To build up a set, you can use the function ADJOIN. ADJOIN takes an item and a list repre-
senting a set and returns a list representing the set containing the item and all the items in the
original set. To determine whether the item is present, it must scan the list; if the item isn’t
found, ADJOIN creates a new cons cell holding the item and pointing to the original list and
returns it. Otherwise, it returns the original list.

ADJOIN also takes :key and :test keyword arguments, which are used when determining
whether the item is present in the original list. Like CONS, ADJOIN has no effect on the original
list—if you want to modify a particular list, you need to assign the value returned by ADJOIN to
the place where the list came from. The modify macro PUSHNEW does this for you automatically.

CL-USER> (defparameter *set* ())
*SET*

CL-USER> (adjoin 1 *set*)

(1)

CL-USER> *set*

NIL

CL-USER> (setf *set* (adjoin 1 *set*))
(1)

CL-USER> (pushnew 2 *set*)

(2 1)

CL-USER> *set*

(2 1)

CL-USER> (pushnew 2 *set*)

(2 1)

You can test whether a given item is in a set with MEMBER and the related functions
MEMBER-IF and MEMBER-IF-NOT. These functions are similar to the sequence functions FIND,
FIND-IF, and FIND-IF-NOT except they can be used only with lists. And instead of returning
the item when it’s present, they return the cons cell containing the item—in other words, the
sublist starting with the desired item. When the desired item isn’t present in the list, all three
functions return NIL.

The remaining set-theoretic functions provide bulk operations: INTERSECTION, UNION,
SET-DIFFERENCE, and SET-EXCLUSIVE-OR. Each of these functions takes two lists and :key
and :test keyword arguments and returns a new list representing the set resulting from
performing the appropriate set-theoretic operation on the two lists: INTERSECTION returns a
list containing all the elements found in both arguments. UNION returns a list containing one
instance of each unique element from the two arguments.3 SET-DIFFERENCE returns a list
containing all the elements from the first argument that don’t appear in the second argument.
And SET-EXCLUSIVE-ORreturns a list containing those elements appearing in only one or the
other of the two argument lists but not in both. Each of these functions also has a recycling
counterpart whose name is the same except with an N prefix.

3. UNION takes only one element from each list, but if either list contains duplicate elements, the
result may also contain duplicates.
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Finally, the function SUBSETP takes two lists and the usual :key and :test keyword argu-
ments and returns true if the first list is a subset of the second—if every element in the first list
is also present in the second list. The order of the elements in the lists doesn’t matter.

CL-USER> (subsetp '(3 2 1) '(1 2 3 4))
T

CL-USER> (subsetp '(1 2 3 4) '(3 2 1))
NIL

Lookup Tables: Alists and Plists

In addition to trees and sets, you can build tables that map keys to values out of cons cells. Two
flavors of cons-based lookup tables are commonly used, both of which I've mentioned in passing
in previous chapters. They’re association lists, also called alists, and property lists, also known
as plists. While you wouldn’t use either alists or plists for large tables—for that you’d use a hash
table—it’s worth knowing how to work with them both because for small tables they can be
more efficient than hash tables and because they have some useful properties of their own.

An alist is a data structure that maps keys to values and also supports reverse lookups,
finding the key when given a value. Alists also support adding key/value mappings that shadow
existing mappings in such a way that the shadowing mapping can later be removed and the
original mappings exposed again.

Under the covers, an alist is essentially a list whose elements are themselves cons cells.
Each element can be thought of as a key/value pair with the key in the cons cell’s CAR and the
value in the CDR. For instance, the following is a box-and-arrow diagram of an alist mapping
the symbol A to the number 1, B to 2, and C to 3:

N N o N2
B2

\AM \0\3\

Unless the value in the CDRis a list, cons cells representing the key/value pairs will be
dotted pairs in s-expression notation. The alist diagramed in the previous figure, for instance,
is printed like this:

((A.1) (B.2)(C.3))

The main lookup function for alists is ASSOC, which takes a key and an alist and returns the
first cons cell whose CAR matches the key or NIL if no match is found.

CL-USER> (assoc 'a '((a . 1) (b . 2) (c . 3)))

(A . 1)
CL-USER> (assoc 'c '((a . 1) (b . 2) (c . 3)))
(C.3)

CL-USER> (assoc 'd '((a . 1) (b . 2) (c . 3)))
NIL



158

CHAPTER 13 BEYOND LISTS: OTHER USES FOR CONS CELLS

To get the value corresponding to a given key, you simply pass the result of ASSOC to CDR.

CL-USER> (cdr (assoc 'a '((a . 1) (b . 2) (c . 3))))
1

By default the key given is compared to the keys in the alist using EQL, but you can change
that with the standard combination of :key and :test keyword arguments. For instance, if you
wanted to use string keys, you might write this:

CL-USER> (assoc "a" "(("a" . 1) ("b" . 2) ("c" . 3)) :test #'string=)
("a" . 1)

Without specifying :test to be STRING=, that ASSOC would probably return NIL because
two strings with the same contents aren’t necessarily EQL.

CL-USER> (assoc "a" '(("a" . 1) ("b" . 2) ("c¢" . 3)))
NIL

Because ASSOC searches the list by scanning from the front of the list, one key/value pair
in an alist can shadow other pairs with the same key later in the list.

CL-USER> (assoc 'a '((a . 10) (a . 1) (b . 2) (c . 3)))
(A . 10)

You can add a pair to the front of an alist with CONS like this:
(cons (cons 'new-key 'new-value) alist)

However, as a convenience, Common Lisp provides the function ACONS, which lets you
write this:

(acons 'new-key 'new-value alist)

Like CONS, ACONS is a function and thus can’t modify the place holding the alist it’s passed.
If you want to modify an alist, you need to write either this:

(setf alist (acons 'new-key 'new-value alist))
or this:
(push (cons 'new-key 'new-value) alist)

Obviously, the time it takes to search an alist with ASSOC is a function of how deep in the
list the matching pair is found. In the worst case, determining that no pair matches requires
ASSOC to scan every element of the alist. However, since the basic mechanism for alists is so
lightweight, for small tables an alist can outperform a hash table. Also, alists give you more flex-
ibility in how you do the lookup. I already mentioned that ASSOC takes :key and :test keyword
arguments. When those don’t suit your needs, you may be able to use the ASSOC-IF and
ASSOC-IF-NOT functions, which return the first key/value pair whose CAR satisfies (or not, in
the case of ASSOC-IF-NOT) the test function passed in the place of a specific item. And three
functions—RASSOC, RASSOC-IF, and RASSOC-IF-NOT—work justlike the corresponding ASSOC
functions except they use the value in the CDR of each element as the key, performing a reverse
lookup.
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The function COPY-ALIST is similar to COPY-TREE except, instead of copying the whole
tree structure, it copies only the cons cells that make up the list structure, plus the cons cells
directly referenced from the CARs of those cells. In other words, the original alist and the copy
will both contain the same objects as the keys and values, even if those keys or values happen
to be made up of cons cells.

Finally, you can build an alist from two separate lists of keys and values with the function
PAIRLIS. The resulting alist may contain the pairs either in the same order as the original lists
or in reverse order. For example, you may get this result:

CL-USER> (pairlis '(a b c) '(1 2 3))
((C.3) (B.2)(A.1)

Or you could just as well get this:

CL-USER> (pairlis '(a b c) '(1 2 3))
((A. 1) (B.2) (C.3))

The other kind of lookup table is the property list, or plist, which you used to represent the
rows in the database in Chapter 3. Structurally a plist is just a regular list with the keys and
values as alternating values. For instance, a plist mappingA, B, and C, to 1, 2, and 3 is simply the
list (A 1 B 2 C 3).In boxes-and-arrows form, it looks like this:

YIS o B o ETIS o PYIS o [ e T

However, plists are less flexible than alists. In fact, plists support only one fundamental
lookup operation, the function GETF, which takes a plist and a key and returns the associated
value or NIL if the key isn’t found. GETF also takes an optional third argument, which will be
returned in place of NIL if the key isn’t found.

Unlike ASSOC, which uses EQL as its default test and allows a different test function to be
supplied with a : test argument, GETF always uses EQto test whether the provided key matches
the keys in the plist. Consequently, you should never use numbers or characters as keys in a
plist; as you saw in Chapter 4, the behavior of EQ for those types is essentially undefined. Practically
speaking, the keys in a plist are almost always symbols, which makes sense since plists were
first invented to implement symbolic “properties,” arbitrary mappings between names and
values.

You can use SETF with GETF to set the value associated with a given key. SETF also treats
GETF a bit specially in that the first argument to GETF is treated as the place to modify. Thus,
you can use SETF of GETF to add a new key/value pair to an existing plist.

CL-USER> (defparameter *plist* ())
*¥PLIST*

CL-USER> *plist*

NIL

CL-USER> (setf (getf *plist* :a) 1)
1

CL-USER> *plist*

(:A 1)
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CL-USER> (setf (getf *plist* :a) 2)

2
CL-USER> *plist*
(:A 2)

To remove a key/value pair from a plist, you use the macro REMF, which sets the place
given as its first argument to a plist containing all the key/value pairs except the one specified.
It returns true if the given key was actually found.

CL-USER> (remf *plist* :a)
T

CL-USER> *plist*

NIL

Like GETF, REMF always uses EQ to compare the given key to the keys in the plist.

Since plists are often used in situations where you want to extract several properties from
the same plist, Common Lisp provides a function, GET-PROPERTIES, that makes it more effi-
cient to extract multiple values from a single plist. It takes a plist and a list of keys to search for
and returns, as multiple values, the first key found, the corresponding value, and the head of
the list starting with the found key. This allows you to process a property list, extracting the
desired properties, without continually rescanning from the front of the list. For instance, the
following function efficiently processes—using the hypothetical function process-property—
all the key/value pairs in a plist for a given list of keys:

(defun process-properties (plist keys)
(loop while plist do
(multiple-value-bind (key value tail) (get-properties plist keys)
(when key (process-property key value))
(setf plist (cddr tail)))))

The last special thing about plists is the relationship they have with symbols: every symbol
object has an associated plist that can be used to store information about the symbol. The plist
can be obtained via the function SYMBOL-PLIST. However, you rarely care about the whole
plist; more often you’ll use the functions GET, which takes a symbol and a key and is shorthand
for a GETF of the same key in the symbols SYMBOL-PLIST.

(get 'symbol 'key) = (getf (symbol-plist 'symbol) 'key)
Like GETF, GET is SETFable, so you can attach arbitrary information to a symbol like this:
(setf (get 'some-symbol 'my-key) "information")

To remove a property from a symbol’s plist, you can use either REMF of SYMBOL-PLIST or
the convenience function REMPROP.4

(remprop 'symbol 'key) = (remf (symbol-plist 'symbol key))

4. It’s also possible to directly SETF SYMBOL-PLIST. However, that’s a bad idea, as different code may
have added different properties to the symbol’s plist for different reasons. If one piece of code
clobbers the symbol’s whole plist, it may break other code that added its own properties to
the plist.
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Being able to attach arbitrary information to names is quite handy when doing any kind of
symbolic programming. For instance, one of the macros you'll write in Chapter 24 will attach
information to names that other instances of the same macros will extract and use when gener-
ating their expansions.

DESTRUCTURING-BIND

One last tool for slicing and dicing lists that I need to cover since you'll need it in later chapters
is the DESTRUCTURING-BIND macro. This macro provides a way to destructure arbitrary lists,
similar to the way macro parameter lists can take apart their argument list. The basic skeleton
of a DESTRUCTURING-BIND is as follows:

(destructuring-bind (parameter*) list
body-form*)

The parameter list can include any of the types of parameters supported in macro param-
eter lists such as &optional, &rest, and &key parameters.5 And, as in macro parameter lists,
any parameter can be replaced with a nested destructuring parameter list, which takes apart
the list that would otherwise have been bound to the replaced parameter. The list form is eval-
uated once and should return a list, which is then destructured and the appropriate values are
bound to the variables in the parameter list. Then the body-forms are evaluated in order with
those bindings in effect. Some simple examples follow:

(destructuring-bind (x y z) (list 1 2 3)
(list :x x :y y :z z)) —> (:X1:Y 2 :Z3)

(destructuring-bind (x y z) (list 1 (list 2 20) 3)
(list :x x :y y :z z)) —> (:X 1 :Y (2 20) :Z 3)

(destructuring-bind (x (y1 y2) z) (list 1 (list 2 20) 3)
(1ist :x x :y1 y1 :y2 y2 :z z)) —> (:X 1 :Y1 2 :Y2 20 :Z 3)

(destructuring-bind (x (y1 8optional y2) z) (list 1 (list 2 20) 3)
(1ist :x x :y1 y1 :y2 y2 :z z)) —> (:X 1 :Y1 2 :Y2 20 :Z 3)

(destructuring-bind (x (y1 8optional y2) z) (list 1 (list 2) 3)
(list :x x :y1 y1 :y2 y2 :z z)) —> (:X 1 :Y1 2 :Y2 NIL :Z 3)

(destructuring-bind (&key x y z) (list :x 1 :y 2 :z 3)
(list :x x :y y :z z)) —> (:X'1:Y 2 :Z3)

(destructuring-bind (&key x y z) (list :z 1 :y 2 :x 3)
(list :x x :y y :z z)) —> (:X 3 :Y 2 :Z1)

5. Macro parameter lists do support one parameter type, &environment parameters, which
DESTRUCTURING-BIND doesn’t. However, I didn't discuss that parameter type in Chapter 8,
and you don't need to worry about it now either.
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One kind of parameter you can use with DESTRUCTURING-BIND and also in macro param-
eter lists, though I didn’t mention it in Chapter 8, is a &who le parameter. If specified, it must be
the first parameter in a parameter list, and it’s bound to the whole list form.® After a &whole
parameter, other parameters can appear as usual and will extract specific parts of the list
just as they would if the &whole parameter weren’t there. An example of using &whole with
DESTRUCTURING-BIND looks like this:

(destructuring-bind (&whole whole &key x y z) (list :z 1 :y 2 :x 3)
(list :x x :y y :z z :whole whole))
— (:X'3:Y 2 :Z1 :WHOLE (:Z 1 :Y 2 :X 3))

You'll use a &whole parameter in one of the macros that’s part of the HTML generation
library you’ll develop in Chapter 31. However, I have a few more topics to cover before you can
get to that. After two chapters on the rather Lispy topic of cons cells, you can now turn to the
more prosaic matter of how to deal with files and filenames.

6. When a &whole parameter is used in a macro parameter list, the form it’s bound to is the whole
macro form, including the name of the macro.



CHAPTER 14

Files and File I/0

COmmon Lisp provides a rich library of functionality for dealing with files. In this chapter I'll
focus on afew basic file-related tasks: reading and writing files and listing files in the file system. For
these basic tasks, Common Lisp’s I/O facilities are similar to those in other languages. Common
Lisp provides a stream abstraction for reading and writing data and an abstraction, called
pathnames, for manipulating filenames in an operating system-independent way. Additionally,
Common Lisp provides other bits of functionality unique to Lisp such as the ability to read and
write s-expressions.

Reading File Data

The most basic file I/0 task is to read the contents of a file. You obtain a stream from which you
can read a file’s contents with the OPEN function. By default OPEN returns a character-based
input stream you can pass to a variety of functions that read one or more characters of text:
READ-CHARreads a single character; READ-LINE reads a line of text, returning it as a string with
the end-of-line character(s) removed; and READ reads a single s-expression, returning a Lisp
object. When you're done with the stream, you can close it with the CLOSE function.

The only required argument to OPEN is the name of the file to read. As you'll see in the
section “Filenames,” Common Lisp provides a couple of ways to represent a filename, but the
simplest is to use a string containing the name in the local file-naming syntax. So assuming
that /some/file/name.txt is a file, you can open it like this:

(open "/some/file/name.txt")

You can use the object returned as the first argument to any of the read functions. For
instance, to print the first line of the file, you can combine OPEN, READ-LINE, and CLOSE
as follows:

(let ((in (open "/some/file/name.txt")))
(format t "~a~%" (read-line in))
(close in))

Of course, a number of things can go wrong while trying to open and read from a file. The
file may not exist. Or you may unexpectedly hit the end of the file while reading. By default
OPENand the READ-* functions will signal an error in these situations. In Chapter 19, I'll discuss
how to recover from such errors. For now, however, there’s a lighter-weight solution: each of
these functions accepts arguments that modify its behavior in these exceptional situations.
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If you want to open a possibly nonexistent file without OPEN signaling an error, you can use
the keyword argument :if-does-not-exist to specify a different behavior. The three possible
values are :error, the default; : create, which tells it to go ahead and create the file and then
proceed as if it had already existed; and NIL, which tells it to return NIL instead of a stream.
Thus, you can change the previous example to deal with the possibility that the file may not exist.

(let ((in (open "/some/file/name.txt" :if-does-not-exist nil)))
(when in
(format t "~a~%" (read-line in))
(close in)))

The reading functions—READ-CHAR, READ-LINE, and READ—all take an optional argument,
which defaults to true, that specifies whether they should signal an error if they're called at the
end of the file. If that argument is NIL, they instead return the value of their third argument,
which defaults to NIL. Thus, you could print all the lines in a file like this:

(let ((in (open "/some/file/name.txt" :if-does-not-exist nil)))
(when in
(loop for line = (read-line in nil)
while line do (format t "~a~%" line))
(close in)))

Of the three text-reading functions, READ is unique to Lisp. This is the same function that
provides the R in the REPL and that’s used to read Lisp source code. Each time it’s called, it
reads a single s-expression, skipping whitespace and comments, and returns the Lisp object
denoted by the s-expression. For instance, suppose /some/file/name.txt has the following
contents:

(123)
456
"a string" ; this is a comment
((a b)
(c d))

In other words, it contains four s-expressions: a list of numbers, a number, a string, and a
list of lists. You can read those expressions like this:

CL-USER> (defparameter *s* (open "/some/file/name.txt"))
*S*

CL-USER> (read *s*)
(123)

CL-USER> (read *s*)
456

CL-USER> (read *s*)
"a string"

CL-USER> (read *s*)
((A B) (CD))
CL-USER> (close *s*)
T
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As you saw in Chapter 3, you can use PRINT to print Lisp objects in “readable” form. Thus,
whenever you need to store a bit of data in a file, PRINT and READ provide an easy way to do it
without having to design a data format or write a parser. They even—as the previous example
demonstrated—give you comments for free. And because s-expressions were designed to be
human editable, it’s also a fine format for things like configuration files.!

Reading Binary Data

By default OPEN returns character streams, which translate the underlying bytes to characters
according to a particular character-encoding scheme.? To read the raw bytes, you need to pass
OPENan :element-type argument of ' (unsigned-byte 8).3 You can pass the resulting stream to
the function READ-BYTE, which will return an integer between 0 and 255 each time it’s called.
READ-BYTE, like the character-reading functions, also accepts optional arguments to specify
whether it should signal an error if called at the end of the file and what value to return if not.
In Chapter 24 you'll build a library that allows you to conveniently read structured binary data
using READ-BYTE.*

Bulk Reads

One last reading function, READ-SEQUENCE, works with both character and binary streams. You
pass it a sequence (typically a vector) and a stream, and it attempts to fill the sequence with
data from the stream. It returns the index of the first element of the sequence that wasn't filled
or the length of the sequence if it was able to completely fill it. You can also pass :start and
:end keyword arguments to specify a subsequence that should be filled instead. The sequence
argument must be a type that can hold elements of the stream’s element type. Since most
operating systems support some form of block I/0, READ-SEQUENCE is likely to be quite a bit
more efficient than filling a sequence by repeatedly calling READ-BYTE or READ-CHAR.

File Output

To write data to a file, you need an output stream, which you obtain by calling OPEN with a
:direction keyword argument of :output. When opening a file for output, OPEN assumes the

1. Note, however, that while the Lisp reader knows how to skip comments, it completely skips them.
Thus, if you use READ to read in a configuration file containing comments and then use PRINT to
save changes to the data, you'll lose the comments.

2. Bydefault OPEN uses the default character encoding for the operating system, but it also accepts a
keyword parameter, :external-format, that can pass implementation-defined values that specify
a different encoding. Character streams also translate the platform-specific end-of-line sequence
to the single character #\Newline.

3. The type (unsigned-byte 8) indicates an 8-bit byte; Common Lisp “byte” types aren't a fixed size
since Lisp has run at various times on architectures with byte sizes from 6 to 9 bits, to say nothing
of the PDP-10, which had individually addressable variable-length bit fields of 1 to 36 bits.

4. Ingeneral, a stream is either a character stream or a binary stream, so you can’t mix calls
to READ-BYTE and READ-CHAR or other character-based read functions. However, some
implementations, such as Allegro, support so-called bivalent streams, which support both
character and binary I/0.
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file shouldn’t already exist and will signal an error if it does. However, you can change that
behavior with the :if-exists keyword argument. Passing the value : supersede tells OPEN to
replace the existing file. Passing :append causes OPEN to open the existing file such that new
data will be written at the end of the file, while :overwrite returns a stream that will overwrite
existing data starting from the beginning of the file. And passing NIL will cause OPEN to return
NIL instead of a stream if the file already exists. A typical use of OPEN for output looks like this:

(open "/some/file/name.txt" :direction :output :if-exists :supersede)

Common Lisp also provides several functions for writing data: WRITE-CHAR writes a single
character to the stream. WRITE-LINE writes a string followed by a newline, which will be output
as the appropriate end-of-line character or characters for the platform. Another function,
WRITE-STRING, writes a string without adding any end-of-line characters. Two different func-
tions can print just a newline: TERPRI—short for “terminate print”—unconditionally prints
anewline character, and FRESH-LINE prints a newline character unless the stream is at the
beginning of a line. FRESH-LINE is handy when you want to avoid spurious blank lines in
textual output generated by different functions called in sequence. For example, suppose you
have one function that generates output that should always be followed by a line break and
another that should start on a new line. But assume that if the functions are called one after the
other, you don’t want a blank line between the two bits of output. If you use FRESH-LINE at the
beginning of the second function, its output will always start on a new line, but if it’s called
right after the first, it won’t emit an extra line break.

Several functions output Lisp data as s-expressions: PRINT prints an s-expression preceded
by an end-of-line and followed by a space. PRIN1 prints just the s-expression. And the function
PPRINT prints s-expressions like PRINT and PRIN1 but using the “pretty printer,” which tries to
print its output in an aesthetically pleasing way.

However, not all objects can be printed in a form that READ will understand. The variable
*PRINT-READABLY* controls what happens if you try to print such an object with PRINT, PRIN1,
or PPRINT. When it’s NIL, these functions will print the object in a special syntax that’s guaran-
teed to cause READ to signal an error if it tries to read it; otherwise they will signal an error rather
than print the object.

Another function, PRINC, also prints Lisp objects, but in a way designed for human
consumption. For instance, PRINC prints strings without quotation marks. You can generate
more elaborate text output with the incredibly flexible if somewhat arcane FORMAT function. I'll
discuss some of the more important details of FORMAT, which essentially defines a mini-language
for emitting formatted output, in Chapter 18.

To write binary data to a file, you have to OPEN the file with the same :element-type argument
as you did to read it: ' (unsigned-byte 8).You can then write individual bytes to the stream
with WRITE-BYTE.

The bulk output function WRITE-SEQUENCE accepts both binary and character streams as
long as all the elements of the sequence are of an appropriate type for the stream, either char-
acters or bytes. As with READ-SEQUENCE, this function is likely to be quite a bit more efficient
than writing the elements of the sequence one at a time.
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Closing Files

As anyone who has written code that deals with lots of files knows, it’s important to close files
when you're done with them, because file handles tend to be a scarce resource. If you open
files and don’t close them, you’ll soon discover you can’t open any more files.5 It might seem
straightforward enough to just be sure every OPEN has a matching CLOSE. For instance, you
could always structure your file using code like this:

(let ((stream (open "/some/file/name.txt")))
;3 do stuff with stream
(close stream))

However, this approach suffers from two problems. One is simply that it’s error prone—
if you forget the CLOSE, the code will leak a file handle every time it runs. The other—and more
significant—problem is that there’s no guarantee you’ll get to the CLOSE. For instance, if the
code prior to the CLOSE contains a RETURN or RETURN-FROM, you could leave the LET without
closing the stream. Or, as you'll see in Chapter 19, if any of the code before the CLOSE signals an
error, control may jump out of the LET to an error handler and never come back to close the
stream.

Common Lisp provides a general solution to the problem of how to ensure that certain
code always runs: the special operator UNWIND-PROTECT, which I'll discuss in Chapter 20.
However, because the pattern of opening a file, doing something with the resulting stream, and
then closing the stream is so common, Common Lisp provides a macro, WITH-OPEN-FILE,
built on top of UNWIND-PROTECT, to encapsulate this pattern. This is the basic form:

(with-open-file (stream-var open-argument*)

body-form*)

The forms in body-forms are evaluated with stream-var bound to a file stream opened by a
call to OPEN with open-arguments as its arguments. WITH-OPEN-FILE then ensures the stream
in stream-var is closed before the WITH-OPEN-FILE form returns. Thus, you can write this to
read a line from a file:

(with-open-file (stream "/some/file/name.txt")
(format t "~a~%" (read-line stream)))

To create a new file, you can write something like this:

with-open-file (stream "/some/file/name.txt" :direction :output
p p
(format stream "Some text."))

5. Some folks expect this wouldn't be a problem in a garbage-collected language such as Lisp. It is
the case in most Lisp implementations that a stream that becomes garbage will automatically be
closed. However, this isn’t something to rely on—the problem is that garbage collectors usually
run only when memory is low; they don’t know about other scarce resources such as file handles.
If there’s plenty of memory available, it’s easy to run out of file handles long before the garbage
collector runs.
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You'll probably use WITH-OPEN-FILE for 90-99 percent of the file I/O you do—the only
time you need to use raw OPEN and CLOSE calls is if you need to open a file in a function and
keep the stream around after the function returns. In that case, you must take care to eventually
close the stream yourself, or you'll leak file descriptors and may eventually end up unable to
open any more files.

Filenames

So far you've used strings to represent filenames. However, using strings as filenames ties your
code to a particular operating system and file system. Likewise, if you programmatically
construct names according to the rules of a particular naming scheme (separating directories
with /, say), you also tie your code to a particular file system.

To avoid this kind of nonportability, Common Lisp provides another representation of
filenames: pathname objects. Pathnames represent filenames in a structured way that makes
them easy to manipulate without tying them to a particular filename syntax. And the burden of
translating back and forth between strings in the local syntax—called namestrings—and path-
names is placed on the Lisp implementation.

Unfortunately, as with many abstractions designed to hide the details of fundamentally
different underlying systems, the pathname abstraction introduces its own complications.
When pathnames were designed, the set of file systems in general use was quite a bit more
variegated than those in common use today. Consequently, some nooks and crannies of the
pathname abstraction make little sense if all you're concerned about is representing Unix or
Windows filenames. However, once you understand which parts of the pathname abstraction
you can ignore as artifacts of pathnames’ evolutionary history, they do provide a convenient
way to manipulate filenames.%

Most places a filename is called for, you can use either a namestring or a pathname. Which
to use depends mostly on where the name originated. Filenames provided by the user—for
example, as arguments or as values in configuration files—will typically be namestrings, since
the user knows what operating system they’re running on and shouldn’t be expected to care
about the details of how Lisp represents filenames. But programmatically generated filenames
will be pathnames because you can create them portably. A stream returned by OPEN also
represents a filename, namely, the filename that was originally used to open the stream.
Together these three types are collectively referred to as pathname designators. All the built-in
functions that expect a filename argument accept all three types of pathname designator. For
instance, all the places in the previous section where you used a string to represent a filename,
you could also have passed a pathname object or a stream.

6. Another reason the pathname system is considered somewhat baroque is because of the inclusion of
logical pathnames. However, you can use the rest of the pathname system perfectly well without
knowing anything more about logical pathnames than that you can safely ignore them. Briefly,
logical pathnames allow Common Lisp programs to contain references to pathnames without
naming specific files. Logical pathnames could then be mapped to specific locations in an actual
file system when the program was installed by defining a “logical pathname translation” that
translates logical pathnames matching certain wildcards to pathnames representing files in the
file system, so-called physical pathnames. They have their uses in certain situations, but you can
get pretty far without worrying about them.



CHAPTER 14 FILES AND FILE 1/0

HOW WE GOT HERE

The historical diversity of file systems in existence during the 70s and 80s can be easy to forget. Kent Pitman,
one of the principal technical editors of the Common Lisp standard, described the situation once in
comp.lang.lisp (Message-ID: sfwzo74npbw. fsf@world.std.com) thusly:

The dominant file systems at the time the design [of Common Lisp] was done were TOPS-10,
TENEX, TOPS-20, VAX VMS, AT&T Unix, MIT Multics, MIT ITS, not to mention a bunch of main-
frame [OSs]. Some were uppercase only, some mixed, some were case-sensitive but case-
translating (like CL). Some had dirs as files, some not. Some had quote chars for funny file chars,
some not. Some had wildcards, some didn’t. Some had :up in relative pathnames, some didn’t.
Some had namable root dirs, some didn’t. There were file systems with no directories, file systems
with non-hierarchical directories, file systems with no file types, file systems with no versions, file

systems with no devices, and so on.

If you look at the pathname abstraction from the point of view of any single file system, it seems baroque.
However, if you take even two such similar file systems as Windows and Unix, you can already begin to see
differences the pathname system can help abstract away—Windows filenames contain a drive letter, for
instance, while Unix filenames don’t. The other advantage of having the pathname abstraction designed to
handle the wide variety of file systems that existed in the past is that it's more likely to be able to handle file
systems that may exist in the future. If, say, versioning file systems come back into vogue, Common Lisp will
be ready.

How Pathnames Represent Filenames

A pathname is a structured object that represents a filename using six components: host, device,
directory, name, type, and version. Most of these components take on atomic values, usually
strings; only the directory component is further structured, containing a list of directory names
(as strings) prefaced with the keyword :absolute or :relative. However, not all pathname
components are needed on all platforms—this is one of the reasons pathnames strike many
new Lispers as gratuitously complex. On the other hand, you don’t really need to worry about
which components may or may not be used to represent names on a particular file system
unless you need to create a new pathname object from scratch, which you’ll almost never need
to do. Instead, you'll usually get hold of pathname objects either by letting the implementation
parse a file system-specific namestring into a pathname object or by creating a new pathname
that takes most of its components from an existing pathname.

For instance, to translate a namestring to a pathname, you use the PATHNAME function. It
takes a pathname designator and returns an equivalent pathname object. When the designator
is already a pathname, it’s simply returned. When it’s a stream, the original filename is extracted
and returned. When the designator is a namestring, however, it’s parsed according to the local
filename syntax. The language standard, as a platform-neutral document, doesn’t specify any
particular mapping from namestring to pathname, but most implementations follow the same
conventions on a given operating system.
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On Unix file systems, only the directory, name, and type components are typically used.
On Windows, one more component—usually the device or host—holds the drive letter. On
these platforms, a namestring is parsed by first splitting it into elements on the path separator—
a slash on Unix and a slash or backslash on Windows. The drive letter on Windows will be
placed into either the device or the host component. All but the last of the other name elements
are placed in a list starting with :absolute or :relative depending on whether the name
(ignoring the drive letter, if any) began with a path separator. This list becomes the directory
component of the pathname. The last element is then split on the rightmost dot, if any, and the
two parts put into the name and type components of the pathname.”

You can examine these individual components of a pathname with the functions
PATHNAME-DIRECTORY, PATHNAME-NAME, and PATHNAME-TYPE.

(pathname-directory (pathname "/foo/bar/baz.txt")) —> (:ABSOLUTE "foo" "bar")
(pathname-name (pathname "/foo/bar/baz.txt")) —> "baz"
(pathname-type (pathname "/foo/bar/baz.txt")) — "txt"

Three other functions—PATHNAME-HOST, PATHNAME-DEVICE, and PATHNAME-VERSION—
allow you to get at the other three pathname components, though they’re unlikely to have
interesting values on Unix. On Windows either PATHNAME-HOST or PATHNAME-DEVICE will
return the drive letter.

Like many other built-in objects, pathnames have their own read syntax, #p followed by a
double-quoted string. This allows you to print and read back s-expressions containing pathname
objects, but because the syntax depends on the namestring parsing algorithm, such data isn’t
necessarily portable between operating systems.

(pathname "/foo/bar/baz.txt") —> #p"/foo/bar/baz.txt"

To translate a pathname back to a namestring—for instance, to present to the user—
you can use the function NAMESTRING, which takes a pathname designator and returns a
namestring. Two other functions, DIRECTORY-NAMESTRING and FILE-NAMESTRING, return a
partial namestring. DIRECTORY-NAMESTRING combines the elements of the directory component
into a local directory name, and FILE-NAMESTRING combines the name and type components.?

(namestring #p"/foo/bar/baz.txt") —> "/foo/bar/baz.txt"
(directory-namestring #p"/foo/bar/baz.txt") — "/foo/bar/"
(file-namestring #p"/foo/bar/baz.txt") —> "baz.txt"

7. Many Unix-based implementations treat filenames whose last element starts with a dot and
don'’t contain any other dots specially, putting the whole element, with the dot, in the name
component and leaving the type component NIL.

(pathname-name (pathname "/foo/.emacs")) —> ".emacs"
(pathname-type (pathname "/foo/.emacs")) —> NIL

However, not all implementations follow this convention; some will create a pathname with an
empty string as the name and emacs as the type.

8. Thename returned by FILE-NAMESTRING also includes the version component on file systems
that use it.



CHAPTER 14 FILES AND FILE 1/0 m

Constructing New Pathnames

You can construct arbitrary pathnames using the MAKE-PATHNAME function. It takes one
keyword argument for each pathname component and returns a pathname with any supplied
components filled in and the rest NIL.?

(make-pathname
:directory '(:absolute "foo" "bar")
:name "baz"
itype "txt") —> #p"/foo/bar/baz.txt"

However, if you want your programs to be portable, you probably don’t want to make
pathnames completely from scratch: even though the pathname abstraction protects you from
unportable filename syntax, filenames can be unportable in other ways. For instance, the file-
name /home/peter/foo.txt is no good on an OS X box where /home/ is called /Users/.

Another reason not to make pathnames completely from scratch is that different imple-
mentations use the pathname components slightly differently. For instance, as mentioned
previously, some Windows-based Lisp implementations store the drive letter in the device
component while others store it in the host component. If you write code like this:

[IT]

(make-pathname :device "c" :directory '(:absolute "foo" "bar") :name "baz")

it will be correct on some implementations but not on others.

Rather than making names from scratch, you can build a new pathname based on an
existing pathname with MAKE-PATHNAME’s keyword parameter :defaults. With this parameter
you can provide a pathname designator, which will supply the values for any components not
specified by other arguments. For example, the following expression creates a pathname
with an .html extension and all other components the same as the pathname in the variable
input-file:

(make-pathname :type "html" :defaults input-file)

Assuming the value in input-file was a user-provided name, this code will be robust in
the face of operating system and implementation differences such as whether filenames have
drive letters in them and where they’re stored in a pathname if they do.1?

You can use the same technique to create a pathname with a different directory component.

(make-pathname :directory '(:relative "backups") :defaults input-file)

9. The host component may not default to NIL, but if not, it will be an opaque implementation-
defined value.

10. For absolutely maximum portability, you should really write this:
(make-pathname :type "html" :version :newest :defaults input-file)

Without the :version argument, on a file system with built-in versioning, the output pathname
would inherit its version number from the input file, which isn't likely to be right—if the input file
has been saved many times, it will have a much higher version number than the generated HTML
file. On implementations without file versioning, the :version argument should be ignored. It’s
up to you if you care that much about portability.
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However, this will create a pathname whose whole directory component is the relative
directory backups/, regardless of any directory component input-file may have had. For example:

(make-pathname :directory '(:relative "backups")
:defaults #p"/foo/bar/baz.txt") —> #p"backups/baz.txt"

Sometimes, though, you want to combine two pathnames, at least one of which has a
relative directory component, by combining their directory components. For instance,
suppose you have a relative pathname such as #p"foo/bar.html" that you want to combine
with an absolute pathname such as #p" /www/html/" to get#p" /www/html/foo/bar.html". In that
case, MAKE-PATHNAME won'’t do; instead, you want MERGE-PATHNAMES.

MERGE-PATHNAMES takes two pathnames and merges them, filling in any NIL components
in the first pathname with the corresponding value from the second pathname, much like
MAKE-PATHNAME fills in any unspecified components with components from the :defaults
argument. However, MERGE-PATHNAMES treats the directory component specially: if the first
pathname’s directory is relative, the directory component of the resulting pathname will be the
first pathname’s directory relative to the second pathname’s directory. Thus:

(merge-pathnames #p"foo/bar.html" #p"/www/html/") —> #p"/www/html/foo/bar.html"

The second pathname can also be relative, in which case the resulting pathname will also
be relative.

(merge-pathnames #p"foo/bar.html" #p"html/") —> #p"html/foo/bar.html"

To reverse this process and obtain a filename relative to a particular root directory, you
can use the handy function ENOUGH-NAMESTRING.

(enough-namestring #p"/www/html/foo/bar.html" #p"/www/") —> "html/foo/bar.html"

You can then combine ENOUGH-NAMESTRING with MERGE-PATHNAMES to create a pathname
representing the same name but in a different root.

(merge-pathnames
(enough-namestring #p"/www/html/foo/bar/baz.html" #p"/www/")
#p" /www-backups/") —> #p"/www-backups/html/foo/bar/baz.html"

MERGE-PATHNAMES is also used internally by the standard functions that actually access
files in the file system to fill in incomplete pathnames. For instance, suppose you make a path-
name with just a name and a type.

(make-pathname :name "foo" :type "txt") —> #p"foo.txt"

If you try to use this pathname as an argument to OPEN, the missing components, such as
the directory, must be filled in before Lisp will be able to translate the pathname to an actual
filename. Common Lisp will obtain values for the missing components by merging the given
pathname with the value of the variable *DEFAULT-PATHNAME-DEFAULTS*. The initial value of
this variable is determined by the implementation but is usually a pathname with a directory
component representing the directory where Lisp was started and appropriate values for the
host and device components, if needed. If invoked with just one argument, MERGE-PATHNAMES
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will merge the argument with the value of *xDEFAULT-PATHNAME-DEFAULTS*. For instance, if
*DEFAULT-PATHNAME-DEFAULTS* is #p" /home/peter/", then you'd get the following:

(merge-pathnames #p"foo.txt") —> #p"/home/peter/foo.txt"

Two Representations of Directory Names

When dealing with pathnames that name directories, you need to be aware of one wrinkle.
Pathnames separate the directory and name components, but Unix and Windows consider
directories just another kind of file. Thus, on those systems, every directory has two different
pathname representations.

One representation, which I'll call file form, treats a directory like any other file and puts
the last element of the namestring into the name and type components. The other representa-
tion, directory form, places all the elements of the name in the directory component, leaving
the name and type components NIL. If /foo/bar/ is a directory, then both of the following
pathnames name it.

(make-pathname :directory '(:absolute "foo") :name "bar") ; file form
(make-pathname :directory '(:absolute "foo" "bar")) ; directory form

When you create pathnames with MAKE-PATHNAME, you can control which form you get,
but you need to be careful when dealing with namestrings. All current implementations create
file form pathnames unless the namestring ends with a path separator. But you can’t rely on
user-supplied namestrings necessarily being in one form or another. For instance, suppose
you've prompted the user for a directory to save a file in and they entered " /home/peter". If you
pass that value as the :defaults argument of MAKE-PATHNAME like this:

(make-pathname :name "foo" :type "txt" :defaults user-supplied-name)

you'll end up saving the file in /home/foo. txt rather than the intended /home/peter/foo.txt
because the "peter" in the namestring will be placed in the name component when
user-supplied-name is converted to a pathname. In the pathname portability library I'll discuss
in the next chapter, you'll write a function called pathname-as-directory that converts a
pathname to directory form. With that function you can reliably save the file in the directory
indicated by the user.

(make-pathname
tname "foo" :type "txt" :defaults (pathname-as-directory user-supplied-name))

Interacting with the File System

While the most common interaction with the file system is probably OPENing files for reading
and writing, you'll also occasionally want to test whether a file exists, list the contents of a
directory, delete and rename files, create directories, and get information about a file such as
who owns it, when it was last modified, and its length. This is where the generality of the path-
name abstraction begins to cause a bit of pain: because the language standard doesn’t specify
how functions that interact with the file system map to any specific file system, implementers
are left with a fair bit of leeway.
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That said, most of the functions that interact with the file system are still pretty straight-
forward. I'll discuss the standard functions here and point out the ones that suffer from
nonportability between implementations. In the next chapter you’ll develop a pathname
portability library to smooth over some of those nonportability issues.

To test whether a file exists in the file system corresponding to a pathname designator—
a pathname, namestring, or file stream—you can use the function PROBE-F ILE. If the file named
by the pathname designator exists, PROBE-FILE returns the file's truename, a pathname with
any file system-level translations such as resolving symbolic links performed. Otherwise, it
returns NIL. However, not all implementations support using this function to test whether a
directory exists. Also, Common Lisp doesn’t provide a portable way to test whether a given file
that exists is a regular file or a directory. In the next chapter you'll wrap PROBE-F ILE with a new
function, file-exists-p, that can both test whether a directory exists and tell you whether a
given name is the name of a file or directory.

Similarly, the standard function for listing files in the file system, DIRECTORY, works fine
for simple cases, but the differences between implementations make it tricky to use portably.
In the next chapter you'll define a 1ist-directory function that smoothes over some of these
differences.

DELETE-FILE and RENAME-FILE do what their names suggest. DELETE-FILE takes a path-
name designator and deletes the named file, returning true if it succeeds. Otherwise it signals
a FILE-ERROR.!!

RENAME-FILE takes two pathname designators and renames the file named by the first
name to the second name.

You can create directories with the function ENSURE-DIRECTORIES-EXIST. It takes a path-
name designator and ensures that all the elements of the directory component exist and are
directories, creating them as necessary. It returns the pathname it was passed, which makes it
convenient to use inline.

(with-open-file (out (ensure-directories-exist name) :direction :output)

Note thatifyou pass ENSURE-DIRECTORIES-EXIST a directory name, it should be in directory
form, or the leaf directory won’t be created.

The functions FILE-WRITE-DATE and FILE-AUTHOR both take a pathname designator.
FILE-WRITE-DATE returns the time in number of seconds since midnight January 1, 1900,
Greenwich mean time (GMT), that the file was last written, and FILE-AUTHOR returns, on Unix
and Windows, the file owner.12

To find the length of a file, you can use the function FILE-LENGTH. For historical reasons
FILE-LENGTH takes a stream as an argument rather than a pathname. In theory this allows
FILE-LENGTH to return the length in terms of the element type of the stream. However, since
on most present-day operating systems, the only information available about the length of a

11. See Chapter 19 for more on handling errors.

12. For applications that need access to other file attributes on a particular operating system or
file system, libraries provide bindings to underlying C system calls. The Osicat library at
http://common-lisp.net/project/osicat/ provides a simple API built using the Universal
Foreign Function Interface (UFFI), which should run on most Common Lisps that run on a
POSIX operating system.
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file, short of actually reading the whole file to measure it, is its length in bytes, that’s what most
implementations return, even when FILE-LENGTH is passed a character stream. However, the
standard doesn’t require this behavior, so for predictable results, the best way to get the length
of a file is to use a binary stream.!3

(with-open-file (in filename :element-type '(unsigned-byte 8))
(file-length in))

A related function that also takes an open file stream as its argument is FILE-POSITION.
When called with just a stream, this function returns the current position in the file—the
number of elements that have been read from or written to the stream. When called with two
arguments, the stream and a position designator, it sets the position of the stream to the
designated position. The position designator must be the keyword :start, the keyword :end,
or anon-negative integer. The two keywords set the position of the stream to the start or end of
the file while an integer moves to the indicated position in the file. With a binary stream the
position is simply a byte offset into the file. However, for character streams things are a bit
more complicated because of character-encoding issues. Your best bet, if you need to jump
around within a file of textual data, is to only ever pass, as a second argument to the two-
argument version of FILE-POSITION, a value previously returned by the one-argument
version of FILE-POSITION with the same stream argument.

Other Kinds of 1/0

In addition to file streams, Common Lisp supports other kinds of streams, which can also be
used with the various reading, writing, and printing I/O functions. For instance, you can read
data from, or write data to, a string using STRING-STREAMs, which you can create with the
functions MAKE-STRING-INPUT-STREAM and MAKE-STRING-OUTPUT-STREAM.

MAKE-STRING-INPUT-STREAMtakes a string and optional start and end indices to bound
the area of the string from which data should be read and returns a character stream that you
can pass to any of the character-based input functions such as READ-CHAR, READ-LINE, or
READ. For example, if you have a string containing a floating-point literal in Common Lisp’s
syntax, you can convert it to a float like this:

13. The number of bytes and characters in a file can differ even if you're not using a multibyte
character encoding. Because character streams also translate platform-specific line endings to
a single #\Newline character, on Windows (which uses CRLF as its line ending) the number of
characters will typically be smaller than the number of bytes. If you really have to know the
number of characters in a file, you have to bite the bullet and write something like this:

(with-open-file (in filename)
(loop while (read-char in nil) count t))

or maybe something more efficient like this:

(with-open-file (in filename)
(let ((scratch (make-string 4096)))
(loop for read = (read-sequence scratch in)
while (plusp read) sum read)))
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(let ((s (make-string-input-stream "1.23")))
(unwind-protect (read s)
(close s)))

Similarly, MAKE-STRING-OUTPUT-STREAM creates a stream you can use with FORMAT,
PRINT, WRITE-CHAR, WRITE-LINE, and so on. It takes no arguments. Whatever you write, a
string output stream will be accumulated into a string that can then be obtained with the function
GET-OUTPUT-STREAM-STRING. Each time you call GET-OUTPUT-STREAM-STRING, the stream’s
internal string is cleared so you can reuse an existing string output stream.

However, you'll rarely use these functions directly, because the macros
WITH-INPUT-FROM-STRING and WITH-OUTPUT-TO-STRING provide a more convenient
interface. WITH-INPUT-FROM-STRING is similar to WITH-OPEN-F ILE—it creates a string input
stream from a given string and then executes the forms in its body with the stream bound to the
variable you provide. For instance, instead of the LET form with the explicit UNWIND-PROTECT,
you’d probably write this:

(with-input-from-string (s "1.23")
(read s))

The WITH-OUTPUT-TO-STRING macro is similar: it binds a newly created string output
stream to a variable you name and then executes its body. After all the body forms have been
executed, WITH-OUTPUT-TO-STRING returns the value that would be returned by
GET-OUTPUT-STREAM-STRING.

CL-USER> (with-output-to-string (out)
(format out "hello, world ")
(format out "~s" (list 1 2 3)))
"hello, world (1 2 3)"

The other kinds of streams defined in the language standard provide various kinds of
stream “plumbing,” allowing you to plug together streams in almost any configuration. A
BROADCAST-STREAMis an output stream that sends any data written to it to a set of output
streams provided as arguments to its constructor function, MAKE-BROADCAST-STREAM.14
Conversely, a CONCATENATED-STREAMis an input stream that takes its input from a set of input
streams, moving from stream to stream as it hits the end of each stream.
CONCATENATED-STREAMs are constructed with the function MAKE-CONCATENATED-STREAM,
which takes any number of input streams as arguments.

Two kinds of bidirectional streams that can plug together streams in a couple ways are
TWO-WAY-STREAM and ECHO-STREAM. Their constructor functions, MAKE-TWO-WAY-STREAM and
MAKE-ECHO-STREAM, both take two arguments, an input stream and an output stream, and
return a stream of the appropriate type, which you can use with both input and output functions.

In a TWO-WAY-STREAM every read you perform will return data read from the underlying
input stream, and every write will send data to the underlying output stream. An ECHO-STREAM
works essentially the same way except that all the data read from the underlying input stream
is also echoed to the output stream. Thus, the output stream of an ECHO-STREAM stream will
contain a transcript of both sides of the conversation.

14. MAKE-BROADCAST-STREAM can make a data black hole by calling it with no arguments.
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Using these five kinds of streams, you can build almost any topology of stream plumbing
you want.

Finally, although the Common Lisp standard doesn’t say anything about networking APIs,
most implementations support socket programming and typically implement sockets as
another kind of stream, so you can use all the regular I/O functions with them.!®

Now you're ready to move on to building a library that smoothes over some of the differences
between how the basic pathname functions behave in different Common Lisp implementations.

15. The biggest missing piece in Common Lisp’s standard I/0 facilities is a way for users to define
new stream classes. There are, however, two de facto standards for user-defined streams. During
the Common Lisp standardization, David Gray of Texas Instruments wrote a draft proposal for an
API to allow users to define new stream classes. Unfortunately, there wasn’t time to work out all
the issues raised by his draft to include it in the language standard. However, many implemen-
tations support some form of so-called Gray Streams, basing their API on Gray’s draft proposal.
Another, newer API, called Simple Streams, has been developed by Franz and included in Allegro
Common Lisp. It was designed to improve the performance of user-defined streams relative to
Gray Streams and has been adopted by some of the open-source Common Lisp implementations.






CHAPTER 15

Practical: A Portable
Pathname Library

As I discussed in the previous chapter, Common Lisp provides an abstraction, the pathname,
that’s supposed to insulate you from the details of how different operating systems and file
systems name files. Pathnames provide a useful API for manipulating names as names, but

when it comes to the functions that actually interact with the file system, things get a bit hairy.

The root of the problem, as  mentioned, is that the pathname abstraction was designed to
represent filenames on a much wider variety of file systems than are commonly used now.
Unfortunately, by making pathnames abstract enough to account for a wide variety of file
systems, Common Lisp’s designers left implementers with a fair number of choices to make
about how exactly to map the pathname abstraction onto any particular file system. Conse-
quently, different implementers, each implementing the pathname abstraction for the same
file system, just by making different choices at a few key junctions, could end up with conforming
implementations that nonetheless provide different behavior for several of the main pathname-
related functions.

However, one way or another, all implementations provide the same basic functionality,
so it’s not too hard to write a library that provides a consistent interface for the most common
operations across different implementations. That’s your task for this chapter. In addition to
giving you several useful functions that you'll use in future chapters, writing this library will
give you a chance to learn how to write code that deals with differences between implementations.

The API

The basic operations the library will support will be getting a list of files in a directory and
determining whether a file or directory with a given name exists. You'll also write a function for
recursively walking a directory hierarchy, calling a given function for each pathname in the
tree.

In theory, these directory listing and file existence operations are already provided by the
standard functions DIRECTORY and PROBE-FILE. However, as you'll see, there are enough
different ways to implement these functions—all within the bounds of valid interpretations of
the language standard—that you’ll want to write new functions that provide a consistent
behavior across implementations.
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*FEATURES* and Read-Time Conditionalization

Before you can implement this APIin a library that will run correctly on multiple Common Lisp
implementations, I need to show you the mechanism for writing implementation-specific code.

While most of the code you write can be “portable” in the sense that it will run the same on
any conforming Common Lisp implementation, you may occasionally need to rely on
implementation-specific functionality or to write slightly different bits of code for different
implementations. To allow you to do so without totally destroying the portability of your code,
Common Lisp provides a mechanism, called read-time conditionalization, that allows you to
conditionally include code based on various features such as what implementation it’s being
runin.

The mechanism consists of a variable * FEATURES* and two extra bits of syntax understood
by the Lisp reader. *FEATURES* is a list of symbols; each symbol represents a “feature” that’s
present in the implementation or on the underlying platform. These symbols are then used
in feature expressions that evaluate to true or false depending on whether the symbols in the
expression are present in *FEATURES*. The simplest feature expression is a single symbol;
the expression is true if the symbol is in *FEATURES#* and false ifitisn’t. Other feature expressions
are boolean expressions built out of NOT, AND, and OR operators. For instance, if you wanted to
conditionalize some code to be included only if the features foo and bar were present, you
could write the feature expression (and foo bar).

The reader uses feature expressions in conjunction with two bits of syntax, #+ and #-.
When the reader sees either of these bits of syntax, it first reads a feature expression and then
evaluates it as I just described. When a feature expression following a #+ is true, the reader reads
the next expression normally. Otherwise it skips the next expression, treating it as whitespace.
#- works the same way except it reads the form if the feature expression is false and skips it if
it’s true.

The initial value of * FEATURES* is implementation dependent, and what functionality
is implied by the presence of any given symbol is likewise defined by the implementation.
However, all implementations include at least one symbol that indicates what implementation
itis. For instance, Allegro Common Lisp includes the symbol :allegro, CLISP includes : clisp,
SBCLincludes :sbcl, and CMUCL includes :cmu. To avoid dependencies on packages that may
or may not exist in different implementations, the symbols in *FEATURE S#* are usually keywords,
and the reader binds *PACKAGE* to the KEYWORD package while reading feature expressions.
Thus, a name with no package qualification will be read as a keyword symbol. So, you could
write a function that behaves slightly differently in each of the implementations just mentioned
like this:

(defun foo ()
#+allegro (do-one-thing)
#+sbcl (do-another-thing)
#+clisp (something-else)
#+cmu (yet-another-version)
#-(or allegro sbcl clisp cmu) (error "Not implemented"))

In Allegro that code will be read as if it had been written like this:

(defun foo ()
(do-one-thing))
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while in SBCL the reader will read this:

(defun foo ()
(do-another-thing))

while in an implementation other than one of the ones specifically conditionalized, it will read
this:

(defun foo ()
(error "Not implemented"))

Because the conditionalization happens in the reader, the compiler doesn’t even see
expressions that are skipped.! This means you pay no runtime cost for having different versions for
different implementations. Also, when the reader skips conditionalized expressions, it doesn’t
bother interning symbols, so the skipped expressions can safely contain symbols from packages
that may not exist in other implementations.

PACKAGING THE LIBRARY

Speaking of packages, if you download the complete code for this library, you’ll see that it’s defined in a new
package, com.gigamonkeys . pathnames. I'll discuss the details of defining and using packages in Chapter 21.
For now you should note that some implementations provide their own packages that contain functions with
some of the same names as the ones you’ll define in this chapter and make those names available in the
CL-USER package. Thus, if you try to define the functions from this library while in the CL-USER package, you
may get errors or warnings about clobbering existing definitions. To avoid this possibility, you can create a file
called packages . 1isp with the following contents:

(in-package :cl-user)

(defpackage :com.gigamonkeys.pathnames
(:use :common-lisp)
(:export

:1ist-directory
:file-exists-p
:directory-pathname-p
:file-pathname-p
:pathname-as-directory
:pathname-as-file
:walk-directory
:directory-p

:file-p))

Continued

1. One slightly annoying consequence of the way read-time conditionalization works is that
there’s no easy way to write a fall-through case. For example, if you add support for another
implementation to foo by adding another expression guarded with #+, you need to remember
to also add the same feature to the or feature expression after the #- or the ERROR form will be
evaluated after your new code runs.
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and LOAD it. Then at the REPL or at the top of the file where you type the definitions from this chapter, type the
following expression:

(in-package :com.gigamonkeys.pathnames)

In addition to avoiding name conflicts with symbols already available in CL-USER, packaging the library
this way also makes it easier to use in other code, as you'll see in several future chapters.

Listing a Directory

You can implement the function for listing a single directory, list-directory, as a thin wrapper
around the standard function DIRECTORY. DIRECTORY takes a special kind of pathname, called
a wild pathname, that has one or more components containing the special value :wild and
returns a list of pathnames representing files in the file system that match the wild pathname.2
The matching algorithm—Ilike most things having to do with the interaction between Lisp and
a particular file system—isn’t defined by the language standard, but most implementations on
Unix and Windows follow the same basic scheme.

The DIRECTORY function has two problems that you need to address with 1ist-directory.
The main one is that certain aspects of its behavior differ fairly significantly between different
Common Lisp implementations, even on the same operating system. The other is that while
DIRECTORY provides a powerful interface for listing files, to use it properly requires understanding
some rather subtle points about the pathname abstraction. Between these subtleties and
the idiosyncrasies of different implementations, actually writing portable code that uses
DIRECTORY to do something as simple as listing all the files and subdirectories in a single directory
can be a frustrating experience. You can deal with those subtleties and idiosyncrasies once and
for all, by writing 1ist-directory, and forget them thereafter.

One subtlety I discussed in Chapter 14 is the two ways to represent the name of a directory as
a pathname: directory form and file form.

To get DIRECTORY to return a list of files in /home/peter/, you need to pass it a wild path-
name whose directory component is the directory you want to list and whose name and type
components are :wild. Thus, to get a listing of the files in /home/peter/, it might seem you
could write this:

(directory (make-pathname :name :wild :type :wild :defaults home-dir))

where home-dir is a pathname representing /home/peter/. This would work if home-dir were in
directory form. But if it were in file form—for example, if it had been created by parsing the
namestring "/home/peter"—then that same expression would list all the files in /home since the
name component "peter"” would be replaced with :wild.

To avoid having to worry about explicitly converting between representations, you can
define 1ist-directory to accept a nonwild pathname in either form, which it will then convert
to the appropriate wild pathname.

2. Another special value, :wild-inferiors, can appear as part of the directory component of a wild
pathname, but you won't need it in this chapter.
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To help with this, you should define a few helper functions. One, component-present-p,
will test whether a given component of a pathname is “present,” meaning neither NIL nor the
special value : unspecific.3 Another, directory-pathname-p, tests whether a pathname is already
in directory form, and the third, pathname-as-directory, converts any pathname to a directory
form pathname.

(defun component-present-p (value)
(and value (not (eql value :unspecific))))

(defun directory-pathname-p (p)
(and
(not (component-present-p (pathname-name p)))
(not (component-present-p (pathname-type p)))

p))

(defun pathname-as-directory (name)
(let ((pathname (pathname name)))
(when (wild-pathname-p pathname)
(error "Can't reliably convert wild pathnames."))
(if (not (directory-pathname-p name))
(make-pathname
:directory (append (or (pathname-directory pathname) (1list :relative))
(list (file-namestring pathname)))

:name nil

:type nil

:defaults pathname)
pathname)))

Now it seems you could generate a wild pathname to pass to DIRECTORY by calling
MAKE-PATHNAME with a directory form name returned by pathname-as-directory. Unfortu-
nately, it's not quite that simple, thanks to a quirk in CLISP’s implementation of DIRECTORY. In
CLISP, DIRECTORY won'’t return files with no extension unless the type component of the wild-
card is NIL rather than :wild. So you can define a function, directory-wildcard, that takes a
pathname in either directory or file form and returns a proper wildcard for the given imple-
mentation using read-time conditionalization to make a pathname with a :wild type component
in all implementations except for CLISP and NIL in CLISP.

(defun directory-wildcard (dirname)
(make-pathname
:name :wild
:type #-clisp :wild #+clisp nil
:defaults (pathname-as-directory dirname)))

3. Implementations are allowed to return :unspecific instead of NIL as the value of pathname
components in certain situations such as when the component isn’'t used by that implementation.
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Note how each read-time conditional operates at the level of a single expression After
#-clisp, the expression :wild is either read or skipped; likewise, after #+clisp, the NIL is read
or skipped.

Now you can take a first crack at the 1ist-directory function.

(defun list-directory (dirname)
(when (wild-pathname-p dirname)
(error "Can only list concrete directory names."))
(directory (directory-wildcard dirname)))

As it stands, this function would work in SBCL, CMUCL, and LispWorks. Unfortunately,
a couple more implementation differences remain to be smoothed over. One is that not all
implementations will return subdirectories of the given directory. Allegro, SBCL, CMUCL, and
LispWorks do. OpenMCL doesn’t by default but will if you pass DIRECTORY a true value via
the implementation-specific keyword argument :directories. CLISP’s DIRECTORY returns
subdirectories only when it’s passed a wildcard pathname with :wild as the last element of the
directory component and NIL name and type components. In this case, it returns only subdir-
ectories, so you'll need to call DIRECTORY twice with different wildcards and combine the results.

Once you get all the implementations returning directories, you'll discover they can also
differ in whether they return the names of directories in directory or file form. You want
list-directory to always return directory names in directory form so you can differentiate
subdirectories from regular files based on just the name. Except for Allegro, all the implemen-
tations this library will support do that. Allegro, on the other hand, requires you to pass
DIRECTORY the implementation-specific keyword argument :directories-are-files NIL to
get it to return directories in file form.

Once you know how to make each implementation do what you want, actually writing
list-directory is simply a matter of combining the different versions using read-time
conditionals.

(defun list-directory (dirname)
(when (wild-pathname-p dirname)
(error "Can only list concrete directory names."))
(let ((wildcard (directory-wildcard dirname)))

#+(or sbcl cmu lispworks)
(directory wildcard)

#+openmcl
(directory wildcard :directories t)

#+allegro
(directory wildcard :directories-are-files nil)

#+clisp
(nconc
(directory wildcard)
(directory (clisp-subdirectories-wildcard wildcard)))
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#-(or sbcl cmu lispworks openmcl allegro clisp)
(error "list-directory not implemented")))

The function clisp-subdirectories-wildcard isn’t actually specific to CLISP, but since it
isn't needed by any other implementation, you can guard its definition with a read-time condi-
tional. In this case, since the expression following the #+ is the whole DEFUN, the whole function
definition will be included or not, depending on whether clisp is present in *FEATURES*.

#+clisp
(defun clisp-subdirectories-wildcard (wildcard)
(make-pathname
:directory (append (pathname-directory wildcard) (list :wild))
:name nil
:type nil
:defaults wildcard))

Testing a File’s Existence

To replace PROBE-FILE, you can define a function called file-exists-p. It should accept a
pathname and return an equivalent pathname if the file exists and NIL if it doesn’t. It should be
able to accept the name of a directory in either directory or file form but should always return
a directory form pathname if the file exists and is a directory. This will allow you to use
file-exists-p, along with directory-pathname-p, to test whether an arbitrary name is the
name of a file or directory.

In theory, file-exists-p is quite similar to the standard function PROBE-FILE; indeed, in
several implementations—SBCL, LispWorks, and OpenMCL—PROBE-F ILE already gives you
the behavior you want for file-exists-p. But not all implementations of PROBE-FILE behave
quite the same.

Allegro and CMUCL'’s PROBE-FILE functions are close to what you need—they will accept
the name of a directory in either form but, instead of returning a directory form name, simply
return the name in the same form as the argument it was passed. Luckily, if passed the name of
anondirectory in directory form, they return NIL. So with those implementations you can get
the behavior you want by first passing the name to PROBE-FILE in directory form—if the file
exists and is a directory, it will return the directory form name. If that call returns NIL, then you
try again with a file form name.

CLISP, on the other hand, once again has its own way of doing things. Its PROBE-FILE
immediately signals an error if passed a name in directory form, regardless of whether a file or
directory exists with that name. It also signals an error if passed a name in file form that’s actu-
ally the name of a directory. For testing whether a directory exists, CLISP provides its own
function: probe-directory (in the ext package). This is almost the mirror image of PROBE-FILE:
it signals an error if passed a name in file form or if passed a name in directory form that happens
to name a file. The only difference is it returns T rather than a pathname when the named
directory exists.
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But even in CLISP you can implement the desired semantics by wrapping the calls to
PROBE-FILE and probe-directory in IGNORE-ERRORS.4

(defun file-exists-p (pathname)
#+(or sbcl lispworks openmcl)
(probe-file pathname)

#+(or allegro cmu)
(or (probe-file (pathname-as-directory pathname))
(probe-file pathname))

#+clisp
(or (ignore-errors
(probe-file (pathname-as-file pathname)))
(ignore-errors
(let ((directory-form (pathname-as-directory pathname)))
(when (ext:probe-directory directory-form)
directory-form))))

#-(or sbcl cmu lispworks openmcl allegro clisp)
(error "list-directory not implemented"))

The function pathname-as-file that you need for the CLISP implementation of
file-exists-p is the inverse of the previously defined pathname-as-directory, returning a
pathname that’s the file form equivalent of its argument. This function, despite being needed
here only by CLISP, is generally useful, so define it for all implementations and make it part of
the library.

(defun pathname-as-file (name)
(let ((pathname (pathname name)))
(when (wild-pathname-p pathname)
(error "Can't reliably convert wild pathnames."))
(if (directory-pathname-p name)
(let* ((directory (pathname-directory pathname))
(name-and-type (pathname (first (last directory)))))
(make-pathname
:directory (butlast directory)
:name (pathname-name name-and-type)
:type (pathname-type name-and-type)
:defaults pathname))
pathname)))

4. This is slightly broken in the sense that if PROBE-FILE signals an error for some other reason, this
code will interpret it incorrectly. Unfortunately, the CLISP documentation doesn’t specify what
errors might be signaled by PROBE-FILE and probe-directory, and experimentation seems to
show that they signal simple-file-errors in most erroneous situations.
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Walking a Directory Tree

Finally, to round out this library, you can implement a function called walk-directory. Unlike
the functions defined previously, this function doesn’t need to do much of anything to smooth
over implementation differences; it just needs to use the functions you've already defined.
However, it’s quite handy, and you'll use it several times in subsequent chapters. It will take the
name of a directory and a function and call the function on the pathnames of all the files under
the directory, recursively. It will also take two keyword arguments: :directories and :test.
When :directories is true, it will call the function on the pathnames of directories as well as
regular files. The :test argument, if provided, specifies another function that’s invoked on
each pathname before the main function is; the main function will be called only if the test
function returns true.

(defun walk-directory (dirname fn 8key directories (test (constantly t)))
(labels
((walk (name)
(cond
((directory-pathname-p name)
(when (and directories (funcall test name))
(funcall fn name))
(dolist (x (list-directory name)) (walk x)))
((funcall test name) (funcall fn name)))))
(walk (pathname-as-directory dirname))))

Now you have a useful library of functions for dealing with pathnames. As I mentioned,
these functions will come in handy in later chapters, particularly Chapters 23 and 27, where
you'llusewalk-directory to crawl through directory trees containing spam messages and MP3
files. But before we get to that, though, I need to talk about object orientation, the topic of the
next two chapters.






CHAPTER 16

Object Reorientation:
Generic Functions

Because the invention of Lisp predated the rise of object-oriented programming by a couple
decades,! new Lispers are sometimes surprised to discover what a thoroughly object-oriented
language Common Lisp is. Common Lisp’s immediate predecessors were developed at a time
when object orientation was an exciting new idea and there were many experiments with ways
to incorporate the ideas of object orientation, especially as manifested in Smalltalk, into Lisp.
As part of the Common Lisp standardization, a synthesis of several of these experiments emerged
under the name Common Lisp Object System, or CLOS. The ANSI standard incorporated CLOS
into the language, so it no longer really makes sense to speak of CLOS as a separate entity.

The features CLOS contributed to Common Lisp range from those that can hardly be
avoided to relatively esoteric manifestations of Lisp’s language-as-language-building-tool
philosophy. Complete coverage of all these features is beyond the scope of this book, but in this
chapter and the next I'll describe the bread-and-butter features and give an overview of
Common Lisp’s approach to objects.

You should note at the outset that Common Lisp’s object system offers a fairly different
embodiment of the principles of object orientation than many other languages. If you have a
deep understanding of the fundamental ideas behind object orientation, you'll likely appre-
ciate the particularly powerful and general way Common Lisp manifests those ideas. On the
other hand, if your experience with object orientation has been largely with a single language,
you may find Common Lisp’s approach somewhat foreign; you should try to avoid assuming

1. Thelanguage now generally considered the first object-oriented language, Simula, was invented
in the early 1960s, only a few years after McCarthy’s first Lisp. However, object orientation didn't
really take off until the 1980s when the first widely available version of Smalltalk was released,
followed by the release of C++ a few years later. Smalltalk took quite a bit of inspiration from Lisp
and combined it with ideas from Simula to produce a dynamic object-oriented language, while
C++ combined Simula with C, another fairly static language, to yield a static object-oriented
language. This early split has led to much confusion in the definition of object orientation. Folks
who come from the C++ tradition tend to consider certain aspects of C++, such as strict data
encapsulation, to be key characteristics of object orientation. Folks from the Smalltalk tradition,
however, consider many features of C++ to be just that, features of C++, and not core to object
orientation. Indeed, Alan Kay, the inventor of Smalltalk, is reported to have said, “I invented the
term object oriented, and I can tell you that C++ wasn't what I had in mind.”
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that there’s only one way for a language to support object orientation.? If you have little object-
oriented programming experience, you should have no trouble understanding the explanations
here, though it may help to ignore the occasional comparisons to the way other languages

do things.

Generic Functions and Classes

The fundamental idea of object orientation is that a powerful way to organize a program is to
define data types and then associate operations with those data types. In particular, you want
to be able to invoke an operation and have the exact behavior determined by the type of the
object or objects on which the operation was invoked. The classic example used, seemingly
by all introductions to object orientation, is an operation draw that can be applied to objects
representing various geometric shapes. Different implementations of the draw operation can
be provided for drawing circles, triangles, and squares, and a call to draw will actually result in
drawing a circle, triangle, or square, depending on the type of the object to which the draw
operation is applied. The different implementations of draw are defined separately, and new
versions can be defined that draw other shapes without having to change the code of either the
caller or any of the other draw implementations. This feature of object orientation goes by the
fancy Greek name polymorphism, meaning “many forms,” because a single conceptual operation,
such as drawing an object, can take many different concrete forms.

Common Lisp, like most object-oriented languages today, is class-based; all objects are
instances of a particular class.3 The class of an object determines its representation—built-in
classes such as NUMBER and STRING have opaque representations accessible only via the stan-
dard functions for manipulating those types, while instances of user-defined classes, as you'’ll
see in the next chapter, consist of named parts called slots.

Classes are arranged in a hierarchy, a taxonomy for all objects. A class can be defined as
a subclass of other classes, called its superclasses. A class inherits part of its definition from its
superclasses and instances of a class are also considered instances of the superclasses. In
Common Lisp, the hierarchy of classes has a single root, the class T, which is a direct or indirect
superclass of every other class. Thus, every datum in Common Lisp is an instance of T.4
Common Lisp also supports multiple inheritance—a single class can have multiple direct
superclasses.

2. There are those who reject the notion that Common Lisp is in fact object oriented at all.

In particular, folks who consider strict data encapsulation a key characteristic of object
orientation—usually advocates of relatively static languages such as C++, Eiffel, or Java—don’t
consider Common Lisp to be properly object oriented. Of course, by that definition, Smalltalk,
arguably one of the original and purest object-oriented languages, isn’t object oriented either. On
the other hand, folks who consider message passing to be the key to object orientation will also
not be happy with the claim that Common Lisp is object oriented since Common Lisp’s generic
function orientation provides degrees of freedom not offered by pure message passing.

3. Prototype-based languages are the other style of object-oriented language. In these languages,
JavaScript being perhaps the most famous example, objects are created by cloning a prototypical
object. The clone can then be modified and used as a prototype for other objects.

4. Tthe constant value and T the class have no particular relationship except they happen to have
the same name. T the value is a direct instance of the class SYMBOL and only indirectly an instance
of T the class.
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Outside the Lisp family, almost all object-oriented languages follow the basic pattern
established by Simula of having behavior associated with classes through methods or member
functions thatbelong to a particular class. In these languages, a method is invoked on a particular
object, and the class of that object determines what code runs. This model of method invocation
is called—after the Smalltalk terminology—message passing. Conceptually, method invocation
in a message-passing system starts by sending a message containing the name of the method to
run and any arguments to the object on which the method is being invoked. The object then
uses its class to look up the method associated with the name in the message and runs it. Because
each class can have its own method for a given name, the same message, sent to different
objects, can invoke different methods.

Early Lisp object systems worked in a similar way, providing a special function SEND that
could be used to send a message to a particular object. However, this wasn’t entirely satisfactory,
as it made method invocations different from normal function calls. Syntactically method
invocations were written like this:

(send object 'foo)
rather than like this:
(foo object)

More significantly, because methods weren’t functions, they couldn’t be passed as argu-
ments to higher-order functions such as MAPCAR; if one wanted to call a method on all the
elements of a list with MAPCAR, one had to write this:

(mapcar #'(lambda (object) (send object 'foo)) objects)
rather than this:
(mapcar #'foo objects)

Eventually the folks working on Lisp object systems unified methods with functions by
creating a new kind of function called a generic function. In addition to solving the problems
just described, generic functions opened up new possibilities for the object system, including
many features that simply don’t make sense in a message-passing object system.

Generic functions are the heart of Common Lisp’s object system and the topic of the rest
of this chapter. While I can’t talk about generic functions without some mention of classes, for
now I'll focus on how to define and use generic functions. In the next chapter I'll show you how
to define your own classes.

Generic Functions and Methods

A generic function defines an abstract operation, specifying its name and a parameter list but
no implementation. Here, for example, is how you might define a generic function, draw, that
will be used to draw different kinds of shapes on the screen:

(defgeneric draw (shape)
(:documentation "Draw the given shape on the screen."))

I'll discuss the syntax of DE FGENER I C in the next section; for now just note that this definition
doesn’t contain any actual code.
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A generic function is generic in the sense that it can—at least in theory—accept any objects
as arguments.® However, by itself a generic function can’t actually do anything; if you just
define a generic function, no matter what arguments you call it with, it will signal an error. The
actual implementation of a generic function is provided by methods. Each method provides an
implementation of the generic function for particular classes of arguments. Perhaps the biggest
difference between a generic function-based system and a message-passing system is that
methods don’t belong to classes; they belong to the generic function, which is responsible for
determining what method or methods to run in response to a particular invocation.

Methods indicate what kinds of arguments they can handle by specializing the required
parameters defined by the generic function. For instance, on the generic function draw, you
might define one method that specializes the shape parameter for objects that are instances of
the class circle while another method specializes shape for objects that are instances of the
class triangle. They would look like this, eliding the actual drawing code:

(defmethod draw ((shape circle))
..

(defmethod draw ((shape triangle))
..)

When a generic function is invoked, it compares the actual arguments it was passed with
the specializers of each of its methods to find the applicable methods—those methods whose
specializers are compatible with the actual arguments. If you invoke draw, passing an instance
of circle, the method that specialized shape on the class circle is applicable, while if you pass
itatriangle, then the method that specializes shape on the class triangle applies. In simple
cases, only one method will be applicable, and it will handle the invocation. In more complex
cases, there may be multiple methods that apply; they’re then combined, as I'll discuss in the
section “Method Combination,” into a single effective method that handles the invocation.

You can specialize a parameter in two ways—usually you'll specify a class that the argument
must be an instance of. Because instances of a class are also considered instances of that class’s
superclasses, a method with a parameter specialized on a particular class can be applicable
whenever the corresponding argument is a direct instance of the specializing class or of any of
its subclasses. The other kind of specializer is a so-called EQL specializer, which specifies a
particular object to which the method applies.

When a generic function has only methods specialized on a single parameter and all the
specializers are class specializers, the result of invoking a generic function is quite similar to
the result of invoking a method in a message-passing system—the combination of the name of
the operation and the class of the object on which it’s invoked determines what method to run.

However, reversing the order of lookup opens up possibilities not found in message-
passing systems. Generic functions support methods that specialize on multiple parameters,
provide a framework that makes multiple inheritance much more manageable, and let you use
declarative constructs to control how methods are combined into an effective method, supporting
several common usage patterns without a lot of boilerplate code. I'll discuss those topics in a

5. Here, as elsewhere, object means any Lisp datum—Common Lisp doesn’t distinguish, as some
languages do, between objects and “primitive” data types; all data in Common Lisp are objects,
and every object is an instance of a class.
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moment. But first you need to look at the basics of the two macros used to define the generic
functions DEFGENERIC and DEFMETHOD.

DEFGENERIC

To give you a feel for these macros and the various facilities they support, I'll show you some
code you might write as part of a banking application—or, rather, a toy banking application;
the point is to look at a few language features, not to learn how to really write banking software.
For instance, this code doesn’t even pretend to deal with such issues as multiple currencies let
alone audit trails and transactional integrity.

Because I'm not going to discuss how to define new classes until the next chapter, for
now you can just assume that certain classes already exist: for starters, assume there’s a class
bank-account and that it has two subclasses, checking-account and savings-account. The class
hierarchy looks like this:

bank-account

checking-account savings-account

The first generic function will be withdraw, which decreases the account balance by a spec-
ified amount. If the balance is less than the amount, it should signal an error and leave the
balance unchanged. You can start by defining the generic function with DEFGENERIC.

The basic form of DEFGENERIC is similar to DEFUN except with no body. The parameter list
of DEFGENERIC specifies the parameters that must be accepted by all the methods that will be
defined on the generic function. In the place of the body, a DEFGENERIC can contain various
options. One option you should always include is :documentation, which you use to provide a
string describing the purpose of the generic function. Because a generic function is purely
abstract, it’s important to be clear to both users and implementers what it’s for. Thus, you
might define withdraw like this:

(defgeneric withdraw (account amount)
(:documentation "Withdraw the specified amount from the account.
Signal an error if the current balance is less than amount."))
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DEFMETHOD

Now you're ready to use DEFMETHOD to define methods that implement withdraw.6

A method’s parameter list must be congruent with its generic function’s. In this case, that
means all methods defined on withdraw must have exactly two required parameters. More
generally, methods must have the same number of required and optional parameters and
must be capable of accepting any arguments corresponding to any &rest or &ey parameters
specified by the generic function.”

Since the basics of withdrawing are the same for all accounts, you can define a method
that specializes the account parameter on the bank-account class. You can assume the function
balance returns the current balance of the account and can be used with SETF—and thus with
DECF—to set the balance. The function ERROR is a standard function used to signal an error,
which I'll discuss in greater detail in Chapter 19. Using those two functions, you can define a
basic withdraw method that looks like this:

(defmethod withdraw ((account bank-account) amount)
(when (< (balance account) amount)
(error "Account overdrawn."))
(decf (balance account) amount))

As this code suggests, the form of DEFMETHOD is even more like that of DEFUN than
DEFGENERIC’s is. The only difference is that the required parameters can be specialized by
replacing the parameter name with a two-element list. The first element is the name of the
parameter, and the second element is the specializer, either the name of a class or an EQL
specializer, the form of which I'll discuss in a moment. The parameter name can be anything—
it doesn’t have to match the name used in the generic function, though it often will.

This method will apply whenever the first argument to withdraw is an instance of
bank-account. The second parameter, amount, is implicitly specialized on T, and since all
objects are instances of T, it doesn’t affect the applicability of the method.

Now suppose all checking accounts have overdraft protection. That is, each checking
account is linked to another bank account that’s drawn upon when the balance of the checking
account itself can’t cover a withdrawal. You can assume that the function overdraft-account
takes a checking-account object and returns a bank-account object representing the linked
account.

6. Technically you could skip the DEFGENERIC altogether—if you define a method with DEFMETHOD
and no such generic function has been defined, one is automatically created. But it’s good form
to define generic functions explicitly, if only because it gives you a good place to document the
intended behavior.

7. A method can “accept” &ey and &rest arguments defined in its generic function by having a
&rest parameter, by having the same &key parameters, or by specifying &al Low-other-keys
along with &key. A method can also specify & ey parameters not found in the generic function’s
parameter list—when the generic function is called, any &k ey parameter specified by the generic
function or any applicable method will be accepted.

One consequence of the congruence rule is that all methods on the same generic function will
also have congruent parameter lists—Common Lisp doesn’t support method overloading the way
some statically typed languages such as C++ and Java do, where the same name can be used for
methods with different parameter lists.
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Thus, withdrawing from a checking-account object requires a few extra steps compared to
withdrawing from a standard bank-account object. You must first check whether the amount
being withdrawn is greater than the account’s current balance and, if it is, transfer the difference
from the overdraft account. Then you can proceed as with a standard bank-account object.

So whatyou'’d like to do is define a method on withdraw that specializes on checking-account
to handle the transfer and then lets the method specialized on bank-account take control. Such
a method might look like this:

(defmethod withdraw ((account checking-account) amount)
(let ((overdraft (- amount (balance account))))
(when (plusp overdraft)
(withdraw (overdraft-account account) overdraft)
(incf (balance account) overdraft)))
(call-next-method))

The function CALL-NEXT-METHOD is part of the generic function machinery used to
combine applicable methods. It indicates that control should be passed from this method to
the method specialized on bank-account.8 When it’s called with no arguments, as it is here, the
next method is invoked with whatever arguments were originally passed to the generic function.
It can also be called with arguments, which will then be passed onto the next method.

You aren’t required to invoke CALL-NEXT-METHOD in every method. However, if you don't,
the new method is then responsible for completely implementing the desired behavior of the
generic function. For example, if you had a subclass of bank-account, proxy-account, that didn’t
actually keep track of its own balance but instead delegated withdrawals to another account,
you might write a method like this (assuming a function, proxied-account, that returns the
proxied account):

(defmethod withdraw ((proxy proxy-account) amount)
(withdraw (proxied-account proxy) amount))

Finally, DEFMETHOD also allows you to create methods specialized on a particular object
with an EQL specializer. For example, suppose the banking app is going to be deployed in a
particularly corrupt bank. Suppose the variable *account-of-bank-president* holds a reference
to a particular bank account that belongs—as the name suggests—to the bank’s president.
Further suppose the variable *bank* represents the bank as a whole, and the function embezzle
steals money from the bank. The bank president might ask you to “fix” withdraw to handle his
account specially.

(defmethod withdraw ((account (egl *account-of-bank-president*)) amount)
(let ((overdraft (- amount (balance account))))
(when (plusp overdraft)
(incf (balance account) (embezzle *bank* overdraft)))
(call-next-method)))

8. CALL-NEXT-METHOD is roughly analogous to invoking a method on super in Java or using an
explicitly class-qualified method or function name in Python or C++.
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Note, however, that the form in the EQL specializer that provides the object to specialize
on—*account-of-bank-president* in this case—is evaluated once, when the DEFMETHOD is
evaluated. This method will be specialized on the value of *account-of-bank-president* at the
time the method is defined; changing the variable later won’t change the method.

Method Combination

Outside the body of a method, CALL-NEXT-METHOD has no meaning. Within a method, it’s
given a meaning by the generic function machinery that builds an effective method each time
the generic function is invoked using all the methods applicable to that particular invocation.
This notion of building an effective method by combining applicable methods is the heart of
the generic function concept and is the thing that allows generic functions to support facilities
not found in message-passing systems. So it’s worth taking a closer look at what’s really
happening. Folks with the message-passing model deeply ingrained in their consciousness
should pay particular attention because generic functions turn method dispatching inside out
compared to message passing, making the generic function, rather than the class, the prime
mover.

Conceptually, the effective method is built in three steps: First, the generic function builds
a list of applicable methods based on the actual arguments it was passed. Second, the list of
applicable methods is sorted according to the specificity of their parameter specializers.
Finally, methods are taken in order from the sorted list and their code combined to produce
the effective method.?

To find applicable methods, the generic function compares the actual arguments with the
corresponding parameter specializers in each of its methods. A method is applicable if, and
only if, all the specializers are compatible with the corresponding arguments.

When the specializer is the name of a class, it's compatible if it names the actual class of
the argument or one of its superclasses. (Recall that parameters without explicit specializers
are implicitly specialized on the class T so will be compatible with any argument.) An EQL
specializer is compatible only when the argument is the same object as was specified in the
specializer.

Because all the arguments are checked against the corresponding specializers, they all
affect whether a method is applicable. Methods that explicitly specialize more than one
parameter are called multimethods; I'll discuss them in the section “Multimethods.”

After the applicable methods have been found, the generic function machinery needs to
sort them before it can combine them into an effective method. To order two applicable methods,
the generic function compares their parameter specializers from left to right,!0 and the first
specializer that’s different between the two methods determines their ordering, with the
method with the more specific specializer coming first.

Because only applicable methods are being sorted, you know all class specializers will
name classes that the corresponding argument is actually an instance of. In the typical case,
if two class specializers differ, one will be a subclass of the other. In that case, the specializer

9. While building the effective method sounds time-consuming, quite a bit of the effort in developing
fast Common Lisp implementations has gone into making it efficient. One strategy is to cache
the effective method so future calls with the same argument types will be able to proceed directly.

10. Actually, the order in which specializers are compared is customizable via the DEFGENERIC
option :argument-precedence-order, though that option is rarely used.
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naming the subclass is considered more specific. This is why the method that specialized
account on checking-account was considered more specific than the method that specialized
it on bank-account.

Multiple inheritance slightly complicates the notion of specificity since the actual argument
may be an instance of two classes, neither of which is a subclass of the other. If such classes are
used as parameter specializers, the generic function can’t order them using only the rule that
subclasses are more specific than their superclasses. In the next chapter I'll discuss how the
notion of specificity is extended to deal with multiple inheritance. For now, suffice it to say that
there’s a deterministic algorithm for ordering class specializers.

Finally, an EQL specializer is always more specific than any class specializer, and because
only applicable methods are being considered, if more than one method has an EQL specializer
for a particular parameter, they must all have the same EQL specializer. The comparison of
those methods will thus be decided based on other parameters.

The Standard Method Combination

Now that you understand how the applicable methods are found and sorted, you're ready to take
a closer look at the last step—how the sorted list of methods is combined into a single effective
method. By default, generic functions use what'’s called the standard method combination.
The standard method combination combines methods so that CALL-NEXT-METHOD works as
you've already seen—the most specific method runs first, and each method can pass control to
the next most specific method via CALL-NEXT-METHOD.

However, there’s a bit more to it than that. The methods I've been discussing so far are
called primary methods. Primary methods, as their name suggests, are responsible for providing
the primary implementation of a generic function. The standard method combination also
supports three kinds of auxiliary methods: :before, :after, and :around methods. An auxiliary
method definition is written with DEFMETHOD like a primary method but with a method qualifier,
which names the type of method, between the name of the method and the parameter list. For
instance, a :before method on withdraw that specializes the account parameter on the class
bank-account would start like this:

(defmethod withdraw :before ((account bank-account) amount) ...)

Each kind of auxiliary method is combined into the effective method in a different way. All
the applicable :before methods—not just the most specific—are run as part of the effective
method. They run, as their name suggests, before the most specific primary method and are
run in most-specific-first order. Thus, :before methods can be used to do any preparation
needed to ensure that the primary method can run. For instance, you could’ve used a :before
method specialized on checking-account to implement the overdraft protection on checking
accounts like this:

(defmethod withdraw :before ((account checking-account) amount)
(let ((overdraft (- amount (balance account))))
(when (plusp overdraft)
(withdraw (overdraft-account account) overdraft)
(incf (balance account) overdraft))))

197



198

CHAPTER 16 OBJECT REORIENTATION: GENERIC FUNCTIONS

This :before method has three advantages over a primary method. One is that it makes it
immediately obvious how the method changes the overall behavior of the withdraw function—
it’s not going to interfere with the main behavior or change the result returned.

The next advantage is that a primary method specialized on a class more specific than
checking-account won’t interfere with this :before method, making it easier for an author of a
subclass of checking-account to extend the behavior of withdraw while keeping part of the old
behavior.

Lastly, since a :before method doesn’t have to call CALL-NEXT-METHOD to pass control to
the remaining methods, it’s impossible to introduce a bug by forgetting to.

The other auxiliary methods also fit into the effective method in ways suggested by their
names. All the :after methods run after the primary methods in most-specific-last order, that
is, the reverse of the :before methods. Thus, the :before and :after methods combine to create a
sort of nested wrapping around the core functionality provided by the primary methods—each
more-specific :before method will get a chance to set things up so the less-specific :before
methods and primary methods can run successfully, and each more-specific :after method
will get a chance to clean up after all the primary methods and less-specific :after methods.

Finally, :around methods are combined much like primary methods except they’re run
“around” all the other methods. That is, the code from the most specific :around method is run
before anything else. Within the body of an :around method, CALL-NEXT-METHOD will lead to
the code of the next most specific :around method or, in the least specific :around method, to
the complex of :before, primary, and :after methods. Almost all :around methods will contain
such a call to CALL-NEXT-METHOD because an :around method that doesn’t will completely
hijack the implementation of the generic function from all the methods except for more-specific
:around methods.

Occasionally that kind of hijacking is called for, but typically :around methods are used to
establish some dynamic context in which the rest of the methods will run—to bind a dynamic
variable, for example, or to establish an error handler (as I'll discuss in Chapter 19). About the
only time it’s appropriate for an :around method to not call CALL-NEXT-METHOD is when it
returns a result cached from a previous call to CALL-NEXT-METHOD. At any rate, an :around
method that doesn’t call CALL-NEXT-METHOD is responsible for correctly implementing the
semantics of the generic function for all classes of arguments to which the method may apply,
including future subclasses.

Auxiliary methods are just a convenient way to express certain common patterns more
concisely and concretely. They don’t actually allow you to do anything you couldn’t do by
combining primary methods with diligent adherence to a few coding conventions and some
extra typing. Perhaps their biggest benefit is that they provide a uniform framework for extending
generic functions. Often a library will define a generic function and provide a default primary
method, allowing users of the library to customize its behavior by defining appropriate
auxiliary methods.

Other Method Combinations

In addition to the standard method combination, the language specifies nine other built-in
method combinations known as the simple built-in method combinations. You can also define
custom method combinations, though that’s a fairly esoteric feature and beyond the scope of
this book. I'll briefly cover how to use the simple built-in combinations to give you a sense of
the possibilities.
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All the simple combinations follow the same pattern: instead of invoking the most specific
primary method and letting it invoke less-specific primary methods via CALL-NEXT-METHOD,
the simple method combinations produce an effective method that contains the code of all the
primary methods, one after another, all wrapped in a call to the function, macro, or special
operator that gives the method combination its name. The nine combinations are named for
the operators: +, AND, OR, LIST, APPEND, NCONC, MIN, MAX, and PROGN. The simple combinations
also support only two kinds of methods, primary methods, which are combined as just described,
and :around methods, which work like : around methods in the standard method combination.

For example, a generic function that uses the + method combination will return the sum
of all the results returned by its primary methods. Note that the AND and OR method combina-
tions won't necessarily run all the primary methods because of those macros’ short-circuiting
behavior—a generic function using the AND combination will return NIL as soon as one of the
methods does and will return the value of the last method otherwise. Similarly, the OR combi-
nation will return the first non-NIL value returned by any of the methods.

To define a generic function that uses a particular method combination, you include a
:method-combination option in the DEFGENERIC form. The value supplied with this option is
the name of the method combination you want to use. For example, to define a generic function,
priority, that returns the sum of values returned by individual methods using the + method
combination, you might write this:

(defgeneric priority (job)
(:documentation "Return the priority at which the job should be run.")
(:method-combination +))

By default all these method combinations combine the primary methods in most-specific-
first order. However, you can reverse the order by including the keyword :most-specific-last
after the name of the method combination in the DEFGENERIC form. The order probably doesn’t
matter if you're using the + combination unless the methods have side effects, but for demon-
stration purposes you can change priority to use most-specific-last order like this:

(defgeneric priority (job)
(:documentation "Return the priority at which the job should be run.")
(:method-combination + :most-specific-last))

The primary methods on a generic function that uses one of these combinations must be
qualified with the name of the method combination. Thus, a primary method defined on
priority might look like this:

(defmethod priority + ((job express-job)) 10)

This makes it obvious when you see a method definition that it’s part of a particular kind
of generic function.

All the simple built-in method combinations also support :around methods that work like
:around methods in the standard method combination: the most specific :around method
runs before any other methods, and CALL-NEXT-METHOD is used to pass control to less-and-less-
specific :around methods until it reaches the combined primary methods. The
:most-specific-last option doesn’t affect the order of :around methods. And, as I mentioned
before, the built-in method combinations don’t support :before or :after methods.

Like the standard method combination, these method combinations don’t allow you to do
anything you couldn’t do “by hand.” Rather, they allow you to express what you want and let
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the language take care of wiring everything together for you, making your code both more
concise and more expressive.

That said, probably 99 percent of the time, the standard method combination will be
exactly what you want. Of the remaining 1 percent, probably 99 percent of them will be
handled by one of the simple built-in method combinations. If you run into one of the 1
percent of 1 percent of cases where none of the built-in combinations suffices, you can look
up DEFINE-METHOD-COMBINATION in your favorite Common Lisp reference.

Multimethods

Methods that explicitly specialize more than one of the generic function’s required parameters
are called multimethods. Multimethods are where generic functions and message passing
really part ways. Multimethods don’t fit into message-passing languages because they don’t
belong to a particular class; instead, each multimethod defines a part of the implementations
of a given generic function that applies when the generic function is invoked with arguments
that match all the method’s specialized parameters.

MULTIMETHODS VS. METHOD OVERLOADING

Programmers used to statically typed message-passing languages such as Java and C++ may think multi-
methods sound similar to a feature of those languages called method overloading. However, these two
language features are actually quite different since overloaded methods are chosen at compile time, based on
the compile-time type of the arguments, not at runtime. To see how this works, consider the following two
Java classes:

public class A {
public void foo(A a) { System.out.println("A/A"); }
public void foo(B b) { System.out.println("A/B"); }
}
public class B extends A {
public void foo(A a) { System.out.println("B/A"); }
public void foo(B b) { System.out.println("B/B"); }

}

Now consider what happens when you run the main method from this class.

public class Main {
public static void main(String[] argv) {
A obj = argv[o0].equals("A") ? new A() : new B();
obj.foo(obj);
}
}

Continued
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When you tell Main to instantiate an A, it prints “A/A” as you’d probably expect.

bash$ java com.gigamonkeys.Main A
A/A

However, if you tell Main to instantiate a B, then the true type of obj is taken into account for only half
the dispatching.

bash$ java com.gigamonkeys.Main B
B/A

If overloaded methods worked like Common Lisp’s multimethods, then that would print “B/B” instead. It is
possible to implement multiple dispatch by hand in message-passing languages, but this runs against the grain
of the message-passing model since the code in a multiply dispatched method doesn’t belong to any one class.

Multimethods are perfect for all those situations where, in a message-passing language,
you struggle to decide to which class a certain behavior ought to belong. Is the sound a drum
makes when it’s hit with a drumstick a function of what kind of drum it is or what kind of stick
you use to hit it? Both, of course. To model this situation in Common Lisp, you simply define a
generic function beat that takes two arguments.

(defgeneric beat (drum stick)
(:documentation
"Produce a sound by hitting the given drum with the given stick."))

Then you can define various multimethods to implement beat for the combinations you
care about. For example:

(defmethod beat
(defmethod beat
(defmethod beat
(defmethod beat
(defmethod beat
(defmethod beat

((drum snare-drum) (stick wooden-drumstick)) ...)
((drum snare-drum) (stick brush)) ...)

((drum snare-drum) (stick soft-mallet)) ...)
((drum tom-tom) (stick wooden-drumstick)) ...)
((drum tom-tom) (stick brush)) ...)

((drum tom-tom) (stick soft-mallet)) ...)

Multimethods don’t help with the combinatorial explosion—if you need to model five
kinds of drums and six kinds of sticks, and every combination makes a different sound, there’s
no way around it; you need thirty different methods to implement all the combinations, with
or without multimethods. What multimethods do save you from is having to write a bunch of
dispatching code by letting you use the same built-in polymorphic dispatching that’s so useful
when dealing with methods specialized on a single parameter.!!

11. In languages without multimethods, you must write dispatching code yourself to implement
behavior that depends on the class of more than one object. The purpose of the popular Visitor
design pattern is to structure a series of singly dispatched method calls so as to provide multiple
dispatch. However, it requires one set of classes to know about the other. The Visitor pattern also
quickly bogs down in a combinatorial explosion of dispatching methods if it’s used to dispatch
on more than two objects.
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Multimethods also save you from having to tightly couple one set of classes with the other.
In the drum/stick example, nothing requires the implementation of the drum classes to know
about the various classes of drumstick, and nothing requires the drumstick classes to know
anything about the various classes of drum. The multimethods connect the otherwise inde-
pendent classes to describe their joint behavior without requiring any cooperation from the
classes themselves.

To Be GContinued . ..

I've covered the basics—and a bit beyond—of generic functions, the verbs of Common Lisp’s
object system. In the next chapter I'll show you how to define your own classes.



CHAPTER 17

Object Reorientation: Classes

Ifgeneric functions are the verbs of the object system, classes are the nouns. As I mentioned
in the previous chapter, all values in a Common Lisp program are instances of some class.
Furthermore, all classes are organized into a single hierarchy rooted at the class T.

The class hierarchy consists of two major families of classes, built-in and user-defined
classes. Classes that represent the data types you've been learning about up until now, classes
such as INTEGER, STRING, and LIST, are all built-in. They live in their own section of the class
hierarchy, arranged into appropriate sub- and superclass relationships, and are manipulated
by the functions I've been discussing for much of the book up until now. You can’t subclass
these classes, but, as you saw in the previous chapter, you can define methods that specialize
on them, effectively extending the behavior of those classes.!

But when you want to create new nouns—for instance, the classes used in the previous
chapter for representing bank accounts—you need to define your own classes. That’s the
subject of this chapter.

DEFCLASS

You create user-defined classes with the DEFCLASS macro. Because behaviors are associated
with a class by defining generic functions and methods specialized on the class, DEFCLASS is
responsible only for defining the class as a data type.

The three facets of the class as a data type are its name, its relation to other classes, and
the names of the slots that make up instances of the class.2 The basic form of a DEFCLASS is
quite simple.

(defclass name (direct-superclass-name*)
(slot-specifier*))

1. Defining new methods for an existing class may seem strange to folks used to statically typed
languages such as C++ and Java in which all the methods of a class must be defined as part of the class
definition. But programmers with experience in dynamically typed object-oriented languages such
as Smalltalk and Objective C will find nothing strange about adding new behaviors to existing classes.

2. Inother object-oriented languages, slots might be called fields, member variables, or attributes.
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WHAT ARE “USER-DEFINED CLASSES”?

The term user-defined classes isn’t a term from the language standard—technically what I’'m talking about
when | say user-defined classes are classes that subclass STANDARD-0BJECT and whose metaclass is
STANDARD-CLASS. But since I’'m not going to talk about the ways you can define classes that don’t subclass
STANDARD-0BJECT and whose metaclass isn’t STANDARD-CLASS, you don’t really have to worry about that.
User-defined isn’t a perfect term for these classes since the implementation may define certain classes the
same way. However, to call them standard classes would be even more confusing since the built-in classes,
such as INTEGER and STRING, are just as standard, if not more so, because they’re defined by the language
standard but they don’t extend STANDARD-0BJECT. To further complicate matters, it’s also possible for users to
define new classes that don’tsubclass STANDARD-OBJECT. In particular, the macro DEFSTRUCT also defines
new classes. But that’s largely for backward compatibility—DEFSTRUCT predated CLOS and was retrofitted
to define classes when CLOS was integrated into the language. But the classes it creates are fairly limited
compared to DEFCLASSed classes. So in this chapter I'll be discussing only classes defined with DEFCLASS
that use the default metaclass of STANDARD-CLASS, and I'll refer to them as user-defined for lack of a
better term.

As with functions and variables, you can use any symbol as the name of a new class.3 Class
names are in a separate namespace from both functions and variables, so you can have a class,
function, and variable all with the same name. You'll use the class name as the argument to
MAKE-INSTANCE, the function that creates new instances of user-defined classes.

The direct-superclass-names specify the classes of which the new class is a subclass. If no
superclasses are listed, the new class will directly subclass STANDARD-OBJECT. Any classes listed
must be other user-defined classes, which ensures that each new class is ultimately descended
from STANDARD-OBJECT. STANDARD-OBJECT in turn subclasses T, so all user-defined classes are
part of the single class hierarchy that also contains all the built-in classes.

Eliding the slot specifiers for a moment, the DEFCLASS forms of some of the classes you
used in the previous chapter might look like this:

(defclass bank-account () ...)
(defclass checking-account (bank-account) ...)

(defclass savings-account (bank-account) ...)

I'll discuss in the section “Multiple Inheritance” what it means to list more than one direct
superclass in direct-superclass-names.

3. Aswhen naming functions and variables, it’s not quite true that you can use any symbol as a class
name—you can't use names defined by the language standard. You'll see in Chapter 21 how to
avoid such name conflicts.
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Slot Specifiers

The bulk of a DEFCLASS form consists of the list of slot specifiers. Each slot specifier defines a
slot that will be part of each instance of the class. Each slot in an instance is a place that can
hold a value, which can be accessed using the SLOT-VALUE function. SLOT-VALUE takes an
object and the name of a slot as arguments and returns the value of the named slot in the given
object. It can be used with SETF to set the value of a slot in an object.

A class also inherits slot specifiers from its superclasses, so the set of slots actually present
in any object is the union of all the slots specified in a class’s DEFCLASS form and those speci-
fied in all its superclasses.

At the minimum, a slot specifier names the slot, in which case the slot specifier can be just
aname. For instance, you could define a bank-account class with two slots, customer-name and
balance, like this:

(defclass bank-account ()
(customer-name
balance))

Each instance of this class will contain two slots, one to hold the name of the customer the
account belongs to and another to hold the current balance. With this definition, you can
create new bank-account objects using MAKE-INSTANCE.

(make-instance 'bank-account) —> #<BANK-ACCOUNT @ #x724b93ba>

The argument to MAKE-INSTANCE is the name of the class to instantiate, and the value
returned is the new object.? The printed representation of an object is determined by the
generic function PRINT-0BJECT. In this case, the applicable method will be one provided by
the implementation, specialized on STANDARD-OBJECT. Since not every object can be printed
so that it can be read back, the STANDARD-OBJECT print method uses the #<> syntax, which
will cause the reader to signal an error if it tries to read it. The rest of the representation is
implementation-defined but will typically be something like the output just shown, including
the name of the class and some distinguishing value such as the address of the object in memory.
In Chapter 23 you'll see an example of how to define a method on PRINT-0BJECT to make
objects of a certain class be printed in a more informative form.

Using the definition of bank-account just given, new objects will be created with their slots
unbound. Any attempt to get the value of an unbound slot signals an error, so you must set a
slot before you can read it.

(defparameter *account* (make-instance 'bank-account)) —> *ACCOUNT*
(setf (slot-value *account* 'customer-name) "John Doe") —> "John Doe"
(setf (slot-value *account* 'balance) 1000) —> 1000

Now you can access the value of the slots.

(slot-value *account* 'customer-name) —> "John Doe"
(slot-value *account* 'balance) —> 1000

4. The argument to MAKE-INSTANCE can actually be either the name of the class or a class object
returned by the function CLASS-0F or FIND-CLASS.
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Object Initialization

Since you can’t do much with an object with unbound slots, it’d be nice to be able to create
objects with their slots already initialized. Common Lisp provides three ways to control the
initial value of slots. The first two involve adding options to the slot specifier in the DEFCLASS
form: with the :initarg option, you can specify a name that can then be used as a keyword
parameter to MAKE-INSTANCE and whose argument will be stored in the slot. A second option,
:initform, lets you specify a Lisp expression that will be used to compute a value for the slot if
no :initarg argument is passed to MAKE-INSTANCE. Finally, for complete control over the
initialization, you can define a method on the generic function INITIALIZE-INSTANCE, which
is called by MAKE-INSTANCE.

A slot specifier that includes options such as :initarg or :initformis written as a list
starting with the name of the slot followed by the options. For example, if you want to modify
the definition of bank-account to allow callers of MAKE-INSTANCE to pass the customer name
and the initial balance and to provide a default value of zero dollars for the balance, you'd
write this:

(defclass bank-account ()
((customer-name
:initarg :customer-name)
(balance
:initarg :balance
:initform 0)))

Now you can create an account and specify the slot values at the same time.

(defparameter *account*
(make-instance 'bank-account :customer-name "John Doe" :balance 1000))

(slot-value *account* 'customer-name) —> "John Doe"
(slot-value *account* 'balance) —> 1000

If you don’t supply a :balance argument to MAKE-INSTANCE, the SLOT-VALUE of balance
will be computed by evaluating the form specified with the : initform option. But if you don’t
supply a : customer-name argument, the customer-name slot will be unbound, and an attempt to
read it before you set it will signal an error.

(slot-value (make-instance 'bank-account) 'balance) —> 0
(slot-value (make-instance 'bank-account) 'customer-name) —> error

5. Another way to affect the values of slots is with the :default-initargs option to DEFCLASS. This
option is used to specify forms that will be evaluated to provide arguments for specific initialization
parameters that aren’t given a value in a particular call to MAKE-INSTANCE. You don't need to
worry about :default-initargs for now.
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If you want to ensure that the customer name is supplied when the account is created, you
can signal an error in the initform since it will be evaluated only if an initarg isn’t supplied. You
can also use initforms that generate a different value each time they're evaluated—the initform
is evaluated anew for each object. To experiment with these techniques, you can modify the
customer-name slot specifier and add a new slot, account-number, that’s initialized with the
value of an ever-increasing counter.

(defvar *account-numbers* 0)

(defclass bank-account ()
((customer-name
:initarg :customer-name
rinitform (error "Must supply a customer name."))
(balance
:initarg :balance
rinitform 0)
(account-number
:initform (incf *account-numbers*))))

Most of the time the combination of :initarg and :initform options will be sufficient to
properly initialize an object. However, while an initform can be any Lisp expression, it has no
access to the object being initialized, so it can’t initialize one slot based on the value of another.
For that you need to define a method on the generic function INITIALIZE-INSTANCE.

The primary method on INITIALIZE-INSTANCE specialized on STANDARD-OBJECT takes
care of initializing slots based on their : initarg and : initformoptions. Since you don’t want to
disturb that, the most common way to add custom initialization code is to define an :after
method specialized on your class.® For instance, suppose you want to add a slot account-type
that needs to be set to one of the values :gold, :silver, or :bronze based on the account’s
initial balance. You might change your class definition to this, adding the account-type slot
with no options:

(defclass bank-account ()
((customer-name
:initarg :customer-name
rinitform (error "Must supply a customer name."))
(balance
:initarg :balance
rinitform 0)
(account-number
:initform (incf *account-numbers*))
account-type))

6. Adding an :after method to INITIALIZE-INSTANCE is the Common Lisp analog to defining a
constructor in Java or C++ oran __init__method in Python.
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Then you can define an :after method on INITIALIZE-INSTANCE that sets the
account-type slot based on the value that has been stored in the balance slot.”

(defmethod initialize-instance :after ((account bank-account) &key)
(let ((balance (slot-value account 'balance)))
(setf (slot-value account 'account-type)
(cond
((>= balance 100000) :gold)
((>= balance 50000) :silver)
(t :bronze)))))

The &key in the parameter list is required to keep the method’s parameter list congruent
with the generic function’s—the parameter list specified for the INITIALIZE-INSTANCE
generic function includes &key in order to allow individual methods to supply their own
keyword parameters but doesn’t require any particular ones. Thus, every method must specify
&key even if it doesn’t specify any &k ey parameters.

On the other hand, if an INITIALIZE-INSTANCE method specialized on a particular class
does specify a &key parameter, that parameter becomes a legal parameter to MAKE-INSTANCE
when creating an instance of that class. For instance, if the bank sometimes pays a percentage
of the initial balance as a bonus when an account is opened, you could implement that using a
method on INITIALIZE-INSTANCE that takes a keyword argument to specify the percentage of
the bonus like this:

efmethod initialize-instance :after ((account bank-account
(defmethod initialize-i f bank
8key opening-bonus-percentage)
when opening-bonus-percentage
hen opening-b P g
(incf (slot-value account 'balance)
(* (slot-value account 'balance) (/ opening-bonus-percentage 100)))))

By defining this INITIALIZE-INSTANCE method, you make :opening-bonus-percentage a
legal argument to MAKE-INSTANCE when creating a bank-account object.

CL-USER> (defparameter *acct* (make-instance
"bank-account
:customer-name "Sally Sue"
:balance 1000
:opening-bonus-percentage 5))
*ACCT*
CL-USER> (slot-value *acct* 'balance)
1050

7. One mistake you might make until you get used to using auxiliary methods is to define a method
on INITIALIZE-INSTANCE but without the :after qualifier. If you do that, you'll get a new
primary method that shadows the default one. You can remove the unwanted primary method
using the functions REMOVE-METHOD and FIND-METHOD. Certain development environments may
provide a graphical user interface to do the same thing.

(remove-method #'initialize-instance
(find-method #'initialize-instance () (list (find-class 'bank-account))))
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Accessor Functions

Between MAKE-INSTANCE and SLOT-VALUE, you have all the tools you need for creating and
manipulating instances of your classes. Everything else you might want to do can be imple-
mented in terms of those two functions. However, as anyone familiar with the principles of
good object-oriented programming practices knows, directly accessing the slots (or fields or
member variables) of an object can lead to fragile code. The problem is that directly accessing
slots ties your code too tightly to the concrete structure of your class. For example, suppose you
decide to change the definition of bank-account so that, instead of storing the current balance
as a number, you store a list of time-stamped withdrawals and deposits. Code that directly
accesses the balance slot will likely break if you change the class definition to remove the slot
or to store the new list in the old slot. On the other hand, if you define a function, balance, that
accesses the slot, you can redefine it later to preserve its behavior even if the internal represen-
tation changes. And code that uses such a function will continue to work without modification.

Another advantage to using accessor functions rather than direct access to slots via
SLOT-VALUE is that they let you limit the ways outside code can modify a slot.8 It may be fine
for users of the bank-account class to get the current balance, but you may want all modifica-
tions to the balance to go through other functions you'll provide, such as deposit and withdraw.
If clients know they’re supposed to manipulate objects only through the published functional
API, you can provide a balance function but not make it SETFable if you want the balance to be
read-only.

Finally, using accessor functions makes your code tidier since it helps you avoid lots of
uses of the rather verbose SLOT-VALUE function.

It’s trivial to define a function that reads the value of the balance slot.

(defun balance (account)
(slot-value account 'balance))

However, if you know you're going to define subclasses of bank-account, it might be a good
idea to define balance as a generic function. That way, you can provide different methods on
balance for those subclasses or extend its definition with auxiliary methods. So you might write
this instead:

(defgeneric balance (account))

(defmethod balance ((account bank-account))
(slot-value account 'balance))

AsTjust discussed, you don’t want callers to be able to directly set the balance, but for
other slots, such as customer-name, you may also want to provide a function to set them. The
cleanest way to define such a function is as a SETF function.

8. Of course, providing an accessor function doesn't really limit anything since other code can still
use SLOT-VALUE to get at slots directly. Common Lisp doesn’t provide strict encapsulation of slots
the way some languages such as C++ and Java do; however, if the author of a class provides
accessor functions and you ignore them, using SLOT-VALUE instead, you had better know what
you're doing. It’s also possible to use the package system, which I'll discuss in Chapter 21, to
make it even more obvious that certain slots aren’t to be accessed directly, by not exporting the
names of the slots.
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A SETF function is a way to extend SETF, defining a new kind of place that it knows how to
set. The name of a SETF function is a two-item list whose first element is the symbol setf and
whose second element is a symbol, typically the name of a function used to access the place the
SETF function will set. A SETF function can take any number of arguments, but the first argument
is always the value to be assigned to the place.® You could, for instance, define a SETF function
to set the customer-name slot in a bank-account like this:

(defun (setf customer-name) (name account)
(setf (slot-value account 'customer-name) name))

After evaluating that definition, an expression like the following one:
(setf (customer-name my-account) "Sally Sue")

will be compiled as a call to the SETF function you just defined with “Sally Sue” as the first argu-
ment and the value of my-account as the second argument.

Of course, as with reader functions, you'll probably want your SETF function to be generic,
so you'd actually define it like this:

(defgeneric (setf customer-name) (value account))

(defmethod (setf customer-name) (value (account bank-account))
(setf (slot-value account 'customer-name) value))

And of course you'll also want to define a reader function for customer-name.

(defgeneric customer-name (account))

(defmethod customer-name ((account bank-account))
(slot-value account 'customer-name))

This allows you to write the following:

(setf (customer-name *account*) "Sally Sue") —> "Sally Sue"

(customer-name *account*) —> "Sally Sue"

There’s nothing hard about writing these accessor functions, but it wouldn’t be in keeping
with The Lisp Way to have to write them all by hand. Thus, DEFCLASS supports three slot
options that allow you to automatically create reader and writer functions for a specific slot.

The :reader option specifies a name to be used as the name of a generic function that
accepts an object as its single argument. When the DEFCLASS is evaluated, the generic function
is created, if it doesn’t already exist. Then a method specializing its single argument on the new
class and returning the value of the slot is added to the generic function. The name can be
anything, butit’s typical to name it the same as the slot itself. Thus, instead of explicitly writing
the balance generic function and method as shown previously, you could change the slot specifier
for the balance slot in the definition of bank-account to this:

9. One consequence of defining a SETF function—say, (setf foo)—is that if you also define the
corresponding accessor function, foo in this case, you can use all the modify macros built upon
SETF, such as INCF, DECF, PUSH, and POP, on the new kind of place.
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(balance
:initarg :balance
:initform 0

:reader balance)

The :writer option is used to create a generic function and method for setting the value of
aslot. The function and method created follow the requirements for a SETF function, taking the
new value as the first argument and returning it as the result, so you can define a SETF function
by providing a name such as (setf customer-name). For instance, you could provide reader and
writer methods for customer-name equivalent to the ones you just wrote by changing the slot
specifier to this:

(customer-name

:initarg :customer-name

:initform (error "Must supply a customer name.")
:reader customer-name

:writer (setf customer-name))

Since it’s quite common to want both reader and writer functions, DEFCLASS also provides
an option, :accessor, that creates both areader function and the corresponding SETF function.
So instead of the slot specifier just shown, you’d typically write this:

(customer-name

:initarg :customer-name

:initform (error "Must supply a customer name.")
raccessor customer-name)

Finally, one last slot option you should know about is the :documentation option, which
you can use to provide a string that documents the purpose of the slot. Putting it all together
and adding areader method for the account-number and account-type slots, the DEFCLASS form
for the bank-account class would look like this:

(defclass bank-account ()
((customer-name
:initarg :customer-name
:initform (error "Must supply a customer name.")
raccessor customer-name
:documentation "Customer's name")

(balance
:initarg :balance
rinitform 0

:reader balance
:documentation "Current account balance")
(account-number
:initform (incf *account-numbers*)
:reader account-number
:documentation "Account number, unique within a bank.")
(account-type
:reader account-type
:documentation "Type of account, one of :gold, :silver, or :bronze.")))
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WITH-SLOTS and WITH-ACCESSORS

While using accessor functions will make your code easier to maintain, they can still be a bit
verbose. And there will be times, when writing methods that implement the low-level behaviors
of a class, that you may specifically want to access slots directly to set a slot that has no writer
function or to get at the slot value without causing any auxiliary methods defined on the reader
function to run.

This is what SLOT-VALUE is for; however, it’s still quite verbose. To make matters worse, a
function or method that accesses the same slot several times can become clogged with calls to
accessor functions and SLOT-VALUE. For example, even a fairly simple method such as the
following, which assesses a penalty on a bank-account if its balance falls below a certain minimum,
is cluttered with calls to balance and SLOT-VALUE:

efmethod assess-low-balance-penalt account bank-accoun
defmethod low-bal penalty bank t
(when (< (balance account) *minimum-balance*)
(decf (slot-value account 'balance) (* (balance account) .01))))

And if you decide you want to directly access the slot value in order to avoid running auxiliary
methods, it gets even more cluttered.

efmethod assess-low-balance-penalt account bank-accoun

defmethod low-bal penalty bank t

(when (< (slot-value account 'balance) *minimum-balance*)
(decf (slot-value account 'balance) (* (slot-value account 'balance) .01))))

Two standard macros, WITH-SLOTS and WITH-ACCESSORS, can help tidy up this clutter.
Both macros create a block of code in which simple variable names can be used to refer to slots
on a particular object. WITH-SLOTS provides direct access to the slots, as if by SLOT-VALUE,
while WITH-ACCESSORS provides a shorthand for accessor methods.

The basic form of WITH-SLOTS is as follows:

(with-slots (slot*) instance-form
body- form*)

Each element of slots can be either the name of a slot, which is also used as a variable name,
or a two-item list where the first item is a name to use as a variable and the second is the name of
the slot. The instance-form is evaluated once to produce the object whose slots will be accessed.
Within the body, each occurrence of one of the variable names is translated to a call to SLOT-VALUE
with the object and the appropriate slot name as arguments.!? Thus, you can write
assess-low-balance-penalty like this:

(defmethod assess-low-balance-penalty ((account bank-account))
(with-slots (balance) account
(when (< balance *minimum-balance*)
(decf balance (* balance .01)))))

10. The “variable” names provided by WITH-SLOTS and WITH-ACCESSORS aren't true variables;
theyre implemented using a special kind of macro, called a symbol macro, that allows a simple
name to expand into arbitrary code. Symbol macros were introduced into the language to
support WITH-SLOTS and WITH-ACCESSORS, but you can also use them for your own purposes.
I'll discuss them in a bit more detail in Chapter 20.
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or, using the two-item list form, like this:

(defmethod assess-low-balance-penalty ((account bank-account))
(with-slots ((bal balance)) account
(when (< bal *minimum-balance*)
(decf bal (* bal .01)))))

If you had defined balance with an :accessor rather than just a :reader, then you could
also use WITH-ACCESSORS. The form of WITH-ACCESSORS is the same as WITH-SLOTS except
each element of the slot list is a two-item list containing a variable name and the name of an
accessor function. Within the body of WITH-ACCESSORS, a reference to one of the variables is
equivalent to a call to the corresponding accessor function. If the accessor function is SETFable,
then so is the variable.

(defmethod assess-low-balance-penalty ((account bank-account))
(with-accessors ((balance balance)) account
(when (< balance *minimum-balance*)
(decf balance (* balance .01)))))

The first balance is the name of the variable, and the second is the name of the accessor
function; they don’t have to be the same. You could, for instance, write a method to merge two
accounts using two calls to WITH-ACCESSORS, one for each account.

(defmethod merge-accounts ((accountl bank-account) (account2 bank-account))
(with-accessors ((balancel balance)) accountl
(with-accessors ((balance2 balance)) account2
(incf balancel balance2)
(setf balance2 0))))

The choice of whether to use WITH-SLOTS versus WITH-ACCESSORS is the same as the
choice between SLOT-VALUE and an accessor function: low-level code that provides the basic
functionality of a class may use SLOT-VALUE or WITH-SLOTS to directly manipulate slots in
ways not supported by accessor functions or to explicitly avoid the effects of auxiliary methods
that may have been defined on the accessor functions. But you should generally use accessor
functions or WITH-ACCESSORS unless you have a specific reason not to.

Class-Allocated Slots

The last slot option you need to know about is :allocation. The value of :allocation can be
either :instance or :class and defaults to :instance if not specified. When a slot has :class
allocation, the slot has only a single value, which is stored in the class and shared by all instances.

However, :class slots are accessed the same as :instance slots—they’re accessed with
SLOT-VALUE or an accessor function, which means you can access the slot value only through
an instance of the class even though it isn’t actually stored in the instance. The :initform and
:initarg options have essentially the same effect except the initform is evaluated once when
the class is defined rather than each time an instance is created. On the other hand, passing an
initarg to MAKE-INSTANCE will set the value, affecting all instances of the class.

Because you can’t get at a class-allocated slot without an instance of the class, class-
allocated slots aren’t really equivalent to static or class fields in languages such as Java, C++,
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and Python.!! Rather, class-allocated slots are used primarily to save space; if you're going to
create many instances of a class and all instances are going to have a reference to the same
object—say, a pool of shared resources—you can save the cost of each instance having its own
reference by making the slot class-allocated.

Slots and Inheritance

AsIdiscussed in the previous chapter, classes inherit behavior from their superclasses thanks
to the generic function machinery—a method specialized on class A is applicable not only to
direct instances of A but also to instances of A’s subclasses. Classes also inherit slots from their
superclasses, but the mechanism is slightly different.

In Common Lisp a given object can have only one slot with a particular name. However,
it’s possible that more than one class in the inheritance hierarchy of a given class will specify a
slot with a particular name. This can happen either because a subclass includes a slot specifier
with the same name as a slot specified in a superclass or because multiple superclasses specify
slots with the same name.

Common Lisp resolves these situations by merging all the specifiers with the same name
from the new class and all its superclasses to create a single specifier for each unique slot name.
When merging specifiers, different slot options are treated differently. For instance, since a slot
can have only a single default value, if multiple classes specify an : initform, the new class uses
the one from the most specific class. This allows a subclass to specify a different default value
than the one it would otherwise inherit.

On the other hand, : initargs needn’t be exclusive—each :initarg option in a slot specifier
creates a keyword parameter that can be used to initialize the slot; multiple parameters don’t
create a conflict, so the new slot specifier contains all the : initargs. Callers of MAKE-INSTANCE
canuse any of the :initargs to initialize the slot. If a caller passes multiple keyword arguments
that initialize the same slot, then the leftmost argument in the call to MAKE-INSTANCE is used.

Inherited :reader, :writer, and :accessor options aren’t included in the merged slot spec-
ifier since the methods created by the superclass’s DEFCLASS will already apply to the new
class. The new class can, however, create its own accessor functions by supplying its own
:reader, :writer, or :accessor options.

Finally, the :allocation option is, like : initform, determined by the most specific class
that specifies the slot. Thus, it’s possible for all instances of one class to share a : class slot
while instances of a subclass may each have their own :instance slot of the same name. And a
sub-subclass may then redefine it back to :class slot, so all instances of that class will again
share a single slot. In the latter case, the slot shared by instances of the sub-subclass is different
than the slot shared by the original superclass.

For instance, suppose you have these classes:

11. The Meta Object Protocol (MOP), which isn’t part of the language standard but is supported by
most Common Lisp implementations, provides a function, class-prototype, that returns an
instance of a class that can be used to access class slots. If you're using an implementation that
supports the MOP and happen to be translating some code from another language that makes
heavy use of static or class fields, this may give you a way to ease the translation. But it’s not all
that idiomatic.
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(defclass foo ()
((a :initarg :a :initform "A" :accessor a)
(b :initarg :b :initform "B" :accessor b)))

(defclass bar (foo)
((a :initform (error "Must supply a value for a"))
(b :initarg :the-b :accessor the-b :allocation :class)))

When instantiating the class bar, you can use the inherited initarg, :a, to specify a value for
the slot a and, in fact, must do so to avoid an error, since the :initform supplied by bar super-
sedes the one inherited from foo. To initialize the b slot, you can use either the inherited initarg
:b or the new initarg :the-b. However, because of the :allocation option on the b slot in bar,
the value specified will be stored in the slot shared by all instances of bar. That same slot can be
accessed either with the method on the generic function b that specializes on foo or with the
new method on the generic function the-b that specializes directly on bar. To access the a slot
on either a foo or a bar, you'll continue to use the generic function a.

Usually merging slot definitions works quite nicely. However, it’s important to be aware
when using multiple inheritance that two unrelated slots that happen to have the same name
can be merged into a single slot in the new class. Thus, methods specialized on different classes
could end up manipulating the same slot when applied to a class that extends those classes.
This isn’t much of a problem in practice since, as you'll see in Chapter 21, you can use the
package system to avoid collisions between names in independently developed pieces of code.

Multiple Inheritance

All the classes you've seen so far have had only a single direct superclass. Common Lisp also
supports multiple inheritance—a class can have multiple direct superclasses, inheriting appli-
cable methods and slot specifiers from all of them.

Multiple inheritance doesn’t dramatically change any of the mechanisms of inheritance
I've discussed so far—every user-defined class already has multiple superclasses since they all
extend STANDARD-OBJECT, which extends T, and so have at least two superclasses. The wrinkle
that multiple inheritance adds is that a class can have more than one direct superclass. This
complicates the notion of class specificity that’s used both when building the effective
methods for a generic function and when merging inherited slot specifiers.

That is, if classes could have only a single direct superclass, ordering classes by specificity
would be trivial—a class and all its superclasses could be ordered in a straight line starting from
the class itself, followed by its single direct superclass, followed by its direct superclass, all the
way up to T. But when a class has multiple direct superclasses, those superclasses are typically
not related to each other—indeed, if one was a subclass of another, you wouldn’t need to
subclass both directly. In that case, the rule that subclasses are more specific than their super-
classesisn’t enough to order all the superclasses. So Common Lisp uses a second rule that sorts
unrelated superclasses according to the order they’re listed in the DEFCLASS’s direct superclass
list—classes earlier in the list are considered more specific than classes later in the list. This
rule is admittedly somewhat arbitrary but does allow every class to have a linear class prece-
dence list, which can be used to determine which superclasses should be considered more
specific than others. Note, however, there’s no global ordering of classes—each class has its

215



216

CHAPTER 17 OBJECT REORIENTATION: CLASSES

own class precedence list, and the same classes can appear in different orders in different
classes’ class precedence lists.

To see how this works, let’s add a class to the banking app: money-market-account. A money
market account combines the characteristics of a checking account and a savings account:
a customer can write checks against it, but it also earns interest. You might define it like this:

(defclass money-market-account (checking-account savings-account) ())
The class precedence list for money-market-account will be as follows:

(money-market-account
checking-account
savings-account
bank-account
standard-object
t)

Note how this list satisfies both rules: every class appears before all its superclasses, and
checking-account and savings-account appear in the order specified in DEFCLASS.

This class defines no slots of its own but will inherit slots from both of its direct super-
classes, including the slots they inherit from their superclasses. Likewise, any method that’s
applicable to any class in the class precedence list will be applicable to a money-market-account
object. Because all slot specifiers for the same slot are merged, it doesn’t matter that
money-market-account inherits the same slot specifiers from bank-account twice. 12

Multiple inheritance is easiest to understand when the different superclasses provide
completely independent slots and behaviors. For instance, money-market-account will inherit
slots and behaviors for dealing with checks from checking-account and slots and behaviors for
computing interest from savings-account. You don’t have to worry about the class precedence
list for methods and slots inherited from only one superclass or another.

However, it’s also possible to inherit different methods for the same generic function from
different superclasses. In that case, the class precedence list does come into play. For instance,
suppose the banking application defined a generic function print-statement used to generate
monthly statements. Presumably there would already be methods for print-statement special-
ized on both checking-account and savings-account. Both of these methods will be applicable
to instances of money-market-account, but the one specialized on checking-account will be
considered more specific than the one on savings-account because checking-account precedes
savings-account in money-market-account’s class precedence list.

Assuming the inherited methods are all primary methods and you haven'’t defined any
other methods, the method specialized on checking-account will be used if you invoke
print-statement on money-market-account. However, that won’t necessarily give you the
behavior you want since you probably want a money market account’s statement to contain
elements of both a checking account and a savings account statement.

12. In other words, Common Lisp doesn't suffer from the diamond inheritance problem the way, say,
C++ does. In C++, when one class subclasses two classes that both inherit a member variable
from a common superclass, the bottom class inherits the member variable twice, leading to no
end of confusion.
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You can modify the behavior of print-statement for money-market-accounts in a couple ways.
One straightforward way is to define a new primary method specialized on money-market-account.
This gives you the most control over the new behavior but will probably require more new code
than some other options I'll discuss in a moment. The problem is that while you can use
CALL-NEXT-METHOD to call “up” to the next most specific method, namely, the one specialized
on checking-account, there’s no way to invoke a particular less-specific method, such as the
one specialized on savings-account. Thus, if you want to be able to reuse the code that prints
the savings-account part of the statement, you'll need to break that code into a separate function,
which you can then call directly from both the money-market-account and savings-account
print-statement methods.

Another possibility is to write the primary methods of all three classes to call
CALL-NEXT-METHOD. Then the method specialized on money-market-account will use
CALL-NEXT-METHOD to invoke the method specialized on checking-account. When that method
calls CALL-NEXT-METHOD, it will result in running the savings-account method since it will be
the next most specific method according to money-market-account’s class precedence list.

Of course, if you're going to rely on a coding convention—that every method calls
CALL-NEXT-METHOD—to ensure all the applicable methods run at some point, you should think
about using auxiliary methods instead. In this case, instead of defining primary methods on
print-statement for checking-account and savings-account, you can define those methods as
:after methods, defining a single primary method on bank-account. Then, print-statement,
called on amoney-market-account, will print a basic account statement, output by the primary
method specialized on bank-account, followed by details output by the :after methods
specialized on savings-account and checking-account. And if you want to add details specific
tomoney-market-accounts, you can define an :after method specialized onmoney-market-account,
which will run last of all.

The advantage of using auxiliary methods is that it makes it quite clear which methods are
primarily responsible for implementing the generic function and which ones are only contrib-
uting additional bits of functionality. The disadvantage is that you don’t get fine-grained
control over the order in which the auxiliary methods run—if you wanted the checking-account
part of the statement to print before the savings-account part, you’d have to change the order
in which the money-market-account subclasses those classes. But that’s a fairly dramatic change
that could affect other methods and inherited slots. In general, if you find yourself twiddling
the order of the direct superclass list as a way of fine-tuning the behavior of specific methods,
you probably need to step back and rethink your approach.

On the other hand, if you don’t care exactly what the order is but want it to be consistent
across several generic functions, then using auxiliary methods may be just the thing. For example,
if in addition to print-statement you have a print-detailed-statement generic function, you
can implement both functions using : after methods on the various subclasses of bank-account,
and the order of the parts of both a regular and a detailed statement will be the same.
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Good Object-Oriented Design

That’s about it for the main features of Common Lisp’s object system. If you have lots of expe-
rience with object-oriented programming, you can probably see how Common Lisp’s features
can be used to implement good object-oriented designs. However, if you have less experience
with object orientation, you may need to spend some time absorbing the object-oriented way
of thinking. Unfortunately, that’s a fairly large topic and beyond the scope of this book. Or, as
the man page for Perl’s object system puts it, “Now you need just to go off and buy a book about
object-oriented design methodology and bang your forehead with it for the next six months or
s0.” Or you can wait for some of the practical chapters, later in this book, where you'll see
several examples of how these features are used in practice. For now, however, you're ready to
take a break from all this theory of object orientation and turn to the rather different topic of
how to make good use of Common Lisp’s powerful, but sometimes cryptic, FORMAT function.



CHAPTER 18

A Few FORMAT Recipes

COmmon Lisp’s FORMAT function is—along with the extended LOOP macro—one of the two
Common Lisp features that inspires a strong emotional response in a lot of Common Lisp
users. Some love it; others hate it.!

FORMAT’s fans love it for its great power and concision, while its detractors hate it because
of the potential for misuse and its opacity. Complex FORMAT control strings sometimes bear a
suspicious resemblance to line noise, but FORMAT remains popular with Common Lispers who
like to be able to generate little bits of human-readable output without having to clutter their
code with lots of output-generating code. While FORMAT’s control strings can be cryptic, at least
asingle FORMAT expression doesn’t clutter things up too badly. For instance, suppose you want
to print the values in a list delimited with commas. You could write this:

(loop for cons on list
do (format t "~a" (car cons))
when (cdr cons) do (format t ", "))

That’s not too bad, but anyone reading this code has to mentally parse it just to figure out
that all it’s doing is printing the contents of 1ist to standard output. On the other hand, you
can tell at a glance that the following expression is printing 1ist, in some form, to standard
output:

(format t "~{~a~*, ~}" list)

If you care exactly what form the output will take, then you’ll have to examine the control
string, but if all you want is a first-order approximation of what this line of code is doing, that’s
immediately available.

At any rate, you should have at least a reading knowledge of FORMAT, and it’s worth getting
a sense of what it can do before you affiliate yourself with the pro- or anti- FORMAT camp. It’s
also important to understand at least the basics of FORMAT because other standard functions,
such as the condition-signaling functions discussed in the next chapter, use FORMAT-style
control strings to generate output.

1. Of course, most folks realize it's not worth getting that worked up over anything in a programming
language and use it or not without a lot of angst. On the other hand, it’s interesting that these two
features are the two features in Common Lisp that implement what are essentially domain-specific
languages using a syntax not based on s-expressions. The syntax of FORMAT’s control strings is
character based, while the extended LOOP macro can be understood only in terms of the grammar
of the LOOP keywords. That one of the common knocks on both FORMAT and LOOP is that they

“aren’t Lispy enough” is evidence that Lispers really do like the s-expression syntax. 219
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To further complicate matters, FORMAT supports three quite different kinds of formatting:
printing tables of data, pretty-printing s-expressions, and generating human-readable messages
with interpolated values. Printing tables of data as text is a bit passé these days; it’s one of those
reminders that Lisp is nearly as old as FORTRAN. In fact, several of the directives you can use
to print floating-point values in fixed-width fields were based quite directly on FORTRAN edit
descriptors, which are used in FORTRAN to read and print columns of data arranged in fixed-
width fields. However, using Common Lisp as a FORTRAN replacement is beyond the scope of
this book, so I won’t discuss those aspects of FORMAT.

Pretty-printing is likewise beyond the scope of this book—not because it’s passé but just
because it’s too big a topic. Briefly, the Common Lisp pretty printer is a customizable system
for printing block-structured data such as—but not limited to—s-expressions while varying
indentation and dynamically adding line breaks as needed. It’s a great thing when you need it,
but it’s not often needed in day-to-day programming.?

Instead, I'll focus on the parts of FORMAT you can use to generate human-readable strings
with interpolated values. Even limiting the scope in that way, there’s still a fair bit to cover. You
shouldn’t feel obliged to remember every detail described in this chapter. You can get quite far
with just a few FORMAT idioms. I'll describe the most important features of FORMAT first; it’s up
to you how much of a FORMAT wizard you want to become.

The FORMAT Function

As you've seen in previous chapters, the FORMAT function takes two required arguments: a
destination for its output and a control string that contains literal text and embedded directives.
Any additional arguments provide the values used by the directives in the control string that
interpolate values into the output. I'll refer to these arguments as format arguments.

The first argument to FORMAT, the destination for the output, can be T, NIL, a stream, or a
string with a fill pointer. T is shorthand for the stream *STANDARD-OUTPUT*, while NIL causes
FORMAT to generate its output to a string, which it then returns.3 If the destination is a stream,
the output is written to the stream. And if the destination is a string with a fill pointer, the
formatted output is added to the end of the string and the fill pointer is adjusted appropriately.
Except when the destination is NIL and it returns a string, FORMAT returns NIL.

The second argument, the control string, is, in essence, a program in the FORMAT language.
The FORMAT language isn’t Lispy at all—its basic syntax is based on characters, not s-expressions,
and it’s optimized for compactness rather than easy comprehension. This is why a complex
FORMAT control string can end up looking like line noise.

Most of FORMAT’s directives simply interpolate an argument into the output in one form or
another. Some directives, such as ~%, which causes FORMAT to emit a newline, don’t consume
any arguments. And others, as you'll see, can consume more than one argument. One directive

2. Readers interested in the pretty printer may want to read the paper “XP: A Common Lisp Pretty
Printing System” by Richard Waters. It’s a description of the pretty printer that was eventually
incorporated into Common Lisp. You can download it from ftp://publications.ai.mit.edu/
ai-publications/pdf/AIM-1102a.pdf.

3. To slightly confuse matters, most other I/0 functions also accept T and NIL as stream designators
but with a different meaning: as a stream designator, T designates the bidirectional stream
*TERMINAL-IO*, while NIL designates *STANDARD-OUTPUT* as an output stream and
*STANDARD-INPUT* as an input stream.
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even allows you to jump around in the list of arguments in order to process the same argument
more than once or to skip certain arguments in certain situations. But before I discuss specific
directives, let’s look at the general syntax of a directive.

FORMAT Directives

All directives start with a tilde (*) and end with a single character that identifies the directive.
You can write the character in either upper- or lowercase. Some directives take prefix parameters,
which are written immediately following the tilde, separated by commas, and used to control
things such as how many digits to print after the decimal point when printing a floating-point
number. For example, the ~$ directive, one of the directives used to print floating-point values,
by default prints two digits following the decimal point.

CL-USER> (format t "~$" pi)
3.14
NIL

However, with a prefix parameter, you can specify that it should print its argument to, say,
five decimal places like this:

CL-USER> (format t "~5$" pi)
3.14159
NIL

The values of prefix parameters are either numbers, written in decimal, or characters,
written as a single quote followed by the desired character. The value of a prefix parameter can
also be derived from the format arguments in two ways: A prefix parameter of v causes FORMAT
to consume one format argument and use its value for the prefix parameter. And a prefix
parameter of # will be evaluated as the number of remaining format arguments. For example:

CL-USER> (format t "~v$" 3 pi)
3.142

NIL

CL-USER> (format t "~#$" pi)
3.1

NIL

I'll give some more realistic examples of how you can use the # argument in the section
“Conditional Formatting.”

You can also omit prefix parameters altogether. However, if you want to specify one
parameter but not the ones before it, you must include a comma for each unspecified parameter.
For instance, the ~F directive, another directive for printing floating-point values, also takes a
parameter to control the number of decimal places to print, but it’s the second parameter
rather than the first. If you want to use ~F to print a number to five decimal places, you can
write this:

CL-USER> (format t "~,5f" pi)
3.14159
NIL
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You can also modify the behavior of some directives with colon and at-sign modifiers,
which are placed after any prefix parameters and before the directive’s identifying character.
These modifiers change the behavior of the directive in small ways. For instance, with a colon
modifier, the ~D directive used to output integers in decimal emits the number with commas
separating every three digits, while the at-sign modifier causes ~D to include a plus sign when
the number is positive.

CL-USER> (format t "~d" 1000000)
1000000

NIL

CL-USER> (format t "~:d" 1000000)
1,000,000

NIL

CL-USER> (format t "~@d" 1000000)
+1000000

NIL

When it makes sense, you can combine the colon and at-sign modifiers to get both
modifications.

CL-USER> (format t "~:@d" 1000000)
+1,000, 000
NIL

In directives where the two modified behaviors can’t be meaningfully combined, using
both modifiers is either undefined or given a third meaning.

Basic Formatting

Now you're ready to look at specific directives. I'll start with several of the most commonly
used directives, including some you've seen in previous chapters.

The most general-purpose directive is ~A, which consumes one format argument of any
type and outputs it in aesthetic (human-readable) form. For example, strings are output without
quotation marks or escape characters, and numbers are output in a natural way for the type of
number. If you just want to emit a value for human consumption, this directive is your best bet.

(format nil "The value is: ~a" 10) —> "The value is: 10"
(format nil "The value is: ~a" "foo") —> "The value is: foo"
(format nil "The value is: ~a" (list 1 2 3)) —> "The value is: (1 2 3)"

A closely related directive, ~S, likewise consumes one format argument of any type and
outputs it. However, ~S tries to generate output that can be read back in with READ. Thus, strings
will be enclosed in quotation marks, symbols will be package-qualified when necessary, and so
on. Objects that don’t have a READable representation are printed with the unreadable object
syntax, #<>. With a colon modifier, both the ~A and ~S directives emit NIL as () rather than NIL.
Both the ~A and ~S directives also take up to four prefix parameters, which can be used to
control whether padding is added after (or before with the at-sign modifier) the value, but
those parameters are only really useful for generating tabular data.
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The other two most frequently used directives are ~%, which emits a newline, and ~&, which
emits a fresh line. The difference between the two is that ~% always emits a newline, while ~&
emits one only if it’s not already at the beginning of a line. This is handy when writing loosely
coupled functions that each generate a piece of output and that need to be combined in different
ways. For instance, if one function generates output that ends with a newline (~%) and another
function generates some output that starts with a fresh line (~&), you don’t have to worry about
getting an extra blank line if you call them one after the other. Both of these directives can take
a single prefix parameter that specifies the number of newlines to emit. The ~% directive will
simply emit that many newline characters, while the ~& directive will emit either n—1 or n
newlines, depending on whether it starts at the beginning of a line.

Less frequently used is the related ~~ directive, which causes FORMAT to emit a literal tilde.
Like the ~% and ~& directives, it can be parameterized with a number that controls how many
tildes to emit.

Character and Integer Directives

In addition to the general-purpose directives, ~A and ~S, FORMAT supports several directives

that can be used to emit values of specific types in particular ways. One of the simplest of these
is the ~C directive, which is used to emit characters. It takes no prefix arguments but can be

modified with the colon and at-sign modifiers. Unmodified, its behavior is no different from ~A
except that it works only with characters. The modified versions are more useful. With a colon
modifier, ~: C outputs nonprinting characters such as space, tab, and newline by name. This is
useful if you want to emit a message to the user about some character. For instance, the following:

(format t "Syntax error. Unexpected character: ~:c" char)

can emit messages like this:
Syntax error. Unexpected character: a
but also like the following:
Syntax error. Unexpected character: Space
With the at-sign modifier, ~@C will emit the character in Lisp’s literal character syntax.

CL-USER> (format t "~@c~%" #\a)
#\a
NIL

With both the colon and at-sign modifiers, the ~C directive can print extra information
about how to enter the character at the keyboard if it requires special key combinations. For
instance, on the Macintosh, in certain applications you can enter a null character (character
code 0 in ASCII or in any ASCII superset such as ISO-8859-1 or Unicode) by pressing the
Control key and typing @. In OpenMCL, if you print the null character with the ~:C directive,
it tells you this:

(format nil "~:@c" (code-char 0)) — "*@ (Control @)"
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However, not all Lisps implement this aspect of the ~C directive. And even if they do, it may
or may not be accurate—for instance, if you're running OpenMCL in SLIME, the C-@ key chord
is intercepted by Emacs, invoking set-mark-command.*

Format directives dedicated to emitting numbers are another important category. While
you can use the “A and ~S directives to emit numbers, if you want fine control over how they’re
printed, you need to use one of the number-specific directives. The numeric directives can be
divided into two subcategories: directives for formatting integer values and directives for
formatting floating-point values.

Five closely related directives format integer values: ~D, ~X, ~0, ~B, and ~R. The most
frequently used is the ~D directive, which outputs integers in base 10.

(format nil "~d" 1000000) —> "1000000"
As I mentioned previously, with a colon modifier it adds commas.
(format nil "~:d" 1000000) — "1,000,000"
And with an at-sign modifier, it always prints a sign.
(format nil "~@d" 1000000) —> "+1000000"
And the two modifiers can be combined.
(format nil "~:@d" 1000000) — "+1,000,000"

The first prefix parameter can specify a minimum width for the output, and the second
parameter can specify a padding character to use. The default padding character is space, and
padding is always inserted before the number itself.

(format nil "~12d" 1000000) - " 1000000"
(format nil "~12,'0d" 1000000) —> "000001000000"

These parameters are handy for formatting things such as dates in a fixed-width format.
(format nil "~4,'0d-~2,'0d-~2,"'0d" 2005 6 10) —> "2005-06-10"

The third and fourth parameters are used in conjunction with the colon modifier: the third
parameter specifies the character to use as the separator between groups and digits, and the
fourth parameter specifies the number of digits per group. These parameters default to a
comma and the number 3. Thus, you can use the directive ~:D without parameters to output
large integers in standard format for the United States but can change the comma to a period
and the grouping from 3 to 4 with ~, , ' ., 4D.

(format nil "~:d" 100000000) — "100,000,000"
(format nil "~,,"'.,4:d" 100000000) — "1.0000.0000"

Note that you must use commas to hold the places of the unspecified width and padding
character parameters, allowing them to keep their default values.

4. This variant on the ~C directive makes more sense on platforms like the Lisp Machines where key
press events were represented by Lisp characters.
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The ~X, ~0, and ~B directives work just like the ~D directive except they emit numbers in
hexadecimal (base 16), octal (base 8), and binary (base 2).

(format nil "~x" 1000000) — "f4240"
(format nil "~o" 1000000) — "3641100"
(format nil "~b" 1000000) —> "11110100001001000000"

Finally, the ~R directive is the general radix directive. Its first parameter is a number
between 2 and 36 (inclusive) that indicates what base to use. The remaining parameters are the
same as the four parameters accepted by the ~D, ~X, ~0, and ~B directives, and the colon and
at-sign modifiers modify its behavior in the same way. The ~R directive also has some special
behavior when used with no prefix parameters, which I'll discuss in the section “English-
Language Directives.”

Floating-Point Directives

Four directives format floating-point values: ~F, ~E, ~G, and ~$. The first three of these are the
directives based on FORTRAN'’s edit descriptors. I'll skip most of the details of those directives
since they mostly have to do with formatting floating-point values for use in tabular form.
However, you can use the ~F, ~E, and ~$ directives to interpolate floating-point values into text.
The ~G, or general, floating-point directive, on the other hand, combines aspects of the ~F and
~E directives in a way that only really makes sense for generating tabular output.

The ~F directive emits its argument, which should be a number,’ in decimal format, possibly
controlling the number of digits after the decimal point. The ~F directive is, however, allowed
to use computerized scientific notation if the number is sufficiently large or small. The ~E
directive, on the other hand, always emits numbers in computerized scientific notation. Both
of these directives take a number of prefix parameters, but you need to worry only about the
second, which controls the number of digits to print after the decimal point.

(format nil "~f" 